
Data Struct ures

by
K. Mehlhorn I)
A. Tsakalidis1)

A 02/89

1) Fachbe:eich 10 - lnformatik , Un iversitit des Saarlandes , 6600 Saarbriicken

Z) Department of Computer Engineering and Informatics, University of Patras , 26110
P~tras, Greece

Abstract: We discuas data structurC6 and their methods of analysis. In particular , we
treat the unweighted and weighted dictionary problem, self-organizing data structures,
persiotent data structures , the union-lind-split problem, priority queues , the nearest
common ancestor problem, the selection lUld merging problem, and dynamization tech­
niques. The methods of Malysis are wo~t, average and amortized case.

1. Introduction

Data Structuring is the study of concrete imr/ement.ations of frequently occuring at.­
strae' data types. An ab.trac t data type (d. chapter 26) is a sct together with a
col lection of operations on the elements of the set . We give two examples for the sake
or concreteness,

In the data type dictionary the set is the powersct of a universe U and the operations are
insertion a.nd dele lion of elements and th~ tes t for membership. A typical application
of dictionaries arc symbol tables in compi lers . In the data type priority queues the set
is the powert!ct of an ordered universe U and the operations arc insertion of elements
and finding and delet ing the minimal element of a set. Priority queues arise frequently
in network optimi13tion problems; d . chapter 10 on graph algorithms.

This chapter is organized as follows . In sections 2 and 3 we treat unweighted a.nd
weighted dictionaries respectively. The data structures discussed in these sections arc
ephemeral in the sense that a change to the structure destroys the old version, leaving
only the new version available for use . In contrast, persistent structures, which are
covered in section 4, allo access to any version. old or new. at any time. In section
S we deal with the Union-Find-Split problem and in section 6 with priority queues .
Section 7 is devoted to operations on t rees and in sections 8 and 9 we cover selection
and merging . Finally •• ection 10 is devoted to dyna.mization techniques. Of course ,
we can only give an overview; we refer the reader to the textbooks Knuth 11121. Abo.
Hopcroft, Ullman 12 a.nd 41. Wirth 1219). Horowitz and Sa.hni 1981. Sta.ndish 1187/. Tarjan
119S/' Gonnet 183). Mehlhorn 114&/. Sedgewick 1181) for a more detailed treatment. In
this section we build the ba.si. for the latter sections. In particular. we review the types
of complexity a.nalysis and the machine models used in the data structure area.

The machine models used in this chapter are the pointer machine (pm-machine) (Knuth
11121. Schonhage 1179/. Tarjan 11931) and the random access machille (RAM-machine)
(Aha et &1. 121). A thorough discussion of both models can be found in chapter 4. In
a pointer mach ine memory conse.ts of II collection of records. Each record consists of
& fixed number of cells. The cells have associated types. such a.s pointer. integer. real,
and aecess to memory is only possible by • pointers". In other word., the memory
is structured a directed graph with bounded out-degree. The edges of this graph
can be changed during execution . Pointer machines correspond roughly to high-level
programming languages without arrays . In contrast. the memory of a RAM consists
of an array of cells . A cell is accessed through its adr.,.. and hence adress arithmetic
is .vailable. We assume in both models that storage cella can hold arbitrary numbers
and that the basic arithmetic and pointer operations take COll8tant time. This is called
the uniform cost umption. All our machines are assumed to be deterministic except
when stated explicitely otherwise.

Three types of complexity analysis are customary in the data structure area: worst case
analysis , average case analysis and amortized analysis. In a worst case analysis one
derives worst case time bounds for each single operation. This is the most frequent type
of analysis . A typical result is: Dictionaries ca.n be realized with O(log n) worst ca.se
cost for the operations Insert. Delete and Access ; hero n is the current size of the set
manipulated .

I

In an average case &IIaiysis one postulates a probabi lity distribution on the operations
of the aNlr~1 data type and comput<.,. the expected cost of the operat ions under th is
probability assumption . A ty pical result is: Static dictionaries (ollly operation Access)
can be realized with O(H (11" ... , l1n)} expected cost per access operation; here n is the
size of the dictionary, Pi , 1 :s i :s n , the probability of access to the i-th element and
H(P, , ... ,Pn) is the entropy of the probability distribution. Chapters 14 , 15 &lid 16.
also deal with average case analysis.

In an amortized analysis e study the wors t case cost of a sequence of operat ions. Since
amortized analysis is not very freq uently used outside the data structure area we discuss
it in more detail. An amorti7..cd analysis is relevant whenever the cost of an operat ion
can fluctuate widely and only averaging the costs of a sequence of operations over the
sequence leads to good results . The technical instrument used to do the averaging is an
ucount (banker's view of arnortization) or potential (physicist's vicw of amortization)
assoc iated with the data structure.

In the banker's vicw of amortization, which was implicitly used by Brown and Tarjan 1331
and then more fully developed by Huddleston and Mehlhorn 11011 we view a computer
as coin or token operated. Each token pays for a constant amount of computer time.
Whenever, a user of a data structure calls a certain operation of the data type we charge
him a certain amount of tokens; we call this amount the amortized cost of the operation.
The amortized cost does in general not agree with the actual cost of the operation (that's
the whole point of amortization). The difference between the amortized and the actual
cost is either deposited into or withdrawn from the account associa,ted with the data
structure. CleuIy, if we start with no tokens initially, then the total actual cost of a
sequence of operations is just the total amorti7.ed cost minus the final balance of the
account.

More formally, let bal be a funct ion which maps the possible configurations of the data
structure into the real numbers. For an operation op which transforms a configuration
D into a configuration D' defi ne the amortized cost (Sleator and Tarjan 1184]) by:

amortized_cost(op} = acttlaLcosl(op) + bal(D'} - bal(D)

Then for a sequence OPI, ' .. ,OPm of operations we have

L amortized_cosl(op;) = L acttlaLcost + bat(Dm) - bal(Do}

where Do is the initial data structure and D,. is the final data structure . In particular ,
if ba/(Do} = 0 and bal(D) ;::: 0 for all data structures D, i.c. we never borrow tokens
from the bank, the ~tual cost of the sequence of operations is bounded by its amortized
cost. In the physicist's view of amortiution (Sleator and Tacjan 1184]) we write pot(D}
instead of bal(D}, call it the potenti,,1 of the data structure and view deposils and
withdrawala as increases and deereas • .,. of potential. Of course, the two view points are
equ ivalent. A more thorough discussion of amortized analysis can bc found in Tarjan
119s1 and Mehlhorn [1451, Vol. I, s<'Ction 1.6.1.l.

Let us illustrate these concepts by an example, the data type counter. A counLer Lakes
non-negative integer values , the two operations arc sct-to-zero and increment. We realize

2

coun~ers all sequences of binary digits. T hen ,et-to-zero returns a string of zeroes and
incremenl has to add one 10 a. number in binary rCl'rcselllation. We implenlent increment
by first increalling the least s ignificant digit by one and then calling a (hidden) procedure
propagate-carry if the incrc..scd digit is two. This procedure changes the digit two into
~ zero, increases the digit to the left by one and then calls iUlelf recursively. The worst
case cost of an increment opera.tion is , of course, unbounded. For the a.mor~izcd analysis
we define the po~ntial of a sIring ·· · 0,0,00 as the sum L, 0, of its digits. Then set·
I~zero creat •• a string of potential zero. Also, a call of procedure propagate-carry has
aetua] cost 1 and amort ized coot 0 since it dec reases the potential of a string by I .
Finally, changing the last digit has actual COI!t 1 and amortized cost 2 since it increases
the potential by 1. Thus the total cost of a sequence of one set- to-zero operation followed
by n increments i. bounded by 1 2· n although some increments may cost ill; much as
logn.

There is one other view of amortization which we now briefly discuss: the buyer's an"
seller's view. A buyer (user) of a data s tructure WAnts to be charged in a predictable
way for his uses of the data stn,cture, e.g. the same amount for each call of increment.
A seller (implementer) wants to account for his actuaJ USCII of computing time. Amor­
tization is the trick which makes both of t,hem happy. The seller charges the buyer two
tokens for each call of increment; the analysis given Abovp. ensures the seller that his
aetua] costs are covered and the buyer pays a uniform price for each call of increment.

2. The Dictionary Problem

LeI S ~ U hp. any subset of the universe U. We assume that an information in/(x) is
associated with every element x E S. The dictionary problem asks for a data structure
which support.' the following three operations:

Aueu (x) : return the pair (true , Inl(:I:)) , if % E S, and return false, otherwise;

l/Utrt(x" nJ): replace S by S u {x} and associate the information inl with Z;
Delete(z): replace S by S - {x} .

Note that operations Instrt and Delet. are destructive, i.e., the old version of set S is
destroyed by the operations. The non-destructh·e version of the problem is discussed in
Ihe section on persistence.

[n the .'alic di.tioncry problem only operation Acce.s has to be supported.

Since the mid-fiftiffi many sophisticated solutions were developed for the dictionary
problem. They can be classified into two large groups, the comparison-based and tbe
representation-based data structures. Comparison-based data structures only use com­
parisons between elements of U in order to gain information, wh ilst tho! less restrictive
representation-based .tructures mainly use the representation, say as a string over some
alphabet, of the elements of U for that purpose. Typical representati\·es of the two
groups are search trees and hashing respectively.

3

2.1. Comparison-based Data Structures

We distinguish two types of data structu res: explicit and implicit. An implicit data
structure for a set 5,1 5 1= n, uses a single array of size n to store the elements of 5 and
only 0(1) additional storage. The explici t data structures use more sLoraR"; mo.t1y for
explicit pointers between elements.

The basis for all comparison-based methods is the following algorithm for searching
ordered arrays. Let 5 = {Xl < X2 < ' " < xn} be stored in array 5[1. . . n:, i.e.
S[i) = Xi, and let xU. In order to decide x E S, we compare x with some table
e ement and then proceed with either the lower or the upper part of the table (see Prog.
I) .

(I) 1= - 1; high n;
(2) next - an integer in [1= .. . high);
(3) WHILE x # S [next) and high > 1=

(4) do if x < S inexl)
(S) then high - nex t - 1
(6) else 1= +- nexl + 1 fi ;
(7) nexl an integer in 11= ... high)
(8) od ;
(9) if x = S[neti) then "successful" clse "unsuccessful";
______________ Program 1 _____________ _

Various algorithms can be obtained from t.his scheme by replacing lines (2) and (7) by
specific strategies for choosing next. Linear search is obtained by rltxt - low, binary
search by nexl f(low + high) / 21. The worst case a.ccess time ill O(n) for linear search
and O(log n) for binary search. It i8 clear that log n ill also a lower bound for the access
time for any comparison-based data structure.

2.1.1. Implicit Data Structures

There are a number of ways to implement dictionar ies implicitly. IT we store the elements
in an unordered list, then update can be done in constant time, but searching requires
linear time. On the other hand, if the dictionary is mainte.ined a:I an .. rr .. y sorted
in increasing order, then searching can be done in logarithmic time, but updates may
require that all the elements in the array be moved. Rotated lists are .. rr .. ys that can
be sorted into increasing order by performing a cyclic shift (rotation) of the elements.
They are not much more difficult to search, but only half the elements have to be moved
in the worst case.

Munro and SUW1Ulda 1156) were the first to explir.itly consider the dynamic impl ic it
dictionary problem. They showed that if the clements are stored partially sorted in a
triangular grid, then search and update can be performed in O(v'nl steps. Using blocks
of rotated lists (sorted relati\'e to one another), they were able to improve the search

tline to O(logn), keep the number of moves per updale at O(Jn) , and oll ly increase
the number of comparisons per update to O(In log II). Combining thesc ideas , they
also produced an implicit dictionary that can be searched or updated in 0(11' / 3 log II)
time. By using rotated lists in a reeurs ive manner, hederickson [67) was able to achieve

O(loglI) search time and 0(n.,,/l{l·' "(logn)3/ 2) update time. Munro {152, Munro)153)
Clea ted implicit dictionaries that use 0((10& n)2) time for both search iUld update. His
basic approach is to have the order of elements within blocks of the array implicitly
represent pointers Md counters.

Since the 0((IOgII)2) upper bound falls shorl of the o (log II) upper bound for expl icit
structures the interesting question of lower bounds arises.

Munro and Suwanda [156) proved that their triangular grid scheme is optimal within
a restricted class of implicit st ructures . Sorodin et al. [28) prove a tradeoff between
search and update time which is va.lid for aU implicit data structurcs . In part icular ,
t heir result implies that if the update time is constant then the search time is O(n') for
some constant l > O.

A related problem is the searching problem for semi-sorted tables. Assume thaI the
elements of the set S can be arranged 10 anyone of p different permutations. Then Al t
and Mehlhorn [9) showed that O(pl /") comparison. are necessary for an ace",," operation
in the worst CMe under the restrictive assumption that all comparisons must involve
the element sought for . T heir lower bound is even true in the average CMe and for
nondeterministic algorithms. If the p permutations are the set of ext.en.sions of a single
partial order then a more precise bound was given by Linial and Sus [127); they show
t.h:at o (log N) stops are necessary and sufficient where N ia the number of ideals in the
'partial order; we remind the ruder that a 6U bset A of a partially ordered set (P, ~) is
an ideal if z E A and 1/ < x implies 11 E A.

Partial orders naturally ar ise as the result of preprocessing . Borodin et a!. [29) cons id­
ered the problem of determining the tradeoff between preprocessing and search time.
If P(n) and S(n) denote the numbe.r of comparisons performed to , respectively, pre­
process and search an initially unsorted array of length n then, in the worst case,
P(II) + nlogS(n) ia O(nlogll) . Mairson)132) proved that this result also holds in the
average case. Many of Ihe lower bound results mentioned were reeently unified and
extended by McDiarmid [1371.

2.1.2. ExpJicit Data Structures or Search Trees

A search tree for a set S = {XI < ... < z .. } is a full binary tree, i.e., each node has
either two or no son, with n leaves (= nodes with no 80n). The II leaves are labelled
by Ihe elements from S from left 10 right . The internal nodes (= nodes with two sons)
are labelled by eleme.nts of U such that elements in the left subtree of a node v are
labelled no larger than v and elements in the right subtree are Ia.belled larger than v.
Figure 1 shows a search tree for {l , 7, 19, 23} <;; Z. The root could be labelled by any
integer between 7 and 18 inclusive. Our convention for storing the set S is frequently
called leaf-oriented. The alternative node-oricnt.cd organization, where the elements are

5

stored in the internal nodes will not be d iscussed; moat results carryover with only
oro&ll modifications.

Figure 1. A search tree for {I, 7, 19, 23}

An access operation lu es time proportional to the height of the tree (= length of the
longest path from the root to a leaf) in the worst ca.se: compare the clement z to be
sought for with the label of the root, proceed to the right subtree if it is larger and
to the left subtree otherwise. Insertions and deletions are also easily accomplished . In
order to insert %, we search for % and then replace the leaf where the search ended by
a tree with two leaves. In order to delet~ %, we only have to delete the leaf labelled :z:
and its parent from the tree. Figure 2 shows the tree of figure J after the insertion of 9
and the deletion of 19.

19

19 23

Figure 2. Insertion of 9 and deletion of 19

The worst calle time for an AC(e88, Insert or Delete is O(n) since trees may degenerate
to linear lisl.8. On the average, we can expect to do much better .

Consider the following szenario. We start with a tree consisting of a single leaf. Before
the n·th step we have a tree with n leaves. One of the leaves is chosen at random and
replaced by a tree with two leavel!. Let D(n) be the expected total depth of the n leaves
before the n-th ltep, i.e. ,

D(n) = L)p(T) L d;{T)]
T

where p(T) is the probability that a certain tree T with n leaves arises and d,(T) i. the
depth of the j·eh lea! of T . Then D(J) = 1 and

D(n + 1) - D(n) = LP(T)(2 + L d.(T) / n)
T

6

since the increase in depth is d, (1') f 2 if the i. th Ip ... f of l' is replaced and the prob .. bi li,y
for this event is p(T) / n. Thus D(n + J) - D(n) ~ 2+ I / n ·D(n) or D(n + 1) = 2+ (1 + l / n).
D(n) . This recurrence relation has solution D(n) = 2n· L:~I I / i - n == O(n log n). This
shows that under random insertions we can expect an expected access time of U(log n).
An excellent su rvey of the behavior of random trees is Con net 1831. Recent resul t. can
be found in Devroye 1111 an d Devroye 1451.

