On Correct Procedure Parameter
Transmission in Higher Programming

Languages

by
Hans Langmaack

Institut fir Angewandte Mathematik
und Informatik der Universitdt des
Saarlandes

6600 Saarbricken 15, Im Stadtwald
Bundesrepublik Deutschland

August 1972
A 72/3

This paper is part of an invited lecture given at the first
annual congress of the Gesellschaft filr Informatik (GI) in
October 1971 in Munich. The paper has been submitted for pub-
lication in "Acta Informatica”.

Summary

The paper starts with the observation that in ALGOL 60 no
specifications for formal procedure parameters are pre-
scribed, whereas ALGOL 68 demands complete specifications.
As a consequence, every ALGOL 68 program accepted by the
compiler does not have wrong parameter transmissions at
run time whereas ALGOL 60 programs may have them. The pro-
perty of ALGOL 60 programs to have only correct parameter
transmissions obviously is undecidable if all data, con-
ditional statements, etc. have to be taken into consider-
ation and it is unfair to demand that the compiler shall
figure out these programs by a finite process. Therefore,
we investigate this question of decidability under a much
fairer condition, namely to take into consideration no
data and no conditions and to give all procedure calls
occurring in the same block equal rights. Eventhis fairer
problem turns out to be algorithmically unsolvable, 1in
general (Theorem 3), but it is solvable as soon as the
programs do not have global formal procedure parameters
(Theorem 1). Analogous answers can be given to the problems
of formal equivalence of programs and of formal reachabil-
ity, formal recursivity, and strong recursivity of proce-
dures (Theorems 5-8). Procedures which are not strongly
recursive have great importance in compilation techniques
as is shown in Section X.

I. Introduction

This paper deals with the question whether formal parameters

of procedures in high level programming languages should be
specified or not. The situation is well known: In ALGOL 60 no
specification is prescribed, whereas ALGOL 68 demands specifi-
cations for all formal parameters, even specifications for

the formal parameters of formal procedures etc. must be given
by the programmer., PL/1 takes a position in between: Formal
parameters of non-formal procedures must be specified, but
formal parameters of formal procedures cannot be specified.
This means practically that PL/1 in this respect is closer to
ALGOL 60 than to ALGOL 68. For, when translating a call of a
non-formal or formal ALGOL 68 procedure the compiler is exactly
informed about the specifications for all formal parameters.
Best possible code can be implemented because superfluous actual
data types need not be taken into consideration. As no wrong
parameter tpansmission can happen at run time no run time para-
meter checks need be implemented. Now, when translating a call
of a formal ALGOL 60 or PL/3 procedure the compiler does not
know any specification for the formal parameters, so that even
actual data types must be taken into account which at run time
never occur. Because correct parameter transmission is not
completely checked at compile time, run time parameter checks

must be provided for.

This short discussion shows that, concerning parameter trans-
mission, ALGOL 68 has clear advantages over the other languages
mentioned. On the other hand, concerning parameter transmission,
the definition of ALGOL 60 and PL/1 can well be justified if
there is an algorithm which for any program at compile time
firstly decides whether at run time wrong parameter transmissions
might occur and which secondly detects the specifications for

all formal procedure parameters, In the folowing we shall in-
vestigate the question in what a sense and under which circum-

stances such an algorithm exists.

II. Language Limitations

In this paper we will discuss four higher level programming

languages:

1) ALGOL 60 without specifications for formal parameters,
called ALGOL 60-P (pure),

2) ALGOL 60 with specifications prescribed for formal pa-
rameters and denoted in that way indicated in the ALGOL
60 report, called ALGOL 60-PL/1, as PL/1 is covered here,

3) ALGOL 60 with additional specifications for formal pa-
rameters for formal procedures, called ALGOL 60-SF, and

4) ALGOL 68.

For our purposes it is useful to have a common frame for all
these languages. We choose ALGOL 60 and trim the languages
in such a way that they appear as successive restrictions of
ALGOL 60-P, TFor us different languages differ only by the
manner how to indicate declarations and specifications (modes).
In ALGOL 68 the formal parameters of formal procedures of for-
mal procedures etc. have to be specified. Here, in general,
declarations and specifications are trees of declarators,
trees which might even be infinite [5,7]. Clearly, these in-
finite trees must be described in a finite manner. We better
call this language ALGOL 60-68.

As an example we present one and the same program Hl written

in four different languages.

ALGOL 60-P:
begin int A;

proc P(X,Q);

begin X:=X+1;
if X<5 then Q(X,P)

end;

A:=1;

P(AP) 3

print (A)

end

ALGOL 60-PL/1:
begin int A;
proc P(X,Q); int X; proc Q;
begin X:=X+1;

.

etc. as above

ALGOL 60~SF':

begin int A;

proc P(X,Q); int X;
proc (inte, proe)Q;
1=X+1;

begin

tec. as above

seo o (P oo D

ALGOL 60-68:

begin int A;
mode p = proc (int,p);
proc P(X,Q); int X; p Q;
begin x:fx+1;

etc, as above

Ll
.

For the aims of this paper it is not necessary to give more
precise definitions of the languages. It suffices to be ac-
quainted with ALGOL 60; for our convenience we impose a few
restrictions and modifications on ALGOL 60:

a) Only proper procedures, no function procedures are
allowed;

b) value listing of formal parameters (in the sense of
ALGOL 60) is prohibited;

c) only identifiers are allowed as actual parameters of
procedure statements;

d) beside begin and end we have an additional pair of
statement braces { }. They act as block-begin and

block-end and we require that all procedure bodies
are included in these braces. In this context the new

statement braces are called body braces.

III. Syntactical and Formal Programs

Definition 1: A syntactical program I is a string of basic

symbols which can be reduced to the axiom <program> by the
formal rules of the grammar.

Certain substrings of N are called blocks, procedure declar-

ations (simply procedures), and procedure bodies. We consi-
der blocks not only to be proper blocks but also the whole
program N, procedure bodies, and so called extended procedure

bodies, extended by the formal parameter and specification
part, while the declarator proc and the procedure identifier
are excluded. Example:

proc P(X,Y);real X;int Y;{X:=Y}

procedure body

V
extended procedure body
L Y

V o ou
procedure declaration or procedure

A syntactical program N can also be considered to be a string

2 LR B Zn

where the symbols Zi are delimiters, constants, and identi-

ﬂ'=21 Z

fiers., We have to distinguish between an identifier and its
occurrence in a program. If Zi is an identifier then (i,Zi)
is an occurrence of the identifier Zi in the program n:z1 ZQ
G 5% Zn. Occurrences of identifiers are declaring or applied.

