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I. Introduction 

The Voronoi diagram of a se t of sit~ S in the plane p&rtitiollll Ihe plane into rOlgiollll, callpd 
Voronoi regions , one for ea.:h .itc. The region of site p contai ns all points 01 the plane th " 
arp. closer to p than to any other site ill S . 

Such partitions play an important role in di fferent areas of science. In computer scienc • . 
tl", Voronoi diagram belongs 10 the most usoful data structures. Its structural propert ic,; 
del"nu ') 0 the underlying distance m~"", urc and the type of .il"" consider,,". Surv~ys on the 

\'Clr if'ly or Voronoi diagrarws t. hat have been hcr("tofore in\'estigated in publications arc gi\"'l1 

in ILS I and in IAI· 

In oreler 10 provide a u nily ing concept for the study of Voronoi diagrams, abstrat! V"r0 1lUI 

diagram. w~re introduced (KSSa,bj. They are not bMed on Ihe notion of dist.ane< but C," 
systems of bisecting curves as primary objects. For any two sites, p and q, in S, let J(p, q) 
dcnote a cun'e that is homeomorphic to the line and divide. the plane into a I'"region and . 
q-,.~ion . Then the Voronoi rel-:ion of p with r""pe<t to S is the intersection of IlII p-regio ns , 
as 'I "aries in S - {p} . The family of curves J(p,q ), p i q, p,q E S, is called admis,;ibl< if 
fo r c,lch , ,, !>sct of . ite:; S' ~ S the Voronoi regions w.r .t. S' are path-{;on nected and form a 
partit ion of the plane. 

T he "I~orithlll of IMl\IO I is an instance of fi<ndomi1.ed incremental construction Ie :;;, i.G .. 
th e 'or(l oo i diagram is constructed incrementally by a,dding the sitt.'3 one hy one in ranci"tl1 

orde r. II constructs ab~lract Voronoi d iagrasm for a restr icted class of bi.<e<ting cun e., 

namely curves in general position. [n particular , two different bisecting curves intersecting .11 

a. romrnon point z must cr06S at x and no four cu rves may intersect in a. common point. T ill"" 
fi rs t restrict. ion forbids. for eXiUllple, diagrams of point sites under the L,-metric (Manhalt~n­

mct ric) . as Figure I shows, cf. ILl. 

r • 
""~-.- .... . ' . " .... -
- - ---------- q 

Figure 1. 

In ,his paper, we drop t hc general posi tion assumption. We only forb itl some very 
special arra ngements of bisec ting cun'cs. These fo rbidden arrangements do not occur ior 
bi, cc t i,,!: curves induced b)' nre< metrics, including all norms, cr. IK88c l. The shapes of 
rc!" u!ting Voronoi diagrams are de3cribed in section II. We show that Voronoi regions .' rt : 

homeo ruocphic to discs and that vertices and edges of the diagram can be described by only 
3 and 4 s ites, respectively. Next we show that when adding a new site to the diagra :n. 
a ll information necessary to compute the region of t he new .ite can be obtained from the 
di~grams of t he four characteristic sites of each intersecled edge. T hi. implies that the onl y 
non· combinatorial operation in the algorithm is the construction of a Voronoi diagram for 
5 si les. All numerical operation. take pl.."e in this particular operation. The algorith m 
of C uibas / Stolfi IGSI for Euclidean diagrams also has this property but neil her the P la ne­
Sweep- nor the Divide &< Conq uer-algorithm do. The latter algorithms need to sort th e sites 
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by x-coo rdinates. Moreover . t he 1'lallc-Sweep-al!;oriLhm sorLq t he comput.od events by <­
coordinates; the Divide && Conquer-algorithm.orts the nodes of the diagram by !I-coordin.!,,, 
in its merge step. In both cases , object. are compared to each other that are not at all rela ted 
in Lheir topology. Therefore, it may be difficu lt to make geometric decisions in a cOlUi.tent 
manner. 

The a nalysis of our algorithm makes a novel use of perturbation. Clarkson and Shor's 
analysis [eSj of randomized incremental construction relies on the input being ill general 
posit ion. Although Klein [K89j hM .hown how t() perturb abstract Voronoi diagrams so as to 
generate bisecting curves in general po6ition, this perturbation is much too costly to be u..,d 
in "-n a lgorithm_ We use it in the analysis by showing that the running time on the perturbed 
sy.tcm dominates the running time on the original sY8tem and applying lesl to bound the 
runn ing Lime on the perturbed system. Thus perturbation is only used in the analysis; the 
algo ri thm itself does not know "bout it and works on the original ,)·st.em. 

Throughout the paper. we use the foll"""ing nOlat.ion: For a sub'et X <; a 2 the clo ... ,.. 
boundary and interior of X arc denoted by X, bd X a.nd i nJ X , respectively. 

n. Abs tract Vorolloi Diagrams 

Let ', E N. and for every pair of integers p,q such that 1 :;; p -! '} < n le t () (p,q) be either 
em pty Or a n open unbounded subset of IR' and let J(p,q) be the boundary of D(p,q ). We 
[')os l u lat.c : 

1) J (V.'I) = J (q,p) and for c<lchp,qsuch thatp t- q the regions D(p, q), J (p,q) and D(q, ,,) 
form. partition of 1R1 into three disjoint sels. 

