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Abstract . The problem of searching for a key in many ordered lists arises frequently in 

compu tat ional geometry. Chazelle and Gu ibas recently introduced fractional cascading 
... a general techn ique for solving this type of problem. In the present paper we show that 

fractional cascading also supports insertions into and deletions from the lists efficiently. 

More specifically, we show that a search for a key in n lists takes time O(1og N +n log log N) 
and an insertion or deletion takes time O(log log N). Here N is the total size of all lists. 
If only insertions or deletions have to be supported the O(log log N) factor reduces to 

0(1) . As an application we show that queries, insertions and deletions into segment 

trees or range treel can be supported in t ime O(lognloglogn), when n is the number 

of segments (points). 
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1. Introduction: 

The problem of locating a key in many ordered lists aCIM::8 frequently in computa.-­

tional geometry, e .g. when searching in range or segment trees. Several researchers, e.g. 

Vai.hnavi/Wood IVW82), Willard IW851, Edel.brunner/Guib ... /Stolfi lEGS), Im';/ A.ano 

IIA84J, Lipski 1L84] oblerved tbat the n';ve Itrategy of locating the key oeperatedly in 

each list by binary search is far from optimal and that more efficient techniques frequently 

exist. Cha.zelle/Guibu [CGSS] distilled from these special cue solutions & gener&l data 

structuring technique and called it fractional calcadin&,. They describe the problem 

as follow8 . 

Let U he an ordered set and let G = (V, E) be an undirected graph. Assume also that for 

eACh vertex v E V there is a set C(v) <;;; V, called the catalol(Ue of V, and that for every 

edge e E E there is given a range R(e) = Il(e) , r (e)] C; U. We uoe N = L:.Ev IC(v)1 to 

denote t he total size of the catalogues . The goa.! ie organize the catalogues in a data 

s t ructure euch that the following operations are supported efficiently. 

1. Query: The input to a query is an arbitrary element k E U and a connected 

,ubtree C' = (V', E') of C such that k E R(e) for all e E E'. We use n to denote IV'I. 
The out put of the query is for each vertex v E V' an element :r E C(v) such that 

"predecessor of x in C(v)" < k ~ x i.e. the query locates k in each li8t C(v), v E V'. 

Chl:LZ~lle and Guibas [CG8S] have shown that fractional ca.scading supports queries 

in time O(n + log N) provided that G has locally bounded degree, i.e. there is a. 

cons tan t d such that Vv E V and Vk E U t here are at mOllt d edges e = (v, w) with 

k E R(e) . We will a~!oIume throughout this paper tha.t G has locally bounded degree. 

In the present paper we are also interested in insertions into and deletions from the 

catalogues . 

2. Deletion: Given key k E C(v) and its pOlition in C(v), delete k from C(v) . 

:~ . Insertion: Givell k E U and an element x E C(v) such that "predecessor of x in 

C(v)" < k $ x , insert k into C( u). 

III sec t ions 2 to 5 we will prove the main main result of this paper: 

We can ,upport queries in time O(iog(N + lEI) + nlog tog(N + lEI)) and insertions and 

deletion. in O(log 10g(N + lEI)). The bound [or the queries is wont case and the bound 

for the insertions and deletions is a.mortized. If only insertions or only deletions ha.ve to 

be supported tben tbe bounds reduce to O(log(N + lEI) + n) and 0(1) re6pectively. 

J[I section 2 we briefly recapitulate the paper of ChazeJle and Guibas [eG85]. In section 

3 we give the insertion and deletion algorithrruJ and analyse their a.mortized behavior in 
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section 4. The amortized analysis is bued on the bank account paradigm (d. [M84aJ) and 

extends the amortized analysis of (a,b) - tree! [HM82]. A novel feature of our analysis 

is the fact that the tokens used for the accounts change their value over time. The 

insertion and deletion algorithms make use of an efficient data structure for maintaining 

an interval partition of a linear list. Mor precisely, if B is a linear list of n items, some 

of which are marked we will consider the following five operatioDS on it: 

FIND 

ADD 

ERASE 

UNION 

SPLIT 

input a pointer to some item x 

output; a pointer to a marked item 11 such that all items between x and 11 

are unmarked 

input 

effect 

input 

effect 

input 

effoct 

input 

effect 

a pointer to some item x 

adds a unmarked item immediately before x to the list 

a pointer to a unmarked item x 
deletes x from the list 

a pointer to a marked item x 

unmarks item x 

a pointer to a unmarked item x 

marks item x 

We will prove that FIND, UNION, SPLIT, ADD and ERASE C&lJ be supported in 

time O(\og log n) per operation and space O(n). The time bound is worst CASe for 

F1ND,UNION and SPLIT and .. mortiud for ADD Il1ld ERASE. 

The data structure used to represen t interval partitions of linear lists is derived from 

the O(loglog N) - priority que ue of v. Emde Bo .. [EKZ77] and i. described in section 

5. Imaij A.ano [IA84] have .hown that operation. FIND, SPLIT and ADD or FIND, 

UNION and ERASE call be .upporteci in amortizeci time O(1). This expl .. in. why the 

amortized t ime bound. can be reciuced to O(log(N + [EI) + n) for querieo .. nd 0(1) for 

updates if only insertions or only deletions have to be supported. 

As mentioned above, fractional cascading emerged from the techniques developed for 

segment and range trees. Applying our general solution to these tree structures we 

obtain versions of segment and range trees with query, insertion and deletion time 

O(Jog n log log n) (n is the number of ,egment. or point.). The be.t previous solution 

was 0(log1 n) in [W85]. The application to segment and range trees is described in 

section 6. Finally section 7 offers some conclusions and open problems. 
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2. Fradional CaBcading 

In this section we descri be the basic fractional casca.ding da.ta structure and the algorithms 

for tbe static ca.se as introduced by CbazeUe and Guibu in [CG85j. 

At eacb node v of tbe catalogue graph G we store a multi-.et A(v) ;2 C(v) &II a doubly 

linked linear list. A(v) i. called the augmented catalogue at v. The element. in C(v) 
are called proper, those in A(v) - C(v) non-proper. Each x E A(v) i. implemented 

by a record consisting of the following components: 

key a value from U 

next pointer to the successor in A(v) 

pred pointer to the predecessor in A(v} 

target a node of G incident to u 

pointer a pointer to an element in A(x.target) 

count integer 

in _5 boolean 

kind (proper, non-proper) 

Note that we will often use x in the sense x.key and sometimes we denote by x a pointer 

to the element x in a certain catalogue. But the meaning will always be clear from the 

context. 

The !lon-proper elements are used to guide the search between incident ca.talogues A(v) 
and A(w), (VI w) E E. To this purpose the entries target and pointer of each non-proper 

element x have the following meaning (they are not defined for proper elemental: 

Let £ E A(v) - C(v). If x.target = wE V then e = (v, w) E E and x.key E R(e). If 
x.pointer:= y then ~ is a Don 4 proper element in A(x.ta.rget), x.key = 1I.key and 1I.pointer 

= x. T hus x.pointer.pointer = x for every non-proper element x. 

Let x E A(v) - C(v) and y = x.pointer E A(w) -C(w). The pair (x,y) i. called a bridge 

between A(v) and A(w) . If (x , y) is a bridge between A(v) and A(w) tben 

;r = y.pojnh~r 
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y = x.pointer 

x.target = w 

~.target = v 

x.key = y.key 

x.kind = y.kind = non-proper 

The field in_S i. used to indicate that a bridge (x, y) belongs to a certain set S that will 

be defined later (.ection 3). 

For each edge e = (v, w) there always exist the two bridges (X" ~,) and (x" V,) with x,.key 

= v,.key = i(e) and x,.key = y,.key = r(e). We denote these two extreme bridges between 

A(v) and A(w) by l(e)-bridge ILnd r(e)-bridge respedively. The bridges connecting two 

augmented catalogues A( v) and A( w) divide the interval [i(e), r(e)] into block •. Each 
pair of neighboring bridges (x', y'), (x, y) defin .. such a block B(x, y) c::; A(v) U A( w) (cf. 

figure 1). To identify a block we use the right bridge (x, JI) of the pair. Note that the 

i(e) - bridge does not identify any block. 

More formally: Let v E V,x E A(v) - C(v), x.target = wE V and 

x' = max{y E A(v) - C(v) [ y < x and v.target = w} 

I.e. (x',x'.pointer) and (x,x.pointer) are adjacent bridges between A(v) and A(w) (cf. 
figure I). Then we define 

I(x) := ]x',x[ n A(v) 

where lx', x[ denotes the open interval with endpoints x, and x. Each bridge (x, JI) except 

the l(e)-bridge i. used to identify the block 

B(x,y) := l(x) U l(V) 

The counters x.count and y.count give the !ize of the interval. I(x) and I(JI) i.e. 

II(x) 1 = x.count 

Il(V)1 = V·count 

IB(x,v) 1 = x.count + v.count 

The block sizes are crucial for the efficiency of the data structure. The bigger the block. 

are, the fewer bridges ( non-proper elements) are nec ... ary and the space requirement 

will be smaller. However (as we will see soon) to guarantee an efficient search algorithm 

the blocks must not exceed a certain size. For this reuon we pOitulate that all block. 

fulfill the following invariant: 
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A ( v) x ' x 
v 

I (x) 

(x,y) bridge 

B(x,y) 

I(y) 
r-____ -JA~ ______ ~I 

A (w) y'=x' .pointer y=x.pointer 

Figure 1 

Invariant 1. There are two constants a, b with a ~ b such that for all block. B{l:,~) 

holds 

I. IB{x,y)1 ~ b 

2. IB{x,y)1 ~ a or B{x,y ) is the only block between A{y.target) and A{x.target). • 

Invariant 1 generalizes the !ltructural invariant of (a,b)-trees (cf. IM84a.]) to fractional 

ca..'~c all i ng. 

The following two lemmas show that invariant 1 ensures both linear spa.ce and an efficient 

~earch algorithm. 

Lonuna 1. Let N = LOEV IC{u) /, 5 = LOEV IA{v) 1 and a ~ 3d. Then 

5 ~ 3N + 121EI. 

