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1. Introduction:

The problem of locating a key in many ordered lists arises frequently in computa-
tional geometry, e.g. when searching in range or segment trees. Several researchers, e.g.
Vaishnavi/Wood [VW82], Willard (W85], Edelsbrunner/Guibas/Stolfi [EGS], Imai/Asano
[IA84], Lipski [L84] observed that the naive strategy of locating the key seperatedly in
each list by binary search is far from optimal and that more efficient techniques frequently
exist. Chazelle/Guibas [CG85] distilled from these special case solutions a general data
structuring technique and called it fractional cascading. They describe the problem

as follows.

Let U be an ordered set and let G = (V, E') be an undirected graph. Assume also that for
each vertex v € V there is a set C(v) C U, called the catalogue of v, and that for every
edge ¢ € E there is given a range R(e) = [{(e),r(e)] CU. Weuse N =3 ., |C(v)| to
denote the total size of the catalogues. The goal is organize the catalogues in a data

structure such that the following operations are supported efficiently.

1. Query: The input to a query is an arbitrary element k € U and a connected
subtree G' = (V', E’) of G such that k € R(e) for all e € E'. We use n to denote |V'|.
The output of the query is for each vertex v € V' an element z € C(v) such that
“predecessor of r in C(v)” < k <z i.e. the query locates k in each list C(v),ve V',

Chazelle and Guibas [CG85] have shown that fractional cascading supports queries
in time O(n + log V) provided that G has locally bounded degree, i.e. there is a
constant d such that Vv € V and Vk € U there are at most d edges ¢ = (v, w) with
k € R(e). We will assume throughout this paper that G has locally bounded degree.
In the present paper we are also interested in insertions into and deletions from the

catalogues.
2. Deletion: Given key k& & C(v) and its position in C(v), delete k from C(v).

3. Insertion: Given k € U and an element z € C(v) such that “predecessor of z in
C(v)” <k <z, insert k into C(v).

In sections 2 to 5 we will prove the main main result of this paper:

We can support queries in time O(log(N + |E|) + nlog log(N + |E|)) and insertions and
deletions in O(loglog(N + |E|)). The bound for the queries is worst case and the bound
for the insertions and deletions is amortized. If only insertions or only deletions have to
be supported then the bounds reduce to O(log(N + |E|) + n) and O(1) respectively.

In section 2 we briefly recapitulate the paper of Chazelle and Guibas [CG85]. In section

3 we give the insertion and deletion algorithms and analyse their amortized behavior in
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section 4. The amortized analysis is based on the bank account paradigm (cf. [M84a]) and
extends the amortized analysis of (a,b) - trees [HM82]. A novel feature of our analysis
is the fact that the tokens used for the accounts change their value over time. The
insertion and deletion algorithms make use of an efficient data structure for maintaining
an interval partition of a linear list. Mor precisely, if B is a linear list of n items, some

of which are marked we will consider the following five operations on it:

FIND input : a pointer to some item z
output: a pointer to a marked item y such that all items between z and y

are unmarked

ADD input : a pointer to some item z
effect : adds a unmarked item immediately before z to the list

ERASE input : a pointer to a unmarked item z
effect : deletes z from the list

UNION  input : a pointer to a marked item z

effect : unmarks item z
SPLIT input : a pointer to a unmarked item z
effect : marks item z

We will prove that FIND, UNION, SPLIT, ADD and ERASE can be supported in
time Ofloglogn) per operation and space O(n). The time bound is worst case for
FIND,UNION and SPLIT and amortized for ADD and ERASE.

The data structure used to represent interval partitions of linear lists is derived from
the O(loglog N) - priority queue of v. Emde Boas [EKZ77] and is described in section
5. Imai/Asano (IA84] have shown that operations FIND, SPLIT and ADD or FIND,
UNION and ERASE can be supported in amortized time O(1). This explains why the
amortized time bounds can be reduced to O(log(N + |E|) + n) for queries and O(1) for
updates if only insertions or only deletions have to be supported.

As mentioned above, fractional cascading emerged from the techniques developed for
segment and range trees. Applying our general solution to these tree structures we
obtain versions of segment and range trees with query, insertion and deletion time
O(lognloglogn) (n is the number of segments or points). The best previous solution
was O(logg n) in [W85]. The application to segment and range trees is described in

section 6. Finally section 7 offers some conclusions and open problems.
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2. Fractional Cascading

In this section we describe the basic fractional cascading data structure and the algorithms
for the static case as introduced by Chazelle and Guibas in [CG85).

At each node v of the catalogue graph G we store a multi-set A(v) 2 C(v) as a doubly
linked linear list. A(v) is called the augmented catalogue at v. The elements in C(v)
are called proper, those in A(v) — C(v) non-proper. Each z € A(v) is implemented

by a record consisting of the following components:

key : a value from U
next : pointer to the successor in A(v)
pred : pointer to the predecessor in A(v)

target : a node of G incident to v

pointer : a pointer to an element in A(z.target)

count : integer
in_ S : boolean
kind : (proper, non-proper)

Note that we will often use z in the sense z.key and sometimes we denote by z a pointer
to the element z in a certain catalogue. But the meaning will always be clear from the

context.

The non-proper elements are used Lo guide the search between incident catalogues A(v)
and A(w), (v,w) € E. To this purpose the entries target and pointer of each non-proper
element r have the following meaning (they are not defined for proper elements):

Let r € A(v) — C(v). If x.target = w € V then e = (v,w) € £ and x.key € R(e). If
x.pointer = y then y is a non-proper element in A(z.target), z.key = y.key and y.pointer
= r. Thus z.pointer.pointer = z for every non-proper element z.

Let x € A(v)—C(v) and y = z.pointer € A(w) —C(w). The pair (z,y) is called a bridge
between A(v) and A(w). If (z,y) is a bridge between A(v) and A(w) then

r = y.pointer



y = z.pointer

r.target = w

y.target = v

z.key = y.key

z.kind = y.kind = non-proper

The field in_S is used to indicate that a bridge (z,y) belongs to a certain set S that will
be defined later (section 3).

For each edge e = (v, w) there always exist the two bridges (z¢, y¢) and (z,, y,) with z,.key
= yr.key = £(e) and z, .key = y,.key = r(e). We denote these two extreme bridges between
A(v) and A(w) by €(e)-bridge and r(e)-bridge respectively. The bridges connecting two
augmented catalogues A{v) and A(w) divide the interval [£(e),r(e)] into blocks. Each
pair of neighboring bridges (z’,y'), (z,y) defines such a block B(z,y) C A(v) U A(w) (cf.
figure 1). To identify a block we use the right bridge (z,y) of the pair. Note that the
£(e) - bridge does not identify any block.

More formally: Let v€ V,r € A(v) — C(v), z.target = w € V and
' = max{y € A(v) —C(v) | y < z and y.target = w}

i.e. (z',z'.pointer) and (z,z.pointer) are adjacent bridges between A(v) and A(w) (cf.
figure 1). Then we define

I{z) = |, z[ N A(v)

where ]z’, z| denotes the open interval with endpoints z' and z. Each bridge (z, y) except
the £(e)-bridge is used to identify the block

B(z,y) = I(z) U I(y)

The counters z.count and y.count give the size of the intervals I{z) and I(y) i.e.
[{(z)| = z.count
[1(y)| = y.count
|B(z,y)| = z.count + y.count

The block sizes are crucial for the efficiency of the data structure. The bigger the blocks
are, the fewer bridges ( non-proper elements) are necessary and the space requirement
will be smaller. However (as we will see soon) to guarantee an efficient search algorithm
the blocks must not exceed a certain size. For this reason we postulate that all blocks

fulfill the following invariant:
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Figure 1
Invariant 1. There are two constants a,b with a < b such that for all blocks B(z,y)
holds
L |B(z,y)| <b

2. |B(z,y)| > a or B(z,y) is the only block between A(y.target) and A(z.target). g

Jnvariant 1 generalizes the structural invariant of (a,b)-trees (cf. [M84a]) to fractional

cascading.

The following two lemmas show that invariant 1 ensures both linear space and an efficient

search algorithm.

Lemma 1. Let N =37 [C(v)|, § =3,y |A(v)| and a > 3d. Then
S <3N + 12|E|.

