Tree Grammars
with

multilinear Interpretation

Y. Guan, G. Hotz, A. Reichert *

Lehrstuhl Prof. Dr. Giinter Hotz
Fachbereich 14 Informatik
Universitiat des Saarlandes

W-6600 Saarbriicken, Germany

*Diploma Thesis

Introduction

In the following report, the relation between rewriting on trees and rewriting on strings is inspected.

The correspondence of regular tree rewriting with context-free string rewriting is a well-known
fact [Br69]. Generalizing from this will lead us to a type of string grammar called coupled-context-
free grammar (CCFG).

A hierarchy of grammar (resp. language) classes is obtained with the context-free Chomsky-
grammars (CFG) as its first step. Each language class in this hierarchy is contained in the class of
context-sensitive Chomsky-languages.

Generation power increases only slightly stepping up in the hierarchy. This is measured by the
ability for “counting up to k7, i.e. for generating the language

COUNTy,:={ay---a} | n € Ng} C{ay,...,ar}"
and the ability for “copying k times”, i.e. for generating the language
COPY; = {ww* | we {a,b}*} C {a,b}"

where k is a non-negative integer.

Under this aspect CFGs are able to count up to 2 and are not able to copy, Tree Adjoining
Grammars (TAG) [Jo85] are able to count up to 4 and to copy one time. The corresponding
language classes CFL and TAL form the first two steps in our hierarchy. The k-th grammar class
in the hierarchy is able to “count up to 2k + 2”7 and to “copy k times”.

Recent investigations in Computer Linguistics have shown that many natural language phe-
nomena can be described by grammars whose generation power is slightly stronger than that of
CFGs [Jo86]. This also motivates the study of the grammar and language classes in our hierarchy.

Further work in the theory, especially the study of parsing algorithms, can be found in [Gu92].

Contents

1 Algebraic Theory of Formal Languages
1.1 The theory of free x—categories
1.2 Describing formal languages by x-categories . .
1.3 Context-free Chomsky Languages
1.4 Coupled-context-free Grammars

2 Tree Grammars with Multilinear Interpretation
2.1 Tree Grammars o o
2.2 Multilinear Interpretation of Tree Languages . .
2.3 Some formal properties of the classes BGMI(k) .
2.4 The connection between BGMI and CCFG . . .

3 Tree Adjoining Grammars and BGMI
3.1 Basic definitions Lo L.
3.2 Description of TAG-rewriting by x—categories . .
3.3 The equivalence of TAGC and BGMI of degree 1

Bibliography

11
19

26
26
31
35
38

44
44
47
50

53

Chapter 1

Algebraic Theory of Formal
Languages

1.1 The theory of free x—categories

We introduce in this section some basic definitions and facts from the theory of free x—categories.

Definition 1 monoid of words
Let [1.n]:={i e N |1 <i<n}forn € Ny, ie [1.0] = 0. For a finite set (alphabet) B,

B*:={w | w:[l.n] — Bis a mapping, n € Ny}

is called the set of words over B.

The (unique) mapping ep : [1..0] — B is the emply word over B, and BT := B*\ {ep} is the
set of nonempty words over B.

Let “” denote the concatenation on B*, i.e. for w:[l..m]— B, v:[l.n] — B

w-v:[l.(m+n)]— B
is the mapping defined by

(?Iw?})(i):{"(i) , 1<1<m

vii—m), m+1<i<m+n
The monoid (B*, -, ¢g) is called monoid of words over B.

|w] := n is called the length of w: [1..n] — B. If B"™ denotes the set of all words of length n in

B*, it holds
B™-B":={u-v|u€ B", ve B"} = B"",

B° = {eg} will also be written as {O}.
The monoid of words over B is freely generated by the set B' which is identified with B.

Let us now give some category terminology which will be illustrated by a category of mappings.
For a set B, let M be the set of all mappings f : B™ — B"™, m,n € Ng. Define mappings
Q,7: M — Ng by Q(f):=m, Z(f):=n, for f as above.

The (sequential) composition f o g is defined for f.g € M iff Q(f) = Z(g) and is the mapping
fog:BOU ~ BN (foq)(x)i= flg(x)) Vre B

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 2

Thus, @(fog)=Q(g)and Z(fog)= Z(f). Let 1,,, n € Ny, denote the identity on B". It holds:

Ky = (No, M,Q, Z,0)is a category.

Definition 2 category
K =(0,M.Q.Z,0)is a category iff

(K1) O and M are sets, @, 7 : M — O are mappings,
o: M x M~ M is a (partial) operation on M.

(K2) For f,g € M, the composition fog € M is defined iff Q(f) = Z(g). In this case Q(fog) = Q(g)
and Z(fog)=Z(f).

(K3) Tf (fog)ohis defined for f,g,h € M, then also fo(goh). In this case holds
(fog)oh= fo(goh).

(K4) For each u € O, there is an element 1, € M with the following properties:

1. Q(1,) = u=7(1,),
2. fol,=f forall fe M with Q(f)=u,
3. 1,09=g forall g€ M with Z(g) = u.

0Obj K := O is the set of objects, and Mor K := M is the set of morphisms of category K. Q
and 7 are called source resp. target mapping of K. The morphisms 1, are called units of K, the
set of all units is denoted by UNITS(K).

For f € Mor K with Q(f) = u and Z(f) = v, we write f : v — v or u J, v, For subsets
UV C Mor K, let
KU V)y:={feMorK |Q(f)e U, Z(f) eV}

If U = {u} is a singleton, we also write K (u, V') (analogous for V).

Our next definition introduces a special type of category called x —category which plays an impor-
tant role in the description of formal languages, see [Ho66], [Ben70] or [Ben75]. In an x—category,
the sets of objects and morphisms each form a monoid. Source and target mappings are homo-
morphisms between these monoids. We extend the category K7 from above to an X—category by
defining an additional operation on the set of morphisms.

Let @ : M x M — M denote the parallel composition of mappings from M, i.e. for

f:B"™ — B", g: B — B?, m,n,r,s € Ny,
it holds:
f®g:B™" — Bnts, f@g(u-v):= f(u)-g(v) Yue B™,ve B".
Then the following properties hold:

1. (Ng,+.,0), the set of objects with addition, and (M, ®, 1p), the set of morphisms with parallel
composition, are monoids.

2. The source and target mappings @, Z : M — Ny are homomorphisms between these monoids.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 3

3.([i@ f2)o(g1®@g2)=(frog) @ (faoge) Yfivgie M, Q(f;) = Z(g:). i =1,2.

The structure MAP(B,Ng) := (Ng, M, Q, Z,0,(+,®)) is an X —category.
For simplicity, the monoid operations on the set of objects (here: 4) resp. on the set of morphisms
(here: @) both are denoted by the same symbol (here: x).

Definition 3 X category
X =(0,M,Q.Z,0,x)is called x category iff

(K) (O, M,Q.7,0) is a category.
(X1) (O, x) and (M, x) are monoids, and ¢, 7 are monoid-homomorphisms.

(X2) For all f;,9; € M with Q(f;) = Z(g;), ¢ = 1,2, holds:

(fl X f2) o(g1 X g2) = (f1 0!]1) X (f2 092)-

Definition 4 subcategory, X subcategory

Let U and K be categories (x categories) with ObjU C Obj K, MorU C Mor K. If the
operations of U and K are identical on U, U is called a subcategory (x subcategory) of K. This is
denoted by U C K.

Definition 5 generated subcategory, x —subcategory

Let K be a category (x-—category), £ C ObjK, A C Mor K. The smallest subcategory
(x-subcategory) of K which includes F and A is called the subcategory (x—subcategory) generated
by (£, A) in K and is denoted by (F, A)-.

(E, A)is called generating system of (I, A),-. If E = Obj K, we simply call A generating system
of (E,A).

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 4

Generated subcategories are characterized by the following

Lemma 1.1.1 (see [Ho74])
<E7A>I(= (ﬂv@v@vzvovx)
with

Ex = (){ObjU|UCK, ECObjU, AC MorU},
A (V{MorU | U C K, EC ObjU, AC MorU},

and (), 7,0, X are the restrictions of the corresponding mappings and operations of K.

The morphisms in subcategory (K, A}y are exactly those morphisms from K which can be built
from the elements of A and the units 1., e € E, applying the operations of the category.

In the following, we will often make use of mappings between categories (resp. X categories),
so called functors, which are compatible with the category operation(s). Functors are similar to
homomorphisms (of algebras), but not in all respects. For example, the image of a category under
a functor must not be a category.

Definition 6 covariant functor
Let Kq, K5 be categories, ¢y : Obj K1 — Obj K5 and ¢3 : Mor Ky — Mor K5 be mappings.
We call ¢ = (é1,¢2) a (covariant) functor from Ky into K, if

(F1) Q(¢2(f)) = ¢1(Q(f)) and Z($2(f)) = ¢1(Z(f)) V[€ Mor K,
(F2) ¢a(fog) = da(f)ogalg) Yf,g€ Mor Ky with Q(f) = Z(yg),
(F3) ¢z(1u) =1y, (u) Yu € Obj K1 .

A functor is a pair of mappings that is compatible with the operations of the category and
with the source and target mappings @) and Z. A covariant functor preserves the “direction” of
morphisms. There are also functors which invert the direction of morphisms:

Definition 7 contravariant functor
Let Ky, K3, ¢1,¢2 as above. ¢ = (¢1, ¢2) is a contravariant functor from Ky into Ky if

(F17) Q(2(f)) = 01(Z(f)) and Z(d2(f)) = $1(Q(f)) VS € Mor K,
(F27) ¢a(fog)=dalg)oda(f) Vf.g€ Mor Ky with Q(f) = Z(g),
(F‘37) ¢2(1u) =14, (w) Yu € Obj K.

Remark: Condition (F'1) can be derived from (F2). (I'3) and the uniqueness of units (analo-
gously for (F17)).

For the special case of x—categories we get the following definition:
Definition 8 X —functor

Let Ky and K3 be x—categories. A functor ¢ = (¢, ¢2) from Ky into K; is called x —functor if
¢1 and ¢9 are monoid homomorphisms with respect to x.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 5

An x—category is free (generated) if its morphisms can be uniquely presented by the elements
of a special generating system. Two presentations are considered equal if they can be transformed
into each other using only axioms of the x—category. A possible definition is given by

Definition 9 free (generated) X category
An x category X is free (generated) if there is a subset A C MorX with the following property:

If K is an arbitrary x—category, ¢y : Obj X — Obj K a monoid homomorphism and
@b+ A — Mor K a mapping compatible with source and target, i.e.

Vied Q(éh(f) = d1(QS)) and Z(¢5(f)) = d1(Z([)).

there is a (unique) extension ¢ : Mor X — Mor K of ¢} such that ¢ = (¢1,¢2) is an
X —functor from X into K.

In this case, A C MorX is called free generating system of X.

Given sets A,V and mappings @,7 : A — V™, there is a free X category with free gener-
ating system A and monoid of objects V*. We denote this free x category by F(A,V,Q,7),
F(A, Q. 7), F(A, V) or simply by F(A) if the missing parameters are given in the context.

Formal constructions of F(A,V,Q, 7Z) can be found in references [Ho65] or [Ben75]. We give
some properties of F(A,V, Q. 7), for a proof see [HoC172]:

1. F(A,V,Q,7) has the unique free generating system A.
2. Fach non-unit morphism f € F(A,V.Q,7) has a sequential presentation
F=1y, Xan X1, Jo-o(ly Xa; X 1,)
where u;,v; € V¥ and a; € 4, 1 <1< m, m € N.

In general, the sequential presentation of a morphism is not uniquely determined. Nevertheless,
the number of occurrences of each generator in different sequential presentations for a morphism is
the same. The sum of all occurrences of generators in a sequential presentation is called the length
of the presented morphism.

Morphisms of a free x—category F(A,V,Q, Z) can be visualized geometrically by directed planar
nets.

Each generator ¢ € A with Q(a) = u, Z(a) = v, is considered as a “box” named a with |u]
inputs and |v| outputs which hangs in a rectangle. Inputs and outputs are marked with elements
from V. The i-th input (resp. output) from the left is marked with u(z) (resp. v(7)). In the case
#V = 1.1.e. V* = Ng, the markings are omitted.

Each unit 1,, u € V>, is considered as a “bundle of wires” marked with the word .

Starting from these elementary nets, we can construct more complex ones by applying the
X category-operations o and X.

F x G is defined as the juxtaposition of the nets F' and G together with concatenation of input
and output markings. (In the figure, the markings are omitted.)

F oG is defined iff the output marking of G equals the input marking of F~ and corresponds to
setting GG on top of F. The input marking of the composed net F o is given by Q(FoG) = Q(GH)
and the output marking is given by Z(F o G) = Z(F).