Proof: 

8 is clearly equal to N plus twice the total number of bridges. We have to count the 

number of bridge •. Let Br{v , w) denote the number of bridge. between A{v) and A{w). 
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These bridg"" define exactly Br(v,w) - 1 block •. All but one block contaln at least a 
elemenh and hence 

a(Br(v,w) - I) ~ IA(v) n R(v,w) 1 + IA(w) n R(v, w)1 

That means 
1 

Br(v,w) ~ -( IA(v) n R(v,w)I+ IA(w)nR(v,w)l)+ 1 
a 

Thus we have 

S=N+2 L Br(v,w) 
(v,w) E E 

~ N + H L IA(v) n R(v, w)1 + L IA(w) n R(v,w) l) HIEI 
(v,u.o) E E . (\I ,wlEE 

~ N + ~ (L IA(v)1 + L IA(wll) + 41EI 
"EV wEV 

since every x E A{v) is contained in R(v, w) for at moat d vertices w 

2d 
= N+ - S+4IEI 

a 

And finally 

S ~ ~d(N HIEI) 
a-2 

~ 3N + 121EI if a ~ 3d 

• 

Lemma 2. Given a search key k E U, an element x E A(v) with x.pred < k :5 x and 

'D edge < = (v, w) with k E R«), the position of k in A(w) can be found in constant 

time, i.e. V E A(w) with v.pred < k :5 V can be computed in time 0(1). 

Proof: 

We proof lemma 2 by giving a constant time algorithm for searching. 
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Algoritiun 1: 

1. function SEARCH (k,x,w); 
(* precondition: x E A(v) with x.pred < k., x, (v,w) E E and k E R(v,w) 

result: V E A(w) with v.pred.key < k ., V.key 

running time: 0(1) 

*) 
2. while x.target i- w do x -- x.next od ; 

3. y - x.pointerj 

4. while y.pred.key ?: k do y ~ v.pred od; 

5. return (y); 

The running time of SEARCH i. at most the size of the block between A(v) and A(w) 
containing x which is bounded by the constant b ( invariant 1). • 
The above algorithm locates key k in an augmented catalogue A(w), i.e. 

SEARCH(k, x, w) = y E A(w) with v.pred.key < k., V.key 

But what we want to find is the POSition of k in the original catalogue C(w), i.e. we 

bave to compute all element y' E C(w) with y' = min{z E C(w)lz ~ y}. For this reason 

a function FIND is defined t hat gives for any element x of an augmented. catalogue A(v) 
it •• uccessor y in the corresponding original catalogue C(v). For any x E A(v) 

FIND(x) := min{y E c(v) lv?: x} 

For ttw dynamic case (see next seclion) we also have to provide operations for inserting 

or deleting proper and non· proper elemenh. In section 5 a data structure is presented 

t.hat supports efficient ly the fo llowing five operations on a linear list of N items ( each 

item has a mark E {proper, non-proper}) . 

FIND 

ADD 

input : a pointer to some item x 

output: a pointer to a proper item 1I such tha.t a.ll items between 

x and V are non-proper 

input 

effect 

a pointer to some item x 

adds B. non-proper item immediately before x to the list 
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ERASE input a pointer to & non-proper item oX 

effect deletes x from the list 

UNION input 8. pointer to a. proper item x 

effect cha.nges the muk of x to non-proper 

SPLIT input a pointer to a non-proper item :c 

effect changes the ma.rk of x to proper 

The name, of the lMt two operations are suggested by the observation that the non-proper 
items partition the linear list into a family of intervals. Then operation UNION merges 
two adjacent intervals and SPLIT splits an interval. We will show in section 5 how to 

implement all five operation, in 'pace O(N) and in time 0(101 log N) (worst cue for 

FIND, UNION, SPLIT and amortized for ADD, ERASE). 

Remark.: 

I. In the static eMe only operation FIND i. needed. It can he realiud hy giving each 

non-proper item a pointer to its proper successor. Thus FIND has C08t 0(1) in this 

case. 

2. In the semi-dynamic case ( only insertions or only deletions have to be supported) 

operations FIND, SPLIT and ADD resp. FIND, UNION and ERASE have to be 

implemented. Gabow/Tarjan [GT83] and Imai/Asano [1A84] show how to do this in 
amortized time 0(1) . 

Theorem 1. Let k E U and G' = (V', E') be a subtree of G such that k E R(e) for all e E 

E' . Then k can be located in C(v) for all v E V' in time O(log(N + IEI)+nlog 10g(N + lEI) 

where n = IV' I and N = LvEV IC(v) l. 

Proof: 

Let Vo E V'. We first locate k in A(vo) by binary search in time O(!og( IA(vo)[)) = 

O(log( N +1 E I» (remember that IA( v)1 :5 O(N + IE I) for every v E V by lemma 1).Knowing 
the po.it ion of kin A(vo) it can be located in all A(v), v E V' by procedure SEARCH 
in time O(n). To find the position of k in the original catalogues C(v) FIND must be 

called once for every A(v), v E V'. Thus the total cost for a search in G' is O(log(N + 
lEI) + n log 10g(N + lEI». • 
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3. Dynami •• tion 

In this section we describe how t.o delete elements from the cata.loguee and bow to insert 

new elements into the cata.logues without increasing learch time aDd space requirement. 

In particular we give algorithms for insertion, deletion and rebalancing the block sizes. 

Insertion. and deletion. may result in blocko B(z, V) violating invariant 1 i.e. IB(x. v)1 > b 
or IB(x, v)1 < d. We .tore the.e block. out of balance in a..,t or li.t S. To check whether 

& block 8(x,1I) must be entered into S we use the counters x.count &Dd y.count. The 

sum of these two counters will .. lways indicate the .ioe of block B(x.V) if B(x.V) i. not 

in S. More precisely we maintain the following inva.riant: 

Invariant 2. Let (x ,V) be .. bridge witb B(x,V) " S. 

Then IB(x.v)1 = x.count + v.count and a:::; IB(x,v) l :::; b (invari ... t 1) • 

Remark.: 

a) The values of x.count and y.count are irrelevant if B(x,lI) E S 

b) If IB(x,v) 1 ric [a .. bl tben B(x.V) E S . 

c) There can exi.t block. B(x,V) with B(x,V) E Sand IB(x,v)1 E [a .. bl. The .. are 

blocks which have been modified by insertions &S well as deletions. 

Now we give the algorithm to insert an element x into the augmented catalogue A(v). 

Algorithm 2: 

I. procedure INSERT (x , Vol ; 
(0 precond;tion: VO E A(v) , vo.pred .key < x.key :S vo .key 

effect: x i. inserted immediat.ely before Va into A(v) 
running time: O(log Ig N), amortized 

' ) 
2. ADD(x, vol 
3. if x.kind = proper then SPLIT(x, Yo) 8; 
1. insert x into the doubly linked list A(v) before VO 

5. Y - 1,/0 

6. A - 0; 
7. do b tim •• 

8. W - )I.target; 
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9. if (y.kind = non· proper) and (w rt A) and (;dey E R(v, w)) 
10. then A ~ AU {w}; 
11. JI.count +- y.count + 1; 

12. z +- y.pointer; 

13. if (y.in.S = fal.e) and (y.count + •. count > b) 
14. then S ~ S U {B(y,z)}; 
15. y.in_S +- true; 

16. 

17. 
18. ft· , 

ft; 

19. Y +- ]I.next; 

20. od; 

A call to procedure INSERT need. amortized time O(loglogN) for the call. to ADD 

and maybe SPLIT (aee section 5) and O(b) time for the loop (linea 8-21). 

A(v) y y'. 

B(y',Z') 
A(u) 

z' 

B (y, z) 

A(w) z 

Ficur.2 

Lemma 3. Procedure INSERT preserves invariant 2. 
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Proor: 
Th. algorithm inoertB x directly before Yo into A(v) . Thu. the .iz. oC some bloch ( at 
moot d ) i. increued whose identiCying bridg .. (y,.) Ii. to Ih. right oC x ( lee figure 2 ). 

~a.e 1 B(lI, z) E S before the execution of INSERT. Then there is nothing to do. 

(Note: Neverthele •• the algorithm pooaihly increues y.count, hut this i. irrelevant) 

c ..... 2 : B(y,.) If. S before the execution oC INSERT. Thi. implies IB(y,z)1 :5. b. 

Ther.fore y can he reached in b .tepo .tarting Crom VO and the counler V.count geto the 

correct value. Thuo block B(y,.) entero S iC and only iC it. oize exceed. b. Furthermore 

the algorithm stores already examined neighbors w E V of node v in the set A to ensure 

tha.t for every edge (v,w) a.t most one block is treated. 

The aJgorithm to delete Iln element x from A(v) follow! . 

Algoritluu 3: 

I. procedure DELETE(x) ; 
(* precondition: xE A(v) 

effect: x is deleted 

running time: o (log log N), amortized 

*) 
2. if x .kind = proper then UNION(x) II; 

3. ERASE(x) 

4. remove x from the doubly linked li.t A(v) 

5. 1I - x.next ; 

6. A - 0; 
7. do b tim •• 

B. 

9. 

10. 

11. 

12 . 

13 . 

14 . 

15 . 

16. 

17. 

lB . 

19. 

20. 

w _ y.tllrget; 

if (y .kind = non-pmp«) and (w If. A) and (x.key E R(v, w)) 

then A - A u {w ); 

fl · , 

y.count - y .count + 1; 
Z _ J,I .pointer; 

if (y.in_S = fal.e) and (y.count + z.counl < a) and 
(B(V,z) is not the only block between v and w)) 

then S - S u {(y,z)}; 
y.in_S _ true; 

z.in_S ..-. true; 

o· , 

y - y.next; 
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21. od; 

Procedure DELETE need. time O(b + log lOS N). 

Lemma 4. Procedure DELETE preserv .. invari&nt 2. 

Proof: 
see proof of lemma 3. • 
In order to guarantee the time and space bounds of lemma 3 and lemma 4 in section 

2 we have to r .. tore invariant 1 after ...,h call to DELETE or INSERT by calling .. 

procedure REBAL. Note that all blocks violating invariant 1 are in the set S ( but not 

all block. in S violate it). Now we tint deecribe informally the rebalancing procedure 

and then give the &lgorithm REBAL. 

