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Abstract: We discuss datz structures and their methods of analysis. In particular, we
treat the unweighted and weighted dictionary problem, self-organizing data structures,
persistent data structures, the union-find-split problem, priority queues, the nearest
common ancestor problem, the selection and merging problem, and dynamization tech-
niques. The methods of analysis are worst, average and amortized case.



1. Introduction

Data Structuring is the study of concrete implementations of frequently occuring ab-
stract data types. An abstract data type (cf. chapter 26) is a set together with a
collection of operations on the elements of the set. We give two examples for the sake
of concreteness.

In the data type dictionary the set is the powerset of a universe I’ and the operations are
insertion and deletion of elements and the test for membership. A typical application
of dictionaries are symbol tables in compilers. In the data type priority queues the set
is the powerset of an ordered universe U and the operations are insertion of elements
and finding and deleting the minimal element of a set. Priority queues arise frequently
in network optimization problems; cf. chapter 10 on graph algorithms.

This chapter is organized as follows. In sections 2 and 3 we treat unweighted and
weighted dictionaries respectively. The data structures discussed in these sections are
ephemeral in the sense that a change to the structure destroys the old version, leaving
only the new version available for use. In contrast, persistent structures, which are
covered in section 4, allow access to any version, old or new, at any time. In section
5 we deal with the Union-Find-Split problem and in section 6 with priority queues.
Section 7 is devoted to operations on trees and in sections 8 and 9 we cover selection
and merging. Finally, section 10 is devoted to dynamization techniques. Of course,
we can only give an overview; we refer the reader to the textbooks Knuth [112], Aho,
Hopcroft, Ullman |2 and 4|, Wirth [219], Horowitz and Sahni [98|, Standish [187], Tarjan
(195|, Gonnet (83|, Mehlhorn |145], Sedgewick [181] for a more detailed treatment. In
this section we build the basis for the latter sections. In particular, we review the types
of complexity analysis and the machine models used in the data structure area.

The machine models used in this chapter are the pointer machine (pm-machine) (Knuth
[112], Schonhage (179, Tarjan [193]) and the random access machine (RAM-machine)
(Aho et al. [2]). A thorough discussion of both models can be found in chapter 4. In
a pointer machine memory consists of a collection of records. Each record consists of
a fixed number of cells. The cells have associated types, such as pointer, integer, real,
and access to memory is only possible by “ pointers”. In other words, the memory
is structured as a directed graph with bounded out-degree. The edges of this graph
can be changed during execution. Pointer machines correspond roughly to high-level
programming languages without arrays. In contrast, the memory of a RAM consists
of an array of cells. A cell is accessed through its adress and hence adress arithmetic
is available. We assume in both models that storage cells can hold arbitrary numbers
and that the basic arithmetic and pointer operations take constant time. This is called
the uniform cost assumption. All our machines are assumed to be deterministic except
when stated explicitely otherwise.

Three types of complexity analysis are customary in the data structure area: worst case
analysis, average case analysis and amortized analysis. In a worst case analysis one
derives worst case time bounds for each single operation. This is the most frequent type
of analysis. A typical result is: Dictionaries can be realized with O(logn) worst case
cost for the operations Insert, Delete and Access; here n is the current size of the set
manipulated.



In an average case analysis one postulates a probability distribution on the operations
of the abstract data type and computes the expected cost of the operations under this
probability assumption. A typical result is: Static dictionaries (only operation Access)
can be realized with O(H (3., -, 8,)) expected cost per access operation; here n is the
size of the dictionary, 3; , 1 < t < n, the probability of access to the i-th element and
H(By,...,B,) is the entropy of the probability distribution. Chapters 14, 15 and 16.
also deal with average case analysis.

In an amortized analysis we study the worst case cost of a sequence of operations. Since
amortized analysis is not very frequently used outside the data structure area we discuss
it in more detail. An amortized analysis is relevant whenever the cost of an operation
can fluctuate widely and only averaging the costs of a sequence of operations over the
sequence leads to good results. The technical instrument used to do the averaging is an
account (banker's view of amortization) or potential (physicist’s view of amortization)
associated with the data structure.

In the banker’s view of amortization, which was implicitly used by Brown and Tarjan [33|
and then more fully developed by Huddleston and Mehlhorn (101} we view a computer
as coin or token operated. Each token pays for a constant amount of computer time.
Whenever, a user of a data structure calls a certain operation of the data type we charge
him a certain amount of tokens; we call this amount the amortized cost of the operation.
The amortized cost does in general not agree with the actual cost of the operation (that’s
the whole point of amortization). The difference between the amortized and the actual
cost is either deposited into or withdrawn from the account associated with the data
structure. Clearly, if we start with no tokens initially, then the total actual cost of a
sequence of operations is just the total amortized cost minus the final balance of the
account.

More formally, let bal be a function which maps the possible configurations of the data
structure into the real numbers. For an operation op which transforms a configuration
D into a configuration D' define the amortized cost (Sleator and Tarjan [184]) by:

amortized cost(op) = actual cost(op) + bal(D') — bal(D)

Then for a sequence op,,- - -, 0p,, of operations we have

Zamarh'zcd_cost(opi) = Zactual,cost + bal(D,,) — bal(Dy)

where Dy is the initial data structure and 1), is the final data structure. In particular,
if bal(Dy) = 0 and bal(D) > 0 for all data structures D, i.e. we never borrow tokens
from the bank, the actual cost of the sequence of operations is bounded by its amortized
cost. In the physicist’s view of amortization (Sleator and Tarjan [184]) we write pot(D)
instead of bal(D), call it the potential of the data structure and view deposits and
withdrawals as increases and decreases of potential. Of course, the two view points are
equivalent. A more thorough discussion of amortized analysis can be found in Tarjan
(198] and Mehlhorn [145], Vol. I, section 1.6.1.1.

Let us illustrate these concepts by an example, the data type counter. A counter takes
non-negative integer values, the two operations are set-to-zero and increment. We realize
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counters as sequences of binary digits. Then sel-to-zero returns a string of zeroes and
increment has to add one t¢ a number in binary representation. We implement increment
by first increasing the least significant digit by one and then calling a (hidden) procedure
propagate-carry if the increased digit is two. This procedure changes the digit two into
a zero, increases the digit to the left by one and then calls itself recursively. The worst
case cost of an increment operation is, of course, unbounded. For the amortized analysis
we define the potential of a string - -- aya;ay as the sum ) a, of its digits. Then set-
to-zero creales a string of potential zero. Also, a call of procedure propagate-carry has
actual cost 1 and amortized cost O since it decreases the potential of a string by 1.
Finally, changing the last digit has actual cost 1 and amortized cost 2 since it increases
the potential by 1. Thus the total cost of a sequence of one set-to-zero operation followed
by n increments is bounded by 1+ 2-n although some increments may cost as much as

log n.

There is one other view of amortization which we now briefly discuss: the buyer's and
seller's view. A buyer (user) of a data structure wants to be charged in a predictable
way for his uses of the data structure, e.g. the same amount for each call of increment.
A seller (implementer) wants to account for his actual uses of computing time. Amor-
tization is the trick which makes both of them happy. The seller charges the buyer two
tokens for each call of increment; the analysis given above ensures the seller that his
actual costs are covered and the buyer pays a uniform price for each call of increment.

2. The Dictionary Problem

Let § C UV be any subset of the universe /. We assume that an information in f(z) is
associated with every element z € S. The dictionary problem asks for a data structure
which supports the following three operations:

Access(z): return the pair (true,inf(z)), if z € S, and return false, otherwise;
Insert(z,inf): replace S by SU {z} and associate the information inf with z;
Delete(z): replace S by S — {z}.

Note that operations Inseri and Delete are destructive, i.e., the old version of set S is
destroyed by the operations. The non-destructive version of the problem is discussed in
the section on persistence.

In the static dictionary problem only operation Access has to be supported.

Since the mid-fifties many sophisticated solutions were developed for the dictionary
problem, They can be classified into two large groups, the comparison-based and the
representation-based data structures. Comparison-based data structures only use com-
parisons between elements of U in order to gain information, whilst the less restrictive
representation-based structures mainly use the representation, say as a string over some
alphabet, of the elements of U for that purpose. Typical representatives of the two
groups are search trees and hashing respectively.
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2.1. Comparison-based Data Structures

We distinguish two types of data structures: explicit and implicit. An implicit data
structure for a set S,| S |= n, uses a single array of size n to store the elements of S and
only O(1) additional storage. The explicit data structures use more storage; mostly for
explicit pointers between elements.

The basis for all comparison-based methods is the following algorithm for searching
ordered arrays. Let § = {z, < z; < ... < z,} be stored in array S[1...n, i.e.
S[i] = z;, and let z € U. In order to decide z € S, we compare r with some table
element and then proceed with either the lower or the upper part of the table (see Prog.

1).

(1) low « 1; high « n;

(2) next — an integer in [low ... high]|;
(3) WHILE z # S|nezt] and high > low
(4) do if z < S|nezt|

(5) then high «— next — 1

(6) else low «— nezt + 1 fi;

(7)  nezt «— an integer in |low ... high|

(8) od;

(9) if z = S[next] then “successful” else “unsuccessful”;

. Program 1

Various algorithms can be obtained from this scheme by replacing lines (2) and (7) by
specific strategies for choosing next. Linear search is obtained by nezt « low, binary
search by nezt « [(low + high)/2]. The worst case access time is O(n) for linear search
and O(log n) for binary search. It is clear that log n is also a lower bound for the access
time for any comparison-based data structure.

2.1.1. Implicit Data Structures

There are a number of ways to implement dictionaries implicitly. If we store the elements
in an unordered list, then update can be done in constant time, but searching requires
linear time. On the other hand, if the dictionary is maintained as an array sorted
in increasing order, then searching can be done in logarithmic time, but updates may
require that all the elements in the array be moved. Rotated lists are arrays that can
be sorted into increasing order by performing a cyclic shift (rotation) of the elements.
They are not much more difficult to search, but only half the elements have to be moved
in the worst case.