Proof:

S is clearly equal to ¥ plus twice the total number of bridges. We have to count the
number of bridges. Let Br(v,w) denote the number of bridges between A(v) and A(w).
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These bridges define exactly Br(v,w) — 1 blocks. All but one block contain at least a
elements and hence

a(Br(v,w) — 1) < |A(v) N R(v,w)| + |A(w) N R(v, w)|

That means

Br(v,w) < —(|A(v) N R(v, w)| + |A(w) N R(v,w)]) + 1

B~

Thus we have
S=N+2 Y Br(v,w)

(v w)EE

<N+ ;( Z |A(v) N R(v, w)| + Z |A(w)ﬂR(v,w)]) + 4|E|
(vw)eE {vw)eE

<N+ (T 140+ X 1)) + 418

velV weV

since every € A(v) is contained in R(v,w) for at most d vertices w

N+ 25448
a

And finally
a
R L
8 < a—2d(N + 4|E|)

<3N +12|E| ifa>3d

Lemma 2. Given a search key k € U, an element z € A(v) with z.pred < k < z and
an edge e = (v,w) with k£ € R(e), the position of k in A(w) can be found in constant
time, i.e. y € A(w) with y.pred < k €y can be computed in time O(1).

Proof:

We proof lemma 2 by giving a constant time algorithm for searching.
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Algorithm 1:

1. function SEARCH (k, z,w);

(* precondition: z € A(v) with z.pred < k <z, (v,w) € E and k € R(v,w)
result: y € A(w) with y.pred.key < k < y.key
running time: O(1)

2. while z.target # w do z «— r.next od ;
3. y — z.pointer;

4. while y.pred.key > k do y + y.pred od;
5. return(y);

The running time of SEARCH is at most the size of the block between A(v) and A(w)
containing = which is bounded by the constant b ( invariant 1). .

The above algorithm locates key k in an augmented catalogue A(w), i.e.

SEARCH(k,z,w) = y € A(w) with y.pred.key <k < y.key

But what we want to find is the position of k in the original catalogue C(w), i.e. we
have to compute an element y’ € C(w) with y' = min{z € C(w)|z > y}. For this reason
a function FIND is defined that gives for any element z of an augmented catalogue A(v)
its successor y in the corresponding original catalogue C(v). For any z € A(v)

FIND(z) := min{y € C(v)|y > z}

For the dynamic case (see next section) we also have to provide operations for inserting
or deleting proper and non-proper elements. In section 5 a data structure is presented
that supports efficiently the following five operations on a linear list of N items ( each

item has a mark € {proper, non-proper}).

FIND input :@ a pointer to some item z
output: a pointer to a proper item y such that all items between
z and y are non-proper

ADD input : a pointer to some item z
effect : adds a non-proper item immediately before z to the list



ERASE  input : a pointer to a non-proper item z
effect : deletes z from the list

UNION  input : a pointer to a proper item z
eflect : changes the mark of z to non-proper

SPLIT input : a pointer to a non-proper item T
effect : changes the mark of = to proper

The names of Lthe last two operations are suggested by the observation that the non-proper
items partition the linear list into a family of intervals. Then operation UNION merges
two adjacent intervals and SPLIT splits an interval. We will show in section 5 how to
implement all five operations in space O(N). and in time Ofloglog N) (worst case for
FIND, UNION, SPLIT and amortized for ADD, ERASE).

Remarks:

1. In the static case only operation FIND is needed. It can be realized by giving each
non-proper item a pointer to its proper successor. Thus FIND has cost O(1) in this

case.

2. In the semi-dynamic case ( only insertions or only deletions have to be supported)
operations FIND, SPLIT and ADD resp. FIND, UNION and ERASE have to be
implemented. Gabow/Tarjan [GT83] and Imai/Asano [IA84] show how to do this in
amortized time O(1).

Theorem 1. Letk € U and G' = (V', E’') be a subtree of G such that k € R(e) foralle €
E'. Then k can be located in C(v) for allv € V' in time O(log(N +|E|)+nlog log( N +|E|))
where n = [V'| and N =} . |C(v)].

Proof:

Let vo € V'. We first locate &k in A(vg) by binary search in time O(log(|A(vo)|)) =
O(log(N+|E|)) (remember that |A(v)| < O(N+|E|) for every v € V by lemma 1) Knowing
the position of k in A(vg) it can be located in all A(v),v € V' by procedure SEARCH
in time O(n). To find the position of k in the original catalogues C(v) FIND must be
called once for every A(v),v € V'. Thus the total cost for a search in G’ is O(log(N +
|E]) + nlog log(N + |EI). .



3. Dynamization

In this section we describe how to delete elements from the catalogues and how to insert
new elements into the catalogues without increasing search time and space requirement.
In particular we give algorithms for insertion, deletion and rebalancing the block sizes.

Insertions and deletions may result in blocks B(z,y) violating invariant 1i.e. |B(z,y)| > b
or |B(z,y)| < a. We store these blocks out of balance in a set or list S. To check whether
a block B(z,y) must be entered into S we use the counters z.count and y.count. The
sum of these two counters will always indicate the size of block B(z,y) if B(z,y) is not

in S. More precisely we maintain the following invariant:
Invariant 2. Let (z,y) be a bridge with B(z,y) € S.

Then |B(z,y)| = z.count + y.count and a < |B(z,y)| < b (invariant 1) s

Remarks:
a) The values of z.count and y.count are irrelevant if B(z,y) € S
b) If |B(z,y)| ¢ [a..b] then B(z,y) € S.

c) There can exist blocks B(z,y) with B(z,y) € S and |B(z,y)| € [a..b]. These are
blocks which have been modified by insertions as well as deletions.

Now we give the algorithm to insert an element z into the augmented catalogue A(v).

Algorithm 2:

I. procedure INSERT (z,yo);
(* precondition: yg € A(v), yo.pred.key < z.key < yo.key
effect: z is inserted immediately before yp into A(v)
running time: O(loglg N), amortized

=
—

ADD(z,yo)

if z.kind = proper then SPLIT(z,yo) fi;

insert z into the doubly linked list A(v) before yo
y+~—lo

A~ D

do b times

g = ;oo e kD

w «— y.target;
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9. if (y.kind = non-proper) and (w ¢ A) and (z.key € R(v, w))
10. then A — AU {w};

11. y.count ~— y.count + 1;

12. z « y.pointer;

13. if (y.in_S = false) and (y.count + z.count > b)
14, then S — SU{B(y,2)};

15. y.inS « true;

16. zin. S « true;

17. fi;

18. fi;

19. Y — y.next;

20. od;

A call to procedure INSERT needs amortized time O(loglog N) for the calls to ADD
and maybe SPLIT (see section 5) and O(b) time for the loop (lines 8-21).

INSERT(x,y )
B(y',
A(u)

B(y,z)

Al(v)

A(w)

Figure 2

Lemmma 3. Procedure INSERT preserves invariant 2.
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Proof:
The algorithm inserts z directly before yo into A(v). Thus the size of some blocks ( at
most d ) is increased whose identifying bridges (y, z) lie to the right of z ( see figure 2 ).

case 1 : B(y,z) € S before the execution of INSERT. Then there is nothing to do.
(Note: Nevertheless the algorithm possibly increases y.count, but this is irrelevant)

case 2 : B(y,z) ¢ S before the execution of INSERT. This implies |B(y,z)| < b.
Therefore y can be reached in b steps starting from yo and the counter y.count gets the
correct value. Thus block B(y, z) enters S if and only if its size exceeds b. Furthermore
the algorithm stores already examined neighbors w € V of node v in the set A to ensure
that for every edge (v, w) at most one block is treated. .

The algorithm to delete an element z from A(v) follows.

Algorithm 3:

1. procedure DELETE(z);
(* precondition: z € A(v)
effect: z is deleted
running time: Of(loglog N), amortized

2. if z.kind = proper then UNION(z) f;
3. ERASE(z)

4. remove r from the doubly linked list A(v)

5. y « z.next;

6. A~

7. do b times

8 w + y.target;

9. if (y.kind = non-proper) and (w ¢ A) and (z.key € R(v,w))
10. then A — AU {w};

1. y.count — y.count + 1;

12. z « y.pointer;

13. if (y.in_S = false) and (y.count + z.count < a) and
14. (B(y, z) is not the only block between v and w))
5. then S — S U {(y,2)};

16. y.in_S ~ true;

17. z2.in.S « true;

18. fi;

19. fi
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21. od;

Procedure DELETE needs time O(b + log log V).
Lemma 4. Procedure DELETE preserves invariant 2.

Proof:
see proof of lemma 3. .

In order to guarantee the time and space bounds of lemma 3 and lemma 4 in section
2 we have to restore invariant 1 after each call to DELETE or INSERT by calling a
procedure REBAL. Note that all blocks violating invariant 1 are in the set S ( but not
all blocks in S violate it). Now we first describe informally the rebalancing procedure
and then give the algorithm REBAL.