REBAL haa to examine every block B(x, ~) E S. First it mUlt compute the size l of 

B(x , ~). This can e&lily be done by running to the next par&llel bridge starting at (x , ~) 

in time 0 (1.). Knowing the block .ite I. there are three different cues: 

ca.e 1 : I. > b i.e. block B(x,~) is too large 

In this C&le tbe algorithm will divide B(x , ~) into l31/bJ + 1 parts sized "" equal as 

poolible. This can be done by inserting l3l/bJ bridg .. (i.e. in ... ,ting 2)( l3l/bJ non­

proper elements) . Then the size of the resulting sub-blocks is between ~ and ~ and 
fulfills invariant 1 if we choose a ~ ~ . The C08t for this cue is the COBt for computing 
the block size (O(l)) plus the cost for inserting the new bridges (¥ c&lls of Insert). 

ca8e 2 : l < a i.e. block B(X1ll) is too small 

Here B(x, y) i. concatenated with its rigbt (Iert) neighbor block by deleting tbe bridge 

(x, y) (deleti ng two non-proper elements). Tben we have to cbeck whether tbe neighbor 

block is &lready in S or not. To do this we scan the neighbor block until its identifying 

bridge ( x',~') is reacbed and ched tbe in_S-flag x'.in_S. But if (x',~') i. not reached 
within b steps we can stop this scanning procedure. Then we know that the neighbor 

block is Ia.rger than b and therefore a member of S. This mea.ns we can test wether 

B(x',y') is in S in time O(b). If B(x',~')" S then ito new size is computed by addition 

of the counter! x.count and x',count resp . lI .count and 1I' .oount. In the case that this 

size exceeds b 8(x/ , V') is added to S. The immediate COlt for this cue is the COlt for 
computing I. (O(t)), the cost for scanning tbe neigbbor block (O(b)) and the cost for 

deleting two non-proper elements (2 calls of DELETE). 
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caoe 11 : a :<=; l :<=; b i.e. block B(x, y) h .. correct size 

In this caae B(x, u) can be removed from S without any modification. The coat ia only 

the cost for computing the block eiz.e : l 

The following procedure REBAL ule. in the overftow cue a subroutine DIVIDE(B, k) 
which div idea block B into k subblocks differing in size by at mOlt 1. This routine simply 

inlert. k + 1 new bridgeo by calling 2(k + 1) tim .. procedure INSERT. The program for 

DIVIDE is straightforward and left to the interested reader. 

Algorithm .: 

1. procedu re REBALj 

2. while S -F t 
3. do let B (x ,y) be an arbit rary element of S; 

4. S~ S- {B(x , y)}; 

5. x. io _S _ falae; 

6. y.in_S ~ false ; 

(0 compute real , ize l of B(x, y) ' ) 

7. xlcount - 0; 

8. xl - x .pred ; 
9 . while xl .ta.rget ::I x.target 

10 . do xl - xl .pred; 
]1. xlcount - xlcount + 1; 

12. od ; 

13. 311 count - OJ 

14 . Vi ~ v·pred; 

15. while yl -F xl. poi nler 
16. do yl _ vl.pred; 

17 . ylcount - ylcount + 1; 

IS. ad ; 

19. (- xlcount + vlcount; (0 real size of B (x,V) 'J 
20. if l > b 

21. theD (' cue 1: overftow _ divide B(x,V) into 3l/b partl' ) 

22. DIVIDE(B (x , V), 3l/ b); 

23. elae if l < a 

24. theD (' case 2: underftow ~ concatenate B(x,y) with right neighbor 0) 

25. X T - x.next; 

26. 31r - 1I .next j 

27. DELETE(x); 

28 . DELETE(V); 
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29. 
30. 

31. 

32 . 

33. 

34. 

35. 

36. 
37 . 

38. 
39. 

40 . 

41. 

42. 

~3. 

44 . 

45 . 

46. 

47. 

48. 

49. 

50. 

5!' 

52. 

53. 

54. 

6 • . 

56. 
57. 

58. 

59. II ; 
60. od ; 

(' scan right neighbor block .) 
XTcount +- OJ 

wbile (xr .target f. x.target) aDd (",rcount :<:; b) 
do xr +- XT .next j 

xrcount +- zrcount + 1; 

od; 
yrcount +- 0; 

wbile (yr. target f. y. target) aDd (urcount :<:; b) 
do yr +- yr .next; 

yrcount +- "rcount + 1; 
od; 
if (",r.target f. ",.target) or (yr.target f. y.target) 

then (* right neighbor is larger than b i.e. is a member of S *) 
do notbing 

else ir zr .in_S = true 

II; 

tben (. right neighbor i. in S .) 
do nothing .ls. (0 right neighbor i. not in S 0) 
ZT .count +- :rrcount + zlcount; 

yr .count +- lITcount + vleaunt; 

if (","eou"t + yreou"t) > b 
then XT .io_S +- true; 

1Ir .in_S +- true; 

S - S U {B(:tT, yr)}; 
II· , 

II ' , 

ehle (* a ~ l $ b block has correct size .) 

x .count ...... x/countj 

1I .counl +- ylcount ; 

II · , 
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•. Analysis of the Dynamic Behavior 

We will show in this section that the amortized coat for one update operation (insert or 

delete) is 0(101 log N) where N is the current eir..e of our data structure i.e. the number 

or proper elements. More precisely we sbow that a sequence of m update operatio[U CAn 

be executed in time D(lEI + ~::, log 10g(N; + IEIl) where N; i. the number of proper 

elements before the ith operation. We prove this result using the bank account paradigm 

(cf. [HM82]' [MMa) or [T85j), i.e. we &IIIociate an account with the data structure. Each 

update operation put. 0(1) token. into this account where each token repr_nts the 

ability to pay for O(b + log 10g(N + lEI)) units of computing time. The actual computing 
time required for the update operation is pAid out of the account and the goal is to 

show that the balance of the a.ccount always stays non-negative. As in the amortized 

analy.i. of balanced trees (cf. [HM82)) the account i8 conceptually .plit into many .mall 

accounts, essentially one for each block B(x, ~) . The number of tokens in the account 

of block B(x,V) me.,ures tlie criticality of block B(x,V), i.e. the dooer IB(x,v)1 i. to b 
or a the larger is the number of tokens in the account, There is also a novel feature in 

the analysis. The value of the tokens changee over time. Since we will use the tokens to 

pay for the li.t operation. UNION, SPLIT, ADD and ERASE on augmented catalogu .. 

the tokens must suffice to pay for the coet of these operations when they a.re executed . 

The actual size of the catalogues at tha.t point of time differs in general from the size 

of the catalogues, when the tokens where depoaited in the account. Hence the value of 

the tokens must change over time. We will next give a preciae statement of the result: 

We start with an "empty" data structure D_l with 

1. C(v) = 0 for all v E V 

2. A(v) = u ( • . w)" dl(v,w) , r(v , w)} 

3. S ;;;; set of all blocks t hat violate invariantl. 

First D_ l is transformed by procedure REBAL to a ba.l&Dced data structure Do . We 

will next execute a sequence of m insert / delete operations starting with Do. The i· th 

operat ion is realized by a cal! of procedure INSERT or DELETE, which brings us from 

data structure D 21 - 2 to structure D 2i _ 1 , and a subsequent call of REBAL, which brings 

u~ from D2 1 _ 1 to D2j , 

D _ I- rebato ---t Do~ OPI --+ D 1- rebai 1 - D2 -- op2 - D3 - ••• - D 2rn 

.p, E {iNSERT, DELETE) for i = l..m. 

Let c08t(DJ - DJ + d denote the cost of going from Di to Di +1. Then the total cost of 
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the first m inoert and delete operations i. the sum of the coots of the calls of procedu ..... 
INSERT and DELETE and the total rebalancing coot 

We show 

Theorem 2. Th. total cost of the first m inoert/delete operations i. 

o (~IOgIOg(N; + lEI) + lEI) 

where Ni is the number of proper element. before the i-tb operation (i.e. the number 

of proper elements in D2d. 

Proof: 
W. go from structure D2 • to D2 .+1 by a call of either INSERT or DELETE. The cost 
of a call of INSERT or DELETE is O(b) plu. the coot of ADD and SPLIT (UNION and 
ERASE) respectively. The list operations are applied to augmented catalogues of size at 

moot O(N. + lEI). (Note that the total .i.e of all augmented catalogues i. O(N; + lEI) 
by lemma 1 and hence the ,i •• of every single catalogue i. bounded by this quantity). 
Let li.top(n) denote the co,t of a list operation on a list of length n. Then w. have 

From D 2t+1 to D 2f+2 we go by calling procedure REBAL. Thi.s procedure repeatedly 

removell blocks from the queue S, i.e. a. more deta.iled view is: 

D2 1 +- 1 = D~ -- n; -- n; -- D~ -- .. . -- D~o: = D'lt+21 

where REBAL removes a block of size i j from queue S, when going from Dj to Dj'+ l " 
This coets 

( {

(db list operations . if ii > b ) 
o lj + 1 list operation , if lj < a 

o list operations, if a :$ li :5 b 

All these li.t operation. are executed on li.t. of length at most O(N. + lEI). So 

m - l 

L co.t(D2.+! - D2•H ) 

i = - I 

17 
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o (~l "f=-l (l {(Jib x li.top(N, + lEI). if lJ > b)) 
.~ ~ J + li.top(N, + lEI). if lJ < a 
.=- 1 ) = 0 

We can now invoke theorem 3 from 8ection o. Let k be the total number of list operations 

that are executed when going from D_I to D2m . Then, by theorem 3 of section 5, the 

cost of these operations is bounded by E7""'1 log log Bj ,where .j i. the size of the lilts 

before the j- t h li.t operation. If we therefore replace li.top(N, + lEI) by loglog(N, + lEI) 
in the expression above then we have a bound for the total cost of all list operations. 

