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1. Introduction 

We consider the following three operations on a linear list XI,X2, .. . ,Xn of i tem~, some 

of which are marked. 

UNION(xd: given a pointer to the marked item Xi unmark this item 

SPLIT(Xj): gIven a pointer to the unmarked item Xi mark this item 

FIND(;z;,): given a pointer to the item ;z;. return a pointer to x, 
where j = min{ele 2: i and X, is marked } 

Note that the ma.rked items pa.rtition the linear list Xl, ... , Xn into intervaJs of un m arked 

items. Then FIND(xi) returns (a pointer to) the right endpoint of the interval cont':lining 

Xi, SPLIT(xi) splits the interval containing Xi, and UNION(xi) joins the two intervals 

having X t 8.! a common endpoint. We call the problem above the Union-Split-Find 

Problem; P.v.Emde Boas [EKZ77[ called it a priority queue problem . He referred 

to the three operations as Insert, Delete and Successor, and exhibited a O(log log n) 
solution for it. We will also consider the Split-Find Problem and the Union-Find 

Problem (only operations split, find and union, find respect ively). Note t hat our 

Union-Find problem is a restriction of the usual Union-Find problem (here called t he 

general Union-Find problem) because we allow only adjacent in tervals to be joined . 

The Union-Split-Find problem is important for a number of applications , e.g. dynamic 

fractional cascading [MN861 and computing shortest paths IM84b, p.471. 

We study the complexity of the Union-Split-Find problem in the pointer machine model 

of computation (Kolmogorov [Ko53], Knuth [Kn68] , Schonhage IS73], Tarjan 1T791). 

A pointer machine captures the list processing capabilities of computers ; its storage 

con~ists of records connected by pointers. Previously, lower bounds in a rest ricted 

pointer machine model (the term "restricted" is explained below ) were obtai ned by 

Tarjan 1'1'791 and Blum [B86I. Tarjan proved a 8(a{n)) bound on the amortized cost 

of the general Union-Find problem and Blum proved a 8(log rtf log log n) bound on 

t.he worst-cue cost. Tarjan's and Blum's lower bounds rely heavily 011 t he following 

separation assumption (quoted from '1'arjan [T791): 

"At a.ny time during the computation, the contents of the 

memory can be partioned into collections of records such 

that each collection corresponds to a. currently existing setl 

... and no record in one collection contains a pointer to a 

record in another collecUon." 

IkcltllSt' of this assumption we call their model restricted. If one views poi nters as 

2 



undirected edges in a graph then the separation assumption states that every c urrently 

existing set corresponds to a component of the graph. 

The three main results of this paper are: 

1. The complexity of the Union-Split-Find problem in the poin!.er machine model is 

8(log log n). Here, the upper bound is on the worst-case cost of the th ree operations 

and the lower bound is on the amortiud cost of the three operations, i.e. , there 

are arbitrarily large m and sequences of m SPLIT, FIND and UNION operations 

haying a total cost offl(mloglogn). 

The upper bound can be found in [EKZ77J, [Ka84J, and [MN8GJ . The solut ion of 

[MN86] supports two additional operations ADD and ERASE which allow to modify 

the underlying linear list; the solution does not satisfy the separation assumption. 

The lower bound will be proved in section 2 of this paper. 

2. In the restricted pointer machine modeJ the worst-case complexity of the Split- Find 

problem is S(iog n) and the a.mortized complexity of the Union-Split- Find problem 

is 8(log n). 

This will be shown in section 3. 

3. a) ('brjan [T79]). The amortized complexity of tbe Union -Find problem 1n tbe 

restricted pointer machine model is 8(a(n)). 

b) Pointer machines obeying the separation assumption are exponen tially weaker 

than pointer machjnes without the separa.tion assumptjon. Thjs is true for the 

worst-e&ae complexity and for tbe a.mortised complexity 

Tarjan proved his lower bound for the general Union-Find problem. His proof however 

is ac tually valid for the Union-Find problem considered here. b) fo llows imm edi a tely 

from results 1 and 2. 
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2. The Lower Bound 

In this section we will show that each solution for the Union-Split-Find problem 011 & 

pointer machine requires ll(Iog log n) computationa.l steps, even in the amorti7..ed sense. 

