Efficient Implementation of 'Optimal'

Algorithms in Computerized Tomography

F. Natterer

We describe three optimal algorithms for the reconstruction

of a function in R? from a finite number of line or strip
integrals: Optimal recovery, Bayes estimate, Tikhonov-Phillips
method. In the case of a rotationally invariant scanning geome-
try we show that the resulting linear system is a bloc-cyclic
convolution. This observation leads to algorithms which are
roughly as efficient as filtered backprojection which is one

of the standard methods. The algorithms can be applied to the

case of hollow and truncated projections.

Numerical examples are given.



1. Introduction

Let fO be the density of a plane picture contained in a
disk 2 of diameter 1. We want to recover fO from a finite

set of integrals

For this system we write sometimes simply g = Rfo' We may
think of the Lk
depending on the ray geometry of the tomograph we want

as strips, lines or narrow cones in Q,
to model. See [1] for this picture reconstruction problem.

In general the system g = Rf is underdetermined. In order
to compute an approximation to fO from g we thus need some
kind of a priori-information on fo.

Let HY = g“ GRZ) be the Sobolev space of order o 2z 0, i. e.
the linear space of all tempered distributions £ such that

IEl® = § a+lelH % E@ | ag <«
H

A

where f is the Fourier transform of £, and let

Ho(2) = (£€H" : supp (£) ¢ @} .

Note that R : Hg(ﬂ)-* R"” is continuous for oz O if the Ly
are strips or cones of finite width and for o > 1/2 if the
Lk are lines. We always choose o as to make R continuous.

; n . .
The norm in R is the euclidean norm.

In [2] we have shown that f¢ Hg(Q) with o close to 1/2 is a

reasonable assumption for picture densities. Thus we may use

f €EK = {fGHg(Q) : | < 1}

| £]]
o] Ho;



- 1.2 -

as a priori-information on fo' This leads to the following

optimal recovery problem:
Compute from

RfO = g, fOE K

an approximation %H tofb with minimal worst case error (in

the sense of Hg(Qn. Obviously, f 6 is the minimal norm solu-

M.
¥ioh, 6F RE = g 4n Hg(Q), see [3], i. e. £, is the solution

M
of Rf = g for which || £]| , is smallest.
H

In the case a = O, fM enjoyes another optimality property:

With the "backprojection" operator

R" :mn+L2(Q),

(R¥g) ( If

R7g) (x) = g X s
k=1 k k
13

y - _ foLk

k

O, otherwise

we define a class of reconstruction methods, the backprojection
class, by requiring that the final step in the reconstruction pro-
cess be a backprojection, i. e. the reconstructed density is in
range (R*). The backprojections used in the picture reconstruc-
tion literature are essentially the operation defined above but

may involve additional interpolations.

It is easy to see that for o = 0O, R* is the adjoint of R. As
L,(2) = ker (R) @ range CR £y

solution of Rf = g which is in range (R*). Conseguently, if

can be characterized as the

f € range (R*) is any approximation to fo' we have
leyto Iz, (@ < 1550l (q -

i. e. fM is the most accurate (in the Lz—sense) reconstruction

of the backprojection class.
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If data errors are involved, then the above procedure has
to be modified. Instead of computing minimal norm solutions

we minimize

2 2 2
IRE-g ]2 _+u? || £]
R

e
in Hg(ﬂ) where the euclidean norm in R"™ is used. The mini

mizer fT (TP stands for Tikhonov-Phillips) depends on the

P
regularization parameter w. It is shown in [4] that fop has

minimal worst case error if w is chosen appropriately.

Instead of deterministic a priori-information of the form
fO €K with some set K we may also use stochastic assumptions
on fo' We think of fo as a two-dimensional random process which is

normally distributed with mean value f and covariance

E(f(x)-E(x)) (£(x")-E(x')) = F(x,x").
The Bayes estimate of f having seen g is then defined to be

-1

f = E(f|Rf = g) = F + FRY(RFR") ' (g-RE),

B
see e. g. [5], p.19 and 28 (see also [6], [7]), where F is
the integral operator with kernel F(x,x'). The inverse is to

be understood in the sense of Moore-Penrose.

