A new Hoare-Calculus for Programs
with Recursive Parameterless Procedures

by
Kurt Sieber

A 81/02

February 1981

Fachbereich 10 - Informatik
Universitdt des Saarlandes
6600 Saarbriicken

West Germany

1. Introduction

In this paper a programming language, consisting of while-

programs with block structure and mutually recursive para-
meterless procedures is presented. Two different denotatio-
nal semantics are defined for this language, viz. a dynamic
and a static scope semantics. For each of these semantics a
Hoare-style axiom system is presented and proved sound and

relatively complete.

A similar approach to a Hoare-like system with recursive
parameterless procedures was given in [APT 78], but Apt's
proofs were rather complex. He proposed himself in [APT 79]
to replace the denotational semantics by an operational one
in order to overcome the difficulties in his proofs. This
was done e. g. in [OLD] for a class of even more complex
programming languages. In the present report we have unsed
another way out, which essentially consists in

a) avoiding addresses by defining a nondeterministic seman-
tics for blocks with variable declarations and

b) introducing algebraic variables, i. e. variables which
do not occur in the programming language but only in the
assertion language.

The advantage of a) is a rather technical one:

Using addresses, one needs environments, i. e. partial func-
tions € from the set of variables to the set of addresses,
and states o, i. e. total functions from the set of addresses
to the set of data. A program is then usually interpreted as
a partial function, which maps pairs (e, o) to states o.
Hence, in order to define the semantics of Hoare formulas, a
first order predicate formula p must also be evaluated w.

r. t. pairs (e, o). This leads to difficulties, because p
cannot contain enough information about (e, o): p only con-
tains information about the values o(e(x)) for finitely many
variables x and e. g. does say nothing about the domain of €.

For this reason we have avoided addresses by defining a non-
deterministic semantics for blocks with variable declarations.
For more details the reader is referred to section 3.

The advantage of b) is more essential:

With the aid of algebraic variables we get a Hoare calculus
which seems to be more natural than Apt's or Olderog's ver-
sions. For a detailed discussion the reader is referred to sec-
tion 4.2,

The paper is structured as follows:

In section 2 basic definitions and notations are introduced.
In section 3 the programming language is presented and both
semantics - for dynamic and static scope - are defined. In
section 4 Hoare phrases are introduced. Section 5 and 6 con-
sist of the proof of soundness and relative completeness of
an axiom system for dynamic scope, and in section 7 it is
explained, how the axiom system must be modified in order to
get static scope. In the conclusion (section 8) the relevance
of our results is shortly discussed.

2. Definitions and notations

2.1. First order predicate logic

A first order predicate language L is built up from three sets:

a set F of funetion symbols,

a set P of predicate symbols,

an infinite set V of variables.
The terms and formulas of L are built up in the usual way.
F(L) denotes the set of all terms and Exq (L) the set of all
quantifier free formulas of L. L itself denotes the set of all
its formulas.

An interpretation for L is a pair I = (D, IO), where
- D is a nonempty set (the domain of 1)

- I0 is a function which assigns

to each k-ary f € F a function Io(f) : D

to each k-ary p € P a predicate Io(p) : Qk -+ {true, false}

k D,

A state o (for L and I) is defined to be a function o : V - D
L denotes the set of all states (for L and I). For every term

t of L a value I(t)(oc) € D and for every formula p of L a truth
value I(p)(o) € {true, false} are defined as usual.

Instead of I(p)(o) = true we also '«\rritej:.-.-l’Or p - p is called

valid in 1 (or: I-valid, notation:k=1p), ifh—I g P for all
o€ L. p is called valid (notation: k= p), iftzlp for all inter-
pretations I of L.

For arbitrary sets M, N and a (partial) function g : M~sN the

following notations will be used:

- dom (g) denotes the domain of ¢

- if m € M and n € N, then g [n/m] denotes the function g' with:
dom (g') dom (g) v {m}
g' (m) =
g' (m'") =g (m') for every m' # m

- if S c dom (g), then g|S denotes the restriction of g to S.

ps

For p € L, x € V and a term t of L, pﬁ denotes the formula,
obtained by substituting t for every free occurence of x
(being understood that bound variables of p have been re-
named previously, if necessary). The substitution lemma of
first order predicate logic then states that

I (pY) (o) = 1 (p) (olI(t)(0)/x]).
The definition and the lemma may be generalized in the usual

way for simultaneous substitution (denoted by Pii""’in)
s+ +34n

2.2. Partial orders

Let (P, c) be a (reflexive) partial order.
If S c P, thenlS denotes the lowest upper bound of S (if it
exists) and for a, b € P we write a u b instead of U {a, b}

Furtheron lTet M be an arbitrary set.

Then the set (M - P) of total functions from M to P is made into
a partial order by defining for f, g € (M -+ P):

fcg & f(m) & g(m) for every m e N

If Sc (M>P), thenUS exists ifU{f(m)]feS} exists for every
m € M, and then: (US)(m) =U{f(m)]|feS} for every me€ M.

Let (Py, &€)s ... » (P,, €) be partial orders.

Then Py x ... x P, is made into a partial order by defining
(al,...,an) c (bl,...,bn) ® a;c bi for i = 1,..., n

If S ¢ Pyx...xP, then § exists iff Ulpr;(x)} xeS} exists for
i=1, ..., n (where pr,: P; x ... x P denotes the i-th pro-

jection), and then pr, (Uus) = U{pri(x)|x€§} for 1 2 1, .:@s Na

A subset S of a partial order P is called a A-set, if aub
exists for every a, b€S and lies in S.

Let (P,, c) and (P,, £) be partial orders and f: P; - P,.
f is called monotonic, if for every a, b € P,:

acb implies f(a) c f(b)
f is called A-continuous, 1f for every A-set S

(These definitions are taken from [ADJ].)

Let
f :

—

P, c) be a partial order with a least element |, and let
- P be A-continuous. Then the fixpoint theorem says:

|o

If {f'(]) | ie W} exists, then it is the least fixpoint of f.

2.3. Programming languages

We define a syntax to be a function ¥, which assigns to everey

first order predicate language L a programming language ¥ (L) and
which is monotonic w. r. t. "c". The elements of (L) are called
programs. In this paper only one syntax will be introduced, viz.
i

proc’ the syntax of while-programs with mutually recursive para-
meterless procedures.

A semantics (for a syntax ¥) is defined to be a function<, which

assigns to every pair (I, S) where

- I is an interpretation for a first order predicate language L,

- S € ¥P(L) for the same L,

a relation(I, S) ¢ L x £, the "meaning”" of S. Defining (I, S)

as a relation - and not necessarily as a partial function - allows

to consider also nondeterministic programs. We shall introduce
proc:U“dyn (dynamic scope) and A . . (static

scope). As both semantics are never considered simultaneously,

dﬁyn (I, S) and““stat (I, S) will both be denoted by;ﬂI(S).

two semantics for ¥

2.4. Hoare logic

Let Lo and L, be two first order predicate languages, such that:
“leslyoand
- VA N Ve is infinite

(where V, and V. denote the variable sets of L, and L)

The set of Hoare formulas for L, and ‘J"(l._E) is then defined as
W (Lys F(Lg)) = Ly v ({pIS{a) | s q € Ly, S €F(Lg))
i. e. it is an extension of L,.

-L-E is called the expression language and L, the assertion language
ofx(l._A, !f(LE)), the variables of V. are called program variables,
the variables of V, \ Vo are called algebraic variables.

Let I be an interpretation for L, and J a semantics for ¥. Let ¢

be the set of states for L, and I. As ¥ is monotonic, Y(L;) ¢ f(L,),
and so¢a1(S) c L x I is defined for every S € Y(LE). Hence a truth
value I(h)(o) can be assigned to every h € 7E(LA, $(Lg)) and 0 € £
by:

a) If h = p € Las then I(p)(o) is defined as usual.
b) If h = {p} S {q}, then
I({p} S {q}, o) = true

- If I(p)(s) = true and (¢, ¢ ')e J(,I(S)
def. { then I(q)(e') = true

« I(p)(o)
® {I(p)(o)

false or:

true and I(q)(o') = true for every o'
with (o,0') E»KI(S)

Because of a), Hoare logic is an extension of first order predi-
cate logic. The notationsr-l’o SRR S EERRTI R and the accor-
ding definitions are also generalized from predicate logic to
Hoare logic, in particularh-l{p} S {q} means:

"For every o € L: If I(p)(o) = true then I(q)(c') = true
for every o' with (o, o') EcJLI(S)"

In this caseuul(S) is called partially correct with respect to p
and q. More generally, an arbitrary relation R is called parttally
correct with respect to p and q, if for every o € L:

I(p)(o) = true and (o, o')€e R implie: I(q)(c') = true.

Note that all the definitions also depend on the semantics «,
but as J will always be known from the context, it is omitted in
the notations.

2.5. Hoare axiom systems

A Hoare axiom system AX for a syntax ¥ is a set of axiom schemes
and inference rules which allow, for arbitrary languages L. and
Ly to derive Hoare formulas on(LA. .‘P(_L_E)) from formulas of L,.
We do not require that AX works with Hoare formulas only: We shall
introduce two axiom systems, AXDYN (dynamic scope) and AXSTAT
(static scope) for!fproc. which will both use more general con-
structs for the derivation of Hoare formulas, so-called Hoare
phrases (see [APT 78]).