Munro and Suwanda [156] were the first to explicitly consider the dynamic implicit
dictionary problem. They showed that if the elements are stored partially sorted in a
triangular grid, then search and update can be performed in O(/n) steps. Using blocks
of rotated lists (sorted relative to one another), they were able to improve the search
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time to O(logn), keep the number of moves per update at O(\/n), and only increase
the number of comparisons per update to O(y/nlogn). Combining these ideas, they
also produced an implicit dictionary that can be searched or updated in O(n'/® logn)
time. By using rotated lists in a recursive manner, Frederickson (67| was able to achieve
O(log n) search time and O(nV?/'*8"(log n)3/?) update time. Munro {152/, Munro [153]
created implicit dictionaries that use O((logn)?) time for both search and update. His
basic approach is to have the order of elements within blocks of the array implicitly
represent pointers and counters.

Since the O((logn)?) upper bound falls short of the O(logn) upper bound for explicit
structures the interesting question of lower bounds arises.

Munro and Suwanda [156] proved that their triangular grid scheme is optimal within
a restricted class of implicit structures. Borodin et al. [28| prove a tradeoff between
search and update time which is valid for all implicit data structures. In particular,
their result implies that if the update time is constant then the search time is 12(n*) for
some constant ¢ > 0.

A related problem is the searching problem for semi-sorted tables. Assume that the
elements of the set S can be arranged to any one of p different permutations. Then Alt
and Mehlhorn (9] showed that 12(p'/™) comparisons are necessary for an access operation
in the worst case under the restrictive assumption that all comparisons must involve
the element sought for. Their lower bound is even true in the average case and for
nondeterministic algorithms. If the p permutations are the set of extensions of a single
partial order then a more precise bound was given by Linial and Saks [127]; they show
that O(log N) stops are necessary and sufficient where N is the number of ideals in the
partial order; we remind the reader that a subset A of a partially ordered set (P,>) is
an ideal if z € A and y < z implies y € A.

Partial orders naturally arise as the result of preprocessing. Borodin et al. [29] consid-
ered the problem of determining the tradeoff between preprocessing and search time.
If P(n) and S(n) denote the number of comparisons performed to, respectively, pre-
process and search an initially unsorted array of length n then, in the worst case,
P(n) + nlog S(n) is N1(nlogn). Mairson [132] proved that this result also holds in the
average case. Many of the lower bound results mentioned were recently unified and
extended by McDiarmid [137].

2.1.2. Explicit Data Structures or Search Trees

A search tree for a set S = {z; < ... < z,} is a full binary tree, i.e., each node has
either two or no son, with n leaves (= nodes with no son). The n Jeaves are labelled
by the elements from S from left to right. The internal nodes (= nodes with two sons)
are labelled by elements of U such that elements in the left subtree of a node v are
labelled no larger than v and elements in the right subtree are labelled larger than v.
Figure 1 shows a search tree for {1,7,19,23} C Z. The root could be labelled by any
integer between 7 and 18 inclusive. Our convention for storing the set S is frequently
called leaf-oriented. The alternative node-oriented organization, where the elements are
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stored in the internal nodes will not be discussed; most results carry over with only

small modifications.

] 7]

19

[19]  [23]

Figure 1. A search tree for {1,7,19,23}

An access operation takes time proportional to the height of the tree (= length of the
longest path from the root to a leaf) in the worst case: compare the element z to be
sought for with the label of the root, proceed to the right subtree if it is larger and
to the left subtree otherwise. Insertions and deletions are also casily accomplished. In
order to insert z, we search for z and then replace the leaf where the search ended by
a tree with two leaves. In order to delete z, we only have to delete the leaf labelled z
and its parent from the tree. Figure 2 shows the tree of figure 1 after the insertion of 9
and the deletion of 19.

Figure 2. Insertion of 9 and deletion of 19

The worst case time for an Access, Insert or Delete is O(n) since trees may degenerate
to linear lists. On the average, we can expect to do much better.

Consider the following szenario. We start with a tree consisting of a single leaf. Before
the n-th step we have a tree with n leaves. One of the leaves is chosen at random and
replaced by a tree with two leaves. Let D(n) be the expected total depth of the n leaves
before the n-th step, i.e.,

D(n) =) [p(T) Y di(T))
T '

where p(T) is the probability that a certain tree T with n leaves arises and d;(T) is the
depth of the i-th leaf of T. Then D(1) = 1 and

D(n+1) - D(n) = Y p(T)(2+ Y di(T)/n)
T i
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since the increase in depth is d,(7) i 2 if the s-th leaf of T is replaced and the probability
for this event is p(T')/n. Thus D(r+1)—D(n) - 2+1/n-D(n)or D(n+1) = 2+(1+1/n)-
D(n). This recurrence relation has solution D(n) = 2n-3"" | 1/t—n = O(nlogn). This
shows that under random insertions we can expect an expected access time of O(log n).
An excellent survey of the behavior of random trees is Gonnet [83]. Recent results can
be found in Devroye [44] and Devroye [45].

We have seen that depth is a crucial parameter for the behavior of search trees. This led
to the development of balanced trees where the depth is guaranteed to be O(logn). We
distinguish two major types of balanced trees, the height- and the weight-balanced trees.
In the first class the height of subtrees is balanced; it includes AVL-trees (Adel’son-
Velskii and Landis [1]), (2 3)-trees (Aho et al. [2]), B-trees (Bayer and McCreight [15)),
H B-trees (Ottmann and Six [162]), red-black trees (Guibas and Sedgewick [89]), half-
balanced trees (Olivie [160]), (a,b)-trees (Huddleston and Mehlhorn [101]) and balanced-
binary-trees (Tarjan [196]). The behavior of AVL-trees was studied by Foster [65 and
66/, Knuth 112, Brown [31], Mehlhorn [142|, Mehlhorn and Tsakalidis [151], Tsakalidis
1205]. In the second class the weight of the subtrees is balanced; it includes the BB|a|-
trees (Nievergelt and Reingold [159]) and the internal path trees (Gonnet [82]).

We treat only (2,4)-trees and refer the reader to the text books mentioned above for
the other classes. In a (2,4)-tree all leaves have the same depth and every internal node
has between 2 and 4 children. We use p(v) to denote the number of children (= arity)
of a node v. In a node v we store p(v) — 1 labels in order to guide searches. We will
describe the insertion and deletion algorithms and their amortized analysis next. For a
tree T', let the potential of T be twice the number of 4-nodes (= nodes of arity 4) plus
the number of 2-nodes.

Let us consider an insertion first. We start by adding a new leaf. This may convert the
parent from a 4-node to a 5-node, which is not allowed in a (2, 4)-tree. We split such
a 5-node into a 2-node and a 3-node. This may create a new 5-node, which we split
in turn. We continue splitting newly created 5-nodes, moving up the tree, until either
the root splits or no new 5-node is created, see Figure 3. If the root splits, we create a
new root, a 2-node, causing the tree to grow in height by one. The time needed for the
insertion is proportional to one plus the number of splits.

Let us define the actual time of an insertion to be one plus the number of splits. Then
the amortized time of an insertion is at most three: each split costs one but converts a
node that was originally a 4-node into a 2-node and a 3-node, for a net potential drop
of one; in addition, the insertion can create one new 2-node or 4-node.

Deletion is an inverse process, only slightly more complicated. To delete a given item,
we destroy the leaf containing it. This may make the parent a 1-node. If this 1-node
has a neighboring sibling that is a 3-node or a 4-node, we move a child of this neighbor
to the 1-node and the deletion stops. (This is called borrowing.) If the 1-node has a
neighboring sibling that is a 2-node, we combine the 1-node and the 2-node. (This is
called fusing.) Fusing may produce a new 1-node, which we eliminate in the same way.
We move up the tree eliminating 1-nodes until either a borrowing occurs or the root
becomes a 1-node, which we destroy. (See Figure 4). The time needed for the deletion
is proportional to one plus number of fusings.
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Figure 3

Figure 4

Let us define the actual time of a deletion to be one plus the number of fusings. Then
the amortized cost is at most two: each fusing costs one but converts two nodes that

were originally 2-nodes into a 3-node, for a net potential drop of two; in addition, the
deletion can create one new 2-node.

We summarize. The amortized cost of an insertion or deletion is O(1) although the
actual cost may be as large as O(log n). This result is due to Huddleston and Mehlhorn
(101] and Maier and Salveter [131). The particularly simple proof given above is due
to Hoffmann et al. [95]. Levcopoulus and Overmars [126] have recently shown that
constant insertion and deletion time can also be obtained in the worst case and not only
in the amortized sense. It is open whether their scheme can also support the various
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extensions of (2,4)-trees to be discussed next.

How frequently do expensive insertions and deletions arise? Huddleston and Mehl-
horn [101] showed that the number of insertions and deletions which cause ¢ fusings
or splittings decreases as an exponential function of ¢. (2,4)-trees are strongly related
to red-black trees (Guibas and Sedgewick [89)), symmetric binary B-trees (Bayer [14])
and half-balanced trees (Olivie [160]). All of the results about amortized rebalancing
cost mentioned above carry over to these trees. Moreover, red-black trees and half-
balanced trees have the additional property that only O(1) structural changes of the tree
are required after an insertion or deletion; all other changes concern only bookkeeping
information (Olivie [160|, Tarjan [196]). These properties and their simplicity make red-
black trees a good choice for practical implementations of balanced trees; they make
them also the ideal basis for finger search trees. Finger search trees represent ordered
lists into which one can maintain pointers, called fingers, from which searches can start;
the time for a search, insertion or deletion is O(log d), where d is the number of items
between the search starting point and the accessed item. The O(log d) bound can either
be achieved in the amortized sense (Brown and Tarjan [33], Huddleston and Mehlhorn
1101]) or in the worst case sense (Guibas et al. [88], Kosaraju [117], Huddleston [100],
Tarjan [194], Tsakalidis 203 and 204]). Finger trees lead to optimal algorithms for the
basic set opcrations union, intersection, difference, ...; i.e., these operations take time
O(log (mi:(*,:"‘m))) when applied to sets of size n and m respectively, Huddleston and
Mehlhorn [101]. Another application of finger trees is efficient list splitting. Suppose
that we have a list of n items which we want to split into sublists of length d and n — d
respectively. The position of the split is determined by a finger search starting from
both ends of the list. The finger search takes time O(log min(d, n —d)) and this is also a
bound on the amortized cost of the split, Hoffmann et al. [95]. Consider now a sequence
of splits, i.e., we start with a single list of length n which we split repeatedly until we
obtain n lists of length 1 each. The worst case cost T'(r) of this process is given by
T(1) = 0 and T(r) = max;<cdg<n-1[T(d) + T(r — d) + O(log min(d,n — d))] for n > 1.
This recurrence has solution T'(n) = O(n), i.e., the amortized cost of cach split is O(1).

