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Abstract: A compactar for VLSI layouts is an essential
component in many CAD systems for VISI design. It reduces
the area of & given layout violating any of cthe deslian
rules dictated by the fabrication process,

In many CAD systens for VLSI design the compacter genarates
a nunber of linear inequalities from the circuit laycut.
Thase so-called constraints restrict the coordinates of

the layout components. The resulting ineguality system is
then solved in some optimum way. The solution of sueh
inequality systens can ha done efffcliontly, The genecation
of tha constraints, howevar, is a problean for uhich no
efficiant algorithas have beon devised so far.

Wa dafina the graph problem undarlying the constraint
goneration for VLSI clrcult compaction. Furthermore we
develop cfficient, i.c., O(nlogn) time algorithms for the
genceration of conatraint systons that allow to change

the layout topology during the conpaction in order to
yleld good compaction results, but at the sane time are
sparse enough Lo be solved elficlently, i.e., of 520 O(n),
Those algorithes ace sinple encugh to be inplemented.

A short vorslon of thisz repert dppearod in: Proccedings

of the 9th Workshop on Craphtheorotic Concepts in Computer
Science [KG'0)), June 16-18, 1983, Osnabrick,
West-Garnany,



1. Intreduction

Many CAD systems for layout design contain compacters that
reduce the layout areca using the following strateqy
({CABDACE, PLOSS, MILL, MULGA, SLJM, STICKS, TRICXY].

Tho compaction is done in a number OF PRARGS PlseessPp.
turing the oud numbercd phases the cxtent of tha layout
in the x<direction is roduced by acplying a “squeeze®

to the layout. The y-coordinates of the layout cormponoents
are not changed. Analegously the even nunberced phascs
sguocze the layout in the y-direction. Often only tuo
phasces exist |CABODAGE,FLOSE]. Also, cfforts are made to
overcome the indesondence of the phases by analyzing
tradecoffs between them [SLIN,GHE2]. We will only be
cancerned with whak happens inside a phase, and not

vith the intercelationship between phases.

Wilhin a phase there are tvo approaches to compaction.
In onw approach compression ridges are run through the
layout that mirk accas of the leycut contalning excess
soace. This space 15 then removed. This process 1s
iterated untll no more compression ridge {s found
IMULGA, SLTM ). This paper is concerned with the sacond
aporoach which le graph~theoretic in patoro [CABBAGE,
FLOSS MILL, STICKS ; TRICKY,GU82 |, Let us from now on only
consider compaction in x-direction. Constraints are
qeneratnad becwveen the x-coordinates of the layout com—
porents. These conastraints taka tha [orxnm

X, = X 2 .ij or Xy = x: (a‘)ez)

vhoro Xy and xJ 8ce the coordinateos of two components.
The constraints can be grouped into three classas.

Tyoe I: Constraints of the form xi-xj cncade cantact rules,
l.¢, they *solder” layout corponents together that should
contack cach other. |Somatinca thesce constraints take tho

forn "1-‘j' 4 ‘lj > 0.)



Type IIs Constraints of the form xi-xjiaij>0 encode the
“design zules” [(MCBO), They ensure the mininum separation
regulrensnts between different layout componcnts Lthat axe
dictated by the fabricatiom process.

Type III: Constraints of the form xi-x’:alj<0 encode
naxlsuen distance requlremants glven by the desiqner
expllcitly. These constralnts ensure clircult performance
(by limiting the leéength of high-capacity wires) or adhere
to top-down deslgn (by conforming to floor plannimy

declaions made earlier.

The yesulting lnequality system 18 thon s0lved using
graph=theoretic nethods (L32). we can assume that in

most practical cases thae solution timg will be O(m+n)
where m is the pusboy of Inequalities and n is the

nubac of layout Components. refore we are interested
in qenerating constraint systems that are sparse [n=0{nll.

