
A Lower Bound for the Complexity
of the Union-Split-Find Problem *

A 07/1986

Kurt Mehlhorn**
Stefan N aher**

Helmu t Alt ***

**FB 10, Informatik

Universitat des Saarlandes

D-6600 Saarbrucken
Federal Republic of Germany

***FB Mathematik, WEJ

Freie Universitat Berlin
D-JOOO Berlin 33

Federal Repu blie of Germany

Abstract. We prove a 8{loglogn) (i.e. matching upper and lower) bound on the

complexity of the Union-Split-Find problem, a variant of the Union-Find problem . OUf

lower bound holds for all pointer machine algorithms and does [Jot require the separation

a~suIllption used ill the lower bound arguments of Tarjan [T79] and Blum [B86]. We

complement this with a 9(logn) bound for the Split-Find problem under the separation

assumption. This shows that the separation assumption can imply an exponential loss

in efficiency.

* This research was supported by the Deutsche FOI'5Chungsgemeinschaft, grant SPP Me

620/&-1

1. Introduction

We consider the following three operations on a linear list XI,X2, .. . ,Xn of i tem~, some

of which are marked.

UNION(xd: given a pointer to the marked item Xi unmark this item

SPLIT(Xj): gIven a pointer to the unmarked item Xi mark this item

FIND(;z;,): given a pointer to the item ;z;. return a pointer to x,
where j = min{ele 2: i and X, is marked }

Note that the ma.rked items pa.rtition the linear list Xl, ... , Xn into intervaJs of un m arked

items. Then FIND(xi) returns (a pointer to) the right endpoint of the interval cont':lining

Xi, SPLIT(xi) splits the interval containing Xi, and UNION(xi) joins the two intervals

having X t 8.! a common endpoint. We call the problem above the Union-Split-Find

Problem; P.v.Emde Boas [EKZ77[called it a priority queue problem . He referred

to the three operations as Insert, Delete and Successor, and exhibited a O(log log n)
solution for it. We will also consider the Split-Find Problem and the Union-Find

Problem (only operations split, find and union, find respect ively). Note t hat our

Union-Find problem is a restriction of the usual Union-Find problem (here called t he

general Union-Find problem) because we allow only adjacent in tervals to be joined .

The Union-Split-Find problem is important for a number of applications , e.g. dynamic

fractional cascading [MN861 and computing shortest paths IM84b, p.471.

We study the complexity of the Union-Split-Find problem in the pointer machine model

of computation (Kolmogorov [Ko53], Knuth [Kn68] , Schonhage IS73], Tarjan 1T791).

A pointer machine captures the list processing capabilities of computers ; its storage

con~ists of records connected by pointers. Previously, lower bounds in a rest ricted

pointer machine model (the term "restricted" is explained below) were obtai ned by

Tarjan 1'1'791 and Blum [B86I. Tarjan proved a 8(a{n)) bound on the amortized cost

of the general Union-Find problem and Blum proved a 8(log rtf log log n) bound on

t.he worst-cue cost. Tarjan's and Blum's lower bounds rely heavily 011 t he following

separation assumption (quoted from '1'arjan [T791):

"At a.ny time during the computation, the contents of the

memory can be partioned into collections of records such

that each collection corresponds to a. currently existing setl

... and no record in one collection contains a pointer to a

record in another collecUon."

IkcltllSt' of this assumption we call their model restricted. If one views poi nters as

2

undirected edges in a graph then the separation assumption states that every c urrently

existing set corresponds to a component of the graph.

The three main results of this paper are:

1. The complexity of the Union-Split-Find problem in the poin!.er machine model is

8(log log n). Here, the upper bound is on the worst-case cost of the th ree operations

and the lower bound is on the amortiud cost of the three operations, i.e. , there

are arbitrarily large m and sequences of m SPLIT, FIND and UNION operations

haying a total cost offl(mloglogn).

The upper bound can be found in [EKZ77J, [Ka84J, and [MN8GJ . The solut ion of

[MN86] supports two additional operations ADD and ERASE which allow to modify

the underlying linear list; the solution does not satisfy the separation assumption.