REBAL has to examine every block B(z,y) € S. First it must compute the size ¢ of
B(z,y). This can easily be done by running to the next parallel bridge starting at (z,y)
in time O(f). Knowing the block size ¢ there are three different cases:

case 1: £>b ie. block B(z,y) is too large

In this case the algorithm will divide B(z,y) into |34/b] + 1 parts sized as equal as
possible. This can be done by inserting |3£/b] bridges (i.e. inserting 2 x [3£/b] non-
proper elements). Then the size of the resulting sub-blocks is between % and % and
fulfills invariant 1 if we choose a < % The cost for this case is the cost for computing

the block size (O(£)) plus the cost for inserting the new bridges (5 calls of Insert).
case 2 : / <a ie. block B(z,y) is too small

Here B(z,y) is concatenated with its right (left) neighbor block by deleting the bridge
(z,y) (deleting two non-proper elements). Then we have to check whether the neighbor
block is already in S or not. To do this we scan the neighbor block until its identifying
bridge (z',y’) is reached and check the in_S-flag z'.in_S. But if (z,y') is not reached
within b steps we can stop this scanning procedure. Then we know that the neighbor
block is larger than b and therefore a member of S. This means we can test wether
B(z',y') isin S in time O(b). If B(z',y') ¢ S then its new size is computed by addition
of the counters zr.count and z'.count resp. y.count and y'.count. In the case that this
size exceeds b B(z',y’') is added to §. The immediate cost for this case is the cost for
computing £ (O(£)), the cost for scanning the neighbor block (O(b)) and the cost for
deleting two non-proper elements (2 calls of DELETE).
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case 3 : a <f<bie block B(z,y) has correct size

In this case B(z,y) can be removed from S without any modification. The cost is only
the cost for computing the block size : £

The following procedure REBAL uses in the overflow case a subroutine DIVIDE(B, k)
which divides block B into k subblocks differing in size by at most 1. This routine simply
inserts k + 1 new bridges by calling 2(k + 1) times procedure INSERT. The program for
DIVIDE is straightforward and left to the interested reader.

Algorithm 4:

1. procedure REBAL;

2. while S # 8

3. do let B(z,y) be an arbitrary element of S;
. SeS—{Bwk

5. z.in_S + false;

6. y.in_S — false;

(* compute real size ¢ of B(z,y) *)
zlcount — 0,

® =~

zl +— z.pred;
9. while zl.target # z.target
10. do zl « zl.pred;

11. rlcount «— zlcount + 1;
12. od,;
13. ylcount — 0;

14. yl «— y.pred;
15. while y! # zl.pointer
16. do yl — yl.pred;

17. ylcount « ylecount + 1;

18. od;

19. ¢ — zlcount + ylcount; (* real size of B(x,y) *)

20. if€>b

21. then (* case 1: overflow —— divide B(z,y) into 3£/b parts®)
2z DIVIDE(B(z,y),3¢/b);

23. else if £<a

24, then (* case 2: underflow — concatenate B(z,y) with right neighbor *)
25. Ir « z.next;

26. yr «— y.next;

27. DELETE(z);

28. DELETE(y);
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(* scan right neighbor block *)

29. zrcount «— 0;

30. while (zr.target # z.target) and (zrcount < b)
31. do zr «— zr.next;

32. zrcount «— zreount + 1;

33. od;

34. yrcount +— 0;

35. while (yr.target # y.target) and (yrcount < b)
36. do yr «~ yr.next;

317. yrecount — yrecount + 1;

38. od;

39. if (zr.target # z.target) or (yr.target # y.target)
40. then (* right neighbor is larger than b i.e. is a member of § ¥)
41. do nothing

42. else if zr.in.S = true

43. then (* right neighbor is in S ¥)

44. do nothing

45. else (* right neighbor is not in S ¥)

46. zr.count +— zrcount + zlcount,;

47, yr.count «— yrcount + ylcount;

48. if (zrcount + yrcount) > b

49, then zr.in.S +«— true;

50. yr.in.S « true;

51. S — Su{B(zr,yr)};

52. fi;

53. fi;

54. fi;

55. else (* a < €< b block has correct size *)

56. z.count « zlcount;

57. y.count « yleount;

58. fi;

59. i

60. od;
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4. Analysis of the Dynamic Behavior

We will show in this section that the amortized cost for one update operation (insert or
delete) is O(loglog N) where N is the current size of our data structure i.e. the number
of proper elements. More precisely we show that a sequence of m update operations can
be executed in time O(|E| + )" , loglog(N, + |E|)) where N; is the number of proper
elements before the ith operation. We prove this result using the bank account paradigm
(cf. [HM82], [M84a] or [T85]), i.e. we associate an account with the data structure. Each
update operation puts O(1) tokens into this account where each token represents the
ability to pay for O(b+loglog(N + |E|)) units of computing time. The actual computing
time required for the update operation is paid out of the account and the goal is to
show that the balance of the account always stays non-negative. As in the amortized
analysis of balanced trees (cf. [HM82]) the account is conceptually split into many small
accounts, essentially one for each block B(z,y). The number of tokens in the account
of block B(r,y) measures the criticality of block B(z,y), i.e. the closer |B(z,y)| is to b
or a the larger is the number of tokens in the account. There is also a novel feature in
the analysis. The value of the tokens changes over time. Since we will use the tokens to
pay for the list operations UNION, SPLIT, ADD and ERASE on augmented catalogues
the tokens must suffice to pay for the cost of these operations when they are executed.
The actual size of the catalogues at that point of time differs in general from the size
of the catalogues, when the tokens where deposited in the account. Hence the value of
the tokens must change over time. We will next give a precise statement of the result:

We start with an "empty” data structure D_; with
1. Clv)=0forallveV

2. A(v) = U wyee{l(v,w),r(v,w)}

3. § = set of all blocks that violate invariantl.

First D_, is transformed by procedure REBAL to a balanced data structure D,. We
will next execute a sequence of m insert/delete operations starting with Dy. The i-th
operation is realized by a call of procedure INSERT or DELETE, which brings us from
data structure D,, _, to structure Dy, ;, and a subsequent call of REBAL, which brings

us from Dg,_, to Dy;.

D_,—rebaly — Do— op; — D1— rebaly — Dy— o0p2 — D3— -++ — Dy

op, € {INSERT,DELETE} for i = 1.m.

Let cost(D, — 1, ,) denote the cost of going from D; to D,4;. Then the total cost of

16



the first m insert and delete operations is the sum of the costs of the calls of procedures
INSERT and DELETE and the total rebalancing cost

m-—1 m-1
O(Z cost(Dg,- - Dg.’+1) + Z COJt(Dgi+1 — Dg.‘+2))

=1 =-1

We show

Theorem 2. The total cost of the first m insert/delete operations is

m
() (Z log log(N; + |E|) + tE'i)
1=1
where N, is the number of proper elements before the i-th operation (i.e. the number

of proper elements in Dy,).

Proof:

We go from structure Dj; to Dz,;,; by a call of either INSERT or DELETE. The cost
of a call of INSERT or DELETE is O(b) plus the cost of ADD and SPLIT (UNION and
ERASE) respectively. The list operations are applied to augmented catalogues of size at
most O(N; + |E|). (Note that the total size of all augmented catalogues is O(N, + |E|)
by lemma 1 and hence the size of every single catalogue is bounded by this quantity).
Let listop(n) denote the cost of a list operation on a list of length n. Then we have

z' cost(Dy; — D2|+1) = O(Z_ (b + Iiatop(N.— + |E|]))

=0 =0

From Ds,,, to Djy,42 we go by calling procedure REBAL. This procedure repeatedly
removes blocks from the queue S, i.e. a more detailed view is:

I ' ! v ’
Dyiyy = Dy —+ Dy — Dy — Dy — - — Dy = Dyyy,

where REBAL removes a block of size £, from queue S, when going from D} to D} ,.

This costs
¢,/b list operations , if £, >b

O | ¢ + { 1 list operation , iffj<a
0 list operations , ifa<f; <b

All these list operations are executed on lists of length at most O(N; + |E|). So

m—1
Z cost(Dy;41 — Dgzi+2) is bounded by

1=—1
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m-1k,-1 .
: €,/b x listop(N, + |E|), if &, >b
ol > (z, * {Hatop(N.‘ +|E|), if £, <a

i=—1 j=0

We can now invoke theorem 3 from section b. Let k be the total number of list operations
that are executed when going from D_, to D2m. Then, by theorem 3 of section 5, the
cost of these operations is bounded by 2:21 log log 8; ,where s; is the size of the lists
before the j-th list operation. If we therefore replace listop(N, + |E|) by log log(N; + |E|)
in the expression above then we have a bound for the total cost of all list operations.

