
Dynamic Deferred Data Structuring *

Oct. 1988

Y. T. Ching
Institute of Information Science
Academia Sinica
Taipei, Taiwan
Repub lic of China

by

K. Mehlhorn
Fachbereich 10, Informatik
Universitiit der Saarlandes,
Saarbriicken,
Federal Republic of Germany

Abstract: Let S be a set of n reals. We show how to process on-line T

membership queries, insertions, and deletions in time OtT log (n + T) +
(n + T) log T). This is optimal in the binary comparison model.

Keywords: Data structures, dictionary problem, on-line, weight-balanced
trees, deferred data structure.

* This research was carried out while the second author was visiting Academia Sinica.

1

Dynamic Deferred Data Structuring

Let 5 be a set of n elements drawn from an ordered universe. We
want to process ou-line a sequence of T membership queries, insertions, and
deletions. If T ~ n, then an optimal solution is to sort S, construct a
balanced search tree for it and then process the sequence for a total cost of
O(n log n + T log (n+T)). IfT «: n, then this method is not optimal. For
example, for T = 1, time O(n) certainly suffices by a simple scan of set s.
So the question arises whether there is a solution which is optimal for all
values of nand T. Karp, Nfotwani, and Raghavan [2] answered this question
positively in the static case, i.e., no insertions and deletions are allowed, by
giving an O((n+r) log m-in(n, r)) solution and proving its optimality. They
proved similar results for other static query problems, e.g., the membership
problem for the convex hull of n points in the plane. In their paper, they
posed the challenge to generalize their results to the dynamic situation,
i.e., insertions and deletions are also allowed. In this note, we ans\ er this
challenge for dictionary problem. For the other problem considered in [2],
the question remains open. As in [2), our solution is based on the deferred
(or lazy) construction of a balanced search tree for s.

Let 5 be a set of n real numbers. The objective is to process on-line a
sequence of T membership queries, insertions and deletions.

Theorem: Let 5 be a set of n reals. Then a sequence of T membership
queries, insertions and deletions can be processed in time O(r log (n+r) +
(n + T) log T) and this is optimal.

Karp, Motwani, and Raghavan proved this theorem for the static situa
tion, i.e., r membership queries are to be processed. Their solution is based
on the deferred construction of a perfectly balanced search tree for the set
S. We use a weight-balanced tree [4,3) instead.

Definition: A binary tree is called weight-balanced if for every subtree T
the following inequality holds:

2

Here T, denotes the left subtree of T and 1.1 denotes the number of leaves
of a tree.

Weight-balanced trees can be used as search trees by storing the in
formation in the leaves and using the internal nodes to guide the search.
Insertions and deletions are processed by adding or deleting a leaf and then
rebalancing the tree along the path of update by rotations and double
rotations, cf. Figure 1.

The following fact is crucial to our approach.

Fact 1: Let T be a perfectly balanced tree with n leaves, i.e., Il!? -IT"!! ~
1 for every direct subtree T" of any suli"tree T' of T. Execute an arbitrary
sequence of r insertions and deletions on T according to the rebalancing
algorithm for weight-balanced trees. Charge IT, I whenever a (double -)
rotation is performed at a node v, where Tv is the subtree rooted at v.
Then -the total charge is O(r log r).

Fact 1 is easily shown using the arguments in Blum and Mehlhorn[l!,
Willard and Lueker[SI; cf. also Mehlhorn, section III.S.l[41.

A partially expanded weight-balanced tree is obtained from a weight
balanced tree by deleting some of its subtrees and replacing them by a
single leaf, called a pseudo-leaf or unexpanded node. All elements stored in
the subtree are associated with the pseudo-leaf. For our analysis we need
the concept of the potential of a (partially expanded weight-balanced) tree
which is defined as follows.

potential(T) = depth(v) . siu(v)
ti, pleudo-Iell/ 01 T

where siu (v) is the number of elements associated with v.

