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Introduction

In the following report� the relation between rewriting on trees and rewriting on strings is inspected�
The correspondence of regular tree rewriting with context�free string rewriting is a well�known

fact �Br���� Generalizing from this will lead us to a type of string grammar called coupled�context�
free grammar �CCFG��

A hierarchy of grammar 	resp� language
 classes is obtained with the context�free Chomsky�
grammars 	CFG
 as its �rst step� Each language class in this hierarchy is contained in the class of
context�sensitive Chomsky�languages�

Generation power increases only slightly stepping up in the hierarchy� This is measured by the
ability for �counting up to k
� i�e� for generating the language

COUNTk �� fan
�
� � �an

k
j n �N�g � fa�� � � � � akg

�

and the ability for �copying k times
� i�e� for generating the language

COPYk �� fwwk j w � fa� bg�g � fa� bg�

where k is a non�negative integer�
Under this aspect CFGs are able to count up to � and are not able to copy� Tree Adjoining

Grammars �TAG� �Jo��� are able to count up to � and to copy one time� The corresponding
language classes CFL and TAL form the �rst two steps in our hierarchy� The k�th grammar class
in the hierarchy is able to �count up to �k � �
 and to �copy k times
�

Recent investigations in Computer Linguistics have shown that many natural language phe�
nomena can be described by grammars whose generation power is slightly stronger than that of
CFGs �Jo���� This also motivates the study of the grammar and language classes in our hierarchy�

Further work in the theory� especially the study of parsing algorithms� can be found in �Gu����
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Chapter �

Algebraic Theory of Formal

Languages

��� The theory of free ��categories

We introduce in this section some basic de�nitions and facts from the theory of free ��categories�

De�nition � monoid of words
Let ����n� �	 fi � N j � � i � ng for n � N�
 i�e� ������ 	 �� For a �nite set �alphabet
 B


B� �	 fw j w � ����n�� B is a mapping� n � N�g

is called the set of words over B�
The �unique
 mapping �B � ������ � B is the empty word over B
 and B� �	 B� n f�Bg is the

set of nonempty words over B�
Let ��� denote the concatenation on B�
 i�e� for u � ����m�� B� v � ����n�� B

u � v � �����m� n
�� B

is the mapping de�ned by

�u � v
 �i
 	

�
u�i
 � � � i � m

v�i�m
� m� � � i � m� n

The monoid �B�� �� �B
 is called monoid of words over B�

jwj �	 n is called the length of w � ����n�� B� If Bn denotes the set of all words of length n in
B�
 it holds

Bm �Bn �	 fu � v j u � Bm� v � Bng 	 Bm�n �

B� 	 f�Bg will also be written as f�g�
The monoid of words over B is freely generated by the set B� which is identi�ed with B�

Let us now give some category terminology which will be illustrated by a category of mappings�
For a set B
 let M be the set of all mappings f � Bm � Bn � m� n � N�� De�ne mappings

Q�Z �M � N� by Q�f
 �	 m� Z�f
 �	 n
 for f as above�

The �sequential� composition f � g is de�ned for f� g �M i� Q�f
 	 Z�g
 and is the mapping

f � g � BQ�g� � BZ�f�� �f � g
�x
 �	 f� g�x
 
 	x � BQ�g��

�
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Thus� Q�f � g� � Q�g� and Z�f � g� � Z�f�� Let �n� n � N�� denote the identity on Bn� It holds�

K� � �N��M�Q� Z� �� is a category�

De�nition � category

K � �O�M�Q� Z� �� is a category i�

�K	� O and M are sets� Q�Z �M � O are mappings�
� �M �M �M is a �partial� operation on M �

�K�� For f� g �M � the composition f�g �M is de
ned i� Q�f� � Z�g�� In this caseQ�f�g� � Q�g�
and Z�f � g� � Z�f��

�K�� If �f � g� � h is de
ned for f� g� h �M � then also f � �g � h�� In this case holds
�f � g� � h � f � �g � h��

�K�� For each u � O� there is an element �u �M with the following properties�

	� Q��u� � u � Z��u��

�� f � �u � f for all f �M with Q�f� � u�

�� �u � g � g for all g �M with Z�g� � u�

ObjK �� O is the set of objects� and MorK �� M is the set of morphisms of category K� Q
and Z are called source resp� target mapping of K� The morphisms �u are called units of K� the
set of all units is denoted by UNITS�K��

For f � MorK with Q�f� � u and Z�f� � v� we write f � u � v or u
f
� v� For subsets

U� V �MorK� let
K�U� V � �� ff �MorK j Q�f� � U� Z�f� � V g

If U � fug is a singleton� we also write K�u� V � �analogous for V ��

Our next de
nition introduces a special type of category called ��category which plays an impor

tant role in the description of formal languages� see �Ho���� �Ben��� or �Ben���� In an ��category�
the sets of objects and morphisms each form a monoid� Source and target mappings are homo

morphisms between these monoids� We extend the category K� from above to an ��category by
de
ning an additional operation on the set of morphisms�

Let � �M �M �M denote the parallel composition of mappings from M � i�e� for

f � Bm � Bn� g � Br � Bs� m� n� r� s � N��

it holds�

f � g � Bm�r � Bn�s � f � g �u � v� �� f�u� � g�v� � u � Bm� v � Br �

Then the following properties hold�

	� �N���� ��� the set of objects with addition� and �M��� ���� the set of morphisms with parallel
composition� are monoids�

�� The source and target mappings Q�Z �M � N� are homomorphisms between these monoids�
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�� �f� � f�� � �g� � g�� � �f� � g��� �f� � g�� �fi� gi �M� Q�fi� � Z�gi�� i � �� ��

The structure MAP �B�N�� �� �N��M�Q� Z� �� �	��� � is an ��category�
For simplicity
 the monoid operations on the set of objects �here� 	� resp� on the set of morphisms

�here��� both are denoted by the same symbol �here����

De�nition � ��category
X � �O�M�Q� Z� ���� is called ��category i�

�K� �O�M�Q� Z� �� is a category�

�X�� �O��� and �M��� are monoids
 and Q�Z are monoid�homomorphisms�

�X�� For all fi� gi �M with Q�fi� � Z�gi�� i � �� �
 holds�

�f� � f�� � �g� � g�� � �f� � g��� �f� � g���

De�nition � subcategory� ��subcategory
Let U and K be categories ��
categories� with Obj U � ObjK� Mor U � MorK� If the

operations of U and K are identical on U 
 U is called a subcategory ���subcategory� of K� This is
denoted by U � K�

De�nition � generated subcategory� ��subcategory
Let K be a category ��
category�
 E � ObjK� A � MorK� The smallest subcategory

��
subcategory� of K which includes E and A is called the subcategory ���subcategory� generated
by �E�A� in K and is denoted by hE�Ai

K
�

�E�A� is called generating system of hE�Ai
K
� If E � ObjK
 we simply call A generating system

of hE�Ai
K
�
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Generated subcategories are characterized by the following

Lemma ����� �see �Ho���	

hE�AiK �
�dEK �dAK � Q� Z� ���

�

with

dEK �
�

fObj U j U � K� E � Obj U� A �MorUg �

dAK �
�

fMorU j U � K� E � Obj U� A �MorUg �

and Q�Z� ��� are the restrictions of the corresponding mappings and operations of K�

The morphisms in subcategory hE�AiK are exactly those morphisms from K which can be built
from the elements of A and the units �e� e � E� applying the operations of the category�

In the following� we will often make use of mappings between categories �resp� ��categories��
so called functors� which are compatible with the category operation�s�� Functors are similar to
homomorphisms �of algebras�� but not in all respects� For example� the image of a category under
a functor must not be a category�

De
nition � covariant functor

Let K�� K� be categories� �� � ObjK� � ObjK� and �� � MorK� � MorK� be mappings�
We call � � ���� ��� a �covariant� functor from K� into K� if

�F	� Q����f�� � ���Q�f�� and Z����f�� � ���Z�f�� �f �MorK��

�F
� ���f � g� � ���f� � ���g� �f� g �MorK� with Q�f� � Z�g��

�F�� ����u� � ����u� �u � Obj K� �

A functor is a pair of mappings that is compatible with the operations of the category and
with the source and target mappings Q and Z� A covariant functor preserves the �direction
 of
morphisms� There are also functors which invert the direction of morphisms�

De
nition � contravariant functor

Let K�� K�� ��� �� as above� � � ���� ��� is a contravariant functor from K� into K� if

�F	�� Q����f�� � ���Z�f�� and Z����f�� � ���Q�f�� �f �MorK��

�F
�� ���f � g� � ���g� � ���f� �f� g �MorK� with Q�f� � Z�g��

�F��� ����u� � ����u� �u � Obj K��

Remark� Condition �F	� can be derived from �F
�� �F�� and the uniqueness of units �analo�
gously for �F	����

For the special case of ��categories we get the following de�nition�

De
nition � ��functor

Let K� and K� be ��categories� A functor � � ���� ��� from K� into K� is called ��functor if
�� and �� are monoid homomorphisms with respect to ��



CHAPTER �� ALGEBRAIC THEORY OF FORMAL LANGUAGES �

An ��category is free �generated� if its morphisms can be uniquely presented by the elements
of a special generating system� Two presentations are considered equal if they can be transformed
into each other using only axioms of the ��category� A possible de�nition is given by

De�nition � free �generated� ��category
An ��category X is free �generated� if there is a subset A �MorX with the following property�

If K is an arbitrary ��category� �� � ObjX � ObjK a monoid homomorphism and
��

�
� A�MorK a mapping compatible with source and target� i�e�

�f � A Q���

�
�f�� 	 ���Q�f�� and Z��

�

�
�f�� 	 ���Z�f���

there is a �unique� extension �� � MorX � MorK of ��

�
such that � 	 ���� ��� is an

��functor from X into K�

In this case� A �MorX is called free generating system of X �

Given sets A� V and mappings Q�Z � A � V �� there is a free ��category with free gener

ating system A and monoid of objects V �� We denote this free ��category by F�A� V�Q� Z��
F�A�Q� Z�� F�A� V � or simply by F�A� if the missing parameters are given in the context�

Formal constructions of F�A� V�Q� Z� can be found in references �Ho��
 or �Ben��
� We give
some properties of F�A� V�Q�Z�� for a proof see �HoCl��
�

�� F�A� V�Q�Z� has the unique free generating system A�

�� Each non
unit morphism f � F�A� V�Q� Z� has a sequential presentation

f 	 ��um � am � �vm� � � � � � ��u� � a� � �v��

where ui� vi � V � and ai � A� � � i � m� m �N�

In general� the sequential presentation of a morphism is not uniquely determined� Nevertheless�
the number of occurrences of each generator in di�erent sequential presentations for a morphism is
the same� The sum of all occurrences of generators in a sequential presentation is called the length
of the presented morphism�

Morphisms of a free ��category F�A� V�Q�Z� can be visualized geometrically by directed planar
nets�

Each generator a � A with Q�a� 	 u� Z�a� 	 v� is considered as a �box� named a with juj

inputs and jvj outputs which hangs in a rectangle� Inputs and outputs are marked with elements
from V � The i
th input �resp� output� from the left is marked with u�i� �resp� v�i��� In the case
�V 	 �� i�e� V � 		 N�� the markings are omitted�

Each unit �u� u � V �� is considered as a �bundle of wires� marked with the word u�

Starting from these elementary nets� we can construct more complex ones by applying the
��category
operations � and ��

F �G is de�ned as the juxtaposition of the nets F and G together with concatenation of input
and output markings� �In the �gure� the markings are omitted��

F �G is de�ned i� the output marking of G equals the input marking of F and corresponds to
setting G on top of F � The input marking of the composed net F �G is given by Q�F �G� 	 Q�G�
and the output marking is given by Z�F �G� 	 Z�F ��
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u��� u�juj�

v��� v�jvj�

� � �

� � �

a

Figure ���� generator

u��� u�juj�

u��� u�juj�

� � �

Figure ���� unit

The resulting nets are collected in classes where two nets are in the same class if they can be
transformed into each other by �deformations� corresponding to the axioms �X�	 resp� �K
	 of the
��category�

The operations � and � are inherited to the classes� the morphisms of the free ��category
correspond exactly to these classes of nets� Nets in the same class are called inessentially di�erent

or similar�
More information on the geometric aspects of free ��categories can be found in references


Ho��� and 
Ho�
��

An important special case of free ��categories will now be de�ned� It is characterized by the
fact that each generator has exactly one output�

De�nition �� category of trees� context�free ��category

A free ��category F�A� V�Q�Z	 is called category of trees or context�free ��category if

jZ�a	j � � �a � A �

An analogous de�nition applies to the case jQ�a	j � � �a � A� If �V � �� we identify V � with
N� and consider Q and Z as mappings from A to N�� For F�A� V�Q�Z	 we write in this case also
B�A�Q� Z	�

De�nition �� tree

Let F �� F�A� V�Q�Z	 be a category of trees� A morphism f �MorF is called a tree if

f � a � f �� a � A� f � �MorF �

We denote with Trees�M	 the subset of all trees in a set of morphisms M � MorF � Every
morphism from a category of trees can be decomposed under � into units and trees�
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F FG G� �

F � G

Figure ���� parallel composition

F

G

F

G

F �G

� �

Figure ���� sequential composition

Lemma ����� �see �HoCl���	 Let F �� F�A� V�Q� Z	 be a category of trees�

Each f �MorF � Z�f	 � w� jwj � k � N�� has a unique decomposition

f � f� � � � � � fk

with fi �MorF � Z�fi	 � w�i	� � � i � k�

Thus
 each fi in this decomposition is either the unit �w�i� or a tree�

In the following section
 we will describe formal languages using the theory introduced above�
This treatment of formal language theory is sometimes called the Algebraic Theory of Formal

Languages �Ben��
�
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��� Describing formal languages by ��categories

The importance of the theory of ��categories for the description of formal languages bases on the
relation between semi�Thue�systems and free ��categories� see �Ho��� or �Ben���	

A semi
Thue�system is a rewriting system on words and consists of a �nite set of rewriting
rules	 Each rewriting rule is an ordered pair �u� v
 of words and carries a unique name� e	g	 p�
which will be notated by p � u� v	

A rule p � u � v is applicable to a word w i� u is a subword of w	 Application of rule p to
w is the substitution of subword u by v	 The semi�Thue�relation describes which words can be
transformed into each other by a �nite number of rule applications	

If word w can be transformed into w� by the rules of the semi
Thue�system� w� is derivable from
w	 In this case� there is a sequence of words w�� � � � � wn� n � N�� with w � w�� w

� � wn and each
wi�� can be derived from wi by application of one rule	 Such a sequence is called a derivation in
the semi
Thue�system	

Describing derivations by sequences of words in general gives no unique description of the
generation process	 But in many cases there is need for a complete description� e	g	 in studying the
ambiguity of semi
Thue�systems	 An adequate formal description can be given using the theory of
free ��categories	 We �rst give the usual de�nitions	

De�nition �� semi�Thue�system
S � �P� V�Q�Z�

�

�S
 or S � �P� V�Q� Z
 is called semi�Thue�system i�

�	 P is a �nite set �productions� rewriting rules
	

�	 V is a �nite set �alphabet
	

�	 Q�Z � P � V � are mappings �source� target
	

�	
�

�S � the semi�Thue�relation� is the re�exive� transitive closure of the relation

�S �� f �w�uw�� w�vw�
 j p � u� v � P� w�� w� � V � g �

The common de�nition of a derivation is

De�nition �� derivation �sequence�
A sequence �w�� � � � � wn
� n � N�� with

�	 wi � V �� � � i � n�

�	 wi �S wi��� � � i � n�

is called derivation �sequence� of length n from w� to wn in S	
It holds w

�

�S w� i� there is a derivation from w to w� in S	 The words w and w� are called
source and target of the derivation	

To each semi
Thue�system S � �P� V�Q�Z�
�

�S
 corresponds a unique free ��category

F�S
 �� F�P� V�Q� Z


The objects of F�S
 are the words over V � morphisms are the classes of �inessentially di�erent�
derivations in S	 If we visualize morphisms geometrically �see preceding section
� we can think of
derivations as nets built up by productions from P with wires marked by symbols from V 	 The
source resp	 target of a derivation forms the input resp	 output marking of the corresponding net	
The relation between a semi
Thue�system S and the free ��category F�S
 is given by
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Lemma ����� ��Ho���	 For all w�w� � V � holds�

w
�

�S w
� �� F�S��w�w�� �� ��

This lemma expresses that there is a derivation from source w to targetw� i� there is a morphism
in the free ��category with source w and target w��

Each free ��category F �� F�P� V�Q�Z� de	nes a semi
Thue�system S �� �P� V�Q� Z�� S is
uniquely determined by F because the free generating system of F is unique� Therefore we can
write without ambiguity S � S�F�� It holds

Theorem � ��Ho���	 There is a bijection between semi�Thue�systems S � �P� V�Q� Z�
�

�S� and
the free ��categories F�P� V�Q� Z��

Derivations �w� � � �� w�� of positive length in the semi
Thue�system S�F� correspond to the
sequential presentations of the morphisms f � w � w� � F�S�� The length zero derivations �w� in
S�F� correspond to the units �w of F�S��

One of the most important formalisms for de	ning languages are the Chomsky�grammars which
are based on semi
Thue�systems� We give the usual de	nition�

De
nition �� �Chomsky��grammar
G � �S� T� s� is a �Chomsky��grammar i�

�� S � �V� P�Q� Z� is a semi
Thue�system�

�� T � V� T �� �� T is the set of terminals of G�
N �� V n T� N �� �
 is the set of nonterminals of G�

�� s � N is the axiom of the grammar�

�� Q�p� � N� for each production p � P �

The language generated by grammar G � �S� T� s� is the following set of terminal words�

L�G� ��
n
w � T � j s

�

�S w
o
�

An important special case of Chomsky
grammars are the context�free grammars de	ned as
follows�

De
nition �� context�free semi�Thue�system� Chomsky�grammar
A semi
Thue�system S � �P� V�Q� Z� resp� a Chomsky
grammar G � �S� T� s� is context�free if

for all p � P 
 jQ�p�j � � holds�
Remark� If we exchange source and target mapping
 F�S� becomes a category of trees accord


ing to our de	nition� Exchanging source and target is no essential modi	cation because it can be
described by a bijective ��functor�

We now give an equivalent de	nition of Chomsky
grammars� Let F�S� be the free ��category
corresponding to semi
Thue�system S with Alphabet V 
 let T be a subset of V and s an element
of V � T � Then we call

G � �F�S�� T� s�
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a Chomsky�grammar and the language generated by G is

L�G� � fw � T � j F�S��s� w� �� �g �

This de�nition emphasizes the derivation processes �morphisms� and is obviously equivalent to
the previous one�

In the next section	 we will give di
erent possible de�nitions for the language generated by a
context�free grammar� Our intention is to de�ne the language by an interpretation of derivations�
Derivations are formalized as morphisms �nets� from a free ��category	 their interpretation is
determined by an interpretation of the free generating system �production set of the grammar��
Each production is interpreted as a function whose arguments are strings	 sequential �parallel�
composition of derivations is interpreted as sequential �parallel� composition of functions� Thus	
one gets an interpretation for each morphism in the ��category�
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��� Context�free Chomsky Languages

In this section� we will give di�erent presentations for the language generated by a context�free
grammar� The �syntax� de�ned by the grammar is given in terms of a free �	category 
of trees��
and the generated string language is de�ned by an �interpretation� of a certain set of trees�

We will give a rather extensive treatment here because this presentation will be used in the
next chapter for de�ning other language classes�

Our description is essentially the same as the one given in �Go

�� In that article� the string
language generated by a context�free grammar is described as an example of initial algebra seman�

tics�
The productions of a CFG are regarded as operators which generate a so called initial many�

sorted algebra I � The term initial means that any algebra A of the same type is the homomorphic
image of I under a unique homomorphism� The members of I can be regarded as expressions built
up by the operators 
productions of the CFG�� These expressions represent the derivation trees of
the grammar� The string language generated by the grammar is obtained by evaluating a certain
set of expressions� i�e� by interpreting the expressions in an appropriate many�sorted algebra�

Every operator is interpreted as a function with arguments from T �� i�e� terminal words� The
arity of each function is the number of nonterminals on the right side of the corresponding grammar
production� If the arguments are chosen to be words derived from these nonterminals� function
application gives the terminal word derived from the left side of the production�

Assignment of these functions to the operators de�nes an homomorphism from the initial algebra
into the algebra generated by the functions� That homomorphism is the interpretation of the
derivations�

A similar but more general formulation is given in �Ho�
�� In that paper� to every CFG two
�	categories are assigned�

� a syntactic �	category 
free �	category�

� a semantic �	category 
�	category of mappings�

The syntactic category corresponds to the initial algebra described above� It is more general than
the initial algebra because not only derivation trees but all derivations are represented in that
�	category� The string language generated by the grammar is given by an �	functor from the
syntactic to the semantic category� This �	functor is the analogue to the homomorphism above�

Based on this description� a class K of formal languages is de�ned� the languages generated by

coupled substitutions� Special subclasses are investigated and closure properties are proved�
Languages from class K are de�ned by �nitely generated �	subcategories of the syntactic

�	category� Given a context�free production system P � each production p � P is split into a
terminal�free production and a function fp which describes application of p� The functions fp
generate an �	category C with sequential and parallel composition of mappings as �	category�
operations� For E a �nite subset of C� C
E� denotes the �	subcategory generated by E in C� It
is shown that there is an �	subcategory U of the free �	category F
P � whose members represent
the possible �constructions� of the functions from C
E��

Only members of that �	subcategory U are taken as valid derivations for the strings of the
language to be de�ned� In each valid derivation� productions of P must be applied in a coupled

fashion which is given by the functions from E�
Finally� the string language is de�ned by choosing a language S of start words and applying to

them the functions from C
E��
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The class K contains string languages whose syntax cannot be de�ned by Chomsky�grammars
although every string language from K could be de�ned by a Chomsky�grammar �with a di�erent
syntax�� The reason for this is that coupling of productions cannot be described by Chomsky�
grammars�

This possibility could be interesting for linguistic considerations� For the description of natural
language phenomena	 formal systems are required whose generative power is slightly stronger than
CFGs but which allow expressing more syntactic dependencies than CFGs 
Jo��
�

In the following	 we will consider tree rewriting and corresponding string rewriting systems
which are related by an interpretation function� We will obtain a rewriting mechanism similar to
the one mentioned above� The di�erence is that we get ��subcategories which don�t have to be
�nitely generated�

We formalize the above notions� At �rst	 we will describe the string language of a CFG as
�trivial� interpretation of a set of derivations�

Let G � �S� T� s� be a context�free grammar	 i�e�

�� S � �P� V�Q� Z� is a context�free semi�Thue�system	

�� V � N � T� N � T � �� N� T �� �	

�� Q�p� � N for all p � P 	

�� s � N �

LetM be the set of all mappings fug
f
�� fvg� u� v � V �	 let � �M	M �M be the composition

and 	 � M 	M �M the parallel composition of mappings from M 	 i�e�

fvg
f
�� fwg � fug

g
�� fvg �� fug

f�g
�� fwg

fug
f
�� fvg 	 fu�g

f �

�� fv�g �� fuu�g
f�f �

�� fvv�g

If we de�ne d�f� �� u and c�f� �� v for fug
f
�� fvg from M 	

R�V � �� �V ��M� d� c� ��	�

is an 	�category�
Let �� � V

� � V � be the identity and � �
�
� P �M be de�ned by

� �
�
�p� �� fQ�p�g

fp
�� fZ�p�g 
p � P�

� �
�
can be uniquely extended to �� �MorF�S��M such that � � ���� ��� is an 	�functor from

F�S� into R�V ��

This 	�functor � assigns to each derivation with source u and target v the function fug
f
�� fvg

and �forgets� the construction of the derivation�
Thus	 the string language generated by CFG G is

L�G� � f�����s� j � � F�S��s� T ��g �

L�G� is de�ned by applying the interpretation functor � to the set of all derivations �trees� with
source s and terminal target� This interpretation is �trivial� in the sense that for each morphism
from F�S� it is completely determined by source and target�
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We now de�ne the string language of CFG G in terms of syntactic and semantic ��category�
The syntactic ��category contains the terminal�free derivations of the grammar� The grammar

productions can be regarded as �boxes� from which derivations 	nets
 trees� are built up using the
��category�operations � and �� Given such a derivation
 the derived string is given by �evaluating�
that derivation in the semantic ��category�

The syntactic ��category is de�ned as follows�
To each grammar production

p � x� � u� � x� � u� � � �uk � xk � uk��� xi � N� uj � T �� k � N��

we assign the terminal�free production

p � x� � x� � � � xk

and the mapping fp � 	T
��k � T � given by

fp	w�� � � � � wk� �
 u� � w� � u� � � �uk �wk � uk�� �w�� � � � � wk � T �

If we denote source and target of the terminal�free production p by Q�	p� resp� Z �	p�
 we get a
new semi�Thue�system

S� 
 	P�N�Q�� Z ��

and a corresponding free ��category F	S ��� We call this free ��category the syntactic ��category
of G�

The following example shows a derivation and its terminal�free version�
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Example ��

Let S � �P�N � T�Q� Z� with P � fp� qg� N � fsg� T � fa� b� c� dg� Let the source and target
mappings be de�ned by

Q�p� � Q�q� � s� Z�p� � asbsc� Z�q� � d�

In the semi�Thue	system S � � �P�N�Q�� Z ��
 p and q have source and target

Q��p� � Q��q� � s� Z ��p� � ss� Z��q� � ��

p

p

q q

q

������

HHHHHH

�
�
�

�
�
�

s

s s

s s

Figure ���� A terminal�free derivation tree
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Figure ��
� Original derivation tree

We now de�ne the semantic �	category of grammar G�
Let FP �� ffp j p � Pg� FP generates an �	subcategory

C�FP � T
�� �MAP �T ��N��
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C�FP � T
�� contains exactly those mappings that can be generated by sequential and parallel com�

position from the mappings fp and the identities on �T ��n� n � N��
We call this ��category C�FP � T

�� the semantic ��category of G�

Let us now de�ne the interpretation functor for the derivations in F�S��� De�ne mappings

�� 	N
��N�� ���w� 	
 jwj� w � N��

��

�
	P �FP � ��

�
�p� 	
 fp � p � P�

By extension of ��

�
onto MorF�S �� we get a unique �contravariant� ��functor � 
 ���� ��� from

F�S�� to C�FP � T
���

� maps each derivation in the semi�Thue�system S� �each net� tree in F�S ��� to a function from
C�FP � T

�� and so it connects syntactic and semantic ��category�
To each derivation � 	 s � � from F�S��� a mapping ���� 	 �T ��� � T � is assigned which is

identi�ed with the string ������� � T ��

For the productions p and q from our example above� we get functions fp and fq with

fp�w�� w�� 
 a � w� � b �w� � c �w�� w� � T �

fq��� 
 d

The interpretation of the �terminal�free� derivation tree shown in the �gure is obtained by evaluating
an equivalent categorical expression� e�g�

��q � q� � p� q� � p

which gives
fp �fp �fq���� fq���� � fq���� 
 aadbdcbdc

The string language L�G� 
 L�S� T� s� now can be de�ned by the syntactic ��category F�S���
the semantic ��category C�FP � T

�� and the ��functor ��
Let B�S� x� 	
 F�S��x� T �� and B�S�� x� 	
 F�S���x� �� for x � N � That is� B�S� x� is the set

of all derivation trees of a terminal word from nonterminal x in the original grammar� and B�S �� x�
is the set of all derivation trees of the empty word from x in the ��category generated by the
terminal�free productions� Then the following theorem holds	

Theorem �

L�G� 

�
������� j � � B�S�� s�

�
Proof�

The proof bases on the connection between the free ��categories F�S� and F�S��� The result
is that removing the terminal symbols from the productions preserves the syntactic structure�
i�e� terminals are unessential� We formalize this fact�

Let �� 	 V
� � N� be the homomorphism

���x� 	


�
x� x � N

�� x � T

which deletes the terminal symbols from a string� and let

��

�
	 P � F�S��� ��

�
�p� 	
 p
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be the mapping which assigns to each production its terminal�free version �which carries the same
name��

Mappings �� and �
�

� de�ne a unique ��functor � 	 ���� ��� from F�S� into F�S��� This functor
describes removal of terminals from the productions resp� from the derivations in S� The set of
trees which de�nes the language generated by G is only unessentially changed by that mapping�
This is expressed by the following facts


Fact ����� Every tree � � B�S� x�� x � N� has a unique presentation

� 	
�
�u� � �� � �u� � � � � � �uk � �k � �uk��

�
� p

with p � P� Q�p� 	 x� Z�p� 	 u� � x� � u� � � �uk � xk � uk��� uj � T �� xi � N� �i � B�S� xi�� k �
N�� � � i � k� � � j � k � ��

Fact ����� Every tree �� � B�S�� x�� x � N� has a unique presentation

�� 	
�
��

� � � � � ���

k

�
� p

with p � P� Q��p� 	 x� Z��p� 	 x� � � �xk� xi � N� ��

i � B�S�� xi�� k � N�� � � i � k�

Remark� Follows directly from the de�nition of a tree and from lemma ����
�

Fact ����� If j�j denotes the length of the morphisms in F�S� resp� in F�S �� and is � the ��functor

de�ned above� then for all � � F�S� holds�

j����j 	 j�j �

Follows from the de�nition of ��

Lemma ����� � is a bijection between B�S� x� and B�S�� x��

Proof�

We show by induction on the length of the trees that every �� � B�S �� x� has exactly one origin in
B�S� x� under ��

Basis
 j��j 	 �
Then �� 	 p � P� Z ��p� 	 �� Z�p� � T � and therefore p � ������� � B�S� x�� By fact ������

every g in ������� has length �� so it has the form g 	 �w� � q � �w� with w�� w� � T � and q � P �
If g � B�S� x�� then w� 	 w� 	 � and therefore g 	 q� Since � is the identity on P � it follows g 	 p�

Step
 j��j � �
Let �� 	 ���

� � � � � � ��

k� � p be the unique presentation of �� from fact ����
�
By induction hypothesis� every ��

i in B�S� x� has a unique origin �i� The unique origin of p in
B�S� x� is p itself� By construction of S��

Z�p� 	 u� � x� � u� � � �uk � xk � uk��� xi � N� uj � T ��

and therefore

� 
	 ��u� � �� � �u� � � � � � �uk � �k � �uk��� � p � ������� �B�S� x��
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Let g be an arbitrary element of �������� B�S� x� and

g � ��w�
� g� � �w� � � � � � �wl

� gl � �wl��
� � q� l � N��

be the unique representation of g from fact ������ Then

��g� � ���g��� � � � � ��gl�� � ��q�

� ��

� ���

� � � � � � ��

k� � p

From ��q� � q and the uniqueness of the presentation it follows

q � p� l � k� Q����gi� � xi� ��gi� � ��

i � B�S�� xi�

So we get

g � ��u� � g� � �u� � � � � � �uk � gk � �uk���� gi � B�S� xi�� � � i � k�

By induction hypothesis	 the origin of ��

i in B�S� xi� is uniquely determined and from ��gi� � ��

i �
���i� it follows gi � �i� So we have g � � and the lemma is shown� �

Lemma �����

� � � B�S� x�� x � N 
 ���������� � Z���

Proof
 Induction over the length of � � B�S� x��
Basis
 j�j � �
Then � � p 
 x � w � P� w � T � and fp 
 f�g � T �� fp��� � w� From ��p� � p	 it follows

���������� � ��p���� � fp��� � w � Z����

Induction step
 j�j � �
Let

� � ��w� � �� � �w� � � � � � �wk
� �k � �wk��

� � p

be the unique presentation of � from fact ������ Then

Z��� � w� � Z���� �w� � � �wk � Z��k� � wk��

� w� � ����������� �w� � � �wk � �����k����� � wk��

� fp� ������������ � � ������k� ����

� ����������

and the lemma is shown� �

From both lemmata	 we get

L�G� � fZ��� j � � B�S� x�g

� f���������� j � � B�S� x�g

� f�������� j �� � B�S�� x�g

and the theorem is proved� �
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Remark� From fact ������ one immediately gets a recursive de�nition for the sets B	S �� x

which can be formulated as a 	tree
 grammar on F	S�
� This tree grammar is similar to the regular
grammar on a many�sorted algebra de�ned in �Mai�
�� The productions of the 	context�free
 semi�
Thue�system S� become the terminal symbols and the sets B	S�� x
� shortly written as �x�� x � N �
become the nonterminals of this tree grammar� The production set �P of the tree grammar is given
as follows�

For every p � x� x� � � �xk � P 	S
�
� there is a production

�p � �x�� 	�x��� � � � � �xk�
 � p � �P

in the tree grammar�
For consistency� we de�ne for the nonterminals �x� source and target mappings by

Q�	�x�
 �� x� Z �	�x�
 �� �

Then for every production �p of the tree grammar the following source�target�condition holds�

�p � �x�� � � �P �� Q�	�x�
 � Q�	�
� Z �	�x�
 � Z �	�


This condition will also be assumed for the tree grammars de�ned in the next chapter�
We generalize from this type of grammar in a natural way� Not only do we allow �leaves� to be

rewritten� but also boxes occurring anywhere in the tree� Our rewriting mechanism does not allow
duplication or deletion of subtrees as do the context�free tree grammars de�ned e�g� in �Mai�
��
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��� Coupled�context�free Grammars

Coupled�context�free Grammars �CCFG� are a generalization of context�free grammars� The CCFG
allows several context�free rewritings to be executed in parallel� These parallel rewritings are not
executed independently but they are coupled in the following way� Nonterminal symbols are grouped
together to brackets �in a generalized sense�� Rewriting rules and rewriting relation are de�ned such
that each rule application respects the bracketing structure of the sentence� In each rewriting step�
only corresponding brackets can be substituted� The result of the substitution is correctly bracketed
i	 the original word was� Terminal symbols are 
normal� alphabet symbols which can be regarded
as 
trivial� brackets �which enclose no word�� We will consider not only pairs of opening and
closing brackets �in our sense� bracket components�� but also brackets consisting of an arbitrary
�nite number of components�

We will formalize the above notions starting from the usual de�nition of the semi�Dyck�languages�
A semi�Dyck�language can be considered as the set of all correctly bracketed words over a �nite

set of bracket pairs� This can be formalized by giving a set of equations of the form fa�
a� �
�� � � � � ak
ak � �g� where ai is considered as opening bracket corresponding to closing bracket 
ai�
These equations induce a congruence relation on the free monoid over the alphabet consisting of
all bracket pairs� Two words are congruent i	 they can be transformed into each other by a �nite
number of equation applications� i�e� insertions or deletions of factors ai
ai�

The set of all correctly bracketed words� the semi�Dyck�language� is the congruence class of the
empty word� For a formal de�nition see e�g� �Ho��� or �Ber����

We want to generalize from these notions by allowing bracket tuples consisting of a �nite number
of components�

We consider a �nite alphabet �brackets� and de�ne for each bracket the number of words that
can be enclosed� called degree of the bracket�

De�nition �� bracket alphabet
Let K be a �nite set �brackets� and g � K � N� a mapping�

�K� g� �� f�k� i� � K �N j � � i � g�k� � �g

is called bracket alphabet and g�k� is the degree of bracket k � K�

For �k� i� we write ki� Let Kn be the set of all brackets in K of degree n � N�� Sometimes we
will identify brackets of degree � with their �single� component�

De�nition �� bracket congruence
The congruence �K on �K� g��� generated by the equations

��
�

�
�
g�k���Y
i��

ki

�
A � �� k � K

��
	

is called bracket congruence for the bracket alphabet �K� g��

De�nition �� bracket language
The bracket language D�K� g� over the bracket alphabet �K� g� is

D�K� g� �� fw � �K� g�� j w �K �g�

i�e� the set of words that can be reduced to the empty word by application of the de�ning equations�
We simply write D�K� if g is implicitly given�
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The bracket language can be characterized constructively�
D�K� is the smallest subset of �K� g�� satisfying conditions �	 � and 
�

�� � � D�K�	

�� D�K� �D�K� � D�K�	


� k � Kn� w�� � � � � wn � D�K� �� k� �w� � k� � � �kn � wn � kn�� � D�K��

Let us give some examples�

�� Let K � fx� yg and g�x� � g�y� � �	 so �K� g� � fx�� x�� y�� y�g� Then the following are
elements of D�K� g��

�� x�x�� x�y�y�x�x�x�� x�x�x�x�x�x�

If we write 
f� and 
g� instead of x� and x�	 
�� and 
�� instead of y� and y�	 then the words
given above become

�	 f g	 f � � f g g	 f f f g g g

In this example	 D�K� g� is the semi�Dyck�language with corresponding pairs of brackets
x� � x� and y� � y�� The bracket languages with each bracket of degree � are exactly the
semi�Dyck�languages�

�� For a bracket alphabet �K� g� with K � K�	 we have D�K� g� �� K�� In this case	 �K� g� and
K are identi�ed�

In our considerations there will be often bracket alphabets �K� g� with K � N ��T� T � T�� We
denote the corresponding bracket language by D�N� T � and consider it as a subset of ��N� g�� T ���

We give some properties of the bracket languages D�K��

�� For each subset M � K� it holds M� � D�K��

�� D�K� is a free submonoid of �K� g��� The free generating system of D�K� is

E�K� ��
�

k�K

fk� � d� � k� � � �kn � dn � kn�� j k � Kn� d�� � � � � dn � D�K�g �


� If d � D�K�	 then for u� v � �K� g��

udv � D�K� 	� uv � D�K��

�� For u� v � �K� g��� u � v � D�K�	 it holds�

u � D�K� 	� v � D�K��
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We de�ne now the coupled�context�free grammars�

De�nition �� coupled�context�free grammar �CCFG�
Let �V� g� be a bracket alphabet with V � N ��T� N� T �� � and T � T�� Let D	N� T 
 be the

corresponding bracket language�

Gccf �
�
�V� g�� T� Pccf � s�

�

�ccf

�

is called coupled�context�free grammar if

�� Pccf is a �nite set of coupled�context�free productions

p � 	x�� � � � � xk��
� 	y�� � � � � yk��


with x � Nk� y�� � � � � yk�� � �V� g��� y� � � �yk�� � D	N� T 
�

We call grad	p
 �� k the degree of production p� De�ne the degree of the grammar as the
maximum degree of a production�

�� The rewriting relation
�

�ccf is the re�exive
 transitive closure of the relation

�ccf ��

f 	 u� � x� � v� � x� � � �xk � vk � xk�� � u�� u� � y� � v� � y� � � �yk � vk � yk�� � u� 
 j
u�� u� � �V� g��� v�� � � � � vk � D	N� T 
�
p � 	x�� � � � � xk��
 � 	y�� � � � � yk��
 � Pccf g�

�� s � N� is the axiom of the grammar�

The language generated by Gccf is

L	Gccf 
 ��
n
w j w � T �� s

�

�ccf w
o
�

The coupled�context�free grammars generalize ordinary context�free grammars� Consider the
case where N � N�
 i�e� each nonterminal is a single symbol� Then we can identify each x� � �N� g�
with x � N 
 thus �N� g� with N 
 and V with �V� g��

The productions of Gccf have the form p � 	x�
 � 	y�
� x� � �N� g� � N� y� � �V� g�� � V �

i�e� they are context�free productions�

The relation �ccf is in this case

�ccf � f	u� � x� � u�� u� � y� � u�
 j u�� u� � V �� p � 	x�
� 	y�
 � Pccfg �

i�e�
�

�ccf is the semi�Thue�relation�

Example ��

Let Gccf �� 	 �V � T� P� s�
�

�ccf 
� �V �� fs� x�� x�� a� b� c� eg� T �� fa� b� c� eg

P �� f p � s� x�ex�� q � 	x�� x�
 � 	ax�b� cx�
� r � 	x�� x�
 � 	ab� c
 g�
A derivation in Gccf is

s�ccf x�ex�
n
�ccf anx�b

necnx��ccf a
n��bn��ecn��� n � N�
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It is easy to see that L�Gccf� � fanbnecn j n � Ng� This is a context�sensitive language which
is not context�free� By the way� L�Gccf� � TAL� i�e� L�Gccf� is generated by a Tree Adjoining
Grammar �TAG� �Jo	
��

Example ��

Let Gccf �� � 
V � T� P� s�
�

�ccf �� 
V �� fs� x�� x�� a� bg� T �� fa� bg� P ��

fp � s� x�x�� qa � �x�� x��� �ax�� ax��� qb � �x�� x�� � �bx�� bx��� q� � �x�� x��� ��� ��g

The derivations of Gccf with source s are of the form

s
p
�ccf x� � x�
qa��ccf a�x� � a�x�

���
qan� ccf a� � � � anx� � a� � � � anx�
q��ccf a� � � � an � a� � � � an

where a�� � � � � an � fa� bg� n � N��
Thus� L�Gccf � � fw � w j w � fa� bg�g � COPY�� This is also a non�context�free� context�

sensitive language which is contained in the class TAL� These examples show that by introducing
nonterminals of degree � one gets rewriting systems with more generation power than context�free
grammars�

The following lemma shows that CCFG�rewriting preserves bracketing� especially that correctly
bracketed words are invariant under CCFG�rewriting�

Lemma ����� For w�w� � �V� g�� holds� w
�

�ccf w� �� w �V w�

Proof� Induction on the derivation length�

Basis� w
�
�ccf w�� Then w � w� and thus w �V w��

Induction step� w
n��
� ccf w�� n � N��

There is a w�� � �V� g��� such that w
n
�ccf w���ccf w

�� By de�nition of �ccf � there are a
production p � �x�� � � � � xk��� � �y�� � � � � yk��� and words w��

� � w
��

� � �V� g��� d�� � � � � dk � D�N� T �
with

w�� � w��

� � x� � d� � x� � � �xk � dk � xk�� � w
��

�

w� � w��

� � y� � d� � y� � � �yk � dk � yk�� �w
��

�

From di �V �� � � i � k and x� � � �xk�� �V � follows

w�� � w��

� � x� � d� � x� � � �xk � dk � xk�� �w
��

�

�V w��

� � x� � � �xk�� � w
��

�

�V w��

� � w
��

�

By de�nition of Pccf � we have y� � � �yk�� �V � and thus

w� � w��

� � y� � d� � y� � � �yk � dk � yk�� � w
��

�

�V w��

� � y� � � �yk�� � w
��

�

�V w��

� � w
��

�
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By induction hypothesis� we have w �V w�� thus w �V w�� �

Conclusion� For each w � �V� g�� with s
�

�ccf w holds� w � D�N� T 	�
That is� 
sentential forms� of a CCFG are members of the bracket language D�N� T 	�

Let us now investigate the connection between derivations of a CCFG and the derivations of
the context�free grammar which is obtained by 
uncoupling� of the productions� We get this CFG
by using the components of the CCFG�productions as single context�free productions and rewriting
by the semi�Thue
relation�

De�nition �� context�free base grammar

For a CCFG Gccf � ��V� g�� T� Pccf� s�
�

�ccf 	� we call

Gcf �� ��V� g�� T� Pcf� s�
�

�	

with
Pcf �� fpi � xi � yi j �p � �x�� � � � � xk��	� �y�� � � � � yk��	 � Pccf � � � i � k � �g

the context�free base grammar for CCFG Gccf � �
�

� is the semi�Thue
relation�	

Clearly� Gcf is a context�free grammar� Derivations of CFG Gcf are the morphisms from the
free �
category F�Gcf	 �� F�Pcf � �V� g�	 generated by Pcf � We want to characterize the derivations
of CCFG Gccf using F�Gcf	� The following theorem holds�

Theorem � If Gccf � ��V� g�� T� Pccf� s�
�

�ccf 	 is a CCFG and u� v � �V� g��� then

u
�

�ccf v �� U�Pccf 	�u� v	 	� 
 �

U�Pccf 	 is the ��subcategory of F�Gcf 	 with free generating system

E�Pccf	 �� f p� � �d� � p� � � � � � pk � �dk � pk�� j

p � Pccf � grad�p	 � k� di � D�N� T 	� � � i � k g�

Proof�

Let f � U�Pccf 	�u� v	� u� v � �V� g��� We have one of the following cases�

�� f is a unit� f � �u� u � v� Then u
�

�ccf v holds�

�� f � E�Pccf 	 is a generator� f � p� � �d� � p� � � � � � pk � �dk � pk���

p � �x�� � � � � xk��	� �y�� � � � � yk��	 � Pccf � d�� � � � � dk � D�N� T 	�
Q�f	 � x� � d� � x� � � �xk � dk � xk��� Z�f	 � y� � d� � y� � � �yk � dk � yk���

Then Q�f	�ccf Z�f	 by de�nition of �ccf �

�� f � f � � f ��� f �� f �� � U�Pccf 	� If Q�f �	
�

�ccf Z�f �	 and Q�f ��	
�

�ccf Z�f ��	� then Q�f	
�

�ccf

Z�f	 by de�nition�

�� f � f �� � f �� f �� f �� � U�Pccf 	� If Q�f �	
�

�ccf Z�f �	 � Q�f ��	 and Q�f ��	
�

�ccf Z�f ��	� then

Q�f �	
�

�ccf Z�f ��	 by de�nition�



CHAPTER �� ALGEBRAIC THEORY OF FORMAL LANGUAGES ��

Each morphism from U�Pccf � can be uniquely decomposed into elements from E�Pccf � and units�
from which follows one direction of the claim� We will now show the opposite direction�

Let u� v � �V� g�� and let u
n
�ccf v be a derivation of Gccf from u to v� n � N��

We use induction on the length of the derivation�

Basis� u
�
�ccf v� Then u 	 v and from �u � U�Pccf ��u� v� follows the claim�

Step� u
n��
� ccf v� Then there is a v� � �V� g�� with u

n
�ccf v��ccf v and

v� 	 w� � x� � d� � x� � � �xk � dk � xk�� � w� �

v 	 w� � y� � d� � y� � � �yk � dk � yk�� � w� �

with w�� w� � �V� g��� d�� � � � � dk � D�N� T �� and there is a production p 
 �x�� � � � � xk��� �
�y�� � � � � yk��� � Pccf �

By induction hypothesis� there is a morphism f � � U�Pccf ��u� v
�� and by de�nition� E�Pccf�

contains the element p�d�� � � � � dk� 
	 �p� � �d� � p� � � � � � pk � �dk � pk����
Then f 
	 ��w�

� p�d�� � � � � dk�� �w�
� � f � � U�Pccf ��u� v� which proves the theorem� �

The characterization of the CCFG�derivations as elements from an �
subcategory of a context�
free �
category could be helpful in solving the word problem �w � L�Gccf� ��� A possible algorithm
could �rst solve the word problem for the context�free base grammar and then �e�ciently �� test
the computed derivations for membership in the �
subcategory�

There is hope to get better recognition�parsing algorithms for interesting language classes by
that strategy �e�g� for TALs� which can be generated by CCFGs as will be shown��

It is also possible to describe the derivations of a CCFG as members of a �nitely generated
�
subcategory� To achieve this� we describe the generated string language by an interpretation
of a certain set of morphisms �as in the previous section�� These morphisms are built up by the
terminal�free productions of the CCFG�

Terminal�free productions have the following form


p 
 �x�� � � � � xk���� �y�� � � � � yk���

with y� � � �yk�� � D�N�� yi � �N� g��� � � i � k � ��
We split each component of a CCFG�production into a �terminal�free� production and an inter�

pretation function� The new context�free production inherits the name of the component� its source
and target are obtained by erasing all terminal symbols� The new production system generates a
free �
category F ��Gccf ��

The language generated by the CCFG is de�ned by morphisms f 
 s� � from F ��Gccf�� exactly
by those which present a coupled derivation� The coupled derivations are exactly the members of
the �
subcategory U ��Pccf � which is generated by

E ��Pccf � 
	 fp� � �d� � p� � � � � � pk � �dk � pk�� j p � Pccf � grad�p� 	 kg

with di � D�N�� � � i � k�
A word w � T � is a member of L�Gccf � i� there is a derivation f 
 s � � � U ��Pccf � with

��f���� 	 w�
A derivation of this form can be obtained by rewriting in each step only a simple nonterminal or

a bracket nonterminal enclosing only empty words� That is� in each step a word x� � � �xk��� x � Nk�
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is rewritten� Since �nally the empty word is derived� all bracket nonterminals can be substituted
after substituting enclosed words�

Such a derivation can be presented as the sequential composition of generators of the form
p� � � � � � pk�� where p � Pccf is a production of degree k from the CCFG� Thus� every word in
the language of the CCFG has a derivation which is generated by the �nite system

E���Pccf � �	 fp� � � � � � pk�� j p � Pccf � k 	 grad�p�g

Without eliminating terminals from the productions� a �nite generating system is in general
not su
cient because arbitrary long terminal subwords could separate bracket nonterminals� Thus�
there would be need for generators of the form

p� � �w�
� p� � � � � � pk � �wk

� pk��� w�� � � � � wk � T �

In the following sections� we will investigate the connection between CCFGs and rewriting on
trees� We �rst de�ne grammars on trees and prove some formal properties of these systems�
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Tree Grammars with Multilinear

Interpretation

��� Tree Grammars

We will de�ne grammars on categories of trees� These grammars are similar to context�free gram�
mars on strings in the sense that single nonterminals are rewritten by composed structures �nets�
trees� independently of the �context	� An occurrence of a nonterminal symbol in a string can
always be rewritten if there is a rule with that nonterminal as its left side� In order to get this
property also for nets �or trees�� we restrict the right side of each grammar production to be a
net with the same number of inputs and outputs as the nonterminal symbol on its left side� This
property will be called source�target�condition for the rewriting rules�

Let BV 
� B�V�Q� Z� be a category of trees �Z�v� � � �v � V �� V � N 
�T� N� T �� �� and
let BT be the free ��subcategory of BV generated by T �corresponds to T � in the case of string
grammars�� Members of BV are nets �as presented in the �rst chapter� which can be decomposed
into trees and units under the ��operation� All wires are marked with the same symbol which is
therefore omitted �Thus the source of a net can be identi�ed with the number of its inputs� the
same goes for the target��

De�nition �� tree grammar
Let BV �BT be given as above� G � �V� T� P� s�

�

�P � is called tree grammar over BT if

�� P is a �nite set of productions p 
 x	 y with

�a� x � N� y � BV �

�b� Q�x� � Q�y�� Z�x� � Z�y� � �� �source�target�condition�

�� The rewriting�relation
�

�P is the re�exive� transitive closure of the relation�P on BV de�ned
as follows
 �f� f � � BV

f �P f � 

�

�
f � g � ��r � x� �s� � h� f

� � g � ��r � y � �s� � h r� s � N��

p 
 x	 y � P� g � BV �r� Z�x� � s�N��� h � BV �N�� r�Q�x� � s�

�� The axiom of G is an element s � N with Q�s� � ��

��
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Remark� The source�target�condition guarantees that each occurrence of a nonterminal x in
a net can always be rewritten by application of a production p � x � y� and that the result of the
substitution is a well de�ned net� If rewriting always takes place in trees without inputs� there is
always a presentation of the tree with r 	 s 	 
� Then the de�nition of the rewriting relation �P

above can be simpli�ed to g � x � h�P g � y � h�
We illustrate the de�nitions by the following pictures�

p � yx �

Figure ���� rewriting rule

�P

h

x

g

h

g

y

Figure ���� rule application

The tree language generated by tree grammar G is

T �G
 �	
n
f j s

�

�P f� f � BT
o
�

We draw some simple conclusions from these de�nitions�

�� f� g � BV � f
�

�P g 	� Q�f
 	 Q�g
� Z�f
 	 Z�g
�

�� T �G
 � BT �
� �
� i�e� a tree grammar generates trees without inputs�

�� If T �G�
 and T �G�
 are tree languages� then T �G�
� T �G�
 is a tree language�

As we will see� the generation power of a tree grammar depends on the number of inputs of its
nonterminals� This motivates the following

De�nition �� degree of a tree grammar
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grad G �� max fQ�x� j p � x� y � Pg �

We denote the class of tree languages in BT which are generated by a tree grammar of degree
k by CF �BT � k�� k � N��

We will always assume that the grammars are reduced �the de�nition of reduced grammar is
analogous to context	free string grammars and is omitted��

A derivation from f� to fn in G is a sequence

f� �P f� �P � � ��P fn

with fi � BV � 
 � i � n� n � N�� The number n is called the length of the derivation�

The following lemma shows that the derivations of our tree grammars can be �factorized� like
the derivations of context	free string grammars 
Ha����

Lemma ����� Let G � �V� T� P� s� be a tree grammar and let �� � � BV �
If �

r
�G �� r � N�� and � � �� � ��� then there are r�� r� �N�� ��� �� � BV with

r � r� � r�� � � �� � ��� ��
r��G ��� ��

r��G ��

A similar result holds for � � �� � ���

Proof� Induction on r�

Basis� � � �� � ��
�
�G �� Then � � � and for �i �� �i� ri �� 
� i � �� �� follows the claim�

Induction step�

Let � � �� � ��
r��
� G �� This derivation can be decomposed into � �G �

r
�G � for suitable

� � BV � and there is a rule p � x� y � P applied in the �rst step� The substituted nonterminal x
is �wlg�� assumed to occur in ��� Then we can write �� as

�� � ��

� � ��u � x� �v� � �
��

�

where ��

�� �
��

� � BV � u� v �N� and

� � ��

� � ��u � y � �v� � �
��

�
� �z �

��

� ��
��z�

��

It holds ��
�
�G �� and ��

�
�G ��� and thus

� � �� � ��
�
�G �� � ��

r
�G �

By induction hypothesis� there are s�� s� � N�� ��� �� � BV with

� � �� � ��� r � s� � s�� ��
s��G ��� ��

s��G ��

Thus

��
�
�G ��

s��G ���

��
�
�G ��

s��G ���
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Let r� �� s� � �� r� �� s�� then �r � �	 � r� � r�� ��

r��G ��� ��

r��G ��
 �

The proof for the product � � �� � �� is similar
 This lemma shows that our tree grammars
behave like context�free string grammars� but work with other structures


To each tree grammar there is an equivalent one in a normal form


Lemma ����� For each tree grammar G there is an equivalent tree grammar G� with productions

of the form �� or ���

�� p � x� y� y � BN �

�� p � x� y� y � T �

Proof� We assume wlg that there are no productions p � x � ��
 If p � x � y is a production
which is not of the form �
 or �
� then for each terminal t in y we introduce a nonterminal xt with
Q�xt	 �� Q�t	� Z�xt	 �� Z�t	 and a production pt � xt � t
 In y� all occurrences of t are replaced
by nonterminal xt


Applying this construction to all productions not satisfying condition �
 or �
 leads to a grammar
of the desired form which is obviously equivalent to the original one
 �

This normal form can be modi�ed such that each nonterminal tree on the right side of a
production has 
height� �


Lemma ����� For each tree grammar G there is an equivalent tree grammar G� whose productions

have the form �� or ���

�� p � x� y� � �y� � � � � � yk	 y� � N� yi � N � f��g� � � i � k� Q�y�	 � k�

�� p � x� t� t � T �

Proof� Let G be a grammar already in the normal form of the previous lemma
 Then we only
have to consider productions

p � x� y� � �z� � � � � � zk	� y� � N� zi � BN � � � i � k� Q�y�	 � k

where one of the zi is neither a nonterminal nor a unit

For each such zi� a new nonterminal x�p�i� with Q�x�p�i�	 �� Q�zi	� Z�x�p�i�	 �� Z�zi	 � �

is introduced
 This occurrence of zi in production p is substituted by the new nonterminal x�p�i�

We add a new production q�p�i� � x�p�i� � zi
 By substituting all such zi� production p gets the
desired form
 The process is repeated for the new production system
 It terminates because the
right side of each new production q�p�i� has length less than the right side of p
 It is obvious that
the generated tree language remains unchanged� thus the resulting grammar is equivalent to the
original one
 �

Let us illustrate the de�nitions with two examples
 These examples also give an impression of
the role played by the degree of a grammar for generation power


Example ��

V � fs� f� gg� T � ff� gg� Q�s	 � Q�g	 � �� Q�f	 � �� Z�x	 � � 	x � V 

P � fp � s� g� q � s� f � ��� � g	 � sg


G � �V� T�P� s	 generates the tree language T �G	 � f�f � ��� � g	�n � g j n � N�g
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s p
�� g

s q
��

f

g

s

Figure ���� tree grammar productions� degree � �

G has degree �� T �G	 � CF �BT � �	� Grammars of degree � correspond to the regular tree

grammars known from the literature 
GeSt��
�

Example ��

V � fs� x� f� g� hg� T � ff� g� hg�
Q�s	 � Q�g	 � �� Q�x	 � Q�h	 � �� Q�f	 � �� Z�v	 � � �v � V �
P � fp� � s� x � �g � g	� p� � x� h� p� � x� f � x � �f � f	g�

G � �V� T�P� s	 generates the tree language

T �G	 � ffn � h � �fn � fn	 � �g � g	 j n � N�g�

The degree of G is �� T �G	 � CF �BT � �	�



CHAPTER �� TREE GRAMMARS WITH MULTILINEAR INTERPRETATION ��

s p�
��

x

g

g

x p�
��

h

x p�
��

f

f f

x

Figure ���� tree grammar productions� degree � �

��� Multilinear Interpretation of Tree Languages

In this section� we de	ne a 
translation� of tree languages generated by tree grammars into string
languages�

To every generator of a category of trees a multilinear mapping is assigned giving a multilinear

interpretation for each net�
This interpretation maps each tree language into a string language� We always start from an

interpretation of the terminals of a tree grammar and extend it 
canonically� to the nonterminals
of the grammar� Thus� for each derived tree �not only for terminal trees
� an interpretation is
de	ned�

The productions of the tree grammar are translated into coupled�context�free productions and
the rewriting relation is translated into coupled�context�free rewriting�

Let us 	rst give the formal de	nition of a multilinear mapping� We use the ��category
MAP ���N�
 which was de	ned in the 	rst chapter�

De�nition �� multilinear mapping
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A mapping f � ����m � ��� m � N�� is called multilinear if there are words
w�� � � � � wm�� � �� such that

f�x�� � � � � xm� � w� � x� � w� � � �wm � xm � wm�� �xi � ��� 	 � i � m�

A mapping f � ����m � ����n� m� n � N�� is called multilinear if f has a decomposition
f � f� � � � � � fn into multilinear mappings fi � ��

��mi � ��� mi � N�� 	 � i � n
 �For n � �� f
is multilinear i� f � ��
�

Lemma ����� If F is a set of multilinear mappings f �MAP ����N��� the ��subcategory C�F ��
generated by F in MAP ����N��� contains only multilinear mappings�

Proof�

It su
ces to show that sequential and parallel composition of mappings preserve multilinearity

For parallel composition� this follows immediately from the de�nition
 Consider the sequential

composition


Let f � C�F ��m�n�� g � C�F ��l�m�� l� m� n � N�� be multilinear
 By de�nition� there are
multilinear mappings f�� � � � � fn and g�� � � � � gm in MAP ����N�� with f � f� � � � � � fn� g �
g� � � � � � gm� mi �� Q�fi�� Z�fi� � 	� lj �� Q�gj�� Z�gj� � 	


Remark� The mappings fi and gj need not be elements from C�F �
 With the notations above
we have m �

Pn
i��mi and l �

Pm
j�� lj 


For the composition f � g we get�

�f � g��x�� � � � � xl� � f� g�x�� � � � � xl� �

� f� y�� � � � � ym �

with � y�� � � � � ym � �� �g� � � � � � gm�� x�� � � � � xl �


� y�� � � � � ym � � � g��x�� � � � � xl��� � � � � gm�xl�lm��� � � � � xl� �

� � u���x�u��� � � � u��l�xl�u��l���� � � � � um��xl�lm��um�� � � �um�lmxlum�lm�� �

f� y�� � � � � ym � � � f��y�� � � � � ym�
�� � � � � fn�ym�mn��� � � � � ym� �

� � v���y�v��� � � �v��m�
ym�

v��m���� � � � � vn��ym�mn��vn�� � � �vn�mymvn�m�� �

The uj��� vi�� in the equations above are elements from ��


If we let

h� �� f� � �g� � � � � � gm�
�






hn �� fn � �gm�mn�� � � � � � gm� �
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every hi is a multilinear mapping in MAP ����N��� and from

�f � g� � �f� � � � � � fn� � �g� � � � � � gm�

� f� � �g� � � � � � gm�
�� � � � � fn � �gm�mn�� � � � � � gm�

� h� � � � � � hn

follows the claim� �

We will now de�ne a multilinear interpretation for languages generated by tree grammars�

Let G � �V� T� P� s� be a tree grammar� N �� V n T the nonterminal alphabet of G� and let
BV �� B�V�Q� Z�� BT �� B�T�QjT � ZjT � be the categories of trees generated by V resp� T � Let �T

be an alphabet and ��

T
the monoid of words over �T �

To every terminal symbol t � T� Q�t� � k � N�� we assign a multilinear mapping

ft � ��
�

T �
k � ��

T �MAP ���

T �N���

i�e�
ft�w�� � � � � wk� � u� �w� � u� � � �uk � wk � uk��

where u�� � � � � uk�� � ��

T
�

Let FT �� fft j t � Tg� and let C�FT � be the �	subcategory of MAP ���

T
�N�� generated by

FT � As shown in lemma 
�
��� the �	category C�FT � contains only multilinear mappings�

Let �� be the identity on N� and ��� � T � C�FT � de�ned by ����t� �� ft� t � T � The mappings
�� and ��� induce a uniquely determined �	functor � � ���� ��� from the �free� �	category BT into
the �	category of mappings C�FT �� We call the �	functor � a multilinear interpretation for the
category of trees BT �

To each net from BT a multilinear mapping is assigned by �� The tree language T �G� is mapped
by � into a string language over �T �

Let us now extend the interpretation � canonically onto BV � thus giving an interpretation for
every derived tree�

Let �N �� �N�QjN 
 be the bracket alphabet �see chapter �� corresponding to N � i�e�

�N � fxi j x � N� � � i � Q�x� � �g�

We set � �� �N ��T and extend the mappings ft� t � T � onto ���

For each nonterminal symbol x � N� Q�x� � k� we de�ne a mapping

fx � ����k � ��

by
fx�w�� � � � � wk� �� x� � w� � x� � � �xk � wk � xk�� �w�� � � � � wk � ���

Let FV �� ffv j v � V g and C�FV � be the �	subcategory of MAP ����N�� generated by FV �
We extend ��� � T � C�FT � onto V by setting ����x� �� fx� x � N � �� and ��� de�ne uniquely an
�	functor � � ���� ��� from BV to C�FV ��

The �	functor � is called multilinear interpretation for the tree grammar G�



CHAPTER �� TREE GRAMMARS WITH MULTILINEAR INTERPRETATION ��

We extended a multilinear interpretation for the terminal category to the nonterminals by
interpreting each nonterminal as a mapping which encloses his arguments in brackets �named by the
label of the production�� The bracket components mark positions in the string where substitutions
are possible� In the interpretation of a terminal tree no more brackets occur�

De�nition �� tree grammar with multilinear interpretation
If G � �V� T� P� s� is a tree grammar� �T � BT � C�FT � is a multilinear interpretation for the

terminal category of trees BT and if � � BV � C�FV � is the canonical extension onto BV then �G� ��
is called tree grammar with multilinear interpretation �BGMI��

The language generated by the BGMI �G� �� is

L�G� �� � f��	���� j 	 � T �G�g�

The degree of a BGMI is de
ned as the degree of the underlying tree grammar� The class of
string languages de
ned by BGMIs of degree k is denoted by BGMI�k��

In the next section� we will give some formal properties of the classes BGMI�k�� and we will
investigate the connection with coupled�context�free grammars�
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��� Some formal properties of the classes BGMI�k�

Lemma ����� BGMI�k� is closed under union�

Proof� Let �G� �� � �V� T� P� s� �� and �G�� ��� � �V �� T �� P �� s�� ��� be BGMI of degree k � N�� Let
�T and ��

T
be the alphabets for the interpretation of the terminals from G and G�� Wlg we assume

all alphabets �except �T ��T �� to be disjoint� We de�ne the BGMI

G�� 	� �V � V � � f�g� T � T �� P � P � � fp� 	 � � s� p� 	 � � s�g� ��

with source and target mappings

Q�� 	� Q � Q� � f��� 
�g� Z �� 	� Z � Z � � f��� ��g�

De�ne the interpretation �T�T � 	 BT�T � � C�FT�T �� by

�T�T ��t� 	�

�
�T �t�� t � T

��
T
�t�� t � T ��

��� is de�ned by canonical extension of �T�T � onto B�V � V � � f�g�� Then

�� T �G��� � T �G� � T �G���

�� grad�G��� � maxfgrad�G�� grad�G��g � k�

�� ����f� �

�
��f�� f � BV
���f�� f � BV �


� L�G��� ���� � L�G� ��� L�G�� ���� �

Lemma ����� BGMI�k� is closed under concatenation�

Proof� Let �G� �� and �G�� ��� be BGMI given as above� Let

G�� 	� �V � V � � f�g� T � T � � f�conc��g� P � P � � fp 	 � � �conc�� � �s� s��g� ��

Q��� Z �� are de�ned as above and for �conc�� we let Q
����conc��� 	� �� Z��conc��� 	� �� Let �����conc���

be the concatenation on �V � V � � f�g�� which is multilinear� Then

�� grad�G��� � k�

�� T �G��� � f�conc�� � �f � f �� j f � T �G�� f � � T �G��g�

�� L�G��� ���� � L�G� �� �L�G�� ���� �
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Lemma ����� BGMI�k� is closed under Kleene�star�

Proof� Let �G� �� be as above and

G�� �� �V � f�g� T � f�conc��� �eps�g� P � fp� � � � �eps�� p� � � � �conc�� � �s� ��� ��

Let source and target of �� �conc�� be as above	 and let Q����eps�� �� 
� Z ����eps�� �� �� �����eps����� ��
��

Then

�� T �G��� � f��conc�� � �s � ����
n � �eps� j n � N�g�


� L�G��� ���� � fw� � � �wn � � j wi � L�G� ��� n � N�g � L�G� ���� �

Lemma ����� BGMI�k� is closed under homomorphism�

Proof� Let �G� �� be as above and h � ��

T � ��

T a homomorphism� Let � � �N � �T 	 and
extend h � �� � �� by letting h the identity on �N �

If t is a terminal of the grammar with interpretation ��t� � ����k � ��� k � Q�t� � N�	

��t� �w�� � � � � wk� � u� � w� � u� � � �uk � wk � uk��� �w�� � � � � wk � ��

where uj � ��

T � � � j � k � �	

then we de�ne a new interpretation ��t� � ����k � �� by

��t� �w�� � � � � wk� �� h�u�� �w� � h�u�� � � �h�uk� � wk � h�uk��� �w�� � � � � wk � ���

The interpretation of the nonterminals remains unchanged� Since for each terminal t with k inputs

h� ��t��w�� � � � � wk� � � h� u� � w� � u� � � �uk � wk � uk�� �

� h�u�� � h�w�� � h�u�� � � �h�uk� � h�wk� � h�uk���

� ��t�� h�w��� � � � � h�wk� �

it follows easily by induction
L�G� �� � h� L�G� �� ��

�

Lemma ����� COPYk � BGMI�k� �k �N��

Proof�

Let Gk �� �Vk� Tk� Pk� s� with

Vk �� fs� x� ��� a�� ��� b�� �a� ��� �b� ��� ���� �conck�g� Tk �� Vk n fs� xg

Let Q�s� � Q����� � 
� Q�x� � k� Q�v� � � for the other nonterminals	 and let the target of all
symbols be �� De�ne production set Pk by

Pk �� f p�� s� x � ����� � � � � �����
p�� x� �a� �� � x � ���� a�� � � � � ��� a���
p�� x� �b� �� � x � ���� b�� � � � � ��� b���
p�� x� �conck� g
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The interpretation of the terminals is given by

����� a���w� �� � � w � a�

����� b���w� �� � � w � b�

���a� ����w� �� a � w � ��

���b� ����w� �� b � w � ��

��������� �� ��

���conck���w�� � � � � wk� �� w� � � �wk�

It is not di	cult to see that the generated tree language is

T �Gk� � f �a�� �� � � � � � �an� �� � �conck��
���� an�� � � � � ��� an�� � � � � � ���� a��� � � � � ��� a��� � ����� � � � � ���� j
n � N�� ai � fa� bg� 
 � i � n g

Thus
L�Gk� �� �

n
�a� � � �an� � �a� � � �an�

k j ai � fa� bg� n � N�

o
� COPYk �

�

Lemma ����� COUNT�k�� � BGMI�k� �k � N��

Proof�

Let Gk �� �Vk� Tk� Pk� s� with
Vk �� fs� x� �a�� a�k���� �a�� a��� � � � � �a�k� a�k���� ���� �conck�g� Tk �� Vk n fs� xg�

Let Q�s� � �� Q�x� � k� Q����� � �� Q��conck� � k� Q�v� � 
 for all other symbols and
Z�v� � 
 �v � Vk� The production set is

Pk �� f p�� s� x � ����� � � � � �����
p�� x� �a�� a�k��� � x � ��a�� a��� � � � � �a�k� a�k�����
p�� x� �conck� g�

The interpretation of the terminal symbols is

���ai� aj ���w� �� ai � w � aj �

��������� �� ��

���conck���w�� � � � � wk� �� w� � � �wk�

Then
T �Gk� � f�a�� a�k���

n � �conc� � ��a�� a��� � � � � �a�k� a�k����
n j n � N�g

and
L�Gk� �� � fan� � � �a

n
�k�� j n � N�g � COUNT�k���

�
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��� Tree Grammars withMultilinear Interpretation and Coupled�

context�free Grammars

In this section� we investigate the connection between tree grammars with multilinear interpretation
and coupled�context�free grammars� At �rst we will show that for every BGMI there is an equivalent
CCFG�

Let �G� �� be a BGMI� i�e� G 	 �V� T� P� s� is a tree grammar over the category of trees BT � and
� is a multilinear interpretation� Let N 
	 V n T be the nonterminal alphabet of G� and let Q�Z
be the source resp� target mapping of BV �

Each terminal from G is interpreted under � as a multilinear function over an alphabet �T �
Each nonterminal has the �canonical
 interpretation as a function which encloses its arguments in
the corresponding bracket from �N 
	 �N�QjN �� To nonterminal x � N corresponds a bracket of
degree Q�x� with components x�� � � � � xQ�x���� Let the total alphabet be denoted by � 
	 �N ��T �

We assign to a BGMI �G� �� the following CCFG Gccf 


Gccf 
	 ����T � Pccf � ��

with production system

Pccf 
	 f p 
 �x�� � � � � xk���� �y�� � � � � yk��� j
p 
 x� y � P� Q�x� 	 Q�y� 	 k�

��y��w�� � � � � wk� 	 y� � w� � y� � � �yk � wk � yk�� g

and axiom � 
	 ��s���� � �N � �� is identi�ed with s��

To every tree grammar production for a nonterminal with k inputs� a coupled�context�free
production with k � � components is assigned� The right sides of the production components are
determined by the interpretation of the right side of the tree grammar production� We have to
show �rst that Gccf � as de�ned above� is in fact a CCFG�

The alphabets �N and �T obviously ful�ll the de�nition of a CCFG and the axiom � is a
bracket of zero degree� Consider the production system Pccf � The claim follows immediately from
the following

Lemma ����� If f � BV �k� ��� k � N�� and w�� � � � � wk � D�N��T�� then

��f��w�� � � � � wk� � D�N��T��

Proof� Induction on the size jf j�
Basis� jf j 	 �� i�e� f 	 ��� Then ��f��w� 	 w � D�N��T� by assumption�
Induction step� Let f be an element from BV �k� �� of positive length� Then

f 	 v � �g� � � � � � gl�

with v � V� l 	 Q�v�� gi � BV �ki� ��� � � i � l�
Pl

i�� ki 	 k�
By induction� for g�� � � � � gl holds

w�� � � � � wk� � D�N��T� 		 ��g���w�� � � � � wk�� � D�N��T��

���

wk�kl��� � � � � wk � D�N��T� 		 ��gl��wk�kl��� � � � � wk� � D�N��T��

For v we have to consider the two cases
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�� v � T � ��v��u�� � � � � ul� � v� � u� � v� � � �vl � ul � vl��� vi � 	�

T �
Then u�� � � � � ul � D�N�	T� �� ��v��u�� � � � � ul� � D�N�	T� by de
nition�

�� v � N � ��v��u�� � � � � ul� � v� � u� � v� � � �vl � ul � vl��� v � Nk�
Then u�� � � � � ul � D�N�	T� �� ��v��u�� � � � � ul� � D�N�	T� by de
nition�

Thus we have� w�� � � � � wk � D�N�	T� ��

��f��w�� � � � � wk� � ��v� ���g���w�� � � � � wk��� � � � � ��gl��wk�kl��
� � � � � wk�� � D�N�	T�

and the lemma is shown� �

From this lemma follows that for every production p � x� y � P

��y���� � � � � �� � y� � � �yk�� � D�N�	T��

so every p � �x�� � � � � xk���� �y�� � � � � yk��� � Pccf � as de
ned above� is in fact a CCFG
production�

Having shown that Gccf is a well
de
ned CCFG� we now show that the language of the BGMI
�G� �� is contained in L�Gccf ��

Lemma ����� Let �G� �� and Gccf as above and let BV be the category of trees generated by V �

Then for all f � BV holds�

s
�

�G f �� �
�

�ccf ��f����

Proof� Induction on the length of the derivation�

Basis� s
�
�G f � Then f � s and ��f���� � �� from which follows the claim�

Induction step� Let s
�

�G f be a derivation of positive length� Then there are g� h � BV and
p � x� y � P such that

s
�

�G g � x � h�G g � y � h � f

where Q�g� � Z�g� � �� Q�h� � �� Z�h� � Q�x� � Q�y� � k � N��

By lemma ������ the interpretations of g and h

��g� � 	� � 	�

��h� � f�g� �	��k

are multilinear mappings� i�e� there are u�� u�� w�� � � � � wk � 	� such that

��g��w� � u� �w � u� �w � 	��

��h���� � �w�� � � � � wk�

and h has a decomposition h � �h� � � � � � hk� with hi � BV ��� ��� ��hi���� � wi� � � i � k�
Thus

��g � x � h���� � u� � x� � w� � x� � � �xk � wk � xk�� � u�

and
��g � y � h���� � u� � y� �w� � y� � � �yk � wk � yk�� � u�

By lemma ������ w�� � � � � wk � D�N�	T� and by de
nition of Gccf � production system Pccf

contains the rule p � �x�� � � � � xk���� �y�� � � � � yk��� where y�� � � � � yk�� are given by ��y��
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From the de�nition of �ccf and by induction follows

�
�

�ccf ��g � x � h�����ccf ��g � y � h���� � ��f����

which proves the lemma� �

From the previous lemma follows L�G� ��� L�Gccf �� We now show the opposite inclusion�

Lemma ����� Let �G� �� and Gccf as above� Then for all w � �� holds�

�
�

�ccf w �� �f � BV ��� 	�� s
�

�G f� w � ��f����

Proof� Induction on the length of the derivation �
n
�ccf w� n � N��

Basis� �
�
�ccf w� Then w � � and for f 
� s we get the claim�

Induction step� �
n��
� ccf w� n � N�� Then there is a decomposition

�
n
�ccf u� � x� � d� � x� � � �xk � dk � xk�� � u�

� �z �

w�

�ccf u� � y� � d� � y� � � �yk � dk � yk�� � u�
� �z �

w

with u�� u� � ��� d�� � � � � dk � D�N��T�� and

p 
 �x�� � � � � xk���� �y�� � � � � yk���

is a production in Pccf �

By induction assumption� there is a tree f � � BV ��� 	� with s
�

�G f � and ��f ����� � w��
We have to show that there exists a tree f � BV ��� 	� such that

	� f ��G f

�� ��f���� � w

Let nx be the number of occurrences of x in the tree f �� Each occurrence gives a unique
decomposition of f �� For j � 	� � � � � nx� let this decomposition be denoted by

f � � g�j� � x � h�j�

where g�j� � BV �	� 	�� h
�j� � BV ��� k�� k � Q�x��

The interpretation w� of f � has corresponding decompositions

w� � u
�j�
� � x� � d

�j�
� � x� � � �xk � d

�j�
k � xk�� � u

�j�
�

de�ned by

��g�j���v� � u
�j�
� � v � u

�j�
� �v � ��

��h�j����� � �d
�j�
� � � � � � d

�j�
k �

Clearly� d
�j�
� � � � � � d

�j�
k � D�N��T�� i�e� x�� � � � � xk�� form corresponding bracket components�

Since there are exactly nx occurrences of nonterminal x in the tree f �� there are exactly nx
occurrences of the 
opening� bracket x� in w��

From
w� � u� � x� � d� � x� � � �xk � dk � xk�� � u�



CHAPTER �� TREE GRAMMARS WITH MULTILINEAR INTERPRETATION ��

follows that there must be an index j � f�� � � � � nxg such that u
�j�
� � u�� Since the bracket

components x�� � � � � xk�� corresponding to component x� are uniquely determined� it follows d� �

d
�j�
� � � � � � dk � d

�j�
k and thus u� � u

�j�
� � The decomposition

f � � g�j� � x � h�j�

now ful�lls

��g�j���v� � u� � v � u� �v � 	�

��h�j����� � �d�� � � � � dk�

By construction of Gccf � P must contain production p 
 x � y� For the tree f � BV ��� ��� given
by the derivation

s
�

�G g�j� � x � h�j�� �z �
f �

�G g�j� � y � h�j�� �z �
��f

in the tree grammar G� it holds

��f���� � ��g�j��
�
��y����h�j���

�

� u� � y� � d� � y� � � �yk � dk � yk�� � u�

� w

which shows the lemma� �

From lemma ������ lemma ����
 and the de�nition of the generated string language� it follows

Theorem � For each BGMI �G� �� there is an equivalent CCFG Gccf �

We will now show the opposite direction by de�ning for each CCFG an equivalent BGMI�
The �rst lemma shows that each word from the bracket language D�N� T � de�ned by the

alphabet of a CCFG can be obtained by multilinear interpretation of a tree from a suitably de�ned
category of trees�

We construct to a given CCFG an equivalent BGMI� Let Gccf be a CCFG� i�e�

Gccf � ��V� g�� T� Pccf � s�

where g 
 V � N� is the degree mapping for the brackets from V � Let N 
� V n T denote the
nonterminal alphabet of Gccf �

We de�ne the following category of trees


B 	V 
� B�N � �T�Q� Z�

with �V 
� N � �T � �T 
� f�t j t � Tg � f�eps�� �conc�g� and source and target given by

Q�x� � g�x� x � N�

Q��t� � � t � T�

Q��eps�� � �

Q��conc�� � �

Z�v� � � v � N � �T�
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For each terminal in �T � an interpretation is de�ned by

���t���� � t �t � T�

��	eps
���� � �

��	conc
��w�� w�� � w� � w� �w�� w� � 	V� g
��

Every string w from the bracket language D�N� T � has a unique decomposition into terminals
t � T and strings from E�N� T � n T � i�e� strings of the form x� � d� � x� � � �xk � dk � xk�� with
x � Nk� d�� � � � � dk � D�N� T ��

For a given word w � D�N� T �� we de�ne recursively a tree �w � B �V �
� �� with interpretation
���w� � w�

�� �� �� 	eps
�

�� �t �� �t t � T �

�� �w �� x � ��d� � � � � ��dk �
w � x� � d� � x� � � �xk � dk � xk��� x � Nk� d�� � � � � dk � D�N� T ��

�� �u�v �� 	conc
 � ��u � �v� u � E�N� T �� v � D�N� T � n f�g�

It is easily veri�ed that this de�nition gives a unique tree �w � B �V �
� �� for each string w �

D�N� T � such that ���w���� � w�

The next lemma shows that given an arbitrary decomposition of a string y � D�N� T �� there is
a tree in B �V whose interpretation is de�ned by that decomposition�

Lemma ����� Let 	V� g
 � 	N � T� g
� D�N� T �� �V � �T and � be given as above�

If y � D�N� T � is an arbitrary string from the bracket language and �y�� � � � � yk��� is a decomposition

of y� i�e�

y � y� � � �yk�� k � N�� yi � 	V� g
��

then there is a tree

��y�� � � � � yk��� � B �V �k� ��

with interpretation

����y�� � � � � yk�����v�� � � � � vk� � y� � v� � y� � � �yk � vk � yk�� �v�� � � � � vk � 	V� g
��

Proof� We introduce a new symbol 	input
 of degree g�	input
� � 
� The interpretation of this
symbol is canonical� i�e� ��	input
���� � 	input
� �which is identi�ed with the symbol itself�� If we
let

y	input
 �� y� � 	input
 � y� � � �yk � 	input
 � yk�� � D�N � f	input
g� T ��

we can apply our construction and obtain a tree

�y�input	 � B� �V � f	input
g� Q� Z��
� ��

with interpretation y	input
�
By construction� there are exactly k occurrences of 	input
 in the tree �y�input	� thus there is a

decomposition
�y�input	 � � � �	input
� � � � � 	input


� �z �

k times

�
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where � � B� �V �Q� Z��k� �� is a tree with k inputs which does not contain the symbol �input	

It is easy to see that

�����v�� � � � � vk� � y� � v� � y� � � �yk � vk � yk�� �v�� � � � � vk � �V� g	�

We denote this tree with ��y�� � � � � yk���
 �

Lemma ����� Let
Gccf � ��N � T� g	� T� Pccf� s�

be a CCFG and let the category of trees

B �V �� B�N � �T�Q� Z�

be constructed as above� Let further � be the canonical extension onto �V of the interpretation given
for the terminals from �T �

If �G� �� is de�ned by
G �� �N � �T� �T� P� s�

with production system

P �� fp � x� ��y�� � � � � yk��� j p � �x�� � � � � xk���� �y�� � � � � yk��� � Pccf g

where ��y�� � � � � yk��� is given by lemma ������ then it holds

�� �G� �� is a BGMI�

�� grad�G� � grad�Gccf��

�� L�G� �� � L�Gccf��

Proof	 By construction
 �G� �� ful�lls the de�nition of a BGMI and the degree of G equals the
degree of Gccf 
 It remains to show that for each w � �N � T� g	�

s
�

�ccf w �� �� � B�N � �T�Q� Z�� s
�

�G �� ������� � w

The proof is analogous to lemmata �
�
� and �
�
� and is omitted
 �

Thus
 we get

Theorem � For each coupled
context
free grammar there is an equivalent tree grammar with mul

tilinear interpretation of the same degree�

For the special case of zero degree
 we get

Corollary � The class BGMI��
 is the class of context
free string languages�

This follows from the fact that a coupled�context�free grammar of degree � is a simple context�
free grammar with the semi�Thue�relation as rewriting relation
 �



Chapter �

Tree Adjoining Grammars and

BGMI

��� Basic de�nitions

A Tree Adjoining Grammar �TAG� �Jo��� is a rewriting system on the derivation trees of a context�
free grammar� It is mainly intended as a formalism for the de�nition of tree languages rather than
a string generating system� TAGs have recently found great interest in Computer Linguistics
because they seem to be an adequate formalism for describing many natural language phenomena�
In this area	 one is interested in language classes and rewriting systems slightly more powerful than
context�free grammars �Jo�
��

We will not consider the linguistic relevance of TAGs but the generated language class	 the
Tree Adjoining Languages �TAL�� This language class properly contains the class of context�free
languages and is a proper subclass of the Indexed Languages� We will show that the classes BGMI��

and TAL coincide�

We will �rst describe the TAG�rewriting formalism and then show the equivalence� The following
de�nition of TAG�rewriting is taken from �Jo����

De�nition �� Tree Adjoining Grammar �TAG�
A Tree Adjoining Grammar G � �I� A
 consists of

� a �nite set I of initial trees	

� a �nite set A of auxiliary trees�

These elementary trees are derivation trees of a given CFG g � �N � T� T� P� s
�
The initial trees are derivation trees with source s and target w � T �	 the auxiliary trees � are

derivation trees with source x and target u � x � v� x � N� u� v � T �� The unique leaf marked with
x in an auxiliary tree � is called foot�node of ��

The set of all auxiliary trees with source x will be denoted by Ax	 thus A �
S
x�N Ax� The

general form of an initial and an auxiliary tree is shown in the picture�

Starting with initial trees	 new trees can be produced by adjunction of auxiliary trees at suitable
tree nodes� Adjunction of an auxiliary tree � at a node k in a tree � is de�ned i� k is marked with
x � N and � � Ax� Adjunction consists of the following steps�

� Split tree � at node k into upper tree �� and subtree ���

��
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Figure ���� Initial and auxiliary tree of a TAG

� Paste �� and �� together after inserting � giving the new tree ���

We omit introducing the usual terminology for these de�nitions because we will give a treatment
in the theory of ��categories� Formal de�nitions can be found in 	Vi
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Figure ���� Adjoining operation

If �� results from � by adjoining
 we write � �adj �
�� The tree language generated by TAG G is

T �G� �� f� j � � � I� �
�

�adj �g�

Clearly
 T �G� is a set of derivation trees of the CFG g with source s and terminal target�
The string language generated by TAG G is

L�G� �� fyield��� j � � T �G�g�

The function yield assigns to each derivation tree the string obtained by �reading the leaf markings
from left to right�� Obviously
 L�G� is a subset of the context�free language L�g��

A TAG is a rewriting system on the derivation trees of a context�free grammar� From the theory
of tree automata it is known that the set of derivation trees of a CFG is a recognizable tree language

	Th���� The tree language of a TAG need not be recognizable� Further
 there are TALs which are
not context�free
 but all TALs are indexed languages� Often
 the following generalization of TAGs
is considered�
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De�nition �� TAG with constraints

A TAG with constraints �TAGC� G � �I� A� C� is a TAG with the following extension�
To each inner node k �marked with a nonterminal x � N� in an elementary tree� one of the

following constraints C�k� is assigned�

�	 Obligatory�Adjoining Constraint� C�k� � �OA�
�� 
 � Ax

Meaning� At node k a tree must be adjoined� otherwise the tree in which k occurs is not an
element of the generated tree language	 Only trees from 
 may be adjoined to node k	

�	 Selective�Adjoining Constraint� C�k� � �SA�
�� 
 � Ax

Meaning� At node k any tree from 
 may be adjoined	

�	 Null�Adjoining Constraint� C�k� � NA � �SA� ��
Meaning� No tree may be adjoined at node k	

The adjunction operation for TAGCs is de
ned straightforward	 If k is an x�marked node in a
tree �� x � N � and � � Ax is an auxiliary tree� � may be adjoined at node k i� C�k� � �SA�
�
or C�k� � �OA�
� and � � 
	 By adjunction� node k loses its old constraint and inherits the
constraint of the root node of �	 The constraints of the remaining nodes are not changed	

The tree language of a TAGC G � �I� A� C� is

T �G� �� f� j � � � I� �
�

�adj �� C�k� �� �OA�
� for all inner nodes k of �g�

The generated string language L�G� is de
ned as it is for TAGs	

Clearly� every TAG is a TAGC� assign to each inner node k marked with x � N the constraint
C�k� � �SA�Ax�	

In the following� we may assume that each elementary tree contains only NA� or OA�constraints
�Jo���	

We want to compare TAG�rewriting with our BGMI�formalism	 Therefore� we 
rst describe
TAG�rewriting in the theory of ��categories	
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��� Description of TAG�rewriting by ��categories

Let G � �I� A� be a TAG� g � �N � T� T� P� s� be the underlying context�free grammar and
F�g� �� F�P�N � T�Q� Z� the �	category de
ned by g �see chapter ���

Each initial tree � � I is a derivation tree of g with source s and target from T �� In the free
�	category F�g�� for each � � I there is a unique corresponding morphism

N� � s� w� w � T ��

Thus� we can describe I as a 
nite subset of F�g��s� T ��� Clearly� all nets in this set are trees
according to our de
nition �see chapter ���

Auxiliary trees � � A are derivation trees of g with source x � N and targets from T �xT �� For
each � � Ax� there is a unique �non�unit� morphism

N� � x� u � x � v� u� v � T �� x � N�

As in section ��
� we consider terminal�free derivations �nets� and the syntactic and semantic

categories F ��g� resp� C�g�� Source and target mappings of F ��g� are denoted with Q� resp� Z ��

We get the following description of a TAG G � �I� A��

�� I is a 
nite subset of F ��g��s� ���

�� Ax is a 
nite subset of Trees�F ��g��x� x��� x � N �


� A �
S
x�N Ax�

We use the representation of morphisms from F
��g� as nets to visualize the adjunction operation�

Each initial tree � � I corresponds to a net N� � F
��g��s� �� of the following form�

�
�
��

�
�
��

xl� � �x�

p

N�l
N��

s

�

Figure ���� Net corresponding to initial tree of a TAG

The initial net N� has a unique decomposition

N� � �N��
� � � � �N�l

� � p

where p � P� Z��p� � x� � � �xl� xi � N� N�i
� F ��g��xi� ��� � � i � l�

Production p � s� x� � � �xl is the terminal	free version of production

p � s� u� � x� � u� � � �ul � xl � ul��� u�� � � � � ul�� � T �
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from the CFG g� In the initial tree �� production p forms the root and its children� If r�� � � � � rl are
the children of the root of � marked with a nonterminal� the net N�i

corresponds to the subtree
�i of � with root ri� � � i � l�

If fq � �T
��k � T �� k 	 jZ��q�j� denotes the interpretation function for production q � P � and

� denotes the resulting multilinear interpretation for F ��g�� then

��N�i
���� 	 yield��i��

��N����� 	 fp� ��N��
�� � � � � ��N�l

� �

	 yield����

In the simplest case� p � s � w� w � T �� is a terminal production of grammar g and then
l 	 
� N� 	 p and ��N����� 	 fp��� 	 w�

Consider now the auxiliary trees � � A of the TAG G� Let � � Ax� x � N � be an auxiliary
tree� Then the corresponding net N� � F ��g� has the following form�

x

p
�
�
�

�
��

H
H
H
H
HH

x� xi xl

N�� N�i
N�l

x

� � � � � �

Figure ���� Net corresponding to auxiliary tree of a TAG

N� has a unique decomposition

N� 	 �N�� � � � � �N�i
� � � � �N�l

� � p

where p � P� Q��p� 	 x� Z��p� 	 x� � � �xl� l �N� i � f�� � � � � lg�
Source and target of nets N�j

� � � j � l� are given by

Q��N�j
� 	 xj �

Z ��N�j
� 	

�
x� j 	 i

�� j �	 i�

Production p � x � x� � � �xl is the terminal�free version of

p � x� u� � x� � u� � � �ul � xl � ul��� u�� � � � � ul�� � T �

from CFG g� which forms the root and its children in the auxiliary tree ��
In N�� there is a unique 
root wire� marked with x �corresponding to the root node of �� and

a unique 
foot wire� marked with x �corresponding to the foot node of ���
In the simplest case� � is a single production p � P of the form p � x � u�xu�� u�� u� � T ��

Then� l 	 � and N�i
	 �x holds�



CHAPTER �� TREE ADJOINING GRAMMARS AND BGMI ��

Describing derivation trees of g as nets from F
��g� is in a sense dual to the usual description�

Each inner node of a derivation tree corresponds to a wire in the net� marked with the corresponding
nonterminal� The productions of g �which are implicitly presented in the usual derivation trees��
are explicitly presented in the nets�

Consider now the adjunction operation as an operation on nets� Let � be a derivation tree of g
containing an inner node k marked with x � N � � can be decomposed into subtree �� with root k
and the upper tree �� �k is contributed to both trees if k is not the root of ��� If k is the root of
�� �� is empty� Let w� �w� �w� be the yield of �� where w� is the yield of ���

In the net N� � there is a wire sk marked with x � N which corresponds to node k� This wire
de�nes a decomposition N� � N�� �N�� � The adjunction of auxiliary tree � � Ax at node k in �

corresponds to replacing the 	wire
 sx by the net N��

�adjx

x

x

N��

N��

N�

N��

N��

Figure ���
 Adjunction operation on nets

In terms of categorical expressions� we get

The adjunction � �adj �

�� where auxiliary tree � is adjoined at node k in �� corresponds to the
substitution of a unit �x by the net N��

N� � N�� �N�� � N�� � �x �N�� �adj N�� �N� �N�� � N��

If we consider the interpretation� we get

��N����w� � w� � w �w� �w � T ��

��N���w� � u � w � v �w � T ��

��N������ � w��

Thus

��N������ � ��N�� �N� �N������

� w� � u � w� � v � w�

� yield�����

By adjoining� the yield of a tree is expanded at two positions which are dependent by the
structure of the tree� This is similar to our coupled�context�free rewriting and BGMI�formalism�
For this reason� we will now investigate the connection between the di�erent formalisms�
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��� The equivalence of TAGC and BGMI of degree �

We show in this section that TAGC and BGMI of degree � generate the same class of string
languages� i�e� that the language classes TAL and BGMI��� coincide� At �rst� we consider the
adjoining operation for TAGCs in their description by nets� To avoid confusion� we call morphisms
always nets even when they are trees according to our de�nition �see chapter ��� The languages
generated by our tree grammars are here called net languages for the same reason�

In a TAGC� every nonterminal node k of an elementary �initial or auxiliary� tree � carries a
constraint C�k�� Since nodes in derivation trees correspond to 	wires
 in nets� we assign constraint
C�k� to the wire sk corresponding to k�

If wire sk carries constraint C�k� � �OA�B�� all substitutions sk � N�� � � B� are allowed�
Since C�k� is an obligatory constraint� tree � is not a member of the tree language generated by
the TAG� Analogously� net N� � F ��g� is not a member of the generated net language�

If wire sk carries a null�adjoining�constraint� then sk cannot be substituted anymore� but it has
no in
uence on membership to the generated net language�

Wires with OA�constraint play the role of nonterminal symbols in tree grammars� The con�
straint set B contains all possible alternatives that can be substituted for the wire� Analogously to
the fact that trees containing nonterminals are not members of the generated tree language� a net
containing an OA�constraint is not a member of the generated net language�

We will simulate TAGC�rewriting by tree grammars with multilinear interpretation� According
to the remarks above� the idea is obvious�

In each elementary net� we substitute all wires sk marked with x � N and constraint �OA�B��
by a nonterminal �x�B�� We de�ne source and target of the nonterminal �x�B� by Q���x�B�� �
Z���x�B�� �� x to get well�de�ned nets�

To each nonterminal �x�B�� the following set of productions is assigned�

f�x�B�� N� j � � Bg

where N� is the �terminal�free� net corresponding to the auxiliary tree ��
The wires with NA�constraints remain unchanged�

For every initial tree � � I � we introduce a production � � N� where � is a new nonterminal�
We de�ne Q���� �� s and Z ���� �� � to be consistent� The result is a grammar on the category of
trees F ��g�� �It is obvious that adjunctions in the original TAGC correspond uniquely to rewritings
in this tree grammar��

We de�ned tree grammars only on categories of trees with set of objects N�� Now we have nets
whose wires are marked with symbols from an arbitrary alphabet� This is no problem because we
can also simulate TAGC�rewriting using the restricted formalism�

Consider the tree grammar productions �x�B�� N� � It holds�

Q���x�B�� � Z ���x�B�� � x � Q��N�� � Z ��N���

The source�target�condition is ful�lled for every production� This guarantees that each production
is always applicable to an occurrence of its left�side�nonterminal� So it is impossible that an
unapplicable production becomes applicable by omitting the wire markings�

The resulting nets are built up by the new nonterminal symbols and by the productions of
the underlying CFG g� These productions de�ne the interpretation of the net� According to our
de�nition� the interpretation of a production does not depend on source and target markings but
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only on source and target length� Thus� we can omit source and target markings of the productions
without changing the interpretation�

If we perform the construction given above and then omit the markings of the wires� we get
a BGMI of degree �� The discussion shows that the generated string language equals the string
language of the original TAGC�

Theorem � For each TAGC� there is a BGMI which generates the same string language� The

degree of the BGMI is at most ��

We now show that for each BGMI of degree � one can construct a TAGC which generates the
same string language� Our construction gives a TAGC described by terminal�free derivation trees
together with interpretation functions for the context�free productions� It is easy to get from this
a TAGC in the usual form�

Let �G� �� be a BGMI of degree �� where

G � �N � T� T� P� s�

is the underlying tree grammar with source and target mappings Q�Z 	 N � T � N��
We assume that each nonterminal of G �except the axiom s� has source �� This is possible

because for each BGMI of degree �� we can give an equivalent one satisfying the condition� as
follows	

�� Introduce new terminals 
eps� and 
conc� with Q�
eps�� 	� �� Q�
conc�� 	� 
 and the obvious
interpretation as the function giving the empty word resp� the binary concatenation function�


� For each nonterminal z �� s with source Q�z� � �� replace z by a new nonterminal z� with
source Q�z�� � �� Replace each occurrence of z in the right side of a production by z� � 
eps��

�� Each production q 	 z � y is replaced by q� 	 z� � 
conc� � ��� � y��

This construction preserves the source�target�condition for the productions� It is obvious that the
new BGMI generates the same string language and satis�es the conditions above�

Remark� This construction is easily extended to grammars of arbitrary degree� Thus� if one
is only interested in the string language of a BGMI of degree k� one can always assume that all
nonterminals �except the axiom� have degree exactly k�

We now construct a TAGC which is equivalent to a given BGMI �G� �� with

G � �N � T� T� P� s�

Assume that the tree grammar G ful�lls the conditions above�
At �rst� modify the source and target mappings Q and Z of G to mappings

Q�Z 	 N � T � f�g�

by identifying N� and f�g�� �� is a new symbol�� That is� we mark each wire of a net from
B�N � T�Q� Z� with the symbol ����

The constructed nets are members of the free ��category

F 	� F�T � T �� N ��f�g� Q�� Z���
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T � will be a set of new terminals �only a technical tool�� Objects of this ��category are words over
the alphabet N �� f�g	 i�e� these nets are built up by terminals of G and new terminals	 and its
wires are marked with nonterminals of G or with symbol 
���

Source and target mappings Q�� Z � � T � T � � �N ����
�

are de
ned by extending the source
and target mappings Q and Z of G	 the additional values are given in the construction below�

The terminal set T � is de
ned as follows� For each x � N 	 introduce new terminal symbols
�� � x� and �x � ��� De
ne source and target by Q���� � x�� �� �� Z���� � x�� �� x and
inverse for symbol �x� ��� Let the interpretation of these terminals be the identity�

Let p � x� y be a production of the BGMI G� De
ne the auxiliary tree �p corresponding to p
by the following two steps�

� Replace each occurrence of a nonterminal z in y by the net �z � �� � �� � z�� Thus	 z
is replaced by a wire marked with z	 which is 
delimited� by the terminals �� � z� and
�z � ��� This wire is given the constraint �OA�Az�	 where Az is the set of all auxiliary trees
for z obtained from the construction� The resulting net ��

p
is a member of F������

� Now we must transform ��

p
into an auxiliary tree in Ax because it was constructed from

production p � x � y� Let �p �� �� � x� � ��

p
� �x � �� � F�x� x�� This gives a net whose

�single� input and output wire are marked with x� Both wires are given a null�adjoining�
constraint because their only function is to identify the net as a member of Ax� All wires
marked with 
�� are also given an NA�constraint�

By this construction	 we get for every production p � x� y exactly one auxiliary net �p � Ax�

We may assume that the axiom s of the BGMI does not occur in the right side of a production
and that the only production for s has the form p � s � x � �eps�	 where x is a nonterminal and
�eps� is the terminal described above� Then we let � �� ��� x� � �eps� be the only initial net and
give the wire marked x the constraint �OA�Ax�� �This wire represents nonterminal x of the tree
grammar��

We obtain by this construction a TAGC �in our presentation� from a given BGMI G of degree
�� The productions of G correspond uniquely to the auxiliary trees of the TAGC�

By induction on the length of derivation resp� adjunction sequences follows the equivalence of
these systems� Thus	 we have

Theorem � To every BGMI of degree �� one can construct a TAGC generating the same string

language�
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