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Abstract. The problem of searching for a key in many ordered lists arises frequently in
computational geometry. Chazelle and Guibas recently introduced fractional cascading
as a general technique for solving this type of problem. In the present paper we show that
fractional cascading also supports insertions into and deletions from the lists efficiently.
More specifically, we show that a search for a key in n lists takes time O(log N+n log log N)
and an insertion or deletion takes time O(loglog N). Here N is the total size of all lists.
If only insertions or deletions have to be supported the O(loglog V) factor reduces to
O(1). As an application we show that queries, insertions and deletions into segment
trees or range trees can be supported in time O(lognloglogn), when n is the number
of segments (points).
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1. Introduction:

The problem of locating a key in many ordered lists arises frequently in computa-
tional geometry, e.g. when searching in range or segment trees. Several researchers, e.g.
Vaishnavi/Wood [VW82], Willard (W85], Edelsbrunner/Guibas/Stolfi [EGS], Imai/Asano
[IA84], Lipski [L84] observed that the naive strategy of locating the key seperatedly in
each list by binary search is far from optimal and that more efficient techniques frequently
exist. Chazelle/Guibas [CG85] distilled from these special case solutions a general data
structuring technique and called it fractional cascading. They describe the problem

as follows.

Let U be an ordered set and let G = (V, E') be an undirected graph. Assume also that for
each vertex v € V there is a set C(v) C U, called the catalogue of v, and that for every
edge ¢ € E there is given a range R(e) = [{(e),r(e)] CU. Weuse N =3 ., |C(v)| to
denote the total size of the catalogues. The goal is organize the catalogues in a data

structure such that the following operations are supported efficiently.

1. Query: The input to a query is an arbitrary element k € U and a connected
subtree G' = (V', E’) of G such that k € R(e) for all e € E'. We use n to denote |V'|.
The output of the query is for each vertex v € V' an element z € C(v) such that
“predecessor of r in C(v)” < k <z i.e. the query locates k in each list C(v),ve V',

Chazelle and Guibas [CG85] have shown that fractional cascading supports queries
in time O(n + log V) provided that G has locally bounded degree, i.e. there is a
constant d such that Vv € V and Vk € U there are at most d edges ¢ = (v, w) with
k € R(e). We will assume throughout this paper that G has locally bounded degree.
In the present paper we are also interested in insertions into and deletions from the

catalogues.
2. Deletion: Given key k& & C(v) and its position in C(v), delete k from C(v).

3. Insertion: Given k € U and an element z € C(v) such that “predecessor of z in
C(v)” <k <z, insert k into C(v).

In sections 2 to 5 we will prove the main main result of this paper:

We can support queries in time O(log(N + |E|) + nlog log(N + |E|)) and insertions and
deletions in O(loglog(N + |E|)). The bound for the queries is worst case and the bound
for the insertions and deletions is amortized. If only insertions or only deletions have to
be supported then the bounds reduce to O(log(N + |E|) + n) and O(1) respectively.

In section 2 we briefly recapitulate the paper of Chazelle and Guibas [CG85]. In section

3 we give the insertion and deletion algorithms and analyse their amortized behavior in
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section 4. The amortized analysis is based on the bank account paradigm (cf. [M84a]) and
extends the amortized analysis of (a,b) - trees [HM82]. A novel feature of our analysis
is the fact that the tokens used for the accounts change their value over time. The
insertion and deletion algorithms make use of an efficient data structure for maintaining
an interval partition of a linear list. Mor precisely, if B is a linear list of n items, some

of which are marked we will consider the following five operations on it:

FIND input : a pointer to some item z
output: a pointer to a marked item y such that all items between z and y

are unmarked

ADD input : a pointer to some item z
effect : adds a unmarked item immediately before z to the list

ERASE input : a pointer to a unmarked item z
effect : deletes z from the list

UNION  input : a pointer to a marked item z

effect : unmarks item z
SPLIT input : a pointer to a unmarked item z
effect : marks item z

We will prove that FIND, UNION, SPLIT, ADD and ERASE can be supported in
time Ofloglogn) per operation and space O(n). The time bound is worst case for
FIND,UNION and SPLIT and amortized for ADD and ERASE.

The data structure used to represent interval partitions of linear lists is derived from
the O(loglog N) - priority queue of v. Emde Boas [EKZ77] and is described in section
5. Imai/Asano (IA84] have shown that operations FIND, SPLIT and ADD or FIND,
UNION and ERASE can be supported in amortized time O(1). This explains why the
amortized time bounds can be reduced to O(log(N + |E|) + n) for queries and O(1) for
updates if only insertions or only deletions have to be supported.

As mentioned above, fractional cascading emerged from the techniques developed for
segment and range trees. Applying our general solution to these tree structures we
obtain versions of segment and range trees with query, insertion and deletion time
O(lognloglogn) (n is the number of segments or points). The best previous solution
was O(logg n) in [W85]. The application to segment and range trees is described in

section 6. Finally section 7 offers some conclusions and open problems.
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2. Fractional Cascading

In this section we describe the basic fractional cascading data structure and the algorithms
for the static case as introduced by Chazelle and Guibas in [CG85).

At each node v of the catalogue graph G we store a multi-set A(v) 2 C(v) as a doubly
linked linear list. A(v) is called the augmented catalogue at v. The elements in C(v)
are called proper, those in A(v) — C(v) non-proper. Each z € A(v) is implemented

by a record consisting of the following components:

key : a value from U
next : pointer to the successor in A(v)
pred : pointer to the predecessor in A(v)

target : a node of G incident to v

pointer : a pointer to an element in A(z.target)

count : integer
in_ S : boolean
kind : (proper, non-proper)

Note that we will often use z in the sense z.key and sometimes we denote by z a pointer
to the element z in a certain catalogue. But the meaning will always be clear from the

context.

The non-proper elements are used Lo guide the search between incident catalogues A(v)
and A(w), (v,w) € E. To this purpose the entries target and pointer of each non-proper
element r have the following meaning (they are not defined for proper elements):

Let r € A(v) — C(v). If x.target = w € V then e = (v,w) € £ and x.key € R(e). If
x.pointer = y then y is a non-proper element in A(z.target), z.key = y.key and y.pointer
= r. Thus z.pointer.pointer = z for every non-proper element z.

Let x € A(v)—C(v) and y = z.pointer € A(w) —C(w). The pair (z,y) is called a bridge
between A(v) and A(w). If (z,y) is a bridge between A(v) and A(w) then

r = y.pointer
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