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Abstract 

Consider algorith~s which are designed for shared memory models of 

paralJei computation in which processors are allowed to have fairly 

unrestdcted access patterns to the shared memory. General fast 

simllations of such algorithms by parallel machines in which the shared 

ITemory is organized in roodules where only one cell of each module can 

be acces~ed at a time are proposed. 

The paper provides a comprehensive study of the problem. The 

solution involves three stages: 

(a) Before a simulation, distribute randomly the memory addresses among the 

memory mod1Jles. 

(b) Ke.ep se ve,ral copies of each address and assign memory requests of 

processors to the 'right' copies at any time. 

(c) Satlsfy these assigned memory requests according to specifications of 

the parallel machine. 

*A preliminary' ve rsion of thls paper was presented at 

the 9th \.Jorksho? on C!!aghtheoretic Concepts in Computer Science 

(WG-83), Fachbere ich Hathcli\.-'ltic, Universitat Osnabruck, June 1983. 
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1. Introduct ion 

Consider algorithms designed for trodels of parallel computation in 

which processors have access to a shared memory and parallel machines 

in which this shared memory is organized in modules where only one cell 

of each module can be accessed at a time. 

The problem of simulating such algorithms on these machines is the 

problem of granularity of parallel memories (granularity, in short). 

Every intuit! ve idea for coping with the granularity problem has to be 

analyzed for alternate formal settings of assumptions for both the 

model of parallel computation and the parallel machine. In order to 

overcome this difficulty we present our main ideas on a setting of 

assumptions which enables us to simplify the presentation by limiting 

the discussion to the actual problem which is overcome by our ideas. 

Extensiors of the ideas to alternate models of computation and machines 

are given later in the paper. 

We study ways by which the second parallel machine model below can 

sim..tlate the first. Both machine models employ p pl=Qcesslng elements 

(PE's or processors) which operate synchronously and N common memory 

cells. In the first model each processor has access to each of the N 

cells in each time unit. He forbid only the case where two (or more) 

processors seek access to the same cell at the same time. This is the 

Exclusive-Read EXCID si ve-Hrite Parallel Random Access Machine 

(EREfIPPAM). It is based on [Lev, Pippenger and Valiant I. Our second 

model of computation is called Module Parallel Computer (MPC). The 

common memory of size N is partitioned into m memory modules. Say that 

at the beg inn.ing of a cycle of this model the processors issue R j 
requests for addresses located in cells of module j, 0 <;; j <;; m-l. Let 

Rmax = max IIRjl/O ( j (m-l). Then the requests for each module are 

queued in some order and satisfied one at a time. So a cycle takes 

Rmax time. tole assume that immediately after a simulation of a cycle is 

finished every processor knows it. Figure 1 illustrates the difference 

between the EREHPRAM and the MPC. The problem "f simulating 

efficiwtJ.y one cycle of the EREHPRAM by the }lPC is taken as the 

definition of the granularity problem in the next two chapters which 

include the main contribution of this paper. Hhen N = m the }lPC can 
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simulate a cycle of the EREIIPRAM in one titre unit while when N > mp a 

naive simulation my result in Rmax as large as p. 

The survey paper [Kuck 1 emphasizes the importance of the 

granularity problem. It reports about the considerable attention this 

problem has received in the literature by :nentioning fourteen papers 

that dealt wi th it. Most of these papers suggest strategies for 

partitioning the memory addresses among the modules for algorithms that 

either have access patterns which are known in advance or have access 

patterns In successive time units which satisfy some probabilistic 

assump tions. Our attItude is completely. different. We present 

solutions and analyses for the general problem of simulation. They do 

not depend on the access behaviour of the algorithms being simulated. 

This is in sharp contrast to both classes of past research mentioned 

above. In this spirit [Vishkin and WigdersonJ observed that in a few 

general cases the idea of dynamically changing location of addresses 

among nudules throughout the perfonnance of an algorithra enables 

efficient simulations utilizing only a moderate number of modules 

(m=p) • 

Our research is motivated by the Ultracomputer project. The 

NYU-Ultracorrputer group ([Gottlieb et a1. J) believes that a machine 

using 4096 processors and 4096 memory modules will be available by 

1990. TI1e MPC represents actually, an abstract Ultracomputer design 

which idealizes only one point: the interconnection of processors and 

memory modules. A significant part of this project involves heuristics 

for the granularity problem. The Ultracomputer is a general-purpose 

parallel computer that may be used for any parallel algorithm. Our 

general solutions are, therefore, of particular relevance to its 

design. 

The present paper is similarly motivated by the parallel-design 

distributed-implementation (PDOl) machine, proposed in [Vishkin 82J. 

The PDDr machine forms a counterpart to the Ultracomputer which d.lffers 

from it nnl.nly at the foUolling point. Its interconne-:.tlon network, 

bet",cen proceRsors and memories, performs well in the worst case while 

the interconnection net"'0rk of the Ultracomputer perfoms well in the 

average. 

Part of this research can also be motivated by some data base 
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instance, there are p processes 

(resources, disks) and N files distributed 

among the servers, so that each server may serve. at most one process at 

a t :bne (a resource Is locked by a transaction). The case where a 

process .. may require only one file at a time readily fits our 

framework. However, a few alternative assumptions regarding how many 

files can be required simultaneously by the same process may reflect 

different circumstances. It might be interesting to investigate which 

such assumptions fits our framework and possible extensions to others. 

'ole do not elaborate on this motivation any more in this paper. 

We provide a three stage study of the granularity problem. The 

ideas of each stage can be applied separately or in conjunction with 

the others. The first stage is designed to keep us 'out of trouble', 

in the first place, in the average case. The key idea behind the 

proposed approa.ch is to utilize universal hasing in the simulating 

nBchine. 

class of 

The MPC itself picks at random a hashfunction from an 

hashfunctions, instead of a specific hashfunction. 

entire 

This is 

sha.m to keep memory contention low. The idea behind the second stage 

is to keep sever.al copies of each memory address in distinct memory 

modules. This idea, in conjunction with fast algorithms for picking 

the 'right' copy of each address request, is shown to decrease memory 

contention in the worst case, for the less fortunate cases of the first 

stage. Our above definition of the granularity problem made the third 

stage somewhat indistinct. In simulations of other models than the 

EREWPRAM by the HPC or other machines, the problem of simulation is not 

completely solved by specifying for each address request the module 

that satisfies it. Problems like scheduling the requests for a module 

(in case queues are not available) or combining simultaneous requests 

for the same address in the same module may arise. They ar~ solved in 

the third stage. Chapters II, Ill, am IV discuss the respective 

stages. 

lie wish to point out a typical difficulty that we had to cope with 

in all st.ages. Every solution we suggest is beneficial only if we 

combine it with an efficient parallel algorithm. By efficient we mean 

that it is fast and does not use too much local or common memory. Note 
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that since the worst Rmax that we want to improve is p, our algorithms 

have t.o he significantly faster than that. 

II I. A Probabilistic Simulation 

In this section we begin to study a simple probabilistic 

sim.Jlation of PRAMs on MPCs. Cons ide r a PRAM wi th P P roces s1 ng 

elements and a shared memory of size N. Also consider an MPC with P 

processing elements, and a shared memory of size N which is divided 

into m rr:.odules. Hore precisely, let memory module HMj , 0 < j < m 

contain all (physical) addresses a with 0 < a < N and a mod m j. 

Our probabilistic simulation is based on uni-/ersal hashing as 

introduced by Carter/WegnBn. Let H be a subset of SN' the full set of 

permutations of [0 ••• N-IJ. We use elements of H to make the connection 

between logical and physical addresses. More precisely, we proceed as 

foll",s: 

I 01 tin li.z.., tion: Choose h E Hat random and store h in every processing 

element of the MPC. The i-th PE of the MPC will run the same program 

as the i-th PE of the PRAM to be simulated. We maintain the invariant 

that cell h(a) of the MPC has the same content as cell a of the PRAM 

for 0 < a < N-I. 

St.ep ~ Step Simul~: 

Let ai be the (logical) address generated by the i-th PE of the 

MPC. Apply It to ai and obtain (physical) address bi = h(ai). Issue a 

request for memory cell bi • This describes the behavior of the i-th PE 

of the flPe, 1 < i (p. ~mory module MM j 0 < j < m, collects all 

requests for cells in MMj and serves them sequentially. When all 

requests are served the next cycle of the PRAM is simulated. 

Of course, the quality of the simulation described above depends 

crucially on class II of permutations used in the simulation. Note that 

the sinr.Jlation is probabilistic because h is chosen at random from 

class lI. He want 

1) H to be small; because every PE needs additional local memory of 

O(logll1l) bits (assulltllli: a suitable encoding) to store an element h E H. 
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2) raroom elements of }[ to be easy to generate; because this will 

hold the cost of the initialization phase small. 