Our goal is therefore to bound 

o (~l "f=-l (l + {(Jib x loglog(N, + lEI) • 
. ~ ~ J log 10g(N, + lEI). .= .. · 1 ) = 0 

if lj > b)) 
if lJ < a 

Remark: Note that theorem 3 gives us only a bound on tbe cost of a sequence of list 

operations, i.e. a.n amortized bound. But that's a.ll we need for the current proof. • 

Now we are going to prove an upper bound for the expression ("') using the bank account 

paradigm (cf. [HM821. [M84al or [T851) . First we define a function 

bal : "state of the data structure" - No 

tha.t will indicate to what extend the data structure is out of balance. The bal-function 

is defi ned as the prod uct 

bal(D) = I(D) . (b + log 10g(N + lEI)) 

HL're f(D ) is the number of tokens in the account and the second term gives the current 

value of one token. 

Definition 1. Let 0.
1

, bl be two constants, a :5 0.
1 :5 hi :5 h, satisfying the following 

condition! (the reasoD for these requirements will become clear lateran): 

bl4 ~ a' (1) 

bl3 ~ b' (2) 

2b' ~ b - 12d - 6 (3) 

a' ~ 2a+2d+2 (4) 
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Possible values for a,a',b' and bare: 

Then we define for every block B 

a=34 

a' =9d+4 

b' = 12d+6 

b = 36d+ 18 

6(B) := max(O,IBI - b' ) + max(O,a' -IBI) and 

!(D) = 2 ( E 6(B) + E max (b - b' + I, 6(B)) + E max (a' - a + I, 6(B))) 
BrlS B€S+ BeS-

And finally ba/(D) := !(D)(b + log log(N + IEIll 

Here (S+,S-) is a partition of S with 

S+ = set of all blocks th&t came into S because they were too large (lBI > b) 
S- = set of all blocks th&t came into S because they were too small (IBI < a) 

• 

N is the number oC proper elements in D. Note that N is increued by insertions 
and decreased by deletions. The next lemmas show three very important properties oC 
function bal. 

Lemma 5. Let op E {INSERT,DELETE} and let op(D) be the data structure D 
modified by a call of procedure op then 

a) ba/(op(D)) S ba/(D) + 2d(b + log log(N + lEI)) + 0(1) 

Here N is the number of proper elements in D. 

b) ba/(D>;+,) S ba/(D .. ) + 2d(b + 10glog(N; + lEI)) + 0(1) 

Proof: 
Part b) Collows immediately from p&rt a). 

We prove part a) 
c ..... 1: op = INSERT. Insertion of a new element", into the catalogue A( v) C4D increase 
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tbe size of at moot d blocks by I, because there are at moot d edges. = (v,w) E E witb 
x E R(e). Furthermore the total Dumber of proper elementa is raieed to N + 1. 

Thus we havL 

!(op(D)) $ !(D) + 2d 

Let N' = N + lEI. Then 

bal(op(D)) - bal(D) $ (1(D) + 2d)(b + log 10g(N' + 1)) - !(D)(b + log log N') 

= 2d(b + log 10g(N' + I)) + !(D)(log log(N' + 1) - log log N') 

= 2d(b + log log N') + (1(D) + 2d)(log 10g(N' + 1) -log log N') 

What remains to .how i, that (1(D) + 2d)(log log(N' + 1) -log log N') = O(i). 

Since !(D) + 2d = O(N') (note tbat the number of blocks is bounded by O(N') ) we 
have 

(1(D) + 2d)(log 10g(N' + 1) - log log N') = O(N' (log log(N' + 1) - log log N')) 

= O(N'(ln In(N' + 1) -In In N')) 

and N'(ln In(N' + I) - In In N') = N'ln In(:'N~ 1) 

, ( (In(N'+I) )) 
=N In 1+ InN' -I 

< N' (In(N' + 1) _ 1) 
- InN' 

since In(1 + x) $ x for all x E IR 

_ ,( In (N' (I + J<P)) _ ) 
- N In N' 1 

, (In N' + In (I + #) ) 
= N In N' - I 
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< N' (I + ti> - I) 
- In N' 

= 
In N' 

~ I for N' 2: • 

cue 2: op = DELETE 
For the ~ame reason as a.bove the size of &t most d block! can be decrea.sed by one i.e. 

f(op(D)) ~ f(D) + 2d 

Thu. baI(op(D)) = (I(D) + 2d)(b + loglog(N + 1£1- I)) 

= f(D)(b-rloglog(N + IE I -I))+2d(b+loglog(N+ lEI-I)) 

~ baI(D) + 2d(b + log log(N + lEI)) 

• 

Proof: 

During the execution of reba/ l dAta structure D 2i - 1 is t.ransformed by removing blocks 

from S step by step into the data structure D'l,' 

In each step one element is removed from S. We show an upper bound for the cost of 

the i-th step 

and thereby prove the lemma. Let B be the block removed from S in step i and l = IBI· 
There are 3 different cases: 

ca.e 1: B is bigger than b, i.e. l> b 
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B is divided into 8ubblocks of size between ~b and ~b. Thus by requirement (1) and 
(2) the resulting new blocks mILke no contribution to baI(D;». The value of baI is 

decrelLSed by 2(/ - b')(b + log 10g(N + lEI» bocause block B i. d .. troyed and increued 

by 2d¥ (b + log log(N + lEI» by the insertion of the new bridg .... Thu. 

The coot for the splitting of B i. O(l + l' (b+ log 10g(N + lEI))), since we have to perform 
6t.jb list operations. What remains to show is 

or 

or 

or 

or 

or 

or 

~ ~ 
l + b(b + log 10g(N + lEI» ~ (2(l- b') - 2d

b
)(b + log log(N + lEI» 

(+ 6f < 21- 2b' _ 2d61 
b - b 

(2d + 1)~ + I ~ 21 - 2b' 

(I2d
b
+ 6 + 1)1 ~ 21- 2b' 

(I _ I2d
b
+ 6)( ~ 2b' 

(I - I2d
b
+ 6)b ~ 2b' (Ii nee I> b) 

b -- I2d - 6 ~ 2b'. This holds by requirement (3) ! 

case 2: B is smaller than a i.e. l < a 

In this case the value of the bal-function i. decreased by 2(b + log log(N + IEI))(a' - I) 

(removal of B) and increased by 2(b + log 10g(N + IEI))(1 + 2d) (enlargement of the 

neighbor block and deletion of one bridge). Thus 

baI(D:> = bal(D: . , ) + 2(b + log log(N + IEI»)(21- a' + 2d) 

The cost for removing B il O(t + b + 2(b + log log(N + IEIl». 

We show l + b + 2(b + log log(N + lEI» :S 2(b + log log(N + IEI»)(a' - 21- 2d) 
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This holds if 4(b + log log(N + lEI» :'> 2(b + log log(N + IEI))(a' - 2l- 2d) 

if 2:,>~-2l-U 

if 2 :'> a' - 2a - 2d (.ince l < a) 

if a'? 2a+2d+2 (requirement (4» 

case 3: B has correct !lize i.c. a:5 l:5 b 

The contribution of block B to baI(D;_l) i. 2(b + log log(N + IEI»)(b-b' + I) if B e S+ 
and 2(b+ 10glog(N + IEI))(a' -a+ I) if BeS-. Thu. we have 

baI(D: _d - baI(D:) ? 2(b + log 10g(N + lEI» min(b - b' + I,a' - a + I) 

? 2(b + log 10g(N + lEI) 

But the cost for removing B is l:,> b :'> Orb + log log(N + lEI». 

Lemma 7. baI(D-d = QUEI) 

Proof: 

bal(D_d :'> b L:uEV IA(")I = O(IEI) by lemma I of section 2. 

We can DOW euily complete the proof of the theorem. We have 

total cost = 0 ('t1 

(b + log log(N, + lEI) + 't' CO.t(D2;+' - D 2;+2») 
i = O i =- 1 

It remains to show that the second term does not dominate the first term. 
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We bave by lemma 6 

m - l rn - l 

L (co.I(D,.+! ~ D"H)) $ L (ba/(D'Hd - baI(D,,+,)) 
,=-1 1=-1 

m - I 

$ baI(D_d - bal(Do) + L (baI(D,d + 2d(b + log log(N, + IEIl) - baI(D2i+,)) 
. -= 0 

(by lemma 5) 

m - I 

= baI(D _tl- baI(D'm) + L 2d(b+ 10glog(N, + lEI)) 
,=0 

(by lemma 7) 

Tbis complete. the proof of theorem 2 and thereby the an&!y.i. of the dynamic behavior 
of fraction&! cascading. • 



5. Maintaining Dynamic Partition. of Linear Li.t. 

In this section we present a data structure that supports the operations FIND, UNION, 

SPLiT, ADD and ERASE .. defined in section 2. Let B be a sequence of item., some 

of which may be marked. 

FIND(x) computes the nearest marked item right of z in the sequence 

SPLIT(x) mark. item x 

UNION(x) unmark. the marked item x 

ADD(x, u) insert! x immediately before ~ into the sequence 

ERASE(x) removes x from the sequence 

The data structure is derived from the "loglogN"-priority queue of P.v.Emde Boas 

[EKZ77]. The major difference is that the tree atructure which is implicite in his data 

structure, is made explicite by pointers. This allows us to make the data structure 

dynamic and also simplifies the data structure slightly. We first give a formal definition 

of this .tructure and then describe in detail the algorithms for building it up a.nd for 

FIND, UNION, SPLIT, ADD and ERASE. Finally we give an analysis for the cost of 

all five operations. 

Definition 2. A .tratifled tree S for a sequence B of n iteJJlll CODsists of: 

1. A representative T with components ma.rk, min, max 

The values of these fields are defined below by definition 3. 

and if n > 4 : 

2. A copy H' of B which is divided into segments B~, B~, . . . I B~ of size between 1/2..fii. 

and 2y'ii each, 1/2y'ii :S l :S 2y'ii. 

3. Stratified trees S~, S~, .. . I Hi for sequences H~, B~, . . . I Ht 
4. A stratified tree S, for R = { repre8entative of B: I 1 ~ i ~ t} • 

Remark.: 

1. Structures S~, S~, ... , Si, S, are called 8ub.tructur .. of Sand S 8uper8tructure 

of S~, S~, ... , Si, S,. 
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min 

min 

r' 
1 

DI:8l00 .. 
S' 

1 

o 1:8l0 0 

S' 
2 

S' 
3 

x 

max 

S' 
4 

DO J:8:IDD 0 J:8:IDJ:8:I 
~-~.~ '~--_--~"'--_--L--_----f' 

B' 
1 

B' 
2 

B' 
3 

B' 
4 

DI:8lDDJ:8:IDDJ:8:IDDDJ:8:ID~D 

sequence B 

Filllro 3 

2, Note that the structure of a 8tratified tree does not depend on the marks of the items 

of B. It is only the fields of the varioull representatives which depend on it, 

3. In the application to fractional cascading we have a stra.tified tree for each augmented 

catalogue A(v). The marked items are the elements of C(v). 

