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l. Introduction

The Voronoi diagram of a set of sites in the plane partitions the plane into regions, called
Voronoi regions, once Lo a site. The Voronoi region of a site s is the set of paints in the plane
for which s is the closest site among all the sites.

The Voronoi diagram has many applications in diverse fields, cf. Leven/Sharir [LS86] or
Aurenhammer [A88b] for a list of applications and a history of Voronoi diagrams. Different
types of diagrams result from considering different notions of distance, e.g., Euclidean or /.-
norm or convex distance functions, and different sorts of sites, e.g., points, line segments, or
circles; cf. also section IV, For many types of diagrams eflicient construction algorithms have
been found; these are either based on the divide-and-conquer technigue due 10 Shamos/Hoey
|SH|, the sweepline technique due to Fortune [F87] or geometric transforms due to Brown
|br] and Edelsbrunner/Seidel [ES].

A unifying approach to Voronoi diagrams was recently proposed by Klein [KI88a]. He does
not. use the concept of distance as the basic notion but rather the concept of bisecting curves,
i.c., he assumes for each pair {p,q} of sites the existence of a bisecting curve J(p, q) which
divides the plane into a p-region and a g-region. The intersection of all p-regions for different
¢'s is then the Voronoi-region of site p. He also postulates that Voronoi-regions are simply-
connected and partition the plane. He shows that abstract Voronoi diagrams have already
many of the properties of concrete Voronoi diagrams, cf. section I1. He also shows that the
divide-and-conquer technique can be used to construct abstract dizgrams efficiently. More
precisely, if the basic geometric operations on bisecting curves take time O(1) and if any sct
S of sites can be split in time O(|S]) into about equal sized subsets L and R such that the
bisector between L and R (= the common boundary of regions in L with regions in R) is
acyclic then the Voronoi diagrams of L and R can be merged in titne O( S|) and hence the
diagram of n sites can be cons:ructed in time O(nlogn). Klein’s result subsumes many of
the previous results and goes far beyond them. There are, however, situations, e.g., circle
sites under Euclidean distance, where it is not known how to determine L and R in the
ilivide-and-conquer algorithm such that their bisector is acyclic; cf. Sharir S|.

The purpose of this paper is 1o show that there is an O(r logn) rundomized zlgorithm for
constructing (a subset of Klein's) abstract Voronei diagrams even without the acyclicily
assumption. The subset is defined by the following two general position assumptions: We do
not allow bisecting curves to touch but require that all intersections are crossings and that
no four bisecting curves go through a common point.

The algorithm is given in section I11 and applications can be found in section IV. In many
concrete situations, e.g., point sites with Euclidean distance function, our algorithm is just
another O(nlogn) algorithm, albeit simnpler. There are however at least two cases where we
achieve O(n log n) for the first time: For disjoint convex sites the best determirnistic algorithm
runs in time O(n(logn)?) |LS86 and for line segments under the Haussdorlf metric, i.c., a
point. z and a line segment s — 31s; have distance meaz(|z — s)|./z — s2|), an O(rlogn)
algorithm was only known in the special case of so-called a-disjoint segments [A88b]. We
also want to stress that the new algorithm is uniform in the sense that only a small numbcr
of primitives, cf. section 11, are problem specific.

Qur algorithm is based on Clarkson and Shor's randomized incremental construction tech-
nique |[CS]. The idea is to construct the abstract Voronoi diagram of a set S of sites incremen-
tally by adding site after site in random order. When R € § is the current set of sites, the
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Voronoi diagram V (R) and a conflict graph G(R) is maintained. The conflict graph contains
all pairs {e,t}, where e is an edge of V(R) and t € § — R is a site still to be considered,
such that addition of site ¢t causes the edge e to be removed (either completely or partially)
from the diagram. In order to make Clarkson and Shor’s method applicable one has to show
that for a site s € S — R the diagram V(R U {s}) and the conflict graph G(R U {s}) can be
constructed from V(R) and G(R) in time

o ) deggry(e))

{c.0}€G(R)

where degg(p)(¢) is the degree of ¢ in G(R) and the summation is over all edges e of V(1)
which conflict with the new site s. This is the content of Theorem 1 of section III. If the

method is applicable the expected running time is

O(n+m(n) +n- Z m(r)/r?)

