Congruence, Similarity and Symmetries
of Geometric Objects?)

by

Helmut Alt¥Y, Kurt Mehlhorn?,
Hubert Wagener”, Emo Welzl*

A 02/87

1) FB Mathematik, FU Berlin

2) I'B Informatik, Universitat des Saarlandes

1) B Informatik, I'U Beriin

1) Institut fur Informationsverarbeitung, TU Graz

Abatract: We consider the problem of computing geometric transformations (ro-
tation, translation, refexion) that map a point set A exactly or approximately into a
putnt set 3. We derive eflicient algorithms for various cases (FEuclidian or maximum
metric | translation or rotation or general congrurnce).

5) Part of this research was supported by the DFG under grants Me 620/6-1 and
Al 253/1-1.

1. Introduction

We consider the problem of deciding whetker two geometric objects A, B in R
are congruent or similar and, if they are, of finding the geomctric transformation
(rotation, traaslation, rcflexion, stretch) that maps B into A.

Important practical applications are for example: determining how to move an
object from one given position into another one (robotics), recogaition of patterns
and of written text, and determining speed and direction of moving objects out of
pictures taken at different times.

The second problem we are considering is finding all the saymmetries of a given
geometric object, i.c., its symmetry group. Important applications are within pat-
Leen recognition and some arcas of biology and crystallography.

We consider only the basic case of A and B consisting of n points in R*. In
many cases the algonithms presented here can be extended to more general geometric
objects, where the points are connected by lines, curves, or surfaces described, for
example, by algebraic equations (cf. also [Ata]).

We assume a model of computation which is able to represert arbitrary real
numbers and to perform all the geometric computations involved (determining an-
gles, distances etc.) exactly without roundofl-errors.

By a straightforward reduction of the set cquality problem of real numbers
it can be shown that each of the problems mentioned before has an 2(nlogn)
lower bound even in the one-dimensional case ([Atk], [H]). Optimal algorithms in
vhe two-dimensional case have been found by Highnam [H] for symmetry and by
Atallah [Ata] for congruence, and in the 3-dimensional case by Atkinson |Atk] for
congruence. Here we first give an alternative optimal algorithm for 3-dimeasional
congruence which then can be used to find the symmetry group of 3-dimensional
point sets in O(n logn) time. Then we extend the resull to get O(n4=?log n) time
congrueace algorithms for arbitrary dimension d > 3.

Unflortunately, the problem of deciding congruence, similarity, and symmetry
exactly, is not realistic in practice. In fact, small perturbations, which occur in
the input data or during the computation because of roundoff-errors usually will
destroy these properties, such that, ¢.g., originally congruent objects will not be
recognized as congruent anymore. We therefore introduce the notion of approxi-
mate congruence, i.c., congruence within a certain tolerance ¢ > 0. The problem
ol approximate congruence will be dealt with in Section 3.

2. The exact case

In this section we will assume & model of computation with exac: real arithmetic
and that there are no perturbations in the input data.

We first observe that the similarity problem for n-point scts in any dimensicn
is reducible to the congruence problem in O(n) time. In fact, in O(n) time it is
possible to determine the centroids c4, cg of the input sets A, B and the maximum
distances m4, mp of ca, ¢p to the points of A, B, respectively. Thea m /mp is

2

the factor by which B is “stretched” around cg. Cleariy the set B' obtained this
way is congrucnt to A exactly if I is similar to A. Therefore from now on we will
not meation similarity anymore, but any resuit on congruence holds for similarity,
as well.

These results are summarized in the following Theorem:

Theorem 1.
a) For any d > 3, the congruence of two n-point sets in R® can be decided in
O(n¢~?logn) time.
b) The symmetry group of an n-point set in R* can be determined in O(n log n)
time.

Proof of a) (Congruence): In [Atk] an O(n logn)-algorithm for d = 3 is given. We
give an alternative one which can be applied to prove b).
Given input sets A, B our algorithm consists of the following sicps:

Algorithm 1:
1. Determine the centroids c4, ¢g. If c4 € A, then check if cg € B. If not, give a
negative answer, otherwise remove ¢4, ¢g from A, B, respectively.

