A Lower Bound for the Complexity
of the Union-Split-Find Problem *

A 07/1986

Kurt Mehlhorn**
Stefan Naher**
Helmut Alt***

**FB10, Informatik
Universitat des Saarlandes
D-6600 Saarbriicken
Federal Republic of Germany

***FB Mathematik, WE3
Freie Universitat Berlin
D-1000 Berlin 33
Federal Republic of Germany

Abstract. We prove a B(loglogn) (i.e. matching upper and lower) bound on the
complexity of the Union-Split-Find problem, a variant of the Union-Find problem. Our
lower bound holds for all pointer machine algorithms and does not require the separation
assumption used in the lower bound arguments of Tarjan [T79] and Blum [B86]. We
complement this with a 8(log n) bound for the Split-Find problem under the separation
assumption. This shows that the separation assumption can imply an exponential loss

in efficiency.

* This research was supported by the Deutsche Forschungsgemeinschaft, grant SPP Me
620/6-1

1. Introduction

We consider the following three operations on a linear list x;,2;,...,z, of items, some

of which are marked.
UNION(z,): given a pointer to the marked item z; unmark this item
SPLIT(z,): given a pointer to the unmarked item z, mark this item

FIND(z;): given a pointer to the item z; return a pointer to z;
where 7 = min{¢|¢ > 7 and z, is marked }

Note that the marked items partition the linear list z,,...,z, into intervals of unmarked
items. Then FIND(z,) returns (a pointer to) the right endpoint of the interval containing
z;, SPLIT(z,) splits the interval containing z;, and UNION(z,) joins the two intervals
having z, as a common endpoint. We call the problem above the Union-Split-Find
Problem; P.v.Emde Boas [EKZ77] called it a priority queue problem. lle referred
to the three operations as Insert, Delete and Successor, and exhibited a O(log logn)
solution for it. We will also consider the Split-Find Problem and the Union-Find
Problem (only operations split, find and union, find respectively). Note that our
Union-Find problem is a restriction of the usual Union-Find problem (here called the
general Union-Find problem) because we allow only adjacent intervals to be joined.
The Union-Split-Find problem is important for a number of applications, e.g. dynamic
fractional cascading [MNB86| and computing shortest paths [M84b, p.47].

We study the complexity of the Union-Split-Find problem in the pointer machine model
of computation (Kolmogorov [Ko53], Knuth [Kn68], Schonhage [S73], Tarjan [T79]).
A pointer machine captures the list processing capabilities of computers; its storage
consists of records connected by pointers. Previously, lower bounds in a restricted
pointer machine model (the term ”restricted” is explained below) were obtained by
Tarjan [T79] and Blum [B86]. Tarjan proved a ©(a(n)) bound on the amortized cost
of the general Union-Find problem and Blum proved a 6(logn/loglogn) bound on
the worst-case cost. Tarjan’s and Blum’s lower bounds rely heavily on the following

separation assumption (quoted from Tarjan [T79]):

At any time during the computation, the contents of the
memory can be partioned into collections of records such
that each collection corresponds to a currently existing set,
...and no record in one collection contains a pointer to a

record in another collection.”

Because of this assumption we call their model restricted. If one views pointers as

2

undirected edges in a graph then the separation assumption states that every currently
existing set corresponds to a component of the graph.

The three main results of this paper are:

1. The complexity of the Union-Split-Find problem in the pointer machine model is
B(loglogn). Here, the upper bound is on the worst-case cost of the three operations
and the lower bound is on the amortized cost of the three operations, 1.e., there
are arbitrarily large m and sequences of m SPLIT, FIND and UNION operations
having a total cost of (}(m loglogn).

The upper bound can be found in [EKZ77], [Ka84], and [MN86]. The solution of
[MN86] supports two additional operations ADD and ERASE which allow to modify
the underlying linear list; the solution does not satisfy the separation assumption.
The lower bound will be proved in section 2 of this paper.

2. In the restricted pointer machine model the worst-case complexity of the Split-Find
problem is ©(log n) and the amortized complexity of the Union-Split-Find problem
is B(logn).

This will be shown in section 3.

3. a) (Tarjan [T79]).The amortized complexity of the Union-Find problem in the
restricted pointer machine model is 8(a(n)).

b) Pointer machines obeying the separation assumption are exponentially weaker
than pointer machines without the separation assumption.This is true for the

worst-case complexity and for the amortized complexity

Tarjan proved his lower bound for the general Union-Find problem. His proof however

is actually valid for the Union-Find problem considered here. b) follows immediately

from results 1 and 2.

