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Abstract: We discuas data structurC6 and their methods of analysis. In particular , we 
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persiotent data structures , the union-lind-split problem, priority queues , the nearest 
common ancestor problem, the selection lUld merging problem, and dynamization tech­
niques. The methods of Malysis are wo~t, average and amortized case. 



1. Introduction 

Data Structuring is the study of concrete imr/ement.ations of frequently occuring at.­
strae' data types. An ab.trac t data type (d. chapter 26) is a sct together with a 
col lection of operations on the elements of the set . We give two examples for the sake 
or concreteness, 

In the data type dictionary the set is the powersct of a universe U and the operations are 
insertion a.nd dele lion of elements and th~ tes t for membership. A typical application 
of dictionaries arc symbol tables in compi lers . In the data type priority queues the set 
is the powert!ct of an ordered universe U and the operations arc insertion of elements 
and finding and delet ing the minimal element of a set. Priority queues arise frequently 
in network optimi13tion problems; d . chapter 10 on graph algorithms. 

This chapter is organized as follows . In sections 2 and 3 we treat unweighted a.nd 
weighted dictionaries respectively. The data structures discussed in these sections arc 
ephemeral in the sense that a change to the structure destroys the old version, leaving 
only the new version available for use . In contrast, persistent structures, which are 
covered in section 4, allo .... access to any version. old or new. at any time. In section 
S we deal with the Union-Find-Split problem and in section 6 with priority queues . 
Section 7 is devoted to operations on t rees and in sections 8 and 9 we cover selection 
and merging . Finally •• ection 10 is devoted to dyna.mization techniques. Of course , 
we can only give an overview; we refer the reader to the textbooks Knuth 11121. Abo. 
Hopcroft, Ullman 12 a.nd 41. Wirth 1219). Horowitz and Sa.hni 1981. Sta.ndish 1187/. Tarjan 
119S/' Gonnet 183). Mehlhorn 114&/. Sedgewick 1181) for a more detailed treatment. In 
this section we build the ba.si. for the latter sections. In particular. we review the types 
of complexity a.nalysis and the machine models used in the data structure area. 

The machine models used in this chapter are the pointer machine (pm-machine) (Knuth 
11121. Schonhage 1179/. Tarjan 11931) and the random access machille (RAM-machine) 
(Aha et &1. 121). A thorough discussion of both models can be found in chapter 4. In 
a pointer mach ine memory conse.ts of II collection of records. Each record consists of 
& fixed number of cells. The cells have associated types. such a.s pointer. integer. real, 
and aecess to memory is only possible by • pointers". In other word., the memory 
is structured .... a directed graph with bounded out-degree. The edges of this graph 
can be changed during execution . Pointer machines correspond roughly to high-level 
programming languages without arrays . In contrast. the memory of a RAM consists 
of an array of cells . A cell is accessed through its adr.,.. and hence adress arithmetic 
is .vailable. We assume in both models that storage cella can hold arbitrary numbers 
and that the basic arithmetic and pointer operations take COll8tant time. This is called 
the uniform cost ..... umption. All our machines are assumed to be deterministic except 
when stated explicitely otherwise. 

Three types of complexity analysis are customary in the data structure area: worst case 
analysis , average case analysis and amortized analysis. In a worst case analysis one 
derives worst case time bounds for each single operation. This is the most frequent type 
of analysis . A typical result is: Dictionaries ca.n be realized with O(log n) worst ca.se 
cost for the operations Insert. Delete and Access ; hero n is the current size of the set 
manipulated . 
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In an average case &IIaiysis one postulates a probabi lity distribution on the operations 
of the aNlr~1 data type and comput<.,. the expected cost of the operat ions under th is 
probability assumption . A ty pical result is: Static dictionaries (ollly operation Access) 
can be realized with O(H (11" ... , l1n)} expected cost per access operation; here n is the 
size of the dictionary, Pi , 1 :s i :s n , the probability of access to the i-th element and 
H(P, , ... ,Pn) is the entropy of the probability distribution. Chapters 14 , 15 &lid 16. 
also deal with average case analysis. 

In an amortized analysis ..... e study the wors t case cost of a sequence of operat ions. Since 
amortized analysis is not very freq uently used outside the data structure area we discuss 
it in more detail. An amorti7..cd analysis is relevant whenever the cost of an operat ion 
can fluctuate widely and only averaging the costs of a sequence of operations over the 
sequence leads to good results . The technical instrument used to do the averaging is an 
ucount (banker's view of arnortization) or potential (physicist's vicw of amortization) 
assoc iated with the data structure. 

In the banker's vicw of amortization, which was implicitly used by Brown and Tarjan 1331 
and then more fully developed by Huddleston and Mehlhorn 11011 we view a computer 
as coin or token operated. Each token pays for a constant amount of computer time. 
Whenever, a user of a data structure calls a certain operation of the data type we charge 
him a certain amount of tokens; we call this amount the amortized cost of the operation. 
The amortized cost does in general not agree with the actual cost of the operation (that's 
the whole point of amortization). The difference between the amortized and the actual 
cost is either deposited into or withdrawn from the account associa,ted with the data 
structure. CleuIy, if we start with no tokens initially, then the total actual cost of a 
sequence of operations is just the total amorti7.ed cost minus the final balance of the 
account. 

More formally, let bal be a funct ion which maps the possible configurations of the data 
structure into the real numbers. For an operation op which transforms a configuration 
D into a configuration D' defi ne the amortized cost (Sleator and Tarjan 1184]) by: 

amortized_cost(op} = acttlaLcosl(op) + bal(D'} - bal(D) 

Then for a sequence OPI, ' .. ,OPm of operations we have 

L amortized_cosl(op;) = L acttlaLcost + bat(Dm) - bal(Do} 

where Do is the initial data structure and D,. is the final data structure . In particular , 
if ba/(Do} = 0 and bal(D) ;::: 0 for all data structures D, i.c. we never borrow tokens 
from the bank, the ~tual cost of the sequence of operations is bounded by its amortized 
cost. In the physicist's view of amortiution (Sleator and Tacjan 1184]) we write pot(D} 
instead of bal(D}, call it the potenti,,1 of the data structure and view deposils and 
withdrawala as increases and deereas • .,. of potential. Of course, the two view points are 
equ ivalent. A more thorough discussion of amortized analysis can bc found in Tarjan 
119s1 and Mehlhorn [1451, Vol. I, s<'Ction 1.6.1.l. 

Let us illustrate these concepts by an example, the data type counter. A counLer Lakes 
non-negative integer values , the two operations arc sct-to-zero and increment. We realize 
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coun~ers all sequences of binary digits. T hen ,et-to-zero returns a string of zeroes and 
incremenl has to add one 10 a. number in binary rCl'rcselllation. We implenlent increment 
by first increalling the least s ignificant digit by one and then calling a (hidden) procedure 
propagate-carry if the incrc..scd digit is two. This procedure changes the digit two into 
~ zero, increases the digit to the left by one and then calls iUlelf recursively. The worst 
case cost of an increment opera.tion is , of course, unbounded. For the a.mor~izcd analysis 
we define the po~ntial of a sIring ·· · 0,0,00 as the sum L, 0, of its digits. Then set· 
I~zero creat •• a string of potential zero. Also, a call of procedure propagate-carry has 
aetua] cost 1 and amort ized coot 0 since it dec reases the potential of a string by I . 
Finally, changing the last digit has actual COI!t 1 and amortized cost 2 since it increases 
the potential by 1. Thus the total cost of a sequence of one set- to-zero operation followed 
by n increments i. bounded by 1 2· n although some increments may cost ill; much as 
logn. 

There is one other view of amortization which we now briefly discuss: the buyer's an" 
seller's view. A buyer (user) of a data s tructure WAnts to be charged in a predictable 
way for his uses of the data stn,cture, e.g. the same amount for each call of increment. 
A seller (implementer) wants to account for his actuaJ USCII of computing time. Amor­
tization is the trick which makes both of t,hem happy. The seller charges the buyer two 
tokens for each call of increment; the analysis given Abovp. ensures the seller that his 
aetua] costs are covered and the buyer pays a uniform price for each call of increment. 

2. The Dictionary Problem 

LeI S ~ U hp. any subset of the universe U. We assume that an information in/(x) is 
associated with every element x E S. The dictionary problem asks for a data structure 
which support.' the following three operations: 

Aueu (x) : return the pair (true , Inl(:I:)) , if % E S, and return false, otherwise; 

l/Utrt(x" nJ): replace S by S u {x} and associate the information inl with Z; 
Delete(z): replace S by S - {x} . 

Note that operations Instrt and Delet. are destructive, i.e., the old version of set S is 
destroyed by the operations. The non-destructh·e version of the problem is discussed in 
Ihe section on persistence. 

[n the .'alic di.tioncry problem only operation Acce.s has to be supported. 

Since the mid-fiftiffi many sophisticated solutions were developed for the dictionary 
problem. They can be classified into two large groups, the comparison-based and tbe 
representation-based data structures. Comparison-based data structures only use com­
parisons between elements of U in order to gain information, wh ilst tho! less restrictive 
representation-based .tructures mainly use the representation, say as a string over some 
alphabet, of the elements of U for that purpose. Typical representati\·es of the two 
groups are search trees and hashing respectively. 
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2.1. Comparison-based Data Structures 

We distinguish two types of data structu res: explicit and implicit. An implicit data 
structure for a set 5,1 5 1= n, uses a single array of size n to store the elements of 5 and 
only 0(1 ) additional storage. The explici t data structures use more sLoraR"; mo.t1y for 
explicit pointers between elements. 

The basis for all comparison-based methods is the following algorithm for searching 
ordered arrays. Let 5 = {Xl < X2 < ' " < xn} be stored in array 5[1. . . n:, i.e. 
S[ i ) = Xi, and let xU. In order to decide x E S, we compare x with some table 
e ement and then proceed with either the lower or the upper part of the table (see Prog. 
I) . 

(I ) 1= - 1; high n; 
(2) next - an integer in [1= .. . high ); 
(3) WHILE x # S [next) and high > 1= 

(4) do if x < S inexl ) 
(S) then high - nex t - 1 
(6) else 1= +- nexl + 1 fi ; 
(7) nexl ..... an integer in 11= ... high ) 
(8) od ; 
(9) if x = S[neti ) then "successful" clse "unsuccessful"; 
______________ Program 1 _____________ _ 

Various algorithms can be obtained from t.his scheme by replacing lines (2) and (7) by 
specific strategies for choosing next. Linear search is obtained by rltxt - low, binary 
search by nexl ..... f(low + high) / 21. The worst case a.ccess time ill O(n) for linear search 
and O(log n) for binary search. It i8 clear that log n ill also a lower bound for the access 
time for any comparison-based data structure. 

2.1.1. Implicit Data Structures 

There are a number of ways to implement dictionar ies implicitly. IT we store the elements 
in an unordered list, then update can be done in constant time, but searching requires 
linear time. On the other hand, if the dictionary is mainte.ined a:I an .. rr .. y sorted 
in increasing order, then searching can be done in logarithmic time, but updates may 
require that all the elements in the array be moved. Rotated lists are .. rr .. ys that can 
be sorted into increasing order by performing a cyclic shift (rotation) of the elements. 
They are not much more difficult to search, but only half the elements have to be moved 
in the worst case. 