2. Project all points of A (B) onto the unit sphere using c4 (¢cg) as an origin. Mark
the points in the sets A’ (B’) obtained this way with the distances of the original
points from c4 (¢g). Observe, that one point of the sphere can be the image of
several points of A (B) and, thus, be marked with several distances. In this case,
sort these distances.
3. Construct the convex hulls of A’, B’. Observe, that all points in A', B’ arc
extreme and therefore vertices of the convex hulls. Let v be any such vertex, and
let vg,vy,...,vx—; be the vertices adjacent to v listed in clockwise fashion about v,
For 0 €1 < k — 1 let /; be the length of the arc from v to v, and @, the angle on
the sphere between v, v, and v(j4|)moeaa (sec Fig. 1).

In addition to the information attached in step 2 mark v with the lexicograph-
ically smallest cyclic shift of the sequence (wo,l0), .-+, (Pr-1,70-1)
4. The convex hulls together with the labels attached in steps 2 and 3 can be
considered as labelled planar graphs ([PS]). It is casy to see that the two input
scls are congruent cxactly if the two labelled graphs are isomorphic. We decide
this :somorphism using the O(nlogn) partitioning algorithm of Hopcroft [AHU,
Section 4.13] as follows. Consider a finite automaton whose states arc the directed
eidges (each undirected edge of the planar graph gives rise to two directed edges) of
the planar graph and which has input alphabet {a, b}. If edge (v, w) is the current
stalc and the input symbol is a (b) then the next state is (v, z) where edge (v, z)
follows the edge (v, w) in the clockwise order of edges about v ({2, w) where (2, w)
follows the edge (v, w) in the clockwisc order of edges about w). Finally, let P be
the following partition of the edges. Two edges (v, w) and (z,y) belong to the same
block of P iff v and z are labelled the same and w and y are labelled the same. The
partitioning algorithm computes the coarsest refinement of P which is compatibic

3

Fig. 1

with the state transitions of the automaton. This partition is clearly identical to
the automorphism partition of the union of the two graphs.

Analysis: Step 1 apparently can be done in O{n) time. Constructing the scts A’,
B’ in step 2 takes time O(n). However, sorting of the labels attached to one point
may take time O(nlogn). The construction of the convex hull in step 3 can be
done in O(nlogn) time ([PS]).

For each vertex v sorting the adjacent vertices vg,..., vy, in a clockwise fash-
ion takes time O(klog k). Also in step 3 the lexicographically smallest cyclic shift
can be computed in time O(klogk) as follows. We first sort the pairs (p;,1,),
0 €1 < k, in increasing order and then replace cach pair by ita rank. This yields
A word wouy ... wy -y with 0 € w, < k. Let [= {ip < 1} < ...} be the set of
occurrences of letter 0. We next consider the pairs (3p,81), (¥2,%3),. .. in turn. For
cach pair, say (121,92141), we compare the subwords of length 12,1 — 12 starting
in 13 and 134, respectively. If the subword starting at index 13 is not larger lex-
icographically than the subword starting at 13;4, then we delete 3374, from [and
we delete 13 otherwise. Thus in time O(k) we can reduce the size of / by half and
the time bound follows. However, the sum of the runtimes for all vertices does not
exceed O(nlogn), since the total number of adjacent vertices considered is twice
the number of edges which is O(n).

Algorithm 2:

If d € 3, Algorithm 1 is applied, otherwise the d-dimensional problem is reduced to
n problems of dimension (d - 1) in the following way:

1. Construct the labelled sets A', B’ as in step 2 of Algorithm 1.

2. For some point @ € A’ intersect the d-dimeasional unit sphere S, around c,4
with some hyperplane which is orthogonal to the line segment €4d. The intersection

4

will be some (d — 1)-dimensional sphere S on the surface of S4. Project each point
b€ A’ — {a} onto S along the arc from b to a on the surface of S4. This yields a
new set A" (see Fig. 2). To each z” € A" attach the following information: From
cach 27 € A’, which was projected onto z”, the label obtained in previous steps
of the algorithm and, additionally, the length of the arc from a to z’. If there are
several points in A’ which are projected onto z”, list their labels sorted with respect
to the lengths of the arcs. A” still contains all the geometric information necessary
to identify the original set A.