More preci8ely, we show that there are arbitrarily large m and seq uences of m UNIO N, 

FIND, SPLIT operations having a total cost of O(mloglogn). 

Our machine model is a pointer machine as described in [T79]. Its memory M consis t. 

of an unbounded collection of r«ords each containing 2 pointers to other records and 

an arbitrary amount of additional information. ThulJ M can be regarded as a di rec ted 

graph with outdegree 2. We assume that the set of items S is realized by two sets of 

records in M a set of input records J = {Xi' ,X21 ... t X~} and a set of out put records 

o = {vi 1 ~21" ., 1'~}. (The distinction between input and output reco rds is merely a 

notational convenience.) 

FIND{x) is executed as follows. The mach ine starts with a pointer to input Record x · 

(corresponding to item xES) in some register T . It stops with a pointer to the ou t p ut 

record y. in T which corresponds to item y = FIND(x). Since it can access reco rd s in 

M only by poin ters contained in one of ih registers there must be a pat.h p formed 

by records and pointers in M starting in x· and ending in y. such t hat pointers to 

all records on p have been loaded into a register during the execution of the FIND . 

In addition to traversing a path from x· to y. the FIND operation may change some 

number of pointers. The cost of the FIND operation is certainly bounded from below 

by the length of a shortest path from x' to ~. in M plus the number of pointers 

changed. 

When execut ing the operation SPLIT(y) the machine starts with a poi nter to record y 

in some register. After the operation record y. is reachable via poin ters in lvl for a ll 

records x· corresponding to items x with FIND(x) = 1,1. To achieve t his t he machine 

challges certain pointers in M. The number of pointers changed is t. he cost of SPI _IT(y) . 

The cost of UNION(y) is defined similarly. 

III o rd~r to model the actions of the pointer machine on its memory /'vI in a more 

ltb8 tra<:t way we consider FIND and SPLIT as operations on a directed graph G as 

follows: 

Let G = (V, E) be a directed graph with 

I. For all v E V : outdegree( v) = 2 

'1. . There is a set ofn input nodes 1 = {X l, X21."'X".} ~ V 
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3. There is a set of n output nodes 0 = {1I1,1I2, ... ,Vn} ~ V - I which may be marked 

(we call Vi the output node corresponding to input node Xi, 1 :S i ::; n ). 

FIND(x.), xi E [, 

returns out.put node Yl such that j ~ i and j is minimal with Yj is marked . In addition , 

it may replace some edges of G by new edges. The complexity of FIND(x,) is t he length 

of the shortest path from Xi to lIj in G plus the number of edges replaced . 

SPLlT(y), yEO, 

marks output node Y and replaces some edges of G by new edges such t hat every marked 

output node y is reachable from all input nodes X with FIND(x) ::::: y . The complexity 

of SPLlT(V) i. the Dumber of edges replaced. 

UNlON(y), yEO, 

un marks output node y and repi&Cet!I some edges of G by new edges. The complexity 

of UNlON(y) i. the number of edges replaced. 

Lem.ma 1. Let k be any integer, let L = 22k -r l + 1, let n ~ 2(5kl2~, and let Go = (V, 6' ) 

be a directed graph with all output nodes unmarked. Then there is a sequence of L 

SPLIT operations followed by L FIND operations, followed by L UNION operations 

such that 

1. the total cost of the sequence is at least 

. ( I 1/2') min k· L, 22k+4 n 

2. all output nodes are unmarked after executing the sequence. 

Proof. We call a graph G a k-atructure iff for every input node x t here is a pat h 

of length at most k from x to the output node y = FIND(x). 

The idea of the proof is as follows. We first execute a sequence of L SPLIT instructio ns 

(this ~equence is cOIlstructed below) which leaves us with a data structure G'l. We next 

execute a hardest FIND on G I , i.e. an operation FIND(x) where the shortes t path 

from x to FIND(x) has maximal length. Execution of this FIND instruction yields the 

data structure G 2. Again we perform a hardest FIND, In this way we perform 

a total of L FINDs, each FIND being a hardest FIND in the present data structure . 