Munro and SUW1Ulda 1156) were the first to explir.itly consider the dynamic impl ic it 
dictionary problem. They showed that if the clements are stored partially sorted in a 
triangular grid, then search and update can be performed in O( v'nl steps. Using blocks 
of rotated lists (sorted relati\'e to one another), they were able to improve the search 



tline to O(logn), keep the number of moves per updale at O(Jn) , and oll ly increase 
the number of comparisons per update to O( In log II). Combining thesc ideas , they 
also produced an implicit dictionary that can be searched or updated in 0(11' / 3 log II) 
time. By using rotated lists in a reeurs ive manner, hederickson [67) was able to achieve 

O(loglI) search time and 0(n.,,/l{l·' "(logn)3/ 2) update time. Munro {152, Munro )153) 
Clea ted implicit dictionaries that use 0((10& n)2) time for both search iUld update. His 
basic approach is to have the order of elements within blocks of the array implicitly 
represent pointers Md counters. 

Since the 0( (IOgII)2) upper bound falls shorl of the o (log II) upper bound for expl icit 
structures the interesting question of lower bounds arises. 

Munro and Suwanda [156) proved that their triangular grid scheme is optimal within 
a restricted class of implicit st ructures . Sorodin et al. [28) prove a tradeoff between 
search and update time which is va.lid for aU implicit data structurcs . In part icular , 
t heir result implies that if the update time is constant then the search time is O(n') for 
some constant l > O. 

A related problem is the searching problem for semi-sorted tables. Assume thaI the 
elements of the set S can be arranged 10 anyone of p different permutations. Then Al t 
and Mehlhorn [9) showed that O(pl /") comparison. are necessary for an ace",," operation 
in the worst CMe under the restrictive assumption that all comparisons must involve 
the element sought for . T heir lower bound is even true in the average CMe and for 
nondeterministic algorithms. If the p permutations are the set of ext.en.sions of a single 
partial order then a more precise bound was given by Linial and Sus [127); they show 
t.h:at o (log N) stops are necessary and sufficient where N ia the number of ideals in the 
'partial order; we remind the ruder that a 6U bset A of a partially ordered set (P, ~ ) is 
an ideal if z E A and 1/ < x implies 11 E A. 

Partial orders naturally ar ise as the result of preprocessing . Borodin et a!. [29) cons id­
ered the problem of determining the tradeoff between preprocessing and search time. 
If P(n) and S(n) denote the numbe.r of comparisons performed to , respectively, pre­
process and search an initially unsorted array of length n then, in the worst case, 
P(II) + nlogS(n) ia O(nlogll) . Mairson )132) proved that this result also holds in the 
average case. Many of Ihe lower bound results mentioned were reeently unified and 
extended by McDiarmid [1371. 

2.1.2. ExpJicit Data Structures or Search Trees 

A search tree for a set S = {XI < ... < z .. } is a full binary tree, i.e., each node has 
either two or no son, with n leaves (= nodes with no 80n). The II leaves are labelled 
by Ihe elements from S from left 10 right . The internal nodes (= nodes with two sons) 
are labelled by eleme.nts of U such that elements in the left subtree of a node v are 
labelled no larger than v and elements in the right subtree are Ia.belled larger than v. 
Figure 1 shows a search tree for {l , 7, 19, 23} <;; Z. The root could be labelled by any 
integer between 7 and 18 inclusive. Our convention for storing the set S is frequently 
called leaf-oriented. The alternative node-oricnt.cd organization, where the elements are 
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stored in the internal nodes will not be d iscussed; moat results carryover with only 
oro&ll modifications. 

Figure 1. A search tree for {I, 7, 19, 23} 

An access operation lu es time proportional to the height of the tree (= length of the 
longest path from the root to a leaf) in the worst ca.se: compare the clement z to be 
sought for with the label of the root, proceed to the right subtree if it is larger and 
to the left subtree otherwise. Insertions and deletions are also easily accomplished . In 
order to insert %, we search for % and then replace the leaf where the search ended by 
a tree with two leaves. In order to delet~ %, we only have to delete the leaf labelled :z: 
and its parent from the tree. Figure 2 shows the tree of figure J after the insertion of 9 
and the deletion of 19. 

19 

19 23 

Figure 2. Insertion of 9 and deletion of 19 

The worst calle time for an AC(e88, Insert or Delete is O(n) since trees may degenerate 
to linear lisl.8. On the average, we can expect to do much better . 

Consider the following szenario. We start with a tree consisting of a single leaf. Before 
the n·th step we have a tree with n leaves. One of the leaves is chosen at random and 
replaced by a tree with two leavel!. Let D(n) be the expected total depth of the n leaves 
before the n-th ltep, i.e. , 

D(n) = L)p(T) L d;{T) ] 
T 

where p(T) is the probability that a certain tree T with n leaves arises and d,(T) i. the 
depth of the j·eh lea! of T . Then D(J) = 1 and 

D(n + 1) - D(n) = LP(T)(2 + L d.(T) / n) 
T 
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since the increase in depth is d, (1' ) f 2 if the i. th Ip ... f of l' is replaced and the prob .. bi li,y 
for this event is p(T) / n. Thus D(n + J) - D(n ) ~ 2+ I / n ·D(n) or D(n + 1) = 2+ (1 + l / n). 
D(n) . This recurrence relation has solution D(n) = 2n· L:~I I / i - n == O(n log n). This 
shows that under random insertions we can expect an expected access time of U(log n). 
An excellent su rvey of the behavior of random trees is Con net 1831. Recent resul t. can 
be found in Devroye 1111 an d Devroye 1451. 

We have seen th .. t depth is a crucial parameter for the behavior of search t rees. This led 
to the development of balanced trees where t.he depth is guaranteed to be O(log n ). We 
distinguish two major typ"" of balanced trees, the heighl- and t.he weight. balanced tree". 
In the firs t class the height of subtrees is balanced; it includes AVL-trees (Adcl'son· 
Velskii and Landis 111), (2 - 3)·l re<!S (Aho et al. 12]), 8-trees (Bayer and McCreight 115]) , 
fl B-trees (Ottmann and Six 11621), red-black trees (Guiba.. and Sedgewiclt 1891) , half· 
balanced trc"" (Olivie 1160]) , (a,b)·tree5 (Huddleston and Mehlhorn 1101 )) and balanced· 
binary-trees (Tarjan 1196]). The behavior of AVL-trees was studied by Foster 165 and 
66j, Knuth 11121, Brown 1311, Mehlhorn 1142), Mehlhorn and TsakaJidis 1151 ), Tsakal idis 
12051. In the second cl .... the weight of the subt rees is balanced ; it includes the BBlal­
trees ( ' icvergelt and Reingold 11591) and the internal path trees (Gonnet 1821) . 

We treat on ly (2,4)-trees and refer the reader to the text books ment ioned "bove for 
the other classes. In a (2 , 4)-lrec all leaves have the same depth and every internal node 
has between 2 and 4 children. We use p(v) to denote the number of ch ildren (== "rity) 
of a node v. In a node v we .tore p(v) - I label. in order to guide .earch~. We will 
describe the insertion and deletion algorithms and their amortized and".i. next. For a 
t ree T, let the potential of T be twice the number of 4-nodes (= nodes of arity 4) plus 
the number of 2-nodes. 

Let us consider an insertion first. We .tart by adding a new leaf. This may convert the 
parent from a 4-node to a 5-node, which is not allowed in a (2 , 4).t roo . We spl it such 
a 5-node into a 2-node and a 3-node. This may create a new S-node, which we sp lit 
in turn . We continue splitting newly created S· node., moving up the tree, unt il cithcr 
the root splits or no new S·node is created. see Figure 3. If the root splits, we create a 
new root , a 2-node, causing the tree to grow in height by one. The time needed for the 
insertion is proportional to one plm! the number of splits. 

Let us define the actual t ime of an insertion to be one plus the number of splits . Then 
the amortized time of an insertion is at most three: each split costs one but converts a 
node that was originally a 4-node into a 2-node and a 3-node, for a net potential drop 
of one; in addition, the insertion can create one new 2-node or 4·nodc. 

Delet ion is an inve~e process, only sl ight.ly more complicated. To delete a given item, 
we destroy the leaf containing it. This may make the parent a I-node. If this l-noele 
has a neighboring sibling that is a 3-node or a 4·node, we move a child of this neighbor 
to the I-node and the deletion stops. (This is called borrowing.) If the I-node has a 
neighboring sibling that is a 2-node, we combine the I-node and the 2-node. (This is 
called fusing .) Fusing may produce a new I-node, which we eliminate in the same way. 
We move up the tree eliminating I-nodes until either II. borrowing occurs or the root 
becomes a I-node, which we destroy. (See ~'igurc 4) . The time needed for the deletion 
is proportional to one plus number of fusing •. 
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Figure 3 

Figure 4 

Let us define the actual time of a deletion to be one plus the number of fusing •. Then 
the amortized cost is at most two: each fusing costs one but converts two nodes that 
were originally Z-nodes into a 3-node, for a. net potential drop of two; in addition , the 
ddelion can create one new 2-node. 

We summarize. The amortized cost of an insertion or deletion is 0(1) although the 
actual cost may be as large as O(log n) . This result ia due to Huddleston and Mehlhorn 
1101) and Maier and Salveter 1131). The particularly simple proof given above is due 
to Hoffmann et a1 . )95). Levcopoulus and Overmans 1126) have recently shown that 
constant insertion and delet ion time can also be obtained in the worst ca.se and not only 
in the amortized sense. It is open whether their scheme can also support the various 
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extensions of (2,4 )-trees to be discll SS<'ci next. 

How frequent ly do expensive insertions and de letions arise? Hllcidleston and Meh l· 
horn 11011 showed that. the number of insertions and deletions which cause t fusi ng. 
or splittings dc.:reases as an exponential f ullction of t. (2,4 )-trees are strongly related 
to red-black trees (Gllihas and Sedgewick [89J, symmetric binary 8-trees (Bayer 111]) 
and half-balanced trees (Olivic [160)) . All of the results about amortized rebalancing 
cost ment ioned above carryover to these t roos . Moreover, red-black trees and half­
balanced trees have the additional property that on ly 0(1) structural changes of the t rcc 
are required after an insertion or deletion; all other changes concern only bookkeeping 
information (OJivie 1160[. Tarjan 1196]). These propert ies and their simpl ic ity make red­
black trees a good choice fo r practical implementations of balanced trees; they make 
them also the ideal basi. for finger search trees. Finger search t rees represent ordered 
lists into which one can maintain pointe/'8, called fingers, from which searches can start; 
the time for a search, insertion or deletion is O(log d), where d is the number of items 
between the search starting point and the accessed item. The O(log d) bound can either 
be achieved in the amorti7:ed sense (Brown and Tarjan 133!. Huddleston and Mehlhorn 
[IOI!) or in the worst case sense (Guibas et .. 1. 188], Kosaraju 11171, Huddleston [1 00], 
Tarjan 1194], TsakaJid is 1203 and 2(Hi) . Finger t rees lead to optimal algorithms for h~ 
bas ic set o~cralions union, intersection , differenc.e , ... ; i.e" these op"Crations take t irnc 

O(log (m;~tn":'",))) when applied to sels of size 71 and rn respectively, Huddlest.on and 
Meh lhorn [101 ]. Another application of finger trees is efficient list splitting. Supp,,"e 
that we have a list of n items which we Wb.ll\ to split into sublists of length d and n - d 

respectively. The position of the split is determined by a finger sea.rch starling from 
both ends of the list. The finge r search takes time O( log min(d, n - d)) and this is also a 
bound on the amortized cost of t he split, Hoffmann ct al. 1951 . Consider now a sequence 
of splits, i.e., we start with a single lis t of length n which we split repeatedly until we 
obtain 71 lists of length I each . Th~ wors t case cost T(n) of this process is given by 
T(l) = 0 and T(n) = maxI SdSn- dT(d) T(n - d) + O(logmin(d,n - d)) ] for n ;:: I. 

This recurrence has solution T(n ) = O(,t), i.e. , the amortized cost of each split is 0(1) . 