2) If 0 i' D(p,q) t R2 then J (p,q) is homeomorphic to the open interval (0, 1). 

We call J(p , q) the bise<:ting curve for .ites V and q. The abstract Voronoi diagram is now 
defi ned a" fo llows : 

Definitioll 1: Let S = {I, .. . , n - I} and 

"( _ q) .= { D(p, q) u J (p, q) 
.n. 1'. . D( ) p, q 

VR (p, S):= n R(p, q) 
. €S 
, f; ,;, 

if p < q 
if p > q 

V( S ) : = U bd VR (p, S) 
pES 

VJ( [P. S ) is called the Vora noi reg ion of p w.r .t . Sand V(S) i. called lh. Voronai d iagra m of 
~ C 

We p051ulate that the Varonoi regions and the bisecting curves satisfy Ihe following th ree 
c.and itions : 
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1) ."-ny two bisecting curves intersect in only a finite number of conneded componcnt3 . 

2) For any non-empty subset S' of 5 
A) if VR(p,5') is non-empty tben VR(p,5') is patb-conneued and ba.. non-emp ty 

interior for eacb pES', 

B) IRl = UrES' VR(p , 5') (disjoint) 

3) For any two bisecting curves J(p, q) and .I (p , r) and for all points v E J(p, q) n J(p, r) , 
if for any neigbborbood U (v) of " 

al J(p,r )lu(.) n D(q,p)Ju(.) = 0 tben D(p, r)lu(.) <;;; D(p,q) lu(v) 
or 

b) .J(p,r)lu( •. ) n D (p,q)I,,(.) = 0 tben V (r,pl!U(.) <;;; D(q,p) lu(.). 

Informally spuking, Condition 3 says tbat any two bisecting curves J(p, q) and J (p, rl 
int.e.r:secting in a point tI without crossing , i.e., only touching at v, must ha.ve the p-region on 
the sam" side. Note tbat both bisecting curves belong to tbe .ame site p. 

p q r 
p 

p q p 
r 

allowed 

p r P r 
P r 

" q 
p 

r 
T 

p ",,-- q p 

forbidden 

r P r 
r P 

Figure 2. The upper rCYW shows situations allowed by Condition 3, tbe lower row 
show. the corresponding forbidden situations 

Contl ition 3 excludes the degenerate .hapes of Voronoi regions .hown in Figure 3. As a 

p p 'f. {q,r} 

(i) r {ii) q p p 

p 

Figure 3 . 



consequence of Theorem 2.3.5 IK88al the poin< v in Figure 3 (i) must belong to the rcgi(' 11 
of site p and both p-sectonl a re connected via v . This implies that these sectors cannol be 
separated by l (p, q) and l(p. r). Since both bisecting curv"" mu..t paM through v . they are 
arranged M in Figure 2 (0 ). This is a contradiction to Condit ion 3. Situation (i i) in Figure 3 
is im possi ble for the same reason; on both sides of lhe thin part of p-r.gion thor. musl be 
regions of di fferent sites r.9 (Theorem 2.3.5. IK88aj). In general we have: 

Facl 1 : The following holds for each point v E V IS): Arbitrarily small neighbo rhood" 
V(v) of v exist having the following properties. Let VR(p"S) . VR(P2.S) . . ... VR(p •• . )·) 
be the sequence of Voronoi regions traversed on a counterclockwise march around the 
boundary of U(v) and let fl. I" . . . , f. de not. the corresponding interval. of aU(v). where 
Ii = (Wi . W j+ .J ;;; VR(Pi, S) for 1 ::; j ::; Ie (indie.,. must be read mod k). The intervals may 
be open. half-open or closed . We have Wi t lOi+1 for 1 :s i ::; Ie. The common bou nda r), 
of VR(pj _ .. S) and VR(p),S ) defines .. curve segment f3i r,; l (PJ - "p,) connecting v and 
Wi' VI S) n U(v) is the union of the curve segments f3j together wi th the point v. Each ;1, 
is contaiMd in th. Voronoi region of min{Pi_l , p;} . The open "piece of pie" bord ered by 
(3" f3j + 1 and f, is non-empty and belonlt' to V R(p,. S). The point v belong. to the region of 
",in { PI •.. . • pd. Finally. P' '" Pi for i f. j . For a proof see Theorem 2.3.5 [K8Sal and the 
disc1lssion above. 0 

For lhe sequ el. it is helpful to restrict aUention to tht' "finile part" of II(S) . Lei r 
be a "i mp l" closed curve such that all intersections belw.en bisecting curVe:! lie in the iune, 
domain of r. We add a site 00 to S. define l(p. oo) = l(oo . p) = r for all p. 1 :s p <: n. alld 
D( 00. p) to be the outer domain of r for each p, 1 ::; p < n . 

