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I. INTRODUCTION
A rectangle R is a rectangular subset of a rectilinesr grid. IcC consists
of n columne numbered 1 to n from left to right and m rows numbered 1 to m from

bottom to top. A rectangle routing problem (RRP) consists of X nets N.,..-.NQ-

Bach net is a pair of points on the boundary of rectangle R. The two pointe are
called the terminale of the net. A boundary point (except for the corners) of R
can be terminal of st most one net, a corner can be a terminal of at most two
nets. A solution (a layout) for an RRP consists of a set of N edge-disjoinc
pathe in rectangle R, one for cach net. The path corresponding to (realizing)
net Xi connects the two terminsls of net Ni’ 1 <1i<N.

Exanple: The first example shows an RRP with N=5, n=5, m~5. The nets are

indicated by lebels on the boundary nodes. Nodes with the same labal define

a nec.

P*»
—
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5 1 4 3 2

Figere 1. Example of a rectsngle routing problem.

Qur second example (Figure 2) has n=2m, N=n and consists of nects
N, - ((i,1),(i+m,m)), 1 < 1 <« m. The following figures show two colutions

for this RRP, in the case N = &1
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Figure 2. Two soluticns of an RRP: (a) A solution with Q(NZ} knock-knees;
(b) a solution with 0(X) knock-knees.
The fundamenzal characteristic property of RRP'a was rccently established by

A. Frank.

Theoren [Frank]. An RRP is solvable 1ff the revised row and column criteria hold.
Mor=over, a layout can be constructed in tine O(nm), if one exists.

The revised row and column criteria are defined as follows. A vertical cut
(v=cut) is given by & pair of adjacent coluans (a,a+l). The capacity of a
v-cut is the number of edges between columns & and a+l, i.e. m. The density
of a v-cut (a,a+l) £s the number of nets which go across the cut, i.e. have
exactly one terminal in colummas 1l,...,8. A cut is saturated if its densicy is
cgual to its capacity. Similar norions are defined for horizontal cuts
{h-cucs).

Consider an RRP. Suppose there are k > 0 saturated horizontal cuts;

K
be any v-cut. The k saturated h-cuts dissect the area to the left of the v-cut

if k > 0, they are (rl.r1+1).....(rk.rk+l} with T) S eer ST and let (c,c+l)

into k+l regions T ,...,T

1 k+1’
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Figure 3. Rectangle dissection caused by saturated h-cuts and an arbitrarw
V"Cut L]

The extended degree of a node v of rectangle R is the degree of node vtl}

plus the nusber of nets having v as a terminal. The parity of a set T of nodes
is the parity of the sun of the extended degrees of the nodes in T. Finally,

the parity-density of v-cut (c,c+l) is the density of the v-cut plus the sum

of the parities of sets Ti' 1 < i < k+l. The revised column c¢riterion

states that the parity density of any v-cut =must not exceed its capacity. The
revised row criterion is defined analogously.

Frank's algorithnm solves an RRP in time 6(nm). For "squarish" rectangles
this quantity is quadratic in the number of nects. Moreover, running time Q(nm)
ia intrinsic to Frank's algorithm because it can generate layouts with O(nm)
knock-knees. In Figure Za the path corresponding to any net bends i(m) rimes

and hence 1(Nm) = Q(Rz] amount of information (s required to describe the lavout.

1 .
( )Nucc that the degrees of a corner, lateral, and internal node are 2, 3, and

4 regpectively.



In Figure 2b, 2 layout for the ssme problem is shown where every path bends at
most two times, Thus O(l) amount of information suffices to describe each path.
The solution shown in Figure 2b will be constructed by the algorithm described
in this paper. (For two-shore problems where all terminals are on the top or
bottom of the rectangle it is known that this behavior is achievatle

[Preparata-Lipski].) The main result of this paper 1is the following theorem.

Theorem: & layout for a solvable RRP can ba constructed in time O(Nlogh).
Moreover, the layout constructed contains only O(N) knock-knees.

In chis paper, we do nort adress che question of layer assignment Lo
layouts. However, we want to mentfon that Brady-Brown have shown rccently that
every layout can be wired using only 4 layers of interconnect. Moreover, it
can he shown that cthe number of contact cuts required for a & layer wiring is

at nost proportional to the number of knock-knees. Thus we have the following

cerollary.

Corollarv: Every solvable RRP can be wired in four layers using only O(N)
contact cuts.

The structure of this paper is as follows. The algorithm, the proof of
correctness,and an analysis of the number of knock-knees generated are given
in Section ITI. Section IV describes an implementation and contains the proof

of the O(NlogN) running time. Section Il develops some technical preliminaries.



II. PRELIMINARIES

In this section wa present some simple observaticns which will be useful
in the sequel.

Consider any RRP P, A coclumn (row) of P 13 empty if it contains no
terninals. Suppose that P has more than N+2 empty columns.  Thén no h-cut
of P is saturated because its density cannot exceed the number of nets. Let

(cl’cl+1}""'(ck’ck+1) be the saturated v-cuts. Obtain RRP P’ from P by
deleting empoy columns such that:

1} no row becomes saturated;

2) the numher of deleted empty columns between any two saturated

h=-cuts is even.
It is therefore casy to sce that the extended row end column criteria hold for
P' iff they hold for P. Hence P' has a sclution if P has. Moreover there are
at nost N+2 empty columns in FP' and a solution of P'trivially extends to a
solution of P. A similar reduction works if there are more than N+2 empey
rova., Thu3 we can assume w.l.o.g that n = O(N), mn = O(N).

An RR? P is standard if every node has even extended degree. OCur algorithm
only applies ro standard RRPs, alchough this restriction can be overcome by
making the algorithm =more complex. For every RRP P, an ecquivalent standard
RRP P' is easily constructed in time O(N) ss shown by Frank. Indeed, suppose
that there are h saturated h-cuts and k saturated v=-cuts. They divide the
recrtangle into (h+1)(h+l) regions rl.Tz.... . Each region has even pavity
(a proof can be found in [Frank]) and hence contains an even number of nodes
of odd extended degree. Let v Worees oV be the nodes of odd degree in set TL

1
as they appear on the boundary of rectengle R in clockwise order. To obtain P'



we introduce the additionzl nets (vl’vzj""'(vir-l'vlr) for every Ti'

In [Frank) it s shown that the extended row and column criteria held for P’
iff chey hold for P. Moreover, the parity densicy of any cut of P' is just
its density,and we obtain the following version of the revised row and column
criteria

"A standard RRP is solvable iff for any v-cut and h-cut the density

never exceeds the capacicy".

Also the number of nets of P' is O(N) since the leagth of the boundary of
P can be assumed to be Q(N) by the preceding remsrk. From now on we will
assume that all RRPs are standard. A net is trivial if its terminals are on
cpposite sides of the rectangle and lie in the same row or colum. Trivial
nets can always be routed as straight lines without affecting sclvabilicy.
This can be seen as follows. Suppoese net N, "runs" vercically in colum c.

i
Reroval of column ¢ and row Ni changes a standard RRP into a standard RRP.
If ¢=1 then ve also have to move all terminals from columan 1l te¢ column 2.
A similar remark holds for c=n. Moreover it does not change the capacity and
censicy of any v-cut,and decreases the capacity and density of any h-cut by

one.
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III. THE ALGORITHM

In this section we will describe an algorithm which solves any standard
RRP in time O(NlogN) where N is the number of nets.