Frequently, the same search has to be performed on many lists . Several researchers 
(Vaishnavi and Wood 12001, Lipski 11281, Willard [216], E<lelsbrunner et al. 155], Cole 
1411, lmai and Asano 1104 ]) observed that the naive strategy of locating the key sepa­
rately in each list by binary search is far from optimal and that more efficient techniques 
frequently exist. Chazelle and Guibas [39] dist illed from these special case solutions" 
general data structuring technique and called it (ractional ca.scading which supports 
under very general assum ptions the search for an item in d lists out of n lists in time 
O(d + log N), where N is the total size of the 11 lists. This has numerous applications to 
computational geometry. Mehlhorn a.nd Naher [146[ studied dynamic fractional cascad­
ing and showed that the amortized analys is of balanced trees carries over to the more 
general situation of fractional casca.ding; more precisely they showed that insertions and 
deletions have amorlized cost O( log log N) and that a search for an item in d lists out 
of n lists takes time O((d + log N) log log N ). 

Weight-balanced trees (Nicvergelt and Reingold [159]) share many of the properties of 
height-balanced trees; their implementation is more cumbersome, however . On the other 
hand, they have the following weight-property (Wi llard and Luecker 1217], Blum and 
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Mehlhorn 1251): A node of weight w (i .•. , w dC-"ccndant.s) participatcs ill only O(n / w) 
structural changes of the tree when a sequence of n insertions alld deletions is pro­
cessed . The weight-property makes weight-balanced trees superior to height-balanced 
trees whenever structural changes of the tree arc very costly, e.g., when their cost de­
pends linearly on the size of the subtree ch"nged. This i. frequently the case in a.ppl ica­
tions to mult idimensional "e"reh or computational geometry where trees are augmented 
with substantial additional information. In these applications weight-balanced trees 
guarantee good amort ize<! hehavior which cannot be obtained with height-balanced 
trees . 

2.2. Representation-based Data Structures 

In these data structures the representation, say as a string of digits, of the elements 
stored is used to compute their position in memory. 

We consider interpolation search (2 .2.1), hybrid data structures (2.2.2) and hashing 
(2.2.3). 

2.2.1. Interpolation Search 

We first consider static interpolation search, which is an implicit data structure. In­
terpolation search was suggested by Peterson 11701 as a method for searching in sorted 
arrays. 

It is obtained from Prog. I , by replacing lines (2) and (7) by 

ne%/ I x - SI/ow - 11 
( ow - 1) + r -;;S~I h~ig-;hc-.J..c-, 71 "I ---;:;S~IIc-ow-'----:I'1 . (h igh - low + 1)l 

It is assumed that positions S[ 0 I and SI n + 11 are added and filled with art ificial 
elements. The worst case complexity of interpolation search is clearly O(n); consider 
the case that SI 0 1= 0, SI n + I I = 1, % = 1/ (n + 1) and 0 < S[il < :dor 1 :5 i :5 n . Then 
ne%/ = low always and interpolation search deteriorates to linear search . The average 
CMe behaviour is much better . Average access time is O(log log n) under the assumption 
that the keys X" ••• , Xn are drawn independently from a uniform distribution over the 
open interval (XO,%n+l) . This was shown by Yao and Yao [222[. Pearl et a!. [1681 and 
Gonnet et al. [861. 

A very intuitive explanation of the behavior of interpolation search can be found in Pearl 
and Reingold [1691, where they present a variant called binarll interpolation srorch. We 
discuss thia ,·ariant: 

Binary search has access time O(log n) because it consists of a single scanning of a path 
in a complete binary tree of depth log " . If we could do binary search on the paths 
of the tree then we could obtain log log n access time. So let us consider the question , 
whether there is a fast (a\ least on the average) way to find the node on the path search 
which i8 halfway down the troo, i.e., the node on the path of search which hILS depth 
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1/ 2 log n . Thcre are 21 / 2Iog .. = y'ri of t hese nodes and they are ..;n apart in the array 
repre. cntation of the tree . Let us make an initial guess by interpolating and then search 
through these nodes by linear search . ote that each step of the linear seach jumps 
over n clemcnts of S and hence as we will see shortly only 0(1 ) steps are required on 
the a,·crage. Thus a.n exp L"C ted cost of O( I ) has reduced the size of the set from,. to 
,;n (or in other words determined the first half of the path of search) and hence total 
expected search time is O(log log n). 

The precise algorithm for Acas~ (x , S) is as follows . Let low = I, high = ,. and let 
next = rp·,.l be defined as above; here p = (x - xo) / (Xn+1 - xo). If x > S[ next ] 
then cornpa.re x with S] ncxt ,. ..;n ], S] ,.cxt ~ 2 n I, ... until an i is found with x ::s 
SI nexl + (i - 1)· ..;n ]. T his will use up i comparison •. If x < S] next] then we proceed 
analogously. In any cau, the subtablc of size .;n thus found is then searched by apply ing 
the same method recursively. Let p, be the probability that i or more steps a.re required 
in the seuch for the .ubtable. Then the expected cost of the search for the subtable is 
O(L, po). Also , if i or more steps are required then the actual position of element x in 
the array differs by more than iyfi from the expected p06ition (which is pn) and hene<, 
p, = O(I/ i') by an application of Chebycheff's inequality. This shows that time 0(1) is 
spent at each level of the recursion and hence the expected access time is O(log log n). 

Santoro and Sidney ]176] proposed another variant called inlcrpolation-binarv search 
which has O(log log n) average c&sc access time for the uniform distribution and O(log nJ 
worst case time. 

Willard 12151 has shown that the log log n asymptotic retrieval time of interpolation 
search does not remain in force for m08t nonuniform probability distributions. How­
ever, he was able to modify interpolation search such that its expecte<l running time 
is O(log log n) on static It-random files where p i. any regular probability density. A 
density I' is regular if there are constants b,,~ , b3,b. ouch that I'(x) = 0 for x < hI 
or x > ~, I'(x) ~ b3 ~ 0 and 11'/(%) ] ::s b. for bl ::s x ::s ~. A file is I'-random if its 
.Iements are drawn independently according to density 1'. It i. important to obsc,,·c 
that Willard'. algorithm does not have to know the density 1'. Rather, its running time 
is O(log log n) on I'-random files provided that I' is regular. Thus hi. algorithm is fairly 
robust. 

Dynamic interpolation search, i.e., data structures which support insertions and dele­
tions as well as interpolation search, was discussed by Frederickson ]67) and Itai, Kon­
heim, Rodeh 11OS]. Frederickson presents an implicit data structure which .upporLs in­
sertion. and deletions in time O(n'), I!: > 0, and accesses with expected time O(log log n). 
The structure of Itai, Konheim and Rodeh has expected insertion time 0(10& n) and 
worst cau insertion time O((log n)l). 1\ is claimed to support interpolation ~arch, 
although no formal analysis of its expected behavior is given. Both papers assume that 
Ihe files are generated according to the uniform distribution. 

Mehlhorn and Tsakalidis [150] extend dynamic interpolation search to non-uniform dis­
tributions. They achieve an amortized insertion and deletion coot of O(log n) and an 
expected amortized insertion and deletion cost of O(log log n). The expected search time 
on files generated by I'-random insertions and random deletions i. O(log log n) provided 
that I' is a smooth density. An insertion is I'-random if the key to be inserted is drawn 
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from density JL . A deletion is randoUl if every key present in the current file is equally 
likely to be deleted . These notions of randomness are called lr and Dr respectively in 
Knuth 11131. A density IJ is smooth if there are constants d and oc < 1 such that for all 
a,b,c, with a < c < b, and all integers m and n, m = rn°l. 

Ie ~(x)dL ~ dn - I / l 

c - ( b - o) / m 

where Mx) = 0 for x < a or x > band Mx ) = /. (x )/ p for a ~ x ~ b where p = f: JL(x)dx. 
Every regular density of Wi llard is smooth in this sense. 

2.2.2. Hybrid Data Structures 

This group of data structures combines arrays and pointers. A main representative is 
the digital search tree or TRIE. 

The TIUE ..... as proposed by Fredkin 1711 as a s imple way to structure a file by using the 
digital representation of its elements; e.g. we may represent S = {121,102, 211,120, 210, 
212} by the following TRiE 

o 

2 

102 

2 1 

o 2 o 1 

120 121 210 211 212 

Figure 5. A TRIE 

The general situation is as follows: the universe U consists of all strings of length lover 
some alphabet of say Ie elements, i.e. , U = {O, . . . , k - l}l. A set S £ U is represented 
&8 the k-ary tree consisting of all pre6xes of elements of S. An implementation which 
immediately comea to mind is to use an array of length Ie for every internal node of th. 
tree. Then operations Accu~, Insert and Ddete are very fast and are very simple to 
program; in particular, if the reve",e of all elements of S are stored (in our example 
this would be set {121, 201 , 112,021,012, 212}), then the following program will realize 
operation Aeee.u(x) 
This program takes time ott) = O(log. N) where N = IVI. Unfortunately, the space 
requirement of a TRIE as described above can be horrendous: O(n · t. . k). For each 
element of set S, lSI = n, we might have to store an entire path of l nodes, all of which 
have degree one and use up to spaee O(k). 

There is a very .imple method to reduce the storage requirement to O(n · k). We only 
store internal nodes which are al least binary. Since a TruE ror a set S of size n has n 
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(1) II ~ root ; 

(2) II +- x; 
(3) do t TIMES (i, y) '- (V MOD k , y mv k) ; 
(4) II +- i-th son of II 
(5) od ; 
(6) If x = CONTENT [ II I then "yes" elHe "no" . 
______________ Program 2 ____ _________ _ 

leaves there will be a.t mret n - 1 internal nodes of degree 2 or more. Chains of internal 
nodes of degree 1 are replaced by a single number, the number of nod"" in the chain. 
In our example we obtain Figure 6. 

1 

2 

Figure 6. The compressed TRIE 

Here internal Dod ... are drawn a.> arrays of length 3. On the pointers from fathers to 
sons the numbers indicate the increase in depth, i.e., 1 + the length of the eliminated 
chain of nod"" of degree one. In our example the 2 on the pointer from the root to the 
son with name b indicat ... that after br&nching on the first digit in the root we have 
to branch on the third (1 + 2) digit in the .on. The algorithms for Ac<t&$, Insert and 
Delete become slightly more complicated for compressed TRIES but still run in time 
O(l). 

Thus a compressed TRIE supports operations Access, Insert and Deltle with time 
bound O(log. N), where N is the size of the universe and k is the branching fa.ctor of 
the TRIE. A set S of II elements requires space O(k . n) . 

Note that tries exhibit an interesting time space trad~ff. Choosing k large will make 
tries faster but more spa.ce consuming, choosing k small will make tries slower but less 
space consuming. For static sets, i.e., only operation ACCU$ is supported, there is a 
technique developed by Tarjan and Vao 1200) which can store a set S (S ~ U, lSI - 11 

and lUI = N) in a II-ary TRIE using 0(11) storage locations (of O(log II) bits each) such 
that it can support operation Aue&8 in time O(log" N) worst case and 0(1) expec ted 
case. Their technique combines a TRIE structure with a method for compressing tables 
by using double d~placements . This double displacement method is an elaboration of 
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a single displacement method suggested by Aho and Ullma.n 16[ and Ziegler 1225[ for 
compressing parsing tables. 

Willard [214[ introduces two dynamic trie structures, the P -fast TRIE and the Q ­

fast TRIE. A P-fast TI1IE uses space O(n og 2vlo1N) for representing a set S 
(S ~ U, ISI = n, lUI = N) and can support ace",," , insertion and deletion in worst case 
time O(v'Jog N). The Q-fast TRIE is derived from the P-fast TRIE by using a pruning 
technique, it has the same time bound. hut needs only O(n) space. 

