Titel:

Shape Analysis for Algorithm Animation
Strengths and Weaknesses

Dissertation
zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich-Technischen Fakultaten

der Universitat des Saarlandes

VOIl

Sascha A. Parduhn

Saarbrucken

28.11.2011

Tag des Kolloquiums: 21.12.2011
Dekan: Prof. Dr. H. Hermanns
Berichterstatter: Prof. Dr. R. Seidel

Prof. Dr. Dr. h.c. mult. R. Wilhelm
Vorsitz: Prof. Dr. H. Hermanns

Akad. Mitarbeiter: Dr. M. Neuhauser

Acknowledgment

First and foremost my thanks go to the professors Raimund Seidel and Reinhard Wil-
helm. Their help and insights were invaluable for the progress of my work. But even
more valuable than their considerate professional skills was the trust and patience they
showed me by giving me a second chance. It was this trust that made this work possible
in the first place. For that I will be forever grateful.

I also want to thank Mooly Sagiv, Roman Manevich, Tal Lev-Ami and the rest of the
gang that implemented TVLA and were always available when problems arose.

Writing a phd-thesis is a long and sometimes frustrating process and I want to thank
my fellow co-workers for their help in getting me through the bad times as well as sharing
the good times. My special thanks go to Dierk Johannes for his patience while listening
to my ideas, as well as for his mathematical expertise. I also want to thank Christian
Hoffmann for the long hours of discussion, both professional and spiritual. I may not
have found redemption yet, but you set me on the right way.

Finally I want to dedicate one paragraph to the people that keep the day to day
infrastructure working. Since I also had to care for the server and net infrastructure of
the chair of theoretical computer science, I learned quite a bit about all the tedious little
problems that crop up every day. It is a thankless job to keep things working, because
if you do a good job, no one will notice and if things go bad, you get blamed. So this is
to you, the Rechnerbetriebsgruppe, for always helping me out, fast and unbureaucratic.

Abstract

We present a non-traditional approach to algorithm visualization that is based on shape
analysis, a static program analysis, that so far has been mostly used to verify program
properties. Our approach differs from traditional visualizations: Instead of simulating
a concrete program execution, we use the invariants produced by shape analysis to look
at all possible program executions at the same time. This allows us to show meta level
properties like correctness very easily, but at the price of a higher level of abstraction than
most traditional visualizations. For example when sorting we do not model individual
data values, but instead maintain a relation that tells us if a data value is smaller than
another.

Shape analysis is not a new technique, but its application to algorithm visualization
is: The analysis output can quite naturally be interpreted as a set of graphs, however,
suitable presentation of the shape analysis output requires preparation of the data. This
includes methods to reduce the size of the analysis output and methods to make it eas-
ier to understand. The inherent abstraction also raises new problems. We discuss these
problems and how they influence the layout of our visualization. We also give guidelines
for creating analyses specifically with visualization in mind and provide a detailed de-
scription of an example analysis, that was created according to those guidelines. Lastly
we implemented a visualization tool that was used as a testbed for many of the methods
mentioned in the thesis and we will present a short overview of its features.

Zusammenfassung

Wir présentieren eine uniibliche Herangehensweise an Algorithmenvisualisierung, die auf
Shape Analyse basiert, eine statische Programmanalyse, die bisher hauptsachlich zum
verifizieren von Programmeigenschaften verwendet wurde. Unsere Herangehensweise
unterscheidet sich von traditionellen Visualisierungen: Statt eine konkrete Program-
mausfithrung zu simulieren, verwenden wir Invarianten, die von Shape Analyse pro-
duziert wurden, um alle moéglichen Programmausfithrungen gleichzeitig zu betrachten.
Dies erlaubt es uns Meta-Eigenschaften wie Korrektheit sehr einfach zu zeigen, aber zum
Preis einer hoheren Abstraktionsebene als in vielen herkémmlichen Visualisierungen.
Zum Beispiel beim Sortieren modellieren wir keine individuellen Datenwerte, sondern
benutzen eine Relation, die uns sagt ob ein Datenwert kleiner ist als ein anderer.

Shape Analyse ist keine neues Verfahren, aber ihre Anwendung zur Algorithmenvisu-
alisierung ist es: Die Ausgabe der Analyse kann relativ natiirlich als Menge von Graphen
interpretiert werden, aber, fiir eine sinnvolle Darstellung der Ausgabe miissen die Daten
erst aufbereitet werden. Dies beinhaltet Methoden die Grofie der Ausgabe zu reduzieren
und Methoden die Verstandlichkeit zu erhchen. Die inhérente Abstraktion wirft auch
wieder neue Probleme auf. Wir erértern diese Probleme und die Art und Weise wie sie
unsere Visualisierung beeinflussen. Wir geben aulerdem Richtlinien, wie man Analysen
ganz spezifisch zum Zwecke der Visualisierung erstellt und geben eine Beschreibung einer
Beispielanalyse. Wir haben auch ein Visualisierungswerkzeug programmiert, mit dem
viele der Methoden in dieser Arbeit getestet wurden und das wir kurz erlautern.

Eidesstattliche Versicherung:

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbststandig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus an-
deren Quellen oder indirekt iibernommenen Daten und Konzepte sind unter Angabe der

Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ahnlicher Form
in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbriicken, den Unterschrift

Contents

1

Introduction
1.1 The Importance of Visualization
1.2 Algorithm Animation and Information Visualization
1.3 Our Approach L
1.4 Shape Analysis
1.4.1 3-valued Logic
1.5 TVLA - A Tool For Realizing Shape Analyses
1.5.1 Shape Graphs
1.5.2 Abstraction and Materialization
1.5.3 Actions and Coercion
1.5.4 The Control Flow
1.5.5 Piecing It All Together
1.5.6 Strengths and Weaknesses
1.6 Motivation and Extent of the Thesis
Common Problems and Tools to Help with them
2.1 Too many/confusing Predicates
2.2 Navigating through Shape Graphs
2.3 Miscellaneous Features
2.4 Shape Graph Creation Tool
2.5 Formulas in the Visualizer 0o
Understanding Shape Graphs
3.1 Inherent Problems of Abstraction
3.1.1 Visualization
3.1.2 Limitations and Problems of Abstract Visualization
3.1.3 Visualization Friendly Analysis
3.2 Partitioning
3.3 Concrete Versus Abstract
3.4 Pseudo Code
Pairing Heap Analysis
4.1 Predicates e
4.2 Constraints
4.3 Actions e
4.4 Conclusion and Summary L L Lo e
Summary
5.1 Further Worko
5.1.1 Evaluation
5.1.2 Easier Analysis Specification

5.1.3 Implement a Pathfinder

57
o7
58
58
67
73
81
88

95
96
101
103
109

1 Introduction

1.1 The Importance of Visualization

“Seeing is believing” is an idiom that was first recorded in this form in the seventeenth
century. It means that in order to be convinced of something, humans often need phys-
ical, concrete (i.e. visual) evidence. The idiom has since been used as title for books!,
films?, novels, songs® and even is the name of an organization? that aims to avoid blind-
ness. The deeper meaning of the idiom, however, can be traced much further back.
There are multiple mentions of this in the bible, one of the most famous ones is proba-
bly the story of the doubting Thomas, where the apostle Thomas refuses to believe in
Jesus resurrection, till he was allowed to touch the wounds. Afterwards he proclaimed
his faith in Jesus, to which the latter replied: “Thomas, because thou hast seen me,
thou hast believed: blessed are they that have not seen, and yet have believed.”, King
James Bible, John 20:29.

The above shows, that human sight obviously has a special, very important place in the
human mind. This impression is further confirmed if we look at all the essentially useless
things, that persons do, only to improve their visual appearance: Any kind of cosmetics,
fancy clothes, even if they are not very practical, hair styles, body training, just to look
“good”, tattoos, jewelry and many more. Those were only some of the examples that
apply directly to the human person. In reality, almost all consumer products also always
have the requirement to look “good” or they may be perceived to be qualitatively worse
than a better looking product.

Why is human vision so special? There are a number of interesting facts: Sight is
the sense with the highest information bandwidth by far! No other sense can match the
sheer volume of possible input that comes from our vision. Just imagine reading a book,
it is possible to read the book much faster if you do not vocalize the words than if you
read them aloud. Now imagine watching a movie, how fast can you translate the layout,
colors, emotions into other senses?

Human vision is fast and parallel (see Healey and Enns [11]). There seems to be
neurons in the eyes and brain, that are responsible for different kinds of information:
color, shape, orientation, texture, movement. All of these factors can be recognized
independently from each other and very fast. All these factors can, in fact, be processed
and recognized faster than the eye is able to focus! Tests (see Sagi and Julész [28],
Treisman [33, 34]) have shown, that even when showing a picture only for less than 250
milliseconds (which is the time required to focus the eye on a certain region) it is still
possible to see if there is an abnormal color in an otherwise homogeneous picture, or if
there is a circle in a picture full of squares. It should be noted though, that there are
limits to the number of different colors, shapes, textures etc. that can be recognized at

!Searching for “seeing is believing” at www.amazon.com gives 1854 hits. The books range from scientific
or semi-scientific, detective stories, christian youth books to even erotica. Anything from short stories
to novels seems available.

2Searching for movies at www.amazon.com gives 19 results.

3 Again www.amazon.com gives 84 hits.

4The homepage of the organisation is at www.seeingisbelieving.org.uk

once and these limits are usually very low. Due to the speed of the recognition, this is
often called pre-attentive processing, because there is no time to focus consciously on
the tasks.

Human vision is good at pattern recognition! Our visual memory is very good at
recognizing known features, for example human faces. It might thus seem strange that we
sometimes have problems recognizing differences in animals or sometimes even humans
in other cultures with slightly different facial features. This is due to the fact that we
can indeed focus so much an what we expect, that we are literally blind to even very big
changes, that are obvious if someone points us to it. This phenomenon is called change
blindness. It is easily demonstrated by having a short movie clip, that shows a picture,
then a short black screen and then the same picture again, just with one big difference
and then loop the movie. The black screen in between these two pictures kind of resets
the eye and when we see the next picture it seems to look exactly the same, even if the
difference is very obvious once pointed out! More about this phenomena can be found
in Mack and Rock [23], Rensink [25, 26].

Human vision helps cognition and extends our memory! To understand how visual-
ization can help the cognition of a problem, just consider a mathematics lesson. Imagine
the exercise is to prove a statement by transforming one formula to another. There
might be a scant few that can do it without writing down the formula and the various
transformation steps, but many will have to take the proof line by line. They might
have to look at the formula to get an idea of how to transform it in the next step. While
this may also already count as extending the memory, a better example might be the
simple school multiplication of two non-trivial numbers: Depending on the size of the
numbers, it may not be possible to multiply them without writing the process down. A
more trivial example is looking up a cooking recipe or writing down a shopping list.

With so much emphasis in our brain for vision, it is not surprising, that visualization
always has been of great importance in human society. And because of the last point, it
is also widely used in teaching and science in general. For a more comprehensive work
on the impact of human vision and visualization, see Healey and Enns [11].

1.2 Algorithm Animation and Information Visualization

In scientific visualization the purpose is not to produce pretty pictures, but to help
understanding. We want to help the understanding of algorithms in undergraduate
courses like Algorithms and Data Structures, which is a very important basic course
for any computer science student. It is therefore obvious, that our main focus lies
on algorithm visualization, but, due to the nature of our work, there is also a bit of
information visualization involved.

Information visualization is concerned with efficiently portraying possibly huge amount
of data in such a way that important information can be easily extracted. As a simple
example, let us assume we are interested in comparing some statistics of federal states
in the US. We want to see the percentage of collage degrees in the population and the
per capita income in each state.

In the census bureau website you can freely get this data, but you only get shown one

500 500 . e
. N «- . —
T \\\ o N\ .
L L A\
N
AN
\
N,
A
N
475 \
\ 250
A
N\
A
N\
.
450
0
1998 1999 2000 2001 2002 1998 1999 2000 2001 2002
(a) This might be a development on the stock (b) The same information as in (a). Seen with
exchange. the right scale.

Figure 1: Here we see the same information displayed in two different ways. In (a) it
might look like a stock market crash, while in (b) we can see the whole scale and
thus can deduce correctly, that it is just a slight decline. The above diagrams
are purely fictional and only serve to illustrate how changing the baseline may
affect the perception of how serious the stock price drop is.

single state at a time. This already makes it hard to compare two states, even more so
if you compare all of them. The next step might be to put all the data in a table. If the
table is unsortable, then it is again very hard to even answer simple questions like what
is the state with the highest per capita income or the state with the lowest percentage
of college degrees.

In a sortable table these questions can be answered quickly by sorting according to
the key in question. But if we want to know if there is a correlation between college
degrees and per capita income, then it becomes very hard again. Even more so, if you
ask questions like are there outliers in the general correlation.

It is much more efficient to visualize the table as a graph. That way a general corre-
lation can easily be seen, as well as any outliers that may exist, i.e., states where there
is a low number of people with a college degree, but still a very high per capita income.

The simple example shows, that visualization is done to help cognition and to answer
concrete questions. Information visualization could therefore be described as taking
items without a direct physical correspondence (raw data) and mapping them to a 2-D
or 3-D physical space with the explicit aim, to give information a visual representation
that is useful for analysis and decision-making.

One important thing to keep in mind for visualization, be it information visualization
or algorithm visualization, is to avoid telling “graphical lies”, a term coined by Edward
Tufte. Consider Figure 1(a) as an example of such a lie. Due to the changed scaling
(y-axis starts at 450 instead of 0), the drop looks a lot more severe then it actually is, if
the whole scale is considered, as shown in Figure 1(b).

Algorithm animation is a wide field and due to its sheer size and the many kinds of
methods for visualization, it is not easy to give a comprehensive overview. In Kerren
and Stasko [16] the authors give an overview of the state of the field and while it is by
no means comprehensive it shows how many sides there are to algorithm animation. I

will shortly touch upon the most important points.

They start with the “classic” visualizations, the most well known is probably the
“sorting out sorting” by Baecker [2] where nine sorting algorithms are shown in parallel,
to demonstrate their runtimes on certain input.

They then distinguish visualizations by the specification method used, i.e. how the
visualization was obtained in the first place:

e One common example is that the creator of the visualization constructs some
mapping between the program states and the visualization states. An extreme
example of this would be a static visualization that always starts with the same
input and thus always shows the same steps of the algorithm. In that case it would
mean nothing more than playing back a recording. Usually though, it is a bit
more interactive or at least randomized to generate different program executions.
A classic example of such a system is PAVANE by Roman and Cox [27].

e Another method to obtain a visualization is an idea that stems from debugging:
The programmer or visualizer can put marks at certain program points and if
these program points are reached, then a visualization will be generated based on
program state and certain parameters the programmer can specify. In other words,
the creator of the visualization can decide when an interesting event happens and
what should by visualized when it happens. This approach was pioneered in BALSA
by Brown [4] and its successor ZEUS, see Brown [5]. The method is aptly called
event driven.

e The next method mentioned is visual programming. This might seem odd at first,
since strictly speaking, visual programming is usually not considered algorithm
animation. But the point of visual programming is to make programs easier to
specify by using visual representations for program commands. So in a way, it
is visualization backwards, using the visual to create the program instead of the
other way around. Still there is a clear visual abstraction for program statements,
and thus it can also be considered visualization.

e The last method mentioned is automatic animation. While undoubtedly the easiest
method for the creator of the visualization, total automatic creation of animations
is extremely difficult, see Brown [6]. Thus systems have been created that offer
different amounts of automation. There is always the trade off between how much
work must be put into the specification and how versatile the system can be. It is
intuitively clear that it is much easier to automatically generate a visualization if
the application is narrowed down to a certain algorithm with certain data struc-
tures, than if there are many possible data structures and algorithms. In other
words, the more powerful the tool, the harder it becomes to specify.

Next the authors of Kerren and Stasko [16] distinguish algorithm animations by the
visualization techniques used. Due to the near limitless possibilities here, it is again not
possible to be comprehensive, but there are some basic distinctions that can be made:

e 2D versus 3D is always a somewhat difficult and heated topic when talking about
visualizations. There are strong believers for either side, yet the truth, as so often,
is somewhere in the middle. The obvious advantage of 3D is the extra dimension
and thus the additional “space” to show more information than what is possible
in 2D space. This advantage comes with several disadvantages though, the most
obvious being the occlusion of objects, i.e. an object is blocked from view by one
or more other objects that are “in front” of it, relative to the camera position.
Another disadvantage is the possibility to “get lost” in 3D space, i.e. losing the
mental map of where in the 3D space the camera is at the moment. While the world
we live in certainly is a 3D space, the way our orientation works is by reference
points and the sense of where up and down is, i.e. gravity. That means that while it
may be relatively easy to run around inside a virtual 3D model of a house without
getting lost, the same is not true if we have to navigate through a black space
where some sheets of papers are floating in the great big nothing. This can be
compared to the disorientation of divers, when they lose all reference points, thus
not even knowing which way the surface is.

e Although again not strictly visualization, there is the possibility to use audio to
reinforce and sometimes replace visual cues. It can also be used for pattern recogni-
tion, the pattern forming a kind a melody, that makes it easy to notice interruptions
in the pattern and that in turn allows to easily find some kinds of programming
errors. The most common use that most computer users are familiar with, is the
possibility to use sound cues to mark exceptional conditions, such as the infamous
beep sound of the internal speakers or the various “ding” sounds of certain oper-
ational systems. MUSE by Lodha, Beahan, Heppe, Joseph, and Zane-Ulman [22] is
one example for a system that allows the mapping of musical sounds to any kind
of scientific data.

e There is also a special category of visualizations, that are specifically developed as
web applications. While these have of course much the same problems as any other
category, they also have some additional ones, like having to be content with less
space, a more primitive user interface and all the other little nitpicks of having to
run in a browser window. One big issue is of course platform independence. This
is the reason why the overwhelming majority of tools for web animations are either
directly Java based, or they use some scripting language and have a Java interface
to the browser. JHAVE (by Naps, Eagan, and Norton [24]) is one example of such a
tool. One might wonder if these visualizations even deserve an extra category, but
the enormous popularity, or at least, the enormous quantity of these visualizations
speak for themselves: At the time of this writing, AlgoViz.org, a web portal that
collects algorithm animations, counts 540 animations, of those, 303 are classified
as java applets, 95 as java applications and another 56 as either java web start or
java script.

There are many more ways to distinguish between visualizations:

e Are they interactive or not? Often interaction is considered to be “better” for
learning than just looking at an animation. But even between interactive anima-
tions there are differences: Is the user just allowed to give the algorithm some
input and then watch what happens? Or is the visualization more an exercise,
that presents the users with a situation and then expects them to correctly predict
what will happen?

e Is the visualization purely graphical, or is there also the possibility to add com-
ments, annotations, whole explanations in help files that can be displayed depend-
ing on the situation?

e Does the animation portray a concrete program in a concrete language, or is it
based on a kind of pseudo code?

e Is it a visualization for a program written in an imperative, functional or object
oriented language?

e [s the visualization domain specific? I.e. the standard visualization of data struc-
tures may not make much sense, if the program manipulates geometric data and
thus should be displayed in a geometric way. If there is a set of points, then a
visualization should display them graphically in their space and not as number
tuples.

e Is the goal to show concurrency and the problems that go with it? Again the
visualization has to change to accommodate the intent of what should be learned
by looking at it.

The list could go on, but it is pretty obvious, that there exists a desire for visualizations
to help teach, learn, understand and debug algorithms. The question then is, how many
visualizations are there, do they cover the interesting topics, how available are they and,
of course, are they any good?

As stated in Shaffer, Cooper, and Edwards [31] and also in the project description
of “Building a Community and Establishing Best Practices in Algorithm Visualization
Through the AlgoViz Wiki*, which references the former, there are some often encoun-
tered problems with using algorithm visualizations in teaching:

“On the side of the teachers the main impediments were difficulty finding worthwhile
algorithm visualizations for use on a desired topic, difficulties adapting a given visualiza-
tion to a teacher’s classroom settings and a lack of knowledge of the best way to deploy
algorithm visualizations.”

On the developer’s side, a study performed in Shaffer et al. [31] of a collection of
over 350 algorithm visualizations “shows that many existing algorithm visualizations
are of little pedagogical value, and there is poor distribution of topical coverage.” To
understand what is meant by the poor distribution of topical coverage, I will give some
numbers from the above paper. Of the 350 algorithm visualizations, 134 were sorting
algorithms, 60 were search structure algorithms, meaning mostly all kinds of search trees
with binary search trees being the most prominently represented structure, another

48 were about lists, stacks and queues and 38 were about graph algorithms, mostly
traversals, shortest paths and spanning trees. The rest becomes harder to categorize.
The authors also state that they consider only roughly 25% of those visualizations to be
of any value in teaching.

1.3 Our Approach

The AlgoViz portal still exists and has grown to 540 algorithm animations, but the
percentages and imbalances on the covered topics have not changed significantly. At the
time of this writing 97 of the 540 visualizations were recommended to assist in lectures
and even fewer for self study purposes. There is another point not mentioned by Shaffer,
that all visualizations in the AlgoViz (to our knowledge) share: They all just follow one
concrete program execution and are fixed at one certain level of abstraction, thus it is
often difficult to see meta information like invariants. We want to follow a different
approach that helps with the main problems outlined earlier:

e Available: It should be reasonably easy to find or create a visualization for any
given algorithm and not be necessary to find a different tool for every algorithm,
which costs time and energy better spent elsewhere.

e Adaptable: The teachers should be able to easily adapt the visualization to their
needs, instead of having to use the notation of the visualization. This means both
having access to customization options and having access to source code.

e Familiar: On the side of the learner and sometimes also the teacher it is better to
have to get used to just one tool for the whole course, than to have to adapt and
refamiliarize with a different tool for every algorithm.

e Understandable: Show more than just the program execution, but include meta
data, invariants and other knowledge beyond just the current numbers.

Note that the following subsections will first give an intuition of how shape analysis
works and then go into some more technical details that are needed to understand many
of the tools and concepts described in later sections. If you are just looking for a quick
summary of how our approach does help with the points mentioned above, then you can
skip ahead to Section 1.5.6.

Our approach differs from the usual (as seen in the AlgoViz collection) approach in
two key points, that are strongly tied to each other:

e As already mentioned, the overwhelming majority of algorithm visualizations fol-
low one concrete execution path of a given program. Whether the input is fixed,
random or user generated, the visualization will choose a visual representation of
the important data structures of the program and then simulate the steps of the
program on that concrete input, updating the data structures for every step.

Our approach is to look at all possible (valid) inputs for the given program and
then simulate the program on all those inputs. Note that it usually does not make

much sense to consider in fact all possible inputs, since a program that expects a
certain input data structure will usually not work at all if given a different data
structure. So unless the explicit purpose of the visualization is to see what would
happen with an invalid data structure as input, we will always assume the input
to be a valid one.

e The second point is a difference in the fundamental philosophy behind the visual-
ization. Usually visualizations focus on what changes from step to step to better
allow a user to understand just what the algorithm does in that special case. Our
emphasis lies on showing what actually does not change, or, in other words, what
is invariant. To better understand why this might be desirable, let us imagine
an AVL-tree insertion. Sure, it is interesting to see a concrete example of an in-
sertion, but usually when in class the focus will be on what stays invariant: The
AVL-balance constraint. No matter how the input is chosen, there are only two
main cases: Either the balance constraint after insertion is preserved, then the
program finishes, or it is broken by the insertion and it will backtrack to do a
single rotation. And even for the rotations, there really are only two cases, the
single and the double rotation in one direction or the other. So if the users look at
all possible inputs at once, they can directly show that only those cases exist and
that after a single rotation the balance will always be restored and thus that the
resulting tree fulfills the AVL-constraints once more. This meta level invariants
cannot be deduced by a single execution, but by looking at the program on a more
abstract level and that is exactly what our approach does.

Our method looks at all valid inputs at the same time and then simulates the program
on all of them to find the already mentioned invariants and meta information. How is
that even possible? Even if the input data structure is just a simple list of arbitrary
length, then there exists infinitely many lists that are perfectly valid. Obviously it is not
possible to simulate the algorithm for each of them separately, but that is not necessary
either. Imagine for the moment a standard classroom situation, and the problem of
drawing a list of arbitrary length comes up, then it is quite certain that the result would
look like the head of the list, followed by the next pointer, followed by dot, dot, dot
followed by the last element of the list or something quite similar.

What happens there is that we argue over a whole set (possibly infinite) of data
structures that have similar properties, at least according to what is important for the
algorithm at that point. No matter if the dot, dot, dot notation is used or symbols like
little triangles to represents trees, what really happens is an abstraction of each graph in
a set of graphs, such that new equivalence sets are created. We might call these graphs
“summary graphs”, because they summarize a lot of concrete graphs into something
more abstract. To illustrate the point consider Figure 2 as an example of the usual
visualization. Here we show one concrete example of list. Conversely look at Figure 3 to
see an example of our approach. At first glance they seem to be very similar, both have
a similar structure, the same pointers, only the length differs. But in fact, they are very
different in that Figure 3 does not represent one single concrete list, but a whole set of
lists. Think of the double outlined nodes as a symbol similar to dot, dot, dot or the

root cur

Figure 2: This graph is a typical example of what we expect a list to be visualized as.
It shows one concrete data structure: A list with five nodes, the first node has
the root pointer and the second to last node has the cur pointer on it. Every
oval stands for one concrete list node and the n pointer is the next pointer,
that connects the list together. This or something similar is what most usual
visualizations will use to represent a list.

triangle that represents a subtree. We will call these kind of nodes summary nodes. In
this case they stand for at least one, but arbitrary many list nodes. It should be obvious,
that the list from Figure 2 is included in the set of lists that are represented by Figure
3, all we have to do is instantiate the leftmost summary node with two list nodes and
the right one with a single list node. Our approach works with these summary graphs,

root cur

Figure 3: A singly linked list with root as head element and cur as iteration pointer.
Summary nodes are marked by their double outline. The n pointers represent
the next pointer in the list structure. This graph represents a whole set of
lists, including the one from Figure 2.

but they alone are not enough. In order to actually define a sensible abstraction, we
need some mechanism to assign and compare properties. Canonically this can be done by
using logical predicates to represent the properties and logical definitions and constraints
to give them a meaning (usually called a semantics). In the example figures we use the
r [x] predicates to indicate reachability from pointer x over the n pointer, each node can
of course reach itself.

There is still the problem of guaranteeing that our input (and output) is finite. After
all just having abstract graphs does not mean, that there are only finitely many of them.
To this end, we have to define our abstraction in such a way, that there can be only finite
many graphs. So let us look closer at what exactly our abstraction does: Whenever we
use dot, dot, dot notation or something to symbolize a subtree or something similar,
then there are some implicit assumptions we make in our minds:

e The abstracted elements are all similar in their properties. E.g. all are list nodes,
all have next pointers, all are predecessors of some node and successor of another,

all have some data element and so forth.

e What we do not see due to the abstraction is either not relevant at all, or it can
be easily reconstructed due to some constraints. E.g. if our sequence of nodes is
supposed to be part of an acyclic list, then we know, that there will not be a cycle,
or if it is a subtree that is part of an AVL-tree then we assume it will satisfy the
AVL-balance property.

This means that our abstraction should work along the same principles: Nodes with the
same properties get abstracted into a single entity, something we call a “summary node”
for the same reason as the summary graphs. We already mentioned, that logic predicates
are a canonical choice for modeling properties, so we could abstract nodes whose logical
predicates evaluate to the same logical values. Since we already mentioned, that logical
definitions and constraints can be used to give those predicates a semantics it is also
quite easy to apply them if it is ever needed to get a node back out of a summary
node. An example of this can be seen in Figure 3: We only have four predicates here
to consider, that is root, cur, r[root] and r[cur]. Since the pointer predicates are
unique (a pointer can only ever point to one node at a time), these nodes will never
be abstracted into a summary node. Since the root pointer marks the head of the list,
the other nodes in the list can only be either between the root and cur pointer or they
are behind the cur pointer. This is in turn reflected by their predicates: Some are only
reachable by root (r[root]) and others are reachable by both, thus two equivalence
classes are created that correspond to the two summary nodes.

How does that solve the problem with the finite number of graphs? Since we only ever
care about a very limited (and certainly finite) number of properties when we look at
any algorithm, we also will only have a finite number of predicates and rules describing
them. That means that each node has a vector of truth values that correspond to each
predicate, since the predicates are finite and the truth values are finite too, there can
only ever be a finite number of different nodes. Remember, that nodes with the same
truth vectors will be abstracted together. That in turn means, that our summary graphs
have an upper limit of how many nodes there can be, which puts an upper bound on
the number of different summary graphs. Thus the size of our input and output sets is
bounded and certainly finite.

What remains to be shown is that our method is well-founded. For that we have to look
again at how our visualization is supposed to work: We give our program a set of input
summary graphs, that define all valid inputs for this program. Then those graphs are
modified, according to the program statements. Since we already use logical predicates,
we can relatively easily use the operational semantics of the programming language to
compute how the graphs (i.e., the data structures they represent) are changed. We
already showed, that there can be only finitely many graphs, so all we have to show now
is that we do not look at the same graph over and over again.