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 6

u(l) uffu))

(1) o(Jv])

Figure 1.1: generator

u(1) u(ful)
Figure 1.2: unit

The resulting nets are collected in classes where two nets are in the same class if they can be
transformed into each other by “deformations” corresponding to the axioms (X2) resp. (K4) of the
X—category.

The operations o and x are inherited to the classes, the morphisms of the free x—category
correspond exactly to these classes of nets. Nets in the same class are called inessentially different
or similar.

More information on the geometric aspects of free x—categories can be found in references
[Ho65] and [Ho74].

An important special case of free x—categories will now be defined. Tt is characterized by the
fact that each generator has exactly one output.

Definition 10 category of trees, context-free X —category
A free x—category F(A,V.Q,7)is called category of trees or context-free x —category if

1Z(a) =1 VYaecA.

An analogous definition applies to the case |Q(a)| =1 Va € A. Tf #V = 1, we identify V* with
Ny and consider) and Z as mappings from A to Ng. For F(A,V. Q. 7) we write in this case also
B(A,Q, 7).

Definition 11 tree
Let F:= F(A,V.Q.Z) be a category of trees. A morphism f € Mor F is called a tree if

f=aof, acA, ffe MorF.

We denote with Trees(M) the subset of all trees in a set of morphisms M C Mor F. Every
morphism from a category of trees can be decomposed under X into units and trees:

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 7

Fxd

Figure 1.3: parallel composition

i
—

Fod

Figure 1.4: sequential composition

O)

Lemma 1.1.2 (see [HoCl72]) Let F := F(A,V,Q.,7) be a category of trees.
Fach f € MorF, Z(f) =w. |w| =k € Ny, has a unique decomposition

f=hxxfi
with f; € Mor F, Z(fi) =w(i), 1 <i<k.

Thus, each f; in this decomposition is either the unit 1, or a tree.

In the following section, we will describe formal languages using the theory introduced above.
This treatment of formal language theory is sometimes called the Algebraic Theory of Formal
Languages [Ben75].

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 8

1.2 Describing formal languages by x—categories

The importance of the theory of x—categories for the description of formal languages bases on the
relation between semi- Thue-systems and free x—categories, see [Ho66] or [Ben75].

A semi-Thue system is a rewriting system on words and consists of a finite set of rewriting
rules. Fach rewriting rule is an ordered pair (u,v) of words and carries a unique name, e.g. p,
which will be notated by p:u — v.

A rule p : u — v is applicable to a word w iff u is a subword of w. Application of rule p to
w is the substitution of subword u by v. The semi-Thue relation describes which words can be
transformed into each other by a finite number of rule applications.

If word w can be transformed into w’ by the rules of the semi-Thue-system, w’ is derivable from
w. In this case, there is a sequence of words wg, ..., w,, n € Ng, with w = wg, w’ = w, and each
w;4+1 can be derived from w; by application of one rule. Such a sequence is called a derivation in
the semi-Thue—system.

Describing derivations by sequences of words in general gives no unique description of the
generation process. But in many cases there is need for a complete description, e.g. in studying the
ambiguity of semi-Thue—-systems. An adequate formal description can be given using the theory of
free x—categories. We first give the usual definitions.

Definition 12 semi-Thue system
S=(P,V,Q,Z,2s)or §=(P,V,Q,7)is called semi-Thue system iff

1. P is a finite set (productions, rewriting rules).

2. V is a finite set (alphabet).

w

. Q,7Z: P — V* are mappings (source, target).

N

. =g, the semi-Thue-relation, is the reflexive, transitive closure of the relation

=s = {(wuwy, wivwy) | pru—vE P, wy,wy € V3.

The common definition of a derivation is

Definition 13 derivation (sequence)
A sequence (wq, ..., w,), n € Ny, with

1w, eV, 0<i<n,
2. w; =g wipr, 0<d0<n,

is called derivation (sequence) of length n from wq to w, in 9.
It holds w =g w’ iff there is a derivation from w to w’ in §. The words w and w’ are called
source and target of the derivation.

To each semi-Thue system S = (P,V,Q, Z,:*>s) corresponds a unique free X category
F(S):=F(PV,Q,7)

The objects of F(5) are the words over V', morphisms are the classes of “inessentially different”
derivations in .. If we visualize morphisms geometrically (see preceding section), we can think of
derivations as nets built up by productions from P with wires marked by symbols from V. The
source resp. target of a derivation forms the input resp. output marking of the corresponding net.
The relation between a semi-Thue-system S and the free x—category F(.9) is given by

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 9

Lemma 1.2.1 ([Ho66]) For all w,w' € V* holds:
wSsw = F(S)(w,w')#0.

This lemma expresses that there is a derivation from source w to target w’ iff there is a morphism
in the free x category with source w and target w’.

Fach free x—category F := F(P,V,Q,7Z) defines a semi-Thue-system S := (P,V,Q, 7). S is
uniquely determined by F because the free generating system of F is unique. Therefore we can
write without ambiguity S = S(F). It holds

Theorem 1 ([Ho66]) There is a bijection between semi-Thue systems S = (P,V,Q, 7,=s) and
the free x categories F(P,V,Q, 7).

Derivations (w,...,w’) of positive length in the semi-Thue—system S(F) correspond to the
sequential presentations of the morphisms f:w — w’ € F(9). The length zero derivations (w) in
S(F) correspond to the units 1,, of F(.9).

One of the most important formalisms for defining languages are the Chomsky-grammars which
are based on semi-Thue systems. We give the usual definition.

Definition 14 (Chomsky-)grammar
G =(5,T.s)is a (Chomsky-)grammar iff

1. §=(V,P,Q,7)is a semi-Thue-system.

2. TCV, T#0. T is the set of terminals of G.
N:=V\T, N #0,is the set of nonterminals of G.

3. s € N is the aziom of the grammar.

4. Q(p) € NT for each production p € P.

The language generated by grammar (G = (9,7, s) is the following set of terminal words:

L(G):= {w eT™|s 2 w}.

An important special case of Chomsky-grammars are the contexi-free grammars defined as
follows:

Definition 15 context-free semi- Thue system, Chomsky-grammar

A semi-Thue system § = (P,V,Q. 7) resp. a Chomsky-grammar G = (5,7, s) is context-free if
for all p € P, |Q(p)| = 1 holds.

Remark: TIf we exchange source and target mapping, F(5) becomes a category of trees accord-
ing to our definition. Exchanging source and target is no essential modification because it can be
described by a bijective x functor.

We now give an equivalent definition of Chomsky-grammars. Let F(.9) be the free x—category
corresponding to semi-Thue—-system 5 with Alphabet V', let T be a subset of ¥V and s an element
of V.C T. Then we call

G=(F(5),T,s)

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 10

a Chomsky-grammar and the language generated by G is
L(G)=A{w e T" | F(S)(s,w) # 0} .

This definition emphasizes the derivation processes (morphisms) and is obviously equivalent to
the previous one.

In the next section, we will give different possible definitions for the language generated by a
context-free grammar. Our intention is to define the language by an interpretation of derivations.
Derivations are formalized as morphisms (nets) from a free x—category, their interpretation is
determined by an interpretation of the free generating system (production set of the grammar).
Fach production is interpreted as a function whose arguments are strings, sequential (parallel)
composition of derivations is interpreted as sequential (parallel) composition of functions. Thus,
one gets an interpretation for each morphism in the x—category.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 11

1.3 Context-free Chomsky Languages

In this section, we will give different presentations for the language generated by a context-free
grammar. The “syntax” defined by the grammar is given in terms of a free x—category (of trees),
and the generated string language is defined by an “interpretation” of a certain set of trees.

We will give a rather extensive treatment here because this presentation will be used in the
next chapter for defining other language classes.

Our description is essentially the same as the one given in [Go77]. In that article, the string
language generated by a context-free grammar is described as an example of initial algebra seman-
tics.

The productions of a CFG are regarded as operators which generate a so called initial many-
sorted algebra I. The term initial means that any algebra A of the same type is the homomorphic
image of I under a unique homomorphism. The members of I can be regarded as expressions built
up by the operators (productions of the CF@Q). These expressions represent the derivation trees of
the grammar. The string language generated by the grammar is obtained by evaluating a certain
set of expressions, i.e. by interpreting the expressions in an appropriate many-sorted algebra.

Every operator is interpreted as a function with arguments from 77, i.e. terminal words. The
arity of each function is the number of nonterminals on the right side of the corresponding grammar
production. TIf the arguments are chosen to be words derived from these nonterminals, function
application gives the terminal word derived from the left side of the production.

Assignment of these functions to the operators defines an homomorphism from the initial algebra
into the algebra generated by the functions. That homomorphism is the interpretation of the
derivations.

A similar but more general formulation is given in [Ho67]. In that paper, to every CFG two
x—categories are assigned:

o a syntactic x—category (free xfcategory)
e a semantic X category (X category of mappings)

The syntactic category corresponds to the initial algebra described above. It is more general than
the initial algebra because not only derivation trees but all derivations are represented in that
x—category. The string language generated by the grammar is given by an x—functor from the
syntactic to the semantic category. This x—functor is the analogue to the homomorphism above.

Based on this description, a class K of formal languages is defined, the languages generated by
coupled substitutions. Special subclasses are investigated and closure properties are proved.

Languages from class K are defined by finitely generated x subcategories of the syntactic
x category. Given a context-free production system P, each production p € P is split into a
terminal-free production and a function f, which describes application of p. The functions f,
generate an X—category C with sequential and parallel composition of mappings as X—category-
operations. For I/ a finite subset of C, C(F) denotes the x—subcategory generated by F in C. Tt
is shown that there is an X subcategory U of the free X category F(P) whose members represent
the possible “constructions” of the functions from C(F).

Only members of that x subcategory U are taken as valid derivations for the strings of the
language to be defined. In each valid derivation, productions of P must be applied in a coupled
fashion which is given by the functions from F.

Finally, the string language is defined by choosing a language S of start words and applying to
them the functions from C(E).

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 12

The class K contains string languages whose syntax cannot be defined by Chomsky-grammars
although every string language from K could be defined by a Chomsky-grammar (with a different
syntax). The reason for this is that coupling of productions cannot be described by Chomsky-
grammars.

This possibility could be interesting for linguistic considerations. For the description of natural
language phenomena, formal systems are required whose generative power is slightly stronger than
CFGs but which allow expressing more syntactic dependencies than CFGs [Jo86].

In the following, we will consider tree rewriting and corresponding string rewriting systems
which are related by an interpretation function. We will obtain a rewriting mechanism similar to
the one mentioned above. The difference is that we get x subcategories which don’t have to be
finitely generated.

We formalize the above notions. At first, we will describe the string language of a CFG as
“trivial” interpretation of a set of derivations.

Let G = (5,T,3s) be a context-free grammar, i.e.

1. §=(P,V,Q,7)is a context-free semi-Thue-system,
2.V=NUT, NnT =0, N,T #0,

3. Q(p) € N forall pe P,

4. s€ N.

Let M be the set of all mappings {u} 4, {v}, u,v € V¥, let o : M x M ~ M be the composition
and x : M x M — M the parallel composition of mappings from M, i.e.

fy Ly o {u S = {2
WLy x W Ly = ey 2 ey
If we define d(f) := u and ¢(f) := v for {u} -~ {v} from M,
R(V):=(V*,M,d,c,0,X)

is an xX—category.
Let 7 : V* — V* be the identity and 75 : P — M be defined by

H(p) = {Q()) = {2Z(p)} VpeP.

74, can be uniquely extended to 79 : Mor F(5) — M such that 7 = (74, 72) is an x—functor from
F(S) into R(V).

This x—functor 7 assigns to each derivation with source u and target v the function {u} 4, {v}
and “forgets” the construction of the derivation.

Thus, the string language generated by CFG G is

L(G) = {r(W)(s) | ¥ € F(S)(s, T}

L(G)is defined by applying the interpretation functor 7 to the set of all derivations (trees) with
source s and terminal target. This interpretation is “trivial” in the sense that for each morphism
from F(.9) it is completely determined by source and target.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 13

We now define the string language of CFG ' in terms of syntactic and semantic x—category.

The syntactic x—category contains the terminal-free derivations of the grammar. The grammar
productions can be regarded as “boxes” from which derivations (nets, trees) are built up using the
x—category-operations o and x. Given such a derivation, the derived string is given by “evaluating”
that derivation in the semantic x—category.

The syntactic Xx—category is defined as follows:
To each grammar production

Prxo— ULy U UL T Ugyr, T €N, u; € T, k € Ny,
we assign the terminal-free production
PIrg— XTq...Tp
and the mapping f, : (T")}c — T* given by
folw, oo wy) =g - wq -ty - - WE - gy Vg, .. wp € TF

If we denote source and target of the terminal-free production p by Q’(p) resp. 7'(p), we get a
new semi-Thue-system

S'=(P,N,Q", 7"

and a corresponding free x category F(S'). We call this free x category the syntactic X category
of G.