Finally, we perform a sequence of UNION. which undo all the SPLlTs. This yields a 

data structure G~ (generally different from Go) in which all output nodes are unmarked. 

In order to estimate the cost of this sequence of instructions we distinguish two cases. 

Assume first that no G 1 , 1 ~ i ~ L, is a Ie-structure. Then each FIND costs at. least k 
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time units for a total cost of k·L time units. Assume next that some G , is a k-structure. 

We will show that it takes at least (1/22A: + 4). nl/~· edge changes to construct Gs' from 

Go; more precisely, we show the following claim. 

Claim: Let Go be an arbitrary data. structure with a ll output nodes unmarked. 

Then there is a set {Zl •... ,ZL} ~ 0 of output nodes such that no k-structure G' with 

exactly Zl, ... ,ZL marked can be constructed from Go with less than (1/2 2k .,.. ",) . n 1/ 2 • 

edge replacements. 

Proof. For all v E V and f ~ I let R,(v) denote the set of all input nodes w such 

that v is reachable from w on a path of length at most f.. 

Let CO, Cl,' .. , e2k be a sequence of positive constants with 

Then the following lemma hold. for Go: 

Lem..ma 2. There is an f., 0 :5 f. s: 24: - 1, and f. distinct nodes Vj, ... , Vt such t hat 

2. for each wE V - {V1,'" ,vt}: I r n Rk_1(W) 1< C'+l 

where r = n'~i~' Rk _1(V,) (I' = 1 if f = 0) 

Proof. Let eo be maximal such that there are distinct nodes VI,.·. ,Vto with in1 S iS to 

Rk_1(V,) 1 > Cto' We only have to show that fa < 2k, Assume fa? 2k, Then t here are 

2k distinct nodes VI,' .. , V2. with n 19:s 2" RA: - l (vs') =I 0. But for every x E I 
at most 2k -1 nodes v E V with x E Rk _I (V), a contradiction. 

t here are 

• 

Now let. f. ~ 0 and let VI, V2, . .. ,Vt be nodes satisfying the conditions of lemma 2. We 

give a ~equence of 22k 1-1 + 1 SPLIT operations which require at least (ct/2L - 2k+ I) /Cl + I 

edge replacements. First we divide r = nl<t<tRk-I(V,) into 2L about e<J.ual sized 

intervals All A 2 , . ", A2L i.e., Al consists of the lr /2LJ smallest indexed items in r , 
A, consists of the next l1' /2L J smallest indexed items in 1' , 

Clearly, 
C, 

IAI > - - I for all i, , - 2£ 

Let A'l ' A~) . . . ) A~L be the corresponding intervals of output nodes. 

Lemma 3. In every A~. , j E {2,4,6, ... ,2L}, there is an out put node lIj t hat IS 

reachable in Go from at most 2k + 1 input nodes in A j _ 1 on a path of length ~ k. 
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Proof. For all x E A, _I we have I{v E Vlx E R.(v)}1 .,: 2"+1 - I. Thus we conclude 

L I{v E V lx E R.(v)}1 .,: IAi - l l · (2"+1 - 1) 
xEAi ~ l 

= IAil' (2k+l - 1) 

• 

Let Yi E Aj, j E {2, 4, ... ,2L} be defined as in lemma 3. Then there exists for each 

j a set B, _I ~ A, _I such that IBi -d 2': IA,I- 2"+1 and such t hat for eacb x E B, _I 
there is no pa.th of length at moet k from x to Jlj in Go. Next consider any k-structure 

G' in which exactly the y/s defined above are marked. In G' there must be a path of 

length at most k from any x E Bj _ 1 to ~j. Let p(x) be any such path from x to y, 
and let «x) denote the first new edge on p(x). Let the edge .(x) start in vertex v(x). 
We have 

Lemma 4:. 

I. I{x E B,_1Iv(x) = w}I": C'+I for every node w ¢ {VI, v" ... ,v,j and every j 

2. There is a j E {2,4,6, ... ,2L} such that v(x) ¢ {VI,V" ... ,v,} for all xE Bi - I . 

Proof. 

1. If v(x) = w then w was reachable from x in the data struct ure Go in at most k-1 

steps. Thus the claim follows immediately from the definition of VI,·· . ,Vt. 