2. The Lower Bound

In this section we will show that each solution for the Union-Split-Find problem on a
pointer machine requires (2(log log n) computational steps, even in the amortized sense.
More precisely, we show that there are arbitrarily large m and sequences of m [UNION,
FIND, SPLIT operations having a total cost of {}(mloglogn).

Our machine model is a pointer machine as described in [T79]. Its memory M consists
of an unbounded collection of records each containing 2 pointers to other records and
an arbitrary amount of additional information. Thus M can be regarded as a directed
graph with outdegree 2. We assume that the set of items S is realized by two sets of
records in M a set of input records I = {z},z3,...,z;,} and a set of output records
O = {y1,¥3,---,¥n}- (The distinction between input and output records is merely a
notational convenience.)

FIND(z) is executed as follows. The machine starts with a pointer to input Record z*
(corresponding to item z € S) in some register r. It stops with a pointer to the output
record y* in r which corresponds to item y = FIND(z). Since it can access records in
M only by pointers contained in one of its registers there must be a path p formed
by records and pointers in M starting in z* and ending in y* such that pointers to
all records on p have been loaded into a register during the execution of the FIND.
In addition to traversing a path from z* to y* the FIND operation may change some
number of pointers. The cost of the FIND operation is certainly bounded from below
by the length of a shortest path from z* to y* in M plus the number of pointers
changed.

When executing the operation SPLIT(y) the machine starts with a pointer to record y*
in some register. After the operation record y* is reachable via pointers in M for all
records z* corresponding to items z with FIND(z) = y. To achieve this the machine
changes certain pointers in M. The number of pointers changed is the cost of SPLIT(y).
The cost of UNION(y) is defined similarly.

In order to model the actions of the pointer machine on its memory M in a more
abstract way we consider FIND and SPLIT as operations on a directed graph ' as

follows:
Let G = (V,E) be a directed graph with
1. For all v € V : outdegree(v) = 2

2. There is a set of n input nodes I = {z,,z3,...,2,} CV

4

3. There is a set of n output nodes O = {y1,y2,-.-,¥n} € V — I which may be marked
(we call y, the output node corresponding to input node z;, 1 <1 <n).

FIND(z,), z, €I,

returns output node y, such that 7 > 7 and j is minimal with y; is marked. In addition,
it may replace some edges of G by new edges. The complexity of FIND(z;) is the length
of the shortest path from z; to y; in G plus the number of edges replaced.

SPLIT(y), y € O,

marks output node y and replaces some edges of G by new edges such that every marked
output node y is reachable from all input nodes z with FIND(z) = y. The complexity
of SPLIT(y) is the number of edges replaced.

UNION(y), y € O,
unmarks output node y and replaces some edges of G by new edges. The complexity
of UNION(y) is the number of edges replaced.

Lemma 1. Let & be any integer, let L = 22¥ 7141, let n > 2(5”2:‘, and let Gy = (V, £)
be a directed graph with all output nodes unmarked. Then there is a sequence of L
SPLIT operations followed by L FIND operations, followed by L. UNION operations

such that

1. the total cost of the sequence is at least

: L gk
min (k-L, 22k+4n/)

2. all output nodes are unmarked after executing the sequence.

Proof. We call a graph G a k-structure iff for every input node z there is a path
of length at most k from z to the output node y = FIND(z).

The idea of the proof is as follows. We first execute a sequence of L SPLIT instructions
(this sequence is constructed below) which leaves us with a data structure (¢;. We next
execute a hardest FIND on G, i.e. an operation FIND(z) where the shortest path
from = to FIND(z) has maximal length. Execution of this FIND instruction yields the
data structure G;. Again we perform a hardest FIND, ... In this way we perform
a total of L FINDs, each FIND being a hardest FIND in the present data structure.
Finally, we perform a sequence of UNIONs which undo all the SPLITs. This yields a

data structure G}, (generally different from Gop) in which all output nodes are unmarked.

In order to estimate the cost of this sequence of instructions we distinguish two cases.
Assume first that no G,, 1 €¢ < L, is a k-structure. Then each FIND costs at least &

5

time units for a total cost of k- L time units. Assume next that some G, is a k-structure.
We will show that it takes at least (1/22+4) .n*/2" edge changes to construct G, from

Go; more precisely, we show the following claim.