The lower bound will be proved in section 2 of this paper.

2. In the restricted pointer machine modeJ the worst-case complexity of the Split- Find

problem is S(iog n) and the a.mortized complexity of the Union-Split- Find problem

is 8(log n).

This will be shown in section 3.

3. a) ('brjan [T79]). The amortized complexity of tbe Union -Find problem 1n tbe

restricted pointer machine model is 8(a(n)).

b) Pointer machines obeying the separation assumption are exponen tially weaker

than pointer machjnes without the separa.tion assumptjon. Thjs is true for the

worst-e&ae complexity and for tbe a.mortised complexity

Tarjan proved his lower bound for the general Union-Find problem. His proof however

is ac tually valid for the Union-Find problem considered here. b) fo llows imm edi a tely

from results 1 and 2.

3

2. The Lower Bound

In this section we will show that each solution for the Union-Split-Find problem 011 &

pointer machine requires ll(Iog log n) computationa.l steps, even in the amorti7..ed sense.

More preci8ely, we show that there are arbitrarily large m and seq uences of m UNIO N,

FIND, SPLIT operations having a total cost of O(mloglogn).

Our machine model is a pointer machine as described in [T79]. Its memory M consis t.

of an unbounded collection of r«ords each containing 2 pointers to other records and

an arbitrary amount of additional information. ThulJ M can be regarded as a di rec ted

graph with outdegree 2. We assume that the set of items S is realized by two sets of

records in M a set of input records J = {Xi' ,X21 ... t X~} and a set of out put records

o = {vi 1 ~21" ., 1'~}. (The distinction between input and output reco rds is merely a

notational convenience.)

FIND{x) is executed as follows. The mach ine starts with a pointer to input Record x ·

(corresponding to item xES) in some register T . It stops with a pointer to the ou t p ut

record y. in T which corresponds to item y = FIND(x). Since it can access reco rd s in

M only by poin ters contained in one of ih registers there must be a pat.h p formed

by records and pointers in M starting in x· and ending in y. such t hat pointers to

all records on p have been loaded into a register during the execution of the FIND .

In addition to traversing a path from x· to y. the FIND operation may change some

number of pointers. The cost of the FIND operation is certainly bounded from below

by the length of a shortest path from x' to ~. in M plus the number of pointers

changed.

When execut ing the operation SPLIT(y) the machine starts with a poi nter to record y

in some register. After the operation record y. is reachable via poin ters in lvl for a ll

records x· corresponding to items x with FIND(x) = 1,1. To achieve t his t he machine

challges certain pointers in M. The number of pointers changed is t. he cost of SPI _IT(y) .

The cost of UNION(y) is defined similarly.

III o rd~r to model the actions of the pointer machine on its memory /'vI in a more

ltb8 tra<:t way we consider FIND and SPLIT as operations on a directed graph G as

follows:

Let G = (V, E) be a directed graph with

I. For all v E V : outdegree(v) = 2

'1. . There is a set ofn input nodes 1 = {X l, X21."'X".} ~ V

4

3. There is a set of n output nodes 0 = {1I1,1I2, ... ,Vn} ~ V - I which may be marked

(we call Vi the output node corresponding to input node Xi, 1 :S i ::; n).

FIND(x.), xi E [,

returns out.put node Yl such that j ~ i and j is minimal with Yj is marked . In addition ,

it may replace some edges of G by new edges. The complexity of FIND(x,) is t he length

of the shortest path from Xi to lIj in G plus the number of edges replaced .

SPLlT(y), yEO,

marks output node Y and replaces some edges of G by new edges such t hat every marked

output node y is reachable from all input nodes X with FIND(x) ::::: y . The complexity

of SPLlT(V) i. the Dumber of edges replaced.

UNlON(y), yEO,

un marks output node y and repi&Cet!I some edges of G by new edges. The complexity

of UNlON(y) i. the number of edges replaced.

