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Abstract: Abstract Voronoi Diagrams are defined by a system of bisecting curves in the
plane, rather than by the concept of distance [K88a,b]. Mehlhorn, Meiser, O’ Dunlaing
IMMO| showed how to construct such diagrams in time O(nlogn) by a randomized alyo-
rithm if the bisecting curves are in general position. In this paper we drop the general
position assumption. Moreover, we show that the only geometric operation in the algorithm
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diagrams can be constructed in a purely combinatorial manner. This has the following ad-
vantages: On the one hand, the construction of a five-site-diagram is the only operation
depending on the particular type of bisecting curves and we can therefore apply the aleo-
rithm to all concrete diagrams by simply replacing this operation. On the other hand, this
is the only operation computing intersection points; thus, problems arising from instable
numerical computations can occur only there.
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I. Introduction

The Voronoi diagram of a set of sites S in the plane partitions the plane into regions, called
Voronoi regions, one for each site. The region of site p contains all points of the plane that
are closer to p than to any other site in §.

Such partitions play an important role in different areas of science. In computer science,
the Voronoi diagram belongs to the most useful data structures. Its structural propertics
depend on the underlying distance measurc and the type of sites considered. Surveys on the
varicty of Voronoi diagrams that have been heretofore investigated in publications are givin
in [LS| and in [A].

In order to provide a unifying concept for the study of Voronoi diagrams, abstract Vororo
diagrams were introduced [K88a,b]. They are not based on the notion of distance but an
systems of bisecting curves as primary objects. For any two sites, p and ¢, in S, let J(p.q)
denote a curve that is homeomorphic to the line and divides the plane into a p-region and a
g-region. Then the Voronoi region of p with respect to S is the intersection of all p-regions.
as ¢ varies in S — {p}. The family of curves J(p.q), p # ¢, p,¢ € S, is called admissible if
for vach subset of sites ' C S the Voronoi regions w.r.t. S’ are path-connected and form a
partition of the plane.

The algorithm of [MMO] is an instance of randomized incremental construction [CS), i.e.,
the Vorenoi diagram is constructed incrementally by adding the sitea one by one in random
order. ! constructs abstract Voronoi diagrams for a restricted class of bisecting cunvrs,
namely curves in general position. In particular, two different bisecting curves intersecting a!
a common point z must cross at z and no four curves may intersect in a common peint. The
first restriction forbids, for example, diagrams of point sites under the L,-metric (Manhattan-
metric), as Figure 1 shows, cf. [L].
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Figure 1.

[n this paper, we drop the general position assumption. We only forbid some vory
special arrangements of bisecting curves. These forbidden arrangements do not occur ior
bisecting curves induced by nice metrics, including all norms, cf. |[K88¢c|. The shapes of
resuiting Voronoi diagrams are described in section [I. We show that Voronoi regions .re
homeomorphic to discs and that vertices and edges of the diagram can be described by only
3 and 4 sites, respectively. Next we show that when adding a new site to Lhe diagra:mn,
all information necessary to compute the region of the new site can be obtained from the
diagrams of the four characteristic sites of each intersected edge. This implies that the only
non-combinatorial operation in the algorithm is the construction of a Voronoi diagram for
5 sites. All numerical operations take place in this particular operation. The algorithm
of Guibas/Stolfi [GS| for Euclidean diagrams also has this property but neither the Plane-
Sweep- nor the Divide & Conquer-algorithm do. The latter algorithms need to sort the sites
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by r-coordinates. Moreover, the Plane-Sweep-algorithm sorts the computed events by -
coordinates, the Divide & Conquer-algorithm sorts the nodes of the diagram by y-coordinat«=
in its merge step. In both cases, objects are compared to each other that are not at all related
in their topology. Therefore, it may be difficult to make geometric decisions in a consistent
manner.

The analysis of our algorithm makes a novel use of perturbation. Clarkson and Shor’s
analysis [CS] of randomized incremental construction relies on the input being in general
position. Although Klein [K89| has shown how to perturb abstract Voronoi diagrams so as to
generate bisecting curves in general position, this perturbation is much too costly to be used
in an algorithm. We use it in the analysis by showing that the running time on the perturbed
system dominates the running time on the original system and applying [CS| to bound the
running time on the perturbed system. Thus perturbation is only used in the analysis; the
algorithm itself does not know about it and works on the original system.