Claim: Let Go be an arbitrary data structure with all output nodes unmarked.
Then there is a set {z;,...,21} C O of output nodes such that no k-structure G’ with
exactly z;,...,2zr, marked can be constructed from Go with less than (1/22574).p1/2"
edge replacements.

Proof. For all ve€V and £ > 1 let Ry(v) denote the set of all input nodes w such
that v is reachable from w on a path of length at most £.

Let cg,cy,...,c5% be a sequence of positive constants with
n=C¢Cy=C = ... 2> Cyk_q = Cok = L.
Then the following lemma holds for Gg:
Lemma 2. There is an £, 0 < £< 2% — 1, and ¢ distinct nodes vy,...,v, such that
1. either £ =10 or |ﬂ19£¢ Ri1(vi) | = e

2. for each w € V — {vy,...,ue}: | I*N R 1(w) | <epiy
where I* =, c,cp Ri—1(vi) (I" =1 if £=0)

Proof. Let £y be maximal such that there are distinct nodes vy, ..., ve, with [Ny <<y,
Ri_1(v.)| > ce,. We only have to show that &y < 2%. Assume £, > 2*. Then there are
2k distinct nodes vy,...,v,x with n1«_<.’52’=Rk~1(U-‘) # 0. But for every = € [there are
at most 2¥ — 1 nodes v € V with x € R;_,(v), a contradiction. .

Now let £ > 0 and let vy,v;,...,v, be nodes satisfying the conditions of lemma 2. We
give a sequence of 22¥ 1+ 1 SPLIT operations which require at least (c,/2L —2%71) /ey, 4
edge replacements. First we divide I" = Nj<i<¢Rx_1(vi) into 2L about equal sized
intervals A, Az,..., Ay le., A consists of the |[/*/2L| smallest indexed items in [*,
A, consists of the next |[*/2L| smallest indexed items in I*, ...

) Ce g
Clearly, A 2 2L —1 for all 2.
Let A', A}, ..., A}, be the corresponding intervals of output nodes.

Lemma 3. In every A, j € {2,4,6,...,2L}, there is an output node y; that is
reachable in Gy from at most 2¥*! input nodes in A;_, on a path of length < k.

6

Proof. Forall z € Aj_, we have [{vE V|z € Rg(v)}| < 2! — 1. Thus we conclude

> HveVizeRe(v)} < 4] (27 - 1)

xEAJ', 1

= |4 - (2% 1)

Let y; € A, 7 € {2,4,...,2L} be defined as in lemma 3. Then there exists for each
Jaset B, 1 €A, | such that |B;_1| > |A;| —2*"? and such that for each z € B, ;
there is no path of length at most k from z to y; in Go. Next consider any k-structure
G’ in which exactly the y,’s defined above are marked. In G’ there must be a path of
length at most k from any « € B,_; to y,. Let p(z) be any such path from z to y,
and let e(z) denote the first new edge on p(z). Let the edge e(x) start in vertex v(z).
We have

Lemma 4.

1. [{z € Bj_|v(z) = w}| < ces1 for every node w & {vy,v2,...,v¢} and every j

2. There is a 7 € {2,4,6,...,2L} such that v(z) € {v;,vy,...,v¢} for all z € B;_,.
Proof.

1. If v(z) = w then w was reachable from z in the data structure Go in at most k — 1
steps. Thus the claim follows immediately from the definition of vy,...,v,.

2. For every v € {v;,vg,...,vs} we have |{y € Olv € R(y)}| < 2**!
and thus Z {y € Olv € Ri(y)}| < €2¢!

v {vy,...,ue}

o i since ¢ < 2%

i.e., all paths of length at most & using nodes from {v;,...,v,} cannot lead to more
than 22%*! = [— 1 output nodes. Since we marked L nodes in O there must be
one y, such that v(z) ¢ {vy,..., v} for all z € B;_,. -

Now cousider any j € {2,4,...,2L} satisfying condition 2 of lemma 4, ie., v(z) ¢
{vy,...,ve} for all z € B,_;. Next observe that by part 1 of lemma 4 for any node
w ¢ {vy,...,vy} there are at most cgy nodes r € B;_; with v(z) = w. Thus

B, ol _ A, - 2% g 12k gt 128

Cet1 Ce+1 Ce+1 Ce+1

7

edges must be changed to obtain G' from Gy.
c=n'"W, 0<ig2t

With

we conclude further that

k+1 1
iz e Gl) S LS P TS
Ce+1 - 22k+2 + 2
_‘l.t
e (since n > 2(5")2':)

B e
= 2. (22842 1 2)

nak

>
= 92k+4

This completes the proof of the claim and of lemma 1.