The algorithm is row-oriented. It processes row after row starting &t the
top row of the rectangle. Each row is processed in two major stages. The first
stage lays out highly structured sets of nets, called "runs" (to be defined
later). At the end of this stage, the plane demain still to be precessed
appears as a "toothy" rectangle, referred to as "near-rectangle'. The second

stage conpletes processing by producing the lavout in the interier of the

teeth. The situation 18 pictorially illustrated in Figure 4.

(a) D (b) (c)

Figure 4. Prccessing of a row (row h): (a) before processing; (b) afcer
the first stage; (c) after the second stage.

The coordinates of the points on the boundarv of the near-rectangle in

Figure 4b are A = (1,h-1), B = (n,h-1), C = (n,1}, D = (1,1), X, = {Ci.h).

i

Y, = (¢ Jhi=1), U, = (d.,l1), V. = (d, ,h=1) where 1 < ¢, <d, ~ ¢, < d, < ... ~d
i i i i i i -

Points (x,h), £, £% 8 di for some i, are called a segment.

1 1 2 3 o =



A standard near-rectangle routing problem (SNRRP) consists of a number of
nen=-trivial two-terminal nets such that each convex cerner of the near-rectangle
is the terminal of either 2zero or two nets, each concave corner ig the terainal
of no net, and each boundary point which is not a cormer is the terminal of
.then A is che

exactly one net. In particular, if ¢, =1, and hence A = ¥

1 1
ternminal of exactly one net. If a vertex is not a terminal of any net then
the vertex is said to be exposed.

As always, the capacity of a cut 15 the anumber of edges in the cut, and
the density of a cut i3 the number of nets which have a terminal cn both sides
of the cut. We will consider vertical (v-cutse) and horizental cuts (h-cuts).
The v-cuts are (a,a+l) vhere 1 < a < n and the h-cuts are (b,b+l), 1 < b < h=2

end (h,h-1), restricted to the segments X Ui' 1 <1< s. The cut (h,h=1} in

i
the segment ini (referred to as facing xivi) consists of the set of vertical

edges emanating from Iiui' Thus,ite capacity is di-ci+1.

The following two simple facts about densities are useful.
Lemma 1: a) If either LIi or KL i3 exposed then the h-cut (h-1,h) facing xiui
is not oversaturated.
B) Let ¢, < a <d, for some i. If dens(a,a+l) <h
then dens(a,a+l) < h-2. (U, and X, are on row h.)

Proocf: a) If either U, or X, is exposed then the number of rterminals on

i

gegzent X U. 15 at most di-ci+l which is also the capacity of the cut,

i

b) Since we deal with a2 standard problem every node has even extended
degree. Note that this is true for nodes on the boundary as well as for nodes in
the inside of the near-rectangle. Hence h+dens(a,a+l) is even,since h is che

nunber of edges and dens{a,a+l) ie the number of neta which go across v-cut

(a.a+1). Thus dens(a,a+l) < h implies dens(a,a+l) < h-2.



A SNERP is valid if there is no v-cut and no h-cut whese density exceeds

ts capacity. We will show thac every valid SNRRP has a sclution.

We divide the set of boundary points of a near-rectangle into 2 disjoint
sets. TOP consists of the set of boundary points in rows h-1 and h, and
NONTOP consists of the remaining boundary points. Set TOP-NONTOP consists of
All nets which have one terminal in TOP end one terminal in NONTOP. A net
Hi € TOP-NONTOP 1is also called a TOP-NONTOP net. Sets TOP-TOP, NONTOP-NONTOF
are defined sinilarly. A horizontal net is & TOP-NOKTOP net which has neither
point A or B as & terminal. A TOP-NONTOP net is right-going (left-going) if its
terminal in NONTOP is to the right {left) of its terminal in TOP.

As mentioned above the algorithm only deals with standard problems. 1n
order to keep up the fiction that the problem dealt with is standard, the algorithm
will introduce additionmal nets during its execution. These nets are called
fictitious nets. Pictitiocue nete are always horizontal and they do not overlap.

More precisely, there is an even number x ,x veeenXn, (ordered from lefr to

152

right) of points in TOP such that the fictitious nets are the 2 nets (x ) IS

25-1"%24
1 <i <. We will represent the ffctitious nets by the ordered sequence
xl,xz,...,xZL of their terminals. Fictitious nets are an elegant device for
dealing with the extended row and column criteria. Fictiticus nets are TOP-TOP
nets and arc usually treated like other top-top nets. In particular, we will
often draw wires for fictitious nets. Theee wires are fictitious and record the
fact that certain edges of the grid are not used in the layout.

We can now start to describe the algorichm. For the 2nalysis of the

algorithm we count elementary steps. An clementary step consists of drawing

a horizontal wire segment of arbitrary length and extending by one unit all

the vertical wires intersected by it. We will see that whenever we draw a
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horizontal wire segment chere will be a knock-knee on both ends. Thus the
numder of elementary steps also yields a bound on the number of knock-knees.
In order to count elementary steps we introduce the concept of token. A token
fepresents the ability to pay for one elementary atep. During the execution
of the algorithm, tokens will be transferred from nects and segments tc (modified)
nets and segments, Initially, we have the feollowing token allocation:

a. . = 12 tokens on every NONTOP-NONTOP net

NN

a « 7 tokens on every TUP-NONTOP net

™

Spp = 1 token on every TOP-TOP (er horizontal) net.

The description of the algorithm is quite lengthy and requires many case
distinctions. 1In order tec aid the reader,the description is given in the
following format. In each case we first give the actions to be taken. We then
argue correctness, i.e. we show that the actions transform a valid problea into
a valid problem. Then we do the accounting, i.e. we show that all elementary
steps can be paid for. Starements in each of these three categories are
presented in distinct typographical ways.(z)

Central to our technique is the notion of "run'", which we now present.

A right run relative to segment XU, with X = (c,h) and U = (d,h) (c < d)

i3 2 maximal sequence (xl"°"xk+l) of columns and an associated string of

necs N, ... Xk (k > 1) such that N N

1 1777k
and Nk ig either a right-going TOP-NONTOP net or a horizont2l net. In

are right=-going TOP-NONTOP nets

addition:
1 Ni has its left terminal in column X, and its right ter=minal in
colunn X4 (1= Xoisanslt)s

o Xy ™ min (d, column of right terminal of Nk)'

(erndced. we suggest that the three sections -- actions, corrcctness, and

accounting -- he approached separately on a first reading of this paper.
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Figure 5. Illustrations of right runs.