Throughout the paper, we use the following notation: For a subset X C R? the closure,
boundary and interior of X are denoted by X, bd X and int X, respectively.

Il. Abstract Voronoi Diagrams

Let » € N, and for every pair of integers p,g such that 1 < p # ¢ < n let D(p,q) be either
empty or an open unbounded subset of R* and let J(p,q) be the boundary of D(p,q). We
postulate:

1} J(p,q) = J(q,p) and for cach p, g such that p # ¢ the regions D(p,q), J(p,q) and D(q.pn)
form a partition of R? into three disjoint sets.
2) It 0 # D(p,q) # R? then J(p, q) is homeomorphic to the open interval (0,1).
We call J(p, q) the bisecting curve for sites p and q. The abstract Voronoi diagram is now
defined as follows:

Definition 1: Let $ = {1,...,n — 1} and

_ | D(p,q)uJip,q) ifp<q
Rwﬂy_{nww) ifp>q

VR(p,S):= [ R(p,9)
v(s):= | b4 VR(p,5)
PES

VR(p,S) is called the Voronot region of p w.r.t. S and V(S) is called the Voronoi diagran: of
5. o

We postulate that the Voronoi regions and the bisecting curves satisfy the following three
conditions:



1) Any two bisecting curves intersect in only a finite number of connected components.

2) For any non-empty subset S’ of S
A) if VR(p,S') is non-empty then VR(p,S') is path-connected and has non-empty
interior for each p € §',
B) R’ = U,cs VR(p,S")  (disjoint)
3) For any two bisecting curves J(p,q) and J(p,r) and for all points v € J(p,q) N J(p,r),
if for any neighborhood U(v) of v

a) J(p,7)lu) N D(g,p)luey =8 then D(p.r)|ue) S D(p,9)lue)
or

b) J(pyr)lue N D(p,)lise) =0  then D(r,p)|uv) € D(q,P)luy)-
Informally speaking, Condition 3 says that any two bisecting curves J(p,q) and J(p,r)

intersecting in a point v without crossing, i.e., only touching at v, must have the p-region on
the same side. Note that both bisecting curves belong to the same site p.

P)q pL, P9 P9 R qP
. \‘# } \\} :ﬂ allowed
plr P ey
Pa .1 P4 R L RS A Y q?

w } L‘{ ;:_‘% forbidden
A el P

(+)

Figure 2. The upper row shows situations allowed by Condition 3, the lower row
shows the corresponding forbidden situations

Condition 3 excludes the degenerate shapes of Voronoi regions shown in Figure 3. As a

Figure 3.
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consequence of Theorem 2.3.5 |K88a| the point v in Figure 3 (i) must belong to the region
of site p and both p-sectors are connected via v. This implies that these sectors cannot be
separated by J(p,q) and J(p,r). Since both bisecting curves must pass through v, they are
arranged as in Figure 2 (=). This is a contradiction to Condition 3. Situation (ii) in Figure 3
is impossible for the same reason; on both sides of the thin part of p-region there must be
regions of different sites r,q (Theorem 2.3.5, [K88a]). In general we have:

Fact 1: The following holds for each point v £ V(S): Arbitrarily small neighborhoods
U(v) of » exist having the following properties. Let VR(py,S), VR(p2,S),..., VR(ps, 5)
be the sequence of Voronoi regions traversed on a counterclockwise march around the
boundary of U(v) and let [y, I5,...,I; denote the corresponding intervals of dU(v), where
I; = (w;,w;s,) C VR(p;,S) for 1 < j < k (indices must be read mod k). The intervals may
be open, half-open or closed. We have w; # w;,, for 1 <1 < k. The common boundary
of VR(p;~1,S) and VR(p,,S) defines a curve segment §; C J(p;-1,p,) connecting v and
wj. V(S5) N U(v) is the union of the curve segments 8, together with the pmnt v. Each 3,
is contained in the Voronoi region of min{p;_,,p;}. The open “piece of pie" bordered by
3,,8;+1 and I, is non-empty and belongs to VR(p,,S). The point v belongs to the region of
min{py,...,px}. Finally, p; # p; for ¢ # j. For a proof see Theorem 2.3.5 [K88a| and the
discussion above. O

For the sequel, it is helpful to restrict attention to the “finite part™ of V(S). Let '
be a simple closed curve such that all intersections between bisecting curves lie in the inner
domain of '. We add a site co to S, define J(p,o0) = J(oo,p) =T for all p, 1 < p < n, and
D(c0,p) to be the outer domain of I' for each p, 1 < p < n.