The following example shows a derivation and its terminal-free version.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 14

Example 1:
Let S =(P,.NUT.Q,Z)with P ={p.q}, N ={s}, T = {a,b.c.d}. Let the source and target
mappings be defined by
Qp)=Qq)=s, Z(p) = asbsc, Z(q) =d.

In the semi-Thue system S’ = (P, N,Q’, Z'), p and ¢ have source and target
Qp)=Q () =5 Z(p)=ss Z(q)=¢.

Figure 1.5: A terminal-free derivation tree

Figure 1.6: Original derivation tree

We now define the semantic x—category of grammar G
Let Fp:={f, | p€ P}. Fp generates an x—subcategory

C(Fp.T*) C MAP(T*, Ny)

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 15

C(Fp,T*) contains exactly those mappings that can be generated by sequential and parallel com-
position from the mappings f, and the identities on (7)",n € Ny.
We call this x—category C(Fp,T*) the semantic Xx—category of G.

Let us now define the interpretation functor for the derivations in F(.5”). Define mappings
m : N* — N, m(w):=|w], we N*,
P —Fp, mp(p)i=f,. pePl
By extension of 75 onto Mor F(S’) we get a unique (contravariant) x functor n = (5y,12) from
F(S") to C(Fp,T).
n maps each derivation in the semi-Thue system S’ (each net, tree in F(.57)) to a function from
C(Fp,T*) and so it connects syntactic and semantic X category.

To each derivation ¥ : s — ¢ from F(S5’), a mapping n(¥) : (T*)" — T* is assigned which is
identified with the string n(¥)(0) € T*.

For the productions p and ¢ from our example above, we get functions f, and f, with

folwi,we) = a-wy-b-wy-¢ Yw,wyeT”
fq(D) = d

The interpretation of the (terminal-free) derivation tree shown in the figure is obtained by evaluating
an equivalent categorical expression, e.g.

((gxq)opxq)op

which gives

fp (fp (fq(D)7fq(D))7fq(D)) = aadbdcbde

The string language L(G) = L(5,T.s) now can be defined by the syntactic x—category F(.5'),
the semantic x—category C(Fp,T*) and the x—functor 7.

Let B(S,z):= F(S)(a,T*) and B(S',z):= F(S5")(x.¢) for v € N. That is, B(S,z) is the set
of all derivation trees of a terminal word from nonterminal z in the original grammar, and B(.5’, z)
is the set of all derivation trees of the empty word from z in the x-—category generated by the
terminal-free productions. Then the following theorem holds:

Theorem 2
L(G) = {n(¥)(O) | ¥ € B(5,s)}

Proof:

The proof bases on the connection between the free x—categories F(.5) and F(5"). The result
is that removing the terminal symbols from the productions preserves the syntactic structure,
i.e. terminals are unessential. We formalize this fact.

Let Ay : V¥ — N* be the homomorphism

xr, x€N
/\1(36):_{ e, z€T

which deletes the terminal symbols from a string, and let

Ny P — F(5), Ny(p):i=1p

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 16

be the mapping which assigns to each production its terminal-free version (which carries the same
name).

Mappings Ay and A, define a unique x—functor A = (Ay, Az) from F(5) into F(S"). This functor
describes removal of terminals from the productions resp. from the derivations in 5. The set of
trees which defines the language generated by G is only unessentially changed by that mapping.
This is expressed by the following facts:

Fact 1.3.1 Fvery tree ¥ € B(S,z), @ € N, has a unique presentation
U= (1 X Wy XLy XX Ly XWX 1y,)op

withp € P, Q(p) =, Z(p) = uy - &1 -ug - - Tp - Upgr, u; € T, 25 € N, U € B(9,2;), k €
Ng, 1<i<k 1<j<k+1.

Fact 1.3.2 Fuvery tree ¥’ € B(S5'.x), v € N, has a unique presentation
U= (U] x -~ x W) op
withpe P, Q'(p)=a, Z'(p)=a1-+-ap, 2; € N, V. € B(5",2;), k€ Ny, 1 <i<k.

Remark: Follows directly from the definition of a tree and from lemma 1.1.2.

Fact 1.3.3 If|.| denotes the length of the morphisms in F(S) resp. in F(5') and is A the x —functor
defined above, then for all W € F(S) holds:

AY)] = [¥] .

Follows from the definition of \.

Lemma 1.3.1 A is a bijection between B(S,x) and B(S',x).

Proof:
We show by induction on the length of the trees that every ¥’ € B(S’,x) has exactly one origin in
B(S,x) under A.

Basis: V'] =1

Then W' = p e P, Z'(p) = ¢, Z(p) € T* and therefore p € A=1(¥') N B(S,). By fact 1.3.3,
every ¢ in A_l(\IJ') has length 1, so it has the form g = 1,,, x ¢ X 1,,, with wy,we € T* and g € P.
If g € B(S.2), then wy = wy = ¢ and therefore g = ¢. Since A is the identity on P, it follows g = p.

Step: || > 1

Let U/ = (¥} X --- x ¥})op be the unique presentation of ¥’ from fact 1.3.2.

By induction hypothesis, every W’ in B(S,z) has a unique origin ¥;. The unique origin of p in
B(S,2) is p itself. By construction of 5’

Z(p)=uy-xy-uUg- U Tp - Uy, T €N, u; € T,
and therefore

U= (1, x Uy X1y X oo x 1y, x Up X1, Jop € AN N B(S, x).

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES

Let g be an arbitrary element of A='(¥’) N B(S,z) and

9= (11111 X g1 X 171)2 XKowee

X 111)1 X gr X 17“l+1) o4, l € NOv

be the unique representation of g from fact 1.3.1. Then

Ag)

(Alg1) x --- X A(g1)) o AMq)
\PI
(W) X xUp)op

From A(q) = ¢ and the uniqueness of the presentation it follows

Q'(Mgi) = =i, AMgi) = ¥; € B(S',2)

qa=7p

So we get

g=1(1y X g1 X1y, X---

l=F,

X Ly X gp X L1y)s g0 € B(S,2), 1<i< k.

17

By induction hypothesis, the origin of ¥’ in B(S,2;) is uniquely determined and from A(g;) = ¥’ =

A(U;) it follows g; = ;. So we have ¢ = U and the lemma is shown.

Lemma 1.3.2

VWU eBS,2), zeN : pAV)(D)=Z(V)

Proof: Induction over the length of ¥ € B(S,).

Basis: |¥| =1

O

Then ¥ =p:2 —we P, weT* and f, : {0} — T*, f,(0) = w. From A(p) = p, it follows
n(A())(3) = n(p)(B) = fp(B) = w = Z(V).

Induction step: |¥| >
Let

1

U= (1 X Wy X1y, X oo X Ly X W X 1y, Jop

be the unique presentation of ¥ from fact 1.3.1. Then

Z(¥)

and the lemma is shown.

wy - Z(Vy) - we.owp - Z(Vg) - Wi

wy - (A(Y))(T) - wy e wp - (A(YR))(D) - W
Fo(n(A(E1))(O), . .n(A(T))(O)

n(A(®))(Q)

From both lemmata, we get

and the theorem is proved.

L(G)

{Z(W) | ¥ € B(S,2))
{(HNW))(0) | ¥ € B(S.2))
(n(¥)(O) | ¥ € B(S.a)

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 18

Remark: TFrom fact 1.3.2, one immediately gets a recursive definition for the sets B(S5’,z)
which can be formulated as a (tree) grammar on F(.5"). This tree grammar is similar to the regular
grammar on a many-sorted algebra defined in [Mai74]. The productions of the (context-free) semi-
Thue-system 5’ become the terminal symbols and the sets B(.57,z), shortly written as [z], € N,
become the nonterminals of this tree grammar. The production set P of the tree grammar is given
as follows:

For every p: @ — w1 - ap € P(5'), there is a production

pile] = (Jaa] x -« x [ag])op €P

in the tree grammar.
For consistency, we define for the nonterminals [2] source and target mappings by

Then for every production p of the tree grammar the following source/target-condition holds:
Pilel—We P = Q(al)=QV), Z(a]) = Z'(¥)

This condition will also be assumed for the tree grammars defined in the next chapter.

We generalize from this type of grammar in a natural way. Not only do we allow “leaves” to be
rewritten, but also boxes occurring anywhere in the tree. Our rewriting mechanism does not allow
duplication or deletion of subtrees as do the contexi-free tree grammars defined e.g. in [Mai74].

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 19

1.4 Coupled-context-free Grammars

Coupled-context-free Grammars (CCFG) are a generalization of context-free grammars. The CCFG
allows several context-free rewritings to be executed in parallel. These parallel rewritings are not
executed independently but they are coupled in the following way. Nonterminal symbols are grouped
together to brackets (in a generalized sense). Rewriting rules and rewriting relation are defined such
that each rule application respects the bracketing structure of the sentence. In each rewriting step,
only corresponding brackets can be substituted. The result of the substitution is correctly bracketed
iff the original word was. Terminal symbols are “normal” alphabet symbols which can be regarded
as “trivial” brackets (which enclose no word). We will consider not only pairs of opening and
closing brackets (in our sense: bracket components), but also brackets consisting of an arbitrary
finite number of components.

We will formalize the above notions starting from the usual definition of the semi- Dyck-languages.

A semi-Dyck-language can be considered as the set of all correctly bracketed words over a finite
set of bracket pairs. This can be formalized by giving a set of equations of the form {aja; =
€,...,apar = ¢}, where a; is considered as opening bracket corresponding to closing bracket a;.
These equations induce a congruence relation on the free monoid over the alphabet consisting of
all bracket pairs. Two words are congruent iff they can be transformed into each other by a finite
number of equation applications, i.e. insertions or deletions of factors a;a;.

The set of all correctly bracketed words, the semi-Dyck-language, is the congruence class of the
empty word. For a formal definition see e.g. [Ho90] or [Ber79].

We want to generalize from these notions by allowing bracket tuples consisting of a finite number
of components.

We consider a finite alphabet (brackets) and define for each bracket the number of words that
can be enclosed, called degree of the bracket.

Definition 16 bracket alphabet
Let K be a finite set (brackets) and g : K — Ng a mapping.
[K,g]:={(k,)) e K xN |1<i<g(k)+1}
is called bracket alphabet and g(k) is the degree of bracket k € K.

For (k,i) we write k;. Let K, be the set of all brackets in K of degree n € Ng. Sometimes we
will identify brackets of degree 0 with their (single) component.

Definition 17 bracket congruence
The congruence =g on [K, g]*, generated by the equations

g(k)+1
H kil =¢, kek
i=1

is called bracket congruence for the bracket alphabet [K, ¢].

Definition 18 bracket language
The bracket language D(K, g) over the bracket alphabet [K, g] is

D(K,g):={w e [K,g]" | w=k e},

i.e. the set of words that can be reduced to the empty word by application of the defining equations.
We simply write D(K) if ¢ is implicitly given.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 20

The bracket language can be characterized constructively:
D(K) is the smallest subset of [K, g]* satisfying conditions 1, 2 and 3:

1. e € D([()'/
2. D(K)-D(K)C D(K),

3. ke Ky, wi,...,w, € D(K) = ky-wy-ky- ky-wy ko € DIK).

Let us give some examples:

1. Let K = {x,y} and g(2) = g(y) = 1, so [K,g] = {#1,22,y1,y2}. Then the following are
elements of D(K,g):

€, X1T2, T1YNY2T1T2T2, T1T1T1T2T272

If we write “{” and “}” instead of 21 and 25, “(” and “)” instead of y; and ys, then the words
given above become

e AL O, A

In this example, D(K,g) is the semi-Dyck-language with corresponding pairs of brackets
x1 < x9 and gy < yy. The bracket languages with each bracket of degree 1 are exactly the
semi-Dyck-languages.

2. For a bracket alphabet [K,g] with K = Ky, we have D(K,¢) = K*. In this case, [K,¢g] and
K are identified.

In our considerations there will be often bracket alphabets [K, g] with K = NUT, T = Ty. We
denote the corresponding bracket language by D(N.T) and consider it as a subset of ([N, g]U T)™.

We give some properties of the bracket languages D(K):
1. For each subset M C Ky it holds M™* C D(K).

2. D(K)is a free submonoid of [K, g]*. The free generating system of D(K') is

E(K)y:=|J {k1-di ko ky-dy - kngr | k€ K, dy,....d, € D(K)}.
keK

3. If d € D(K), then for u,v € [K, g]*
udv € D(K) <= uv € D(K).
4. For u,v € [K.g]*, w-v € D(K), it holds:

we D(K) <<= wveD(K).

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 21

We define now the coupled-context-free grammars.