It is well known how to establish in T a relation &§ between
an occurrence (i,Zi) of the identifier Z;, and a declaring
occurrence (j,Zi) with Zi=zj'

Definition 2: A syntactical program I is called formal, if

the relation § is a function, totally defined on the set of
all occurrences of identifiers in I.

If (i,Zi) is an occurrence of the identifier Zi then S(i,Zi)=

(j,Zj) is called the associated declaring occurrence of this

identifier. (i,Zi) is called a bound occurrence, bound by
(j,Zj). If we restrict 8§ to a block B in I then &8 is still
a function, but not necessarily totally defined. If (i,Zi)

is an occurrence in B and G(i,Zi) is undefined in g, i.e.
é(i,Zi) occurs outside B, then (i,zi) ig called a free

occurrence of the identifier Zi in 8.

Identifiers in a formal program T may be renamed. Then 0=
Z,Z,.+.1_ Dbecomes il ZIZQ...f . A renaming is called ad-
missible if M is a formal program and if for all occurrences
(1,2,) of identifiers in I prit5(i,zi))=pr1(a(i,ii)) holds.
Two formal programs are called identical if they differ

only by an admissible renaming of identifiers. A formal

program is called distinguished if different declaring

occurrences of identifiers (i,Z,)#(3,4) are denoted by
different identifiers Z, #Z] It is clear that in every class
of identical formal programs there exists at least one dis-

tinguished program.

IV. Compilable Programs

Definition 3: A formal program is called to be correct with

respect to compilation or simply compilable if any applied

occurrence (i,Zi) of an identifier, bound by the declaring
occurrence G(i,Zi)=(j,Zj), is applied appropriately accord-
ing to the declaration.

We do not give a precise definition of the notion appropriate

application, For our purpose it is sufficient to know that

this relation is a decidable relation between an applied
occurrence of an identifier and the associated declaring

occurrence, We indicate this by some examples:

a) For operations the modes and the tvpes of the operands
must be appropriate. If an operand is formal and no spe-
cification is known as in ALGOL 60-P then mode and type
of the operand are considered to be appropriate anyway.

b) For assignments the modes and the types of the left and
right hand expressions must be appropriate. In the case
of a formal left or right hand side the same remark as
above in a) holds.

c) For subscripted variables the number of indices must be
the same as in the associated array declaration or spe-
cification. If the subscripted variable is formal and if
we deal with the languages ALGOL 60-P and ALGOL 60-PL/1,
nothing is required concerning the number of indices.

d) For procedure statements (calls) the number of parameters
must be the same as in the associated procedure decla-
ration or specification. In the case of a formal proce-
dure statement the analogous remark as above in c¢) holds.

e) If the identifier Zi of the applied occurrence (i,Zi)
is formal and if there is an associated specification
in a specification part, then the application must be
appropriate to the specification. If there is no asso-
ciated specification in a specification part as in ALGOL
60-P then the application is considered to be appropriate
anyway as nothing is prescribed by any specification.

f) The mode and the type of an actual parameter of a proce-
dure statement must be appropriate to the specification
of the corresponding formal parameter if there 1is any
specification. If there is none as in ALGOL 60-P, then
mode and type of the actual parameter are considered to

be appropriate anway.

Our example program nl should clarify the meaning of f):
ALGOL 60-P: Actual parameters always fulfill the conditions
in £).

ALGOL 60-PL/1: The declarations of the actual parameters X,
P,A,P are int, proc(int,proc), int, proc(int,proc), the spe-

cifications of the corresponding formal parameters are
appropriate, namely empty, empty, int, proc.

ALGOL 60-SF: The declarations of the actual parameters X,P,
A,P are int, proc(int,proc(int,proc)), int, proc(int,proc

(int,proc)), the specifications of the corresponding formal

parameters are appropriate, namely int, proc, int, proc(int,

Eroc).

ALGOL 60-68: The declarations of the actual parameters X,P,

A,P are int, p, int, p, the specifications of the correspond-

ing formal parameters are appropriate, they even are identi-

cal, i.e. int, p, int, p.

In order to simplify our further discussions with respect to
f), we state the following: In ALGOL 60-68 appropriateness
means that declarator trees must be identical, in other lang-
uages appropriateness means that declarator trees must not

be contradictory. If we conceive a declarator tree as a set

T of named strings, called nodes, closed under initial seg-

ment relation, then two trees are called contradictory if

there is a node ncTinT2 with different names:namel(n)#namez(n).

As long as we deal with the languages ALGOL 60-P, ALGOL 60-
PL/1 or ALGOL 60-SF it should be clear that the relation of
appropriate application is decidable as all modes are finite,
Good compilers for these languages execute this decision
properly. For ALGOL 60-68 the decision is not so simple, but
can be done, too. Algorithms which effectively detect the
identity of modes have been given in [§ ’ g , A0].
As a result, compilability of formal programs is a decidable
property for all languages mentioned.

The following example H2 may clarify the notion of compil-
ability:
begin proc D(x,y); px3 qvs; { };

proc M(x,y); px; qy; {x(¥)};

proc Mi(x,y);px; qv; {x(D)};

proc E(n); gn; {n(E,D,D,M1)};

proc E(£,a,8,y); DPE; ra,B,v; {y(&,E)};

M(E,E) end

where p stands for proc(proc), q for proc(proc,proc,proc,proc),

r for proc(proc,proc).

This program n2 is written in ALGOL 60~-SF where formal para-
meters of formal procedures have to be specified. The program
is compilable and,consequently, also compilable in ALGOL 60-P
resp. ALGOL 60-PL/1 if we drop all specifications for formal

- A0 -

parameters resp. parts of them. But the formal parameters
cannot be specified in such a way that the program becomes
compilable in ALGOL 68, Otherwise, the following equations
wauld hold:
3E=ax'" , AE=dy _
proc (anE) = proc (8xﬁ) = proc (proc(aEE,aaE,aaE,ayE))
oyl = aM1 06 =9E

>

? I .- M1 M1
> proc (3g7,3E) = proc (3ax ~,3y 7)
>
>

3E = proc (3D)
3nE=8_12 = =
> proc (agE,aaE,asE,ayE) = proc (axD,ayD)

The last equation is a contradiction.