Fact 2: Each Voronoi region is simply-connected and its boundary 1s a simple closed curve.
Moreover, the closure of each non-empty Voronoi region VR(p,S), p # o, is homeomorphic
to a closed disc. A Voronoi diagram can be represented as a planar graph in a natural way.
The vertices of the graph are the points of V(S) which belong to the boundary of three or
more Voronoi regions; the edges of the graph correspond to the maximal connected subsets
of V(8) belonging to the boundary of exactly two Voronoi regions. The faces of the graph
correspond to the non-empty Voronoi regions. We use V(S) to also denote this graph. Fu a
proof see Lemma 2.2.4 and Theorem 2.3.5 [K88al.

Condition 3 puts no restriction on the bisecting curves for nice metrics. Nice metrics
are subject to four simple axioms, cf. [K88c|, and include all norms in the plane. With
nice metrics the connectivity of Voronoi regions is independent of the ordering of the sites, cf.
Theorem 1.2.13, [K88a), and therefore the situation of Figure 4 cannot arise. In this situation,
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Figure 4.

p-region would not be connected in V ({p, g, r}) if the sites arc ordered r < p < ¢. Segment s
would belong to r-region.

R. Klein showed recently |K89] that the following conditions are equivalent to our con-
ditions (2A) and (2B). These conditions can be tested more easily.

Lemma 1: In any system of bisecting curves Conditions (2A) and (2B) are fulfilled iff the
following assertions are fuifilled.
1) R(p.q) N R(g,r) C R(p,r) holds for any three sites p,q,r € S. (Transitivity)
2) Let J(p,q) and J(p,r) be such oriented that the p-region lies on their left hand side
Then the two curves cross at most twice and do not constitute a clockwise cycle in the
plane, g

We next take a closer look at the elements of V(S) = |J,.¢bd VR(r,S). Let z be a
point of V' (S). Since Voronoi regions partition the plane, z lies on the boundary of at lcast
two Voronoi regions.

Case 1: r lies on the boundary of exactly two Voronoi regions, say p-region and g-region.

By Fact 1, Figure 5 shows V($) in a sufficient small neighborhood U(z) of z. Thus z is a

LI
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Figure 5.

point on an edge of the Voronoi diagram. The bisecting curve defining the edge is determineed
by the sites p and ¢. Note that the endpoints of an edge do not belong to the edge.

Case 2: 1 lies on the boundary of k > 3 Voronoi regions.

In this case a neighborhood of z consists of k sectors belonging to different Voronoi regions,
and r is a common endpoint of k edges of V(5), i.e., a vertex of V(S). Let p,q,ry,r2,...,r0 2
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Figure 6.

be the Voronoi regions involved, enumerated in counterclockwise order. Then, in particular,
T is the endpoint of an edge ¢ separating p-region from g¢-region.

The following lemma shows that every site ry,...,ry_; takes equal responsibility in the
definition of z as an endpoint of e.

Lemma 2: Let L < Sand {p,q,r;} € Lforsomei, 1 <3< k-2, Then zis also an endpoint
of e in V(L).

Proof: The regions of p, ¢, r, cannot become smaller in V(L) compared to V(S]. Thus in
a neighborhood of z in V (L), at least the regions of p, ¢ and r; are represented. Since each
region can be represented only by one sector (Fact 1), the edge ¢ must end in the point = in
V(L) as well. L

Besides z the site r; can define at most one more endpoint z' of an edge separating the
p- and g-regions, because the Voronoi diagramm of the three sites p, ¢ and r, can have at
most two vertices in its "finite part”, cf. Figure 7 (for a proof see Lemma 3.5.2.5, 'K88al).
The points z and z’ must nccessarily be endpoints of the same edge. We can distinguish

P
e
x r
ry q N Ty
Figure 7.

between r and z’ by looking at the counterclockwise orders p, r,, g resp. p, ¢, r, of regions
around the vertex.