We realize stratified trees by pointer structures as follows (cf. figure 3) . Each item or 

representative is realized by a record of type Dode consisting of 10 fields: 

mark boolean 

pred pointer to node 

luee pointer to node 

26 



low pointer to node 

high pointer to node 

rep pointer to node 

Ii.t pointer to node 

.i •• integer 

min pointer to node 

max pointer to node 

The pred and Inee fields organize the ,equence B as a doubly linked linear li.t. The 

fields low and high are pointer!:! connecting nodes with their copies in substructures and 

vice versa. rep links each node with its representative. The fields lilt , aili., min &Jld 

max are defined. only for represent,atives: lilt is a pointer to the first element of the 

doubly linked list for Band .ilie contains the length of the list. It remains to define 

the fields mark, min and max. 

DefiDition 3. Let S be a stratified tree for sequence B with representative T 

1. T.mark is true iff the sequence B contains at least one marked element. Also T.min 

and T.max point to the minimal and maximal element of B respectively. If there is 

no marked item in B then T.min and r.max have value nil. 

2. If B contain! a.t most one marked item then all substructures of S are "trivial", Le. 

all nodes in these subs t ructures are unmarked and all min and max pointera have 

val ue nil. 

3. If B contains two or more marked items then the COpies (in B') of the marked 

item~ of B are marked and the same rules are applied to all substructures S:, 

1 ~ i ~ f., containing at least one marked element. Note that this defines the marks 

of the repre~entat j ves r; of S:, 1 ~ i ~ t. Finally the same rules are applied to the 

substructure S,.. • 

In the application to fractional cascading, the catalogue entries x E A( 1)) are extended 

by a pointer low in order to link the fractional cascading structure with the data 

,tructure defined above. Create for every x E A(v) a node k with k.mark = true iff 

x E C(uJ, k.list = k.min = k.max = nil, k.high = x, x.low = k. U .. the pred and .ucc 

pointers to organize these nodes as a doubly linked linear list B. The following recursive 

procedure BUILDSTRUCTURE builds a stratified tree for B according to definition 2 
and definition 3 (a lllog log n"-priority queue &8 introduced in [EKZ77] for universe B 

and ,et S = {k E Blk.mark = true} ). 
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Algoritlun 6: 

1. procedure BUILDSTR UCTURE (B: list of nodee; triv : booleaoj var r : node); 

(. input: a. doubly linked. linear list B of item. 
effect: builds a. stratified tree for B and returns the repreeenta.t ive T 

The stratified tree is trivial if the ftag tritl i. true 

running time: O( IB IIog log IBI) 
0) 

2. n -181; 
3. T +- new node; 

4. if triv 

5. then r .mark -- nil ; 

6. r.max -- nil ; 

7. r .mm - nil 

8. elae T.mark -- Vk£ B k.mark ; 

9. T . mID - rnin { k E B Jk .ma.rk = true } ; 

10. T.m&)( - max{k E B lk .m .. rk = true }; 

11 . • - I{k E B lk .mark = true }I; 

12 . 6; 

13. r .higb - nil; 

14 . T .size -- n; 

IS. for all k E B do k.rcp - r ; 

16. 

17 . 

18 . if n > 4 

19. then 

20. 

21. 

22. 

23. 

24 . 

25. 

26. 

21-
U . 

29. 

30. 

31. 

32. 

:13. 

k.low 0-- nn; 

od; 

H' - 0; 
for all k E B 

do k' --- new node; 

if lTi v 

then k' .mark - falle 

else k'.mark - k .mark 

Ii; 
k' .min +- nil ; 
k' .max -- nil; 

k'.high - k; 

k.low -- k'; 
B' - B' U {k'}; 

od, 

let l E [1/2.,1ii, 2.fol 

divide H' into blocks B; ,n;, .. . I B~ of size between ..;n and 3/2.Jri. 
(0 then 2/3.,1ii 5 l 5 .,Iii . ) 
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34. 

35. 

36. 

37 . 

38. 

39. 

40. 

41. ft· , 

R - 0; 
for i = 1 to l 

do organize B: &8 doubly linked linear list; 

BUILDSTRUCTURE(B;,r',triv or (.:<; 1)); 
R~RU{T}; 

od; 

BUILDSTRUCTURE(R, x, tTiv or (. :<; 1)); 

Lemma 8. Let n = IA(v)l . 

a) The data structure descrihed ahove needs space O(nloglogn). 

b) It can he build up ill time O(n log log n). 

c) It supports the operation. FIND, UNION and SPLIT in time 0(101 log n). 

Proof: 

Parts a) and b) immediately follow from the observation that there are O(log log n) levels 

of hierarchy. Below the algorithms for FIND, UNION and SPLIT are listed in detail. 

For their time hound 'ee [EKZ77] or [MMa]. FIND, UNION and SPLIT are called pred, 

delete and insert respectively in the priority queue terminology of P.v.Emde 80&1. • 

For the formulation of the following algorithms we assume the existence of a boolea.n 

function LEFTOF(X1Y) defined for two marked items x and y of sequence B. It return. 

true iff item x occurs before item 11 in B. 

Remarks: 

1. If we aS~ ll lT1e that in our application the proper ca.taJogue entries x E C(v) are pairwise 

di~tinct we can realize the function LEFTOF by simply comparing x .key and 1I.key. 

2. A general solution can be found in {T84]. There is shown that the following operations 

on a list of items 

inlert(x,lI): insert x immediately before 11 into the list 

delete(x) : delete x from the list 

lertof(x,~): return true iff x occurs before y in the list 
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can be realized in time 0(1) (a.mortized for insert and delete, worst case for lefto£). 

Furthermore, the time required to build the date structure for a list of n items is 

O(n) and therefore can be sub.umed in the time required for BUILDSTRUCTURE. 

Algoritiun 6: 

I. function FIND (k: node) : node; 
(* input: item k of sequence B 

output: cl06est marked successor of k in B or nil 

running time: 0(1) if output is nil and 0(101 log JBIl otherwise 

*) 
2. r __ k.repj 

3. if r .sire 'S 4 

4. then find the cl08est ma.rked successor by linear 3e&1'ch 

5. eloe if (r.mark ¥ false) and LEFTOF(k,r.max) 

6. then (' FIND has defined value *) 
7. ir r.rnax = r.min 

8. then (* exactly ooe marked node *) 
9. reluro(r.max) 

10. 

II. 
12. 

13. 

14. 

15. 

16. 

17 . 

else (* two or more marked nodes *) 
x ~ FIND(k.low); 

ifx=nil 

then (' the call of FIND(k.low) took time 0(1) *) 
x ~ FIND(k.low.rep); 

return(x. min.high) 

.Is. return(x.high); 

8; 

18. 8; 

19. .Is. (' f'lND has value nil *) 
20. return(nil); 

21. 8; 

22. fi; 

A very important property of function FIND is that the recursion always stops jf r.min 

= r.max for a. visited substructure with representative r. Therefore the min and max 
pointers need not to be defined for the representatives of any lubstructures of S if S 

contains less than 2 marked nodes. Thul the correctness of FIND follows immediately 

from definition 3. 

Algoritiun 7: 
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1. procedure SPLIT (k: node); 

(* precondition: k is an unmarked item of sequence B, S is a. valid stratified tree forB 
postcondition: k.mark = true and S is IItill valid 

running time: 0(1) if there i. no mILrked item in Band O(log log IBI) otherwise 

*) 
2. k.mark - true 

3. r +- k.rep; 

4. if r.mark = false 

5. then (* .tructure w .. empty before *) 

6. r .mark +- true 

7. T.min +- k; 

8. T.max +- k; 

9. els8 if T.miD = T.max 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 
30. 

3l. 

32. 

33. 

34. 

then (* one mR-rked item before Lhe split *) 
x+- T.miD; 

if LEFTOF(k, r.min) 

then T.miD +- k 

elae T.max +- k 

fI; 
(* now B contains 2 marked items: x and k 

sub,tructures mu,t be updated according to definition 3 *J 

if T.size > 4 

then (* there are substructures *) 
SPLIT(x.lowJ; (* takes time 0(1) *) 
SPLIT(k.low); (* tILk .. time 0(1) *) 

fl· , 

if x.low.rep = k.low.rep 

then SPLIT(k.low) 

.10. SPLIT(k.low); 

SPLIT(k.low.rep) 
fl· , 

(* a non-trivial call *J 

(* takes time 0(1) *) 

(* a non-trivial call *) 

e18e C' two or more marked items *) 

fl· , 

if LEFTOF(r.max,k) then r.max ~ k fI; 

if LEFTOF(k, r.min) then r.min ~ k fI; 

if k.low.rep.mark = false 

then SPLIT(k.low); (* tILk .. time 0(1) *) 
SPLIT(k.low.rep);(* a non-trivial call *) 

eloe SPLIT(k.low) (* a non-trivial call *) 
fI; 
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36. 6; 

Here aff'! some rema.rks about the following procedure UNION : 

UNION(Ic, n~wm1'n, newmax) seta the mark-Sag of k and of itl copies in !ubstru~tures 

to false. If k i. the only marked node UNION haa to be called for its representative too. 

Otherwise ( there is more than one marked node), if k is the minimal (maximal) marked 

node the min-pointer (max-pointer) must be changed such that it point. to the closest 

marked successor (predeceosor) of k. The new min and max pointen are returned in 

new min and newmax. 

Algorithm 8: 

I , procedure UNION (k : nodej var newmin, newmax : node); 

(* precondition: Ie is a marked item of aequence B, S is & valid stratified tree forB 

postcondit.ion : k .mark = false, S is still valid and oewmin (newmax) is the new 

leftmost (rightmoot) marked item in B 

*) 
2. 

3. 

4. 
6. 

6. 
7. 

8. 

9. 