Definition 19 coupled-context-free grammar (CCFG)
Let [V, g] be a bracket alphabet with V.= NUT, N, T # () and T" = Ty. Let D(N.,T) be the

corresponding bracket language.

Gccf = ([V g} Tv Pccfa S, :*>ccf)
is called coupled-context-free grammar if

1. Pe..s is a finite set of coupled-context-free productions

p: (mlv'--vmk-l-l) - (ylv"'vyk-l-l)

with . € N, g1 yegr € Vo9l yie gk € DN, T).
We call grad(p) := k the degree of production p. Define the degree of the grammar as the
maximum degree of a production.
2. The rewriting relation :*>ccf is the reflexive, transitive closure of the relation
=ecf =

{ (w2 v o T -V - T U2y U oY1 - V1 Y2 Yk Uk Yk - U2) |
U1, Uz € [va]*v v'l',"'vvkED(NvT)',

p:($17"'ﬁxk+1)_>(y1w-~",yk+])EP(:{;f }

3. s € Ny is the axiom of the grammar.

The language generated by G . is

L(Gecy) = {w | weT*, s :*>ccf w}

The coupled-context-free grammars generalize ordinary context-free grammars. Consider the
case where N = Ny, i.e. each nonterminal is a single symbol. Then we can identify each 27 € [N, ¢]
with € N, thus [N, g] with N, and V' with [V, ¢g].

The productions of G..y have the form p : (21) — (y1). 21 € [N.g] = N, y1 € [V,g]* = V",
i.e. they are context-free productions.

The relation = .. is in this case

=ecef = {(“1 Sy U2, U - "”’2) | Uy, Uz € V*v p: (Tl) - (yl) € Pccf}:
i.e. $Ccf is the semi-Thue-relation.

Example 1:

Let Geeyp := (V,T,P,s, =t) V= {s, x1,29, a,b.c.e}, T :={a,b,c,e},
P:={p:s—uwmexs, q:(x1,29)— (axib,cxa), 7 :(x1,22) — (ab,c)}.

A derivation in G..y is

S =>cof T1€T2 gccf a"x1b"ec" vy => oy a"tpitleentt p e Ny

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 22

It is easy to see that L(G..5) = {a"b"ec™ | n € N}. This is a context-sensitive language which
is not context-free. By the way, L(G..;) € TAL, i.e. L(G..y) is generated by a Tree Adjoining
Grammar (TAG) [Jo85].

Example 2: A A
Let Geepi= (V, T, P, s, S0y), V= {s, ¥1,29, a,b}, T :={a,b}, P =

{p: s —=m29, o (21,72) — (av1,a22), g : (v1,22) — (br1,b22), e ¢ (v1,72) — (c,€)}

The derivations of G..; with source s are of the form

4
S =eef X132

L)

a

=

4

cef A1T1 - aA11q

dan

= ocef Q1. 0pT7 A7 Ay
=2
cef a1 ...0p 41 ...0y,

where ay,...,a, € {a,b}, n € N.

Thus, L(Geep) = {w-w | w € {a,b}*} = COPY;. This is also a non-context-free, context-
sensitive language which is contained in the class T'AL. These examples show that by introducing
nonterminals of degree 1 one gets rewriting systems with more generation power than context-free
grammars.

The following lemma shows that CCFG-rewriting preserves bracketing, especially that correctly
bracketed words are invariant under CCFG-rewriting.

Lemma 1.4.1 For w,w’ € [V,g]* holds: w :*>ccf w = w=yuw

Proof: Induction on the derivation length.

. Q
Basis: w = .5 w'. Then w = w’ and thus w =y w'.

Induction step: w] cef W'y n € No.

There is a w” € [V,g]", such that w Z..; w”=_sw. By definition of =, there are a
production p : (21,...,244+1) — (Y1,---,Yk+1) and words wi wh € [V,g]*, dy,...,dy € D(N,T)
with

wll f— w{ll.xl‘dl.xQ.‘.mk‘dk.mk—i—l‘wél
w' o= wy oy edyyryk o dy oYy - wh
From d; =v ¢, 1 <i<kand 2y 2541 =v ¢ follows

" "
w — wl'xl‘d1‘$2"'$k‘dk'$k+1'w2
— " "
=y Wy T The Wy
_ noon
=V Wy - Wy

By definition of P..;, we have y; - - -yx41 =v € and thus

/ " "
w o= wi ey cdy oy Yk i Ypg1 Wy
— " 1"
Sy W] Y1 Yk - W
— 1" "

=V wl " w2

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 23

By induction hypothesis, we have w =y w” thus w =y w'. O
Conclusion: For each w € [V, g]* with s :*>ccf w holds: w € D(N,T).
That is, “sentential forms” of a CCFG are members of the bracket language D(N,T)).

Let us now investigate the connection between derivations of a CCFG and the derivations of
the context-free grammar which is obtained by “uncoupling” of the productions. We get this CFG
by using the components of the CCFG-productions as single context-free productions and rewriting
by the semi-Thue-relation.

Definition 20 contexi-free base grammar
For a CCFG Gy = ([V, 9], T, Pecy, s, :*>ccf), we call
Gcf = ([V gLTv Pcfv Sy :*>)
with
Pcf = {psz — Y | 3p:('771'/"'7'7’1164-1) - (ylv"'7yk+l) € Pccf: 1<i< k+]}
the context-free base grammar for CCFG Ggcg. (:*> is the semi-Thue-relation.)

Clearly, G/¢y is a context-free grammar. Derivations of CFG Gy are the morphisms from the
free x category F(G.y) := F(P:5,[V,g]) generated by P.y. We want to characterize the derivations
of CCFG Gop using F(Gey). The following theorem holds:

Theorem 3 If G..y = ([V,g].T, Pecy, s, :*>ccf) is a CCFG and u,v € [V, g]*, then
U Sop v = UPup)(u,0)#0 .
U(P..p) is the x—subcategory of F(G.5) with free generating system

E(Peg):={ p1 X1z X pyX---XppX1g X prsr |
p € Py, grad(p)=Fk, d; € D(N,T), 1 <i<k }

Proof:
Let f € U(Pecs)(u,v), u,v € [V, g]". We have one of the following cases:

1. fis aunit, f=1,, u=wv. Then u éccf v holds.

2. f € E(P.y)is a generator, f = p1 X 14, X p2 X -+ X pg X 1y, X pryq,
pi(er,...xpq1) — (Y. Yk41) € Pey, dy, ..., dy € D(N,T),
QU)y=a1-di-ay o apdy - wppr, Z(F) =y -di-y2- Yk di - Ypgr
Then Q(f)=ccy Z(f) by definition of =..;.

3. f = .f, X f’lv flvf” € U(Pfrf) If Q(f’) :*>ccf Z(f/) and Q(f’/) :*>(:cf Z(‘f”): then Q(f) :*>(:cf
Z(f) by definition.

*

4 f= f” © fl’ f/'/f” € Z/{(PCCJ’)- If Q(fl) :*>00f Z(f/) = Q(f”) and Q(fll) =ccf Z(f”): then
QUf") :*>ccf Z(f") by definition.

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 24

Each morphism from ¢(P..;) can be uniquely decomposed into elements from E(P..;) and units,
from which follows one direction of the claim. We will now show the opposite direction.

Let u,v € [V, g]* and let u :n>ccf v be a derivation of G ;¢ from u to v, n € Ng.
We use induction on the length of the derivation.

Basis: wu :0>ccf v. Then u = v and from 1,, € U(Pe.s)(u,v) follows the claim.
Step: n:+>1mf v. Then there is a v’ € [V, g]* with u %ccf v =..;v and

'
vo= wi-xy-dy %o xp - d Tpgr - We

v w]'y1'd1'y2"'yk'dk'yk+1'w21

with wy,we € [V.g]*, di,....dy € D(N,T), and there is a production p : (21,...,2%41) —
(y1',"'7yk+1) € Pfﬁfﬁf‘

By induction hypothesis, there is a morphism f' € U(P..5)(u,v") and by definition. E(P..y)
contains the element p(dy,....dg) = (p1 X 1g, X pa X -+ X pgp X L, X ppg1).

Then f:= (1u, X p(di,...,dr) X 1y,)0 f" € U(P.s)(u,v) which proves the theorem. O

The characterization of the CCFG-derivations as elements from an X subcategory of a context-
free x category could be helpful in solving the word problem “w € L(Ge5) ?”. A possible algorithm
could first solve the word problem for the context-free base grammar and then (efficiently ?7) test
the computed derivations for membership in the x subcategory.

There is hope to get better recognition/parsing algorithms for interesting language classes by
that strategy (e.g. for TALs, which can be generated by CCFGs as will be shown).

It is also possible to describe the derivations of a CCFG as members of a finitely generated
x—subcategory. To achieve this, we describe the generated string language by an interpretation
of a certain set of morphisms (as in the previous section). These morphisms are built up by the
terminal-free productions of the CCFG.

Terminal-free productions have the following form:

p:(ﬂ?l./...,.flﬂ»l) - (y17"'7yk+1)

with y1 -+ ypy1 € D(N), g € [N, g]", 1 <i <k 41

We split each component of a CCFG-production into a (terminal-free) production and an inter-
pretation function. The new context-free production inherits the name of the component, its source
and target are obtained by erasing all terminal symbols. The new production system generates a
free x—category F'(Gecy).

The language generated by the CCFG is defined by morphisms f : s — & from F'(G.s), exactly
by those which present a coupled derivation. The coupled derivations are exactly the members of
the x—subcategory U’(P..s) which is generated by

E'(P.cs):={p1 X Lg, X pa X «+« X pp X Lg, X ppy1 | p € Py, grad(p) =k}

with d; € D(N), 1 <i<k.

A word w € T* is a member of L(G..y) iff there is a derivation f : s — ¢ € U'(P..5) with
n(f)(B) = w.

A derivation of this form can be obtained by rewriting in each step only a simple nonterminal or
a bracket nonterminal enclosing only empty words. That is, in each step a word @ - - - x41, € Ny,

CHAPTER 1. ALGEBRAIC THEORY OF FORMAL LANGUAGES 25

is rewritten. Since finally the empty word is derived, all bracket nonterminals can be substituted
after substituting enclosed words.

Such a derivation can be presented as the sequential composition of generators of the form
p1 X -+ X pryr where p € P..s is a production of degree k from the CCFG. Thus, every word in
the language of the CCFG has a derivation which is generated by the finite system

E”(Pccf) = {P1 X X Pr4 ‘ S P{‘.cf7 k= (]T(ld([))}

Without eliminating terminals from the productions, a finite generating system is in general
not sufficient because arbitrary long terminal subwords could separate bracket nonterminals. Thus,
there would be need for generators of the form

p1><1w1><])2><“‘><pk><1wkka+1: wla"'vwkeT*

In the following sections, we will investigate the connection between CCFGs and rewriting on
trees. We first define grammars on trees and prove some formal properties of these systems.

Chapter 2

Tree Grammars with Multilinear
Interpretation

2.1 Tree Grammars

We will define grammars on categories of trees. These grammars are similar to context-free gram-
mars on strings in the sense that single nonterminals are rewritten by composed structures (nets,
trees) independently of the “context”. An occurrence of a nonterminal symbol in a string can
always be rewritten if there is a rule with that nonterminal as its left side. In order to get this
property also for nets (or trees), we restrict the right side of each grammar production to be a
net with the same number of inputs and outputs as the nonterminal symbol on its left side. This
property will be called source/target-condition for the rewriting rules.

Let By := B(V,Q, 7) be a category of trees (Z(v) =1 Yo e V),V = NUT, N,T # (), and
let By be the free x subcategory of By generated by T (corresponds to 7™ in the case of string
grammars). Members of By are nets (as presented in the first chapter) which can be decomposed
into trees and units under the X-operation. All wires are marked with the same symbol which is
therefore omitted (Thus the source of a net can be identified with the number of its inputs, the
same goes for the target).

Definition 21 tree grammar
Let By, Br be given as above. G = (V. T, P,s,:*>p) is called tree grammar over By if

1. P is a finite set of productions p : * — y with

(a) 2 € N, y € By.
(b) Q(2)=Q(y), Z(z)=Z(y) = 1. (source/target-condition)

2. The rewriting-relation = p is the reflexive, transitive closure of the relation = p on By defined
as follows: Vf, f' € By

f=go(l, xaxx1)oh, ff=go(l, Xxyx1ls)oh r,s€ Ny,
=>p flie= ' ’ /
f=rt {p:w—>y6P,gEBV(r—I—Z(w)—I—s,NO),hEBV(NO,T+Q(1‘)—I—s)

3. The aziom of G is an element s € N with @(s) = 0.

26

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 27

Remark: The source/target-condition guarantees that each occurrence of a nonterminal z in
a net can always be rewritten by application of a production p: 2 — ¥, and that the result of the
substitution is a well defined net. If rewriting always takes place in trees without inputs, there is
always a presentation of the tree with » = s = 0. Then the definition of the rewriting relation = p

above can be simplified to gozoh =p goyoh.
We illustrate the definitions by the following pictures.