Our goal is therefore to bound
m-1k,-1 P
; £;/b x loglog(N; + |E|), if £ >b
™) ¢ (.Z, 2 6+ { a3, if 4, <a
=1 j=

Remark: Note that theorem 3 gives us only a bound on the cost of a sequence of list
operations, i.e. an amortized bound. But that’s all we need for the current proof. g

Now we are going to prove an upper bound for the expression (*) using the bank account
paradigm (cf. [HM82], [M84a] or [T85]). First we define a function

bal : "state of the data structure” — INg

that will indicate to what extend the data structure is out of balance. The bal-function
is defined as the product

bal(D) = f(D) - (b + log log(N + [E]))

Here f(D) is the number of tokens in the account and the second term gives the current

value of one token.

Definition 1. Let a',b’' be two constants, a < o' < V' < b, satisfying the following
conditions (the reason for these requirements will become clear lateron):

b/4 > a’ (1)
b/3 <Y (2)
20' <b-12d -6 (3)
o' >2+2d+2 (4)
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Possible values for a,a’,b’ and b are:

a =3d

o' =9d+4
b =12d+86
b =36d+ 18

Then we define for every block B

A(B) := max(0, |B| — b') + max(0,a’ — |B|) and

f(D)=2(§: A(B)+ Y max (b-—b’+1,A(B))+ Y max(a'-a+ I,A(B)))

B¢Ss Bes+ Bes-

And finally bal(D) := f(D)(b + loglog(N + |E|))

Here (S*,57) is a partition of S with
St = set of all blocks that came into S because they were too large (|B| > b)
S~ = set of all blocks that came into S because they were too small (|B| < a)

Il

N is the number of proper elements in D). Note that N is increased by insertions
and decreased by deletions. The next lemmas show three very important properties of
function bal.

Lemma 5. Let op € {INSERT,DELETE} and let op(D) be the data structure D
modified by a call of procedure op then

a) bal(op(D)) < bal(D) + 2d(b + log log(N + |E|)) + O(1)
Here N is the number of proper elements in D.

b) bal(D2i41) < bal(D2;) + 2d(b + loglog(N; + |E|)) + O(1)
Proof:

Part b) follows immediately from part a).

We prove part a)
case 1: op = INSERT. Insertion of a new element z into the catalogue A(v) can increase

19



the size of at most d blocks by 1, because there are at most d edges ¢ = (v,w) € E with
z € Rfe). Furthermore the total number of proper elements is raised to N + 1.

Thus we havc
/(op(D)) < /(D) + 2

Let N'= N + |E|. Then

bal(0p(D)) — bal(D) < (f(D) + 2d)(b + log log( N’ + 1)) — f(D)(b + log log N')
= 2d(b+ loglog(N' + 1)) + f(D)(loglog(N’ + 1) — loglog N*)
= 2d(b+loglog N') + (f(D) + 2d)(log log(N' + 1) — loglog N')
What remains to show is that (f(D)+ 2d)(loglog(N' + 1) — loglog N') = O(1).

Since f(D) + 2d = O(N') (note that the number of blocks is bounded by O(N’) ) we

have

(f(D) + 2d)(loglog(N' + 1) — loglog N') = O(N'(loglog(N' + 1) — loglog N'))
= O(N'(Inln(N' + 1) — Inln N"))

In(N' + 1)
In N/

= N'ln (1 + (—_——l“(ﬁ'; 8., 1))

In(N' +1)
!
<N ( In N! -1)

since In(14+z) <z forall zeR

_ (!n (¥ (1+ ) _1)

_ i (lnN’+ln(1+ﬁ7) _1)

and N'(nIln(N'+1) =Inln N') = N'In

In N'
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1
B 14
{14 1)

TV

<1 for N' > ¢

case 2: op = DELETE
For the same reason as above the size of at most d blocks can be decreased by one i.e.

f(op(D)) < (D) + 2d

Thus bal(ep(D)) = (f(D) + 2d)(b + log log(N + |E| — 1))
= f(D)(b + loglog(N + |E| — 1)) + 2d(b + log log(N + |E| — 1))

< bal(D) + 2d(b + log log(N + |E|))

Lemma 6. COSt(DgH 1 — DZH—Z) g O(M!(DQH_;) - bal'(Dz,+2)) fOl' -1 S T _<_ m— 1.

Proof:
During the execution of rebal; data structure Do;_, is transformed by removing blocks

from S step by step into the data structure Ds,.
Doiy1 =Dy — D} — Dy — Dy — -+ — Dayyg

In each step one element is removed from S. We show an upper bound for the cost of
the i-th step
cost(D!_, — D) < O(bal(D)_,) — bal(D}))

and thereby prove the lemma. Let B be the block removed from S in step 1 and £ = |B|.
There are 3 different cases:

case 1: B is bigger than b, i.e. £>b
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B is divided into subblocks of size between {b and 3b. Thus by requirement (1) and
(2) the resulting new blocks make no contribution to bal(D!)). The value of bal is
decreased by 2(! — &')(b + log log(N + |E|)) because block B is destroyed and increased
by 2d8¢ (b + loglog(N + |E[)) by the insertion of the new bridges. Thus

bal(D') = bal(D'_,) — 2(£— b + d%—‘)(b + loglog(N + |E))

The cost for the splitting of B is O(£+ 5 (b+log log(N + |E[))), since we have to perform
6Z/b list operations. What remains to show is

£+ 56+ loglog(N + E) < (22~ ¥) ~ 245 (o + log log(N + | )

or E+6—£52[—2.‘!;'—21:16—z

b b

62
or (2d+1)—6—+€£2£—2b"
or A24+8 | ye<ae—aw
or (1-— 12d+6)f22b'
2d

or (l—] +6)b22b’ (since £ > b)
or b—12d —6 > 2b’. This holds by requirement (3) !

case 2: B is smaller thana ie £<a

In this case the value of the bal-function is decreased by 2(b + loglog(N + |E|))(a’ — )
(removal of B) and increased by 2(b + loglog(N + |E|))(€ + 2d) (enlargement of the
neighbor block and deletion of one bridge). Thus

bal(D)) = bal(D,_,) +2(b + loglog(N + |E|))(2¢ — o' + 2d)
The cost for removing B is O(€ + b+ 2(b + loglog(N + |E|))).

We show £+ b+ 2(b + loglog(N + |E|)) < 2(b + loglog(N + |E|))(a’ — 2¢ — 2d)
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This holds if  4(b+ loglog(N + |E])) < 2(b+ loglog(N + |E|))(a’ — 2¢£ — 2d)

if 2<ad -20-2d
if 2<a —2a—2d (since ¢ <a)
if a' > 2a+2d+2 (requirement (4))

case 3: B has correct size ie. a <£€<b

The contribution of block B to bal(D!_,) is 2(b+ loglog(N + |E|))(b—b'+1) if Be S+
and 2(b + loglog(N + |E|))(a' —a+ 1) if B€ §~. Thus we have

bal(D;_,) — bal(D;) > 2(b + loglog(N + | E|)) min(b — b' + 1,6’ —a + 1)
> 2(b+ log log(N + |E|))

But the cost for removing B is £ < b < O(b + loglog(N + |E|)). B

Lemma 7. bal(D_ )= O(|E|)

Proof:
bal(D_,) < b3 oy |A(v)| = O(|E]|) by lemma 1 of section 2. .

We can now easily complete the proof of the theorem.We have

m-=1 m-1
total cost = O(Z (b+ log log(N, + IED) + Z COBt(D2;+1 — D;H_g))

It remains to show that the second term does not dominate the first term.
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We have by lemma 6

m-1 m-—1

Y (cost(Dagyr = Dayy2)) < Y (bal(Dziy 1) — bal(Daiya))

=-1 1=—1

< bal(D_y) — bal(Do) + Z: (bal(D3;) + 2d(b + log log(N; + |E])) — bal(D3i42))
(by lemma 5) i

= bal(D_,) — bal(Dz) + ) 2d(b + log log(N; + | E]))
1=0

m-1
= 0(|E| + 3 (b+loglog(N, + |E{))) (by lemma 7)

=0

This completes the proof of theorem 2 and thereby the analysis of the dynamic behavior
of fractional cascading. P
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5. Maintaining Dynamic Partitions of Linear Lists

In this section we present a data structure that supports the operations FIND, UNION,
SPLIT, ADD and ERASE as defined in section 2. Let B be a sequence of items, some
of which may be marked.

FIND(z) computes the nearest marked item right of z in the sequence
SPLIT(z) marks item z

UNION(z) unmarks the marked item z

ADD(z,y) inserts z immediately before y into the sequence

ERASE(z) removes z from the sequence

The data structure is derived from the "loglog N”-priority queue of P.v.Emde Boas
[EKZ77]. The major difference is that the tree structure which is implicite in his data
structure, is made explicite by pointers. This allows us to make the data structure
dynamic and also simplifies the data structure slightly. We first give a formal definition
of this structure and then describe in detail the algorithms for building it up and for
FIND, UNION, SPLIT, ADD and ERASE. Finally we give an analysis for the cost of

all five operations.
Definition 2. A stratified tree S for a sequence B of n items consists of:

1. A representative r with components mark, min, max
The values of these fields are defined below by definition 3.

and if n > 4:

2. A copy B’ of B which is divided into segments B{, B}, ..., B) of size between 1/2\/n
and 2\/'5 each, 1/2,/n <€ < 2\/n.