Our method avoids that by checking each newly generated graph for graph isomor-
phism with already generated graphs. That means we start with the set of input sum-
mary graphs and generate new graphs according to the operational semantics of the first
program statement. Then we check for graph isomorphisms in the new set and remove

10

duplicates. If we iterate through a program loop, then there might already be summary
graphs in there from previous iterations, so we check those for graph isomorphisms too.
If there is no isomorphic graph present, then the new summary graph will be moved into
the to-do list. Our method will abort, if the to-do list runs empty. Since there are only
a finite number of summary graphs possible, at some point all graphs will be generated
and thus there will be no new graphs for the to-do list, thus this method is also well
founded.

What we described above is the basis for a static program analysis method called
shape analysis, which is usually implemented to verify certain program properties. A
more formal introduction to shape analysis will be presented in the next section.

1.4 Shape Analysis

Shape analysis is a static program analysis, meaning that it is run at compile time rather
than run-time. As a type of verification method it can prove or disprove certain well-
specified properties of a given program. It can be thought of as a kind of storeless pointer
analysis, in the sense that it is not interested in concrete memory locations, stack frames
or numerical values, but only looks at the structures in the program heap (as in the
dynamic memory used by a program). That means certain memory areas are logically
thought of as a single object (even if they are not in the actual implementation) and
the analysis looks at and models the relationship between these objects, especially the
pointers between these objects and those pointing from the stack into the heap, thus
the name, shape analysis, because it describes the shape of the heap. The goal of shape
analysis is to synthesize invariants from possible heap descriptions in order to prove or
disprove properties. It should be noted here that this is also a limitation on what is
actually practical to visualize with this method. Anything that requires more than very
limited numerical analysis is not really recommended. The reason for this is that each
numerical value, or, at the very least, value range, has to be modeled by a predicate.
Thus even something as simple as basic addition of natural numbers in the range of one
to one million would be nearly impossible to do, since it would need a million predicates,
as well as the faculty of a million rules how to do the addition. Shape analysis has been
applied to a variety of problems (list taken from the wikipedia page):

e Finding memory leaks, including Java-style leaks where a pointer to an unused
object is not nulled out

e Discovering cases where a block of memory is freed more than once (in C)
e Finding dereferences of dangling pointers (pointers to freed memory in C)
e Finding array out-of-bounds errors

e Checking type-state properties (for example, ensuring that a file is open() before
it is read())

e Ensuring that a method to reverse a linked list does not introduce cycles into the
list

11

e Verifying that a sort method returns a result that is in sorted order

To solve those problems, shape analysis finds invariants about each program point, i.e. it
describes all possible heap shapes at each program point. Those heap shape descriptions
are also called shape graphs and are identical with what we called summary graphs in
the previous section.

Before explaining how a visualization that is based on these kind of graphs can help
with some of the algorithm visualization problems, I need to make clear what I mean
with the term concrete as used above and respectively the term abstract. In any kind of
algorithm visualization there is at least some kind of abstraction, since one hardly wants
to picture the whole electronic interior workings of a computer for every algorithm. Thus
there always exists some level of abstraction depending on the goal of the visualization.
For my purposes I will make use of three abstraction levels:

The lowest level of abstraction is the one seen in the examples of common algorithm
visualization, where each heap object is unique and all interesting information is avail-
able. Usually this can be thought of as looking at one specific execution of a program,
where every single bit of data can be accessed and visualized if necessary. It could also
be seen as a kind of data view, where concrete data values and even address space are
still available informations.

The next level of abstraction is defined by concrete shape graphs, which means shape
graphs that do not use abstraction to summarize nodes, i.e. there are no summary
nodes and all relations are definite, that means there is no loss of information about the
structure of the heap. This still can be seen as looking at one specific execution of a
program, however now there is some information not available, like concrete data values
or minutiae of the address space. Figure 2 from the previous section is an example of
this.

The final level of abstraction consists of the abstract shape graphs, like the one in
Figure 3 from the previous section. Abstract shape graphs are the norm for shape
analysis and as a direct implication of the abstraction follows that there is also a loss of
information, more often called a loss of precision.

So if I speak of a concrete example, then I mean a specific execution of a specific
program on the lowest abstraction level. A concrete shape graph is a description of
the heap state of such a concrete execution at some program point, with the added
abstraction of shape analysis, that does not care about concrete numbers (or values),
variable sizes, memory addresses and similar things. An abstract shape graph finally is
part of the output of a shape analysis describing a usually infinite number of possible
heap states at a specific program point. All abstract shape graphs of a specific program
point define the invariant of all possible heap states at that program point.

The first step for performing shape analysis is to define a function f : H — (O, R),
that is given a heap and will yield a set of objects and a set of relations between these
objects. If we stay with our list example, then the list nodes are the heap objects and
the n pointer as well as the reachability r[x] are relations. The function f can be
arbitrary, but must remain fixed for a given analysis. There is also a special kind of
unary predicates: The (stack) pointer predicates. Pointer predicates model the program

12

pointers that point into the heap and are thus the link between stack and heap. It may
be canonical to define heap objects as instances of classes in object oriented languages,
but it does not have to be like that. Depending on the goal of the analysis it may make
sense to map different classes to the same objects, to not model certain classes at all or to
disregard class structure entirely. Choosing this function f is also a means of controlling
the level of abstraction in the analysis.

Now I used the term shape graph without clearly defining it. Generally a shape graph
is an abstract description of possible objects in the heap and their relations to each
other, especially the pointer connections. Usually this means, that once we have the
heap objects and relations defined by the function f, the objects are mapped to nodes
in the graph and the relations are mapped to edges or annotations, depending on their
arity. After that, the chosen abstraction is applied to detect similar nodes, which are
then abstracted into a single summary node. At this point I cannot be more specific
without choosing a specific tool that computes the shape analysis, as the expressiveness
and representation of shape graphs varies quite a bit.

It was mentioned before, that there was an inevitable loss of information associated
with the abstraction that we perform. Formally this follows simply from the fact, that
the halting problem is not decidable. If we had an analysis that could model every
property of a given program with absolute accuracy, then we could apply this knowledge
to decide whether or not said program would accept an input or not. More intuitively,
we can consider again the process of abstraction: We look at properties and summarize
those nodes that have the same truth values on those properties. So far, so good, but if
we look again at Figure 3, then we see that there is a little problem when we abstract
nodes into a summary node. Let us consider the n pointer: All the n pointers in the
graph are drawn as dotted lines and with good reason. The n pointer is modeled by a
binary predicate (i.e. it takes two arguments), if n(u,v) evaluates to true, then v is the
successor of u in the list. But what happens if either u or v is a summary node? The
summary node abstracts an arbitrary number of nodes, but only one of them can be
successor or predecessor of another node, not all at the same time. That means setting
the predicate to one would be wrong, but setting it to zero would also be wrong, since
that would mean the list was not connected anymore. Clearly what is needed is some
mechanism to express uncertainty or partial truth and that is what I will present in the
next section.

1.4.1 3-valued Logic

Three valued logic may be unfamiliar to the reader, yet it is a central feature and also a
central problem in this thesis. Thus I will give some intuition as to how the third logical
value works and why it is a good choice to use this kind of logic in shape analysis. Note
that this won’t be a formal logical definition, for that see Kleene [17], Sagiv, Reps, and
Wilhelm [30].

So how shall we imagine the logical value 1/2 aka unknown? Intuitively the easiest
way is to think of it as “maybe true or maybe false and no way to know for sure”.
This is also why the unknown value is called an indefinite value, whereas true and false

13

are definite values. More formally, indefinite can be considered as the union of the
two definite truth values.

All the usual two-valued tables for the logical operators are of course extended for
the new logical value. See Figure 4 for examples of how the V and A operators behave
in 3-valued logic. Note that for definite values the operators are unchanged, this will
be very important for abstract shape graphs later on. In order to compute this tables,
whenever there is the value 1/2 involved, split it in two cases: One time instantiate 1/2
with 0 and the other with 1, take the union over both cases and if it is the same truth
value in both cases, then the result will be that definite truth value, if there are different
truth values, i.e. both 0 and 1, then the result will be 1/2. Thus computing the truth
values in the 3-valued case can be reduced to computing truth values in the 2-valued

way.
LA Jol 1 [/ v o fif[1/2]
0 0] 0 0 1]1/2
1 [[o] 1 [1/2 1 [1 [1] 1
12 0]1/2]1/2 12 1/2]1]1/2

Figure 4: 3-valued truth tables for the V and A operators.

As a special case I want to point out the equality operator and the formula ¢ : 1/2
= 1/2. As a first reflex one is tempted to say, that ¢ evaluates to true, but it holds:
[¢] = 1/2. To understand why this is, think back to where I gave the intuition for what
1/2 means. In essence ¢ stands for the union of four cases:

0=0

0=1
1/2=1/2
j2=1/28 "

1=1

Since some of them evaluate to true and some evaluate to false, it ends up with the
indefinite value. This means that there is no way to specify something like: “If this
predicate is indefinite, then set the value of another predicate to something”. As already
mentioned above, this also means there can be no testing (by logical formula) whether
a node is a summary node or not.

Three-valued logic is a great way to model the information loss caused by abstraction.
Whenever two nodes are abstracted into one single node, the algorithm looks at the
predicates of both nodes, if a predicate has the same truth value for both nodes, then
this truth value will be taken to the summary node, otherwise the value will be set to
1/2. This works both for unary and binary predicates. The direct implication of this
is, that using 3-valued logic will result in only erring on the “safe” side. That means
if a logical value is definite in an abstract shape graph, then it indeed holds for all its
possible concrete instantiations and that in turn implies that if a logical formula holds

14

for a shape graph, then it holds for all its possible instantiations. In this way shape
graphs describe invariants for the heap state they model.

This fact is proven in the so called “embedding theorem” (see Sagiv et al. [30]). The
name comes from embedding 2-valued shape graphs into a 3-valued one in such a way,
that all formulas will evaluate in a “safe” way, i.e. if a formula evaluates to a definite
truth value on the 3-valued graph, then the respective concrete shape graphs will all have
the same definite truth value. Only if a formula evaluates to unknown in the 3-valued
shape graph, then there is no guarantee to what the formula will evaluate in all possible
concrete shape graphs. It might even be the case that it evaluates to the same definite
value. Thus the indefinite value represents the loss of information.

The importance behind all this is of course, that it is possible to prove correctness
of programs with 3-valued logic simply by looking at the shape graphs. If all abstract
shape graphs at a given program point have definite values for certain relations, then it
means, that the definite truth values are actually invariants, holding for all possible heap
configurations at that program point. Looking at all program points, it is thus possible
to prove properties that hold for every program execution at every program point. If the
analysis models some C-program then we can prove for example, that there can never
be a null-pointer dereferentiation, simply by looking at all abstract shape graphs and
evaluating a formula that represents the problem. If the formula can be evaluated to
true in all shape graphs then the proof is complete.

1.5 TVLA - A Tool For Realizing Shape Analyses

There are quite a few algorithms for performing shape analyses, a selection of them can be
found in the following papers: Assmann and Weinhardt [1], Banerjee, Gelernter, Nicolau,
and Padua [3], Chase, Wegman, and Zadeck [9], Horwitz, Pfeiffer, and Reps [12], Jones
and Muchnick [14], Larus and Hilfinger [18], Sagiv, Reps, and Wilhelm [29], Stransky
[32]. According to Sagiv et al. [30], all of these use shape graphs as “shape descriptors”,
meaning the description of the heap configuration. Also they all compute shape analyses
for specific properties of a certain program or a class of similar algorithms, much like
most traditional visualizers can only visualize a very specific algorithm or class thereof.

This is where parametric shape analysis comes in. Instead of being confined to a single
program or even a single class of algorithms, the parameters allow for generating shape
analyzes for arbitrary programs and properties. TVLA, short for “Three Valued Logical
Analyzer” is our tool of choice for this kind of shape analysis. According to Sagiv et al.
[30], all of the above tools can be either seen as instantiations of TVLA or in some cases
TVLA actually yields higher-precision analyses for the same properties. TVLA being
parametric not only means, that it can emulate of lot of other tools, but that we can
freely choose both the heap abstraction and the similarity criterion for the abstract shape
graphs. This in turn means that it is possible to freely scale the level of abstraction and
thus the precision of the analysis! Another feature, that sets TVLA further apart from
other shape analysis tools, is the use of 3-valued logic, as made obvious by the name of
the tool. T already explained in the previous chapter why it is a very canonical way of
modeling information loss and uncertainty. It is, however, also one of the main reasons

15

why TVLA has made huge headway in the power and precision of materialization, as
will be explained in a later section. The actual implementation of TVLA is described in
Lev-Ami [19], Lev-Ami and Sagiv [20], Lev-Ami, Reps, Sagiv, and Wilhelm [21].

It should also be noted here that today TVLA is no longer the only parametric shape
analysis tool. There is also the work of Chang, Rival, and Necula [8] where they introduce
a parametric shape analysis based on separation logic. The specification is done by
what they call “checkers”, which are small functions that in theory would be used by
the programmer to check their data structure and which their tool then uses to derive
correctness information from. In this original version it was only possible to check
structural invariants, i.e. checking properties that are (mostly) independent of each
other (this is also why separation logic works so well here). In Chang and Rival [7]
they extended this to allow a combination with numerical analyses allowing them to
prove properties like sortedness. In total it seems that the tool is still not as powerful
as TVLA in terms of expressiveness and the general look of their shape graphs is a bit
more formula heavy which makes it in my opinion not a good choice for visualization
for teaching purposes.

I will summarize the most important features and mechanisms of TVLA here, insofar
they are needed for understanding this thesis and only in the precision needed for said
understanding. For deeper knowledge and formal proofs and definitions see the above
cited papers. The notations concerning logical structures that are used here come from
Sagiv et al. [30], which is also a good place to start for a more logic-based view on TVLA.

1.5.1 Shape Graphs

One of the key features of TVLA is the use of three valued logic as interpreted by
Kleene(Kleene [17]). For TVLA heap shapes are described as logical Structures. The
following is taken directly from Sagiv et al. [30]:“Each logical structure is associated
with a vocabulary of predicates with given arities ranging from zero to two. Each logical
structure S, denoted by (U®, %) has a Universe of individuals U®, these will represent
the heap objects, and a function ¢, that in the two valued case maps every predicate
symbol p and every k-tuple of individuals (uq, ..., ux) with u; € UStoOorl,ie. false
or true respectively. In the three valued case they are mapped to 0, 1 or 1/2, i.e. false,
true or unknown, the last one is sometimes also called maybe.”

To get from the logical structure to an actual graph is pretty straightforward: Ev-
ery individual in U® is mapped to a node. Every binary predicate can be naturally
interpreted as an edge between two nodes, that is annotated with the predicate name.
Every unary predicate describes a property of some node and is mapped to a node label
and finally every nullary predicate describes a property of the whole shape graph and
is mapped to a label outside of any node and edge. Note also, that due to their impor-
tance pointers from the stack into the heap are also always modeled as special unary
predicates, they have no start node, only the target node.

Formally, let L be a set of labels, O = {¢} UV UFE and [: O — L the relation,
that assigns labels to graph objects. A graph with labels G(V, E, L,1) is called a shape
graph for a logical structure S = (U®, %) with vocabulary W if and only if there exists

16

a bijective function m : U — V with the following conditions:

o L =W x {0,1,1/2} consists of all possible predicates in the vocabulary of S,
combined with all possible truth values (0,1,1/2). Note that we canonically identify
predicates with predicate names.

e [: O x L is a relation for which holds (o, (p,t)) € I if and only if [p(u/)]3 = ¢,

(m~Y(0)) ifoeV,
u' =< (m(o1),m Yog)) ifo=(01,00) €E,
0 if o= ¢

Note that these are the tuples needed for the ¢ function.

So now that the exact definition of a shape graph is presented, it remains to define
how to draw them:

e Nodes are usually drawn as oval shapes, edges as arrows between those as usual.

e Labels are written on the respective edge or inside the respective node or in one
corner of the graph for nullary predicates.

e In order to increase the readability of the graph predicates that evaluate to false
are omitted, i.e. what can’t be seen is always false as a convention. If a predicate
is true then it is common to just write the predicate name without the logical value
behind it.

e Another matter to increase readability is to draw only one edge for each truth value
between any pair of nodes and concatenate the predicate labels with commas.

e Summary nodes are drawn as normal nodes, but with a double outline.
e Binary predicates, that have value unknown (1/2), are drawn as dotted lines.

e Pointers from the stack into the heap are drawn as arrows towards the node they
point to, without an origin object.

root

Figure 5: The standard general case of a single linked acyclic list with at least two
elements.

17

The shape graph in Figure 5 depicts the general case of a single linked acyclic list,
that is at least length two and can be arbitrarily long. I will use this example to show
how this shape graph is represented as logical structure by TVLA:

%n

hp

}

{u0, ui1}
{
sm = {ul:1/2}
n = {u0->ul:1/2, ul->ul:1/2}
root = {ul0}
r[root] = {ul, u2}

The %n list the nodes and in %p all predicates that have at least one non-false value
are listed. The format (called tvs, aka three valued structure) is straightforward, there
are however two things to note:

As with drawing shape graphs, predicate values of false are omitted, i.e. every-
thing not listed is defaulted to false and if there is no truth value explicitly given
after a node or edge, then it defaults to true, which again makes things slightly
more readable.

The sm predicate is a special predicate, that denotes whether or not a node is a
summary node. The interesting thing to note here, is that the value for every
node is either false or unknown. That means it is only possible to be sure that a
node is not a summary node, but there is no way to tell that a node is definitely
a summary node. This might seem strange, it has however a valid and important
reason, to understand one has to look on the subject from two sides. On the one
hand, if there is a given concrete graph and we apply some abstraction on it, then
we of course know how many nodes were abstracted in each summary node. On the
other hand, shape graphs describe a usually infinite number of “similar” concrete
graphs. Figure 5 abstracts all single linked list with at least two nodes. Now
imagine we iterate over the list, for the iteration to ever stop, there needs to be a
case where a materialization of the summary node yields, that this was it, that was
the last node in there. In other words, a summary node always stands for at least
one node, but it may stand for arbitrarily many nodes, thus we have both the case
of “is a concrete node” and “is definitely a summary node” which in 3-valued logic
yields unknown. More on this further down. Another important implication of this
is, that there is no special treatment possible for summary nodes, one cannot make
a logical formula, that test whether a node is a summary node or not. This in turn
has serious implications for constructing specifications for TVLA.

1.5.2 Abstraction and Materialization

We already mentioned, that in order for the number of shape graphs to be bounded,
there needs to be some kind of abstraction of nodes, this works by abstracting similar

18

nodes into a single summary node. For this purpose TVLA allows us to specify some
unary predicates as so called abstraction predicates.

It is of course possible to enumerate all those abstraction predicates and then define a
vector of truth values for each node, such that the i-th position in the vector represents
the truth value of the i-th abstraction predicate. This vector is called the canonical name
of the node. The abstraction is straightforward, if two nodes have the same canonical
name then and only then they will be abstracted into the same summary node. Note
that this directly implies that abstraction predicates always have to be definite.

That is the way how TVLA abstracts nodes into summary nodes, but how does it
get them out again®? Suppose we want to iterate through our standard list from Figure
5. Let cur be our cursor pointer that we initialize with the root pointer as shown in
Figure 6.

root, cur

Figure 6: The standard List with the cur pointer initialized with the root pointer.

The next step is to set the cur pointer to cur = cur->next. To be able to do this,
TVLA has to materialize a node out of the summary node. This sounds trivial at first,
but it is actually one of the hardest parts of shape analysis. It was already shown how
summary nodes lose information, like number of nodes or truth values of non-abstraction
predicates. Even the pointer structure between abstracted nodes is mostly lost, so getting
a node back out will usually yield very poor results due to indefinite predicates and lost
information. Figures 7-9 show some examples of how the materialization may look like
and some of the common problems faced even with something as simple as a list data
structure. It is quite obvious that the alternatives shown are not satisfying and getting
worse from top down.

root ur
n
.
v
fa 7

Figure 7: One possible outcome after we set cur = cur->next. This is the case where
the summary node was instantiated to only one concrete node.

Figure 7 shows the alternative of the summary node being instantiated to just one
single node. So far so good, however, there are two imprecise predicates that should

5Getting a node back out of a summary node is called materialization.

19

be sharpened (i.e. their information value increased, i.e. becoming definite). The
predicates in question are the two n pointers. Since both nodes are now definite the n
pointer between them should be definite too, if the list is linked then there is no choice
but for the n predicate between the two nodes to be true. The self loop n on the other
hand should be false, since our list is supposed to be acyclic.

root

Figure 8: One possible outcome after we set cur = cur->next. This does look strange
and not entirely right.

Figure 8 has even worse problems. The cur pointer seems to point to every node in
the summary node at once, which is of course not possible with more than one node,
thus the pointed node should really be a concrete node. The other serious problem is,
that the list does not even look like a list anymore, the structure is totally lost with all
the possible indefinite n pointers. It should not be possible for the root to reach both
summary nodes directly by n.

Figure 9 is probably the worst of the three alternatives, it still has all the problems
of Figure 8, but it also adds one more thing, that breaks the data structure: Since
the n pointers between the two summary nodes are missing, it means that either both
summary nodes are reachable by the same n pointer from the root, which is clearly
impossible, or one of the two summary nodes is not reachable from root at all, which is
also clearly impossible, since it wouldn’t have been a linked list in the first place then.
Thus the whole shape graph should be discarded. TVLA has mechanisms to improve
and sometimes even eliminate those problems:

In order to get any precision at all, shape analyses need meta information. I.e. knowing
that the analyzed program works with a single linked acyclic list, I already argued, that
a shape graph like in Figure 9 can never happen. The mechanism of how to provide
this meta information varies, in the case of TVLA it is through constraints. The user is
allowed to specify a list of constraints that have to look like implications: ¢ = p. Where
 is a logical formula in 3-valued first-order predicate logic and p is either a predicate or

20

root

Figure 9: One possible outcome after we set cur = cur->next. This one is impossible
to get with a list.

the negation of one. The semantic is clear: If the formula ¢ holds (evaluates to true),
then p must hold too. All constraints must hold for every shape graph or the shape
graph is invalid and subsequently discarded from the analysis.

The first step is to define, by constraints, the acyclicity of the example list struc-
ture, thus eliminating the unnecessary n self loop. However for that reachability in-
formation is needed and we cannot dynamically define reachability with first order
predicate logic, three valued or not. Therefore another feature of TVLA adds a lim-
ited ability to define transitive, reflexive hulls additionally to first order logic. For
more information on the how and the limits see the aforementioned TVLA papers (e.g.
Sagiv et al. [30]), for the purposes of this thesis it is enough to know, that it works
for all practical purposes. An acyclicity constraint then could look like the following:
"transitive closure of n” (v, v2) = —n(va,v1)

Let us look closer at what a typical TVLA config file looks like. The following is the
standard predicate definition file for single linked acyclic lists, taken from the example
folder of TVLA.

[11111111111777777

// Core Predicates

// For every program variable z there is a unary predicate that holds
// for list elements pointed by z.
// The unique property is used to convey the fact that the predicate
// can hold for at most one individual.
// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {

%p z(v_1) unique pointer

}

21

// The predicate n represents the n field of the list data type.
%p n(v_1, v_2) function acyclic

[1177

// Instrumentation (i.e., derived) predicates

// The is[n] predicate holds for list elements pointed by two different
// list elements.
%i is[n](v) = E(v_1, v_2) (v_1 '=v_2 & n(v_1, v) & n(v_2, v))

// The t[n] predicate records transitive reflexive reachability between
// list elements along the n field.
%i tlnl(v_1, v_2) = n*x(v_1, v_2) transitive reflexive

// Integrity constraints for transitive reachability

%r 't[nl(v_1, v_2) ==> In(v_1, v_2)

%r 't[n] (v_1, v_2) ==> v_1 !=v_2

%r E(v_1) (t[nl(v_1, v_2) & t[n]l(v_1, v_3) & 't[n]l(v_2, v_3))
==> t[n] (v_3, v_2)

// For every program variable z the predicate r[z] holds for individual
// v when v is reachable from variable z along the n field (more
// formally, the corresponding list element is reachable from z).
foreach (z in PVar) {

%i rlzl(v) = E(v_1) (z(v_1) & t[n]l(v_1, v))
}

The first thing to note is, that the file is split in so called core and instrumentation
predicates, denoted by the %p and %i tags respectively. The difference is, that core
predicates have to be managed manually, they will not change without being explicitly
modified by actions®. Instrumentation predicates are derived from other predicates by
evaluating the formula given in their definition, whenever a shape graph is modified or
newly created they will be reevaluated.

Another unusual thing are the foreach statements. These are just for convenience,
in this case allowing to save time and space not having to write the same line for each
pointer, they are purely syntactic.

A much more interesting and convenient feature of TVLA are the attributes behind
the predicate definitions. Like the unique, function, acyclic, reflexive etc., these
enable TVLA to create its own constraints for those predicates. E.g. the function and
acyclic attributes behind the definition of the n predicate tell TVLA to make sure,

S Actions will be explained shortly, they can be thought of as the operational semantics of program
statements.

22

that there can be only one definite n edge emanate from any given node (function) and
that there must never be an n cycle.

It should be clear how the formulas are to be read, |,&,!,E(),A() stand for the
logical Vv, A, =, 3,V respectively and the implications are also easy to spot. I will use the
TVLA notation whenever I speak about analyses or concrete examples.

There is one more tag not explained yet, namely the %r tag. This specifies a constraint
formula, as described earlier. Note, that there are usually free variables in these formulas,
these can be thought of as all-quantified, they must hold for all possible instantiations
within a shape graph.

Lastly we see how the transitive reflexive hull of n is defined here, the predicate t [n].
This new predicate together with the function and acyclic attributes of the n predicate
will allow TVLA to yield much better results than in Figures 7-9. Let us have another
look at those shape graphs this time with the t[n] predicate present, marked in green
color.

roat, Cur root cur

cur cur

root raot

1
1
n 1
n 1
n n:: ::n
)
1

N[N] 5

Figure 10: The example shape graphs again. The top left one is the original shape
graph, the other three are possible instantiations of what happens after the
cur pointer is set to the next element in the list.

Thanks to the constraints and the transitive closure we can now refine the graphs:
While looking better with the n self loop gone Figure 11 still has the problem that
the n pointer between the two nodes is indefinite. There is no consistency rule in the

23

root cur

Figure 11: TVLA has successfully removed the n self loop. But the other n edge is still
indefinite.

specification that does sharpen it. The question is, can we make such a rule? The answer
is, no, we can not. At least not without breaking other things again. One could try a
rule, that if a node is reachable from another, then there must be an n pointer between
them, but that obviously is wrong. Even if we somehow introduced a predicate for direct
neighbors, we still could not do it, because it would also sharpen it for summary nodes
and that makes it logically false. Since there is no way to distinguish between summary
nodes and non summary nodes in the specification formulas, as I argued before, there
is no way to sharpen the n predicate just using constraints. Again in Figure 12 there

Figure 12: The constraints allowed TVLA to conclude correctly, that since pointers can
only point to individuals, the node which cur points to is a concrete node
and no summary node.

is some improvement. Thanks to the unique attribute of pointers, TVLA can conclude
that the node cur points to must be concrete. Also the self loop of n on the same node
is gone. Unfortunately the graph still does not look very much like a list. Again with
the constraint as they are given in the specification, there is no better information to be
had. If it were not for a unique feature of TVLA, this information loss would have to
be accepted. To make things even sharper, TVLA introduces focus formulas!

24

1.5.3 Actions and Coercion

Before I show what focus formula are and can do, there is one more thing, that has not
yet been explained: How does TVLA even know what certain program statements do,
when it analyzes a program? The answer to this is: It does not know, the knowledge is
part of the specification.

The specification of an analysis for TVLA consists of four major parts:

e The main tvp-File containing the annotated control flow graph for the program to
be analyzed, as well as the include commands for the other specification files. I
will show an example further down.

e The start shape graphs in a separate tvs-File. These are the shape graphs, that
specify what the heap looks like when the program starts, from these all other shape
graphs are derived. I already showed what tvs-Files looked like when talking about
shape graphs. These shape graph must fulfill all the constraints in the predicate
definitions.

e The predicate definitions as well as the constraints. It should be noted here that
these are highly dependent on the data structure and algorithm used in the program
that is to be analyzed. Reusing these definitions for other purposes should be done
with a careful and watchful eye.

e The actions file. In this file so called actions are defined, that specify an operational
semantics for certain program statements. More intuitively: They describe how
the heap is changed by any given program line. It is imperative to note here, that
just because the code line cur = cur->next may be used in practically any data
structure and program with pointers called next, those code lines will be translated
to very different actions, since there is some meta knowledge needed about the data
structure and sometimes also the algorithm. This fact makes building an automatic
front end for TVLA a very hard task.