Theorem 1.
a) The single operation worst case complexity of the Split-Find problem is {}(loglog n).
b) The amortized complexity of the Union-Split-Find problem is {l(loglog n}, i.e., there
are arbitrarily large m and sequences of m UNION, SPLIT and FIND operations

having a total cost of {)(mloglogn).

Proof.

a) Let k be maximal such that n > 2(5%)2° Then k = (log log n) and
1 1 5 2rk
92k+1 1| gZEHA T = QEETA(22R41 4 1)

=Q(2%)
= Q(logn)

= Q(log log n)

Let L = 221 + 1. Consider the sequence of 2L SPLITs and FINDs constructed

in the proof of lemma 1. The cost of this sequence is
1
0 (min (k - L, S n”zi)) = Q(L - log log n)

and hence at least one operation of the sequence has cost {1(loglog n).

b) Let k be maximal such that n > 20k)2" et L=2%+14 1 andlet m=3-L-s
for some 8. Let Go be any data structure with all output nodes unmarked. By

part a) and lemma 1 there is a sequence of 3 - L instructions such that
1. the total cost of the sequence is (}(L loglogn)
2. all output nodes are unmarked after executing the sequence

Thus again by part a) and lemma 1 there is another sequence of 3 - L instructions
. Using this argument s times yields a sequence of m instructions with total
cost (}(mloglogn). -

3. A Lower Bound in the Restricted Model

In this section we prove a {}(logn) lower bound for the worst-case complexity of the
Split-Find problem and a (logn) lower bound for the amortized complexity of the
Union-Split-Find problem in the restricted pointer machine model. We consider pointer
machine algorithms satisfying the following separation condition:

The memory can be partioned into subgraphs such that each subgraph corresponds

exactly to a current interval. There exists no edge from a node in such a subgraph to
a node outside the subgraph ([B86], [T79]).

Similarly as in the previous section we define a k-structure.

Definition . Let G = (V, E) be a directed graph with input nodes [= {z;,...,z,}
and output nodes O = {y;,...,yn} some of which may be marked. G is called a
k-structure iff for every z € I there is a path of length at most k to FIND(z) and
G fulfills the separation condition, i.e. for every z;,z, € I with FIND(z;) # FIND(z,)
there is no v € V that is reachable from both z; and z;. "

Lemma 5. Let n > (4k)*/k!. In any k-structure with output nodes y,...,yn_1
unmarked and y,, marked satisfying the separation condition there is a SPLIT operation
requiring at least k/12-n'/* edge replacements.

Proof. Since y,, is the only marked output node there is for each input node z a
path of length at most £ to y,. Let T be the subgraph of G formed by all shortest
paths from input nodes to y,,. Then T is a tree with root y,, leaves {z,,...,z,} and
height at most k. For any node v in T' let I(v) denote the set of input nodes which
are the leaves of the subtree rooted at v. At each internal node v of T the incoming
edges can be ordered (wy,v), (w2,v),...,(Wm,v) such that the minimal index of any
input node in [{w;) is smaller than the minimal index of any input node in [(w;) for
all 1 <1< j7<m. (Wecall w; the i-th son of v.)

Now assume that SPLIT(z) is executed for some z € I. Let
p: T=Yp — V) — =W =Yn

be the path from z to the root y, in T. For any v,;,, 1 <7 < £, on this path let

W o YW= Vg, ,w}, be the sons of v, in the order defined above. Before the split

operation v, is reachable from all input nodes of both of the following sets
L = {u | v is the node with minimal index in I(w}), 1 <k<j—1}
R; = {u | u is the node with minimal index in I(w;), j+1<k <m}
After the split FIND(a) # FIND(b) for all a € L;, b € R, and by the separation

condition v, is not reachable from any node of at least one of the sets L, or R;. Thus
the execution of SPLIT(z) requires at least

min(|L,|,| R,]) = min{j — 1,indegree(v,) — 7 | vi—; is the j-th son of v,}

edge replacements for each node v;, 1 <i < ¢, on path p.

The total cost for SPLIT(z) is

¢
c(p) = Z min{y — 1,indegree(v,) — j | v,_; is the j-th son of v,}
=1

We first prove a lower bound for ¢(p).