2. For every vE {VI,V"""v,} we have l{yE OlvE R.(y)}I": 2"+1 

and thus I{y E Olv E R.(y)}1 .,: n"+1 

lJ E {VI ,· ··, I.Jt} 

i.e., all paths of length at most k using nodes from {VI"'" Vt} cannot lead to more 

than 2ZIc + 1 = L - 1 output nodes. Since we marked L nodes in 0 there must be 

one y, ,uch that v(x) ¢ {Vb'" ,v.} for all x E Bi - I . • 

Now consider any j E {2,4, ... ,2L} satisfying condition 2 of lemma 4, i.e., v{x} f/:. 

{VI) ' .. , Vi} for al l x E B) -1' Next observe that by part 1 of lemma 4 for any node 

W ¢ {VI,'" ,v.} there are at most C<+I nodes x E Bi - I with v(x) = w . Thus 

IB,, 1 IA, I- 2"+1 
- - --

Cl-I- 1 
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edges must be changed to obtain G' from Go. 

With ci=n1 - fi, O~i~211: 

we concl ude furt her that 

nl> 
~ =2-. 7.( 2:;;2"'H-;-2;;-:-+--;2") 

(since n ~ 2(5<) 2' ) 

This completes the proof of the claim and of lemma 1. • 
Theorem 1. 

a) The single operation worst case complexity of the Split-Find problem is [] (log log n). 

b) The amortized complexity of the Union.Split.Find problem is n(Iog log n) , i.e ., there 

are arbitrarily large m and sequences of m UNION, SPLIT and FIND operations 

having a total cost of O(mlog logn). 

Proof. 

a) Let k be maximal such that n ~ 2(··)2'. Then k = O(log log n) and 

= [](2') 

= O(log n) 

= [](log log n) 

Let L = 22k+ 1 + 1. Consider the sequence of 2£ SPLITs and FINDs constructed 

in the proof of lemma 1. The cost of this sequence is 

o (min (k . L, 22~+4 • n 1/2') ) = O(L . log log n) 
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and hence at least one operation of the sequence has C05t fl(log log n). 

b) Let k be maximal such that n 2 2(5<)2'. Let L = 220+1 + 1 and let m = 3· L· 8 

for some 8. Let Go be any data structure with all output nodes unmarked. By 

part a) and lemma 1 there is a sequence of 3 . L instructions 5uch that 

I. the total cost of the sequence i. [](Lloglogn) 

2. all output nodes are unmarked after executing the sequence 

Thu5 again by part a) and lemma 1 there is another sequence of 3 . L in5tructions 

. Using th is argument 8 times yields a sequence of m instructions with total 

~[]~~~~. . 

3. A Lower Bound in the Restricted Model 

In this section we prove a O(logn) lower bound for the worst-case complexity of the 

Split-Find problem and a fl(logn) lower bound for the amortized complexity of the 

Union-Split-Find problem in the restricted pointer ma.chine model. We consider pointer 

machine algorithms 5atisfying the following separation condition: 

The memory ca.n be partioned into subgraphs such that each subgraph correspoIlds 

exactly to a current interval. There exjsts no edge from a node in such a subgraph to 

a node outside the subgraph ([B86]' [T79]). 

Similarly u in the previous section we define a k-structure. 

Definition. Let G = (V, E) be a directed graph with input nodes 1 = {x I, ... ,x,,} 

and output nodes 0 = {lI l, "" Jln} some of which may be marked.. G is called a 

k-strueture iff for every x E I there is a path of length at most k to FIND(x) and 

G fulfills the separation condition, i.e. for every X;,Xj E I with FIND(x; ) '" FlND (xj ) 

there is no v E V that is reachable from both x, and Xi' • 
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Lemma 6. Let n ~ (4k)''jkL In any k-structure with output nodes ~ 1 , ··· , l'n - 1 

unma.rked and Vn. marked satisfying the separation condition there is a SPLIT operation 

requiring at leaat k / 12· nil " edge replacements . 