Now let us have a look at an action:

%action Get_Next_L(lhs, rhs) {
%t lhs + " =" + rhs + "->" + n
%f { E(v_1, v_2) rhs(v_1) & n(v_1, v_2) & t[n]l(v_2, v) }
Jmessage (!E(v) rhs(v)) —>
"Illegal dereference to\n" + n + " component of " + rhs
{
lhs(v) = E(v_1) rhs(v_1) & n(v_1, v)
}
}

This is the action that describes what happens when executing the cur = cur->next
program line, note that the L at the end marks that this action is intended for lists
(and single linked ones at that). Each action may have up to six tags and a main body

25

that may be empty. Formulas in the main body (denoted by the extra {...}) always
have the same structure: predicate p = formula ¢, where ¢ may be any formula. This
will recompute all p values in the shape graph according to the formula ¢. Note that
the formula is always evaluated in the environment of the old, unmodified shape graph,
i.e. modifying p; and then modifying ps with the use of p; in its formula will use the
unmodified p; values. Thus the order of predicates in the body is irrelevant. Also
predicates without an update formula will simply retain their former values, unless they
are instrumentation predicates.
The possible tags are:

e %t: Allows to specify a string, that better illustrates the pseudo code meaning of
the action. In this example Get_Next_L(cur,cur) would print cur = cur->next.

e %message Allows to specify a message string, that is printed if the corresponding
formula is evaluated to true.

e %p While not shown in this example, this tag allows to set a precondition in the
form of another formula. The semantic is, that “if the formula is closed, then a
result of true or unknown will let the shape graph pass. If the formula contains free
variables, then the action is performed for each assignment into these variables,
potentially satisfying the formula.” (taken from the TVLA manual) This is often
useful to model conditionals, only letting through the shape graphs fitting the
respective case.

e %f This allows to specify a focus formula, which helps to increase precision.

e %mnew This allows for the creation of new nodes. Optionally a formula can be
supplied to duplicate existing nodes that match said formula (i.e. formula evaluates
to true for them), the duplicated nodes will be matched with the originals by a
special binary predicate. Also newly created nodes get the unary special predicate
isNew, which can be used in the following update block.

e %retain In a sense, this is the opposite of %mnew. By default all nodes persist
in the heap, with %retain it is possible to specify a formula, that retains only
those nodes, that fulfill the given formula and all else are destroyed. This is most
often used to model the freeing of a memory region or a pointer. For example
%retain !cur(vl) would result in destroying the node where the cur pointer is
on, effectively simulating a free(cur) in a C-like language.

The most interesting and innovative feature is the focus formula: It gives TVLA hints
what is important, where to materialize and helps with precision. I already mentioned,
that due to indefinite values and information loss, TVLA has to cover all possible cases
when materializing a node back out of a summary node. The focus formula has the
decisive role to help decide which cases to consider. For all instantiations within a shape
graph the focus formula has to evaluate to a definite value. That means that TVLA has
to create new shape graphs in such a way that they are consistent with the parent shape
graph that is modified and that are consistent with the focus formula.

26

Let’s consider what this means for our running example. The original shape graph
can be seen in the top left corner of Figure 10. For the summary node the focus formula
can never evaluate to anything else than false, since rhs(v_1) (which in the example
case would be cur(v_1)) can only be true for one node, due to the unique attribute
and that one node is the root node. This method of anchoring the formula is actually
a very common and easy way to focus on a very specific spot in the shape graphs.

So, for the root node the formula can be reduced to E(v_1, v_2) n(v_1, v.2) &
t[n] (v_2, v). What the free variables in the focus formula mean is quite complex and
not relevant unless trying to create a specification, therefore I shall just give the rule of
thumb, that a free variable prompts TVLA to create a concrete node. Note, that TVLA
can come to the conclusion of creating a concrete node even without this, but this way
it is forced.

If we remember the constraints, then we can reduce the formula even further. The
important constraint is this one:

% r 'tn](v_1, v_2) ==> v_1 = v_2

It means, that every node must have a t [n] self loop, definite or indefinite. This in turn
means, that the last part of the focus formula must become true, leaving only the n
predicate! For our example, this means the n pointer between the nodes can no longer
remain indefinite and there are only two cases left for each of the two remaining shape
graphs.

root cur root cur

Figure 13: The two possible cases after the focus formula for the shape graph where the
summary node gets instantiated as containing only the one concrete node.

Figure 13 shows the two possible shape graphs, for the case that the summary node
contains only the one concrete node. It is quite obvious, that the alternative with the
missing n pointer makes no sense and TVLA will discard it, because it collides with the
definition of t[n]. The inconsistency is, that t [n] says definitely, that the node can be
reached by n pointer from root, but at the same time the n predicate says definitely that
there is no n pointer between the two nodes. This is an unrecoverable contradiction,
that will get the shape graph discarded.

Figure 14 shows the analogous graphs for the more general case and of course the right
shape graph will get discarded because of the same reasoning as given for Figure 13. It
seems rather disheartening that on first glance the remaining valid shape graph still does
not look like a list at all. But that is about to change! After the focus formula, TVLA

27

cur

root

1"
1ifn]

N T[] 5

Figure 14: The more general case, that the list contains more than just two elements.

runs over all constraints and instrumentation formulas again, to check for inconsistencies
like those that got the unwanted shape graphs discarded. However TVLA does not only
search inconsistencies, but it also tried to sharpen predicates if possible.

cur

root

"
n
n
[N
n

tnlye 1tn]

e 1en

N T[] 5

Figure 15: Here it is shown in two steps what happens if TVLA uses the constraints and
instrumentation predicate formulas on the valid shape graph after focusing.
The right shape graph is after the t[n] between cur and the summary node
was sharpened.

Look at the left shape graph in Figure 15: Due to the simple fact, that the n predicate
is defined as a function in the specification and that the n pointer from root to cur is
definite, it follows immediately that all indefinite n pointers originating in root can be
sharpened to false.

This leaves just one more issue, so far it looks like the rest of the list may still reach
the cur node, which of course cannot be, since we are looking at a single linked acyclic

28

list. Here the instrumentation formula for t [n] becomes important: There is now only
one route to the summary node, the one over the newly materialized node. Since both
the n and t[n] predicates between cur and the summary node are indefinite, the value
of t[n] from root to summary node should be indefinite too (according to the instru-
mentation formula) but the predicate already has a definite value! TVLA can only ever
sharpen indefinite values to definite values while checking constraints and instrumenta-
tion predicates, the other way around, weakening information is not allowed and will
get the shape graph discarded. In this case however, it can make things right again, by
sharpening the t [n] between cur and the summary node to true as shown in Figure 15
on the right side.

roat Cur

Figure 16: The final sharpened shape graph after all instrumentation formulas and con-
straints are evaluated. Now it finally looks like a list again.

Now that the line of reachability is definite from root to the summary node, it is
possible to sharpen things even more: Due to the acyclicity of predicate n, it can be
concluded, that a node vy that can definitely reach a node vy due to the t[n] predicate,
must in turn definitely not be reachable from vy, else that would imply a path of n
pointers going from v to vy and back again, thus forming a cycle. This means the t [n]
between the summary node and cur can be sharpened to false. Now we just have to
remember the following constraint:

%r 'tn] (v_1, v_2) ==> In(v_1, v_2)

It says, if there is no t[n] between two nodes, then there can be no n either. A direct
consequence of t [n] being the transitive reflexive closure of n. Thus we can now sharpen
the n between the summary node and cur to false, leading to the much more intuitive
looking shape graph in Figure 16.

This relatively simple example does not only illustrate how TVLA handles material-
ization, but also shows, that despite the abstraction of summary nodes it is still possible
to specify the analysis in such a way, that the resulting shape graphs look very close
to what one would intuitively expect when drawing it on a black board for example.
The ability to directly influence the look and the precision of a shape analysis simple by
adjusting the specification is another big advantage of using TVLA.

29

1.5.4 The Control Flow

There is only one thing missing before we can piece it all together in a meta overview
of how TVLA works and that is the specification of the actual program that is to be
analyzed. The following is the main tvp file for a program, that reverses a single linked
acyclic list, taken from the examples in the TVLA distribution package:

/117177
// Sets

hs PVar {x, y, t}

#include "predicates.tvp"

W

#include "actions.tvp"

hh
[17177771777177771777177717777777717771777717771777117771777177717

// Transition system for a function that reverses a singly-linked
// list in-situ.

L1 Set_Null_L(y) L2 // y = NULL;

L2 Is_Null_Var(x) exit // while (x != NULL) {

L2 Is_Not_Null_Var(x) L3

L3 Copy_Var_L(t, y) L& // t =1y;

L4 Copy_Var_L(y, x) L6 // 'y = x;

L5 Get_Next_L(x, x) L6 // X = x->n;

L6 Set_Next_Null_L(y) L7 // y->n = NULL;

L7 Set_Next_L(y, t) L2 // y->n = t;
!/}

exit Assert_ListInvariants(y) error

exit Assert_No_Leak(y) error

The includes really just copy the text of the respective file at the place where the include
is written. Here we also encounter the %s tag for the first time, which is used to define
sets, as mentioned earlier already, these can be used with the foreach statement. It
is also convenient to see on just on glance what the pointer variables are called in this
specification.

The file itself is split in three parts by the %% lines. The first part holds the predicate
definitions, set definitions and the constraints. The second part is reserved for the action
definitions and the last part specifies the control flow graph.

30

The control flow graph is specified in a way reminiscent of goto style programs. Each
lines must consist of three parts, separated by white-spaces: The first string is interpreted
as label for the current program point, the second string denotes the action that is to
be taken at this point and the third string is again a label, this one denoting the next
program point (i.e. a goto). There is one thing however that breaks with conventional
programming: There may be multiple possible actions taken at each program point.
This can be seen in the example tvp file at program point L2. This mechanic is used to
simulate conditionals that split the program flow, but it is important to keep in mind,
that this is not an entirely correct way to think of it. TVLA uses abstract shape graphs,
that care not about concrete numbers and values, but still we also want to be able to
simulate program statements like “if (el->data > help->data) do something”. In an
abstract shape graph such a condition cannot be absolutely answered, instead the shape
graph will be sharpened in such a way that fits the one truth value or the other. A very
simple example of this is shown in Figure 17.

root roat cur roat cur

Figure 17: Two arbitrary elements with no information about their data values are to
be compared, shown in the leftmost shape graph. This is done by focusing
on the d1 predicate, which yields the two possible results shown here.

The situation depicted in Figure 17 is quite simple: We are at some program point
where a conditional is simulated that branches off depending one whether root data
value is smaller than cur data value or vice versa. This is done by two actions:

L1 Data_Greater_Than(root,cur) L2

L1 Data_Less_Than(root,cur) L8

Both of these actions will be nearly identical, they both will focus on the d1 predicate,
which stands for “data less than”. At program point L1 there will be shape graphs that
look basically like the leftmost graph in Figure 17, all of these will go through both
actions. Both times the focus will produce the other two graphs shown in Figure 17.
But the first action will have as precondition d1(cur,root) and the second one will
use the reverse d1(root,cur). Because of these different preconditions, each action will
only let one of those two shape graphs through to the next program point.

What that means in general is, that it is not good to think of these multiple labels
as if-then-else, because that insinuates, that one shape graph can only fit into one
such action. This is wrong. All shape graphs will go through all actions that are defined
for a certain program point and potentially can go to many different successor program
points. It is up to the specification to make sure by constraints and preconditions, that
only the right shape graphs go to the right destinations. This may be better seen at
the exit program point. The actual algorithm is done once the program flow reaches
exit, but there are still two actions performed on those shape graphs: One makes sure,

31

that the reversed list is still a single linked acyclic list and the other that there are no
unreachable memory cells floating around. Both together guarantee correctness for the
program. They work with simple preconditions, only shape graphs, that are not fulfilling
the list or no-leak conditions will go through into the error program point, that exists
purely for reasons of proving correctness. Note that both these tests are independent of
each other and are performed on the same shape graphs.

There is not much more to be said about the syntax of the specification itself. Pretty
much all label names are allowed, as long as they don’t contain white-spaces, the same
is true for action names as well. There is no limit on how many actions are performed in
a single program point (there are instances where it makes sense to have more than the
maximum of two shown in this example) and also no limit on where to jump to after an
action. It should be noted here, that when I will later show shape graphs at a certain
program point L, it is always from the set of shape graphs at program point L before
any of the actions at that program point are performed.

Now that the technical details are out of the way there remains one important question:
Where does the specification come from? The answer to this at this point in time is
unfortunately that they all have to be done manually. While a java front end for TVLA
is planned, a practical automated translation of a java program to a TVLA specification
is still a long way off.

1.5.5 Piecing It All Together

So now that we know all the different pieces of TVLA, it is time to put them all together
into a big picture of how TVLA works. Let’s list the steps:

e The first step of creating a shape analysis with TVLA is to think about what kind
of data structures there are in the program that is to be analyzed. These data
structures then have to be modeled in 3-valued first order predicate logic with the
addition of transitive closure. After both the predicates and the constraints are
done, it’s time to move to the next step.

e Define the actions that will simulate the actual code of the program, using the
predicates already specified.

e Translate the program code into a flow graph for TVLA using the recently defined
actions.

e Specify all possible inputs of the program by a set of shape graphs.
e Run the analysis.

What happens when the analysis is run? This is a loaded question with a plethora of
details that are not all that interesting at this point. There are a lot of options that
can be set, including the kind of traversal through the control flow graph, how shape
graphs are joined (i.e. when are two shape graphs considered isomorphic), debugging,
generation of automatic constraints and many more technical details.

32

For us however it is of interest how it works in principle: There is some order in
which the control flow graph is traversed, whenever TVLA gets to a new program point,
it will look at the set of shape graphs there and for each of them perform the actions
specified at that program point. The resulting shape graphs are propagated to their
destination program points and once there a join is performed. This basically means
it is tested whether or not there already is an isomorphic shape graph, if there is then
nothing is done, if not, then the new shape graph is added and the program point is
flagged as changed. Changed program points will be added to the toDo list. Once there
are no more new shape graphs to be found and thus no more changed program points
the analysis will stop. The creators of TVLA have proven in the various papers that
TVLA is well founded as well as bounded and thus will always terminate. In other words
the program will be iterated over till the shape graph sets at each program point are
invariant and thus describe all possible heap states for the program.

Let us also consider very broadly the running time of the analysis: For a set A of
abstraction predicates, it is possible to have 214! many different nodes. This is because of
the canonical name, that we defined as a vector of definite truth values for the elements
of A. This also means we could have that many different shape graphs per program
point. Actually the number is a lot bigger since two valued predicates also count for
many of the isomorphism tests of shape graphs, which means for every binary predicate
we could have every combination of edges between those nodes, which pushes the run
time squarely in the 0(22‘A‘).

Performing an action is separated into different phases (the order of which can be
configured too):

e Focus: This is what happens when the focus formula is evaluated and where ma-
terialization happens. Here is usually where “new” shape graphs are created.

e Coerce: This is what I described as checking all the invariants and instrumenta-
tion predicates in Section 1.5.3. The important thing to remember here is, that
coerce can only sharpen indefinite predicates into definite values, never the other
way around. If there is a conflict that cannot be solved by sharpening, i.e. one
constraint says true and the other false then the shape graph is considered to
be inconsistent and will be discarded.

e Precondition: This is simply the check of the precondition formula, if one exists.
As explained before for closed formulas a true or unknown will let the shape graph
through, a false will get it discarded.

e Update: This is the phase where the body of the action is actually executed, i.e.
the predicates listed there will be assigned new values according to the formula
given.

e Coerce: Another one, which is to insure, that the update didn’t inadvertently
break some constraints and also to update some predicate values that can now be
sharpened due to what happened in the update.

33

e Blur: This performs the abstraction algorithm. I.e. it checks the canonical names
of all entities and then abstracts them accordingly as described in Section 1.4.1.
This is important to keep the analysis bounded and thus make sure that the anal-
ysis will come to an end.

1.5.6 Strengths and Weaknesses

Now that we have given a good overview of what TVLA and shape analysis in general
can do, let us compare the strength and weaknesses of TVLA with those of normal
visualizations (see also Section 1.2) and with our list at the beginning of this chapter:

e Available: It is often difficult to find a worthwhile visualization for a desired topic,
let alone a similar or consistent visualizations for multiple topics. Here TVLA has a
clear advantage, it is one tool for everything, the same program, the same interface.
Saves the time to search for and get used to a “new” visualization for every new
topic. Free availability also guarantees less hassle of getting to visualization to
students as opposed to web based visualizations that may or may not be there
anymore next semester or even next week. Another important point here is that
while for some data structures and algorithms there are plenty of visualizations, for
others there may be none. (see Section 1.2) Unfortunately there is at the moment
also still a problem with the extend of TVLA analyzes, which means that not all
standard data structures and algorithms are covered yet.

e Adaptable: It is certainly true: When someone designs a visualization with a very
narrow specific purpose and algorithm in mind, the visualization can be great and
very detailed and use visuals and gimmicks very specific to that algorithm. This
can not be matched with an all purpose visualization that potentially has to handle
very different algorithms and data structures. But it also means, that the user is
usually stuck with what they get with little to no customization options. This is
great if the visualization shows exactly what you want to show in the way you
want to show it, but it is unlikely that this happens very often. As a teacher you
want to adapt the visualization to your teaching style and not vice versa. TVLA
and in extension my visualizer allow a great deal of adaption, as will be shown in
Section 2. In extreme cases it is even possible to design your own analysis to fit
what you want to show, down to the very name of the relations.

e Usability: There may be many pretty visualizations, but pretty does not mean
anything in regards to pedagogical value. In Shaffer et al. [31] they estimate that
only 25% of the over 350 visualizations they checked were of a quality that they
would feel comfortable using in class. Having just one visualization client makes it
that much easier to adapt mechanisms and strategies approved by the visualization
community.

e Understandable: Here shape analysis has a clear advantage, it can provide both
the meta level view, i.e. the invariants, thus conveying a lot more meta information
than any concrete example could ever hope to. Also I will present a compromise

34

in Section 3.3, that allows us to use concrete shape graphs to simulate a concrete
program execution, combining the abstract and concrete view. This should help
those students, that prefer to learn from concrete examples, rather than looking at
an abstract definition. We allow both views to coexist, to maximize the learning
effect.

e Familiar: As already mentioned in the first point, our Visualizer is just one single
tool, that can potentially handle any algorithm, that students are going to see
in a lecture. Thus, they only have to familiarize themselves once with the tool
and can then use it for the rest of the lecture. Even better, if they have enough
understanding, they will be able to customize the view to their liking.

1.6 Motivation and Extent of the Thesis

Originally, the visualization of abstract shape graphs was done solely to make the output
of shape analysis tools more readable for humans, thus easier to understand. It was
mainly used for debugging of analyses and easier presentation of correctness proofs.

The first prototype of my Visualizer for TVLA was taking a step further and already
explored the possibility of using the abstract shape graphs for teaching purposes by
adding some new features and a new analysis for AVL-trees. After all, since shape
analysis already proved partial correctness for programs as well as providing invariants
there was the hope that this additional information could be of use for teaching purposes
too.

As already explained at the end of the previous section, it is quite clear that there
is great potential in abstract shape graphs due to the fact that they provide a more
formal and complete view of a program, as well as having just a single tool to visualize
everything, making it much easier to find and adapt visualization to personal style.

Since the abstract shape graphs are really logical structures, it is possible to use the
layout of the graph itself, as well as certain other visual features, such as shape or color
of nodes, to convey the values and/or meaning of logical predicates without actually
drawing the predicate into the graph. A simple example of this is sortedness: When
drawing a sorted binary tree then we often implicitly assume, that nodes that are drawn
to the left of another node have a smaller data value according to the sortation relation.
Or at the very least, there is the convention for sorted trees, that left subtrees contain the
smaller data values and right one the bigger. Because this is such a natural assumption,
our Visualizer allows the option to simulate it and many others. The order (even a
partial order) for each axis can be adjusted by the user. It is generally possible to define
a formula for each axis, that induces a sortation such that a node is drawn on a smaller
coordinate than another if the formula holds when instantiating it with those two nodes.

One of the most important goals for the Visualizer is, that any and all meaning that
is insinuated by layout or graph features must be safe. That is, if a feature suggests
that a certain predicate or formula holds true for the graph or some nodes then it indeed
must hold true according to the logical structure. This is in a way an extension to the
embedding theorem from TVLA, which states, that a formula evaluated in a 3-valued

35

logical structure must be “compatible” with any results of that formula evaluated in
any 2-valued logical structure that is a valid concretization of the 3-valued structure.
In other words, TVLA and our Visualizer by extension, are only allowed to err on the
safe side, if there is something definite shown, then it must hold for all valid concrete
cases. Due to abstraction it is not possible to keep everything definite and this in turn
also influences the visualization: Sometimes it just is not possible to compute a definite
layout of a shape graph, because of indefinite values in the defining formula. This is a
major problem of visualizing abstract shape graphs and will be addressed in great detail
in Section 3.1, where I define exactly how the layout of my Visualizer is computed and
why it is generally not possible to have a complete ordering of nodes in a shape graph,
no matter how the abstraction is chosen. I will also present ways to reduce the problem.

Sometimes an algorithm is best and easiest explained with just an abstract meta view,
these are the algorithms that are usually best suited for visualizing by abstract shape
graphs. Sometimes, however, it may be easier for the understanding of the students if
they are presented with a couple of concrete examples that illustrate the most common
cases. These kind of programs or algorithms are a lot less suited for abstract shape graph
visualization, because they usually can only provide a very abstract view of the possible
cases. To address this issue I have developed the notion of concrete shape graphs. These
shape graphs can be considered as 2-valued logical structures, or alternatively as 3-valued
logical structures with only definite values. The basic idea is that while keeping the same
look and logical notation of abstract shape graphs, there just is no blurring performed.
That means all nodes will always stay concrete, as will all predicate values and nodes
will never be abstracted into summary nodes. This allows for the computation of a
“concrete” execution of the program, while at the same time we can match the concrete
shape graph to the respective abstract shape graph, thus giving something of a hybrid
concrete and abstract view. It should be noted that by deactivating the blur operation,
there is no more guarantee that the analysis will stop, i.e. if the algorithm diverges in the
concrete example, then the analysis will too. The analysis will of course stay partially
correct. Section 3.3 will cover this feature in detail.

Shape analysis will compute invariants and depending on the specification of the
analysis these invariants will be more or less detailed. The more detail and thus the
more information that is definite, the more shape graphs are usually needed to describe
the possible heap shapes. This can be illustrated by a binary tree again. If the only goal
is to know information about the node under the cur pointer, then the rest of the tree
can be abstracted into a single summary node with very little information value and it
may be possible to have just one shape graph describing the heap state. But if the goal
was to also know whether or not the cur node is a left or right child, then we would
need to distinguish these two cases, effectively doubling the number of shape graphs.
If we continue this example, such that now the goal was to know whether or not the
last n ancestor nodes of cur where left or right children, then the number of cases rises
exponentially.

If it were always possible to specify the analysis as precise then this would not be much
of an issue, unfortunately, these specifications are often quite complex and not that easy
to direct. It may be necessary to have a certain precision in some case and another in

36

the other case. In short, in practice it is not uncommon that there are unwanted case
distinctions in shape graphs, that do not help with understanding, but can not be easily
removed because they are needed elsewhere. In such analyzes it may happen that there
are hundreds of shape graphs in a single program point. That is clearly not very feasible
as an explanation of an algorithm and intimidating for students. Dierk Johannes has
worked on solutions to this problem in his Phd-Thesis (see Johannes [13]) and I will
present the partitioning methods that were incorporated into my Visualizer in Section
3.2. The general idea is that the core structure of a shape graph is defined by predicate
values and/or a logical formula and all shape graphs with the same core structure will
then be abstracted into a isomorphic class, not unlike the abstraction process of nodes.

The names and specifications of TVLA actions are often not suited for use as pseudo
code. Moreover different teachers may prefer different styles of pseudo code. Thus in
Section 3.4 1 will show how my Visualizer allows anyone to easily specify their own
pseudo code, including even the possibility to subsume more than just one action into a
single line of pseudo code.

Section 4 serves as a proof of concept. Here I present the specification of another
analysis, this time for pairing heaps, using all the theoretical foundations from Section
3. The intent was to see if using them would make a noticeable difference in the output
complexity and judging from the numbers it certainly did. I will try to use only the
output of TVLA to describe how pairing heaps work.

While all the theory is certainly important, it should be noted there that a significant
part of the work was also of a much more practical nature. The Visualizer code has an
extend in the order of twenty thousand lines of code, with several thousand more than
were used as experiments and did not survive in the current version. There are many
little tools and features that may seem trivial or commonplace, but since shape graphs
are not the average, everyday graphs I will use Section 2 to both show the common little
problems with shape graphs and the common little tools that can help with them.

37

2 Common Problems and Tools to Help with them

The shape graphs presented up to now were all very simple, neat and showed only what
information was needed for the example case. This in turn summarizes very well the
rules for visualization in teaching:

1. Simplicity: For a better overview, keep the example as simple as possible while still

showing all the important details. How much detail ought to be shown depends of
course a lot on what the teacher actually wants to achieve with the example.

. Cluttering: Is to be avoided as much as possible. Only the information should be

shown, that is actually needed to understand and explain the example algorithm.
This is especially important for shape graphs, since there often are construction
and helping predicates, which are needed for the proper functioning of the analysis,
but are not helpful at all for human viewers and indeed only add confusion.

. Disambiguity: When information is shown, then it should have a clearly defined

meaning. If rules are set then they should always be followed. If it is not possible to
follow some rule for some reason then it should be very clearly and unmistakeably
stated that the rule is broken at that point. This is also of great importance for
shape graphs: Because of abstraction there will always be uncertainty for some
predicates, this uncertainty poses a problem when trying to set clear rules. How
deep this uncertainty runs will be explored in Section 3.1.

In order to help us to abide by these rules, my Visualizer provides some basic tools,
which will be presented in the following sections. In order to provide more meaningful
examples for the application of those tools, I will introduce another data structure first:
Binary search trees.

%s TSel {left, right}

[11177771177711777

// Core Predicates

// For every field there is a corresponding binary predicate.
foreach (sel in TSel) {

3

%p sel(v_1, v_2) function invfunction // assume treeness

foreach (x in PVar) {

}

%p ancestor[x] (v) abs

[1771777717777177771777717777

39

// Instrumentation Predicates

// The down predicate represents the union of selector predicates.
%i down(vl, v2) = [/{ sel(vl, v2) : sel in TSel } invfunction acyclic

// The downStar predicate records reflexive transitive reachability
// between tree nodes along the union of the selector fields.
%i downStar(vl, v2) = down*(vl, v2) transitive reflexive antisymmetric

// For every program variable z the predicate r[z] holds for individual
// v when v is reachable from variable z along the selector fields.
foreach (x in PVar) {

%i rlx](v) = E(vl) (x(vl) & downStar(vi, v))
}

The above excerpt from TVLA’s examples shows the most important new predicates
for binary trees. The first thing to notice is, that there is now a new set of predicates
defined called left and right. These model the child pointers for the left and right
child of a node respectively. They are defined as function and invfunction because
every tree node can only have one left child and one right child and every node may also
have at most one parent.

The ancestor[x] predicates are not part of the original TVLA specification, but are
my own addition. They are used to keep nodes that lie on the path from the root to
a pointer x separate from non-path nodes. This will lead to separate summary nodes
for ancestors and non-ancestors. This distinction becomes especially useful once we go
beyond simple binary trees and look at balanced binary trees like AVL-trees.

The down predicate is a help predicate to make defining reachability easier, its meaning
is to specify a parent to child relation without the added information of whether it is a
right or left child. The predicate downStar is the reflexive transitive hull of down and is
the tree version of reachability: If there is a downStar from node v; to v9 then it means
node vq is reachable over the left and right pointers from v or in other words vy is
an ancestor of vs.

The r[x] predicates we already know. They are used again to specify reachability
of a node from a certain pointer x. Even the definition is nearly identical, except for
using downStar instead of t[n]. Note that there are of course a number of constraints
needed to fully specify trees, such as making sure that there are no cycles and that
different subtrees cannot reach each other. However for the coming examples these rules
are of no importance and I will skip them in accordance with teaching rule number two.
What is needed, however, is the specification for a simple sortation, taken again from
the example folder of TVLA:

/ oKk ok ok sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk ok ok ok sk sk sk sk ok sk sk koo ok ok sk sk sk ok ok kok /
/FFkkkkkkkkkkkkk Core Predicates skkkkkkkkskskkk/

40

%p dle(v_1, v_2) transitive reflexive

/%% okokook ok sk sk sk ok ok ok ok ok ok ok ok sk sk sk sk ok ok o ok ok ok ok sk sk sk ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok kR ok sk ok ok ok ok ok ok ok /
/Fxkskokkskokkkokkkokkkkk Instrumentation Predicates ks kskkskokkskokkskkk/
%i cmpldle,left] (v_1, v_2) = dle(v_2, v_1)
%i cmpldle,right](v_1, v_2) = dle(v_1, v_2)

%i inOrder[dle,left] (v) A(v_1) 1left(v, v_1) -> dle(v_1, v) nonabs
%1 inOrder[dle,right] (v) A(v_1) right(v, v_1) -> dle(v, v_1) nonabs
%i inOrder[dle] (v) = inOrder[dle,left] (v) & inOrder[dle,right] (v) nonabs

The core predicate dle is an abbreviation for “data less or equal” and that is exactly
what is models: The usual less or equal relation on data values of tree nodes. So far that
seems simple enough, so why are there five more predicates defined? To understand that,
recall that shape analysis deals with abstract shape graphs: Once nodes are abstracted
into summary nodes the binary predicate dle will always become indefinite, unless all
nodes in the summary node have the same data value. But if we consider the general
case, then there must be some way to specify, that a given subtree, although abstracted
into a single summary node, is completely ordered according to the dle predicate. This
is what the other five predicates are for.