Lemma 6. Let T be any tree of height k with n leaves and root 7. Then there is a
leaf z in T such that the path p from z to r has cost

k
> L pl/k
cp) 2 5

10

ek-1,5) ... Lk-1,00 k—1,0 ... £k—1,7)

Figure 1

Proof. Define #(k,) as the maximal number of leaves in any tree T of height k&, such
that ¢(p) < j for every path p from a leaf to the root of T

Then we have £(0,5)=1 for >0
J
and (cf. figure 1) bk,7)=2" Z Uk —1,7—1)
=0

P)
=2 lk—1,3) for k>1
=0

The following table gives some values of £(k, 7). Figure 2 shows a tree of height k =2
with the maximal number of leaves such that all paths have at most cost j = 2.

11

ek,7)| O 1 2 3 4 5 6 7 k
0 1 2 4 8 16 32 64 128
1 1 4 12 32 80 192 448
2 1 6 24 80 240 672
3 1 8 40 160 560
4 1 10 60 280
5 1 12 84
6 1 14
T 1
i
P
//
/ j
£(2,2) =24
Figure 2

A different interpretation of £(k,) is as follows. Associate with every edge ¢ = (v, w)
of T the label ¢(e) = min{i — 1,indegree(w) —f|v is the i-th son of w}. Then we have

0 < ¢(e) < 5 for every edge e and for every path p=vg — vy — -+ — v}
k-1
e(p) = Zc(t’-‘,vcﬂ)
1=0
Thus €(k,j) < 2% - (number of possible ways to write j as the sum of

12

k terms from {0,1,...,5})

The term 2* accounts for the fact that in every vertex each label can be used twice.

<2k_ k+j_1
- k-1

(k+5-1)*!

<2t (k—1)!

< 9k. (k+j—1)*
- k!

k +5)"
< k.(__j
=2

We conclude that in any tree of height & with » leaves there exists a path p from some
leaf to the root such that

P,

. k
< 2k. (2_%(:’_).)_. since n > (4k)"/k! and hence c(p) > k

1 (n-kN\Y*
and ﬂna.l]y C(p) 2 5 (T)
k
s N AN g ik s K oer S
2" since (k!) A ifk>6

This completes the proof of lemma 5. -

Theorem 2. In the restricted pointer machine model
a) the single-operation worst-case complexity of the Split-Find problem is Q(logn).

b) the amortized complexity for the Union-Split-Find problem is Q(logn), i.e. there
are arbitrarily large m and sequences of m UNION, SPLIT, FIND operations having
a total cost of ((logn).

13

Proof.

a)

Let k be maximal such that n > (4k)*/k!. Then k = Q(logn). Let G be any data
structure with all output nodes except y, unmarked. By lemma 5 there is either a
FIND operation which cosets more than k time units or there is a SPLIT operation

having a cost of

E 4 logn log n
" /k>———- 1/10‘"=m =
G 2= 5 (log n)

Let G be any structure with all output nodes except y, unmarked. Define k as in
part a). If GG is not a k-structure then we perform a hardest FIND in G; this FIND
has cost kK = ((logn) and leaves us with a structure G’ where all output nodes
except y, are unmarked. If G is a k-structure then there is a SPLIT operation
of cost k/12 - n'/* = Q(logn). We perform it and immediately undo it by the
corresponding UNION operation. This leaves us with a structure G' where all
output nodes except y,, are unmarked. At this point we are in the initial situation
and we have forced the algorithm to spend ((logn) time units on at most two

operations. Part b) follows. |

We want to point out that O(logn) is clearly also an upper bound for the complexity
of the Union-Split-Find problem in the restricted model. One only has to represent
each interval by a balanced tree; cf. e.g. [M84a, section 111.5.3.1].

We close this section with our third result.

Theorem 3.

a) (Tarjan [T79]). The amortized complexity of the Union-Find problem in the

restricted pointer machine model is 8(a(n)).

b) Pointer machines obeying the separation assumption are exponentially weaker than

pointer machines without the separation assumption.This is true for the worst-case

complexity and for the amortized complexity

Proof.

a) Although Tarjan stated his result for the general Union-Find problem his proof

actually works for our restricted version of it.

b) This follows immediately from theorem 1 and 2. "

14

4. Conclusions and Open Problems

In this paper we proved several new lower bounds for the Union-Split-Find problem.
In particular, we presented an (I(log log n) lower bound for the amortized complexity of
the Union-Split-Find problem valid for all pointer machine algorithms and an (1(logn)
lower bound for restricted (in the sense of Tarjan [T79] and Blum [B86]) pointer machine
algorithms. Our lower bounds match known upper bounds. Thus our results reveal
that the separation assumption of Tarjan and Blum can imply an exponential loss in
efficiency.