We omit a more precise definition of "axiom scheme", "inference
rule" and related notions, but only introduce the notation“r—lh"
for h € (L, ¥ (L)) to stand for "h is derivable from I-valid
wff's of LA" (by an axiom system, which will always be known from
the context).

An axiom system AX for ¥ is said to be sound w. r. t. a semantics
Jd, if for every expression language EE' assertion language LA and
interpretation I for EA:

Ife~ h for some h € R(Ly» ¥ (Lg))» theniy h.

We shall prove AXDYN to be sound w. r. t.uadyn and AXSTAT w. r. t.
dhtat"

In order to examine questions of completeness of Hoare axiom
systems the following notions have been introduced by Cook (see
[COOK]):

a) Let L be a first order predicate language, I an interpretation
for L and I the set of states. If p € L and Rc X x I is a re-
lation, then q € L is called a strongest postcondition of p
and R (w. r. t. I) if

I(q)(c') = true » there exists o € £ such that
I(p)(o) = true and (o, o') € R
q is uniquely determined up to equivalence in I, so that one

usually speaks of the strongest postcondition.

b) Let Lg, Ly, I,¥and be as above.
L, is called I-ezpressive w. r. t. ?(LE) and M if

- LE contains the equality symbol, which is interpreted by I as
equality on D.

- For every p € LA and S € :P(_L_E), -'=A contains the strongest
postcondition of p andsMI(S).

c) A Hoare axiom system AX for ¥ is said to be complete in the
senge of Cook w. r. t. a semantics M if for every L., L, and
interpretation I for L,, such that L, is I-expressive with
respect to ?(LE) andd(:

Ife; h for some h € !f(_l._E)). then -4 h.

We shall not prove completeness in the sense of Cook for our

axiom systems, but relative completeness in a new sense: In the
sequel "expressiveness" will be replaced by a notion called "strong
expressiveness", and as this notion is indeed stronger, a weaker
completeness result is obtained. The relations between these alter-
native notions of relative completeness are discussed in section

8.

3. The programming language Tproc (L)

3.1. Syntax

Let PV be an infinite set of symbols, called procedure variables.
For every first order predicate language L we first define the
sets ¥t (L) of statements (with typical elements St, ...) and
E(L) of envirouments (with typical elements E, ...) by:

St :: = x : = ¢ (x €V, t € T(L))
|Stys St,
|if e then St; else St, fi (e € Expe (L))
while e do St od (e € Exqe(L))
|call P (P € PV)
|B

B :: = begin D E St end

D is a (possibly empty) list of variable declarations:
new Xx;; ... ; new x ; where x;, ..., x, are different variables.

E is a (possibly empty) list of procedure declarations:
proc P1 : Bl; «+e3 proc Pm : Bm; where Pl‘ “ %45 Pm are
different procedure variables. € denotes the empty list.

E will also be considered as a partial function from PV to
$¢(L) with domain dom (E) = {Pl’ N Pm} and with E(Pi) = B,
for i =1, ..., m. Note that a declaration proc P : B may
occur in E (as a substring) without P being an element of

dom (E).

An occurence of P € PV (resp. x € V) in a statement St is said
to be bound , if it is contained in a substring "begin D E St'
end” of St, for which P € dom (E) (resp. new x occurs inD).
Otherwise the occurence of P (resp.x) is called free. St is
said to be closed, if every occurence of a procedure variable
in St is bound.

Now the programs of ¥ (L) are defined to be the closed

proc
statements of Y¢(L).

- 10 =~

For the definition of the semantics we shall need another
syntactical construct, the so-called units:

Let L be a first order predicate language. Then a unit of
L is a pair (E | St) where E € € (L) and St € S (L). (We
use "|" instead of "," for better readability.) The set of
all units of L is denoted by U(L).

The notions "occurs free in", "closed", ... are transferred
from statements to units by defining a property of (E | St)
as the corresponding property of the statement "begin E St

end", e. g.: (E | St) is called closed, if "begin E St end"
is closed,

U(L) is made to a well-founded set (WFS) by defining:
(E;ISty) < (Ep|Sty) d:f_ 1(Ey) + 1(Sty) < 1(E,) + 1(St,)

or: 1(E;) + 1(St;) = 1(E,) + 1(St,) and 1(St;) < 1(St,)

(where 1(...) denotes the length of a string)

This well-founded-set-structure will be needed later for
definingtauyn and o,y recursively.

3.2. Program relations and procedure assignments

We have defined the meaning of a program to be a relation on
states. But not every such relation "makes sense" as meaning
of a program, e. g. we want to exclude (meaningsof) programs
which change the values of infinitely many variables or which
depend on the initial values of infinitely many variables.
This is done by the following definitions:

Let L be a first order predicate language, I an interpretation
for L and I the set of states for L and I.

Let Rc L x £ be a relation and F c V.

a) The relation 3: is defined by:

RE = {(1,7')| there exists (0,0') € R such that

and Tll\ﬁ =1 IE\E}
b) R is called F-bounded, if R = RE, i. e. if for every
(o, o') € R:

g 7 ol O z

- if t]p = ol 1| = o' | and Tl!\ﬁ = T'IE\E, then (t, t')

c)

is called a program relation if there is a finite set
such that R is F-bounded.

Im |=

Part c) of the definition is exactly what we wanted:

A program relation R only changes the values of the (finitely
many) variables of F and only depends on the initial values
of the variables of F.

In order to work with program relations we need the following
Temma:

Lemma 1:

(RE)E, i. e. RE is F-bounded.

a) EE

b) If R is F,-bounded and F, ¢ F,,
then R is also F,-bounded.

c) R is F,-bounded and F,-bounded
« R is (F; n F,)-bounded.

d) If R, is F,-bounded and R, is F,-bounded,
then R, U R, is (F; U F,)-bounded.

e) If (Ri)iEI is a family of relations, then (iU

el =

131 B

especially igl R; is F-bounded, if every R, is F-bounded.

Proof:

a), b), d) and e) directly result from the definitions.
C) Il”ll:
Let R be F,-bounded and F,-bounded and (o, o') € R.

Then o and o' coincide outside F; and outside F,, hence out-

side F; n F,. This proves R ¢ E(EI il 5,

Moreover let v, t' € L with

- L] -]
Henk, *%legne,r lEaE, "9l 0, 2

AN T VNG S

Then choose p, p' € I with

Pl = o, » Blg, 7 vy, » @l < WE 2P lg, < TlE, o

% E E 5 Lé E Ex

pli\(£1 A Ez) = p I!\(Elf‘ﬁz) (note that this is possible,

because

- 1 and ¢ resp. t' and ¢' coincide on F, n F,
- g and ¢' resp. T and 1' coincide on !\(51 nFk,))

Now, as R is F,-bounded, (p, p') € R and then, as R
bounded, also (t, t') € R. This proves EEI N 17 g R.

|lﬁll :

is an immediate consequence of b)

= 03 =

Note that part c) of the lemma can be generalized to finitely
many sets El’ . @ § in by a standard induction argument. This
implies that for every program relation R there is a least set
F, sucht that R is F-bounded. This set is called the variable
set of R, and is denoted by "var (R)". Furtheron, part d) of

the lemma implies, that the union of two - and hence of finitely
many - program relations is again a program relation.

We denote the set of all program relations (for given L and
I) by B. Then R is a partial order w. r. t. "c", in which every
finite subset has a lowest upper bound.

A procedure assignment is defined to be an mapping vy : PV - R,
and the set of all procedure assignments is denoted by I'. T is
made into a partial order as defined in 2.2., hence also every
finite subset of T has a lowest upper bound. For every y € T
and F ¢ V the procedure assignment YE : PV > R is defined by
YE(P) = y(P)E for every P € PV.

3.3. Dynamic scope semantics

Let L be a first order predicate language, I an interpretation
for L and (E |St) € W(L). Then we first define a function
afI(EISt) : T + X inductively by:

i) (0, 0') EUuI(Elx:=t)(y) o o' =0 [I(t)(o)/x]

i1) (0, ') EJLI(EIStl; Sto)(y) »

There exists o"€ I sucht that (o, o") €4, (ElStl)(y)
and (c",0') € .ltI (EIStz)(Y)
iii) (o, o') €M (E|if e then St; else St, fi)(y)

I(e)(c) = true and (o, ¢') Euﬂl (E|St1)(y)
or I(e)(og) = false and (o, o') eunl (E|St2)(y)

iv) (o, 0') Euﬁl(El while e do St od)(y) =

There exist n € IN and 04,...,0, €L such that:

o 7. g

0 =09, g! = O
(Ok'0k+1) €G“I(E|St)(7) for Kk
I(e)(ok) = true for k =1, ..., n -1 and

n
—
-
-
=
1
—
-

I(e)(on) = false

v) M (E| begin St end)(y) =M (E|St)(Y)

vi) (o, o') €#M;(E;| begin new x; DE,St end)(y) «
There exist d € D and o" € I such that:
(old/x], o") €M;(E;| begin DE,St end)(y)

and o' = o" [o(x)/x]

vii)uHI(E1| begin proc P : B; E,St end)(y) =
““I(El [B/P] | begin EZSt end)(y)

viii) My (E| call P)(y)

{ y(P) if P ¢ dom (E)
“E'Y if E = proc Py : By; ...; proc P : B

where (uE’Y. T, HE’Y) is the least fixpoint of

°E,Y ’ Em iy Em

(Rys---sRy) = (e [By)(YIRy/P1.. (R /P 1),

Mg (e |B) (VIR /Py1. . [R /P 1))

To see thatu(E[St) : T + R is always well-defined, one
needs the following 1lemma, which can be proved by struc-
tural induction (remember the WFS-structure, defined on
u(L)):

Lemma 2:
a)«“I(EISt): I >R is a well-defined, A-continuous mapping.

b) If F contains all variables, which occur free in (E|St),
and if for every P € PV, which occurs free in (E|St) the
relation y(P) is F-bounded, thenauI(E|St)(Y) is F-bounded.