Lernma 3: In V/(S) at most one vertex can exist with the regions of p, ¢ and r appearing in
counterclockwise order in its neighborhood. Moreover, this vertex also exists in any diagrim
V(L) where {p,q,7} C L C S.

Proof: Otherwise, consider two occurences v, vy of such vertices in V({p,q,r}), as in
Figure 8. Since the p- and ¢-regions are each connected, two paths P and Q exist, connecting
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vy and v» but not containing them: P is contained in p-region and Q is contained in g-region.
Now consider a tour on the cycle vy o Povy o Q. In vy, we have r-land to the right; in v,
we have r-land to the left; i.e., r-land lies inside the circle as well as outside. But since every
site can be represented only once at a vertex, r-land can cross the circle neither at v, nor at

v; from the inside to the outside. i

Corollary 1: Any edge e of V(5) is determined uniquely by at most four sites and their
counterclockwise order, say (p,r,q,s). The same edge also exists in any diagram V(L) where
{p.q.r,s} CLCS.

i, S
AT N

Figure 9.

Proof: This follows from Lemma 3 and the fact that VR(o,S) C VR(o,L) for 0 € {p,q}.

As an important instance of the corollary the case L = {p,q,r,s} tells us that the edge
e exists even in V({p,q,r,5}). This fact is important for the algorithm of [MMO|. This
algorithm is incremental, i.e., at time ¢t the Voronoi diagram V' (R) for a certain subset # C >
is already constructed and we add a new site not already in R to the Voronoi diagram. Somc
edges in V(R) are thereby shortened and others are crased if they are covered by the new
region. In order to construct the new region, we have to determine these intersections; this
implies examining intersections between bisecting curves. Theorem 1 characterizes whch
bisecting curves we need to consider.

Theorem 1: Let e = (p,r,q.3) be an edge of the Voronoi diagram V(1) for sites p # ¢ -
R S r.s€ R-{p,q}. Then for any set [, C R with p,q,r,s € L, the edge ¢ is also an edyc
of V{L) and we have en VR(t,RU {t}) = en VR(t,L U {t}) for any site t ¢ R.

Proof: By corollary 1, edge ¢ also exists in V' (L). Now consider any point z € ¢, We show
that a suffiently small neighborhood U(z) looks the same in V(L U {t}) as in V(R U {t}].
Choose U(z) such that y € VR(p, R) U VR(q, R) for all points y € U(z). Let o € {p,q,t} be
such that y € VR(o, RU {t}) for a point y € U(z). From VR(o,RU{t}) € VR(o,L L {t}) we
conclude y £ VR(o0, LU {¢}). The theorem follows since the Voronoi regions form a partition
of U(z). :



9

if we take L = {p,q,r,s} then the intersection between the edge ¢ and the region of a
new site t can be constructed by looking at the diagram of only five sites p, ¢, r, s and t. We
take this as the basic operation of our algorithm.

Basic Operation

Input:  An edge ¢ = (p,r,q,s) and a site ¢ & {p,q, 7,5}

Output: The combinatorial structure of enN VR(t, {p,q,r, s, E_}T. i.e., one of the following:
1) intersection is empty
2) intersection is non-empty and consists of a single component:
a) e itself
b) a segment of ¢ adjacent to the (p,r,q) endpoin:
¢) a segment of ¢ adjacent to the (p, q,s) endpoint
d) a segment not adjacent to any endpoint of ¢
3) intersection is non-empty and consists of exactly two components
4) neither of the above

Remark: We show in Lemma 6, section IlI, that case 4 never arises and that the two
components in case 3 are adjacent to one endpoint of e each.

III. Incremental construction of abstract Voronoi diagrams — the
general case

In this section, we describe the incremental construction algorithm. We start with three
sites oo, p, g where p and ¢ are chosen at random and then add the remaining sites in random
order. At the general step, we have to consider a set R C S of sites with co € Rand |R| > 3
We maintain the following data structures.

1) The Voronoi diagram V(R): It is stored as a planar graph as described in the previo..
section.

2) The conflict graph G(R): The conflict graph is a bipartite graph. The nodes on one side
are the vertices and edges of the Voronoi diagram V(R) and on the other side the sites in
S~ K. Correspondingly, there are two types of edges in the conflict graph. An edge of the
first Lype connects edge e of V/(R) and site s € S— Riff en VR(s, R U {s}) # 0. An edye
of the second type connects a vertex v € V(R) and asites € S-Riffv & VR(s,RU {s}h.
We say: the site s is in conflict with the edge ¢ (the vertex v).