Figure 2.1: rewriting rule

| | |
h
h]
p |
g
|

Figure 2.2: rule application

The tree language generated by tree grammar G is

T(G) = {f|s:*>Pf, feBT}.

We draw some simple conclusions from these definitions:

I figeBv. f=pg = QUf)=Ql9). Z(f) = Z(g).

2. T(G)C Br(0,1), i.e. a tree grammar generates trees without inputs.

3. If T((1) and T(Gy) are tree languages, then T(G41) U T(Gy) is a tree language.

As we will see, the generation power of a tree grammar depends on the number of inputs of its

nonterminals. This motivates the following

Definition 22 degree of a tree grammar

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 28

grad G := max {Q(z) | p:ax —y € P}.

We denote the class of tree languages in By which are generated by a tree grammar of degree
k by CF(Br.k), k € No.

We will always assume that the grammars are reduced (the definition of reduced grammar is
analogous to context-free string grammars and is omitted).

A derivation from fy to f, in G is a sequence

fo=p fi=p...=pP [

with f; € By, 0 <i<mn, n € Ng. The number n is called the length of the derivation.

The following lemma shows that the derivations of our tree grammars can be “factorized” like
the derivations of context-free string grammars [Ha78].

Lemma 2.1.1 Let G = (V,T, P,s) be a tree grammar and let o, € By .
Ifa =¢ (3, 7 € Ng, and o = aq o ag, then there are r1.19 € Ng, (1,2 € By with

r=ri+r, B=p10b a1 S P, ar Za Ba
A similar result holds for a = a4 X as.
Proof: Induction on r.
Basis: « = a1 0 ay :U>(; B. Then o = and for §; := a;, 7, := 0, 2 = 1,2, follows the claim.

Induction step:

Let @ = @y 0 ay @51(; (. This derivation can be decomposed into a =g v = [for suitable
v € By, and there is a rule p: 2 — y € P applied in the first step. The substituted nonterminal x
is (wlg.) assumed to occur in ay. Then we can write ay as

ar=ajo(l, xax1,)oaf
where of,af € By, u.v € Ny and

! "
—ajo0(l, Xyx1l,)oa;0 «
Y 10(lyxy v) 1 2

" 2
Tt holds oy :]>G ~v1 and ag :0>G 72, and thus
1 T
a=@oay =G Moy =G P
By induction hypothesis, there are s1,s9 € Ng, (1. 02 € By with
B=p1ofy, r=s1+s. v Za b, 12 3a b
Thus

1 s

ar =G M 2 B,
Q s

ay =G V2 =G P

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 29

Let 7y := 81+ 1, 19 := 89, then (r+ 1) =71 + 72, oy Za b, ag 26 B a

The proof for the product a = a3 X ag is similar. This lemma shows that our tree grammars
behave like context-free string grammars, but work with other structures.

To each tree grammar there is an equivalent one in a normal form.

Lemma 2.1.2 For each tree grammar G there is an equivalent tree grammar G' with productions
of the form 1. or 2.:

IL.p:ax—y, y € By,
2.pix — v, yeT.

Proof: We assume wlg that there are no productions p: 2z — 1y. If p: 2 — y is a production
which is not of the form 1. or 2., then for each terminal ¢ in y we introduce a nonterminal z; with
Qzy) := Q(t), Z(xy):= Z(t) and a production p; : @y — t. In y, all occurrences of ¢ are replaced
by nonterminal x;.

Applying this construction to all productions not satisfying condition 1. or 2.leads to a grammar
of the desired form which is obviously equivalent to the original one. a

This normal form can be modified such that each nonterminal tree on the right side of a
production has “height” 2.

Lemma 2.1.3 For each tree grammar G there is an equivalent tree grammar G' whose productions
have the form 1. or 2.:

Lpix—yoo(yr x---xy) weNyeNU{L}, 1<i<k, Q(y)==rk,

2. prx — 1, tel.

Proof: let G be a grammar already in the normal form of the previous lemma. Then we only
have to consider productions

pra— Yooz XX 2), YWeEN, zeBy, 1 <1<k, Qy) =Fk

where one of the z; is neither a nonterminal nor a unit.

For each such z;, a new nonterminal 2, ;s> With Q(2<,.s) = Q(2), Z(2cpis) = Z(z) = 1
is introduced. This occurrence of z; in production p is substituted by the new nonterminal z ., ;.
We add a new production ¢<p ;s @ T<pi> — 2. By substituting all such z;, production p gets the
desired form. The process is repeated for the new production system. It terminates because the
right side of each new production ¢« ;> has length less than the right side of p. It is obvious that
the generated tree language remains unchanged, thus the resulting grammar is equivalent to the
original one. a

Let us illustrate the definitions with two examples. These examples also give an impression of
the role played by the degree of a grammar for generation power.

Example 1:
Vi={s,f.9}, T=A{fg}, Q(s)=Q(y) =0, Q(f)=2 Zx)=1 VzeV.
P={p:s—g.q:s— fo(lixg)os}

G = (V,T,P.s) generates the tree language T(G) = {[f o (11 X ¢g)]" o g | n € Ng}.

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 30

= | 2|)
N
] | o ER
N

Figure 2.3: tree grammar productions, degree = 0

G has degree 0, T(G) € CF(Br,0). Grammars of degree 0 correspond to the regular tree
grammars known from the literature [GeSt84].

Example 2:

V= {vavf:g:h}: T= {fvgvh}v

Q)= 0Q(9) =0, Q@) = QW) =2. Q(f)=1. Z(v)=1 VYoeV.
P={pi:s—xzo(gxg), pr:ax—h, ps:ax— foxo(fxf)}

G = (V. T, P, s) generates the tree language
T(G)={f"oho(f"x f*)o(gxg)]|neNg}.

The degree of G is 2, T(G) € CF(Br,2).

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 31

2 [9]

g

N P2, Lo]

Figure 2.4: tree grammar productions, degree = 2

2.2 Multilinear Interpretation of Tree Languages

In this section, we define a “translation” of tree languages generated by tree grammars into string
languages.

To every generator of a category of trees a multilinear mapping is assigned giving a multilinear
interpretation for each net.

This interpretation maps each tree language into a string language. We always start from an
interpretation of the terminals of a tree grammar and extend it “canonically” to the nonterminals
of the grammar. Thus, for each derived tree (not only for terminal trees), an interpretation is
defined.

The productions of the tree grammar are translated into coupled-context-free productions and
the rewriting relation is translated into coupled-context-free rewriting.

Let us first give the formal definition of a multilinear mapping. We use the x-—category
M AP(.,Ny) which was defined in the first chapter.

Definition 23 multilinear mapping

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 32

A mapping f: (A*)" — A*, m € Ny, is called multilinear if there are words
Wiy, Wyt € A% such that

flar, o xm) = w2y - Wa e Wy - Ty - Wit Vz; € A*, 1 <i<m.

A mapping f : (A*)" — (A*)", m,n € Ng. is called multilinear if f has a decomposition
f=fi X+ x f, into multilinear mappings f; : (A*)™ — A*, m; € Ng, 1 <i<n. (Forn=0, f
is multilinear iff f = 14.)

Lemma 2.2.1 If F is a set of multilinear mappings f € M AP(A*,Ny), the x subcategory C(F)
generated by F in M AP(A*,Ny), contains only multilinear mappings.

Proof:

It suffices to show that sequential and parallel composition of mappings preserve multilinearity.

For parallel composition, this follows immediately from the definition. Consider the sequential
composition.

Let f € C(F)(m,n), g € C(F)(I,m), l,m,n € Ng, be multilinear. By definition, there are
multilinear mappings fi...., f, and ¢g1,....¢m in MAP(A*,Ny) with f = fi X - X fu, ¢ =
g1 X X Gm, My 1= Q(fz) Z(ft) = 17 l] = Q(g])* Z(g]) = 1.

Remark: The mappings f; and g; need not be elements from C(F'). With the notations above
we have m = 7y m; and [= Y770 1.

For the composition fo g we get:

(fog)(‘rl?"'?xl) = f(g($1,...73?1))

= f(ylvam)
with (91, .. ¥m)= (g1 X - X gm)(X1, .., 27).
(y17~~-7ym) = (!]1($1q~-~~,$l])7~--~,!]m($l—lm+17-~-7$1))
= (U ATUL2 - UL LU L4 - e U A L1 U2« = U 1 U 141)
f(’l/hym) = (f1(y17"'1ym1)',"'7fn(ym—mn+17-"1ym))
= (D1AY101,2 - - -Vl Y Vg +1s - - <0 UndYm—mp+1P0.2 < -« Unm Ym Unom 41)

The u; ., v; 5 in the equations above are elements from A*.

If we let

>
=
Il

Jio(g1 X -+ X gmy)

hn = fn o (gm—mn+1 XX Qm) 9

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 33

every h; is a multilinear mapping in M AP(A*,Ny). and from

(fog) = (fix-+xXfa)olgr X X gm)
= fio(gi X X Gmy) XX [0 (Gmempt1 X 00 X Gm)
= h1><"'><hn
follows the claim. O

We will now define a multilinear interpretation for languages generated by tree grammars.

Let G = (V,T,P,s) be a tree grammar, N := V \ T the nonterminal alphabet of GG, and let
By :=B(V,Q,7%), Br := B(T,Q|1, Z|T) be the categories of trees generated by V resp. T. Let Arp
be an alphabet and A% the monoid of words over Arp.

To every terminal symbol t € T, Q(t) = k € Ny, we assign a multilinear mapping

fo (AR — A% € MAP(A%, Ng),

filwy, oo wg) = uy - wy - Ug - U W+ Ugg

where uy, ..., up41 € A%

Let Fr:={f; |t € T}, and let C(Fr) be the X subcategory of M AP(A%., Ng) generated by
Fr. As shown in lemma 2.2.1, the X category C(Fr) contains only multilinear mappings.

Let 11 be the identity on Ng and 7} : T — C(Fr) defined by 75(t) := fi, t € T. The mappings
m and 7, induce a uniquely determined x—functor n = (1, 12) from the (free) x—category Br into
the x—category of mappings C(Fr). We call the x—functor n a multilinear interpretation for the
category of trees Br.

To each net from By a multilinear mapping is assigned by 7. The tree language T'(G') is mapped
by 7 into a string language over Ar.

Let us now extend the interpretation 5 canonically onto By, thus giving an interpretation for
every derived tree.
Let Ay :=[N,Q|n] be the bracket alphabet (see chapter 1) corresponding to N, i.e.

Ay =A{z;|ze N, 1 <i<Q(z)+1}.
We set A := Axy U A7 and extend the mappings f;, t € T, onto A*.
For each nonterminal symbol 2 € N, Q(z) = k, we define a mapping
Ix (A*)k A"

by
felwy, o wp) =2 - wy - Ty Tg - WE - Tpp Ywq, ..., wp € A*.

Let Fy := {f, | v € V} and C(Fy) be the x—subcategory of M AP(A*,Ny) generated by Fy.
We extend 0y : T — C(Fr) onto V' by setting nj(x) := fr, € N. i and n} define uniquely an
x—functor n = (m, n2) from By to C(Fy).

The x functor 7 is called multilinear interpretation for the tree grammar G.

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 34

We extended a multilinear interpretation for the terminal category to the nonterminals by
interpreting each nonterminal as a mapping which encloses his arguments in brackets (named by the
label of the production). The bracket components mark positions in the string where substitutions
are possible. In the interpretation of a terminal tree no more brackets occur.

Definition 24 tree grammar with multilinear interpretation

If G = (V,T,P,s)is a tree grammar, nr : By — C(Fr) is a multilinear interpretation for the
terminal category of trees By and if n : By — C(Fy) is the canonical extension onto By then (G, n)
is called tree grammar with multilinear interpretation (BGMI).

The language generated by the BGMI (G, n) is

L(Gn) = {n(W)(B) [¥ € T(G)}.

The degree of a BGMI is defined as the degree of the underlying tree grammar. The class of
string languages defined by BGMIs of degree k is denoted by BGMI(%).

In the next section, we will give some formal properties of the classes BGMI(£), and we will
investigate the connection with coupled-context-free grammars.

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 35

2.3 Some formal properties of the classes BGMI(k)
Lemma 2.3.1 BGMI(k) is closed under union.
Proof: Let (G,n)= (V,T,P,s,n)and (G',5n") = (V',T", P',s', ') be BGMI of degree k € Ng. Let
Ar and A’ be the alphabets for the interpretation of the terminals from G and G'. Wlg we assume
all alphabets (except Ap, Ag/) to be disjoint. We define the BGMT
G =WVuv'u{e}, TUT, PUP U{pi:0—s, pr:0— 35}, o)
with source and target mappings
Q":=QUQ'U{(c,0)}, Z":=ZuUZ' U{(0.1)}.
Define the interpretation nyyurs : Bror — C(Fryp) by

nror(1) = { e

n" is defined by canonical extension of nryr onto B(V UV’ U {6}). Then
1. T(G")=T(G)uT(G").
2. grad(G") = max{grad(G), grad(G")} = k.