Fact 2: Each Voronoi region is simply-connected and its boundary i. a simple closed cu r"e. 
Moreover , t he closure of each non-empty Voronoi region VR(p. S). p f. 00. is homeomorphic 
to a dosed di.c . A Voronoi d iagram can be repreiS"nted M a planar graph in a nalura l way. 
The verl ices of the graph are the points of V(S) which belong to lhe bou nda ry of three '" 
more Voro noi regions; the edges of the gr&ph correspond 10 the maximal connected s ul»ets 
of V (S) belonging to lhe boundary of exactly t.wo Voronoi regions. The faces of t he gr.'ph 
correspono to the non-empty Voronoi regions. We usc V(S) to also denote this graph. For a 
proof see Lemma 2.2.4 and Theorem 2.3.5 [KSSal. .-, 

Cond ition 3 puts no restriction on the bisecting curves fo r nice metrics . i\ ice metric:.s 
are .u bjecl to four simple axiorns. d . [K88c l, and include all norms in the plane. Wit h 
nice metric.s the connectivity of Voronoi regions is independent of the ordering of the s iles. d . 
Theorem 1.2.13, [K88al. and therefore the situation of Figure 4 cannot arise. In th is si tuat ion. 
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p 
r 

p 
q 

• 

Figure 4. 

;>-region would not be connected in V( (p, q, r}) if the .it"" arc ordered r < p < q. :iegmelll .' 
would b~long to r-region . 

R. Klein .howed recently IK891 that the following condition. are equivalent to our <"". 
d ition. (2'\1 and (2B). These conditions call be tested more easily. 

Lemma 1: In any sy.tem of bisecting curve:! Cond itions (2A) :.nd (2B) are fulfilled i:f tlt e 

following "",,sertions are fulfilled . 

11 R(p. q) n R(q, r) <;; R(p, r) holds for any th.rec sites p, 9, r E S. (Transitivit)·) 

2) Let .I(/>,q) and J(p,r) be such oriented that the }>-region lies on their left hand sid" . 
Then the two curv"" cros, 0.1 most twice and do not con.titute a clockwise cycle in th e 
plane. 0 

We nex t lake a closer look ilt the elements of V (S) = U.ES bd VIl(r , S). Let % b, a 
point of Ii j 5 ). Since Voronoi Tellions partition the plane, :z: lies on the boundary of at le,s l 
two Voronoi regions. 

Case 1: :J: lies on the bou nd"ry of exactly two Voronoi regions , say ;>-rllgion an d q-regi Dn . 

By ru t I , Figure 5 shows VI S) in a sufficient small neighborhood U(z) "f z . Thus z i, :, 

P 

/////1r/ / // 

~""""'\ ~""'" q 

Figure 5. 

poin t on an edge of the Voronoi diagram. The bisecting Curve defin ing the edge is detcrm ifl< ',j 
b)" the > i t~ p and q. Note that the endpoints of an edge do not belong to the edge. 

Cas" 2: x lies on the boundary of k ~ :I Voronoi regions . 

In th is case a neighborhood of x consists of Ie sectors belonging to different Voronoi regio ll •• 
and x is a common endpoinl of k edges of V (S) , i.e., " vertex of V( S) . Let p, q, r" r~ , . .. , r, . 2 



VIS) 

Figure 6. 

be tl,e Voronoi regions involved, enumerated in counterclockwise order . Then, in particuh,r , 
:t i. tho endpoint of an edge. separating J>-region from q-region. 

The following lemma shows that every .ite r" ... , r._1 take. equal respon.ibility in the 
definition of % as an endpoint of e. 

Lemma 2; Lot L ~ Sand {p,q,ri} ~ L for some i, 1 :S i ~ k - 2. Then % is 3(:.0 an endpoill t 
of, in V (L) . 

Proor: The regions of p, q, r, cannot become smaller in ~' ( L) compared 10 VIS ). Thus in 
a nei ghborhood of:t in V(L) , at least the regions of p, q and ri arc represented . Since e"" is 
region can be represented only by one sector (Fact I), the edge. must end in the point :r ill 
V ( L) a., well. [J 

So.icle:s z the site " i can define at moet one more endpoint :t' of all edge separating the 
po and 'I- regions, because the Voronoi diagramm of the three sites p, q and " i can have at 

mos t two vertices in its "finite part", cr. Figure 7 (for a proof.ee Lemma 3.5.2 .5, !K8B,, \). 
The point.. :t and :t' must nec"",,,arily be endpoints of the same edge . We can di.5tingu i' h 

p 

e 
% x! 

I i 
q ri 

Figure 7. 

between J: itnd %' by looking .. t the counterclockwise orders p, r .. q resp . p, q, I, of rcgion< 
arou nd 'he vertex . 

Lemma 3; In V(S) at most on., ver tex can exi.1 wilh the regions of p , q and I ilp pear i n~ in 
countercloc kwi.5e order in its neighborhood . Moreover, Ihis vertex IIlso ex is ts in any d iag .. ;:n l 
V(LJ where {p,q,l} ~ L r, S. 