In general, the direct computation of £ f and fB is far

M TTP
beyond the capacity of present day computers. However, if the

Lk form a pattern which is in a certain sense rotationally
invariant (and if F is of the displacement type in the case
of fB), then a very efficient computation is possible, as

will be seen in the following section.
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2. Efficient computation of fM' £ and fB

TP

With Ny the generators of the functionals f - f f dx in

o "k
HO(Q), i. e
o -
VE € H_(Q) (nyr £) o) —{ f dx
o] k
it is immediately verified that
ril *
£, = r. n, = R r,
M o k 'k
* is the Hg(ﬂ) - adjoint of R, and the vector r solves
Sr = g with
S = (n, ,n,) Kol = Aj owve o R
k, 2 k''g Hg(m

This system need not be uniquely solvable, but since
Sr = 0 implies R¥r = 0 it doesn't matter which solution

we take. Likewise, fTP is given by

n
fop = ) T

Ny, ¢
TP k=1 k 'k

(S+w2 1) = g.

For the Bayesian estimate we put

nk(X) = | F(x,x') dx' g
Lx

Sk,ﬂ = £ é F(x,x') dx dx'.
k 7g

Then,

v )

f = f + L. f

B e k 'k

Sr = g-Rf
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Here we have to take the minimum norm solution in the case

of non-uniqueness.

In all three cases we end up with a huge linear system. For-
tunately, the matrix of this system turns out to be a bloc-
cyclic convolution if the Lk form a pattern which is invariant
with respect to rotation. To fix ideas we restrict ourselves
to the case of the parallel geometry, but it is ocbvious that
the same reasoning applies to the fanbeam geometry and to
other geometries as well. We remark that the basic idea is

due to A. Lent [8].

Let wj = (cos wj, sin @j), wj = qn/p, J = O,..;, 2p-1 be 2p
directions and si = ih, i = -9,..., g,h = (2a) . Then we
write (note the slight change in the notation) Lji for the
strip of width d with axis orthogonal to mj crossing w. at

the point s.,w., i. e.
1]

A

L.. = {Xx€Q : Sy - da/2 < x-wj

o S5 + d/2}

Thus the number of the strips is n 2p(2g+1), but since

the closures of Lj+p,i and Lj'_ic01n01de,j =0,..., p-1,
only n/2 data are needed.

Instead of considering all strips L'i’ i=-9,...,9, we can
remove strips with |i| > q, or li] < q, where q_ < g; i. e.
we can treat the cases of hollow and truncated projections

as well.

Arranging the strip indices (j,i) in lexicographical order

starting with (0,-q), we can decompose the vectors g, r into
go e
-f: . J J o p2at]
g = - _ ¢y X =leq ;, g-, reRr
g2p 1 r2p 1

with
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and the matrix S into

85,0 . °6,1 ==* S 2]
2.8 09,3 mes 51, 2p-1
s =\ .
S2p—1,O SZp—1,1"' 'S2p—1, 2p-1.

where in the case of fM and fTP the (2g+1,2g+1)-matrices Sj 3 are
defined by '

S. ., = 1 .
( J.3] )kr'Q' (n]k nj'ﬂ;)

I

“ Q)

H
o)
an the generators of the functionals f- f f dx. From
ng
the rotational symmetry of our strip pattern it follows

that Sj 30 depends only on j-j' mod 2p. Putting
r

S. =

3 Sj,O r J = 0,00, 2p-1

we thus obtain the decomposition

S, Sy .- S
el "0 mae 8952
S =
r
3 s, Sg

i. e. S is a bloc cyclic convolution.
The same decomposition is possible in the Bayesian setting
if F depends only on |x-x'|; we then have

(Sj)kﬂ = f I F(|x-x']) dx dx'.
L Ly s
ok TJ4&
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Systems of the form Sr = g with S, r, g decomposed as above

can be solved by taking Fourier transforms: If b°,..., el

is any set of vectors or matrices we have

r

. 2p_1 P A~
bl = 5L ) oTiik/p [k
P k=0

2p-1 : ;
b* = j e mIR/P I,

j=o

>
~

The system at hand 1is equivalent to (w # O only for TP)

(Sj+w2I)r] =g), §=o0,..., 2p-1.

In order to find symmetries of Sj we write

- p'_1 . x .
_ -rijk/p j

S. = e S, + (=1 S

5= L (Sk (=17 8, )
Sk+p is obtained from Sk by reversing its rows, i. e.