(Part b) of the lemma is necessary for the proof of a) in the
case St = call P, i. e. clause viii) of the definition of
My (E|SE):
As (EIBi) < (E| call P) fori =1, ..., m,

the induction hypothesis holds for every (e|Bi), i. e. for

EsY s A-continuous, and if F is

every y € T the mapping ¢
a set, which contains all variables of the B.'s and all var(y(P)),
for which P occurs free in one of the Bi's, then

¢E’Y maps m- tuples of F-bounded relations again on m-tuples

of F-bounded relations. Hence JE%J (@E’Y)1 (dy ..., B) exists

in R" and is the least fixpoint of o Y,

A detailed proof of lemma 2 is left to the reader.)

Now, again by structural induction, it can be easily seen
thatdtI(ElSt)(y) depends only on those values y(P) of ¥y,

for which P occurs free in (E|St), especially is independent
of y, if (E|St) is closed.

As programs were defined to be the closed statements of (L),
this leads to the final definition Of”“dyn:

For every S € 8% (L) and interpretation I for L

roc

My (S) =y (e]S)(¥)

for an arbitrary y€T.

- 16 -

The definition of the semantics.an.d " is standard, except for
the treatment of variable declarations: Clause vi) means that,
by the declaration new x, the variable x is assigned a random
value d € D, then the rest of the block is executed and after-
wards x is assigned its old value o(x).

3.4, Static scope semantics

A static scope semant'icsuu,stat for ’;roc can be defined by
modifyinguudyn slightly:

For every env1ronment E and variables xl,...,xn,xl',...,
'€ vV let Exl »+-+3Xn" denote the environment, obtained by
Xl,.-.,xn

subst1tut1ng x1 T simultaneously for all occurences of

n
. Pi'yeua,P ! g Y gn s g X
Xps---aXg. Similarly EP%,...,Pn" , Stx%,...,xnn and

StPI ""5Pn are defined for statements St and procedure
1..-.’

variables Pl""’Pn’ P1 ,...,Pn'.

Then M

stat €N be obtained fromﬂdyn b

- changing vi) into:
(o5 a')EuKI(E1| begin new x; D E, St end)(y) =
There exist d € D and 0“€ I such that:

(o 1d/x'1, o) €y (E; X |begin D E, X' stX’ end)(y)
and o' = o" [o(x')/x']

where x'€ V does neither eccur in E;, D, E, or St nor in

any var (y(P)), for which P occurs free in (Ellbegin E,St end).

- changing vii) into:

,,kl(E1 begin proc P, : Bl;...; proc Pm : B St end)(y)

, SO IE
=M;(Ey proc Py’ (By) Pl""’Pmm i o |
begin St E%’:::'ﬁzm end) (v)

where Pl',...,Pm' € PV do not occur in El’ Bl""’Bm or St.

Lemma 2 also holds for““stat’ but in order to see that.,,it.stat
is well-defined, it must be additionally proved that the new
clause vi) is independent on the choice of x' and the new
clause vii) of the choice of Pl',...,Pm‘.

Note that this is the first time, that - in the new clause

vi) - we have used the fact, that y(P) is a program relation
for every P € PV. In the definition of dynamic scope semantics
we could have worked with arbitrary relations as well. But

in order to allow a uniform tratment of both semantics, pro-
gram relations were used foruﬂ%yn, too.

3.5. A program example

As our semantics definitions differ from usual definitions by
a nondeterministic interpretation of variable declarations,

we want to give a small example which illustrates this feature
of our semantics.

Let L be the language of Peano-arithmetic and I its usual inter-
pretation. Let St € ®(L) be the statement:
begin new x; if x = 0 then call P; y := x else y := x+1 fi end
and let y be a procedure assignment with:

Yy(P) = {(o,0l2/x])|oc € L},
i. e. y(P) assigns the value 2 to the variable x and does not
change the value of any other variable. Note that var (y(P)) = {x}.

With these notations we get forvddyn:

(0, ') €y(elSt)(y)

i There exist d € D and 0" € £ such that:
vi),v) - &

(old/x1, o") Edkl(ﬁlif x = 0 then call P; y : = x + 1 fi)(y)

and o' = ¢" [o(x)/x]

- 18 -

L

TP There exists o" € £ such that:

(010/x], 0") € My (e]call Py y : = x) (v)

or (old/x], o") € ﬂﬂl(sly : = X+ 1) (y) for some d % 0
and o' = o" [o(x)/x]

o' = ol0/x1[2/x]1[2/y]lo(x)/x]
or o' = o(d/x)[d+1/y]lo(x)/x] for some d % O

ii),viii),i)

w o' = ogld/y] for some d 2 2

and for"“stat:
(0, a') €M (elSt) (v)

vi)? y) There exist d € D and o"€ I such that:
(old/x'], o")EdtI(eﬁ_f_ x' = 0 then call P; y : = x'
else y : = x'" + 1 fi)(y)

and o' = o"[o(x")/x"]
ii?) There exists o" € L such that:
(a[0/x"'], o")€ M (e|lcall Py y : = x")(v)
or (old/x'], o")EgnI(ely : = x' + 1)(y) for some d = 0
and o' = o" [o(x')/x"]
< ' = o[0/x"102/x100/y)lo(x")/x"]

ii),viii),i) ©
or o'

old/x"'"][d + 1/yllo(x"')/x"'] for some d # O

« o' = 0l2/x]00/y]

or o' = old/y] for some d 2 2

-« 19 -

4. Hoare phrases and strong expressiveness

4.1, Definitidns

As was already mentioned in section 2.5. we shall use so-called
Hoare phrases in our axiom systems. They will be introduced now:

Assume L. and L, to be given as in section 2.4.
A generalized Hoare formula (gHf) for L, and U(L.) is
- either a formula of L,

- or a formula {p} (E|St){q} where p, q € Las (E|St) € U(Lp).
Instead of {p} (e|St) {q} we write {p} St {ql}; in this sense
every Hoare formula for L, and vbroc (Lg) is a special kind
of a gHf.

A Hoare phrase for La and U(Lg) is a construct of the form

G -+ H, where G = <gys.--s9p> is a (possibly empty) sequence

of gHf's, each g; being of the form {p;} call Piq;}, and H =
<h1,...,hn> is a nonempty sequence of arbitrary gHf's. We write
h instead of <h> , and H instead of <> - H. In this sense

every gHf and hence every Hoare formula is a special kind of

a Hoare phrase. Sequences of gHf's will be also considered as
sets and in this sense the symbols "c", "u",... will be used.

Let I be an interpretation of L, and X its set of states.
Let R denote the set of all program relations R c L x L with
var (R) ¢ Ve and Ie the set of all procedure assignments vy:

PV - R with y(P) E.@E for every P € PV. Then for every

(E|St) €‘u(_L_E) c u(l'-A) and y € I'r ¢ T the relationdLI(E[St)(y)
is defined and a truth value I(h)(y, o) is assigned to every
gHf h by:

a) If h = p € L,, then I(p)(y, o) = I(p)(0)
b) If h = {p} (E[St){q} then
I({p} (E[St) {q})(y, o) = true
If I(p)(c) = true and (o, o') €M (E[St)(y)
® { then I(q)(c') = true

- 20 =

Instead of I(h)(y, o) = true, we also writel, ’ oh

h .
=, stands for.pI‘Y'Uh for all o € £, and for a sequence

H of gHf's = I H means: k= Yh for every h € H.

A Hoare phrase is called I-valid (notation:p=; G + H) if for
every y € I'¢ :l=-I’Y G imp]iesl—I’YH, and valid (notation:
=G + H) ifl=I G + H for every interpretation I for Lp- of
course the definitions depend on the semanticse. Note that
for Hoare formulas (which are Hoare phrases of the special
form <> + {p} S {q}, where S is a program) these definitions
coincide with those of section 2.4., becausedtI(S) =
Jtl(eIS)(Y) for every y, in both semantics.

With the new definitions, strong expressiveness can now be
defined:

Let Lp, L, and I be as usual.

Then L, is called strongly I-expressive With respect to u(Le)

and M if:

- LE contains the equality symbol, which is interpreted by I
as equality on D and

- for every p € L,, (E|St) € U(Lg) and 1ist G of gHf's (as in
a Hoare phrase), the strongest postcondition of p and the

relation _J ‘AH(E|St)(y) is contained in L,.
YEPE"-I,YG

An axiom system AX for 9pr‘oc (working with Hoare phrases) is
said to be relatively complete in the new sense With respect
toudif for every Ly, L, and interpretation I of L,, such that

L, is strongly I-expressive with respect to U(L) and J{:

If == IG + H for some Hoare phrase, thenl—-I G » H.

- 2] =

4.2. The role played by algebraic variables

Having defined our programming language in section 3 and the
semantics of Hoare phrases in section 4.1., we are now ready
to discuss, which role is played by algebraic variables:

Let P be a recursive procedure, declared by proc P : B. In
order to prove partial correctness of P w. r. t. some formu-
las p and q, we have to apply Scott's induction principle, i.
e. we have to prove an assertion of the form:

" If y(P') ¢ R, thendd (e|B))(y) c R ",
where R is a suitable relation and P' is a "dummy procedure
variable". Such an assertion must be transliated into Hoare
logic by:

{r} call P'{s} = {r} Bg {s}

where {r}... {s} expresses the relation R.