3) elements h c H to be easy to evaluate; because this determines the 

cost of translating from logical to physical addresses. 

4) the length of the queues arising in the simulation to be .short; 

because they essentially determine the quality of the simulation. 

We will next study expected queue length in more detail. Let S ... 

lal.a2 ••••• ap} ~ [O ••• N-l] be a set of p addresses. Let he H be a 

pernutation.. Define 

Rj(h.S) ~ Iia c S; h(a) mod m ~ j}l. 0 ( j< m. 

I\nax(h.S) = max Rj(h.S). and 
0< j<m 

I\nax max 
S~·[O ••• N-l] 

Isl=p 

l. Rmax(h.S)/IHI 
hell 

Rj(h.S) is the l.ength of the queue in front of memory module MMj when 

permutation h E: H is used and set S of addresses is issued by the 

processors. ~x(h.S) is the length of the longest queue in front of 

any memory module under the same conditions. Next l. Rmax(h.S)/11I1 

is the expected value of ~x( .S). Finally. ~xci~ the worst case 

of that value taken with respect to all possible sets of p addresses. 

In other words, l\nax is the worst case (with respect to addresses) 

expected (with respect to random elements of H) length of the longest 

queue. 

We 

feeling 

want Rmax to be small. 

for Rmax we will briefly 

What can we expect? In order to get a 

study a limiting case first: H SN' 

the full set of permutations of N elements. Note that class SN is much 

too large (NlogN bits local memory would be required in every 

processor) to be practically useful. 

Theorem 1: Let H SN and let m > p. Then 

R (min(log m/log (m/p). log m/log log m) + 1 max 
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Proof: Let S - {ap ••• ,ap } (; [O ••• N-I] be arbitrary. Let Pk"l be the 

probabili ty that at least k elements of S are napped into memory module 

j by a random element h £ Sw Then ~,j < Ck)( 11m) k since images of 

different addresses are independent and uniformly distributed. Let Pk 
be the probabili ty that at least k elements of S are mapped into some 

D'emory module. Then 

Hence 

Rmax -). ~ <). min(l,Ck)(l/m)k-l) 
k> I k> I 

< L min(l,(m/k!)(p/m)k) 
k>1 

Since (p/m)k(m/kt) < I for k> min(log m/log m/p), log m/log log m) and 

decreases e>"1'onentially as a function of k for larger k, we have 

Rmax < min(log m/log (m/p), log m/log log m) + I 0 

lie infer from theorem I that Rmax < I + log m/log log m if m > p and H 

- SN and that Rmax < 2 + 1/£ if m ~ pl+£ and II • Sw Unfortunately, SN 

is too large for our purposes. However, close inspection of the proof 

of theore m 1 sugges ts methods for finding smaller classes of II which 

yield essentially the same value of ~x as II - Sw The diagram below 

shows a plot of Pk as a function of k. Our bound on Pk decreases 

exponentially for 

1 
r 

ll--t 

+ 
L 



-8-

k ) L:=min(log m/log(m/p), log m/log log m). In partIcular Pk ( I/p 

for values of k exceeding L' where L' is only slightly larger than L. 

Quantity Rmax is the area under curve P'k,- The following simple 

observation is crucial for the sequel: quantity ~x increases by at 

mos t one if Pk were equal to l/p for k ); l.'. Thus the bound.· on Rmax 

shown in Theorem 1 stays essentially true if we only know that 

Pk,j ( (k)( l/m)k for k (1' and that Pk,j is non-increaSing as a 

function of k. We will explore this approach in the next section. 
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~~ the Expected Le ngth of the Lon3est Chain in Universal 

Hashinr.~ 

Univen;al hashing lo:as introduced by Carter!WeglTBn. They showed 

that very small classes of hash functions suffice to obtain an expected 

case behavior which is similar to the one of ordinary hashing. We show 

in thl::; section that universal hashing is also competitive with respect 

to expected won; t case behavior. 

Def [Cw) • Let c" R, h " N, N " II, m " II. A multiset H G (h; 

h: [0 ••• N-I) + [0 ••• m-l)) is c strongly k universal if for all 

al,···,ak E [0 ••• N-I), pairwise distinct, and all 

b1,···,bkE [0 ••• m-l] , 

As in the preceeding section, let p" II and let S ~ [0 ••• N-I], 

lsi =p. Forh" Hlet 

and let 

max I (a " S; h(a) 
(); j<m 

j } I, 

RP 
max max L Rmax(h,S)/IHI 

S~[O ••• N-I) 
Isl=p 

h " H 

We are no." in a position to state the observation folla-.ling Theorem 1 

as 

Theot em 2: Let H be a c strongly k universal multiset of functions from 

[O ••• N-I] t o [O ••• m-I]. Then 

R~ax ( k + cpm(p/m)k/k! 

fot aU p" II. 
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Proof: Let S [0 ••• N-I] • lsi = P be arbitrary. Let Pi(S) be the 

probRbiJi ty that 

i} I/IHI. Then I 

Rmax(h.S) ) i. i.e. Pi (S) I {h £ H; ~ax(h.S ) > 

RP max 

) PI ) PZ ) 

max 
S ~[O ••• N-I} 

Isl=p 

k + P max 

P3 

S ~ [0 ••• N-I} 

Isl=p 

;;. ... and 

Pk(S) • 

Next obs erve that Pk(S) ( Pk.O(S) + Pk.I(S) + ••• + Pk.m-I(S) where 

Pk.j(S) is the probability that at least k elements of S are mapped 

onto j. For fixed al,a2, ••• ,ak t S (pairwise distinct) we have 

since II is c strongly k universal. lIenee Pk.j(S) ( c(~) Imk ( 

c(p/m)k/kl and Pk(S) ( cm(p/m)k /kl for all S •• 

Before we give some: examples of strongly universal classes we 

recall the following lemma. 

Lem~ (Carter/WegllBn). If II S; {h;h: [O ••• N-I]+[O ••• N-Ij} is c strongly 

k universal and r: [0 ••• N-I] + (O ••• m-I] is such that Ir-I(j) I < [N/m] 

for alJ. j. 0 ( j < m. then nultiset 

!I {roh;h £ II} 

is c strongly k universal where ~ = (m [N/m]/N)kc • 

Proof: Let al ..... ak £ [O ••• N-I] 

bl ..... ~ E [0 ••• m-I]. Then there 

be 

are 

pairwise 

at most 

distinct 

[N 1m] k 

and let 

tuples 

cl ..... ck E [O ••• N-.l] with r(ci) = bi for I ( i (k. For every such 

tuple (c1 ..... ck) there are at most clHl/mk functions hE!I with 
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h(a i ) = ci for 1 ( i ( k. 

([N/m] / (N/m) )kc • 

Thus II is c strongly k universal with c = 

o 

We will next give some examples. Applications 1 and 2 are based on the 

fact that there are small doubly and triply transitive permutation 

groops. A set II of permutations of set X is transltive if for all 

a,b c X there is hell such that heal ~ b. It is doubly (tdply) 

transitive if it contains a permutation replacing any whatever given 

ordered pair (triple) of elements in X by any whatever ordered pair 

(triple) 

VI] for 

of elements in X. The reader way consult [Carmichael, Chapter 

a detailed discussion. Application 3 uses the fact that a 

polynomial of degree k is fixed by its "alues at k+l points, i. e. a 

random polyncrniaJ. of degree k maps a set of k+l points into a random 

set. 

Application!. Let N be a prime and let "l = {h;h(x) = (aX+b)mod N for 

some a,b c [O •• N-l], a * 01, let rex) ~ x mod m and let III = {roh; 

he lid. Since for every xl,x2'Yl'Y2 £ [O ... N-l]. Xl * x2' Yl *Y2 

there is exactly one pair a,b £ [0 ... N-l] such that Yl = aXI + b modAN 

and Y2 = aX2 + b mod N class "l is 1 strongly 2 universal and hence 111 

is (m[N/m]/N)2 strongly 2 universal. For m = p3 we obtain RP (2 + max 
4/2! = /.; note that (m[(N/m)]/N) (2. Finally, observe that III is a 

set of permutations. 

Applica tion 2. Let N be a prime. For a,b,c,d £ [O ... N-l] with 

ad-bc * 0 mod N define ~ b c d: [O ... N-l] U fol + [O ... N-l] V{~I by , , , 

a/c if x = ~ 

if x = d/c 

(ax-b)/(cx-d) mod N otherwise 

Note that division is well-defined since the integers mod N are a 

field. Also the first two clauses in the definition coincide if c a O. 