Lem.ma 1. Let k be any integer, let L = 22k -r l + 1, let n ~ 2(5kl2~, and let Go = (V, 6')

be a directed graph with all output nodes unmarked. Then there is a sequence of L

SPLIT operations followed by L FIND operations, followed by L UNION operations

such that

1. the total cost of the sequence is at least

. (I 1/2') min k· L, 22k+4 n

2. all output nodes are unmarked after executing the sequence.

Proof. We call a graph G a k-atructure iff for every input node x t here is a pat h

of length at most k from x to the output node y = FIND(x).

The idea of the proof is as follows. We first execute a sequence of L SPLIT instructio ns

(this ~equence is cOIlstructed below) which leaves us with a data structure G'l. We next

execute a hardest FIND on G I , i.e. an operation FIND(x) where the shortes t path

from x to FIND(x) has maximal length. Execution of this FIND instruction yields the

data structure G 2. Again we perform a hardest FIND, In this way we perform

a total of L FINDs, each FIND being a hardest FIND in the present data structure .

Finally, we perform a sequence of UNION. which undo all the SPLlTs. This yields a

data structure G~ (generally different from Go) in which all output nodes are unmarked.

In order to estimate the cost of this sequence of instructions we distinguish two cases.

Assume first that no G 1 , 1 ~ i ~ L, is a Ie-structure. Then each FIND costs at. least k

5

time units for a total cost of k·L time units. Assume next that some G , is a k-structure.

We will show that it takes at least (1/22A: + 4). nl/~· edge changes to construct Gs' from

Go; more precisely, we show the following claim.

Claim: Let Go be an arbitrary data. structure with a ll output nodes unmarked.

Then there is a set {Zl •... ,ZL} ~ 0 of output nodes such that no k-structure G' with

exactly Zl, ... ,ZL marked can be constructed from Go with less than (1/2 2k .,.. ",) . n 1/ 2 •

edge replacements.

Proof. For all v E V and f ~ I let R,(v) denote the set of all input nodes w such

that v is reachable from w on a path of length at most f..

Let CO, Cl,' .. , e2k be a sequence of positive constants with

Then the following lemma hold. for Go:

Lem..ma 2. There is an f., 0 :5 f. s: 24: - 1, and f. distinct nodes Vj, ... , Vt such t hat

2. for each wE V - {V1,'" ,vt}: I r n Rk_1(W) 1< C'+l

where r = n'~i~' Rk _1(V,) (I' = 1 if f = 0)

Proof. Let eo be maximal such that there are distinct nodes VI,.·. ,Vto with in1 S iS to

Rk_1(V,) 1 > Cto' We only have to show that fa < 2k, Assume fa? 2k, Then t here are

2k distinct nodes VI,' .. , V2. with n 19:s 2" RA: - l (vs') =I 0. But for every x E I
at most 2k -1 nodes v E V with x E Rk _I (V), a contradiction.

t here are

•

Now let. f. ~ 0 and let VI, V2, . .. ,Vt be nodes satisfying the conditions of lemma 2. We

give a ~equence of 22k 1-1 + 1 SPLIT operations which require at least (ct/2L - 2k+ I) /Cl + I

edge replacements. First we divide r = nl<t<tRk-I(V,) into 2L about e<J.ual sized

intervals All A 2 , . ", A2L i.e., Al consists of the lr /2LJ smallest indexed items in r ,
A, consists of the next l1' /2L J smallest indexed items in 1' ,

Clearly,
C,

IAI > - - I for all i, , - 2£

Let A'l ' A~) . . .) A~L be the corresponding intervals of output nodes.

Lemma 3. In every A~. , j E {2,4,6, ... ,2L}, there is an out put node lIj t hat IS

reachable in Go from at most 2k + 1 input nodes in A j _ 1 on a path of length ~ k.