By layout of a horfzontal net Ni = ((f,h),(g,0h)) (f < h) with respect

to x.. . we mean the operation of drawing a hoerizontal wire from {£,h) co

).h) anc on co (x

(min{g.x h=1) if X141 € g, and of extending =211 other

i+1 41’
nets with terminals in set {(x,h):f < x < min(g.xi+1)} by one vertical edge

(eo that cach terminal is noved from (x,h) to (x,h-1}). Also,if g < %1

chen net Ni ig deleted from the problem,and if g > Xi41 then net N1 is replaced
by net N; = ((x,,,0=1),(g,h)). (see Figure 6a). Analogously, the lavout of a

right-going net Ni = ((f,h),(g,h)) wvith respect to X5,y Means the operaction of

drawing for N, a herizontal wire from (f,h) to (nin(g.x1+l).h) and a vercical

i

wire from (min(g,x,,.),h) to (min(g.xi+l.h-1) (thereby =moving the terminal

i+l
from (f,h) to (min(g.xi+1),h-1)) and of extending all other nets with terminals

in {{x,h):f < x < mian(g,x, .)} by one vertical edge (see Figure 6b). Note that

i+l

net NL becomes a trivial vertical net if g < Xi41° The layout of a lefr-going

net is similarly defined. The layout of a tun with sequence (xl.....xk+1) of
columns and associated nets Nl,....Nk is the layout of net Ni with raspect to

X0 for 1 « £ < k. KNote that laying out a run turns right-going nets

hl""'xk—l into trivial nets.
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Figure 6. Layouts of nets.

Rectangle routing problems within & rectangle of height one, i.e. h = 1, are
trivial, All nets are horizonzal and they do not overlap. Thus we can do the
layout by drawing one horizontal wire per ner. The cost is covered by the
4 (=1) tokens on csch TOP-TOP used. So, let us assume that h > 2. As mentiocned
earlier, we process row h in two major phases =-- rum layout and clean=-up ==~
preceded by a simple initialization step, whose objective is to ensure that

each segment contains at least one exposed corner. Thus we have
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Step O: Tnitidaslizacion (refer to Figure 7).

procedure INITIALIZE (h)

begin move point A 2 (1,h-1) and B = (n,a-1) from NONTOP to TOP;
if either X or U is exposed then set ci=1 and d:i=n

*
erlge begin N=({f,h),(g,h}):=a horizontal net with meximal g;

¥
lay out N and delete points (x,h), £ < x < g from

rectangle, and also (f,h) if f=]1 and (g,h) if g=n.
end

end

The resuits of Step O are illustrated in Figure 7. Here, we use the graphics

4:* or't} to denote exposed ncdes. Step U is clearly void if either X or U is

ajroady exposed (Figure 7a, b, and ¢); otherwise, two segments xlcl and xzu:

are crested (Figure 7d). Note that there are no terminals of horizontzal necs

in xzuz.
KLBEL ?1-E x;rx Ul-U x1=x ?l-u
f \T l [_
I \T
(2) (b) (e)
(d)
Figure 7.

Near-rectangles obtained after the initializacion step: in each
segment al least one corner is exposed.



Lezma 2: There is at least one net with both terminals in row 1 or either

X or U 1is exposed.

Proof: 1f neither X nor U is exposed, each contributes two terminals. Thus
there are n+2 terminals in row h and, since h-cut (h-1,h) is not oversaturated,

there s at least one net with both terminels in row h. O

Lenma 3: The new problem 1is valid.

Proof: The lemm= is trivially true if only one segment is produced. If ewo
segments are produced, thenm no h-cut {8 oversaturated, Also, we reduced the
capacity and density of every v-cut (b,b+l) for f < b < g by one. Thus no
v-cut is oversaturated. O

In the new problem points both U, = (f,h) and X, = (g,h) are exposed if

1 2

they exisr. Mereover, no node (x,h), x > g,is a terminal of a horizontal net.
Adecounting: Since node A = (1,kh-1) moved from NONTOP to TOF, either one rec

moves from SONTOP-NONTOP to TOP-NONTOP (and hence fress Gy = Coy = 5 toxena) or

one ner moves from TOP-NONTCP to TOP-TOP (and hence frees @,y = Gp. =0 tokenal.

- d

Since node F = (n,h-1) alec movas from NONTOP to TOP we conclude that at leacst

2 min{a,, ) = 10 tokens beooma availakle.

an = %y T Gpp

let a, = 4. I7 etther X or U ie axpoged, then we have drawm no Aoriscmial

wire. e place a, + 3 = ? tokens on the single segment extending from columm

a

I to n, If netther X mor U iz exposed then we have draum one horisomtal wirs
for the cost of ona token. The layout of this net relsaces a..=1 toxem, 80
10 + I = 1] tokens are avatladle. Also ws place & + a. = 7 tokens on gegment

X,U, and 2 tokens on gegment X, U,. Thus 10 tokensg are rcoded, whix contrasss
4 [

2
favorably witn the 11 tokena available. Thue in ocither case &t ¢os: g more

than vovered.
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Step 1: Run Layout
This step involves two symmetric scans of TOP. We have at this point
to segments xlul and xzuz (the latter possibly wvoid). If quz is void we
may assume w.l.o.g. that Ul is exposed {(otherwise, we consider the mirror image
of the rectangle)., The first scan is & lefc-to-right scan of segment xlv b e
2 call of procedure RIGKT-RWN-LAYOUT (1, =min(d,N}), where Ul = (h,d) if Ul # U,
Execution of this procedure on the sagment generates s sequence of segments
XjUSs e enKpUl (k2 0) such that
a) X,Ug, 1 2 & 2 k are all exposed;
b) segmence Xivi, 1<1<k, hold a, + 1 tokens cach,where s, = '
¢) no (x,h), c X< di and 1 < 1 < %, is the terminal of a right-going

TOP-NONTOP net. Here X = (cih) and U, = (di'h}'

i
The following program makes use of the "extension of a left-going net”,
«
by which wa mean the following operation: given a left-going nec N = ((f,h),{g,%))

* “
with g < £, to extend N to e > f means te draw for N & horizontal wire from

(f,2) to (e,h) and a vertical wire from (e,h) to (e,h-l) ,thereby moving the
terminal from (I,h) to {e,h=1). Also all other nets with a terminal in set

{{x,h): f < x < @} are exteaded by one vertical edge.



procedure RIGHT-RUN-LAYOUT (c,d)
begin u: = c; EXT:e
if (c,h) 1is not exposed then
EXT: = one of the nets starting in {c,h); if possible, a
non-vertical net is chosen here: (*this is treated
conventionzlly as an extension®)
uhile v < d do
p:~f is minimal such thac (f,h) is the terminal of a
right-gaing TOP-NONTOP net
else p:=f is minimal such that (f,h) fs the terminal of a
cight-going TOP-NONTOP net or the left-terminal of a TOP-TOP net

are=min (p,d);
if EXT ¢ A then
begin extend EXT to e; EXT: = A end;
lay out right run starting at e (if it exists);
8 « column destination of run;
Lf (g,h) L2 the right terminal of a TOP-TOP net N
or the terminal of a left-going TOP-NONTOP net N then
EXT: = N ;

u: = g

Ixample: ¢ = 2, d = 7, (¢,h) is exposed. In the first iteration of cthe loop,
L 2 3 3

6 -

c=2 2 1 d=?
Figure 8., Illustration of the action of RIGHT-RUN-LAYOUT.
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we have ¢ = 3. The run starting in column 3 consists of net 1 and extends to
colum 4. Since (4,h) is the right terminal of a left-going net, we sot
EXT:=Net Z. In the next iteration we have ¢ = 3,... .