The most important predicate is inOrder [dle], if this one is true for a node v, then
it means, that the subtree with root v is a completely ordered (according to the dle
relation) binary tree, i.e., that every left child of a node in the subtree has a smaller
data value than its parent and vice versa for every right child. Predicate inOrder [dle]
has in turn two defining help predicates. One says that for all nodes v; must hold: If
v1 is a left child of v then the dle predicate must hold true between v, and v, i.e., it
makes sure that a left child has a smaller data value than its parent. The other says a
right child must have a bigger data value than its parent.

The cmp predicates are a bit more involved and are only needed for the update block
in actions. Simply said they allow to easily and elegantly formulate the pointer =
pointer->left and pointer = pointer->right statements in a single TVLA action.
Without them there would need to be two separate actions, because the “correct” di-
rection of the dle relation depends on whether it’s a right or left child. I won’t go
into further detail as it will only distract from my examples. The important thing to
remember is, that these help predicates do make sense and all have their uses.

2.1 Too many/confusing Predicates

Now I said that those help predicates all have their uses, but does that mean they always
need to be shown? Let’s have a look at Figure 18. Note the numbers beginning with an
underscore inside the nodes are the TVLA internal names for these nodes. This shape
graph is a good example for one of the most mundane problems with TVLA output:

41

cmp[dle, left] cmp[dle,right] die downStan

frev

Figure 18:

22
inac cmpldie,right] die R
inOrder(dle, left] cmp[die, laft] , inar
inQrderfdle, right] il £ Attt Rl nordertdleef)
inOrder[dle] v Al in roeg E['””g 1]
rlprew] craplcle, left] crpldie skl die in rr[rsglt]]
r{root] cmp[die, left] downstar R cmp[die, lef
cmpldle,right] dle .7 .;,

el

root

cmpldie,left] cmpldle, right] dle downStar,
' 2
cmp[die, left] inac
inOrder[dle, left]
inOrder(dle, right]
inOrder(dle]

_0

inac
inOrder[dle, left]
inOrder(dle, right]
inOrder(dle]
rlroot]

cmpl[dle,right] dle

" LR L
. . ¥
sefdle, left] tmp[dlgr\ght]’d:e'dnwn |;\g‘h;’
.

cmpldie,right] die
cmp[dle,left]

.
cmp[dle, left] [mp[d\e,ﬂg}ﬂ] dle
i

cmp[dle, left] cmp[dle,right] dle

.

.

clownStar N . cmp[die,left] cmpldle, right] die down down&tar left right

cmpldie,left] cfapitie,right] dle down right ,# ¢
e

.
I(f “/,’
. -
. L
,'1' L. - cmp(dle, left] crmpldle,right] die
PR - P
P
. -
[t
- ”'J
r(,’
.

inOrder{dle,left]
inOrder{dle,right]
inOrder{dle]
rlprev]
rlroot]

.

.
cmp[dle,left] cmp[dle, right] die down downStar left right

A sorted binary tree in the middle of a standard insertion algorithm, with
all predicates shown. This is an example shape graph taken from one of the
tree example analyses of TVLA called “insertSorted”. It is quite obviously
overloaded with edges and labels.

There are simply too many predicates. One could argue that the direct line edges are

not the be

st choice here. That may or may not be true, but trying with orthogonal

edges or curved edges will also ultimately result in a big ugly pile of edges that are hard
to follow, much less easy to identify on just a glance. The reason for this is of course
that the graph is highly non planar, because it is completely connected by at least three
separate predicates (dle and both cmp) and nearly completely connected by downStar.
It is in fact not even obvious, that this is supposed to be a binary tree plus a single not

connected

node that is to be inserted.

No one in their right mind would use this graph in an explanation of how insertion
into a binary tree works. There are, however, a couple of features in the Visualizer that
will make the graph much easier to look at.

42

The first and maybe most obvious is, that all those help predicates are not really
needed for human understanding at all. What is of interest for such a simple insertion
is the structure of the tree and whether or not it is ordered. So let’s remove all those
predicates that are not needed as seen in Figure 19.

root

_0
inOrder[dle]

2
inOrder[dle]

[rew Y

1

3 -
inQrder[dle] inCrderfdle]

L

1) - -

. left right

4

indrder|dle]

11
- -

left right

Figure 19: The same shape graph as in Figure 18, but without all the “unneeded” pred-
icates. Without the clutter the structure of the tree becomes clear and the
algorithm much easier to follow.

The change is very dramatic, as is the increase in readability of the graph. It is now
clear that we see a tree, that there is a cursor pointer called prev that sits on the left
child of the root node and that there is an isolated node that is to be inserted and
pointed to by the el pointer. The question is, did I remove too much? Can everything
important still be observed? And the answer is, that I may have omitted one predicate
that is still needed, namely the dle predicate. As a reminder this predicate indicates

43

whether the data values of two nodes are less or equal to each other. We do not need
this predicate to tell whether or not the tree is still correctly sorted, because we can
conclude that from the inOrder[dle] predicate. What we cannot observe without the
dle predicate however, is what happens at the test if the element to be inserted is bigger
or smaller than the current tree node and thus whether the algorithm goes into the left
or right subtree in the next iteration. So we add the dle predicates back to the graph,
but to preserve the easy understanding, color it differently to the structure pointers as
seen in Figure 20.

rogt el

_Z
inOrder[dle]

prey

dle left right

L -
L]
L ,d'E .
’, R
e e
4 s
dle L0
. i dle
’ E
A
L R
F E
.
-

_4
inOrder{dle]

N

-

dle left right

Figure 20: The same shape graph as in Figure 19, but the dle predicate was added back.
To preserve some of the overview it was colored red, as opposed to the black
structure edges.

Thanks to the different colors, it is now possible to easily distinguish between structure
edges in black and dle edges in red. However the graph feels a bit cluttered again.

44

While not nearly as bad as Figure 18, there still is a lot of information, that is of no
great interest. In fact we might decide, that we only really care about the dle relation
between the prev node and the el node at this point in the algorithm. So why not just
mark these two nodes as important and ignore all edges that are not between those two,
this is shown in Figure 21.

root el

0

- 2
inOrder[dle]

inorder{dle]

prey

-1
inoroerfdle]

3
inCrroer{dle]

dle

4

inOrder{dle]

Figure 21: Another version of the shape graph from Figure 18. The nodes with the prev
and el pointers were marked as important and only those edges are drawn
that go between marked nodes.

In the example this might seem a bit minimalistic, but in bigger graphs this can save
a lot of confusion.

Another useful feature is the possibility to give nodes different shapes. To do this
the user can specify a formula for each shape, that when instantiated for the node
evaluates to true will change the node to the respective shape. At this time there are
two additional node shapes possible: Rectangles and octagons. These are useful to see

45

certain important properties of nodes on first glance. Figure 22 gives an example for
this. In the Section 4, we will see another useful application for this mechanism, namely
to distinguish between nodes representing tree nodes and nodes representing list nodes.

For this simple example I chose the formula r[el] (vy) for the rectangle shape and
the formula r[prev] (v;) for the octagon shape. The variable v; has to remain a free
variable in the formulas, as this variable will be instantiated with the node in question.
Note how the shapes add another possibility of uncluttering the graph: Although the
reachability predicates r [x] are not shown, they are implicitly made visible by the shape
of the nodes.

root el

AN

_Z
inOrder[dle]

_
inOrder[dle]

[rey »

3 21
inOrder[dle] inOrder[dle]

"

3 - -

v left right

4

inorderdia]

x
- -

left right

Figure 22: Yet again a version of the shape graph from Figure 18. This time the nodes
reachable from prev will be drawn as octagons and the nodes reachable from
el as rectangles. Note that the reachability predicate does not have to be
shown for this to work.

46

Here is a short summary of the features affecting single shape graphs:

e Blending predicates in or out depending on what needs to be shown. This is a
major way of uncluttering the graph by omitting help predicates that are of no use
to human onlookers.

e Coloring predicates for easy recognition. While a great way to mark important
or special predicates against others, it should be used with caution. There should
never be more than four to six different colors, else it gets confusing again.

e Different node shapes to easily distinguish between important node properties.
This also works when the defining predicates are not shown in the graph, thus
giving another possibility to unclutter the graph.

e Marking of Nodes to show only those edges between marked nodes or edges that
come from or go to those nodes. This is good to see only certain edges in the graph
if it cannot be uncluttered by other methods.

e Although not shown in the examples here, there is also the feature to invert the
edges. This is more of a debugging tool, but it can sometimes also be a good way
to show what is not there, if the graph is cluttered again.

2.2 Navigating through Shape Graphs

So far we have only seen some of the common display problems with single shape graphs.
Now let us take a step back and remind ourselves, that an analysis consists of whole sets
of shape graphs. How do we order and navigate through these shape graphs?

In the default tvs-output of TVLA shape graphs are grouped by program point, i.e.,
we first get all shape graphs belonging to program point 1, then all of the next program
point and so on. There is no way to tell when a specific shape graphs was created or
even in what order they were created. Also there is no way to tell which shape graph
is a successor of another shape graph, i.e., was created by applying a TVLA action on
another shape graph. The only order and identification we can reliably use here is the
appearance in the output file, i.e., we enumerate the shape graphs in the order they
appear in the output file. This number we call the index of the shape graph. Shape
graphs can be jumped to by their index in our visualizer and we also have a previous
and next button to decrement or increment the index respectively.

While we now can argue over certain shape graphs, it should be immediately clear,
that this kind of ordering is not very satisfying, neither for debugging, nor for teaching
purposes. In very small analyses you can still reasonably easily see which shape graphs
are in a successor and predecessor relationship, but this gets harder very quickly with
a rising number of program points and shape graphs. No one wants to check through
hundreds of shape graphs to see which one might fit.

The developers of TVLA also saw this problem and implemented a second kind of
output, the so called tr-output, which is short for trace. While the basic structure of
the file is still the same (graphs are still ordered by program point), the whole structure

47

<- Previous Graph || Mext Graph - = || Go to ||l Loc start, class O

Figure 23: The buttons that allow navigation through shape graphs by their index. Also
on the right is a label that shows which program point the shape graph
belongs to. The class index means the position of the shape graph within the
program point, i.e., class 0 means it is the first one in the output file that
belongs to that program point. The class index also has a deeper meaning
that will be explained in Section 3.2.

is now in XML-format. Every shape graph now gets a unique label and at the end of
the file there now exists an edge listing. The edges define that shape graph SGs was
created by using action a on shape graph SG;. With this information it is now possible
to actually follow an abstract program execution. The key word here is abstract, as
with summary nodes, the abstraction can cause some seemingly strange behavior. It
is therefore possible to run indefinitely through a loop without anything ever changing.
This is due to the fact, that every shape graph can have multiple successors (we already
saw that when explaining how focus works in Section 1.3), i.e., if there are multiple valid
instantiations for the focus formula then the shape graph will have multiple successors
if the resulting shape graphs are not also isomorphic. It is also possible, that there are
multiple predecessors for a given shape graph. This is due to the fact that isomorphic
shape graphs are considered the same shape graph, thus if different actions or different
loop executions yield the same abstract shape graphs then that abstract shape graph
will have multiple predecessors.

With the information in the tr-file we can now properly compute the so called trace
graph. In this graph nodes represent whole shape graphs and edges stand for the suc-
cessor relation and are annotated with the action that was taken. Figure 24 shows a
small example of such a trace graph. The y-coordinates in the trace graph represent the
program locations in the order they appear in the output file, i.e., all shape graphs on
the same coordinate belong to the same program location. Not shown in the screen-shot
is the small preview window, that shows the currently selected shape graph (marked in
red in the trace graph). The successors of the currently selected shape graph are marked
in green and its predecessors in yellow. It is possible by simply clicking on the nodes to
move through the shape graphs.

The problem with the trace graph is that it gets unwieldy very quickly when the
analysis is big. In Figure 25 we can see an example with 3573 shape graphs. While an
experienced user can see some structure in there, like loops and special cases, the graph
is a lot too big to be of use if we want to see local details around a certain shape graph.

With this problem in mind, I implemented a more local version of the trace graph,
called trace window. The trace window is always centered on the current shape graph and
will show the trace graph around the current node up to a configurable depth (default is
2). That means it will show the direct successors and predecessors and their respective
successors and predecessors etc. It will not show other shape graphs at the same program
point. An example can be seen in Figure 26. As in the trace graph itself, this window

48

'y = NULL v = NULL v = NULL

Figure 24: The trace graph for a small reverse list example analysis. Edges portray the
successor relationship, annotated with the action that was taken. Nodes with
the same y-coordinate belong to the same program point.

‘H“

Figure 25: The trace graph for an AVL-tree insertion algorithm with over 3500 shape
graphs. While it is still possible to see some structure, the local details are
lost in the huge graph.

can be used to navigate directly through the shape graphs by simply clicking on them.
That the successors and predecessors are not simply drawn as nodes, but as mini shape
graphs is another useful feature, because it helps to decide which path to take through

49

the algorithm. This is especially useful to see on a glance which are the special cases
and which are the more general ones.

As a further convenience there are the “<<” and “>>" buttons, that allow to quickly
switch between shape graphs in the current location, that share the same predecessor
as the current shape graph. If the current shape graph is the only successor of its
predecessor then these buttons have no effect.

In Addition to jumping to the index of the shape graph it is also possible to jump
to the unique label of a shape graph. Sometimes, however, the user may not know the
label or index of a shape graph, but rather can specify the shape graph by its logical
properties, i.e., by logical formulas that hold for it. Conversely sometimes a user may
want to check that there is no shape graph in the analysis where a certain formula holds
(because this may indicate a possible error). For this purpose there is a search tool in
our Visualizer, that allows the user to search for shape graphs where a certain formula
holds, for empty shape graphs, or - in the case of debugging - for shape graphs with
warning messages.

2.3 Miscellaneous Features

There are some more features in the Visualizer that do not exactly fit into the previous
categories:

e Zoom: A useful standard feature in many programs. It is of even more importance
here, because the shape graphs are dynamic and can change their display size
rapidly and unpredictably depending on the number of nodes and the number of
non-false unary predicates. This is due to the fact that unary predicates are
drawn inside the nodes, the more there are the smaller the text or the bigger the
node has to be. Therefore the user has the option to always automatically fit every
shape graph to window size. Of course fitting the whole shape graph in the window
may yield unreadable small nodes and text. Thus it is possible to manually zoom
in and out using the mouse-wheel or to hold down the right mouse button and
draw a box that will then be zoomed to window size.

e Magnify single nodes: Tied to the problem described above, when it is important
to see the whole structure of the shape graph, but also the details of some nodes.
There is the option to have a magnification effect when hovering the mouse over
a node. A bigger and clearly readable version of the node will appear right next
to it. It is of course configurable how long the magnification node hovers and the
maximum scale it will appear at all.

e Font size: Also a standard feature in many programs. In my Visualizer its main
purpose is for shape graphs with many nodes but few predicates. The many nodes
mean that we have to zoom out if we want to see them all, but since there are only
few predicates we can just increase the font size, so we can still read them.

e Manually color nodes: Pressing the C-key while hovering the mouse over a node
will bring up a color slider menu, that allows the user to set a new background

50

@ - -@"
@

04
@ -~-@" | @ -~-&
o

® - -@"

Figure 26: The trace window is a more local view of the trace graph and only shows
reachable successors or predecessors up to a configurable depth. The succes-
sors and predecessors are drawn as mini shape graphs, so the user can already
see the structure of the resulting shape graphs.

color for that node. This is a nice feature to mark nodes in a presentation. Note
that the outline color of the node will not change, because these are used for a
variety of other purposes as will be explained in later sections.

e Manually move nodes: While there is a very powerful specification tool in place for

o1

the layout of the shape graphs, there always can be problematic nodes that just
do not look good where they are. Thus it is possible to just drag and drop nodes
anywhere on the grid. Note that once you dragged a node somewhere the layout
of the graph will be changed to “manual” and that graph layout will no longer be
automatically computed. In other words the Visualizer will remember your layout
even if you move to other shape graphs and come back again. Of course there is a
button to reset the node layout to automatic.

Cosmetic changes: Right clicking on the outline of a node will move the self loops to
that point. Note that indefinite self loops are always 90 degree away from definite
self loops. Holding shift and left clicking on a node will mirror the pointer arrow to
the other side. This makes it easier to keep edges from going through each other.

Different Edge layouts: The Visualizer supports two kinds of edge layouts right
now. The standard one are just straight edges from middle point of one nodes to
middle point of the target node. While the most primitive and the most clutter
prone, experience has shown that this is indeed a much preferred method in our
shape graphs, which mostly depict lists and trees. There is also the option of using
a channel based orthogonal grid layout for edges, similar to CAD programs.

2.4 Shape Graph Creation Tool

There is one more tool that I will describe here in detail due to its great versatility
and importance in creating new shape analysis specifications. I call it the Shape Graph
Creation Tool, because that was the initial motivation of coding it. To understand this
motivation properly I will remind the reader on how shape graphs are specified for TVLA
by posting another example from their folder:

o=
hp =

52

{u, us}

{
sm = {us:1/2}
root = {u}
varSel [root,left] = {us:1/2}
varSel[root,right] = {us:1/2}
left = {u->us:1/2, us->us:1/2}
right = {u->us:1/2, us->us:1/2}
down = {u->us:1/2,us->us:1/2%}
downStar = {u->u, u->us, us—>us:1/2}
r[root] = {u,us}

//Sortation predicates
inOrder[dle,left] = {u, us}

inOrder[dle,right] = {u, us}
inOrder[dle] = {u, us}

dle = {u->u:1, u—>us:1/2, us->u:1/2, us->us:1/2}

cmpldle,right] = {u->u:1, u->us:1/2, us->u:1/2, us->us:1/2}

cmp[dle,left] = {u->u:1, u->us:1/2, us->u:1/2, us->us:1/2}
}

This tiny shape graph is the input shape graph for a deletion algorithm in a sorted
binary tree. Note that there are only two nodes in this shape graph and yet we already
have four entries in dle and the cmp predicates. All those predicates that model a
relationship between all nodes, like a sortation will have quadratic many entries in the
specification and to a slightly lesser degree this is also true for the transitive closure of
the reachability predicates. It should be immediately obvious, that is it very unintuitive
to specify shape graphs like this and of course it is also very error prone. Forgetting to
set one of these predicates right for even one case will invalidate the whole analysis and
will usually produce an error somewhere down the line that is hard to track back to the
input shape graph.

Since the Visualizer already could display shape graphs and because doing things
visually greatly reduces the error chance, I implemented a tool that just lets the user
create their own shape graph from scratch or editing an existing one by just doing a few
mouse clicks.

L L e

Add new Node

Add new summary Node

Remove a Node

Add Predicate

Auto down/ d*

Export

Auto Dle/cmp

Import

Auto DI/ cmp

Formula

Remove All

Run Analysis

Exit

® Add Predicate
cur(Py
I
dle()

) Remove Predicate

[nD

Figure 27: The Shape Graph Creation Toolbox. With these few buttons it is easy to
create your own shape graph directly in the Visualizer, where you can check
visually whether or not it looks like it should.

Figure 27 shows the toolbox for the shape graph creation window. It is divided in the
button panel and the predicate list.

The predicate list contains all predicates in the current analysis in alphabetical or-
der. The tag in parentheses indicates whether it is a nullary(0), unary(1) or binary(2)
predicate and also makes a special distinction for predicates that simulate stack pointers
into the heap(P). This distinction is made solely for visual reasons (since stack pointer
predicates are drawn differently than pure heap pointers), pointer predicates can other-
wise be thought of as a normal unary predicate. The user can add predicates into the
shape graph simply by selecting the predicate in the list and then clicking on a node
in the unary case or clicking on two nodes in the binary case. In the case of a nullary
predicate they can click anywhere in the graph. The same technique works for removing
predicates, the only difference is that the radio button must be set to remove predicate.

53

54

The button panel allows to user basic functionality like adding or removing nodes
from the shape graph, but it also adds some powerful and convenient features:

Add Predicate: This simple feature allows the user to add new predicates into the
predicate list. All that is needed is the name of the new predicate followed by the
arity in parentheses.

Auto down/d*: This is a very convenient feature for specification of standard
binary trees. Once the user has build a binary tree using just the left and right
predicates, this function will automatically compute all the necessary down and
downStar predicates that result from this tree structure. Thus it eliminates one of
the most error prone parts of specifying a shape graph, it is very easy to forget a
self loop or some reachability.

Auto dle/comp: Similar to the auto down/d*, this function computes all the nec-
essary predicates for sortation, i.e., the dle, comp and inOrder predicates. This
is an even greater source of possible errors, since every two nodes in the graph
need to have a relation set. Please note: This function needs both the left, right
structure predicates and the down, prdownStar predicates set before it is invoked.
Also this will only yield the desired result if the tree is actually supposed to be a
standard sorted tree.

Auto dl/comp: The same as above, just for the d1 predicate, which was introduced
for the AVL-tree analysis.

Remove All: This function allows the user to completely remove all occurrences of
the currently selected predicate in the predicate list from the shape graph. This
is useful if the structure has become so hopelessly messed up, that a fresh start is
needed.

Formula: One of the most powerful tools in the arsenal. This allows the user to
specify a kind of update formula for the currently selected predicate in the predi-
cate list. As is usual for the Visualizer, the variables v1 and v2 are reserved and
will be instantiated with all possible combinations of nodes in the shape graph.
The predicate will be set according to the result of the evaluation. There is also
the possibility to force the algorithm to use only definite values, i.e., if the formula
evaluates to unknown the predicate will default to false. This tool is the gener-
alization of the “auto” functions above and while powerful should be used with
caution: It might require some trial and error till the right formula is found.

Import/Export: Allows the user to export their newly created shape graph into
the usual tvs format that then can be directly used as input for TVLA. Conversely
import can be used to continue editing a saved shape graph. There is one more
use for the import though: Depending on the TVLA version, the debug output or
error message may not be in proper tvs format or the output may be really big,
although the one thing of real interest is the shape graph at the very end where

something went really wrong. Copy and pasting the offensive shape graph into a
separate file which is then imported is then usually the most convenient and time
saving way to display the error graphically.

e Run Analysis: This is a special feature, that will call TVLA with the currently
loaded specification and the current shape graph as input while deactivating the
blur operation. Thus it can be used to compute a “concrete” example of the current
program. More on the intuition behind this and its use can be found in Section
3.3.

The process of editing or creating a shape graph can be aborted at any time. Note, that
a modified or newly created shape graph will be lost unless a modified shape graph was
exported or the run analysis feature was used. While the intent with the shape graph
creation tool was solely on helping the user create input shape graphs, it is also a simple
way of playing around a bit with shape graphs.

2.5 Formulas in the Visualizer

Logical formulas are an important specification method for our Visualizer: They are
used for partitioning, sortation, node shapes and search tools, to name just the most
important ones. Thus this section will discuss the syntax and some peculiarities of our
formulas. Since the Visualizer was developed with TVLA in mind, we adjusted the
notation, such that it is as similar as possible to TVLA notation. The goal was that it is
possible to copy and paste a formula from TVLA directly into the Visualizer and have
it evaluate in the same way. There are some important exceptions to this:

e In our Visualizer there is no transitive reflexive closure, we use strictly first order
predicate logic. The closure is needed in TVLA to define predicates that can
express reachability, these predicates can be used in Visualizer formulas, but not
their definition.

e There is no possibility at the moment to define sets of variables and thus no need to
implement the FOREACH construct present in TVLA. We found no real application
for this mechanism that would help with visualization, but this may be a feature
in future updates if the need arises.

e The variable names v1 and v2 should be considered as special reserved names that
should only be used in formulas that actually are intended to use them and they
should always be used as free variables. For example, if the sortation formula
evaluates to true, then the node instanced as v1 will have a smaller coordinate
than the node instanced as v2. If a formula is not intended for sorting or node
shape, then the variable names vl and v2 should be completely avoided or side
effects might occur.

e Looking down at the grammar in line (8), there is the >= operator, this opera-
tor does not exist in the original TVLA notation. The point of this operator is

55

pure syntactic convenience: Instead of the actual logical values, we consider the
values as numbers, thus they are ordered 1 >= 1/2 >= 0. That means writing
reach(x)>=1/2 is just a convenient short for reach(x)==1/2 | reach(x)==1.

Also in line (8), the operator == behaves differently than in TVLA. In TVLA
and normal three valued logic the formula 1/2==1/2 would evaluate to unknown,
whereas in our Visualizer it will evaluate to true. This has a very practical reason:
If we want to specify what should happen visually if a predicate or formula is
unknown, then we need to have some way to test whether a predicate (or formula)
has that value or not. A test in traditional three valued logic, however, would
always evaluate to unknown, not true or false. In other words, 1==1/2, 0==1/2
and 1/2==1/2 logically always evaluate to unknown. Our == operator will yield
true if both truth values are syntactically the same and false else. Note that the
equivalence operator from line (3) will provide the same results than the original
== operator from TVLA. So if it is desired that the results of the formula stay
the same as in TVLA, then the == operator should be replaced by <->.

The grammar below shows the syntax of our logical formulas. The start symbol is
>0, characters between quotation marks are the actual characters as they appear on the
keyboard. id is the name of a logical variable, these names can consist of any combination
of characters, including special characters, with the exception, that they may not contain
the logical operators and may not start with 0 or 1. The exception to the exception are
the two quantors, it is of course allowed to use the letters e’ and ’a’ in variable names.
idList is a comma separated list of logical variables. p is the name of a predicate, the
rules for predicate names are the same as those for id.

56

S — 'E'(idList)So | $1 | 5o (1)
Sy — "A’(idList) % (2)
Sy —» N3 <> N3 | Ny (3)
N3 By > Ny | Oy (4)
IS SERLD D P (5)
S5 — Y6 & U5 | S (6)
S —id =" id | id '=="id | S "1=" %7 | O '==" 57 | Or >="57 |27 (7)
Sy o 155 | Os (8)

(9)

28 — 707 | 717 | 71/2? | 7(7207)7 |p7(7id7)7 |p7(7id7’7id7)7 |p

Ne)

3 Understanding Shape Graphs

In the previous section we have seen a number of tools and their applications and in the
process we gained some insight into some of the common problems with general shape
graphs. In this section we will adress the more fundamental problems inherent in using
shape analysis and shape graphs for visualization. There are a few very basic mechanisms
that spawn all the other problems and those shall be adressed in the following sections.
It should also be noted, that while I continue with examples from TVLA, the problems
and mechanisms are mostly inherent in shape analysis and thus are independent from
the tool used for computing the analysis. Only some of the more practical solutions
described here may have to be modified to fit the respective tool.

Abstraction: While absolutely necessary for shape analysis, this is one of the major
troublemakers. Abstracting nodes all over a given data structure into a single node
will usually cause big problems if the goal is to layout the nodes in a meaningful
manner. This will be the main focus of Section 3.1.

Number of predicates: While of course necessary for conducting a meaningful
analysis, predicates should be used with forethought and caution. The more there
are, the more confusing the analysis becomes and the more potential shape graphs
may accumulate, which again makes the analysis harder to understand and debug.
Thus the general rule is to use as few predicates as possible. Section 3.1 shows
some examples of this.

Number of shape graphs: This is of course somewhat tied to the previous issues,
but there comes a point when you just cannot remove any more predicates. If there
are still too many shape graphs in the analysis, then another method to reduce
their mass is needed. This is where partitioning comes into play. It allows the user
to abstract whole sets of shape graphs into equivalence classes. Section 3.2 will
explain this mechanic.

Intuition: There are many arguments over what the best learning method is and
it usually ends with different people prefering different methods. Some people
may prefer abstract and formal thinking, while others prefer intuitive thinking
and deduction from examples. Shape analysis is great for abstract people, but it
is very hard on the intuitive side of things. That is why we provide a way to show
semi-concrete examples of program executions. Section 3.3 explains this specific
approach.

Pseudo Code: While nothing new or spectacular, Section 3.4 will give a short
overview of why generic pseudo code is especially useful for our Visualizer and
how it is implemented.

3.1 Inherent Problems of Abstraction

In this section I will show the basic limitations of laying out and visualizing shape graphs,
as well as propose strategies that can be employed to work around some of the problems.

But before I can talk about the problems of visualization, I first have to give a good idea
what I actually mean with that word.

3.1.1 Visualization

Visualization is a very broad term that can mean anything from vague handsigns to very
clearly defined mathematical graphs. Even if we just look at our Visualizer, there are
different kinds of visualization present.

On the one hand there are all the things that have nothing to do with shape graphs at
all. Everything related to the user interface falls into this category. There are buttons,
windows, menus and a thousand other little things that are so common, that we often
do not even consciously think of them as visualizations anymore. Yet their good or bad
arrangement can have quite a big impact on the usability of an application. This is,
however, exactly what we do not care about in this section.