10 . 

II. 

12 . 

13 . 

14 . 

16 . 

16 . 

17 . 

18. 

19. 

20. 

21. 

22. 

running time: 0(1) if k is the only marked item in Band O(log log IBI) otherwise 

k.roa.rk - false; 

T +- k.rep; 

ir T.min = r.max 

then (* just one marked node k = T.min = T.max *) 
T.min - nU; 

T .m&x +- nil; 
r .mark _ false 

els8 (" r.min t- r.max *) 
if T .size -s; 4 

theD do the obvious operations on linear lilt B 

elae (* there are non-trivial substructurea, we first recursively 

unmark Ie .low and compute the new min and m&x. pointere *) 
UNIOr\(k .low,x, y); 

if x = nil 
then (* k.low was the only marked node in the substructure 

and hence the recursive caU .. bove took time 0(1) *) 

UNION(k.low.rep, Xl, YIl; 
x+- xI.min; 

Ii; 
if k = r.min then r.rnin - x .high 8; 

if k = r.max then r.mu: - ~.hjgh 8; 
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23 . 

24. 

25. 

26. 

27. 

28. fI , 

if r.min = T.max 

then (* only one marked item now; trivialize the substructures *) 
UNION(r.min.low); (0 needs time 0(1) 0) 
UNION(r.min.low.rep); (0 need. time 0(1) *) 

fl· , 

29. fI ; 
30. 

31. 

. . newmln __ r.mm; 

newmax -- r .max; 

Running time O(loglog IBI) i, obviou, from the comment. in the program. 

Operations ADD and ERASE modify the linear list B by adding or erasing an item. 

We perform ERASE(x) by deleting x and all it! copies from the pointer structure. This 

may lead to a violation of the weight criterion of definition 1. We therefore store the 

outermost structure (in the hierarchy) which become! too light in a variable outbal and 

later we ca.1I a procedure REBAL which restores balance. Similiary when we perform 

ADD(x,~) we add x and it, copie, to the pointer ,tructure by giving them the same 
representatives M the corresponding copies of 3/, store the outermost structure which 

becomes too heavy in authal and then call REBAL to restore the balance. The detail. 
are as follows: 

Algorithm g: 

I. procedure ADD (x,y) ; 
(* precondition: 'li E Band S is a valid stratified tree for B 

*) 

effect: adds the unmarked item x immediately before item 11 to B and stores tbe 

representative of the first encountered substructure which is too heavy in 

variable outbal and the size of its BUpel'ltructure in w 

ru nning time: O(log log IBI) 

2. outbal - nil; 
3. r - y.rep; 

4. x.rep 0- T j 

5. insert x before 'II into the dOll bly linked list r .list 

6. r .size - r .size + ). , 

7. if x.high I nil 

R. then (* superstructure exi,t, *) 
9. r' _ x.high.repi 

10. if (r.size > 2Vr' .,ize) and (authal = nil) 
11. then (0 overSow *) 
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12. 

13. 

14. 

15. 6; 

6· , 

outbal -- r; 

w -- r',size; 

16. if r.size > 4 

17. then (* 8ub.tructure *) 
18. 

19. 

20. 

21. 

22. 

23. II; 

z +- new node; 

z.ma.rk - false; 

z.high ~ X; 

x.low +- z; 
ADD(z,y .low); 

Algori thm 10: 

I. procedure ERASE (x); 
(* precondition: x is an unmarked item in Band S is a stratified tree for B 

effect: removes x from B and stores the representative of the first encountered 

8ubstructure which is too light in the va.riable outbai and the size of its 

superstructure in w 

running time: O(Iog log IBIl 
*) 
2. outbaL -- nil; 

3. r -- v.rep; 

4. x.rcp - rj 

5. delete x from the doubly linked list r.list 

6. T.sizc +-- r.size - 1; 

7. if x.high f nil 

8. then (* superstructure exists *) 
9. r' __ x.high .repi 

10 . if (r.size < 1/2Vr, .• ize) and (autbal = nil) 

11. then (* underfiow *) 
12. autbal ~ r; 

13. w -- r'.size; 

14. 6; 
15. 8; 

16. if r .~ize > 4 

17. then (* substructure *) 
18. ERASE(x.low); 

19. II; 
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Both procedure. obviously have running time O(log log IBi) and perform the specified 
task. It remains to describe procedure REBAL which is called (if outbal i= nil) with 

parameters outbal and w after each call of ADD and ERASE. 

Algorithm 11: 

1. procedure REBAL (T, w); 
(* precondition: r is the representative of a substructure Sj 

the superstructure of S haa .ir.e w 

effect: combines S with a brother structure and restores 

the weight criterion of definition 2 

running time, O(le: log log lei) where e is the linear list represented by S 

*) 
2. if r .!!Iuce = nil 

3. then r' +- T. pred 

4 .• ta. r' +- r .suce 

5. 8; 

6. C +- r.list U r',list; 

7. R +- r.rep.list; 

8. divide C into sequences B I , 8 2 ) •.• ) Be of length between ..;w and ~.;w; 
9. for i = 1 to c 

10. do BUiLDSTRUCTURE(Bi,x); 
11. insert x before T into R; 
12. ad; 

13. remove rand r' from R; 

14. BUILDSTRUCT URE(R,r.T<p); 

What remains to do is estimating the amortized rebalancing cost. 

Lemma g. Let B be a sequence of n items. A call BUILDSTRUCTURE(B, r) followed 

by n ADD/ERASE operations has tot&! cost O(n(log log n)'). 

Proof: 
Let 80 be the stratified tree generated by BUILDSTRUCTURE(B, T) and let 

SO~OPI - S~~REBAL - S,-OP, - S;-REBAL - S,-op3··· - S~_l 

be 8. sequence of n upda.te operations each followed by a call of REBAL(outbal, w) where 
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"P. E { A un, ERASE} for I <:; i <:; n - I. Then we have 

n 

total cost = L cost of OPt + total rebalancing cost 
i :=; 1 

~ - 1 n-l 

= L COBt(S. ~ S:) + L coot(S; ~ Si+1) 
1::- 0 j = O 

TIlt" fifst t~rm is bounded by 

oCi loglog(n+ i») = O(nloglogn) 
, ::-; 0 

....... hl,-: :I is the immediate coast for a sequence of n ADD or ERASE operations (d. 
algorithms ADD and ERASl,). 

\Vc use tht bank account. paradigm to estimate the second term. For a stratified tree S 

we define the following account baoed on Blum/Mehlhorn [BM80J And Luecker/Willard 

IWL851· 
3 

ballS) := 2 log log n . L max(O, r.size - 2 v'W, v'W - r.size) 

The summation is over all representatives T and w denotes the size of the structure of r. 

Then bal(Ho) = 0 .ince 8 0 w.s constructed by " call of BUILDSTRUCTURE and hence 

v,jj 'S r.siz.c ~ 312ft' for all representatives T in So. Next observe that a call of ADD 

or ERASE changes the size fieldg of O(log log n) representatives and hence 

baI(S;) <:; bailS,) + O((log log n)'), 0 <:; i <:; n - 1 

I.d 1:5 fi nally consider the transition from S: to Si+l' If S: = 8.+ 1 , i.e. no call of REBAL 

was required \ then bal(S:) = ba.l(S,+d and the transition hu COlt zero. Assume next 

,haL the call R EBAL(outbal., ",,) was required. Thi. call has cost O(outbal •. size·log log n) 

,1 T1d reduces tlw balance by a.t ieast outbal •. size·log log n, i.e. 

bul( S, ,tl <:; baI (S:) - outbal • . size . log log n 

We conclude that. the cost of the transition is covered by the decreaae in bala.nce &Dd 

If"rnma li i~ shown. • 
Now it i!'l en.'1y to modify the data !\tructure in such a. way that all 5 opera.tions FIND, 

UNION, SPLIT, ADD and ERASE are supported in time O(loglogn) (amortized for 

36 



AIlD "nd ERASE, wo"t c/\Se for FIND, UNION and SPLIT) .... d space O{n). We 
simply divide the sequence B into groups of size between log log n and 4 log log n. Each 
group i, realized as a doubly linked linear list. The O{n/ loglogn) list headers are stored 
in a stratified tree a.s described ahove. This tree requires space D(n}. The coat of the 

operation, FIND, UNION and SPLIT is only incre&lle<i by an additive factor of o {log log n) 
and hence i, ,till O(log log n). Operations ADD and ERASE are usually performed on 
the linear lists; only every O(log log n)-th operation requires a "real" update operation 

ou the .tratified tree (when a linear li,t grows too long, i.e. h ... length 410g1ogn+l then 

'plit it into two li,ts of length about 2 log log n and if a linear list becomes too short, i.e. 
bas length log log n - I then either fuse it with a brother list of length at moot 2 log log n 
or take (log log n)/2 item. away from a brother list if both brothers have length greater 
Ihan 2 Jog Jog n) . The amortized cost of an ADD or ERASE reduces to O(log log n) ,ince 
lemma 9 now can be applied to a sequence of n/ log log n itelllJl (list headers). We use 

the strategy defotCribed above for a sequence of n update operations and then rebuild the 

entire data structure. This has total cost O(n log log n). We summarize the results of 

Lhis sedion in the following theorem: 

Throrenl 3. rIND} UNION, SPLIT, ADD and ERASE can be supported in time 

o (log log,,) per operation and 'pace O( n). The time bound is worst case for FIND ,UNION 
and SPLlT and amortized for ADD and ERASE. 

Proof: 

~ lemma S, lemma 9 and the discuasion above. • 

37 



6. A.pplication8 

Oy namic frac tional cascading is a very powerful strategy for improving the sea.rch and 

IIpda.te time of data structures which consist of & baaic frame grapb (e.g. a binary tree) and 

wh~! re the data ie etored a. .. linear lists in the nodee of the graph. Such data atructuree a.re 

often used in computational geometry, e.g. aegment trees, range trees, interval trees, .... 
In this .ection we demon.tra.te how the efficiency of segmeDt &Dd range tree. [B77] [B71l] 
IL78] IW78] [W8S] can be considerably increased by dynamic fractional C&8Cading. Note 

that static fractional cascading i8 a generalization of the techniques initially developed 

for segment and range trees (d. [VW82] . lEGS]. [IA84I . [L84]. [CG85]). So we &re only 
t. ransfering our results a.bout dynamic fractioDai caaca.diDg back to the origiD of all of 

it. The reader caD fiDd the basic fact. about segment and range treea in the text book. 