We have seen th .. t depth is a crucial parameter for the behavior of search t rees. This led
to the development of balanced trees where t.he depth is guaranteed to be O(log n). We
distinguish two major typ"" of balanced trees, the heighl- and t.he weight. balanced tree".
In the firs t class the height of subtrees is balanced; it includes AVL-trees (Adcl'son·
Velskii and Landis 111), (2 - 3)·l re<!S (Aho et al. 12]), 8-trees (Bayer and McCreight 115]) ,
fl B-trees (Ottmann and Six 11621), red-black trees (Guiba.. and Sedgewiclt 1891) , half·
balanced trc"" (Olivie 1160]) , (a,b)·tree5 (Huddleston and Mehlhorn 1101)) and balanced·
binary-trees (Tarjan 1196]). The behavior of AVL-trees was studied by Foster 165 and
66j, Knuth 11121, Brown 1311, Mehlhorn 1142), Mehlhorn and TsakaJidis 1151), Tsakal idis
12051. In the second cl the weight of the subt rees is balanced ; it includes the BBlal­
trees (' icvergelt and Reingold 11591) and the internal path trees (Gonnet 1821) .

We treat on ly (2,4)-trees and refer the reader to the text books ment ioned "bove for
the other classes. In a (2 , 4)-lrec all leaves have the same depth and every internal node
has between 2 and 4 children. We use p(v) to denote the number of ch ildren (== "rity)
of a node v. In a node v we .tore p(v) - I label. in order to guide .earch~. We will
describe the insertion and deletion algorithms and their amortized and".i. next. For a
t ree T, let the potential of T be twice the number of 4-nodes (= nodes of arity 4) plus
the number of 2-nodes.

Let us consider an insertion first. We .tart by adding a new leaf. This may convert the
parent from a 4-node to a 5-node, which is not allowed in a (2 , 4).t roo . We spl it such
a 5-node into a 2-node and a 3-node. This may create a new S-node, which we sp lit
in turn . We continue splitting newly created S· node., moving up the tree, unt il cithcr
the root splits or no new S·node is created. see Figure 3. If the root splits, we create a
new root , a 2-node, causing the tree to grow in height by one. The time needed for the
insertion is proportional to one plm! the number of splits.

Let us define the actual t ime of an insertion to be one plus the number of splits . Then
the amortized time of an insertion is at most three: each split costs one but converts a
node that was originally a 4-node into a 2-node and a 3-node, for a net potential drop
of one; in addition, the insertion can create one new 2-node or 4·nodc.

Delet ion is an inve~e process, only sl ight.ly more complicated. To delete a given item,
we destroy the leaf containing it. This may make the parent a I-node. If this l-noele
has a neighboring sibling that is a 3-node or a 4·node, we move a child of this neighbor
to the I-node and the deletion stops. (This is called borrowing.) If the I-node has a
neighboring sibling that is a 2-node, we combine the I-node and the 2-node. (This is
called fusing .) Fusing may produce a new I-node, which we eliminate in the same way.
We move up the tree eliminating I-nodes until either II. borrowing occurs or the root
becomes a I-node, which we destroy. (See ~'igurc 4) . The time needed for the deletion
is proportional to one plus number of fusing •.

7

Figure 3

Figure 4

Let us define the actual time of a deletion to be one plus the number of fusing •. Then
the amortized cost is at most two: each fusing costs one but converts two nodes that
were originally Z-nodes into a 3-node, for a. net potential drop of two; in addition , the
ddelion can create one new 2-node.

We summarize. The amortized cost of an insertion or deletion is 0(1) although the
actual cost may be as large as O(log n) . This result ia due to Huddleston and Mehlhorn
1101) and Maier and Salveter 1131). The particularly simple proof given above is due
to Hoffmann et a1 .)95). Levcopoulus and Overmans 1126) have recently shown that
constant insertion and delet ion time can also be obtained in the worst ca.se and not only
in the amortized sense. It is open whether their scheme can also support the various

8

extensions of (2,4)-trees to be discll SS<'ci next.

How frequent ly do expensive insertions and de letions arise? Hllcidleston and Meh l·
horn 11011 showed that. the number of insertions and deletions which cause t fusi ng.
or splittings dc.:reases as an exponential f ullction of t. (2,4)-trees are strongly related
to red-black trees (Gllihas and Sedgewick [89J, symmetric binary 8-trees (Bayer 111])
and half-balanced trees (Olivic [160)) . All of the results about amortized rebalancing
cost ment ioned above carryover to these t roos . Moreover, red-black trees and half­
balanced trees have the additional property that on ly 0(1) structural changes of the t rcc
are required after an insertion or deletion; all other changes concern only bookkeeping
information (OJivie 1160[. Tarjan 1196]). These propert ies and their simpl ic ity make red­
black trees a good choice fo r practical implementations of balanced trees; they make
them also the ideal basi. for finger search trees. Finger search t rees represent ordered
lists into which one can maintain pointe/'8, called fingers, from which searches can start;
the time for a search, insertion or deletion is O(log d), where d is the number of items
between the search starting point and the accessed item. The O(log d) bound can either
be achieved in the amorti7:ed sense (Brown and Tarjan 133!. Huddleston and Mehlhorn
[IOI!) or in the worst case sense (Guibas et .. 1. 188], Kosaraju 11171, Huddleston [1 00],
Tarjan 1194], TsakaJid is 1203 and 2(Hi) . Finger t rees lead to optimal algorithms for h~
bas ic set o~cralions union, intersection , differenc.e , ... ; i.e" these op"Crations take t irnc

O(log (m;~tn":'",))) when applied to sels of size 71 and rn respectively, Huddlest.on and
Meh lhorn [101]. Another application of finger trees is efficient list splitting. Supp,,"e
that we have a list of n items which we Wb.ll\ to split into sublists of length d and n - d

respectively. The position of the split is determined by a finger sea.rch starling from
both ends of the list. The finge r search takes time O(log min(d, n - d)) and this is also a
bound on the amortized cost of t he split, Hoffmann ct al. 1951 . Consider now a sequence
of splits, i.e., we start with a single lis t of length n which we split repeatedly until we
obtain 71 lists of length I each . Th~ wors t case cost T(n) of this process is given by
T(l) = 0 and T(n) = maxI SdSn- dT(d) T(n - d) + O(logmin(d,n - d))] for n ;:: I.

This recurrence has solution T(n) = O(,t), i.e. , the amortized cost of each split is 0(1) .

Frequently, the same search has to be performed on many lists . Several researchers
(Vaishnavi and Wood 12001, Lipski 11281, Willard [216], E<lelsbrunner et al. 155], Cole
1411, lmai and Asano 1104]) observed that the naive strategy of locating the key sepa­
rately in each list by binary search is far from optimal and that more efficient techniques
frequently exist. Chazelle and Guibas [39] dist illed from these special case solutions"
general data structuring technique and called it (ractional ca.scading which supports
under very general assum ptions the search for an item in d lists out of n lists in time
O(d + log N), where N is the total size of the 11 lists. This has numerous applications to
computational geometry. Mehlhorn a.nd Naher [146[studied dynamic fractional cascad­
ing and showed that the amortized analys is of balanced trees carries over to the more
general situation of fractional casca.ding; more precisely they showed that insertions and
deletions have amorlized cost O(log log N) and that a search for an item in d lists out
of n lists takes time O((d + log N) log log N).

Weight-balanced trees (Nicvergelt and Reingold [159]) share many of the properties of
height-balanced trees; their implementation is more cumbersome, however . On the other
hand, they have the following weight-property (Wi llard and Luecker 1217], Blum and

9

Mehlhorn 1251): A node of weight w (i .•. , w dC-"ccndant.s) participatcs ill only O(n / w)
structural changes of the tree when a sequence of n insertions alld deletions is pro­
cessed . The weight-property makes weight-balanced trees superior to height-balanced
trees whenever structural changes of the tree arc very costly, e.g., when their cost de­
pends linearly on the size of the subtree ch"nged. This i. frequently the case in a.ppl ica­
tions to mult idimensional "e"reh or computational geometry where trees are augmented
with substantial additional information. In these applications weight-balanced trees
guarantee good amort ize<! hehavior which cannot be obtained with height-balanced
trees .

2.2. Representation-based Data Structures

In these data structures the representation, say as a string of digits, of the elements
stored is used to compute their position in memory.

We consider interpolation search (2 .2.1), hybrid data structures (2.2.2) and hashing
(2.2.3).

2.2.1. Interpolation Search

We first consider static interpolation search, which is an implicit data structure. In­
terpolation search was suggested by Peterson 11701 as a method for searching in sorted
arrays.

It is obtained from Prog. I , by replacing lines (2) and (7) by

ne%/ I x - SI/ow - 11
(ow - 1) + r -;;S~I h~ig-;hc-.J..c-, 71 "I ---;:;S~IIc-ow-'----:I'1 . (h igh - low + 1)l

It is assumed that positions S[0 I and SI n + 11 are added and filled with art ificial
elements. The worst case complexity of interpolation search is clearly O(n); consider
the case that SI 0 1= 0, SI n + I I = 1, % = 1/ (n + 1) and 0 < S[il < :dor 1 :5 i :5 n . Then
ne%/ = low always and interpolation search deteriorates to linear search . The average
CMe behaviour is much better . Average access time is O(log log n) under the assumption
that the keys X" ••• , Xn are drawn independently from a uniform distribution over the
open interval (XO,%n+l) . This was shown by Yao and Yao [222[. Pearl et a!. [1681 and
Gonnet et al. [861.

A very intuitive explanation of the behavior of interpolation search can be found in Pearl
and Reingold [1691, where they present a variant called binarll interpolation srorch. We
discuss thia ,·ariant:

Binary search has access time O(log n) because it consists of a single scanning of a path
in a complete binary tree of depth log " . If we could do binary search on the paths
of the tree then we could obtain log log n access time. So let us consider the question ,
whether there is a fast (a\ least on the average) way to find the node on the path search
which i8 halfway down the troo, i.e., the node on the path of search which hILS depth

10

1/ 2 log n . Thcre are 21 / 2Iog .. = y'ri of t hese nodes and they are ..;n apart in the array
repre. cntation of the tree . Let us make an initial guess by interpolating and then search
through these nodes by linear search . ote that each step of the linear seach jumps
over n clemcnts of S and hence as we will see shortly only 0(1) steps are required on
the a,·crage. Thus a.n exp L"C ted cost of O(I) has reduced the size of the set from,. to
,;n (or in other words determined the first half of the path of search) and hence total
expected search time is O(log log n).

The precise algorithm for Acas~ (x , S) is as follows . Let low = I, high = ,. and let
next = rp·,.l be defined as above; here p = (x - xo) / (Xn+1 - xo). If x > S[next]
then cornpa.re x with S] ncxt ,. ..;n], S] ,.cxt ~ 2 n I, ... until an i is found with x ::s
SI nexl + (i - 1)· ..;n]. T his will use up i comparison •. If x < S] next] then we proceed
analogously. In any cau, the subtablc of size .;n thus found is then searched by apply ing
the same method recursively. Let p, be the probability that i or more steps a.re required
in the seuch for the .ubtable. Then the expected cost of the search for the subtable is
O(L, po). Also , if i or more steps are required then the actual position of element x in
the array differs by more than iyfi from the expected p06ition (which is pn) and hene<,
p, = O(I/ i') by an application of Chebycheff's inequality. This shows that time 0(1) is
spent at each level of the recursion and hence the expected access time is O(log log n).

Santoro and Sidney]176] proposed another variant called inlcrpolation-binarv search
which has O(log log n) average c&sc access time for the uniform distribution and O(log nJ
worst case time.

Willard 12151 has shown that the log log n asymptotic retrieval time of interpolation
search does not remain in force for m08t nonuniform probability distributions. How­
ever, he was able to modify interpolation search such that its expecte<l running time
is O(log log n) on static It-random files where p i. any regular probability density. A
density I' is regular if there are constants b,,~ , b3,b. ouch that I'(x) = 0 for x < hI
or x > ~, I'(x) ~ b3 ~ 0 and 11'/(%)] ::s b. for bl ::s x ::s ~. A file is I'-random if its
.Iements are drawn independently according to density 1'. It i. important to obsc,,·c
that Willard'. algorithm does not have to know the density 1'. Rather, its running time
is O(log log n) on I'-random files provided that I' is regular. Thus hi. algorithm is fairly
robust.

Dynamic interpolation search, i.e., data structures which support insertions and dele­
tions as well as interpolation search, was discussed by Frederickson]67) and Itai, Kon­
heim, Rodeh 11OS]. Frederickson presents an implicit data structure which .upporLs in­
sertion. and deletions in time O(n'), I!: > 0, and accesses with expected time O(log log n).
The structure of Itai, Konheim and Rodeh has expected insertion time 0(10& n) and
worst cau insertion time O((log n)l). 1\ is claimed to support interpolation ~arch,
although no formal analysis of its expected behavior is given. Both papers assume that
Ihe files are generated according to the uniform distribution.

Mehlhorn and Tsakalidis [150] extend dynamic interpolation search to non-uniform dis­
tributions. They achieve an amortized insertion and deletion coot of O(log n) and an
expected amortized insertion and deletion cost of O(log log n). The expected search time
on files generated by I'-random insertions and random deletions i. O(log log n) provided
that I' is a smooth density. An insertion is I'-random if the key to be inserted is drawn

11

from density JL . A deletion is randoUl if every key present in the current file is equally
likely to be deleted . These notions of randomness are called lr and Dr respectively in
Knuth 11131. A density IJ is smooth if there are constants d and oc < 1 such that for all
a,b,c, with a < c < b, and all integers m and n, m = rn°l.

Ie ~(x)dL ~ dn - I / l

c - (b - o) / m

where Mx) = 0 for x < a or x > band Mx) = /. (x)/ p for a ~ x ~ b where p = f: JL(x)dx.
Every regular density of Wi llard is smooth in this sense.

2.2.2. Hybrid Data Structures

This group of data structures combines arrays and pointers. A main representative is
the digital search tree or TRIE.

The TIUE as proposed by Fredkin 1711 as a s imple way to structure a file by using the
digital representation of its elements; e.g. we may represent S = {121,102, 211,120, 210,
212} by the following TRiE

o

2

102

2 1

o 2 o 1

120 121 210 211 212

Figure 5. A TRIE

The general situation is as follows: the universe U consists of all strings of length lover
some alphabet of say Ie elements, i.e. , U = {O, . . . , k - l}l. A set S £ U is represented
&8 the k-ary tree consisting of all pre6xes of elements of S. An implementation which
immediately comea to mind is to use an array of length Ie for every internal node of th.
tree. Then operations Accu~, Insert and Ddete are very fast and are very simple to
program; in particular, if the reve",e of all elements of S are stored (in our example
this would be set {121, 201 , 112,021,012, 212}), then the following program will realize
operation Aeee.u(x)
This program takes time ott) = O(log. N) where N = IVI. Unfortunately, the space
requirement of a TRIE as described above can be horrendous: O(n · t. . k). For each
element of set S, lSI = n, we might have to store an entire path of l nodes, all of which
have degree one and use up to spaee O(k).

There is a very .imple method to reduce the storage requirement to O(n · k). We only
store internal nodes which are al least binary. Since a TruE ror a set S of size n has n

12

(1) II ~ root ;

(2) II +- x;
(3) do t TIMES (i, y) '- (V MOD k , y mv k) ;
(4) II +- i-th son of II
(5) od ;
(6) If x = CONTENT [II I then "yes" elHe "no" .
______________ Program 2 ____ _________ _

leaves there will be a.t mret n - 1 internal nodes of degree 2 or more. Chains of internal
nodes of degree 1 are replaced by a single number, the number of nod"" in the chain.
In our example we obtain Figure 6.

1

2

Figure 6. The compressed TRIE

Here internal Dod ... are drawn a.> arrays of length 3. On the pointers from fathers to
sons the numbers indicate the increase in depth, i.e., 1 + the length of the eliminated
chain of nod"" of degree one. In our example the 2 on the pointer from the root to the
son with name b indicat ... that after br&nching on the first digit in the root we have
to branch on the third (1 + 2) digit in the .on. The algorithms for Ac<t&$, Insert and
Delete become slightly more complicated for compressed TRIES but still run in time
O(l).

Thus a compressed TRIE supports operations Access, Insert and Deltle with time
bound O(log. N), where N is the size of the universe and k is the branching fa.ctor of
the TRIE. A set S of II elements requires space O(k . n) .