It is k"om (a proof can he found in [Carmichael, Chapter VI]) that 
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h a,b,c,d is a 

a,b,c,d £ [0 ••• N-1], 

pernutations, i.e. 

pennutation 

ad-be ~ O} 

for all 

and tt~t set H2 {ha,b,c,d; 

is a triply transitive group of 

x1,x2,x3 and Y1'Y2'Y3 £ [0 •• N-1IU {~}, 

XI'X2'X3 and Yl'Y2'Y3 pairwise distinct, there is exactly one h £ H2 

with r(xi ) Yi for 1 < i <3. Thus H2 i. 1 strongly 3 universal and 

hence H2 = {roh; h £ H2} and rex) - x mod m is 8 strongly 3 universal. 

Note that (mIN/m])3 < 8. Thus for m = p2 we have R~x < 3 + 8/31 = 

13/3. Finally, we want to mention that ha,b,c,d(x) can be evaluated 

efficiently using Euklid' s algorithm. (d. lAHUl, p. 300-302). More 

precisely, ha,b,c,d(x) can be computed in O(log N) arithmetic steps. 

Application 1: Let N be a prime, let k he an integer and let H3 {h; 

hex) ~ aixi mod N for some ai £ [0 ••• N-1] and ai ~ 0 for some 

i > 1} be()<i:h~kset of all polynomials of degree at most k-1. Since for 

every and pairwise 

different, there is at most one non-trivial polynomial h of degree at 

most k-1 with h(xi) Yi A 
for 1 < i < k we conclude that H3 is 1 

strongly k universal. Also 113 {roh; h £ 113} is c strongly k 

universal with (m [N/m] IN)k < (l + m/N)k. Thus for m = p1 + c 
2/(k-1) we have 

RP < k + A 2+2/(k-1) p-12/(k-1)]k/kl 
max c p 

A 

<k+c/kl 

Another interesting choice is k = 3 In plln In p and m p. Then 

O(ln plln In pl. 

Application 3 should be compared with Theorem 1. It states that if the 

class of hash functions is restricted to the set of all polynomials of 

degree at most 3 In plln In p (note that there are only N3ln plin In p 

such functions) then the expected wors t 

(and there are 

case behavior 

NN of those). 

is as good as if 

Simi la rIy, if we use all hash functions 

m = pH£ and k = 1 + 2/£ for so"", £ > 0 and if the class of hash 
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functions is restricted to the set of polynomials of degree at most 

k - I (note that there are only Nk - I = N2 / E such functions) then the 

expected won:; t case behavior is almos t as good (except for a 

uultiplicative factor of two) as if we use all hash functions (and here 

are NN of those). Unfortunately, class H3 is not a class of 

permutations and hence class H3 cannot be directly used in simulating 

PRAM. by flPes. 

Example ~: Example 4 is slightly more difficult to 

direct application of Theorem 2. Let N = 2n and m 

can be identified with the bit vectors of length n, i.e. 

it is not a 

Then [O •• N-I] 

[0 •• N-l] :: 

to, l}n. The bit vectors of length n form a vector space of dimension n 

over the field of two elements. In a vector space we can use linear 

transformations to map any set of (linearly independent) vectors into 

any oller set of vectors. This suggests to consider H4 = {h; h: {O,l}n 

+ {O,I}n and hex) = fix for some n by n (0,1) - invertible matrix M}. 

Here matrix multiplication is over the field of two elements. It 

is important for the application in Section II 3 :hat H4 is a set 

permutations. As before, let rex) ~ x IIDd m anll H4 ~ {roh; hE 114}. 

of 

Before we 

of H4 are easy to 

we sho~., that 

invertible. 

Lemm 1: 

analyze the behavior of class H4 we 

find by a probabilistic algorithm. 

a significant fraction of all 

IT 
(K i( n-I 

show that elements 

More precisely, 

(O,I)-matrices is 

Proof: Lemma 1 is lvell kn~n and can be found for example in E. Artin: 

Geometric Algebra. We include the very short proof for the sake of 

conpleteress. Choose M column by column. When columns 1 to i have 

been chosen (and are linearly independent) then column 1+1 Dllst be 

different from all linear combinations of columns 

there are 2n_21 choices for column 1+1. Thus 

through i. Hence 
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n 

2 
= 2(n ) n 

i=1 

Next observe that 

n 
n L In(1-2-i ) 

n (1-2-1 ) e i=1 

ial n 
-(7/5) L 2-i 

) e i=1 

since In(l-x) ) -7x/5 for (XX<: 1/2 

• 

Lemma sha.,s that at least 25% of all (O,I)-mat.lces are invertible. 

Hence invertible (O,l)-matrices can be found by taking a few random 

(0, I )-ma trices and checking f or singularity by Gaussian elimination. 

We will next show that H4 is a good class of hash functions. 

For xI,x2' ..• ,xk a 

denote the dimension 

set of vectors we write 

of 

X £ to, I}n we write xb for 

last b components of x. 

the space spanned by xI""'~' 

the b-dimenslonal vector consisting 

to 

Also, if 

of the 

pairwise different. Let 

Proof: If (Mal)b a ••• = (Hak \ then (M(al-ai»b = 0 for 2 ( i ( k. 

Assume w.i.o.g. that al-a2, ••• ,81-ad+l are linearly independent. Let 

X be tre n by d matrix whose columns are 81-a2, ••• ,8 l-ad+l. Let Xl be 

the first d rows of X and let X2 be the remaining n-d rows. Assume 

w.!.o.g. that XI is non-sin~lar. Let M' be the matrix consisting of 
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the firs t b rows of H. Let Ml consist of the first d columns of H' and 

let M2 consists of the remaining n-d columns. Then 

or 

Thus HI is determined by the 

2n2-bd n2 d 2 1m matrices 

choice of M2 and hence there are at most 

H such that (Ma1)b ~ ••• = (Mak)b. Recall 

that m ~ 2b . • 

~ 1: Let S - (al, ••• ,ap ) f (O,l}n. Let t k ,1 be the number of 

subsets of S of cardinality k and dimension!. Then 

In particular, tk 1 = 0 for 21 + 1 < k • , 

Proof: Any subset of cardinality k and dimension.t can be written as a 

set of .t linearly independent elements plus a set of k-:t vectors which 

are linear combinations of the first t elements. There are only (1) 
21 

choices for the first set and ooJy (k-t) choices for the second set. 0 

We are nil' in a position to estimate the behavior of class H4• Let 

S = (al,a2, ••• ,a p ) f (O,l}n be arbitrary. As above, let 

Lemma ~: a) PI) pZ ) P 3 ) ••• 
\ -1 

b) Pk = em L tk 1 m 
1) 0 ' 

where c =e7 / 5 
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c) 1\ < 2cm(p2k /m)log k-1 for 2 < k < log m/p-1 

Proof: a) ob.aous 

b) We have 

Pk < ~ ~ I {h € H4; h maps all points of A into the same location} 1/ 11141 
L)O ~S 

IAI-k 
dim A- L 

< ~ ~ c/J--1 
L)O ~S, IAI=k 

dim A=L 

by Lemma 1,2 and the observation that dim A-1, A={al' ••• ,ak} implies 

dim(a1-a2' ••• ,aeak) ) L-1 

< c ~ 
1)0 

by the definition of tk 1. This proves part b). , 

c) For k ) 2 we have tk 1 - 0 for 1 < logk-1. Hence bY part b) and , 
lemma 3. 

< em ~ (p2k /m)1 
logk-1<L< k 

< em (p2k /m)logk-1 ~ (p2k/m)1 
1)0 

since p2k/m < 1/2 for k < log(m/p) - 1. 0 
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Lem1ln ::; 1 to 4 directly l e ad to 

Theorerrl 3: Let N z:: 2n, m Zl 2b and let H4 be defined as above. 

a) there 1s a function f: II + ". f(p) ~ O(pE) for all £ > 0 such 

that for m) pf(p) we have: 

Rgax < 20 10gp/(J.og(!0 10gp»2 + 0(1) 

b) Let £ > O. For m ~ pi..., we have: 

~ax( 0(1) 

Proof: No t e fir s t that 

RP a 
max 

for every kl' 1 ( kl (p. From Lemma. 4,c we conclude further 

where c ~ e 7/ S 
10 

a) Let f(p) ~ max(22 • 2 10 10gp/log{lO 10gp» • 

Then f(p) ~ O(p£) f o r all E > O. Let kl = log f(p)/log l og f(p). 