Proof: Otherwise, consider two occurences VJ! til of such vertic~ in V ({p,q , r} }. a..'J in 
Figure B. Since the ~ and q-regions are each connected, two paths P and Q exist, connecLillg 
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p 

r 

q 

Figure 8. 

V, And "~ out not containing them: P is conta.ined in />"region and Q is conta.ined in q-regin n. 
Now consider a tour on the cycle v, 0 P 0 v, 0 Q. In v" we have r· land to the right ; in " . , 
we have r-land to the left; i.e .. r-land Ii"" inside the circle as well iIS outside. But since '~Y"')' 

site can be represented only once at a vertex , r~land can cross the circle neit.her a.t v) nor al 

v, from the inside to the outside . Co 

Corollary 1: Any edge < of VIS) i. determirted uniquely by at most four s ite:< ilnd their 
counwrclockwise order, say (p , r,q,8) . The same edge also exist~ in any diagram V(L) whe re 
{p,q,r ,s } ~ L r;;, S. 

Figure !J. 

Proof: This follows from Lemma 3 and ttle fact that VR(o,S) r;;, VR(o , L) for ° E {p, q}. ::'1 

As an important instance of the corollary the cilSe L = {p, q, r, s} telL, us that the edge 
e ex iSIs even in V({p, q, r, s}). This fact is important for the a.lgorithm of IMMOI. T his 
il lgorilhm is incremental, i.e., al time t the Voronoi diagram V(R) for a certain subset R ~ ::; 
is already ' .onstructed and we add a new site not already in R to the Voronoi diagram. Some 
edges in VIR) are thereby shortened and others are erased if they are covered by the new 
region. In order to construct the new region, we have to determine these intersections; t his 
im plies examining intersections between bisecting curves. Theorem 1 characterizes wh ich 
bisecting cllrv~ ¥t'e need to consider. 

Thcorem 1: Let. = (p, r, q, .) be an edge of the Voronoi diagram V (R) for sites p f " -: 
R e s . r. s E R - {p , q}. Then for any set L C R with p, q, r,$ E L, the edge, is also a n ed~c 
of V( ~) and ..... e have en VR(t ,Ru it}) =. 1'1 VR(/.lJU {t}) for any site IE R. 

Proof: By corollary 1, edge, also exists in V (L) . Now consider any point z E e. We sh,,\\, 
that a su!fienll), small neighborhood U(z) look.. Uw same in V(L u {e}) as in V(R U (t f). 
Choose U(x) such that !J E VR(p, R) u VR(q, R) for all points 'J E U (x). I.e t 0 E {Po q. t} bc 
such that 11 E VR(o, Ru (I}) for a point Y E U(x). From VR(o, Ru (I}) <;; VR (o, L LJ {c} ) we 
conclude Y E V R(o, L u (t}). The theorem follows since the Voronoi region. form a parli l ;'m 
of U(x) . Ci 



9 

[f we t ... ke L = {p , q,r,s} then the intersection b~tween the edge . and the region of 4 

new site t can be conslruct"d by looking 31 Ihe diagram of only five si tes p , q, r, J and c. IV., 
take this as the basic operation of our algorithm. 

Basic Op"ratiOD 

In put: An edge. = (p, r,q,.' ) and a site I ~ {p,q,T,.} 

Ou tput: T he combinatoria l structure of. () YR(t, (I', q, T, $. I}) , i.e., one of Ih. follow ing ' 
I ) intersection is empty 
2) interseclion is non-empty and co""ists of a single comp,)nent: 

a) • itselC 
b) a segment of. adjacent to Ihe (p, T, q) endpoint 
c) "segment of • adjacent to the (p, q,.) endpoint 
d) a selment nol adjacent to any endpoint oC • 

3) intersection is non-emply MId consists oC exactly two componcnts 
4) neither of the above 

Re mark: We show in Lemma 6, section III. that case 4 never arises and that the two 
com;>onents in case 3 are adjacent to one endpoint of • each. 

III. Incremental construction of abstract Voronoi diagrams - the 
general case 

[n 1 his sect ion, we describe the incremenlal construction algorithm. We start with th r"l' 
sites oo , p , q where p and q are chosen al random and then add the remai ning sites in random 
order. At the general step, we have to consider a set R C;; SoC siles with 00 E R MId IRI ~ 3. 
We maintai n the Collowing data structures. 

1) The Voronoi diagram V(R): It is stored as Ito plallar graph"" described in Ih. previo,,_ 
section. 

2) The con Bid graph G(R): The conBic! graph is a bipartite a:raph . The nodes on one s i,!c 
a.re t he vertices and edges oC the Voronoi diagram VIR) MId on the other side the sites in 
5 - R. Correspondingly, there are two types oC edges in the conBict gr aoph. An edge of the 
firs t type conne<:t. edge. oC V (R) and site J E 5 - R iff • () YR(. , R u {$} ~ 0. An ed ;;. 
of the se<:ond type connects a vertex v E V(R) and a site s E S - R iff " E VR s, R u {.}f. 
We . a)·: the site s is in conllict with the edge e (the vertex v). 