TRIES also support the following three add itional operations: 

SI1UeS80r(x) : Find the least clement in the se t S wi th key value greater t.han x; 
predtu88or(x): Find the greatest element in the set S with key value less than z; 

l uhset(z" x,) : Find (&!ld produce) the list of those elements of S whose key val ue li es 
between XI and x, 

The P-fast and Q-fast TRIE can support the operations successor(z) and predecessor(x ) 
in time O( v'Jog N ) and subset(%I, Xl) in t ime O( y'lOgN + k), whcre k is the size of the 
output. 

Willard 1213[ also proposed another static t rie structure, called Y -fast TRIE, wh ich uses 
O(n) space &!ld supports <Kce, s(x) , succ .... or(z) &!ld predueuor(x) in worat case time 
O(log log N) and 8u~8et(XI'Z') in O(loglogN + k). This method uses perfect hashing 
(see 2.2.3.3.) . 

2.2.3. Hashing 

The ingrediente are very simple: an array 1'10 .. m - I I, the hMh table, &!ld a function 
10: U -> 10 . . m-I I, the hash function. U is the universe; we will assume U = 10 .. N - I I 
throughout this section. The basic idea is to store a set S M follows: ' % E S is stored in 
1'110(%) I. Then an access is an extremely simple operaUon: compute 10(%) &!ld look up 
1'110(%) I. 
There is one immediate problem with this basic idea: what to do if h(z) = h(y) for 
some %,1/ E 5, % t y . Such &!l event is called a collision. There arc two main methods 
for dealing with collisions: chaining and open adressing. 

We briefly present both methods and then discuss two techniques for choosing the hash 
function 10; perfect &!ld universal hashing. We do not treat the average behavior of 
hashing in detail but rather refer the reader to chapter H. 

2.2.3.1. Hashing with Chaining 

The hash table T is &!l array of linear lists . A set S ~ U is represented as m linear lists . 
The i-th list contains all elements x E S with h(x) = i. 

Operation Acceas(%, 5) is realized by the following program: 

1) compute 10(%) 



2) search for x in list Tf h(x) I· 
Operations blsert(x , S) and Velete(x, S) arc implemented similarly. We on ly have to 
add x to or <.Iclcte x frolll the li.t TI h(x) ]. For . he analysis of hashing we assume that II 
can be evaluated in constant t ime and therefore define the cost of an operation refer ing 
to key x as 0(1 + o .. (x. S)) where S is the set of stored elements and 

Oh(X. S) = L:.Es OA(X. y) , and 

if h(x) = h(lI) and x i- y 

othe,,",' ise. 

The worst case complexity of hashing is now eas ily determined. The worst case occurs 
when the hash function h reslricted t<> set S is a constant, i,e., h(x) = '0 for all x E S. 
Then hashing deteriorates to search ing through a linear list and anyone of the three 
operations costs O (iSlltime units . 

The average case behavior of hashing is much beller. The expected cost of a sequence 
of n insertions, deletions and accesses is 0((1 I fJI2)n), where fJ = nl m is the maximal 
load factor of the table. This is true under the following probability assumption: 

I) The hash function h: U --+ 10" m - 11 distributes the universe uniformly over the 
interval 10" m - II, i,e., for all j, j' E 10" m - 1 , : Ih - I (ill = Ih - I (i') I, 

2) All clements of U are equally likely as argument of anyone of the operations in the 
sequence, i,e " the argument of the k-th operation of the sequence is equal to a fixed 
x E U with probability l/ lUl, 

These assumptions imply that the value h(xt) of the hash function on the argument of 
the k-th operation is uniformly distributed in 10., m - 1], i.e., proh(h(x",) = i) = 11m 
for all k E 11., n] and j E 10. , m - I J. Thus the expected length of anyone of the 
lists is at most ilm • .fLer t he i-th operation and therefore the expected cost of the 
i + I-th operation is 0(1 + i/ m), Hence the total expected cost of all n operations is 
0((1 + /3/2)n). More on the expected analy.;" of ha:shing with chaining can be found 
in chapter 14 . 

2,2,3.2. Hashing with Open Addressing 

Each element x E U defines a sequence h( x, iJ, i = 0,1,2,.,. of t able positions. This 
sequence of positions is searched through whenever an operation refering to key x is 
performed. 

A very popular method for defining the function h(x, i) is to use the linear combination 
of two hash functions h I and h.: 

Hashing with open addressing does not require any additional space. However , its 
performance becomes poorly when the 10aO factor is nearly one. 

The average case behavior of hashing with open adressing i. casy to determine under the 
unrealistic assumption that the sequence h(x, i) is a random permutation of the table 
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positions ilnd thaL the cosL of an Insert is I -I min{i ; TI h(x, i) 1 is noL occupied}_ Let 
G (n, m) be Ihe expected cost of an I nsert when n items are already stored in a tab le 
of size m_ Then C(n,m) -= 1 1 n / m · C(n I ,m - 1) ifn > 0, since olle probe is always 
requ ired , this probe inspe<.ls an occupied pos it ion with probability nlm and since in th is 
case an insertion into a table of size m I holding already n I items is .till required, 
and G(O,m) = 1. Thus C{ l1 , m) = (m -I- I)/(m - n + I) o.l / (I - fJ). wherep = 7Ilm is 
the load factor. The expected cost of all Accc= operation is O((l / fJ) · In 1/ (1 - fJ)) by 
a similar analysis. More on the expected case behavior of hashing with open adressing 
can be found in chapter 14 . 

2.2.3.3. Universal Hashing 

Un iversal Hashing wa.s firsl described by Carter and Wegman ;371. It is a method to 
deal with the basic problem of hashing: iL< linear wor.t case behavior. We saw in section 
2.2.3.1. that hashing provides us with 0(1) expected access time and O(n) worst case 
access time. Thus it is always very risky to use hashing when the actual distribution of 
the inputs is not known to the designer of the hash function. It is always conceivable, 
that the actual distribution favors worst Case inputs and hence will lead to large average 
access times. 

Universal hashing is a way out of this dilemma. We work with an entire class H of hash 
functions instead of a single hash function ; the specific hash function in use is selected 
randomly from the collection H . If H is chosen properly, i.e., for every subset S ~ U 
&lmO<lt all h E If distribute S fairl y evenly over the hash table, then this will lead to 
small expected access time for every set S. Note that the average is now taten over the 
functions in the class H, i.e., Ihe randomization is done by the algorithm itself not by 
the user: the algorithm controls the dices. 

Let us reconsider the symbol table example. At the beginning of each compiler run the 
compiler ch<KlSeS a random element h e ll . It will use hash function h for the nexl 
compilalion. In this way the time needed to compile any fixed program will vary over 
differcnt runs of the compiler, but the lime spcnt on manipulating the symbol table will 
have small mean. 

What properties should the collection If of hash funclions have? For any pair x, II E 
U,x # 1/ , a random element h E H should lead to collision, i.e., h(x) = h(II), with 
fairly small probability. More precisely, let c E IR and N, m E IN. A collection H ~ 
{h;h: [O . . N - 11 ..... [O .. m - II} is c-universal, iffor all x,y E IO .. N - 11,x f:- y 

I{h ;h E If and h( x ) = h(y)}! S; (· IHI/m. 

Carter and Wegman 1371 analysed the expected behavior of universal hashing under Ihe 
following assumptions: 

1) The hash function h is chosen at random from some ( -universal class If, i.e., each 
hE H is chosen with probability 1/1 111_ 

2) Hashing with chaining is used. 
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They showed that the expected cost of all Accr..,s , Insert or Ddete operation is 0(1 + 
c{J) , where {3 = nl m is the load factor, if a c- uni"ersal class of hash functions is used . 
They also gave examples of universal classes. Let "' , N E N and let N be a prime . 
For a, b E l 0 .. N - 11 let lzo .b (X) = ((ax ~ b) mod N) mod m for all x. Then the class 
H = {h • . b ; a , b E l o .. N - 11} is 4-univcrsal. A member of th is d a.5s requires O(log N) 
random bils for its selection. Mehlhorn 11431 shows that there is a 8-universal class 
whose members can be .elected by O(log rn + log log N) bits and also shows that th is is 
optimal. Other universal classes are described in Markowsky et aI., 11341. 

2.2.3.4. Perfec t Hash ing 

Perfec t hashing is the simples t solution to the collision avoidance problem. We just 
postulate that there arc no collis ions, i.e., the hash function operates injectively on the 
set to be stored . 

A fu nct ion h: 10" N - 1 ) 10 .. rn - 11 is a perfect hash function for 5 <;; 10" N - 1 ) 
if h(x) i (y) for all :L,y E S,x i y. 

Perfect hashing was first discussed by Sprugnoli 1186). He describes heuristic method. 
for constructing perfect hash funtions. Fredman, Koml68 and Szemeredi 173) show 
that very simple perfect hash functions exist whenever m ~ 3n, n '" 15 1. The hash 
functions can be found in deterministic time O(nN) and probabilistic time O(n), can 
be evaluated in time 0(1) and are given as program of length O(n log N) bits. The 
program size was improved to 0("- log n + log log N) by Mehlhorn /1451, p. 138, and 
to O (nlog log n + log log N) by Jacobs and van Emde Boas [1061. A lower bound for 
program size is 0(n2/m + loglogN), Mehlhorn IH31. 

Perfect hashing was first developed for static sets S. Aho and LL'e [51 .howed how to 
deal with insertions and deletions. They describe a hashing scheme which supports 
accesses and deletions in worst case t ime 0(1) and insertion. in expected time 0(1) . 
The expectation io computed with respect to random inputs; cr. assumption 2 in section 
2.2.3.1. 

A further improvement was made by Dietzfclbinger et aI. 1461. This scheme combinL"; 
the adva.ntages of universal and perfect hashing. Accesses and deletions take worst case 
time 0(1) and iMertions take t ime 0(1) on the average. However, the average is now 
computed with respect to the random choices made by the algorithm and is worst case 
with respect to inpuu. 

2.2.3.5. Extendible Hashing 

Our treatment of hashing in the previous sections was based on the assumption that 
main memory io large enough to completely contain the hash table. Let us assume now 
that this assumption is no longer warranted . Let us aloo assume that the tran.fer of 
information between main a.nd secondary memory is in pages of size b. In this situation 
extendible hashing as described by Fagin et al. 1591 can be used. Similar schemes are 
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known under the names dynamic hashing (Larson (1221), virtual hMhing (Litwin (1291) 
and expandable hashing (Knott IllOj) . 

Let h : U - {0,1}· be an inje<:t ive fu ne ion. For an integer d and :z; E U let hd(:Z;) 
be the prefix of h(z) of I',"gth d and for a set S !: U let d(S) be lhe minimal d such 
that I{:t E S;h.(x) - a} 1 $ b for all a C (0, l}d, i.e., hd partitions the set S into 
suooets of size al most b. Extendible hashing uses a table T (O .. 2'( S) - 11. called tltt' 
directory, and some number of buc ct.:s of capacity 6 to store set S. The directory 
entries are pointers to buckets . An element xE S is accessed by computing i = h.( x), 
looking up T [il and then acc .. sinll the bucket pointed to by Tlil . In this way al most 
two accesses to secondary tnemory are ever needed . The first access is to the page 
containing TliJ and the second access is to the bucket containing:z;. We allow different. 
directory enLries to point 10 the same bucket as long as the following buddy principle 
holds: If r < d(S),o E to, 1}",ol . a2 E to, l)d(.5) - ',ol t"l and T laad '" Tla"l l then 
necessarily T[a<1J! = TI=lJ fo r all 03 E to, 1}4CS) - " . 

