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Dynamic Deferred Data Structuring 

Let 5 be a set of n elements drawn from an ordered universe. We 
want to process ou-line a sequence of T membership queries, insertions, and 
deletions. If T ~ n, then an optimal solution is to sort S, construct a 
balanced search tree for it and then process the sequence for a total cost of 
O(n log n + T log (n+T)). IfT «: n, then this method is not optimal. For 
example, for T = 1, time O(n) certainly suffices by a simple scan of set s. 
So the question arises whether there is a solution which is optimal for all 
values of nand T. Karp, Nfotwani, and Raghavan [2] answered this question 
positively in the static case, i.e., no insertions and deletions are allowed, by 
giving an O((n+r) log m-in(n, r)) solution and proving its optimality. They 
proved similar results for other static query problems, e.g., the membership 
problem for the convex hull of n points in the plane. In their paper, they 
posed the challenge to generalize their results to the dynamic situation, 
i.e., insertions and deletions are also allowed. In this note, we ans\ ...... er this 
challenge for dictionary problem. For the other problem considered in [2], 
the question remains open. As in [2 ), our solution is based on the deferred 
(or lazy) construction of a balanced search tree for s. 

Let 5 be a set of n real numbers. The objective is to process on-line a 
sequence of T membership queries, insertions and deletions. 

Theorem: Let 5 be a set of n reals. Then a sequence of T membership 
queries, insertions and deletions can be processed in time O(r log (n+r) + 
(n + T) log T) and this is optimal. 

Karp, Motwani, and Raghavan proved this theorem for the static situa
tion, i.e., r membership queries are to be processed. Their solution is based 
on the deferred construction of a perfectly balanced search tree for the set 
S. We use a weight-balanced tree [4,3) instead. 

Definition: A binary tree is called weight-balanced if for every subtree T 
the following inequality holds: 
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Here T, denotes the left subtree of T and 1.1 denotes the number of leaves 
of a tree. 

Weight-balanced trees can be used as search trees by storing the in
formation in the leaves and using the internal nodes to guide the search. 
Insertions and deletions are processed by adding or deleting a leaf and then 
rebalancing the tree along the path of update by rotations and double
rotations, cf. Figure 1. 

The following fact is crucial to our approach. 

Fact 1: Let T be a perfectly balanced tree with n leaves, i.e., Il!? -IT"!! ~ 
1 for every direct subtree T" of any suli"tree T' of T. Execute an arbitrary 
sequence of r insertions and deletions on T according to the rebalancing 
algorithm for weight-balanced trees. Charge IT, I whenever a (double -) 
rotation is performed at a node v, where Tv is the subtree rooted at v. 
Then -the total charge is O(r log r). 

Fact 1 is easily shown using the arguments in Blum and Mehlhorn[l!, 
Willard and Lueker[SI; cf. also Mehlhorn, section III.S.l[41. 

A partially expanded weight-balanced tree is obtained from a weight
balanced tree by deleting some of its subtrees and replacing them by a 
single leaf, called a pseudo-leaf or unexpanded node. All elements stored in 
the subtree are associated with the pseudo-leaf. For our analysis we need 
the concept of the potential of a (partially expanded weight-balanced) tree 
which is defined as follows. 

potential(T) = depth(v) . siu(v) 
ti, pleudo-Iell/ 01 T 

where siu (v) is the number of elements associated with v. 

We are now ready for the membership and update algorithms. A mem
bership query for x is processed as in an ordinary weight-balanced tree with 
one major difference. Whenever the query reaches a pseudo-leaf, the me
dian of the elements associated with the pseudo-leaf is determined and the 
pseudo-leaf is replaced by a subtree consisting of a node with two pseudo
leaf descendants. Of course, the cost of this operation is proportional to 
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the increase in potential. In essence, a membership query expands a search 
path to x if xES or to the successor of x if x '" S. In either case, we mark 
(for the purpose of analysis) the leaf where the search ends. For later use, 
we state two important properties of our membership algorithm: 
1. If v is a pseudo-leaf then parent(v) lies on a path to a marked leaf. 
2. The cost of a query is O(log (n + r)) plus the increase in potential. 

Lemma 1: Let T be a partially expanded weight-balanced tree satisfying 
property 1 with r marked leaves and an underlying weight-balanced tree 
of m ::; n + r leaves. Then the potential of T is at most O(m log r) = 
Olin + r) log r). 
proof: Let p; be the total contribution of pseudo-leaves of depth i. Then 
Pi ~ r· m· (~)i . i since there are at most r pseudo-leav~s of depth i each 
one having a size of at most m' (~)i. Also L1~; Pi ~ m . d for any d since 
the pseudo-leaves partition the set stored in T. Thus 

LP; + LP; 
i<d i?d 

< m.d+r.m·L(~);·i 
i?d 4 

o (m . d + r . m . (~) d • d) 
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With d = I~',l i)' the lemma follows. 

We turn to insertions and deletions next. We first perform a mem
bership query for the element to be inserted or deleted. In the case of a 
deletion, we also mark the successor of the element to be deleted. Then 
we rebalance along the path of insertion or deletion as usually, again with 
one major exception. If we perform a (double-) rotation at v and a subtree 
consisting of a single node with two pseudo-leaves arises, then the subtree 
is collapsed into a single pseudo-leaf, cf. Figure 2. Note that this preserves 
property 1. 

Lemma 2: A (double-) rotation at v causes the potential to decrease by 
at most size(v). 
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Proof: immediate from Figure 2. 

It is now easy to complete the proof of the theorem. The total cost 
of the r update operations is O(r log (n + r)) for the search and the re
balancing. Furthermore the total decrease of potential due to ro tations 
caused by updates is O(r log r) by Fact 1. The total cost of the queries 
is O(r log (n + r)) plus the total increase in potential. Finally, the total 
increase of potential is bounded by the final potential (which is at most 
(n + r) log r by lemma 1) and the total decrease (which is O(r log r) 
by the argument above). So the total cost of the r queries and updates is 
O((n + r) log r + rlog (n+r)). Ifr ;:O: n, then our solution is certainly opti
mal. Ifr < n then O((n+r) log r + rlog (n+r)) = O ((n+r) log min(n,r)). 
The optimality now follows from the fact that O((n + r) log min(n, r)) is 
a lower bound even without updates, cf: Theorem 1 of [2). 
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Figure 1: A rotation and a double-rotation at node v. Sy=etric variants 
of these operations also exist. The path of update goes through all nodes 
drawn as circles. A double-rotation at v can be viewed as a rotation at w 

followed by a rotation at v . 
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update path pseudo-leaves collapsed 

Figure Z: A rotation which causes two pseudo-leaves to be collapsed. 
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