3. Do the same construction as in step 2 for all points of B, yielding labelled point
sets BY,...,Bl.

4. The sets A”, B (i = 1,...,n) are subsets of (d — 1)-dimensional hyperplanes.
Transform them by an isometric mapping into subsets A", B/ (i = 1,...,n)
of R~ and apply this algorithm recursively to each pair A, B (i = 1,...,n).
It is casy to sce that the original sets A, B are congruent cxactly if there is a label
preserving congruence from A’ into at least one of the sets BY',..., B}

Fig. 2

Analysis: Steps 1 and 2 because of the sorting of labels may take O(n log n) time.
Step 3 takes time O(n log n) for each BY (i = 1,...,n), i.e., O(n?log n) alltogether.
The transformations in step 4 take linear time, the recursive calls take n times the
runtime of the (d — 1)-dimensional problem. This is certainly for d > 4 the most
significant term and since Algorithm 1 runs in time O(nlogn) for d = 3, we get a
total runtime of O(n¢-2logn).

Proof of b) (Symmetry): Our algorithm for determining the symmetry-group of 3-
dimensional point sets makes use of the following theorem by Hensel (1830) which

states that there are only finitely many types of such groups:

Theorem 2 Heasel's Theorem (cf. [Ma)).
Any finite symmetry group for a subset of R® is one of the following groups:

a) the rotation groups T, C, I of the platonic solids tetrahedroa, cube, and icosa-
hedron, respectively,

b) the cyclic groups C,, n = 1,2,... and the dihedral groups D,, n = 2,3,...,

c) thegroups T, T, 1; €, C3, ...; D;, Ds, ..., where G meaans the group
generated by G and a reflection at some point (inversion),

d) the groups CT, C3,C,, D3,Dp, DyCp, n = 2,3,..., where GH means H U
(G — H)oi where i is an inversion. i

For example, the sets in Fig. 3a), b) have rotation groups Cg, D4 and symmetry

groups DgCs, Dy, respectively.

I- -l

-
\

/

/
=5
/iy
/
/
/
‘

T

'

L}

—

\
\
b
\
\
- -"—'-—-0-[—-

b) 4-prism
Fig. 8

a) 6-pyramid

In any case the actual set of transformations that map a sct of points into itsclf
is determined by the symmetry group and the sct of rotation axes. If the symmetry
group is not one of the finitely many derived from the platonic solids, there will be
n + | rotation axes for some n € N. Like in Fig. 3 n of those axes lic in a plane the

(n 4+ 1)st is perpendicular o that plane. Our algorithm to determine the symmetry
group of a set A of n points proceeds as follows:

Algorithm 3:

1. Apply Algorithm 1 to the input pair A, A. Hopcroft's partitioning algor:thm
partitions the set of points into equivalence classes of “indistinguishable™ ones, i.e.,
points which can be mapped into each other by some congruence- (in this case
symmetry-) transformation. In other words, we get the orbits of all points under
the symmetry group.

2. First we check if the symmetry group isone of 7, C, I, T, C, I, CT. A
detailed analysis shows that for each of thesc symmetry groups the size of the orbit
of any point is bounded by some constant (e.g., 48 for €). In addition the set of
rotation axes can be determined uniquely from any noatrivial (i.e., non-singlcton)
otbit. Therefore, the algorithm for cach of the above symmetry groups chocks if
the orbits satisfy the size bound. If that is the case the set of possible rotation
axes is determined from onc orbit. As mentioned before this determines the sct of
transformations. Each of these applied to all points in A and it is checked if the
image set is A again. If so, the symmetry group has been found.

3. If step 2 bas failed the symmetry group of A must be one of Cn, D, Cpn,
Dy CamCms D2enDm, 0 DCem for some m € N. It can be shown, that in this
case each orbit has size 1, 2, m or 2m. So, by inspecting one orbit of size > 2 the
value of m and, thus, the number of symmetry groups is restricted Lo constantly
many possibilities. The possible rotation axes are determined and all pessibilities
of groups are tested like in step 2.