Note that tries exhibit an interesting time space trad~ff. Choosing k large will make
tries faster but more spa.ce consuming, choosing k small will make tries slower but less
space consuming. For static sets, i.e., only operation ACCU$ is supported, there is a
technique developed by Tarjan and Vao 1200) which can store a set S (S ~ U, lSI - 11

and lUI = N) in a II-ary TRIE using 0(11) storage locations (of O(log II) bits each) such
that it can support operation Aue&8 in time O(log" N) worst case and 0(1) expec ted
case. Their technique combines a TRIE structure with a method for compressing tables
by using double d~placements . This double displacement method is an elaboration of

13

a single displacement method suggested by Aho and Ullma.n 16[and Ziegler 1225[for
compressing parsing tables.

Willard [214[introduces two dynamic trie structures, the P -fast TRIE and the Q ­

fast TRIE. A P-fast TI1IE uses space O(n og 2vlo1N) for representing a set S
(S ~ U, ISI = n, lUI = N) and can support ace",," , insertion and deletion in worst case
time O(v'Jog N). The Q-fast TRIE is derived from the P-fast TRIE by using a pruning
technique, it has the same time bound. hut needs only O(n) space.

TRIES also support the following three add itional operations:

SI1UeS80r(x) : Find the least clement in the se t S wi th key value greater t.han x;
predtu88or(x): Find the greatest element in the set S with key value less than z;

l uhset(z" x,) : Find (&!ld produce) the list of those elements of S whose key val ue li es
between XI and x,

The P-fast and Q-fast TRIE can support the operations successor(z) and predecessor(x)
in time O(v'Jog N) and subset(%I, Xl) in t ime O(y'lOgN + k), whcre k is the size of the
output.

Willard 1213[also proposed another static t rie structure, called Y -fast TRIE, wh ich uses
O(n) space &!ld supports <Kce, s(x) , succ or(z) &!ld predueuor(x) in worat case time
O(log log N) and 8u~8et(XI'Z') in O(loglogN + k). This method uses perfect hashing
(see 2.2.3.3.) .

2.2.3. Hashing

The ingrediente are very simple: an array 1'10 .. m - I I, the hMh table, &!ld a function
10: U -> 10 . . m-I I, the hash function. U is the universe; we will assume U = 10 .. N - I I
throughout this section. The basic idea is to store a set S M follows: ' % E S is stored in
1'110(%) I. Then an access is an extremely simple operaUon: compute 10(%) &!ld look up
1'110(%) I.
There is one immediate problem with this basic idea: what to do if h(z) = h(y) for
some %,1/ E 5, % t y . Such &!l event is called a collision. There arc two main methods
for dealing with collisions: chaining and open adressing.

We briefly present both methods and then discuss two techniques for choosing the hash
function 10; perfect &!ld universal hashing. We do not treat the average behavior of
hashing in detail but rather refer the reader to chapter H.

2.2.3.1. Hashing with Chaining

The hash table T is &!l array of linear lists . A set S ~ U is represented as m linear lists .
The i-th list contains all elements x E S with h(x) = i.

Operation Acceas(%, 5) is realized by the following program:

1) compute 10(%)

2) search for x in list Tf h(x) I·
Operations blsert(x , S) and Velete(x, S) arc implemented similarly. We on ly have to
add x to or <.Iclcte x frolll the li.t TI h(x)]. For . he analysis of hashing we assume that II
can be evaluated in constant t ime and therefore define the cost of an operation refer ing
to key x as 0(1 + o .. (x. S)) where S is the set of stored elements and

Oh(X. S) = L:.Es OA(X. y) , and

if h(x) = h(lI) and x i- y

othe,,",' ise.

The worst case complexity of hashing is now eas ily determined. The worst case occurs
when the hash function h reslricted t<> set S is a constant, i,e., h(x) = '0 for all x E S.
Then hashing deteriorates to search ing through a linear list and anyone of the three
operations costs O (iSlltime units .

The average case behavior of hashing is much beller. The expected cost of a sequence
of n insertions, deletions and accesses is 0((1 I fJI2)n), where fJ = nl m is the maximal
load factor of the table. This is true under the following probability assumption:

I) The hash function h: U --+ 10" m - 11 distributes the universe uniformly over the
interval 10" m - II, i,e., for all j, j' E 10" m - 1 , : Ih - I (ill = Ih - I (i') I,

2) All clements of U are equally likely as argument of anyone of the operations in the
sequence, i,e " the argument of the k-th operation of the sequence is equal to a fixed
x E U with probability l/ lUl,

These assumptions imply that the value h(xt) of the hash function on the argument of
the k-th operation is uniformly distributed in 10., m - 1], i.e., proh(h(x",) = i) = 11m
for all k E 11., n] and j E 10. , m - I J. Thus the expected length of anyone of the
lists is at most ilm • .fLer t he i-th operation and therefore the expected cost of the
i + I-th operation is 0(1 + i/ m), Hence the total expected cost of all n operations is
0((1 + /3/2)n). More on the expected analy.;" of ha:shing with chaining can be found
in chapter 14 .

2,2,3.2. Hashing with Open Addressing

Each element x E U defines a sequence h(x, iJ, i = 0,1,2,.,. of t able positions. This
sequence of positions is searched through whenever an operation refering to key x is
performed.

A very popular method for defining the function h(x, i) is to use the linear combination
of two hash functions h I and h.:

Hashing with open addressing does not require any additional space. However , its
performance becomes poorly when the 10aO factor is nearly one.

The average case behavior of hashing with open adressing i. casy to determine under the
unrealistic assumption that the sequence h(x, i) is a random permutation of the table

15

positions ilnd thaL the cosL of an Insert is I -I min{i ; TI h(x, i) 1 is noL occupied}_ Let
G (n, m) be Ihe expected cost of an I nsert when n items are already stored in a tab le
of size m_ Then C(n,m) -= 1 1 n / m · C(n I ,m - 1) ifn > 0, since olle probe is always
requ ired , this probe inspe<.ls an occupied pos it ion with probability nlm and since in th is
case an insertion into a table of size m I holding already n I items is .till required,
and G(O,m) = 1. Thus C{ l1 , m) = (m -I- I)/(m - n + I) o.l / (I - fJ). wherep = 7Ilm is
the load factor. The expected cost of all Accc= operation is O((l / fJ) · In 1/ (1 - fJ)) by
a similar analysis. More on the expected case behavior of hashing with open adressing
can be found in chapter 14 .

2.2.3.3. Universal Hashing

Un iversal Hashing wa.s firsl described by Carter and Wegman ;371. It is a method to
deal with the basic problem of hashing: iL< linear wor.t case behavior. We saw in section
2.2.3.1. that hashing provides us with 0(1) expected access time and O(n) worst case
access time. Thus it is always very risky to use hashing when the actual distribution of
the inputs is not known to the designer of the hash function. It is always conceivable,
that the actual distribution favors worst Case inputs and hence will lead to large average
access times.

Universal hashing is a way out of this dilemma. We work with an entire class H of hash
functions instead of a single hash function ; the specific hash function in use is selected
randomly from the collection H . If H is chosen properly, i.e., for every subset S ~ U
&lmO<lt all h E If distribute S fairl y evenly over the hash table, then this will lead to
small expected access time for every set S. Note that the average is now taten over the
functions in the class H, i.e., Ihe randomization is done by the algorithm itself not by
the user: the algorithm controls the dices.

Let us reconsider the symbol table example. At the beginning of each compiler run the
compiler ch<KlSeS a random element h e ll . It will use hash function h for the nexl
compilalion. In this way the time needed to compile any fixed program will vary over
differcnt runs of the compiler, but the lime spcnt on manipulating the symbol table will
have small mean.

What properties should the collection If of hash funclions have? For any pair x, II E
U,x # 1/ , a random element h E H should lead to collision, i.e., h(x) = h(II), with
fairly small probability. More precisely, let c E IR and N, m E IN. A collection H ~
{h;h: [O . . N - 11 [O .. m - II} is c-universal, iffor all x,y E IO .. N - 11,x f:- y

I{h ;h E If and h(x) = h(y)}! S; (· IHI/m.

Carter and Wegman 1371 analysed the expected behavior of universal hashing under Ihe
following assumptions:

1) The hash function h is chosen at random from some (-universal class If, i.e., each
hE H is chosen with probability 1/1 111_

2) Hashing with chaining is used.

16

They showed that the expected cost of all Accr..,s , Insert or Ddete operation is 0(1 +
c{J) , where {3 = nl m is the load factor, if a c- uni"ersal class of hash functions is used .
They also gave examples of universal classes. Let "' , N E N and let N be a prime .
For a, b E l 0 .. N - 11 let lzo .b (X) = ((ax ~ b) mod N) mod m for all x. Then the class
H = {h • . b ; a , b E l o .. N - 11} is 4-univcrsal. A member of th is d a.5s requires O(log N)
random bils for its selection. Mehlhorn 11431 shows that there is a 8-universal class
whose members can be .elected by O(log rn + log log N) bits and also shows that th is is
optimal. Other universal classes are described in Markowsky et aI., 11341.

2.2.3.4. Perfec t Hash ing

Perfec t hashing is the simples t solution to the collision avoidance problem. We just
postulate that there arc no collis ions, i.e., the hash function operates injectively on the
set to be stored .

A fu nct ion h: 10" N - 1) 10 .. rn - 11 is a perfect hash function for 5 <;; 10" N - 1)
if h(x) i (y) for all :L,y E S,x i y.

Perfect hashing was first discussed by Sprugnoli 1186). He describes heuristic method.
for constructing perfect hash funtions. Fredman, Koml68 and Szemeredi 173) show
that very simple perfect hash functions exist whenever m ~ 3n, n '" 15 1. The hash
functions can be found in deterministic time O(nN) and probabilistic time O(n), can
be evaluated in time 0(1) and are given as program of length O(n log N) bits. The
program size was improved to 0("- log n + log log N) by Mehlhorn /1451, p. 138, and
to O (nlog log n + log log N) by Jacobs and van Emde Boas [1061. A lower bound for
program size is 0(n2/m + loglogN), Mehlhorn IH31.

Perfect hashing was first developed for static sets S. Aho and LL'e [51 .howed how to
deal with insertions and deletions. They describe a hashing scheme which supports
accesses and deletions in worst case t ime 0(1) and insertion. in expected time 0(1) .
The expectation io computed with respect to random inputs; cr. assumption 2 in section
2.2.3.1.

A further improvement was made by Dietzfclbinger et aI. 1461. This scheme combinL";
the adva.ntages of universal and perfect hashing. Accesses and deletions take worst case
time 0(1) and iMertions take t ime 0(1) on the average. However, the average is now
computed with respect to the random choices made by the algorithm and is worst case
with respect to inpuu.

2.2.3.5. Extendible Hashing

Our treatment of hashing in the previous sections was based on the assumption that
main memory io large enough to completely contain the hash table. Let us assume now
that this assumption is no longer warranted . Let us aloo assume that the tran.fer of
information between main a.nd secondary memory is in pages of size b. In this situation
extendible hashing as described by Fagin et al. 1591 can be used. Similar schemes are

17

known under the names dynamic hashing (Larson (1221), virtual hMhing (Litwin (1291)
and expandable hashing (Knott IllOj) .

Let h : U - {0,1}· be an inje<:t ive fu ne ion. For an integer d and :z; E U let hd(:Z;)
be the prefix of h(z) of I',"gth d and for a set S !: U let d(S) be lhe minimal d such
that I{:t E S;h.(x) - a} 1 $ b for all a C (0, l}d, i.e., hd partitions the set S into
suooets of size al most b. Extendible hashing uses a table T (O .. 2'(S) - 11. called tltt'
directory, and some number of buc ct.:s of capacity 6 to store set S. The directory
entries are pointers to buckets . An element xE S is accessed by computing i = h.(x),
looking up T [il and then acc .. sinll the bucket pointed to by Tlil . In this way al most
two accesses to secondary tnemory are ever needed . The first access is to the page
containing TliJ and the second access is to the bucket containing:z;. We allow different.
directory enLries to point 10 the same bucket as long as the following buddy principle
holds: If r < d(S),o E to, 1}",ol . a2 E to, l)d(.5) - ',ol t"l and T laad '" Tla"l l then
necessarily T[a<1J! = TI=lJ fo r all 03 E to, 1}4CS) - " .

In.serlionB a.re easily processed except when a bucket overflows. In this case dIS) in­
creases by one. the size of the diredory doubles. and the overflowing bucket is split into
two.

The expected behavior of extendible huhing is treated in the papers mentioned above
and more completely in Flajolet 162]; cf. also chapter 14. He shows that the expected
number of buckets is n/ (6 In 2) and that the expected 8ile of the directory i. about
ej (b In 2)nH 1/&. A variant of extendible hMhing (Tamminen 1191]) achieves linear
expected diretory size and 0(1) expected access time.

S. The Weighted Dictionary Problem and Self-Organizing Data
Structures

In the weighted dictionary problem a weight ('" access frequency) is associated wilh
every element of the set S . The basic goal LA to make accesses to high frequency elements
faster th&ll to low frequency clements wilhout sacrifying the efficiency of the other set
operationl!!l.

The first problem studied was the construction of a.ll optimal search tree for given access
frequencies . More precisely, let S '" {%l •.•.• Xn } and let w. be the weight of item Xi·

For a tree T let di be the depth of item i. Then P = Li widi is called the weighted
palh length of the tree T. It is not too hard to construct an optimum tree , i.e. a Iree
which minimi'es the weighted path length, in time 0(n3

) by dynamic programming.
This waa improved to 0(02) by Knuth [1111 (see also YaJ:> 1224]). In the case of leaf­
oriented storage an O(ologn) algorithm was found by Hu and Tutker (99) and Garsia
and Wachs 181) . The latter algorithms resemble Huffman's algorithm (Huffman 1102])
for the construction of optimal prefix codes. The original correctness proofs for both
algorithms were fairly involved. A simple proof was reeentl), found by Kingston 11081.

A search tree for a sel S yields directly a prefix code for the symbols Xl, • .•• x" over the
binary alphabet {"go I./t", "go right"}. In view of the noiseless coding theorem it is
therefore not surprising, thai the normalized weighted path length P = L ,(Wi/W)d ..

18

where W = L . W; , is strongly related to the en tropy H = L , (w. (W) 10g(W / w;) of
Ihe access frequency distr ibu tion . In par t icular, P ~ H - log H for node-oriented
storage and P ~ H for leaf-oriented 5torage. Bayer 1131 . Also, there are trccs achieving
P < H + 2 for both storage orga.nizat ions. Mehlhorn 11391. Nearly optimal trees , i.e. ,
Irees which come within a constant factor of opt imality and can be constructed in lillea r
time O(n) were described by Fredma.n 1721. Mehlhorn 1138J, Dayer 113J and Korsch 11I6J.
An implicit data structure ach iev ing the same goal was found by Frederickson , 169J.

We will now turn to the dynamic case. It has two facets: the underlying set S may
change and the acceSlS frL"luellcies of the elements in S may change.

Faller 160J and Gallager 1781 proposed a scheme fur dynamic Huffman coding. Knuth
11141 gives a real-t ime im plementation of this scheme. More precisely, suppose that the
frequency w of a leaf at depth I changes by one. Then an optimal Huffman tree for the
new distribution can be derived from the old Huffman troo in time 0(1). Vitter 12101
refined this result. His scheme does not only work on-line in real time, it also uses at
most one more bit per letter t han the standard off-line Huffman algorithm.

Let us consider search trees next. The relevant operations are:

Acccss(%, S): if item % is in set S then return a pointer to its location, otherwise retur n
nil

Insorl(% , S): insert % into set S
Ddde(z , S): delete z from sel 5 and return the resu lting set
Join(S) , 52): return a set representing the items in 5) followed by the items in 52.

destroying 5 , and 51. (this assumes that all elements of 5, are smaller
than all clements of S2)

Split(%, S): returns two sets S, and S2; S, contains all items of S smaller Ihan x and
S2 contains all items of S larger than % (this assumes that % is in S); set 5
is destroyed

Chango Weight(z. 5, 6): changes the weight of clement % by 6

What time bounds can we hope for? We mentioned above, that the normalized weighted
path length is related to the entropy of the frequency distribution and therefore the best
we can hope for operation Access is an O(log(W jw;)) time bound . We call this bound
the ideal acccs& time of item i . Similarly, inserting an el~ment of weight w can be no
cheaper than accessing the new element or one of its neighbors in the new tree and we
should therefore conlent ourself with an O(log(W + w)/min(w+. w, w-)) time bound.
where w- and w+ are the weights of the two neighbors of the new element.