1<rin/2

where m(r) is the expected number of edges in V(R). For abstract diagrams m(r) < 3r and
hence the algorithm runs in time O(n log n).

Throughout we use the following notation:
For a subset X C M? the closure, boundary and interior of X are denoted by ¢! X, bd X and

int X respectively.

II. Abstract Voronoi Diagrams

[t n € N, and for each pair of integers p,q such that 1 < p # ¢ < n let D(p,q) be either
empty or an open unbounded subset of R* and let J(p,q) be the boundary of D(p.q). We
postulate:

1) J(p,q) = J(q,p) and for each p, ¢ such that p # ¢ the regions D(p,q), J(p,q) and D(q.p)
form a partition of R? into three disjoint sets.
2) 1f 0 # D(p,q) # R? then J(p, q) is homeomorphic to the open interval (0, 1).

We call J(p,q) the bisecting curve for sites p and q. The abstract Voronoi diagram is now
delined as lollows:

Definition (R. Klein [K188a]):
&) Let §$ = {1,...,n -1} and

_ JP(pgud(p,q) ifp<gq
Rlp.q) := { D(p.q) ifp>gq

VR(p,S) := [ R(p.q)
qES
9#EP

v(s) = | bd VR(,5)
PES
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VR(p, S) is called the Voronoi region of p w.r.t. S and V(S) is called the Voronoi diagram
of S.

b) We postulate that the Voronoi regions and the bisecting curves satisfy the following two
ronditions:

1) Any two bisecting curves have only a finite number of points in common. Any point. in
common to two bisecting curves is a proper crossing between the two curves, cf. Figure 1.

2) For any non-empty subset S’ of §
A) if VR(p,S') is non-empty then VR(p,S') is path-connected and has non-empty
interior for each p € §',

B) R? = U,es VR(p.S")  (disjoint) »

Remark 1: Klein's definition is actually more liberal. He allows that bisecting curves may
touch and only requires that their intersection consists of finitely many connected components.
In 2A) he postulates that each VR(p, S') is non-empty. The weaker assumption made here
does not harm his theory. a

Figure 1. A crossing and touching point

Fact 1 (R. Klein [K188c]):

a) Voronoi regions are simply connected.

b) The following holds for cach point v € V(S): There are arbitrarily small neighborhoods
U of v that have the following properties. Let VR(p1,S), VR(p2,5),..., VR(ps, S) be the
sequence of Voronoi regions traversed on a counterclockwise march around the boundary of
L' and let I),I3,...,I; denote the corresponding intervals of U, where [; = (w,, wj4y; ©
VR(p,,S) for 1 < j < k (indices must be read mod k). The intervals may be open, half-
open or closed. We have w; # wj4y for 1 < y < k. The common boundary of VR(p;-1,5)
and VR(p;,S) defines a curve segment 3; C J(p,;_;,p;) connecting v and w;. V(S) U
is the union of the curve segments 3, together with the point v. Each §; is contained in
the Voronoi region of min{p,_1,p;}. The open “piece of pie” bordered by 3;,3;+; and I,
belongs to VR(p,,S). The point v belongs to the region of mitn{p;,...,ps}. Finally, p; # p,
for s £ ;. 0
lor the sequel, it is helpful to restrict attention to the “finite part” of V'(S). Let I be a simple
closed curve such that all intersections between bisecting curves lie in the inner domain of I'.
We add a site oo to S, define J(p, ) = J(oo,p) = [ for all p, 1 < p < n, and D(x,p) to be
the outer domain of T for each p, 1 < p < n.
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Fact 2 (R. Klein [KI188c¢]):