Proof. Since Yn i!:l the only marked output node there is for each inpu t node x a 

path of length at most k to ~n. Let T be the subgraph of G formed by all shortest 

paths from input nodes to ~n. Then T is a tree with root 1'n, leaves {Xl ) ... ,xn.} and 

height at most k. For any node v in T let I(v) denote the set of input nodes which 

are the leaves of the subtree rooted at v. At ea.cb internal node v of T the incoming 

edges can be ordered (WI, V), (W2' V), .. . I (Wml V) such that the minimal index of any 

input node in lewd is smaller than the minimal index of any input node in l (w,.) for 

all 1 ~ i < j ~ m . (We call w, the i-th son of v.) 

Now assume that SPLIT(x) is executed for some x E l. Let 

p: X = Va -- VI - •• • --+ Vt = 'Yn 

be t he path from x to t he root lin in T . For any Vi, I ~ i :S l , on this pa th let 

w~ , .... w;. :;;;:: Vi - I , ... ,w!n he the sons of Vi in t he order defined above. Before t he split 

operation Vi is reachable from all inpu t nodes of both of the following sets 

L, = {1' 11' is the node with minimal index in I(wi.l. I ~ k ~ j - I } 

R, = {u I u is the node with minimal index in I(wi.l. j + 1 ~ k ~ m} 

After the split FIND(a) '" FIND(b) for all a E L" b E R. and by the separation 

condition Vi is not reachable from any node of at least one of the sets Li or Ri . Thus 

the execution of SPLIT(x) require. at least 

min (l Ld, IR.1) = minU - l , indegree(v.)-j I V, _ I is thej- th son of v,} 

edge replacements fo r each node Vi, 1 ~ i :S i, on path p . 

The total cost for SPLIT(x) is 

I 

c(p) = L Ill ill{j - 1, indegree(v.) - j I V, _ I is the j -th son of v. } 

' '"'' I 

We first prove a lower bound for c(p). 

Lemma 6. Let T be any tree of height k with n leaves and root r. Then there is a. 

Icaf x in T such that the path p from x to T haa cost 

c(P) > ~. nIl' 
- 12 
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o 

l(k - I,i) i(k - I ,O) l(k -1 ,0) i(k - I ,i) 

Figure 1 

Proof. Define l( Ic , j) a.8 the maxima.l number of leaves in any tree T of heigbt k . such 

that c(P) '" i for every path p from a leaf to tbe root of T 

Then we have l(O, i) = 1 for i ~ 0 

) 

and (cf. figure I ) l(k,j) = 2· Ll(k-I,i-i) 
,=0 

i 
= 2 . L i( k - I , i) for k ~ I 

i=O 

The following lable gives ,orne value, of l(k,i). Figure 2 . how. a Iree of height k = 2 

with the maximal number of leaves such tha.t all paths have at most cost j = 2. 
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e(k, )) 0 2 3 4 5 6 7 k 

0 2 4 8 16 32 64 128 

1 1 4 12 32 80 192 448 

2 1 6 24 80 240 672 

3 1 8 40 160 560 

4 1 !O 60 280 

5 12 84 

6 14 

7 

J 

£(2,2) = 24 

Figure 2 

A different interpretation of f.(k,j) is as follows. Associate with every edge e = (v, w) 
of T the label ere) = min{i -I,indegree(w) - i lv i. the i-th ,on of w}. Then we have 

o ~ c(e) ::; j for every edge e and for every path p = Vo ----j. VI ---+ ... ---+ Uk 

k - 1 

c(P) = Lc(v.,v.+d 
i=O 

Thus elk,)) <: 2k. (number of possible ways to write) as the sum of 
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k terms from {O,I, ... ,j}) 

The term 2· accounts for the fact that in every vertex each label can be used twice. 

< 2 •. (k + i-I) 
- k-I 

<2 •. (k+j-I)·-I 
- (k-I)! 

< 2 •. (k + i-I)· 
- k! 

< 2 •. (k + i)· 
- kl 

We conclude that in any tree of height k with n leaves there exists a path p from some 

leaf to the root such that 

and finally 

< 2 •. (e(p) + k)· 
n - k! 

~ 2· . (2· :~)). since n ;:>: (4k)· /k! and hence e(p) ;:>: k 

I (n . k!) 1/. 
e(p) > - -

- 2 2. 

since (k! )'/ . > ~ if k > 6 -3 -

This completes the proof of lemma 6. 