Lem=a 4: Application of procedure RIGHT-RUN-LAYOUT to segment X Ul generates

1
a valid problem P'.

Proof: Consider a v-cut (a,a+l). If the density of v=-cut (a,a+l) has not
changed when passing to P', i.e. the cut lies in one of the newly generated
sagments KiU;, then thers is nothing to show. So assume otherwise. Then the
capacity of the cut was decressed by one,and also a net was routed across

v-cut {a,e+l). If this net wss part of a right-going run then the density was
aleo decreased by one and we zre done.

The final case to consider is when a net extension was routed across the
v-cut and hence the deasity was increased by one. Suppose that the lefr-going
net extension starte in column x and is routed across the v-cut. Then all nodes
{,R), x <y < &, are vither terminals of lefr-going TOP-NONTOP nets or che
right terminal of a TOP-TOP net. Thus

dens(a,a+l) < dens(a-l,a) < ... < dens(x,x+l).
In view of Lemma 1 it suffices to show dens(x,x+l) < h. This can be =een as
followa., If x = 1, and hence {1,h) 1s the terminal of two vertical nets, we
have dens{x,x+1) < h-2 since there are at most h+2 tcrminals of column 1, at
least 4 of which belong te vertical nets. If x > 1,then
dens(x,x+l) < dens(x-l,x) - 2 < h=2,since (x,1) is the right terminal of a

top-nontop net and (x,h) is the terminal of a left-going net. T



Aocounting: Let 3 > O be the sumber of executions of the body of the while-Icop,
tet x, be ths mamber of executicns which are started with EXT ¢ A, and let

8y = 3 - 5. Then exactly #, segments are created. [Let =, be the mmber of

2 v
TCP-VCNTOP nete that are laid out compietely and let T,p be the mumber of

TOP-TGF neta that are laid out completely. Then the total nwmber of tokere

needed ig
o for the 3, completed TCP-NONTOP nete
* Tnn for the %, completed TOP-TCF nete

2 P (“a”’l For the z, segmente areated
+ B for the z, excensions

* 1 fer the TOP-NONTOP op TOP-TOP ner whoge layout is attempted ut

not completed because it artemds beyond 2ciuwmn d

[}

Lup * T * 200, + 3+ 1

*a

he total rumber of tokens available is:

Fon Cry from the Zom aompleted TOR-ICNTOF rets
£.p" G from the x,, completed TOP-ICP nets
@, * K) From the eegment XU,

- Tap'd ta ¢ g

E? L} ‘!‘l‘ HT H

Finally observe that x*__ > 2, - 1, sinoe all dut the first &xtengion is preceded

vy - "2

by « completed TOP-NONTOP net, and that Loy P

segment wvas ereated by the layout of a mo whieh srarts with a T2P-JONUCOF ne:.

> 3, = 1, stwe all but the first

Thug

e

. . I = {
oy F g T EySG + 2+ 1 (10 #2) + S + 3+ 2

< .".'T”'GTN + :TT'GT‘Z‘ + 3 + as

atnee Ay = 7 and Spp = 1.
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This finishes the description of the left-to-right scan. Its effects are

illustrated in Figure 2, in the hypothesis chat both X and U are initially not

exposed.
xl-I ‘UI X U2=ﬂ
' €1 ]
. L] ] 1] ' L] ] ’
5 4 X 2 K Y %+l Vsl
-F t 4 N ) - |
#

Figure 9. Near-rectangle after the left-to-right scan,

It is immediately verified that the segmentce xiui,....xﬁUi have the properties
cutlined earlier; in addition there may be a special segment X£+1U£+1. which
was created earlier by the initialization step.

We are now raady to undertake the symmetric right-to-left scan of Step 1,

which performs the following action:

for i = k+l down to 1 do LEFT-RUN-LAYOUT (ci'di)
vhere:
procedurs LEFT-RUN-LAYOUT (c,d) is symmetric of

procedure RIGHT-RUN-LAYOUT (c,d) described earlier.

1t is clear from the arguments given in conneccion with RIGHT-RUN-LAYOUT
that this scan produces a valid problem. Also, the lefe-to-right scan shrinks

e ' 13! « it
segment xk+luk+1 to a void segment and divides each of the segments XIU .
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L <1 <2, into 2 numbder (> 1) of segments. Each newly created segment
X"C" has the following properties:

a) X" and U" are both exposed and no node in the segment is the terminal

of a TOP-NOWTOP necr;

b) there are a, tokens on the segmant.
Accouncing: We uge the same motation as in the accounting for procedurc
RICHT-3VN-LAYOUT,

Let us conoentrate first on segment ka.’éﬁ. Thie eegmens exiota only
if U;:_‘L, = U 1§ not axposed, {.e. if node (h,n) ie the terminal of fxc nete.

-

Singce no node (x,n) with CLel

we have 3, = % and hence 8, = 0, 1.2. no new segment is created. Hence the
- =

<z < dkﬂ = n 1§ terminal of a horizontal nat,

zotal rumber of tokene needed ig at most Lo + ¥pp + 3, + 1. Alzo the total

numier of tokena avatlable is x + 2 ginee thare are TuWo tokens

v %y ¥ Ter 9y

on aegmerit I. JUr,, (placed by the inttialization step/. Since Gy = 2,
]

K+

Qpn = 1 and Xop 2 2 - 1, the cocat ia amply ocovered.

It remaing o conetder gegments .(‘ f, 1<1ic<k., 8Since boin .’s‘é’ and .;;
22 ! and Toy 2 Age Also, by the accocunting for procedurs
EP-RUN-LAYOUT '8 T x ‘a_ +z h oniy
RICET-RUN-LAYOUT, the total cost is o T Fpr ¥ 354, ; F1 (note that i’

are expossd, ve have 2

e, tokensg ars now placed on  cach newly generated segment) and the total rumber
of tokenz available is Lo * = oy - a, + 1 (note thas a, + 1 tokewme wvere

avatlabie on segmenc ’( U’ Jo s cost is coverad,sines ., > 3. - 1,

o = s Gop = I @, = 4 Wizh an endowment of atr leaet 2, toRens per segment

wa aar Mo oegin the clemi-up step.
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Step 3: Clean=-up
4s mentioned earlier, at this point we have a sequence of segments
:c'l'u;,x;z'u;.....x's'r; with Properties 1), 2), and 3) described ahove. To this

collection we apply the following algorithm:
for 1 = 1 to 5 do CLEAN-UP (c",d")
where - id
procedure CLEAN-UP (c*,d*)
Nl-((c,h-l).(c.h-x)):z TOP-TOP  net with meximal c, e<c*<c, x€ {0,L}; .