Frequently, the same search has to be performed on many lists. Several researchers
(Vaishnavi and Wood [209], Lipski [128], Willard [216], Edelsbrunner et al. [55], Cole
[41], Imai and Asano [104]) observed that the naive strategy of locating the key sepa-
rately in each list by binary search is far from optimal and that more efficient techniques
frequently exist. Chazelle and Guibas [39] distilled from these special case solutions a
general data structuring technique and called it fractional cascading which supports
under very general assumptions the search for an item in d lists out of n lists in time
O(d+log N), where N is the total size of the n lists. This has numerous applications to
computational geometry. Mehlhorn and Niher [146| studied dynamic fractional cascad-
ing and showed that the amortized analysis of balanced trees carries over to the more
general situation of fractional cascading; more precisely they showed that insertions and
deletions have amortized cost O(loglog N) and that a search for an item in d lists out
of n lists takes time O((d + log N) loglog N).

Weight-balanced trees (Nievergelt and Reingold [159]) share many of the properties of
height-balanced trees; their implementation is more cumbersome, however. On the other
hand, they have the following weight-property (Willard and Luecker [217], Blum and
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Mehlhorn [25]): A node of weight w (i.e., w descendants) participates in only O(n/w)
structural changes of the tree when a sequence of n insertions and deletions is pro-
cessed. The weight-property makes weight-balanced trees superior to height-balanced
trees whenever structural changes of the tree are very costly, e.g., when their cost de-
pends linearly on the size of the subtree changed. This is frequently the case in applica-
tions to multidimensional search or computational geometry where trees are augmented
with substantial additional information. In these applications weight-balanced trees
guarantee good amortized behavior which cannot be obtained with height-balanced
trees.

2.2. Representation-based Data Structures
In these data structures the representation, say as a string of digits, of the elements
stored is used to compute their position in memory.

We consider interpolation search (2.2.1), hybrid data structures (2.2.2) and hashing
(2°2:3).

2.2.1. Interpolation Search

We first consider static interpolation search, which is an implicit data structure. In-
terpolation search was suggested by Peterson [170] as a method for searching in sorted
arrays.

It is obtained from Prog. 1, by replacing lines (2) and (7) by

z— S|low — 1]
S[high +1] - S[low — 1]

next + (low — 1) + | - (high — low + 1)]

It is assumed that positions S 0] and S[n + 1| are added and filled with artificial
elements. The worst case complexity of interpolation search is clearly O(n); consider
the case that S[0] =0, S[n+1]=1,z=1/(n+1)and0 < S[t] < zfor 1 <1 < n. Then
next = low always and interpolation search deteriorates to linear search. The average
case behaviour is much better. Average access time is O(log log n) under the assumption
that the keys z,;,...,z, are drawn independently from a uniform distribution over the
open interval (zg,Zn+1). This was shown by Yao and Yao [222], Pearl et al. [168] and
Gonnet et al. [86].

A very intuitive explanation of the behavior of interpolation search can be found in Pearl
and Reingold [169], where they present a variant called binary interpolation search. We
discuss this variant:

Binary search has access time O(log n) because it consists of a single scanning of a path
in a complete binary tree of depth logn. If we could do binary search on the paths
of the tree then we could obtain log log n access time. So let us consider the question,
whether there is a fast (at least on the average) way to find the node on the path search
which is halfway down the tree, i.e., the node on the path of search which has depth
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1/2logn. There are 2!/21°8" — /5 of these nodes and they are \/n apart in the array
representation of the tree. Let us make an initial guess by interpolating and then search
through these nodes by linear search. Note that each step of the linear seach jumps
over \/n elements of S and hence as we will see shortly only O(1) steps are required on
the average. Thus an expected cost of O(1) has reduced the size of the set from n to
vn (or in other words determined the first half of the path of search) and hence total
expected search time is O(log log n).

The precise algorithm for Access(z,S) is as follows. Let low = 1, high = n and let
nezt — [p-n] be defined as above; here p = (z — zp)/(Zns1 — To)- If £ > S next|
then compare z with S[nezt + /n|, S|nezt + 2\/n], ... until an 1 is found with z <
Sinext+ (¢ —1)-y/n]. This will use up 1 comparisons. If z < S[nezt| then we proceed
analogously. In any case, the subtable of size \/n thus found is then searched by applying
the same method recursively. Let p; be the probability that 1 or more steps are required
in the search for the subtable. Then the expected cost of the search for the subtable is
O(3_, pi). Also, if ¥ or more steps are required then the actual position of element r in
the array differs by more than i\/n from the expected position (which is pn) and hence
pi = O(1/4?) by an application of Chebycheff’s inequality. This shows that time O(1) is
spent at each level of the recursion and hence the expected access time is O(loglogn).

Santoro and Sidney [176] proposed another variant called interpolation-binary search
which has O(log log n) average case access time for the uniform distribution and O(log n)
worst case time.

Willard [215) has shown that the loglogn asymptotic retrieval time of interpolation
search does not remain in force for most nonuniform probability distributions. How-
ever, he was able to modify interpolation search such that its expected running time
is O(loglog n) on static u-random files where p is any regular probability density. A
density u is regular if there are constants by, by, bs,bs such that u(z) = 0 for z < b,
or z > by, u(z) > by > 0 and |u'(z)| < by for by < z < by. A file is p-random if its
elements are drawn independently according to density u. It is important to observe
that Willard’s algorithm does not have to know the density x. Rather, its running time
is O(log log n) on p-random files provided that u is regular. Thus his algorithm is fairly
robust.

Dynamic interpolation search, i.e., data structures which support insertions and dele-
tions as well as interpolation search, was discussed by Frederickson [67] and Itai, Kon-
heim, Rodeh [105|. Frederickson presents an implicit data structure which supports in-
sertions and deletions in time O(n*), ¢ > 0, and accesses with expected time O(log log n).
The structure of Itai, Konheim and Rodeh has expected insertion time O(logn) and
worst case insertion time O((log n)?). It is claimed to support interpolation search,
although no formal analysis of its expected behavior is given. Both papers assume that
the files are generated according to the uniform distribution.

Mehlhorn and Tsakalidis [150| extend dynamic interpolation search to non-uniform dis-
tributions. They achieve an amortized insertion and deletion cost of O(logn) and an
expected amortized insertion and deletion cost of O(log log n). The expected search time
on files generated by u-random insertions and random deletions is O(log log n) provided
that u is a smooth density. An insertion is u-random if the key to be inserted is drawn
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from density u. A deletion is random if every key present in the current file is equally
likely to be deleted. These notions of randomness are called I, and D, respectively in
Knuth [113|. A density u is smooth if there are constants d and a < 1 such that for all
a,b,c, with a < ¢ < b, and all integers m and n, m = [n®],

/ ji(x)dr < dn~1/2
c—(b—a)/m

where i(z) = 0forz < aorz > band ji(z) = u(z)/pfora < z < bwherep = f: p(z)dx.
Every regular density of Willard is smooth in this sense.

2.2.2. Hybrid Data Structures

This group of data structures combines arrays and pointers. A main representative is
the digital search tree or TRIE.

The TRIE was proposed by Fredkin [71] as a simple way to structure a file by using the
digital representation of its elements; e.g. we may represent S = {121,102, 211,120,210,
212} by the following TRIE

102 120 121 210 211 212

Figure 5. A TRIE

The general situation is as follows: the universe U consists of all strings of length £ over
some alphabet of say k elements, i.e., U = {0,...,k — 1}*. A set S C U is represented
as the k-ary tree consisting of all prefixes of elements of S. An implementation which
immediately comes to mind is to use an array of length k for every internal node of the
tree. Then operations Access, Insert and Delete are very fast and are very simple to
program; in particular, if the reverse of all elements of S are stored (in our example
this would be set {121,201,112,021,012,212}), then the following program will realize
operation Access(z)

This program takes time O(£) = O(log, N) where N = |U|. Unfortunately, the space
requirement of a TRIE as described above can be horrendous: O(n - £- k). For each
element of set S, |S| = n, we might have to store an entire path of £ nodes, all of which
have degree one and use up to space O(k).

There is a very simple method to reduce the storage requirement to O(n - k). We only
store internal nodes which are at least binary. Since a TRIE for a set S of size n has n
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(1) v « root;
(2) y < =z
(3) do € TIMES (s,y) + (y MOD k,y DIV k);
(4) v + 1-th son of v
(5) od;
(6) if z = CONTENT [v| then “yes” else “no”".
_— Program 2 S ———

leaves there will be at most n — 1 internal nodes of degree 2 or more. Chains of internal
nodes of degree 1 are replaced by a single number, the number of nodes in the chain.
In our example we obtain Figure 6.

1"00‘:(

e 9\ 2

DRI,

2 c,([
1; 1 1 1 \
102 120] [121] 210 (211 (212

Figure 6. The compressed TRIE

Here internal nodes are drawn as arrays of length 3. On the pointers from fathers to
sons the numbers indicate the increase in depth, i.e., 1+ the length of the eliminated
chain of nodes of degree one. In our example the 2 on the pointer from the root to the
son with name b indicates that after branching on the first digit in the root we have
to branch on the third (1 + 2) digit in the son. The algorithms for Access, Insert and
Delete become slightly more complicated for compressed TRIES but still run in time
0(¢).

Thus a compressed TRIE supports operations Access, Insert and Delete with time
bound O(log, N), where N is the size of the universe and k is the branching factor of
the TRIE. A set S of n elements requires space O(k - n).

Note that tries exhibit an interesting time space trade-off. Choosing k large will make
tries faster but more space consuming, choosing k small will make tries slower but less
space consuming. For static sets, i.e., only operation Access is supported, there is a
technique developed by Tarjan and Yao [200] which can store a set S (SC U,|S| — n
and |U| = N) in a n-ary TRIE using O(n) storage locations (of O(log n) bits each) such
that it can support operation Access in time O(log,, N) worst case and O(1) expected
case. Their technique combines a TRIE structure with a method for compressing tables
by using double displacements. This double displacement method is an elaboration of
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a single displacement method suggested by Aho and Ullman (6] and Ziegler [225] for
compressing parsing tables.