[n the sequel, we proceed as in the argumentation of [MMO|. Because we drop the general
position assumption, the boundary of a new region can now contain vertices or even edges
of the Voronoi region constructed so far. Therefore we will go through all proofs of [M\/O
again and take care of the boundary of Voronoi regions.

We assume that the Voronoi diagram V(R) and the conflict graph G(R) for 2 = S
are already constructed and discuss how to adjust V(R) and G(R) when adding a new site
s € 5 - Rto R. We first concentrate on V(R). From now on, let § := VR(s, RU {s}).
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Lemma 4: § =0 <= degg g)(s) = 0.

Proof: I & = 0 then clearly degg(g)(s) = 0. Thus let degg(g)(s) = 0. Then SNV (K) = 0
and S C int VR(p, R) for asite p € R, since V(R) = |J,zp bd VR(r, R). Thus VR(p, Ru {5}
i3 not simply-connected. i

We are interested in the part of the diagram that is covered by S. Thus let [ := V(R)rS.
Lemma 5: [ is a connected set and intersects bd S

Proof: Let Iy, I,..., I be the connected components of [ for some k. No I; can be contain:d
entirely in the interior tnt S of S. Otherwise, a simple closed curve C C tntS would ex.:t.
such that /; is contained in the inner domain of C and C does not intersect V(R). Thus
C < VR(r, R) for some r € R. Since Voronoi regions are simply-connected, C and its interior
must belong to VR(r, R) and hence, C cannot contain [; in its interior.

Thus Jet k > 2. Then a path P C S — I exists, connecting two points x and y on the
boundary of S and separating I, from I, cf. Figure 10. From PNJ = ) we have PrV(R) = U

I
~ bd &
-~ I,
e
P
Q /
v

Figure 10.

and thus P C snt VR(r, R) for asite r € R. Since z,y € P all sufficiently small neighborhoods
U(z) and U(y) are entirely contained in VR(r, R). The points in the intersection of thesc
neighborhoods with the complement of S thus lie in VR(r,RU {s}) and can be connected
by a path @ « int VR(r,RU {s}) C int VR(r,R). The cycle P c Q is therefore entircly
contained 1 tnt VR(r, R) and contains I, or I; in its interior. This is a contradiction. 3

Lemma 6: Let e be an edge of V(R). If e S # 0, then either enS = V(R) S and e S
is a single component or ¢ — S is a single component.

Proof: Assume first that er1 5 = V(R) NS, Because V(R) NS is connected by Lemma 5,
we conclude that e S is connected. Assume next that enNS # V(R) nS. Then with every
point £ € eNS one of the subpaths of ¢ connecting r to an endpoint of ¢ must be contain:«d
in S. Hence ¢ — S is a single component. c

We need to construct the boundary of 5. From the discussion in section Il we know tiiat
the boundary of § is a simple closed curve. Therefore d S M V(R) is a cyclic sequence of

¢ proper crossings between edges of V(R) and bd S
e vertices of V(R)
¢ parts of edges of V(R).
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In the case of general position, bd S NV(R) contains unly intersection points of the first ty:e.
A'so. the cvelic sequence of Lirese intersection points and, thus, the new edges on bd § are
casy to find by simply walking along the bonundary edges of the splitted regions, cf. Figure 11
The correctness of this proccdure follows from the connectivity of S 1V ([2). We will now

/ C
Figure 11.

discuss how to extend this strategy to degenerate cases, We distinguish two major cases.

Case 1: There is a single edge e which is in conflict with s.

Assume ihat e separates the p-region from the g-region, i.e., ¢ C J(p. q) for two sites p,¢g = S.
We compute ¢ 1 S using our basic operation. Note that e S cannot be a single point. !
et were a single point then the situation shown in Figure 12 would result, a contradictio:

e
[

to F.rt 1. Thus enS is a proper segment. Let v, and v; be the two endpoints of e N S. We

q( Piq

S

Figure 12.

dviete eNS from the diagra:n, add v, and v as vertices and two edges with emipoints v
and 3. The two edges are part of J(p, 3) and J(q, 8), respectively.

