
Dynamic Fractional Cascading' ••

by

Kurt M.hlhorn and St.Can Nihu

Fachbereich 10
Universitat des Sa.&rland ..

D-6600 Saarbrucken
Federal Repu blic of Germany

06/1986

Abstract . The problem of searching for a key in many ordered lists arises frequently in

compu tat ional geometry. Chazelle and Gu ibas recently introduced fractional cascading
... a general techn ique for solving this type of problem. In the present paper we show that

fractional cascading also supports insertions into and deletions from the lists efficiently.

More specifically, we show that a search for a key in n lists takes time O(1og N +n log log N)
and an insertion or deletion takes time O(log log N). Here N is the total size of all lists.
If only insertions or deletions have to be supported the O(log log N) factor reduces to

0(1) . As an application we show that queries, insertions and deletions into segment

trees or range treel can be supported in t ime O(lognloglogn), when n is the number

of segments (points).

• This research we.. supported by the Deutsche Forochungagemeinschaft under grants Me

620/6-1 and SFB 124, Teilprojekt B2
•• A preliminary vers ion of this research WAS presented at the ACM Symposium 00 Compu­

tational Geometry, Ba.ltimore, 1985

1

1. Introduction:

The problem of locating a key in many ordered lists aCIM::8 frequently in computa.-­

tional geometry, e .g. when searching in range or segment trees. Several researchers, e.g.

Vai.hnavi/Wood IVW82), Willard IW851, Edel.brunner/Guib ... /Stolfi lEGS), Im';/ A.ano

IIA84J, Lipski 1L84] oblerved tbat the n';ve Itrategy of locating the key oeperatedly in

each list by binary search is far from optimal and that more efficient techniques frequently

exist. Cha.zelle/Guibu [CGSS] distilled from these special cue solutions & gener&l data

structuring technique and called it fractional calcadin&,. They describe the problem

as follow8 .

Let U he an ordered set and let G = (V, E) be an undirected graph. Assume also that for

eACh vertex v E V there is a set C(v) <;;; V, called the catalol(Ue of V, and that for every

edge e E E there is given a range R(e) = Il(e) , r (e)] C; U. We uoe N = L:.Ev IC(v)1 to

denote t he total size of the catalogues . The goa.! ie organize the catalogues in a data

s t ructure euch that the following operations are supported efficiently.

1. Query: The input to a query is an arbitrary element k E U and a connected

,ubtree C' = (V', E') of C such that k E R(e) for all e E E'. We use n to denote IV'I.
The out put of the query is for each vertex v E V' an element :r E C(v) such that

"predecessor of x in C(v)" < k ~ x i.e. the query locates k in each li8t C(v), v E V'.

Chl:LZ~lle and Guibas [CG8S] have shown that fractional ca.scading supports queries

in time O(n + log N) provided that G has locally bounded degree, i.e. there is a.

cons tan t d such that Vv E V and Vk E U t here are at mOllt d edges e = (v, w) with

k E R(e) . We will a~!oIume throughout this paper tha.t G has locally bounded degree.

In the present paper we are also interested in insertions into and deletions from the

catalogues .

2. Deletion: Given key k E C(v) and its pOlition in C(v), delete k from C(v) .

:~ . Insertion: Givell k E U and an element x E C(v) such that "predecessor of x in

C(v)" < k $ x , insert k into C(u).

III sec t ions 2 to 5 we will prove the main main result of this paper:

We can ,upport queries in time O(iog(N + lEI) + nlog tog(N + lEI)) and insertions and

deletion. in O(log 10g(N + lEI)). The bound [or the queries is wont case and the bound

for the insertions and deletions is a.mortized. If only insertions or only deletions ha.ve to

be supported tben tbe bounds reduce to O(log(N + lEI) + n) and 0(1) re6pectively.

J[I section 2 we briefly recapitulate the paper of ChazeJle and Guibas [eG85]. In section

3 we give the insertion and deletion algorithrruJ and analyse their a.mortized behavior in

2

section 4. The amortized analysis is bued on the bank account paradigm (d. [M84aJ) and

extends the amortized analysis of (a,b) - tree! [HM82]. A novel feature of our analysis

is the fact that the tokens used for the accounts change their value over time. The

insertion and deletion algorithms make use of an efficient data structure for maintaining

an interval partition of a linear list. Mor precisely, if B is a linear list of n items, some

of which are marked we will consider the following five operatioDS on it:

FIND

ADD

ERASE

UNION

SPLIT

input a pointer to some item x

output; a pointer to a marked item 11 such that all items between x and 11

are unmarked

input

effect

input

effect

input

effoct

input

effect

a pointer to some item x

adds a unmarked item immediately before x to the list

a pointer to a unmarked item x
deletes x from the list

a pointer to a marked item x

unmarks item x

a pointer to a unmarked item x

marks item x

We will prove that FIND, UNION, SPLIT, ADD and ERASE C&lJ be supported in

time O(\og log n) per operation and space O(n). The time bound is worst CASe for

F1ND,UNION and SPLIT and .. mortiud for ADD Il1ld ERASE.