Willard [214] introduces two dynamic trie structures, the P-fast TRIE and the Q-
fast TRIE. A P-fast TRIE uses space O(ny/log N2VE‘N) for representing a set S
(S C U,|S| = n,|U| = N) and can support access, insertion and deletion in worst case
time O(v/Tog N). The Q-fast TRIE is derived from the P-fast TRIE by using a pruning
technique, it has the same time bounds but needs only O(n) space.

TRIES also support the following three additional operations:

successor(z): Find the least element in the set S with key value greater than z;

predecessor(z): Find the greatest element in the set S with key value less than z;

subset(z;,z,): Find (and produce) the list of those elements of S whose key value lies
between z, and z;

The P-fast and Q-fast TRIE can support the operations successor(z) and predecessor(z)
in time O(y/log N) and subset(z;,z;) in time O(y/Tog N + k), where k is the size of the
output.

Willard [213] also proposed another static trie structure, called Y-fast TRIE, which uses
O(n) space and supports access(z), successor(z) and predecessor(z) in worst case time
O(log log N) and subset(z,,z;) in O(log log N + k). This method uses perfect hashing
(see 2.2.3.3.).

2.2.3. Hashing

The ingredients are very simple: an array T0..m — 1|, the hash table, and a function
h:U — |0..m—1], the hash function. U is the universe; we will assume U = [0.. N —1|
throughout this section. The basic idea is to store a set S as follows:  z € S is stored in

T[h(z) ). Then an access is an extremely simple operation: compute k(z) and look up
T[h(z) ).

There is one immediate problem with this basic idea: what to do if h(z) = h(y) for
some z,y € S,z # y. Such an event is called a collision. There are two main methods
for dealing with collisions: chaining and open adressing.

We briefly present both methods and then discuss two techniques for choosing the hash
function h; perfect and universal hashing. We do not treat the average behavior of
hashing in detail but rather refer the reader to chapter 14.

2.2.3.1. Hashing with Chaining

The hash table T is an array of linear lists. A set S C U is represented as m linear lists.
The i-th list contains all elements z € S with h(z) = i.
Operation Access(z,S) is realized by the following program:

1) compute h(z)
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2) search for z in list 7| A(x) |.

Operations Insert(z,S) and Delete(x,S) are implemented similarly. We only have to
add z to or delete z from the list T k(z) |. For the analysis of hashing we assume that &
can be evaluated in constant time and therefore define the cost of an operation refering
to key z as O(1 + 6x(z,S)) where S is the set of stored elements and

én(2,5) = 3 e s 6n(z,v) , and
1 if h(z) = h(y) and = £ y

0 otherwise.

6h(I1 y) = {

The worst case complexity of hashing is now easily determined. The worst case occurs
when the hash function h restricted to set S is a constant, i.e., h(z) = 1y for all z € §.
Then hashing deteriorates to searching through a linear list and any one of the three
operations costs O(|S|) time units.

The average case behavior of hashing is much better. The expected cost of a sequence
of n insertions, deletions and accesses is O((1 | 3/2)n), where 8 = n/m is the maximal
load factor of the table. This is true under the following probability assumption:

1) The hash function h:U — [0..m — 1] distributes the universe uniformly over the
interval [0..m — 1), i.e,foralld,s' € [0..m—1]: |71 ()| = |A~ ()]

2) All elements of U are equally likely as argument of any one of the operations in the
sequence, i.e., the argument of the k-th operation of the sequence is equal to a fixed
z € U with probability 1/|U|.

These assumptions imply that the value h(z,) of the hash function on the argument of
the k-th operation is uniformly distributed in [0..m —~ 1], i.e., prob(h(zs) = 1) = 1/m
forall k€ [1..n]and i € [0..m — 1]. Thus the expected length of any one of the
lists is at most i/m after the i-th operation and therefore the expected cost of the
i + 1-th operation is O(1 + 1/m). Hence the total expected cost of all n operations is
O((1 + 8/2)n). More on the expected analysis of hashing with chaining can be found
in chapter 14.

2.2.3.2. Hashing with Open Addressing

Each element z € U defines a sequence h(z,¢),1 = 0,1,2,... of table positions. This
sequence of positions is searched through whenever an operation refering to key r is
performed.

A very popular method for defining the function h(z,1) is to use the linear combination
of two hash functions h; and h;:

h(z,1) = |hy(z) + 1 - ha(z) | mod m

Hashing with open addressing does not require any additional space. However, its
performance becomes poorly when the load factor is nearly one.

The average case behavior of hashing with open adressing is easy to determine under the
unrealistic assumption that the sequence h(z,t) is a random permutation of the table
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positions and that the cost of an Insert is | + min{s; T|h(z,i)] is not occupied}. Let
C(n,m) be the expected cost of an Insert when n items are already stored in a table
of sizem. Then C(n,m) =1t n/m-C(n  1,m 1) if n > 0, since one probe is always
required, this probe inspects an occupied position with probability n/m and since in this
case an insertion into a table of size m 1 holding already n 1 items is still required,
and C(0,m) = 1. Thus C(n,m) =(m +1)/(m —n+1) = 1/(1 - 8), where 8 = n/m is
the load factor. The expected cost of an Access operation is O((1/8) - In 1/(1 - §)) by
a similar analysis. More on the expected case behavior of hashing with open adressing
can be found in chapter 14.

2.2.3.3. Universal Hashing

Universal Hashing was first described by Carter and Wegman 37|. It is & method to
deal with the basic problem of hashing: its linear worst case behavior. We saw in section
2.2.3.1. that hashing provides us with O(1) expected access time and O(n) worst case
access time. Thus it is always very risky to use hashing when the actual distribution of
the inputs is not known to the designer of the hash function. It is always conceivable,
that the actual distribution favors worst case inputs and hence will lead to large average
access times.

Universal hashing is a way out of this dilemma. We work with an entire class H of hash
functions instead of a single hash function; the specific hash function in use is selected
randomly from the collection H. If H is chosen properly, i.e., for every subset S C U
almost all h € H distribute S fairly evenly over the hash table, then this will lead to
small expected access time for every set S. Note that the average is now taken over the
functions in the class H, i.e., the randomization is done by the algorithm itself not by
the user: the algorithm controls the dices.

Let us reconsider the symbol table example. At the beginning of each compiler run the
compiler chooses a random element h ¢ H. It will use hash function h for the next
compilation. In this way the time needed to compile any fixed program will vary over
different runs of the compiler, but the time spent on manipulating the symbol table will
have small mean.

What properties should the collection i of hash functions have? For any pair z,y €
Uz # y, a random element h € H should lead to collision, i.e., h(z) = h(y), with
fairly small probability. More precisely, let ¢ €« R and Nym € N. A collection H C
{hih:[0..N —1] = [0..m — 1]} is c-universal, if for all z,y € [0..N - 1],z # y

|[{h;h € H and h(x) = h(y)}| < ¢ |H|/m.

Carter and Wegman (37| analysed the expected behavior of universal hashing under the
following assumptions:

1) The hash function h is chosen at random from some c-universal class H, i.e., each
h € H is chosen with probability 1/|H|.

2) Hashing with chaining is used.
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They showed that the expected cost of an Access, Insert or Delete operation is O(1 +
¢d), where § = n/m is the load factor, if a c-universal class of hash functions is used.
They also gave examples of universal classes. Let m, N € N and let N be a prime.
For a,b€ [0..N — 1] let k,5(z) = ((az + b) mod N) mod m for all z. Then the class
H = {hap; a,b€ [0..N — 1]} is 4-universal. A member of this class requires O(log N)
random bits for its selection. Mehlhorn [143] shows that there is a 8-universal class
whose members can be sclected by O(log m + log log N) bits and also shows that this is
optimal. Other universal classes are described in Markowsky et al., [134].

2.2.3.4. Perfect Hashing

Perfect hashing is the simplest solution to the collision avoidance problem. We just
postulate that there are no collisions, i.e., the hash function operates injectively on the
get to be stored.

A function h:[0..N — 1| — [0..m — 1] is a perfect hash function for SC [0..N — 1]
if h(z) # (y) forall z,y € S,z # y.

Perfect hashing was first discussed by Sprugnoli [186). He describes heuristic methods
for constructing perfect hash funtions. Fredman, Komlés and Szemerédi [73] show
that very simple perfect hash functions exist whenever m > 3n,n = |S|. The hash
functions can be found in deterministic time O(nN) and probabilistic time O(n), can
be evaluated in time O(1) and are given as program of length O(nlog N) bits. The
program size was improved to O(nlogn + loglog N) by Mehlhorn [145], p. 138, and
to O(nloglogn + loglog N) by Jacobs and van Emde Boas [106|. A lower bound for
program size is 3(n?/m + log log N), Mehlhorn [143].

Perfect hashing was first developed for static sets S. Aho and Lee [5| showed how to
deal with insertions and deletions. They describe a hashing scheme which supports
accesses and deletions in worst case time O(1) and insertions in expected time O(1).
The expectation is computed with respect to random inputs; ¢f. assumption 2 in section
2.2.3.1.

A further improvement was made by Dietzfelbinger et al. [46]. This scheme combines
the advantages of universal and perfect hashing. Accesses and deletions take worst case
time O(1) and insertions take time O(1) on the average. However, the average is now
computed with respect to the random choices made by the algorithm and is worst case
with respect to inputs.

2.2.3.5. Extendible Hashing

Our treatment of hashing in the previous sections was based on the assumption that
main memory is large enough to completely contain the hash table. Let us assume now
that this assumption is no longer warranted. Let us also assume that the transfer of
information between main and secondary memory is in pages of size b. In this situation
extendible hashing as described by Fagin et al. [59] can be used. Similar schemes are
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known under the names dynamic hashing (Larson [122]}, virtual hashing (Litwin [129])
and expandable hashing (Knott. [110]).

Let i : U — {0,1}* be an injective function. For an integer d and z € U let hy(z)
be the prefix of h(z) of length d and for a set S C U let d(S) be the minimal d such
that [{z € S;ha(z) = a}| < b for all @ € {0,1}¢, i.e., hq partitions the set § into
subsets of size at most b. Extendible hashing uses a table T[0..245} - 1], called the
directory, and some number of buckets of capacity b to store set S, The directory
entries are pointers to buckets. An element z € S is accessed by computing 1 = hg(z],
looking up T'i] and then accessing the bucket pointed to by T'|i|. In this way at most
two accesses to secondary memory are ever needed. The first access is to the page
containing T|i] and the second access is to the bucket containing z. We allow different
directory entries to point to the same bucket as long as the following buddy principle
holds: If r < d(S),a € {0,1}",a;,a; € {0,1}45)~" a; £ a; and T|aa,] = T|aaz| then
necessarily T[aa;| = T[aay) for all ag € {0,1}45)-",

Insertions are easily processed except when a bucket overflows. In this case d(S) in-
creases by one, the size of the directory doubles, and the overflowing bucket is split into
two.