The boundary of each non-empty Voronoi region is a simple closed curve. Moreover, the
closure of each non-empty Voronoi region VR(p, S), p # oo, is homeomorphic to a closed
disc. A Voronoi diagram can be represented as a planar graph in a natural way. The
vertices of the graph are the points of V(S) which belong to the boundary of three or more
Voronoi regions and the edges of the graph correspond to the maximal connected subsets
of V(S) belonging to the boundary of exactly two Voronoi regions. The faces of the graph
correspond to the non-empty Voronoi regions. We use V(S) to also denote this graph. For
the algorithmic treatment of Voronoi diagrams we also need to make a feasibility assumption
about the bisecting curves.

Definition (R. Klein):
The following operations on bisecting curves are assumed to take time O(1).

1) Given J(p,q) and a point v, determine if v € D(p, q) holds.

2) Given a point v in common to three bisecting curves, determine the clockwise order of
the curves around v.

3) Given points v € J(p,q) and w € J(p,r) and orientations of these curves, determine the
first point of J(p,7)|(w.00) crossed by J(p,q)|(s.00)-

4) Given J(p,q) with an orientation, and points v,w,z on J(p,q), determine if v comes
before w on J(p, ¢)l(a,| O

lFor simplicity we also make the following general position assumption.
General Position Assumption: No four bisecting curves have a point in common. O

The general position assumption and Fact 1 imply that each vertex of the Voronoi diagram
has degree three. It lies at the intersection of three bisecting curves as shown in Figure 2.

Figure 2. The bisecting curves J(p,q), J(p,r),J(r,q) intersect at v. The domains
D(p,q) and D(q,p) are indicated by the letters p and q on the two sides of the bisect-
ing curve J(p, q). The parts of the bisecting curves which define region boundaries
are shown solid.
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Remark 2: The requirement that the Voronoi regions partition the plane is a severe re-
striction on the family of bisecting curves. Consider a crossing of J(r,p) and J(r,q) as in
Figure 3. Then J(p,q) must also pass through v with D(g, p) on its right.

rq
Figure 3.

We close this section with a simple but important property of Voronoi edges:

Lemma 1: Let RC Sandt € S— R. Let e be an edge of V(R) which separates the regions
VR(p, R) and VR(q, R) of the two sites p,q € R. Thenen VR(¢, Ru{t}) = en VR(t,{p,q,t}).

Proof: C: This follows immediately from VR(¢, RU {t}) C VR(t, {p.q,t}).

D: Let z € en VR(t,{p,q,t}). From z € e we conclude £ € VR(p, R) U VR(q,R) and
hence = ¢ VR(r,R) 2 VR(r,RU {¢}) for any r € R - {p,q}. From z € VR(t,{p,q,t})
we conclude z ¢ VR(p,{p.q,t}) U VR(q,{p,q.t}) 2 VR(p,RU {t}) U VR(q, RU {t}). Thus
z¢ VR(r, RU {t}) for any r € R and hence z € VR(t,RU {t}). 0O

Informally, Lemma 1 states that the influence of a site on a given edge depends only on the
sites defining this particular edge.

III. Incremental Construction of Abstract Voronoi Diagrams

In this section we describe the incremental construction algorithm. We start with three sites
~,p,q where p and ¢ are chosen at random and then add the remaining sites in random
order. At the general step we have to consider a set R C § of sites with oc € R and |R| > 3.
We maintain the following data structures.

1) The Voronoi diagram V(R): It is stored as a planar graph as described in the previous
section.

2) The conflict graph G(R): The vertices of the conflict graph G(R) are the edges of V(R)
and the sites in S — R. There is an edge (read: conflict) between the edge e of V(R) and
thesite se S— Riff en VR(s, RuU {s}) # 0.



7

Remark: Recall that an edge of a Voronoi diagram is an open set and that a Yoronoi region
may contain part of its boundary. For the definition of conflict graph it is however immaterial
whether we intersect open sets or their closures.