On the other hand there is the data that is to be visualized, i.e., the shape graphs. A
shape graph is just a logical construct, that consists of logical entities (the nodes) and of
a set of truth values for logical predicates, that are defined on those logical entities. The
basic problem is to read the logical description of a shape graph and create a visualization
that respects the logical properties as much as possible. That means we have to assign
some visual properties to the nodes, e.g., coordinates, shape, size, colors and many more.
Also we have to assign properties to the predicates, again things like size and colors, but
also whether or not they are drawn at all, what kind of edges to use (straight, rectangle,
curved) and so on. Some of those properties may also depend on the currently viewed
shape graph: The coordinates of a node is a good example of this, the same node may
be drawn in different positions depending on the rest of the graph.

Some of these properties may not be easy to define formally, but a few are very straight
forward. Coordinates, colors and shape are good examples of this. Given a shape graph
and a function that assigns these properties to nodes and predicates, we may actually
create a well defined visualization in the sense, that we can deduce logical values simply
from visual cues. This is what we will discuss in great detail in the next sections.

3.1.2 Limitations and Problems of Abstract Visualization

Since our Visualizer is intended for teaching purposes, the representation of the data on
the screen should be as accurate and unambiguous as possible, we don’t want to goad
the user into wrong conclusions.

To generate screen coordinates for the nodes, the user assigns a formula ¢(v1,v2) to
an axis and then a partial order is computed:

Vug,ug € Vg, ur # ug : up < ug < (v < ug, v < uz)

So for every two nodes of a given shape graph the formula is evaluated and if the
result is true then u; will have a smaller coordinate than us on the respective axis. In
the general case this will only produce partial orders, however if ¢ describes a complete
order relation on the nodes, then the computation will of course also yield a unique and
complete order on the coordinates (we need not concern ourselves with reflexivity, since

]]SG = true

58

all our nodes are unique). That means if we only consider concrete shape graphs, i.e.,
shape graphs without summary nodes, then our visualization will display the nodes in
the logical correct order: If node w; is drawn left of another node uy then ¢, (uy,u2)
evaluates to true in the corresponding shape graph.

Note that for two different shape graphs SG; and SG2 we can not conclude that
[o(v1,v2)]°C = [p(v1,v2)]°F2 even if v; and v have the same canonical names in both
shape graphs. This is due to the fact that data values are in general not directly reflected
in predicates and that binary predicates are not part of canonical names, but can be
used in ¢. A simple example of this would be the order of two nodes v; and v that are
ordered by a binary relation, that represents their data values. They both can switch
their data values, thus inverting the binary relation between them, without changing
their canonical names in any way. See Figure 28 for an illustration.

Cur it cur it

) e)))
dle

Figure 28: This Figure shows two nearly identical shape graphs. Both nodes have the
exact same canonical name in either shape graph. The only difference is the
dle predicate, that signifies that in the left shape graph the cur node’s data
value is smaller than the it node’s data value and vice versa in the other.

So if we want to model the common less-than-relation on the x-axis we can do so
and expect it to look like it should for concrete shape graphs. Unfortunately in a non
trivial analysis, concrete shape graphs are usually only special cases, if they exist at all.
Generally we have to work with abstract shape graphs. We will now look at how and
when abstraction will cause problems.

Consider a sorted single linked list and once again we use the common less-than-relation
for one axis. We choose reachability as abstraction predicates, as well as pointers, as
usual, i.e., nodes that are reachable from the same pointers will be abstracted into the
same summary node with the exception of the actual node that the pointer is on, which
will remain unique. No matter how many pointer we use and where we place them, the
abstract shape graph will still be completely ordered.

Proof: First we can merge all pointers that point to the same node, since all following
nodes will be reachable from both, the merging (or removal of one) won’t change the
abstraction. This leaves us with distinct concrete nodes pointed to by a pointer and
possibly summary nodes in between, that are reachable by one pointer, but not by
the next one. If there are two consecutive concrete nodes, then the order is of course
preserved since it is the same as in the concrete shape graph case. So the interesting
case is that we have a concrete node vy, pointed to by pointer p followed by a summary
node w9, followed by another concrete node v3, pointed to by another pointer ¢ as is
shown in Figure 29. We have to make sure, that the summary node vy does not abstract

59

a concrete node that was before vy or after v3, since that would destroy the ordering.
Due to the choosen abstraction this cannot happen: Only nodes reachable by p and not
reachable by ¢ can be abstracted into vo, so there can be no nodes before v; and none
after vg be abstracted into vy, thus the order is preserved.

root cur

Figure 29: A sorted single linked list with root as head element and cur as iteration
pointer. Due to using reachability (depicted as r[pointer| predicate) it is
always possible to completely order the nodes.

Unfortunately this will not work for every abstraction. If we take the above example
and extend the abstraction such, that even and uneven data values get abstracted into
different summary nodes then it obviously is no longer possible to order the abstract
nodes completely by the less-than-relation. If there are both even and uneven data
values in the nodes between two pointers, the abstraction would generate two summary
nodes between these pointers (one for even data values, one for uneven). And obviously
there would be no right way to order these two summary nodes according to the less-
than-relation.

We introduce the notion of a concretization of a shape graph, and, in extension, of a
node. A concretization ¢(G) of an abstract shape graph G is a new graph, where every
summary node has been replaced by a set of definite nodes(at least one), we call such
graphs concrete graphs. The new graph has to satisfy the following conditions:

e all predicates must be definite

e if the abstraction function is applied to the concretized graph(i.e., a blur operation
of TVLA), then the resulting graph must be isomorphic to the original shape graph

e the concretized graph must satisfy all predicate definitions and restriction formulae
of the analysis specification, i.e., a coerce operation should accept the graph and
return it unchanged

We define C(G) as the set of all possible concretizations of G. Analogously a concretiza-
tion ¢(v) of a node v is a set of nodes, that v could be replaced with and where the
resulting graph satisfies the same three criteria as the concretization of a shape graph.
We define C(v) as all such sets of possible concretizations. Note: If v is not a summary
node then the only concretization is the node itself. For every G’ € C(G) exists exactly
one corresponding ¢(v) for all v € V.

Definition 1. An abstract shape graph SG is completely ordered under ¢ if and only if
for every pair of abstract nodes

60

1. Yy, v9 € SG, vy # vy : [p(v1,v2)]°C = true V [o(vi, 12)]°C = false
2. Yui,v2 € SG,v1 # vo : [[go(vl,UQ)]]SG = true = [[go(vg,vl)]]SG = false

3. Yoy, v2,v3 € SG,v; # vj i # j: [p(v1,v2)]°C = true A [p(ve,v3)]¢ = true =
[o(vi,v3)]°C = true

A set S of abstract shape graphs is completely ordered under o if and only if every shape
graph SG € S is completely ordered.

Definition 2. We call an abstraction order preserving under ¢ for a set S of shape
graphs if and only if @ induces a complete ordering in every concretization of every
shape graph G € S and if S is completely ordered under .

In other words, if a concrete shape graph was completely ordered under the formula
¢ then the resulting abstract shape graph must still be completely ordered under .
Formally for a summary node that means it can be ordered if all of its abstracted nodes
are either smaller or bigger than any given other node of the shape graph(according to
©). If it is clear what order relation is meant, we will omit the under ¢ part.

For the following theorem we assume that when the nodes of a graph are completely
ordered, then we will enumerate them in that exact order from first to last. If we refer
to an interval of nodes then we mean all nodes from a start index through to the end
index.

Theorem 1. An abstraction is order preserving under ¢ for a set of abstract shape
graphs S if and only if every summary node in every abstract shape graph G € S can
be described as a single interval of ordered nodes in all concretizations of G and all
concretizations of G are completely ordered by .

Proof. “=": All concretizations of G must be completely ordered by ¢ due to the defi-
nition of order preserving.

To show that all summary nodes can be described as a single interval, we shall assume
that there was one summary node s1 that consists of at least two intervals 11 and I5. Let
j €11 and l € Is. There must exist at least one k, such that j < k <1 and k ¢ I, I.
Let k belong to a node so, that may be concrete or a summary node. We can observe
three cases:

e case 1: we order s1 < Sg, this is a contradiction to k <l
e case 2: we order s1 > So, this is a contradiction to j < k
e case 8: we order s = sg, this is a contradiction to j < k <

thus we have a contradiction to our assumption that the abstraction is order preserving.

“=7: Again all concretizations of any G are completely ordered by ¢ due to our
premise and we just have to show that having a single intervall for every summary node
1s enough to guarantee that we can order the abstract shape graphs according to .

61

Two summary nodes s1 and sy with s1 # so can be ordered by @ iff
Vo € C(s1),v2 € C(s2) : [[cp(vl,vg)]]G = true
V Yo € O(s1),v2 € O(s2) : [o(v1,v2)]% = false.
Note that this also includes the case that either of the nodes is actually a concrete node.
Both s1 and so abstract nodes in one given index interval, these intervals must be dis-
Junct, since every node can only be abstracted into one summary node, thus either all
indices of s1 are bigger than se or vice versa. That directly implies the above condition
is fulfilled (if o(v1,v2) = true then vy must have a smaller index than vs).

So now that we have a criterion for generating a good visualization, we have to ask if
there always exists such an order preserving abstraction for a given ¢ for any algorithm
and data structure. The answer to that question, unfortunately, is no, there does not.
We will illustrate this by looking at a simple search algorithm in a sorted binary tree.
We choose ¢ such that it uses the sortation of the tree to position the nodes, i.e., if a
node v; is smaller than a node vy then and only then w.l.o.g. v1 should be drawn left of
V2.

Theorem 2. There exists no order preserving abstraction for an analysis of a standard
search algorithm in a sorted binary tree with the following constraints:

e © emulates the sortation of the tree, i.e., the node with the smaller data value has
always a lower coordinate than any node with a higher data value.

o The nodes on the path from the root to the current node are clearly marked and
may never be abstracted with non path nodes.

e A node that is pointed to by some program pointer (in contrast to heap pointers)
will always be concrete, i.e., not be abstracted by any summary node.

Proof. Let us consider the case that our search algorithm always takes the left child in
its search. Let us further assume that we are in the general case and every node except
the leaves have two subtrees. We then have a situation looking like Figure 30.

Note that this shape graph is just one (minimal) concrete example, the following argu-
mentation holds true for all other examples as long as every i-th node (with i > 1 some
constant) on the path has a right subtree.

The square nodes in Figure 30 are nodes on the path from root to the current pointer.
Due to our precondition no square node may be abstracted together with a round node.
Between each two (right) subtrees hanging from some path nodes, there is at least one
path node that lies between the intervals of the subtrees. Since the path node itself may not
be abstracted together with the subtrees, no two subtrees can be allowed to be abstracted
together, or our abstraction is no longer order preserving. Furthermore, if we consider
two path nodes and there exists at least one right subtree with its parent on that path
(with the exception of the very first path node) then we again must not allow them to be
abstracted together.

Thus in general we have to avoid abstracting both path nodes with each other and non
path subtrees with each other. Now consider, that an abstraction always has a limit as

62

root

rlroet]
ancestor

right

et
flract]
ancestor
right

{

froot]

A
cur ancestor
\ right
left
rlcur]
rlroot]
ancestor
right

Figure 30: The resulting shape graph if the search algorithm always takes a left. Square
nodes are path nodes.

0

to how many nodes can be present at most in any given shape graph. Since abstraction
predicates are always definite, there are exactly 2141 possible nodes in a shape graph, with
A being the set of abstraction predicates. So no matter what abstraction predicates are
chosen, we can always iterate the search algorithm some more until we come to the point
where we have to abstract nodes together that are not allowed to.

Since there exists no non-trivial order preserving abstraction for even such a relatively
simple algorithm as searching in binary trees, it is reasonable to assume that we generally
will not find one for non-trivial algorithms and data structures. Thus we have to deal
with nodes that cannot be ordered with some other node, which we will call conflicting
nodes.

First we consider how many conflicting nodes there can be in a given shape graph.
Obviously the minimum amount is two, there simply cannot exist a single conflicting
node. It is usually easy to construct examples where all the nodes in the shape graph
are conflicting nodes. Unfortunately even in normal analyses, it is often the case that
all or nearly all nodes are conflicting, due to catch-all summary nodes, i.e., everything
that is of no interest to the analysis, but part of the data structures, will be summarized
in that summary node, this often leads to abstraction of nodes that were previously
scattered all over the data structure. In such a case the easiest solution is to mark the
one catch-all summary node as the troublemaker, indicating, that the rest of the nodes
would be fine if that summary node didn’t exist.

This leads to the following idea of dealing with conflicting nodes: We determine the
minimal set of conflicting nodes C, that need to be removed from the shape graph in
order to resolve all conflicts and mark them. We can then lay out the rest of the nodes
without problems and place the marked nodes at a convenient position. C' is generally

63

not unique, which means that we either pick an arbitrary set or we have to compute all
possible minimal sets C. Consider the simple example in Figure 31, it’s a binary tree
which we traverse with the cur pointer. Node 0 is the root, Node 1 is the left subtree
of the root, Node 2 are all the nodes lying on the path from the root to cur, Node 3
are all the subtrees hanging off the path, Node 4 is the node the algorithm is currently
considering and Node 5 represents the yet not traversed subtrees of the aforementioned
node.

We assume that we want to order the nodes by their data values on the x-axis (less-
than-relation) and by father-child relation on the y-axis (children should always be drawn
below their parents, we shall use the reachability predicate for this). Strictly speaking
the second relation is no order relation at all, since it is not reflexive (we don’t care much
about that) and because it is not complete (we do care a lot about this), for example
two subtrees are not comparable under father-child or reachability. For the sake of this
example we will ignore that it is no real order relation and just relay what our algorithm
would do, we will come back to this a bit further down. There are a number of conflicting
nodes under these relations:

e Node 2 and 3 conflict in both the x- and y-axis. The reason for the x-axis conflict
is the same as in Figure 30 und the y-axis conflict is because while it is true, that
every root of every subtree hanging off the path is the child of some node on the
path, it is not true that every root of every subtree is a child of all the nodes on
the path and indeed many of those roots are not even reachable by all nodes on
the path.

e Node 4 and 5 conflict in the x-axis, because node 5 abstracts both left and right
subtree of node 4. They might even conflict in the y-axis if we just specified the
left and right as our sortation formula, because both of these are indefinite
values. It makes more sense to use reachability, i.e., node 5 is reachable from 4
and not vice versa. This will yield a defnite value. Note that reachability will not
help with the conflict between node 2 and 3, because not all subtrees on the path
are reachable from every node on the path and no node on the path is reachable
from any subtree.

e Node 1 and all other nodes except node 0 conflict in the y-axis, as they are incom-
parable (not reachable from each other).

e Node 3 and nodes 4 and 5 conflict in the y-axis as these too are not reachable from
each other.

e Nodes 2 and 3 conflict with Nodes 4 and 5 in the x-axis. Despite what the figure
initially suggests, the path abstracted by node 2 has both left and right self point-
ers, that means the search path went zig-zag and thus that there are both nodes
with bigger and smaller data values on the path.

So this means that every node except the root is marked as a conflicting node. Now
consider which possibilites there are for minimal sets of conflicting nodes that allow us

64

root

I.
left rght‘

~

1
< L AAeft right
left rights

i

Figure 31: A shapegraph for an algorithm that traverses a binary tree. We use this
example to illustrate how we solve conflicts.

the layout the rest without further problems. Since node 2 and 3 conflict with each other,
at least one of them has to be in the minimal set, the same is true for 4 and 5. Also
node 1 has to be included, or we would have to remove 4 other nodes. The minimum set
in this simple example is already not unique: We can mark node 1 and then three out of
2, 3, 4 and 5. The latter is neccessary, because 2, 3, 4 and 5 are pairwise conflicting. In
this example we decided to go for 1, 2, 3 and 5 as the minimal set to be marked. Once
this is done we can layout the rest of the nodes without problems. Unfortunately in our
example, that means all we know for sure is that node 1 is left of node 0 and that again
is left of node 4 and we know that all nodes are below node 0 and that node 5 is below
node 4. After that we place the marked nodes where we think they make the most sense,
i.e., by obeying as much of the partial ordering as we can. Interestingly this leads to a
quite natural looking tree, which means it is the desired layout for our purposes.

Deciding to compute all minimal sets C' is the right approach, we formally phrase the
problem as follows: Construct a graph G(V,E), such that the nodes that needs to be
layouted are V and (vy,v2) € E = [p(v1,v2)]° = true. Le., we use our order relation as
edges. Now we have to find the minimal node set, that when removed, would eliminate
all circles. This is exactly the feedback vertex set problem, which is NP-complete as
proven by Karp [15]. Additionally we have to make sure that there is exactly one edge
between every two nodes, which amounts to the same problem again. Note that for
purposes of helping us with the layout of the marked nodes, we also consider those edges
where the evaluation of the relation only yields unknown.

Computing the minimal sets C is only half the work. We already stated, that those
minimal sets are generally not unique. Since the example tree looked so natural, we might

65

be inclined to flag the sortation relation for the y-axis as a partial order relation only.
It actually makes sense to describe the visual layout of certain data structures as only a
partial order, trees are one example of this. For us this means in terms of layout a slight
change, we already described how we generate a partial ordering from evaluating the
sortation formula for every two nodes in a graph. We say a node vy depends on another
node v1 if and only if [ip(v1, v2)]°? = true. Le., if the sortation formula says, that node
v1 should be drawn before node vo then vy depends on v;. Our layout algorithm will
start assigning coordinate 0 to those nodes without dependencies, then remove those
nodes from all dependency lists, then increase the coordinate and repeat. Since it is
only a partial ordering, there might be no nodes with zero dependencies, i.e., two nodes
may depend on each other because the formula yields true both ways. In this case we
take the set of nodes with the lowest number of dependencies and assign them the same
coordinate. The only conflict in this kind of layout is, if two nodes depend on each
other in both axis, thus getting the exact same coordinates assigned. We can solve these
conflicts in the same way no matter whether it is supposed to be an order relation or
not.

Consider Figure 31 again. Now assume, that the y-axis is flagged as partial order.
The only conflicts left now are those between nodes 2 and 3 and the one between nodes
4 and 5. To solve the conflicts we have to mark 2 nodes, one from each pair. In other
words our minimal sets C' now contain 4 possible sets: {2,4},{2,5},{3,4},{3,5} each
of those will solve all conflicts. The question is now how to decide which set to take.
Which feels the most natural? We already mentioned that the way the graph is drawn in
the figure is the most natural way that we can think of. It is of course hard to decide in
general which way is more natural or sensible or efficient for a data structure to look and
even more so how to abstract that look in a sensible way. Thus we use three heuristics
which produced good results in our examples:

e First heuristic: We give higher weight to concrete nodes than to summary nodes.
Given the choice between marking a concrete node or a summary node as “wrong”,
we will always chose the summary node. The reasoning behind this is straightfor-
ward: Summary nodes mean abstraction, abstraction usually means loss of infor-
mation and loss of information will make logical values indefinite making evaluating
the sortation formula indefinite too. Or in other words, the concrete nodes are usu-
ally those with pointers on them, which means they are at that time important
for the algorithm and therefore interesting for the user and will contain the most
information. Thus it would feel wrong to mark such a node over some summary
node that abstracts an arbitrary number of concrete nodes.

e Second heuristic: We give more weight to nodes with more binary predicates than
to nodes with less. That means we count the number of binary predicates for a
node v with p(v,ve) # false or p(v1,v) # false. The reason here is that given two
summary nodes (the first heuristic eliminated the concrete nodes), one of them
might have more structural predicates than the other. As an example see nodes
2 and 3. Node 2 has more edges (binary predicates) than node 3, because it
represents the path taken by the algorithm. It links the concrete parts together.

66

The most problematic summary nodes are often those, that abstract all the odds
and ends of data structure that are of no interest, but need to be represented by
the logcial analysis never the less. This heuristic tries to separate the important
summary nodes from the unimportant ones.

e Third heuristic: We give more weight to nodes with more unary predicates than
to nodes with less. The reason is again similar to the above and comes down to
how much information is available. Our basic premise is, that the more interesting
some node is, the more information the analysis should have about it. Because if
we want to prove certain properties then it is logical to make sure to have as much
pertinent information as possible while ignoring unimportant information in order
to not unnecessarily complicate and clutter the analysis.

Since these are only heuristics it is of course possible to find examples where the
intuition is wrong and will lead to a bad layout. This is especially true if the analysis is
actually constructed in such a way as to exploit the weaknesses of the heuristics. This
however brings us to another important point: While it is certainly true, that we can
construct the analysis in such a way, as to hinder our visualization, the reverse is also
true. Specifying an analysis with the idea of visualization in mind can help to avoid a
lot of the problems we discussed so far. As a simple example we compare the analysis
for the insert operation of an AVL-tree with an analysis for all the usual heap operations
on pairing heaps: The first one has some 20,000 to 30,000 shape graphs, the latter only
around 200. It is clear by the mass of shape graphs alone, that the first analysis will be
hard to visualize without confusing the user.

3.1.3 Visualization Friendly Analysis

One of the biggest problems of using shape analysis for teaching purposes is the sheer
amount of information it can provide. On the one hand there are the various predicates
used in the analysis: For every actually interesting (for the user) predicate, there are
often two or more predicates that are only there to help with computing the interesting
ones or keep their information as definite as possible. These helping predicates are often
tied very intricately into the working of TVLA and the specification of the analysis.
They have to be there to make it work, but to someone who does not know TVLA
or the specific analysis they are often totally incomprehensible and massively confusing.
Our visualizer can mend this problem by simply not drawing those predicates, this needs
some user input (the visualizer cannot decide which predicates are the interesting ones),
but since the number of interesting predicates is usually quite low it’s easy to list the
few predicates that should be shown and blacklist the others.

The other dimension of information amount is the number of shape graphs. It’s a
big difference if there are fewer than ten shape graphs at each program point or if there
are over a hundred. It’s reasonable to assume that a user can focus on and understand
and remember the differences in four different shape graphs. It’s also reasonable to
assume that hardly any human being will be able to focus long enough to understand
and remember four hundred shape graphs, for each program point that is. It’s also not

67

feasible to use the same method as with predicates and not show certain shape graphs.
Because on the one hand that would either leave important parts of the algorithm out
or if those parts were not important, why are they there in the first place? On the other
hand someone would have to go manually over hundreds or thousands of shape graphs
and mark which ones to show and which ones to omit. Our visualizer has a mechanism
to help with this though and it is the partition option. This allows the user to partition
the shape graphs into equivalence classes according to some similarity concept, details
about this are in chapter 3.2. However partition is a tool that is not easy to use and the
best way to deal with the number of shape graphs is of course to keep them low to start
with.

To understand how to keep the number of shape graphs low, we have to go back to
how TVLA works. Potentially, the number of shape graphs grows exponentially with
the number of predicates. It’s obvious that the number of nodes in a shape graph is
bounded by 2/4l, where A is the set of (unary) abstraction predicates and between those
nodes there can be any number of binary predicates (set B), two shape graphs with
the same nodes but different binary predicates are still two different shape graphs, that
we often don’t want to abstract together. A simple example for this would be a single
summary node that represents the path of a search algorithm in a binary tree: It may
be that the search algorithm only took left children on its way down, or only right
or a mixture of both. Now for some algorithms the distinction won’t matter, but for
other algorithms it might very well matter. If it does matter then we just tripled the
number of shape graphs for each such summary node. That means a potential blow
up to 9221411 possible shape graphs for each program point. Of course that worst case
scenario will never happen in practice, since the predicates are not independent from
each other and certain combinations just won’t make sense. It is however still quite
easy to get exponential blow up from adding important predicates and some helping
predicates. Therefore one major rule should always be observed: If it doesn’t absolutely
have to be there for the algorithm to make sense, then it shouldn’t be there.

We shall illustrate the design principles for a user friendly analysis by having a closer
look at the pairing heap analysis. Pairing heaps are a self-adjusting kind of heap that is
easy to implement and - in practise - fast. They were originally designed as an easy to
implement alternative for Fibonacci heaps, however unlike them they are much harder to
analyse in theory, but are faster in most practical examples, see also Fredman, Sedgewick,
Sleator, and Tarjan [10].

A node in a pairing heap can have an arbitrary number of children, only the heap
condition must be met at any node. The usual heap operations are given as the following
pseudo code:

function merge(heapl, heap2)
if heapl == Empty
return heap?2
elsif heap2 == Empty
return heapl
elsif heapl.elem < heap2.elem

68

return Heap(heapl.elem, heap2 :: heapl.subheaps)
else
return Heap(heap2.elem, heapl :: heap2.subheaps)

function insert(elem, heap)
return merge(Heap(elem, []), heap)

fuction delete-min(heap)
if heap == Empty
error

elsif length(heap.subheaps) == 0
return Empty
elsif length(heap.subheaps) == 1

return heap.subheaps [0]
else
return merge-pairs(heap.subheaps)

function merge-pairs(1)
if length(l) ==
return Empty
elsif length(l) ==
return 1[0]
else
return merge(merge(1[0], 1[1]), merge-pairs(1[2.. 1))

funtion decrease-key(heap, elem, value)
if heap == Empty || elem == Null
error
elem->key = value
remove elem from children of parent
return merge(heap, Heap(elem, []))

The most interesting function is the delete-min, which uses merge-pairs. The way
the delete min is executed gave the pairing heap its name: The minimum (root) node is
deleted and then the subtrees are divided into pairs and merged from left to right. After
that is completed all resulting trees are merged from right to left.

The first and one of the most important things when designing an analysis for an
algorithm is to decide which concrete implementation will be best for abstract visual-
ization. In our example a tree like data structure is needed with no limitation on how

69

many children a node can have and that can shrink and grow as needed. That means
every node must have a pointer to a collection of pointers that represent its children. It
should be easy to iterate over the collection since we need to do that for the delete-min
function. The obvious choices are either an array or a list. We decided in favor of the
list because of two reasons:

e It is very easy to insert or delete a list element. If we used an array then we would
have to implement special cases for adding elements to an already filled array
(doubling the array size for example). This would not be a problem if we were
demonstrating the algorithm in a lecture, since we would just say that doubling
the array size will solve the problem and won’t cause much extra runtime in an
amortized sense. In our static program analysis we would have to explicitly code
this special case, which would result in extra shape graphs, which in turn would
only clutter the visualization with a detail that is of no importance to the analysis
at all. Because at any time we add an element to the children array, we would have
the abstract case that there is either no child, some children or that the children
array was full. With the list we only have the first two cases and as we shall see
later we can reduce it even further.

e A list is one of the most basic and most easy to abstract constructs for TVLA. It
can easily be represented by a single summary node with just the structural next
pointer and reachability predicates. An array is much harder for TVLA to handle.
As a reminder: Shape analysis is interested mostly in the pointer structure of the
heap. In a list the next element is explicitly pointed to by the predecessor, in an
array this information is implicit and thus hard to model with a pointer structure.
Logically you can model it with a predicate that acts like the next pointer in a list,
but it is very hard to model the actual size of the array, i.e., if we want to check
for an array index out of bounds error. The strength of an array over the list is
of course the direct access of elements by their index, this is however never used
in the example algorithm, thus there is no reason to use the more confusing data
structure.

So a list it is. The next step is to decide what kind of list. For every function except
decrease-key a single linked list is sufficient and remembering our major rule, it makes
sense to break the analysis up into parts for each of the functions separately (except
for delete-min and merge-pairs). That means we can use single linked lists for all
functions but decrease-key where we need it to efficiently remove a child from the
parents children list.

So now that it is decided which kind of data structure to use it is time to start to
think about programming. Keep in mind that specifying program code in TVLA is
more akin to writing assembler code than any higher programming language. Standard
statements like if-then-else may take several lines of code and even goto like statements
to translate. That means it is generally a good idea to keep the number of statements
as low as possible, which especially means trying not to do unnecessary conditionals as
those usually don’t do anything that is easily visualized, because often only secondary

70

predicates are changed and sometimes nothing is changed at all but only a filter is applied
to the set of shape graphs. This means that it can happen that there are two or more
program points where nothing visually changes, which can be confusing.

With the above in mind let’s consider our example some more: Only two cases are
important when iterating over a list: Is the list empty or is there another element to
iterate over? But if our algorithm does not look at children in a certain program point,
then we really don’t care at all if there are any children or not. Thus came the idea of
using a sentinel. We shall illustrate our point by an example. Let’s consider Figure 32.
This is our basic, totally abstracted non empty heap. As a reminder: Summary nodes
always represent at least one node, that means at least one node must exist in the heap.
Another design decision was that every element, even the root node, are pointed to by
a handle. These handles will also be the list elements in the children lists and they are
drawn as rectangles, whereas the real heap elements are drawn as circles. It may seem
strange that the root pointer actually points to the handle of the heap root node and
not to the node itself, this is however with good reason. Such as it is we never have to
create a handle, we expect every node to have a handle, even one that we just now want
to insert. This also means that when we do an insertion and the previous root has to be
inserted into the children list of the new element, that we do not have to waste code to
first create a handle for it. Another reason for the handles is a lot more pragmatic: If we
pointed directly to the heap elements, then those would need either a parent pointer to
their heap parent, or a pointer to their list handle or else we couldn’t do a remove-key or
decrease-key operation. So in short we saved us the trouble of modelling yet another
structural pointer that isn’t really needed.

The graph itself may also look strange at first since it doesn’t look like a tree at all.
This is a necessary evil of abstraction: Every tree node is abstracted into the same
summary node and every handle is also abstracted in the other summary node.