TI.en kl ( (l o g f(p»/IO and hence 

Also log kl 

f(p»/2 since 

I log 

log log f(p) ) 

log f(p) - log log log f(p) - I ) (log log 

10. Thus 



-18-

p",,) ( 2crr;> f(p)-9 log log f(p)/20 

( 2c p2f(p) f(p)-9 log log f(p)/20 

( 2c 22 log p + log f(p) - 9 log f(p) log log f(p)/20 

( 2c 22 log p - 7 log f(p) log log f(p)/20 
since log log f(p) > 10 

a 0 (1) since 7 log f(p) log log f(p)!20 > 2 log p 

for sufficiently large p. Thus 

R~,ax ( l og f(p)/log log f(p) + 0(1) 

( 20 log p/ (log (10 10gp»2 + 0(1) 

b) Let m = pl-l<:. Then 

f or all k l' 1 ( kl ( p. Let kl be such that 2-1<: 

k = ,2+2/< 
I - . Then 

RP (k
j 

+ 2c p2-1<: - < (log k1-l) /1 (log kl-l) 
max 

= 22+2/< + 2c 2(1+2/< )2 2+2 /< 

= 0(1) • 

i.e. 

Theorem 3 5 tates that the perfonnance of class H4 is "close" to the 

perfo rmance of the full set of permutations. More precisely, if m 

pl+E: th en R~a:x = 0(1) in both cases. Of course, the constants involved 

are dramatically diff!'rent . Also ~ax = O(log p/10g log p) can be 

achieved by class 1\4 fo r m = p f(p) where f(p) grows slower than any 
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root of p . If the full set of permutations is used there RP max 
p/log log p) ca n be achiev!'d for m = p. 

O(log 

~~hy doesn't class H4 behave well in the case rn = p? The answer 

comes in t.wo parts . Firstly, the bounds derived in lemmas 3,4 and 

hence in Theorem 3 are not sharp. Secondly and more significantly, 

class H4 has a certain deficiency. Multiplying by a random. invertible 

matrix hashes a set of independent vectors very well, ho\vever, it does 

not do lh,'lt well on a set of linearly dependent vectors. A variant of 

Lemma 1 can he used to show that the expected dimension of a random set 

alt_ .. , an of vectors in {O,l}n is very large, namely n 0(1) • 

UnfortunatelY , tlds observation is of no use since we are dealing with 

worst case behavior. 

We will now discuss 

above, let N 2n, m 

a possibility to overcome this problem. As 

2b. Assume also that q ~ N-c for some small 

constant c i s a prime. For a E [1 ••• q-1J let 

be defined by 

(ax) mod q if x < q 

x if q ( x ( N-1 

Note that ha is a pernu tatioo.. We conjecture 

Conje ctur e : Let a1 ••••• ap E {O.lJn [0 ••• 2n -1J be arbltrary • For 

a E [1 ••• q-1) let dima be the dimension of set ha (a1) ••••• ha (a p ). Then 

~ dima/(q-l) ) mln(n.p)-f 
l( a<q 

for SOIT)~ small constant f. Moreover, 
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I!a; I ( a < q and dima = min(n,p) - f- il! ( qp-i 

for all i) I. 

Informally, the conjecture states that a random function ha turns 

a set of p vector a1"" ,ap into a (nearly) independent set of vectors. 

Moreover, it is very unlikely that the dimension of the resulting set 

of vectors is ITUch les 5 than the expected dimension. 

Cons ide r elas 5 

~ 

H4 = {h: {O,l}n + (O,I}b ; h(x) - (:1·ha (x» mod 2b 

for some: a, 1 < a < q, and some invertible n by n (O,l)-matrix.}. 

We. next sh~ that class H4 is a very good class of hash functions 

provided that the conjecture 1s true. 