The following table summarizes all known bounds for the complexity of pointer machine
algorithms for the Union-Split-Find problem on intervals including the results of this

paper.

Problem General Model Restricted Model
Union-Find

worst case O(loglogn) [EKZ77] | O(logn/loglogn) [B86]

amortized — B(a(n)) [T79]
Split-Find

worst case B(loglogn) new B (log n) new

amortized — O(log"* n) [HU73]

Union-Split-Find
worst case B(loglogn) new B(log n) new
amortized B(loglogn) new B(log n) new

There are still several open problems in both models. We have no lower bounds for the
amortized complexity of Union-Find and Split-Find and for the worst-case complexity
of Union-Find in the general model. In the restricted model it remains an open problem
whether the Split-Find algorithm of Hopcroft/Ullman [HU73] whose amortized running
time is O(log* n) is optimal. We suppose that Blum'’s lower bound proof for the general

Union-Find problem cannot be modified to work also for the interval problem.

We want to point out that the Union-Find problem and the Split-Find problem
have amortized complexity ©(1) on random access machines. This was shown by

15

Garbow/Tarjan [GT83] for the Union-Find problem and by Imai/Asano [IA84] for the
Split-Find problem.

5. References

(B886] N. Blum: ”On the Single-Operation Worst-Case Time Complexity of the
Disjoint Set Union Problem”, SIAM J. Comput., Vol. 15, No. 4, 1986,
1021-1024

[EKZ77]) P. v. Emde Boas, R. Kaas, E. Zijlstra: "Design and Implementation of
an Efficient Priority Queue”, Math. Systems Theory 10, 1977, 99-127

(GT83] H.N. Gabow, R.E. Tarjan: ”A linear-time algorithm for a special case of
disjoint set union”, Proc. 15-th Ann. SIGACT Symp., 1983, 246-251

(LA84] T. Imai, T. Asano: "Dynamic Segment Intersection with Applications”,
26th FOCS, 1984, 393-402

[HU73] J.E. Hopcroft, J.D. Ullman: ”Set Merging Algorithms”, SIAM J. Comput.,
Vol. 2, 1973, 294-304

[Ka84] R.G Karlsson:” Algorithms in a Restricted Universe”, Report CS-84-50,
Department of Computer Science, University of Waterloo, 1984

[Kn68] D.E. Knuth: "The Art of Computer Programming”, Vol. 3, ”"Fundamental
Algorithms” | Addison-Wesley, Reading, Mass., 1968.

[Kob3] A.N. Kolmogorov: "On the notion of Algorithm”, Uspehi Mat. Nauk. 8
(1953), 175-176

(MB84] K. Mehlhorn: ”Data Structures and Algorithms”, Springer Publ. Comp.,
1984

16

a) Vol. 1: Sorting and Searching
b) Vol. 2: Graph-Algorithms and NP-Completeness
¢) Vol. 3: Multidimensional Searching and Computational Geometry

[MN86] K. Mehlhorn, S. Naher: "Dynamic Fractional Cascading”, TR 06/1986,
FB10, Universitat des Saarlandes, Saarbriicken, 1986

(S73] A. Schonhage: ”Storage Modification Machines”, SIAM J. Comput., Vol.
9, 1980, 490-508

[T79] R.E. Tarjan: ” A Class of Algorithms which Require Nonlinear Time to
Maintain Disjoint Sets”, J. Comp. Sys. Sci. 18, 1979, 110-127

17

	A_1986_07 0000_1heitscover
	A_1986_07 0001
	A_1986_07 0002
	A_1986_07 0003
	A_1986_07 0004
	A_1986_07 0005
	A_1986_07 0006
	A_1986_07 0007
	A_1986_07 0008
	A_1986_07 0009
	A_1986_07 0010
	A_1986_07 0011
	A_1986_07 0012
	A_1986_07 0013
	A_1986_07 0014
	A_1986_07 0015
	A_1986_07 0016
	A_1986_07 0017
	A_1986_07 0018