The expected behavior of extendible hashing is treated in the papers mentioned above
and more completely in Flajolet [62]; cf. also chapter 14. He shows that the expected
number of buckets is n/(b In 2) and that the expected size of the directory is about
e/(bIn 2)n'*'/% A variant of extendible hashing (Tamminen [191]) achieves linear
expected diretory size and O(1) expected access time.

3. The Weighted Dictionary Problem and Self-Organizing Data
Structures

In the weighted dictionary problem a weight (= access frequency) is associated with
every element of the set S. The basic goal is to make accesses to high frequency elements
faster than to low frequency elements without sacrifying the efficiency of the other set
operations.

The first problem studied was the construction of an optimal search tree for given access
frequencies. More precisely, let S = {z;,...,z.} and let w, be the weight of item z,.
For a tree T let d; be the depth of item 1. Then P = }_,wd; is called the weighted
path length of the tree T. It is not too hard to construct an optimum tree, i.e. a tree
which minimizes the weighted path length, in time O(n*) by dynamic programming.
This was improved to O(n?) by Knuth [111] (see also Yao [224]). In the case of leaf-
oriented storage an O(nlogn) algorithm was found by Hu and Tucker [99) and Garsia
and Wachs [81]. The latter algorithms resemble Huffman’s algorithm (Huffman [102))
for the construction of optimal prefix codes. The original correctness proofs for both
algorithms were fairly involved. A simple proof was recently found by Kingston [108],

A search tree for a set S yields directly a prefix code for the symbols z,,...,z, over the
binary alphabet {“go left", “go right’}. In view of the noiseless coding theorem it is
therefore not surprising, that the normalized weighted path length P = 5 (w:/W)d,,
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where W = )" w,, is strongly related to the entropy H = )  (w,/W) log(W/w,) of
the access frequency distribution. In particular, P > H — log H for node-oriented
storage and P > H for leal-oriented storage, Bayer [13|. Also, there are trees achieving
P < H + 2 for both storage organizations, Mehlhorn [139]. Nearly optimal trees, i.e.,
trees which come within a constant factor of optimality and can be constructed in lincar
time O(n) were described by Fredman [72|, Mehlhorn [138], Bayer [13] and Korsch [116].
An implicit data structure achieving the same goal was found by Frederickson, [69)].

We will now turn to the dynamic case. It has two facets: the underlying set S may
change and the access frequencies of the elements in S may change.

Faller [60] and Gallager |78 proposed a scheme for dynamic Huffman coding. Knuth
[114] gives a real-time implementation of this scheme. More precisely, suppose that the
frequency w of a leafl at depth | changes by one. Then an optimal Huffman tree for the
new distribution can be derived from the old Huffman tree in time O(l). Vitter [210|
refined this result. His scheme does not only work on-line in real time, it also uses at
most one more bit per letter than the standard off-line Huffman algorithm.

Let us consider search trees next. The relevant operations are:

Access(z, S): if item z is in set S then return a pointer to its location, otherwise return

nil

Insert(xz,S): insert z into set S

Delete(z, S): delete z from set S and return the resulting set

Join(S;, S3): return a set representing the items in S followed by the items in Sa,

destroying S, and S;, (this assumes that all elements of S, are smaller
than all elements of S;)

Split(z, S): returns two sets S; and Sy; S; contains all items of S smaller than z and
S, contains all items of S larger than z (this assumes that z is in S); set S
is destroyed

Change Weight(z, S, 6): changes the weight of element z by é

What time bounds can we hope for? We mentioned above, that the normalized weighted
path length is related to the entropy of the frequency distribution and therefore the best
we can hope for operation Access is an O(log(W /w;)) time bound. We call this bound
the ideal access time of item 5. Similarly, inserting an element of weight w can be no
cheaper than accessing the new element or one of its neighbors in the new tree and we
should therefore content ourself with an O(log(W + w)/min(w™,w,w™)) time bound,
where w™ and w* are the weights of the two neighbors of the new element.

Bayer [13] gave a heuristic for the weighted dynamic dictionary problem, but he gave
no theoretical results, and indeed his trees do not have ideal access time in the worst
case. Unterauer [207] achieves ideal access time, but does not analyse the worst case
time required for updates. Mehlhorn 140 and 141] introduced D-trees; D-trees extend
BB|al-trees and achieve ideal worst case Access, Change, Insert and Delete time. He did
not consider Join and Split. D-trees have the weight-property of BB|a]-trees mentioned
in section 2. Operations Join and Split were then considered by Giiting and Kriegel
87|, Kriegel and Vaishnavi [119], Bent, Sleator and Tarjan |18, achieving good worst
case bounds for all five operations.
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A very elegant alternative which achieves good amortized time bounds for all operations
was found by Sleator and Tarjan [183]|. Their splay trees show the following behavior.

The amortized cost of Access(z,S) is O(log(W/w)).
W

S | —
min(w,w" )

The amortized cost of Delete(z,S) is O(log ), where w™ is the weight of the
predecessor of z in S.

The amortized cost of Join(S,,S;) is O(log **=*2), where w is the weight of the largest
element in S; and w; is the weight of S;.

The amortized cost of Insert(z,S) is O(log Wiw

m.‘n(w-.-—n';'.};?))' where w™ is the weight of
the predecessor, wt is the weight of the successor of z.
The amortized cost of Split(z,S) is O(log(W/w)).

The amortized cost of ChangeW eight(z,S,6) is O(log((W + 6)/w)).

Splay trees achieve this behavior without keeping any explicit information about the
weights of the elements; they are a so-called self-organizing data structure. In self-
organizing data structures an item z is moved closer to the entry point of the data
structure whenever it is accessed. This will make subsequent accesses to z cheaper. In
this way the elements of S compete for the good places in the data structure and high
frequency elements are more likely to be there. Note however, that we do not maintain
any explicit frequency counts or weights; rather, we hope that the data structure self-
organizes to a good data structure.

Since no global information is kept in a self-organizing data structure the worst case
behavior of a single operation can always be horrible. However, the average and the
amortized behavior may be good. For an average case analysis we need to have prob-
abilities for the various operations. The data structure then leads to a Markov chain
whose states are the different incarnations of the data structure. We can then use prob-
ability theory to compute the stationary probabilities of the various states and use these
probabilities to derive bounds on the expected behavior of the data structure.

For the amortized behavior, we take a combinatorial point of view and analyse the
cost of sequences of operations. Experiments (Bentley and McGeoch [20]) suggest that
the behavior of the heuristics on real data is more closely described by the amortized
analysis than by the probabilistic analysis. We will now describe self-organizing linear
search in some detail and then briefly return to search trees.

Self-organizing linear search is quite simple. Let S = {z;,...,z,} and let us assume
that S is organized as a linear list. For simplicity, we consider only the operation
Access(z) and postulate that the cost of Access(z) is pos(z) where pos(z) denotes the
position of z in the current list.

Two popular strategies for self-organizing linear search are the Move-to-Front and the
Transposition Rule.

Move-to-Front Rule (MFR): Operations Access(z) and Insert(z) make z the first ele-
ment of the list and leave the order of the remaining elements unchanged.

Transposition Rule (TR): Operation Access(z) interchanges z with the element preced-
ing z in the list.
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For the average case analysis we postulate a probability distribution py,...,p, and
assume that the accesses are independent random variables and that an access to item
z; has probability p;. We may assume p; > p; > ... > p, w.l.o.g. Assuming complete
knowledge of the distribution it is clearly optimal to arrange the items according to
decreasing [requency and to never change this arrangement. The expected access cost
is Epp = ), pi-t in this case. Let us denote the expected access cost of the two rules
by Epp and Er respectively. The expected behavior of the Move-to-Front Rule was
investigated by McCabe [136], Burville and Kingman [34], Knuth [112], Hendricks (93],
Rivest [175| and Bitner [22|. In particular,

Evr = Xp.[l G Z : 'p.—‘"—'] <2-:-Efp.
i=1 je TP

This can be seen as follows. The expected position of element z; under the Move-to-
Front Rule is 1 plus the expected number of z;’s which are in front of z;. Next observe
that z; is ahead of z; if there is an integer k such that the last k accesses were an
access to z; followed by k — 1 accesses to items different from z; and z;. Hence the
probability that z; is ahead of z, is given by p; 3, 50(1 — (pi +p;))* = p;/(pi + p;j) and
the expression for Eap follows. Next observe that p;/(pi + p;) < 1 and hence
n =1

Emp=1+2-) p) —2—<1+2-) p(i—1) <2 Erp
=1 j=1 P TP F
This shows, that the expected access cost under the Move-to-Front Rule is at most
twice the optimum. The Transposition Rule is never worse. More precisely, Rivest [175]
showed that Eqy < Ezp, with strict inequality unless n = 2 or p; = 1/n for all i. He
further conjectured that transpose minimizes the expected access time for any p, but
Anderson et al. (10| found a counterexample. Chung et al. [40] showed Exr < 5+ EFp
and Gonnet et al. [85] gave an example where this bound is obtained. Thus the worst
case ratio Eyp/Epp i8 /2. The convergence speed of the two rules was compared
by Bitner [22] and it was found that the Move-to-Front Rule converges more quickly.
A combination of the Move-to-Front Rule with the more traditional method of keeping
frequency counts is discussed in Lam et al. [121].

We will next present an analysis of the amortized behavior of the Move-to-Front Rule
due to Bentley and McGeoch [20]. Assume that we perform a sequence of m accesses
to this list. Let A;,1 <1 < n, be the number of accesses to z;. We may assume w.l.o.g.
that Ay > hy > ... > h,,. If we start with the list z,,...,z, and never change it then
the total cost of the m accesses is Cpp = ), ¢ h;. Suppose now that we start with the
list ;,...,Z, and use the Move-to-Front Rule. Let Cpsr be the total cost of m accesses
under the Move-to-Front Rule. Let t}, 1 < 5 < h;, be the cost of the j-th access to item

z;. Then Cpqr — Cpp < 3, Z:':__, tj- - ?:l th, = ?:1 E:;,(t; t). Consider an
arbitrary term t; — ¢ in this sum. If tj > i then there were at least t}j — i accesses to
items zp,h > &, between the (5 — 1)-th access and the j-th access to z; (the 0-th access

is the initial configuration. Thus
h,
Yt —9) S higr 4.+ by
1=1
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and hence Cpp — Cpp < E?:]("‘!*l o+ e h") = Z:.:l(’ - l)h.‘ = Cpp —m. In
particular, Cyp < 2 Cpp. A much stronger result was shown by Sleator and Tarjan
(184). They proved that no rule whatsoever can beat the Move-to-Front Rule by more
than a factor of two. This is even true for off-line rules which know the complete
sequence of accesses in advance.