<) 

~~~: Let H4 be defined as above and let m) 2p. If the 

conjectur.e above is true then 

for aUk, f <k( min(n,p). Here c 

Proof: Let 

q-I 

S {al"'. tap} 

k). Then 

[0 •• N-I]. 

l. ! (h E 114 
a=1 

h maps at leas t k points 

As above, 

of ha(S) into the same location}!/!H4! 

let 
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q-l 

< ~ ~ 
a-l.t>O 

~ 
IfS 
IAI=k 

I{h £ H4 ; h maps all points of ha(A) 

* 
dim ha (A)=.t 

q-l 

< ~ ~ l. 

by Lemma 2 

a=1 VO ~S 

IAI=k 
dim ha (A)=.t 

into the same location} I I I H41 

- ). l. I {a; dim ha (A) = R.} Icm1-R. Iq 

lIlin(n,k)-f-l 
<).). cm1-R. p-(min(n,k)-f--R.) 

a~S R. =0 

IAI=k 

+ l. cm1-(min(n,k)-f) 

MiS 
IAI=k 

< 2c(~) m. pf-k + c(~) ml+f - k 

since k"';: nand m" 2p by assunption 

si-:tce m) 2p and k 

R~ax < k + p~ for 

> f by ass\lDption. The proof is n~ completed since 

all k. o 

TIleorem 4 has an interesting consequence. Assume that m ~ 2p and n ) 

log p. The latter assumption is certainly realistic. Let 

k = (f+2) log pllog log p. Then R~ax = (f+2) log p/log log p + 6. 

This is basically th~ same behavior as the behavior of the full class 

of permu tat tons ; cf. Theorem 1. 
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II 3. Probabnist.t~ Simulations Revisited. 

He will now apply the results of Section II 2 to the probabilistic 

siIrulation described in Section II 1. tle aS~i'Jme throughout this 

section that operations on addresses, like multiplying by an integer, 

take untt time. 

Theorem l: Let m ~ p3. Then a T(n) - time bounded PRA.~ with p PE's and 

N memory cells, can be simulated by a randomiced MPC with p PE's and m 

memory modules and total memory of size N+2p in time O(T(n». 

Proof: He use the simulation as described in Section II 1 except that 

pernutation 1T is chosen from class HIe Every proc.essor needs two 

additional storage cells to store 1T. Also one step of the PRAM takes 

expected time 00) on the MPC. 0 

Theorem Z: Let m ~ p2. Then a T(n) time bounded PR ...... 'f with p PE's and N 

memory cells can be simulated by a randomized }ipe with p PE's m memory 

modules ani total memory size N+4p in time O(T(n) log N). 

Proof: Replace HI by HZ in the proof of Theorem 1 and observe that the 

functions in HZ can be evaluated in time O(log N). 0 

Th~ 1.: a) Let m ~ p. Then a T(n) time bounded PRA}! with p PE's and 

N memory cells can be simulated by a randomized MPC with p PE's, m 

memory modules and total memory size (N+p)log p in time O(T(n) log p). 

b) Let E > 0 and let m ~ pl+E. Then aT (n) time bounded PRAM with P 

PE's aM N memory cells can be. simulated by a randomized MPC with p 

PE's, m .",mory modules and total memory size (1 + 2/£ )(N+p) in time 

O(T(n». 

Proof: a) We use the sinrulation as directed in Section II 1 except 

that If is chosen from class 113 with k 3 log p/10g log p. Then every 

processor requires 0(10g p) cells to store Tf. There is one additional 

problem nCJ,ol: class H3 not a class of pernrutations. Rather 11 C H3 might 

map up to log p/10g log p distinct points into the same cell. It can 

certainly map no coore distinct points into the same cell since tr £ H3 
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is a nontrivial polynomial of degree at most log p/log log p. Therefore 

the simulati.ng HPC has log p/10g log p copies of every memory cell. A 

memory access is made by sending the original PRAM address a and the 

modified address" (a) to the appropriate memory module. l<le can then 

OOild lip a h:ilance.d tree (say) for all addresses which are mapped to 

the same address by n. Thus access time within a memory module might 

be as large as 0(10g log p). Also the expected number of concu;rrent 

accesses to the same module is O(log pllog log p) by Section II 2, 

applicatIon 3 and hence it takes an expected number of O(log p) 

MPC-steps to siJlJJlate our PRAl1 step_ 

function in H3 takes O(log p) steps. 

Also evaluation of a hash 

b) The proof is completely analogous to the proof of part a). We 

choose k 1 + 2/£. Then at most 2/£ distinct points are mapped into 

the same cell. Thus totoal memory size is (1 + 2/E )(N + p) and it 

takes an expected number of 0(2/E log 2/E) MPC steps to simulate one 

PRAH step. o 

Theorem 4: a) There is a function f: 11 + It. wl.th f(p) = O(rE
) for all 

t > 0 such that: if N = 2n , m = 2b> P f(p) then a T(n) time bounded 

PRAH wi. th P PE' s and memory size N can be simulated on a randomized MPC 

with p PE's, m tremory modules and total memory size N + P log N in time 

0«10gN)3 + T(n)(log p/(log log p)2 + log N)). 

b) Let t > 0 be fixed. 

O( (10gN)3 + l' (n) log N) 

If m = pl-k: then the time bound reduces to 

Proof: Replac.e Hl by H4 in the proof of Theorem 1 and observe that an 

element of H4 can be stored in log N words of length (log N) each. 

Thns every proc.essor needs log N additional memory cells. A random 

element of H4 can be chosen 

bitstrings of length l.og N each. 

the (0-1) matrix M generated 

time O«log N)3) on a sequential 

as follows. Generate log N random 

(in time O(log N)2) and check whether 

in this way is invert Ibl.e. This takes 

machine. Also 0(1) tries suffice on 

the average. Thus choosing a random element of H4 takes time 

O«log N)3). Next observe that it takes time O(log N) to multiply an 
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log N by log N rna trix by a vector. The time bounded is now an easy 

consequence of Theorem 3 of Section II 2. 0 

We do not feel that tt'eorems 1 to 4 are best possible. They 

cOfTlllement each other in that they optimize different parameters of the 

problem. Theorems 1, 2 and 4 present solutions with only 8. very 

moderate increase in total memory size (0(1) additional cells per 

processor in theorems 1 and 2 and O(log N) in Theorem 4) and only a 

moderate increase in running time (a multiplicative factor of 0(1) in 

Theorem 1 and O(log N) in theorems 2 and 4). However, all three 

theorems require a non-linear number of memory modules thus increasing 

the size of the interconnection network. Theorem 4a is our bes t result 

in that res peet. 

On the other hand, both parts of Theorems 2 provide us with 

soilltions with a 5ma.l1 number of lTIC:mory mociules (p in part a and pl-k: 

in part b) a nd modes t increases of running time (0(10g p» in part a 

and 0(1) in part b). However, both parts force us to increase total 

tremory sJze cons ide ra bly . 

Theorem 4 of the previous section has the potential (if the 

conjecture were true) of combining most advantages of the other 

schemes. \-11 th only two memory modules per processor and only 

additional memory cells per processor it achieves a slowdown of 

p/log log p). 

I II . Ef fldcnt Deterministic Simulations 

log N 

O(log 

Say t ha t each of the N addresses is contained in exactly c of the 

m tremory modules for some integer c(c)l) . Each such distribution of 

addresses is called a c-partitioning. 

We roy break each cycle of the ERE\; PRAll into two halves: one 

includes all read instructions from the common memory, while the other 

includes all the Hrite instructions of the cycle . This enables us to 

classify the cycles into reading cycles and writing cycles without 

nultiplying the running time by more than a factor of two. \-J'e argue, 

in the paper, that the worst case t.ime for simulating writing cycles 

worsens only a little while the worst case time for simulating reading 

cycles iH1proves a lot. Many simulations of programs for the 
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Ultracomputer have been run. The ratio between read instructions and 

write In .. ",tructions that relate to the c.ommon memory was around 8:1. 

This fact is important since in case a store instruction into the 

common rremory is executed \ye need access to all copies of the memory 

address, while in case a fetch instruction is executed one of the 

copies would suffice. See more on writing cycles in the last chapter. 

Our train concern is to study the advantages and limitations of the 

copying approach for simulating reading cycles. Our analysis applies 

also to input addresses (which are only read). 

We start this chapter by studying some limitations of the copying 

approach. Then, a specific c.-partitioning is proposed. For this 

c.-partitioning we give upper bounds for the optimal Rmax achievable. 

We include also two sections that discuss how to compute efficiently 

good assignments of address requests to modules. The first of these 

sections deals ~'1ith polyncrnial-time sequential algorithms for computing 

optimal assignments, namely with minimum Rmax. The second section 

suggests fast parallel algorithms that give low (but not necessarily 

For the purpose of fast simulation we only need 

algorithms of the second kind. The proposed c-partitioning is very 

efficient when thls stage is applied separately. However, an 

alternative c-partitioning which combines well with the first stage is 

considered subsequently. The last section of this chapter demonstrates 

that a number of copies c is useful when (j is much larger than N. 

Note that the number of simultaneous requests for memory addresses 

is ( p. In order to use one parameter less, and thereby simplify the 

presentation, we consider the most difficult case only; i.e., where 

this number is p. It will be straightforward to extend our results to 

cases where this number is < p. 

1111. Loy-'er Bounds. 

Assume that some c-partitioning is given. Problem: Find a lower 

bound for the optimal worst case time delay <l\nax) for any p reading 

requests for memory addresses. 

Let I(i l < i 2 ••• < i k ( m be k modules and Ai l'i2' ••• 'ik be the set 

of all memory addresses such that all their c copIes are contained in 

m:=mory mod111es i 1,12' ••• ,ik • We are looking for a (very unfortunate) 
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set of p memory addresses such that all their copies are contained in a 

miniu::um. [JUmber of modules. Hare formally, t'le are looking for a minimum 

size sub,;et. of modules (il'i 2 ••••• i k J such that OAil .i 2 •••• ik ) p. 
m-s 

Claim. The equation l.fIAi I .i 2 ••••• i k = (k-cJN holds for any k . c < 

k < m. 1he summa tion on the Jeft hand side is on all (k) subsets of k 

module s . 1he right hand side. gives an alternatlve evaluation which is 

based on the fact that each m.?:mory address is contained in c modules; 

flung k-c additional modules (in any of the (k-~) possibilities) gives 

a subset of k modules containing this address . This completes the 

proof of the cIa 1m. 