Let e. g. P be a procedure which calculates the factorial
function, then r will be : x = a and s : x = a!,

where a € V, \ V. and, as a typical step in the derivation
of such a Hoare phrase, e. g.

{x = a} call P' {x = a!} » {x = a - 1} call P' {x = (a - 1)!}
will occur. This Hoare phrase is I-valid, as we have defined
the semantics of Hoare phrases by quantifying over y€Ig:

Let] 5 {x=a} call P'{x=al} for some y € I'y and Tet (o, o')€ vy (P').
Then, as a ¢ var (y(P')), also (olo (x)/al, o' [a(x)/al)€ y (P').

As I(x=a)(olo(x)/al) = true, the assumption implies:

I(x=a!)(c'[o(x)/al) = true, i. e. o'(x) = o(x)!
As this holds for every (o, ¢')€ y(P'), one gets I Y{x=a-1}ca]1 P'{x=(a-1)!}
Note that, if we had used a program variable y instead of the

algebraic variable a, the corresponding Hoare phrase would not
be I-valid, as e. g. if

Yy(P') = {(o, ol2/x1(2/y]) | o € £} for some yE€T,

then =, y {x = y} call P' {x = y!} holds,
but b= y {x =y -1} call P' {x = (y - 1)!} does not.

- 22 =

This is the reason, why in [APT 78] or [OLD], where no alge-
braic variables are used, the syntax and semantics of Hoare
phrases is more complicated:

Both authors add the declaration proc P : B to the Hoare
phrase and - roughly spoken - their interpretation of Hoare
phrases differs from ours as follows:

a) Apt quantifies over all y € T, for which var (y(P')) con-
tains only variables occuring in B. Hence

{x=y}call P'{x=y!}><roc P:B|{x=y-1}call P'{x=(y-1)!}>

is I-valid in Apt's sense, if y does not occur in B.

b) 0lderog quantifies over all y € T, for which y(P") is
an "approximation" of the meaning of P, i. e. in the above
example: y(P') = (@E’Y)n (¢) with E = proc P : B;

and n € IN.

As for these approximations, var (y(P')) contains only variables
occuring in B, all Hoare phrases which are I-valid in Apt's sense,
are also I-valid in Olderog's sense (but not vice versa).

Our concept, based on algebraic variables, seems to be more
natural than a) and b) and - moreover - has another advantage:

|
Let e. g. St be a statement, calculating (ﬂ) = ETT%fﬁTT

with a free procedure variable P, which is assumed to calcu-
late the factorial function. Then we are interested in asser-
tions like: "If P calculates the factorial function, then St
calculates (ﬂ), which can be written as a Hoare phrase by:

{x = a}call P {x = al} » {x=aay=b}sSt{z=/() (*)

Again this Hoare phrase will not be I-valid, if we replace a
by a program variable y.

Moreover we are interested in an inference rule, which allows
us to derive e. g.

{x = a} (proc P : B | St) {z = (§))

from (*) and {x = a} (proc P : B | call P) {x = al},
because such a derivation is closely related to the way of
thinking in structured programming. While in [APT 78] or [OLD]

= 29 =

such a rule does not exist and also cannot be introduced without
difficulties , our axiom systems contain such rules (see (D 11)
in section 5.1. resp. (S 11) in section 7.).

4.3. A property of strongest postconditions

Lemma 3:

For both semant1cs,auhyn a"d“ustat’ the following assertion
holds:

If F c V contains all variables of E and St, then
M; (E[St) (v)E c My (E|St) (vE) for every y € T.

The proof (again by structural induction) is left to the reader,

Lemma 4:

If q is the strongest postcondition of p and
then:

YeL#I’YGmI(E|St)(Y)

a)k; 6> {p} (Elst) {r} iff =, qg2r,
in particulare=; G » {p} (E|St) {q} holds.

b) For both semantics,u“hyn a"d“ustat’ q depends only on the
variables of G, p, E and St.

Proof:

a) is easy and is left to the reader.

b) Let F be the set of variables of G, p, E and St and
Tet U'IE = T'IE.

Then it must be proved that
I(q)(c') = true « I(q)(t') = true

Because of the symmetry of this assertion it is sufficient
to prove one direction of the equivalence:

Let I(q)(c') = true.

- 24 -

Then there exist y € I'r and o € L such that

= 1% G, I (p)(o) = true and (o, ¢') EJtI(E|St)(y).

Let T € £ be defined by: t|[p = ofp and 1], \F = |y \F
L LT IANE-

Then (1, ') 6‘,-M.I(E|St)(y)-E and, as F contains all variables

of £E and St, Temma 3 implies:
(1, ') €y (E]St)(vE).

As = YG holds, and F contains all variables of G,

P vF G holds too.

This implies, by part a) of the lemma: = " {p}(E|St) {q}

Finally, as F contains all variables of p:

I(p)(t) = I(p)(og) = true, hence I(q)(t') = true 0

= 9B -

5. An axiom system for dynamic scope semantics

5.1. The axiom system

Here we present the axiom system AXDYN for d%roc, which in the

sequel will be proved sound and relatively complete in the new
sense with respect toultdyn:

AXDYN;

(D0) {a;} (E|x : = t) {q)

(D1) G > h if 6c G
G' +ﬁ

(D2) G + < {p}(E|Sty) {q}, {q} (E|Stp) {r} >
G -+ {p}(E|St1; Stz) {rik

(D3) G > < {p ace} (E[Sty) {q}, {p A e} (E|Sty) {q} >
G > {p} (E|if e then St, else St, fi) {q}

(D4) A e} (E[St) {p}

G +~ {p
G » {p} (EJwhile e do St od) {p A — e}

(D5) G > <p > q, {q} (E|St) {r}, ros>
G +~ {p} (EJSt) {s}
(D6) G >~ {p} (E|St) {q}
+ 1p egin St en qt

(D7) 6 » {p3} (E;| begin DE,St end) {q3)

G~ {p}(E |[begin new x; DE,St end){q}

if a € lA \ iE and does neither occur in p nor in q.

(D8) G » {p}(E; [B/P] |begin E,St end) {q}

G + {p}(E;| begin proc P : B; E,St end) {q}

(D9) va. (I“lﬁDsl As wuh l‘n%:Sn) :)(p‘}::q)

<{ry} call P {s;},...,{r } call P {s }>->{p} (Elcall P) {q}
if n>0, P ¢ dom (E) and:

- 26 -

X is the vector of all program variables of p, Piseeesl

y is a vector of variables, which do not occur in p, q,

Pise«s s Sys-ees S, Of the same length as X.

a is the vector of all algebraic variables of Fisesesl

51’---, Sn.

(D10) G v <{py} call P' {qy},...,{py} call P'{q }>

i P

ne

n’

Pl »- : B
> <{p1} (Bl)Pi,...,P m {ql},..., {pm}(Bm)Ei E
m s e e s

m
m

19,42

G + {pi}(groc Py:Bys...5 proc P :B 3 |call P.) {ay)

for every i =1, ..., m,
where P'l,...,P'm are different procedure varibales
which don't occur in G.

(D11) G » <{r1}(E1]cal1 Pl){sl},...,{rn}(Ellcall Po) [8,1%
<{r1} call Pl{sl},...,{rn} call Pn{sn}> +{p}(EZ|St) {q}

(D12) G » h

G+ {p} (EIEZISt) {q}

if no procedure variable, which occurs in El, occurs

bound in (E2|St).

1,-.-,G+hn

G -+ <h1,..., hn>

The axiom scheme (DO) and the inference rules (D2) - (D5) are
slight variations of the usual Hoare rules for while-programs
and (D1), (D6), (D8), (D12) are trivial. The other rules are
shortly explained now:

(D7) :

The value of x neither has an influence on the execution

of the block-statement "begin new x; DESt end" (as x is

assigned a random value at the beginning), nor does it

change (as x is assigned its old value again at the and),

i. e. x behaves like an algebraic variable.

- 27 -

(D9): This rule is intuitively clear, if one thinks of the new
varibales y as denotations of the values of x before the
procedure call. (D9) is the basic rule for arguing about
procedures.

(D10): This rule expresses Scott's induction principle.

(D11): This rule may be called the "principle of structured
programming”: One deduces {p} (E2|St) {q} under the

assumption that Pl""’P (which may occur free in

(E2|St)) have certain prgperties. Then a new environ-
ment E, is added, in which Pl""’Pn have indeed these
properties, and as a result one receives {p}(E1 EZ[St){q}.
The restriction, that no procedure variable, which occurs
in El, occurs bound in (E2|St), is necessary because of

dynamic scope.

Note that (D11l) is not only useful, but necessary, be-
cause Scott's induction principle, i. e. (D10) does not
succeed for arbitrary assertibnspi, 95 hence one needs
(D11) afterwards (see section 5.3.).