In the sequel, we proceed il3 in the argumentation of IMMOI. Because we drop the genera l 
posi tion assumption, the houndary of il new region can now contajn vertices or even edge:, 
of tlte Voronoi region constructed so far . Therefor. we will go Ihrough all proofs of I ~n: o 
again and take care of the boundary oC Voronoi regions. 

W. assume that the Voronoi diagram VIR) and the conflict graph G( R) for R -: S 
arc already constructed and discuas how 10 adjust VIR) and G(R) when add ing a new sile 
s E'" - R to R. We tirst (oncentrate on VIR). From now on , let S := VR( • . R u {s)) . 
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Proof: If.> = 0 then clearly JegG(R)(') = O. Thu. Ic~ dc9C(ll)(" ) = O. Then S n V(II) = 1\ 
and 5 C;; int VR(p,R) forasitepE R,sinceV(R) =U .. en bd VR(r,R) . Thus VR(p.R u ( sJ) 
is not simply-connected. G 

We art! intere!lted in the part of the diagram IhM is covered by S. Thus let 1 := V(R)r·S. 

LeUlma 5: I i.s a connected st!t and intersects btl S 

Pronf: Let I t, h .... , I~ be the connected components of I for wme k. No I j CM! be conl<lill·, J 
entirely in the interior in! S of S. Otherwise, a simple closed curve C C;; intS wou ld ex,.,t . 
such Iha. IJ is contained in the inner domain of C and C does not in te .... ect VIR). Th;JS 
C C;; VR(r, R) for some r £: R. Since Voronoi regions are simply-connecled, C and its inter i", 
musl belong 10 VR(r, R) and hence, C cannot contain I j in its interior. 

Th us let k 2: 2. Then a pOl th P C;; 5 - I exists, connecting two points x and II on r " ,' 
boundary of S and separating I t from I" cr. Figure lO. From pnl = \l we have p r V(R) '- () 

P 

II 

Figore 10. 

bd S 

and Ihus P C;; int VR(r, R) for asite r E R. Since :t,1I E P all sufficiently small neighborhoo(b 
U(z ) anJ U(y) Me entirely contained in VR(r, R) . The points in the imerse<:tion of I h~:; c: 
neighborhoods with the complement of S thus lie in VR(r,R U {a }) and can be connecreJ 
by a palh q .,; int VR(r,R u {s}) C;; int VR(r, R} . The cycle P " Q is therefore ent irely 
conl.1in.<I ;,: inJ VR(r, R) and contains II or 12 in its interior. Th is is a contradiction . r· 

Lemma 0: Let ~ be an edge of V (R). U. S '" il , then either enS = V (H) r. an d e or S 
is a sing e component Or < - S is a single component. 

Proof ; Assume firs t Ihat t n ::; = V (ll) n S. Becausc V (R) n S is colt rr c( ted by Lcmma :" 
we conclude that. n 'S is connected. Assume next that en S f. VIR) n S. Then with e\, Ny 

pvirr~ :t E • n S one of the subpaths of. connecting :t to an endpoint of. must be cont.ain··r! 
in:) . HeJice t - S is a single component. rJ 

We need to construc t the boundary of S. From the d iscussion in section II we know li, ~i 

the boundary of S is a simple cloeed cur"e. Therefore btl S n V (R) is a cyclic sequence of 

• proper crossing. between edges of V (R) and btl S 

• vert ices of VIR) 

• parts of edges of VIR). 
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III th., c.se of gl!neral p06il iol> . bd snV(R) conLain. only inter.l4!ctioll points of th~ firs~ ty pe. 
A ! ~h.) . the cydic scq.uencc or 1I1~C intersecti()n point!t and, thus, th .. · IlE"W E"dKct on bd S .1 f f 

~""Y 10 fin" by simply walking along the hOllndllty edge:< of the .plitLcd "'RiOns. cf. Fi~lIr.· II 

Til" COrrcctn""" of this procelillre follows frolll the connectivity of:;; n V (R) . W.· will now 

betS 

Figure H. 

dioc ..... h"w \u extend thi$ .trategy to de&enerate cases. We dialinguish Lw,. major cases. 

Cas/' 1: There ill a lingle edge ~ which is in conflict with ... 
A~urn~ th"I t separates the p-rcgion from Ihe q-re&ion, i.e., t ~ J (/ •. q) ror two sites p. q F: 8 . 
We <ompul C • n S using uur "aaic operation. Note that enS cannot be " singl" point. If 
e l l:; w~rc ~ 5in&le point then the situation shown in Figure 12 would rc:<ult, a contradicti .• " 
to L<t I. Thus. n S is a proper segment. fA,t UJ and "2 be the two clldpoinls of • fl S. We 

p q 

Flgurl! 12. 

dl·I .. ·." enS from tile dia.;ra:n. add I II and tI2 itS vertices and two .dg'" with endpoinl.' t IL 

anti V2' T he IWo e.J~"" <orp pari of J(P •. ') and J(q,8). respectively. 

