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Abstract

Consider algorithms which are designed for shared memory models of
parallei computatlion in which processors are allowed to have fairly
unrestricted access patterns to the shared memory. General fast
similations of such algorithms by parallel machines in which the shared
memory is organized in modules where only one cell of each module can
be accessed at a time are proposed.

The paper provides a comprehensive study of the problem. The

solution involves three stages:

(a) Before a simulation, distribute randomly the memory addresses among the

memoyy modules.

(b) Keep several copiles of each address and assign memory requests of
processors to the “right’ copiles at any time.

(c) Satisfy these assigned memory requests according to specifications of
the parallel machine.

*

A preliminary version of this paper was presented at
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I, Introduction

Consider algorithms designed for models of parallel computation in
which processors have access to a shared memory and parallel machines
in which this shared memory 1s organized in modules where only one cell
of each module can be accessed at a time.

The problem of simulating such algorithms on these machines is the
problem of granularity of parallel memories (granularity, in short).
Every intuitive idea for coping with the granularity problem has to be
analyzed for alternate formal settings of assumptions for both the
model of parallel computation and the parallel machine. In order to
overcome this difficulty we present our main ideas om a setting of
assumptions which enables us to simplify the presentation by limiting
the discussion to the actual problem which is overcome by our 1deas.
Extensions of the ideas to alternate models of computation and machines
are given later in the paper.,

We study ways by which the second parallel machine model below can
simulate the first. Both machine models employ p processing elements
(PE’s or processors) which operate synchronously and N common memory
cells, In the first model each processor has access to each of the N
cells in each time unit. We forbid only the case where two (or more)
processcrs seek access to the same cell at the same time. This is the
Exclusive-Read Exclusive-Write Parallel Random Access Machine
(EREWPPAM). It 1is based on [Lev, Pippenger and Valiant]. Our second
model of computation 1s called Module Parallel Computer (MPC). The
common memory of size N 1s partitioned into m memory modules. Say that
at the beglnning of a cycle of this model the processors 1ssue Rj

requests for addresses located In cells of module j, 0< j< ml. Let

Rmax = max {|Rj]/0 < < m1l}. Then the requests for each module are
queued in some order and satisfied one at a time. So a cycle takes
R oy time. We assume that Immediately after a simulation of a cycle is

finished every processor knows it, Figure 1 illustrates the difference
between the EREWPRAM and the MPC. The problem of simulating
efficiently one cycle of the EREWPRAM by the MPC is taken as the
definition of the granularity problem in the next two chapters which
include the main contribution of this paper. When N = m the MPC can
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simulate a cycle of the FEREWPRAM in one time unit while when N > mp a
naive simulation my result in Rmax as large as p.

The survey paper [Kuck] emphasizes the dimportance of the
granularity problem. It reports about the considerable attention this
problem has received in the literature by mentioning fourteen papers
that dealt with it. Most of these papers suggest strategles for
partitioning the memory addresses among the modules for algorithms that
either have access patterns which are known in advance or have access
patterns In successive time wunits which satisfy some probabilistic
assump tions. Our attitude 1is completely different. We present
solutions and amalyses for the general problem of simulation. They do
not depend on the access behaviour of the algorithms beiling simulated.
This 1is in sharp contrast to both classes of past research mentioned
above. In this spirit [Vishkin and Wigderson] observed that in a few
general cases the 1dea of dynamlcally changing location of addresses
among mydules throughout the performance of an algorithm enables
efficient simulations wutlldizing only a moderate number of modules
(m=p).

Our research is motivated by the Ultracomputer project. The
NYU-Ultracomputer group ([Gottlieb et al.]) believes that a machine
using 4096 processors and 4096 memory modules will be available by
1990, The MPC represents actually, an abstract Ultracomputer design
which idealizes only one point: the interconnection of processors and
memory modules. A significant part of this project involves heuristics
for the granularity problem. The Ultracomputer 1s a general—-purpose
parallel computer that may be used for any parallel algorithm. Our
general solutions are, therefore, of particular relevance to Iits
design.

The present paper 1s simllarly motivated by the parallel-design
distributed-implementation (PDDI) machine, proposed in [Vishkin 82].
The PDDI machine forms a counterpart to the Ultracomputer which differs
from it minly at the followlng polnt. 1Its Iinterconnection mnetwork,
between processors and memorles, performs well in the worst case while
the intercomnection network of the Ultracomputer performs well in the
average.

Part of this research can also be motivated by some data base
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applications; where, for instance, there are P processes
(transactions), m servers (resources, disks) and N files distributed
among the servers, so that each server may serve at most one process at
a time (a resource 1s locked by a transaction). The case where a
processwsr may requlre only one fille at a time readily fits our
framework. However, a few alternative assumptions regarding how many
files can be required simultaneously by the same process may reflect
different circumstances. It might be interesting to investigate which
such assumptions fits our framework and possible extensions to others.
We do not elaborate on this motivation any more in this paper.

We provide a three stage study of the granularity problem. The
ideas of each stage can be applied separately or in conjunction with
the others. The first stage is designed to keep us ‘out of trouble’,
in the first place, in the average case. The key i1dea behind the
proposed approach i1s to wutilize wuniversal hasing in the simulating
machine. The MPC itself picks at random a hashfunction from an entire
class of hashfunctions, instead of a specific hashfunction. This 1is
shown to keep memory contention low. The idea behind the second stage
is to keep several coples of each memory address in distinct memory
modules. This idea, in conjunction with fast algorithms for picking
the “right’ copy of each address request, 1s shown to decrease memory
contention in the worst case, for the less fortunate cases of the first
stage. Our above definition of the granularity problem made the third
stage somewhat indistinct. In simulations of other models than the
EREWPRAM by the MPC or other machines, the problem of simulation is not
completely solved by speclifying for each address request the module
that satisfies it. Problems like scheduling the requests for a module
(in case queues are not available) or combining simultaneous requests
for the same address in the same module may arise. They are solved in
the third stage. Chapters II, III, and IV discuss the respective
stages.

We wish to point out a typical difficulty that we had to cope with
in all stages. Every solution we suggest 1s beneficial only 1f we
combine it with an efficient parallel algorithm. By efficient we mean

that it is fast and does not use too much local or common memory. Note
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that since the worst R___ that we want to improve is p, our algorithms

have to be significantly faster than that.

II 1. A Probablilistic Simulation
In this section we begin to study a simple probabllistic

simulation of PRAMs on MPCs. Consider a PRAM with p processing
elements and a shared memory of size N. Also consider an MPC with p
processing elements, and a shared memory of size N which is divided
into m modules., More precisely, let memory module MMj, 0< < m ,
contain all (physical) addresses a with 0 < a { N and a mod m = j.

Our probabilistic simulation 1s based on universal hashing as

introduced by Carter/Wegmn. Let H be a subset of Sy» the full set of
permutations of [0...N-1]. We use elements of H to make the connection
between logical and physical addresses. Moxe precisely, we proceed as

follows:

Initialization: Choose h € H at random and store h in every processing

element of the MPC. The i-th PE of the MPC will run the same program
as the i~th PE of the PRAM to be simulated. We maintain the invariant
that cell h(a) of the MPC has the same content as cell a of the PRAM
for 0 < a < N-1.

Step by Step Simulation:
Let ay be the (Lloglical) address generated by the i-th PE of the

MPC. Apply h to a; and obtain (physical) address by = h(ai). Issue a
request for memory cell bj. This describes the behavior of the i-th PE
of the MPC, 1 € 1 < p. Memoxy module MMJ s, 0< j<m collects all
requests for cells din MMj and serves them sequentially. When all

requests are served the next cycle of the PRAM 1s simulated.