Bayer 113J gave a heurist ic for the weighted dynamic dictionary problem, but he gave
no theoretical results , and indeed his trces do not have ideal access time in the worst
case. Unterauer 1201J achieves ideal access lime, but does not analyse Ihe worsl case
time required for updates . Mehlhorn 1140 and 141J introduced D-trees; D-trees extend
BB[al-trees and achieve ideal war!! c Access, Change, Insert and Delete time. He did
not consider Join and Split . D-tr~ have the weight-property of BBlaJ-trees mentioned
in section 2. Operations Join and Split were then considered by Giiting and Kriegel
[87J, Kriegel and Vaishnavi IU9J, Bent , Sleator and Tarjan 1181, achieving good worst
case bound. for all five operations.

19

A "ery elegant alternat ive whic:h uhieves good amortized time bounds for all operations
was found by Sleator and Tarjan 11831 . Their splay trees show the following behavior.

The amortized cost of Access(x, S) is O(log(W / w)).

The amortized C06t of Ddete(x.S) is O(log m t'! - j). where w - is the weight of t he
predecessor of z in 5.
The amortized cost of J oint 5,. 5,) is O(log '" ~ "') , where w is the weight of the largest
element in 5, and w, is the weight of S,- .

The amortized cost of In"rt(x. S) is O(log n w - .w .w). where w - is the weight of

the predecessor. w+ is the weight of the successor of x.

The amortized cost of Split(x. 5) is O(log(W/ w)).
The amortized cost of ChangeWeight(x .5.6) is O(log((W + 6) / w)).

Splay trees achieve this behavior without keeping any explicit information about the
weights of the elements; they arc a so-called sdt-organi%ing data strueture. In self­
organizing da.ta structures an item x is moved closer to the entry point of the data
structure whenever it is accessed . This will malee subsequent a.cces~ to x cheaper . In
this wa.y the elements of S compete for the good places in the data strucLure and high
frequency elements ue more likely to be there. Note h"",..,ver, that we do no/ maintain
any explicit frequency counts or weights ; ra.ther, we hope that the da.t& structure self­
organizes to a. good data structure.

Since no global information is kept in a self-organizing data structure the worst c~
behavior of a single opera.tion can always be horrible. However, the a.verage and the
amortized behavior may be good. For an average case &nalysis we need to ha.v. prob­
abilities for the various opera.tions. The data structure then leads to a Markov chain
whose states ue the different incarnations of the data structure. We c&n then use prob­
ability theory to compute the stationary probabilities of the various stales and usc these
probabilities to derive bounds on the expected behavior of the data structure.

For the amorti1:ed behavior, we take a combinatorial point of view a.nd analyse the
cost of sequences of operations. Experiments (Bentley and McGeoch [20]) suggest that
the behavior of the heuristics on real data is more c108ely described by the amortized
analysi. than by the probabilistic analysis. We will now describe seif-organizing linear
search in some detail and then briefly return to search trees .

Sdt-organizing linenr 3enrth is quite simple. Let 5 = {x" ... , xn } and let us assume
that 5 is organized &II a linear li.t. For simplicity, we consider only the operation
Aoct~&(%) and postulate that the C08t of Acctss(x) is po,(x) where po,(x) denotes the
poeition of z in the current list.

Two populu .tra.tegies for .elf-organizing linear search are the Move-ta-Front and the
Transposition Rule.

Move-Io-Front Rule {MFR}: Operations Acct .. (%) and Inaert(x) make x the first ele­
ment of the list and leave the order of the remaining elements unchanged.

Transposition Rule {TR}: Operation Aouss(x) interchanges x with the element preced­
ing % in the list.

20

For the average case ana lysis we postulate a probability distribution PI. , . . • p .. and
assume that the accesses are independent random variables and that an access to item
Xi has probability Pi· We may assume PI ? p, 2: .. . 2: P .. w.l.o.g . Assuming complete
knowledge of the distribution it is clearly optimal to arrange the items according to
decretJ$ing frequenclJ and to never change t his arrangement. The expecled access cost
is EFD = Li Pi . i in this case. Let us denote the expected access cost of the two rules
by EMP and ET rL'lSpectivcly. The expected behavior of the Move-to-Front Rule was
investigated by McCabe Il36]. Hurville and Kingman 134], Knuth 1112], Hendricks 1931.
Rivest 11751 and Bitner [22]. In particular .

n

EM F = LP.(1 + L . ~) ~ 2· EFD .
i = l j", . PI . p)

This can be seen as follows. The expected position of element Xi under the Move-to­
Front Rule is 1 plus the expected number of x;'s which are in Cronl of Xi. Next observe
that Xi is ahead of x, if there is an integer Ie such thaI the last Ie accesses were an
access to Xi followed by Ie - 1 accesses to items different Crom Xi and Xi ' Hence the
probability that Xi is ahead of Xi is given by Pi Lk;::O(1- (Pi + Pi))k = Pi/(P; + Pi) and
the expression for EMP follows. Next observe thllt Pi/(P; + Pi) ~ 1 and hence

n i - J

EMP = 1+2 . :L>iL Pi ~ 1+2'LPi(i - l) ~ 2 ' EFD
i ; 1 j;1 Pi + Pj ,

This shows. that the expected acces~ co.1 under the Movc-to-Front Rule is at moost
twice the optimum. The Transposition Rule is Mver worse. More preciaely. Rivest [1751
showed that ET ~ EMF. with strict inequality unless n = 2 or Pi = l/n for all i. He
further conjectured that transpos. minimizes the expected access time Cor &fly P. bU I
Ander30n et al. [101 found a counterexample. Chung et al. 140I .howed EMF ~ ~. Ef'D
and Gonnet et al. [851 gave an example where this bound is obtained. Thus the worst
case ratio EM~'/E"D is 1< / 2. The convergence speed of the two rules Was compared
by Bitner [22J and it was found that the Move-to-Front Rule converges more quickly.
A combination of the Move-to-Front Rule with the more tr&clitional method of keeping
frequency counts is discussed in Lam et al. [12!J .

We will next present an analysis of the amortized behavior of the Move-to-Front Rule
due to Bentley and McGeoch 1201. Assume that we perform a sequence oC m accesses
to this list. Let h"l ~ i ~ n, be the number of aGcesses to Xi . We may ""sume w.l.o.g.
that hI ;:: h, ;:: . . . 2: h .. . If we starl with the list Xl • . .•• x .. and never change it then
the total cost of the m accesses is eTD = L. i· hi ' Suppoee now that we start with the
list XIo ...• Xn and use the Move-to-Front Rule. Let eMF be the total cost of m accossos
under the Move-to-Front Rule. Let t~,1 ~ i ~ hi, be the cost of the i-th access to item

Xi· Then GMF - GFO ~ L~; 1 L~~ 1 t~ - L::'I ih; = L~;1 L~~dt~ i). Consider an
arbitrary term t~ - i in this sum. If t~ > i then there were at least t~ - i accesses to

items x~,h > i, between the (j - I)-th access and the i-th access to x, (the O-th access
is the initial configuration. Thus

h.

L(tj - i) ~ hi + 1 + ... + h ..
Je l

21

and hence GMF - GFD < 2:: ~= , (", - , - .. . + h~) = 2:::'= ,(i - l)h. = GpD - m . In
particular , G."P :s 2 · Gpn· A much st ronger result was shown by Sicator and Tarjan
[184 j. They proved that no rule whatsoever can beat the Move-to-Fron t Rule by more
than a factor of two. This is even true for off-line rules wh ich know the complete
sequence of accesses in advance .

Allen and Munro [8J were I. h~ fi rs t to considor self-organizing binary search. They show
that the expected search time under the Move-to-Root heuristic, where an accessed item
is moved to the root by a seqllence of rotations, is only a constant factor above the ex­
pected search time in an optimum search tree. They also showed that t he transposit ion
heu ristic do.,. (lot have this properly. Bitner [22J investigates the expecled behavior of
several other heuristics .

Splay t rees (5leator and Tarjan (1831) refine the Move-to-Root heurist ic by combining it
with the concept of path compression, d . the sec tion on the Un ion-Find-Spli t prob le m.
The access-t ime in splay t rees is within a constant factor of the access-time of stat ic
opt imum search trees ; th is is the analogue of the relationship GMF :S 2 · GFD derh'ed
above. It is open , whether this result can be extended as it was in the case of the Move­
to-Front Rule for linear search. A lUst step was taken by Tarjan 1197J who showed that
accessing the nodes of .. splay t ree in sequential order takes time O(n) .

4. Persistence

Ordinary data structures are ephemeral in the sense that a change to the struct ure
dostroys the old version , leaving on ly the new version available for use_ In contrast , a
ptrsistent structure allows access to any version. old or new. at any time. We distinguish
partial and lull persis~nce . A data structure is partially per$istent if all versions can
bc accessed but only the newest version can be modified. and lull" peraistent if every
version can be both accessed and modified .

A number of re8earchenl have developed partially or fully persistent forms of various
data.tructures. including stacks (Myers [157]). queues (Hood and Melville [96]). search
trees (Myers [1581. Overmars [1631. Reps. Teitelbaum and Demers 1174J. Swart II90J,
Sarnak and Tarjan [1771l and rela~d structures (Chazelle [381. Cole [41 J. Dobkin and
Munro \49[' Driscoll . Sarnak. Sicator and Tarjan \53]).

In the article. of Dobkin and Munro 149J, Overmars [163 and 165J, Chazelle 138J the
problem of persistence is called searching in the past .

Dobkin and Munro [49J COli sider the following problem. Let S be a universe of n objects
subject over time to m deletions and insertions in arbitrary order. Assuming that there
exists a total order among the objects, they describe a method for comput ing in time
O(log n log m), the rank of any object at any given time , i.e., the number of objects thai
preceed it at that time. The space used is O(n + m log n) . Overmars \1641 improves
the query time to O(log(n + m)). Chazclle [38J presents a data structure that requires
O(n + m) storage and allows the computation of any neighbor of "new object at time 9,
in O(log n log m) t ime. The method also allows the set S to be only partially ordered .

Overmars [165J studies three .imple but general ways to obtain part.ial persi8tenu. One
method is to explicitly store every version , copying the entire ephemeral structure after

22

each update operation. T his cosls O(rt) l ime a nd space per update. An alternative
method is to store no vers ions bu t ins tead \0 store Ihe entire sequence of update op­
erations , rebu ilding the cu rren l venion from scratch each time an access is performe<.i .
A hybrid method is to store the entire sequeIlce of update operations and in addition
every It-th version , for some suitably chosen value of k.

Cole 14!J devi.es a partial persistent rep resentation of sorted sets that occupies 0(",)
space and has O(log m) access t ime, where m is the total number of updates (insertions
&l1d deletions) st.arting from an empty set . llis solu t ion is off-line, i.e. , the entire sequence
of updates must be known in advance. Sarnak and Tarjan [177] propose a simple dala
structure that overcomes th is drawback. They present a persistent form of binary
search tree with an O(log m) worst-case access/ insert/ delete t ime and an amortized
space requirement of 0(\) per update.

Swart [\90], using the idea of path copyillg , presents a fully persist.ent representation of
sorted sets and lists with O(log m) time bound per operation and an O(log m) space
bound per update.

Driscoll et al. [53] finally propose a general solution for the persistence problem. They
develop simple, systematic and efficient techniques for making different linked data
structures persistent. T hey show first that if &II ephemeral structure has nodes of
bounded in-degree, then the structure can be made partiallv pt.rsislent at an amortized
space cost of 0 (1) per update step and a constant fac tor increase in the amortized cost of
access and update operations. Second , they present a method wh ich can make a linked
structure of bounded in-degree full~ persistent at an amortized t ime and space cost of
0(1) per update and a worst-case t ime of 0(1) per access step. At last they present
a partial persistent implementat ion of balanced search tree with a worst-case time per
operation of O(log n) and an amortized space cost of 0(1) per insertion or deletion.
Combining this result with a delayed updating technique of TsakaJidis [204] they obtain
a fully persistent form of balanced search trees with the same time and space bounds
as in the partially persistent case. Using another technique they can make the 0(1)
~pace bound for insertion and deletion worst-case instead of amortized. The technique
employed by Driscoll et al. is strongly related to fractional cascading, cf. section 2.1.2.
This relationship can be used to support a forget-operation which permits to cxplicitely
delete venions and thus improves the space requirement , Mehlhorn ct a.1. [148].

5. The Union-Split-Find-Problem

We consider the problem of maintai ning a collection of disjoint sets under the opera.tions
of union and 8p1it. More precisely, t he problem is to carry out three kinds of operatioM
on a partition of the IInivers.e U = {I , . .. , n} : find , which determines the set containing
a given element; union , which combines two sets into one; and split, which splits a set
at a given element into two. In order to identify the sets, we assume that the algorithms
maintain with each sct a unique name. The precise formulation of the three operalions
is as follows :

find(z) : return the name of the set containing z

23

union(A , B): combine the two sets wi lh names A and B, destroying the two old .cl.s.
and return a name for the new set.

aplit(A, x): sp lit t he set with name A into the sets AI = {y E A; y :5 x} and A2 =

A - AI, destroying Ihe old set , and return names for the two sets formed .

5.1. The Union-Find-Problem

Here, we start with the partition of U into singleton sels and allow only the operations
find and union . A popular solution , proposed by Galler and Fischer 119) represents each
sct by a rooted trcc. The nodes of the tree a.rc the clemen Is of the sot a.nd the name of
a set is the root of the tree. With each element x we store a pointer p(x) to its parent;
the parent pointer of a root is nil. Inilially, all parent pointers arc nil. To carr)' oul
fi,u/(x), we follow parent pointers starting in x unlil we reach a root and return the
root. To carry out union(A, H), wo define ptA) to be B and return H.

The naive algorithm is not very efficient, requiring O(n) time per find in the worst casco

However, there arc two simple heuristic.s which improve the efficiency dramatically: Ihe
weighted union (Galler and Fischer) ano the path compr<8R;on heuristics (Mr.lllroy and
Morris). We store with each sct A its cardinality size(A) and carry out union{A ,8)
by defining ptA) to be B , if $iZl(A) ::; size(8), and p(B) to be A, otherwise. In the
algorithm for jind(x) we not only traverse the path from :z; to the root but also redirecl
all parent pointers of t he nodes traversed to the root.

Suppoee now that we carry out m ;?: n finds and n - 1 unions . Let I(m, n) be the
maximum time required by any suc:h sequence of instructions. Fisr.her 1611 showed
that t(m,n) = O(n + m · Ioglogm), Hopcroft and Ullman 1971 improved the bound to
I(m, n) = O(n + m . log· n) and finally Tarjan /192), Banachowski 1121 improved the
bound to t(m, n) = O(n ~ m· arm, n)) , where a is the inverse of Ackermann's funct ion ,
i.e.,

and

a(m,n) = min{z ~ 1; A(z,4 [m f nll > logn}

A(i,O) = 1

A(O, x) = 2x

A(i + I,z + I) = A(i,A(i 1· 1,x))

for all j 2: 1

for all x 2: 0

for all i, x 2: o.
Tarjan and van Leeuwen 1199) show that the same time bound applies to several variant.:;
of the union-find algorithm described above.

How good is this algorithm? Tarjan 11931 has shown that any pointer machine algorithm
which obeys the $eparation a..umption requires time fI(m · a(m, n)) to solve the un ion­
find problem. The separation assumption states that sets correspond to conllccted
components in the pointer st.ructure.

A II time bounds quoted above are amort izeo . The worst case behavior was considered
by Blum 1241 and he proves a 9(log n f log log n) bound; again , the lower bound uses the
separation assumption.

The average u.se behavior was cOlls idered by Ooyle and Rivest 151 1, Vao 12201, Kmll h
and Schonhage [llSI, Vao [2211 and Bollobas and Simon 1261. They show that un der
various probabili ty assum pt ions the expec ted running time of the union-find algorithm
is linear , even if only one of the two heuristics is used .

Manilla and Ukkonen [1331 consider a variant of the general union-fi nd problem where
backtracking aver the llJ8t un ion operat ion" is pORsible by means of a deunion operation .
They present two methods, wh ich a llow to process a sequence of m f i no.." k unions
Uld k tkunion$ in time O((m + k) · Iogn / loglogn) Rnd O(k + mlogn) respecti"ely,
W""tbrook and Tarjan 1212/. A further generalization where weights are associated wi lh
the unions is considered by Gambosi et al. ISO].

All of the algorithma mentioned above run on pointer machincs. A linear time RA\I ­
algorithm for the special case where the unions arc known in advance was recently
dcscribed by Cabow and Tarjan [771.

5.2. The Interval Split-Find-Problem

Here, we .tart with the part it ion of U inlO a single block and allow only the operat ions
find and 6piil. Clearly, all blocks arising during the execution are intervals. Hopcroft
and Ullman 197] gave a solution which processes n splits in total time O(n log' n) and
each find in worakase time O(log' n) . Gabow (76) gave an improved algorithm wh ich
proc"""es the n splits in total time O(n . o(n , n)) and each find in amortized time
O(o(n, n)). All of this runs on a pointer machine.