Lemmma 2: cl eNel VR(s,RU {s}) # @ implies e 7 VR(s, RU {s}) # 0.

Proof: Tet z € ¢l einel VR(s,RU {s}). Assume first that z is an endpoint of ¢. Then
r lics at the intersection of three bisecting curves of sites in R. Hence no bisecting curve
J(s,r), r € R, can go through z and therefore an entire neighborhood of z must belong to
VR(s, RU {s}). Thus en VR(s,RU {s}) # 0.

Assume next that z € enbd VR(s,RuU {s}). Then z € J(p,q) N J(s,r) for some sites
g, r € R. The bisecting curves J(p,q) and J(s,r) cross at point z and hence there is a
point y € e in the neighborhood of r such that y € VR(s, RuU {s}). 0

We next discuss how to update the data structures after the addition of a site s € S — R to
R. We first concentrate on the construction of the Voronoi diagram V(R U {s}) from V(R)
and G(R).

Let S = VR(s, RU {s}). We proceed in several steps. Lemma 3 deals with the case $ = 0.
The case S # 0 is dealt with in Lemmas 4 and 5. We show that the intersection of the current
diagram V(R) with the region S is a connected set (Lemma 4) and that the intersection e”1S
for an edge e of V(R) consists of at most two components (Lemma 5). From Lemmas 4 and
5 we derive the update algorithm.

Lemma 3: § = 0 iff degg(r)(s) = 0.

Proof: If S = 0 then clearly degg(r)(s) = 0. So let us assume S # 0. If deggeg)(s) = 0
then ¢/ S C int VR(r,R) for some r € R. Next observe that VR(r, RU {s}) = VR(r,R) - S.
Also r £ oo since VR(o0, P) is the outer domain of the closed curve [’ forall P,oc € PC §S.

e |

Thus VR(r, RU {s}) is bounded but not simply connected. This contradicts Fact la. a

If S =0 then V(RU {s}) == V(R). So let us assume S # @ and hence deggr)(s) # 0. Let
[=V(R)Ne S.

Lemma 4: [ is a connected sct which intersects bd S in al least two points.

Proof: The boundary bd S is a simple closed curve which does not go through any vertex of
V(R). This follows from Fact 2 and the general position assumption. Also I # 0 by Lemma 2.
Let I). I,,..., I be the connected components of /.

Claim: Each I;, 1 < 3 < k, contains two points of bd S.

Proof: Assume first that /; contains no points of bd S, i.e., [, C tnt S. Then there is a
simple closed curve C C tnt S such that [; is contained in the inner domain of C and C
does not intersect V(R). Thus C < int VR(r, R) for some r € R. Since Voronoi regions are
simply connected, C and its interior must belong to VR(r, Z) and hence C cannot contain a
component /, in its interior.

Assume next that [; intersects bd S in exactly one point, say z. Then there is a simple closed
cueve C containing [ in its inner domain such that z € C, C — {r} C intS and C - {1}
does not intersect V(R). Thus C ~ {z} C VR(r, R) for some r ¢ R and hence r is a point on
an edge of V(R) such that both sides of the edge belong to the same Voronoi region. This

contradicts Fact 1. =
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Assume now that k > 2. Then there is a path P C o/ § - ([ U...U I;) connecting two
points on the boundary bd & such that one component of S — P contains /; and the other
component contains /. Let z and y be the endpoints of P and let r € R be such that
P C VR(r,R). Since z,y ¢ V(R) we conclude that VR(r,RU {s}) = VR(r,R) - S # 0.
‘Thus z,y € el VR(r, RU {s}) and hence there is a simple path Q C ¢! VR(r, RU {3}) with
endpoints z and y. The cycle > 0 Q is then contained in ¢l VR(r, R) and contains either /,
or [y in its interior. Thus VR(r, R) is not simply connected, a contradiction to Fact 2. [

Lemma 5: Let ¢ be an edge of V(R). If eNS # 0 then eitherenS =V(R)NSanden S
is a single component or ¢ — S is a single component; cf. Figure 4.