0f course, the quality of the simulation described above depends
crucially on class H of permutations used in the simulation. Note that
the similation is probablilistic because h iIs chosen at random from
class ll. We want

1) H to be small; because every PE needs additional local memory of

0(Log|H]) bits (assuming a suitable encoding) to store an element h € H.
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2) random elements of H to be easy to generate; because this will

hold the cost of the initialization phase small.
3) elements h € H to be easy to evaluate; because this determines the

cost of translating from logical to physical addresses.
4) the length of the queues arising in the simulation to be .short;
because they essentially determine the quality of the simulation.
We will next study expected queue length in more detall. Let S =
{al,az,...,ap} < [0...N-1] be a set of p addresses. Let he H be a

permutation. Define

Rj(h,s) = |{a€e S; h(a) mod m = j}|, 0<% j¢m,

Rmax(h’s) = max Rj(h,S), and

X jém
R ., = max ) R (h,8)/[H]
SC[0...N-1] heH
Is|=p

Rj(h,S) 1s the length of the queue in front of memory module MMj when
permutation h € H is used and set S of addresses 1s 1issued by the
processors., Roax(h;8) 1s the length of the longest queue in front of
any memoxry module under the same conditions. Next l Rmax(h,S)/IH|
is the expected value of R . ( ,S). Finally, ngxsig the worst case
of that value taken with respect to all possible sets of p addresses.
In other woxds, Rmax is the worst case (with respect to addresses)

expected (with respect to random elements of H) length of the Jlongest

queue.
We want Rmax to be small. What can we expect? In order to get a
feeling for R, we will briefly study a limiting case first: H = Sy,

the full set of permutations of N elements. Note that class Sy 1s much
too large (NlogN bits local memoxy would be required in every

processor) to be practically useful.

Theorem 1l: Tet H = Sy and let m » p. Then

Rma‘( < min(log m/log (m/p), log m/log log m) + 1
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Proof: Let S = {al,...,ap} ¢ [0...N-1] be arbitrary. Let Pk, 4 be the
probability that at least k elements of S are mapped intc memory module
j by a random element h € Sy. Then Pi, § < (g)(l/m)k since images of
different addresses are independent and uniformly distributed. Let p
be the probability that at least k elements of S are mapped into some

memoxry module. Then

Py < Pk,0 + P, 1 S D Pk, m1 < (E)(l/m)k_l.

Hence

Roax ™ ) Py < ) min(l,(ﬁ](l/m]kql)
k> 1 k> 1

<) min(l,mA!)(p/m¥)
k> 1

Since (p/m)k(mﬁct) < 1 for k » min(log m/log m/p), log m/log log m) and

decreases exponentially as a function of k for larger k, we have

R .x ¢ min(log m/log (m/p), log m/log logm) +1 ©

We dinfer from theorem 1 that R < 1 + log m/log log m if m » p and H
= Sy and that Ree S 2+ 1/ 4f m = pHe and H = SN' Unfortunately, Sy
is too large for our purposes. However, close inspection of the proof
of theorem 1l suggests methods for finding smaller classes of H which
yleld essentially the same value of R, as H = Sy. The diagram below

shows a plot of P as a function of k. Our bound on Py decreases

exponentially for 1

S
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k > L:=min(log m/log(m/p), Log m/log log m). In particular P ¢ 1/p
for values of k exceeding L” where L’ is only slightly larger than L.
Quantity R . 1s the area under curve P+ The following simple
observation is crucial for the sequel: quantity R . increases by at
most one 1if p, were equal to 1/p for k > L”. Thus the bound-on R___
shown in Theorem 1 stays essentially true if we only know that
P,j < (E](l/m]k for k< L’ and that Pk, is non-lncreasing as a

function of k. We will explore this approach in the next section.
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I1 2. On the Expected Length of the Longest Chain in Universal

Hashiog,

Universal hashing was dintroduced by Carter/Wegman. They showed
that very small classes of hash functions suffice to obtain an expected
case behavior which is simllar to the one of ordinary hashing. We show
in this section that universal hashing is also competitive with respect

to expected worst case behavior.
Def [CW]. Let ce R, he N, Ne N, me N, A multiset H &£ {(h;
h:[0...8-1] + [0...m=1]} is ¢ strongly k wuniversal if for all

81yeeesap € [0...N-1], palirwise distinct, and all
bl’.'-,bke [Ocoom_l],

|{he H; h(a;) =by; for 1< 1< k}| < c |H|/d @
As in the preceeding section, let pe N and let S & [0...N-1],
|S] =p. For he H let

R __(h,8) = max |{a € S; h(a) = j}|,

max
X j<m
and let
RPax = max ) P‘maxch’s)/lH]
SQ[OOAQN_I.] h (4 H
|s]=p

We are nos 1n a position to state the observation following Theorem 1

as

Theorem 2: Let H be a ¢ strongly k universal multiset of functions from
[0-.|N-I} to [0- --m“l]. Then

. k
RPax ¢ k + cpm(p/m)*/k!

for all pe N,
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Proof: Let S [0...N-1], |S| = p be arbitrary. Let p4(S) be the
probabllity that R . .(h,S$) > 1, i.e. py(S8) = |{h e H; Rmax(h’s) ?
1}|/1]. Then 1> py > pp > p3 > ... and

P
= max ), py(S)
SE[O...N_I] i=1

|s]=p
k +p max P (8) .
S¢ [0...N-1]
|s|=p

Next observe that p (S) < pk,O(S) +-pk’1(S) R pk,m-l(S) where
pk’j(s) 1s the probability that at least k elements of S are mapped

onto j. For fixed aj,ap,...,ap € S (pairwise distinct) we have

|{h e H; h(a,) =3 for 1< &< k}| < c|H|/n®

since H 1is ¢ strongly k wuniversal. Hence Pk,j(s) < c(E)/mk <
c(p/m)k/k! and p,(S) < cm(p/m)k/k! for all S. o
Before we give some examples of strongly wuniversal classes we

recall the following lemma.

Lemma (Carter/Wegmn). If H & {h;h:[0...N-1]>[0...N-1]} is ¢ strongly
k universal and r:[0...N-1] + [0...m=1] is such that |r_l(j)| <  [N/m]
for all j, 0< j < m, then miltiset

-~

H = {roh;h e H}

1s ¢ strongly k universal where ¢ = (m [N/m]/N)Ke,

Proof: Let aj,...,ap € [0...N-1] be pairwise distinct and let
bjyeeeybe € [0ueem-1]. Then there are at most [N/m]k tuples
ClyeeesCi € [0.0N=1] with r(cy) =Dby for 1 < £ < k. For every such
tuple (¢),.es,c;) there are at most clHl/mk functions h e H with
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h(ai) =c¢y for 1< 1< k. Thus H 1s E strongly k universal with ¢ =
(IN/m]/ (/m) e, o

We will next glve some examples. Applications 1 and 2 are based on the
fact that there are small doubly and triply transitive permutation
groups. A set H of permutations of set X is transitive 1if for all
a,be X there 1s he H such that h(a) =b. It is doubly (triply)
transitlive if it contains a permutation replacing any whatever gilven
ordered pailr (triple) of elements in X by any whatever ordered pair
(triple) of elements in X, The reader may consult [Carxrmichael, Chapter
VI] for a detaliled discussion. Application 3 uses the fact that a
polynomial of degree k 1s fixed by its walues at k+l polnts, d.e. a
random polynomial of degree k maps a set of k+l points into a random

set.

Application 1. Let N be a prime and let Hy = {h;h(x) = (axt+b)mod N for
some a,b e [0..N-1], a# 0}, let r(x) =x modm and let H; = {roh;
h e Hl}. Since for every Xj,X,¥1,¥2 € [0...N-1], =x;# %9, ¥ #¥2
there 1is exactly one pair a,b € [0...N-1] such that y; = ax; + b mod N
and yg = axg + b md N class H] 1s 1 strongly 2 universal and hence Hj
is (m[N/m]/N)2 strongly 2 universal. Form = p3 we obtain Rgax < 2 +
4/21 = 4; note that (m[(N/m)]/N) € 2. Finally, observe that Hy 1is a

set of permutations.

Application 2. Let N be a prime. For a,b,c,d € [0...N-1] with
ad-bc # 0 mod N define ha,b,c,d: [0be N=1] U fo} + [0usN=1] U {=} by

afc 1if x =0

ha,b,c,d(x) = o if x=4d/c

(ax-b)/(cx-d) mod N otherwise

Note that division is well-defined since the integers mod N are a
field. Also the first two clauses in the definition coincide if ¢ = 0.
It 1s knoin (a proof can be found in [Carmichael, Chapter VI]) that
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ha,b,c,d is a permutation and that set Hp = {ha,b,c,d;
a,b,c,d € [0...N=-1], ad-be# 0} 1s a triply tramnsitive group of
permnutations, i.e. for all x|,x9,x3 and y;,Y¥y,¥3 € [0, .N=-1]U {=},
X]sX9,%Xq and yy,¥,,¥3 palmwise distinct, there is exactly one h e Hy
with b(xi) = yy for 1< 1 <3, Thus Hy is 1 strongly 3 universal and
hence Hy = {roh; h e “2} and r(x) =x mod m is 8 strongly 3 universal.
Note that (m[N/m] )3 < 8. Thus for m = pz we have REax £ 3 + 8/3! =
13/3. Finally, we want to mention that ha,b,c,d(x) can be evaluated
efficliently wusing Euklid’s algorithm. (cf. [AHU], p. 300-302). More
precisely, ha,b,c,d(x) can be computed in O(log N) arithmetic steps.