G"s .· 2: 'r ncr~ are at Ica.,t Iwo e.Jgc. which at.· in conflict with s . 
Tht': • . :: is ~ singl .. w:nponent for each cd"e t of V(R). Th~ wlllliet graph givl-' " s .!I! 
ed:;ci ila .... "lIiel. with J. LeI ~ ~ J(P.q) be ~uch an edge. i.<! .• t n ,:; I- iI. If < .;:. s 1.1, ••• . , 

di'''JlP~"rs completely. If (:) # t - St. then some part of < survives. Let <I he one of , :,,' 
cOlOl,onenl" of. n:5; eJ can I,e computed by our ba:sic operalion. Then tl· contains exac: i} 
on~ , ·r.d"oint or <. I.d w he the other endpoint of "I. Then t:I Iic:s on J(T'. '1) and .. I ~o on :1 ... 
"olllllt.r)· .. f S. Thus in a .m~1I neighhorhood Cl(w) of w _ have PO. q- anol .• -regio". i.c .. 01 ' 

i .•• vcr:. ·x of V(R L: {~}) . .-\100. in V(Ru { .. }) eAactly three edges arc inciden. to UI ; ther " " 
pari., ·)f .1(;,. '7) . J('1.3) and J(p • .• ). respectivdy. 

COII . ider the vertic"" of t · (n) next. If no edlte. of VIR) has va> an ""'!poilll of e _,' 

, I ... " " -t isaPP"aTlS frorn the diagram. So lei us as~unl. thaI al least one ~dgc < of VIR) !-a, 
u .. < an c,uJpO;IIL of e - S. Lo., v docs not lie in the interior o( S. The vertex v I"" degree 
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at least three in VIR). Also, either v lies outside "$ or at least one edge incident ta v mu. t 
inte rsc<: t 5 in all neighborhoods U(u) because otherwise the situat ion shawn in Figure 13 
wou ld result, contrad icting Fact 1. If v Ii"" outsi<.le 5 thcn Ilothinj( change. in the \' icin:ty 

I 
q 

Figure 13. 

of u. So let us "".ume that u lie. on the boundary of S . Since bd S i • .a si mple closed CII" ,." 
wh ich passes through v t ile e.lgo-s i ncid~nt to u split into two groups , those which inte"'.'<:t 
S ill all neighborhoods U(u) of v and th06e which do not. Both groups form a (ontigun". 
subs~qucnce of the cyclic adjacency li. t of v , cf. Figure 14. Let f' and I" be the fi r.; t an d 

bdS 

Figure 14 . 

the last ed ,;. of the sui><le(IUenCe of edg.s which run outside S n U(v ) for a .ufficicnll), SlII,,1I 
neighborhood U (v) of v; J' = J" is possible. Let e" and e' be the first and last edge 111 

co unterclo<kw ise order of the subsequence of roges which run inside :s n U(v) for all small 
neighborhoods U(c) of v. 1."1. J' and e' border p-region and let f" and e" border q-region. 
Then we delete the edges between ." and .' ",nd add two new edges incide nt to v. Thesl' 
cd!;. s a.re pa rt of J(q,.) and J(p, .), respectively. 

At th is point we have constructed all vertices of VIR n {s}) and their c)'cl ic adjacency 
liste. We have not yet linked Lhe two occurrences of each edge. Let I :-' V( R) (\5. We kll"w 
an embedd ing of I into the plane. The boundary of the outer face is a closed cu rve si nc.' I 
is connected . Also, all the V('rt ices on bd S lie on I and hence a clockwise \r:we .. ,,1 of ,he 
boundary of the outer face yicid. Ihe cyclic ordering of the vert ices " f bd S. This all()w> '" 
to link the two occurrenc..,; of • .ach edge. We co nclud~ in 

Lemma 7: V (R u {s}) can be constructed from VIR) and G ( R) in O(de9C(R)(S) + 1) Sic I". 
}f ,'rc our ba.sic operation is considered i\.:S one step. :_1 

Let us now turn t<> the computat ion or G (1I ( .}). We dis t inguish t hree «" l'S : edge, ;,f 
V (fI U ( s}) which alread y were edges of VIR). edges which arc part of edges or V (R), "".I 
edges whic h arc completely new. 
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For any edge. of VIR) not in conflict with 8, the conflict information remains the sarno. 
Since en VR(s, R u {s, t}) <;; en VR(s, R u {s}) ~ 0 Ihe intenection . n VR(t, R u {t }) remains 
unchanged when we add s to R for any I E S - R - {s} . 

U • is in conRict with s but • ~ S then e - S consists of at most two subsegmenLs by 
Lemma 6. Let e' be one of those subsegments. For e' the same argumentation applies as 
above since t' n VR(s, R u Is}) = II. Hence any site in conflict with t' must be in conflicl 
with e. 