Furthermore the constraint genecation should take litele
time. There are O(n) Type I constraints, and they can
easily be generatad from a not list sccompanying the

layout. {If no net list accorpanics the layout it can

bo gencrated efficlently with a efreuwit extractor [SW B3).)
Type III constraints are gqlven by the doaigner expllicitly.
Theralfore he has the responsibility over this pare of the
conestraint system. The goneration of the Type II conztraints
is the non-trivial part of the whole constraint generation
procassd, snd this paper will focus on it.



Z. The incerval graph

A stralghtforsard way ko gonerate the Type IT constraints
would be to look at cach pair of layout components in
turn and uvse tha design rule table to genarate the
approprlate ineguality. llowever, this would result in
aln?) Inequalitics, far too many to be practical,

In fact, rany of these incgualities are redundant. Mostly,
ninimun distances are small (2 few microni) swvch that
layout components that are fay agart fron ¢ach other will
be assurced sullficieont separation by the constraint that
alxgady exist In each of their neighbourhoods. Therelore
only a few of the conatraints arge actually necessery. We
will discuss how to generate such "ninimal®™ coastralint
systoms, To this end we formulate the following graph«
thecoretic problem,

Dcfinltion 1: a) Let L be a set of n vertical incervals in
the plane, Euch interval is a triple (x.yl,yh} where x L=
the x-coocrdinate and Y, and ¥, are the y-coordinates of the
low and high endpoints of the interval.

b)] Lat (L,<) be the total ordering that orders L w.r.t. Ekhe
x-coardinate of sach interval, Ties are broken arbicrarily
buk fixed,

<) Intervals x, and 12 ara sailé vo “overlap®, LE
Ty 2 Iy 2 €= 20X, A ¥y, 1V, 2 A ¥1,2n,8

@} The following set 1z called the sat of Interxvals “"between"

I‘ and 12:

BUIyeTp) 1= (&% X eXeX, A XAINI,).



L raprasents the layout geometry. Spacifically, each
interval represents a layout component. For A& layout

to ha correct w.r.t. a set of design rules we assune

that overlapping Intervals have to be separated by

cectain mininum distances im the x-direction. The axact
ancunts ara of no concarn hara, aince horxe we are only
concarned with the question which constraints have to

be qgenerated. (The valucs im the inogualities <on be
computad with a wimple design rule test.) Non-ovarlapping
intexvals ore assumad to be cufficiently separatgd in

the y-dircction, such that no coastraint in the x-direction
has to be generated. This can alvays be ensured by slightly
enlarging the interval.

He will define several ways for L to Induce a so-called
constraint graph G=({L,E}. G 15 a divected acyclic graph
with each edge e~(I,,I,) represanting an inequality of

the form X=X, 225,20, Here X, and X, are the x-coordinataes
of I, and I, in the compacted layout.

The constraint graph G 18 exactly the graph analyzed in
[L82). The =ource node s that is adjolred to the graph
thece can be represented by an Interval

I = ‘-B'-B'B,

whera 8 3 a sufficiently large value.

The redundancy of sone constraints can nov be formulated
as the following axion,

PROCESS AXIOM: If G=(L,E] represcnts an Lncquality sSystem
that ensures all doslgn rules Lo Be met =~ we call such
a system "admisslble™ =« then the transitive reduction p

9t G also reprosents such a systea.



The procoess axiom allows us to neglect all inequalities
that form "ahort-cuts® in tha constralnt graph. This {s

a roalistic assurotion because dosign rules are typically
of a highly local nature. The process axion is a powerful
and also essentially the only existing tool for reducing
the zize of the set of conaktraints for compaction,

Clearly thore are many vays of extracting a constraint
groph from layout L. Here is tha simplest one.

gefinltion 2: Let GoﬁqOILJ-[L.EO) be definod as follows:
(I,01,) € By 12f I, A,

Clesrly the undirected graph underlyfng G, is an interval
graph [GB0), and¢ 1its interval roprasentation is given by L,
il all x-coordinates are set to zcro. Thus the question,
how to c¢onputae the transitive reduction Po of qo asks

for algorithms to ofticiently compute the transitlve
reduction of such interval dags.