Application 3: Let N be a prime, let k be an integer and let Hy = {h;
h(x) = l aixi mod N for some aj € [0...N-1] and ay # 0 for some
i> 1} beoiﬁékset of all polynomlials of degree at most k-1, Since for
every  XjpjesesX  and  Yis,eee, ¥ € [0...N-1], XiseoesXp pairwise
different, there is at most one non-trivial polynomial h of degree at
most k-1 with h(xi) = ¥y  for 1< 1< k we conclude that Hq 1s 1
strongly k universal. Also Hgq = {roh; he Hy} is ; strongly k
universal with e = (m [N/m]/N)k < (1 +'m/N)k. Thus for m = pl +
2/ (k=1) ye have

REax ¢ % 8 p2+2/(k“1) p—[2/(k—1)]k/k1

<k+:;/k!

Another interesting choice is k = 3 1n p/ln 1n p and m = p. Then

~ 2 _
RP < k +¢ p’/k! = 0(ln p/In ln p).

Application 3 should be compared with Theorem l. It states that 1f the
class of hash functions is restricted to the set of all polynomlals of
degree at most 3 1n p/ln 1n p (note that there are only y3in p/ln 1n p
such functions) then the expected worst case behavior is as good as if
we use all hash functions (and there are NN of those). Similarly, if
m = pl+€ and k =1+ 2/¢ for some € > 0 and if the class of hash
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functions is restricted to the set of polynomlals of degree at most

2/e such functions) then the

k = 1 (note that there are only Nl =y
expected worst case behavior i1s almost as good (except for a
mltiplicative factor of two) as if we use all hash functions (and here
are NV of those). Unfortunately, class Hy is not a class of
permutations and hence class Hy cannot be directly used in simulating

PRAMs by MPCs.

Example 4: Example 4 is slightly more difficult to treat; it is not a
direct application of Theorem 2. Let N = 2™ and m = 2P, Then [0..N=-1]
can be identified with the bit vectors of length n, 1.e. [0. .N-1] =
{0,1}". The bit vectors of length n form a vector space of dimension n
over the field of two elements. In a vector space we can use linear
transformations to map any set of (linearly independent) vectors into
any other set of vectors. This suggests to consider Hy = {h; h: {0,1}"
+ {0,1}"™ and h(x) =Mx for some n by n (0,1) — invertible matrix M}.
Here matrix multiplication 1s over the field of two elements. It
is important for the application in Section II 3 that H, is a set of
permutations. As before, let r(x) = x mod m and ﬁ& = {roh; h e HA}'
Before we analyze the behavior of class H, we show that elements
of ﬁé are easy to find by a probabllistic algoxithm. More precisely,
we show that a significant fraction of all (0,1)-matrices 1is

invertible.
n_oly 5 o(0?),,7/5
Lemm 1: [H,| = T (2P-2%) > 2 /e

X i< n-1

Proof: Lemma 1 is well known and can be found for example in E. Artin:
Geometric Algebra. We dnclude the very short proof for the sake of
completeress. Choose M column by column. When columns 1 to 1 have
been chosen (and are linearly independent) then column i+l must be
different from all linear combinations of columns 1 through i. Hence

there are 2“—2i choices for column i+l. Thus

11,1 = (2°-1)(2"-2)...(2"~2""1)
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n
. 0Hn a-27h
1=1
Next observe that
n
Yy tn(1-271)
n (1-271; ¢ =1

i=1 n
-(7/5) ) 271
> e i=1

since In(l-x) » -7x/5 for XK 1/2

> 3—7/5 o

Lemma 1 shovs that at least 25% of all (0,l)-matrices are invertible.
Hence invertible (0,1)-matrices can be found by taking a few random
(O,1)-matrices and checking for singularity by Gaussian elimination.
We will next show that H, is a good class of hash functions.

For xj,%Xg,e«e,%, a set of vectors we write dim(xl,xz,...,xk) to
denote the dimension of the space spanned by Xj,e..,%. Also, if
x € {0,1}" we write ¥, for the b-dimensional vector consisting of the

last b components of x.

Lemma 2: Let  aj,eee,a € {0, 13", pairwise different. Let

d = dim(a;-ag,«s+,a;=3, ). Then

2
I{M; (Mal)b o (Maz)b = aee = (Mak)b] ] < z(n )/md

Proof: If (Maj)y = ... = (Ma,), then (M(aj-a;))y = 0 for 2< 1< k.
Assume w.L.o.g. that aj-ag,...,aj=ay,; are linearly independent. Let
X be the n by d matrix whose columns are a)1=89,eee,81"8 41 Let Xl be
the first d rows of X and let X, be the remaining n-d rows. Assume
w.l.0o.g. that X, is non-singular. Let M’ be the matrix consisting of
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the first b rows of M. Let Ml consist of the first d columns of M’ and

let My consists of the remaining n-d columns. Then

— -1
Ml = szle

Thus Ml is determined by the cholice of My and hence there are at most
pn"=bd _ on /md matrices M such that (Mal)b e B (Hak)b. Recall
that m = Zb. °

Lemma 3: Let S = {al,...,ap} <€ {0,1}", Let ty,, be the number of

subsets of S of cardimality k and dimension 2. Then

e ¢ (D) (Ey)

In particular, tk,z =0 for 2¥ + 2 <k s

Proof: Any subset of cardinality k and dimension £ can be written as a
set of 2 linearly independent elements plus a set of k- vectors which
are linear combinations of the first £ elements. There are only (f]

A
cholices for the first set and only [ﬁ_z) choices for the second set. ©

We are now in a position to estimate the behavior of class ﬁ4. Let
S = {al,az,...,ap} € {0,1}™ be arbitrary. As above, let

P = Prob(Ry,, (h,8) < k) = [{he Hy 5 Ry, (h,8) > k}|/[H,]

Lemma 4: a) py 2 pp > P3 > «..

b) pg =cm ) e n? where ¢ =e’/5
?

220
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c) P < 2en(p2X/m)to8 k-l for 2¢ k< log m/p-1

Proof: a) obvious

b) We have
P L ) |{h e H,; h maps all points of A into the same location}|/|H,]|
220 XS
|A]=k
dim A=

< ) ) c/u 1
220 A§S, |A|=k
dim A=R

by Lemma 1,2 and the observation that dim A=f, A={a1,...,ak} implies
dj.m(al-—az, see ,al-ak) » -1

by the definition of t, ,. This proves part b).
]

c) For k > 2 we have t, o = 0 for &£ < logk-l. Hence by part b) and
»

lemma 3.
oty
P < cm ) (f)[k_z)m
logk=1<8<k
< em ) (p2%/m)*
Jogk-1<2<k

< em (p2%/mytoskly  (pakymyt
220

< 2cm(pZklm)lc’gk_1

since p2k/m< 1/2 for k< log(m/p) -1, o
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~

Theorem 3: Let N = 2%, m = 2P and let H, be defined as above.
a) there 1s a function f: W+ R, f(p) = O(pe) for all € > 0 such

that for m > pf(p) we have:
Rgax< 20 logp/(Log(l0 1ogp))2 +0(1)

+€

b) Lete > 0. For m= p1 we have:

I\ﬂax < 0o(l1)
Proof: Note first that

Rgax . l Pk E kl ¥ PPkl
I<k< p

for every k;, 1 € ky € p. From Lemma 4,c we conclude further

k logk,-1
Rpax < kp + 2 emp(p2 1/m) B

m

where ¢ = ew5 -
a) Let f(p) = max(Z2 : 210 logp/log(10 1°8P)) :