Again , one can do better on a RAM. Cabow and Tarjan 1771 gave a linear time solution
which was then extended by lrnai and Asano [104] to the incremental set splitt ing
problem. In this version the underlying universe can be expanded by adding (operation
odd) a new element next to a given element. Of course, the acCC8$ operation, which
is implicit in a find, becomes non-trivial now and is not accounLed for in the linear
time bound. However, in the applications discussed by lrnai and AS&Ilo this causes no
problema.

5.3. The Interval Union-Split-Find-Problem

We finally turn to the full problem. Here, we start with the partition of U into sin­
gletons and allow the operatio"" find , .plit and union. We pootulate however, that
the partition is a.lways a partition into inten'als, i.e., a union operation can only join
adjacent intervale. It is cuatomary, to use the right endpoint of an interval as the name
of the interval in this problem.

Van Emde Boas, Kaas and Zijlstra 10581 describe a pointer machine solution which ex­
ecutes all three operations in worst case time O(log log n). The corresponding lower
bound was shown by Mehlhorn, Naber and Alt 1147). The lower bound does not use the
separation assu.mption and i. even valid for the amort.ized complexity of the problem.
Mehlhorn , Naber and Alt 11471 also show that the lower bound increases to O(log n)
with the separa.tion assumption .

25

Finally, Mehlhorn and Naher 1\0161 show tha t the additional operations add and <ra . .e,
which modify the underlying universe by adding an element next to a given element or
removing a given element , can also be supported in amortized time O(log log n).

6. Priority Queues

A priorit" queue is an abst ract data structure consisting of a set of items, each wit.h a
real-valued .l:e", subject to the following operations:

mtlktqutue: Return a new , empty priority queue.

insert(i, h): Insert a new item i with predefi ned key into priority queue h.

findmin(h) : Return an item of minimum key in priority queue h . This operation docs
not change h.

deletemin(h): Delete an item of minimum key from h and return it.

In addition, the following operations on priority queues are often u:scful:

meld(hl' h,): Return the priority queue formed by taking the union of the item-disjoint
priority queues hI and h,. This operation destroys hI and h.,.

docrr08d:t,,(6, i,h): Decrease the key of item i in priority queue h by subtracting the
non-negative real number 6. This operation assumes that the
posit.ion of i in h is known.

delde(i, h) : Delete arbitrary item i from priority queue h. This operation assumes that
the position of i in h i. known.

In our discussion of priority qucullS we shall assume that a given item is in only one
priority queue at a time and that a pointer to its priority queue position is maintained.
It is important to r~mber that priority queues do not support efficient searching for
an item.

Priority queuea have many applications, most noteworthy sorting and network opti­
mization problems. A set of n items may be sorted by one ma.l:equeut, n instrt, n
,indmin and n Ikletemin operations. The single source shortest path problem (ef.
chapter 10) on a graph with n nodes and m edges of non-negalive weight can be solved
by one m4kequeue, n insert, 'indmin and deldemin and m dureasekey operations.
We infer from these applications that al least one of the operations inurt, ,indmin and
dde/emin must have cost O(log n) because of the O(n log n) lower bound for sorting and
that the operations can occur with drastically different frequencies in some applications .

Some solutions, to be described in the sequel, do not support the meld operation. We
will refer 10 a priority queue without this operation as a simple priority queue. Also
note, that a dccretUekell operation can always be simulated by a delde followed by an
inserl.

For small universes, say the keys are drawn from the range 11 .. Nj, any solution for
the Union-Split-Find Problem (d. section 5) gives a simple priority queue: the set
of itema in the queue corresponds to the marked items of that section, Find{l) is
'indmin, Union(i) is ddete(i), Union(Find(I)) is dddemin, and Split(i) is insert(i) .

26

[n particular, the simple queue operations can all be realized in time O(log log N) pcr
operaLion. Orlin and Ahuja [16 lJ give a solution with an 0(1) bound for makequeue .
d.dt/e, findmin , decrea&ekey and an O(log N) bound for insert and deletemin. Ahuja
ct &1. [71 improve this Lo 0(1) for delete , findmin and decrea.'Jekey, O(n) for makequeue
and O(y10g N) for in.«rt a.nd ddetem in ; here n is the number of insert operations.
This gives rise to an O(m ~ n J log N) shortest path algorithm.

Moot 50lutions for arbitrary universes a.re based on the concept of a heap-ordered Ir"".
A heap-ordered tree is a rooted tree cont.aining a set of items, one item in each node,
with the iwnus arriUlged in heap order: if v is any node, then the key of the item in v
is no less than the key of the item in its pilrent p(v) , provided v has a parent. Thus the
Lr"" root contain. an item of minimum key.

A first realization of simple priority queues was given by Williams [2181. He uses com­
plete binary heap-ordered tr""" and .hov;5 that the simple queue operation. all take t ime
O(log n) and that complete binary trees can be stored implicitly in an array without.
the usc of pointers. Floyd [63] show. that a makequeue followed by '1 inserts call be
made to run in time O(n) instead of O(nlogn) .

Doberbt [471 gives an average ca.se analysis of Floyd '. algorithm. Porter and Simon
[1711 analyzed the average coot of inserting a random clement into a random heap
in terms of exchanges. They proved that this average is bounded by the constant
1.61. Their proof docs not generalize to sequences of insertions since random insertions
into random heaps do not create random heaps. The repeated insertion problem was
solved by Bollobas and Simon 127]; they 8hO'>'l' that the expected number of exchanges
is bounded by 1.7645. The worst-use coat of inserts and deletemilUl was studied by
Gonnet and Munro [84]; they gh'e log log n + 0(1) and log n + log n· + 0(1) bounds for
the number of comparisons respectively.

l.n the 70's and 80's many different real izat ions of Ihe full repertoire of priority queue
operations were found: heap-ordered (2 - 3)-trees (Aho, Hopcroft and Ullman 12]),
leftist trees (Crane 142]) , binomial queues (Vuillelllin [2111, Brown 130]), self'adjusting
heaps (Sleator and Tarjan [1'85]) and pairing heaps (Fredman et al. 174]) . They achieve
O(log n) bounds for all operations.

Johnson 11071 introduces (Vary heap-ordcrcd trees, where a is a parameter, and shows
how to implement makequ ... e a.nd findmin in time 0(1) , durea.'Jekey in time
O(log nJ
loga) and the other operations in time O(alognf loga) . With a = max(2,log(m/ n))
this gives risc to an O(m log nf max(2, log(m / n))) shorte.t path algorithm.

Fredman and Tarjan 1751 improve Johnson 's result and obtains 0(1) amortized time
bounds for makequeue, findmin , insert , meld and tkcreaukey and O(log n) amortized
time bounds for tkltle a.nd ddttemin. They call their data structure Fibonacci-heaps .
F-heaps give rise to an O(n log n + m) shortest paLh algorithm. An alternative to F·
heaps are the relaxed heaps of Driscoll et al. 1521. In contrast to F-heaps the t.ime
bound for deletc and dcJet/lJDin is worst case instead of amortized.

A generalization of priority queues was considered by Atkinson et al. Ill]. They add
the operations findm4% and delt/emax and show that the O(log n) time bound can be
maintained.

27

7. Nearest Common Ancestors

In this chapter we consider the followi ng problern: Given a dynamically changing collec­
tion of rooted trees , answer queries of the form ·What is the nearest common ancestor
of two given nodes % and y , denoted by flca(x, lI)?"

Of course , this problem comes in many different Uavors according to which update
operat ions are permitted . We use" to denote the total number of nodes, m to denote
the number of dynamic operations and k to denote the number of queries.

In the off-line version of the nearest common ancestor problem, the collec tion of t.rees
is static and the sequence of queries is known in advance. Aho, Hopcroft and Ullman
13J desc ribe an O(n + k . o(1c + n, n)) pm- algorithm using O(n) space_ Here £> is the
functional inverse of Ackermann's function, d. sect ion 5. Cabow and Tarjan 177J give
a.n O(n + k)-time RAM-algorithm u.ing O(n) space.

In the $!atic, on-line version the collection of trees is static but the queries arc given
on-line, i.e., each query must be anowered before the next one i. given. Aho, Hopcroft
and Ullman 13J propoee a RAM-algorithm requiring O(n log log n) preprocessing time,
O(n log log n) space and o (log log n) time per query.

Harel and Tarjan 192J present a RAM-algorithm running in O(n) preprocessing time ,
O(n) space and &n!wcring a query in 0(1) time; a simpler solution with the same
performance is given by Schieber and Vishkin 1178).

Van Leeuwen 11231 gives a pm-algorithm requiring O(n log log nJ preproce88ing time,
O(n log log n) space and O(log log n) optimal query time. Harel and Tarjan 192J prove the
optimality of this query time and claim that van Leeuv.en's algorithm can be modified
to run on a pointer machine in linear time and space. Another optimal pm-algorithm
with O(n) preprocessing time, O(n) space and 0 log log n) query time is described in
van Leeuwen and Tsa.kalidis 1125J.

We now eome to the dynamic version" of the problem. In the linking roots version,
the querie$ are given on-l ine and two tr.es can be joined by linking their roots. Van

Leeuwen 1123J gives an O(n + m log log n)-time pm-algorithm answering ea.;h query in
O(log log n) time.

Harel &lid Tujan 192J present an O(n + m ·a(m + n, n))-time RAM-algorithm answering
each query in O(a(m + n , n)) amortized time.

In the linking and cutting version the queries are on-line and the collection of t r~es
can be modified by two operations. Link(% , lI) . where 1I is a root , makes 1I a child of
the vertex % (not necessarily" root) and cut(%) deletes the edge connecting % to its
parent and thus makes % an additional root. Aho, Hopcroft and Ullman 13J consider
only linkings. Their algorithm run. on a RAM in time O((m + n) log nJ and space
O(n log n) and the time required for a query is O(log n). Maier /130J considers linkings
and cuttings, achieves the same time bound and improves upon the space bound. His
solution requir ... less than O(n log n) but still more than linear space; it "Iso run. on a
RAM.

Sleator and Tarjan 1182J give the fastest solution which in addition runs on a pointer
machine. At first they propose a solution with total running time O(n + m log n) for m

28

link and cut operations between n nodes u.ing spac. O(n) ; the nearest common ances tor
can also be determined in t ime O(log n) . Ry using a more complicated data structure
they can improve the above result so that each individual link and cut operation takes
time O(log n) .

In the dllnamic tree tlersion the queries Me on-line, there is only one tree, and this trce
can be updated by the insertion of leaves or deletion of nodes.

TsakaJidis 12061 presents a pm-algorithm which needs O(n) space, performs m arbitrary
insertions and deletion. on an in itially empty tree in time O(m) and allows to determine
the nearellt common ancestor of nodes x and y in time O(log(min{depth(x),depth(y) })
+Q(k, k)), where the second factor i. amortized over the k queries and depth(x) is the
distance from node x to the root.

8, Selection

The selection problem can be stated as follows: We are given a sequence XI, " . , X .

of pairwise distinct elements and an integer k , 1 :5 k :5 n, and want 1.0 find the k- th
smallest element of the sequence, i.e. an Xi such that there are k - 1 keys X, with
x, < Xj and n - k keys x, with x, > Xj ' For k = n/2 such a Ieey i. called median. Of
course, selection can be reduced to /IOrting. We might lirat /IOrt sequence XI,' .. ,Zn and
then find the k-th smallest el .. ment by a single scan of the sorted sequence. This results
in an O(nlogn) algorithm. A linear expected time algorithm waa found by Hoare 194J.
One simply splits the set S into subsets 51 = {z E S;x:S XI} and s.. = {x E &;X > z,}
and then applies the algorithm recursively to the appropriate subset. If T(i, n) denotes
the expected time to determine the i-th largellt element in a collection of n elements
then T(i,n) = n + ~(L~-:" , T(i - k ,n - k) + L;;;T(i,k)) aince ZI is the k-th largest
element with probability l i n. Then T(i, n) = O(n) as a simple induction shows.

A worst case running time O(n) can be obtained by chooeing the splitting element
more carefully, Blum et al. 123) . The set S is divided into subsets of :; elements each
and the median of each subset is computed. The algorithm is then used recursively to
determine the median of the n l 5 medians. The mediali of the medians is used as the
.plittina element. This choice guarantees that max(15,1, 152 1) :S 8n/11 and therefore the
worst cue running time is governed by the recurrence T(n) :5 O(n) + T(nI5) + T(8n/ ll)
which has an O(n) solution.
Knuth 1112),5.3.3, trues the history of the selection problem to the writings of Dodgson
150), and provides an excellent overview of the early developments of this problem. The
original formulation of the problem by Dodgson 150J and Steinhaus 11881 was in terms
of lawn tennis tournaments .
Let V.(n) (V.(n) be the number (average number) of pairwise comparisons needed to
find the k-th smallest of n numbers (k ~ 2) (assuming that all nl orderings are equally
likely) . Of particular interest is the asymptotic behavior of V.(n) (V.(n)) when n goes
to infinity either with k fixed or with k = a' n for a fixed conatant Q in the range
0 :5 a :5 !.
Hadian and Sobel 1911 described an algorithm, called rep/aeement $dection by Knuth,
that proves the general bound

29

V.(n) $ n - k + (k - l)f lo&(n - k + 2)1
For large k (in particular for k = 0 . n), this was improved by Blum et al. /23/ and
further improved by Schonhage et a l. /1801 to V.(n) $ 3n + o(n) .
The first general lower bound , V.(n) ~ n k - 2, wu proved by Blum et al. 1231.
For a detailed survey of all tbe lower bound. sec Kirkpatrick /1091. Bent and John 117/
improved Kirlcpatrick 's lower bound . Specially, they show

Von(n) ;:: (1 + Ho)n f- O(V n),
where Ho = - odogo - (1 - 0) log(l - a) is the discrete entrop), of a .
In particular the bound for the median is

Vm (n) ~ 2n + O(VnJ, where m - r H
A considerable amount of work h ... also be done on ""timating .(n) . Matula 113S/
proved that, for some absolute co tant c , V. (n) $ n + cklnlnn as n - 00 . Vao
and Y&O (223) showed that there cxi!!t. an absolute constant c' > 0, such that V.(n) ?
n c' k In In n as n 00 , proving a conjectu re of Matula. An upper bound of V .(n) S
n + k + o(n) for all k and n ;., due to Floyd and Rivest (64) . Cunto and Munro 143'
prove that V .(n) ~ n + k - 0(1) in general and that for the m4%-min-median problem
2n - o(n) $ V,(n) $ 9i + o(n), where 1 E {I , n, [j 1}.
Dobkin and Munro (48) show that a linear time algorithm is possible for the median
problem wh.ich requires an additional work space of only [i 1 + 1 data cells.
Ramanan and Hyafil (172) present some algorithms which solve efficiently the problem
of selecting the k 8mallest elements , and give their respective order, of a totally ordered
set of n elements, when k is small compared to n .
Munro and Paterson 11541 consider time-space tradeoff. for selection in a lape input
model, i.e., inputs are stored on a read-only input tape and may be accessed only in
a sequential 8can of the entire tape. Output is to a write-only tape and workspace
registers may hold input values. Let T be the time, S the workspace and n the size of
the sct, then when time is measured in comparisons, their algorithm realizes a trade-olI

of T . logS = O(n · Iogn) over the range O(log2 n) = S = 0(2VIo,,,). Frederickson
1701 modifies and extends their approach to realize the same trade-off <>'o'er the broader

range 0(log2 n) = S = 0(2 : ,"')'

9. Merging

The 110(>-"'011 merging problem consists of combining two sorted lists A and B to make
one larler sorted list. The algorithms developed for this problem can be classified
according to the following properties:

i.) Minimizing the number of comparisons and ass ignments.
ii.) Minimizinl the work space needed in addi tion to the space u.ed to store t he two

filcs. An allorithm using 0(1) additional work space i6 .aid to be in place .

iii.) Maintaining stability. A stable merging algorithm is one which preserves the relative
orderings of equal elements from each of the sequences.

iv.) Maintaining searchability. An in place merging algorithm is said to support search­
ability if at any stage in the proccss a search for an arbitrary element can be
performed with a small number of comparisons.