By the remacks adbove o i3 an adnizszible constraint system.
Chviously the followvinrng 13 true:

Fack 1: (T, I,1fpg <=2 T AT, A B13,,1,]1=9

Uning this characterization Fo €an be computed in time

Ofn 1og n) with the following algarithn Gen,. Gen, uses

a top~down plane sweep. Thus the algorithm scans a
horizontal swoop line across the layout L from top to
bottom. During the sweep a data strocture D §3 matntained
that stores inforration ahout all intervals that currentiy
intersect the sweopline. D i a leafechained balanced tree
that keeps the intervwals in sorted order accoerding to [(L,<).



Furthaormore with cach interval TeD two pointers to other
intexvals in L arc associated. The polinter lefrt(l) polnes
to nil or an interval less than I. The polater right(I)
points to nil or an interval greater than I. Both polntors
represent @dges between I and the interval pointed to
that are candidates for pg but whosa manbarship in p, has
not been declided yet, ¥W.1.0.49. we asdura that the
y-coordinates for all IEL are pairwise distinot. Then
during the swvoop we encountoy twe kinds of evonts the
aloorichm has to deal with, nanely the insertion of an
interval into the sweep lino and the deletion of dn
interval from the sweep line. Upcn these the algorithn
does the following:

Inzert(I): In=ert I into D}

Find the left and right neighbour I
I in D; '

lefe({X}i=X,; Tight(I)z =1 ;
lerttlrl=~llghttltlltla

and Ir of

Daleta(T): £f left(I) ¥ nil and 1afE[Y)€D then
append {1eftl{1),T) to o,:
Af cight(I) % nil and right{I)€D then
append (I,richt(1)} to Pt

Thcorem 1: a) Gen, conputes Po In time O(n log n)

L4 ] it n«)
b) IDOI < 1 if n=2
n-4 if n>2

Prcol: a) can ba shown using a sisple induction on the
number Of events happenod during the algorithn.
Consléer the t-th event. The Snvariant of the Llnéuction
15: The edges output 3o fac plus the odgas represented

by the pointers in 0 that polnt to intervals In the sveep-
line make wp the transitive rcduction of Go (L] whore L,



ls the layout that consists of all parts of the
intervals of L that lie above the aweep linme.

b) Wo realizy that during cach Insection only 2
candidates for fo ore produced. Furthermore during
the first inscrtion no candidates for p, are
produced and during the second and third fasartion
only one additional candidate for p, is produced.

The uppor bound of Theorem 1b is tight, as the
following layout shows

T I T

[

3 n-2 intervals

Several systems attempt to find %o [C&hnAGc sLim ).
CABBAGE may produce as many as O(n ) constraints and
typlcally produces about Oln ). SLIM comes closer, but
it also produces more than the transitive closuve, since
a constraint s generated betwaen each pair of intervols
that are visibla from each other at least in part.



3. The layer approéoach

While, given the process axiom, po 1s alvays an admissible
constraint system for compaction it iz in general not the
beest one. It docs not allow to change the layout topology
during compaction, bacause there ks a constraint between
an intorval and all of lts neighbours. [CABDAGE] states
this problem without offering a solution, Withia our
framowork we ace able to gencrate dlfferxent admiszible
constraint systems that entail more topological frecdon.

Yo this end we define a symmetric and reflexive binary
compatibility relation ¥eL*L. We call two intervals I,
and 1, compatible if I,%I,. Intuitively two intervals
should be congatible 1t' the associated components do not
have to meet any minimum distance constraint. Obvioualy
no edge has to exist in the constraint graph batwecon

any pair of compatible intervals. Therafore we dafine:

Dafinition 3: Lat 6'-6'(L)-(L,S‘) be dafined as followns
‘I-'fx:)tﬂ' tlm)y I‘ 1 Iz’i tl"tz