In.serlionB a.re easily processed except when a bucket overflows. In this case dIS) in­
creases by one. the size of the diredory doubles. and the overflowing bucket is split into 
two. 

The expected behavior of extendible huhing is treated in the papers mentioned above 
and more completely in Flajolet 162]; cf. also chapter 14. He shows that the expected 
number of buckets is n/ (6 In 2) and that the expected 8ile of the directory i. about 
ej (b In 2)nH 1/&. A variant of extendible hMhing (Tamminen 1191]) achieves linear 
expected diretory size and 0(1) expected access time. 

S. The Weighted Dictionary Problem and Self-Organizing Data 
Structures 

In the weighted dictionary problem a weight ( '" access frequency) is associated wilh 
every element of the set S . The basic goal LA to make accesses to high frequency elements 
faster th&ll to low frequency clements wilhout sacrifying the efficiency of the other set 
operationl!!l. 

The first problem studied was the construction of a.ll optimal search tree for given access 
frequencies . More precisely, let S '" {%l •.•.• Xn } and let w. be the weight of item Xi· 

For a tree T let di be the depth of item i. Then P = Li widi is called the weighted 
palh length of the tree T. It is not too hard to construct an optimum tree , i.e. a Iree 
which minimi'es the weighted path length, in time 0(n3

) by dynamic programming. 
This waa improved to 0(02) by Knuth [1111 (see also YaJ:> 1224]). In the case of leaf­
oriented storage an O(ologn) algorithm was found by Hu and Tutker (99) and Garsia 
and Wachs 181) . The latter algorithms resemble Huffman's algorithm (Huffman 1102]) 
for the construction of optimal prefix codes. The original correctness proofs for both 
algorithms were fairly involved. A simple proof was reeentl), found by Kingston 11081. 

A search tree for a sel S yields directly a prefix code for the symbols Xl, • .•• x" over the 
binary alphabet {"go I./t", "go right"}. In view of the noiseless coding theorem it is 
therefore not surprising, thai the normalized weighted path length P = L ,(Wi/W)d .. 
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where W = L . W; , is strongly related to the en tropy H = L , (w. ( W) 10g(W / w;) of 
Ihe access frequency distr ibu tion . In par t icular, P ~ H - log H for node-oriented 
storage and P ~ H for leaf-oriented 5torage. Bayer 1131 . Also, there are trccs achieving 
P < H + 2 for both storage orga.nizat ions. Mehlhorn 11391. Nearly optimal trees , i.e. , 
Irees which come within a constant factor of opt imality and can be constructed in lillea r 
time O(n) were described by Fredma.n 1721. Mehlhorn 1138J, Dayer 113J and Korsch 11I6J. 
An implicit data structure ach iev ing the same goal was found by Frederickson , 169J. 

We will now turn to the dynamic case. It has two facets: the underlying set S may 
change and the acceSlS frL"luellcies of the elements in S may change. 

Faller 160J and Gallager 1781 proposed a scheme fur dynamic Huffman coding. Knuth 
11141 gives a real-t ime im plementation of this scheme. More precisely, suppose that the 
frequency w of a leaf at depth I changes by one. Then an optimal Huffman tree for the 
new distribution can be derived from the old Huffman troo in time 0(1). Vitter 12101 
refined this result. His scheme does not only work on-line in real time, it also uses at 
most one more bit per letter t han the standard off-line Huffman algorithm. 

Let us consider search trees next. The relevant operations are: 

Acccss(%, S): if item % is in set S then return a pointer to its location, otherwise retur n 
nil 

Insorl(% , S): insert % into set S 
Ddde(z , S ): delete z from sel 5 and return the resu lting set 
Join(S) , 52): return a set representing the items in 5) followed by the items in 52. 

destroying 5 , and 51. (this assumes that all elements of 5, are smaller 
than all clements of S2) 

Split(%, S): returns two sets S, and S2; S, contains all items of S smaller Ihan x and 
S2 contains all items of S larger than % (this assumes that % is in S); set 5 
is destroyed 

Chango Weight(z. 5, 6): changes the weight of clement % by 6 

What time bounds can we hope for? We mentioned above, that the normalized weighted 
path length is related to the entropy of the frequency distribution and therefore the best 
we can hope for operation Access is an O(log(W jw;)) time bound . We call this bound 
the ideal acccs& time of item i . Similarly, inserting an el~ment of weight w can be no 
cheaper than accessing the new element or one of its neighbors in the new tree and we 
should therefore conlent ourself with an O(log(W + w)/min(w+. w, w-)) time bound. 
where w- and w+ are the weights of the two neighbors of the new element. 

Bayer 113J gave a heurist ic for the weighted dynamic dictionary problem, but he gave 
no theoretical results , and indeed his trces do not have ideal access time in the worst 
case. Unterauer 1201J achieves ideal access lime, but does not analyse Ihe worsl case 
time required for updates . Mehlhorn 1140 and 141J introduced D-trees; D-trees extend 
BB[al-trees and achieve ideal war!! c ..... Access, Change, Insert and Delete time. He did 
not consider Join and Split . D-tr~ have the weight-property of BBlaJ-trees mentioned 
in section 2. Operations Join and Split were then considered by Giiting and Kriegel 
[87J, Kriegel and Vaishnavi IU9J, Bent , Sleator and Tarjan 1181, achieving good worst 
case bound. for all five operations. 
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A "ery elegant alternat ive whic:h uhieves good amortized time bounds for all operations 
was found by Sleator and Tarjan 11831 . Their splay trees show the following behavior. 

The amortized cost of Access(x, S) is O(log(W / w)). 

The amortized C06t of Ddete(x.S) is O( log m .... t'! .... - j ). where w - is the weight of t he 
predecessor of z in 5. 
The amortized cost of J oint 5,. 5,) is O( log '" ~ "') , where w is the weight of the largest 
element in 5, and w, is the weight of S,- . 

The amortized cost of In"rt(x. S) is O(log .... n w - .w .w ). where w - is the weight of 

the predecessor. w+ is the weight of the successor of x. 

The amortized cost of Split(x. 5) is O(log(W/ w)). 
The amortized cost of ChangeWeight( x .5.6) is O(log((W + 6) / w)). 

Splay trees achieve this behavior without keeping any explicit information about the 
weights of the elements; they arc a so-called sdt-organi%ing data strueture. In self­
organizing da.ta structures an item x is moved closer to the entry point of the data 
structure whenever it is accessed . This will malee subsequent a.cces~ to x cheaper . In 
this wa.y the elements of S compete for the good places in the data strucLure and high 
frequency elements ue more likely to be there. Note h"",..,ver, that we do no/ maintain 
any explicit frequency counts or weights ; ra.ther, we hope that the da.t& structure self­
organizes to a. good data structure. 

Since no global information is kept in a self-organizing data structure the worst c~ 
behavior of a single opera.tion can always be horrible. However, the a.verage and the 
amortized behavior may be good. For an average case &nalysis we need to ha.v. prob­
abilities for the various opera.tions. The data structure then leads to a Markov chain 
whose states ue the different incarnations of the data structure. We c&n then use prob­
ability theory to compute the stationary probabilities of the various stales and usc these 
probabilities to derive bounds on the expected behavior of the data structure. 

For the amorti1:ed behavior, we take a combinatorial point of view a.nd analyse the 
cost of sequences of operations. Experiments (Bentley and McGeoch [20]) suggest that 
the behavior of the heuristics on real data is more c108ely described by the amortized 
analysi. than by the probabilistic analysis. We will now describe seif-organizing linear 
search in some detail and then briefly return to search trees . 

Sdt-organizing linenr 3enrth is quite simple. Let 5 = {x" ... , xn } and let us assume 
that 5 is organized &II a linear li.t. For simplicity, we consider only the operation 
Aoct~&(%) and postulate that the C08t of Acctss(x) is po,(x) where po,(x) denotes the 
poeition of z in the current list. 

Two populu .tra.tegies for .elf-organizing linear search are the Move-ta-Front and the 
Transposition Rule. 

Move-Io-Front Rule {MFR}: Operations Acct .. (%) and Inaert(x) make x the first ele­
ment of the list and leave the order of the remaining elements unchanged. 

Transposition Rule {TR}: Operation Aouss(x) interchanges x with the element preced­
ing % in the list. 
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For the average case ana lysis we postulate a probability distribution PI. , . . • p .. and 
assume that the accesses are independent random variables and that an access to item 
Xi has probability Pi· We may assume PI ? p, 2: .. . 2: P .. w.l.o.g . Assuming complete 
knowledge of the distribution it is clearly optimal to arrange the items according to 
decretJ$ing frequenclJ and to never change t his arrangement. The expecled access cost 
is EFD = Li Pi . i in this case. Let us denote the expected access cost of the two rules 
by EMP and ET rL'lSpectivcly. The expected behavior of the Move-to-Front Rule was 
investigated by McCabe Il36]. Hurville and Kingman 134], Knuth 1112], Hendricks 1931. 
Rivest 11751 and Bitner [22]. In particular . 

n 

EM F = LP.(1 + L . ~ ) ~ 2· EFD . 
i = l j", . PI . p) 

This can be seen as follows. The expected position of element Xi under the Move-to­
Front Rule is 1 plus the expected number of x;'s which are in Cronl of Xi. Next observe 
that Xi is ahead of x, if there is an integer Ie such thaI the last Ie accesses were an 
access to Xi followed by Ie - 1 accesses to items different Crom Xi and Xi ' Hence the 
probability that Xi is ahead of Xi is given by Pi Lk;::O(1- (Pi + Pi))k = Pi/(P; + Pi) and 
the expression for EMP follows. Next observe thllt Pi/(P; + Pi) ~ 1 and hence 

n i - J 

EMP = 1+2 . :L>iL Pi ~ 1+2'LPi(i - l) ~ 2 ' EFD 
i ; 1 j;1 Pi + Pj , 

This shows. that the expected acces~ co.1 under the Movc-to-Front Rule is at moost 
twice the optimum. The Transposition Rule is Mver worse. More preciaely. Rivest [1751 
showed that ET ~ EMF. with strict inequality unless n = 2 or Pi = l/n for all i. He 
further conjectured that transpos. minimizes the expected access time Cor &fly P. bU I 
Ander30n et al. [101 found a counterexample. Chung et al. 140I .howed EMF ~ ~. Ef'D 
and Gonnet et al. [851 gave an example where this bound is obtained. Thus the worst 
case ratio EM~'/E"D is 1< / 2. The convergence speed of the two rules Was compared 
by Bitner [22J and it was found that the Move-to-Front Rule converges more quickly. 
A combination of the Move-to-Front Rule with the more tr&clitional method of keeping 
frequency counts is discussed in Lam et al. [12!J . 

We will next present an analysis of the amortized behavior of the Move-to-Front Rule 
due to Bentley and McGeoch 1201. Assume that we perform a sequence oC m accesses 
to this list. Let h"l ~ i ~ n, be the number of aGcesses to Xi . We may ""sume w.l.o.g. 
that hI ;:: h, ;:: . . . 2: h .. . If we starl with the list Xl • . .•• x .. and never change it then 
the total cost of the m accesses is eTD = L. i· hi ' Suppoee now that we start with the 
list XIo ...• Xn and use the Move-to-Front Rule. Let eMF be the total cost of m accossos 
under the Move-to-Front Rule. Let t~,1 ~ i ~ hi, be the cost of the i-th access to item 

Xi· Then GMF - GFO ~ L~; 1 L~~ 1 t~ - L::'I ih; = L~;1 L~~dt~ i). Consider an 
arbitrary term t~ - i in this sum. If t~ > i then there were at least t~ - i accesses to 

items x~,h > i, between the (j - I)-th access and the i-th access to x, (the O-th access 
is the initial configuration. Thus 

h. 