(Sk—p)i£ = (Sk)i,—ﬁ'

1y ; -

It follows that Sk + (=-1) Sk+p’ hence Sj’ has the following

symmetry axes:

j even j odd
A reflection of the elements of Sj is the identity if the
axis is solid but changes the sign if it is dotted. As a

matter of course, the inverses Sj—‘I (and, if the inverses



2:45

fail to exist, the Moore-Penrose generalized inverses

Sj+) enjoy the same symmetry properties.

In view of these symmetries and since gj+p is gj reversed,
we may assume that rj+p is rj reversed, i. e. the vectors
;j are even for j even and odd for j odd. Combin}ng all
these symmetries we find that the egquations for rj

can be replaced by

2 - ]* -

2[Sj+w I][rj = [g-]r j=0,.., 2p-1

where [b] denotes the part of the vector (or matrix) b with
subscripts O0,... , g if j even and 1,...,qg if j odd, and
the asterik indicates that for j even the O component is

multiplied by %.

For the work estimate it is important to note that the
matrices éj are real. This follows eésily from Sk =
SZp—k' k =0,..., p-1. Suppose the [Sj+mf¥]+ are precomputed
and stored. Then the computation of the rj, 3 T 0. g
2p-1, requires essentially 4pq2 arithmetic operations

(1 operation = 1 real addition + 1 real multiplication).
The Fourier transformations can be done with 6pq£n2(2p)
operations if the Fast Fourier Transform is used; hence
this part of the computation can be neglected. Thus we

need about 4pq2 operations.

f is obtained from r by a generalized backprojection. For
fM and fTP' this backprojection is the ordinary one if
o = 0. In that case, the evaluation of f on a m x m grid

requires 0(m2-p) operations. For o > O sufficiently small

the nj2 do not have small support, but they decay away

from LjR fast enough as not to impair essentially this ope-
ratlon count. For fB we obtain the same work estimate pro-
vided that F(x,x') = 0 if |x-x'| 2 C-h with some constant C.
As 4pq2 is usually of the same order as m2-p we see that our
algorithm reguires O(mzp) operations. This coincides with
the work estimate for the filtered backprojection or convo-

lution method, which is considered to be the most economical
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reconstruction technique from the computational point of view.

We conclude this section by determining the kernel of [Sj] in a

gk =

-d,...,q cover Q completely without overlapping, i. e. d = h.

practically important case: We assume that for each j the Lj

In this case, we have
q q

(8.),, = ¥ [ n o (x) d&x = [ n_ (x) dx,
f=-q J kL 2=—q :ng ok o Ok

hence Sje,eEi]R2q+1 the vector whose components are 1, is inde-
pendent of j. It follows that Sje = 0 unless j = 0. Using the

symmetry properties of Sj we find that

In the Sobolev space setting we are able to show that there
are no other elements in the null spaces of [Sj], i. e.
[Sj] invertible for j = O and j odd,

~

ker [Sj] = sp {[e]¥}, 3 even.

It suffices to show that the deficiency of S in the space M

j+p j

of data vectors, i. e. M= {g : g is g- reversed} is at

most p-1 (hence precisely p-1). Let Sr = O, r€ M. With R
the H*(0)-adjoint of R, R'g = § gJ n.., we have s = R R" ,

hence Sr = O implies R*r = 0. Define the operator

SO
T : L, (@)7H_(Q) by

o 3 :
T is injective, and
Nig = TX5y

with thexjQ the characteristic function of ng . Hence
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and R*r = 0 implies
] -
s = D

ggra %59

For x not on the boundary of any of the strips we obtain

] —
LTy, = O

where 2(3j,x) is uniquely determined by x€ L.

: ] < .
j,0(3,x) X3 <P

Loo

/
<

R\
N _/

N\

<

Choice of x,x'. Figure shows the case p = 4, j0:3,2(jo’x):o

Now fix some j = jO and choose x close enough to one of the

boundaries of Lj 2(5_,%) as to make sure that the reflection x'
r

of x across thisobougdary is in Lj,ﬂ(j,x) for § # jO and in

L or L.

] j ' see fi ; the f cases in
Jor% (3 rx)+1 k(3 gex) =1 ( igure e few cases i
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which this can not be done are easily taken care of). Then

Pzl J
J o -
E X , + r : =0
+

520 L(3,x%x) 2(jo,x)_1

Xl
hence

r:JO oy = rjo

L I T g X

Proceeding in this fashion we see that each of the vectors

rJ, 3 =0,..., p-1must be constant, i. e. rJ = o€, J = Oy

p-1. In addition,

p-1 . p-1
I fg,0 = L @5 =0
j:o L j:o
hence
p=1
E a. = 0.
j=o0

This proves dim ker(S) < p-1.