3. Stratified trees S}, S},...,5; for sequences B!, B),..., B,

4. A stratified tree S, for R = { representative of B] | 1 <i </} s
Remarks:
1. Structures S{,8},...,5}, S, are called substructures of S and S superstructure

of §¢,5,...,850, 5.
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sequence B

Figure 3

2. Note that the structure of a stratified tree does not depend on the marks of the itemns
of B. It is only the fields of the various representatives which depend on it.

3. In the application to fractional cascading we have a stratified tree for each augmented
catalogue A(v). The marked items are the elements of C(v).

We realize stratified trees by pointer structures as follows (cf. figure 3) . Each item or
representative is realized by a record of type mode consisting of 10 fields:

mark : boolean

pred : pointer to node

succ : pointer to node
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low . pointer to node
high : pointer to node

rep : pointer to node
list : pointer to node
size : integer

min : pointer to node
max : pointer to node

The pred and suce fields organize the sequence B as a doubly linked linear list. The
fields low and high are pointers connecting nodes with their copies in substructures and
vice versa. rep links each node with its representative. The fields list, size, min and
max are defined only for representatives: list is a pointer to the first element of the
doubly linked list for B and size contains the length of the list. It remains to define
the fields mark, min and max.

Definition 8. Let S be a stratified tree for sequence B with representative r

1. r.mark is true iff the sequence B contains at least one marked element. Also r.min
and r.max point to the minimal and maximal element of B respectively. If there is
no marked item in B then r.min and r.max have value nil.

2. If B contains at most one marked item then all substructures of S are "trivial”, i.e.
all nodes in these substructures are unmarked and all min and max pointers have

value nil.

3. If B contains two or more marked items then the copies (in B’) of the marked
items of B are marked and the same rules are applied to all substructures S/,
1 <1 < /¥, containing at least one marked element. Note that this defines the marks
of the representatives r/ of S, 1 < ¢ < £. Finally the same rules are applied to the

substructure S,. =

In the application to fractional cascading, the catalogue entries z € A(v) are extended
by a pointer low in order to link the fractional cascading structure with the data
structure defined above. Create for every z € A(v) a node k with k.mark = true iff
z € C(v), klist = k.min = k.max = nil, k.high = z, z.low = k. Use the pred and succ
pointers to organize these nodes as a doubly linked linear list B. The following recursive
procedure BUILDSTRUCTURE builds a stratified tree for B according to definition 2
and definition 3 (a ”loglog n”-priority queue as introduced in [EKZ77] for universe B
and set S = {k € Blk.mark = true } ).
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Algorithm 5:
1. procedure BUILDSTRUCTURE (B: list of nodes; triv: boolean; var r: node);
(* input: a doubly linked linear list B of items
effect: builds a stratified tree for B and returns the representative r
The stratified tree is trivial if the flag triv is true
running time: O(|B|loglog|B|)

*)

2. n«|B|;

3. r+ new node;

4. if triv

5. then r.mark « nil;

6. r.nax « nil;

/£ r.min  « il

8. else r.mark « \, pk.mark;

9. r.min  + min{k € Blk.mark = true };
10. r.max + max{k € Blk.mark = true };
11. 8 + |{k € Blk.mark = true }|;

12. f;

13. r.high — mil;

14. r.size «— n;

15. for all k€ B do k.rep — r;

16. k.low — nil;

17. od;

18. ifn >4

19. then B — B

20. for all k€ B

21. do k' — new node;

22 if triv

23. then k&' mark ~ false
24. else k'.mark — k.mark
25. fi;

26. k' .min — nil,

27. k'.max — nil,

28, k' high « k;

29, klow « k;

30. B' — B'U{k'};

31. od,;

32. let £ € [1/24/n,24/n]

33. divide B’ into blocks B4, B), ..., B, of size between /n and 3/2\/n

(* then 2/3\/n < €< /n ¥)
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34. R0

35. for i =1 to ¢

36. do organize B, as doubly linked linear list;

a7, BUILDSTRUCTURE(B!, ¢, triv or (s < 1));
38. R—RuU{r}

39. od;

40. BUILDSTRUCTURE(R, z, triv or (8 < 1));

41. f;

Lemma 8. Let n = |A(v)].

a) The data structure described above needs space O(nloglogn).

b) It can be build up in time O(nloglogn).

c) It supports the operations FIND, UNION and SPLIT in time O(loglogn).

Proof:

Parts a) and b) immediately follow from the observation that there are O(loglog n) levels
of hierarchy. Below the algorithms for FIND, UNION and SPLIT are listed in detail.
For their time bound see [EKZT77] or [M84a]. FIND, UNION and SPLIT are called pred,
delete and insert respectively in the priority queue terminology of P.v.Emde Boas. g

For the formulation of the following algorithms we assume the existence of a boolean
function LEFTOF(z, y) defined for two marked items z and y of sequence B. It returns

true ifl item z occurs before item y in B.
Remarks:

1. If we assume that in our application the proper catalogue entries z € C(v) are pairwise
distinct we can realize the function LEFTOF by simply comparing z.key and y.key.

2. A general solution can be found in [T84]. There is shown that the following operations

on a list of items
insert(z,y) : insert z immediately before y into the list
delete(z) : delete z from the list

leftof(x,y) : return true ifl £ occurs before y in the list
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can be realized in time O(1) (amortized for insert and delete, worst case for leftof).
Furthermore, the time required to build the date structure for a list of n items is
O(n) and therefore can be subsumed in the time required for BUILDSTRUCTURE.

Algorithm 6:
1. function FIND (k: node) : node;
(* input: item k of sequence B

output: closest marked successor of k£ in B or nil
running time: O(1) if output is nil and O(loglog |B|) otherwise

")

2. 7« k.rep;

3. if rsize < 4

4. then find the closest marked successor by linear search
5. else if (r.mark # false) and LEFTOF(k,r.max)
6. then (* FIND has defined value *)

7. if r.max = r.min

8. then (* exactly one marked node *)
9. return(r.max)

10. else (* two or more marked nodes *)
11. z — FIND(k.low);

12. if £ = nil

13. then (* the call of FIND(k.low) took time O(1) *)
14. z — FIND(k.low.rep);

15. return(x.min.high)

16. else return(z.high);

17. fi;

18. fi;

19. else (* FIND has value nil *)

20. return(mil);

21. fi;

22. fi;

A very important property of function FIND is that the recursion always stops if r.min
= r.max for a visited substructure with representative r. Therefore the min and max
pointers need not to be defined for the representatives of any substructures of S if §
contains less than 2 marked nodes. Thus the correctness of FIND follows immediately

from definition 3.
Algorithm 7:
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34.
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procedure SPLIT (k: node);

precondition: k is an unmarked item of sequence B, § is a valid stratified tree forB

postcondition: k.mark = true and S is still valid

running time: O(1) if there is no marked item in B and O(loglog |B|) otherwise

k.mark +~ true

r «— k.rep;

if r.mark = false
then (* structure was empty before *)

else

r.mark + true

r.min

— k;

r.max +~ k;

if r.min = r.max

then (* one marked item before the split *)

else

Z + r.min;

if LEFTOF (k,r.min)
then r.min — k
else r.max — k

fi;

(* now B contains 2 marked items: z and k

substructures must be updated according to definition 3 *)

if r.size > 4

then (* there are substructures *)
SPLIT(z.low); (* takes time O(1) *)
SPLIT(k.low); (* takes time O(1) *)
if z.low.rep = k.low.rep
then SPLIT (k.low) (* a non-trivial call *)
else SPLIT(k.low);  (* takes time O(1) *)
SPLIT (k.low.rep) (* a non-trivial call *)

fi;
fi;

(* two or more marked items ¥)

if LEFTOF (r.max,k) then r.max «— k f;
if LEFTOF (k,r.min) then r.min « k fi;
if k.low.rep.mark = false

then SPLIT(k.low);

(* takes time O(1) *)

SPLIT(k.low.rep);(* a non-trivial call *)

else SPLIT(k.low)
f;

(* a non-trivial call *)
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35.

fi;

Here are some remarks about the following procedure UNION:

UNION(k, newmin, newmax) sets the mark-flag of & and of its copies in substructures
to false. If & is the only marked node UNION has to be called for its representative too.
Otherwise ( there is more than one marked node), if k is the minimal (maximal) marked
node the min-pointer (max-pointer) must be changed such that it points to the closest
marked successor (predecessor) of k. The new min and max pointers are returned in

newmin and newmaz.

