Technical Report
A 86/02

New Algorithms for Shortest Paths
avoiding Convex Polygonal Obstacles
Hans Rohnert

FB 10, University of Saarbriicken, West-Germany

Abstract: Two algorithms are presented for computing shortest paths in the plane

avoiding convex polygonal obstacles. For the first algorithm the ob-
stacles are assumed to consist of f disjoint convex polygons, for the
second algorithm the f polygons may intersect pairwise at most twice.
For finding the shortest path between two arbitrary query points the
first algorithm takes time O(nlogn+ f2 log n) and space O(n), the sec-
ond algorithm preprocesses the polygons in time O(nlogn + f3) and
space O(n + f2). Thereafter one query takes time O(nlogn + f2).

Keywords: Shortest paths, convex polygonal obstacles, computational geometry.

1. Introduction

Shortest paths algorithms and methods of computational geometry can be com-
bined in various ways to obtain new algorithms for solving problems which arise in
robotics, motion planning and computer graphics. The main interest is focused on
2D- and 3D-space. Obstacles are assumed to consist of disks, rectilinear barriers,
line segments, polygons, polyhedra, etc. Perhaps the most general problem in 2D-
space is that of n line segments as obstacles. For disjoint line segments Welzl (7]
and Ta. Asano, Te. Asano, Guibas, Hershberger and Imai [1] derived independently
O(n?) time and space algorithms. In this paper two special cases of the general
problem are considered:

(i) The obstacles are f disjoint convex polygons.

(ii) The obstacles are f convex polygons whose pairwise intersection consists of at
most two points.

The paper is organized as follows: Section 2 gives an algorithm for nonintersecting
polygons and Section 3 for pairwise intersecting polygons. Boths algorithms are
discussed and compared with lower bounds in Section 4. Throughout the paper we
borrow heavily from [6].

2. The Obstacles are Disjoint

In [6] the obstacles are assumed to consist of f disjoint convex polygons with a
total of n vertices. The paper [6] shows how to preprocess the obstacles in time
O(n + f?logn) and by that to construct a graph G of size O(n + f?) which is a
subgraph of the visibility graph. Graph G enables us to compute the shortest path
between two arbitrary query points in time O(nlogn + f2). The authors of [1]
discuss this algorithm and propose another algorithm with worse time complexity
O(fnlogn), but linear space O(n). The idea behind is to drop the preprocessing
step, i.e,, consume less space, and to compute on-line visibility from the vertex
under consideration in Dijkstra’s algorithm. In this section we derive the complete
algorithm (in [1] only complexity bounds are given) with improved time complexity
O(nlogn + f?logn). Note that f < n.

Dijkstra’s algorithm computes the shortest path from point s to point ¢t as
follows: A set S of vertices is maintained whose distance from s is already known
(S = {s} in the beginning). In every iteration the vertex v € V — § with minimum
distance from s is added to S and all tentative distances from s of vertices adja-
cent to v are updated. In [6] we prove that shortest paths amidst disjoint convex
polygonal obstacles use only the edges (boundaries) of the polygons and supporting
segments of the form ww, u,v € V, where the line supporting uv is a supporting

2

line of two polygons (u is a vertex of the first and v a vertex of the second polygon)
and U does not intersect any third polygon.

Here we assume for simplicity that no three vertices are collinear and that the
query points lie outside the polygons. Generalization is possible without weakening
the complexity bounds.

Then it is natural to define graph G = (V, E) onto which Dijkstra’s algorithm
can be applied by letting V' be the set of the vertices of the polygons and

E = {edges of the polygons} U
{ww; the line through vertices u and v is a supporting line of

two polygons and uv does not intersect any third polygon}.

We call the line segments of the form wv € E useful supporting segments since
shortest paths may use them. Graph G = (V, E) is a subgraph of the visibility
graph VG = (V, E') whose edge set E' consists of all line segments %v which connect
vertices and do not intersect any edge of the polygons (except in endpoints). The
preprocessing step of [6] computes G in time O(n + f?logn). The size of G is
O(n + f?) and implies space complexity. Using the ingenious implementation of
Dijkstra’s algorithm by Fredman and Tarjan [2] one query for the shortest path
between two arbitrary points is answered in time O(nlogn + f2).

In our new algorithm we do not construct set E at once but piece by piece and
forget pieces again. Let D[v] denote the tentative distance of v from 8, Py, the
polygon under consideration and §7w) the length of line segment vw, if (v, w) € E,
otherwise #{7w) = 0o. Now we can proceed to establish a high-level description of
the algorithm (see Figure 1).