" _ U(f): JeB
o= {
4. L(G".n") = L(G.n) U L(G",). o

Lemma 2.3.2 BGMI(k) is closed under concatenation.
Proof: Tet (G,n) and (G’,n') be BGMI given as above. Let
G" = (VuVvV'u{e}, TUT U{[concs]}, PUP U{p:0 — [concy]o(sx s}, o)

Q", 7" are defined as above and for [coney] we let Q"([coney]) := 2, Z([cones]) := 1. Let 1”'([cones])
be the concatenation on (V U V' U {c})* which is multilinear. Then

1. grad(G") = k.
2. T(G") = A{[concs] o (f x f) | f € T(G), f € T(G)}.

3. L(G" ") = L(G.n)- L(G"n). 0

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 36

Lemma 2.3.3 BGMI(k) is closed under Kleene-star.
Proof: Let (G, n) be as above and
G" :=(VU{e}, TU{[concs],[eps]}, PU{p1:c — [eps], pr:0 — [concy]o (s X 0), 0)

Let source and target of o, [concs] be as above, and let Q”([eps]) := 0, Z"([eps]) := 1, n"'([eps])(O) :=
€.
Then

1. T(G") = {([conez] o (s X 11))" o [eps] | n € Ny}

2. L(G". "y =Awy--w,-e|w; € L(G.n), n € No} = L(G,n)". 0

Lemma 2.3.4 BGMI(k) is closed under homomorphism.

Proof: Let (G,n) be as above and h : A% — Y% a homomorphism. Let ¥ = Ay U Xp, and
extend h : A* — ¥* by letting h the identity on Apy.
If ¢ is a terminal of the grammar with interpretation () : (A*)* — A*, k= Q(t) € Ny,

n(t) (wy, ..., W) = Uy Wy U U W Upgy, VW, w € AT

where u; € A%, 1 <j<k+1,
then we define a new interpretation 6(%) : (E*)]C — Y* by

0(t) (wi, ..., wg) 1= h(uy) - wy - h(ug) - -hug) - wg - h(uger) Ywy,...,wp € X7
The interpretation of the nonterminals remains unchanged. Since for each terminal ¢ with £ inputs

h(np(t)(wy,...,wr)) = h(uy-wy -ty U Wk~ gy)
= h(uy)-h(wy)-h(ug)---h(ug) - h(wg) - h(wppr)
= 0(t) h(w1),...,h(wg))

it follows easily by induction

L(G,0)=h(L(G,n)).

Lemma 2.3.5 COPY, € BGMI(k) Vk € Np.

Proof:
Let Gk = (Vk./Tk./ ,P]C./ S) with

Vi i={s,x.[e,a],[g, 0], [a,€]. [b, €], €], [coner]}, Tk := Vi \ {s,2}

Let Q(s) = Q([e]) = 0, Q(z) = k. Q(v) = 1 for the other nonterminals, and let the target of all
symbols be 1. Define production set Py by

Pe:={ pirs—ao(le]x---x[e]),
porx —la.elozo([e,al X - X [g,a]),
parx — [beloxo([e,b] x -+ x [g,b]),
pg: @ — [coney] }

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION

The interpretation of the terminals is given by

n(le.al)(w) = e-w-a,
Wb (w) = = w-b,
mlae(w) = a-w-e.
wlo,) = bowee,

n([e))(D) £
n([conceg])(wy SWE) = Wy Wy

It is not difficult to see that the generated tree language is

T(Gr)={ lai,€]o--+0[an,é]o[concilo
(lean] X - X [g,an]) oo ([e;ar] X - X [g,ar]) o ([e] x -+ x [e]) |
n€ Ny, a; € {a,b}, 1 <i<n }

Thus
L(Grm) = {(@r--aq) - (ar--a,)* | a; € {a.0}. n € Noj = COPY;.

Lemma 2.3.6 COUNTsp49 € BGMI(E) VEk € No.

Proof:
Let Gk = (Vk,Tk, Pk,s) with
Vi = {S, Ty [(1’17 a’?k-l—?]v [(]Q'/ (]’3]7 s [(]’21{}7 a’?k-l—l]v [5]7 [COW/Ck}}, Ty =V \ {87 7:}

Let Q(s) =0, Q(z) =k, Q([e]) =0, Q([conc] =k, Q(v) =1 for all other symbols and
Z(v)=1 VYo € Vi. The production set is

Po:={ pi:s—azo(fe]x---x][e]),
po: @ — a1, azpa2] o w o ([ag, az] X -+ X [agk, azky1]),
ps: @ — [concy] }.

The interpretation of the terminal symbols is

Moo w) = a;-w-a;
n([e)(m) = e,
n([concg))(wy, ... ,wr) = wy---wg.

Then
T(Gy) = {lar, azpia]” o [conc] o ([az, az] x -+ X [azy, agg4a])" | n € No}
and

L(Gy,m) ={ay - -ay o | n € No}p = COUNTypqs.

37

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 38

2.4 Tree Grammars with Multilinear Interpretation and Coupled-
context-free Grammars

In this section, we investigate the connection hetween tree grammars with multilinear interpretation
and coupled-context-free grammars. At first we will show that for every BGMT there is an equivalent

CCFG.

Let (G,n) be a BGMI, i.e. G = (V,T, P,s)is a tree grammar over the category of trees By, and
7 is a multilinear interpretation. Let N := V \ T be the nonterminal alphabet of G, and let @), Z
be the source resp. target mapping of By .

Each terminal from G is interpreted under 1 as a multilinear function over an alphabet Aq.
Each nonterminal has the “canonical” interpretation as a function which encloses its arguments in
the corresponding bracket from Ay := [N, Q|n]. To nonterminal 2 € N corresponds a bracket of
degree Q(z) with components x4, .. .+ TQ(z)4+1- Let the total alphabet be denoted by A := AyUA7.

We assign to a BGMI (G,) the following CCFG G..y:
Gccf = (Av ATv Pccfva-)

with production system

n(y)(wy, .. wp) = yrwr Y2 Yr o Wee Ykar)
and axiom o :=1n(s)(0) € Ayn. (o is identified with s.)

To every tree grammar production for a nonterminal with k inputs, a coupled-context-free
production with k£ + 1 components is assigned. The right sides of the production components are
determined by the interpretation of the right side of the tree grammar production. We have to
show first that ..y, as defined above, is in fact a CCFG.

The alphabets Ax and A7 obviously fulfill the definition of a CCFG and the axiom o is a
bracket of zero degree. Consider the production system P..;. The claim follows immediately from
the following

Lemma 2.4.1 If f € By(k,1), k € Ny, and wy,...,w; € D(N,Ar), then
n(f)(wy, ..., wg) € D(N,Ar).

Proof: Induction on the size |f].
Basis: |f] =0, 1e. f=1y. Then n(f)(w)=w € D(N,Ar) by assumption.
Induction step: TLet f be an element from By (k, 1) of positive length. Then

f=vo(g1x--Xaq)

with v € V, 1 = Q(v), g; € By (ki, 1), 1 <i <1, Yi_ ki = k.
By induction, for ¢4, ..., g; holds

Wi, .. wp, € D(N,AT) = n(g1)(w, ..., w,) € D(N,Ar),

Wh—Fy 1.y WE € D(N, AT) = 'r}(gl)(wk_le Ceee wk) € D(N, AT).

For v we have to consider the two cases

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 39

LoveT: no)(ur,....w) =01 Uy -vg -0 U - Vg1, v €AF.
Then wy,...,u; € D(N,A7r) = n(v)(w1,...,u;) € D(N,Ar) by definition.

2.0 N no)(uy,...,u) =0y -ty vy U Vg, 0 E N
Then uy,...,u; € D(N,Ar) = n(v)(uy,...,u;) € D(N,Ar) by definition.

Thus we have: wy,....,wz € D(N,Ar) =

n(f)(wi,...owg) =n(v) (n(g)(wrs oo wry)s e oo () (Wk— 415 - - - wg)) € D(N, A7)

and the lemma is shown. O

From this lemma follows that for every production p:a — y € P

n(y)(e....se) = Y1+ Yrq1 € D(N, Ar),
soevery p:(&1,...,2541) — (Y1, ... Yk+1) € Pecy, as defined above, is in fact a CCFG-production.

Having shown that G s is a well-defined CCFG, we now show that the language of the BGMI
(G, n) is contained in L(Gp).

Lemma 2.4.2 Let (G,n) and G..5 as above and let By be the category of trees generated by V.
Then for all f € By holds:
S :*>G f - a :*>r:(:f n(f)(‘:‘)

Proof: Induction on the length of the derivation.
Basis: s 2¢ f. Then f =sand n(f)(0) = o, from which follows the claim.
Induction step: TLet s =g f be a derivation of positive length. Then there are ¢,h € By and
p:ax — y € P such that
s=>ggoroh=ggoyoh=f
where Q(g) = Z(g) = 1. Q(h) = 0. Z(h) = Q(x) = Qy) = k € No.

By lemma 2.2.1, the interpretations of g and h

n(g): A" — A*
n(h): {0} — (A

are multilinear mappings, i.e. there are uy. uy, wy,...,wr € A* such that
) 1s W2, 1 » Wk

WOw) = wowouy Ve A",
n(h)(3) = (wy,...,wg)
and h has a decomposition h = (hy x - -+ x hy) with h; € By (0,1), n(h))(O) = w;, 1 <i < k.

Thus
n(goxoh)(O) =ty -2y Wy Ty T - Wk * Tppp * U

and
ngoyoh)(O)=uy -y w1 Y2 Yk Wk Y1 - U2

By lemma 2.4.1, wy,...,wr € D(N.Ar) and by definition of /ey, production system P..;
contains the rule p: (2y,...,2k41) — (Y1, ..., Yp+1) Where 91, yp41 are given by n(y).

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 40

From the definition of =..; and by induction follows

0 Zeep M(gowoh)(O)Zecrn(goyoh)(T)=n(f)(D)
which proves the lemma. a

From the previous lemma follows L(G,n) C L(G..5). We now show the opposite inclusion.
Lemma 2.4.3 Let (G.n) and Geo5 as above. Then for all w € A* holds:
o :*>ccf w - Hf € BV(Ov])7 S :*>G f7 w = 77(f)(|:|)

Proof: Induction on the length of the derivation o éccf w, n € Ny.
Basis: o g{;ﬁf w. Then w = ¢ and for f:= s we get the claim.

Induction step: o n:+>1€cf w, n € Ng. Then there is a decomposition

n
O =cef Ui -1 dy-To- - Tp - dp - Thgt U2 ey WY1y Y2 Yk di - Ypg1 - U2

w! w

with uy,us € A*, dy,....dp € D(N,Ar), and

Py, @pg1) — (Yroe ooy Y1)

is a production in P..;.
By induction assumption, there is a tree f' € By (0,1) with s = f" and 5(f')(0) = w'.
We have to show that there exists a tree f € By(0,1) such that

1. fl=af

2. p(f)O)=w

Let n, be the number of occurrences of x in the tree f’. Fach occurrence gives a unique
decomposition of f'. For j = 1,...,n,, let this decomposition be denoted by

fl = g(j) oz ohl)

where gU) € By (1,1), b9 € By (0,k), k = Q(z).

The interpretation w’ of f’ has corresponding decompositions

()

; J J
w:ul x.ldg)Ikadgc)Ik_l_]uQ

defined by
g M) = o) vl e
a(h@) = (@)
Clearly, dgj), .. .,dgj) € D(N,Ar), i.e. 21,..., 2541 form corresponding bracket components.

Since there are exactly n, occurrences of nonterminal z in the tree f’, there are exactly n,
occurrences of the “opening” bracket x; in w’.
From
w' =y cxydy gy wp o dy - Tpy - U

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 41

() _

follows that there must be an index j € {1,...,n.} such that uy’ = wuy. Since the bracket
components g, ..., T4 corresponding to component z; are uniquely determined, it follows dy =
d§'7)7 o dp = d,(j) and thus uy = u(2'7). The decomposition

f'=gYVozonl
now fulfills

(gD (v) = wi-v-uy Voe A
p(h)(O) = (dy,....dy)

By construction of G/..;, P must contain production p : — y. For the tree f € By (0, 1), given
by the derivation

*

s =>a g(j) oxohl) = g(j) oyo hU)
£ =:f

in the tree grammar (, it holds

n(H@E) = g (n(y)nh@)))
— u1'y1‘d1'y2"'yk'dk‘yk+1'UZ
= w
which shows the lemma. O

From lemma 2.4.2, lemma 2.4.3 and the definition of the generated string language, it follows
Theorem 4 For each BGMI (G, n) there is an equivalent CCFG G ..5.