6

Proof. For all x E A, _I we have I{v E Vlx E R.(v)}1 .,: 2"+1 - I. Thus we conclude

L I{v E V lx E R.(v)}1 .,: IAi - l l · (2"+1 - 1)
xEAi ~ l

= IAil' (2k+l - 1)

•

Let Yi E Aj, j E {2, 4, ... ,2L} be defined as in lemma 3. Then there exists for each

j a set B, _I ~ A, _I such that IBi -d 2': IA,I- 2"+1 and such t hat for eacb x E B, _I
there is no pa.th of length at moet k from x to Jlj in Go. Next consider any k-structure

G' in which exactly the y/s defined above are marked. In G' there must be a path of

length at most k from any x E Bj _ 1 to ~j. Let p(x) be any such path from x to y,
and let «x) denote the first new edge on p(x). Let the edge .(x) start in vertex v(x).
We have

Lemma 4:.

I. I{x E B,_1Iv(x) = w}I": C'+I for every node w ¢ {VI, v" ... ,v,j and every j

2. There is a j E {2,4,6, ... ,2L} such that v(x) ¢ {VI,V" ... ,v,} for all xE Bi - I .

Proof.

1. If v(x) = w then w was reachable from x in the data struct ure Go in at most k-1

steps. Thus the claim follows immediately from the definition of VI,·· . ,Vt.

2. For every vE {VI,V"""v,} we have l{yE OlvE R.(y)}I": 2"+1

and thus I{y E Olv E R.(y)}1 .,: n"+1

lJ E {VI ,· ··, I.Jt}

i.e., all paths of length at most k using nodes from {VI"'" Vt} cannot lead to more

than 2ZIc + 1 = L - 1 output nodes. Since we marked L nodes in 0 there must be

one y, ,uch that v(x) ¢ {Vb'" ,v.} for all x E Bi - I . •

Now consider any j E {2,4, ... ,2L} satisfying condition 2 of lemma 4, i.e., v{x} f/:.

{VI) ' .. , Vi} for al l x E B) -1' Next observe that by part 1 of lemma 4 for any node

W ¢ {VI,'" ,v.} there are at most C<+I nodes x E Bi - I with v(x) = w . Thus

IB,, 1 IA, I- 2"+1
- - --

Cl-I- 1

7

edges must be changed to obtain G' from Go.

With ci=n1 - fi, O~i~211:

we concl ude furt her that

nl>
~ =2-. 7.(2:;;2"'H-;-2;;-:-+--;2")

(since n ~ 2(5<) 2')

This completes the proof of the claim and of lemma 1. •
Theorem 1.

a) The single operation worst case complexity of the Split-Find problem is [] (log log n).

b) The amortized complexity of the Union.Split.Find problem is n(Iog log n) , i.e ., there

are arbitrarily large m and sequences of m UNION, SPLIT and FIND operations

having a total cost of O(mlog logn).

Proof.

a) Let k be maximal such that n ~ 2(··)2'. Then k = O(log log n) and

= [](2')

= O(log n)

= [](log log n)

Let L = 22k+ 1 + 1. Consider the sequence of 2£ SPLITs and FINDs constructed

in the proof of lemma 1. The cost of this sequence is

o (min (k . L, 22~+4 • n 1/2')) = O(L . log log n)

8

and hence at least one operation of the sequence has C05t fl(log log n).

b) Let k be maximal such that n 2 2(5<)2'. Let L = 220+1 + 1 and let m = 3· L· 8

for some 8. Let Go be any data structure with all output nodes unmarked. By

part a) and lemma 1 there is a sequence of 3 . L instructions 5uch that

I. the total cost of the sequence i. [](Lloglogn)

2. all output nodes are unmarked after executing the sequence

Thu5 again by part a) and lemma 1 there is another sequence of 3 . L in5tructions

. Using th is argument 8 times yields a sequence of m instructions with total

~[]~~~~. .

3. A Lower Bound in the Restricted Model

In this section we prove a O(logn) lower bound for the worst-case complexity of the

Split-Find problem and a fl(logn) lower bound for the amortized complexity of the

Union-Split-Find problem in the restricted pointer ma.chine model. We consider pointer

machine algorithms 5atisfying the following separation condition:

The memory ca.n be partioned into subgraphs such that each subgraph correspoIlds

exactly to a current interval. There exjsts no edge from a node in such a subgraph to

a node outside the subgraph ([B86]' [T79]).