In Figure 33 we expanded the graph, now there is the min pointer on the actual root
node of the heap, making it a unique node and also the children list of root is now
seperate from all other due to reachability. There are two pointers on the first handle
of the children list and here we see the first advantage of the sentinel. Without the
sentinel we would have two shape graphs, one depicting that this is the only child and
the other that there are still more children. This information is at this program point
of no relevance to the algorithm or the understanding of the data structure. We don’t
need it, so we don’t want it. Note that this means we have fewer shape graphs to worry
about until a time where they are actually needed to see something important to the
algorithm.

The figures 34 and 35 show the next step, where the it pointer moved to the next
list element. Now we need to know if there is another child or not and thus we get the
two shape graphs. Thanks to the sentinel we neither have to check for, nor work with
null pointers. This is especially true in the next step of the algorithm after this, which
would remove the help handle from the children list and then reconnect the list.

Another easy to see example is the toDo list. We use this list for the merge-pairs
function. After each pair of children is merged they will be put into the list and after all
pairs have been merged the list will be processed to merge all the elements into a single

71

heap. Without the sentinel we have three distinct cases that TVLA has to describe with
different shape graphs:

1. The empty list. There have been no elements added yet and thus the list pointer
is null.

2. The case the we have exactly one element added. This means the list pointer will
point on this one element and make it unique.

3. More than one element was added: The list pointer will point to the head of the

list, making it unique and the rest of the list is abstracted into a single summary
node.

root

21
rlroot]

Figure 32: A shape graph depicting a maximally abstracted pairing heap. There is only
the root pointer to the handle of the root element, which means the heap is
non empty, but aside from that nothing is known. Square nodes represent
handles to actual heap nodes, which are round.

With sentinel the empty list is represented by the list pointer pointing to the sentinel
(shape graph looks like case 2 above) and all other cases fall under the second case, that
there was at least one element added, making the shape graph look like case 3 above.
So we saved another shape graph and lost no important information that way. That is,
the information was not important, because all the algorithm cares about is whether or
not there is another heap to be merged or not.

Aside from some logical advantages while actually performing and designing the anal-
ysis, which we shall not further elaborate here, the question may arise whether or not
it is worth all this effort just to save one shape graph here and there or sometimes just
postponing creating more shape graphs anyway. The answer to that is quite simply: Yes,
it is worth the effort because shape graphs tend to blow up exponentially. For example:
Having one instead of two shape graphs when expanding a child may not save much if
you only ever expand one child at once, but if you expand two or three at once (this
actually happens in the delete-min function) then the choices multiply: You have two
choices for the first child, another two for the second etc. They are usually independent

72

root

-1
r{root] .)
min help, it

clist

=7 6
rihelp] s, rlhelp]
rlit] rlit]

_4
r[min]
rlroot] r[min] r[min]
rlroot] e r[root]

'
1
'
'
'
1 2
Y rhelp] =
* i tt] 3
Ichlld rimin] i n
: riroot] ‘.
'
'
1
1
'

de

_0
rlhelp]
rlit]
r[min]
r[root]

Figure 33: Here we are iterating over the children list of the root element of the heap.
Note that at this point we do not know if there is another child after the it
pointer and we don’t have to know. Since there is always a sentinel though,
we know that at least one node must follow.

of each other (in pairing heaps you cannot deduce anything about the number of chil-
dren of a subtree by knowing the number of children of another subtree) and thus they
multiply fast.

In summary, it is hard to formulate strict conditions and constraints for designing an
analysis. But it is a good idea to first think about what is desirable to show, what is
needed to do that and what really isn’t needed and does nothing for the understanding.
Keep the amount of code low as well as the number of shape graphs. The goal is not to
be as precise as possible, but to be as precise as necessary.

3.2 Partitioning

In the previous section we have seen how careful planing of how exactly to implement
data structures, coupled with well founded knowledge of TVLA (or the tool of choice
for shape analysis) and the minimization of predicates used can in turn minimize the
number of shape graphs produced. Fewer shape graphs means an easier learning and
debugging experience. On the other hand, there are factors that stand against using the
absolute minimum:

e While it may be most efficient (in terms of number of shape graphs) to implement
a data structure in a certain way, that way may not fit at all with your style

73

root

-1
riroot]

_4
r[min]
r[root]

clist

help

7
rlhelp]
rlmin]
riroot]

_6
rlhelp]
rlit]
r[min]
rlroot]

_0
rlhelp]
r[min]
rlroot]

2
rlhelp]
rimin]
rroot]

Figure 34: This is the next step in the algorithm after figure 33. The it pointer was
moved to the next element in the children list and there were no more children

root

only the sentinel.

rroot] _

clist 7 n
rihelp]

rimin]
rroot]

v
'
'
'
'
'
'
'child
'

'
'
'
'
D

rihelp]
rlit]
rimin]

6
rlhelp]
it]
rlmin]
rlroot]

2
rlhelp]
rimin]
rlroot]

'
'
'
'
'
'
'
‘child
'

'
'
'
'
)

rihelp]
rlit]

rimin]

riroot]

Figure 35: This is the alternative next step in the algorithm after figure 33. The it
pointer was moved to the next element in the children list and there actually
was at least one other child.

of teaching, or, worse, will yield suboptimal results in terms of running time or
other constraints. Thus sometimes it might be necessary to fit the analysis to the
teaching goals rather than to the visualization goals.

e While the rule of using as few predicates as possible may be sound advice, there
are exceptions here too. The first factor to consider is always readability, too many

74

predicates are bad for comprehension, but too few predicates can be equally bad.
There has to be a balance between efficient visualization and ease of comprehension.
The other point to consider is the level of detail wanted. By specifying the analysis,
the user can, at least in the case of TVLA, also decide just how much detail should
be shown. The more detail, the more predicates are often needed and the more
different cases can be distinguished, leading to increasing (often exponentially)
numbers of shape graphs. This can be as simple as deciding whether or not it is
important to keep left and right subtrees separated at all times.

e Last but not least a very practical problem should also be kept in mind: Specifying
analyses is not easy, specifying them optimally for a given task is most certainly
very hard. Everyone who specifies a shape analysis only has a limited amount of
time that they can devote to that task and the analysis will only be as good as it
gets in that time.

All of the above are reasons why there may be more (sometimes a lot more) shape graphs
in an analysis than there have to be. Additionally, even given only ideal analyses, there
will be those that need shape graphs in numbers that are beyond what a human mind
will be comfortable with. One solution that we propose here is based on what humans
often did in such circumstances: We categorize the shape graphs into distinct classes,
so we can argue over those classes instead of single shape graphs. The approach that I
implemented in my Visualizer is based on the work of Dierk Johannes in his PhD-thesis
(see Johannes [13]).

As was already mentioned the general approach is to partition a given set of shape
graphs into equivalence classes. This is done by first reducing all original shape graphs
to subgraphs, truth vectors or a combination of both and then checking which of the
resulting reduced shape graphs are isomorphic. In order to preserve the structure of the
analysis, as well as for easier understanding, it has to hold, that if two shape graphs are
in the same equivalence class, then they belong to the same program point.

Johannes defines a number of what can be translated as partitioners, i.e., methods
of reducing shape graphs to other entities. In my Visualizer I implemented two of
those partitioners: Translated from German they are called Formula Partitioner and
Substructure Partitioner.

The Formula Partitioner is simply a set of logical formulas, using the same syntax,
semantic and predicates that is used in the shape analysis (3-valued first order predicate
logic). These formulas are then evaluated for every shape graph. Two shape graphs are
isomorphic if and only if those formulas evaluate to the same truth values in both of
them. Alternatively, we can imagine a vector of truth values for each shape graph, like
a canonical name of the shape graph, and shape graphs with the same canonical name
belong to the same equivalence class.

The Substructure Partitioner is a little more involved. Here the shape graphs are
reduced into a kind of substructure, that is again a shape graph: Nodes, predicates and
edges may only be subsets of their original sets. The user has to specify a set of predicates
P and a formula ¢, both the set and the formula may be empty. The Partitioner will
then remove all predicates from the shape graph that are not in P. If the predicate in

75

question is a binary predicate then all the edges representing the predicate will vanish.
If there are any nodes that now have zero non-false unary predicates, then they will be
deleted, together with all the edges adjacent to them. After that the formula ¢ will be
evaluated for every node (as usual the variable v1 will be reserved for this), if it yields
false the node will be deleted, again with all adjacent edges. The resulting reduced
shape graphs are then checked for isomorphism and are put into classes accordingly.
Note that while graph isomorphism is usually hard to check, in this special case it is
much easier because of the unique pointer variables, thus there is a clear matching for
at least those nodes with stack pointers, making the check much easier.

Two shape graphs are isomorphic for this Partitioner, if and only if there exists a
matching with the following conditions:

e The shape graphs have the same number of nodes.

e The nullary predicates of both shape graphs have the same truth values.
e Matched nodes have the same truth values in all their unary predicates.
e Edges between matched nodes have the same truth values.

Note, that this definition of isomorphism is not the same as the one used by TVLA to
check if two shape graphs are isomorphic! For TVLA it is enough if one shape graph
can be embedded into the other, along with a few more technical and implementation
and version specific extra conditions.

The main purpose of the Substructure Partitioner is to focus on the structure of the
shape graphs, grouping them according to common substructures, i.e., if the “unneces-
sary” predicates, meaning those that are not relevant to the working of the algorithm,
are cut out of the graph, then the real basic cases appear. E.g., going down to the left
or right child.

The Formula Partitioner on the other hand does not care so much about the graph
structure and rather looks at the logical properties of the shape graphs, grouping them
by similar behavior. I.e., the look of the graph is irrelevant, the important thing is
whether or not these properties hold. It is easy to check for a leaf case with this for
example: The structure of the graph may vary widely, but a leaf can always be easily
defined by not having any children, which in turn is easily described by a logical formula.

Both kinds of partitioners have their uses, since some properties are easier described
in logical form and others are easier to see in the structural form. There is, however, no
reason to restrict ourselves to use just one of them. We allow to use both at the same
time, partitioning first by one and then partitioning the resulting classes again by the
other, thus having the best of both methods.

The following example illustrates the use of the Substructure Partitioner. Let us again
consider the AVL-tree insertion algorithm. We are in the search phase still. Le., the
algorithm runs a cursor pointer down the tree, searching for the right spot to insert the
new element. Figure 36 shows one shape graph that can happen in this search loop,
which we will use to base the example on. In this example shape graph, we are looking
at the second iteration of the search loop. Obviously the new, to be inserted, element

76

has a data value that is smaller than the root and thus the cursor pointer cur now points
to the left child of the root. We can ignore the prev pointer for this example, as it is
only really needed for the backtracking after the actual insertion.

root

.0
ancestor[cur]
.
.
.
.~

N
Ieft ~
-

. N
e right
Cur, prev

~

.
5|
7
.
left rights T

eft right

1'.
7

'
left rights

Y

Figure 36: One example of a possible heap situation in the search loop of the AVL-
insertion algorithm. This is the case where the cursor pointer cur is at the
left child of the root and in the next program step the cur pointer will be
either set to its left or right child depending on the data values of the current
node and the node to be inserted.

The next step in the algorithm is to set the cur pointer to the left or right child of the
current node, depending on how the data value comparison turns out. Thus it is easy to
see that there should be at least two successor shape graphs, one for each general case.
However due to how this particular analysis was designed, it is actually also possible,
that there exists no left or right child and the algorithm has then to proceed to do the
actual insertion. Taking this into account, we may then concede four possible cases and
thus four shape graphs.

For those not so experienced with shape analysis and TVLA in particular it may come
as a surprise, that the actual number of successor shape graphs is at least 12. Each of
the four cases consisting of another three subcases at least. We show the possible three
successors for Figure 36, for the case of going left and the left child actually existing in
Figures 37 to 39.

The first thing of note here is, that the three distinctions are quite irrelevant to the
working of the algorithm: At no point in the search phase will the algorithm check or
care if there exist subtrees that are not traversed anyway. l.e., it is of no importance

7

root

prev

3
X

left

left

)
left right;

i

Figure 37: The simplest successor shape graph of Figure 36. Here the right subtree does
not exists and the left subtree only consists of one node. Note that since the
cur pointer now points to a leaf, in the next loop iteration the new element
will be inserted.

rogt

Figure 38: Another successor for the shape graph of Figure 36. Again, the left subtree
only consists of a leaf, but additional to Figure 37 there exists also a right
subtree of undetermined size. As with Figure 37, in the next iteration of the
search loop the new element will be inserted.

for the understanding of the algorithm if the node with the prev pointer has a right
subtree or not in the three example shape graphs. There are of course logical reasons
why these distinctions are made and actually have to be made, since all possible heap
states have to be represented by some shape graph at the program point. If we left out
Figure 37 for example, then this would insinuate, that no AVL-tree could ever have a
left leaf, without it being balanced by a right subtree (remember that summary nodes
always stand for at least one node).

78

root

left rights _

Figure 39: This is the most general successor of Figure 36. There exists both a left and
right subtree and neither are leaves. This means in the next iteration of the
loop there basically exist the same three cases again, aside from the slight
changes to the insertion path. In particular it means that in the next step of
the iteration there can be no insertion happening.

Since the three shape graphs in Figure 37 to 39 basically describe one and the same
general case of the algorithm, it makes sense to put them into the same equivalence
class. To do this, the Substructure Partitioner is the tool of choice. Remember, that the
Substructure Partitioner is there to focus on the structure of the shape graph. What
we are interested in is the shape of the search path taken so far, everything else is of no
consequence (like subtrees hanging from the insertion path). We need two constraints
to be fulfilled in order to put two shape graphs into the same class:

e The structure of the search path must be the same. Obviously we can only be in
the same case if we took the same insertion path in both shape graphs.

e The pointers must point to the same nodes. If one or more pointers point to differ-
ent nodes then we again are either not in the same case or not in the same iteration
of the search loop. Remember that all shape graphs at the current program point
are checked for partitioning, not only those with the same predecessors.

Thus we focus on the pointer predicates root, cur and prev as well as the ancestor [cur]
predicate that represents the path from the root to the pointer cur. Of course we also
need the left and right predicates to be able to compare the structure of the graphs.
All other predicates are not relevant and can be deleted in the substructure. Finally, we

79

want to make absolutely sure, that only nodes on the search path to cur remain in the
substructure. To achieve this, the formula “ancestor [cur] (v1) | cur(vi1)” is added.
The result of this Substructure Partitioner can be seen in Figure 40.

This figure shows the shape graph, that is the result of using the Substructure Parti-
tioner on any of the three shape graphs from Figure 37 to 39. All the subtrees are cut
off and only the basic path remains.

root

_0
N
left
2
cur ancestorcur]

left

Figure 40: The reduced shape graph that remains after using the Substructure Parti-
tioner with the specification described above on the three shape graphs shown
in Figure 37 to 39.

The Visualizer has a number of features to help navigate the partitioned shape graphs:

e A label to see how many classes of shape graphs there are at the current program
point.

A label to see how many shape graphs are in the class that the currently viewed
shape graph belongs to and what number the current shape graph has in that class.

Buttons to navigate through the shape graphs within the same class, as well as
jump to the next or previous class.

e The ability to show the reduced shape graph for the current class. lL.e., what is
shown in Figure 40

To continue with our example, remember that, while all three shape graphs are in the
same case in the sense that the algorithm went to the left child, we might want to further
fine tune the cases. The shape graphs in Figure 37 and 38 will result in an insertion in
the next step, while the Figure in 39 are the most general case and can not go into the
insertion mode without at least one more iteration. Thus assume we want to further
subdivide the existing classes by distinguishing between leaf cases and general cases.

80

To do this we have two options: Either we further refine the Substructure Partitioner,
risking that we change the existing classes in unintended ways, or we leave the existing
classes because we are happy with them and use the Formula Partitioner to further
subdivide them. We can achieve our goal by simply adding the following formula:

E(u1)A(u2) cur(ul) & !'left(ul,u2) & 'right(ul,u2)

This formula will evaluate to true for the shape graphs in Figure 37 and 38, but will
evaluate to unknown for the shape graph in Figure 39 and thus will split the class just
as we intended.

The same result could also be achieved by adding the r [prev] predicate to the Sub-
structure Partitioner and changing the formula to “ancestor [cur] (v1) | rlcur] (v1)”.
For more information about partitioning see Johannes [13].

3.3 Concrete Versus Abstract

What is the best method to properly learn or teach? This is an important topic, that
goes back to the dawn of mankind. It has been asked thousands of times and the answers
have been equally as manifold. Many approaches have been tried and while some may
statistically have been more successful than others, the one true way has yet to be found.

One of the most fundamental problems is the diversity of the human mind itself: What
may work well for one must not necessarily be good for the next as well. One may try
to partition the learners into two groups: Those that prefer to start with the formal,
abstract view and who then try to adjust the abstraction, so that it fits the observed
facts and on the other hand the ones those that do it the other way around and put
more stock into intuition and try to deduce facts and invariants from examples and
observations.

Note that this is not a real partition, as the two groups are not mutually exclusive.
Usually there is a mixture of both for every person. Also both approaches share some
similarities, as they both have to iterate between assumptions and verification of those
assumptions.

What we saw so far from shape analysis, TVLA and the Visualizer was quite decidedly
on the side of abstraction. The very output we visualize is abstract and in its entirety
describes invariants. There is little in the form of concrete examples, or, more to the
point, concrete program executions where we actually can see the whole data structure
all the time in full detail (or at least as much detail as is needed to see what is going
on). We will remedy this by introducing the concept of concrete shape graphs and then
matching the concrete to the abstract shape graphs. This allows the user to seamlessly
blend both views: Look at a concrete program execution and at the same time see the
equivalent abstract shape graphs that subsume these concrete cases.

We shall further elaborate the point by looking at the following figures. Figure 41
shows a standard concrete representation of a binary tree. All nodes are concrete, no
part of the tree is obscured or abstracted. This also means that all information is (or
at least can be) definite, e.g., node vy is definitely bigger or smaller then vy depending

81

Figure 41: A concrete representation of a binary tree. All nodes are concrete, i.e., stand
for exactly one node and all predicates are definite. Thus it looks just like
any other binary tree example that you might drawn on a blackboard.

on their positions in the tree. In short Figure 41 depicts an example of what a teacher
might paint on the blackboard to show an example of a binary tree.

Figure 42(a) again shows a binary tree, but this one is a lot more abstract than in
Figure 41. When lecturing about insertion in binary trees then the teacher may paint
a similar tree on the blackboard. The point of the abstraction here is of course, that
the emphasis is on the current focus of the algorithm, i.e., the pointer ¢ and whether or
not to go to the left or right subtree. The choice is independent of the path from root
to c, so that is abstracted. It is also independent from the subtrees, so they too are
abstracted.

The Figures 41 and 42(a) show, that both tree representations have their use and
their place in teaching. It is dependent on what the goal is, whether to choose one or
the other. Figure 42(b) shows the same abstract tree as in Figure 42(a), only this time
in TVLA or shape graph notation. This goes to show that abstract shape graphs are
indeed canonical abstract representations of data structures and we can easily model any
such abstract representations with TVLA. What we could not do so far is model trees
like in Figure 41, the reason for this is the abstraction function, that would immediately
abstract Figure 41 into a shape graph like in Figure 42(b).

The advantage of the concrete representation is, that every detail of the data structure
is visible at all times and as such every change to the data structure is also clearly visible.
The abstract shape graph does not have this luxury, if we go down one tree level in Figure
42(b) then we will come to the exact same shape graph again. This means instead of
focusing on what is changing, abstraction is good to point out what is staying the same,
i.e., to recognize invariants. Everyone in a teaching profession will surely agree that
invariants are crucial in understanding algorithms. This is another reason why we want

82

&

=
-
S S

(a) A much more abstract (b) The TVLA ver-
representation of a binary sion of the tree in
tree. (a).

Figure 42: Equivalent abstract representations of binary trees. The one on the left side
is something that may be painted on a blackboard, while the right on is an
abstract shape graph from our Visualizer.

to have both views available.

This raises the question of how to provide concrete shape graphs, that actually look
like Figure 41. Before answering this, we first must define what a concrete shape graph
is. We already mentioned two properties that must hold:

e No summary nodes. Summary nodes are the very epitome of abstraction as they
can stand for an arbitrary positive number of nodes, but in a concrete shape graph
we want every node to only represent itself.

e All logical predicates are definite. Since we now only have concrete nodes, all
relations between those nodes should either hold or not hold. Remember that the
point of using 3-valued logic was solely to express uncertainty, but in a concrete
graph all information should be readily available and thus definite.

This might seem sufficient, but there is one important thing still missing: There must
not be any abstraction function. The obvious consequence of this is of course, that nodes
will not be abstracted into summary nodes. The not so obvious consequence is, that
there is no longer the usual invariant for any shape graph in place. With an abstraction
function, there can only ever be at most one node for any given canonical name, without
that function, we now can have arbitrarily many nodes that share the same canonical
name. This in turn could have disastrous effects on the boundedness of the analysis,
since we no longer have an upper bound on the size of concrete shape graphs. We will

83

see however, that this is in fact a non-issue, as the analysis will still finish, as long as
the algorithm terminates on the specified input graph.

Creating these concrete shape graphs is actually very easy and straightforward: All

we have to do is give the analysis a concrete shape graph as input and then disable the
blur operation of TVLA. Why is this logically sound?

e We use the exact same analysis specification to compute both the abstract and

concrete shape graphs. Every concrete shape graph must be subsumed by at least
one abstract shape graph. This follows directly from the fact that shape analysis
computes invariants for every program point, i.e., if the concrete shape graph is a
valid description of a possible heap state for that algorithm, then there must be
an abstract shape graph that describes this case.

The embedding theorem ensures us, that if an operation changes the logical prop-
erties of an abstract shape graph, then the resulting changes must also hold true
for all its concretizations. In other words we can certainly use the same update
formulas on a concrete shape graph and expect that the resulting concrete shape
graph will again be subsumed by another abstract shape graph.

The boundedness of the analysis is the biggest issue. We no longer have the
assurance that the analysis will eventually come to an end, because the number
of nodes and thus the maximum number of different shape graphs is no longer
bounded. If we look a bit closer though, we see that this is actually not a big
problem: The analysis can only diverge if there is a loop and that loop either
produces a new shape graph every time that still passes the loop exit condition
or if the shape graph at the end of the loop is identical to the shape graph at
the beginning again, i.e., it was effectively not changed by the loop. This means
that the analysis will diverge if and only if the actual algorithm would diverge too
on that input. That should of course never happen in a properly programmed
algorithm.

Since the goal was to provide a dualistic view of both concrete and abstract, we

still have to find a way to match concrete shape graphs to abstract ones. As already
mentioned, for every valid concrete shape graph (valid here means, that it is actually a
possible heap situation for that algorithm), there must exist at least one abstract shape
graph that subsumes it. This matching, however, is not necessarily well defined.

head cur,

next next \>‘\ next

rlcur] rlhead]
rhead) fneaa) rlhead] rleur]

Figure 43: A concrete representation of a singly linked list.

Consider the example shown in Figure 43. It is a simple concrete shape graph that

shows a singly linked list with exactly four concrete nodes. There is a head pointer to
the first element of the list and an iteration pointer called cur as usual.

84

head cur,

next rext next
_______ y SR ricur] fthead]
R . r[head] ricur]
|
nexts _

Figure 44: An abstract representation of a singly linked list, that subsumes the concrete
shape graph in Figure 43.

head cur

next

rlhead]
s
nexts _

Figure 45: Another abstract representation of a singly linked list, that also subsumes the
concrete shape graph in Figure 43. This time the end of the list is represented
by a summary node.

head

next next next
“ “ “
.............. rirur)
4 . rlhead]
1 1
N

nexts _ >

Figure 46: This abstract shape graphs not only subsumes the concrete shape graph in
Figure 43, it also subsumes both of the abstract shape graphs in Figures 44
and 45.

Now if we consider Figure 44, it should be obvious, that this abstract shape graph
subsumes the concrete one. The only difference is in the second node, which is a summary
node. This abstract shape graphs represents all those concrete cases where there are
arbitrary many, but at least one, nodes between the head and cur pointers.

Looking at Figure 45, we can see that this one too does subsume the concrete shape
graph. The abstract shape graph represents all those cases, where cur is indeed on
exactly the third element of the list and there are arbitrarily many, but at least one,
node left in the rest of the list.

So now we have the seemingly strange case, that we have two abstract shape graphs
that can represent the same concrete case. Indeed, Figure 43 depicts the only concrete
case that is represented by both abstract shape graphs. This is, however, not as strange
as it might seem. Remember that the precision of the shape analysis can vary, depending
on what we want to show and it is thus not unusual, that there are cases where multiple
abstract shape graphs represent the same concrete cases. In fact, if we look at Figure
46, then we see another abstract shape graph, that not only subsumes the concrete one
from Figure 43, but also both of the abstract ones from the Figures 44 and 45.

The reason why this can in fact happen in a shape analysis is precision. The fewer
summary nodes in a shape graph, the higher the definite information values usually.

85

Thus it might make sense to have to same case multiple times, because the subcases
may be more precise than the general case. It is however highly dependent on the
program, the specification and even the options given the TVLA engine whether or not
certain cases can even occur. Generally speaking though, we do not know what will be
there.

This leaves us with a slight decision problem: The above figures already show, that
there is no well defined abstract shape graph that subsumes a given concrete one, there
may be arbitrarily (but finitely) many. Furthermore Figures 44 and 45 show, that the
least general abstract shape graph that subsumes the concrete one is not well defined.
While in theory, there is always a well defined most abstract shape graph, there is no
guarantee, that this theoretical shape graph is actually part of the current shape analysis.
So consider for a moment, that the abstract shape graph in Figure 46 would not occur
in the analysis and we only had the two in Figures 44 and 45. In that case the most
general shape graph is also not well defined.

As there is no way to automatically generate a metric for which shape graph makes
more sense, we just pick one randomly in case of a draw. There still remains the question
however, whether we try to find the most general abstract shape graph or the least
general one. There are arguments for both sides: E.g., the least general one being
sharper than the most general one. In the end we decided to go for the most general
one. The reasoning is, that we want to provide a dual view of concrete and abstract, that
means we already have a perfectly definite concrete shape graph with full information
value, thus it makes sense to try and match it with the most general case, to show the
most abstract one in contrast.

So how do we actually compute whether or not a concrete shape graph can be matched
to a given abstract shape graph? To do this we basically emulate what the blur operation
in TVLA does: We start by matching nodes from the concrete shape graph to the
abstract one. While this is hard to do in general graphs it is actually much easier with
shape graphs. All we have to do is to compute the canonical name’ of each node and
check whether or not there exists a node with the same canonical name in the abstract
shape graph. After a successful node matching, we still have to make sure that the edges
also match, i.e., if there is a concrete edge between two nodes in the concrete graph,
then there must at least exist an indefinite edge between the corresponding nodes in
the abstract shape graph (or a self loop if both concrete node are matched to the same
abstract node). Lastly we also have to check the nullary predicates. Just to emphasize
once more: We do not look for a perfect matching, we only make sure that the concrete
shape graph is actually a concretization of the abstract one.

Figure 47 shows a screen shot of our Visualizer. In the big window we can see a concrete
shape graph, that is matched to the abstract shape graph in the smaller window. Both
graphs are color coded, to more easily see which nodes are matched to which. We
can at any time switch between concrete and matching abstract shape graph and can
either navigate through the concrete shape graphs to follow the program execution, or

"Reminder: The canonical name of a node is the vector of truth values of the abstraction predicates,
that are clearly labeled as such in the specification.

86

] TVLA Visualiser v0.96 build Fri Apr 11 14:28:08 CEST 2008 =
File View Options Tools Shape Graph Help

Jump to Location | [start Labek L i <- Previous Graph H Next Graph - > || Goto |1 Loc start, dass 0

User Layout | Reset || Jump to Laber |1 | Fttosceen |scates 77 [~]
- | Trac kward HZ uninterpreted ‘v H Trace forward ‘ << Tracegraph |Class1/1
[¥] Color Overlay [Hybrid Overlay ‘ Show conaete Graph H Show matching abstract Graph H <—Prev H Next- “ Goto, |!1 Concrete Location: nd

»
3

Start cur = (Troat ni
nl cur l= null n2 1
nlcur == null N7
n2 cur->data == el->data n7|
n2 cur-»>data == el->data n3|
n3 prev = (Mcur nd

n4 el->data > = cur->data né|
ns cur = (Mcur-=1gft nl
né cur = (Tcur->rghtnl
n7 cur == null n8

n7 cur l= null n7_a el
n7_a cur =(T) NULL n7_6
n7_b prev =(T) NULL found
ng cur == root ng

ng cur b= root n10

ng root = (T)el noiFound

nl0 el->data < prev->datan
10 el->data > = prev->data
4] 1l |

[e]

»

Serting scale 1o 77.0%

Mouse released on 245,404 r|
That translates to grid positio
Scaling Oparation initialisecl
x11y320
5cale;0.3594202898550724
Current Size:java. awt. Dimens
Current Origin: java. awt. Poin[
You pressed on node: _13
Matched Nodes:_0

Mouse released on 994,588 r]
That translates to grid positio
You Relzased on node: _13
Mouse released on 7,10 ri-4
That translates 1o grid positio
You pressad on noda: 12
Matched Nodes: 0

Mouse released on 1122,572
That translates to grid positio
You Released on node: _12
Mouse released on 9,12 ri(-4
That translates 1o grid positio
You pressed on node: _3
Matched Nodes:_4

Mouse released on 1270,2841 |
That translates to grid positio
You Released on node: _3
Mouse released on 3,3 r(-49.
That translates to grid positio

[oT

4] Il | v

Figure 47: This is a screen shot from our Visualizer, that shows a concrete shape graph
in the main window, being matched to an abstract shape graph in the smaller
window. Matching nodes are color coded for easier recognition.

go through the abstract shape graphs, to see if they have matching concrete cases.