Allen and Munro 8] were the first to consider self-organizing binary search. They show
that the expected search time under the Move-to-Root heuristic, where an accessed item
is moved to the root by a sequence of rotations, is only a constant factor above the ex-
pected search time in an optimum search tree. They also showed that the transposition
heuristic does not have this property. Bitner 22| investigates the expected behavior of
several other heuristics.

Splay trees (Sleator and Tarjan [183]) refine the Move-to-Root heuristic by combining it
with the concept of path compression, cf. the section on the Union-Find-Split problem.
The access-time in splay trees is within a constant factor of the access-time of static
optimurm search trees; this is the analogue of the relationship Cpyp < 2 - Cpp derived
above. It is open, whether this result can be extended as it was in the case of the Move-
to-Front Rule for linear search. A first step was taken by Tarjan [197] who showed that
accessing the nodes of a splay tree in sequential order takes time O(n).

4. Persistence

Ordinary data structures are ephemeral in the sense that a change to the structure
destroys the old version, leaving only the new version available for use. In contrast, a
persistent structure allows access to any version, old or new, at any time. We distinguish
partial and full persistence. A data structure is partially persistent if all versions can
be accessed but only the newest version can be modified, and fully persistent if every
version can be both accessed and modified.

A number of researchers have developed partially or fully persistent forms of various
data structures, including stacks (Myers [157]), queues (Hood and Melville [96]), search
trees (Myers (158], Overmars [163|, Reps, Teitelbaum and Demers [174], Swart [190],
Sarnak and Tarjan (177]) and related structures (Chazelle (38|, Cole [41|, Dobkin and
Munro [49], Driscoll, Sarnak, Sleator and Tarjan [53]).

In the articles of Dobkin and Munro [49], Overmars [163 and 165, Chazelle [38] the
problem of persistence is called searching sn the past.

Dobkin and Munro [49] consider the following problem. Let S be a universe of n objects
subject over time to m deletions and insertions in arbitrary order. Assuming that there
exists a total order among the objects, they describe a method for computing in time
O(log nlogm), the rank of any object at any given time, i.e., the number of objects that
preceed it at that time. The space used is O(n + mlogn). Overmars |164] improves
the query time to O(log(n + m)). Chazelle |38| presents a data structure that requires
O(n + m) storage and allows the computation of any neighbor of a new object at time 8,
in O(log nlog m) time. The method also allows the set S to be only partially ordered.

Overmars [165] studies three simple but general ways to obtain partial persistence. One
method is to explicitly store every version, copying the entire ephemeral structure after
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each update operation. This costs {}(n) time and space per update. An alternative
method is to store no versions but instead to store the entire sequence of update op-
erations, rebuilding the current version from scratch each time an access is performed.
A hybrid method is to store the entire sequence of update operations and in addition
every k-th version, for some suitably chosen value of k.

Cole [41] devises a partial persistent representation of sorted sets that occupies O(mn)
space and has O(log m) access time, where m is the total number of updates (insertions
and deletions) starting from an empty set. His solution is off-line, i.e., the entire sequence
of updates must be known in advance. Sarnak and Tarjan [177| propose a simple data
structure that overcomes this drawback. They present a persistent form of binary
search tree with an O(log m) worst-case access/insert/delete time and an amortized
space requirement of O(1) per update.

Swart [190], using the idea of path copying, presents a fully persistent representation of
sorted sets and lists with O(log m) time bound per operation and an O(logm) space
bound per update.

Driscoll et al. [53] finally propose a general solution for the persistence problem. They
develop simple, systematic and efficient techniques for making different linked data
structures persistent. They show first that if an ephemeral structure has nodes of
bounded in-degree, then the structure can be made partially persistent at an amortized
space cost of O(1) per update step and a constant factor increase in the amortized cost of
access and update operations. Second, they present a method which can make a linked
structure of bounded in-degree fully persistent at an amortized time and space cost of
O(1) per update and a worst-case time of O(1) per access step. At last they present
a partial persistent implementation of balanced search tree with a worst-case time per
operation of O(logn) and an amortized space cost of O(1) per insertion or deletion.
Combining this result with a delayed updating technique of Tsakalidis [204) they obtain
a fully persistent form of balanced search trees with the same time and space bounds
as in the partially persistent case. Using another technique they can make the O(1)
space bound for insertion and deletion worst-case instead of amortized. The technique
employed by Driscoll et al. is strongly related to fractional cascading, cf. section 2.1.2.
This relationship can be used to support a forget-operation which permits to explicitely
delete versions and thus improves the space requirement, Mehlhorn et al. [148].

5. The Union-Split-Find-Problem

We consider the problem of maintaining a collection of disjoint sets under the operations
of union and split. More precisely, the problem is to carry out three kinds of operations
on a partition of the universe I/ = {1,...,n}: find, which determines the set containing
a given element; union, which combines two sets into one; and split, which splits a set
at a given element into two. In order to identify the sets, we assume that the algorithms
maintain with each set a unique name. The precise formulation of the three operations
is as follows:

find(z): return the name of the set containing z
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union(A, B): combine the two sets with names A and B, destroying the two old scts,
and return a name for the new set.
split(A, z): split the set with name A into the sets A; = {y € A; y < z} and A; =
A — A,, destroying the old set, and return names for the two sets formed.

5.1. The Union-Find-Problem

Here, we start with the partition of U into singleton sets and allow only the operations
find and union. A popular solution, proposed by Galler and Fischer |79] represents each
set by a rooted tree. The nodes of the tree are the elements of the set and the name of
a set is the root of the tree. With each element z we store a pointer p(z) to its parent;
the parent pointer of a root is nil. Initially, all parent pointers are nil. To carry out
find(z), we follow parent pointers starting in z until we reach a root and return the
root. To carry out union(A, B), we define p(A) to be B and return B.

The naive algorithm is not very efficient, requiring O(n) time per find in the worst case.
However, there are two simple heuristics which improve the efficiency dramatically: the
weighted union (Galler and Fischer) and the path compression heuristics (McIllroy and
Morris). We store with each set A its cardinality size(A) and carry out union{A, B)
by defining p(A) to be B, if size(A) < size(B), and p(B) to be A, otherwise. In the
algorithm for find(z) we not only traverse the path from z to the root but also redirect
all parent pointers of the nodes traversed to the root.

Suppose now that we carry out m > n finds and n — 1 unions. Let t(m,n) be the
maximum time required by any such sequence of instructions. Fischer [61] showed
that t(m,n) = O(n + m - log log m), Hopcroft and Ullman (97| improved the bound to
t(m,n) = O(n + m - log" n) and finally Tarjan [192], Banachowski [12] improved the
bound to t(m,n) = O(n + m-a(m,n)), where a is the inverse of Ackermann’s function,
ie.,

a(m,n) = min{z 2 1; A(z,4[m/n]) > logn}

and
A(1,0) =1 forallt > 1
A(0,z) =2z forallz >0
A(f+1,z+1) = A(1,A(s + 1,1)) for all 1,z > 0.

Tarjan and van Leeuwen [199] show that the same time bound applies to several variants
of the union-find algorithm described above.

How good is this algorithm? Tarjan (193] has shown that any pointer machine algorithm
which obeys the separation assumption requires time Q2(m - a(m,n)) to solve the union-
find problem. The separation assumption states that sets correspond to connected
components in the pointer structure.

All time bounds quoted above are amortized. The worst case behavior was considered
by Blum [24] and he proves a ©(log n/ log log n) bound; again, the lower bound uses the
separation assumption.
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The average case behavior was considered by Doyle and Rivest [51], Yao [220|, Knuth
and Schonhage (115, Yao 221| and Bollobas and Simon [26). They show that under
various probability assumptions the expected running time of the union-find algorithm
is linear, even if only one of the two heuristics is used.

Manilla and Ukkonen [133| consider a variant of the general union-find problem where
backtracking over the last union operations is possible by means of a deunion operation.
They present two methods, which allow to process a sequence of m finds, k unions
and k deunions in time O((m + k) - logn/loglogn) and O(k + mlogn) respectively,
Westbrook and Tarjan [212]. A further generalization where weights are associated with
the unions is considered by Gambosi et al. [80].

All of the algorithms mentioned above run on pointer machines. A linear time RAM-
algorithm for the special case where the unions are known in advance was recently
described by Gabow and Tarjan [77].

5.2. The Interval Split-Find-Problem

Here, we start with the partition of U into a single block and allow only the operations
find and split. Clearly, all blocks arising during the execution are intervals. Hopcroft
and Ullman [97] gave a solution which processes n splits in total time O(nlog® r) and
each find in worst-case time O(log® n). Gabow (76| gave an improved algorithm which
processes the n splits in total time O(n - a(n,n)) and each find in amortized time
O(a(n,n)). All of this runs on a pointer machine.

Again, one can do better on a RAM. Gabow and Tarjan [77] gave a linear time solution
which was then extended by Imai and Asano (104 to the incremental set splitting
problem. In this version the underlying universe can be expanded by adding (operation
add) a new element next to a given element. Of course, the access operation, which
is implicit in a find, becomes non-trivial now and is not accounted for in the linear
time bound. However, in the applications discussed by Imai and Asano this causes no
problems.

5.3. The Interval Union-Split-Find-Problem

We finally turn to the full problem. Here, we start with the partition of U into sin-
gletons and allow the operations find, split and union. We postulate however, that
the partition is always a partition into intervals, i.e., a union operation can only join
adjacent intervals. It is customary, to use the right endpoint of an interval as the name
of the interval in this problem.