5.2. Example of a derivation

Let L, I and St € ¥¢ (L) be as in section 3.5.
Then - according to the example in 3.5. - it must be possible to
derive in AXDYN the Hoare phrase

{true} <call P {x = 2} =+ {x = a} St {x = a Ay = 2}

We describe the most important part of this derivation:

- 28 -

() {true}l call P {x=2}+{x=a} St {x=a A y = 2}

{true} call P {x=2}+{b=a} if x=0 then call P; y:=x
p else y:=x+1 fi {b=aay=2}

(D3)|(D12)

——@ {true} call P{x=2}>{b=a A x=0} call P; y:=x {b=aay22}
(02)T(p12)

— @ {true} call P {x=2} +~{b=aax=0} call P {b=a A x=2}
T(D9)
(® (true > x=2) o ((b=a A y=0) > (b=ana x=2)) V

—@®) {true} call P{x=2} -+ {b=aax=2} y:=x {b=aay>2} V

(@ {true} call P {x=2} ~+ {b=aax#0} y:=x+1 {b=aay22}

® is an I-valid formula of L and the derivations of () and (}
are standard.

5.3. Soundness and relative completeness of AXDYN

Theorem 1:

AXDYN is sound and relatively complete in the new sense with

respect to«dﬂyn.

We must prove, that for every interpretation I of LA‘

a)k, G+~ H implies h-I G+ H

I
and for every interpretation I of LA’ such that LA is strongly

I-expressive with respect to y}roc (Lg) and:ﬂ%yn:

b)i==I G~ H dimplies = G - H

- 29 -

For this purpose the meaning of each inference rule, resp.
of tne axiom scheme is now described by a proposition. The
proofs of the propositions are given in section 6.

Proposition DO:

= P Dq,f « B {p}(E[x : = t) {q} ,
t ty.

especially every instace of (DO) is valid (as = a, > q,

Proposition D1:

iﬂl G+ h implies = G' + h.

Proposition D2:

a)m ;[G <{p}(E[Sty) {ql, {q}(EIStz) {r}>
impliest=; G » {p}(E|St1; St,) {r}
b) In the case of strong expressiveness one gets:

Ifi=; G- {p} (E Sty; St,)(a}, then there exists re L,
such that:

=, G~ {p}(E|St;) {r} and = G~ {r}(E|St2) {q}

Proposition D3:

-y G » {pAe}(E|St1){q} and = G » {pAﬂE}(EIStZ){q}
w6 {p}(E|if e then St, else St, fi){q}

Proposition D4:
a)l==I G+ {p A e}(E|St){p}

implies = G - {p}(E]while e do St od){pa-e}

b) In the case of strong expressiveness one gets:
Ifem G - {p}(E|while e do St od){q}, then there exists
r € L, sucht that:

b= por, k=, G +{rae}(E[St){r}and m (rae)>q

- 30 -

Proposition D5:

= G+ <p>gq, {q} (E|St) {r}, r o s>
implies . G > {p}(E|St) {s}

Proposition D6:
=; G > {p}(E|St){q}
@ k=, G > {p}(E|begin St end) {q}

Proposition D7:

E; G~ {pi} (E{|begin DE,St end) {qi} for some a e V, \ Vg,

which does not occur in p or q e

= G » {p}(E1|begin new x; DE,St end) {q}

Proposition D8:

=, 6 > {p} (E{[B/P]| begin E,St end) {q}
® k= 6> {p} (Eq| begin proc P : B; E,St end) {q}

Proposition D9:

'=I va. (r‘lg S 5] Au..A r‘n‘; >s5.) > (p's".: >q) e

=y <{ry} call P {sq}, ..., {r } call P {s }>>{p}(E|call P) {q}

Proposition D10:

a)l G u {py} call P' {a;},...> » < {p;3(B,) 1> Pm {q;},...5implies
I 17 —— 171 1 1 p p 1
1,--., m

= G > {p;} (proc Py : By;...5 proc P :B s[call Py) {a;]}
b) If x contains all program variables of G, By,...,B , a is a
vector of algebraic variables of the same length and r; is the

strongest postcondition of x = a and

YEI#I 3 M (proc Py : Bys...s proc Pz Bos | call Pu)(y)
- s Y

for i =1, ..., m

(ry exists in the case of strong expressiveness)
then one gets:

Fp 6w < {x=a}call P'i{r;},...o» <{xk = 5}(31)E} o

c) If additionally
= 6> {p}(proc Py :Bys...; proc P :Bm;] call P.) {q}
for some i € {1,...,m},
then one gets:

= {x = a} call Py {ry} > {p} call P, {q}

Proposition DI11:

Ifee; G~ <{r1}(E1|ca11 Pl){sl},...,{rn}(Ellca1l Pn){sn}>
andi=I <{r1} call Pl{sl},...,{rn}ca11 Pn{sn}> -~ {p}(Ez[St){q}
thenk=; G > {p}(E; E,|St) {q}

Proposition D12:

(coincides with the definition of#=I G + H)
=y G>hyyeeey G e Py G><hy,oon, b

Now theorem 1 will be proved with the aid of the propositions:

a) Every instance of the axiom scheme (DO) is valid, and every
inference rule, when applied to I-valid premises, yields
an I-valid conclusion (see the propositions). Now by a stan-
dard induction argument on the length of the derivation of

F'I G - H one receives:

— I G+ H implies F'I G+ H

- 32 =

b) Because of (D12) and the definition oflml G+ H, it is
sufficient to prove that in the case of strong expressive-
ness:

= I G+ h implies Ll G+ h for every gHf h.
For this purpose, the set of gHf's is made to a wellfounded

set by defining:

-

hy <h, 4e¢ Ny €L, and h, = {p}(E|St){q}
or: hl = {pl}(Ellstl){ql}, h2={p2}(E2|St2){q2}

and (Eq[St;) < (E,|St,)

Now the assertion can be proved by structural induction:

h=p€LA:

hI G+ p means &= p, which by definition is equivalent to
P Ort= < > > p. Now one gets by (D1):

=1 G > p

h = {p}(E|St){q}:

As an example we consider the case St = call P, which is the
most difficult. The other cases are left to the reader.

Assume b= ; G > {p}(E|call P){q}.

(1°) 1f P ¢ dom (E), then it is sufficient to prove
= G - {p}(E|call P){q}
where G' =<{r1}ca11 P{sl},...,{rn} call P {sn}> (%)

is the set of all gHf's of G, which contain call P.

From (*) one gets by proposition D9:

l—‘-I v a. (I"l‘¥351 A v Arngnsn):(pﬁsq)

- 33 -

which is equivalent to:

= va. (r‘1¥:sl gy W

>s,) > (pf > q)

1<

n

Then (D9) yields:

= G {p}(E|call P){q}
and (D1):

=y G > {p}(E|call P) {q}

Proof of (x):

Ifl==I G' for some Y €lg,

then let y' be defined by:
y'(P) = vy(P) and y'(Q) = ¢ for every Q # P
Thent-I gt G holds, which 1mpl1'esp-1 Y.{p}(EIcaHP){q}.

Hence also im; . {p}(E|call P){q}, and (%) is proved.

0 ; : : : 5 =
(27) If =_= proc Py : Bl’ .3 proc Pi B and P = P,
then let x be the vector of all program variables of p, q,
= Ve L)
G and Bl’ 5 5w Bm and let a, Ty and Pj (j =1, ..., m) as de

fined in proposition D 10 b) resp. in rule (D 10).

Then proposition D 10 b) yields:
=y G v <{X=3} call P' {rj},...> » <{§=5}(Bl)gi“’::;[;

As (e|(Bj)P1 ""Pﬁ_) < (E|call P) for every j = 1,..., m,
S
1 *''m

one gets by the induction hypothesis and by (D12):
;G <{x=a}call Py'{rdsce> > <{§=5}(BI)P1 :::,Pm {ry},...>
and (D10) yields:

. G > {x = a} (E|call P.) {r;}

I

- 34 -

Furtheron by proposition D 10 c¢) one gets:
= {x = a} call Pi{ri} + {p} call P, {q}
wich by (10) implies:

= {x = a} call P;iryt = {p} call P. {q}

Finally by (D11)
y & = {p} (E|call Pi) {q}

can be derived. 0

This concludes the proof of theorem 1 up to the proofs of the
particular propositions, which are given in the next section.

- 35 -

6. Proofs of the propositions of theorem 1

The proofs of the propositions DO, D1, D2a), D3, D4a) D5,
D6, D8 and D12 are easy and are left to the reader. Some
of them are given in [SIE] for while-programs without pro-
cedures.

Proof of proposition D2b):

Assume m, G > {p}(E[St;; St,) {ql.

Let r be the strongest postcondition of p and

J M (E[St))(y)
YEEE,I-I YG

(r exists because of strong expressiveness)

Then, by lTemma 4a) one getslk=; G - {p}(EIStl){r} and only
Pj G » {r}(EIStZ){q} remains to be proved:

Let v, €rc such thathl’Yl G, I(r)(o) = true and

(o0, ') EVMI(E|St2)(71).

Then I(q)(o') = true must be proved.

Because of the definition of r, there exist y, € I't and
TEL such thathI,Yz G and (1, o) €M (E[Sty)(v,).

Let now y = YiM Yo € LE' Thenl-I YG holds, and because
of the monotonicity of eachauI(E|St) one gets:
(t, o) € (E|St{)(v) and (o, o') €l (E|St,)(¥),

hence (1, o') E¢JQ (E]Stl; St,) (v).

Finally, as I(p)(t) = true,
the assumption implies I(q)(c') = true. (]

- 36 -

Proof of proposition D4b):

Assume b=, G > {p}(E|while e do St od) {q}.

Let y = (¥1s+..5y,) be the vector of all program variables,
occuring in G, p, E, e, St and q, and z = (z75...52,) a
vector of programming variables, different from Yisres¥y-

Let s be the strongest postcondition of p and

Lot M (E|while e » 7y = Z do St od) (y)
YEL [, Ky 2 G T T

(which exists because of strong expressiveness)
and let r be the formula 3 z.s.