The highlight of this feature is the built in interactivity provided by the shape graph
creation tool. We already described the functionality of this tool in Section 2.4 and as
we hinted there, it is very useful for providing a bit of interactive content. Other tree
insertion visualizations often allow the user to choose the next element to be inserted
and then watch how the algorithm works on that input. We allow the same! Using
the “modify current shape graph” option allows the user to make modifications to the
currently viewed concrete shape graph and then click on the “start analysis” button to
start the analysis with this shape graph as input. The output is automatically imported
and matched to the abstract shape graphs. This allows to start with an empty tree for
example, then insert a single element. We can then go to the last shape graph (where
the new tree is described) and add a new element to be inserted and restart the analysis.
This can be repeated and allows to build your own tree in a similar fashion to other
visualizations.

In closing I can summarize, that the possibility to view both concrete and abstract

87

shape graphs at the same time is a great help for understanding the program being
analyzed, but also is a good way to get some intuition of how abstraction works. In
addition it also allows some interactivity by modifying the concrete shape graph and
then see what happens if the modified shape graph is used as input for the next program
execution.

3.4 Pseudo Code

When thinking about the subject of demonstrating or explaining algorithms, it is hard
to imagine doing it without the use of some form of pseudo code. There are a lot of
different program languages with different syntax, yet quite many are close enough in
notation, that certain constructs are well known and easily recognized. Pseudo code also
helps with those hopelessly complicated statements, that can be much easier put into
a single descriptive sentence, rather then several cryptic lines of code. In short, pseudo
code is an invaluable help for teachers and students alike.

So, what has pseudo code got to do with shape analysis? The answer is simple: The
analyzed program has to be specified somehow. The way this is done is by TVLA
actions, as described in Section 1.3. Out of necessity, TVLA action names are often
a bit technical in nature and thus not like standard pseudo code. Thus it is not very
intuitive or easy to read and only really good if we want to debug an analysis. The
reason for this becomes more apparent if we remind ourselves, that basically for every
slight difference in a data structure we need a new action. So as a simple example, if
we consider lists and write code like cur=cur->next then it is obvious for anyone and
even for the compiler, that we have a pointer here, that gets assigned a new value and
that this value is stored in the next component of the object or structure it is pointing
to now. A human will conclude at once, that obviously, here a pointer is set to the next
element in the list.

The real interesting thing about that example is, that it does not even matter if the
list is singly linked, double linked, a skip list or whatever else. A human mind will
understand it in the right way anyway and even the compiler can usually do it without
further help (unless there is a type conflict). TVLA, however, can not. Materializing
a node out of a singly linked list or a doubly linked list is not the same thing logically.
There may be different predicates involved and certainly the focus formula will change.
If there are more predicates in one of the data structures than the other then the update
formulas likely will also change.

The result is, that we need a TVLA action for every data structure and every program
statement, even if they seemingly do the exact same thing. The avid reader may now
remember that TVLA actions themselves already had a tag that allowed the creator to
supply a pseudo code string. So why not just use those strings? This is best explained
by showing an example. The following control flow specification was taken directly from
the example folder of TVLA, it is an insert algorithm for a standard binary tree.

// cur = root;
start Copy_Var_T(cur, root) nl

88

// while (cur != NULL && cur->data != el->data) {
nl Is_Not_Null Var(cur) n2
nl Is_Null_Var(cur) n7
// For now not interpreting non-equality (while not using DatalsNequal).
n2 Equal_Data_T(cur, el) n7
n2 Not_Equal_Data_T(cur, el) n3
// prev = cur;
n3 Copy_Var_T(prev, cur) n4

// if (el->data < cur->data)
n4 Less_Data_T(el, cur) nb
nd Greater_Equal_Data_T(el, cur) n6

// cur = cur->left;
n5 Get_Sel_T(cur, cur, left) nil

// else cur = cur->right;
n6 Get_Sel_T(cur, cur, right) nl
/] 3}
// Don’t insert duplicates
// if (cur == NULL) {
n7 Is_Null Var(cur) n8
n7 Is_Not_Null_Var(cur) n7_a
// Null out cur and prev, as an optimizer could.
n7_a Set_Null_T(cur) n7_b
n7_b Set_Null_T(prev) found

// if (cur == root)

n8 Is_Eq_Var(cur, root) n9

n8 Is_Not_Eq_Var(cur, root) nl0
// root = el;

n9 Copy_Var_T(root, el) notFound

// if (el->data < prev->data)
nl0 Less_Data_T(el, prev) nli
nl0 Greater_Equal_Data_T(el, prev) nl3

// prev->left = el;
nll Set_Sel_Null_T(prev, left) ni2
nl2 Set_Sel_T(prev, left, el) nl2_a
// Null out el and prev, as an optimizer could.
nl2_a Set_Null_T(el) nl2_b
n12_b Set_Null_T(prev) notFound

89

// else prev->right = el;

// %}

nl3 Set_Sel_Null_T(prev, right) nl4

nl4 Set_Sel_T(prev, right, el) nl4_a

// Null out el and prev, as an optimizer could.
nld4_a Set_Null_T(el) nl14_b

nl4_b Set_Null_T(prev) notFound

found uninterpreted() test
notFound uninterpreted() test

// Now test the structures

test
test

Is_Sorted_Data_T(root) exit
Is_Not_Sorted_Data_T(root) error

The reasons why the build in tag of the TVLA actions is inadequate are threefold:

1.

90

Some standard statements cannot be formulated if we just translate a single action
to a single pseudo code line. A simple example of this is the program point n1, that
consists of two actions actually. Both together form the header of a while-loop,
but individually they would be translated into two lines of pseudo code:
cur->data != 0

cur->data ==

It is not at all obvious, that these form the header of a while-loop, or maybe a
conditional for an if-then-else statement. So there has to be either an automatic
detection of loops and headers or some form of user editing that post-processes the
pseudo code. It should be noted here, that automatic loop detection is in fact
possible, but difficult, since the TVLA control flow specification is basically an
extended goto-program. This does not only mean that finding the right headers
in densely nestled loops can be difficult, but that there may actually exist loops,
that are not well formed! Well formed here means, that loops are either completely
disjunct or completely nestled in the others. With goto-statements it is however
possible to build loops, that share parts of their body with other loops, thus making
it impossible to directly translate them into while programs without an extensive
detangling of the loops

. Some actions (mostly those that concern data values) may not actually do some-

thing. An example of this can be seen in the program point n2. The data values are
not explicitly modeled by TVLA, all we have is a relation that tells us whether two
data values are less or equal to each other. Thus program point n2 does not actu-
ally do anything to the data structure and serves just as an abstract if-then-else
statement, that models the case that the to-be-inserted element is already in the
tree. An even more extreme case of this can be seen near the end at the found
and notFound program points, where two different branches of program execution

are spliced together again by an empty action.

3. The last point is a bit similar to number 1. Sometimes logic needs some extra steps
to properly formulate actions, that would normally be expressed by just a single
line of code. An example of this are the program points n11 to n12_b and n13 to
n14 b. Both of those blocks are actually defined by a single line of pseudo code,
that is written as a comment above the respective block. Obviously the creator of
the analysis also knew, that normally, you would only write the assignment and
not further think about what happens on compiler side. When specifying TVLA
analyses however, sometimes it might be necessary to take things one step at a
time to provide maximum precision.

That means when all is said and done the strings to describe the actions in TVLA are
nice to give the reader a short description of what the single action will simulate, but
they are not enough to provide sensible pseudo code. Thus we have implemented our
own pseudo code, that can be written as comments in the original tvp file, as shown
below:

//START_PSEUDO

//cur = root #start#

//while (cur != NULL && cur->data !'= el->data) { #nl,n2#
//c: main loop of the algorithm

// prev = cur; #n3#

//c: Move the prev pointer to the cur pointers position.
// if (el->data < cur->data) { #n4#

// cur = cur->left; #nb#

// %

// else { #n4#

// cur = cur->right; #n6#

// %

//}

//if (cur == NULL) { #n7#

// if (cur == root) { #n8#

// root = el; #n9#

//}

// else { #n8#

// if (el->data < prev->data) { #nl10#

// prev->left = el; #n11,n12,n12_a,nl12_b,notFound#

// }

// else { #n10#

// prev->right = el; #n13,n14,n14_a,n14_b,notFound#
// }

// %

//}

//else {} #n7_a,n7_b,found#

91

//c: The element was already present in the tree and we don’t want to
enter duplicate data values.

//*EXIT* #test,exit#

//c: This is not a real program location. This is just a pseudo
location to see the final program state if everything went well

//*ERROR* #error#

//c: This is a pseudo location to see if there was unexpected trouble.
This location should hopefully be empty.

//END_PSEUDO

The features of our pseudo code are:

e The ability to assign arbitrarily many program points to a line of pseudo code
(the labels between the #). This addresses the issues from points 1 and 3. In
the Visualizer, clicking on one of these pseudo code lines will always show shape
graphs from the first program location in the respective list and if going forward
will skip over the other program locations where nothing (interesting) is happening

anyway.

e The ability to insert comments, that will be shown as tool tips in the Visualizer if
the user mouses over the pseudo code line. A comment always starts with the c:

keyword and will be matched to the statement directly above it.

e While-loops and if-then-else statements are considered to be blocks framed by
parentheses, as is usual in most programming languages. In the Visualizer, these
blocks can be folded, to blend code out that is no longer, or not yet, interesting

and thus increases readability.

e Our Visualizer allows complete freedom over the style of the users pseudo code.
Instead of having to make do with what an automatic generator would produce,
now the user can fit the listing exactly to their liking, thus giving them the ability

to fit the presentation to their teaching style and not vice versa.

To give an impression of the difference between the TVLA code and our pseudo code we
present the Figures 48(a) and 48(b). The pictures are screen shots from our Visualizer
and should not require any more explanations of why pseudo code is helpful to have for

the visualization of algorithms.

92

Algarithm

nlls_Mot_Mull_Var{cur) n2

nl ls_Mull_Var{cur) n7

n2 Equal_Data_Ticur, el) n7

n2 Mot_Equal_Data_Ticur, el) n3

n3 Copy_Var_T(prev, cur) n4

nd Less_Data_T(el, cur) n5

nd Greater_Equal_Data_T(el, curi ng
nS Get_Sel_Ticur, cur, lefty nl

n& Get_Sel_Ticur, cur, right) nl

N7 Is_Mull_Var{cur) ng

N7 1s_Mot_Mull_Var{cur) n7_a

N7 _aSet_MNull_T{cur) n7_h

N7 _b Set_Mull_Ti{previ found

ng Is_Eq_Varicur, root) n9

ng Is_Mot_Eq_Varicur, root) nlo

n9 Copy_Var_Tiroot, el) notFound
nld Less_Data_Tiel, previ nll

nld Greater_Equal_Data_T(el, prev) nl3
nll Set_Sel_Mull_Ti{prewv, lefty nl2
nl2 Set_Sel_Tiprev, left, ely n1l2_a
nlz_aSet_Mull_T{ely nl2_h

nlz_b Set_Mull_Ti{prevy notFound
nl3 Set_Sel_Mull_T{prewv, right) n14
nl4 Set_Sel_Tiprev, right, el nl4_a
nld_a et _Mull_Tiel) nld_h

nld_b Set_Mull_Tiprevh notFound
found uninterpreted() test

notFound uninterpreted() test

test Is_Sorted_Data_Tiroot) exit

test Is_Mot_Sorted_Data_T(root) error

(a) The normal listing, using just the tvla
action names.

gram text.

wlgarithm

¢ while (curl= NULL && cur->data | = el->data) { #nl,n2#
prev = cur; #n3#
¢ if (el->data < cur-=data) { #n4#
CUr = cur-x=left, #n5#
I
9 else{ #nd#
cur = cur->right; #n6#
t

1
§ If{cur == NULL) { #n7#
g I (cur == roon) { #n8#
root = el; #n9#

I
& else | #n8#

¢ if (el->daia < prev->data) { #n10#

prev->left = el #n11,n12,n12 anl2 b, notFouncs#

}
§ else { #nl0#
prev-=right = el #n13,n14 n14_a nl4_b notFound#
}
I

1
9 else {} #n7_a,n7_b,found#
TEXIT #tast, exitd

*ERROR™ #error#

(b) Our pseudo code.

Figure 48: A direct comparison of how pseudo code improves the readability of the pro-

93

4 Pairing Heap Analysis

This Section will give an in-depth view of the TVLA specification for pairing heaps, or, to
be more precise, the specification for the insert, delete-min and decrease-key operations
on pairing heaps. The analysis was done with the express purpose of testing the theories
presented in Section 3.1, while also creating something not done before with TVLA. The
reason for choosing pairing heaps were threefold:

e The two data structures used in the analysis (lists and trees) were already quite
familiar due to the many examples for both, that are included with the TVLA
installation. Thus the hope was that there would be less time needed to combine
the different specifications into one expanded whole.

e While there are quite a few examples of simple list and tree algorithms, so far there
was no heap like data structure specified in TVLA. Maybe even more importantly,
to the best of our knowledge, there exists no other analysis specification that
included two different data structures at once! Usually it is either a list example
or a tree example. In our case we have the usual tree structure for the proper
heap, but we also use a list structure to manage the child lists.

e Pairing heaps are easy to implement. This also means there is not much code
needed and not many special cases that would bloat the number of shape graphs.

I already described pairing heaps and the pseudo code for the three operations insert,
delete-min and decrease-key in Section 3.1.3, as well as the reasons why I chose to
represent the data structure in the way I did. In this section I will only look at how
the concepts were represented in TVLA and not why they were defined like that in the
first place. So without any further ado, we assume the following invariants for our data
structure:

struct list_node {
list_node *next;
list_node *prev;
tree_node *child;

};

struct tree_node {
list_node *clist;
int data_value;

};

e Our heap data structures consist solely of objects of type 1ist_node and tree_node.
The actual type of the data value in the tree does not matter as long as there exists
an order relation on the data type. The type int has been chosen exemplary for
convenience and has no effects on the working of the analysis at all.

95

Every tree_node object has always a handle in the form of a 1ist_node. In other
words, at any time there has to exists exactly one list node object for every
tree node object, that has a reference to said tree node as its child pointer.
This is again mostly for convenience, since it allows us to skip a few conditionals
in the actual TVLA code.

Stack pointers into the heap, that are meant as an object reference to a tree element
will always point to the handle (i.e., the 1ist_node), instead of the corresponding
tree_node. This means that for any heap operations, that require a reference to
a heap object, a handle reference will be supplied.

All our children lists will always contain a sentinel at the end. The sentinel never
points to any tree node.

If we start an operation with a given heap, then we assume, that it is a valid
pairing heap. We also assume, that object and data types are matching. The
analysis will not type check at all and just assume, that all data comparisons will
work normally.

I will explain the specification with the help of the decrease-key operation. It may

not be the most interesting from the viewpoint of the algorithm, but it is the most
demanding from the viewpoint of the specification, because here, we actually have to go
forward and backward in a child list in the middle of a heap.

4.1 Predicates

Since we are using the already known lists and trees, some of the predicates will be
familiar, both in name and in function. But due to the novel nature of this specification,
many of them will have changed definitions and of course some are completely new. I
will start with the first part of the tvp-file, where all the predicates are defined:

/**/

/Rxxkkkkkkkkkkkk Core Predicates sxskkkkskkokkkskk/
[F KKK KK KK KoK oK oK o oK ok oK ok oK ok oK ok oK ok K ok oK ok K ok Kok K ok Kok ok ok ok ok /
%p dle(vl, v2) transitive {}

hp

//
p

//
hp

linked(v1,v2)

the predicate clist points to child list of a heap node
clist(vl,v2) function invfunction

the pointer from a list element to a tree node
child(vl, v2) function invfunction

//does the subtree with vl as root satisfy the heap property?
%p isHeap(v1)

96

%p tree(vl) abs
%p list(vl) abs

// For every program variable z there is a unary predicate that
// holds for list elements pointed by z.
// The unique property is used to convey the fact that the predicate
// can hold for at most one individual.
// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {
%p z(vl) unique abs pointer

¥

// The predicate n represents the next field of the list data type.
%p n(vl, v2) function acyclic

// The predicate p represents the prev field (previous pointer) of
// the list data type
%p p(vl, v2) function acyclic

[F KA KA KKK KK KK KK K KooK ok oK ok oK ok oK ok oK ok K ok ok ok oK ok K ok K ok K ok Kok Kok K ok Kok ok /
/***x Instrumentation (i.e., derived) predicates ***x/
[F KA KKK KKK KK KK oK oK o oK o oK ok oK ok oK ok oK ok oK ok K ok oK ok oK ok K ok oK ok K ok K ok K ok K ok Kok ok
%i reachable(vl, v2) = linked*(vl,v2) transitive reflexive antisymmetric

// The is[n] predicate holds for list elements pointed by two different
// list elements.

%i is[nl(v) = E(v_1, v_2) (v_1 '= v_2 & n(v_1, v) & n(v_2, v))

%i islpl (v) = E(v_1, v_2) (v_1 '= v_2 & p(v_1, v) & p(v_2, v))

// The t[n] predicate records transitive reflexive reachability between
// list elements along the n field.
// removed reflexive so we can use more than one type of data structure
%i tln] (v1, v2) = (nx(vl, v2) & 'tree(vl))

| (E(v3) clist(vl,v3) & n*(v3,v2)) transitive antisymmetric
%i tlpl (v1, v2) = px(vl, v2) & !tree(vl) transitive antisymmetric

foreach (x in PVar) {
%1 brlx](v) = E(vl) x(vl) & tlpl(vl,v) abs
%i rix](v) = E(vl) (x(vl1) & reachable(vl, v)) abs
% rln, x](v) = (E(W1) (x(v1) & (clist(vi,v) | t[nl(vi,v))))
| (E(vi,v2) x(vl1) & clist(vl,v2) & t[n](v2,v)) abs

97

The first predicate dle is already a familiar one. As a reminder: It is short for data
less or equal and used to model sortation of data values. This is unchanged and since it
cannot be derived from anything else, it is also a core predicate.

Predicate 1inked is new and with good reason: If we look at our data structure then
we see a plethora of different pointer variables that can “link” two objects together. We
have the next, clist and child pointers that all will make two object linked together.
The first question is, why not define the predicate as instrumentation predicate, since
it obviously is true if any of the three aforementioned predicate holds between two
objects? The answer to that is because of precision. The linked predicate is very
important, because we will define reachability with it and we will need it to be as sharp
as possible, thus we have to focus on it and sharpen it in actions, as we shall see later.
The second question is why did I not mention the prev pointer? After all it also links
two objects together. The reason for this is a bit more intricate, but basically I want
reachability to be one-way only. The backwards reachability is restricted to lists only,
since there is no need in our specification to ever go up a heap tree. Thus the backwards
reachability has separate predicates, making the constraints a lot easier to formulate.

The clist and child predicates are pretty straightforward as they only model the
respective pointers in the data structures. As usual for pointers, they are defined as
function and invfunction, indicating, that every pointer can only have one target and
every object should only be pointed to be one pointer.

The predicate isHeap is the equivalent of inOrder in binary trees. It means that
the heap invariant is obeyed in the respective subtree. This is important in order to
properly set and sharpen the dle predicate when materializing nodes. If a new node is
materialized out of some summary node, it may well be that the dle value is initially
unknown, but if all isHeap predicates are set in the predecessors, then we can sharpen
the dle to true.

The predicates tree and 1ist are new. Their only reason for existence is the fact that
we have two different data structures in the same analysis and that we need to keep track
of which nodes belong to which data structure. This means, either tree or 1ist must
be true for any given node at any time and they must never both hold true for the same
node. The fact that we defined them as abstraction predicates further ensures, that this
invariant holds even for summary nodes. This allows us to make different constraint
rules, depending on whether a node is a tree node or a list node.

The next three predicates are standard predicates, that do not need explaining. It gets
interesting again when we look at the instrumentation predicates. We define a meta-
reachability, pragmatically named reachable, that expresses reachability over three dif-
ferent pointers and over two different data structures. This is simply expressed as the
reflexive, transitive hull of the 1linked predicate. Note, that it is also defined as anti-
symmetric, which makes sharpening much easier when we materialize nodes and this is
a major reason why we strictly separate between forward reachability and the backward
reachability of lists.

The next two predicates, is[n] and is[p], seem to be rather uninteresting. They
express whether or not a node is pointed to by two list elements. This can (or should)
never happen in our algorithms, so it is just a nice fail safe feature, right? Not quite.

98

As it turns out, these are rather needed predicates for sharpening the children lists.
Consider the situation shown in Figure 49. In order to keep the example simple, we
look at a singly linked list, that is being iterated over by the cur pointer. Every time
the cur pointer goes to the next element in the list, a new node is materialized. The
figure shows, what would happen without the is[n] predicate, namely TVLA is unable
to determine, that the indefinite self loop for the n pointer at the cur node can actually
be sharpened to a definite false. The exact same thing happens if we go backwards
using the prev pointer in a doubly linked list.

root cur

Figure 49: An example of a single linked list, where the cur pointer just was moved
forward from the root, thus materializing a new node.

The t[n] and t[p] predicates are the standard reachability predicates for doubly
linked lists. However, we have modified the definitions a little bit. The first modification
is the !'tree condition, that makes sure, that list reachability is indeed only possible
between list nodes of the same list. Looking at the definition of t [n], we see that there is
an exception to this however! The exception is, that there is indeed also list reachability
from a tree node to its corresponding child list and vice versa. This is necessary, to
distinguish between general list nodes (that may be summarized in a summary node)
and the specific list nodes that constitute the child list of a specific tree node. This is
illustrated in Figure 50. Without the r [n,arg] predicate drawn in red, the list summary
nodes would be abstracted together into a single summary node. The r[n,arg] predicate
is directly defined through the t[n] predicate. In the backwards reachability case, it is
needed to be able to set the clist pointer to the rest of the list if we have to remove
the first element in the child list. Note that another reason why I wrote the condition
Itree in these definitions is, that I did not want the tree nodes to be able to list-reach
themselves. Thus the reachabilities are not defined as reflexive as usual, because that
would mean every single node in the data structure would have a self loop of those two
predicates. Instead the reflexivity is defined manually later on through constraints, to
only affect list nodes.

The last three predicate definitions are pretty straightforward. For each pointer vari-
able we define three reachabilities:

e Predicate br[x] defines reachability over the prev pointer. This only works on the
list level, with the addition of the one tree node that the children list belongs to.

e Predicate r[n,x] defines reachability over the next and clist pointers. This one
is important for what is shown in Figure 50.

99

root

5
br{root]
r[n,roat]

r[roat]

21
rfarg]
r[n,arg]
r[roat]

2
rfarg]
r[n,arg]
r[roat]

= clist
isHeap _4
rlarg] A rlarg]

r[roat] . r[roat]
ree child p

Figure 50: A standard example for a heap data structure. Here we look at the children
list of the root node that is being iterated over by the arg pointer. As can
be seen, the list nodes (drawn as rectangles) are all reachable by the same
pointers (root and arg). The only way to keep the two summary list nodes
separate is the list reachability drawn in red.

e Predicate r[x] defines the meta-(forward)reachability over all kinds of pointers
and object types with the notable exception of the prev pointer.

Aside from the above mentioned special cases, reachabilities are needed as a means to
express connections. That means, we can only deduce that a list is connected and thus,
that the pointer variables are indeed definite, because we know that there must be a
way to reach later nodes. The fact that we have multiple types of data structures in
this specification means, that we also must have multiple kinds of reachabilities. We
have the meta-reachability, that tells us that the whole heap is connected, the forward
list reachability, that lets us iterate over lists and keep them apart from each other and
lastly the backward list reachability that allows us to iterate backward over the list, so
we can delete a list element and reconnect the list afterwards.

100

4.2 Constraints

In a specification this complex, there are a lot of constraints needed, for lists, for trees
and for the combination of both. I will list and briefly explain those that changed and
that are most interesting, as a comprehensive explanation would exceed the scope of this
section. I will start with the constraints concerning the reachability predicates:

foreach (x in PVar) {
%r 'or[x](v) & x(v1) ==> 1t[p](vi,v)
%r brx](vl) & !brx] (v2) ==> Ip(vl,v2)

%r tree(vl) & list(v2) & x(v2) & A(v4)'n(v2,v4) & reachable(v2,v3)
& !reachable(vl,v3) & v2!=v3 ==> Ichild(v2,vl)

%r x(v1) & list(v2) & 'r[x](v2) & reachable(vl,v3) & vi!=v3
==> Ichild(v2,v3)

%r x(v1) & list(v2) & 'r[x](v2) & reachable(vl,v3) & vi!=v3
==> In(v2,v3)

%r x(v1) & tree(v2) & 'r[x](v2) & reachable(vl,v3) & vi!=v3
==> Iclist(v2,v3)

%r x(v1) & list(v2) & 'r([x](v2) & reachable(vl,v3) & vi!=v3
==> Ip(v3,v2)

%r rin,x] (v) & x(vl) ==> reachable(vl,v)

%r rin,x](v) & x(vl) & list(vl) ==> t[n](vi,v)
%r rix](v) & x(vl) ==> reachable(vl,v)

%r rix] (v1) & 'r[x](v2) ==> l!reachable(vl,v2)

%r rix] (v1) & 'rix](v2) & r(x](v3) & 'reachable(v2,v3)
==> lreachable(v2,v1l)

%r x(v1) & linked(vl,v2) & reachable(v2,v3) & vi!=v2 & vi!=v3 & v2!=v3
==> Ichild(v1,v3)

%r rix]l(vl) & r(x](v2) & rix](v3) & vi!=v2 & v2!=v3 & v1!=v3
& reachable(vl,v3) & !reachable(vl,v2) & !'reachable(v2,v1)
==> lIreachable(v2,v3)

}

The first two constraints are very basic, but help sharpen the reachability when mate-
rializing nodes. The third one is more interesting, what it says is, that if we have some
tree node and a list node with a pointer on it and that list node is a sentinel (i.e., has
no successors) and that list node can reach some other node, that is not itself, but that
cannot be reached by the tree node, then the tree node cannot be the child of the list
node. This rather complicated sounding formula is only needed to make sure that there
are no indefinite child pointers going out of sentinels and to keep subtrees separate if we
cut a list element out of the list.

101

The next four constraints just help to sharpen to various connection pointers that
exist in our data structure. They basically all just say, that if pointer x cannot reach a
list node w9, but can reach some other node v3 then vs must not be reachable from vs
by any means. The only exception is the last of the rules, that concerns the p predicate.
Note that here v and vs are switched, which means, that it must never happen, that
you can only go back to an element, but there is no way to go forward again.

The next four are simple again and just sharpen the reachable predicate. Despite
the fact that these look very simple, TVLA is not able to deduce them by itself.

The next three are a little more intricate. The first says, that if I have a node v that
is not reachable by a pointer x and two nodes that are reachable by that pointer, then
vo either can reach both of them or none. This follows from the general tree properties:
vg either sits higher up in the tree in the same subtree and can then reach both, or it is
in a different subtree and cannot reach either.

The second one says if x points to node v; and has a direct link to another node wvo
then none of the reachable nodes from vo can have a child pointer from vy (except vo
itself of course). This is needed to eliminate indefinite child pointers when iterating over
lists, i.e., materializing list nodes.

The third and last one enforced the tree invariant, that nodes in different subtrees
may not reach each other. In this case v; and v are in the same subtree, but vs is in
a different sub tree, thus vy cannot reach vs. This too was necessary to sharpen some
unwanted indefinite reachable values to false if we materialize different subtrees.

//add the reflexivity manually to dle for only tree nodes
%r vi==v2 & tree(vl) ==> dle(vl,v2)

//only tree nodes must be comparable
%r 'dle(vl, v2) & tree(vl) & tree(v2) ==> dle(v2, v1)

//add reflexivity to list nodes
%r vi==v2 & list(vl) ==> t[n] (v1,v2)

As I already mentioned earlier, reflexivity can pose a problem when there are multi-
ple data structures present. This is due to the fact, that if a predicate is defined as
reflexive, then TVLA will automatically create a constraint, that makes sure, that
every node in the shape graph must have that predicate. But if we look at our heap,
then it does not make sense to have a data-less-than predicate for list elements, simply
because these do not contain any data values besides the pointers. Thus we exempt
the list nodes from the dle rules, by stating that only tree nodes must be comparable
with the dle relation. The first constraint forces reflexivity on tree nodes and the second
makes sure all tree nodes are comparable, i.e., there must hold at least one dle relation
between any two tree nodes.

The third constraint adds reflexivity to the t [n] predicate, but since this predicate is
explicitly used as list reachability it again makes no sense, that it applies to tree nodes
as well. So this is just the respective case of the first constraint, only for list nodes this
time.