We should not suppress the following remark concerning our
definition of correctness with respect to compilation. The
definition is based on a sort of local definition of approp-

f

riate application?identifier occurrences, If we would de-
mand that the compiler should additionally trace all para-
meter transmissions, then the program Kz cauld easily be
detected to be functionally incorrect. On the other hand

it is a crucial question whether we fairly can demand this
tracing by a compiler. A compiler is an algorithm which has
to give an answer "compilable" or "not compilable" for any
submitted formal ALGOL program in a finite time., The tracing
of parameter transmissions where all possible input data
and all conditional statements must be taken into consider-
ation is an algorithmically unsolvable problem. For it is
undecidable whether a given statement in a given formal and
even functionally correct program without procedures is
superfluous or not.

At best, we can hope to get a positive answer to the follow-
ing problem: Does tracing of parameter transmissions become
an algorithmically solvable task if we allow the compiler to
disregard all data and conditional statements? I.e., as soon
as a procedure has been called and its body is entered all
procedure statements within the main part of the body have

- 11 -

equal rights and are to be processed parallelly. In[& y 3
there are algorithms which work under this assumption, but
they are only sufficient, i.e. their answers are correct
only if tﬁ:““gggd "the program has correct parameter trans-
mission".

V. Programs with Correct Parameter Transmissions

Definition 4: A formal program N is called to be partially

compilable if after replacement of all procedure bodies by

empty ones the resulting program LY is compilable in the
sense of Definition 3.

Definition 5: Let N be partially compilable., A program '

is called to result from I by application of the copy rule
(n =—n') if the following holds:

Let f(al,..
of N, Let

.,am) be a procedure statement in the main program

proc f (xi,...,xn); o ¢
et
specification procedure
part body

be the associated procedure declaration . Partial compil-
ability of 1 guarantees that the numbers n of actual and for-
mal parameters are equal. We assume that I is distinguished,
Then f(al,...,an) is replaced by a modified body ?', a so
called generated block, where the formal parameters x; occur-

ing in'f are replaced by the corresponding actual parameters

ai-

Starting from ' we can easily construct an identical and
distinguished program n" if we rename all bound occurrences
of identifiers inif' which are bound within ?' (local to_f')
by identifiers which do not yet occur in n'.

~
-
—~

++s4 3 pProe f(xi....,xn); &;‘ifff'iiif(al’°"'an); e
': o-'u; EPOC f(xl,-o-,xn);é;f;oo-?; ~ ?‘ "‘~; e 0 e

I
T
n

-12 -

The body braces {} in ¢ ={P} become so called call braces in
e'={9'}. Let — and X~ be the transitive and transitive-re-
flexive closure of i,

Lemma 1: If Hk!—n' then ' is a formal program. . resp.k—z—

are irreflexive resp. reflexive partial orderings in the set
of formal programs.

N' is not necessarily partially compilable even if 1 is generally
compilable. The programs n3

begin int a;
proc p(x,q); {q(x)};
p(a,p) end
resp.
begin int a;
proc p(x,q);int x; proc q; {q(x)};
p(a,p) end

fulfill the conditions of compilability in ALGOL 60-P resp.
ALGOL 60-PL/1, But the following programs H3'with e
are not compilable, not even partially:

begin int a;
proc p(x,q); {q(x)};
{p(a)} end
resp.
begin int a;
proc p(x,q); int x; proc q; {q(x)};
{p(a)} end

Specifications in the manner of ALGOL 60-SF do not help either.
The program nu

- 1A

begin int a;
proc p(q); proc(procliq; {q(r)};
proc F(x); proc(int) x; {x(a)};
proc r(y); bool y; {y := true};
p(f) end

|
is compilable, but program n*
begin A ; {f(r)} end

"
with e is not partially compilable. On the other hand

we can state the following:

Lemma 2: If T is a compilable ALGOL 60-68 program and if

nr5-n", then " is compilable, too.

Proof: Let NM#—1n', By Definition 5 all formal parameters Xs
occuring in ¢ are replaced by the corresponding actual para-
meters a.. As T is compilable in ALGOL 68, X4 and a; have
identical declarator trees. Therefore, as the application of
X4 is appropriate in 1, the application of a; in T' must be
appropriate, too. Q.e.d.

In other languages this conclusion fails as in spite of com-
pilability of I, Xs and a; do not necessarily have identical
declarator trees. In our example !I'4 q has the declarator tree
proc(proc), f has proc(proc(int)). These trees are not contra-

1
dictory, and they are not identical either. But in Hu the decla-
rator trees of r proc(bool) and of x proc(int)are contradict-
ory.

Lemma 3: If N—T1N', then the procedure call f(ai,...,an) in
T, mentioned in Definition 5, is uniquely determined by n,n’'.

Lemma 4: If a diagram
N
nl nlt

holds, then ' and n" are identical or we can find a program
n'" with

- 14 =

O\
%

I "nt

if 1' and n" are partially compilable. An analogous lemma holds
if we invert the arrows.

Lemma 5: If

- e o '
n-no — E.i — I-———nmzn and

‘= 1 L) r--~= '
n 'ﬁ'o. L Tl =1

then m=M and one sequence generates the other by successive re-
placements of partial sequences nil——— n oo ni+2 by

By =M, b D400

i+1

Definition 6: Let T be a formal program where { and } are used

only as body braces. We call NI an original program. Then

Eo g {n'|m-2-nr}

is called the execution of N, Programs N' in En, different from
I, are called generated programs.

For a generated program N' in EH the following is true: In the
main program of N' outside of any innermost call brace
pair all applications of identifiers are appropriate. A program
n'eEn is maximal if and only if a) H; is compilable and does

not contain any procedure statement or b) there is exactly one
innermost call brace pair in né with an inappropriate applic-
ation of an identifier or c) n; is equal n, with an inappropriate
application of an identifier. Maximal programs N' in En of cate-
gory b) or ¢) are exactly those, which are not partially compil-
able,

En contains a tree Tn the nodes of which are exactly those
programs in EII with at most one innermost call brace pair., We
call Tn the execution tree of N. There is a bijection In

- 15 =

from E; onto the set ?“ of all finite subtrees of Ty» which
have at most one program which is not partially compilable:

i-1
IH‘EIT o'n-tg ’+H s
I“ has the property

L n"ﬁ'In(n') is a subgree of In(n").