Proof: Assume first that eNS = V(R) N S. Since V(R) N S is connected by Lemma 4 we
conclude that eNS is connected. Assume next that eNS # V(R)"S. Then with every point
z € eNS one of the subpaths of ¢ connecting z to an endpoint of e must be contained in S.

[Tence e — S is a single component. 0
e
— e
d S bd S

Figure 4. Two cases of Lemma 5

Let L = {e edge of V(R); {e,s} € G(R)}. For e € L let ¢ = ¢enS. Note that ¢/ =
e VR(s, {p,q.s}) by Lemma 1 where e separates the regions of sites p and ¢; hence €' can be
computed from e in time O(1). We have shown above that theset |J . el e’ =V (R)Ncl S
is connected. Let B = {z;z is an endpoint of ¢’ which is not an endpoint of e for some
e € L} = V(R)nbd S. Since bd § is a simple closed curve by Fact 2, bd S induces a
cyclic ordering on the points in B. Since V(R) Nel S is connected this cyclic ordering can
be determined by a traversal of the planar graph V(R) Nl S. It is now casy to update the
Voronoi diagram as follows:

Step 1: Compute ¢’ for each e € L. Remove ¢’ from V(R) for each ¢ € L.
Step 2: Compute B and the cyclic ordering on B induced by bd S.
Step 3: Let z,,...,z; be the set B in its cyclic ordering and
let r; € R be such that {z;,z,,,} C bd VR(r;, R).
(1) for : from 1 to &
(2) do add the part of J(r,, s) with endpoints z, and z,,, to the Voronoi diagram
(3) od
lFor the time bound we only have to observe that steps 1 and 2 take time O(|L|) and that
step 3 takes time O(k) = O(|L). This proves the following
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Lemma 6: Let s € S — R Then V(RU {s}) can be constructed from V(R) and G(R) in
time O(dcgg(m[.s) T 1)

We now turn to the update of the conflict graph.

Lemma 7: Let s € S — R. Then G(RU {s}) can be constructed from V(R) and G(R) in

time

o > deggmle))-

{e.s}€G(R)

Proof: In this proof we distinguish three cases: edges of V(R N {s}) which already were
edges of V (R), edges which are part of edges of V(R), and edges which are completely new.
The only difficult case is the third one; it is dealt with in Lemma 8.

As above let L = {e;eis an edge of V(i2) and eNS # 0} where S = VR(s,RU {s}). For
¢ ¢ L the conflict information does not change. This follows from e n VR(t,RU {s,t}) =
et (VR(t,RU{t}) - VR(s, RU {s,t})) and (en VR(t,RU {t})) — (en VR(s,RU {s,t})) =
en VR(t, RU {t}).

l.ct us next consider an edge ¢ € L. If ¢ C S then ¢ has to be deleted from the conflict
graph. This certainly takes time O(degg(r)(¢)). If € € S then ¢ — S consists of at most
two subsegments by Lemma 5. Let ¢' be one of those subsegments and let t € § — R — {s}.
Then e'n VR(t,RU{s}u{t}) = ¢ N, cqg R(t,r) N R(t,s) =¢' N VR(t, RU {t}) N R(t,s) C
e VR(t, RU {t}) and hence any site ¢ in conflict with ¢’ must be in conflict with e.

[t remains to consider those edges of V(R U {s}) which are not fragments of edges of V(R).
Let €;2 be one of those edges. The endpoints z; and z; of €;; lie in the interior of edges ¢,
and e; on bd VR(p, R) for some p € R. Also ¢;; is part of the bisecting curve J(p,s). Note
that p # oo since J(o,s) = I' C V(R). Let P be that part of bd VR(p, R) which connects
z) and z; and is contained in S in all sufficiently small neighborhoods of z, and z,.