We will now show the opposite direction by defining for each CCFG an equivalent BGMI.

The first lemma shows that each word from the bracket language D(N,T) defined by the
alphabet of a CCFG can be obtained by multilinear interpretation of a tree from a suitably defined
category of trees.

We construct to a given CCFG an equivalent BGMI. Let Gy be a CCFG, i.e.

Gccf = ([vaLTv PCCf?‘S)

where g : V' — Nj is the degree mapping for the brackets from V. Let N := V \ T denote the
nonterminal alphabet of G.;.
We define the following category of trees:

By :=B(NUT.Q.7)

with Vi= NUT, T:={i |t e T}U{[eps],|[conc]}, and source and target given by

Qz) = g(x) x €N,
Qt) 0 tel,
Q([eps]) 0
Qleone) = 2
Z(v) = 1 veNUT.

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 42

For each terminal in 7', an interpretation is defined by

n(#)(0) t VieT,

n(leps)(0) = ¢
n([cone])(w,we) = wy-ws Ywq,wy € [V, g]"

I

Every string w from the bracket language D(N,T) has a unique decomposition into terminals
t € T and strings from E(N,T)\ T, i.e. strings of the form ay - dy - 29 2 - di - 2511 with
x € Ng, dy,...,dp € D(N,T).

For a given word w € D(N,T), we define recursively a tree W,, € By (0,1) with interpretation
(V) = w:

3. W, =0 (Vg X x Uy)
w=uaxy-dy-xy- - xp-dy - Tpy1, € N, dy,....dp € D(N,T),

4. U,,., :=[conc|o (¥, x U,) ue€ E(N,T),ve D(N,T)\{}.

It is easily verified that this definition gives a unique tree ¥,, € B (0, 1) for each string w €
D(N,T) such that n(¥,,)(0) = w.

The next lemma shows that given an arbitrary decomposition of a string y € D(N,T), there is
a tree in By whose interpretation is defined by that decomposition.

Lemma 2.4.4 Let [V,g]=[NUT,g], D(N.T), V. T and n be given as above.
Ify € D(N.T)is an arbitrary string from the bracket language and (y1, .. ., yry1) is a decomposition

of y, i.e.
Y=Y Ykt k€ No, yi €[V, gl
then there is a tree
Yy, .. oypgn) € Bylk,s 1)

with interpretation

U(‘p(y1,...,yk+1))(7’1: Ces k) =YL VL Y2 Yk Ukt Yk Vor,...,0 €[V, g™

Proof: We introduce a new symbol [input] of degree g([input]) = 0. The interpretation of this
symbol is canonical, i.e. n([input])(0) = [input]; (which is identified with the symbol itself). If we
let

ylinput] := y1 - [input] -y - - yi - [input] - yey1 € D(N U {[input]}, T),

we can apply our construction and obtain a tree

\Dy[mput] € B(V U {[jnp“’ﬂ}v Qv Z)(Ov])

with interpretation y[input].
By construction, there are exactly & occurrences of [input] in the tree W r;,,.¢, thus there is a
decomposition
Vyinpu] = ¥ o ([input] X - - - x [input])

k times

CHAPTER 2. TREE GRAMMARS WITH MULTILINEAR INTERPRETATION 43

where U € B(V.Q. Z)(k,1) is a tree with k inputs which does not contain the symbol [input].
It is easy to see that

n(ql)(vlv"':vk):yl UL Y2t YR VE Yk Vvl:"'vvk € [Vg}*

We denote this tree with Wy, o Yhg1):

Lemma 2.4.5 lLet
Gccf = ([N U T: g}vTv Pccfv'q)

be a CCFG and let the category of trees
By ==B(NUT,Q,7)

be constructed as above. Let further n be the canonical extension onto V of the interpretation given
for the terminals from T.
If (G, n) is defined by
G:=(NUT,T,P,s)

with production system
P=Apia =Ty, . ygn | pi(en, o app) = (91 Yke1) € Py}
where Wy, S Yhg1) 1S given by lemma 2.4.4, then il holds
1. (G,n) is a« BGMI,
2. grad(G) = grad(G..5),
3. L(G,n) = L(Gey).

Proof: By construction, ((,n) fulfills the definition of a BGMI and the degree of ¢ equals the
degree of Gi..y. It remains to show that for each w € [N UT, g]*

5§ Dy w = IV EB(NUT,Q,7), s ¢ U, n(¥)(0)=w

The proof is analogous to lemmata 2.4.2 and 2.4.3 and is omitted. ad
Thus, we get

Theorem 5 For each coupled-context-free grammar there is an equivalent tree grammar with mul-
tilinear interpretation of the same degree.

For the special case of zero degree, we get
Corollary 1 The class BGMI(0) is the class of context-free string languages.

This follows from the fact that a coupled-context-free grammar of degree 0 is a simple context-
free grammar with the semi-Thue-relation as rewriting relation. a

Chapter 3

Tree Adjoining Grammars and

BGMI

3.1 Basic definitions

A Tree Adjoining Grammar (TAG)[Jo85] is a rewriting system on the derivation trees of a context-
free grammar. It is mainly intended as a formalism for the definition of tree languages rather than
a string generating system. TAGs have recently found great interest in Computer Linguistics
because they seem to be an adequate formalism for describing many natural language phenomena.
In this area, one is interested in language classes and rewriting systems slightly more powerful than
context-free grammars [Jo86].

We will not consider the linguistic relevance of TAGs but the generated language class, the
Tree Adjoining Languages (TAL). This language class properly contains the class of context-free
languages and is a proper subclass of the Indexed Languages. We will show that the classes BGMI(1)
and TAL coincide.

We will first describe the TAG-rewriting formalism and then show the equivalence. The following
definition of TAG-rewriting is taken from [Jo85].

Definition 25 Tree Adjoining Grammar (TAG)
A Tree Adjoining Grammar G = (I, A) consists of

e a finite set I of initial trees,
e a finite set A of auxiliary trees.

These elementary trees are derivation trees of a given CFG ¢ = (NUT,T, P, s).

The initial trees are derivation trees with source s and target w € T™, the auxiliary trees are
derivation trees with source z and target w -z -v, 2 € N, u,v € T*. The unique leaf marked with
x in an auxiliary tree [is called foot-node of 3.

The set of all auxiliary trees with source will be denoted by A, thus A = (J, ¢y A;. The
general form of an initial and an auxiliary tree is shown in the picture.

Starting with initial trees, new trees can be produced by adjunction of auxiliary trees at suitable
tree nodes. Adjunction of an auxiliary tree [at a node k in a tree « is defined iff k£ is marked with
x € N and € A,. Adjunction consists of the following steps:

e Split tree 4 at node k into upper tree v, and subtree 7s.

44

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 45

a ° b N

Figure 3.1: Initial and auxiliary tree of a TAG

o Paste vy and 7, together after inserting 3 giving the new tree v’

We omit introducing the usual terminology for these definitions because we will give a treatment
in the theory of x categories. Formal definitions can be found in [Vi8R].

v s g: = v s
g g
T x x
72 !

Figure 3.2: Adjoining operation

>

If 4’ results from v by adjoining, we write v =4 7. The tree language generated by TAG G is
T(G):={V |3ocl o=, V}

Clearly, T((7) is a set of derivation trees of the CFG ¢ with source s and terminal target.
The string language generated by TAG G is

L(G) := {yield(V) | ¥ € T(G)}.

The function yield assigns to each derivation tree the string obtained by “reading the leaf markings
from left to right”. Obviously, L(G) is a subset of the context-free language L(g).

A TAG is a rewriting system on the derivation trees of a context-free grammar. From the theory
of tree automata it is known that the set of derivation trees of a CFG is a recognizable tree language
[Th67]. The tree language of a TAG need not be recognizable. Further, there are TALs which are
not context-free, but all TALs are indexed languages. Often, the following generalization of TAGs
is considered.

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 46

Definition 26 TAG with constraints
A TAG with constraints (TAGC) G = (I, A, C) is a TAG with the following extension:

To each inner node k (marked with a nonterminal 2 € N) in an elementary tree, one of the

following constraints C'(k) is assigned:

1. Obligatory Adjoining Constraint: C(k)=(0A,T), T C A,
Meaning: At node k a tree must be adjoined, otherwise the tree in which &k occurs is not an
element of the generated tree language. Only trees from I' may be adjoined to node k.

2. Selective-Adjoining Constraint: C(k) = (SA.T'), I' C A,
Meaning: At node k any tree from I' may be adjoined.

3. Null-Adjoining Constraint: C(k)= NA = (5A,0)
Meaning: No tree may be adjoined at node k.

The adjunction operation for TAGCs is defined straightforward. If £ is an z-marked node in a
tree v, @ € N, and § € A, is an auxiliary tree, § may be adjoined at node k iff C'(k) = (54,1)
or C(k) = (OA.T") and § € T'. By adjunction, node £ loses its old constraint and inherits the
constraint of the root node of 5. The constraints of the remaining nodes are not changed.

The tree language of a TAGC G = (I, A,C) is
TG):={¥ |Jo€el, o :*>ad.7' U, C(k)# (OA,T) for all inner nodes k of ¥},

The generated string language L((G) is defined as it is for TAGs.

Clearly, every TAG is a TAGC: assign to each inner node k marked with # € N the constraint
C(k)= (54, A,).
In the following, we may assume that each elementary tree contains only NA- or OA-constraints

[Jo85].
We want to compare TAG-rewriting with our BGMI-formalism. Therefore, we first describe
TAG-rewriting in the theory of x—categories.

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 47

3.2 Description of TAG-rewriting by x—categories

Let G = (I,A) be a TAG, ¢ = (NUT.T,P,s) be the underlying context-free grammar and
F(g):=F(P,NUT,Q,7Z) the x—category defined by ¢ (see chapter 1).

Each initial tree a € I is a derivation tree of g with source s and target from T*. In the free
x—category F(g), for each « € T there is a unique corresponding morphism

N, :s — w, we T

Thus, we can describe [as a finite subset of F(g)(s,7*). Clearly, all nets in this set are trees
according to our definition (see chapter 1).

Auxiliary trees 3 € A are derivation trees of ¢ with source 2z € N and targets from T*2T*. For
each § € A, there is a unique (non-unit) morphism

Ng:ia —u-x-wv, w,v €T, z € N.

As in section 1.3, we consider terminal-free derivations (nets) and the syntactic and semantic
categories F'(g) resp. C(g). Source and target mappings of F'(g) are denoted with @’ resp. Z’.

We get the following description of a TAG G = (I, A):
1. I'is a finite subset of F'(g)(s,¢).

2. A, is a finite subset of Trees(F'(g)(z,z)), x € N.
3. A=U,en 4a

We use the representation of morphisms from F'(g) as nets to visualize the adjunction operation.
Each initial tree a € I corresponds to a net N, € F'(g)(s,¢) of the following form:

S
7])7
w] P $]
NOH NO!I
&

Figure 3.3: Net corresponding to initial tree of a TAG

The initial net N, has a unique decomposition
N, =(Ng XX Ny,)Jop

where p€ P, Z'(p) = w12, 2; € N, Ny, € F'(g)(wie), 1 <i <.
Production p:s — xq---x; is the terminal-free version of production

PiS— UL Ty Ut U T U, U, .oty €17

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 48

from the CFG g. In the initial tree a, production p forms the root and its children. If ry,....r; are
the children of the root of @ marked with a nonterminal, the net N,. corresponds to the subtree
a; of a with root r;, 1 < </,

If f, - (T*)F — T*, k = |Z'(¢)], denotes the interpretation function for production ¢ € P, and
n denotes the resulting multilinear interpretation for F'(g), then

n(No,)(B) = yield(o),
N(Na)(@) = fu(m(Nay)s--.n(Nay))
= yield(a).
In the simplest case, p : s — w, w € T™, is a terminal production of grammar ¢ and then

=0, N, = p and n(Nry)(D) = fp(‘:‘) =w.

Consider now the auxiliary trees § € A of the TAG G. Let § € A,. z € N, be an auxiliary
tree. Then the corresponding net Ng € F'(¢) has the following form:

xr

]

€T €Ty T

Ng, |---] Ng

xr

?

Figure 3.4: Net corresponding to auxiliary tree of a TAG

Npg has a unique decomposition
Ng=(Ng, x---x Ng X---xNg)op

where pe P, Q'(p) ==z, Z'(p) =y -2, LEN, ie{l,...,1}.
Source and target of nets Ng ., 1 <5 <1, are given by

Q/(Nﬁ7) = ./L‘]'./
T, j=1

Z(Ng) = {a j i

Production p: 2 — 1 -2 is the terminal-free version of
. i
P UL Xy Uy Uy X U .,y €7

from CFG g, which forms the root and its children in the auxiliary tree 3.

