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Abstract . The problem of searching for a key in many ordered lists arises frequently in 

compu tat ional geometry. Chazelle and Gu ibas recently introduced fractional cascading 
... a general techn ique for solving this type of problem. In the present paper we show that 

fractional cascading also supports insertions into and deletions from the lists efficiently. 

More specifically, we show that a search for a key in n lists takes time O(1og N +n log log N) 
and an insertion or deletion takes time O(log log N). Here N is the total size of all lists. 
If only insertions or deletions have to be supported the O(log log N) factor reduces to 

0(1) . As an application we show that queries, insertions and deletions into segment 

trees or range treel can be supported in t ime O(lognloglogn), when n is the number 

of segments (points). 

• This research we.. supported by the Deutsche Forochungagemeinschaft under grants Me 

620/6-1 and SFB 124, Teilprojekt B2 
•• A preliminary vers ion of this research WAS presented at the ACM Symposium 00 Compu­

tational Geometry, Ba.ltimore, 1985 
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1. Introduction: 

The problem of locating a key in many ordered lists aCIM::8 frequently in computa.-­

tional geometry, e .g. when searching in range or segment trees. Several researchers, e.g. 

Vai.hnavi/Wood IVW82), Willard IW851, Edel.brunner/Guib ... /Stolfi lEGS), Im';/ A.ano 

IIA84J, Lipski 1L84] oblerved tbat the n';ve Itrategy of locating the key oeperatedly in 

each list by binary search is far from optimal and that more efficient techniques frequently 

exist. Cha.zelle/Guibu [CGSS] distilled from these special cue solutions & gener&l data 

structuring technique and called it fractional calcadin&,. They describe the problem 

as follow8 . 

Let U he an ordered set and let G = (V, E) be an undirected graph. Assume also that for 

eACh vertex v E V there is a set C(v) <;;; V, called the catalol(Ue of V, and that for every 

edge e E E there is given a range R(e) = Il(e) , r (e)] C; U. We uoe N = L:.Ev IC(v)1 to 

denote t he total size of the catalogues . The goa.! ie organize the catalogues in a data 

s t ructure euch that the following operations are supported efficiently. 

1. Query: The input to a query is an arbitrary element k E U and a connected 

,ubtree C' = (V', E') of C such that k E R(e) for all e E E'. We use n to denote IV'I. 
The out put of the query is for each vertex v E V' an element :r E C(v) such that 

"predecessor of x in C(v)" < k ~ x i.e. the query locates k in each li8t C(v), v E V'. 

Chl:LZ~lle and Guibas [CG8S] have shown that fractional ca.scading supports queries 

in time O(n + log N) provided that G has locally bounded degree, i.e. there is a. 

cons tan t d such that Vv E V and Vk E U t here are at mOllt d edges e = (v, w) with 

k E R(e) . We will a~!oIume throughout this paper tha.t G has locally bounded degree. 

In the present paper we are also interested in insertions into and deletions from the 

catalogues . 

2. Deletion: Given key k E C(v) and its pOlition in C(v), delete k from C(v) . 

:~ . Insertion: Givell k E U and an element x E C(v) such that "predecessor of x in 

C(v)" < k $ x , insert k into C( u). 

III sec t ions 2 to 5 we will prove the main main result of this paper: 

We can ,upport queries in time O(iog(N + lEI) + nlog tog(N + lEI)) and insertions and 

deletion. in O(log 10g(N + lEI)). The bound [or the queries is wont case and the bound 

for the insertions and deletions is a.mortized. If only insertions or only deletions ha.ve to 

be supported tben tbe bounds reduce to O(log(N + lEI) + n) and 0(1) re6pectively. 

J[I section 2 we briefly recapitulate the paper of ChazeJle and Guibas [eG85]. In section 

3 we give the insertion and deletion algorithrruJ and analyse their a.mortized behavior in 
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section 4. The amortized analysis is bued on the bank account paradigm (d. [M84aJ) and 

extends the amortized analysis of (a,b) - tree! [HM82]. A novel feature of our analysis 

is the fact that the tokens used for the accounts change their value over time. The 

insertion and deletion algorithms make use of an efficient data structure for maintaining 

an interval partition of a linear list. Mor precisely, if B is a linear list of n items, some 

of which are marked we will consider the following five operatioDS on it: 

FIND 

ADD 

ERASE 

UNION 

SPLIT 

input a pointer to some item x 

output; a pointer to a marked item 11 such that all items between x and 11 

are unmarked 

input 

effect 

input 

effect 

input 

effoct 

input 

effect 

a pointer to some item x 

adds a unmarked item immediately before x to the list 

a pointer to a unmarked item x 
deletes x from the list 

a pointer to a marked item x 

unmarks item x 

a pointer to a unmarked item x 

marks item x 

We will prove that FIND, UNION, SPLIT, ADD and ERASE C&lJ be supported in 

time O(\og log n) per operation and space O(n). The time bound is worst CASe for 

F1ND,UNION and SPLIT and .. mortiud for ADD Il1ld ERASE. 

The data structure used to represen t interval partitions of linear lists is derived from 

the O(loglog N) - priority que ue of v. Emde Bo .. [EKZ77] and i. described in section 

5. Imaij A.ano [IA84] have .hown that operation. FIND, SPLIT and ADD or FIND, 

UNION and ERASE call be .upporteci in amortizeci time O(1). This expl .. in. why the 

amortized t ime bound. can be reciuced to O(log(N + [EI) + n) for querieo .. nd 0(1) for 

updates if only insertions or only deletions have to be supported. 

As mentioned above, fractional cascading emerged from the techniques developed for 

segment and range trees. Applying our general solution to these tree structures we 

obtain versions of segment and range trees with query, insertion and deletion time 

O(Jog n log log n) (n is the number of ,egment. or point.). The be.t previous solution 

was 0(log1 n) in [W85]. The application to segment and range trees is described in 

section 6. Finally section 7 offers some conclusions and open problems. 
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2. Fradional CaBcading 

In this section we descri be the basic fractional casca.ding da.ta structure and the algorithms 

for tbe static ca.se as introduced by CbazeUe and Guibu in [CG85j. 

At eacb node v of tbe catalogue graph G we store a multi-.et A(v) ;2 C(v) &II a doubly 

linked linear list. A(v) i. called the augmented catalogue at v. The element. in C(v) 
are called proper, those in A(v) - C(v) non-proper. Each x E A(v) i. implemented 

by a record consisting of the following components: 

key a value from U 

next pointer to the successor in A(v) 

pred pointer to the predecessor in A(v} 

target a node of G incident to u 

pointer a pointer to an element in A(x.target) 

count integer 

in _5 boolean 

kind (proper, non-proper) 

Note that we will often use x in the sense x.key and sometimes we denote by x a pointer 

to the element x in a certain catalogue. But the meaning will always be clear from the 

context. 

The !lon-proper elements are used to guide the search between incident ca.talogues A(v) 
and A(w), (VI w) E E. To this purpose the entries target and pointer of each non-proper 

element x have the following meaning (they are not defined for proper elemental: 

Let £ E A(v) - C(v). If x.target = wE V then e = (v, w) E E and x.key E R(e). If 
x.pointer:= y then ~ is a Don 4 proper element in A(x.ta.rget), x.key = 1I.key and 1I.pointer 

= x. T hus x.pointer.pointer = x for every non-proper element x. 

Let x E A(v) - C(v) and y = x.pointer E A(w) -C(w). The pair (x,y) i. called a bridge 

between A(v) and A(w) . If (x , y) is a bridge between A(v) and A(w) tben 

;r = y.pojnh~r 
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