,'io-rmq,lt?
Definition 7: An original program n is called to b&1 correct

with respect to parameter transmissions or simply to have
(or Tn)

correct parameter transmissions if all programs in E
are partially compilable.

n

Lemma 6: If I has correct parameter transmissions then En is
a distributive lattice isomorphic to the lattice of all finite
subtrees of Tn'

Concerning programs N which have correct parameter trans-
missions we may give the following remark: Compilable programs
1T without procedures can be understood to be denotations for
transformations Fﬁ of states (eventually storage states)

Fﬁlﬁ.+'a

where ¥ is the set of all states. In general, Fﬁ is only partial-
ly defined. Now, let N' be a program in E . We may alter '

into ' by eliminating all procedure declarations and by re-
placing all remaining procedure statements by

M : goto M

which denotes the totally undefined transformation

FG =0 C 0Tx0T ,

Now, if ' +—— " then Fpo € F
lattice, the union

F; = L__J Fﬁl

)
n &En

m S Tx T, Because E, is a

- 16 =

is a partially defined transformation. So a program I which
has correct parameter transmission can be understood to be

a denotation for the transformation FX defined abovel 1 1.

n

VI, Programs without Global Formal Parameters

If T — N', then for all declarations 0 in T we have identi-
cal copies 9' in N'. For all declarations @ in the body p we
have additionally modified copies 3' in p' as parts of n', If
T 2 I 5 dee, W= B, = Hy b 22 :——nn = n', n>0, then it
is clear now, how to define when a declaration @' in n' is
called a copy of a declaration d in 1. Let T be an original
program and n', NI" programs in E" or Tn. Declarations d' in n"

and 0" in 1" are called similar if they are copies of the same
declaration 9 in 7m. A simple inductive argument shows

Lemma 7: Let d be a non-formal identifier occuring within the
procedure body of a procedure declaratlonfof an original program
T and let d have a declaration d. If_P is a copy of » 1P nt,
then d has been replaced by the identifier d' of a copyaof 4
within ¢'

Two nodes n' and 1" in Tn are called similar if their innermost
generated blocks (they are endlosed in call braces {}) p' and p"
differ by renaming of identifiers and if renamed identifiers
have similar declarations. The number of similarity classes for
nodes in Tn is limited by

M=P.G +1

where P is the number of non-formal procedure declarations, G
is the number of declaring occurrences of non-formal identifiers,
and F is the number of declaring occurrences of formal para-

meters in 1.

% 17 =

For a given original program I we gan effectively construct

the smallest subtree Un of Tn such that every maximal node
- L] . L] . - L] cLe

in UH is maximal in Tn or has a different similar precessor

in U;. Paths in U, have a length of at most M+1 nodes,

1
Let (i,x;) be an applied occurrence of a formal parameter in
program NI, If (i,xi) occurs in the body of p of a prccedure
y and if G(i,xi) occurs outside y then X4 is called a global
formal parameter of‘f. Example:

proc p(x); {proc qlyl; {...eXevvayieved; oui}

x is a global formal parameter of q.

Theorem 1: If an original program I has no global formal pro-
cedure parameters then I has correct parameter transmission

if and only if all programs in U_ are partially compilable,.

n
Corollary: For original programs I without global formal
procedure parameters it is decidable whether 1 has correct
parameter transmission or not.

Proof of Theorem 1: Let N' be a program in T, and not in Un.
Then there is a maximal node I'' in Up with

t= LI) =n"
I -no: nf F nn n", n>0,nve TH'

We show that all T are partially compilable and for everylIl,
there is a different similar node fv in Un. This assertion

is at least true for N . Let it be true for n O<v-1<n,

v-1"*
Then there is a different similar node T _, in Up. If T _,
is maximal in Unit cannot be maximal in Tn; otherwise, be-
cause of the partial compilabllity, the innermost call brace

pair of iv could not contain any procedure statement which

-1
would contradict m,-q4—",. So in any case there is a differ-
ent non-maximal node T in U_ similar to I . Both, I
v-1 i v=1 v-1

and ﬁv-l’ are partially compilable. Let

f(ai,...,an)

- 18 =

be the procedure statement within the main part of the inner-

which generates nv. In % there

most call brace pair of I
v v=1

is a corresponding procedur: statement

%3000
where f,?,ai,ﬁi,...an,ln have similar declarations. ?(31,...,?n)
generates %' in Ups

B, — T,
The declarations ¥ and ?'of f and ? are (eventually modified)
copies of one and the same declaration p of f in 1. We have to
check by which identifiers the global parameters d, occuring
in p, have been replaced in f and:?. d is non-formal by assump-
tion. So, by Lemma 7 in both cases d has been replaced by
identifiers having similar declarations. As a consequence the
nodes 1 and ¥' are similar and Hv is partially compilable, too.
So we have proven that N1 has correct parameter transmissions.
Q.e.d.

The following example ns of an ALGOL 60-P program with global
formal parameters shows that the assumption in Theorem 1 is
essential:

begin rproc 1(u);;{u(m,ud};
proc mlp);{p:=p};
A§ proc f(x,y);
{proc q(v);{x(w)};
proc p(u,v);{q(v)};y(m,pl};
£(1,f) end

5

x is global formal parameter of procedure q. 1 has the follow-

ing trees Uy and T,

- 19 -

n5=begin Aj;
f(1,f) end

voeo{proc q'(v');{1(v")};
proc p'(u',v');{q'(v")};f{m,p*)}....

eoeo{proc g"(v");{m(v™)};
proc p"(u",v");{q"(v"M)};p'(m,p")}....

|

SPRS (- R 6 - 10 D R p—

Ocoo.(-l(P")} LU)
similar nodes
o--n-{-p"(m’p")}ou'.

Un H°=....{Q"(p")}..-. S ;

LI B O B BN B R B B O B B B B B N O BN RN BN B BE B BN BN BN NN RN RE BN ONE BN RN BE R NN RN BN)

L

Klz..-.{M(P")}oo--
n2=....(p":=p“}....

All programs in U, are partially compilable, nevertheless, T

has incorrect parameter transmission as in m, p" is not applied
appropriately. The argumentation in the proof of Theorem 1 fails
here because the global parameter x of q has been replaced by 1
in q' and m in q", where 1 and m do not have similar declara-
tions.