We nake the reasonable assurpticon that Lt can be decided
in time O(Y) if I,7T,. One possibility to define v ls to
realiza that VLST clrcunlts are typically laid out on
soveral, say L layera that are insulated from cach other,
except for contact holes hat previde comnectlons betwoen
the layers. Therefore wa can definc: I, *I, 4f thu layout
conponents asxociated with I‘ and 12 exist on Jdifferent
layera that are fngulated from wach other. The resulting
graph G' is in gencral no intorval dag and its Lransitive
raduction p_ nay e hard to compute. Dut we can clficiently
compute a supergeraph of Py with fow edges,



Theorem 23 Let L be a layout such that a subzet M{I)
of a set {1,...,2%) of layers is assoclated with cach
Intervol ISL. (We say that [ exists on the layers in
M{I}.)Assure thet |M(I)[%d for all IEL. Let I, vX, iff

uczl}nutrz)-ﬁ. Then we can in timne O(dn log n) compute
a graph R such that p <« R «C_ and |R| s24n=4.

Proof:From L we gencrate t layouts L'.....L‘.

L, = (1€L | $€M(X)). Then the sot of the graphs G,(L,)

for £=1,...,% covers all edges of G . Thus the union of
all graphs 2 _{L;] is a supergraph R of p_, Furthexmore
Golly? 18 & subgraph of G for i=),...% thus R<G.

By Theorem 1 the nueber of edges In R 48
Wl 5 £ Jogtey)] s 20
R = Pnll,)| 3 2dn-4 .
'
Fucthermore, the time to compute R is O © |L1| lo-glr.llb
£=1

= O(dn log n).

IFLOSS ) applies this kind of layer separation te =

achieve some topological freedom during conpaction.



4. Switching the positions of cooponents vithin a layer

-~

¥hile e, provides for more topological flexibility by
handling each layer Of the circuit scparately there are
still desirable transformations that it does not allew,
¥e give wwo exanples:

Example 1: Jog-flipping of wires @

, el

Bafore hAfter Intexvel representation

ilara the intervals overlap, although slightly. Since they
aro on the same layer they are incompatible with respect

to the above rclation 3 and cannot exchange thefr positions
during conpaction. CABEAGE solves this problen by adjusating
specifically for such jog £lips, the leéengths of the inter-
vals tesporarily such that they Jdo not avarlap, This
svlution 15 adhoc, however, and it doos not solva the
following problaem,

Exarple 2: Tranzistor flipping :
ﬁ?-'_' - I Cﬂ) ‘I
PN B Bl
., gy I8 _r‘"l._./ i
/

%

fefore After Intacval represantation

Hera the vertScal bold wire fs on a Lop layer and all

other structures are on the bottem layer. Tho contact ¢
connects between the two layecrs, In this Case a sirple-
nindod adjuakmont of Intecval lengehs will not do. Therefore



wo extand ¥ by also allowing I, 31, S[ T, and I, exist
on the samo layer and carry the same electrical signal.
Such an extension is desirable, sinca the above exawple
transfornations will reduce the area of many layouts
significantly. But now p can beccme laxgo:

Exannlo 3:

for 1<8<j<n, but ~I _vJ. for 134,3isn.

) £77)
Then o, is the ccoplete bipaxtite graph Kn.n.uith all
odges directed from the left to the right part.

Lot 11'15 and J‘IJ

Ia this casc one can usc a trick to cncode 0y in
snall spacer One adds a “virtual® intarval X baotwesn

!n and l‘ zuch that ~xn11 and -R:Jj. for all 1<4,j¢<n.

Tho only purpose of X {8 to moxlifly e, such that it has
faov 0dgos. 1.owever, {f we just restrict " to being
synnetric and refloxive this is not always posszible.

Lenna 1: There 1s a compatibility rclation = such that
o, takos n(nzl space to be onendnd.

Proof:we rcalize that we can induce #och (n,n)-dirccred
blpartite graph as G for a layout L with 2n intecrvals,
The layout is the sare as in Exanple J and = s defined

such that IL"Ij and J‘le tor 1%L<31%n and 11'Jj 1f no edqe

oxists betwoen the respectica vertlcees in the bipartite
graph., Thus we pust encode all (n,n)l-bipacrtite graphs,
Baut thero aro 2“2/|n:)2 such qraphs.