Van Emde Boas, Kaas and Zijlstra [58| describe a pointer machine solution which ex-
ecutes all three operations in worst case time O(loglogn). The corresponding lower
bound was shown by Mehlhorn, Naher and Alt [147]. The lower bound does not use the
separation assumption and is even valid for the amortized complexity of the problem.
Mehlhorn, Naher and Alt [147] also show that the lower bound increases to 2(logn)
with the separation assumption.
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Finally, Mehlhorn and Naher [146| show that the additional operations add and erase,
which modify the underlying universe by adding an element next to a given element or
removing a given element, can also be supported in amortized time O(log log n).

6. Priority Queues

A prionity queue is an abstract data structure consisting of a set of ifems, each with a
real-valued key, subject to the following operations:

makequeue: Return a new, empty priority queue.
insert(s, h): Insert a new item 1 with predefined key into priority queue h.

findmin(h): Return an item of minimum key in priority queue h. This operation does
not change h.

deletemnin(h): Delete an item of minimum key from h and return it.
In addition, the following operations on priority queues are often useful:

meld(hy, h;): Return the priority queue formed by taking the union of the item-disjoint
priority queues hy and hy. This operation destroys fk; and h,.

decreasekey(A,i,h): Decrease the key of item ¢ in priority queue h by subtracting the
non-negative real number A. This operation assumes that the
position of ¢ in h is known.

delete(s, h): Delete arbitrary item ¢ from priority queue h. This operation assumes that
the position of 1 in h is known.

In our discussion of priority queues we shall assume that a given item is in only one
priority queue at a time and that a pointer to its priority queue position is maintained.
It is important to remember that priority queues do not support efficient searching for
an item.

Priority queues have many applications, most noteworthy sorting and network opti-
mization problems. A set of n items may be sorted by one makequeue, n tnsert, n
findmin and n deletemin operations. The single source shortest path problem (cf.
chapter 10) on a graph with n nodes and m edges of non-negative weight can be solved
by one makequeue, n insert, findmin and deletemin and m decreasekey operations.

We infer from these applications that at least one of the operations insert, findmin and
deletemin must have cost {1(log n) because of the (}(n log n) lower bound for sorting and
that the operations can occur with drastically different frequencies in some applications.

Some solutions, to be described in the sequel, do not support the meld operation. We
will refer to a priority queue without this operation as a simple priority queue. Also
note, that a decreasekey operation can always be simulated by a delete followed by an
insert.

For small universes, say the keys are drawn from the range [1..N], any solution for
the Union-Split-Find Problem (cf. section 5) gives a simple priority queue: the set
of items in the queue corresponds to the marked items of that section, Find(1) is
findmin, Union(i) is delete(r), Unton(Find(1)) is deleternin, and Split(1) is insert(s).
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In particular, the simple queue operations can all be realized in time O(loglog N) per
operation. Orlin and Ahuja [161] give a solution with an O(1) bound for makequeue,
delete, findmin, decreasekey and an O(log N) bound for 1nsert and deletemin. Ahuja
et al. [7] improve this to O(1) for delete, findmin and decreasekey, O(n) for makequeune
and O(y/Tog N) for insert and deletemin; here n is the number of insert operations.
This gives rise to an O(m | ny/log N) shortest path algorithm.

Most solutions for arbitrary universes are based on the concept of a heap-ordered tree.
A heap-ordered tree is a rooted tree containing a set of items, one item in each node,
with the items arranged in heap order: if v is any node, then the key of the item in v
is no less than the key of the item in its parent p(v), provided v has a parent. Thus the
tree root contains an item of minimum key.

A first realization of simple priority queues was given by Williams [218]. He uses com-
plete binary heap-ordered trees and shows that the simple queue operations all take time
O(log n) and that complete binary trees can be stored implicitly in an array without
the use of pointers. Floyd [63] shows that a makequeue followed by n inserts can be
made to run in time O(n) instead of O(nlogn).

Doberkat (47| gives an average case analysis of Floyd’s algorithm. Porter and Simon
[171] analyzed the average cost of inserting a random element into a random heap
in terms of exchanges. They proved that this average is bounded by the constant
1.61. Their proof does not generalize to sequences of insertions since random insertions
into random heaps do not create random heaps. The repeated insertion problem was
solved by Bollobas and Simon [27]; they show that the expected number of exchanges
is bounded by 1.7645. The worst-case cost of inserts and deletemins was studied by
Gonnet and Munro (84]; they give loglogn + O(1) and log n + log n* + O(1) bounds for
the number of comparisons respectively.

In the 70’s and 80’s many different realizations of the full repertoire of priority queue
operations were found: heap-ordered (2 — 3)-trees (Aho, Hopcroft and Ullman [2]),
leftist trees (Crane [42]), binomial queues (Vuillemin [211], Brown [30]), self-adjusting
heaps (Sleator and Tarjan [185]) and pairing heaps (Fredman et al. [74]). They achieve
O(log n) bounds for all operations.

Johnson [107] introduces a-ary heap-ordered trees, where a is a parameter, and shows
how to implement makequeue and findmin in time O(1), decreasekey in time
O(logn/

log @) and the other operations in time O(alogn/loga). With a = max(2,log(m/n))
this gives rise to an O(mlog n/ max(2,log(m/n))) shortest path algorithm.

Fredman and Tarjan (75| improve Johnson's result and obtains O(1) amortized time
bounds for makequeue, findmin, insert, meld and decreasckey and O(log n) amortized
time bounds for delete and deletemin. They call their data structure Fibonacci-heaps.
F-heaps give rise to an O(nlogn + m) shortest path algorithm. An alternative to F-
heaps are the relaxed heaps of Driscoll et al. [52|. In contrast to F-heaps the time
bound for delete and deletemin is worst case instead of amortized.

A generalization of priority queues was considered by Atkinson et al. [11]. They add
the operations findmaz and deletemaz and show that the O(log n) time bound can be
maintained.
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7. Nearest Common Ancestors

In this chapter we consider the following problem: Given a dynamically changing collec-
tion of rooted trees, answer queries of the form “What is the nearest common ancestor
of two given nodes z and y, denoted by nca(z,y)?”

Of course, this problem comes in many different flavors according to which update
operations are permitted. We use n to denote the total number of nodes, m to denote
the number of dynamic operations and k to denote the number of queries.

In the off-line version of the nearest common ancestor problem, the collection of trees
is static and the sequence of queries is known in advance. Aho, Hopcroft and Ullman
|3] describe an O(n + k - a(k + n,n)) pm- algorithm using O(n) space. Here a is the
functional inverse of Ackermann’s function, cf. section 5. Gabow and Tarjan |77] give
an O(n + k)-time RAM-algorithm using O(nr) space.

In the statie, on-line version the collection of trees is static but the queries are given
on-line, i.e., each query must be answered before the next one is given. Aho, Hopcroft
and Ullman (3] propose a RAM-algorithm requiring O(n log log n) preprocessing time,
O(nloglogn) space and O(loglogn) time per query.

Harel and Tarjan (92| present a RAM-algorithm running in O(n) preprocessing time,
O(n) space and answering a query in O(1) time; a simpler solution with the same
performance is given by Schieber and Vishkin [178].

Van Leeuwen [123] gives a pm-algorithm requiring O(n log log n) preprocessing time,
O(nloglogn) space and O(log log n) optimal query time. Harel and Tarjan [92] prove the
optimality of this query time and claim that van Leeuwen’s algorithm can be modified
to run on a pointer machine in linear time and space. Another optimal pm-algorithm
with O(n) preprocessing time, O(n) space and O loglogn) query time is described in
van Leeuwen and Tsakalidis [125.

We now come to the dynamic versions of the problem. In the linking roots version,
the queries are given on-line and two trees can be joined by linking their roots. Van
Leeuwen [123] gives an O(n + mlog log n)-time pm-algorithm answering each query in
O(log log n) time.

Harel and Tarjan |92] present an O(n+m-a(m + n,n))-time RAM-algorithm answering
each query in O(a(m + n,n)) amortized time.

In the linking and cutting version the queries are on-line and the collection of trees
can be modified by two operations. Link(z,y), where y is a root, makes y a child of
the vertex z (not necessarily a root) and cut(z) deletes the edge connecting z to its
parent and thus makes z an additional root. Aho, Hopcroft and Ullman [3| consider
only linkings. Their algorithm runs on a RAM in time O((m + n)logn) and space
O(nlogn) and the time required for a query is O(log n). Maier [130] considers linkings
and cuttings, achieves the same time bound and improves upon the space bound. His
solution requires less than O(n logn) but still more than linear space; it also runs on a
RAM.

Sleator and Tarjan [182] give the fastest solution which in addition runs on a pointer
machine. At first they propose a solution with total running time O(n 4+ mlogn) for m
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link and cut operations between n nodes using space O(n); the nearest common ancestor
can also be determined in time O(logn). By using a more complicated data structure
they can improve the above result so that each individual link and cut operation takes
time O(logn).

In the dynamic tree version the queries are on-line, there is only one tree, and this tree
can be updated by the insertion of leaves or deletion of nodes.

Tsakalidis [206] presents a pm-algorithm which needs O(n) space, performs m arbitrary
insertions and deletions on an initially empty tree in time O(m) and allows to determine
the nearest common ancestor of nodes z and y in time O(log(min{depth(z),depth(y)})
+a(k,k)), where the second factor is amortized over the k queries and depth(z) is the
distance from node z to the root.

8. Selection

The selection problem can be stated as follows: We are given a sequence z,,---,z,
of pairwise distinct elements and an integer £, 1 < k < n, and want to find the k-th
smallest element of the sequence, i.e. an z; such that there are k — 1 keys z; with
z; < zj and n — k keys z; with z; > z;. For k = n/2 such a key is called median. Of
course, selection can be reduced to sorting. We might first sort sequence z;,---,z, and
then find the k-th smallest element by a single scan of the sorted sequence. This results
in an O(nlogn) algorithm. A linear expected time algorithm was found by Hoare [94).
One simply splits the set S into subsets S} = {z€ S;z2<z;} and S; = {z € ;2 > z,}
and then applies the algorithm recursively to the appropriate subset. If 7'(s,n) denotes
the expected time to determine the i-th largest element in a collection of n elements
then T(i,n) = n+ (342 T( — kyn — k) + b, T(i, k)) since z, is the k-th largest
element with probability 1/n. Then T'(i,n) = O(n) as a simple induction shows.