2. N,=({d,h-y), (f,h=v)):= TOP-TOP et with minimal ¢, d<d*r<f,\,y €(0,1};

. if N, = A thea c: = e*;
L. i 8 Nz = A then &: = d*;
5. 1f (e=>¢) or [(c<d) and for every v-cut (g,g+l),c<g<d, (g,g+l)
i3 either nonsaturated or szturated by fictitious net]
€. then if ¢ > d% then
7. (95.5_32 create nets Ni'f(ﬂ,h-l),(t:*,h-l}] and N"=((d%*,h=1),(d,h=x);
g. gee J draw wire (c*,h-1) =+ (c*,h) =+ (d*,h) » (d*,h-1) for net Nl;
9 F‘%‘(‘):" draw vertical wire segments for all other nets with
" terminal (z,h), c*<z<d¥;
\end
10. glse {/c<d*f) begin create net Nj=((e,h-1),(c*,h~1));
i1, draw wire (c*,h-1)+ (c*,h) + (¢,h) for net ¥,;
12. if ¢ > d chen
13 ( begin create nets Hz'={(d.h-)-),(c.h-l)) and
n = A = | =y .
- N 2 {(d*,h-1),(f h-v));
1. Figure 10b J draw wire (c¢,h=1) = (c,h) + (d*,h) + (d%,h=-1) for net Nz;
15, draw vertical wire segments for all other nets
with terminal (z,h),c* <z <d¥;
end
| 22€
16. (el.se begin create net N'z'-((d*,h-l) (f,h=v));
! draw wire (d.h) = (d%,h) = (d%,h-1) for nec X,;
37 ¢ :eem z draw vertical wire segments for all other nets
wHEke: 186 | with terminal (z,h), c® < z < ¢*;
18. | add ¢ and d to the set of fictitious puints;
{

end

wlse PULL (c%,d%,c,d) (fto he described later/)
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Rem=rk:

Note that either nes ’l or net Hz er both méighe be fictitious. If

net N, (N_) is fictitious then the wire drawn for that ret is fictitious,

) S i

i.e. we explicitly declare all the edges on that wire as unused.

Also, the

newly created nets are fictitifous if the original was. For exsmple, if nets

N nd N
1.1-‘3("2

are fictitious, i.e. points e, ¢, d, f are fictitious, and ¢ = d,

then points e, ¢*, ¢, d, df, f will be fictitious aftaer termination of CLEAN-UP

and we will have drawn three fictitious wires.

The actions of CLEAN-UP described above are illustrated in Figures 10a,

b, and c.
e e dx Revenues Expenditures
. | &
1
2) | (' ; a tan 1+ :GTT
- Ca L
Nl hi
e c¥ d ¢ d= g
‘ [
(®) + 2 +
3, B 2 SaIT
} m- — - ———
.\L' ] N"
I B
£
|
l +
] a ZaTT 3+ Ja.rT
fictitious Ny
Figure 10. Actions of CLEAN-UP and their accounting.
Lemma 9; The Proslem P' obtained in this fashion is wvalid.
Prooi: 1f ¢ > 4 then we reduced the capacity and density of every w-cut

(g,8+1) with c# < g < ¢* by one. Thus validity is preserved.
So let ug assume ¢ < &.

and J < g <« 2% we reduce capacity snd density of v-cut (g.g+l).

(Note that ¢ = d 1is impossible.) For ¢* < p < ¢

It remains
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to consider g such that ¢ < g < d. Then, by the condition in line 5 of CLEaN-UP,
either v-cut (g,g+l) 1s not saturated and hence has density at most h=2 by

Lemema 1, or v-cut (g,g+l) is saturated and there is a fictitious net going
across v-cut (g,g+l). In the first case we are safe since when passing from

? to P' we reduce the capacity by one and increase the density by one. Note

that there is a fictitious net going across v-cut (g,g+l) in P'. In the second
case wa are zafe since in P' there is no (I!) fictitious net going across v=cut
(g,g+l). This follows from the fact that we added ¢ and d to the set of
ficctitious points and ¢ < g < d.

Accounting: Fer the case in Figure 10a, the experditure is ons token for the

3

nor:

o

ontal wire draam and one token to place on each of the rew ILCF-TOP rgls
¥} and ¥%. Availablie are a, = 4 tokene on sagmant X'V’ ard ome token from
1 :

res N, thig ig more than adequate t¢ cover expenditures.

For the cage in Figure 10b (¢ > d), we have inerzased the rnumber of
TOP-TOP nets by one and have drawm tuo horisontal wires. Again, the reverue
18 2apy + a_ and the axpanditure iz 3a. + 2, which is covered.

finally, for the cage in Figure 10¢ (e < d), we have inureased the numbers
o [CP-10P »nets by one (there is one additional frotiiious net) and we havs
drawm at most tnree horizontal wires at leact one of which is fietiticus. Thus,

the revenue i3 2a.. + a, (from the two processed TOP-TOP nets and the segment),

g

ile the expenditure 8 at most fapn + 3. Since a.. =1 and a =4, the cost

K

1]

aluaye covered.
We are now ready to consider the last case, to which we apply procedure
PULL. This case occurs when ¢ < d and there iz a saturated v-cut (g,g+l),

c g < d, with no ficritious nets across it. In this case, it is mandatory
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to use track h in the intervel [g,g+l], and the only way to achieve this is by
"pulling up" to track h 3 net not contributing to the vertical density at h.
The action L8 dezcribed by the following procedure:

procedure PULL(c*,d*,c,d)

gi*ninimal p, c<p<d, 80 that v-cut (p,p+l) is saturated with no
fictitious nets;

r:=maximal g, so that row g coatafns the terminal of = TOP-NONTOP or
NONTOP-NONTOP net across (g,g+l);

Lf r=h-l then
begin N:=net with terminal in (i,h-1) which goes across cut(g,g+l)
if 1<c* then (/N=((L,h-1),c/)
begin create nets N'=((i,h-1),(c*,h=1)) oad N"=({c*,h),t);
draw wire (e*,h) » (e*,h-1) for net X;
RIGHT-RUN-LAYOUT (c*,d*)
j:=rightmost column reached by layour;

end
else (/¥=(t,(i,h-1):symctric of case adove/)
end
else (r<h-1)

begin N:=((sa,y).(r,z)):=net with remax(y,z);
create nets N'=((s.¥).(g.,h)) and N"=((g+1,h).{t,2));
draw wire (g,h) - (g+1,h) for netr N;
RIGHT~RUN-LAYOUT (g+1,d*);
jr=rightnost column reached by layout;
if 3 < d* then CLEAN-UP (§,d*);
LEFT-RUN~LAYOUT (c*,g);
i:=leftmost column reached by layout;
if £ > e* thea CLEAN-UP (c*,i)

enq

The actions of PULL are illustrated in Figure 11,
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Actions of PULL and cheir accounting.
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Lenmg 10: Parameter r (used by CLEAN-UP) is well defined.

Proef: If z = g then colunn g must be density osreserving or increasing; if

¢ < g then column g must be density increasing by the minimality of 2. In
either case we infer that (g,1) is the terminal of a net which also has a
terminal in columms g+l,...,n.
Lemma 11: The new problem P' {5 valid.
Prooi: We consider first the case r = h-1, i.e, N 18 & TOP-XONTOP ne:,
whence we have either L < ¢® or d% < j (if ¢* < 1 < d%, che previous scane
would have processed ft). Thus, in chis case, the validity of P' is ohvious
(since the segment is eliminated).

In the other case (r < h=2), the crucial obeervation is that

dens(b,b+l)

A

n=2 for every h-cut (b,b+l) with r < » < h-2. We prove

dens(b ,b+l)

| A

n-2 by case distinction on b.