Then f(p) = 0(p%) for all e > 0, Let k; = log f(p)/log log f(p).
Then k; < (Jog £(p))/10 and hence

k
p2 Ym < p £(p)/10p £(p) = £(p)~Y/10

Also log k; = 1 = 1log log f(p) - log log log £(p) — 1 > (log log
f(p))/2 since log log f(p) » 10. Thus
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PPy, < 2emp f£(p)~2 log log £(p)/20
< 2¢ p2f(p) £(p)~2 log log £(p)/20
< 2¢ 22 log p + log £(p) - 9 log £(p) Llog tog £(p)/20
< 2¢c 22 logp = 7 log £(p) log log £(p)/20

since log log f(p) » 10

=0(1) since 7 log f(p) log log £(p)/20 > 2 log p

for sufficiently large p. Thus

Rﬁax‘ log f(p)/log log £(p) + 0(1)
< 20 log p/(log (10 logp))2 + 0(1)

b) Let m = pl*, Then

k
Rgax < kg + 2cp2+€ (2 l/pe)log ky-1

for all k;, 1 < kl < p. Let kl be such that 24¢ = e (log kl—l), i.e.
ky = 2272/¢, Then

Ly o ky(log ky-1)
Rgax< kl + 2¢ p2+€ E(].Og k]‘. 1) 2 1 1

o 242/e 4 5. o (142/€)22¥2/¢

=0(l) °

-~

Theorem 3 states that the performance of class H; is "close" to the
performance of the full set of permutations. More precisely, 1if m =
p“ﬁ then RP - = 0(1) in both cases. Of course, the constants involved
are dramatically different. Also R]%ax = 0(log p/log log p) can be
achieved by class H, for m= p f(p) where £(p) grows slower than any
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root of p. If the full set of permutations is used there Rgax = 0(log
p/log log p) can be achieved for m = p.

Why doesn’t class H,; behave well in the case m = p? The answer
comes in two parts. Firstly, the bounds derived in lemmas 3,4 and
hence in Theorem 3 are not sharp. Secondly and more significantly,
class H, has a certain deficiency. Multiplying by a random, invertible
matrix hashes a set of independent vectors very well, however, it does
not do that well on a set of linearly dependent vectors. A variant of
Lemma 1 can be used to show that the expected dimension of a random set
8],+..,a, of vectors in {0,1}" is very large, namely n = O0(l).
Unfortunately, this observation is of no use since we are dealing with
worst case behavior.

We will now discuss a possibility to overcome this problem. As
above, let N = 20 p = 2P,  Assume also that q = N—c for some small

constant ¢ is a prime. For a € [l...q-1] let

ha: [0--.2“‘11 + [0...2“—11

be defined by

(ax) mod q if x < q

hy(x) =

X if q< x< N-1

Note that h, is a permutation. We conjecture

Conjecture: Let 81y0e0,8p € {0,1}n £ [0...2"-1] be arbitrary. For
a€e [l...q-1] let dim, be the dimension of set ha(al),...,ha(ap). Then

L dim,/(q-1) > min(n,p)-f
1< adq

for som: small constant f. Moreover,
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|{a; 1< a < q and dim, = min(n,p) - £~ 1} | < qpt

for all 1> 1.

Informally, the conjecture states that a random function h, turns
a set of p vector S ERRERL into a (nearly) independent set of vectors.
Moreover, 1t d1s very unlikely that the dimension of the resulting set
of vectors 1is much less than the expected dimension.

Consider class

H, = {h: {0,1}" > {0,1} ; h(x) = (fh,(x)) mod 2°

for some a, 1 < a < q, and some invertible n by n (0,1 -matrix.}.

A

-~

We next show that class H, is a very good class of hash functions

provided that the conjecture is true.

2
Theoggm‘i: Let H; be defined as above and let m > 2p. If the

conjecture ahove is true then

RP % € k + 3cm pf+1/k!

for all k, f < k < min(n,p). Here c = e?/5,

Proof: Let S = {al,...,ap} <€ [0..N-1]. As  above, let
Pk = prob(R,,4(h,5) » k). Then

q_l ~
Pp = ) |fhe H; ; h mps at least k points

=

=] A

of h,(S) into the same location}|/|H]
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q-1 A
< -
31;1 2%0 A)_E'S [{h e Hy ;5 h maps all points :f ha(A)
ja|=k

dim h, (A)=2 into the same 10cation}|/|H4|
q-!
a=] 220 ACS

|A|=k

dim h_(A)=L

by Lemma 2

= ) )} [|{a; dim hy(A) =2}]en!/q
AES £20
|A =k

min(n,k)-£f-1
< ) 3 enl#p=(min(n,k)-£2)

a€sS L=0
A=k
) eml ~(min(n, k)-f)
MeS

|A]=k
< ZC(E] mepf®  + c(E)me-k

since k< n and m?» 2p by assumption

< 3¢ (Pm pf™ = 3empf/u

glnce m>» 2p and k > f by assumption. The proof is now completed since
p ”

R k + pp, for all k. o

Theorem 4 has an interesting consequence. Assume that m = 2p and n 3>
log p. The latter assumption is certainly realistic. Let
k = (f+2) log p/iog log p. Then er?:ax = (£42) log p/log log p + 6.
This 1s basically the same behavior as the behavior of the full class

of permutations; c¢f. Theorem l.
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IT 3. Probabilistlc¢ Simulations Revisited.

We will now apply the resultg of Section II 2 to the probabilistic
simulation described 4in Section II 1. We assume throughout this
section that operations on addresses, like multiplying by an integer,
take unit time.

Theorem l: Let m = p3. Then a T(n) - time bounded PRAM with p PE’'s and
N memory cells, can be simulated by a randomiced MPC with p PE's and m
memory modules and total memory of size N+2p in time O(T(mn)).

Proof: We wuse the simulation as described in Section II 1 except that
permutation m is chosen from class Hye Every processor needs two
additional storage «cells to store m. Also one step of the PRAM takes
expected time O(l) om the MPC, o

Theorem 2: Let m = pz. Then a T(n) time bounded PRAM with p PE‘s and N
memory cells can be simulated by a randomized MPC with p PE's m memory
modules and total memory size N+4p in time O(T(n) log NW).

Proof: Replace H; by Hy in the proof of Theorem 1 and observe that the
functions in HZ can be evaluated in time O(log N). ©

Theorem 3: a) Let m = p. Then a T(n) time bounded PRAM with p PE’s and
N memory cells can be simulated by a randomized MPC with p PE’s, m
memory modules and total memory size (N+p)log p in time O(T(n) log p).
b) Let € > 0 and let m = pl+e. Then a T(n) time bounded PRAM with p
PE’s and N memory cells can be simulated by a randomized MPC with p
PE’s, m memory modules and total memory size (1 + 2/e)(N+p) in time

0(T(n)).

Proof: a) We use the simulation as directed in Section II 1 except
that 7 is chosen from class Hy with k = 3 log p/log log p. Then every
processor requires O(log p) cells to store m. There is one additional
problem now: class Hy not a class of permutations. Rather m € Hq might
map up to log p/log log p distinct points into the same cell. It can

certainly map no more distinct points Into the same cell since = € Hq
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is a nontrivial polynomial of degree at most log p/log log p. Therefore
the simulating MPC has log p/log log p coples of every memory cell. A
memory access 1s made by sending the original PRAM address a and the
modified address m(a) to the appropriate memoxy module. We can then
build up a balanced tree (say) for all addresses which are mapped to
the same address by m, Thus access time within a memory module might
be as large as O(log log p). Also the expected number of concurrent
accesses to the same module is O(log p/log log p) by Section II 2,
application 3 and hence it takes an expected number of O(log p)
MPC-steps to simulate our PRAM step. Also evaluation of a hash
function in Hq takes O(log p) steps.

b) The proof 1s completely analogous to the proof of part a). We
choosek = 1 + 2/e. Then at most 2/e distinct points are mapped into
the same cell. Thus totoal memory size is (1 + 2/e)(N + p) and it
takes an expected number of 0(2/e log 2/e) MPC steps to simulate one
PRAM step. °

Theorem 4: a) There is a function f: W + R with f(p) = 0(p%) for all
€ > 0 such that: 41f N = 20! n = 2b > p f(p) then a T(n) time bounded
PRAM with p PE’s and memoxry size N can be simulated on a randomized MPC
with p PE’s, m memory modules and total memory size N+ p log N in time
0((logN)3 + T(n)(log p/(log log p)2 + log N)).

b) Let £ > 0 be fixed. If m = p1+€ then the time bound reduces to
o( Qog)3 + T (n) log N)