For a newly constructed edge, we show thaI il is sufficient to gather its conflict inform:.­
t ion from edges on that part oi Ihe boundary of Ihe 'ptilted region that Us covered by S. Let 
'n be such a new edge wilh endpoints "I and "" The new edge ell either intersects the inte­
rior of exactly one Voronoi region VR(p, R) or it runs on the boundary of a region VR(p, R) 
such that VR(p, R) and S are on different sides of en. This follows from Ihe discussion in 
Case 1 and Case 2 above. 

Let P be the part of the boundary of VR(p, R) between "I and "" such that in all 
sufficiently small neighborhoods of "'I and '" the path P is contained in S. 

, -
, VR(p, R) 
I 

bdS 

Figure 15 . 

Claim: P <;; S 

Proof: If P oro. .... tht boundary bd S of S then V (R) n S becomes unconnected, contra­
dic t ing Lemma 5. 0 

Lemma 8: Let t E S - R - is} be in conflict with en in V(R U is}) . Then I is in con fli ct 
with Pin VIR). 

Proof: Cons ider VR(p, R). By Ihe definition of conflict, a point :z E el2 ex.ists such that r E 

VR(p, R) 

:t I'.l.._ .... ";..--_-.I... 

Figure 16. 



VR(I, R u (s, t}) ~ VR(t, R u {t}). Since we claim a contradiction we assume that t is not in 
conflict with P in V(R), i.e. , VR(I,R u {I})np = Il. If" is on P the contradiction is evident. 
Thus , assume" rt P. By assumption, VR(t, Ru (" I}) n U("d ~ VR(I, Ru (I}) n U(;r;d = 11 
for any sufficiently small neighborhood U(:c,) of %\. Now con.sider in any such neighborhood 
of :c\ the wedge spanned by '12 and the part of bd VR(p, R) outside S. The points in this 
wedge all belong to V R(p, Ru {s, t}). The same is true for any sufficiently .mall neighborhood 
of ", . Since VR(p, RU{.,t}) is connected, there is a path Q from "\ to %, running completely 
iruide VR(p,R u (s,l}) ~ VR(p,Ru It}) except at the endpoints. 

bd VR(p, R) 

S 

Figure 17. 

bd VR(p, R) 

We call assume that Q does not touch the boundary bd S of S (and thordor. 1I0t includes 
x). By definition of P and Q the Voronoi region VR(I,R u {I}) cannot intersect these tv.·o 
paths . r ... 10roover, :c li .. in the interior of the cycle ,,) 0 P 0 %, 0 Q; otherwise VR(p, R) would 
itot be .imply connected . From P n VR(I,Ru (t}) = 0 and" E VR(t, R u {I}) we conclude 
that VR (t, R u It}) lies in the interior of the cycle. Since bd VR(I, R u (t}) n %\ 0 P 0 %, = II 
this i. a contradiction to the fact that V R(p, R u (I}) is simply connected. C 

Now we know all candidate-sites possibly in conflict with '\2 , namely the sites in confl ic t. 
with an edge or a vertex on P. Using our basic operation, we can test whether a conflict 
exists with these candidate sites or not. Th. conflict information of a newly constructed 
vertex v = t n l>d S L, obtained from the conflict information of edge e in the same way. Note 
that we visited only conflicting edges and that each such edge can belong at most 2 times to 
a pal h P by planarity. We conclude in 

Lemma 9: G(Ru {s}} can be construe led from VIR) and G(R) in time 

o( L degG(R)U)), 
(f .• }eG(R) 

Theorem 2: a) Let 3 E S - R. Then the data structures G(R U {.}) and V (R J {3}) can ne 
obtained from G(R) and VIR) in time 

o( L dt9G(R)(/))' 
{/" }EG(R) 

b) For R ~ S, IRI = 3 and 00 E R, the data structures VIR) and G(R) can be set up in ti me 
O(n) where n = lSI. 

Proof: a) This point summari .... Lemmas 7 and 9. 
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b) The Voronoi diagram VIR) for three sites 00, p and q baa the structure shown in Figure 18 

and can certainly be set up in time 0(1). Also for each of the edges c of VIR) and each of 
the n - 3 site.> in S - R one can te.>t e n VR(t, R u (t}) oF 0 by our basic operation in time 
0(1) . This proves (b). 0 

p 

00 

q 

Figure 18. 

We next turn to the analysis of the algorithm. Our goal i. to analyze the running time 
of our algorithm by an appeal to Clarkson and Shor'. results about the running time of 
randomized incremental construction. However, Clarkson and Shor's anaJysis relies heavi ly 
on their general position assumption. It states that e""h region (here edges and vertices) 
i. uniquely determined by a bounded number of objects (here sit",,). Now oOOerve that any 
vertex that has rl,"" r,-regions, I > 3, incident to it is defined by any 3-tuple (rlt Tj . T,, ). 
1 :s i < j < k :s I, by Lemma 3. A similar observation holds for any edge with endpoints of 
degree greater than 3. This shows that the general position assumption of [CSI is generally not 
satisfied, when the bisecting curves are not in general position. However, the general position 
assumpt ion of [CSI i. satisfied if the bisecting curves are in general position as defined in 
iMMOl, i.e. , any intersection is a proper crossing and no four curves have a common point . 