30

If the lists .4 and B havc m and,. elements, respectively, then there are (~~") possib le
placements of the elements of B in the combined list ; it follows that pog (~" n) 1 com·
parisons are necessary to dist inguish these possible orderings. If we take m $ n then
flog (... ~n) 1 = elm log ;;,;) . The "binary merging~ algorithm of Hwang and Lin 1103].
sec also Knuth 11121, 5.3.2, requires fewer than [log (... ~n)l + min(m, n) comparisons to
combine sets of size m and n and uses O(log n) additional work space. Kronrad 11l8j
showed that merging may be performed in pla.ce in linear time. His algorithm does not
have the stability property.

Brown and Tarjan [32j note that there is a problem in implementing the binary m erg·
ing-algorithm 80 that it runs in time proportional to the number of comparisons it
uses. They preeent a fas t-merging algorithm, based on AVL-trees (Adel'son-Vel'sk ii
and Landis [Ill, which runs in optimal time O(m log ;:,) and uses additional work space
O(m + n). This was extended by Huddleston and Mehlhorn [101 j to other set operations
than merging.

Trabb Pardo [202j gives a I t able merging algorithm performing O(m + n) assignment..
&lid comparisons in 0(1) wotkspace. It yields a stable in place sorting algorithm runn ing
in optimal time.

The stable merging algorithm of DudziJIski and Dydek [54[performs O(m log .::) com­
parisons and O((m + n) log m) assignments in O(log m) workspace.

Carlsson [351 presented a fast stable merging algorithm, called "splitmcrge", which
performs O(mlog ...) comparisons and O(m + n) assignments in O(m logn) .pace.

Let M(m, n) be the minimum number of pairwise comparisons which wi.ll always suffice
to merge two ordered lists of lengths m and n. Stockmeyer and Yao [180\ prove that
M(m, m + d) = 2m + d - 1 whenever m ~ 2d - 2. (This shows that the standard linear
merging algorithm is optimal whenever m $ n $ ll;n J + 1.)

Thanh el al. [2C1j present optimal expected-time algorithms for (2 , n) and (3,n) mergc
problema.

Surchability is introduced by Munro and Poblete 1165j, where they shaw that a pair of
aoTted arrays can be merged in place in linear time so that a logarithmic t ime search
may be performed at any point during the process.

10. Dynamization Techniques

Data structures for static sets are always easier to discover than dynamic data structurcti
which also support updates . We now discuss somc general methods for turning stat ic
data structures Into dynamic data structures.

Suppose that we know a stalic data structure which can be constructed in time l's(n),
requires space Ss(n) and supports queries in t ime Qs(n) for a set of n items. We assume
throughout that Qs(n), Ps(n)/n and Ss(n) / n are non-decreasing. We also assume that
the queries are decompo&able in the following sense, Bentley [10j. Consider a set A and
any partition of A into disjoint sets B and C. It is then assumed that the answer to a

31

query about A can be obtained frolll th e a nswers to the queries abou t D and C in t ime
0(1). A membership query is decomposable in this sense.

We now show how to support insertions. A brute force solution reconst ructs the s talir
data structure from scratch after every insert ion. A more e fficient strategy is to part it io n
a seL S of n items inlo blocks 5" to answer qucriE'.s by combining the answers to the
queries about the blocks and to insert an item by forming a new block cons is ting of a
single item. In order to avoin the proliferation of blocks several blocks are merged into
a single block from time to time.

T he details arc as follows . Let n = L ;;::o a,:l' , u, E {O, I}, be the bi nary represent .. tion of

n. Let50, 51, ... be any part ition of 5 with ISo! = a, 2', 0 ~ i :5 log n. Then the dynam ic
structure D is jus t a collect ion of s tat ic dat a structures, one for each non-em pty 5,.

The space requ irement of D is eMily com pu ted as

:5 I)5s(n) / n)a,2' - Ss(n)

The inequality follows fro m our basic Msulllption that SS{n) / n is nondecreasing.

Next nole that a query abou t 5 can be answered by combining the answers about the
5;'" and that there are never more than log n non-empty 5; '8. Hence a query can be
answered in time

logn + L Qs(a,2'):5 10gn(1 + Qs(n)) = O(lognQ.s(n)).

Finally consider operation Insfrt(x , S). Let n + 1 - L {J;2' and let j be such tha t

OJ = O,Oj _ 1 = aj _2 = ... = "'0 = 1. Then fl, = 1,fJi- 1 = . .. = 110 = O. We process

the (n + 1)-st insertion by taking the new point X and the 2i - 1 = L1.:~ 2' poin ts
stored in st ructures 50, S I , .. . ,5, _1 and const ructing a new stal,ic data structure for
{x} U 50 U 51 u ... U 5j _ l . Thus the cost of the (n + l)-st insertion is Ps(2j). Next
not" t hat a cost of Ps(2 j) has to be paid aSter insertions 2j(2t + 1) , l = 0,1 , 2, . . . , and
hence at most n / 2i times eluring the first n insertions. ThWl the total cost of t he firs t
n insertions i. bounded by

lOlnJ lJoKnJ

L Ps(2')n/ 2' :<; n L Ps(n) / .. :<; Ps(n)([log "J + 1).
) =0 j = O

We may su=arize the argu ment above as QD(n) = O{Qs(n)· log n), SD('I) = O(S.s ("))
and [D(n) = O((Ps(..)/ n) . Iogn) where QD{ n) is the worst CMe query timc , SD(n) is
the worst case space requirement and 1 D(n) is t he amortized insertion time for a sct or
,. elements, Bentley and Saxe 1211.

32

A static data structure for th" Incwbership problem is a sorted array. Cts perforlltan ... ·
is Ss(n) = n, QS(7I) =- log" and Ps(n) ~ " log n. The consl ruction above yields a
dynamic data s lructu re with So t,,) = O(n) and 'D(n) = QD(n) = O((log n) l) .

Overmars and van Leeuwell [1671 turned the arnortized insertion t ime into a worst cas('
bound by spreading work OVer l ime. Of course, there is nothing unique about the usc
of the binary representation in the const ruc. tion above. Using b-ary notal ion for some
b > 1, i.e. expressing n as L a;b; , 0 $ Q; < b, and using ai set. of sizc bi in the pari it ion
of S, a query t ime QD(n) ~ O(b· Qs(n) . log nl 10gb) and an amortized insertion time
of I v(n) = O((Ps(n) / n) . log " I log b) results , Bentley and Saxe [211. Mehlhorn alld
Overmars 11491 describe a family of dynamizat ion schemes which allow to trade quer),
time for inserl ion time and vice ,·crsa.

The corresponding lower bounds were fi rst shown in Bentley and Saxe 1211 and la ter
seneralized in Mehlhorn [1441.

neletions are somewhat harder to cope wit!'. We need the additional assu mption tha t
the static data struelure support.s deletions (but not insertions) without increasing query
t ime and storage requirement. With th is additional assumption the resu lts ment ioned
above can be extended to al80 include deletions, van Leeuwen and Maurer 11241, Over­
mars and van Leeuwen 11661, Overma.rs and van Leeuwen 11671.

Extensions and variations of the basic dynamizalion scheme Me discussed in OverIllars
11641, Edelsbrunner and Overm&rll 1561 and Rao et al. [1731.

3J

11. References

[11 ADEL'SON-VEL'SKll , C.M. and E.I\'1. LANOIS: "An Algorithm for the Organi­
sation of Information" , Dok/. Akad. Nau k SSSR, 146, 263- 266, 1962 (in Ru.s. ian);
English Translation in Soviet . :-.fath ., 3, 1259-1262

[2) AHO, A.V. , J. HOPCROF'T , J . ULLMA N: "The Design and Analysis of Com­
puter Algorithms" , Add ison-Wesley P"h!. Comp., Reading, Mass., 1974

[31 AHa, A.V., J. HOPCROFT, J. ULLMAN: "On finding Lowest Common Ances­
tors in 'lhpJ;", SIAM J. Camp. I , No I , 115- 132, 1976

141 AHa, A.V., J. HOP CROFT, J. ULLMAN: "Data Structures and Algorithms" ,
Addison- Wes ley Pub!. Comp., Rea.d ing, Ma.ss., 1983

15) AHO, A.V. and D. LEE: "SLoring a Oynamic Sparse Table", In Proc. 2711. Annual
IEEE Symp. FouIldation of Computer Science, pa.ges 55-60, 1986

161 AHO , A.V. and J .D . ULLMAN: "Principles of Compiler Design", Addison- Wesley
PubJ. Comp. , Read ing, Masts., 1977

171 AHUJA, R.K., K. MEHLHORN, J.B. ORLIN, R.E. TA.RJAN: "Faster Algorithms
for the Shortest Path Problem", Technical Report A 04/ 88, University of Saar­
land, FRG

181 ALLEN, B. and I. MUNRO: "Self-Organizing Search Trees", J . ACM 25, No 4,
526- 535, 1978

19j ALT H. &J1d K. MEHLHORN : "Search ing Semi-Sorted Tables", SIAM. J. Compo
14, No 4, 840-848, 1985

IlOj ANOERSON, E.J ., P. NASH, R,R. WEBER: "A counter Example to a. Conjedure
on optimal LiBt Ordering" , J. Appl. Prob. 19, No 3, 730- 732, 1982

Ill) ATKINSON, M.D., J .R. SACK, N. SANTORO, T. STROTHOTTE: "Min-Max
Heaps and Generalized Priority Queues", C. ACM 19, No 10,996-1000, 1986

1121 BANACHOWSKI, L.: "A Complement t.() Tarj&J1'. Result about the Lower Bound
on the Complexity of the Set Union Problem", In£. Pro<:. Lect. 11, No 2, 59- 65,
1980

[13) BAYER, P.J .: "Improved Bounds on the Coot of Optimal and Balanced Binary
Search Trees", Technical Report, Dept . of Compo Science, MIT, t975

[141 BAYER, R.: ·Symmetric binary B-trees: Data Structure and Maintenance Algo­
rithms", A.cta Informatica I, 290-306, 1972

1151 BAYER, R. and E.M. McCREIGHT : "Organisation and Maintenance of Large
Ordered Indiz(!f!" , Acta Informatica I, 173- 189, 1972

(16) BEN-AMRAM, A.M . and Z. GALlL: "On Pointers versus Adresses", In l'roc.
29th Annual IEEE Symp. Foundation of Comput~r Sci~nce, pages 532- 538, 1988

1171 BENT, S.W. and J. JOHN: "Finding the Median requires 2n Comparisons" , In
Proc. 17th Annual /tCM Symp. TIJeory of Computing, pages 213- 216, 1985

34

1181 BENT, S.W ., D.O . . LE ATO R, H.E. TAHJA1\: "Biased Search Trees". SIAM J .
Compo 14, No 3. 515- 568, 1985

119' BENTLEY, J .: "LJocomposable 'carch ing Problems" , iJJf. Proc. utt. 8. '05.
244- 251 , 1979

120] BENTLEY, J . and C.C. McCEOC H: "Amortized Analys is of Self-Organizin~ se­
quential Search Heu ristics", C. ACM 28. No 4, 40H11, 1985

121] BENTLEY, J . and J .B. SAXE: "Decomposable Searching Problems I: Sta tic-to­
Dynamic Transformations" . J. of A/gorilhms I , 301 - 358. 1980

122] BITNER, J.R.: "Heuristics that dynamically organize Data Structures" , SIAM
J . Comp. 8, No I , 82- 110, 1979

123] BLUM , M., R.W. FLOYD, V. PHATT, R.L. LEWIS, R.E. TARJAN: "T ime
bounds for Selection" , J . Compo SySI. Sci. 7, 448-461, 1973

124] BLUM , ' .: "On the Singl",Operation Worst-Case Time Complexity of th e Dis­
joini Set Union Problem", SIAM J. Compo IS, No 4, 1021- 1024 , 1986

125] BLUM, N. and K. MEHLHORN: "On the Average Number of Uebalancing Op­
erations in Weight-Balanced Tree,,". Theoretical Comput~r Science 11 , 303- 320,
1980

[261 BOLLOBAS, B. and J. SIMON: "On the Expected Behavior of Disjoint Set Union
Algorithms", In Proc. 17th A.nnual ACM Symp. Theory of Computing, pages
224-231, 1985

[27[BOLLOBAS, B. and J. SIMON: "Repeated Random Insertion into a Priority
Queue", J. Algor. 6 , 466-477 , 1985

[281 BORODIN, A., r'. F ICH, F. M EYER AUF DER HEIDE, E. UPFAL, A. WIGD ER­
SON: "A tradeoff between Search and Update time for the implicit Dictionary
Problem", In Proc. 13th International Conference on Automata, Languages and
Progrunming, Rennes, France, Lecture oles in Computer Science 226, Springer
Verlag, 50-59, 1986

1291 BORODIN, A., L.J. GUIBAS, .A . LYNCH, A.C. YAO: "Efficient searching us ing
partial Ordering", lnf. Proc. Lett. 12,71- 75, 1981

[301 BROWN, M.R.: "Implementation and Analysis of Binomial Queue Algorithms" ,
SIAM J. Comp. 7,298- 319, 1978

131[BROWN, M.R.: "A Part ial Analysis of Random Heighi-balanced trees" , SI,\Nt
J . Compo 8, No I, 33-4 1, 1979

1321 BROWN, M.R. and R.E. TARJAN : "A ~'ast Merging Algorithm" , J. AC.\{ 26 ,
No 2, 211- 226, 1979

1331 BROWN, M.R. and R.E. TARJAN: "Design and Analysis of a Data Structure for
representing sorted Lists", SIAM J. Compo 9,594- 614,1980

1341 BURVILLE, P . and J . KfNGMAN: "On" Model for Storage and Search" , J. IIppl.
Prob. 10, 03,697- 701 , 1973

35

1351 CARLSSON, S.: "Spli tmc rge - A fast stable merging algorithm" , Inf. /'roc.
Lett. 22, 189-192, 1986

\361 CARLSSON, S., J .F. MUN RO , P.V . !'OELETE: "An Implicit Binomial Queue
with Constant lnse rt.ion Time" , In l'roc. 1s t ScandinaviaJI Worksh op on ..Il.

gorithm Theory, IIa l,ws lad , Sweden, Leclure Notes in Computer Science 318 ,
Springer-Verlag , 1- 13, 1988

\371 CARTER, J .L. a.nd M.N. WEGMA ' : "Universal Classes of Hash Functions", In
Proe. 9th Annu&! A CM SY11lp. Theory of Compu'ing, pages 106-112, 1977

1381 CHAZELLE, B. : "How to Search in History", Informatioll and Control 64, 77 99,
1985

[39) CHAZELLE, B. and L.J . GUIUAS: "Fractional Cascading: I. A Data Structuring
Technique", ,t/gorithmiea 1, No 2, 133- 162, 1986

[40\ CHUNG, F.R., D.J . HAJELA, P.D. SEYMOUR: "Self-Organizing sequent ia l
Search and Hilbert ', Inequa.lities" , J . Camp. Syst. Sci. 36, 1-48- 157, 1988

[41 1 COLE, R .: · Searching and Storing simi lar Lists", J. Algor. 7,202-220,1986

[(2) CRANE, C.A.: "I, inear Lists and Priority Queues as Balanced Binary Trees",
Technical Report, STAN-CS-72-259, Computer Science Department, Stanford
University, Stanford , CA , 1972

[431 CUNTO, W. and J .1. MUNRO: "Average case Selection", In Proc. 16th Allllulil
ACM Symp. Theory of Computing, pages 369-375, 1984

[44) DEVROYE, L.: "A Note on the Height of Binary Search 1"ees" , J .. 4CM 33, No
3, 489-498, 1986

1451 DEVROYE, L.: "Branching Processes in the Analysis of the Heights of Trees",
Acla Informalica 24 , 277- 298, 1987

1461 D1ETZFELBINGER, M. , A. KARLIN, K. MEHLHORN, F. MEYER AUF' UEIt
HEIDE, H. ROHNERT, R.E. TARJAN: "Dynamic Perfect Hashing: Upper and
Lower Bounds", In Proc. 29th Annual IEEE Symp. Foundation of Computer
Science, 524- 531 , 1988

1.71 DOBERKAT, E.E.: "An Average Case Analysis of Floyd's Algorithm to const.ruct
Heaps" , Information and Control 61, 114- 131 , 1984

[481 DOBKIN, D. and J .I. MUNRO: "Optimal minimal Space Selection Algorithms",
J. ACM 28. No 3, 454-461 , 1981

1491 DOBKIN, D. and J .!. MUNR.O: "Efficient Uses of the Past" , J. Algor. 6,455- 465,
1985

ISOI DODGSON, C.L., St. James Gazette, 5-{), 1 August. 1883

1511 DOYLE, I. and R. RIVEST: "Linear Expected Time of a Simple Union-~' ind
Algorithm" , Inf. Proc. Leu. 5, 146- 148, 1976