Proof: Replace Hl by H, in the proof of Theorem 1 and observe that an
element of H; can be stored in log N words of length (log N) each.
Thus every processor needs log N additional memory cells. A random
element of H,; can be chosen as follows. Generate log N random
bitstrings of length log N each. (in time O(log N)z) and check whether
the (0-1) matrix M generated in this way is invertible. This takes
time 0((log N)B) on a sequential machine. Also 0(l) tries suffice on
the average. Thus choosing a random element of H, takes time

0((log N)B). Next observe that it takes time O(log N) to multiply an
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log N by Jlog N matrix by a vector. The time bounded is now an easy
consequence of Theorem 3 of Section II 2. e©

We do not feel that theorems 1 to 4 are best possible. They
complement each other in that they optimize different parameters of the
problem. Theorems 1, 2 and 4 present solutions with only a. very
moderate increase in total memory size (0(1) additional cells per
processor in theorems 1 and 2 and O0(log N) in Theorem 4) and only a
moderate increase in running time (a multiplicative factor of 0(1) in
Theorem 1 and O(log N) in theorems 2 and 4). However, all three
theorems require a non—linear number of memory modules thus increasing
the size of the interconnection network. Theorem 4a is our best result
in that respect.

On the other hand, both parts of Theorems 2 provide us with
solutions with a small mumber of memory modules (p in part a and p1+€
in part b) and modest increases of running time (O0(log p)) in part a
and 0(1) in part b)., However, both parts force us to increase total
memory size considerably.

Theorem 4 of the previous section has the potential (if the
conjecture were true) of combining most advantages of the other
schemes. With only two memory modules per processor and only log N

additional memory cells per processor it achileves a slowdown of 0(log

p/log logz p).

I1I, Efficlent Determministic Simulations

Say that each of the N addresses is contained in exactly ¢ of the
m memory modules for some integer c(c>l). Each such distribution of
addresses is called a c-partitioning.

We may break each cycle of the EREW PRAM into two halves: one
includes all read instructions from the common memory, while the other
includes all the write instructions of the cycle. This enables us to
classify the cycles into reading c¢ycles and writing cycles without
miltiplying the running time by more than a factor of two. We argue,
in the paper, that the worst case time for simulating writing cycles
worsens only a little while the worst case time for slmulating reading

cyecles improves a lot, Many simulations of programs for the
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ltracomputer have been run. The ratlio between read instructions and
write imstructions that relate to the common memory was around 8:1.
This fact is dimportant since 1n case a store Instruction into the
common memory 1s executed we need access to all copies of the memory
address, while in case a fetch 1nstruction is executed one of the
coples woculd suffice. See more on writing eycles in the last chapter.
Our main concern 1s to study the advantages and limltations of the
copying approach for simulating reading cycles. Our analysis applies
also to input addresses (which are only read).

We start this chapter by studying some limitations of the copylng
approach. Then, a specific c-partitioning is proposed. For this
c-partitioning we give upper bounds for the optimal R achievable.
We include also two sections that discuss how to compute efficlently
good asslgnments of address requests to modules. The first of these
sections deals with polynomial-time sequential algorithms for computing

optimal assignments, namely with minimum R The second section

max®
suggests fast parallel algorithms that give low (but not necessarily
mi nimum) Rmax' For the purpose of fast simulation we only need
algorithms of the second kind. The proposed c¢—partitioning 1s very
efficient when this stage 1s applied separately. However, an
alternative c—partitioning which combines well with the first stage is
considered subsequently. The last sectlon of this chapter demonstrates
that a number of coples ¢ is useful when [:] is much larger than N.
Note that the number of simultaneous requests for memory addresses
is < p. In order to use one parameter less, and thereby simplify the
presentation, we consider the most difficult case only; i.e., where
this number is p. It will be straightforward to extend our results to

cases where this number is < p.

III 1. Lower Bounds.

Assume that some c-partitioning is given. Problem: Find a lower
bound for the optimal worst case time delay (R, ) for any p reading
requests for memory addresses.

LEt 1<il < izo.-( ik < m be k modules and Ail.iz,l--,ik be the Set
of all memoxy addresses such that all thelr ¢ coples are contained in

memory modules i;,ip,es+.,1) . We are looking for a (very unfortunate)
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set of p memory addresses such that all thelr coples are contained in a
m nimum cumber of modules. More formally, we are looking for a minimum
size subset of modules {il,iz,...,ik} such that #Ail'iZ""ik > p.
Claim. The equation l#Ail,iz,...,ik = (kzz]N holds for any k, ¢ <
k € ms The sunmation on the left hand side is on all (Eﬂ subsets of k
modules. The right hand side gives an alternative evaluation which is
based on the fact that each memory address 1s contalned in ¢ modules;
fixing k—-¢ additional modules (in any of the (E:g) possibilities) gives
a subset of k modules containing this address. This completes the

proof of the claim.
Hence, there is at least one subset of k modules that contains

(o N/ = Kewe (k=(e=1) DN/ (m.  « (m=(c=1)))

elements. We are looking for the mlnimum k such that

(1) PS keoolk=(c=1)IN/(m.oo(m=(c=1))).

Denote this k by Kp. This implies that
OBSERVATION 1. Ry, > p/K..
If N = (E)x for some dinteger x, then from inequality (1) we get p
€ kesolk=(c=1))x/c! or p< (ﬁ)x. This implies
OBSERVATION 2. For N = (g)x, R * p/l{p where Ky 1s the smallest
k satisfying p < (X).

It is shown later that the last lower bound meets exactly an upper
bound on R . for a specific c-partitioning that we propose.
Therefore, we delay presentation of explicit evaluations until this

later discussion.

IIT 2. The Proposed c-partitioning
Our suggested c-partitioning 1s simple. For N < (2) and an address 1,

0< 1 <N, take the 1-th subset of ¢ modules (out of m in the
lexicographic order) and put a copy of address i in each of the ¢
modules. If (x—l)(g) {N (= x(g), for some integer x, then partition
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the addresses into x approximately equal subsets (layers) and fix the

c-partitioning of each of the x layers separately as for N < (2).

Remark: For an address 1 it takes 0(c2) time to compute the subset

of ¢ modules containing its copies. Clearly, ii =1 (mod([N/(?]])) is
the serial number of 1 in its layer. The minimum 1,(*c) such that (21)
> 1’ implles that module number il—l contains a copy of address i1, The
computation of i), takes O(c) time. This is because we get a constant
difference approximation to 1; by Stixling formula and explicit
presentation of 1;. Denote i; = il—(ilzl). The minimum i,(>c-1) such
that (ig:} ] ié implies that module number i,-1 contains a copy of

address i. This takes 0(c-1) time: and so on.

III 3. Upper Bounds
Theorem 1. Let t be an integer, N = X(E), Sf = min{s/(i)x > (t-1)s+l}

and r = Sf(twl)+1. If S¢ < m then: (a) There exist r address requests
which cause memory contention of at least t(Rmax > t) for any assignment

of requests to copies. (b) For any r-l1 requests, however, it is possible to
get R < t-l.

Proof : We show (b) first. Say, in contradiction, that a set of r-l
requests is given such that the best Rmax obtainable is t. (It will be

easy to modify our argument 1if the bhest L — that can be obtained is
greater than t). Among all possible ways to partition requests among

our modules which imply R =t choose these that assign minimum number

of modules with exactly t ?Z;uests. Then, restrict further the cholce
to a partition where a module with the smallest serial number possible
1s assigned with t requests. So we have t requests for addresses imn
some module. All these addresses have other copiles in other modules.
Each of these modules is assigned with at least t-l1 requests(!). Let
us denote a lower bound on the number of modules contailning all coples
of these t addresses by Sl’ then we have, so far, requests for at least
(t~1)81+1 addresses. Denote by SZ a Jlower bound on the numbter of
modules containing all coples of the (t—1)51+1-addresses. It should be
clear how to define S3,5;,e0000 (note that we actually choose Sl—l,

S9-S5y, 53-89,..., modules in the corresponding steps of this process)
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Claim 1. Each module which enters the scene i1s assigned with at least
t-1 requests.