Case 1: 5 > h = (&% - ¢* +]1)/2,

There are at most n+2 - {(d¥=-¢c*+l) terminals in TOP cutzide of segment
X'W' in rows b+l,...,h-2 and exactly 2(h-2-b) terminals in rows b+l,...,h-2.
Since all terminals in segment X'U' are terminals of horizontal nets we conclude
denz(b,b+1) < n + 2 - (d*-¢*+1) + 2(h~2-~b)

n-=-2

A

Cage 2: b < h - (d*—*+1)/2.

Lat ¢ be the number of horizontal nets which ge across cutr (g,g+l). Aall
such nets have both terminals on line segment X'U' since ¢ < g < d. Since X'
and U' are exposed we conclude 2 < (dd-c*-1)/2.

There are at most n+2b terminals in rows l,...,b. We label these terminals
T

up’ and "cross' as followa. A terminal is labelled up (cross) 1if it belongs

to a net which goes across h-cut (b,b+l) (v-cut (g,g+l1)). Then no terminal is



Labelled up and cross since there are no nets in TOP-NONTOP wvhich go across
the cut {(g,g+l) (recall thet n < h-2) and since every net in XONTOP-NONTOP
which goes across the cut has both terminals in rows 1,...,r by definttion of r.
Since v-cut (g,g+l) is saturated, exactly 2(h-L) terainals are labelled cross.
thus

dens(b,b+1l) < n + 2b - 2(h-2)

0+ 2{b-ht+(d*-c*-1)/2)

| #4

<n -2
gince b < h = {(d¥=c®+1)/2,
Acecunting: The accounting te best done by referring to the rasve fillugtrated
in Figuve I1.

Congider first » = i-i and § = d* (Figure 1la and D). Than we Rave
inerzased the number of TOF-TOP nets by one (mamely N') and either we have
ccmplsted a TOP-NONTOP nst (namely N") drauing at moet I horizontal wires
(Nozs chat N' could end in a colwm which qiso contains the rignt seminal of
a horizontal net (Figure lla),) or we have not campleted a TOP-NONTOF ret
drawing one nori{sontal wire (Pigure 11b). In etither case w¢ can use the a, =4
tokama cratlable on  segment X'U' to cover the expenditures: indead in the

Firet cage we Rave a reverme of a, * apy = 11 tokens and need only & + a 4

p =
takene; in the latier case we have a, = 4 tokeng available and need onlu
I Qe = & tokene.

Congider now that j < d* (Figure 1leci. Then the layout of the rew
startivg with net ¥ usse at meat thres norisontal wires and also delétes one

TGP-T2F net, Thua altogether, the wumber of TOP-TOP nete te not inercased.

Thue zotal expernditure ia ot most 3 which <8 easily covered by the Copy = 7

toxkerig on ner .



Congider next all the ocases for whioh r < h-2. In ail of these cases we
reduce the rumber of NONTOP-NONTOF nete by ome, whiich yielde ay, @ 12 tokens.

Caze L. (Plgure 1id): c* < € < J < @4, WNe lay out nete N' and N"
complotoly ad also complete nwo horizental nets, which ytleld 2“."5‘ tokeng.
frpenditune 18 at most § for the horizontal wires drawn and a, =4 for the nawly
created segment and ie thus eaeily covered.

cage 2. ct< g < judtopot =< <dr Then the womder o gegmenta
does 1ot chaonge. Aeeumo 0* < ¥ < J = d* w.i.o.g. Then we completely lay out
net ' and also ore horizontal wet. This yislds G tokong. Mot N g atither
iaid cut completaly or it te not. In the firet ocea (Figure lle, (N ig laid
out comietely) we dvaw ar mest § Roriaontal wiree and thua have an exrpendizu

of 5. Thie ‘o readily covered by the a = 13 tokens available.

s * %rr
i thae latter case (Figure 11f) (N" is not laid out completely) we drau
at moet § horizonital wires and haence total expenditure i3 at moat 3 + @y = 10,
fecall thet we reed o put Quy tokens on " in Uhils case. Thic iz covered iy
WE @y # Go = 13 tokene awailadle.
cage 3: et*m i< Jedt. Then the a, = ¢ tokene on gogment X'U' baoeme
avaeiluodle. If naither N’ nor N 18 laid out completely (Figure 11g), then e

draw one wire and need to place a,,, = ? tokens each on N’ and N". Thus total

™
exverdiiure 18 Wy * 1= 15 wateh te oovored by the ayy * @, = 16 toxens
avaiictie.

I7 exactly cre of N' or ¥" 18 laid out completely (Figure 1ln), then we
deay at most & wiree and need to place Ay tokens on either N' or NV, Tius
toral wrpendizure fe & 4 a,, = 10 which {0 covered by the apy * B, ™ 16 tckena

I P
ML LGUIE.
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F‘J

inally, if both W' and " are laid cut ccmpletely (FPigure 115}, then we
drav gr moet § wiree. Thus total expenditure is 5 witek is readily covered
by the Gap * A, " 16 tokasne available.

Thug in all cases the expanses are ccvered.

We summarize in
Thecrem 1: Let P be any KERP with N nets. Then a solution (if there is ome)
with only O(N) knock-knees can be found using only O(N) elementary steps.
Preef: Recall thac an elementary step corresponds to drawing a horizental wire
of arditrary leagth. Knock-knees occur only at the end of horizontal wires.
Thus it sufiices to prove the bound on the number of elementary steps.

In Section T] we described how any (solvable) RR? can be turned incto a
standerd RRP with only O(N) nets.

In a standard RRP with O(N) nets we supply only O(N) tokens initially.

Since an elementsry step costs cone token the bound follows.

e conclude this section with an example illustrating the algorithm.

Exanple l: The following RRP is given

;01 2 3 % 7 5 8 7 8 111l
| |
10 l 12
Ty 1 & 5 3 6 6 9 9
After the execution of INITIALIZE we have:
11
1 2 2
10 3 2 7 5 8 7 8 1
| |
10 12
4 1 4 5 3 6 6 9 9 12
Next, we have RICGHT-RUN-LAYOUT, which yields
11

r o2 3 2
10{{75373
i
L
5
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The execution of LEFT-RUN-LAYOUT gives
7 5 8 71 8 1

1 2 3 __}
10 oh i 1 Wll
10 .l....l-.;l.“ — :l | 12
4 1 4 5

3 6 6 9 9 12

Finally, CLEAN-UP treats a single interval extending Zrom column 6 to columm 10.

We pull NONTOP-NONTOP net 9 and obtain
3 2 7.5 8 7 § 1
4

1 2
NEEESN NN
:0 S AN RS BAR L 20 12
4 1

9 12
The lavout is then completed by the straight-forward processing of row 1

wn
[F8]
(-]
o
w

: |

1 2 3 2 7 5 8 7 B

11
10 1‘ ‘[ A 'r—]‘ =~ 11
10 . g v ! 12

4 1 4 5 1 6 6 9 ¢ 12

£ the last column is suppressed, we leave it as an exercise to show that

the fellowing layout is constructed

1 2 3 2 7 5 g 7 8
10 o> Ir ) ‘j H 1
IO]I" I ] L ] [ 11
“ 1 ¢ 5 3 6 6 9 9

Example 2. A more subszantial example of routing is illustrated in Figure 13.

Note that all columms but the last one are saturated.