(To see this number the vertices in both parts

of the graph from 1 to n. There arxe |nl]2 guch
nurbarings, and obviously there are 20% bipartlite
graph® that are nunbered in this wvay.) Thus we
need at least loqizﬂzltnljzi - n(n’) bits to
encode all such grapha.

Lemma 1 shows, that G, can in general not be
represented in small space, and thus it is not

the right constraint graph for cur purposes.

We therofore define another constraint graph G, such
that G, = G, = G" and Gy allows the transfoxmations
discussod above.

Delfinition 41 Let G‘-G1tn)-1bfs} be defined ac
follows:

Thus E, can be obtained from Eq by deleting all ccges
in f, that conpect compatible intérvals, This allows
only exchanges of the positions of neighbouring
elengnts during conpaction. Howcwer, hoth example
transformations are included. The transitive
reduction o, ot c' can be characterized as follows

v
_____ 1"

Then for all Iyo 12 with I, \Iz we hoave:

2,

n n

v {1.r2)<p3



—'q-

Proofr “=>" Indirect: Clearly |1,,r2)eu3 inplies

(I,,Izltei. Aasune that thare is sooe I£!II1,!zI such
that (I,.1)€07 and {I,I,)¢05. Then (X, 1), 11,1,]€R,,
thus 11‘.12)¢n1.

" «¥: Indirock; Ausime tli,rzlip.. Then «ilhar
11,,1,]JEE, or there is a path of length 127 fron

1, to I, in Ly« In the first cone (!‘,12Ii05.

In the second casze there must be an intervol
TEB(T,. 1,0 with (1., 1) (X.T,1€E,. Thus (I,,1)€ng

ﬂlla ‘I.Ia,(ﬂ;-

a

Lerma 2 providos the basis for an efflciont algorithn for
conmputing p g+ The folloving lemma shows that inforratfon hasr
to he updated only locally during the algorithm.

Tonea 3:Conglder an arbitrary posaition of a harizontal line
through the layouk L that doag not touch tha endpoints of
any interval Ia L, Lot °1.t ha the subyroph that s

induced from p, by all intervals intersccting the line.



a) If (I'.Izién than thera ara At POst two

1:¢
intervals 1,1' Lfntergecting the line such thot
l,<!<l'<xz.

b) The maximun in- and out-degree of any vertex in
°1.t is 2,

- L] -
Prool: a) Assune tII‘IR'epl,t and Iictcl <1 <Iz

with all interxvals intersecting the horfizontal lino.
By definition of c1 !'.I'.I3 i= a path in c' vhich
iz a contradiction.

b) Wec only consider the out-degree, By a) the out-dggree
of a vartex oan be at moat 3, If there 15 an edgye from
interval I, to all of Lts three closeat neighbours
I,I°,1° in the line then (I,,I*)€p, implies (T, I)€ng
by Lerma 2 which contradicts (I,,1)€n,.

Thae followlng exanple shows that we cannot hope to
find a simple one-pass algorithe for computing 04
using plane sweep methods,

Exanple 4:

I

Hore ¥ is the equivalence relation with classes {1,,71,,1.}
and (I,,I,). At the Sndicated position of the zweep line
it cannot be decidod yet whether [I1.15}€p|. dut I, has
left the swoep line. Thus any one-pass wlgorithn would
have to entail a certain asount of nemory about intervals
that have already lefe tha swaop line,



The [ollowing algorithm Gon, i$ 3 two-pass alqorithm.

ltare 1= its desceiption 3

Pass 1: Run algorithm Gan, on L. ltowever, output only
odgos {1,,1,)€0, such that [,%1,. Organize the edges in
a lincar list L of sets, cach sct baing the collection
ol edges output during one delete oparation.

Pass 2: Make a planc sweop bottom-up. Again maintain

a talanced tree D, however this time allow for two
peintors to the left and two polnters to the right

of cach intueval to store candidate edges, Furtharmore
allow for one Pq-Pointer to tha lefc and right to store
edqges [xom C.