Similarly u in the previous section we define a k-structure.

Definition. Let G = (V, E) be a directed graph with input nodes 1 = {x I, ... ,x,,}

and output nodes 0 = {lI l, "" Jln} some of which may be marked.. G is called a

k-strueture iff for every x E I there is a path of length at most k to FIND(x) and

G fulfills the separation condition, i.e. for every X;,Xj E I with FIND(x;) '" FlND (xj)

there is no v E V that is reachable from both x, and Xi' •

9

Lemma 6. Let n ~ (4k)''jkL In any k-structure with output nodes ~ 1 , ··· , l'n - 1

unma.rked and Vn. marked satisfying the separation condition there is a SPLIT operation

requiring at leaat k / 12· nil " edge replacements .

Proof. Since Yn i!:l the only marked output node there is for each inpu t node x a

path of length at most k to ~n. Let T be the subgraph of G formed by all shortest

paths from input nodes to ~n. Then T is a tree with root 1'n, leaves {Xl) ... ,xn.} and

height at most k. For any node v in T let I(v) denote the set of input nodes which

are the leaves of the subtree rooted at v. At ea.cb internal node v of T the incoming

edges can be ordered (WI, V), (W2' V), .. . I (Wml V) such that the minimal index of any

input node in lewd is smaller than the minimal index of any input node in l (w,.) for

all 1 ~ i < j ~ m . (We call w, the i-th son of v.)

Now assume that SPLIT(x) is executed for some x E l. Let

p: X = Va -- VI - •• • --+ Vt = 'Yn

be t he path from x to t he root lin in T . For any Vi, I ~ i :S l , on this pa th let

w~ , w;. :;;;:: Vi - I , ... ,w!n he the sons of Vi in t he order defined above. Before t he split

operation Vi is reachable from all inpu t nodes of both of the following sets

L, = {1' 11' is the node with minimal index in I(wi.l. I ~ k ~ j - I }

R, = {u I u is the node with minimal index in I(wi.l. j + 1 ~ k ~ m}

After the split FIND(a) '" FIND(b) for all a E L" b E R. and by the separation

condition Vi is not reachable from any node of at least one of the sets Li or Ri . Thus

the execution of SPLIT(x) require. at least

min (l Ld, IR.1) = minU - l , indegree(v.)-j I V, _ I is thej- th son of v,}

edge replacements fo r each node Vi, 1 ~ i :S i, on path p .

The total cost for SPLIT(x) is

I

c(p) = L Ill ill{j - 1, indegree(v.) - j I V, _ I is the j -th son of v. }

' '"'' I

We first prove a lower bound for c(p).

Lemma 6. Let T be any tree of height k with n leaves and root r. Then there is a.

Icaf x in T such that the path p from x to T haa cost

c(P) > ~. nIl'
- 12

10

o

l(k - I,i) i(k - I ,O) l(k -1 ,0) i(k - I ,i)

Figure 1

Proof. Define l(Ic , j) a.8 the maxima.l number of leaves in any tree T of heigbt k . such

that c(P) '" i for every path p from a leaf to tbe root of T

Then we have l(O, i) = 1 for i ~ 0

)

and (cf. figure I) l(k,j) = 2· Ll(k-I,i-i)
,=0

i
= 2 . L i(k - I , i) for k ~ I

i=O

The following lable gives ,orne value, of l(k,i). Figure 2 . how. a Iree of height k = 2

with the maximal number of leaves such tha.t all paths have at most cost j = 2.