102

//heapness
%r isHeap(vl) & reachable(vl,v2) & tree(v2) ==> isHeap(v2)
%r isHeap(vl) & reachable(vl,v2) & tree(v2) ==> dle(vl,v2)

These two constraints are sanity checks that make sure that the heap properties are
obeyed. The first constraint says, that if a tree with root v; satisfies the heap property,
then all its subtrees also have to satisfy the heap property. The second constraint gives
meaning to the heap property: If a tree with root v; is a heap, then it must have a
smaller data value than all its descendants, thus we have defined a min-heap.

There are a lot more constraints to consider, over a full page actually, but these
constraints mostly follow the form of:

%r clist(vl,v2) ==> linked(v1l,v2)
%r n(vl,v2) ==> linked(v1l,v2)
%r child(v1l,v2) ==> linked(v1l,v2)

This is the definition of the linked predicate for example. While these constraints are
necessary, they are not very interesting in terms of understanding the specification.
There are a lot of those short constraints, most of which are only there to sharpen
predicates where possible.

4.3 Actions

Arguably the most interesting part of any specification is specifying the actions. This is
due to the fact, that in actions we have to describe how a program statement changes
the heap. This in turn can prove very hard, because when we focus on something, there
may be literally dozens of shape graphs created and only a couple that actually make
sense. Of course if we did a good job on specifying the constraints, then a lot of these
“wrong” shape graphs will be discarded right away, due to violation of some of those
constraints. However, due to the indefinite nature of summary nodes, it is often not quite
so easy to discard them right away and it might become necessary to change the focus
formula slightly. Even worse, sometimes there might be shape graphs, that satisfy all
constraints, but still are not possible in that special operation. In that case precondition
formulas must be used to sieve out the unwanted shape graphs.

In our analysis we managed to describe the heaps in a very compact way, thus reducing
the number of shape graphs to single digits for every program point. But this efficiency
comes at the price of higher difficulty when specifying the actions. We shall demonstrate
this on some exemplary actions.

%action Get_Next_L(lhs, rhs) {
%t lhs + " =" + rhs + "->" + n
%f { E(v_1, v_2) rhs(v_1) & n(v_1, v_2) & p(v_2,v_1) & reachable(v_2,v)}
%p (A(vl) (!lisHeap(vl) | E(v2) clist(vli,v2)))
& (E(v1i,v2) rhs(vl) & n(vi,v2)
& (E(v3)child(v2,v3) | (A(v4)!t[n](v2,v4) | v2==v4)))
& (E(v1l)rhs(vl) & E(v2)child(vi,v2))

103

& '(E(v1,v2,v4) rhs(vl) & n(vi,v2) & A(v3)!'n(v2,v3)
& isHeap(v4) & reachable(v2,v4))
Jmessage (!E(v) rhs(v)) ->
"Illegal dereference to\n" + n + " component of " + rhs

{

lhs(v) = E(v_1) rhs(v_1) & n(v_1, v)

is[pl (v) = is[p] (v)
}

}

This is the action that models the program statement 1hs = rhs->next, i.e., we set a
pointer to the next element of the list element being pointed at by another pointer (or
itself). The focus formula is very straightforward and is the same as in other standard
examples. The only thing of note is, that the free variable v is a hint for TVLA that
this variable can only be instantiated by a concrete node, or the statement must be false
for all instantiations. The interesting and complex part of this action is the precondi-

root

br[-mnl]
rln, root]
rlroot]

1p]

childt arg it

LN N

clist linl 1 linked nf 7 linked n 2
br[arg] ——————————————— r:[it]
iy rin,it]

or(it] p
Hn,it
troot] ptlp] r[[n;m]] P rront]

3
br{arg]
brfit]
isHeap
r{roat]
tree

Ll
“ Tlinked n pt[p]

DN
o

-
’ child
P linked

clist linked

1:’
_______________ 4
2 rlit]

0 e | riroot]

child
linked p t[p]

_6
isHeap
rlroot]
tree

e
linked n p1[p]

Figure 51: One of the problem cases that arise if the first formula was removed. The
problem is that the child of the arg pointer has no connection to any list
element. This is, however, not possible due to our invariant, that every list
at the very least contains a sentinel.

tion, that can be seen as a conjunction of four major formulas. Each of these filters
out very specific cases of “bad” shape graphs. They are bad in the sense, that while

104

our integrity constraints cannot invalidate® them, they nevertheless describe cases that
cannot happen.

Instead of tediously describing the meaning of each major formula, I will show which
shape graphs are blocked by each of them, i.e., which shape graphs would appear addi-
tionally, if they respective formula was removed.

The first problem case is shown in Figure 51. As a reminder: The rectangle nodes
are list nodes, the round nodes are tree nodes. What we can see here is the situation
where we are iterating over the children list of the root node and the algorithm just
set the it pointer to the next child. The tree nodes that are reachable from arg and
it are separated as should be, but there is one significant mistake: The summary tree
node below arg has no connection to any list node. Why is this a problem? Even if the
summary node stood only for one single tree node, i.e., a leaf, then it still must have at
least one connected list node, namely the sentinel. In our data structure model there
can be no empty lists. Why not solve this particular problem by way of constraints?
Because then we could never create or destroy (free) such nodes and this is something
that is actually needed when we want to do a delete-min operation. Figure 52 shows
the correct shape graph for this case.

root

S5
br{roo]
r{n,roat]

rlroot]

tln]

child arg it

LN AN

clist lin L linked n 7 linked n 5
brfarg] br{‘[‘\ﬁl ______ 3 i
hrlit] rln,it]

riroon)] Rl [;[[r"n‘ ‘n'll] riraot]

3
br{arg]
brfit]
isHeap
r[roat]
ree

-
n P
T] o, ilked 1 p 1lp)

. child
" " [oie linked

4
rlroot]

linked ‘E.' ‘E.’
linked n @ t(p] linked n p 1]

_B
isHeap
r[it]
r{root]
tree

&
isHeap
troor] g----:z=:z7
1ree

Figure 52: The correct version of the same case that is portrayed in Figure 51

As a last note for this case, the shape graph shown in Figure 51 is actually only one of

81t is not entirely correct, that they could not be invalidated through constraints. However, to do
so would cause more effort than it is worth. It usually involves nullary predicates that tell the
consistency rule that it should not apply in certain phases of the algorithm. That is neither good
style, nor is it good for analysis efficiency.

105

root

5
r[n, root]
rlrogt]

l 7 f 2
1 il prmmm——- it]
rfront] rln,it] <- —————) rn,it]

P Hroot] R rlroot]

T
1
1
1
1
1
1 N
\ child
1
1
1
1

6
iSHEAD @ Ypm=m = - - - _4
r{ront] g----z-z-= r{ront]

treg

Figure 53: The problematic case if the second formula is missing. The problem here is
that we have a non-sentinel list element, that does not point to a subtree. In
our data structure we never want to have such list elements.

six problematic shape graphs that arise, because the missing list connection can occur
at any sub tree and thus effectively doubles the number of shape graphs at this program
point.

Figure 53 shows one of the problematic shape graphs that would appear if the second
formula were missing. This time we have list elements that are not sentinels, which do
not have a subtree attached. This is another thing that may never happen in a working
data structure. The reason why we cannot avoid this with constraints is the same as in
the previous case: If we delete elements, then there might exist a list node for a short
time that has no attached tree element, because it just got deleted.

Leaving out the third formula has similar results to the second one, as can be seen
in Figure 54. Again we have list elements, that are not sentinels, that have no subtree
attached. The only difference is the place where they occur, namely at the it pointer
instead of the arg pointer. The reasons of why we cannot easily fix this issue with
constraints is the same as in the previous case. As with the other problematic cases
before, there are actually multiple instances of this problem.

Figure 55 illustrates the problem that the last formula solves. What we see in the
figure is a normal heap shape graph, where all the list elements in the currently iterated
list have sub trees attached. To understand why this is a problem, we have to remember
our invariants. One of those state, that every child list has to have a sentinel at the end

106

root

5
r{h, root]
r{root]

clist n 7] 2
1 rlit] (S fit]
rlront] rin,it] <: -----) rn,it]

p rlroot] R r{roct]

T 7 T
w_
“np

_3
isHeap
r{root]

child ’

3
N 4
isHeap r_[i1]
rlit] g==z:-=:=273 riroat]

r[root]

Figure 54: The problem, that formula three solves is quite similar to Figure 53, only this
time the missing subtree is at the it pointer, instead of the arg pointer.

and that this sentinel should never point to any tree element. Thus this shape graph
depicts either a list without a sentinel, or a list where the sentinel points to a tree node,
either way, this must not happen.

What prevents us from doing a simple solution like the following constraint?

list(vl) & A(v2)'n(vl,v2) & tree(v3) ==> !child(v1,v3)

Translated the formula says, if there is a list node with no successor, then that list node
should not have a child pointer to a tree node. At first thought, this might seem fine
and certainly would do the trick, however, there is a slight problem. Constraints are
invariants themselves: They have to hold for any program point and any shape graph
and any valid instantiation of nodes. Thus let us look again at Figure 55: There are
actually two list nodes where the constraint would apply.

One is the problem list node, that we actually want to be gone. The other is the
handle for the tree root, i.e., the list node where the root pointer is on. This one we
do not want to be gone. We actually need it. Because due to how we defined our data
structure, whenever we move a tree node (or a whole subtree) around, then we really
just move their handle. In other words, keeping a constraint like that would break our
analysis, there would not be any shape graphs left!

The rest of the action is pretty much standard and I will not explain it any further.
Instead we can look at the one action that really has a big impact on sortation predicates

107

root

3
r[n,root]
rlroot]

arg it

AN AN

clist n 2
- rlit]
r{roat] rin,it]
2] rlraot]

3
isHeap
r{root]

' '
' '
Jchilet Jehild

------ 4 \sgeaap ------)

------ root) Y CEFEErre I

. .o

np np

Figure 55: This shows the problematic case, if the last formula is left out. As can be
seen, all the list elements have a subtree attached and there are no further
list elements left. Thus either the sentinel is missing, or it too has a subtree
attached, which is invalid.

in the heap data structure:

%haction DecreaseKey(lhs) {
%t "decrease key value of " + lhs + "->child"
%p E(v) lhs(v)
{
dle(vl,v2) = (E(v)lhs(v) & child(v,vl) & 'reachable(v,v2)
& 'list(vl) & !'list(v2)
?1/2
(E(v)1lhs(v) & child(v,v2) & !'reachable(v,vl)
& '1ist(vl) & 'list(v2)
? 1/2
: dle(vl,v2)))

I already said in Section 4.1, that I had to change the way how the sortation predicates
worked. This was simply due to the fact that the heap sortation is unlike the standard
tree sortation. Most operations will not change the fundamental heap property, else it
would not be a heap any longer. The notable exception to this is of course, if the key
value of an element is changed, in this case decreased.

To understand the above formula two things are important to remember:

108

e Due to our invariants, when we call a decrease_key on a tree node, then we give a
pointer to its handle, not the tree node itself. I.e., 1hs will point to an object of
type list_node.

e TVLA offers a construct that works much like an if-then-else statement, that can
be used in formulas. The syntax is (p1 7 2 : 3), where the ¢; are the usual
3-valued logical formulas. The semantic of the statement is as follows: If varphi;
evaluates to true, then the value of the formula is 3. If o1 evaluates to false, then
the value of the formula is ¢3. If ¢ evaluates to unknown then the result is the
join of o and 3, i.e., the value of s if it is equal to the value of 3 and unknown
else.

This means the update formula for the dle predicate contains two nested conditionals.
The main condition just asks if v is the child of the handle, i.e., the node which data
value is to be decreased and if there is another node that cannot be reached from the
handle. This means the node is either further up the tree, or it is not in the subtree
spanned by the parent of vy. If this is the case, then the dle predicate is set to unknown.
Note that this only really changes the dle values of the ancestors of v, because different
subtrees in heaps can contain arbitrary values anyway and thus dle between subtrees
should always be unknown anyway. Note that the above case assumes that vy is the node
which data value decreases, this does not change the reverse direction yet, i.e., the dle
predicate that goes to vy rather than coming from it.

Otherwise the evaluation goes into the next conditional, here it is now assumed, that
v9 is the node that gets decreased. The rest remains exactly the same as in the first
case, changing only the dle predicates of the ancestors of vs. In all other cases the
dle predicate remains unchanged. In particular this is important, so that dle values
between nodes that are not being decreased remains the same.

4.4 Conclusion and Summary

There are of course a lot more actions and also more constraints than we showed here.
The point of this section, however, was not to give a comprehensive listing of the spec-
ification, but to show the general concepts and problems encountered. To summarize,
there were the following major points to consider:

o We wanted to apply the concepts and intuition of Section 3.1, to create an analysis
specification that produced easy to understand output, with emphasis on minimiz-
ing the number of shape graphs. To achieve this, we defined our data structure in
certain ways, to ensure there would be no unnecessary case distinctions.

e We had to incorporate two different data structures into a new data structure. The
difficulty with this was to define consistency rules that either apply to both or that
have a way to only refer to one of the two data structures. This was done by using
predicate tags for nodes, that determined which data structure they belonged to.
(tree and list)

109

e Some predicates had to be redesigned, to accommodate the new property of heaps.
Most notably the the sortation predicates. All but the basic dle predicate were
removed and the update of the sortation was relegated solely to actions.

e Other predicates had to be added to model the new data structure and out of
necessity to distinguish between different cases. A good example of this are the
reachability predicates. While there still are the classic list reachabilities, both
forward and backward, we defined a new meta reachability, incorporating both list
and tree nodes.

e Narrowing down the number of shape graphs and streamlining the analysis had
the side effect, that we could not easily define constraints that took care of all
impossible cases while also leaving all the possible cases in. Thus we had to rely
more on the precondition option in actions and built more complex preconditions
than in other specifications, that took care of blocking impossible shape graphs.

Finally, I would like to point out how specifying an analysis works in practice. While we
presented the analysis here in a sequential way, this is of course not how it was designed.
It is true, that first and foremost, there comes the phase where the decision is made
to analyze a certain algorithm and then the search starts for a suitable program that
implements this algorithm. Here the criteria mentioned in Section 3.1 come into play,
i.e., what kind of data structure is the best or most efficient to teach the algorithm and is
that data structure suitable for good visualization using TVLA. It can and will happen,
that the most efficient data structure that might be best for teaching is not the best to
use in visualization, so the teacher has to make a decision that will include a trade off
between what is practical and what is good to visualize.

Once the program is decided, the real specifying work can begin. While we presented
the analysis here in terms of predicates, constraints and actions in sequential order, in
reality they all depend on each other. That means it has more a kind of iterative nature,
i.e., starting with the basic structure predicates, defining the first basic constraints,
specifying the first action. Then look at the output, see what does not look right and start
adjusting constraints and actions. Once things look fine, add the next predicates and
iterate. If there are problems in shape graphs after an action was performed, then those
might be corrected either by adding constraints, or by editing the action. Sometimes
constraints added later make some preconditions or even update formulas unnecessary.
Such was the case for example in the action DecreaseKey (1lhs) that we presented earlier:
Instead of four major formulas in the precondition, there were five, but one turned out
to be unnecessary after all.

This is to illustrate how difficult and inherently suboptimal the specifications for
TVLA often can be. There is no tool that can tell us how good an analysis is, this is
solely up to the user and ultimately depends on what the analysis is used for.

110

5 Summary

In this work I presented an unusual approach to algorithm visualization: The traditional
method of visualization is to simulate the program on some concrete example and vi-
sualize each step on some level of abstraction. Our approach is based on the output of
shape analysis, the so called shape graphs. Shape analysis computes all possible heap
states of a program at any program point and thus allows for a better meta view, as well
as the possibility to not only show invariants, but for the learner to easily deduce them
on their own.

Our approach solves or at least reduces some of the biggest problems with algorithm
visualizations:

e Instead of having to look for a suitable visualization for every new algorithm to be
presented in a lecture, our approach uses only one single visualization tool. On the
one hand, that means the users only have to get used to one interface. Since all
visualizations are derived from shape analysis output, all visualizations will also
have similar style. On the other hand, if there is no visualization for a certain
program yet, then the teacher can create one by specifying an analysis for the
desired program. This is only a partial solution, because as we tried to show in
Sections 3.1 and 4, creating an analysis is not trivial and can be time consuming.

e A maybe even bigger problem than finding a visualization in the first place, may be
to integrate it into the lecture without confusing the students. Oftentimes there are
different ways to characterize a problem, sometimes also different kinds of notation.
All teachers have their own favorite style of running their lectures and thus the
visualization should match that style. Often visualizations offer little in the way of
customization in terms of layout, annotations, method names or variable names.
All of this can easily be configured in our Visualizer or the analysis itself.

I have presented some of the problems that occur with displaying and computing
a layout for shape graphs. Some of those are related to the usually huge amount of
information, most of which may not be relevant at that point. That means there have
to be tools to filter out unwanted data or ways to make the important data stand out.
The more fundamental and harder to solve problems are all related to the abstraction
and 3-valued logic, namely with what we called “summary nodes”. In Section 3.1 I have
shown that these problems are inherent in shape analysis and that it is generally not
possible to define a complete order on the nodes, making sensible layout a challenge.

Huge amount of data and thus the resulting confusion, is not only a problem within
a given shape graph, but also in the sheer number of shape graphs. Depending on the
program and the chosen abstraction, the number of shape graphs per program point can
be anywhere from no more than a handful to potentially hundreds or more. Thus I also
mentioned the work of Dierk Johannes and the implementation of some of that work
into our Visualizer, which tries to reduce the number of shape graphs by partitioning
them into equivalence classes, that are specified by the user.

While the meta view that shape analysis provides is ultimately the goal when trying to
understand an algorithm, we recognize that sometimes a concrete example can quickly

help with the understanding. Thus we implemented a way to generate concrete shape
graphs, which work as concrete examples, while still having the style of the abstract
shape graphs. This allows us to follow a concrete execution path through a program,
while at the same time observing the corresponding abstract path.

Shape analysis is the basis for our approach, it is a powerful method to statically
analyze programs to verify properties. That means, however, that many analyses were
specified with verification in mind rather than visualization of the output. An analysis
that is efficient for proving the correctness of an algorithm may not be suitable for
visualization, as the goals of both are sometimes different: Increasing the detail level
of the analysis will provide better logical results, but will almost certainly increase the
number of shape graphs and help predicates needed and thus making the output that
much harder to understand. That is why I tried to give some intuition as to what is good
for visualization and what is not. The bottomline is, that we want to avoid any and
all information that is not needed for understanding, thus we want to keep the number
of predicates and the number of shape graphs as small as possible. That is not easy
and often small changes bring big results. That is also one reason why I presented the
pairing heap analysis in Section 4.

Last but not least, there is our Visualizer itself: A visualization tool with about twenty
thousand lines of code. In Section 2 I described a lot of the functionality. The tool was
meant as a test platform for new ideas and thus has undergone a lot of changes through
the years. All the shape graph figures in this work are taken as screenshots from this
Visualizer.

The source code for the Visualizer can be found on my homepage www-tcs.cs.uni-
saarland.de/parduhn/index.html. It is written completely in Java and not dependent on
any external packages, only the standard JDK environment is needed. It is compliant
with both tvs- and tr-type output files up to version 3.0 of TVLA. It has only two
interfaces that need to be maintained for further TVLA versions, one is of course the
parser for the TVLA output files and the other is the command line syntax for invoking
TVLA directly from the Shape Graph Creation Tool.

5.1 Further Work
5.1.1 Evaluation

While working on this thesis and debugging analyses, the visualizer was an invaluable
help, not only for myself, but also for other colleagues that specified analyses. It saved
time and was much easier to configure than the standard TVLA output. It also made
specifying input shape graphs a lot easier, thanks to the shape graph creator, that
allows to create shape graphs similar to a paint program, graphically directly on screen
as opposed to having to do it textually. That means it certainly is a great tool for
developing shape analyses, but the scope of the thesis was to provide a different approach
to algorithm visualization in teaching. Thus, the most important next step should be an
evaluation of our Visualizer and thus also an evaluation whether our approach is indeed
an improvement to the traditional visualizations.

112

I had originally planned on doing the evaluation as part of this work, but I faced
a simple problem: There are not enough analyses for a class on algorithms and data
structures. There are of course quite a few examples included in TVLA, however, they
are mostly single or double linked lists and a few simple binary search tree examples.
I felt that a reverse list or insert element in a standard binary tree was too simple an
algorithm for evaluation, since the differences from our method to standard methods are
too small to make much difference. The only more complicated data structures available
are pairing heaps, which are not covered in our lectures, and the insert algorithm for
AVL-trees. The latter would have been the only serious candidate for an evaluation, but
I decided against it for two reasons:

e The AVL-tree insert analysis was created by myself during my work on my diploma
thesis. At that time I did not have the same focus and knowledge on specifying
an analysis for visualization. As a result there are over a hundred shape graphs
at some program points, which is too much for easy understanding. So either I
would have to redo the analysis, which I did not have the time for, or the students
would have to be somewhat experienced with reading shape graphs, which is also
not going to happen if the evaluation only uses this one algorithm.

e Having only part of a data structure was felt to be incomplete. Using AVIL-trees as
single data structure to test our Visualizer might work if we at least could simulate
all the common operations and not only the insert. Additionally it is quite a bit
of work to get introduced to the Visualizer and shape graphs, probably too much
effort to apply this skill only once.

In summary, there was just not the time to do the evaluation in a way that I felt comfort-
able with, ideally alongside the whole basic course on data structures and algorithms.
That would have allowed us to observe two groups, one with the Visualizer and the
other without and then compare not only their learning experiences, i.e. whether they
found it easier or faster to understand certain algorithms, but also to compare their
accomplishments in the exams.

5.1.2 Easier Analysis Specification

Easier is always better, but in this case it is rather essential. While this call is nothing
new, it is maybe more urgent than ever: There needs to be a faster and more automated
way of generating shape analyses. When working with TVLA (and most other shape
analysis tools), almost everything has to be done tediously by hand in textual form.
Only once you sit down and actually try to do it, it becomes clear how much work it is
to specify a single analysis, even a small and trivial one. What I propose is a front end,
that should address as many of the following points as possible:

e There should be support for any of the common programming languages. At the
very least I recommend Java and C++.

113

e As much of the operational semantics of the programming language as possible
should be automatically generated. I.e., the front end should translate the program
code into TVP actions.

e A library for standard data structures like lists, trees, arrays and so forth, that
automatically defines the relevant predicates and constraints.

e A library for standard input scenarios as TVS files. L.e., no more specifying your
own examples from scratch, potentially missing important predicates or setting
them wrong.

e Some way for the user to specify what properties they are interested in and what
properties are simply not needed in order to keep the analysis as small as possible.

I do realize how difficult this is to implement, it would certainly require a lot of further
research, but it would also be instrumental in making our approach easily accessible to
everyone.

5.1.3 Implement a Pathfinder

When thinking about visualization using our approach with shape analysis, it is im-
portant to keep in mind that there are differences to the normal method. One direct
consequence of using abstraction and computing invariants is, that there is no unique,
well defined, deterministic path through program execution. Instead all the possible
shape graphs form a directed trace graph, i.e., two shape graphs are connected by an
edge if one is the successor of the other. Every path through this graph, that starts at
one of the start shape graphs and ends at what can be considered an end shape graph,
i.e. a shape graph at an exit location®. Since there can be arbitrarily many start shape
graphs and exit locations, as well as the fact that every shape graph can have arbitrar-
ily many predecessors and successors, navigating through a program execution may be
confusing or at least tedious, depending on the algorithm and user knowledge.

Since the goal is to use the visualization in teaching, it should not be assumed that the
student already understands the algorithm. That means they might need some assistance
to navigate the shape graphs in a meaningful manner. This is where a pathfinder tool
may be useful, it is very easy to get lost in the potentially many loops of the graph,
or to run into a dead end that is of no great interest. Thus the pathfinder tool should
be able to distinguish between the “average” case of the algorithm, special cases and
also mirror cases. While it is probably not feasible to do that fully automatically, the
person specifying the analysis could give the tool hints which end locations are special
or common cases. This would in effect make it easier to view the execution as a sort

9An exit location is no real program point, but rather an additional program point introduced by
TVLA. This is done because shape graphs at a given program point always describe the heap state
prior to executing the code at that program point, so to see what the “last” program statement
does, an end or exit program point is added where those shape graphs can go. Also it is sometimes
desirable to implement artificial program points in order to check for certain properties in the end
shape graphs.

114

of slide show instead of having to ponder which successor shape graph to take at every
split in the path.

115

References

1]

116

U. Assmann and M. Weinhardt. Interprocedural heap analysis for parallelizing im-
perative programs. In W. Giloi, S. Jahnichen, and B. Shriver, editors, Programming
Models For Massively Parallel Computers, pages 74-82, Washington DC, XXXX.
IEEE Press.

R. Baecker. Sorting out sorting: A case study of software visualization for teaching
computer science. In J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, editors,
Software Visualization: Programming As A Multimedia Experience, pages 369-381.
MIT Press, 1998.

U. Banerjee, D. Gelernter, A. Nicolau, and D. A. Padua, editors. Languages and
Compilers for Parallel Computing, 6th International Workshop, Portland, Oregon,
USA, August 12-14, 1993, Proceedings, volume 768 of Lecture Notes in Computer
Science, 1994. Springer. ISBN 3-540-57659-2.

M. H. Brown. Algorithm Animation. MIT Press, 1987.

M. H. Brown. Zeus: A system for algorithm animation and multi-view editing. In
VL, pages 4-9, 1991.

M. H. Brown. Perspectives on algorithm animation. In Proceedings of the ACM
SIGCHI ’88 Conference on Human Factors in Computing Systems, pages 33-38,
May 1998.

B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In POPL, pages
247-260, 2008.

B.-Y. E. Chang, X. Rival, and G. C. Necula. Shape analysis with structural invariant
checkers. In SAS, pages 384—401, 2007.

D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In PLDI, pages 296-310, 1990.

M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap:
A new form of self-adjusting heap. Algorithmica, 1(1):111-129, 1986.

C. G. Healey and J. T. Enns. Attention and visual memory in visualization and
computer graphics (preliminary version). In IEEE Transactions on Visualization
and Computer Graphics.

S. Horwitz, P. Pfeiffer, and T. W. Reps. Dependence analysis for pointer variables.
In PLDI, pages 28-40, 1989.

D. Johannes. Aufbereitung von Shapeanalyseausgaben zur Visualisierung der ab-
strakten Programmausfihrung. PhD thesis, Saarland University, 2010.

[14]

[15]

[20]

[21]

[22]

N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In POPL, pages 66—74, 1982.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations: Proc. of a Symp. on the
Complexity of Computer Computations, page 85—103. Plenum Press, 1972.

A. Kerren and J. T. Stasko. Chapter 1: Algorithm animation, software visualization.
In LNCS 2269, pages 1-15, 2002.

S. Kleene. Introduction to Metamathematics. North-Holland, 1987.

J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. In
PLDI, pages 21-34, 1988.

T. Lev-Ami. A framework for Kleene based static analysis. PhD thesis, Tel-Aviv
University, 2000.

T. Lev-Ami and S. Sagiv. Tvla: A system for implementing static analyses. In
SAS, pages 280-301, 2000.

T. Lev-Ami, T. W. Reps, S. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In ISSTA, pages 26-38, 2000.

S. K. Lodha, J. Beahan, T. Heppe, A. Joseph, and B. Zane-Ulman. Muse: A musical
data sonification toolkit. In Proceedings of International Conference on Auditory

Display (ICAD), 1997.
A. Mack and I. Rock. Inattentional Blindness. MIT Press, 1998.

T. L. Naps, J. R. Eagan, and L. L. Norton. Jhave — an environment to ac-
tively engage students in web-based algorithm visualizations. In Proceedings of the
31st SIGCSE Technical Symposium on Computer Science Education, page 109-113,
March 2000.

R. A. Rensink. To see or not to see: The need for attention to perceive changes in
scenes. In Psychological Science 8, 5, page 368-373, 1997.

R. A. Rensink. Seeing, sensing, and scrutinizing. In Vision Research 40, 10-12,
page 1469-1487, 2000.

G.-C. Roman and K. C. Cox. A declarative approach to visualizing concurrent
computations. IEEE Computer, 22(10):25-36, 1989.

D. Sagi and B. Julész. Detection versus discrimination of visual orientation. In
Perception 14, page 619-628, 1985.

S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Trans. Program. Lang. Syst., 20(1):1-50, 1998.

117

[30]

[31]

[32]

[33]

[34]

118

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Trans. Program. Lang. Syst., 24(3):217-298, 2002.

C. A. Shaffer, M. Cooper, and S. H. Edwards. Algorithm visualization: a report on
the state of the field. In SIGCSE, pages 150-154, 2007.

J. Stransky. A lattice for abstract interpretation of dynamic (lisp-like) structures.
Inf. Comput., 101(1):70-102, 1992.

A. Treisman. Preattentive processing in vision. In Computer Vision, Graphics and
Image Processing 31, page 156-177, 1985.

A. Treisman. Search, similarity, and integration of features between and within
dimensions. In Journal of Experimental Psychology: Human Perception & Perfor-
mance 17, 3, page 652—676, 1991.