Analysis: Step 1 takes O(nlogn) time. Determining the possible sets of transfor-
mations by inspecting onc orbit in stcp 2 takes constant time, the test if this set of
transformations really maps A into itsclf takes time O(nlogn) (comparison of 2 n-
clement sets). Determining the possible transformations in step 3 takes time O(n),
testing if they map A into itself takes time O(nlogn).]

3. The approximate case

The major drawback of the congruence and symmetry problems considered in the
previous section and previous papers ([Ata], [Atk], [H]) is that they are numerically
ill-conditioned. In fact, arbitrary small perturbations in the input data will turn
pairs of congruent scts into noncongruent ones and destroy symmetrics. The sym-
metry problem cven becomes trivial, if we assume that input data arc represented
by, say, rational cartesian coordinates.

Namely in this case only finitely many different symmetry groups arc possible
at all, consisting of rotations by multiples of 90-degree angles possibly combined
with reflections.

This shows that the cxact versions of theee problems are unrealistic and numer-
ically intractable. We therefore define the approximate congruence problem
with tolerance c:

Given two sets A, B of n points each, decide if there exists an isometric mapping
which maps in a 1-to-1 fashion the points of B into the ¢-neighborhood of points
of A,

Besides making the original problem numerically tractable, the approximate
version is interesting by itsell. Namely, many geometric objects occurring in practice
(Biology, Crystallography) are not perfectly congruent or symmetric but only within
a certain tolerance. In fact the minimum possible tolerance can be considered as a
quantitative measure for the degree of symmetry or congruence.

It still could be possible that the algorithms presented in Section 2 can be
mmodified to solve the approximate congruence problem, but they cannot, due to
numerical instability. For example, if poinis of the input sets A, B are close to
the centroids ¢4, ¢y small perturbations will cause large changes in the projected
points and change the resulting convex hulls and planar graphs completely. The
same holds for the algorithms in previous papers on the subject.

We will next describe a series of results solving various cases of the approxi mate
congruence problem in 2 dimensions. We classily these results according to the
following criteria.

e type of congruence:
T - translation,
R - rotation around a center which is known,
{ - arbitrary isometric mapping, consisting of a combination of translation,
rotation and reflexion;

o knowledge of some bijective labelling [: B — A telling for any point in B into
whose neighborhood it should be mapped:
{ - known,
u - unknown, determine if such a labelling exists;

e specification of ¢:

D - ¢ is given (decision-problem),

E - ¢isgiven and the set A is ¢-disjoint, i.c., U (2)"U,(y) =@ forallz,y € A
where U (z) is the e-neighborhood of r with reapect to the underlaying
metric,

O - find the smallest ¢ such that an approximative congruence exists (op-
timization-problem);

e metric:
¢ - Euclidean metric,
m - maximum metric.

So, for example, TIOc means the problem: Given 2 sets of n points, A, B G R? and
a labelling I - B -+ A, find the smallest ¢ > 0 such that there exists a translation
¢ : R? = R* with ¢(z) € Ui(z)) for all z € B. We obtained the following upper
bounds:

Theorem 3.

Problem soivable in time
D (e

Ti { 5 c{"‘ O(n)

TuD {;n 0(n®)

TuO {m O(n®® log)

TuFe O(nlogn)

TuEm O(nlogn)

RID { :n O(nlogn)

mo{; 0(n?)

no{; O(n® logn)

1D {¢ O(n*)

Proof: Let A = {a1,...,an}, B = {b;,...,bn} be such that in the labelled cascs
() = a, for 1 <1< n. Let C; be the circle of radius ¢ around a,, 1 <1 < n. (We
shall write C;(¢) if ¢ is not a constant.)

D (e
ﬂ{o{m:
Let r € R? be some fixed point, called the reference point. Let K,, 1 <i < n, be
the set of images of r under all translations mapping b, into U,(a,). It is easy to
sec that the decision problem has a positive answer, exactly if the intersection

Kin---NnK,#0.