Case 2: There are at lcast two edges which are in conflict with s.
Ther. e - & is a single component for each edge ¢ of V(R). The conlflict graph gives us 1!
edges in wonflict with 5. Let = C J(p,q) be such an edge, i.e., eNS £ 8. 2O 8 ther o
disappesrs completely. If O # ¢ — S # ¢ then some part of ¢ survives. Let ¢; be onc of the
components of eNS; ¢; can be computed by our basic operation. Then 2, contains exactiy
one crndpoint of ¢, Let w be the other endpoint of e7. Then w lics on J(p, ¢) and also on the
boundary of S. Thus in a small neighborhood U/{w) of w we have p-, ¢- and s-region, i.e.. w»
is 4 vertox of V(RU {s}). Also, in V(RU {s}) exactly three edges arc incidens to w; they an
parts of J(m,q). J(q.s) and J(p. s), respectively.

Consider the vertices of V(R) next. If no edge ¢ of V(R) has v as an cndpoint ol e 5
thea » disappears from the diagram. So let us assume that at least onc edge ¢ of V(£2) bas
v as an endpoint of e = S, i.c., v does not lic in the interior of S. The vertex v has degree
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at least three in V(R). Also, either v lies outside 5 or at least one edge incident to v must
intersect S in all neighborhoods U(v) because otherwise the situation shown in Figure i3
would result, contradicting Fact 1. If v lies outside S then nothing changes in the vicinity

Figure 13.

of v. So let us assume that v lies on the boundary of 5. Since bd S is a simple closed cu-ve
which passes through v the edges incident to v split into two groups, those which intersect,
S in all neighborhoods U(v) of v and those which do not. Both groups form a contiguos
subsequence of the cyclic adjacency list of v, ¢f. Figure 14. Let f and f" be the first and

Figure 14.

the last edge of the subsequence of edges which run outside S N U(v) lor a sufficiently small
neighborhood U(v) of v; f' = f" is possible. Let €' and ¢' be the first and last edge :n
counterclockwise order of the subsequence of edges which run inside SN U(v) for all small
neighborhoods U(v) of v. Lel f" and ¢' border p-region and let /" and ¢" border g-region.
Then we delete the edges between ¢ and ¢’ and add two new edges incident to v. These
edges are part of J(q,s) and J(p, s), respectively.

At this point we have constructed all vertices of V(RN {s}) and their cyclic adjacency
liste. We have not yet linked the two occurrences of each edge. Let / : - V(R)NS. We kuow
an embedding of [ into the plane. The boundary of the outer face is a closed curve since /
is connected. Also, all the vectices on d S liec on I and hence a clockwise traversal of the
boundary of the outer face yicids the cyclic ordering of the vertices of bd S. This allows us
to link the two occurrences of each edge. We conclude in

Lenmima 7: V(RU {s}) can be constructed from V{R) and G(R) in QO{degg p(s) + 1) steps
Here our basic operation is considered as one step. ]

Let us now turn to the computation of G(#? i {s}). We distinguish three cases: edges of
V(U {s}) which already were edges of V(R), cdges which are part of edges of V(R), and
edges which are completely new.



13

For any edge ¢ of V(R) not in conflict with s, the conflict information remains the same.
Since eNn VR(s, RU {s,t}) C en VR(s, RU {s}) = 0 the intersection eN VR(t, RU {t}) remains
unchanged when we add s to Rforany t € S — R — {s}.

If ¢ is in conflict with s but ¢ € S then e — S consists of at most two subsegments by
Lemma 6. Let ¢’ be one of those subsegments. For ¢’ the same argumentation applies as
above since ¢' N VR(s, RU {s}) = 0. Hence any site in conflict with ¢’ must be in conflict
with e.

For a newly constructed edge, we show that it is sufficient to gather its conflict informa-
tion from edges on that part of the boundary of the splitted region that is covered by S. Let
¢;2 be such a new edge with endpoints z; and z;. The new edge e,; either intersects the inte-
rior of exactly one Voronoi region VR(p, R) or it runs on the boundary of a region VR(p, R)
such that VR(p, R) and S are on different sides of ¢;2. This follows from the discussion in
Case 1 and Case 2 above.

Let P be the part of the boundary of VR(p, R) between z; and z; such that in all
sufficiently small neighborhoods of z, and z; the path P is contained in S.