Hence, there is at least one subset of k modules that contains 

k ••• (k-(c-I) )N/(m ••• (m-(c-I))) 

elements. He are looking for the odninrum k such that 

(1) p < k ••• (k-(c-I))N/(m ••• (m-(c-I))). 

Denote thIs k by Kp. This i mpli es that 

OBSERVATION I. R",ax) p/Kp • 

If N = (~)x for some integer x. then from inequality (1) we get p 

< 1<. •• (k-(c-I) )x/c I or p < (~)x. This implies 

OBSERVATION 2 . For N = (~)x. I)"ax) p/Kp where Kp is the smallest 

k satisfying p < (~). 
It 15 s hown later that the last lower bound meets exactly an upper 

bound on Rmax for a specific c - partitioning that we propose . 

Therefore , we delay presentation of explicit evaluations until this 

later discussion . 

III 2. The Proposed c - partitioning 

Our sugge sted c.-partItioning is simple . For N <: (~) and an address it 

0<: i < N, take the i - th subset of C IOOdules (out of m in the 

lexlcographlc order) 

modules_ If (x-I) (~) 

and put a 

<N<=x(~). 

copy of address i in each of the c 

for some integer x , then partition 
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the addresses into x approximat.ely equal ~ubsets (layers) and fix the 

c-partitloning of each of the x layers separately as for N ( (~). 

Rf-mark: For an address i it takes OCc 2 ) time to complJte the subset 

of c modules containing its copies. Clearly. ii = i (mod([N/(~J)) is 

the serial number of i in its layer. The minimum i I (~c) such that (il) 
c 

) I' implies that module number 11-1 contains a copy of address i~ The 

computation of iI' takes OCc) time. This is because we get a constant 

difference approximation to i l by Stirling formula and ey.plicit 
, i I 

presentation of i l • Denote i2 = i l -( I~). The minimum i 2 (>c-l) such 

that (it=f ) > i; implies that module number i 2-1 contains 3 copy of 

address i. This takes D(c-I) time; and so on. 

III 3. Upper Bou~ 

Theorem I. Let t be an integer. N ~ x(~). Sf = min{s/(~)x ) (t-I)s+l} 

and r = 5f (t-l)+1. If Sf ( m then: (a) There exist r address requests 

which cause rremory contention of at least t(Rmax > t) for any assignment 

of requests to copies. (b) For any r-l requests, however, it is possible to 

get Rmax ( t-I. 

Proof \;e show (b) first. Say. in contradiction. that a set of r-I 

requests .ts given such that the best Rmax obtninable is t. (It will be 

easy to modify our argument if the best Rmax that can be obtained is 

greater than t). Among all possible ways to partition requests among 

our modules which imply Rmax=t choose these that assign minimum number 

of modules ,vi th exactly t reques ts. Then, res trict further the cho:'-ce 

to a partition where a module with the smallest serial number possible 

is assigned with t requests. So we have t requests for addresses in 

sorre module. All these addresses have other copies in other modules. 

Fach of these modules is assigned with at least t-I requests(I). Let 

us denote a lower bound on the number of modules containing all coples 

of these t addresses by SI' then we have, so far, requests for at least 

(t-I)8 I +l addresses. Denote by S2 a lower bound on the number of 

modules containing all copies of the (t-I)Sl+l· addresses. It should be 

clear ho,.;7 to define S3'S4' ••••• (note that we actually choose SI-I, 

S2-51' 83-S 2 ••••• mo~ules in the corresponding steps of this process) 
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Claim l. Each module which enters the scene is assigned with at least 

t-l requests. 

Proof. Q'Jr sequence satisfies the following. There exists a directed 

path of the following fom from the first module (the one we started 

with, whIch is Assigned with t requests) to each module which is 

counted by the 51 numbers; the nodes along the path are modules; and 

there is a directed edge from module A to module B if module A is 

assigned with some address request and another copy of this address is 

located in module B. By propagating requests along this path we may 

decrease the number of requests assigned to the first module by one, 

increase the n,umber of requests assigned to the last module on the path 

by one and not change the number of requests assigned to any other 

module. Thus, the existence of a module as in claim 1, which is 

assigned with less than t-l requests contradicts the choice of the 

partitioning of requests among modules above. 

51 ~ min{s/(~)x) t}, 51+1 = min{s/(~)x) Si(t-1)+l}, for i) 1. 

Claim 2. The sequence (of integers) lSi} converges to Sf. 

Proof. Recall sf (m. If Si < Sf then Si+l satisfies Si < Si+l < Sf. 

If si = sf then si+1 = sf· 

So we could not start with less than sf(t-1)+l 

contradtct ion. 

reques ts. A 

Proving (a) is easy. Take r (- sf(t-1)+1) requests that all their 

copies are in sf modules. This completes the proof of Theorem 1. 

The Connection with the l~er bound. We showed that for any r address 

requests the smallest number of modules 

smallest k satisfying r ( (~)x, which is 

the 

to contain their copies is the 

exactly our Sf. Then we 

smallest integer satisfying concluded that Rmax is at least 

!\.ax) rlS f , Here this integer is t which is exactly the best Rmax 

equal. achievable. So, the upper bound and the lower bound are exactly 

For any p requests let us establish an explicit upper bound on the 



-29-

best Rmax achievable. Denote this Rmax by t. Let x be the integer such 

that 

(x-l)(~) < N ( x(~) • 

Similar to the proof of Theorem 1 we restrict the choice of the 

assignments of requests to modules. Then, we start with a module which 

is assi gned with t requests. Now,s is the minimum number of modules 

that have to be assigned with at least t-l requests in order not to 

enable us decrease t in the first module. The followiog 

holds from similar reasons to the proof of Theorem 1, x(~) ) 

It implies 

x oC/cl > (t-l)s + s> (t-l)cl Ix)l/c-l 

Together with the fact p> (t-l)s+l we get 

(t-l)«t-l)cl/x)l/c-l (p implying 

(t-l)c/c-l ( p/(cl/x)l/c-l • 

(t-l)c ( xpc-1/cl and 

Thus, 

Th~~3.. 1\,,,,x ( 1 + «pC-l/cl)[N/(~)l)l/c. ([xl denotes 

the sma lJ.eo tint ege r i such that i ) x) 

III 4. Optimal Assigment. 

inequality 

(t-l)s+l. 

The pr oblem of optimal assignment to the 'right' copy of each 

requested memory address, in order to minimize 

polynomial time. We actually solve the problem 

R is solvable in max' 
for any distribution of 
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copies amot{~ modules (not only c-partitionings), in Figure~. For nx>re 

on the Hax-F1CM problem, see [Even]. 

AIl alternative solution. 

'.,Te have to asslen p requests to modules. Assign one request at a 

time. Say that i out of the p address requests, for some 0 ( i < p, 

got already (temporary) assignment to modules. Assume that these i 

requests are assigned to modules in a way which minimizes Rmax' with 

respect to them. Denote this Rmax by Rmax,i- We show how to extend 

this assignment to another temporary assignm(;::nt for one more request, 

in a way which achieves minimum ~x with respect to the 1+1 requests. 

Our algorithm aod proof are similar to the proof of Theorem 1. Consider 

the following auxiliary directed graph. Nodes represent modules. 

There is an edge from module A to module B if module A is assigned with 

a request for some address a while B contains another copy of a. The 

algorithm for extending the assignment of i requests to an assignment 

of 1+1 requests is as follows. 

(1) Assign the (i+l)-st address request to a module til containing one 

of the copies of the address. (Add to the auxiliary digraph c-I edges 

from this modul.e to the other modules that contain copies of this 

address. ) 

(2) 

(It 

(3) 

If HI is now assigned with < 

is impossiLle to add requests 

If HI is now assigned with 

Rmax,i requests then we are done. 

and decrease Rmax.) 

auxiliary dlgraph for a module 

Rmax,i + 1 requests search the 

which is assigned with less than Rmax i , 
reques ts and is reachable through a directed path from (Any 

efficient search can be utilized here. For instance Breadth First 

Search) If such a module is found then propagate request assignments 

al.ong a path in the digraph from MI to this module. (This results by 

the fol1otving change: the number of requests assigned to this module 

increases by one. Note, 

number of req ues t assigned to 

it was for the i requests.) 

however, that it is still ( Rmax i. , 
all other module is exactly the same 

The 

as 

(4) If no such module is found in (3) do nothing (the request is assigned 

to M I). 

The only thing that has to be proved is that step (4) is correct. 

In other word$! why 1s it impossible to assign these 1+1 requests with 
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Rmax = Rmax,i rather tran Rmax Rmax,i + 1 ? Assume, in contradiction, 

that there is an assignment of these 1+1 requests with Rma~ RlRax,i­

In this contradictory assignment Ml is ass.tgned with ( Rmax,i requests. 

Therefore , there exists a request for some address a, which is assigned 

to HI in our assignment (the result of step (4)) but not in the 

contradictory assignment. Hence, the auxiliary graph contain an edge 

from N 1 to H2 - the node representing the module that the request for a 

is as.igned to it in the contradictory assignment. By step (3). 112 has 

Rmax,i request assigned to it in our assignment . Define S , an 

auxiliary set of modules, to include presently Ml and X2 . In our 

assignment both modules of S have together 2Rmax 1+1 requests assigned 
• 

to them while in the contradictory assignedment there are at mos t 

2Rmax,i such requests. Therefore, there exist a request for Borne 

address a2 which is assigned to a module of S in our assignment but not 

in the contradictory assignment where this request is assigned to 

another rrodule not in S, say M3 • This implies the exis t ence of an edge 

in the auxiliary graph from this module in S to M3 . By step (3 ) H3 has 

~X.i req ue s t.s assigned to it in our assignment . Add M3 to S. 

Similarly we show t hat the set S can grow infinitely large . The number 

of modu les is finite, so we got a contradiction. Therefore, the 

assignment achieved by our algorithm yields the minimum ~x. 

III 5. Fast Parallel ApprOKimation Algori thms . 

The above mentioned optimal assignment algorithms are of general 

theoret i ca l interest and might be relevant for bata- base applications 

as mentioned in the introduction . However, the simulation requires 

fast parallel algorithll5 for the assignment problem even if the optimal 

result is not achieved (remember that we are after fast simulation of 