§ 3 Numerical experiments

For our numerical tests we created a phantom whose density
£ is given in fig. 1. For a 3D-display of the phantom see
fig. 2.

For p = 50 directions we covered the phantom with 51 non-over-
lapping strips (i. e. g = 25, h = d) and computed the strip
integrals analytically. We also computed the line integrals
along the axes of the strips. The optimal reconstructions below
have been computed from the strip integrals. We compared the op-
timal reconstructions with the filtered backprojection recon-
struction fFB' In order to make the comparison fair we used the
line integrals as data for fFB‘ Our implementation of the fil-
tered backprojection method uses linear interpolation in the
backprojection step and the ideal low pass filter whose cut-off-
frequency has been chosen so as to minimize the L,-error of the
reconstruction, see [9] for implementations of this method. All
reconstructions have been computed on a grid with width 1/64 in-

side the circle of radius 1/2. The L.,-errors are to be understood

2
as root mean square errors on this grid.

With this phantom and these data we did four experiments.

1. We computed fM for o= 0 and compared it with fFB' The L2—errors
of fM' fFB are 0.058 and 0.062, respectively. In the 3D-displays
of fig. 3 and fig. 4, fFB looks a little bit smoother than fM'

Obviously, there is not much difference between the reconstruc-

tions.

2. We computed fM for @« = O from "hollow" projections. More preci-
sely, we removed from our data the strips passing through the
circle of diameter 0.375 around the midpoint of our phantom,

i. e. we avoided to hit the three little objects in the in-
terior of the annulus. The reconstructed phantom is displayed
in fig. 5 where the density has been put equal to zero in the
interior of the annulus. Comparing fig. 4 with fig. 3 we see
that working with hollow projections instead of full projec-
jections only slightly deteriotes the reconstruction in the

outer part of the phantom.



3. We computed fM for o = O from "truncated" projections.
More precisely, we used only those strips which pass
through the circle of diameter 0.375 around the mid-
point of our object, i. e. we considered this circle as
"region of interest" and avoided wasting radiation (and
computer time) in that part of the phantom we are not in-
terested in. A cross section of the reconstruction fM
along the line shown in fig. 1 is given in fig. 6, to-
gether with the cross section of the filtered backprojec-
tion reconstruction fFB for the truncated data without
any compensation. Both reconstructions are completely use-
less outside the region of interest. Inside the region of
interest they approximate a lifted version of the phantom,

but fM is considerably better than fFB‘

4. We multiplied the data by 1+4+c-%£ where % is equally distri-
buted in [0,1] and c¢ was chosen in such a way that the rela-

tive L2-error in the data was 10.4 %. Then we computed fTP

and fFB‘ The regularization parameter w in fTP (as well as

the cut-off-frequency in fFB) have been chosen so as to mini-

mize the L2~error of the reconstruction. The Lz—errors for

fTP and fFB are 0.075 and 0.094 respectively. From the 3D-

display of £ f in fig. 7 and fig. 8 respectively we see

TP’ FB
that the small objects in the interior of the annulus can be

made out in fT but are lumped together in fFB‘ Thus fTP not

P

only is considerably better than fog in the L,-sense but also

2
contains more details. Even though fFB looks nicer than fTP

we prefer fTP over £ Of course more details would appear

FB*
in fFB if we increased the cut-off-frequency, but then the

L.,-error of fF would become even worse.

2 B

We did these experiments for quite a number of other phantoms,
with results very similiar to the reported ones. So it seems

we can draw the following conclusions:

For full projections without noise, the minimum norm reconstruc-

tion has no advantage over the filtered backprojection method. But

note that the latter method requires the determination of an op-

timal cut-off-frequency. Note also that the former method does
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not require any preprocessing of the data if the data are

strip integrals rather than line integrals.

There is an obvious advantage of the minimum norm reconstruc-
tion over the filtered backprojection method in the case of

hollow and truncated projections,

The Tikhonov-Phillips method is superior to the filtered
backprojection method in the following sense: If we compare
reconstructions with the same L2—error, than the former re-

construction recovers details more reliably.
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