11

e(k,)) 0 2 3 4 5 6 7 k

0 2 4 8 16 32 64 128

1 1 4 12 32 80 192 448

2 1 6 24 80 240 672

3 1 8 40 160 560

4 1 !O 60 280

5 12 84

6 14

7

J

£(2,2) = 24

Figure 2

A different interpretation of f.(k,j) is as follows. Associate with every edge e = (v, w)
of T the label ere) = min{i -I,indegree(w) - i lv i. the i-th ,on of w}. Then we have

o ~ c(e) ::; j for every edge e and for every path p = Vo ----j. VI ---+ ... ---+ Uk

k - 1

c(P) = Lc(v.,v.+d
i=O

Thus elk,)) <: 2k. (number of possible ways to write) as the sum of

12

k terms from {O,I, ... ,j})

The term 2· accounts for the fact that in every vertex each label can be used twice.

< 2 •. (k + i-I)
- k-I

<2 •. (k+j-I)·-I
- (k-I)!

< 2 •. (k + i-I)·
- k!

< 2 •. (k + i)·
- kl

We conclude that in any tree of height k with n leaves there exists a path p from some

leaf to the root such that

and finally

< 2 •. (e(p) + k)·
n - k!

~ 2· . (2· :~)). since n ;:>: (4k)· /k! and hence e(p) ;:>: k

I (n . k!) 1/.
e(p) > - -

- 2 2.

since (k!)'/ . > ~ if k > 6 -3 -

This completes the proof of lemma 6.

Theorem 2. In the restricted pointer machine model

a) the single-operation worst-case complexity of the Split-Find problem is O(logn) .

•

b) the amortized complexity for the Union-Split-Find problem is O(logn), i.e. there
are arbitrarily large m and oequence. of m UNION, SPLIT, FIND operation. having

a total cost of O(logn).

13

Proor.

a) Let k be mlLXimal such that n ~ (4k)·Jk!. Then k = n(logn) . Let G be any data

structure with all output nodes except !In. unmarked. By lemma 5 there is either a.

FIND operation which C06ta more than k time units or there is & SPLIT operation

having a cost of

~ .nl/' > logn 'nl/lol" = logn = n(Jogn)
12 - 12 6

b) Let G be any structure with all output nodes except lin unmarked. Define k as in

part a). If G is not a k-structure then we perform a hardest FIND in G; this FiND

bas cost k = o (log n) and leaves us with a structure G' where all output nodes

except 11" are unmarked. If G is a k-structure then there is a SPLIT operat ion

of cost kJ12. nil ' = n(logn). We perform it and immediately undo it by the

corresponding UNION operation. This leaves us with a structure G' where all

output nodes except y .. are unmarked . At t his point we are in the initial situation

and we have forced the algorithm to spend n(log n} time units on at most two

operations. Part b) follows. •

We want to point out that o (log n) is clearly also an upper bound for the complexity

of the Union-Split-Find problem in the restricted model. One only has to represent

each interval by a balanced tree; cf. e.g. [M84a, section 1lI.6.3.lj.

We close this section with our third resu lt.

Theorem 3.

a) (Tarjan [T79J) . The amortized complexity of tbe Union-Find problem III the

re~tricted pointer machine model is 8(a(n)) .

b) Pointer machines obeying the separation assumption are exponentially weaker than

pointer machines without the separation assumption. This is true for the worst-case

complexity and for the amortized complexity

Proof.

a) Although Tarjan stated his result for the general Union-Find problem his proof

actually works for our restricted version of it.

b) This follows immediately from theorem 1 and 2. •
14

4. Concl usions and Open Problems

In this paper we proved several new lower hounds for the Union-Split-Find problem.

In particula.r, we presented an n(1cg log n) lower hound for the amortized complex ity of

the Union-Split-Find problem valid for all pointer machine algorithms and an n (log n)
lower bound for restricted (in the sense of Tarjan IT79] and Blum IB86]) pointer ma<:hine

algorithms. OUf lower bounds match known upper bounds. Thus our results reveal

that the separation a8sumption of Tarjan and Blum can imply an exponential loss in

efficiency.

The following table summarizes all known bounds for the complexity of pointer machine

algorithms for the Union.Split-Find problem on intervals including the results of t his

paper .