In fact, each translation mapping the referernce point into this intersection, will
map each b, into U,(a,), 1 €1 € n. In the Euclidean case each K| is (the interior
of) a circle, so the question, whether the intersection is nonempty is cquivalent to
the question whether there exists a circle of the same radius, namely ¢, enclosing
the centers. The optimization problem thus is equivalent to finding the smallest
cnclosing circle of n points, which can be solved in O(n) time by an algorithm due
to Megiddo ([Me], f. also [PS]).

{n the case of the maximum metric the K, (1 €1 < n) arc squares (orthogonal
lo the axes) instead of circles and there is a straightforward O(n)-algorithm to find
the smallest enclosing square of n points. Thus we obtain O(n)-algorithms for the
optimization and, consequently, the decision problem.

TuD{;:

Algorithm 4:

We present the algorithm for the Euclidean case but it works for the maximum
metric, as well. It uses the following ideas:

9

1. An easy geometric argument shows that, if there is any solution at all, then there
must be one where some point b; lies directly on the circle C; of radius ¢ around
the assigned point a, (1 <1,5 < n). We check this property for all pairs s, j.

For fixed i, describe any position of b, on the circle C; by the polar coor-
dinate @ using a, as the origin and, for example, the ray paralle] to the z-axis in
positive direction through b; as the ¢ = O-ray (see Fig. 4).

imatofb
;o ¢

G o

imaee 3 Cp
o} b;
¥ *a..
U/
Co

C.

Fig. 4

2. For any | # j consider the circle K| onto which b, is mapped by translations which
map b; onto C;. For any m # i we determinc the set J; o of angles € [0, 2x| such
that if the image of b, on C, has polar coordinate o, then b; lies within U(am). For
example, in Fig. 4 /i m = [¥1,932). In any case [;,, is a (circular) interval of [0, 2r(
whose endpoints are the cutpoints of K; and C,,. We determince all these cutpoints
and sort them. This gives a partition of the interval [0, 2x| into subintervals cach
of which is the intersection of some of the /i,... (1 <I,m < n; ! # j,m #1) and the
complements of others.

3. We assign to each such subinterval / a bipartite graph G; = (V, E;), where V is
the disjoint union of two sets {uy, ..., %, 5,%,41,...,8,} a0d {vy,...,9,.1,% 41,
...,va} of nodes and E; = {(ui,vm); / C fjm}. Now suppose that the graph
G for some interval | contains a perfect matching, namely edges (u,,,v;,),...,
(4n.,1¥._,)s Thismeans that I C [, ;,N---NJ;, _, j._,- Therefore any translation
mapping b; onto C; such that the polar coordinate of the image of b, is in J will
map b,, into Uc(a,,), 1 £k < n—1,ie, there exists an assignment which shows
that A and B are approximately congruent. First wec determine the graph for the
subinterval containing ¢ = 0. This can be done by checking for each pair {,m, if
the image of b; lies within U,(a,n). We then determine the maximum matching of
the graph (cf. [M]) ard, if it is perfect, give a positive answer.

4. Starting from the maximum matching of the graph for the first subioterval /)
determined in the previous step we proceed to neighboring intervals using the sorted

10

sequence of endpoints. Apparently, each time, we proceed from one interval [to
its neighbor [, an cdge has to be deleted from the corresponding graph or a new
one has w be added. In the firsl case, the maximum matching of G, ,, can be
determined from the onc of Gy, in the following way: If the edge deleted was not
part of the maximum matching then it stays the same for Gy, ,,. Otherwise, check
if there is an augmenting path, and if so, use it to enlarge the matching. If Gy, ,,
results from G, by adding a new edge, determine if an augmenting path exists, If
50, usc it to enlarge the matching. There is an approximate congruence of A and
A exactly if one of the maximum matchings is perfect.

Analysis: Step 1 states that steps 2-4 are repeated n? times for all pairs 1,7,
1<4,7<n. Instep 2all cutpointsof circles K, and Cop, , 1 £I{m <nj {#7,m F o
are determined and sorted with respect to their angular polar coordinate. This
obviously takes time O(n?logn). In step 3 determining the graph belonging W
@ = 0 takes O(n?), determining its maximum matching O(n??) time, cf. [M, Section
1V.9.2]. In step 4 we check for each of the O(n?) subintervals if the correspanding
graph together with the previous matching contains an augmenting path, which
takes O(n?) time. So the total runtime of one iteration of step 4 is @(n*), which
asymplotically exceeds the runtimes of sicps 2 and 3. The total runtime of the
algorithm is thus O(n®).