Algorithm 8:

1.

(t

N\_:

bk e s e e e e
ook 65N e D

17.
18.
19.
20.
21.
22.

o, =N o e

procedure UNION (k: node; var newmin,newmaz : node);

precondition: k is a marked item of sequence B, S is a valid stratified tree forB

postcondition: k.mark = false, S is still valid and newmin (newmax) is the new
leftmost (rightmost) marked item in B

running time: O(1) if k is the only marked item in B and O(loglog |B|) otherwise

k.mark « false;
r «— k.rep;
if ».min = r.max
then (* just one marked node k£ = r.min = r.max *)
r.min «— nil;
r.max « nil;
r.mark «— false
else (* r.min # r.max *)
if r.size < 4
then do the obvious operations on linear list B
else (* there are non-trivial substructures, we first recursively
unmark k.low and compute the new min and max pointers *)
UNION(k.low,z, y);
if z = nil
then (* k.low was the only marked node in the substructure
and hence the recursive call above took time O(1) *)
UNION(k.low.rep, z;, y1);
T «— z;.min;
Yy — y1.max;
fi;
if k = r.min then r.min « z.high fi;
if k = r.max then r.max « y.high fi;
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23.
24.
25.
26.
27.
28.
29.
30.
31,

if r.min = r.max
then (* only one marked item now; trivialize the substructures *)
UNION(r.min.low); (* needs time O(1) *)
UNION(r.min.low.rep); (* needs time O(1) *)
fi;
fi;
fi;
newmin + r.min;

nEWmMar + r.max;

Running time O(loglog |B|) is obvious from the comments in the program.

Operations ADD and ERASE modify the linear list B by adding or erasing an item.
We perform ERASE(z) by deleting z and all its copies from the pointer structure. This

may lead to a violation of the weight criterion of definition 1. We therefore store the

outermost structure (in the hierarchy) which becomes too light in a variable outba! and

later we call a procedure REBAL which restores balance. Similiary when we perform

ADD(z,y) we add z and its copies to the pointer structure by giving them the same
representatives as the corresponding copies of y, store the outermost structure which
becomes too heavy in outba! and then call REBAL to restore the balance. The details

are as follows:

Algorithm 9:

1.
(*

*
St

[ —
_ o

Ll I A

procedure ADD (z,y);

precondition: y € B and S is a valid stratified tree for B

effect: adds the unmarked item z immediately before item y to B and stores the
representative of the first encountered substructure which is too heavy in
variable outbal and the size of its superstructure in w

running time: O(loglog |B|)

outbal « nil;
r — y.rep;
z.rep + r;
insert r before y into the doubly linked list r.list
r.gize «— r.size + 1:
if z.high # mil
then (* superstructure exists *)
r' +— z.high.rep;
if (r.size > 2/r'size) and (outbal = nil)
then (* overflow *)
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12. outbal — r;
13. w — r'.size;
14. fi;

15. f;

18, if r.size > 4

17. then (* substructure *)

18. z + new node;
19. z.mark + false;
20. z.high + z;

21. zlow « z;

22. ADD(z,y.low);

23. fi;

Algorithm 10:

1. procedure ERASE (z);
(* precondition: z is an unmarked item in B and S is a stratified tree for B
effect: removes r from B and stores the representative of the first encountered
substructure which is too light in the variable outba! and the size of its
superstructure in w
running time: Of(log log |B|)

*
—

outbal « mil;
T — y.rep;
I.rep «— T
delete = from the doubly linked list 7.list
r.size — r.size - 1;
if z.high # il
then (* superstructure exists *)
7' — x.high.rep;
if (r.size < 1/2/7' size) and (outbal = nil)
then (* underflow *)
outbal — r;
w «— r .size:

—
=T I I R e

P
ol

fi;

.
[<5s ]

. fi;

. if r.size > 4

. then (* substructure *)
ERASE(z.low);

— ek
© o I &

. fi;
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Both procedures obviously have running time O(loglog |B|) and perform the specified
task. It remains to describe procedure REBAL which is called (if outbal # nil) with
parameters outba!l and w after each call of ADD and ERASE.

Algorithm 11:

1. procedure REBAL (r,w);
(* precondition: r is the representative of a substructure S;
the superstructure of § has size w
effect: combines S with a brother structure and restores
the weight criterion of definition 2
running time: O(|C|loglog|C|) where C' is the linear list represented by S

+*
N

if r.succ = nil

them r' + r.pred

else r' — r.succ

fi;

C « r.list U ' list;

R — r.rep.list;

8. divide C into sequences By, B;,..., B. of length between \/w and %\/1_0,
9 fori=1toc

10. do BUILDSTRUCTURE(B,, );
11. insert = before r into R;

12. od;

13. remove r and r' from R;

14. BUILDSTRUCTURE(R,r.7ep);

el

What remains to do is estimating the amortized rebalancing cost.

Lemma 9. Let B be a sequence of n items. A call BUILDSTRUCTURE(B, r) followed
by n ADD/ERASE operations has total cost O(n(loglogn)?).

Proof:
Let Sp be the stratified tree generated by BUILDSTRUCTURE(B, r) and let

So—opy — Sg—REBAL —+ Sy—ops — S|—REBAL — S;—op3 -+ —* Sp—

be a sequence of n update operations each followed by a call of REBAL(outbal, w) where
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op, € { ADD, ERASE} for 1 <7 <n—1. Then we have

n
total cost = Z cost of op; +  total rebalancing cost

=1

n—1 n—1
=) cost(S; — S])+ Y _ cost(S] — S;11)
1= 0 3=0

The first term is bounded by

n—1
O(Z log log(n + z)) = O(nloglogn)
i=0

which is the immediate coast for a sequence of n ADD or ERASE operations (cf.
zlgurithms ADD and ERASE),

We use the bank account paradigm to estimate the second term. For a stratified tree S
we dJefine the following account based on Blum/Mehlhorn [BM80] and Luecker/Willard
|WL35|.

bal(S) := 2loglogn - E max(0, r.size — ;\/t_v, Vw — r.size)

The summation is over all representatives r and w denotes the size of the structure of r.

Then bal(So) = 0 since Sp wus constructed by a call of BUILDSTRUCTURE and hence
vw < rsize <3/2y/w for all representatives r in Sp. Next observe that a call of ADD
or ERASE changes the size fields of O{loglogn) representatives and hence

bal(S]) < bal(S,) + O((loglogn)?), 0<i<n-—1

Let us finally consider the transition from S/ to S,41. If 8! = S,4,,1.e. nocall of REBAL
was required, then bal(S!) = bal(S;41) and the transition has cost zero. Assume next
that the call REBAL(outbal,, w,) was required. This call has cost O(outbal, .size-loglog n)
and reduces the balance by at ieast outbal;.size-loglogn, i.e,

bal(S, 1) < bal(S!) — outbal, size - loglogn

We conclude that the cost of the transition is covered by the decrease in balance and

lemma 5 is shown. s

Now it is ecasy to modify the data structure in such a way that all 5 operations FIND,
UNION, SPLIT, ADD and ERASE are supported in time O(loglogn) (amortized for
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ADD and ERASE, worst case for FIND, UNION and SPLIT) and space O(n). We
simply divide the scquence B into groups of size between loglogn and 4loglogn. Each
group is realized as a doubly linked linear list. The O(n/loglogn) list headers are stored
in a stratified tree as described above. This tree requires space O(n). The cost of the
operations FIND, UNION and SPLIT is only increased by an additive factor of O(log log n)
and hence is still O(loglogn). Operations ADD and ERASE are usually performed on
the linear lists; only every O(loglogn)-th operation requires a "real” update operation
ou the stratified tree (when a linear list grows too long, i.e. has length 4loglogn+1 then
split it into two lists of length about 2loglogn and if a linear list becomes too short, i.e.
has length loglog n — 1 then either fuse it with a brother list of length at most 2loglogn
or take (loglogn)/2 items away from a brother list if both brothers have length greater
than 2Jog log n). The amortized cost of an ADD or ERASE reduces to O(log log n) since
lemma 9 now can be applied to a sequence of n/loglogn items (list headers). We use
the strategy described above for a sequence of n update operations and then rebuild the
entire data structure. This has total cost O(nloglogn). We summarize the results of

this section in the following theorem:

Theorern 8. FIND, UNION, SPLIT, ADD and ERASE can be supported in time
O(log log n) per operation and space O(n). The time bound is worst case for FIND, UNION
and SPLIT and amortized for ADD and ERASE,

Proof:
See lemma 8, lemma 9 and the discussion above. B
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6. Applications

Dynamic fractional cascading is a very powerful strategy for improving the search and
update timne of data structures which consist of a basic frame graph (e.g. a binary tree) and
where the data is stored as linear lists in the nodes of the graph. Such data structures are
often used in computational geometry, e.g. segment trees, range trees, interval trees,....
In this section we demonstrate how the efficiency of segment and range trees [B77] [B79)
[L78] (W78] [W85] can be considerably increased by dynamic fractional cascading. Note
that static fractional cascading is a generalization of the techniques initially developed
for segment and range trees (cf. [VW82], [EGS], [IA84], [L84], [CG85]). So we are only
transfering our results about dynamic fractional cascading back to the origin of all of
it. The reader can find the basic facts about segment and range trees in the text books
(M84c] and [PS85].