36

1521 DRISCOLL, J.It ., B.N. CAOOW . R. SIIRAIRMAN , R .E. TARJAN: "Relaxcd
Heaps: An Altcrnative to Fibonacci lI eaps with Applications to Parallel Compu­
tation", C. ACM 31 , No ll , 1313- 1354 , 1988

1531 DRISCOLL, J .R. , N. SARNAK , D.O. SLEATOR, R.E. TAilJAN: "Making Dat.a
Structures Persistent", J. Comp_ SySl . Sci. 28,86-124, 1989

1541 DUDZINSKI, K. and A. DYDELL: "On a Stab I" Minimum Space Merging Alg<r
rithm" . Inf. Pmc. Lel t. 12, No 1, 5- 8, 1981

1551 EDELSBRUNNER. B., 1, . .1 . GUffiAS , .I . STOLFI: "Optimal Point. Location in a

Monotone Subdivision" , SIAM J. Comput. IS, No 2, 317- 340, 1986

1561 EDELSBRUNNER, H. and M.H. OVERMARS: "Batched Dynamic Solutions to
Decomposable Searching Problems', J. of Algorithms 6,515- 542, 1985

1571 EMDE BOAS, P.v. : "Preserving Ordcr in a Forest in less than Logarithmic Time
and Linear Space", I"f. Prot. Leu. 6,80-82, 1977

[581 EMDE BOAS, P.v. , R. KAAS, E. ZIJLSTRA: "Design and Implementation of an
Efficient Priority Queue" , Math. Systems Theory 10, 99-127, 1917

1591 FAGIN, R., J. NIEVERGELT, N. PIPPENGER, H.R. STRONG: "ExU!ndible
Hashing - A Fast Access Method for Dynamic Files", ACM Trans . Database
Systems 4, 315- 344, 1979

1601 FALLER, N.: "An Adaptive System for Data Compression", Record of the 7-th
Asilomar Conference on Circuits, Systems, and Computers, 593-597, 1973

1611 FISCHER, M.J.: "Efficiency of Equivalence Algorithms in Complexity of Com­
puter Computation" , R.E. Miller and J.W. Thatcher, Eds ., Plenum Press, 'ew
York, 153-168, 1972

1621 FLAJOLET, PH.: "On the Perform&rlce EvsJuation of Extendible IIashing and
Trie Searc.hing", Acta Informatica 20, 345-369, 1983

1631 FLOYD, R .W.: "Algorithm 245: Treesorl 3", C. ACM 7,701, 1964

[641 FLOYD, R.W. &rid R .L. RIVEST: "Expected Time Bounds for Selection" , C.
ACM 18,165-172,1975

1651 FOSTER, C.C.: "Information Storage and Retrieval using AVL-t rees", In Proc.
ACM 20th Nat. Conf., pages 192- 205, 1965

1661 FOSTER, C.C.: "A Generalization of AVL-trees" , C. ACM 16, No 8, 513- 517,
1973

[671 FREDERICKSON, G.N.: "Implicit Data Structures for the Dictionary Problem",
J. AeM 3D, No I, 80-94, 1983

1681 FREDERICKSON, G.N. : "Self-Organizing Heuristic for implicit Data Struc­
tures", SIAM J. Compo 13, No 2, 277- 291 , 1984

1691 FREDERICKSON, G.N.: "Implicit Data Structures for weighted Elements", In­
formation and Control 66, 61- 82, 1985

37

1701 FREDERICKSOl\ , C.N.: "Upper IJOllllds for Time-Space Tradeoffs in Sortill!:
and Select ion" , J. Camp. Syst. Sci . :l4, 19- 26, 1987

17L 1 FREDKIN , E.: "'ITic Memory', C. ACM 3, 4~99, 1962

1721 FREDMAN, M.L.: "Two Applications of a probabilistic Search Technique: salt­
ing X + Y and bu ilding balanced Search Trees", In Proc. 7th Annual A C_M Symp.
Theory of Computing, pages 240- 244 , 1975

1731 fo'REDMAN, M.L., J . KOMLOS, F.. SZEMEREDI: "Storing a Spa.rse Table wi th
0(1) Worst Case Acc<lS$ Time", J . ACM 31, No 3, 538-544,1984

174 1 FREDMAN, M.L. , R. SEDGEWICK, D.O. SLEATOR, R.E. TAIUAN : wl'he
Pairing Heap: A New Form of Self-Adjusting Heap" , Algorithmica 1, No 1, 111 -
129, 1986

1751 FREDMAN, M.L . and R. E. TARJAN: "Fibonacci Heaps and their Uses in im­
proved Network Optimization Algori thms", J. ACM 34, No 3, 596-615, 1987

1761 GABOW, H.N.: "A scaling Algorithm for Weighted Matching in General Graphs",
In Proc. 26th Annual IEEE Symp. Foundation of Compuler Science, pages 90-
100, 1985

1771 GABOW, H.N. and R.E. TARJAN: "A Linear Time Algorithm·for a Special CM"
of Disjoint Set Union" , J. Compo Syst. Sci. 30, 209-221 , 1985

[781 GALLAGER, R.G.: "Variations on a Theme by Huffman", IEEE Trans. Inform.
Theory, IT 24,668- 674, 1978

1791 GALLER, B.A. and M.J . FISCHER: "An Improved Equivalence Algorithm", C.
ACM 7, 301- 303,1964

[801 GAMBOSI, G., G.F. ITALIANO , M. TALAMO: "Getting back to the past in the
Union-}>'ind Problem", In Proc. SIh STACS, Bordeaux, France, Lecture Notes in
Computa Science 294, 8-17, 1988

(81) GARS lA, A.M. and M.L. WACHS: "A new Algorithm for minimal binary Search
Trees", SlAM J. Compo 6, pages 622-642, 1977

[821 GONNET, G.H. : "Balancing Binary trees by Internal Path Reduction", C. A CM
26, No 12, 1074- 1081,1983

(83) GONNET, G.H.: "Handbook of Algorithms and Data Structures" , lnwrnational
Computer Science Series, Add ison-Wes ley Publ. Comp., Reading, Mass., 1981

1841 GONNET, G.H. and J. MUNRO: "Heaps on Heaps', SIAM J. Compo 15, No 4 ,

964- 971, 1986

1851 GONNET, G.H., I. MUNRO, H. SUWANDA: "Exegesis of Self-Organizing linear
Search", SIAM J. Compo 10, No 3, 613- 637, 1981

[861 GONNET, G.H. , L. ROG ERS, I. GEORGE: "An Algorithmic and Complexity
Analysis of Interpolation Search", Acta Informatica 3, No I, 39-52, 1980

:Ill

[87J GUTI G , H. and 11.1'. KRIEG~L: "Multidimensional B-lree: An Efficient Dy­
namic File Structure for Exact Match Queries" , Informat ik Fachberichte :13, 375
388 , 1980

[RSI GUIBAS, L.J., E.M. McCREIGHT . M.F. PLASS, J .R. ROB~:RTS: " A new It"!,­
resentation for linear Lists" , In Proc. 91h Annual ACM Symp. Theory of C:om­
puling, pages 4~, 1977

[891 GUIBAS, L.J . and R. SEDGEWICK, "A Dichromatic F'ramcwork for l:laJanced
Trees", In Proc. 19th Annual IEEE Symp. Foundatioll of Compuler Science.
pages 8- 21 , 1978

[901 GULBERSON, J. : "The Effect of Updates in Binary Search trees", In I'roc. 171h
Annual ACM Symp. Theory or Computing, pages 205- 210, 1985

[911 HADIAN , A. and M. SOBEL: · Selecting the /,h Largest Using Binary Errorless
Comparisons", Colloquia Mathematica Societatis, Janos Bolyai ~, 585- 599, 1969,
distributed by NorLh Holland as Combinatorial Theory and its Application. II.
edited by P. Erdiis, A. Renyi and Vera T. Sos

[921 HAREL, D. and R.E. TARJA : "Fast Algorithms for finding Nearest Common
Ancestors", SlAM J . Camp. 13, 338- 355, 19IW

[93J HENDRICKS, W.J .: "The .tationary Distribution of an interesting Marko\'
Chain" , J . Appl. Prob. 9, 0 I, 231- 233, 1972

[94 J HOARE, C.A.R.: "Quicksort", Computer Journal 5, 10-15, 1962

1951 HOFFMANN, K., K. MEHLHORN, P. ROSENSTlEHL, R.E. TARJAN: "Sorting
Jordan Sequences in Linear Time Using Level-Linked Search Trees" , Information
k Control 68, 170-184, 1986

1961 HOOD, R. and R. MELV1LLE: "Real-time queue Operations in pure LISP", Inf.
Proc. Lett. 13, 50-54 , HI81

[971 HOPCROFT, J.E. and J .D. ULLMAN: "Set Merging Algorithms", SIAM J.
Compo 2, 294- 303, 1973

[98J HOROWITZ, E. and S. SAKNI: "Fundamental of Data Strudure:s" , COlnputcr
Science Press, Potomac Mary land , 1976

[99] HU, T.C. and A.C. TUCKER: "Optimal Computer-Search Trees and Variables­
Length Alphabetic Codell" , SIAM J . Appl. Math. 21,514- 532, 1971

[1001 HUDDLESTON, S.: "An efficient Scheme for FlIBt Loca.l Upda.tes in linea.r Lists",
Technical Report, Dept. of Information and Computer Science, niversity of
California, Irvine, 1981

1101 1 HUDDLESTON, S. and K. MEHLHOR :"A new Data Structure for representing
sorted Lists", Aela Informatica 17,157- 184,1982

]102) HUFFMAN, D.A.: "A Melhod for the Construction of Minimum Redundancy
Codes", Proc. IRE 40, 1098- 1101, 1952

]1031 HWANG, F.K. and S. LIN: "A simple algorithm for Merging two disjointlincarl}'
order~d seta", SIAM J. Compo 1, No 1,31- 39,1972

39

[1041 IMAI, H. and T. ASANO: "Dynamic Orthogonal Segment Intersection Scarch".
J . Algor. 8, 1- 18, 1987

[105J ITAI, A., A.G . KONHEIM , M. ROOI!:H: "A Sparse Table Implementat ion of
Priority Queues", In Pro<:. 8th Intemal;onal Conference on Aut.omata, Languagl's
and Programming, Acre (Akko) , Israel , Lecture Notes in Computer Science I I,).
Springer Verlag , 417- 431 , 1981

1J()6J JACOBS, T .M. and P. VAN EMDE BOAS: "Two Results on Tables", Inf. Pmc.
Lett. 22, 43-48, 19 6

1107J JOHNSON, D.: "Efficient Algorithm. for Shortest Paths in Sparse Networks" , J .
ACM 24, 1- 3, 1977

11081 KINGSTON , J .H. : "A New Proof of the Garsia-Wa<:hs Algorithm", J . of AI/(o·
rilhm.9, 129-136, 1988

1109J KIRKPATRICK , D.G.: "A unifit.'<i lower bound for Selection and Set Partit ion ing
Problem" , J. ACM 28, 150-165, 1981

11101 KNOTT, G.D.: "Expandable open Adrea.ing Hash Table Storage and Retrieval' ,
In Proc. ACM SIGFIDET Workshop on Data Description, Access amI COli Lrul,
186-206, 1971

[Il l] KNUTH , D.E. : "Opt imum binary Sp.arc.h Tree", Act" Informalica 1, 14- 25, 1971

[112J KNUTH, D.E.: "The Art of Computer Programming, Vol. 3: Sorting and Search­
ing" , Addison-Wes ley Publ. Comp., Rea.ding, Mass. , 1973

[1I3J KNUTH, D.E.: "Deletions that preserve Randomness" , IEEE Trans. Software
Eng. S£o3(5), 351- 359, 1977

[114J KNUTH, D.E. : "Dynamic Huffman Coding", J. Algor. 6, 163- 180, 1985

[115J KNUTH, D.E. and A. SCHONHAGE: "The expected Linearity of a simple Equiv­
alence Algorithm" , Theoretical Computer Science 6, 281- 315, 1978

[116J KORSCH, J.F.: "Greedy binary Search Trees are nearly optimal", Inf. Proc.
Lett. 13, 16-19, 1981

[1171 KOSARAJU, S.R. : "Localized Search in sorted List" ,]n Proc. 13th Annual A CM
Syrup. Theory of Computing, pages 62- 69, 1981

11181 KRONRAD, M.A.: "Optimal ordering Algorithm without operational Field", So­
viet. MaCh. Do/d. 10, 7H- 746, 1969

(1 19J KRIEGEL, H.P. and V.K. VA]SHNAVI: "Weighted multidimensional B-t rees used
as nearly optimal dynamic Dictionaries" , In Pro<:. in Mathematical Foundations
of Computer Science, Strbske Pleso, Czechoelovakia, l.ecture Notes in Computer
Science ll8, 410-417, 1981

[1201 LA I, T.W. and D. WOOD: "Implicit Selection", In Proc. 1st Scandinavian Work­
shop on Algorithms Theory, Halmstad , Sweden, Lecture Notes in Computer Sci­
ence 318, Springer-Verlag, 14- 23, 1988

40

11211 LAM , K., M.K. SIU , C.T. YU: "A general ized Counter Schemc", Theoret ical
Computer Science 16, 271 - 278, 1981

11221 LARSON, P.A.: "Dynamic Has hing" , DIT 18, 184- 201, 1978

[1231 LEEUWEN, J . v .: "Findillg Lowes ~ Common Ancestors in less than Logari thmic
Time" , unpublished report , 11)76

[1241 LEEUWEN, J. v. a.nd H.A. MAUREIt: "Oynamie Systems of Sta~ic Data Struc­
tures" , 1krichl 42 , Inst. fiir Informatiomsverarbeilung, T U Graz, Austria, 1980

11251 LI!:EUWEN, J. v. a.nd A.K. TS_~KALIDIS : "An Optimal Pointer Machine Algo­
rithm for Nearest Common Ancestors" , Technical Repor~,UU-CS- 88- 17, Dept . of
Computer Science, Un iversity of Ireeht, 1988

11261 LEVCOPOULUS, C. and M.H. OVERMARS: "A Balanced Search Tree wi~h 0(1)
Worst.-caae Update Time", Acta Informatica 26, 269-277, 1988

11271 LINIAL, N. and M.E. SAKS: "Informat ion Bounds are good for Search Problems
on Ordered Data Structures', In Proc. 24th Annual IEEE Symp. Foundation of
Computer Science, pages 473--475, 1983

11281 LIPSKI, W: "An O (n log n) Manhattan Path Algorithm", Inf. Proc. Lelt. 19 ,
99-102, 1984

[1291 LITWIN, W. : "Virtual Hashing: A dynamically changing Hashing", In Proe .
Very Large Data Bas~ Conf., Berlin, 617-523, 1978

11301 MAlER, D.: "An Efficient Me~hod for sorting Ancestor Information in Trees" ,
SIAM J . Compo 8, No 4, 599-618, 1979

11311 MAIER, D. and S.C. SA LVETER: "Hysterical B-trees" , Inf. Proc. Letr. 12 ,
199-202, 1981

11321 MAlRSON, B.: "Average Cue Lower Bounds on the Construction and Searchi ng
of P&rtial Ordera", In Proc. 26th Annual IEEE Symp. Foundation of Compu ter
Science, page:! 303- 311, 1985

11331 MANNILA., H. and E. UKKO EN: "The Set Un ion Problem with Backtracking" ,
In Proc. 13th lnternationaJ Conference on Automata, Languages and Program

ming, Rennes, Ft&nee, Lecture Notes in Computer Science 226, Springer Verlag,
236-243, 1986

1 13~ 1 MARKOWSKY, G., J.L. CARTER, M.N. WEGMAN: "Analysis of a Universal
Class of Huh Function.", In Proc. of Mathematical Foundations of Computer
Science, Zabpone, Poland, Lecture Notes in Computer Science, Springer-Verlag ,
pages 34&-354, 1978

11351 MATULA , D.W .: "Selecting the t-th best in average n + O(log logn) Compar­
isons", TR 73-9, Washington University, St . Louis , 1973

11361 McCABE, J.: "On Serial File with Relocatable Records', Operation Research 12,
609-618, 1965

41

11371 \fcDIARMID , C.: "Average-ca.se J.o\\'~r 130unds for Searching", SIAM J. Compu!.
17, No I , IOH- I060, 1988

1138) MEHLHORN, K. : "Ncarly optimal binary Search Trees", Acta I,,(ornlillicil 5 .