IM84c] and [PS86] . 

G. l Tho augmented segment troe 

A segment tree is used to store 8. set S of horizontal line eegmentll. A line segment 

iR given by the z~coordjnatee of its endpoinu and by their common ~-coordin&te. In 

this ~ec t ion we consider th E" case where the z-coordinatea are restricted to & fixed finite 

u " iv"rs~ U, lUI = N . Thio is frequently called the semi-dynamic case; the general case 

i. " eat. d in the next section . A segment t ree ·conoiot. of a search tree oC depth o (log N) 
for the clements of V. In addition, there i. a node list NL(v) ~ S Cor each node oC the 

I·rce. A lin. segment L E S is contained in the nodeli.t N L(v) iff range(v) ~ proj(L) 
and range(father(v)) '1, proi(L). Here proj(L) is the projectioD of L onto the z-axi. and 
rangc(v) = {z E Via search for z in the uDderlying ...... ch tree goes through v}. The 

line !K:gments in a n~e list are ordered by their l'·coordina.tee. 

A segment tree can be naturally viewed as an instance of fractional cascading. The 

catalogue graph is the underlying search tree and the range R(e) of each edge i. taken 

to ~r t he entire universe. Then the local degree is bounded by 3. The catalogue C(v) 
nf r, od,' ,. i. the list (of the y-coordinates) of the line segments in N L(v). According to 
I t );:' rnu:l. ioua l c1\!iCaJing pa radigm we will store in each node an augmented catalogue 

.1\,,) . Wr call the data structure obtained in this wayan augmented legment tree. 

Theorem 4. Let V S;; lR.1U1 = Nand S a set of n horizontal segments «Z1. U). (z •• U)) 

wi lh X I> %. E V and y E lR. lSI = n . 

a) An augmented segment tree for S needo .pace O(nlog N). 

b) An au gme"teil segment tree for S can be constructed in time O(nlog N) . 

c) Insertion or deletioD of a segment need. time O(log N log log(n + N». 
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cl) SerniJynamic orthogonal segment intersection search: Let q be a vertica..l segment 

((xo, YIl, (xo, y,)) and L = {p E Sip intersect. q}. Then L ClIJl be computed in time 

U(I/~I + log n. + log N log log(n + N)). 

e) (Imai! A.ano IIA84IJ: All "log log n" - factors in a) to d) can be omitted if only 

insertions or only deletions are to be supported. 

Proof: 

a) The augmented segment tree needs space linear in the space requirement of the 

original segment tree (~ee lemma 1 in section 2 and theorem 3 in section S). 

h) Hy p~rl a) the totoJ length of all augmented eatoJogues is O(n log N). Also for an 

augmented cRtoJogue A(v) the data structure of section 5 requires space O(lA(v)l) 

and can be constructed in that time. 

c) To perform an update operation a .egment must be inserted into (deleted from) 

O(log N) node lists (catalogues). Theorem 2 of section 4 and theorem 3 of aection Ii 

,how how to do that in amortized time O(log N log login + N)). 

d) Lel VO,Vl,V2, ... ,Vt (l $ logN) be the sea.rch path for x-coordinate Xo of sea.rch 

segment q. Then the answer L is given by UO~;9{8 E C(v;)IYl $ y. $ Y2}. In order 

t o compute L W~ only ha.ve to locate in each catalogue C(Vi), i = 1" .. , l, both 

y-coordinates ~l and ~2 and to report &ll elemenhiying between them. The aearch for 

YI and y, takes time O(log n) at the root (binary search) and 0(10& lo&(n+N)) time for 

every other catalogue on the gearch path (Lemma 2 in section 2 &Dd theorem 3 in section 

;,). Thus the total time needed for computing L is O(ILI +log n+log N log log(n+ N)) 

t·) St(' remark 2) at the end of section 2. • 
If.:l The augmeDt~d dynamic segment tree 

\'ow ,r.,' j:-. lUI arbitrary set or n horizontal segment! i.e. both x-coordinates a.nd y­

('oo((ilIlides of the segments jn S are arbitrary re&l numbers. We first assume that S i5 

Hinlple ) i.p.. that the x-coordinates of all endpoints of segments in S are pairwise distinct. 

Lernma 1.5 at the end of this section will show how this restriction can be dropped. 

In<"wad ,-,f Ii. !i1.atic binary tree we use now a balanced sea.rch tree as the underlying tree 

(,." I. ;t1ogue graph), more precisely. BB[aJ-tree (ef. [M84all for the x-coordinates of the 

1!llf: ,~egrnenls in S. BB[o}trer.~ are defined u follows. For a. node v let th{v) be the 

IllJIIIU('f of lea\'(~ in the subt.ree rooted at v. A tree is in clus BB[Q] for rea.l parameter 
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"if for "II nod"" v in the tre<> '" ~ th(v)/th(parent(v)) ~ 1-er. It i, well known that for 
1/4 <; " < I - ..12/2 BB[er] - trees can be rebalanced by rotation, and double-rotationa 

llrl.er i ll~ertion or deletion of a. leaf. Since BB[etJ-trees have logarithmic depth and CAD 

be huilt up in linear time it is clear that parts a), b) and c) of theorem 4 carryover 

with N replace<! by n. For parts c) and e) we have to work harder. 

Cons;dor the insertion (delel,ion) of a segment, oay ("''' "'2, r). We lirst have to add two 

additional !caves (corresponding to XI and "'2) to the BB[er]-tree and then to restore 
the BB taJ-property. On ce this is done we can a.ctuaBy insert the eegment as described 

in th.- previous section. Sim ilary if we delete a segment we first delete it from the node 

li.t, and then change the underlying BB[aJ-tree. It is clear that the bounds of theorem 
4, part c) and e) apply to the actual insertion and deletion of a segment. The goal of 

this St-..: l ioD is to bound the cost of rebalancing the underlying BB[a]-tree. 

A HH[ uJ-tree is rebalanced by rotations and double--rotationBj the folloy/jng fact (proved 

by IBM80], [L78] and [WL85] cf. also [M84aJ) will be very important for UB. 

F;;.r.t: Ld 1/-1 ~ a < 1 - ..12/2 and conBider an arbitrary sequence of m insertions and 

dell'1,;on, into an initially empty BB[erl - tree. Then the total number of rotations and 

double rotations about nodes of thickness in [( I~Q);' (I~Q );+1J i. O(m/(l - er);) for all 
i? O. 

ttot.at.iolH'l and double rotat ions ca.n be executed by inserting and deleting edges {modifi­

(·n.titHI o r tilt! underly ing cataJoguc graph) and simple rearr&ngements of some node lists 

(:;"'t! j j~lJr~ :i). For this rea.son we first prove a lemma that gives an upper bound on the 

(~ OHt. of in~erting edges into or deleting edges from catalogue graphs. 

Lemma 10. Let G = (V,8) be a catalogue graph. 

~J Let 11 , U! t-'::: V ;tnd e = (v, w) ~ E . Then the edge e can be inserted into the catalogue 

grapl , (; in lilll~ O«(IA (v)l + IA(w)1J log 10g(IA(v)1 + IA(w)I)). 

b) Let v , U! t-'::: V ,tnt! c = (v, w) E E . Then the edge e can be deleted from G in time 

O((l !\ (ujl;- IA(w) I)loglog(IA(v)1 + IA(w)I))· 

'i iA (v ) rl H(v , w)1 = O(IA( w) nR(v,w)1J for all edges <=(v,w) E E. 

Proof: 

a ) T .\ iUl'. i.- rt a new edge between nodes v and w we have to create bridgea between 

A( ,, ) a"d A(.,) such that the resulting block. B fulfill invariant 1 and make no 
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contribution to the bal-function defined in section 4, i.e. a':S IHI ::s: b'. Thi. requirel 

a t most 2/a'(IA(v)1 + IA(w)l) inoertions of non-proper elements into the catalogues. 

The pOMitions of the new bridges CAD be easily determined by &Canning .A.(v) and 

04(,") from left to right in time O(IA(v)1 + IA(wll). Thus the total time for inserting 

, i. O«(lA(v)1 + IA(w) 1) log 10g(IA(v)'1 + IA(w)I)). 

b) All bridges between A(v) and A(w) have to be deleted. This is done by deleting at 

most 2/a'( IA(v)1 + IA(w)l) non-proper elements from A(v) and A(w). 

<: ) There are at most IA(w) n R(v , w) 1 bridges between A(v) and A(w). Between two 

adJ""ent bridges there are at most b elements in A(v) n R(v, w) (invariant 1). Thus 

we bave IA(v) n R(v ,w) l :S (b+ 1)IA(w)nR(v,w)1 8 

We will now specialize the discussion to segment trees. Let S be a simple eet of n 

horizontal line segments and consider a segment tree baaed on a BB[aJ-tree for the 

x-coordinates of the endpoints. 

Lerruna 11. A rotation at node v costs time O(IA(v)lloglogn). 

Proof: 

A rotation at v can be executed by the following 3 stepe (see fig. 4): 

a) Delete the edge. ('" v) and (w, u) 

bl I"",rt the edge. (",w) and (v , y) 

c) Rearrange the node l i !ft~ : 

C'(., ) ~ C(v) 

C' (,.) C(r) n C(y) 

("( x ) C(x) - C'(,, ) 

C'(y ) ~ (C(y) - C'(v )) U C(w) 

C'(z ) ~ C(z) U C(wJ 

iWlf' rling ij,no deleting two edges by lemma 10 needs time 

O(1 (1 A(") 1 + IA(u) 1 + IA(w) 1 + IA(U)I) log log n) = O(IA(v)l1og log n) 

(llole lha t A(v) = O(n + lEI) (lemma I) = O(n) sinee lEI :S n) 

41 



u 

I 
I 
I 

J 
I 
I 

v / I 
I 
I 

I I 

// \ 

I 'w 
\ 
I 

\ 
\ 

Figure" 

Rearranging the nodes lists requires O( le( v)1 + lC(w) I + IC(x) I + Ic(Y) I + IC (,) I) in.ertions 
;,ll!d ddetions which can be performed in time 

O((!c(v)i + IC(w)1 1- iC(xll + IC(Y)I + IC(z)I)loglogn) = O(IAH lloglogn) 

rhus the tolal cost of It. eillgle rotation a.t node v is O(IA(v)llollogn). 