Claim: PCS.

Proof: bd VR(p, R) is a simple closed curve and int VR(p, R) is the bounded domain defined
by this curve. Assume now that P crosses bd S. Then VR(p, RU {s}) = VR(p, R) = S is not
connected, a contradiction. a

Lemma 8: Let t € S — R - {s}, and let ¢ conflict with ¢, in V(R U {s}). Then t conflicts
in V(R) with either e; or e, or one of the edges of P.

Proof: Consider VR(p, R).
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VR(p, R)

P bd S

Figure 5.

By the definition of conflict a point z € ¢); exists such that z € VR(t, Ru {s,t}) C VR(t, RU
{t}). Since we claim a contradiction we assume that ¢ is not in conflict with P, ¢; or ¢z in
V(K). Thus, VR(t,RU {s,t})nU(z,) € VR(¢, RU{t})NU(z,) = O for any sufficiently small
neighborhood U (z,) of z,. Now consider in any such neighborhood of z, the wedge spanned
by e;2 and the part of ¢; outside S. The points in this wedge all belong to VR(p, RU {s,t}).
The same is true for any sufficiently small neighborhood of z; with e; instead of ;. Since
VR(p, RU {s,t}) is connected, there is a path Q from z, to z; running completely inside
VR(p, RuU {s,t}) C VR(p, RU {t}) except at the endpoints.

Figure 6.

By dcfinition of P and Q the Voronoi region VR(t, RU {t}) cannot intersect these two paths.
Morcover, z lies in the interior of the cycle z) o P o z; 0 Q; otherwise VR(p, R) would not
be simply connected. Fromn z,,z; € VR(¢t,RU {t}) and z € VR(t,R U {t}) we conclude
that VR(t, Ru {t}) lies in the interior of the cycle. This is a contradiction to the fact that
VR(p, RU {t}) is simply conncected. a

l.emmas 8 and 1 together allow us to compute the conflict information for the new edges.
let e;2 C J(p,s) be any new edge. A site t in conflict with edge e;; must have conflicted in
G(R) with either ¢, e; or one of the edges on the path P by Lemma 8. Also for any such site
t we can compute the conflict information )2 N VR(t, RU {s,t}) in time O(1) by Lemma 1.
Thus the set of neighbors of edge ¢)3 in G(RU {s}) can be computed in time

o( Z degg(r)(e))

eEPU{er.e2}
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where the sum is over all edges in PU {e;,¢z}. Next observe that every edge ¢ € V(R) with
en VR(s,RuU {s}) # 0 can belong at most two times to a path P for some new edge by
planarity. Thus G(RU {s}) can be obtained from G(R) in time

o( Y deggnle))-

{e.s}EG(R)

This proves Lemma 7. O

Theorem 1: a) Let s € S~ R. Then the data structures G(RU {s}) and V(RU {s}) can be
obtained from G(R) and V(R) in time

o( ) degorm(e))-

{e.s}€G(R)

b) For RC S, |R| = 3 and o ¢ R the data structures V(R) and G(R) can be set up in time
O(n) where n = |S|.

Proof: a) This point summarizes Lemma 6 and 7.

b) The Voronoi diagram V ( R) for three sites co, p and ¢ has the structure shown in Figure 7
and can certainly be set up in time O(1). Also for each of the edges ¢ of V(R) and each of
the n - 3 sites in S — R one can test enN VR(t, RU{t}) # @ in O(1) by Lemma 1. This proves
b). (]

Figure 7. The Voronoi diagram for sites co, p and gq.

Lemma 9: The number of edges of V(R) is at most 3|R)|.

Proof: V(R) is a planar graph with at most |R| regions. Also, each vertex has degree three.
The number of edges is therefore at most 3| R| by Euler's Formula. J
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Theorem 2: The abstract Voronoi diagram V(S) of n sites can be constructed by a ran-
domized algorithm in time O(n logn).