1 ¢ 15 4 4 'F
2= s

4

>t
I
.

Hr:

e -

% s 8 4 38 9 7

5u.6\-q|u
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IV, [IMPLEMENTATION

The goal of this section is to show that each elementary step can be
implemented in time O(logl). We first discuss data structures to be used
for nets and then data structures to be used for columms and fictitious
points,

The procedure discussed in Section IILI involves the searches of several
collections of items, such as TOP-TOP nets, etc. Each such collection must
be organized im a data structure that supports the required operations within
the target O(logh) time bound. Before discussing these data structures, we
recall, for the reader's convenisnce, the search operations postulated by the

algnrithm:

Find TOP-TOP? net N* = ((f,h)(g,h)) with maximal g (proc. INITIALIZE).

[

Search

Search 2. Given ¢, find minimal f > ¢ such that (f,h) is the left-terminal of
a TOP-NONTOP net (in proc. RIGHT-RUR-LAYOUT; also, its symmetTric
operation for LEFT-RUN-LAYOUT).

Search 3. Given ¢, find minimal f > ¢ such that (f,h) is the left terminal of
a TCP-TOF net (in proc. RIGHT-RUN-LAYOUT; also, its symmetric operation
for LEFT-RUN-LAYOUT).

Search 4. Given c*, find a TOP-TOP net N, - ((e,h=1),(c.,h-x)), x€ (0,1}, with
maximal ¢, e < ¢* < ¢ (proe. CLEAN-UP).

Search 5. Given d%, [ind a TQP-TOP net “2 = ((d,h=y),(f ,h-v)), v,vE€ {0,1},

with minimal d, d < d* < £ (proc. CLEAN-UP).

o

Search 4. CGiven interval [c,d], find minimal g, such that ¢ < g < &, v—ut
(g,2+1) is saturated and there is no fictitious net across the
v-cut. If there is no such g report that fact {prec. CLEAN-UP

and PULL).
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Search 7. Given g, find naximal q such that row q contains the terminal of =
TOP=NONTOP or NONTOP-NONTOP net N = ((s,y)(t,z)), q = max(y,z),
across v=cut (g,g+l) (proc. PULL).

Wnile operatione 1, 2, and 3 could be carried out using very conventional
data structures (priority queues realized by height-balanced trees), the other
operstions require recourse to more sophisticeted structures: these are the

(discrete range) prioricy search trees [McCreight ( 82 )] and the segment trees

[Beatlay ( 77 ); see alzo, Lipski-Preparata (80)]). Both types of trees deal
with f{ntegers and integer Ppairs, denoted by [ , ].

Priority sesrch trees support the following operations on a dynamic set

S of points, in time logarithmic in the size of their coordinates. We denote
points stored in priority search trees by [x,y] in order to distinguish them

from points in ractangles:

PST 1. Insert (delete) 3 point;

PST 2. (Given query integers Xgs %10 and ¥y find [x,y] € S such that
Xg L% £ %, Y 3_y1 and x is minimal;

and x,, find [x,y] € S such that x

PST 3. Given query integers x £x <X

¢] : 0 1

and y {s maximal.

It is now appropriate to briefly recall the structure of segment trees.
A smegment trea T(a,b) over an interval [a,b] consists of a root v, with two
parameters Blv] = a2 and E{v] = b, and, if b=a > 1, of a left subtree T{a,|(a+b)/2])
and & right subtree T(L(a+b)}/2),b); v i3 a leaf if b-a = 1. Besides the
essential parameters B[v] and E[v]), associated with each node there are
addirional auxiliary parameters required by the specific applications. GCiven
an interval (c¢,d), with a <c <«<d <b, segment tree T(a,b) supports in
logarithmic time the operation of partitioning [c¢,d] into O(log(a-b)) segmencs,

each of which iz allocated to a node of T{a,b).
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Nets are conveniently subdivided into subsets (each teo be maintained in
a soparate data structure), according to the following classificaticn.

Referring to Fipgure 14, TOP is the set of terminals in rows h-1 and b,

. TOP
h ‘F : ---------------------- mEmss==- ‘\
\
i
L L ] .y
o R
h=2 T 1 s i 1
vy al
i | hErT \ | IRrrcuT
- )
1 & BE
- . 74
~
1 e —— e
~I BOTTOX [

}

Figure 14, Classification of the terminals of the near-rectangle.

BOTTOM is the set of terminals in row 1, LEFT is the set of rerminals in
column 1, rows 2 through h-2, and RIGHT is defined analogously. We shall use
eight collections cof nonfictitious nets: TOP-TOP, TOP-LEFT, TOP-RIGHT,
TOP-BOTTOM; LEFT-BOTTOM, RIGHT-2OTTOM; LEFT-RIGHT, 30TTOM-BOTTOM (no
csophisticared data structure is necded for LEFT-LEFT and RIGHT-RIGET). We

now discuss rthe data structure for each ¢f these collections.

TOP-TOP: Pricrity search tree and priority queus. Nets are of the form
{(f, h~a), (g. h=b)) for some a,b € {0,!). We store [f,g) as a point in a
priority search tree; in addition, points g are stored fin a priority queue.

Search | is solved by choosing x, = 1 and xl = n in PST3; Search 3 is

0
colved by choosing Xy ™ € Xy =M, and yp=¢ in PST2; the symmetric version

of Search 3 18 solved by finding the maximal g less than or equal to scme
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given d in the priority queue for the right terminals; Scarch 4 is solved

%
by choosing x_ = 1, and x, = ¢ fn PST3; Search 5 is solved by choosing

0 1
&
o = d, x, = n, and yl = 1 in PSTZ. We leave it a2 an cpen problem to find

e single data structure for TOP-T0P nets that supports all -earches.

TOP-LEFT: Priority queue, ordered according to the colunmn of the righe
terminal. In Search 7, this =nables us Lo determine if there is a TOP-LEFT
net across (g,gtl).

10P=RIGET: Same as TOP-LEFT.

TOP-BOTTOM, 30TTOM=-BOTTOM: Same as TOP-TOF.

LEFT-BOTTOM: Priority search tre=., {Nets are of the form ((l,y),(x,1}).)
In the priority secarch tree we store peints [x,y). In Search 7, we can
find a LEFT-BOTTOM net with maximal y acroee (g,z+l) by setting Xy = g+l and
X = ® in PST3.

RIGHT-BOTTOM: Same ag LEFT-BOTTON.

LEFT-RIGHT: Priority queuc, ordered according to the row that contains
the higher terminal. This ensbles to find the desired NONXTOP-NOXTOP net in
Search 7.

The above discussfon outlines the implementation of searches 1, 2, 3,
4, 5, and 7 with respect to nonfictitious nets; all are executable in time
0(logk). Furthermore, all dara structures can be updated in time O(logN)
after laying out a net.