(1) S§:={sk

(2) Dfs]:=0; Peysr :=8;

(3) for each ve€ V — {8} do D[v]:= {&7) od,;
(4) whilet¢ S

(5) do choose v € V — S with minimal D[v];
(6) S:=8Su{v}

(7) let P be the polygon which v belongs to;

(8) if Poyye # P

(9) then forget supporting segments emanating from Py,;

(10) P.uyr = P

(11) compute useful supporting segments emanating from Pey,,
12)

(13) for all useful supporting segments 7w emanating from v

and for the two edges incident to v
(14) do D[w]:= min{D[w), D[v] + {vw)} od
(15) od.

Fig. 1. Algorithm for Disjoint Polygons.

3

The correctness of the algorithm should be obvious from the preceding discus-
sions. A good realization of the high-level statements is more difficult. Line (3)
requires the knowledge of the useful supporting segments belonging to s. Since a
point is a trivial polygon we can solve this problem by simplification of line (11).

Set S is not explicitly maintained, instead, we maintain V — S by a priority
queue, here a binary heap. The heap is ordered according to the values Dfv].
For every vertex v a pointer is maintained on its position in the heap and on the
polygon it belongs to. The polygons are assumed to be input in clockwise order and
recorded as doubly-connected cyclic lists. Then lines (5)-(7) essentially perform one
Deletemin-Operation on the heap taking time logarithmic in the size of the heap,
i.e., O(logn).

Line (9) is executed by using O(f) storage cells for the supporting segments
emanating from the polygon under consideration and by overwriting their values
in line (11). The supporting segments emanating from P,,,, are recorded twice:
once scattered as linked lists attached to the vertices of P.,,, which are each one
endpoint of a supporting segment and once as one list of size O(f). Then line (9)
is implemented by one pass over the big list and then by deletion of the respec-
tive lists attached to the vertices. Hence one execution of lines (9)-(10) has time
complexity O(f).

Line (11) is realized in two steps: first we compute all 4f — 2 supporting
segments emanating from P.,,, (4f — 4 go to the other f —1 polygons and 2 to the
sink) in time O(}, << ;(log ncurr + logn,)) = O(flogncy,r + flog(n/f)), where
n; is the number of vertices of the i-th polygon P;. Then we filter out the useful
supporting segments in time O(f log f) by a cyclic sweep around P,,,,. Since every
polygon is visited on any shortest path at most once lines (8)-(12) have overall time
complexity O(n + f2log(n/f) + f?log f) = O(n+ f?logn).

Execution of line (14) implicates the adjustment of the position of w in the
heap in logarithmic time. Since G has O(n + f?) edges and every element of E
is examined at most twice lines (13)-(14) have O(nlogn + fZlogn) overall time
complexity. We summarize in

Theorem 1. The shortest path between two points s and ¢ in the Euclidean plane
avoiding f disjoint convex polygons with a total of n vertices can be computed in
time O(nlogn+ f%logn) and linear space O(n).]

3. The Obstacles intersect pairwise

Our second algorithm is more general than the algorithm of Section 2 since pairs
of convex polygons may be pairwise disjoint, touch in one point or intersect twice.
Note that there are no known O(n?) time shortest paths algorithms for arbitrary

4

intersecting line segments. But an interesting fact on planar Jordan curves which
was discovered by Livne and Sharir [4] helps us to efficiently compute the contour
(or boundary) of K = 1(!.;({ P; of the polygons P;.

=

Lemma 1. The boundary of f simple Jordan curves in the plane intersecting one
another in at most two points contains at most max{2,6f — 12) intersection points
of the curves.

Proof: see [4] 1

The significance of Lemma 1 is based on the fact that shortest paths which avoid
pairwise intersecting polygons use only edges of the contour and supporting seg-
ments which neither intersect the contour nor run inside K. The contour can
be computed by an algorithm due to Ottmann, Widmeyer and Wood [5] in time
O((n + 8)log n), where s is the number of intersection points. Although Lemma 1
says that the number of intersection points on the boundary of K is small, i.e., O(f),
the contour algorithm of [6] considers all O(f2) intersection points and implies time
complexity O(nlogn+ f?logn). But this does no harm because the following parts
dominate the time complexity.

Having computed the contour of K we compute the useful supporting segments
in three steps:

(1) compute all O(f?) supporting segments,
(2) find the supporting segments having one or two endpoints not on K,

(3) find the supporting segments intersecting properly any polygon-edge.

The useful supporting segments are those not found in steps (2) and (3). This
property is attached to every supporting segment by a boolean flag. Two non-
intersecting (resp. once or twice intersecting) convex polygons P, and P, have
four (resp. two) common supporting lines and these supporting lines can be com-
puted in time O(logn, + logn,). Summation over all pairs of polygons yields time
O(f?log(n/f)) for step (1). Step (2) takes O(f?) time since we mark every vertex
in the contour algorithm whether or not it belongs to the contour of K. Then we
can examine each supporting segment in constant time and see whether both of
its endpoints lie on the boundary of K or whether one or two of them are interior
to K.