TuO {e ¢

m
We cxtend the technique used in Algorithm 4,
Algorithm b:
I. An casy geometric argument shows that for the optimal value ¢, of ¢ there
must be a solution with at lcast two points b; and b lying on the circles Ci(¢) and
C’e(¢) of radius ¢ around the assigned points a,; and ax revpectively. Let efs, 7, k, 1)
be the minimal € such that there is a solution with b, on C,(¢) and b; on Cile). We
show how to compute €(i, 7, k,1) in time O(n?" log n).
2. Let T : z — z+t be a translation which mapz b, on C,(¢) and b; on Ca{e). Then
IT{b;) —a,* = €® = |[T{b;) —asi? and hence |t + b, = a;? = & = [t + b — axf®.
Thus there are only two possible values for ¢, which depend on ¢. We denote Lhese
functions by t,(c) and t3(¢); they have the same domain D). For each fuaction
t € {t;,0;} separately, we determine the minimum ¢ (if one exists at all) such that
¢ € D and a translation by {{¢) constitutes an approximate congruence between 8
and A, We definefor 1 €p,¢g<n

My, = (¢ € D; by +t(e) € Uela,)}
and €,q i= {;"oi" Myg My, #9

, otherwise,

The ¢, are constants which can be determined from the coordinates of ay,, by, a,, b;,
Ay, b].

11

3. €(1,7,k,1) is clearly equal to one of the n? values ¢,,. We sort these n? values in
time O(n? log n) and then determine ¢(i, j, k,!) by binary search. Each query of the
binary search has a cost of O(n?) since it is tantamount to deciding the existence
of a perfect matching; cf. Algorithm 4.

TuFEe:

Algorithm 6:

1. We first want to argue that the labelling used in a solution (if there is any) is
unique. Assume o.w., say /; is a labelling under translation T, : z— z+¢,,1 = 1,2.
We may assume w.l.o.g. that I[}(a;) = &, I, (a;) = b;4; and {7 (as) = b, for
1 £ 7 £k and some k. Since T is a solution with respect to labelling /,, we have

b;+t1 €EUa;) for1<;<k

b+t €EUla;—y) for2<jy<k

by + ¢2 € Uq(as).
Let v = ¢; = t3. Then (a; —aj—;) - v > 0, as can be seen from Fig. 5. Since
):;z_z(a, —=a;.1)+ (a1 —aa) = 0 we conclude v = 0. This contradicts the fact that

Ua,)NUc(a;-1) = @ for all 5. Thus there is at most one labelling which can be
used in an approximate congruence. ;

Fig. 5

2. It can casily be shown that any translation which is an approximate congruence
between B and A also must map the centroid cy into U (ca). We cover Ug(ca) by
circles which have sufficiently small radius ¢o so that they cannot intersect more
than 2 circles of radius ¢ around points of A. Fig. 6 shows that ¢ = [%\/5 - 1)e
will do.

12

Fig. 6

For cach small circle C of this cover {there are constantly many of them) we
decide, if there exists a translation mapping cp into C and satisfying the conditions
for an approximate congruence between A and B.

3. Iet K,, 1 €1 € n, be the set of images of b, under translations mapping cgy into
C,i.e., the circle of radius ¢g around b) := b, + ¢4 —cu. For the sct A we construct
the first and second order Voronoi diagrams. Then we locate each b in order to
determine the 2 points in A closest to it. For the ones, which are at a distance less
than € -+ ¢g from &, i.c., K, intersects their ¢-neighborhoods, we introduce an edge
in an undirected graph G of the same form as in Algorithm 4.