The idea behind our proof is now as follows . We take our system of bisecting curves 
and conceptually perturb it .0 aa to obtain a system in ,eneral position. The perturbation 
is carried out in such a way that no conflicts are lost. This &1101". us to show that the cost 
of one iteration step of tbe algorithm on the origin &I system is bounded by a constant time. 
the cost of the cOlTesponding step on the perturbed system; the asymptotic time bound thus 
ho ld. for both . The perturbed system ;" in general position and hence Clarkson and Shor's 
iUlaly.;" applies. 

In [KS91 Klein proves the follOWing 

Theorem 3: Let :J '" {J(p,q);p,q E S,p I- q} be a system of bi.ect ing curves a.< defi ned 
in s«tion II. Then :J can be deformed in such a way tbat the resulting system j has the 
foll owing properties: 
1) No other intersections than cross-point. exist between the curves in j. At most 3 curves 

cross at a point (general position) 
2) For each subset R <;;; 5: After contr""ting some edges, the perturbed Voronoi diagram 

ViR) differs from the original diagram V(R) only by IL deformation. 

A perturbat ion is neccessary for those curves that touch e""h other or even share a 
common segment and for more than 3 curves intersecting in a. com_mon point. CurvC'3 3haring 

a common segment are spreaded out like wires of a cable. A point common to more than 3 
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curves or a touching point of two curves is split into a graph of newly constructed intersection 
points and cun'os segments connecting them, These segments give rise to the edges in VIR) 
th~t are contracted in Theorem 3, 

We will now show that no conRict information is lost by the perturbation, First consider 
an edge e in VIR) that is in conflict with some site tinS - R. Edge e also exillt. in VIR), 
Moreover, Theorem 3 impli,", that, exilltls in VIR u {t}} iff e exists in VIR U (t} ), Thus , 
each edge of V(R) i. also represented in VIR) and their conflict information is the same, 

Next consider a vertex v E VIR) that is replaced by a graph O(u) in VIR), Analogous ly. 
Theorem 3 implies that v existls in V(Ru {t}} iff O(u) exists in V(Ru {t}), Hence the vertices 
of 9( v) all have the same conflict information as v, 

Let WI now compare the running time of our algorithm on both systems of bisect ing 
curves .J and j, respectively, Addition of a new site. E S - R to VIR) and VIR) takes 
time proportional to 

L degG(R)U) 
(f •• }EG(R) 

and L de9(}(R)(f), 

(f" l e O( R) 

respectively. 

As discussed above we have <i<:gG(R) (e) '" degC(R)(e) for any edge e E VIR) and <i<:gG(R) (t.) = 

degC(R)(v' ) for any vertices v E V(R),v' E 9{v) ~ VIR); thus degO(R) (') $ degC(R) (s ). 
Hence. any iterat ion step of the algorithm on the original curve system costs at most .. 
cons tant factor morc than the corresponding step for the perturbed sys tem. 

Theore m 4: The abstrac t Voronoi diagram VIS) of n sites can be constructed by a r;ln· 
dom ized algorithm in t ime O(n log n). 

Proor: In iCSj Clarkson and Shor proved that randomized incremental construct ion has 
expected running time 

O(m(n) + n· L m(T)/ T' + n) 
1 ~ r$ "/l 

prov ided that their general position 88sumption holds, initialization tak"" time O(n) and 
addit ion of an object (here site) $ to the set R takes time proportional to 

2: de9G(R)(f) ; 
(f •• j EG(R) 

the summation is over all regions (here edges and vertices) of the current structure ( h ~re 

Voronoi diagram VIR)) which conRict with site s. Also, mIT) is the expected size of the 
structu re for a random subset R S;; S of' ele ments. In our cas. we have mIT) = 0(,) si nce 
thc Voronoi d iagram is a planar graph with T regions ~nd therefore ha3 less than 3T - 6 edges 
and 2r - 4 vertices by Euler's relMion, initialization takes time O(n) by Theorem 2b an d 
the time bound for the update step hold. by Theorem 2&. Thus the running time of Ollr 
a.lgorit hm on the perturbed system is O(n losn) . From Ihe considerations a bove we concillde 
that th e . ame bou nd holds for the original system. C 

R emark : In ou r algorithm 00 is always a member of R. An inspection of Clarkson's argument 
shows that this minor deviation from randomness does not change the time bound . 



IV. Conclusions and Open Problems 

We showed under very general assumptions on the bi.ecting curves that the construdion 
of abstract Voronoi diagrama can be tranaformed efficiently and purely combinatorially into 
the construction of abstract Voronoi diagrams for five sites. Further rcscarch will be done 
on the question of how the construction of the 5o.ite-diagram can be carried out efficiently 
dependent on the type of bisecting curves. Our goal is a "universal" algorithm for Voronoi 
diagrams. Nevertheless, we still have open problems to .olve: Can the concept of abstract 
Voronoi diagrams be generalized to higher dimensions? What can be done in two dimensions 
without the assumption that bisectors are non-d06ed curves? 
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