In Ng, there is a unique “root wire” marked with z (corresponding to the root node of 3) and
a unique “foot wire” marked with & (corresponding to the foot node of 3).

In the simplest case, (3 is a single production p € P of the form p : 2 — wyzug, uy,uy € T*.
Then, { =1 and Ng, = 1, holds.

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 49

Describing derivation trees of ¢ as nets from F'(g) is in a sense dual to the usual description.
Each inner node of a derivation tree corresponds to a wire in the net, marked with the corresponding
nonterminal. The productions of ¢ (which are implicitly presented in the usual derivation trees),
are explicitly presented in the nets.

Consider now the adjunction operation as an operation on nets. Let v be a derivation tree of ¢
containing an inner node k marked with 2 € N. 7 can be decomposed into subtree v with root k
and the upper tree 74 (k is contributed to both trees if k is not the root of). If k is the root of
v, 1 is empty. Let wy - wy - w3 be the yield of v, where wy is the yield of ~,.

In the net N, there is a wire s, marked with # € N which corresponds to node £. This wire
defines a decomposition N, = N,, o N,,. The adjunction of auxiliary tree 3 € A, at node k in v
corresponds to replacing the “wire” s, by the net Ng.

\
\ No,
N, B
« = adj Ng
N, ”
N’Vz

Figure 3.5: Adjunction operation on nets

In terms of categorical expressions, we get:
The adjunction v =,4 7', where auxiliary tree § is adjoined at node k in v, corresponds to the
substitution of a unit 1, by the net Ng.

Ny=NyoN, =N, ,o0l,0N, =, N,oNgoN, =N,
If we consider the interpretation, we get
(N,)(w) = wy-w-ws Yw e T%,
n(Ng)(w) = w-w-v Yw e T,
n(N.,)(@) = ws.
Thus

N(Ny)(@) = 7N, 0 Ngo N,)(0)
= Wy -uU-wWe-vV-wWs

= yield(v").

By adjoining, the yield of a tree is expanded at two positions which are dependent by the
structure of the tree. This is similar to our coupled-context-free rewriting and BGMI-formalism.
For this reason, we will now investigate the connection between the different formalisms.

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 50

3.3 The equivalence of TAGC and BGMI of degree 1

We show in this section that TAGC and BGMI of degree 1 generate the same class of string
languages, i.e. that the language classes TAL and BGMI(1) coincide. At first, we consider the
adjoining operation for TAGCs in their description by nets. To avoid confusion, we call morphisms
always nets even when they are trees according to our definition (see chapter 1). The languages
generated by our tree grammars are here called net languages for the same reason.

In a TAGC, every nonterminal node k of an elementary (initial or auxiliary) tree v carries a
constraint C'(k). Since nodes in derivation trees correspond to “wires” in nets, we assign constraint
C(k) to the wire s; corresponding to k.

If wire s carries constraint C'(k) = (OA, B), all substitutions sy — Ng, f € B, are allowed.
Since C'(k) is an obligatory constraint, tree 7 is not a member of the tree language generated by
the TAG. Analogously, net N, € F'(g) is not a member of the generated net language.

If wire sy carries a null-adjoining-constraint, then sy cannot be substituted anymore, but it has
no influence on membership to the generated net language.

Wires with OA-constraint play the role of nonterminal symbols in tree grammars. The con-
straint set B contains all possible alternatives that can be substituted for the wire. Analogously to
the fact that trees containing nonterminals are not members of the generated tree language, a net
containing an OA-constraint is not a member of the generated net language.

We will simulate TAGC-rewriting by tree grammars with multilinear interpretation. According
to the remarks above, the idea is obvious:

In each elementary net, we substitute all wires s; marked with 2 € N and constraint (OA, B),
by a nonterminal [z, B]. We define source and target of the nonterminal [z, B] by Q'([z, B]) =
Z'([z. B]) := z to get well-defined nets.

To each nonterminal [z, B], the following set of productions is assigned:

{[z,B] = Ny | 5 € B}

where N is the (terminal-free) net corresponding to the auxiliary tree [.
The wires with NA-constraints remain unchanged.

For every initial tree a € I, we introduce a production ¢ — N, where ¢ is a new nonterminal.
We define)'(¢) := s and Z'(¢) := ¢ to be consistent. The result is a grammar on the category of
trees F'(g). (It is obvious that adjunctions in the original TAGC correspond uniquely to rewritings
in this tree grammar).

We defined tree grammars only on categories of trees with set of objects Ng. Now we have nets
whose wires are marked with symbols from an arbitrary alphabet. This is no problem because we
can also simulate TAGC-rewriting using the restricted formalism.

Consider the tree grammar productions [z, B] — Ng. It holds:

Q'([x.B)) = Z'([z, B]) = » = Q"(Np) = Z'(Np).

The source/target-condition is fulfilled for every production. This guarantees that each production
is always applicable to an occurrence of its left-side-nonterminal. So it is impossible that an
unapplicable production becomes applicable by omitting the wire markings.

The resulting nets are built up by the new nonterminal symbols and by the productions of
the underlying CFG g. These productions define the interpretation of the net. According to our
definition, the interpretation of a production does not depend on source and target markings but

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 51

only on source and target length. Thus, we can omit source and target markings of the productions
without changing the interpretation.

If we perform the construction given above and then omit the markings of the wires, we get
a BGMI of degree 1. The discussion shows that the generated string language equals the string
language of the original TAGC.

Theorem 6 For each TAGC, there is a BGMI which generates the same string language. The
degree of the BGMI is at most 1.

We now show that for each BGMI of degree 1 one can construct a TAGC which generates the
same string language. Qur construction gives a TAGC described by terminal-free derivation trees
together with interpretation functions for the context-free productions. Tt is easy to get from this
a TAGC in the usual form.

Let (G, n) be a BGMI of degree 1, where

G=(NUT,T,P,s)

is the underlying tree grammar with source and target mappings @, 7 : N UT — Njy.

We assume that each nonterminal of (¢ (except the axiom s) has source 1. This is possible
because for each BGMI of degree 1, we can give an equivalent one satisfying the condition, as
follows:

1. Introduce new terminals [eps] and [cone] with Q([eps]) := 0, Q([conc]) := 2 and the obvious
interpretation as the function giving the empty word resp. the binary concatenation function.

2. For each nonterminal z # s with source (J(z) = 0, replace z by a new nonterminal 2z’ with
source Q(z') = 1. Replace each occurrence of z in the right side of a production by 2’ o [eps].

3. Each production ¢ : z — y is replaced by ¢ : 2/ — [conc]o (11 X y).

This construction preserves the source/target-condition for the productions. It is obvious that the
new BGMI generates the same string language and satisfies the conditions above.

Remark: This construction is easily extended to grammars of arbitrary degree. Thus, if one
is only interested in the string language of a BGMI of degree k, one can always assume that all
nonterminals (except the axiom) have degree exactly k.

We now construct a TAGC which is equivalent to a given BGMI ((, n) with
G=(NUT,T,P,s)

Assume that the tree grammar G fulfills the conditions above.
At first, modify the source and target mappings ¢ and 7 of G to mappings

Q.7 :NUT — {#}*

by identifying Ng and {#}*. (# is a new symbol.) That is, we mark each wire of a net from
B(N U 717 Q7 Z) Wlth the S_YIIlbol “#7:.

The constructed nets are members of the free x—category

Fi= F(TUT,NU{#).0Q". 2.

CHAPTER 3. TREE ADJOINING GRAMMARS AND BGMI 52

T’ will be a set of new terminals (only a technical tool). Objects of this x—category are words over
the alphabet N U{#}, i.e. these nets are built up by terminals of G and new terminals, and its
wires are marked with nonterminals of G or with symbol “#7”.

Source and target mappings Q', 7' : TUT' — (NU#)" are defined by extending the source
and target mappings ¢ and Z of G, the additional values are given in the construction below.

The terminal set 7" is defined as follows: For each # € N, introduce new terminal symbols
[# — 2] and [z — #]. Define source and target by Q'([# — z]) := #, Z'([# — z]) := =z and
inverse for symbol [# — #]. Let the interpretation of these terminals be the identity.

Let p: 2 — y be a production of the BGMI . Define the auxiliary tree 3, corresponding to p
by the following two steps:

o Replace each occurrence of a nonterminal z in y by the net [z — #]o [# — z]. Thus, 2
is replaced by a wire marked with z, which is “delimited” by the terminals [# — z] and
[z — #]. This wire is given the constraint (O A, A.), where A, is the set of all auxiliary trees
for z obtained from the construction. The resulting net 6; is a member of F(#, #).

e Now we must transform 3 into an auxiliary tree in A, because it was constructed from
production p:a — y. Let 3, := [# — 2] o 3, o[z — #] € F(x,z). This gives a net whose
(single) input and output wire are marked with z. Both wires are given a null-adjoining-
constraint because their only function is to identify the net as a member of A,. All wires

marked with “#” are also given an NA-constraint.

By this construction, we get for every production p: # — y exactly one auxiliary net 3, € A,.

We may assume that the axiom s of the BGMI does not occur in the right side of a production
and that the only production for s has the form p : s — 2 o [eps], where z is a nonterminal and
[eps] is the terminal described above. Then we let o := [# — 2] o [eps] be the only initial net and
give the wire marked z the constraint (OA, A,). (This wire represents nonterminal a of the tree
grammar.)

We obtain by this construction a TAGC (in our presentation) from a given BGMI G of degree
1. The productions of G correspond uniquely to the auxiliary trees of the TAGC.

By induction on the length of derivation resp. adjunction sequences follows the equivalence of
these systems. Thus, we have

Theorem 7 To every BGMI of degree 1, one can construct a TAGC generating the same string
language.

Bibliography

[Ben70]

[Ben75]

[Ber79]

[Br69]

[GeSt84]
[GoT77]

[Gu92]

[Ha78]

[Hop79]

[Ho65]

[Ho66]

[Ho67]

[HoC172]

[HoT4]
[Ho90]

[To85]

Benson D.B. (1970), “Syntax and semantics: a categorical view”, Information and Control

17, 145-160.

Benson D.B. (1975), “The basic algebraic structures in categories of derivations”, Infor-
mation and Control 28, 1 29.

Berstel, J. (1979), “Transductions and Context-Free Languages”, Teubner, Stuttgart.

Brainerd, W.S. (1969), “Tree generating Regular Systems”, Information and Control 14,
217-231.

Gecseg F., Steinby M. (1984), “Tree Automata”, Akadémiai Kiadé, Budapest.

Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. (1977),
“Initial Algebra Semantics and Continuous Algebras”, Journal of the ACM 24, 68-95.

Guan, Y. (1992), “Klammergrammatiken, Netzgrammatiken und Interpretationen von
Netzen”, Dissertation, (May '92).

Harrison, M. (1978), “Introduction to Formal Language Theory”, Addison-Wesley.

Hopcroft J.E., Ullman J.D. (1979), “Introduction to Automata Theory, Languages, and
Computation”, Addison-Wesley.

Hotz G. (1965). “Fine Algebraisierung des Syntheseproblems von Schaltkreisen”, FIK 1,
185-205, 209-231.

Hotz G. (1966), “Eindeutigkeit und Mehrdeutigkeit formaler Sprachen” , EIK 2, 235 246.

Hotz G. (1967), “Erzeugung formaler Sprachen durch gekoppelte Ersetzungen”, 4. Collo-
quium iiber Automatentheorie, ed. by F.L. Bauer, K. Samelson, Math. Institut der TH
Miinchen, 62-73.

Hotz G., Claus V. (1972), “Automatentheorie und Formale Sprachen TII” . B.L-
Wissenschaftsverlag, Mannheim.

Hotz G. (1974), “Schaltkreistheorie”, de Gruyter, Berlin.
Hotz G. (1990), “Einfiihrung in die Informatik”, Teubner, Stuttgart.

Joshi A. (1985), “An introduction to Tree Adjoining Grammars”, Technical report, Uni-
versity of Pennsylvania.

53

BIBLIOGRAPHY 54

[Jo86]

[Mai74]

[Th67]

[Viss]

Joshi A. (1986), “The convergence of mildly context-sensitive grammar formalisms”,
Workshop on “Processing of Linguistic Structure”, Stanford, Jan. 87, (prelim. version).

Maibaum T.S.E. (1974), “A generalized approach to formal languages”, Journal of CSS
8, 409-439.

Thatcher J.W. (1967), “Characterizing derivation trees of context-free grammars through
a generalization of Finite Automata Theory”, Journal of CSS 1, 317-322.

Vijay—Shanker K. (1988), “A study of Tree Adjoining Grammars”, Dissertation, Univer-
sity of Pennsylvania.