Problem General Model ReBtrietp.d Model

Union-Find

worst cue o (log log n) IEKZ77J o (log n/ log log n) 1886J

amortized - 9(a(n)) IT79]

Split-Find

worst case 9 (log log n) new 9(logn) new

amortized - o (log" n) IHU73J

U nion-Split-Find

worst case 9 (log log n) new 9(log n) new

amortized 9(log Jog n) new 9(log n) new

There are still several open problems in both models. We have no lower bounds for the

amortized complexity of Union-Find and Split-Find and for the worst-ca~e complexity

of Union-Find in the general model. In the restricted model it remains an open problem

whether the Split-Find algorithm of Hopcroft/Ullman IHUn] whose amortized running

time is O(log" n) is optimal. We suppose that Blum'. lower bound proof for the general

ll ilion-Find problem cannot be modified to work also for the interval problem.

\"tIt> want to point out that the Union-Find problem and the Split-Find problem

have amortjzed complexity 8(1) on random access machine5. Th is was shown by

15

Garbow/Tarjan [GT83] for the Union-Find problem and by lmai /Asano [lAM] for tbe

Split-Find problem.

5. References

[B86]

[EKZ77]

[GT83]

[lA84]

[HU73]

[Ka84]

[Kn68]

[Ko63]

[M84]

N. Blum: "On the Single-Operation Worst-Case Time Complexity of the

Disjoint Set Union Problem" , SIAM J. Comput., Vol. 15, No.4 , 1986,

1021-1024

P. v. Emde Boas, R . Kaa..s , E. Zijlstra: "Design and Implementation of

an Efficient Priority Queue", Math. Syste!llll Tbeory 10, 1977,99-127

H.N. Gabow, R.E. Tarjan : »A linear-time algoritbm for a special case of

disjoint set union", Proc. 15-th Ann . SIGACT Symp., 1983, 24&-251

T. [mai , T. Asano: "Dynamic Segment Intersection with Applicat.ions" 1

26th FOeS, 1984, 393-402

J.E. Hopcroft, J.D. Ullman: "Set Merging Algoritbms" , SIAM J. Comput. ,

Vol. 2, 1973, 294-304

R.G .Karlsson:" Algorithms in a Restricted Universe", Report CS-84-50,

Department of Computer Science, University of Waterloo, 1984

D.E . Knuth: "The Art of Computer Progra.mming", Vol. 3, " Fundamental

Algorithms", Addison-Wesley, Reading , Maas., 1968.

A.N. Kolmogorov: "On the notion of Algorithm" , Uspehi Mat. Nauk. 8

(1953), 175-176

K. Mehlhorn: "Da.ta. Structures and Algori thms", Springer Publ. Comp. ,

1984

16

[MN88)

[S73)

[T711)

aJ Vol. I: Sorting and Searching

bJ Vol. 2: Graph.Algorithms and NP.Completenes.
cJ Vol. 3: Multidimensional Searching &Dd Computational Geometry

K. Mehlhorn, S. Niiher: "Dynamic Fractional Cascading", TR 06/ 1986,
FBIO, Universitiit des Saarland .. , SaarbrUcken, 1986

A. Schonhage: "Storage Modification Machin .. ", SIAM J . Comput., Vol.

9, 1980, 490-508

R.E. Tarjan: " A Class of Algorithms which Require Nonlinear Time to
Maintain Disjoint Sets", J. Compo Sy •. Sci. 18, 1979, 110-127

17

	A_1986_07 0000_1heitscover
	A_1986_07 0001
	A_1986_07 0002
	A_1986_07 0003
	A_1986_07 0004
	A_1986_07 0005
	A_1986_07 0006
	A_1986_07 0007
	A_1986_07 0008
	A_1986_07 0009
	A_1986_07 0010
	A_1986_07 0011
	A_1986_07 0012
	A_1986_07 0013
	A_1986_07 0014
	A_1986_07 0015
	A_1986_07 0016
	A_1986_07 0017
	A_1986_07 0018