L(tj - i) ~ hi + 1 + ... + h .. 
Je l 
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and hence GMF - GFD < 2:: ~= , ( ", - , - .. . + h~) = 2:::'= ,(i - l )h. = GpD - m . In 
particular , G."P :s 2 · Gpn· A much st ronger result was shown by Sicator and Tarjan 
[184 j. They proved that no rule whatsoever can beat the Move-to-Fron t Rule by more 
than a factor of two. This is even true for off-line rules wh ich know the complete 
sequence of accesses in advance . 

Allen and Munro [8J were I. h~ fi rs t to considor self-organizing binary search. They show 
that the expected search time under the Move-to-Root heuristic, where an accessed item 
is moved to the root by a seqllence of rotations, is only a constant factor above the ex­
pected search time in an optimum search tree. They also showed that t he transposit ion 
heu ristic do.,. (lot have this properly. Bitner [22J investigates the expecled behavior of 
several other heuristics . 

Splay t rees (5leator and Tarjan (1831) refine the Move-to-Root heurist ic by combining it 
with the concept of path compression, d . the sec tion on the Un ion-Find-Spli t prob le m. 
The access-t ime in splay t rees is within a constant factor of the access-time of stat ic 
opt imum search trees ; th is is the analogue of the relationship GMF :S 2 · GFD derh'ed 
above. It is open , whether this result can be extended as it was in the case of the Move­
to-Front Rule for linear search. A lUst step was taken by Tarjan 1197J who showed that 
accessing the nodes of .. splay t ree in sequential order takes time O(n) . 

4. Persistence 

Ordinary data structures are ephemeral in the sense that a change to the struct ure 
dostroys the old version , leaving on ly the new version available for use_ In contrast , a 
ptrsistent structure allows access to any version. old or new. at any time. We distinguish 
partial and lull persis~nce . A data structure is partially per$istent if all versions can 
bc accessed but only the newest version can be modified. and lull" peraistent if every 
version can be both accessed and modified . 

A number of re8earchenl have developed partially or fully persistent forms of various 
data.tructures. including stacks (Myers [157]). queues (Hood and Melville [96]). search 
trees (Myers [1581. Overmars [1631. Reps. Teitelbaum and Demers 1174J. Swart II90J, 
Sarnak and Tarjan [1771l and rela~d structures (Chazelle [381. Cole [41 J. Dobkin and 
Munro \49[' Driscoll . Sarnak. Sicator and Tarjan \53]). 

In the article. of Dobkin and Munro 149J, Overmars [163 and 165J, Chazelle 138J the 
problem of persistence is called searching in the past . 

Dobkin and Munro [49J COli sider the following problem. Let S be a universe of n objects 
subject over time to m deletions and insertions in arbitrary order. Assuming that there 
exists a total order among the objects, they describe a method for comput ing in time 
O(log n log m), the rank of any object at any given time , i.e., the number of objects thai 
preceed it at that time. The space used is O(n + m log n) . Overmars \1641 improves 
the query time to O(log(n + m)). Chazclle [38J presents a data structure that requires 
O(n + m) storage and allows the computation of any neighbor of "new object at time 9, 
in O(log n log m ) t ime. The method also allows the set S to be only partially ordered . 

Overmars [165J studies three .imple but general ways to obtain part.ial persi8tenu. One 
method is to explicitly store every version , copying the entire ephemeral structure after 
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each update operation. T his cosls O(rt) l ime a nd space per update. An alternative 
method is to store no vers ions bu t ins tead \0 store Ihe entire sequence of update op­
erations , rebu ilding the cu rren l venion from scratch each time an access is performe<.i . 
A hybrid method is to store the entire sequeIlce of update operations and in addition 
every It-th version , for some suitably chosen value of k. 

Cole 14!J devi.es a partial persistent rep resentation of sorted sets that occupies 0(", ) 
space and has O(log m ) access t ime, where m is the total number of updates (insertions 
&l1d deletions) st.arting from an empty set . llis solu t ion is off-line, i.e. , the entire sequence 
of updates must be known in advance. Sarnak and Tarjan [177] propose a simple dala 
structure that overcomes th is drawback. They present a persistent form of binary 
search tree with an O(log m ) worst-case access/ insert/ delete t ime and an amortized 
space requirement of 0(\) per update. 

Swart [\90], using the idea of path copyillg , presents a fully persist.ent representation of 
sorted sets and lists with O(log m) time bound per operation and an O( log m) space 
bound per update. 

Driscoll et al. [53] finally propose a general solution for the persistence problem. They 
develop simple, systematic and efficient techniques for making different linked data 
structures persistent. T hey show first that if &II ephemeral structure has nodes of 
bounded in-degree, then the structure can be made partiallv pt.rsislent at an amortized 
space cost of 0 (1) per update step and a constant fac tor increase in the amortized cost of 
access and update operations. Second , they present a method wh ich can make a linked 
structure of bounded in-degree full~ persistent at an amortized t ime and space cost of 
0(1) per update and a worst-case t ime of 0(1) per access step. At last they present 
a partial persistent implementat ion of balanced search tree with a worst-case time per 
operation of O(log n) and an amortized space cost of 0(1) per insertion or deletion. 
Combining this result with a delayed updating technique of TsakaJidis [204] they obtain 
a fully persistent form of balanced search trees with the same time and space bounds 
as in the partially persistent case. Using another technique they can make the 0(1) 
~pace bound for insertion and deletion worst-case instead of amortized. The technique 
employed by Driscoll et al. is strongly related to fractional cascading, cf. section 2.1.2. 
This relationship can be used to support a forget-operation which permits to cxplicitely 
delete venions and thus improves the space requirement , Mehlhorn ct a.1. [148]. 

5. The Union-Split-Find-Problem 

We consider the problem of maintai ning a collection of disjoint sets under the opera.tions 
of union and 8p1it. More precisely, t he problem is to carry out three kinds of operatioM 
on a partition of the IInivers.e U = {I , . .. , n} : find , which determines the set containing 
a given element; union , which combines two sets into one; and split, which splits a set 
at a given element into two. In order to identify the sets, we assume that the algorithms 
maintain with each sct a unique name. The precise formulation of the three operalions 
is as follows : 

find(z) : return the name of the set containing z 
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union(A , B): combine the two sets wi lh names A and B, destroying the two old .cl.s. 
and return a name for the new set. 

aplit(A, x): sp lit t he set with name A into the sets AI = {y E A; y :5 x} and A2 = 

A - AI, destroying Ihe old set , and return names for the two sets formed . 

5.1. The Union-Find-Problem 

Here, we start with the partition of U into singleton sels and allow only the operations 
find and union . A popular solution , proposed by Galler and Fischer 119) represents each 
sct by a rooted trcc. The nodes of the tree a.rc the clemen Is of the sot a.nd the name of 
a set is the root of the tree. With each element x we store a pointer p(x) to its parent; 
the parent pointer of a root is nil. Inilially, all parent pointers arc nil. To carr)' oul 
fi,u/(x), we follow parent pointers starting in x unlil we reach a root and return the 
root. To carry out union(A, H), wo define ptA) to be B and return H. 

The naive algorithm is not very efficient, requiring O(n) time per find in the worst casco 

However, there arc two simple heuristic.s which improve the efficiency dramatically: Ihe 
weighted union (Galler and Fischer) ano the path compr<8R;on heuristics (Mr.lllroy and 
Morris). We store with each sct A its cardinality size(A) and carry out union{A ,8) 
by defining ptA) to be B , if $iZl(A) ::; size(8), and p(B) to be A, otherwise. In the 
algorithm for jind(x) we not only traverse the path from :z; to the root but also redirecl 
all parent pointers of t he nodes traversed to the root. 

Suppoee now that we carry out m ;?: n finds and n - 1 unions . Let I(m, n) be the 
maximum time required by any suc:h sequence of instructions. Fisr.her 1611 showed 
that t(m,n) = O(n + m · Ioglogm), Hopcroft and Ullman 1971 improved the bound to 
I(m, n) = O(n + m . log· n) and finally Tarjan /192), Banachowski 1121 improved the 
bound to t(m, n) = O(n ~ m· arm, n)) , where a is the inverse of Ackermann's funct ion , 
i.e., 

and 

a(m,n) = min{z ~ 1; A(z,4 [m f nll > logn} 

A(i,O) = 1 

A(O, x) = 2x 

A(i + I,z + I) = A(i,A(i 1· 1,x)) 

for all j 2: 1 

for all x 2: 0 

for all i, x 2: o. 
Tarjan and van Leeuwen 1199) show that the same time bound applies to several variant.:; 
of the union-find algorithm described above. 

How good is this algorithm? Tarjan 11931 has shown that any pointer machine algorithm 
which obeys the $eparation a..umption requires time fI(m · a(m, n)) to solve the un ion­
find problem. The separation assumption states that sets correspond to conllccted 
components in the pointer st.ructure. 

A II time bounds quoted above are amort izeo . The worst case behavior was considered 
by Blum 1241 and he proves a 9(log n f log log n) bound; again , the lower bound uses the 
separation assumption. 



The average u.se behavior was cOlls idered by Ooyle and Rivest 151 1, Vao 12201, Kmll h 
and Schonhage [llSI, Vao [2211 and Bollobas and Simon 1261. They show that un der 
various probabili ty assum pt ions the expec ted running time of the union-find algorithm 
is linear , even if only one of the two heuristics is used . 

Manilla and Ukkonen [1331 consider a variant of the general union-fi nd problem where 
backtracking aver the llJ8t un ion operat ion" is pORsible by means of a deunion operation . 
They present two methods, wh ich a llow to process a sequence of m f i no.." k unions 
Uld k tkunion$ in time O((m + k) · Iogn / loglogn) Rnd O(k + mlogn) respecti"ely, 
W""tbrook and Tarjan 1212/. A further generalization where weights are associated wi lh 
the unions is considered by Gambosi et al. ISO]. 

All of the algorithma mentioned above run on pointer machincs. A linear time RA\I ­
algorithm for the special case where the unions arc known in advance was recently 
dcscribed by Cabow and Tarjan [771. 

5.2. The Interval Split-Find-Problem 

Here, we .tart with the part it ion of U inlO a single block and allow only the operat ions 
find and 6piil. Clearly, all blocks arising during the execution are intervals. Hopcroft 
and Ullman 197] gave a solution which processes n splits in total time O(n log' n ) and 
each find in worakase time O(log' n) . Gabow (76) gave an improved algorithm wh ich 
proc"""es the n splits in total time O(n . o(n , n)) and each find in amortized time 
O(o(n, n)). All of this runs on a pointer machine. 

Again , one can do better on a RAM. Cabow and Tarjan 1771 gave a linear time solution 
which was then extended by lrnai and Asano [104] to the incremental set splitt ing 
problem. In this version the underlying universe can be expanded by adding (operation 
odd) a new element next to a given element. Of course, the acCC8$ operation, which 
is implicit in a find, becomes non-trivial now and is not accounLed for in the linear 
time bound. However, in the applications discussed by lrnai and AS&Ilo this causes no 
problema. 

5.3. The Interval Union-Split-Find-Problem 

We finally turn to the full problem. Here, we start with the partition of U into sin­
gletons and allow the operatio"" find , .plit and union. We pootulate however, that 
the partition is a.lways a partition into inten'als, i.e., a union operation can only join 
adjacent intervale. It is cuatomary, to use the right endpoint of an interval as the name 
of the interval in this problem. 