VII. Equivalent Programs

In order to solve our decision problem for correct parameter
transmission we now might ask the following question: Is there
an algorithm which transforms any program into an equivalent
program without global formal parameters? Equivalence must be
defined in such a way that it is invariant with respect to
correct parameter transmission.

- 20 -

Let T be an original program. Let En resp. Tn be the execution
resp. execution tree of N. For any program n'eEn we form the
associated main program n$ and we replace every remaining pro-
cedure statement in n$ by a special symbol, say call. This is

the reduced main program n; of ',

Definition 7: Ern:={n;ln‘eEn} is the reduced execution of TI.
T :={H; ln'eTn} is the reduced execution tree of I,

ril

Trn consists of exactly those reduced programs which contain
at most one innermost call brace pair. The existence of non-
partially compilable programs in T, can be recognized in Trn
alone:
m' in T; is not partially compilable %
1) H; is maximal in Trn, and
2) the innermost call brace pair of H; has an inappropriate
application of an identifier or contains a call-symbol
or N'=N_ has an inappropriate application of an identi-

fier or contains a call-symbol.
If we define now

Definition 8: Two original programs are called formally equiv-

alent or simply equivalent if their reduced execution trees are
identical.

we can prove

Theorem 2: Let the original programs Ty and T, be equivalent.
Then my has correct parameter transmissions if and only if m,
has correct parameter transmissions, too.

In Definition 8 of program equivalence the term "reduced exe-
cution tree" could be replaced by "reduced execution" as the
reader may prove,

- 21 -

If two equivalent programs T, and Wz have correct parameter
transmissions, then they define the same state transformation

X X
Fnl-f‘nz .

VIII. Undecidabilities

As all our experiments concerning the construction of general

algorithms which eliminate global procedure parameters failed,
we were led to the conjecture that our decision problem on

correct procedure parameter transmission might be unsolvable,

in general. So, we will now attack this conjecture by the help
of Post's correspondence system’, Such a system has two alpha-

bets

o=
ﬁi_

Dﬂltﬂ

,B}
'1'3

:bl :>
Bt 2
91

1]

]

At
$
So we have an isomorphism

o i

ont

which we continue to

' i ﬁi‘

onto

We consider a production system

B

P |

P={?T1=(cl,cl)=(C11...C1n 2Ciq°++C45

ses e e

B o

Tmz(cm’cm)z(cm ...C mn"n

g
’
mn, > “m,

e#c va ; ?\EO‘L’

- 2D

Definition 9: & =(0l,0L,M) is called a correspondence system
of Post.

We consider non-empty sequences of indices Jqseeend, with r>1,

1<y zm.

Definition 10: A non-empty sequence of indices is a solution of
x § o I..'e I.llc .
jl jr ji

!‘

Post's Theorem: The property "J& has a solution" is undecidable;
in other words: Post's corespondence problem is unsolwable[411].

For any given correspondence syateﬁﬁof Post we will now effect-
ively construct a compilable ALGOL 60-P program nx which ful-
fills the following

Lemma 8: £ has a solution & I, has not correct parameter trans-
mission.

As a consequence we have

Theorem 3: It is undecidable whether a compilable ALGOL 60-P
program I has correct parameter transmission,

For givenij we construct program Hc.

‘begin
comment The first part of N, is identical for alll ;

proc D(x,y);{}; N

proc M{x,y);{x(y)};

proc Mi(x,y);{ x(D)};

proc E(n);{n(E,D,D,M1)};

prod ECgja,8,v)i(v (g D)}

comment The second part of ne is different for

differentl . For every j,1<j<m we have a

procedure Lj‘ Within Lj we have procedures Cj1[1]""'cjnj[njj

corresponding to the letters C i in ¢, in the production
T5=(cj,Ej). We have additional procedures C [1],...,C [nj]

BUe (3¢ 1t @ D

w It Q J40J pue <|.ﬂ—m0 JT » J40J UOTIjRIOUapD P wﬂ AH%UV
T

D 3T d ‘W 40J SUOTIRIOUSP a® Aﬂh v«ﬂ Aﬂn v % UIFWWOD

13

*g=""0 JT W ‘qQ a0F pue y=

£ ¢ Cug !
¢ (u mﬂ _.nu Uvzﬂhﬁm”_ C—-” ahﬁﬁu J) ..mn-- _”ﬂﬂu —..mﬂUa ﬁ:.._ GHU T
(4] 2

¢ [.n
mAmﬁm au c%o nva mﬂUVmSw ()¢ " th m g doad
Mn—.nwt.ﬁu_ﬁ ~y aMuAﬁl.:nUV .Fw Ac—-am_a Mu _“.nl.ﬁu [a
o WMA_‘rﬂuHﬁ .Mvhwﬂuvmﬁwmnbnﬂa .MV_MN.._N_.“ Soxd
¢ { (& D& ow sw (2°¢¢» .m;d 5 5oad
: .n.

¢f(a Ac_muv < amuvr.@- wt 85 (W ?.“_ ﬁo Soad

£ € y I
¢ @t F BT g T e 17 Fug i U Ny U quy (r-Pug P Soad

™~
™
o
Q
R

¢f (a* <Forlre 5o e 1 o)) %;Snmo e
¢ fear FFaslas Frosrhrexy uhs (1] o Sead)
$(A%x) wd soad

‘[i¥]#[r] seorpur Aq wayl ysin3durl
~-STP O3 9ABY 9M (g 40 y) Swes 3yl ¥q JY3rw ,T#T ..wnu pue ﬁﬁu sa@13e] Yl sy .ﬁw o031 Burtpuodsaaaod

= P -

Proof of Lemma 8:

Any path in TH starts with a non-empty sequence of calls
&

of Lj:

II L n L n . s L n
‘m"_jl" -r:ji'""jz" Zj 3 ’_jf,_ <
1 172
We describe the structure of the node H£ with r 21,

1 2 jp 2 m.
Let us denote the corresponding strings

cji W cheOf and Eji & W Ejpcﬁf

YET by

with ¥i = (ep .8
- 5P I

o J
Dj. LI] DN and D1 LI] DN
with D;ed, DiEOL N = nj1+...+njr

~

and N = A, +...+0. .
31 jr

The necessary renamings of identifiers in H(' can be
]1 " " Jr‘
performed by raising the discriminating indices [i] of