one ERr,lPRAH cycle) . This pose" a challenge of a new kind . 

Lemma . Le t N ( (~) be the rumber of addresses . For p address requests 

we can achieve Rmax ( cpc-I/c in parallel time O(c 2+c log p) . For c~2 . 
we can do it in constant parallel time. 

Remark . Th e claim for c=2 needs a little bit strong~r assumptions about the 

HPC; like, a rne: mory request can be dropped by the requesting processor, 

or, alterratively, a memory mo dule can discard memory requests sent to 

it if their location in the module's queue exceeds a certain point . 



-32-

Proof. By induction on c. 

For cIC.2 ~tart with any assignment of address requests to copies. For -
all mod'J.les where the number of requests is ) fp (there exists <';p 

such module s ) s·.itch all requests above the,l p line (by doing that for 

all reque sts t hat t.:ere not responded in the first fp time unj.ts of the 

cycle which is be.ing simulated, we avoid computation of partial sums 

for c-2) to the other copy. Second copies belong to pairwise di~tinct 

mocbles. Th e refore, eac h module gets no rore than' p requests for 

second copies . Now, we are ready for the 

cut in the fir s t copy over p(c-l/c). 

inductive step. For c copies 

Get (at most p(l/c) sets of 

address request to be switched to another copy_ The other c-l copies 
m-l 

for each set relate like c-l copies of a subset of (c-l) addresses. 

The somewhat tedious exact implementation details are left to the 

inter ested reader. The following outline will be helpful for this. 

n,e decision where is the p(c-l/c) line is based on scheduling the 

reques ts for the modules in a way which utilizes both sorting and 

partial sums and des cribed in detail in the next chapter for a similar 

purpose. The scheduling of reque s ts to second copies is done 

separa t e ly in each set of requests, that were switched from the same 

module, a nd so is the scheduli ng for 18 ter copies which is done 

separat e ly for even roore refined sets. The definition of such a 

refined set (at ea ch transition from i to i-I copies and application of 

the inductive step) include s all address requests that pas s ed through 

the s ame s equence of modules but have not yet been satisfied. The 

partial sums computation for such set meets exactly the partial sums 

corrputation scheme described in the next chapter. (Here, we do not 

need the assumptions of the remark for c=2 since switched requests are 

not sent in the first pla ce.) Therefore, we can apply the induction. 

Let Ai be size s of 8wi tched sets then 

1 (c-l ) Af (c-2/(c-l)) ( <C_l)pl/Cp«c-l/c»«c-2)/(c-l) = (c_l)p«c-l)/c) 

The inequality holds be cause the left hand side is maximized when 

all the Ai numbers a re equal. The c 2 size i. due to the need to 

compute the subset of modules that contain a copy of an address by each 
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processor using its local memory. The log2p is due to computations of 

partial sunia which is required at each of the c steps of the induction. 

Theorem 3. We can achieve R,.ax ( c(pc-l[N/(~) ])1/c in parallel time 

o (c 2+c log2 p). 

Proof. Let x be the integer such that (x - l)(~) < N < x(~). 

Apply the l~mma for each of the x layers, separately. Let Pi be the 

number of requests for address in the i-th layer te:; 1< x. Then we ~et 

1 1 

~ax(i) is the Rmax obtained for each 1Dyer. The first inequality is 

obvious . ~Jlle second 1s implied by the lemma. Ule third is because its 

left hand side is maximized when all the Pi are equal. The scheme of 

partiel sums computation of the next c h apter should be u sed h ere as 

well. 

III 6 . Connection \vith the .!:.!..~ Stage . 

Th e proposed c.-partitioning above poses some difficulties in 

combining it wi th the probabilistic simulation of the previous chapter . 

There, a copy of address al could have been found in module h(ai)(mod 

m). l-lhile in this chapter the set of modules that contain copies of 

address h(a i ) was selected differently. Each address is assigned to a 

set of modules contalning its copies (according to the dcfiNtion of the 

proposed <- partltionlng at the beginning of Section III 2) where no 

function like the remai.nder mod m seems to be involved in determining 

any memh~r of this set. (For instance, module h(ai )(mod m) may not 

have a copy of address ai ) . This is the reason why for the purpose of 

combining this stage with the previous one we pr.opose an alternative 

c-partitioninB . Its small disadvantage is that it gives a little bit 

inferio r results than the first c-parU.tioning . Its big advantage is 

that it ~uits to be a second stage following Chapter II . Note that in 

the seque l "'e always omit the hashfunction h and refer to the address 

ai only. Hhen the solution of this section is set to fol10!"1 Chapter II 

addres s ai s hould be replaced by h(a i ). 
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The alternatlve c-pal'tit.toni~. For N < mf/(m-c)f and address i, 

0< i<N, the first copy of J. is in module i(mod m), the second copy is in 

module i(mod (m-I)) of the remai~tng m-I modules and so on. Namely the 

j-th copy, 1< j<c, is In module i(mod (m-j+l) of the m-j+l modules not 

oCOJpied by the first. j-I copIes. 

Example. Let m = 10 c = 3 and i = I. 

5 (15(mod 10) = 5), the second is in 

The first copy of i is in module 

module 7 (15(mod 9) = 6 and since , 
module 5 is occupied, module 7 corresponds to 6) and the third is in 

module 9 (l5(mod 8) = 7 and module 5 and 7 are occupied). 

If (x-I)(m!/(m-c)!) < N < x(mf/(m-c)f) for some integer x then 

partition the addresses into x approximately equal subsets (layer) and 

fix the c-partitioning of each of the x layers as for N < m!/ (m-c) f. 

Remark. For an address i it takes O(c log c) time to compute the subset 

of c modules containing its copies. Clearly, ii = i(mod [N(m-c)!/m!)) 

is the serial number of 1 in its layer. Find the modules one at a 

time. Create a 2·-3 tree for the modules that were chosen so far. (For 

more on 2-3 trees, see [Aho, Hopcroft and Ullman].) By keeping in each 

internal node of the tree information about the number of unoccupied 

modules among its leaf-descendents we can identify the module of the 

next copy alxl update the tree in time O(log c). The simple additional 

details are omitted. In the cases where N = xc!(~) (= x m!/(m-c)!) for 

sorre integer x, Observation 2 and Theorem 1 stUI hold since 

oAi ,i 2 , ••• i k ~ x cl for any subset lil'i2, ••• ,ik } of k modules in both 
I 

c-partitionings (using the notations of the lower bounds section). In 

order to shorten the paper we reconstructed here only the upper bound 

analogues to Theorem 2. This is done in an informal way since it 

fol1CMs the same lines as the proof of Theorem 2. 

For any p requests we want to find an upper bound on the best ~ax 

achievable. Let x be the integer such that (x-I)m!/(m-c)! < N < x 

mf /(m-c)!. For some Rmax = t and a module assigned with t requests 

denote by s the mt~mum number of modules (including the first module) 

that have to be assigned with at least t-l request in order not to 

enable us decrease t in the first module. The following two· 

inequaH ties hold: 

(1) x sf /(s-c)! ) (t-I)s + I. 

(2) p ) (t-I)s + I. 
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(1) implies x sC) (t-1)s and s ) (t/x)c-1. This and (2) imply 

(t-l)«t-1)/x)1/c-1 < p. 

Theorem 2'. For the alternative c.-partitioning 

The analogue to Theorem 3 l,,111 be 

Theorem 2.:.. For the alternative c.-partitioning we can achieve 

in parallel time o(c log e + c log 2p). 

Proof. 

The only new idea in this proof is the following. We show that all 

addresses that fall in the same layer of our alternative c.-partitioning 

can be efficiently further partitioned into cI 'sublayers·. Note that 

the ml/(m-c)! addresses of one layer (there is at most such number) hit 

every subset of c modules exactly ct times each time in the c modules 

are hit in a different order of the copies. Let (i l .i2 ••••• i e ) be the 

C IOOdules that contain the respective first. sec.ond, .•• , c-th copy of 

address i that belongs to layer t for sonk! i and t. Denote by N(j) the 

cardinality of (iklk<j and ik<ijl. Note that these cardinalities can 

be ob s erved upon searching the 2-3 tree mentioned above for i j without 

changing the O(logcc) time estimate. Obviously 0 < N(j) < j. Define 

L(i l .1 Z ••••• i e ) a l. (j-l)IN(j) to be the sub1ayer of address i in layer 

.t. TIle only address in this sublayer which is contained in modules 

i1>i 2•••• .ie 
cI [N(m-c)! 1m! I 

::1.8 i. Therefore, the N addresses form 

sublayers. Applying the lemma similar to the 

altogether 

proof of 

Theorem 3 to each of this sublayers completes the proof of the theorem. 

The 0 (c log2p) size zeprescnts the computation of partial sums as in 

the proof of the lemma. 
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III 7. Some Nonconstructive ~ Bounds. 

In this section we demonstrate a way for utili.zing a number of 

copies c. where (~) »N. A typical counting argument that provides for 

non-constructive c-partitionings having the desirable property of 

enabling small Rmax is presented. We leave the problem of constructing 

such ef ficient c-partitionlngs open. 

We first need the following theorem: 

Theorem 4: Let p and m be as before. Let d be a pos iti ve intege r. 

where p (dm. Assune that a c.-partitioning is given such that for 

every subset of sj_ze p of the N addresses, the set of modules that 

contain all c copies of these p addresses is of size) (p/d]. Then it 

is possible to get Rmax ( d for every p memory requests. 

Proof. (Similar to the proof of correctness of the alternative 

sequential algorithm.) Assune, in contradiction, that there exists a 

set of pC( dm) requests that causes Rmax>d. By a similar technique we 

choose an assignment such that some module is assigned with > d+l 

requests. They must have copies in one more module. This second 

module must be assigned with ) d request. &> far we have )2d + 1 

requests. They must have copies in) 3 = [2d + 
d 

1 
] modules. The third 

module is also assigned with) d requests, and so on. So we get that 

this set of requests was of size ) dm + 1. A contradiction. 

This is, actually an extension of Hall's Theorem (cf. [Even]) 

which is given for the case d = 1. An upper bound on the portion of 

c-partitionings that do not have the favorable property described in 

the theorem is 

L (~) ([!:] 
l( k< p d 

CN([~]-I)1 
m 1) m d 

(c ~ [~]-l) -ck) I 
m d 