Van Emde Boas, Kaas and Zijlstra 10581 describe a pointer machine solution which ex­
ecutes all three operations in worst case time O(log log n). The corresponding lower 
bound was shown by Mehlhorn, Naber and Alt 1147). The lower bound does not use the 
separation assu.mption and i. even valid for the amort.ized complexity of the problem. 
Mehlhorn , Naber and Alt 11471 also show that the lower bound increases to O(log n) 
with the separa.tion assumption . 
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Finally, Mehlhorn and Naher 1\0161 show tha t the additional operations add and <ra . .e, 
which modify the underlying universe by adding an element next to a given element or 
removing a given element , can also be supported in amortized time O(log log n). 

6. Priority Queues 

A priorit" queue is an abst ract data structure consisting of a set of items, each wit.h a 
real-valued .l:e", subject to the following operations: 

mtlktqutue: Return a new , empty priority queue. 

insert(i, h): Insert a new item i with predefi ned key into priority queue h. 

findmin(h) : Return an item of minimum key in priority queue h . This operation docs 
not change h. 

deletemin(h): Delete an item of minimum key from h and return it. 

In addition, the following operations on priority queues are often u:scful: 

meld(hl' h,): Return the priority queue formed by taking the union of the item-disjoint 
priority queues hI and h,. This operation destroys hI and h.,. 

docrr08d:t,,(6, i,h): Decrease the key of item i in priority queue h by subtracting the 
non-negative real number 6. This operation assumes that the 
posit.ion of i in h is known. 

delde(i, h) : Delete arbitrary item i from priority queue h. This operation assumes that 
the position of i in h i. known. 

In our discussion of priority qucullS we shall assume that a given item is in only one 
priority queue at a time and that a pointer to its priority queue position is maintained. 
It is important to r~mber that priority queues do not support efficient searching for 
an item. 

Priority queuea have many applications, most noteworthy sorting and network opti­
mization problems. A set of n items may be sorted by one ma.l:equeut, n instrt, n 
,indmin and n Ikletemin operations. The single source shortest path problem (ef. 
chapter 10) on a graph with n nodes and m edges of non-negalive weight can be solved 
by one m4kequeue, n insert, 'indmin and deldemin and m dureasekey operations. 
We infer from these applications that al least one of the operations inurt, ,indmin and 
dde/emin must have cost O(log n) because of the O(n log n) lower bound for sorting and 
that the operations can occur with drastically different frequencies in some applications . 

Some solutions, to be described in the sequel, do not support the meld operation. We 
will refer 10 a priority queue without this operation as a simple priority queue. Also 
note, that a dccretUekell operation can always be simulated by a delde followed by an 
inserl. 

For small universes, say the keys are drawn from the range 11 .. Nj, any solution for 
the Union-Split-Find Problem (d. section 5) gives a simple priority queue: the set 
of itema in the queue corresponds to the marked items of that section, Find{l) is 
'indmin, Union(i) is ddete(i), Union(Find(I)) is dddemin, and Split(i) is insert(i) . 
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[n particular, the simple queue operations can all be realized in time O(log log N ) pcr 
operaLion. Orlin and Ahuja [16 lJ give a solution with an 0(1) bound for makequeue . 
d.dt/e, findmin , decrea&ekey and an O(log N) bound for insert and deletemin. Ahuja 
ct &1. [71 improve this Lo 0(1) for delete , findmin and decrea.'Jekey, O(n) for makequeue 
and O( y10g N) for in.«rt a.nd ddetem in ; here n is the number of insert operations. 
This gives rise to an O(m ~ n J log N) shortest path algorithm. 

Moot 50lutions for arbitrary universes a.re based on the concept of a heap-ordered Ir"". 
A heap-ordered tree is a rooted tree cont.aining a set of items, one item in each node, 
with the iwnus arriUlged in heap order: if v is any node, then the key of the item in v 
is no less than the key of the item in its pilrent p(v) , provided v has a parent. Thus the 
Lr"" root contain. an item of minimum key. 

A first realization of simple priority queues was given by Williams [2181. He uses com­
plete binary heap-ordered tr""" and .hov;5 that the simple queue operation. all take t ime 
O(log n) and that complete binary trees can be stored implicitly in an array without. 
the usc of pointers. Floyd [63] show. that a makequeue followed by '1 inserts call be 
made to run in time O(n) instead of O(nlogn) . 

Doberbt [471 gives an average ca.se analysis of Floyd '. algorithm. Porter and Simon 
[1711 analyzed the average coot of inserting a random clement into a random heap 
in terms of exchanges. They proved that this average is bounded by the constant 
1.61. Their proof docs not generalize to sequences of insertions since random insertions 
into random heaps do not create random heaps. The repeated insertion problem was 
solved by Bollobas and Simon 127]; they 8hO'>'l' that the expected number of exchanges 
is bounded by 1.7645. The worst-use coat of inserts and deletemilUl was studied by 
Gonnet and Munro [84]; they gh'e log log n + 0(1) and log n + log n· + 0(1) bounds for 
the number of comparisons respectively. 

l.n the 70's and 80's many different real izat ions of Ihe full repertoire of priority queue 
operations were found: heap-ordered (2 - 3)-trees (Aho, Hopcroft and Ullman 12]), 
leftist trees (Crane 142]) , binomial queues (Vuillelllin [2111, Brown 130]), self'adjusting 
heaps (Sleator and Tarjan [1'85]) and pairing heaps (Fredman et al. 174]) . They achieve 
O(log n) bounds for all operations. 

Johnson 11071 introduces (Vary heap-ordcrcd trees, where a is a parameter, and shows 
how to implement makequ ... e a.nd findmin in time 0(1) , durea.'Jekey in time 
O(log nJ 
loga) and the other operations in time O(alognf loga) . With a = max(2,log(m/ n)) 
this gives risc to an O(m log nf max(2, log(m / n))) shorte.t path algorithm. 

Fredman and Tarjan 1751 improve Johnson 's result and obtains 0(1) amortized time 
bounds for makequeue, findmin , insert , meld and tkcreaukey and O(log n) amortized 
time bounds for tkltle a.nd ddttemin. They call their data structure Fibonacci-heaps . 
F-heaps give rise to an O(n log n + m) shortest paLh algorithm. An alternative to F· 
heaps are the relaxed heaps of Driscoll et al. 1521. In contrast to F-heaps the t.ime 
bound for deletc and dcJet/lJDin is worst case instead of amortized. 

A generalization of priority queues was considered by Atkinson et al. Ill ]. They add 
the operations findm4% and delt/emax and show that the O(log n) time bound can be 
maintained. 
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7. Nearest Common Ancestors 

In this chapter we consider the followi ng problern: Given a dynamically changing collec­
tion of rooted trees , answer queries of the form ·What is the nearest common ancestor 
of two given nodes % and y , denoted by flca(x, lI)?" 

Of course , this problem comes in many different Uavors according to which update 
operat ions are permitted . We use" to denote the total number of nodes, m to denote 
the number of dynamic operations and k to denote the number of queries. 

In the off-line version of the nearest common ancestor problem, the collec tion of t.rees 
is static and the sequence of queries is known in advance. Aho, Hopcroft and Ullman 
13J desc ribe an O(n + k . o(1c + n, n )) pm- algorithm using O(n) space_ Here £> is the 
functional inverse of Ackermann's function, d. sect ion 5. Cabow and Tarjan 177J give 
a.n O(n + k)-time RAM-algorithm u.ing O(n) space. 

In the $!atic, on-line version the collection of trees is static but the queries arc given 
on-line, i.e., each query must be anowered before the next one i. given. Aho, Hopcroft 
and Ullman 13J propoee a RAM-algorithm requiring O(n log log n) preprocessing time, 
O(n log log n) space and o (log log n) time per query. 

Harel and Tarjan 192J present a RAM-algorithm running in O(n) preprocessing time , 
O(n) space and &n!wcring a query in 0(1) time; a simpler solution with the same 
performance is given by Schieber and Vishkin 1178). 

Van Leeuwen 11231 gives a pm-algorithm requiring O(n log log nJ preproce88ing time, 
O(n log log n) space and O(log log n) optimal query time. Harel and Tarjan 192J prove the 
optimality of this query time and claim that van Leeuv.en's algorithm can be modified 
to run on a pointer machine in linear time and space. Another optimal pm-algorithm 
with O(n) preprocessing time, O(n) space and 0 log log n) query time is described in 
van Leeuwen and Tsa.kalidis 1125J. 

We now eome to the dynamic version" of the problem. In the linking roots version, 
the querie$ are given on-l ine and two tr.es can be joined by linking their roots. Van 

Leeuwen 1123J gives an O(n + m log log n)-time pm-algorithm answering ea.;h query in 
O(log log n) time. 

Harel &lid Tujan 192J present an O(n + m ·a(m + n, n))-time RAM-algorithm answering 
each query in O(a(m + n , n)) amortized time. 

In the linking and cutting version the queries are on-line and the collection of t r~es 
can be modified by two operations. Link(% , lI) . where 1I is a root , makes 1I a child of 
the vertex % (not necessarily" root) and cut(%) deletes the edge connecting % to its 
parent and thus makes % an additional root. Aho, Hopcroft and Ullman 13J consider 
only linkings. Their algorithm run. on a RAM in time O((m + n) log nJ and space 
O(n log n) and the time required for a query is O(log n). Maier /130J considers linkings 
and cuttings, achieves the same time bound and improves upon the space bound. His 
solution requir ... less than O(n log n) but still more than linear space; it "Iso run. on a 
RAM. 

Sleator and Tarjan 1182J give the fastest solution which in addition runs on a pointer 
machine. At first they propose a solution with total running time O(n + m log n) for m 
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link and cut operations between n nodes u.ing spac. O( n) ; the nearest common ances tor 
can also be determined in t ime O(log n) . Ry using a more complicated data structure 
they can improve the above result so that each individual link and cut operation takes 
time O(log n) . 

In the dllnamic tree tlersion the queries Me on-line, there is only one tree, and this trce 
can be updated by the insertion of leaves or deletion of nodes. 

TsakaJidis 12061 presents a pm-algorithm which needs O(n) space, performs m arbitrary 
insertions and deletion. on an in itially empty tree in time O(m) and allows to determine 
the nearellt common ancestor of nodes x and y in time O(log(min{depth(x),depth(y) }) 
+Q(k, k)), where the second factor i. amortized over the k queries and depth(x) is the 
distance from node x to the root. 

8, Selection 

The selection problem can be stated as follows: We are given a sequence XI, " . , X . 

of pairwise distinct elements and an integer k , 1 :5 k :5 n, and want 1.0 find the k- th 
smallest element of the sequence, i.e. an Xi such that there are k - 1 keys X, with 
x, < Xj and n - k keys x, with x, > Xj ' For k = n/2 such a Ieey i. called median. Of 
course, selection can be reduced to /IOrting. We might lirat /IOrt sequence XI,' .. ,Zn and 
then find the k-th smallest el .. ment by a single scan of the sorted sequence. This results 
in an O(nlogn) algorithm. A linear expected time algorithm waa found by Hoare 194J. 
One simply splits the set S into subsets 51 = {z E S;x:S XI} and s.. = {x E &;X > z,} 
and then applies the algorithm recursively to the appropriate subset. If T(i, n) denotes 
the expected time to determine the i-th largellt element in a collection of n elements 
then T(i,n) = n + ~(L~-:" , T(i - k ,n - k) + L;;;T(i,k)) aince ZI is the k-th largest 
element with probability l i n. Then T(i, n) = O(n) as a simple induction shows. 