Proof. Cur sequence satisfles the following. There exists a directed
path of the following form from the first module (the one we started
with, which 1s assigned with t requests) to each module which 1is
counted by the S; numbers; the nodes along the path are modules; and
thexe is a directed edge from module A to module B if module A is
assigned with some address request and another copy of this address is
located in module B. By propagating requests along this path we may
decrease the number of requests assigned to the first module by one,
increase the number of requests assigned to the last module on the path
by one and not change the number of requests assigned to any other
module. Thus, the existence of a module as in claim 1, which is
assigned with less than t-1 requests contradicts the choice of the

partitioning of requests among modules above.

§) = min{s/(3)x > t}, S;4y =min{s/(D)x > S, (e-1)+1}, for 1 > L.

Claim 2. The sequence (of integers) {Si} converges to Sc.

Proof. Recall sg < m. 1f Si < Sf then Si+l satlsfies Si < Si+1 < Sf.

If 8y = Sg then Si4] = Sgoe

So we could not start with 1less than sf(t—l)+1 requests. A
contradiction.

Proving (a) 1s easy. Take r (= sf(t-1)+1) requests that all thelr

coples are in sg modules. This completes the proof of Theorem 1.

The Connection with the lower bound. We showed that for any r address

requests the smallest number of modules to contaln their copies is the
smallest k satisfying r < (E)x, which 1s exactly our Sf. Then we
concluded that R . 1s at least the smallest integer satisfying
Ryise: # r/Sf. Here this integer 1s t which Is exactly the best Rmax

achievable. So, the upper bound and the lower bound are exactly equal.

For any p requests let us establish an explicit upper bound on the
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best Rmax achievable. Denote this , -— by t. Let x be the integer such
that

G=D(D) <nve %D .

Similar to the proof of Theorem 1 we restrict the choice of the
assignments of requests to modules. Then, we start with a module which
is assigned with t requests. Now, s is the minimum mumber of modules
that have to be assigned with at least t-l requests in order mnot to
enable us decrease t in the first module. The following inequality
holds from similar reasons to the proof of Theorem 1, x(g) > (t-1)s+l.
It implies

x s%/c! » (t=-Ds + s> (t—l)e::!/}c)li‘:m1
Together with the fact p » (t-1)s+l we get

(t-1) ((t=Dect/x)/e 1 ¢ o implying
(t-1¢/e=l < p/et/x)l/e-1 |
(t-1)¢ < xpc-llc! and

t< 1+ (xpc_llc!)l/c -

Thus,
Theorem 2. Rp,y < 1 + ((PC-I/C|)[N/(2)])1/C. ([x] denotes
the smallest integer i such that 1 > x)

III 4. Optimal Assigment.
The problem of optimal assignment to the ‘right’ copy of each

requested memory address, in order to minimize R .., 1s solvable in
polynonial time. We actually solve the problem for any distribution of
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coples among modules (not only c-partitionings), in Figure 2. For more
on the Max~Flow problem, see [Even].

An alternative solution.

We have to assign p requests to modules . Assign one request at a
time. Say that i out of the p address requests, for some 0< i < p,
got alreadv (temporary) assignment to modules. Assume that these 1
requests are assigned to modules in a way which minimizes — with

respect to them. Denote this R by R We show how to extend

max max,1i*
this assignment to another temporary assignment for one more request,
in a way which achieves minimum R with respect to the i+l requests.,
Our algorithm and proof are similar to the proof of Theorem l. Consider
the following auxiliary directed graph. Nodes represent modules.
There 1s an edge from module A to module B 1f module A iIs assigned with
a request for some address a while B contalns anothex copy of a. The
algorithm for extending the assignment of i requests to an assignment
of i+l requests 1s as follows.
(1) Assign the (i+l)-st address request to a module M; containing one
of the coples of the address. (Add to the auxiliary digraph e¢-1 edges
from this module to the other modules that contaln coples of this
address.)
(2) 1f M; 1s now assigned with < Rmax,i requests then we are done,

max°)
+ 1 requests search the

(It is impossible to add requests and decrease R
(3) 1If My is now assigned with Rmax,i
auxliliary digraph for a module which is assigned with less than Rmax,i
requests and 1s reachable through a directed path from M;. (Any
efficient search can be wutilized here. For instance Breadth First
Search) If such a module is found then propagate request assignments
along a path in the digraph from M; to this module. (This results by
the following change: the number of requests assigned to this module

increases by one. Note, however, that it is still < R The

max,1*
number of request assigned to all other module 1s exactly the ;ame as
it was for the 1 requests.)
(4) If no such module is found in (3) do nothing (the request is assigned
to M;).

The only thlng that has to be proved is that step (4) is correct.

In other words: why 1s 1t impossible to assign these 1+1 requests with
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R = Rmax,i rather than R 7 + 1 ? Assume, in contradiction,

max max, 1l
that there is an assignment of these i+l requests with R .., = Rmax,i'
In this contradictory assignment M, is assigned with < Rmax,i requests.
Therefore, there exists a request for some address a, which is assigned
to M; in our assignment (the result of step (4)) but not in the
contradictory assignment. Hence, the auxiliary graph contain an edge
from M; to My — the node representing the module that the request for a
is assigned to it in the contradictory assignment. By step (3), M, has
Rmax,i
auxiliary set of modules, to include presently M; and M,. In our

request assigned to 1t 1n our assigoment. Define S, an

assignment both modules of S have together 2R +1 requests assigned

max,1
to them while in the contradictory assignedment there are at most

2Rmax,i

address a, which is assigned to a module of S in our assignment but not

such requests. Therefore, there exist a request for some

in the contradictory assignment where this request is assigned to
another module not in S, say M. This implies the exlistence of an edge
in the auxiliary graph from this module in S to M;. By step (3) M3 has
Rmax,i requests assigned to it 1In our assignment. Add M5 to S.
Similarly we show that the set S can grow infinltely large. The number
of modules 1s finite, so we got a contradiction. Thexefore, the

assignment achieved by our algorithm yields the minimum R __.

III 5. Fast Parallel Approximation Algorithms.

The above mentioned optimal assignment algorithms are of general
theoretical interest and might be relevant for bata-base applications
as mentioned 1in the dintroduction. However, the simulation requires
fast parallel algorithms for the assignment problem even if the optimal
result 1is not achieved (remember that we are after fast simulation of
one EREWPRAM cycle). This poses a challenge of a new kind.

Lemma. Let N < (2) be the mumber of addresses. For p address requests

we can achieve R . < cpc_llc in parallel time 0(c2+c log p). For c=2,

we can do it in constant parallel time.

Remark. The claim for ¢=2 needs a little bit stronger assumptions about the
MPC; like, a memory request can be dropped by the requesting processor,

or, altermtively, a memory module can discard memory requests sent to

it if their location in the module’s queue exceeds a certaln point.



Proof . By induction on c.

For c¢=2 start wlth any assignment of address requests to coples. For
all modules where the number of requests 1s 2 f; (there exists <« f;
such modules) switch all requests above the /; line (by doing that for
all requests that were not responded in the first f; time units of the
cycle which 1s being simulated, we avold computation of partial sums
for ¢=2) to the other copy. Second copies belong to pairwise distinct
modules. Therefore, each module gets no more than /; requests for
second coples. Now, we are ready for the inductive step. For ¢ copiles
cut In the first copy over p(c—IIC). Get (at most p(lfc)) sets of
address request to be switched to another copy. The other c¢-1 copiles
for each set relate Jike c-1 coples of a subset of (2:1] addresses.
The somewhat tedious exact implementation details are left to the
interested reader. The following outline will be helpful for this.
The decision where 1s the p<c—1/°) line 1s based on scheduling the
requests for the modules in a way which utilizes both sorting and
partial sums and described in detall in the next chapter for a simlilar
purpose. The scheduling of requests to second coples 1s done
separately in each set of requests, that were switched from the same
module, and so 1s the scheduling for later copies which is done
separately for even more vrefined sets. The definition of such a
refined set (at each transition from i to 1-1 coples and application of
the inductive step) includes all address requests that passed through
the same sequence of modules but have not yet been satisfied. The
partial sums computation for such set meets exactly the partial sums
computation scheme described in the next chapter. (Here, we do not
need the assumptions of the remark for ¢=2 since switched requests are
not sent 1in the first place.) Therefore, we can apply the induction.
Let A; be sizes of switched sets then

L (emya{€e2/ (1) ¢ (empypl/epllet/en(e /DY )y (e-1)/e)

The inequality holds because the left hand side is maximized when

all the Ai numbers are equal. The cz size 1s due to the need to

compute the subset of modules that contain a copy of an address by each
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processor using its local memory. The logzp is due to computaticns of
partial sums which is requlred at each of the ¢ steps of the induction.
Theorem 3. We can achleve R < c(pc_I[N/(gj])llc in parallel time
0(c2+c log2 P)e

Proof. Let x be the integer such that (x—l)(g) {NK x(g).