Proof: In [CS], Clarkson and Shor show that randomized incremental construction has
expected running time

O{m(n) +n- Z m(r)/r? +n)

1<r<n;2

provided that initialization takes time O(n) and addition of an object (here site) s to the set
R takes time proportional to
Y degemy(e),

{e.s}EG(R)

where the summation is over all regions (here edges) of the current structure (here Voronoi
diagram V (R)) which conflict with site s. Also m(r) is the expected size of the structure for
a random subset R C S of r elements. In our case we have m(r) < 3r by Lemma 9. Finally,
the assumptions of Clarkson's theorem are satisfied by Theorem 1. The time bound follows.

)

Remark: In our algorithm oo £ R always. An inspection of Clarkson’s argument shows that
this minor deviation from randomness does not change the time bound.

IV. Applications

Many previously considered types of Voronoi diagrams fall under the framework described
above.

1. Point Sites: In their pioncering paper Shamos/Hoey [SH| showed how to construct the
Voronoi diagram for point sites under the Euclidean metric in time O(nlogn). This was
later extended to arbitrary L,-metrics, 1 < p < oo, by Lee [L], to the Ly-metric with additive
weights by Sharir [S| and Fortune [F87], to the so-called Moscow-metric by Klein [KI88b|,
to convex distance functions by Chew/Drysdale [CD] and Fortune [F85 and to abstract
Voronoi diagrams by Klein/Wood [KW]| and Klein [KI88a]. The previous algorithms for
abstract diagrams had to assurne, as they were based on the divide-and-conquer approach,
that the set of sites S can be partitioned into about equal sized subsets L and R such that
the bisector between L and R is acyclic. This assumption is crucial for the efficiency of the
merging step. For all cases mentioned our algorithm gives an alternative O(n logn) solution,
albeit randomized. For abstract diagrams ([K188a]) we do not need the acyclicity assumption,
however, and for the Lp-norm we may also add additive weights.

2. Beyond Point Sites: Point and line sites were considered by Kirkpatrick [Ki] and For-
tune |F87], and disjoint convex objects were considered by Leven/Sharir [LS86]. In the latter
case, the running time is O(r(logn)?) since the Leven/Sharir algorithm uses divide-and-
conquer and the bisector between the subsets L and R of § mentioned above is not necessarily
acyclic. Our algorithm runs in time O(r logn). Other applications are the Voronoi diagrams
for circles under the Laguerre distance (Imai/Iri/Murota [ITM|, Aurenharmner [A87], |A88a])
and for disjoint convex polygons under a convex distance function (Leven/Sharir [LS87]).
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Of course, there are also Lypes of Voronoi diagrams which do not fall under the frame-
work, e.g., the diagram for points sites under the Euclidean metric with multiplicative
weight (Aurenhammer/Edelsbrunner [AE]), the diagram for points and circular arcs, and
the diagram for points under metrics which arise from weighted partitions of the plane
(Mitchell/Papadimitriou [MP]). In all three cases the bisector J(p,q) of two sites may be
a closed curve, cf. Figure 8.

Figure 8. The bisector for a point and a circular arc.

V. Conclusions and Open Problems

We showed that Clarkson and Shor’s randomized incremental construction method works
for (a subset of) Klein’s abstract Voronoi diagrams. Many previously considered types of
Voronoi diagrams can thus be handled by the same simple algorithm. In [KMM] the results
of this paper are extended in two ways. We show that the algorithm can be programmed on
a schema level such that specific Voronoi diagram algorithms can be derived in a simple way;
we also drop the general position assumption and the assumption that bisecting curves may
not touch, Nevertheless, many open problems remain:

1) Can the concept of abstract Voronoi diagram be generalized to higher dimensions?

2) What can be done in two dimensions without the assumption that bisectors are non-
closed curves?
3) Can the algorithm be modified in order to handle higher-order Voronoi diagrams?
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