(1%) Let I(p)(c) = true.
It must be proved that I(r)(c) = true,

i. e. I(s)(old/z]1) = true for some d € D".

Let d = o(y). Then I(p)(old/z]) = I(p)(o) = true and
(old/z], old/z]) € \J M (E|while e A y=2 do St od)(y)
Y€, P y6 -

Hence, by the definition of s : I(s)(old/z]) = true.

(20) Let vy, € I'r such that = G, I(r A e)(o) = true and

’ Yl
(0, o) €M (E[St)(vq).

It must be proved, that I(r)(oc') = true.
As I(r)(c) = true, there exists d € g” such that
I(s)(old/z]) = true

Then, because of the definition of s, there exist y, € I'c and
T € L such that Y2 G, I(p)(t) = true and

(t, old/z]) eaul (E|while e A7y = z do St 0d)(v,)

i. e. there exist Tyseees Tp € I such that:

T = Te Ty = old/z],

= PP

(Tks Tk+1) EvuI(Elst)(Yz) for k =1, ..., m - 1,

[(e A1y = E)(rk) = true for k =1, ..., m-1 and
I(e Ay = E)(Tm) = false.
Now let F = {y;,...,y,} and py,..., p € I such that:

pklE = Tk|£ for k =1, ..., m (especially: pmlE = ch),

pk(i) =o'(y) fork =1, ..., m+ 1

and Prs--=s Pyt coincide on all other variables.

Then one gets:

(pys Pyyp) EMU(EISE)(vo)E ¢ M (E[St)(vh) for k=1,..., m-1
and (pp» ppyep) EAM(EISE)(v)E ¢ My (EISE)(vD).

Define vy = y% LIY; € EE'

Then (pk, pk+1) E.MI(EISt)(Y) for k = licaas M.

As F contains all variables of e,
I(e)(p,)
and also
I(e)(p,) = I(e)(a) = true
Now Tet 1 € IN be the least number with p](i) = p1(i)
)

]

1(e)(rk) = true for k =1, ..., m -1

(1 <m+ 1 exists, because pm+1(§) =g'(y) = pm+1(i)
Then (pl, Pq) Eu“I(Elwhi]e eay=z do St od)(y).

As F contains all variables of p, I(p)(p;) = I(p)(xq) = true,

and as it contains all variables of G;|=I ¥ G holds.
]
Hence I(s)(eqy) = true (by definition of s).

But p](y) = p](E) = g'(y) = pm+1(i) = pm+1(§) and, moreover,
P and P+l coincide on all other variables, i. e.
Pl = Pnt1? I(s)(pm+1) = true and finally I(r)(pm+1) = true.

- 38 -

Now lemma 4b) yields, that s depends only on the variables of
Fouilzy,...,z}, hence r depends only on the variables of F.

As p and o' coincide on F, one gets

m+1
I(r)(c') = true.

(3°) Let I(r ane)(o) = true.
It must be proved that I(q)(o) = true.

As I(r)(c) = true, I(s)(o[d/2z]) = true for some d € D".
Because of the definition of s there exist y€TIp, 1€ L
such that:!-ml’Y G, I(p)(t) = true and
(1, old/z]) €M (E|while e A 71 y=z do St od)(y).
As I(~e)(old/z]) = I(we)(o) = true, even
(t, old/z]) €M (E|while e do St od)(y) holds.

But then the assumption implies I(q)(old/z]) = true,
hence I(q)(o) = true. [

Proof of proposition D 7:

It is sufficient to prove for every y€Ip that:

= (p%) (Ejlbegin D E, St end) {q%)

for some a € V, \ V. which does not occur in p or g
ok {p}(E |begin new x; DE,St end) {q}

et Assumel=I,Y{pi}(E1|Qggiﬂ DE,St gﬂﬂ){Qi}s

I(p)(o) = true and (o, o') EJLI(Ellbegin new x; DE,St end)(y).

Then there exist d € D and o" € I such that:

(old/x], o") €UMI(E1|begin DE,St end)(y) and o' = o"lo(x)/x]

As a is an algebraic variable and ye€lp, also

(old/x1lo(x)/al, o" [o(x)/al) Eu“I(E1|begin DE,St end)(y)

~ S -

v v
T T

- 39 -

By the substitution lemma
I(py)(t) = I(p)(rlr(a)/x1) = I(p)(t [o(x)/x])
I(p)(olo(x)/al) 3y I(p)(o) = true

where (*) holds, because a does not occur in p.
The assumption implies I(qi)(r') = true
and another application of the substitution Temma yields

I{(q)(c') = I(q)(c" IU(X)/X])(:)I(Q)(U"[O(X)/a] la(x)/x])

I(q)(t'lo(x)/x]) = I(q)(z' [t'(a)/x])
I(qi)(t') = true

where (*) holds, because a does not occur in q.

"e'": Assume k= Y{p}(E1|begin new x; DE,St end){q},
1(p3)(0) = true and (o, o') € (E,|begin DE,St end)(y)

Let 1= olo(a)/x] and t' = o' [o(a)/x]

Then (t, t') €M (E |begin new x; DE,St end)(y),
because o = tlo(x)/x] and t' = o' [1(x)/x].

Now by the substitution lemma

I(p)(t) = I(p)(o [o(a)/x]) = I(py)(o) = true

and the assumption implies

I(q)(t') = true.

As a is an algebraic varibale, o (a) = ¢'(a) and another
application of the substitution lemma yields

I(q)(a') = 1(q)(o'[a'(a)/x]) = I(a)(o'lo(a)/x])
I(q)(T') = true.

(]

- 40 -

Proof of proposition D 9:

"»": Assume k[V 5.(r1; D8] Ace.a rn% o>s.) > (p% > q)

and F=I’Y{r1}ca11 P{si} for i = 1,..., n for some YET.

Then =, Y{p}(E[caH P){q} must be proved.

Let 1(p)(0) = true and (o, o') €M (E[call P)(y) = v(P).
Then we get

1(pY) (0" Lo (X)/71)

1(pd) (0 [0(X)/71)

(as the two states coincide on all algebraic variables
and on the variables of y)

I(p)(olo(x)/y]l [o(x)/x])
(by the substitution lemma)

I(p)(o)

(as the variables of y do not occur in p)

Hence I(pg)(o'[c(i)/yl) = true. | (1)

Similarly, we get for every i = 1,..., n and vector d of ele-
ments of D:

[(r;¥)(c" [o(X)/§113/3)) = I(r;)(old/a]) (2)
and
I(s;)(0' lo(x)/ylld/a]) = I(si)(c'[H/B]). (3)

Because of
Fl,y{ri} call P {Si} for i = 1,..., n and
(old/a]), o'ld/al) € v (P) (as y € LE)

(2) and (3) yield:

I(v 5.(r1§ D S; A..AT

nx

= & =

Finally (1), (4) and the assumption implie:
I(q)(o' [o(x)/yl) = true
i. e. I(q)(o') = true

(as no variable of y occurs in q)

"«" Let G be <{r;} call P {sq}s...n{r,} call P {s }>
and assume = G »~ {p} (E|call P) {q},

i. e. = - {p} (E|call P){q} for every y € Ip with = . G.

Let I(pg)(o) = true

and I(v a. (r1¥ D8] Ac..AY {5 sp)) (o) = true.

Then, by the substitution lemma:

I(p)(o [o(y)/x]) = true (1)
and for every vector d of elements of D and every i:
I(r;)(olo(y)/x10d/a]) = true (2)

implies I(s;)(old/al) = true

Let now y € I'c be a procedure assignment with

Y(P) = {(t, t')] 1t and t' differ only in x and for every d

and every i: I(ri)(r[alél) = true im-
plies I(s;)(t'[d/al) = true}

(note that this relation is indeed in.ﬁE.)

Then 1 G holds, and the assumption implies:
=1y {p}(E|call P) {q} (3)

Now (2) means: (o [o(y)/x), o) € vy (P),
hence (1) and (3) implie: I(g)(o) = true

I 1

and v a. (rli D S] A.aA rn¥ 55 sn) > (pf 2 q) 1is proved.

. BT w

Proof of proposition D 10 a):

For the proof we need
Lemma 5:

For every (E|St) € U(L), Pl,...,Pm,Pl',...,Pm'E PV and y € I':

.,P';l)(Y) =IA‘I (EISt)(Y[Y(Pi)/Pl}---[Y(PI:])/ij‘i

m

Lemma 5 is a "substitution lemma" for procedure variables, and
is intuitively clear.
Its proof is left to the reader.