Theorem 2. In the restricted pointer machine model 

a) the single-operation worst-case complexity of the Split-Find problem is O(logn) . 

• 

b) the amortized complexity for the Union-Split-Find problem is O(logn), i.e. there 
are arbitrarily large m and oequence. of m UNION, SPLIT, FIND operation. having 

a total cost of O(logn). 

13 



Proor. 

a) Let k be mlLXimal such that n ~ (4k)·Jk!. Then k = n(logn) . Let G be any data 

structure with all output nodes except !In. unmarked. By lemma 5 there is either a. 

FIND operation which C06ta more than k time units or there is & SPLIT operation 

having a cost of 

~ .nl/' > logn 'nl/lol" = logn = n(Jogn) 
12 - 12 6 

b) Let G be any structure with all output nodes except lin unmarked. Define k as in 

part a). If G is not a k-structure then we perform a hardest FIND in G; this FiND 

bas cost k = o (log n) and leaves us with a structure G' where all output nodes 

except 11" are unmarked. If G is a k-structure then there is a SPLIT operat ion 

of cost kJ12. nil ' = n(logn). We perform it and immediately undo it by the 

corresponding UNION operation. This leaves us with a structure G' where all 

output nodes except y .. are unmarked . At t his point we are in the initial situation 

and we have forced the algorithm to spend n(log n} time units on at most two 

operations. Part b) follows. • 

We want to point out that o (log n) is clearly also an upper bound for the complexity 

of the Union-Split-Find problem in the restricted model. One only has to represent 

each interval by a balanced tree; cf. e.g. [M84a, section 1lI.6.3.lj. 

We close this section with our third resu lt. 

Theorem 3. 

a) (Tarjan [T79J) . The amortized complexity of tbe Union-Find problem III the 

re~tricted pointer machine model is 8(a(n)) . 

b) Pointer machines obeying the separation assumption are exponentially weaker than 

pointer machines without the separation assumption. This is true for the worst-case 

complexity and for the amortized complexity 

Proof. 

a) Although Tarjan stated his result for the general Union-Find problem his proof 

actually works for our restricted version of it. 

b) This follows immediately from theorem 1 and 2. • 
14 



4. Concl usions and Open Problems 

In this paper we proved several new lower hounds for the Union-Split-Find problem. 

In particula.r, we presented an n(1cg log n) lower hound for the amortized complex ity of 

the Union-Split-Find problem valid for all pointer machine algorithms and an n (log n) 
lower bound for restricted (in the sense of Tarjan IT79] and Blum IB86]) pointer ma<:hine 

algorithms. OUf lower bounds match known upper bounds. Thus our results reveal 

that the separation a8sumption of Tarjan and Blum can imply an exponential loss in 

efficiency. 

The following table summarizes all known bounds for the complexity of pointer machine 

algorithms for the Union.Split-Find problem on intervals including the results of t his 

paper . 

Problem General Model ReBtrietp.d Model 

Union-Find 

worst cue o (log log n) IEKZ77J o (log n/ log log n) 1886J 

amortized - 9(a(n)) IT79] 

Split-Find 

worst case 9 (log log n) new 9(logn) new 

amortized - o (log" n) IHU73J 

U nion-Split-Find 

worst case 9 (log log n) new 9(log n) new 

amortized 9(log Jog n) new 9(log n) new 

There are still several open problems in both models. We have no lower bounds for the 

amortized complexity of Union-Find and Split-Find and for the worst-ca~e complexity 

of Union-Find in the general model. In the restricted model it remains an open problem 

whether the Split-Find algorithm of Hopcroft/Ullman IHUn] whose amortized running 

time is O(log" n) is optimal. We suppose that Blum'. lower bound proof for the general 

ll ilion-Find problem cannot be modified to work also for the interval problem. 

\"tIt> want to point out that the Union-Find problem and the Split-Find problem 

have amortjzed complexity 8(1) on random access machine5. Th is was shown by 
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Garbow/Tarjan [GT83] for the Union-Find problem and by lmai /Asano [lAM] for tbe 

Split-Find problem. 
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