• 

L~m'na 12. Let th(u) = number ofleaves in the subtree rooted at v and ~ < Q ~ 1-~ . 

• ) .q ")i'~ O(th(v)) for all v E V 
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h) th(v) :S (~)'ii.'(".w)th(w) for all v,w E V 
where dist(v, w) i. the di.tance between v and w in the BB[o] tree. 

Proof: 

a) Observe first that C(v) = NL(v) 
Next note that if 8 E N L(v} then the search path for the x·coordinate of one of the 

endpoints goes through father(v). Thus INL(v)l:S th(v). 

b) For any BB[<>J-tree holds: 

th(v) 
,,< -- <1-0: - th(w) - . if V is the a. SOD of wand hence 

th(v) 1 1 
-- < max( - 1-<» = - for every edge (v,w) E E 
th(w) - ,,' 0 

A simple induction completes the proof. • 

Lemma 13. Let G = (V, E) be an undirected binary tree (i.e. degree(v) :S 3 for all 

v," V) and v,w E V with dist(v,w) = i. The number of all poosible path. of length 
j ? i from v to w is at most 2)3 j - i $ 6-'. 

Proof: 

Let v = Vo -- til - - V2 -- V3 -- ... -- Vi-l -- Vi = w be the shortest path 
frorn v to w. Since G is a tree any path P from v to w must use all nodes VO,Vlt .. "Vj 

and all edges (Vk,VIH d,O:S k ~ i-I. At each node V.I;;, 0 ~ k ~ i, P can form a loop 

of length Ik with 

SitlC'.r t.he clegree of every node is at " most 3 there are at mOlt at poeeible loops of length 
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i. Thus we have 

I { path, from v to w of length iii ~ i = di'l(v, w)}1 

(
i - 1) eince there a.re i pOfJsible wa.ye to write (i - i) u eum of i + 1 terms 

• 
LeJllllla 14. IA(v)1 = O(th(v» for all nod ... v. 

Proof: 
Let Br{v,w) denote the number of bridgeo between A(v) and A(w) 

IA{v)1 = IC{v)1 + E Br(v,w) 
(v,w)EE 

~ IC{v)1 + E IA{v) 1 + IA(wll 

(v,w)EE 
a 

3 1 ..... 
= IC(v) 1 + -IA(v)1 + - L..J 

a a 
(II,wlEE 

IA(w) 1 

Tillis alE IA( v)l:<; -(Jc(v)1 + - IA(w)1) 
a - 3 a 

(II,w}EE 

Eotim&ting IA(wl l in the .ame way yield. 

IA(v) l :<; _ a_ ( IC{V) I + ~ ..... _a_ (IC{W) I + ~ ..... IA(U)I)) a -3 a ~ a-3 a ~ 
(v ,w)EE (W''''lEE 

= a:3 ( IC{V) I+ a~3 E IC(w) l + a~3 E E IA(U)I) 
(II,wlEE ( .. , ... )EE (w,,,,)eE 
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Repea.ting this procedure k tirnee results in 

IA(,,),., _a_ (IC(V)I +..c-.. " Ic(w) I +" IA("lli) 
a-3 ~ ~ (a-3)' ~ (a-3)1+ 1 

1=1 IUEP'(v) uEP"+1(,,) 

where P'(v) i. the set of nodes reach&ble from v by a p&th of length i. Next oheerv. 
that (we use {path v- '- w} to denote the set of path. of length i from v to w) 

• lC(v)1 + L L IC(w)1 
, ~ I wEP'(v) (a - 3)' 

,., lC(v)1 + ~ " lc(w)1 
~ ~ (a-3)' 
i ::.::: l WEPI(U) 

= IC(v)I + LL L 
i""l j=O "'EP"(,,) 

4 •• t(v,IIU)=i 

IC(",)I 
(a - 3)' 

= lc(v)1 + t. ,; (IC(W)I ~ I{pa~~ ~~W}I) 
~i.t(".w)=j 

,., th(v) + L L 
J ='O wEV 

di.tCv,w) ""j 

th(v)(-)'" -1 (6)' 
'" ~ a-3 

I"?i 

by lemmas 12 aud la and the fact that mOlt 3·2;'-1 nodes w have distance j from v. 

=O(th(v)) ifa>-::+3anda>9 

ami that 
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I ( )1 
I {path v..llLw}l 

A w (/I _ 3)"+1 

( 
6 )"+1 

$ E E IA(w}1 /1-3 
i ? O w€V 

"'.'(.,,,,)=; 

( 
6 )"+1 

= a _ 3 E IA("'}I 
_ EV 

(lemmll 13) 

( 
6 )"+1 

$ -- O(n) 
a-3 

(lemmA I of oection 2) 

= O(I} for k sufficient IUle 

Putting these eliltimatea together we obtain 

IA("}I = O(th(v}) 

Now we can estimate the amortized COlt for insertions a.nd deletions: 

• 

Theorem 5. In the augmented dynamic segment tree a single rotation at any node v 
cost, lillie O(th(v} loglogn}. 

Proof; 

Lemma J J and lemma 14 • 
Theorem 6. The rebalucing oflbe underlying BBlal-tree for a sequence of m in&ertioDl 

or delelions has cool O{m log n log 101 n). 

Proor: 

In a BBI"I-Iree the rebalancing COlt is 

clOI n 

D {m E f((i - 0)-')(1 - a}') 
i ==O 

with c = I 
log(1 - a} 
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provided that a single rotation at node v need. time O(f(th(v))) (for details see [M84aJ, 
[M84elor [WL86)). In thi. application we have f(th(v)) - th(v) lot!; 101 n (theorem 6). 

Thus an upper bound for the coat of m update operationl i • 

. -. .-. 
O(m L (1 - a) - ' 10010gn(I- 0)') = O(m L 10010ln) 

i::O 

'" O(m lot!; niog log n) 

• 
Theorem 7. Let S be a set of n horizontal segments with endpoints in IR X IR 

a) An augmented dynamic .egment tree for S can be build in time O(nlognloglogn). 

b) It has space requirement O(nlogn). 

c) Insertion or deletion of a segment needs time O(lognloglogn). 

d) Let q be a vertical legment ((xo,II,), (xo, II.)) and L = {«(x, II), (x" 1/» E Six $ Xo $ x· 
and III $11 $ I/.} Then L can be computed in time O(ILI + log n log log n) (dynamic 
orthogonal segment intersection search) 

eJ (ImaijAsano [IA84]): All "loglogn" - f""toro in a) to d) can be omitted if only 
insertions or only deletionl are to be lupported. 

Proof: 

~ proof of theorem 4 and the dilCUIIBioD a.bove for simple lets S. The following lemma 

shows how to deal with arbitrary sets of line .egment •. 

Lemnla 16. The augmented dynamic orthogonal segment intersection search can be 

solved for general S in the !lame time bound as for simple S. 

Proof; 

We replace the x-coordinateo of endpoints by triples and \lie the lexicographic ordering 
on the triples. Assume that each segment I has a unique number (name) num(I). Then 
replace the x-coordinate Xl of the left endpoint of I by the tripel (z" 1, num(.» and the 

x-coordinate X2 of the right endpoint hy (x., 0, .. urn(.)). Notethat all fir.t coordinates are 
dislincl now. Furthermore Jeft endpoint. with the sa.me x·coordinate .. right endpointl 

received a lower first coordinate. A vertical query segment with coordinatel (z, WI, 1':l) 

i. simply tran.formed to ((x,!, anything), II" 1/.). • 
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This completes the proof of theorem 7. • 

6.3 The augmented ran.e tr .. 

The techniques we used for dynamiution of ... gment treeo C&Il &110 be applied to range 

Ir ... (d-fold tree.) [L78) [W78) [B79). The correctn_ of lhe following Iwo theorem. i. 

straightforwa.rd. They improve the beet previous results for dynamic orthogonal raDle 

oearch of Willard [W86) who giv .. an algorithm with query &Ild update time 0(1013
/' n) 

( 0(log"- '/2 n) in the d-dimensional CaIe). 

Theorem 8. Let 8 be a set of n point. in the plane 

a) An augmented dynamic range tree for 8 can be con.tructed in time O(n log n log log n). 

b) It hao space requirement O(nlog n). 

c) In.erlion or deletion of a point need. time O(lognloglogn). 

d) Lei XO, Xl, Yo, Yl E IR. with Xo :5 Xl and Yo :5 Yl and L = {(x, y) E 81xo :5 z :5 Xl and 
Yo :5 y :5 y,} Then L can be computed in lime O(lLI + log n log log n). 

e) (!mal/A.ano [IA84)): All "Ioglogn" - factoro in a) to d) C&ll be omitted if only 
insertions or only deletions are to be supported. 

Theorem 8 can be generalized to d·dimensional apace (d> 2) by well known standard 

techniques (e.g. (M84) VoI.3): 

Theorem 9, Let S be a set of n points in the IRd,d > 2 

.) An augmented dynamic range tree for 8 can be build in time O(nlog"- ' nloglogn). 

b) It has space requirement O(n 10,"- ' n) . 

c) Insertion or deletion of a point needs time 0(1og4-1 n log log n). 

d) Let xo ,x"YO,y, E IR. with xo:5 x, and yo:5 y, and L = {(X,II) E 8lzo:5 x:5 z, and 

yo :5 y :5 y,) Then L can be computed in time O(ILI + log"-' nloglogn). 

e) All "log log n" - factors in a) to d) can be omitted if only inaertiolUJ or only deletion. 

are to be I!!upported. 
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7. Concluliona and Open Probleml 

In this paper we introduced dYnAmic fr..:tionlLl cucading and applied it to aegment 

ADd ranle treee. An import&.nt subproblem which we had to treat i. the problem of 
maintaining ioterval partition. of dynamic linear liab. The major open problem is whether 

the log log N factor introduced by our ""Iution to that problem is rea.lly necessary. 
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