4. In the graph G constructed in step 2 any node in the set {v;,...,v,} has
degree € 2. We determine if G has a perfect matching in the following way: If
there is any node of degree 0, no perfect matching exists. Otherwise, if there is
some node which has degree 1 we add the incident edge ¢ to the matching, and
remove ¢, its endpoints and all other edges incident to them from the graph. We
rcpeat this until there are no more edges of degree 1 left. Now all remaining edges
in I/ and in ¥V must have degree 2 and hence each connected component is a cycle.
For cach cycle there are only two possible matchings. We check both matchings by
the lincar time algroithm for the labelled case. By the argument at the beginning of
the proof at most one of the labellings can yicld an approximate congruence. Once

13

we have checked each cycle only one labelling is left. We check this labelling by the
linear time algorithm.

Analysis: Step 2 states that steps 3—4 have to be executed for each circle in the
cover, i.c., a constant number of times. Constructing the Voronoi diagrams and
locating the points b] in them takes O(nlogn) time (cf. [PS] or [M]). Determining
the matchings in step 3 takes O(n), testing the two matchings for a cycle of length
¢ takes time O(c) for a total of O(n) over all cycles. The final test takes also
time O(n).

TuEm:

Algorithm 7:

We proceed like in Algorithm 6. Here we have squares instead of circles. Let
§ = min, ., dist(a,,a,) > 2¢. In step 1 we cover the square of "radius” ¢ and center
ca by small squares of radius < é§ — 2¢ which can intersect at most onc of the ¢-
neighborhoods of the points of A. This makes the matching problem in step 4 even
easier. The total runtime is clearly O(nlogn).

RID{; :
m
Algorithm 8: Let ¢ be the center of the rotation and [, C [0,2x] the set of angles
under which a rotation around ¢ maps b; into U/(a,), 1 <1 < n. Clearly the
problem instance has a positive answer exactly f /;N---NJ, # 0. In the case of
the Euclidean metric any J; is an interval on the unit circle. We sort the boundaries
of these intervals (O(nlog n) time). Then we count, how many b, are within U, (a,),
(i.c., within the correct ¢-neighborhood when a rotation of 0 degroees is performed.)
We traverse the sequence of interval boundaries, and increment (decrement) our
count by 1 for cach left (right) interval boundary. Whenever the count becomes n,
we have found a rotation of the desired form.

In case of the maximum metric cach /; consists of at most 4 intervals, namely
the set of intervals on a circle, which are within a given aquarc. Again we sort the
boundarics of all these intervals and proceed like in the Euclidean casc.

The remaining algorithms are described for the Euclidean metric but they work for
the maximum metric as well.
mo{‘;
m

Let @ be the angle of a rotation around ¢ satislying approximate congruence for
a minimum value of ¢. An easy geometric argument shows that in this situation
there must be 3,7 (1 €1, 5 < n) such that b, and b, are mapped onto the circles C|,
C,, respectively, of radius ¢ around a,, a;. Furthermore, any increment of v must
move one of the images out of and the other one into the corresponding circle (see
Fig. 7).

For any pair 1,7 only one such situation is possible. We denote by ¢,, the
corresponding valuc of ¢, which can be determined by solving 2 equations with 2

14

Fig. 7

unknowns (¢ and). We determine the set E of all these values (1 < 1,5 < n). The
solulion ¢ of the optimization problem must be one of them, and we determine it
by a variant of binary search. First we determine the median ep of E and apply
Algorithm 8 to find out, if there is a solution with tolerance ¢,¢. If s0, we apply
the algorithm recursively to the sct E; of elements of E less than cps, otherwise
to the set E; of clements greater than c¢a until the smallest element of E for
which a solution exists, is found. The time to compute the set E is O(n?). The
first step of the binary search takes time O(n?) to find ¢ by fast median finding
([M), Section I1.4), O(n?) to split £ with respect to ¢y, and O(nlogn) o apply
Algorithm 8. It follows, that the total runtime is O(n?).

¢

np{? :

Any isometric mapping consists cither of a rigid motion, i.e.,, a combination of
translation and rotation, or a reflexion (at some straight linc in the 2-dimensional
case), which can be chosea arbitrarily, followed by a rigid motion. We will give an
algorithm which tests if B can be mapped onto A with tolerance ¢ by a rigid motion.
We consider both versions of isometric mappings by applying this algorithm once
to the pair A, B and once to A, B, where B' is obtained from B by reflecting it at
some arbitrary straight line.