Step (3) is realized in time O(f®) by performing a cyclic sweep around each
polygon: first the supporting segments emanating from the considered polygon F;
are arranged in cyclic order according to their angle with the z-axis. The resulting
sequence is scanned by comparing the current supporting segment with all other
supporting segments emanating from P;. If the current supporting segment falls into
a wedge formed by two supporting segments which join the current polygon with
this other polygon then we can check in constant time if the current supporting
segment intersects this other polygon. The correctness of this procedure follows
from Lemma 5 of [6] that remains intact for the case of intersecting polygons. Yet,

5

time complexity for one polygon P; rises from O(f log f) in [6] to O(f?2) since we
do not have such a well defined order of the polygons as in [6].

With knowledge of contour and useful supporting segments it remains to be
decided whether two query points s and ¢ lie inside the same component of the
connected regions formed by the polygons. This can be done by constructing the
inclusion tree of 3] and locating s and ¢ in it in time O(nlogn). We summarize in

Theorem 2. Single source shortest paths problems in the Euclidean plane clus-
tered with f pairwise at most twice intersecting polygons can be solved in time
O(nlogn+ f?) after constructing a graph of size O(n+ f?) by a preprocessing step
of time complexity O(nlogn + f3).

Proof: The preprocessing step is described above. The resulting graph consists
of the O(f?) useful supporting segments and the contour which has two kinds of
vertices: first < n original vertices and then (according to Lemma 1) O(f) points
of local non-convexity caused by intersections of polygons. Hence the size of the
graph G on which to perform Dijkstra’s algorithm is O(n+ f2). This implies space
complexity and query time according to [2]. |

4. Concluding Remarks

(1) It is not possible to generalize Lemma 1 and thereby to conceive efficient algo-
rithms for cases where convex polygons are allowed to intersect pairwise more
than twice: there are instances where convex polygons intersect pairwise four
times yielding 2(n?) intersection points (think of n/2 pencils oriented verti-
cally in the plane and n/2 pencils oriented horizontally, forming altogether a
grid).

(2) Our algorithms are only good for small f, say f = O(n!~¢) for € > 0. But since
f < n this should be the case for many applications. Yet, if every polygon has
only a constant number of vertices and the polygons are disjoint we prefer the
O(n?) time and space algorithms.

(3) Q(nlogn) is the trivial lower bound and is reached by our first algorithm for
f = 0(n'/?), i.e, if every polygon has > cy/n vertices for some ¢ € R. The
second algorithm reaches the lower bound for f = O(n!/3).

5. References

[1] Ta. ASANO, Te. ASANO, L. GUIBAS, J. HERSHBERGER, H. IMAI :
“Visibility-Polygon Search and Euclidean Shortest Paths”, Proc. 26th Annual
IEEE Symp. on Found. of Comput. Science (1985)

(2] M. FREDMAN, R. TARJAN : “Fibonacci Heaps and their Uses in Improved
Network Optimization Algorithms”, Proc. 25th Annual IEEE Symp. on Found.
of Comput. Science, pp. 338-346 (1984)

[3] K. KEDEM, M. SHARIR : “An Efficient Algorithm for Planning Collision-free
Translational Motion of a Convex Polygonal Object in 2-dimensional Space
amidst Polygonal Obstacles”, Proc. 17th Annual ACM Symp. on Theory of
Computing (1985)

[4] R. LIVNE, M. SHARIR : “On Intersection of Planar Jordan Curves”, N.Y.
Univ., Courant Institute, Techn. Rep. 153 (1985)

[5] T. OTTMANN, P. WIDMEYER, D. WOOD : “A Fast Algorithm for Boolean
Mask Operations”, Inst. fir Angew. Mathematik und Formale Beschrei-
bungsverfahren, D-7500 Karlsruhe, Rept. No. 112 (1982)

(6] H. ROHNERT : “Shortest Paths in the Plane with Convex Polygonal Obsta-
cles”, Techn. Rep. A 85/06, University of Saarbriicken, West-Germany, to ap-
pear in Inf Proc. Lett.

[7] E. WELZL : “Constructing the visibility graph for n line segments in O(n?)
time”, Inf Proc. Lett. Vol. 20 (1985), pp. 167-171

	fb1986-02_0001_fertig
	fb1986-02_0002_fertig
	fb1986-02_0003_fertig
	fb1986-02_0004_fertig
	fb1986-02_0005_fertig
	fb1986-02_0006_fertig
	fb1986-02_0007_fertig