Y
3 ,VR(p, R)
I €12 P

bd S

Figure 15.

Claim: PC S

Proof: If P crosses the boundary bd S of S then V(R) NS becomes unconnected, contra-
dicting Lemma 5. O

Lemma 8: Let t € S — R — {s} be in conflict with ej3 in V(R U {s}). Then ¢ is in conflict
with P in V(R).

Proof: Consider VR(p, R). By the definition of conflict, a point z € ¢;; exists such that r

l ' VR(», R)
I I3

bd §

Figure 16.
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VR(t,RU {s,t}) C VR(¢t,RU {t}). Since we claim a contradiction we assume that ¢ is not in
conflict with P in V(R), i.e., VR(t,RU {t})NP = 0. If zis on P the contradiction is evident.
Thus, assume z ¢ P. By assumption, VR(t,RU{s,t})NU(z;) C VR(t, RU{t})NU(z;) =2
for any sufficiently small neighborhood U(z,) of z,. Now consider in any such neighborhood
of z, the wedge spanned by e,; and the part of d VR(p, R) outside S. The points in this
wedge all belong to VR(p, RU{s,t}). The same is true for any sufficiently small neighborhood
of z;. Since VR(p, RU{s,t}) is connected, there is a path Q from r, to z; running completely
inside VR(p, R {s,t}) € VR(p, RU {t}) except at the endpoints.

bd VR(p, R) bd VR(p, R)

S
Figure 17.

We can assume that Q does not touch the boundary bd S of § (and therefore not includes
z). By definition of P and Q the Voronoi region VR(t, RU {t}) cannot intersect these two
paths. Moreover, z lies in the interior of the cycle z) o P o 23 0 Q; otherwise VR(p, R) would
not be simply connected. From PN VR(¢,RU {t}) =0 and z € VR(t, RU {t}) we conclude
that VR(¢, RuU {t}) lies in the interior of the cycle. Since bd VR(t,RU{t})Nzy0Pozy =1
this is a contradiction to the fact that VR(p, RU {t}) is simply connected. C

Now we know all candidate-sites possibly in conflict with e;2, namely the sites in conflict
with an edge or a vertex on P. Using our basic operation, we can test whether a conflic!
exists with these candidate sites or not. The conflict information of a newly constructed
vertex v = ¢ bd S is obtained from the conflict information of edge ¢ in the same way. Note
that we visited only conflicting edges and that each such edge can belong at most 2 times to
a path P by planarity. We conclude in

Lemma 9: G(RU {s}) can be constructed from V (R) and G(R) in time

o Y degam(f))
{

J.4}€G(R)

Theorem 2: a) Let s € S — R. Then the data structures G(RU {s}) and V(R U {s}) can he
obtained from G(R) and V (R) in time

o Y deggr(f)).

{1.4}€G(R)

b) For RC S, |R| = 3 and o0 € R, the data structures V(R) and G(R) can be set up in time
O(n) where n = |5|.

Proof: a) This point summarizes Lemmas 7 and 9.
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b) The Voronoi diagram V(R) for three sites oc, p and ¢ has the structure shown in Figure 18
and can certainly be set up in time O(1). Also for each of the edges ¢ of V(R) and each of
the n — 3 sites in § — R one can test eN VR(¢, RU{¢}) # @ by our basic operation in time
O(1). This proves (b). a

Figure 18.

We next turn to the analysis of the algorithm. Our goal is to analyze the running time
of our algorithm by an appeal to Clarkson and Shor's results about the running time of
randomized incremental construction. However, Clarkson and Shor’s analysis relies heavily
on their general position assumption. It states that each region (here edges and vertices)
is uniquely determined by a bounded number of objects (here sites). Now observe that any
vertex that has ry,...,ri-regions, I > 3, incident to it is defined by any 3-tuple (r,,r;,rs),
1<1<j< k<!l by Lemma 3. A similar observation holds for any edge with endpoints of
degree greater than 3. This shows that the general position assumption of [CS| is generally not
satisfied, when the bisecting curves are not in general position. However, the general position
assumption of [CS| is satisfied if the bisecting curves are in general position as defined in
[MMO|, i.e., any intersection is a proper crossing and no four curves have a common point.