Now proposition D 10 a) can be proved:

]) 1
Assume k=, Y{pl}(Bl)Ei""’gm {agdseoos b=y Y{pm}(Bm)Ei
§ seeesb o ’

for every y € I'p with;:I,Y G v <{p;} call Pi {ql},...>

Then we must prove

hj,y{pi} (Efcall P;) {g;} for i = 1,..., m (%)

for every y € I with =1y G,

where E = proc P1 : Bl; «.«3 proc Pm 3 Bm;

Let y € ' be a procedure assignment with k= ¥ G.
Then, by definition of the semantics,

dﬁ (E|call Pi)(Y) = uE’Y for every i,

where (u;:’Y G 5 @y uﬁ’Y) is the least fixpoint of

= 43 =

S R

(RyswvsRo) +—> (M (e|By) (Y[R /P 1. IR /P 1),

My (1B) (Y[R /Py1. . R /P 1))

With these notations, (%) is equivalent to

PI’Y[UE’Y/Pi]---[UEI,Y/P[;.‘] {p.i} call P'I {q'l] for ‘i=l,...,m(**)

This last assertion will now be proved with Scott's induc-
tion principle, applied to n-tuples (Ry,...,R) € gW
with the predicate:

PI!Y[BI/pi]"'[Em/P;H] {p.l} call P,; {q1} for i=1,...,m (***)

(19) (***) holds for (Rys..., Rp) = (6,..., ¢)

(29) Assume (***) holds for (Bl,..., Em)
Then it must be proved, that (***) also holds for

» R

] 1 E ’
(Risewvs RL) = @ °V(Rysevny R)

As hj » G and P3Yyassn P% dot not occur in G, the induc-
tion hypothesis yields

1, yIRy/Py]. .. (R spey § ¥ <(P} call Py {ayl,...o

Now the assumption implies

(B-)El""’P$ {qi} for 3=ls e s n s

S UMY VLIS PO WL X8 BALE RALE R T 1

and as by lemma 5

P|,...,P' 1 1
uMI(el(Bi)Pi’._.’pm)(Y[Bl/PI]...[Em/Pm])

s A =

=My (e|By)(Y[Ry/Pyd.. . [R /PITIR /PyT IR /P 1)

=M;(e|B;)(v[Ry/Py1...[R /P 1) = R.'
this is equivalent to

FI’Y[Ei/Pi]...[E';I/Pn;]{pi} call P {q;}.

(3%) As (*xx) is an admissible predicate (in the sense
of [MAN]), (1°) and (2°) implie (*x*). N

Proof of proposition D 10 b):

Lemma 6:

a) Let F ¢ XA be a set, which contains all program variables
of p and q, and let R;, R, ¢ Z x I be V. - bounded relations
(not necessarily program relations).

1% El is partially correct with respect to p and g and

5% € E%, then R, is partially correct with respect to
p and q, too.

b) Let x = (Xqs.-.»%,) be a vector of. program variables,
a = (ays...,a,) a vector of algebraic variables,and Ry,

32 !E - bounded relations.

If F = {xl,...,xn}, q is the strongest postcondition of

x = a and Ry, and R, is partially correct with respect to
X

= a and g, then E; ¢ 5%.

Proof:
a) Let (o, o') € R, and I(p)(o) = true.
It must be proved that I(q)(c') = true

= 45 =

1] 4 . " - 1 n =,
Let ¢" € £ be defined by: o IE =0 IE' o IEA\ E= o[!A \ F

Then (0, o") € Ry c RL, i. e. there exists (1, t') € R,

U"IF = T'IF'

such that o = 1| ,

Moreover, as R, is V. - bounded, o, o' and ¢" coincide on
lA \ XE’ and as 51 is EE - bounded, one can choose (t, 1')

such that o, o", T and t' coincide on V, \ Vg, too.
Hence I(p)(1) = I(p)(o) = true and the partial correctness

of 51 with respect to p and q implies: I(q)(t') = true.

But then also I(q)(o') = I(q)(o") = I(q)(t') = true.

b) Let (t, T') € RE.
Then there exists (o, o') € R, such that o(k) = T(X),
o'(x) = 1'(x) and T = ' .
Va N E Vo N E
Define p = olo(X)/al, p' = o'lo(x)/al.
As R, is Vp - bounded, also (p, p') € R,.

Now I(x = a)(p) = true yields 1I(q)(p') = true,

i. e. there exists p" € I such that
I(x = a)(p") = true and (p", p') € R;.

As T(X) = o(X) = p(a) = p'(a) = p"(3) = p"(X)
and 1'(X) = o'(x) = p'(x),
(t, 1') € RE too 0

Now the proposition can be proved:

Let x = (xl,...,xn), a and Fise+-s be as defined in the

proposition, E = proc P1 5 B1 $es sl Proc Pm : Bm and
Y, € I'g such that

h7,¥1 G and F:I.Yl {x=a} call Pi {ri} for i = 1,..., m.
- _ = P2y v e plP
Then FI,Yl {x = a}(ngi,_..,Pm {ri} must be proved for

o i=1,..., m.

. B s

For F = {xl,...,xn} one first gets by lemma 6 b):

P e (WU Mp(Eleall P (v)E
YGLE,FI,YG

- M (E|call Pi)(Y)E for i=1,...,m
YELg by G =

|0

and by lemma 6 a) it is sufficient to prove:

|’.--’ ' F
My (]800 Pm) (vpE e (LU M (Elcall p)(y)E
I ilpl, ... ,P 1 I i
1 m YEI, b= G
_E I’Y
for i=1 ,M
s P‘,--n,P‘ I
Hence let 0 < i < m and denote (Bi)pl pm by B,
10
Then
Moe |8 (vt
I i 1
c Mp(e B (vD) (by Temma 3)

Mo(e [B.)(vE 1 O M (Elcalt P (m)E/p
I i 1 I 1 1
YELE":I,YG

o

(because of monotonicity ofqu(e|Bi') and as

F
1Py e F
1 ! - YEL s b= | YG "“I(E_lﬁa_]_l Pi)(Y) for i=1,...,m)

Sels. (0 L YBHo \J mpecant ppnfren

Y€£E”=I,YG YET G

E!FI _Y

(again by monotonicity and as =] % G holds)
A

= __J .JLI(e]B (vE (M (E|call P (Y)— / Py'l...)

YEFE: I Y

(by & - continuity of M (e]B;"))

)

- 47 -

¢\ Melsy) (vErampeleann P (vEyseptai
YELg Ry G

(by monoticity ofvnI(e]Bi') together with lemma 3)

Yer;_;:l MI(EIBi)(YE [J‘I(E]M pl)(YE)/Pll"-)
~F? 5

n

M (E[call P;)(vD)
YEDE by 6

(as (Mp(Elcall P)(vD), ..., M (Elcall P)(yD)) is a

E vk
fixpoint of ¢-°Y")

e M (E|call Py)(y)
(as = g G implies = G)
»

I,Yf—

Hence we have proved

MEB) E ¢ L M (E[cal) PL)(y)

But then even

M ENB) ME ¢ N/ M (Elcall P)(1))E holds.

YELg b=y |6

Ig]

Proof of proposition D 10 c):

Let X = (Xq5...5X,)> @ and ry,...,r_-as defined in the pro-
position and E = proc P1 : Bys ... 5 proc P : Bm

Assume p=; G - {p} (E]call P1.) {q}.

- 48 -

Then &= {x = a} call P; {r;}~+ {p} call Py {q}
must be proved.

Let F = {xps.couxp} andimp o {x = a} call Py {ry}

Then, as r; is the strongest postcondition of x = a and

R= U M(Elcall P)(y)
YELps b=y (G
lemma 6 b) yields: y(P)L ¢ RE

(note that R is V. - bounded)

Finally, as by the assumption R is partially correct with
respect to p and q, lemma 6 a) implies, that

y(Pi) is partially correct with respect to p and q, i. e.

p-I’Y{p} call P {q} 0

Proof of proposition D 11:

Lemma 7:
If no procedure variable, which occurs in E1 = proc P1 ; Bl;
.«.3 proc P : B_; occurs bound in (E,|St), then:
E Eq,
My (E3E,[St)(v) =y (Ex]St) (vIugta /P 1.c tu 1T/ T)

for every y € T

Proof:

The restriction guarantees that the meaning of P,,..., Pm

is not "changed" during the program (which is possible be-
cause of dynamic scope). Hence they can be assigned their
meaning at once. A detailed proof is left to the reader. D

Proposition D 11 is an immediate consequence of this lemma.

This concludes the proof of theorem 1.

.y =

7. The axiom system AXSTAT

According to the modification of the semantics (compare
section 3) an axiom system AXSTAT for the static scope

semantics can be obtained from AXDYN by modifying only

some of the inference rules:

(D7) is changed into (S7):

G v <{x'=a} call P1 {x'=a}, ..., {x'=a} call Pm {x'=a}>

» {p}(E,) | begin DE,} St} end) {q}

G + {p}(E1 | begin new x; DE,St end) {q}

where x' does not occur in G, p, D, Eqs EZ’ 5t or 4,
a€Va\ Ve and Py,..., Pare all procedure variables, which
occur free in (E, | begin E,St end).

(D8) is changed into (S8):

6 » {(p}(E;; proc P, : (Bl):i:::::gﬁ;...lbegin Stgi::::zgm end){a)

G -~ {p}(E;|begin proc P, :By;...5 proc P : B, ; St end) {q}

(D11) is changed into (S11):

G ~ <{r1}(E1]ca11 Pl){sl},...,{rn}(Ellca11 P) {sn}>,
<{r,} call P, {sq}s..0s {r } call W +{p}(E,|St) {q}

. . g Qseeen] 01 e e o0
6 (P}(EL Epqlyiiiigm | Sealign) (@)

where dom (E,) = {Ql,...,Qm} and Q1,..., Q; as usual.
(but without the restrictions of the old rule (D 11)).