287- 295, 1975

11391 MEHLHORN, K.: "A best possible Bound for the weighted Path Length of binary
Search Treell" , SIAM J. Compo 6. No 2. 235- 239, 1977

11401 MEHLHORN, K.: "Dynamic binary Search" , SIAM J. Compo 8, 17<>- 1118, 1979

1111) MEHLHORN, K. : "Arbitrary weight changes in Dynamic Trees" ,R.A.I.R.O. In­
form . Theorique 15, No 3,183-211,1981

11421 MEHLHORN, K.: "A partial Analysis of Height-balanced Trees under random
InsertiolUl and Deletions", SIAM J . Compo 11,748- 760, 1982

1113) MEHLHORN, K.: "On the Programm Size of Perfect and Universal Hash Func­
tions", In Proc. 23rd Annual IEEE Symp. Foundation of Computer Science,
pages 170-175 , 1982

1144) MEHLHORN, K.: "Lower 130unds on the Efficiency of Transforming Static Data
Structures into Dynamic Data Structures" , Math. Systems Theory 15,1- 16,1982

1145) MEHLHORN, K.: "Data Structures and Algorithms 1: Sorting and Searching" ,
EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984

1116) MEHLHORN, K. and ST. NAHER: "Dynamic Fractional Cascading", Technical
Report A 06/86, Univen!ily of Saarland, FRG, 10 a.ppear in Algorithmic; ..

11471 MEHLHORN, K., ST. NABER, H. ALT: "A Lower Bound for the Complex­
ity of the Union-Split-Find Problem", In Proc. J4th International Conference
on Automata, Languages and Programming, Karlsruhe, FRG , Lecture Notes in
Computer Science 267, Springer Verlag, 1987, to appear in SlAM J. Comput.

1148) MEHLHORN, K., ST. NAHER, CH. UHRIG: "Deleting Ven!ions in Persistent
Data. Structures", Technical Report, Univ. des Sa.arla.ndes, 1989

11491 MEHLHORN, K. and M.H. OVER.MAR.S: "Optima! Dynamization of Decompos­
able Searching Problems" , 1nf. Proc. Lett. 12, No 2, 93- 98, 1981

11501 MEHLHORN, K. and A.K. TSAKALIDIS: "Dyna.mic lnterpola.tion Search" , In
Proc. J2th Inlernationa.1 Conference on Automata, Languages and Programming,
Na.fplion, Greece, Lecture Notes in Computer Science 194, Springer Verlag, 121-
434, 1985

11511 MEHLHORN, K. and A.K. TSAKALIDIS: "An amortized Analysis of Insertions
into AVL-trees', SIAM J. Compo 15, No 1, 22- 33, 1986

11521 MUNRO, I.: "An implicit Data Structure Supporting Insertion, Deletion and
Search in 0(log2 n) Time", J. Compo Syst. Sci. 33,66-74, 1986

11531 MUNRO, I.: "Developing implicit Data Structures", In Proc. Malhema/icaJ
Foundations of Computer Science, Bratislava, Czechoslovakia, Lecture Notes in
ComputeT Science 233, Springer-Verlag, pages 168- 176, 1986

42

1154] MUNRO, I. and M.S. PATERSON: "Selecting and Sorting with limited space",
Theoretical Computer Science 12, 315- 323, 1980

1155] MUNRO, 1. ilIld P. POBLETE: "Searchability in Merging and Implicit Data Struc­
tures", In PrO<.. 10th International Con ference on A ulomala, I,anguagcs and Pro­
gra.mming, Barcelona, Spain, Lecture Notes in Computer Science 154 , Springer
Verlag, 527-535, 1983

1156] MUNRO, I. ilIld H. SUWA ' DA: "Implici t Data Structures", J . Camp. 5yst . Sci.
21, 236-250, 1980

11571 MYERS, E.W .: "An applicative Ra.ndom-Acc.ess Stack" , Inf. Pro<:. Lett . 17 ,
241- 248, 1983

]158] MYERS, E. W.: "Efficient Applicati,·c Data Types", Conf. Record Eleventh An­
nual ACM Symp. on Principles of Progra.mming LlUlguages , 66-75, 1984

[159] NIEVERGELT, I. and E.M. REINGOLD: "Binary Search Trees of Bounded Bal­
ance", SIAM J . Comp. 2, 33-13, 1973

11601 OLlVIE, H.J.: "A new class of Ba.lanced Search Trees: Ha.lf balanced binary
Search Tree", R.A.I.R.O. Inform. Theorique 16, No 1,51-71,1982

11611 ORLIN, J .B. and R.K. AHUJA: "A Fast and Simple Shortest Path Algorithm" ,
Cornell Workshop on Combinatorial Optimization, 1987

11621 OTTMANN, TH. and H. W. SIX: ~Eine neue Kluae von ausgcglichenen Bii.umen" ,
Angewandte lnIormatik, Heft 18, 395- 400, 1976

11631 OVERMARS, M.H.: "Searching in the past I~, Report RUU- CS- 81- 7, University
of Utrecht, The Netherlands , 1981

11641 OVERMARS, M.H.: "Dynamization of Order Decomposable Set Problems", J .
of Algorithms 2, 245-260, 1981

11651 OVERMARS, M.H.: "The Design of Dynamic Data Structures", LL'Cture Notes
in Computer Science 156, Springer Verlag, 1983

1166] OVERMARS, M.H. and J . v. LEEUWEN: "Two General Methods for Dynamiz­
ing Decompoeable Searching Problems", Computing 26, 155- 166, 1981

11671 OVERMARS, M.H. and J. v. LEEUWEN: "Worst-Case Optimal Ins~rtion and
Deletion Method. for Decomposable Searching Problems", Inf Proc. Lett. 12,

No 4,168-173, 1981

1168] PEARL, Y., A. ITAI, H. AVNI: ·Interpolation Search - A log log N Sea.rch" , c.
AeM 21, No 7, 550 654 , 1978

[1691 PEARL, Y. and E.M. REINGOLD: "Understanding the Complexity of Interpo­
lation Search", Inf. Proc. Let!. 6, 219-222, 1977

11701 PETERSON, W.W.: "Addressing for Random Storage", IBM J _ Res. and De­
velop. 1, 131- 132, 1957

1171] PORTER, T. and I. SIMON: "Random Insertion into a Priority Queue Structure" ,
IEEE Tr&Jl8. Software Eng. 1 SE, 292- 298, 1975

43

11721 RAMANAl", P.V. and L. HYAFIL: "New Algorithms for Select ion", J. Algor. 5,
557-578, 1984

11731 RAO, N.S.V., V.K. VAISHNAVI, S.S. IY ENGAR: "On the Dynamiution of Data
Structures" , BIT 28, 37- 53, 1988

11741 REPS, T ., T . TEITELBAUM, A. DEMERS: "Incremental Context-dependent
Analysis for Language-based EditoMl" , ACM Trans. on Prog. Sys. and Lang., 5,
449--477, 1983

11751 RIVEST, R.: "On Self-Organizing sequential Seuch Heuristics", C. ACM 2,63-
67, 1976

11761 SANTORO, N. and I. SIDNEY: "Interpolation-Binary Search", lnf. Proe. Lett.
20, 179-181, 1985

1177J SARNAK, N. a.nd R.E. TARJAN: "Planar Point location using Persistent Search
Trees", C. A.CM 21), 669- 679, 1986

1178J SCHIEBER, B. and U. VISHKIN: "On Finding Lowest Common Ancestors: Sim­
plification and Pualleiization", In Proc. 3rd Aegean Workshop on Computing,
Corfu, Greece, 111- 123,11)88

1179J SCHONHAGE: "Storage Modificaton Machines", SIAM J. Comp. 9, No 3 , 490-
508, 1980

[180J SCHONHAGE, A., M. PATERSON, N. PIPPENGER: "Finding the Median" , J.
Compo Sy~t . Sci. 13, 184- 199, 1976

[181J SEDGEWICK, R .: "Algorithms", Addison-Wesley Pub!. Comp., Reading, Mass .,
1988

1182J SLEATOR, D.D. and R.E. TARJAN: "A Data Structure for Dynamic Trees', J.
Camp. Syst. Sci. 26, 362-391, 1983

11831 SLEATOR, D.D. and R.E. TARJAN: "Self-Adjusting binary Search Trees", .1.
ACM 32, No 3, 652- 686, 11)85

[184J SLEATOR, D.O. and R.E. TARJAN: • Amortized Efficiency of List Update and
Paging Rul ... ·, C. A.CM 28, No 2, 202- 208, 1985

[185J SLEATOR, D.O. and R.E. TARJAN: "Self Adjusting Heaps", SIAM J. Compo
IS, No I, 52-68, 1986

1186J SPRUGNOLI, R .: "Perfect Hash Functions: A Single Probe Retrieval Method
for Static Sets', C. ACM 20, 841-81>0, 1971

[187J STANDISH, T.A .: "Data Structure Technique" , Addison-Wesley Pub!. Comp ,
Reading, Mus., 11)80

1188J STEINHAUS, R.: "Some remarks about Tournamenu", Calcutta Math. Soc.
Golden Commemoration 2, 1958

/1891 STOCKMEYER, P. and F.r. YAO: ' On the Optimality of linear merge", SIAM
J. Camp. 9, No I, 85-90, 1980

[1901 SWART, G.F· .: "Efficient Algorithms fo r Computing Geometric Intersections",
Tec:hoicl1l ReporI85~1-{)2, Department of Computer Science , University of WMh­
ington, Seattle, WA , 1985

1191 1 TAMMINEN, M.: "Extendible Hashing with Overflow" , Inf. Proe. I,ett. 15 •. '0

5, 227- 233, 11)82

11921 TARJAN, R.E.: "Efficiency of a good but not Linear Set Union Algorithm" . J.
ACM 22, 215- 225, 1975

[1931 1'ARJAN , R.E.: "A Class of Algorithms which require on-Linear Time to Main­
tain Disjoint Sets", J. Compo Syst. Sci. 18, 110- 127, 1979

[1941 TARJAN, R.E.: private communication, 1982

11951 l'ARJAN, R.E.: "Data Structures and Networks Algorithms" , Society for Indus­
trial and Applied Malhematic;\, Philadelphia, PA, 1983

11961 TARJAN, R.E.: ·Updating a Balanced Search Tree in 0(1) Rotations", lor. Proc.
LeU. 16.253- 257, 1983

11971 TARJAN, R.E. : ·Sequential ACGCSS in Splay Trees takes linear Time", Combina­
lorica 5, No 4, 367- 378, 1985

[1981 TARJAN, R .E. : "Amortized Computational Complexity", SIAM J. Alg. Disc.
Math. 2(6), 306-318, 1985

[1991 TARJAN, R.E. and J. v. LEEUWEN : "Worst-Case Analysis of .cl Union Algo­
rithms", J. ACM 31,245-281,1984

[2001 TARJAN, R.E. and A.C. YAO: ·Storing a Spane Table", C. ACM 22, No 11.
606-611, 1979

[2011 THANH, M., V.S. ALAGAR, 1'.0 . BUI: "Opt imal Expected-Time Algorithms
for Merging", J. Algor. 7,341- 357, 1986

[2021 TRABB PARDO, L. : "Slable Sorting and Merging with optimal sPaGe and time",
SIAM J. Compo 6, No 2, 351-372, 1977

12031 TSAKALIDIS, A.K .: "AVL-trees for localized Search", Information and Control
67, No 1-3, 173-194 , 1985

[2041 TSAKALIDIS, A.K.: "A Simple Implementation for Localized Search" , In Proc.
of WG'8S, Internalional Workshop on Graphtheoretical Concepts in Computer
Science, Wiirzburg, FRG, Trauner-Verlag , 363- 374, 1985, to appear also in SIAM
J. Compo

[2051 TSAKALIDIS, A.K .: "Rebalandng Operations for Deletions in AVL-tre~,,;' ,

R.A.I.R.O. Inform. Theorique 19, No 4 , 323- 329, 1985

12061 TSAKALIDIS, A.K. : "The Nearest Commmon Ancestor in a Dyn&ruic Tree" ,
Acta Informatica 25, 37-&4, 1988

[2071 UNTERAUER, K.: "Dynamic weighted binary Search Trees" , Acta Informalic ..
11, 341- 362, 1979

45

[2081 VAISANAVI, V.K.: "Weighted Leaf AVlr Tr",-'S", S1AA! J . Comput. 16, 0 3.
503- 537, 1987

[2091 VAISHNAVI, V.K . and D. WOOD: "Redilincar Segment Intersection Layered
Segmont Trees and Oynamization", J . Algor. 3.160-176, 1982

[2101 VITTER, J. : "Design and Analysis of dynamic Huffman Coding", J. ACM 34,
No 4, 825-845, 1987

[2111 VUILLEMIN, J .: " A Data Structure for manipulating Priority Queues" , C. A CM
21,309-314, 1978

[2121 WESTBROOK, J ., H.E. TARJAN: "Amortized An&lysis of Algorithms for Set
Union with Backtracking" , Technical Report TR-I03-87, Computer Science, Pr ince­
ton Univeuity, 1987

[2131 WILLARD, D.E. : "Log-logarithmic Worst.Case Range Queries are p~sible in
Space 9(N)", lnf. Proc. Letl . 17,81-84,1983

[214[WILLARD, D.E.: "New l'rie Data Strudures whicl. support very Fast Search
OperatiolUl", J. Compo Syst. Sci. 28, 379-394, 1984

[2151 WiLLARD, D.E. : 'Searming un indexed and nonuniformly generated Fil"" in
log log N time", SIAM J. Compo 14, No 4, 1013-1029, 1985

[2161 WILLARD, D.E.: "N ew Data Structures for Orthogonal Queries", SlAM J. Com·
put. 14, No I, 232- 235, 1985

[2171 WILLARD, D.E. and e.s. LUECKER: "Adding Range Hestriction Capability to
Dynunic Data Structures" , J. ACM 32, No 3, 597-617, 1985

12181 WILLIAMS, J .W.J. : "Algorithm 232: Heapeort", C. ACM 7, 3H- 348, 1964

12191 WIRTH, N.: "Algorithlllll + Data Structures = Programms", Prentice-Hall, En·
glewood Cliffs, NJ, 1976

[2201 YAO, A.C.: "On the Average Behavior of Set Merging Algorithms" , In Proc. 8rh
Annua./ ACM Symp. Tbeory of Computing, pages 192-195, 1976

[2211 YAO, A.C .: "On the Expected Performance of Path Compression Algorithms' ,
SIAM J . Compo 14, No J , 129-133, 1985

[2221 YAO, A.C. and F F. YAO: "The Complexity of Searching on Ordered Random
Table", In Proc. 17tb Annual IEEE Symp. Foundalion of Computer Scien ce,
pages 113- 117, Hl76

1223) YAO, A.C. and F .F. YAO: · On the Average Case Complexity of Selecting the
Ic:-th bestW

, SIAM J . Compo 11, No 3,428-447, 1982

[224) YAO, F.F. : "Efficient dynamic Programming uaing quadrangle Inequalities", In
Proc. 12tb Annua./ ACM Symp. Theory of Computing, pages 429-435, 1980

12251 ZIEGLER, S.F.: "Smaller Faster Table driven Parser", Unpublished manusc ript,
Madison Academic Comptg. Ctr., U. of Wisconsin, Mad ison, Wisconsin , 1977

46

	A_1989_02 0000_1heitscover
	A_1989_02 0001
	A_1989_02 0002
	A_1989_02 0003
	A_1989_02 0004
	A_1989_02 0005
	A_1989_02 0006
	A_1989_02 0007
	A_1989_02 0008
	A_1989_02 0009
	A_1989_02 0010
	A_1989_02 0011
	A_1989_02 0012
	A_1989_02 0013
	A_1989_02 0014
	A_1989_02 0015
	A_1989_02 0016
	A_1989_02 0017
	A_1989_02 0018
	A_1989_02 0019
	A_1989_02 0020
	A_1989_02 0021
	A_1989_02 0022
	A_1989_02 0023
	A_1989_02 0024
	A_1989_02 0025
	A_1989_02 0026
	A_1989_02 0027
	A_1989_02 0028
	A_1989_02 0029
	A_1989_02 0030
	A_1989_02 0031
	A_1989_02 0032
	A_1989_02 0033
	A_1989_02 0034
	A_1989_02 0035
	A_1989_02 0036
	A_1989_02 0037
	A_1989_02 0038
	A_1989_02 0039
	A_1989_02 0040
	A_1989_02 0041
	A_1989_02 0042
	A_1989_02 0043
	A_1989_02 0044
	A_1989_02 0045
	A_1989_02 0046
	A_1989_02 0047
	A_1989_02 0048