(cN-ck) ! 
(eN)! 

assuming that N is divisible by m. (Note, that the definition of a 

c-partitIoning is extended to the case where more than one copy of an 

address is contained in the same module.) This upper bound reminds to 



-37-

some extent the proof of the existence lemma of "expander bipartite 

graphs" given in page 298 of [Pippenger]. 

If we prove for some values of N, m, p, d and c that Ip (the 

portion of "bad" c-partitionings) is smaller than ~me then we gave a 

(non-constructive) existence proof of a "good" c.-partitioning. 

Appendix I examplifies a 

upper bound. He get that 

result that can be derived from this 

if N - p3. m = p2. d = 1 and p is "la rge 

enough" than there exists a "good ll lO-partitioning. 

In a similar way to the considerations ahove we may obta.in an 

upper bound of I-b on the portion of bad c-partionings, for some 

positive constant b. Since we do not have a way to construct a "good" 

c.-partitioning, we can choose one at random and use it till the first 

time it fails. Namely, if we find for the flr6t choice a set of 

requests for which it is impossible to get Rmax = d, then we choose 

another c-partitioning and so on. Obviously, with high probability, we 

find after a small wmber of trials a " good" c-partitioning. 

IV. Efficient Low-level Simulations. 

The purpose of this paper is to present ways for simulations of 

shared memory models of parallel computation which allow fairly 

unrestricted access patterns of processors to shared memory cells by 

rna chines in which the rre:mory is organized in modules 'olhere only one 

cell of each module can be accessed at a time. As was mentioned in the 

introduction the paper envisions a three stage analysis and solution to 

the problem. The combination of the two earlier stages brings us to a 

point where each processor of the MPC simulating machine speclfies in 

each cycle being simulated both an address request and the module that 

was chosen to satisfy this request. The problem is how to complete the 

sirrulation. The choice of the EREIIPRAM and the HPC for presentation of 

oor ideas for the second two stages is due to the fact that the 

simulation of the former by the latter distinguished both the problems 

and solutlons. Among other things, it was helpful to make the need for 

a third stage lndistinct and thereby focusing on the previous stages. 

This is the reason that here we switch to other models of computation. 

Instead of the ERE\~PR.AM we take a more permissive model of computation, 

the concurrent-read concurrent-write (CRCW)PRAM. In this model several 
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processors are allowed to read simultaneously from the same memory 

location. If several processors try to write sitmJltaneously into the 

same memory location the lowest numbered processors succeeds. This 

model is based on [Goldschlagerl and [Shiloach and Vishkinl. We 

substitute the MPC machine by a weaker machine named non-queued 

(NQ)-MPC. Here only one address request may arrive at each module at 

each time unit. Besidcs that the NQ-MFC is similar to the MFC. 

We wish to simulate one cycle of the CRO·IPRAM. Assume that each 

processor of the NQ-MPC is assigned already both with an address 

request from the common memory and the memory module which has to 

satisfy this address request. Assume also that m> p, namely the 

number of modules is at least as big as the number of processors. Our 

proposed solu tion resembles the simulation of a CRCMPRAM by a EREIIPRAI1 

in [Vishkln 83]. Unfortunately, our present problem requires not only 

the circumventlon of access cor,flicts to the same memory location but 

also to the same module. tvhenever the considerations are similar to 

this simulation we shorten the presentation. The first step of the 

sinulation is: 

(1) Sort in parallel the p triples specified below in the lexicographic 

order. 

Each processor enters the triple: 

(the serial number of the module assigned to its address request, 

the serial number of the address request itself its own serial 

number) .. 

The NQ-MFC sorts them using Batcher sorting algorithm in time 

0(1og2 p ). It does not need more than size p shared memory. This is 

achieved by using one cell of each module. The result is that all 

requests for the same module (resp. the same address of the same 

module) appear in successive locations of the sorted vector. Let us 

call the set ·of such successive locations interval (resp. subinterval) 

denoted IUI)(rcsp. SI(M,a». M and a represent indeterminants 

corresponding to modules and addresses, respec.tively. Note that 

subintervals are sorted by .the serial number of the proc.essors. 

(2) The ser.ial number of each subinterval relative to the other subintervals 

in the sorted vector is computed. Denote it by nSI(M,a). 

A processor is allocated to each triple. By comparison ",~ith the 
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tr.tple in the preceding place of the sorted vector the processor finds 

out whether its triple is the smallest in its subinterval. If yes it 

is chosen to 'represent' the subinterval as will be seen later; let us 

call the triple in this case, a subinterval-triple. Each processor 

that i s (resp . flot) a110cated to a subinterval triple enters one 

(resp. zero) to a simple (O[log p]) time partial-sums computation. 

This results with the required subinterval serial number assoc.iat~d 

with the subinterval triple. 

(3) The serial number of each subinterval which is smallest in its interval 

(min(nSI(H,b» i s 'broadeasted' to all other triples of the interval. 
b 

The number fISI(H,a) - min(nSI(H,b»+l is the serial number o f the 
b 

subinterval SI(H,a) relative to other subintervals of interval I(H). 

The broad cas ting is done in [log p] pulses. In pulse i, 1( i( [log p]. 

each processor that kn~5J already, the serial number of the smallest 

1 1 2i-l subinterval of the interva of its trip e writes it into the 

sucres sor of the triple in the sorted vector if it belongs to the same 

interval. It is simple to see (see [Vishkin 83]) that all triple get 

the appropriate message and each module is accessed by one processor at 

a time . 

. (4) The processor of each subinterval-triple performs the requested access 

to the rieht module in time corresponding to the serial number computed in 

Step (3) above. 

In case. we simulate a writing cycle (recall the classification of 

the previous chapter into reading aoo writing cycles) we are done. In 

case a reading cycle is simulated we finish by: 

(5) The content read by the processor of each subinterval-triple is 

broadcasted to all other triple of this subinterval. 

The broadcas ting is done by a simtlar technique to Step (3). 

Broadcasting for the same purpose is used in [Vishkin 83]. The 

0(log2 p ) time for sorting clearly dominates the time complexity of this 

simulation. It is appropriate to mention at this point the new 0(10g 

p) sorting 

Szemeredi] 

algorithms 

a nd [Re if and 

(for p processors) given by [Ajtai. Komlos and 

Valiant]. In the first algorithm the time is 

multiplied by a large constant, while the second is a probabilistic 

algorithm and the constant factor is smaller. 
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~umUkl\"~ 

We ~lve above a detailed description of each component of our 

sohttion. Here we would like to give a high level description of a 

simulation of the CRO,PRAM by the NQ-MPC. 

The CRCWPRAM (resp. NQ-MPC) is permissive (resp. restrictive) 

relative to the spectrum of other permissive (resp restrictive) models 

of cOrYq>utation that appear in the literature. This enables us to go 

again through the main notions of our solution in order to summa.rize 

them in a uniform fashion. 

Stage one assumes a class H of hashfunction. PiCk at random one 

of them say h. This hashfunction implies the location of the c copies 

of each addres s a1. By the alternative c.-partitioning of stage two the 

j-th copy is in module h(ai) (mod m-(j-I)) of the modules that were not 

occupIed by the first j-I copies (l~j(c). The step by step simulation 

starts with each processor of the NQ-MPC machine specifying an address 

request for read or write like its corresponding CRa~PRAM processor. 

Now we have to split into reading and writing cycles. For reading 

cycles Theorem 3' gives an algorithm for allocation of address requests 

to JTX)dules. A scheduling of the requests to time units of the 

sinulated cycle. and a way to transmit the read request to the modules 

and the response back to the processors are described in the previous 

chapter. For writing cycles each address request is assigned to all 

its c copies. '~e do not do worse than c times (the time for one 

reading cycle). The reader is invited to by observing that we can 

access: first copies, then second copies, and so on. 

It :Is interes ting to note that both the Ultracomputer and the POOl 

machine are able to compute partial sums in the same time it takes for 

the processors to access the memory. So in both machines the term 

log2p in tl-e time evaluation of theorems 3 and 3' and the preceding 

lemma can be omitted. They also allow simultaneous access by several 

proc.essors to the same cell of a toodule. It is resolved in the same 

way as in the CRo.-lPRAM within the same time as acc.essing the memory. 

So most of the discussion of Chapter IV is irrelevant for both 

machines . 
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!'ppendix .!.. 
The following example may illustrate what are the results that one 

may expect out of Section III 7. No special effort was made to get the 

best possible result in. the subsequent computation. 

(cpk) I ( cp3-ck ) I 

(cpk cm ( cp 3) I 

~ ~ (~3) (~2) (c~~) I( ~e) 
l( k< P 

Since 

we get 

( ~ (cpk) I( (c-l)p3_p2) 
ck (c-2)k 

l( k< P 

Since 

and 

we get 

(i (ck)! (cpk)ck 

l(k( p ("(C'="2)k)!( (c_l)p3_p2 _ (c-2)k) (c 2)k 

«.k)1 2k 3 2 Now --r:-""",, ( (ck) ; and for p "large enough" p > p + (c-2)k where 
(\c-Z)k) ! 

C i 6 a constant and k (p. So 



< L 
l<k< p 

(ck)2k(cpk)ck 

«c-2)p3) (c 2)k 
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Call each element Lk • Let c D 10. For large enough p 

102(J.Op)10 < 
( 8p3)8 

lip 

Since it is easy to verify that the derivate of ~ with respect to k 

(1 < k < p) is negative for large enough values of P. we get 

< 1. So, we proved the existence of a IO-partitioning such 

these parameters gives always a memory contention of one. 
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