A worst case running time O(n) can be obtained by chooeing the splitting element 
more carefully, Blum et al. 123) . The set S is divided into subsets of :; elements each 
and the median of each subset is computed. The algorithm is then used recursively to 
determine the median of the n l 5 medians. The mediali of the medians is used as the 
.plittina element. This choice guarantees that max(15,1, 152 1) :S 8n/11 and therefore the 
worst cue running time is governed by the recurrence T(n) :5 O(n) + T(nI5) + T(8n/ ll) 
which has an O(n) solution. 
Knuth 1112),5.3.3, trues the history of the selection problem to the writings of Dodgson 
150), and provides an excellent overview of the early developments of this problem. The 
original formulation of the problem by Dodgson 150J and Steinhaus 11881 was in terms 
of lawn tennis tournaments . 
Let V.(n) (V.(n) be the number (average number) of pairwise comparisons needed to 
find the k-th smallest of n numbers (k ~ 2) (assuming that all nl orderings are equally 
likely) . Of particular interest is the asymptotic behavior of V.(n) (V.(n)) when n goes 
to infinity either with k fixed or with k = a' n for a fixed conatant Q in the range 
0 :5 a :5 !. 
Hadian and Sobel 1911 described an algorithm, called rep/aeement $dection by Knuth, 
that proves the general bound 
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V.(n) $ n - k + (k - l )f lo&(n - k + 2)1 
For large k (in particular for k = 0 . n), this was improved by Blum et al. /23/ and 
further improved by Schonhage et a l. /1801 to V.(n) $ 3n + o(n) . 
The first general lower bound , V.(n) ~ n k - 2, wu proved by Blum et al. 1231. 
For a detailed survey of all tbe lower bound. sec Kirkpatrick /1091. Bent and John 117/ 
improved Kirlcpatrick 's lower bound . Specially, they show 

Von(n) ;:: (1 + Ho )n f- O(V n), 
where Ho = - odogo - (1 - 0) log(l - a ) is the discrete entrop), of a . 
In particular the bound for the median is 

Vm (n) ~ 2n + O( VnJ, where m - r H 
A considerable amount of work h ... also be done on ""timating .(n) . Matula 113S/ 
proved that, for some absolute co .... tant c , V. (n) $ n + cklnlnn as n - 00 . Vao 
and Y&O (223) showed that there cxi!!t. an absolute constant c' > 0, such that V.(n) ? 
n c' k In In n as n 00 , proving a conjectu re of Matula. An upper bound of V .(n) S 
n + k + o(n) for all k and n ;., due to Floyd and Rivest (64) . Cunto and Munro 143' 
prove that V .(n) ~ n + k - 0(1) in general and that for the m4%-min-median problem 
2n - o(n) $ V,(n) $ 9i + o(n ), where 1 E {I , n, [j 1}. 
Dobkin and Munro (48) show that a linear time algorithm is possible for the median 
problem wh.ich requires an additional work space of only [ i 1 + 1 data cells. 
Ramanan and Hyafil (172) present some algorithms which solve efficiently the problem 
of selecting the k 8mallest elements , and give their respective order, of a totally ordered 
set of n elements, when k is small compared to n . 
Munro and Paterson 11541 consider time-space tradeoff. for selection in a lape input 
model, i.e., inputs are stored on a read-only input tape and may be accessed only in 
a sequential 8can of the entire tape. Output is to a write-only tape and workspace 
registers may hold input values. Let T be the time, S the workspace and n the size of 
the sct, then when time is measured in comparisons, their algorithm realizes a trade-olI 

of T . logS = O(n · Iogn) over the range O(log2 n) = S = 0(2VIo,,,). Frederickson 
1701 modifies and extends their approach to realize the same trade-off <>'o'er the broader 

range 0(log2 n) = S = 0(2 : ,"')' 

9. Merging 

The 110(>-"'011 merging problem consists of combining two sorted lists A and B to make 
one larler sorted list. The algorithms developed for this problem can be classified 
according to the following properties: 

i.) Minimizing the number of comparisons and ass ignments. 
ii.) Minimizinl the work space needed in addi tion to the space u.ed to store t he two 

filcs. An allorithm using 0(1) additional work space i6 .aid to be in place . 

iii.) Maintaining stability. A stable merging algorithm is one which preserves the relative 
orderings of equal elements from each of the sequences. 

iv. ) Maintaining searchability. An in place merging algorithm is said to support search­
ability if at any stage in the proccss a search for an arbitrary element can be 
performed with a small number of comparisons. 
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If the lists .4 and B havc m and,. elements, respectively, then there are (~~") possib le 
placements of the elements of B in the combined list ; it follows that pog (~" n) 1 com· 
parisons are necessary to dist inguish these possible orderings. If we take m $ n then 
flog ( ... ~n) 1 = elm log ;;,;) . The "binary merging~ algorithm of Hwang and Lin 1103]. 
sec also Knuth 11121, 5.3.2, requires fewer than [log ( ... ~n)l + min(m, n) comparisons to 
combine sets of size m and n and uses O(log n) additional work space. Kronrad 11l8j 
showed that merging may be performed in pla.ce in linear time. His algorithm does not 
have the stability property. 

Brown and Tarjan [32j note that there is a problem in implementing the binary m erg· 
ing-algorithm 80 that it runs in time proportional to the number of comparisons it 
uses. They preeent a fas t-merging algorithm, based on AVL-trees (Adel'son-Vel'sk ii 
and Landis [Ill, which runs in optimal time O(m log ;:,) and uses additional work space 
O(m + n). This was extended by Huddleston and Mehlhorn [101 j to other set operations 
than merging. 

Trabb Pardo [202j gives a I t able merging algorithm performing O(m + n) assignment.. 
&lid comparisons in 0(1) wotkspace. It yields a stable in place sorting algorithm runn ing 
in optimal time. 

The stable merging algorithm of DudziJIski and Dydek [54[ performs O(m log .::) com­
parisons and O((m + n) log m) assignments in O(log m) workspace. 

Carlsson [351 presented a fast stable merging algorithm, called "splitmcrge", which 
performs O(mlog ... ) comparisons and O(m + n) assignments in O(m logn) .pace. 

Let M(m, n) be the minimum number of pairwise comparisons which wi.ll always suffice 
to merge two ordered lists of lengths m and n. Stockmeyer and Yao [180\ prove that 
M(m, m + d) = 2m + d - 1 whenever m ~ 2d - 2. (This shows that the standard linear 
merging algorithm is optimal whenever m $ n $ ll;n J + 1.) 

Thanh el al. [2C1j present optimal expected-time algorithms for (2 , n) and (3,n) mergc 
problema. 

Surchability is introduced by Munro and Poblete 1165j, where they shaw that a pair of 
aoTted arrays can be merged in place in linear time so that a logarithmic t ime search 
may be performed at any point during the process. 

10. Dynamization Techniques 

Data structures for static sets are always easier to discover than dynamic data structurcti 
which also support updates . We now discuss somc general methods for turning stat ic 
data structures Into dynamic data structures. 

Suppose that we know a stalic data structure which can be constructed in time l's(n), 
requires space Ss(n) and supports queries in t ime Qs(n) for a set of n items. We assume 
throughout that Qs(n), Ps(n)/n and Ss(n) / n are non-decreasing. We also assume that 
the queries are decompo&able in the following sense, Bentley [10j. Consider a set A and 
any partition of A into disjoint sets B and C. It is then assumed that the answer to a 
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query about A can be obtained frolll th e a nswers to the queries abou t D and C in t ime 
0(1). A membership query is decomposable in this sense. 

We now show how to support insertions. A brute force solution reconst ructs the s talir 
data structure from scratch after every insert ion. A more e fficient strategy is to part it io n 
a seL S of n items inlo blocks 5" to answer qucriE'.s by combining the answers to the 
queries about the blocks and to insert an item by forming a new block cons is ting of a 
single item. In order to avoin the proliferation of blocks several blocks are merged into 
a single block from time to time. 

T he details arc as follows . Let n = L ;;::o a,:l' , u, E {O, I}, be the bi nary represent .. tion of 

n. Let50, 51, ... be any part ition of 5 with ISo! = a, 2', 0 ~ i :5 log n. Then the dynam ic 
structure D is jus t a collect ion of s tat ic dat a structures, one for each non-em pty 5,. 

The space requ irement of D is eMily com pu ted as 

:5 I)5s(n) / n)a,2' - Ss(n) 

The inequality follows fro m our basic Msulllption that SS{n) / n is nondecreasing. 

Next nole that a query abou t 5 can be answered by combining the answers about the 
5;'" and that there are never more than log n non-empty 5; '8. Hence a query can be 
answered in time 

logn + L Qs(a,2' ):5 10gn( 1 + Qs(n)) = O(lognQ.s(n)). 

Finally consider operation Insfrt(x , S). Let n + 1 - L {J;2' and let j be such tha t 

OJ = O,Oj _ 1 = aj _2 = ... = "'0 = 1. Then fl, = 1,fJi- 1 = . .. = 110 = O. We process 

the (n + 1)-st insertion by taking the new point X and the 2i - 1 = L1.:~ 2' poin ts 
stored in st ructures 50, S I , .. . ,5, _1 and const ructing a new stal,ic data structure for 
{x} U 50 U 51 u ... U 5j _ l . Thus the cost of the (n + l)-st insertion is Ps(2j). Next 
not" t hat a cost of Ps(2 j ) has to be paid aSter insertions 2j(2t + 1) , l = 0,1 , 2, . . . , and 
hence at most n / 2i times eluring the first n insertions. ThWl the total cost of t he firs t 
n insertions i. bounded by 

lOlnJ lJoKnJ 

L Ps(2' )n/ 2' :<; n L Ps(n) / .. :<; Ps(n)( [ log "J + 1). 
) =0 j = O 

We may su=arize the argu ment above as QD(n) = O{Qs(n)· log n), SD('I) = O(S.s (" )) 
and [D(n ) = O((Ps( .. )/ n) . Iogn) where QD{ n) is the worst CMe query timc , SD(n) is 
the worst case space requirement and 1 D(n) is t he amortized insertion time for a sct or 
,. elements, Bentley and Saxe 1211. 
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A static data structure for th" Incwbership problem is a sorted array. Cts perforlltan ... · 
is Ss(n) = n, QS(7I ) =- log" and Ps(n) ~ " log n. The consl ruction above yields a 
dynamic data s lructu re with So t,,) = O(n) and 'D(n) = QD(n) = O((log n) l) . 

Overmars and van Leeuwell [1671 turned the arnortized insertion t ime into a worst cas(' 
bound by spreading work OVer l ime. Of course, there is nothing unique about the usc 
of the binary representation in the const ruc. tion above. Using b-ary notal ion for some 
b > 1, i.e. expressing n as L a;b; , 0 $ Q; < b, and using ai set. of sizc bi in the pari it ion 
of S, a query t ime QD(n) ~ O(b· Qs(n) . log nl 10gb) and an amortized insertion time 
of I v(n ) = O((Ps(n) / n) . log " I log b) results , Bentley and Saxe [211. Mehlhorn alld 
Overmars 11491 describe a family of dynamizat ion schemes which allow to trade quer), 
time for inserl ion time and vice ,·crsa. 

The corresponding lower bounds were fi rst shown in Bentley and Saxe 1211 and la ter 
seneralized in Mehlhorn [1441. 

neletions are somewhat harder to cope wit!'. We need the additional assu mption tha t 
the static data struelure support.s deletions (but not insertions) without increasing query 
t ime and storage requirement. With th is additional assumption the resu lts ment ioned 
above can be extended to al80 include deletions, van Leeuwen and Maurer 11241, Over­
mars and van Leeuwen 11661, Overma.rs and van Leeuwen 11671. 

Extensions and variations of the basic dynamizalion scheme Me discussed in OverIllars 
11641, Edelsbrunner and Overm&rll 1561 and Rao et al. [1731. 
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