A worst case running time O(n) can be obtained by choosing the splitting element
more carefully, Blum et al. [23]. The set S is divided into subsets of 5 elements each
and the median of each subset is computed. The algorithm is then used recursively to
determine the median of the n/5 medians. The median of the medians is used as the
splitting element. This choice guarantees that max(|S;[,|Sz2|) < 8n/11 and therefore the
worst case running time is governed by the recurrence T(n) < O(n)+T(n/5)+T(8n/11)
which has an O(n) solution.

Knuth [112], 5.3.3, traces the history of the selection problem to the writings of Dodgson
(60], and provides an excellent overview of the early developments of this problem. The
original formulation of the problem by Dodgson [50] and Steinhaus [188] was in terms
of lawn tennis tournaments.

Let Vi(r) (Vi(n)) be the number (average number) of pairwise comparisons needed to
find the k-th smallest of n numbers (k > 2) (assuming that all n! orderings are equally
likely). Of particular interest is the asymptotic behavior of V4 (n) (V4 (n)) when n goes
to infinity either with k fixed or with £k = a - n for a fixed constant « in the range
0<a<i.

Hadian and Sobel [91] described an algorithm, called replacement selection by Knuth,
that proves the general bound

29



Ve(n) <n —k+ (k- 1)log(n - k + 2)]
For large k (in particular for k = a - n), this was improved by Blum et al. [23] and
further improved by Schonhage et al. [180] to Vi(n) < 3n + o(n).
The first general lower bound, Vi(n) > n + k — 2, was proved by Blum et al. [23].
For a detailed survey of all the lower bounds sce Kirkpatrick [109]. Bent and John |17
improved Kirkpatrick’s lower bound. Specially, they show

Van(n) > (1 + Ha)n + O(y/n),
where H, = —aloga — (1 — a) log(1 — a) is the discrete entropy of a.
In particular the bound for the median is

Vmm(n) > 2n + O(y/n), where m = [3].
A considerable amount of work has also be done on estimating V4(n). Matula [135]
proved that, for some absolute constant ¢, V,(r) < n 4 cklnlnn as n — oc. Yao
and Yao [223] showed that there exists an absolute constant ¢’ > 0, such that Vi(n) >
n+c'kinlnn as n — oo, proving a conjecture of Matula. An upper bound of V(n) <
n + k + o(n) for all k and n is due to Floyd and Rivest [64]. Cunto and Munro [43]
prove that Vi (n) > n 4+ k — O(1) in general and that for the maz-min-median problem
2n — o(n) < V(n) < 9% + o(n), where t € {1,n,[31}.
Dobkin and Munro [48| show that a linear time algorithm is possible for the median
problem which requires an additional work space of only [3] + 1 data cells.
Ramanan and Hyafil [172] present some algorithms which solve efficiently the problem
of selecting the k smallest elements, and give their respective order, of a totally ordered
set of n elements, when k is small compared to n.
Munro and Paterson [154] consider time-space tradeoffs for selection in a tape input
model, i.e., inputs are stored on a read-only input tape and may be accessed only in
a sequential scan of the entire tape. Output is to a write-only tape and workspace
registers may hold input values. Let 7' be the time, S the workspace and n the size of
the set, then when time is measured in comparisons, their algorithm realizes a trade-off
of T -log S = O(n - logn) over the range fi(log’n) = § = 0(2\/m). Frederickson
[70] modifies and extends their approach to realize the same trade-off over the broader

range ﬂ(log2 n)=S8= 0[25:—.:’“?).

9. Merging

The two-way merging problem consists of combining two sorted lists A and B to make
one larger sorted list. The algorithms developed for this problem can be classified
according to the following properties:

i.) Minimizing the number of comparisons and assignments.

ii.) Minimizing the work space needed in addition to the space used to store the two
files. An algorithm using O(1) additional work space is said to be in place.

iii.) Maintaining stability. A stable merging algorithm is one which preserves the relative
orderings of equal elements from each of the sequences.

iv.) Maintaining searchability. An in place merging algorithm is said to support search-
ability if at any stage in the process a search for an arbitrary element can be
performed with a small number of comparisons.
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m+n

If the lists A and B have m and n elements, respectively, then there are ( 2 ) possible
placements of the elements of B in the combined list; it follows that [log (™'")| com-
parisons are necessary to distinguish these possible orderings. If we take m < n then
flog (™!™)] = ©(mlog 2). The “binary merging” algorithm of Hwang and Lin [103),
see also Knuth [112], 5.3.2, requires fewer than [log (™ ")] + min(m, n) comparisons to
combine sets of size m and n and uses O(logn) additional work space. Kronrad [118]
showed that merging may be performed in place in linear time. His algorithm does not
have the stability property.

Brown and Tarjan [32] note that there is a problem in implementing the binary merg-
ing-algorithm so that it runs in time proportional to the number of comparisons it
uses. They present a fast-merging algorithm, based on AVL-trees (Adel'son-Vel’skii
and Landis [1]), which runs in optimal time O(m log Z) and uses additional work space
O(m+n). This was extended by Huddleston and Mehlhorn [101] to other set operations
than merging.

Trabb Pardo [202] gives a stable merging algorithm performing O(m + n) assignments
and comparisons in O(1) wotkspace. It yields a stable in place sorting algorithm running
in optimal time.

The stable merging algorithm of Dudzifiski and Dydek [54] performs O(mlog ) com-
parisons and O((m + n) log m) assignments in O(log m) workspace.

Carlsson [35| presented a fast stable merging algorithm, called “splitmerge”, which
performs O(mlog 2) comparisons and O(m + n) assignments in O(m logn) space.

Let M(m,n) be the minimum number of pairwise comparisons which will always suffice
to merge two ordered lists of lengths m and n. Stockmeyer and Yao [189] prove that
M(m,m+d) =2m +d - 1 whenever m > 2d — 2. (This shows that the standard linear
merging algorithm is optimal whenever m < n < [32| 4+ 1.)

Thanh et al. [201] present optimal expected-time algorithms for (2,n) and (3,n) merge
problems.

Searchability is introduced by Munro and Poblete [155], where they show that a pair of
sorted arrays can be merged in place in linear time so that a logarithmic time search
may be performed at any point during the process.

10. Dynamization Techniques

Data structures for static sets are always easier to discover than dynamic data structures
which also support updates. We now discuss some general methods for turning static
data structures into dynamic data structures.

Suppose that we know a static data structure which can be constructed in time Ps(n),
requires space Sg(n) and supports queries in time Q5(n) for a set of n items. We assume
throughout that Qg(n), Ps(n)/n and Ss(n)/n are non-decreasing. We also assume that
the queries are decomposable in the following sense, Bentley (19]. Consider a set A and
any partition of A into disjoint sets B and C. It is then assumed that the answer to a
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query about A can be obtained from the answers to the queries about B and C' in time
O(1). A membership query is decomposable in this sense.

We now show how to support insertions. A brute force solution reconstructs the static
data structure from scratch after every insertion. A more efficient strategy is to partition
a set S of n items into blocks S, to answer queries by combining the answers to the
queries about the blocks and to insert an item by forming a new block consisting of a
single item. In order to avoid the proliferation of blocks several blocks are merged into
a single block from time to time.

The details are as follows. Let n = .. a,2",a, € {0,1}, be the binary representation of
n. LetSy, S), ... be any partition of S with S;| = a,2*,0 <1 < logn. Then the dynamic
structure D) is just a collection of static data structures, one for each non-empty S,.

The space requirement of ) is easily computed as

Sp(n) = Z Ss(a:2') = ) (Ss(ai2')/a;2")a;2*

< Z(ss[n]/n)aﬂ' — Ss(n)

The inequality follows from our basic assumption that Sg(n)/n is nondecreasing.

Next note that a query about S can be answered by combining the answers about the
S,'s and that there are never more than log n non-empty S;’s. Hence a query can be
answered in time

logn + Qs(a,2') < logn(1 + Qs(n)) = O(lognQs(n)).

Finally consider operation Insert(r,S). Let n + 1 = ¥ 3;2' and let j be such that

a; = 0,0,y =a@j_3=...=ay =1. Then 3; = 1,8;_; = ... = ffy = 0. We process
the (rn + 1)-st insertion by taking the new point z and the 2/ — 1 = Y277/ 2 points
stored in structures Sp,S),...,S5,_1 and constructing a new static data structure for

{z} USpUS U...US; ;. Thus the cost of the (n + 1)-st insertion is Pg(2’). Next
note that a cost of Pg(2’) has to be paid after insertions 27(2¢ + 1),£ = 0,1,2,..., and
hence at most n/2’ times during the first n insertions. Thus the total cost of the first
n insertions is bounded by

llog n] Uogn]
Z Ps(?j]n,f'Z" <n L‘ Pg(n)/n < Ps(n)(|logn| + 1).
1=0 1=0

We may summarize the argument above as Qp(n) = O(Qs(n)-logn), Sp(n) = O(Ss(n))
and Ip(n) = O((Ps(n)/n) - logn) where Qp(n) is the worst case query time, Sp(n) is
the worst case space requirement and Ip(n) is the amortized insertion time for a set of
n elements, Bentley and Saxe |21].
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A static data structure for the membership problem is a sorted array. Its performance
is Sg(n) = n,Qgs(n) = logn and Ps(n) - nlogn. The construction above yields a
dynamic data structure with Sp(n) = O(n) and Ip(n) = Qp(n) = O((log n)?).

Overmars and van Leeuwen [167] turned the amortized insertion time into a worst case
bound by spreading work over time. Of course, there is nothing unique about the use
of the binary representation in the construction above. Using b-ary notation for some
b > 1, i.e. expressing n as > a;b',0 < a, < b, and using a, sets of size b' in the partition
of S, a query time Qp(n) — O(b-Qs(n) -logn/logb) and an amortized insertion time
of Ip(n) = O((Ps(n)/n) - logn/logb) results, Bentley and Saxe [21]. Mehlhorn and
Overmars [149] describe a family of dynamization schemes which allow to trade query
time for insertion time and vice versa.

The corresponding lower bounds were first shown in Bentley and Saxe [21] and later
generalized in Mehlhorn [144).

Deletions are somewhat harder to cope with. We need the additional assumption that
the static data structure supports deletions (but not insertions) without increasing query
time and storage requircment. With this additional assumption the results mentioned
above can be extended to also include deletions, van Leeuwen and Maurer [124], Over-
mars and van Leeuwen [166|, Overmars and van Leeuwen [167).

Extensions and variations of the basic dynamization scheme are discussed in Overmars
[164], Edelsbrunner and Overmars [56] and Rao et al. [173].
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