- 5O =

For the proof of soundness and relative completeness,
only the propositions D7, D8 and D11 must be changed,
according to the rules, e. g.:

New proposition S7:

] G v <{x'=a}call Pl{x'=a}, eee 3 {x'=adcall Pm{x'=a}>
+ {p}(E,, | begin DE,* end) {q}

holds for some x' which does not occur in G, p, D, El,
Es» St or q and some a € V, \ Vg

o w6 > {p}(E,| begin new x; DE,St end) {q}

Similarly, propositions D8 and D11 are changed and with
these modifications the proof of theorem 1 (section 5)
can be used to prove

Theorem 2:

AXSTAT is sound and relatively complete in the new sense

with respect t°°“stat'

We now give the proof of proposition S 7, the only proposi-
tion, in which new ideas are needed. Note that
hd{x' = a} Py {x' = a} does not express, that x'¢ var (y(P)),

but nevertheless the rule is strong enough to get relative
completeness of AXSTAT.

Proof of the new proposition S7:

H*Ii .

Assumep:I Gu<{x'=al}call Pl{x'=a},...,{x'=a}ca1] Pm{X'=a}>

X' end) {q)

xl . xl
+ {p}(Eq) |begin DE,, Sty

and let y € T with pm Ly G.

- Bl -

Then =, Y{p}(Ell begin new x; DE,St end){q} must be proved.
b}

Let F be the set of all variables of G, p, D, E;, E,, St and gq.

Then hl,yf G holds, and as x' ¢ F also

h=I,Y£ {x'" = a} call Pi {x' = a} holds for i = 1,...,m,
and the assumption implies

- (p}(E, X" |begin DE,X" stX' end) {q}. [e

I,vi.
Now let I(p)(o) = true and

(o0, ') €pMI(E1| begin new x; DE,St end)(y).

Choose 1, 1' € I such that t|c=0|c, T'|p=0'|(sT -
¥ Bl lemole et e Tlyne = oty

Then (t, ') Equ(Ellbegin new x; DE,St gﬂg)(y)E
cM;(E;|begin new x; DE,St end)(yD)
As x' ¢ F, it does not occur in var (YE(Pi)) for 3 2 lyeesy My

and by the definition of the semantics there exist d € D and
1" € I such that

(t1d/x'1, t")eMy(E)}" [begin DE,) Sty end)(y")

and ' = t"[t(x")/x"'].

As I(p)(tld/x'1) = I(p)(t) = I(p)(o) = true,
(*) implies I(q)(t") = true.

But then also I(q)(c') = I(q)(t') = I(q)(t") = true.

Il~ll :

Assume k=, G > {p}(Ellbegin new x; DE,St end){q}
and let y € I'p sucht that

= G v <{x'=a}call Pl{x'=a},...,{x‘=a}ca11 Pm{x'=a}>

I,y

%! . x' X'
Thent-I,Y{p}(Elx |begin DE,, Sty end){q} must be proved.

- h2 -

Let F = V,\ {x'}.
Then, as x' does not occur in G, Ik
assumption implies LY

FG holds, and the

= F {p}(E;|begin new x; DE,St end){q} (%)
’Y—

Let now I(p)(o) = true and

(0, o') €dy(E," |begin DE,X st*' end)(y)

Now k; _{x'=a}call P;{x'=a} implies v(P,) ¢ vEo(py)

for i =1, ..., m,

hence, as Pl....,P are the only procedure variables, which

m
occur free in (Elillbegin DEzil StiI end), also
]]]
(o, 0') EuEI(EI: |begin DEZ: stX gﬂg)(yf)

X

But then e. g.: (o, o'lo(x')/x'Jﬁsdﬁ(Ellbegin new x; DE,St gﬂg)(YE)
as x' ¢ var (YE(Pi)) for i =1, ..., m.

As I(p) = true, (*) now implies I(q)(olo (x')/x"']) = true
and finally I(q)(o') = true. [

Example of a derivation:

Let L, I and St € ¥ (L) be as in section 3.5.
Then - according to the static scope example in 3.5. - we
prove in AXSTAT:

{true}call P {x=2}+ {x=alSt{(x=2Ay=0) v (x=aay=22)}

(See also the example for dynamic scope in section 5.2.)

- B8 =

(D {true} call P{x=2}+{x=a}St {(x=2ay=0) v (x=aayz2)}
(S7) T (D6)

@ <{truelcall P{x=2},{x'=a}call P {x'=a}>

A+ {x=a}if x'=0 then call P; y:=x' else y:=x'+1 fi
{(x=2Ay=0)v(x=any=2)}
(p3) | (p12)

— @) <{true}call P{x=2},{x"'=a}call P{x'=a}>
A e =

(D2) + {x=aax'=0}call P; y:=x'{(x=2ay=0)v(x=aay22)}
(D12)

— @) <{true}call P{x=2},{x'=alcall P{x'=a}>
+ {x=aax'=0}call P {x=2ax'=0}

(D9)

(® va.(true ox=2ay'=asx'=a) o ((y=aay'=0=x=2ax"'=0)) V

C) <{truelcall P{x=2},{x'=a}call P {x'=a}>

+ {x=2Ax"'=0} y:=x' {(x=2Ay=0) v (x=aay22)} v

(@) <{truelcall P{x=2},{x'=a}call P{x'=a}>

+ {x=aax'#0} y:=x'+1 {(x=2Ay=0) v (x=aay22)} V

() is an I-valid formula of L and the derivations of (§) and (7
are standard.

- 54 -

8. Conclusion

As was already mentioned in section 2, our "strong expressiveness"
is really stronger than Cook's expressiveness. Of corse, now the
question arises, if "strong expressiveness" and hence "relative
completeness in the new sense" is still a reasonable definition.

A positive answer to this question can be found in [HAR]:

Harel proves, that for every pair (L, I) which "contains the
natural numbers", L is I-expressive with respect to an extension
of his "context-free programs over L". In our terms this means,
that L is strongly I-expressive with respect to context-free
programs over L. This result can be transferred to our - slightly

more complex - language ¥ Hence our "relative complete-

proc (L)-
ness in the new sense" implies Harel's "arithmetical completeness”
and, as Harel argues, citing a theorem of Lipton, this notion

is not essentially weaker than Cook's relative completeness

(only the finite interpretations are lost).

Acknoledgement: I am grateful to J. Loeckx for useful

discussions concerning this paper.

- h§ -

References:

[ADJ] Goguen, Thatcher, Wagner and Wright, "Initial Algebra
Semantics and Continuous Algebras", Journal of the ACM,
vol. 24, no. 1, pp. 68 - 95 (1977).

[APT 78] Apt, K. R., "A Sound and Complete Hoare-like System
for a fragment of PASCAL", Internal Report IW 96/78,
Stichting Mathematisch Centrum, Amsterdam, 1978.

[(APT 79] Apt, K. R., "Ten years of Hoare's logic, a survey",
Faculty of Economics, Erasmus University, Rotterdam,
April 1979.

[COOK] Cook, S. A., Soundness and Completeness of an Axiom
System for Program Verification", SIAM Journal on Com-
puting, vol. 7, no. 1, pp. 70 - 90 (1978).

[HAR] Harel, D., "First Order Dynamic Logik", Lecture Notes
in Comp. Sc. 68 (1979).

[MAN] Manna, Z., "Mathematical Theory of Computation"”, Mc
Graw-Hill, 1974,

(oLD] Olderog, E. R., "Sound and Complete Hoare Like Calculi
Based on Copy Rules", Internal Report 7905, Christian-
Albrechts-Universitdt, Kiel, 1979.

[SIE] Sieber, K., "Relative Completeness of a Hoare-Calculus
for while-Programs", Internal Report A 80/01, Universitdt
Saarbriicken, 1980.

	fb1981-02_0002_fertig
	fb1981-02_0003_fertig
	fb1981-02_0004_fertig
	fb1981-02_0005_fertig
	fb1981-02_0006_fertig
	fb1981-02_0007_fertig
	fb1981-02_0008_fertig
	fb1981-02_0009_fertig
	fb1981-02_0010_fertig
	fb1981-02_0011_fertig
	fb1981-02_0012_fertig
	fb1981-02_0013_fertig
	fb1981-02_0014_fertig
	fb1981-02_0015_fertig
	fb1981-02_0016_fertig
	fb1981-02_0017_fertig
	fb1981-02_0018_fertig
	fb1981-02_0019_fertig
	fb1981-02_0020_fertig
	fb1981-02_0021_fertig
	fb1981-02_0022_fertig
	fb1981-02_0023_fertig
	fb1981-02_0024_fertig
	fb1981-02_0025_fertig
	fb1981-02_0026_fertig
	fb1981-02_0027_fertig
	fb1981-02_0028_fertig
	fb1981-02_0029_fertig
	fb1981-02_0030_fertig
	fb1981-02_0031_fertig
	fb1981-02_0032_fertig
	fb1981-02_0033_fertig
	fb1981-02_0034_fertig
	fb1981-02_0035_fertig
	fb1981-02_0036_fertig
	fb1981-02_0037_fertig
	fb1981-02_0038_fertig
	fb1981-02_0039_fertig
	fb1981-02_0040_fertig
	fb1981-02_0041_fertig
	fb1981-02_0042_fertig
	fb1981-02_0043_fertig
	fb1981-02_0044_fertig
	fb1981-02_0045_fertig
	fb1981-02_0046_fertig
	fb1981-02_0047_fertig
	fb1981-02_0048_fertig
	fb1981-02_0049_fertig
	fb1981-02_0050_fertig
	fb1981-02_0051_fertig
	fb1981-02_0052_fertig
	fb1981-02_0053_fertig
	fb1981-02_0054_fertig
	fb1981-02_0055_fertig
	fb1981-02_0056_fertig
	fb1981-02_0057_fertig