It remuins to describe the data structure used for columms and
ficritious nets. This data ecructure slec supports Search 6. We resort to
a gepment tree T(i,n) with n leaves numbered 1,...,n. Leaf i represents
column £ and v-cut (i,i+1). In segment tree T(l,n) we store all nonfictitious
nonvertical nets as intervals of the type {coluvmm contafniang left terminal,
column centaining righe terminal -1). The segment tree has the following

axuiliary node parameters:
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FICT[v]: = number of fictitfous peints in subtree rooted at v
Cciv): = number of intarval segments allocated to node v, i.e., C{v]
is the number of nonfictitious nets which start at or before
B(v] 2nd end afrer E[v]) and which either start after
B(fachexr[v]] or end befcre or ac E[facher([v]].
Clv] if v is a leaf
EDENS[v)
Clv) + max(EDENS{ lson[v]),EDENS(rson[v]]) if v is not a leal.
Quantity EDENS[v] can be iaterpreted as follows. For Blv] < 1 < E[v], let
edens{i,v) be the number of nenficititious neta that go across v-cut (i,i+l)
and have at lesast one terminal in interval [E[fathar[v]),E(father{v]}].
Then EDENS[v] = mex{edens(v,f):B[v] < £ < E[v]}.
Using auxiliary node parameter FICT it is easy to carry out searches 1,
3, &, and 5 with respact to fictitiocus nets and also to determine the second
terninal of e fictitious net if one is known. Also all parameters of the
gegment trée can be updsted in logarithmic time when insercing or deleting a
nonfictitious mec or when insercing or deleting fictitious points. There is
cne subtle point hewever. When inserting fictitfous points ¢, d in procedure

CLEAN-U?, line, the set of fictitious nets may change dramatically (sece

Figure 15). .
|
1

aln
|

L
.

Figure 15. Change in fictitious nets as & result of fn<erring points ¢ and d.
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It 45 therefore £gsential that only nonfictitious nets be considered in
computing parametar EDERS(v].

We finally dascribe how to do Search 6. Note that Search 6 iz tantamount
to deciding whether edens{g,root) = h for some g withc < g < & and if 30 to
find & minimal such g. Next note that if node v 18 an ancestor of lesf g then
edens(g,root) = eadens(g,v) + L{C[w); w is proper ancestor of v}. The latter
foraula gives vise for anm algorithm for Search 6. Conceptually, fnsert
fnterval [e¢,d-1} into thes segnent tree. For every node v, auch that (c,d-1)
is allocated to v, compute D{v]: = L{Clw): w is proper ancestor of v}. This
i5 rasily done in logarithmic time and inm fact can be combined with the
insortion roucine. TFinally compute EDENS[w] + D[v] for every such ncde and
determine the leftmost node with EDENS{w] + D[v] = h. If there is nc such
nede the outcome of Search 6 is negative. If there is such a node, take the
leftnest node and call it v. Trace a path from v to & leaf by follewing
the points to the left son if EDENS([v) = C[v] + EDENS{1son[v]] and by following
the points to the right son ctherwise. In this way we find a v-cut (g,2+l)
which 1s satureted and has nc fictitious net across it. Thus Search 6 takes
legarithmic time.

We thus have
Theorem 2: Given a rectangle routing problem with N nets one can construct a
lavour {if chere 1s one) in zime O(WlogW). Moreover, the layout has only O(N)
nock-knees.

Proor: Immediace from Theorem 1 and the discussion above.
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V. MULTI-TERMINAL NETS

A multi-terminal net may have any number of terminmals, i.e., a multi-
terninal net is sn artitrary subset of the boundary peoints of the rectangle.
It is not known whether the results of the previcus section carry over Lo
multi-terminal nets. However, the results of the previous section can be
used to obtain an approximation algorithm for mulci-terminal net routing
problems,

Let P be any multi-terminal routing problem such that the density of no
v-cut and h-cut exceeds its cepacity. Enlarge the grid by inserting new
empty grid lines between any pair of adjacent vertical or horizontal grid
linee, but insert three grid lines between colusns 1 and 2 and rows 1 and 2.

Thus an n by m rectangle is enlarged to an (2u+l) by (2m+l) rectangle (see

Figure 16),
1 & 3 1 11" &4' 3 3 1 1:‘
2 N BEE T :
p ) : i
b Ll .-P.:q_..___r..__,.___r.___ AL
] I '
(. ' |
| '
2} 3 z': i — . ! 3
i 2 :-‘.|-T-‘l-o ---c?-—-J-—- --—--1 3"
-n'L-JI-T—u--—Q-—— -o--o—f——-
&l——l'—‘--r—i-ﬂ—! -—----T——d 3“
4 3 4 e L3 i | 2
1 4 ? 11" a* & 21 2

Figure 16. New grid lines are dotted.
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Now, cransform the routing problem into a two-terminal net routing problenm
as follows (cf. Figure 16). View a multi-tarminal net as a cycle which is
attached to the boundary at some number of points (ite terminals). Create
a copy of each terminal and move it to an adjacent empty grid line. In this
way a multi-terminal net with ¢ cerminals gives rise te d two-terminal nets.
Also this transformation at most doubles the density. Thus in the new
preblem no column and row is saturated (that's the reagsen why we insarted
three grid lires and not only two between columns 1 and 2 and rows 1l and 2)
and hence the revised row end column criteria hold. Thus the problem is valid
end has a solution. Moreover, it is easy to see that edges between the Cwo
copies of a terminal need not be used in the layout and can therefore be used

to connect the different pleces of a multi-terminal net.



VI. Layer Assignment

We mentioned 2)réady in the introduction that every layout can be
wired using four layers of interconnect (Brady/Brown). The precise
model is as follows. We have four layers, say 1,2,3,4 of intercon-
nect, two of which, say i1 and j (i < j), are electrically pre-
ferential. In any gridpoint we can place two contacts, cne connect-
ing layers 11 and iz and one connecting layers 13 and id where

1 2 i1 $1i, < 13 £ i, £ 4. Thus it is assumed that we can simul-
taneously contact from layers 1 to 2 and from 3 to 4, cor from ! to
J and from 4 to 4. However, we cannot simultaneously centact from
T to 3 and from 2 to 4, Let L be any layout with k knock-knees.
Then L can be wired in the model described above such that (a)
there are only 0(k) contact cuts and (b) all but 0(k) length of
wire runs in special layers i and j. The wiring is such that the
usage of contact cuts and the non-special layers is limited to the
vicinity of knock-knees. We refer the reader to Brady/Brown for
details.

Four layers of interconnect may not be technically feasible at
present. We will now show how to wire a layout using two layers of
interconnect after expanding it by a factor of two in the y-direc-
tion (or x-direction). Let L be a layout. Expand the grid by in-
serting & new enpty grid line between any pair of adjacent horizon-
tal grid lines. Thus an n by m rectangle is enlarged to an n by

2m - 1 rectangle. Contacts are only placed on new grid lines. The
layer assignment to wires on old grid lines is as follows. The wire
entering a row from the left runs on layer 1 all the way to its
knock knee. There it is reflected upwards or dewnwards. We continue
to run it on layer 1 to the adjacent new grid line. The other wire
teking part in the knock knee runs on layer 2 all the way to its
other knock knece in the row, ... . The following diagram illustrates
the strategy.
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We use this stragegy independently on every old grid line. Note that
the layer of every vertical wire segment crossing an old grid line
is fixed by the layer assignment of the horizontal segment. We can
now use the new grid lincs to mend together the solutions for adja-
cent old grid lines by placing contacts at appropriate places. The
diagram below illustrates the mending process.
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A complete writing for the final example of section III is shown

helaw.
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