The data structure used to represen t interval partitions of linear lists is derived from

the O(loglog N) - priority que ue of v. Emde Bo .. [EKZ77] and i. described in section

5. Imaij A.ano [IA84] have .hown that operation. FIND, SPLIT and ADD or FIND,

UNION and ERASE call be .upporteci in amortizeci time O(1). This expl .. in. why the

amortized t ime bound. can be reciuced to O(log(N + [EI) + n) for querieo .. nd 0(1) for

updates if only insertions or only deletions have to be supported.

As mentioned above, fractional cascading emerged from the techniques developed for

segment and range trees. Applying our general solution to these tree structures we

obtain versions of segment and range trees with query, insertion and deletion time

O(Jog n log log n) (n is the number of ,egment. or point.). The be.t previous solution

was 0(log1 n) in [W85]. The application to segment and range trees is described in

section 6. Finally section 7 offers some conclusions and open problems.

3

2. Fradional CaBcading

In this section we descri be the basic fractional casca.ding da.ta structure and the algorithms

for tbe static ca.se as introduced by CbazeUe and Guibu in [CG85j.

At eacb node v of tbe catalogue graph G we store a multi-.et A(v) ;2 C(v) &II a doubly

linked linear list. A(v) i. called the augmented catalogue at v. The element. in C(v)
are called proper, those in A(v) - C(v) non-proper. Each x E A(v) i. implemented

by a record consisting of the following components:

key a value from U

next pointer to the successor in A(v)

pred pointer to the predecessor in A(v}

target a node of G incident to u

pointer a pointer to an element in A(x.target)

count integer

in _5 boolean

kind (proper, non-proper)

Note that we will often use x in the sense x.key and sometimes we denote by x a pointer

to the element x in a certain catalogue. But the meaning will always be clear from the

context.

The !lon-proper elements are used to guide the search between incident ca.talogues A(v)
and A(w), (VI w) E E. To this purpose the entries target and pointer of each non-proper

element x have the following meaning (they are not defined for proper elemental:

Let £ E A(v) - C(v). If x.target = wE V then e = (v, w) E E and x.key E R(e). If
x.pointer:= y then ~ is a Don 4 proper element in A(x.ta.rget), x.key = 1I.key and 1I.pointer

= x. T hus x.pointer.pointer = x for every non-proper element x.

Let x E A(v) - C(v) and y = x.pointer E A(w) -C(w). The pair (x,y) i. called a bridge

between A(v) and A(w) . If (x , y) is a bridge between A(v) and A(w) tben

;r = y.pojnh~r

4

	A_1986_06 0000_1heitscover
	A_1986_06 0001
	A_1986_06 0001_bearbeitet
	A_1986_06 0001_VorbereitungCover
	A_1986_06 0002
	A_1986_06 0003
	A_1986_06 0004
	A_1986_06 0005
	A_1986_06 0006
	A_1986_06 0007
	A_1986_06 0008
	A_1986_06 0009
	A_1986_06 0010
	A_1986_06 0011
	A_1986_06 0012
	A_1986_06 0013
	A_1986_06 0014
	A_1986_06 0015
	A_1986_06 0016
	A_1986_06 0017
	A_1986_06 0018
	A_1986_06 0019
	A_1986_06 0020
	A_1986_06 0021
	A_1986_06 0022
	A_1986_06 0023
	A_1986_06 0024
	A_1986_06 0025
	A_1986_06 0026
	A_1986_06 0027
	A_1986_06 0028
	A_1986_06 0029
	A_1986_06 0030
	A_1986_06 0031
	A_1986_06 0032
	A_1986_06 0033
	A_1986_06 0034
	A_1986_06 0035
	A_1986_06 0036
	A_1986_06 0037
	A_1986_06 0038
	A_1986_06 0039
	A_1986_06 0040
	A_1986_06 0041
	A_1986_06 0042
	A_1986_06 0043
	A_1986_06 0044
	A_1986_06 0045
	A_1986_06 0046
	A_1986_06 0047
	A_1986_06 0048
	A_1986_06 0049
	A_1986_06 0050
	A_1986_06 0051