Apply the lemma for each of the x layers, separately. Let Py be the

number of requests for address in the 1-th layer i<i<x. Then we get

X X
Rpax < ) Rpax(1) < ) Cpic_l)/c < x C(P/x](c-l)/° e
1 1

(ple=Dy) Ve ¢ pc“l[N/(gl 1) e,

Riax(1) 1is theR __ obtained for each layer. The first inequality is
obvious. The second is implied by the lemma. The third i1s because its
left hand side is maximized when all the py are equal. The scheme of
partial sums computation of the next chapter should be wused here as

well.

III 6. Connection with the First Stage.

The proposed c-partitioning above poses some difficulties in
combining it with the probabllistic simulation of the previous chapter.
There, a copy of address a; could have been found in module h(ay)(mod
m). While in this chapter the set of modules that contain copies of
address h(ai) was selected differently. Each address 1s assigned to a
set of modules contalning its coples (according to the defintion of the
proposed c-partitioning at the beginning of Section III 2) where no
function like the remainder mod m seems to be involved in determining
any member of this set. (For instance, module h(a;)(mod m) may not
have a copy of address ai). This 1s the reason why for the purpose of
combining this stage with the prevlious one we propose an alternative
c-partitioning. Its small disadvantage 1s that 1t gives a 1ittle bit
inferior vresults than the first c-partitioning. Its big advantage is
that it suits to be a second stage following Chapter II. Note that in
the sequel we always omlt the hashfunction h and refer to the address
a; only. When the solutlon of this section is set to follow Chapter II

address a; should be replaced by h(ai).
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The alternative c-partitioning. Foxr N < m!/(m—c)! and address i,

0<i<N, the first copy of 3 is in module i1(mod m), the second copy is in
module i(mod (m—~1)) of the remaining m-1 modules and so on. Namely the
Jth copy, I K¢, is in module i(mod (m—j+l) of the mj+l modules not
ocaupled by the first #1 coples.

Example. ILet m = 10 ¢ = 3 and £ = 1, The first copy of i is in module
5 (15(mod 10) = 5), the second is in module 7 (15(mod 9) = 6 and since
module 5 1s occupled, module 7 corresponds to 6) and the third is in
module 9 (15(mod 8) = 7 and module 5 and 7 are occupied).

If (x-D(m!/(m-c)!) < N < x(m!/(m-c)!) for some integer x then
partition the addresses into x approximately equal subsets (layer) and
fix the c-partitioning of each of the x layers as for N < m!/(m—c)!.
Remark. For an address 1 it takes O(c log ¢) time to compute the subset
of ¢ modules containing its copies. Clearly, ii = 1(mod [N(m—-c)!/m!])
1s the serial number of 1 in dts layer. Find the modules one at a
time. Create a 2-3 tree for the modules that were chosen so far. (For
more on 2-3 trees, see [Aho, Hoperoft and Ullman].) By keeping in each
internal node of the tree Information about the number of unoccupied
modules among 1lts leaf-descendents we can identify the module of the
next copy and update the tree in time 0(log ¢). The simple additional
detalls are omitted. In the cases where N = xc!(?)(= x m!/(m-c)!) for
some integer x, Observation 2 and Theorem 1 still hold since
#Ail,iz,...ik = x c! for any subset {i;,19,...,1;} of k modules in both
c-partitionings (using the notations of the lower bounds section). In
order to shorten the paper we reconstructed here only the wupper bound
analogues to Theorem 2. This 1s done 1in an informal way since it
follows the same lines as the proof of Theorxem 2.

For any p requests we want to find an upper bound on the best R .
achievable. Let x be the integer such that (x-1)m!/(m-c)! < N< x
m!/(m-c)!. For some Rpax = t and a module assigned with t requests
denote by s the minimum number of modules (including the first module)
that have to be assigned with at least t-1 request 1in order not to
enable us decrease t in the first module. The following two
inequalities hold:

(1) x sl /(s=c)! > (e-D)s + 1,
(2) p>» (t-l)s + 1.
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(1) {mplies x s¢ > (t-1)s and s > (t/x)c-l. This and (2) imply

(=) (-1 /x)l/e b ¢ o, (e-1)°< x p©! and t< 1 + (x p1)l/e

Theorem 2°, For the alternative c-partitioning

R, < 1+ (¢~ N (m=c) ! /mi])P/C.

The analogue to Theorem 3 will be

Theorem 3°. For the alternative c-partitioning we can achieve

R ., < c(pc—lc![N(m—C)!/mf})lfc

in parallel time O(c log ¢ + ¢ logzp).

The only new idea in this proof is the following. We show that all
addresses that fall in the same layer of our alternative c¢—partitioning
can be efficiently further partitioned into ¢! “sublayers’. Note that
the m!/(m-c)! addresses of one layer (there is at most such number) hit
every subset of ¢ modules exactly c! times each time imn the ¢ modules
are hit in a different order of the coples. Let (i;,i5,...,1.) be the
¢ modules that contain the respective first, second,..., c—th copy of
address 1 that belongs to layer £ for some 1 and 2. Denote by N(j) the
cardinality of {1k|k<j and 1k<ij}. Note that these cardinalities can
be observed upon searching the 2-3 tree mentioned above for ij without
changing the O(logcc) time estimate, Obviously 0 < N(j) < j. Define
L(iy,dp,eeesiy) =) (3-1)IN(j) to be the sublayer of address i in layer
2. The only address in this sublayer which 1s contained in modules
11,12,...,ic is i. Therefore, the N addresses form altogether
c![N(m=c)!/m!] sublayers. Applying the lemma similar to the proof of
Theorem 3 to each of this sublayers completes the proof of the theorem.
The 0(c logzp) slze gepresents the computation of partial sums as in

the proof of the lemma.
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III 7.  Some Nonconstructive Upper Bounds.

In this section we demonstrate a way for utilizing a number of
coples ¢ where (g] >> N. A typlcal counting argument that provides for
non—constructive c¢—partitionings having the desirable property of
enabling small Roax 18 presented. We leave the problem of constructing
such effilclent c—-partitionings open.

We first need the following theorem:

Theorem 4: Let p and m be as before. Let d be a positive integer,
where p ¢ dm. Assume that a c-partitioning i1s glven such that fox
every subset of size p of the N addresses, the set of modules that
contain all ¢ coples of these p addresses is of size » [p/d]. Then it

is possible to get R < d for every p memoxry requests.

Proof. (Similar to the proof of correctness of the alternative
sequential algorithm.) Assume, in contradiction, that there exists a
set of p(< dm) requests that causes Rmax>d' By a similar technique we
choose an assignment such that some module 1s assigned with » d+l
requests. They must have copies in one more module. This second
module must be assigned with » d request. So far we have »2d + 1
Es.i;lj modules. The third

d
module is also assigned with » d requests, and so on. So we pget that

requests, They must have copies in > 3 = |

this set of requests was of size » dm+ l. A contradiction.

This is, actually an extension of Hall’s Theorem (cf. [Even])
which is given for the case d = 1. An upper bound on the portion of
c-partitionings that do not have the favorable property described in

the theorem is

assuning that N is divisible by m. (Note, that the definition of a
c-partitioning 1s extended to the case where more than one copy of an

address is contained in the same module.) This upper bound reminds to
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some extent the proof of the existence lemma of "expander bipartite
graphs" given in page 298 of [Pippenger].

If we prove for some values of N, my p, d and ¢ that Ip (the
portion of "bad" c-partitionings) 1s smaller than one then we gave a
(non-constructive) exlstence proof of a "good" c-partitioning.

Appendix I examplifies a result that can be derived from this
upper bound. We get that 1f N = p3, m = p2, d =1 and p 1s "large
enough" than there exists a "good" 10-partitioning.