The idea behind our proof is now as follows. We take our system of bisecting curves
and conceptually perturb it so as to obtain a system in general position. The perturbation
is carried out in such a way that no conflicts are lost. This allows us to show that the cost
of one iteration step of the algorithm on the original system is bounded by a constant times
the cost of the corresponding step on the perturbed system; the asymptotic time bound thus
holds for both. The perturbed system is in general position and hence Clarkson and Shor’s
analysis applies.

In [K89| Klein proves the following

Theorem 3: Let J = {J(p,q);p,q € S,p # q} be a system of bisecting curves as defined

in section II. Then J can be deformed in such a way that the resulting system J has the

following properties:

1] No other intersections than cross-points exist between the curves in j At most 3 curves
cross at a point (general position)

2 ) For each subset R C S: After contracting some edges, the perturbed Voronoi diagram
V (R) differs from the original diagram V (R) only by a deformation.

A perturbation is neccessary for those curves that touch each other or even share a
common segment and for more than 3 curves intersecting in a common point. Curves sharing
a common segment are spreaded out like wires of a cable. A point common to more than 3
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curves or a touching point of two curves is split into a graph of newly constructed intersection
points and curves segments connecting them. These segments give rise to the edges in V(R)
that are contracted in Theorem 3.

We will now show that no conflict information is lost by the perturbation. First consider
an edge e in V(R) that is in conflict with some site ¢ in § — R. Edge ¢ also exists in V(R).
Moreover, Theorem 3 implies that e exists in V(R U {t}) iff e exists in V(R U {t}). Thus,
each edge of V' (R) is also represented in V (R) and their conflict information is the same.

Next consider a vertex v € V(R) that is replaced by a graph G(v) in V(R). Analogously,
Theorem 3 implies that v exists in V (RU{t}) iff G(v) exists in V (RU {t}). Hence the vertices
of G(v) all have the same conflict information as v.

Let us now compare the running time of our algorithm on both systems of bisecting
curves J and J, respectively. Addition of a new site s € S — R to V(R) and V(R) takes
time proportional to

Z degg(my(f) and Z: degea R)( ), respectively.
{fe}€G(R) {1.0}€G(R)

As discussed above we have degg(g)(¢) = degg g (¢) for any edge e € V(R) and deggg)(v) =
degs g (V') for any vertices v € V(R),v' € G{v) C V(R); thus dego(r)(s) < degg g (s).
Hence, any iteration step of the algorithm on the original curve system costs at most a
constant factor more than the corresponding step for the perturbed system.

Theorem 4: The abstract Voronoi diagram V(S) of n sites can be constructed by a ran-
domized algorithm in time O(nlogn).

Proof: In [CS] Clarkson and Shor proved that randomized incremental construction has

expected running time
O(m(n) +n- Z m(r)/r® +n)
1<r<n/2

provided that their general position assumption holds, initialization takes time O(n) and
addition of an object (here site) s to the set R takes time proportional to

Y deggmy(f);

{f.4}eG(R)

the summation is over all regions (here edges and vertices) of the current structure (here
Voronoi diagram V' (R)) which conflict with site s. Also, m(r) is the expected size of the
structure for a random subset R C S of r elements. In our case we have m(r) = O(r) since
the Voronoi diagram is a planar graph with r regions and therefore has less than 3r — 6 edges
and 2r — 4 vertices by Euler's relation, initialization takes time O(n) by Theorem 2b and
the time bound for the update step holds by Theorem 2a. Thus the running time of our
algorithm on the perturbed system is O(nlogn). From the considerations above we conclude

—

that the same bound holds for the original system. C

Remnark: In our algorithm oc is always a member of R. An inspection of Clarkson’s argument
shows that this minor deviation from randomness does not change the time bound.



IV. Conclusions and Open Problems

We showed under very general assumptions on the bisecting curves that the construction
of abstract Voronoi diagrams can be transformed efficiently and purely combinatorially into
the construction of abstract Voronoi diagrams for five sites. Further rescarch will be done
on the question of how the construction of the 5-site-diagram can be carried out efficiently
dependent on the type of bisecting curves. Our goal is a “universal” algorithm for Voronoi
diagrams. Nevertheless, we still have open problems to solve: Can the concept of abstract
Voronoi diagrams be generalized to higher dimensions? What can be done in two dimensions
without the assumption that bisectors are non-closed curves?
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