A simple geometric argument shows that there exists a rigid motion mapping
any b, into U(a,), 1 €1 £ n, exactly if there cxists a rigid motion of that kind
which maps at least 2 points b,,8; of B onto the borders of their corresponding
c-neighborhoods, i.e., the circles C;,C;. Our algorithm tests this property for all
O(n?) possible pairs (i, 7). Given such a pair we denote by the parameter ¢ € [0, 2x|
the polar coordinate of the image of b; using a, as an origin (sce Fig. 8).

Clearly, for any value of o there are at most 2 possible images of b; on C,.
Once the images of b,,b; are fixed, the mapping is uniquely determined. Let by be
some arbitrary other point of B. When the images of &, ; are moved on the circles
C.,C, the image b, describes in cartesian coordinates some algebraic curve K, (see
Fig. 8) which cuts Cp in constantly many (in fact, < 6) points.

15

C;_/ Ib:- b5l A &

possible l'ma_gc.s

Fig. 9

Thus, we obtain for each p # 1,5 a union [/, of constantly many intervals
for ¢ within which b, is mapped into C,. We compute the endpoints of these
intervals, sort them (O(nlogn) time), and determine, by scanning and counting, if
the intersection of all 1, p # 1,7 is nonempty.

The algorithm takes time O(nlogn) for each pair 4,), 2o the total runtime is
O(n*log n).

iuD { S
m
As in the labelled case, if there is a solution, there must be one which maps at

lcast 2 points b;,b; onto circles Cy,C;. We test this property for all quadruples

16

,,2,k,l € {1,...,n}. The coordinate p is defined like in the labelled case, only that
now the image of b; lies on C} instead of C;. The algebraic curve K, 1 < p < n of
the image of b, is defined analogously to the labelled case. Let /;;m, 1 < m < n,
be the set of values of @, such that K, lies within U,(am). Like before, I m is the
union of at most 6 intervals. We sort the boundaries of all the intervals obtained this
way and proceed exactly as in Algorithm 4. Whenever we find a perfect matching,
the problem has a solution.

Steps 2—4 of Algorithm 4 are executed O(n*) times, one execution takes O(n‘)
time, so we get an upper bound of O(n*).

4. References

[AHU] Aho, A.V./J.E. Hoperoft/J.D. Ullman, The Design and Analysis of Com-

[Ata)
[Ata]
[Avk]
(1)
(M)

[Ma]
(Mc|

(Ps]

puter Algorithms, Addison- Wesley, 1974
Atallah, M.J., Checking Similarity of Planar Figures, International J. Comp.
Inf. Science 13 (1984), pp. 279-290

Atallah, M.J., On Symmetry Detection, IEEE Trans. on Comp. C-34 (1985),
663-666

Atkinson, M.D., An Optimal Algorithm for Geometrical Congruence, SCS
- TR - 31, Carleton University, Ottawa, 1983

Highnam, P.T., Optimal Algorithms for Finding the Symmetries of a Planar
Point Set, Information Processing Letters 22 (1986), pp. 219-222
Mehlhorn, K., Data Structures and Algorithms, Vols 1, 2, 3, Springer-
Verlag, 1984

Martin, G.E., Transformation Geometry, Springer-Verlag, 1982

Megiddo, N., Linear Time Algoritkm for Linear Programming in R*® aand
Related Problems, SIAM J. on Computing 12 (1983), pp. 759-776

Preparata, F.P. and M.I. Shamos, Computational Geometry, Springer-Ver-
lag, 1985

17

	A_1987_02 0000_1heitscover
	A_1987_02 0001
	A_1987_02 0002
	A_1987_02 0003
	A_1987_02 0004
	A_1987_02 0005
	A_1987_02 0006
	A_1987_02 0007
	A_1987_02 0008
	A_1987_02 0009
	A_1987_02 0010
	A_1987_02 0011
	A_1987_02 0012
	A_1987_02 0013
	A_1987_02 0014
	A_1987_02 0015
	A_1987_02 0016
	A_1987_02 0017
	A_1987_02 0018