Innoct (1) ¢+ Insect I into D;
Fetch from the back of £ all edges that have been
output upon the delction of I in Pass 1, and
store then in the Pg Pointers. Maintain the
set of candidate edges belwoen the intervals
at mozt 3 to the right o lefet of I in D
v ecording to lerma 2, l.e,, delete a candidata
cdge if the newly fetched cdges from L show
by Lerma 2 that the edge Is not a candidate
any more;

DeleeclI) @ Quiput all candidate adges that have [ a5 an
endpoint and an Interval crossing Lhe sweep
line as the other;

Oclete T [rom D}

iheoren 3: a) Gen, produces ¢y in tine O(n log n)

b lo|| 3 4dn

Proof: a} Agaln we dnduct on the position t of tho gweep lino
in Pass 2. The invariant 13 this time: The adges cutput so
fac plus the odges ztored in tho candldate pointers of ©

forn a sct Py, ¢ ©f cdges such that



e 17 =

for intervals 1.7, with l' A Iyt
-  J
!'01‘t12 £=> (I,.IzP(ﬁo A

VI'€8(I],T3): (X, T)Epy v (I,1,)Cp0.

Here I' is the part of I that lies Rolow the svoep. linc.

Dbvlously this invariaat ks kept by the alqgorithm, and

for t== we get I'=Y for ell IeL and thus p’ Py fron
[

Leorma 1.

Furtheznore note that two candidate edge pointers to tho
left and right for @ach interval in 0 suffice. This is
bgcause the prool Of Lerma 3Ib carrics ovar to Py "

é

b} At each deletica in Pasgs 2 at xoatk foor edgos are
output by Lemma 3b,

The followling example shows that thexe are layouts such
that |p,|sdn-1%

Exanpls 5:

1
L

n-4 Intervals



llere v 15 an cquivalence relation witn the lonqg and
the short fntcevals cach forming one equivalence claes.

The storage roquicemant of both algorithms Gen, and
Geny is O(n) where m is the maximum nunber of intervals
intersecting the sweep 1ing at any time. Since layouts
can be axpectad to bo roughly quadratic with uniforn
distributlon of the layout components we can expect
n=0(./7). Here ve assunc that the output of Pass 1

in algortthm Gen, ks on & sequential access storage
<dovice and not In moin wemory. (Otherwlse the storage
requirencnt would be linear.) Bath algorithes are sieple
enough to expect that thay parforn well in practice,

hdditional passes <an be made across the layout to
ganerato the transitive reductions Py of constzalnk
graphs Gi~{h.81) whaere

(T4 1), (X, T5008, )

Then 609 Gl = 02‘:... « Alter at wost n ltorations the

sequonce stabilizes in a grapgh G, with the following
properties

i T
()T 0€E8 cox [ Ay A (K, 206G .

ffere C 32 tho transitive closure of G+ Thus p =g .
L
Unfartunately Lhe pasxos to compule Py becosa fn-,

creasingly complex such that this k3 not a good way Lo
conputa p .



5. Conclusion

Putting tha problem which constraints to generate for
compaction into the context of graph theory has enahled
us t0 dogsign afficient algorithms that genarate ad-
mizsible constralint aystans allowing up to now Lnachiavaod
flexibllity. Although within a layer topoloqglical changes
aro still confincd to pairs of neighbouring components
many of the desirable topological transformations ace
nov possible. It may be that transformations of a more
globol naturo cen be In¢cluded In this framovork if the
compatipility rclation is further restricted, say, to
being an equivalence relation. FPurthermore Lt 43 an
intexesting question to ask, in what way the compaction
is Lnproved by itecsting Gen, sevocal Liwves (whlch is
different from adding more pazses Lo Gon‘.i

In general it scems that graph theory is a powerful tool
for systematizing the algorithms needed in a coopacter.

Algoriehn Gen, w111l be implenantod as part of the
conpacter of the HILL systen.
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