Cji[i]and Cji[i]
Compared with I, HL has the following additienal

ji LI] jr

procedure declarations (x)

proc Dl[i]fn)j{n(E,&i <Dy > %, <Dy > ,D)}
proc Dy [K] (n);{n(Dy_, [K-1],% < D, > ,% < D > ,D)}
for K = 2,;..,N
[(£,0,8,8) {23 <Dy > (£,))
proc Dy [K] (€ ,a,8,0); {2y < Dy > (&,Dgq [K-1])]

for K = 2,...,N

= 28 -

The main part of the innermost call brace pair of no
has the following procedure statements (=xx) jl“'jr

(.. 3Lg (O[N], B[R]) 5. 00 5L (DG [N], D[R] sM(Dy[N] ,5ﬁ[ﬁ])}

The proof for (x) and (xx) can be given by a simple inductive

argument., I . 1is compilable. Therefore, the only chance
]1...]P
to hit a maximal node on a path in Tn is to call M for a
L

first time. Repetitive calls of Li lead to an infinite path

in ch.
In a first case we assume that there is a greatest number h
with T~ = Ty~

h>0, N-h>2, N-h»>2

Under this assumption we have a path

ﬁcj s = oo foa MO [N] DR IND Y.
1 r -
.+ Dy [(N] (DR[N]}, ..
...{Dﬁ[NJ(DN_lfN-i],w <Dy>»%,<Dy>, D)} ..

oo M, [N-1],D5 , [N-1]D1. ..
which obviously can be pfolonged to

ve {M(D [N-h-1],D [N-h-1])}...

N-h-1 N-h-1

We put N=N-h-1 and ﬁ:ﬁ-h-i if h exists. In the second case,
where h does not exist, we put ﬁ:N, N=N. Now, we have the
following cases

b

a) N2, W22

b) N=1, f>2 .
¢) N»2, N=1 [@and Dg=Dg
a) N=1, N=1 |

e) N=1, N> 2

£) ﬁl?, §=1 and Bﬁzbﬁ
g) N=1, N=1

- 26 =

and in any case we can prolong

.--(-..M(Dﬁ[ﬁ] ,5&[&])}...

...(nﬁ{ﬁ]<5§[ﬁ]>}...

Case g) means exactly that ji""’jr is a solution of L
The other cases express the contrary. Case g) leads to a
node in T“L which is not partially compilable:

...{51[1](E,wﬁ<ni>,ab<ni>,n)}...
W MCE, ...

v AE(E}. ..

... {E(E,D,D,M1)}...

o s ML CELEVE,: vs

es i {BIDY Fasa

...{D(E,D,D,M1)}...

D is not applied appropriately. All the other cases lead to
a maximal node with a dummy statement between the innermost
call brace pair:

case a) T
[

-{DA ﬁ] (Dﬁ-1[N"‘1] ,“1<Dﬁ>’u <D'ﬁ> ,D)}.no

case b) T
(

N (E, <D,>,%,<D,>,D)}. ..

3
T = ~
...{D(E’Dﬁ-l [N-i])}o .

DDI{ }..'

- 3 -

case ¢) T
.. 1D, [1] (Dg_, [N-1] ;2 <Dy>,%, <Dg>,D) }. ..

...{D(Dﬁ_l[ﬁ-lj,f)}...
T
l'.{ }‘l!

case d) T

..{51[1](E,H1<D1>,N%<D1>,D)}...

...{D(E,ED}...

0.‘{ }.I.

—

case e)
...{Dﬁ[ﬁ](E,&1<D1>,¥5<D1>,D)}...

—

~

. {M(E ’Dﬁ"i [ﬂ-ﬂ) })

__’

~

. AEBg_, [N-1])1...
Nl
"'{Dﬁ

T E if N-1=1

OOO{D(E’-. . -~)}...
T Dﬁ_z[N-ﬂ if N-1>2

oa{ }ooo

_4 [R-1]¢E,D,D,MD)}...

case f) T

v {51 [1] (Dﬁ-l [ﬁ—l] ,wl‘Dﬁ> ,w2<nﬁ> ,D) } e

__l

...{M(Dﬁ_l[ﬁ-i|,3)}...

—

...{Dﬁ_i[ﬂ—i](ﬁ)}...
TE if N-1=1
ooc{E(,'&1<DN_1> ,m2<Dﬁ,-1> ,D)}o-l

v

TDﬁwz[N—z] if N-1>2

E
...{D(or v sE)Y...

TDﬁ_z[N-ﬂ

eoef |

- 28 =

So we see that TH has a not partially compilable node if
and only if there is a solution j,,...,j of & o Quead.

For better illustration we construct EL for a concrete corres-
pondence system £ with

(BA,B),
(B,AB)} .

M= (v,
Y2

(°1’§1’
(c2’°2)

L, has the solution 1,2 as

cic2 = BAB = BAB = 6162

(case g)) whereas e.g. 1 is no solution as

c, =BA+ B =&

i 2

(case ¢)). The second part of T looks as follows:

proc L, (x,y);

{proc B[1](n);{n(x,D,M,D)};

proc A[2](n);{n(B[1],M,D,D)};

pI‘OC F[i] (5 ’GQB’Y);{B(E jY)};

Li(A[Z],E[i});Lz(A[Z],E[l]);M(A[2},E[l])};
proc Lz(x,y);

{proc B[1] (n);{n(x,D,M,D)};

proc A[1] (£ ,a,8,¥);{alE,y));

proc B[2](£,a,8,8) ;{85 ,AK[1])]};

L, (B[1] ,B[2]);L,(B[1] ,B[2]); M(B[1] ,B[2])
L, (E,E); L, (E,E) end

A subtree of T is:
-

it

My

2p)

H.Cl =

- 29 =

= ..lLi(E’E).‘.

——— M4 = ...{proc B[1] (n);{n(E,D,M,D)};

proc A[2] (n);{n(B[1] ,M,D,D)};
proc -B[i] (€ 0,8 s8)3{3(5 ,E)}j
Ly (A[2] ,B[1]); L, (A[2] ;B[1]);M(A[2] ,B[1])}...

«..{proc B[3] (n);{n(A[2] ,D,M,D)};

proc 7{[2] (£ 058 58)y {a »B[1])}}
proc B3] (£ ,a,8,8),{B (€ ,A[2])};
L,(B[3] ,B[3])4L,(B[3] ,B[3]);M(B[3] ,B[3])}...

l

s 5 3 3 FOGEE B BT L) 99 o s ...{3[3](3[3]>}}..