We are now ready for the membership and update algorithms. A mem
bership query for x is processed as in an ordinary weight-balanced tree with
one major difference. Whenever the query reaches a pseudo-leaf, the me
dian of the elements associated with the pseudo-leaf is determined and the
pseudo-leaf is replaced by a subtree consisting of a node with two pseudo
leaf descendants. Of course, the cost of this operation is proportional to

3

the increase in potential. In essence, a membership query expands a search
path to x if xES or to the successor of x if x '" S. In either case, we mark
(for the purpose of analysis) the leaf where the search ends. For later use,
we state two important properties of our membership algorithm:
1. If v is a pseudo-leaf then parent(v) lies on a path to a marked leaf.
2. The cost of a query is O(log (n + r)) plus the increase in potential.

Lemma 1: Let T be a partially expanded weight-balanced tree satisfying
property 1 with r marked leaves and an underlying weight-balanced tree
of m ::; n + r leaves. Then the potential of T is at most O(m log r) =
Olin + r) log r).
proof: Let p; be the total contribution of pseudo-leaves of depth i. Then
Pi ~ r· m· (~)i . i since there are at most r pseudo-leav~s of depth i each
one having a size of at most m' (~)i. Also L1~; Pi ~ m . d for any d since
the pseudo-leaves partition the set stored in T. Thus

LP; + LP;
i<d i?d

< m.d+r.m·L(~);·i
i?d 4

o (m . d + r . m . (~) d • d)
4

With d = I~',l i)' the lemma follows.

We turn to insertions and deletions next. We first perform a mem
bership query for the element to be inserted or deleted. In the case of a
deletion, we also mark the successor of the element to be deleted. Then
we rebalance along the path of insertion or deletion as usually, again with
one major exception. If we perform a (double-) rotation at v and a subtree
consisting of a single node with two pseudo-leaves arises, then the subtree
is collapsed into a single pseudo-leaf, cf. Figure 2. Note that this preserves
property 1.

Lemma 2: A (double-) rotation at v causes the potential to decrease by
at most size(v).

4

Proof: immediate from Figure 2.

It is now easy to complete the proof of the theorem. The total cost
of the r update operations is O(r log (n + r)) for the search and the re
balancing. Furthermore the total decrease of potential due to ro tations
caused by updates is O(r log r) by Fact 1. The total cost of the queries
is O(r log (n + r)) plus the total increase in potential. Finally, the total
increase of potential is bounded by the final potential (which is at most
(n + r) log r by lemma 1) and the total decrease (which is O(r log r)
by the argument above). So the total cost of the r queries and updates is
O((n + r) log r + rlog (n+r)). Ifr ;:O: n, then our solution is certainly opti
mal. Ifr < n then O((n+r) log r + rlog (n+r)) = O ((n+r) log min(n,r)).
The optimality now follows from the fact that O((n + r) log min(n, r)) is
a lower bound even without updates, cf: Theorem 1 of [2).

References

[1) Blum, N., K. Mehlhorn, "On the Average Number of Rebalancing Op
erations in Weight-Balanced Trees1"l, ThtoreticaJ Computtr Science II,
1980, pp. 303-320.

[2] Karp, R., R. !-.1otwani, and P. Raghavan, "Deferred Data Structuring,"
Technical Report UCB/CSD 87-320, University of CalIfornia, Berkeley,
Dec. 1987.

[3) Mehlhorn, K., "Data Structures and Algorithms 1: Sorting and Search
ing", Springer, 1984.

[4) Nievergelt, 1., E. M. Reingold, "Binary Search Trees of Bounded Bal
ance", S lCOM? 2, 1973, pp.33-43 .

[5) Willard, D.E., and G.S. Lueker, "Adding range restriction capability to
Dynamic Data Structures," J. ACM, 32 (1985), pp 597-617

5

v

>

v

>
w

Figure 1: A rotation and a double-rotation at node v. Sy=etric variants
of these operations also exist. The path of update goes through all nodes
drawn as circles. A double-rotation at v can be viewed as a rotation at w

followed by a rotation at v .

-

~

update path pseudo-leaves collapsed

Figure Z: A rotation which causes two pseudo-leaves to be collapsed.

	A_1988_05 0000_1heitscover
	A_1988_05 0001
	A_1988_05 0002
	A_1988_05 0003
	A_1988_05 0004
	A_1988_05 0005
	A_1988_05 0006
	A_1988_05 0007
	A_1988_05 0008
	A_1988_05 0009
	A_1988_05 0010