In a simllar way to the considerations above we may obtaln an
upper bound of 1-b on the portion of bad c-partionings, for some
positive constant b. Since we do not have a way to construct a '"good"
c-partitioning, we can choose one at random and use 1t till the first
time it fails. Namely, 1f we find for the first cholce a set of
requests for which i1t is impossible to get Riax = d» then we choose
another c-partitioning and so on. Obviously, with high probability, we
find after a small number of trials a "good" c-partitioning.

IV. Efficient Low—level Simulations.

The purpose of this paper 1s to present ways for simulations of
shared memory models of parallel computation which allow fairly
unrestricted access patterns of processors to shared memory cells by
machines In which the memory is organized in modules where only one
cell of each module can be accessed at a time. As was mentioned in the
introduction the paper envlisions a three stage analysis and solution to
the problem. The combination of the two earller stages brings us to a
point where each processor of the MPC simulating machine specifies in
each cycle being simulated both an address request and the module that
was chosen to satisfy this request. The problem is how to complete the
simulation. The cholce of the EREWPRAM and the MPC for presentation of
our ldeas for the second two stages 1s due to the fact that the
simulation of the former by the latter distinguilshed both the problems
and solutions. Among other things, 1t was helpful to make the need for
a third stage indistinct and thereby focusing on the previous stages.
This is the reason that here we switch to other models of computation.
Instead of the EREWPRAM we take a more permlssive model of computation,

the concurrent—-read concurrent-write (CRCW)PRAM. In this model several
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processors are allowed to read simultaneously from the same memory
location. If several processors try to write simultaneously dinto the
same memory Jlocation the lowest numbered processors succeeds. This
model is bused on [Goldschlager] and [Shiloach and Vishkin]. We
substitute the MPC machine by a weaker machine named non—queued
(NQ)-MPC. Here only one address request may arrive at each module at
each time unit. Besldes that the NQ-MPC is similar to the MPC.

We wish to simulate one cycle of the CRCWPRAM. Assume that each
processor of the NQ-MPC 1s assigned already both with an address
request from the common memory and the memory module which has to
satisfy this address request. Assume also that m > p, namely the
number of modules 1s at Jleast as big as the number of processors. Our
proposed solution resembles the simulation of a CRCWPRAM by a EREWPRAM
in [Vishkin 83]. Unfortunately, our present problem requires not only
the circumvention of access conflicts to the same memory location but
also to the same module. Whenever the considerations are similar to
this simulation we shorten the presentation. The first step of the
simulation is:

(1) Sort in parallel the p triples specified below in the lexicographic
‘order.
Each processox enters the triple:

(the serial number of the module assigned to its address request,
the serlal number of the address request 1tself , {its own serilal
number).

The NQ-MPC sorts them using Batcher sorting algorithm in time
0(iog2p). It does not need more than size p shared memory. This is
achieved by using ome cell of each module. The result is that all
requests for the same module (resp. the same address of the same
module) appear in successive locations of the sorted vector. Let us
call the set of such successive locations interval (resp. subinterval)
denoted I(M)(resp. SI(M,a)). M and a represent indeterminants
corresponding to modules and addresses, respectively. Note that
subintervals are sorted by .the serial number of the processors.

(2) The serial number of each subinterval relative to the other =subintervals
in the sorted vector is computed. Denote it by #SI(M,a).

A processor is allocated to each triple. By comparison with the
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triple in the preceding place of the sorted vector the processor finds

out whether its triple is the smallest in its subinterval. If yes it

is chesen te “represent’ the subinterval as will be seem later; let wus
call the triple in this case, a subinterval-triple. Each processor
that is (resp. not) allocated to a subinterval triple enters one
(resp. zero) to a simple (O[log p]) time partial-sums computation.
This results with the required subinterval serial number assoclated
with the subinterval triple.

(3) The serial number of each subinterval which is smallest in its interval
(m%n(#SI(M,b)) is ‘broadcasted’ to all other triples of the interval.

The number #SI(M,a) - m%n(#SI(M.b))+l is the serial number of the
subinterval SI(M,a) relative to other subintervals of d1interval I(M).
The broadcasting i1s done in [log p] pulses. In pulse i, I<i< [log p],
each processor that knows, already, the serlal number of the smallest
subinterval of the interval of 1ts triple writes it into the 21-1
successor of the triple in the sorted vector if it belongs to the same
interval. It is simple to see (see [Vishkin 83]) that all triple get
the appropriate message and each module is accessed by one processor at
a time,.

"(4) The processor of each sublnterval-triple performs the requested access
to the right module in time corresponding to the serial number computed in
Step (3) above.

In case, we simulate a writing cycle (recall the eclassification of
the previous chapter into reading and writing cycles) we are done. In
case a reading cy&fe is simulated we finish by:

(5) The content read by the processor of each subinterval-triple is
broadcasted to all other triple of this subinterval.

The broadcasting is done by a simllar technique to Step (3).
Broadcasting for the same purpose 1is wused in [Vishkin 83]. The
0(log2p) time for sorting clearly dominates the time complexity of this
simulation. It is appropriate to mention at this point the new O(log
p) sorting algorithms (for p processors) given by [Ajtail, Komlos and
Szemeredl] and [Reif and Valiant]. In the first algorithm the time is
multiplied by a large constant, while the second is a probabllistic

algorithm and the constant factor is smaller.



Y. Summavcy

We gave above a detalled description of each component of our
solution. Here we would 1like to give a high level description of a
simulation of the CRGJPRAM by the NQ-MPC.

The CROJPRAM (resp. NQ-MPC) is permissive (resp. restrictive)
relative to the spectrum of other permlissive (resp restrictive) models
of computationm that appear in the literature. This enables us to go
again through the main notions of our solution in order to summarize
them in a uniform fashion.

Stage one assumes a class H of hashfunction. Pick at random one
of them say h. This hashfunction implies the location of the ¢ coples
of each address aj. By the alternative c—partitioning of stage two the
j=th copy is in module h(ai)(mod m—(j—1)) of the modules that were not
occupled by the first j-1 coples (1< Kc). The step by step simulation
starts with each processor of the NQ-MPC machine specifying an address
request for read or write like its corresponding CRCWPRAM processor.
Now we have to split 1nto reading and writing cycles. For reading
cycles Theorem 3° gives an algorithm for allocation of address requests
to modules. A scheduling of the requests to time wunits of the
similated cycle and a way to transmit the read request to the modules
and the response back to the processors are described in the previous
chapter. For writing cycles each address request is assigned to all
its ¢ copiles. We do not do worse than ¢ times (the time for one
reading cycle). The reader is invited to by observing that we can
access: first coples, then second coples, and so on.

It is Interesting to note that both the Ultracomputer and the PDDI
machine are able to compute partial sums in the same time it takes for
the processors to access the memory. So 1n both machines the term

2p in the time evaluation of theorems 3 and 3’ and the preceding

log
lemma can be omitted. They also allow simultaneous access by several
processors to the same cell of a module. It is resolved in the same
way as 1in the CROJPRAM within the same tlime as accessing the memory.
So most of the discussion of Chapter IV 1is irrelevant for both

machines.
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Appendix 1.

The following example may illustrate what are the results that one

may expect out of Section III 7. No special effort was made to get the

best possible result in the subsequent computation.

Example: Let N = p3,m = p2 and d = 1. Then,

: NP K1 (ep3-ck)!
< } (P (p) ¢ P
¥ 1<k<p£ ©) tepr=an (cp?)!

-y @)@ ey
IKk<p
Since

() > () (B) ()

we get

< 1 (cpk) ((c 125 ]
lKk<p C©K

Since

eply ¢ (cpk)F
(39 "~

and
(c -p ( (e-1)p3-p2-(c-2)k) (c=2)k
( (c—E) 4 (e=2)i)1
we get
1 (ck)! (cpk)Ck
1I<k< p ((C_T)k)!((c-l)P:’-pz - (e-2)k) (e=2)k

(ck)!

2k, 3
Now =T < (ck)“"™; and for p "large enough" p

¢ 1s a constant and k €< p. So

>p

2

+ (e=2)k where



(ck)Zk(cpk)Ck
IKk<p ((e-2)p3)(eDk

<

Call each element L,. Let ¢ =10. For large enough p

_ 10201 0p) 10

< 1/p
(8p2)8

Since it is easy to verify that the derivate of L, with respect to k
(1 < k< p) 1is negative for large enough values of p, we get
l L <1. So, we proved the existence of a 10—partitioning such

lﬁgﬁpfor these parameters gives always a memory contention of one.
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