«oo{A[2] (B[1])}... ssw1BLa] CA[2] 3D M,D¥Y e s

1

.+ «{B[1] (B[1] ,M,D,D}}. ...{M(A[2],A[2])}...

...{D(B[1] ,ED}... oo lal2] el

o Yoo ...{&[2] (B[1] ,M,D,D)}...
partially compilable
..IM¢B[1] ,B[1)}...

LAB[1] (Bl ...
W B[1](E,p,M,D)}...

LIMGELE)).,

o {BLEY T, o

..{fcz,l,D,M1)}...
A MIEEEY) s o

¢ 5l (cjj;}...
2a sl DUE B B M1 MY o«

not partially compilable

w 30 -

The constructed programs Tn remain compilable in
&L

ALGOL60-SF if we add appropriate specifications. All formal
parameters x, £ get the specification proc (proc), y,n get
proc (proc, proec, proc, proc), a,B8,8 get proc (proc, proc).

Lemma 8 remains true. The only difference in the proof is
that in-appropriate application of D reveals already in
s+ LBCDY) d g
so that
s 5 LDCE sDDsM1 ¥ i s
cannot be a successor.

Theorem 4: It is undecidable whether a compilable ALGOL60-SF
(or ALGOL60-PL/1) program T has correct parameter transmission.

On the other hand, it is impossible to add appropriate speci-
fications such that all Ny become compilable ALGOL60-68 programs
and Lemma 8 remains true. If so then because of Lemma 2 there
would not exist any solvable correspondence system. We can

even prove directly for every I :

Lemma 9: It is impossible to add appropriate specifications
such that Iy becomes a compilable ALGOL60-68 program.

Proof: If the contrary would hold we had the following
equations for declarator trees:

3E = 9x™ = Bflnd[ni] = Bx

PE = Yyl = c,, [A,] = oyM
As a consequence we can show up an equation

proc (BEE,BaE,QBE,QX) = proc (3x93YD)
as for the program 12. Contradiction! Q.e.d.

- 3] =

IX. Application of the Proof Methods on Other Problems

Theorem 5: It is undecidable whether two original programs are
equivalent.

Corollary: There is no general algorithm which transforms any
original program into an equivalent one without global formal
parameters.

Proof of Theorem 5: For everyd{, we construct two different programs
% andlﬁ?. ForT&} the body {x(D)} of M1 in 1, is replaced by

[¥, for!&? by {real Aj;A:=A+1}, H;i andnx? are equivalent if and
only if L has no solution. So equivalence of ALGOL 60-P pro-

grams is undecidable. This is true even for ALGOL 60-68 programs
and consequently for ALGOL 60-SF and ALGOL 60-PL/1: For all for-
mal parameters x,f we add the declarator tree a, for y,n we add

b, for a,B,y we add ¢ with

"
F
o
Q

o jo ja

(
= proc (
=z proc (
It is impossible to prove Theorem 5 only with finite declarator

trees as the following condition must hold:
Ecini[nl]zgroc(aclmi_i[nl-i],...,...),if n,>2

]
- Q.e.d.

or Q [n]=Eroc(3xL1,...,...,...),if n,=1.
1h1 1 1

In any case we have
'acln [n1]=ErOC(.I.(Eroc(ngl’l‘l".l’.I.)I..)
1 p ~ —
at least 1 time
=Eroc(...(2roc(gc1n1[n1],...,...,...)...),

an equation which can only be fulfilled by infinite declarator
trees. Therefore, we formulate the

Conjecture: Equivalence for ALGOL 60-68 programs becomes decid-

able if we restrict ourselves to programs with finite declarator
trees.

Definition 11: A procedure y in an original program I is called

formally reachable or simply reachable if there is a node I' in

TH whose innermost generated block is the modified body of a

copy of p .

- 32 =

Theorem 6: It is undecidable whether a procedure ¥ in an
original program with correct parameter transmission is
reachable,

2

Proof: M1 in N,” is formally reachable if ard only if L has

a solution. This is true for all four languages. Q.e.d.

Definition 12: A procedure ¥ in an original program I is

called formally recursive or simply recursive if there is

a path in T; with two different nodes whose innermost gene-
rated blocks are modified bodies of copies of ¥. ¥ is called
strongly recursive if there is a path in Ty with two differ-

ent nodes whose innermost generated blocks are modified
bodies of identical copies of a copy of ¥.

Theorem 7: It is undecidable whether a procedure in an ori-
ginal program with correct procedure parameter transmission
is recursive resp. strongly recursive.

Proof: In n£2 we replace the body {real A; A:=A+1} by
{M1(x,y)} and we get Hza. As M1 is a procedure, declared in
the main program of Hxa, M1 is recursive if and only if M1
is strongly recursive. M1 is recursive if and only if. has
a solution. This is true for all four languages. Q.e.d.

Concerning Theorems 5 and 6 we have the analogous conjectures
as the one formulated above.

By application of proof methods similar to those of Theorem 1
we may prove

Theorem 8: For programs without global formal procedure pa-
rameters it is decidable whether a procedure is reachable,
recursive or strongly recursive.

- 33 =

X. Not Strongly Recursive Procedures

The difference between recursive and strongly recursive pro-
cedures is important for compilation techniques, because

those procedures which are not strongly recursive allow a
simpler implementation than others do. E.g. it is not necessary
to reserve indexregisters for them., Fixed storage places for
simple and auxiliary variables can be reserved among the

fixed storage of the statically surrounding procedure so

that we need an indexregister at most for this larger proce-
dure.

If we conceive blocks as procedures without parameters called
on the spot, then blocks are not strongly recursive. Loosely
formulated: Not strongly recursive procedures can be handled
like blocks.,

Generated procedures, generated by the compiler as a substitute
for complex expressions as actual parameters of procedure
statements, may be recursive but are not strongly recursive,

E.g. ...;PCA+B[2] ,X) ;. ..
has the compiled form

...3;begin real proc G;{A+B[2];P(G,X) end;... .