6.1 The augmented segment tree

A segment tree is used to store a set S of horizontal line segments. A line segment
is given by the z-coordinates of its endpoints and by their common y-coordinate. In
this section we consider the case where the z-coordinates are restricted to a fixed finite
universe U, |U| = N. This is frequently called the semi-dynamic case; the general case
is treated in the next section. A segment tree consists of a search tree of depth O(log N)
for the elements of U. In addition, there is a node list NL(v) C S for each node of the
tree. A line segment L € S is contained in the nodelist NL(v) iff range(v) C proj(L)
and range(father(v)) & proj(L). Here proj(L) is the projection of L onto the z-axis and
range(v) = {z € Ula search for z in the underlying search tree goes through v}. The
line scgments in a node list are ordered by their y-coordinates.

A segment tree can be naturally viewed as an instance of fractional cascading. The
catalogue graph is the underlying search tree and the range R(e) of each edge is taken
to be the entire universe. Then the local degree is bounded by 3. The catalogue C(v)
of node v is the list (of the y-coordinates) of the line segments in NL(v). According to
'he fractional cascading paradigm we will store in each node an augmented catalogue
A{v). We call the data structure obtained in this way an augmented segment tree.

Theorem 4. Let U CR,|U| = N and S a set of n horizontal segments ((z1,¥), (z2,¥))
with 71,2z, € U and y €R, |S| =n.

a) An augmented segment tree for S needs space O(nlog N).
b) An augmented segment tree for S can be constructed in time O(nlog N).

c¢) Insertion or deletion of a segment needs time O(log N log log(n + N)).
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d) Semidynamic orthogonal segment intersection search: Let ¢ be a vertical segment
((x0,¥1), (x0,y2)) and L = {p € S|p intersects ¢}. Then L can be computed in time
O(|L| + log n + log N log log(n + N)).

e) (Imai/Asano [[A84]): All "loglogn” - factors in a) to d) can be omitted if only
insertions or only deletions are to be supported.

Prool:

a) The augmented segment tree needs space linear in the space requirement of the
original segment tree (see lemma 1 in section 2 and theorem 3 in section 5).

h) By part a) the total length of all augmented catalogues is O(nlog N). Also for an
augmented catalogue A(v) the data structure of section 5 requires space O(|A(v)|)
and can be constructed in that time.

¢) To perform an update operation a segment must be inserted into (deleted from)
O(log N} node lists (catalogues). Theorem 2 of section 4 and theorem 3 of section 5
show how to do that in amortized time O(log N log log(n + N)).

d) Let vg,vq,v2,...,up (£ € log N) be the search path for x-coordinate zp of search
segment ¢. Then the answer L is given by (Jy<;<,{8 € C(vi)|ly1 < ¥a < y2}. In order
to compute L we only have to locate in eaacihﬁca.ta.logue C(vi), i = 1,...,¢, both
y-coordinates y, and y; and to report all elements lying between them. The search for
y1 and y, takes time O(log n) at the root (binary search) and O(log log(n+ N)) time for
every other cataloguc on the search path (Lemma 2 in section 2 and theorem 3 in section
5). Thus the total time needed for computing L is O(|L|+logn+log N loglog(n+ N))

e) Sec remark 2) at the end of section 2. 2

6.2 The augmented dynamic segment tree

Now & is an arbitrary set of n horizontal segments i.e. both x-coordinates and y-
coordinates of the segments in S are arbitrary real numbers. We first assume that S is
simple, i.e. that the x-coordinates of all endpoints of segments in § are pairwise distinct.
l.emma 15 at the end of this section will show how this restriction can be dropped.

Inetead of a static binary tree we use now a balanced search tree as the underlying tree
{catalogue graph), more precisely a BB[a]-tree (cf. [M84a]) for the x-coordinates of the
line segments in S. BB[a|-trees are defined as follows. For a node v let th(v) be the

number of leaves in the subtree rooted at v. A tree is in class BB[a| for real parameter
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o if for all nodes v in the treec o < th(v)/th(parent(v)) < 1—a. It is well known that for
I/4 < a < |- /2/2 BB[a] - trees can be rebalanced by rotations and double-rotations
safter \nsertion or deletion of a leaf. Since BB[a]-trees have logarithmic depth and can
be built up in linear time it is clear that parts a), b) and c) of theorem 4 carry over
with N replaced by n. For parts c) and e) we have to work harder.

Consider the insertion (deletion) of a segment, say (z1,z2,y). We first have to add two
additional leaves (corresponding to z; and z;) to the BB[a]-tree and then to restore
ilke 13Bla]-property. Once this is done we can actually insert the segment as described
in the previous section. Similary if we delete a segment we first delete it from the node
lists and then change the underlying BB[a]-tree. It is clear that the bounds of theorem
4, part ¢) and e) apply to the actual insertion and deletion of a segment. The goal of
this section is to bound the cost of rebalancing the underlying BB|[a]-tree.

A Bblal-tree is rebalanced by rotations and double-rotations; the following fact (proved
by |HKM80], [L78] and [WL85] cf. also [M84a]) will be very important for us.

Faect: Let 1/4 < @ < 1 - +/2/2 and consider an arbitrary sequence of m insertions and
deletions into an initially empty BB[a] - tree. Then the total number of rotations and
double rotations about nodes of thickness in [(2=)", (725)"+!] is O(m/(1 — a)*) for all
120

Rotetions and double rotations can be executed by inserting and deleting edges (modifi-
cation ol the underlying catalogue graph) and simple rearrangements of some node lists
{see figure 4). For this reason we first prove a lemma that gives an upper bound on the
cost of inserting edges into or deleting edges from catalogue graphs.

Lemama 10. Let G = (V, ¥) be a catalogue graph.

a) Let v, w €V and e = (v,w) € E. Then the edge e can be inserted into the catalogue
graph @ in time O((|A(v)| + |A(w)]) log log(|A(v)| + [A(w)])).

b) Let wow €V and e = (v,w) € £. Then the edge e can be deleted from G in time
Q1A (v)] -+ |A(w)]) log log(|A ()] + |A(w)])).
o} 1A(v) N R{v,w)| = O(|A(w) N R(v, w)|) for all edges e = (v,w) € E.

Proof:

a) To iusert a new edge between nodes v and w we have to create bridges between

A{v) and A(w) such that the resulting blocks B fulfill invariant 1 and make no
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contribution to the bal-function defined in section 4, i.e. a' <|B| <. This requires
at most 2/a’'(|A(v)| + |A(w)|) insertions of non-proper elements into the catalogues.
The positions of the new bridges can be easily determined by scanning A(v) and
A(w) from left to right in time O(|A‘(v)| + |A(w)]). Thus the total time for inserting
e is O((|A(v)| + |A(w)]) log log(|A(v)| + |A(w)]))-

b) All bridges between A(v) and A(w) have to be deleted. This is done by deleting at
most 2/a’(|A(v)| + |A(w)|) non-proper elements from A(v) and A(w).

¢) There are at most |A(w) N R(v,w)| bridges between A(v) and A(w). Between two
adjacent bridges there are at most b elements in A(v) N R(v,w) (invariant 1). Thus
we have |A(v) N R(v,w)| < (b+ 1)|A(w) N R(v, w)| s

We will now specialize the discussion to segment trees. Let S be a simple set of n
horizontal line segments and consider a segment tree based on a BB|a]-tree for the
x-coordinates of the endpoints.

Lemma 11. A rotation at node v costs time O(|A(v)|loglogn).
Proof:
A rotation at v can be executed by the following 3 steps (see fig. 4):
a) Delete the edges (u,v) and (w,y)
b) Iusert the edges (u,w) and (v,y)
¢) Rearrange the node lists:

C'(w) — Cv)

C'() = CE)NC)

C'x) — C(z)—C'(v)

C'ly) ~ (Cy) —C'(v))UC(w)

C'(z) — C(z)uC(w)
luserting and deleting two edges by lemma 10 needs time

O(4(|A(u)| + |A(v)| + |A(w)| + |A(y)]) log log n) = O(| A(v)|log log n)

(note that A(v) = O(n + |E|) (lemma 1) = O(n) since |E| < n)
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Figure 4

Rearranging the nodes lists requires O(|C (v)|+ |C(w)|+|C(=z)|+ |C(y)|+ |C(z)]) insertions

and deletions which can be performed in time
o(iC)i+|Cw)| + (C(z)| + |[Cy)] + |C(z)]) loglog =) = O(|A(v)|log log )

Thus the total cost of a single rotation at node v is O(|A(v)|loglogn).

Leiama 12.  Let th(v) = number of leaves in the subtree rooted at v and —i <a < 1_34?‘
a) (C()] = O(th{v)) for all v € V
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b) th{v) < (i)d"‘(”""]th(w) for all v,w eV
where dist(v, w) is the distance between v and w in the BB[a] tree.

Proof:

a) Observe first that C(v) = NL(v)
Next note that if 8 € NL(v) then the search path for the x-coordinate of one of the
endpoints goes through father(v). Thus |NL(v)| < th(v).

b) For any BB[a]-tree holds:

o th(v)

< <1—-a if vis the a son of w and hence
th(w)

th(v)

1 1
<max(—,1—-a)= =  for every edge (v,w) € E
a a
A simple induction completes the proof. "

Lemma 13. Let G = (V, E) be an undirected binary tree (i.e. degree(v) < 3 for all
v € V) and v,w € V with dist(v,w) = ¢. The number of all possible paths of length

~

3 > ¢ from v to w is at most 2737 < 67,

Proof:
let v = vg TN Vg Ua vi_1 v; = w be the shortest path

from v to w. Since G i3 a tree any path P from v to w must use all nodes vy, v,,...,v;
and all edges (vk,vk+1),0 €k <7—1. At each node vi, 0 < k <, P can form a loop
of length £, with

Y b=j—i
k=0

Siuce the degree of every node is at most 3 there are at most 3% possible loops of length
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£. Thus we have
|[{ paths from v to w of length 7 | j 2 1 = dist(v,w)}

< Z 3legtigts 36
Lot lit+lat...+&i=5—i

S (J) 3(£o+tl+h+m+tn)
)

;  — 1 3 : 5 :
since there are (J i ) possible ways to write (j — i) as sum of ¢ + 1 terms
i

()

<P

Lemma 14. |A(v)| = O(th(v)) for all nodes v.

Proof:
Let Br(v,w) denote the number of bridges between A(v) and A(w)

[A@) = |C)|+ Y Br(v,w)

(v,w)€EE

cwi+ Y AT IAw)

(v,w)cE 2

IA

CEI+ 1A+ 3 JAw)l

(v, w)EE

Thus 4@ < S C@l+= X lAm))

(v,w)EE

Estimating |A(w)| in the same way yields

|A(vnsai3(icw+;‘ > af3(|c*(w)!+§ 3 |A(u)|))

(v,w)eE (w,u)EE

:ajs(lc(v)HE-}E Z |C(w)!+613 Z E IA(u)l)

(vw)ER (viw)EE (w,u)cE
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Repeating this procedure k times results in

Alu
Z (al _(3))24-! 1)
=1 wEP‘(u} ucPh+1(v)

|A(v) € ——; (IC(v)i

where P'(v) is the set of nodes reachable from v by a path of length i. Next observe
that (we use {path v——w} to denote the set of paths of length ¢ from v to w)

C(w)]
col+Y, ¥ 2wl

1=1weckF'(v)

<iewi+ Y, ¥

1=1 weP'v)

oc oo Clw
SIEDI) DD D
1=1)=0 yep* (v)
dist(v,w)=j5

SeE+Y X (IC( )|Z'{"“h”3).'””)

=0 weV .)J
dist{v,w)=5

<thv)+z Y- thv)(= )’Z( 63)'

weV 125
dut(u w)=jy

j ;
< th(v +ZS 23— 1zhv)( ) (ai:;) I_IL

a—3

by lemmas 12 and 13 and the fact that most 3-2’~! nodes w have distance j from v.

=O(th(v)) ifa> 4+3anda>9

and that
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A e th v-Etl 4
S o<y ¥ el
uePh+i{v) o= a--'fff.f)a

k+1
< Z Z [A(w)| (a;i.") (lemma 13)

j>0 wev
dist(v,w)=j3

- (afa)m 3 IAw)

weV

6 k+1
< (a = 3) O(n) (lemma 1 of section 2)

= 0(1) for k sufficient large

Putting these estimates together we obtain

|A(x)] = O(th(v))

Now we can estimate the amortized cost for insertions and deletions:

Theorem 5. In the augmented dynamic segment tree a single rotation at any node v
costs tiine O(th(v)loglogn).

Proof:
Lemma 11 and lemma 14 s

Theorem 6. Therebalancing of the underlying BB|a|-tree for a sequence of m insertions
or deletions has cost O(m lognloglogn).

Proof:
In a BB|al-tree the rebalancing cost is

clogn
O(m Z:o JO <o) Hl-<al) with c=-m
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provided that a single rotation at node v needs time O(f(th(v))) (for details see [M84a],
[M84c] or [WL85]). In this application we have f(th(v)) = th(v)loglogn (theorem 5).

Thus an upper bourd for the cost of m update operations is

clogn clogn
O(m Z (1— o) ‘loglogn(l — a)') = O(m E log log n)
= O(m log n log log n)

Theorem 7. Let S be a set of n horizontal segments with endpoints in R xR

a) An augmented dynamic segment tree for S can be build in time O(nlog nlog logn).
b) It has spece requirement O(nlogn).

c) Insertion or deletion of a segment needs time O(log n loglogn).

d) Let g be a vertical segment ((zo, 1), (<0, ¥2)) and L = {((z,4), (+',)) € S|z < 70 <
and y; <y < y2} Then L can be computed in time O(|L| +log nloglogn) ( dynamic
orthogonal segment intersection search)

e) (Imai/Asano [[A84]): All "loglogn” - factors in a) to d) can be omitted if only
insertions or only deletions are to be supported.

Proof:
See proof of theorem 4 and the discussion above for simple sets §. The following lemma
shows how to deal with arbitrary sets of line segments.

Lemma 156. The augmented dynamic orthogonal segment intersection search can be
solved for general § in the same time bound as for simple S.

Proof:

We replace the x-coordinates of endpoints by triples and use the lexicographic ordering
on the triples. Assume that each segment s has a unique number (name) num(s). Then
replace the x-coordinate z, of the left endpoint of s by the tripel (z,,1,num(s)) and the
x-coordinate zy of the right endpoint by (z3,0,num(s)). Note that all first coordinates are
dislinct now. Furthermore left endpoints with the same x-coordinate as right endpoints
received a lower first coordinate. A vertical query segment with coordinates (z,y;,y2)
i« simply transformed to {{z, 1,anything),y;,¥2). .

47




This completes the proof of theorem 7. 5

6.3 The angmented range tree

The techniques we used for dynamization of segment trees can also be applied to range
trees (d-fold trees) [L78] (W78] [B79]. The correctness of the following two theorems is
straightforward. They improve the best previous results for dynamic orthogonal range
search of Willard [W85] who gives an algorithm with query and update time O(log’/ )
( O(log® */? 1) in the d-dimensional case).

Theorem 8. Let S be a set of n points in the plane

a) An augmented dynamic range tree for S can be constructed in time O(n log n log log n).
b) It has space requirement O(nlogn).

c) Insertion or deletion of a point needs time O(lognlog log n).

d) Let zo,21,Y0,y1 € R with 7o < z; and yo < y; and L = {(z,y) € S|zp < z < z; and
vo <y <y} Then L can be computed in time O(|L| + log nloglog n).

e) (Imai/Asano [[A84]): All "loglogn” - factors in a) to d) can be omitted if only
insertions or only deletions are to be supported.

Theorem 8 can be generalized to d-dimensional space (d > 2) by well known standard
techniques (e.g. [M84] Vol.3):

Theorem 8. Let S be a set of n points in the R%,d > 2
a) An augmented dynamic range tree for S can be build in time O(n log® ! nloglog n).

d—1 n).

b) It has space requirement O(nlog
c) Insertion or deletion of a point needs time O(log®~' nloglogn).

d) Let zo,21,¥0,¥1 € R with 29 <z, and yo <y, and L = {(z,y) € S|zo <z < z; and
vo <y <y1} Then L can be computed in time O(|L| +log® ! nloglog n).

e) All "loglog n” - factors in a) to d) can be omitted if only insertions or only deletions
are to be supported.



7. Conclusions and Open Problems

In this paper we introduced dynamic fractional cascading and applied it to segment
and range trees. An important subproblem which we had to treat is the problem of
maintaining interval partitions of dynamic linear lists. The major open problem is whether
the loglog N factor introduced by our solution to that problem is really necessary.
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