See [3], page 119.
A for statement with two for list elements

for i:=A step B until C, A step B until T do S

is to be handled as if two for statements

for i:=A step B until C do §;
for i:=A step B until T do S

with identical controlled variables and controlled statements
were given. Here the compiler will generate a procedure which

is not strongly recursive

begin
proc s; {S};
for i:=A step B until C do s;

for i:=A step B until C do s

end

- GH -

The blocks and the generated proceduraes are not strongly re-
cursive because of the following

Theorem 9: A procedure y without parameters whose identifier
f occurs in the main part only of the procedure body {or in

the main program) in which the procedure is declared is not

strongly recursive,

Proof: Let y have the form

proc f£;{p}

declared in the main part of the body of procedure 4 in n:

T=.....proc glxys.e.,x)3{...proc £3(0}30venatocens
FY
Let us have a look at a path in the execution tree T

H=Hol'--—- H1 P T[2 — c e

We may assume that all programs Hi are distinguished and that
successive programs

: s
nto— ntt?

are literally identical with the exception of that procedure

statement in n' which is replaced by a modified procedure body
i+l i

. . . : i
in order to give I . So, every declaration 6§ in " occurs

also in 13 for j>i and there is a smallest nymber i6 such that
8

. g 1 1 .
the declaration 8§ occurs in I g . We call n the assoclated

program of § and of the identifier of 3.
i
Let the path have a node I 5 generated by a cal]l of a copy ?“

1
of the procedure P Then, the path from m1° to T 5 has a structure
i Z.....proc g(xi,...,xn);{...groc 37 0 I TN

3. %
n 1=.....Eroc g'(X{s.eesx!)3{.. . proc f‘;{g'};...).....

i »% Vo

2 p¥
H =---..{....;g'(ai,--.,an);-oo}o----

i3 _
H =.....{....;{....EPOC f";{p“}‘;---};-.-}----.
L s tpu| J

% -I..% Fm

ol
H =..!.l..I'll{.ll;fl|;‘.‘.l.}lll.l-l.‘.l

iS

it =........{.....;{E;};.....}...........

i
n 3

has no parameters the associated program of any identifier h

is obviously the program associated to ?" and to f", As p"

occurring in E; is 1% with i<i, or i>i.. Furthermore, h is differ-
ent from f" by assumption.

Now, let h(ai,...,a;,)

i +1
be a procedure statement in the main part of ER and let 1 °
i ‘
result from 1 ° by a call of h(ai,...,aé.):
i5
n =||c{vcu-;h(ai,-a-,a;].');-‘o}noc'

i5+1 _
r[2....{.-.;{{);;;}5...}....

. . o . - . i
Any identifier h' occurring in p'™ has an associated program I
g = prog

with i<i, or iliss as we can easily see. Furtheron, h' cannot

3
be equal to f". Otherwise, h would be the identifier of a pro-
cedure declared within Em' parallel to p" and f" would occur

in the body of h. This is impossible by assumption.

Iterating this argument we see that p" is never called a second
time in the path. So p is not strongly recursive, Q.e.d.

In literature it is sometimes proposed to handle the blocks and
generated procedures as if they were general procedures., This
simplifies the whole translation and interpretation process, in
principle. In favour of efficient object code procedures which
are not strongly recursive should be processed differently. Un-
fortunately, Theorem 6 says that there does not exist any gene-
ral algorithm which figures out exactly these special procedures.
Therefore, theorems like Theorem @ have a great importance for

compilation techniques.

XI. Concluding Remarks

In a certain sense ALGOL 60 programs with procedures may be con-
sidered to be a sort of macro grammars which have been studied
in literature. In view of the results in |2|, Theorem 5 looks
surprising, an observation of Dr.H.Feldmann which we have to
thank him for. In a further paper on elimination of global para-
meters and on normal forms for programs with procedures we shall
investigate similarities and differences between programs and

macro grammars.

- 36 -

Literature

(1] J.w. de Bakker and W.P. de Roever: A Calculus for Re-
cursive Program Schemes. MR 131/72, Mathematisch Cen-

trum Amsterdam, February 1972,

[2] M.J. Fischer: Grammars with Macro-like Productions.
Report No. NSF-22, Math. Ling. and Autom. Translation.
Harvard Univ., Cambridge, Mass, May 1968,

[3] A.A. Grau, U. Hill, H. Langmaack: Translation of ALGOL
60. Handbook for Automatic Computation. Vol.I, Part b,
Springer, Berlin-Heidelberg-New York 1967.

(4] E.N. Hawking and D.H.R. Huxtable: A Multi-Pass Trans-
lation Scheme for ALGOL 60. Annual Review in Automatic
Programming. Vol.III, pp. 163-205, Oxford, Pergamon
Press 1963.

[5] C.H. A. Koster: On Infinite Modes. ALGOL Bulletin No. 30,
pp. 86-89, February 1969.

[6] P. Waur (Ed.) et al: Revised Report on the Algorithmic
Language ALGOL 60. Num. Math. 4, pp. 420-453, 1963.

[7] C. Pair: Concerning the Syntax of ALGOL 68. ALGOL Bulle-
tin No. 31, pp. 16-27, March 13970,

[8] H. Scheidig: Representation and Equality of Modes. Inf.
Proc.Letters 1, pp. 61-65, 1971,

[9] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, and C.H.A.
Koster: Report on the Algorithmic Language ALGOL 68. Num.
Math. 14, pp. 79-218, 1969,

(10] M. Zosel: A Formal Grammar for the Representation of
Modes and its Application to ALGOL 68. Univ., of Wash.
1971.

[11] E.L. Post: A Variant of a Recursively Undecidable Problem.
Bull. Am. Math. Soc., Vol.52, pp. 264-268, 1946,

	fb1972-3-0001
	fb1972-3-0002
	fb1972-3-0003
	fb1972-3-0004
	fb1972-3-0005
	fb1972-3-0006
	fb1972-3-0007
	fb1972-3-0008
	fb1972-3-0009
	fb1972-3-0010
	fb1972-3-0011
	fb1972-3-0012
	fb1972-3-0013
	fb1972-3-0014
	fb1972-3-0015
	fb1972-3-0016
	fb1972-3-0017
	fb1972-3-0018
	fb1972-3-0019
	fb1972-3-0020
	fb1972-3-0021
	fb1972-3-0022
	fb1972-3-0023
	fb1972-3-0024
	fb1972-3-0025
	fb1972-3-0026
	fb1972-3-0027
	fb1972-3-0028
	fb1972-3-0029
	fb1972-3-0030
	fb1972-3-0031
	fb1972-3-0032
	fb1972-3-0033
	fb1972-3-0034
	fb1972-3-0035
	fb1972-3-0036

