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1. Introduction

The HILL (Hierarchical Layout Language) system is currently
under development at the University of the Saarland. The
development of HILL is one of several research projects that
are funded by Deutsche Forschungsgemeinschaft, Grant SFB 124,
and are under way at the universities in Kaiserslautern and
Saabriicken, West Germany. The research projects include the
development of CAD systems for VLSI circuit development,

such as HILL and CADIC as well as work on parallel machine
architectures and their software.

HILL aims at supporting symbolic layout design on the stick
diagram level. For this purpise the HILL system provides a
hierarchical layout specification language in conjunction with
a graphis editor, a switch level MOS simulator, and a compacter.

The simulator is based on a simple MOS model that includes
no timing. Transistors are modeled as switches that can be in one
of three states: 0,1, and X modelling off, on, and undefined.
In [MNN82] three things are proved:

1. The correctness of the simulation w.r.t. the model

2. The relationship between the model and the reality of
RC-networks

3. The efficiency of the simulation

The simulator runs in time O(n) on a large class of networks,
where n is the number of transistors in the network that change
state. Experimental evidence shows that 0.2 msec are spent per
transistors on a SIEMENS 7760.

Since the simulator simulates the electrical network under-
lying symbolic layouts it has no access to delay information.
Currently simulation algorithms are being developed which
ensure the functioning of a circuit independently of the
delays associated with gates and wires.



The compacter is bascd on the graph-theoretic approach for
eridless compaction pursued by LCABBAGE,FLOSS,STICKS]. The algo-
rithms it uscs are described in [L82a,1.83]. It allows previously
unachieved topological f{lexibility. Specifically it can switch
the positions of adjacent circuit structures that lie on the
same mask layer, if no design rules are violated during this
process, and if doing so reduces the area of the layout. The
compaction algorithm is proved to run in O(n log n) time, and
is expected to perform very well in practice.

A less efficient and more complicated compacter has been
implementecd as part of [HILL82), a predecessor of the HILL
system. Nevertheless, even in HILL82 compaction is quite fast.
For example, the adder using the carry chain below consists of
(262,564) transistors for (8 bit, 16 bit) numbers, and is com-
pacted in about (28.8, 61.4) seconds on a SIEMENS 7760.

This paper cannot go into the details of the simulator and
the compacter. llere we intend to give an overview of the spe-
cification language uscd in IIILL. It is described in detail
in [HILL83].The implementation of HILL83 is under way and will
be completed by the end of 1983. A predecessor [HILL8:] is
running and is being used successfully by us and students.
ITLL82 has a less flexible cell concept, a less efficient
(running time and quality of output) compacter and a less
convenient user interface. (Compilation from HILL to PASCAL
had to be done by hand.) The following diagram gives an over-
view of the HILL system.
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2. COverview of the HILL Specification Language

HILL is a tool for single chip development. The main focus

of HILL is layout generation and verification. HILL aims at
supporting the designer who has a comprehensive global image
of his circuit. HILL provides a convenient way of describing

a layout symbolically either by a HILL program or during an
interactive scssion at the graphics terminal. Even though the
layout is specified in a symbolic manner the designer has many
means of cxerting direct influence on the quality of the re-
sulting mask data.

HILL is a system which combines convenient circuit description
with efficiency of the implementation. We aim for efficiency
in three respects: Human design time, chip area and delay, and
computational resources.

lluman Resources: In IILL, integrated circuits are described

at the level of stick diagrams enhanced by extensive means for
structuring a design hierarchically. We have chosen the level

of stick diagrams because on the one hand it still allows the
designer to express his insights about the topology of the cir-
cuit and on the other hand it frees the designer from the tedious
and error-prone task of specifying his circuit at the mask level.
The stick diagram level has been used successfully in systems
like [CABBAGE,STICKS,MULGA].

Even though it certainly is no good practice to specify a whole
large scale circuit with one giant stick diagram, if enhanced
by extensive mcans for hierarchical structuring, especially

with a powerful cell concept, stick diagrams become a con-
venicent symbolic representation of even large scale layouts.

In the HILL report [HILL83) this thesis is exemplified by a
number of examples. We will give only a small example below.



Most cxisting stick diagram systems arc totally or almost
totally graphics oriented. Graphics is indeced an ideal tool
for describing small irregular parts of a layout. The graphics
editor in HILL is similar to existing ones and is not described
here. It is currently being implemented. Graphics has its limi-
tations when it comes to building up hierarchies because it can
support only limited mechanisms for structuring layouts.
Essentially, graphics can only supports composition and primi-
tive forms of iteration (duplication).

However, graphics cannot support regularity in its full
generality. A (large) object is regular if it allows for a short
description. Only a universal programming language can support
regularity in its full sense. Therefore HILL is designed as a
PASCAL extension which interacts gracefully with a graphics
editor. In particular, HILL supports recursion, the full power
of iteration, and parameter passing. Recursion and iteration
are central to (software) algorithm design, and they have al-
ready proven to be powerful concepts in hardware design (e.g.
[GV82,MC80 Chapter 8]). Recursion corresponds to treces, itera-
tion to array-like structures, and programming in gencral allows
to specify general regular networks.

A good example, although too long to be included here, is the
multiplier described in [LM83]. This multiplier is based on the
divide-and-conquer method using three multiplications of numbers
of half length. The layout given there is regular, however, the
regularity can certainly not be captured within a pure graphics
system. Rather, powerful descriptive tools, such as recursion,
iteration, and parameter passing are needed to capture the regu-
larity.

Chip area and delay: Experience with existing systems [CABBACGE,
ST1CKS,MULGA,HILL82] suggests that automatic compaction can yield
small layouts which come close to hand-compacted layouts. The
stick diagram level is close enough to the silicon to allow

the designer to incorporate performance aspects into his speci-




fication, and the compacter supports chip performance with

his knowlcdge of the fabrication process. Finally, the case

of circuit description and the fcasibility of the algorithnms
usced in the system allow the designer to try scveral approaches
to his circuit and select the one he likes best.

Computational resources: Most existing systems have definite

shortcomings in this respect. In most cases, only sketchy
theorctical analyses of the running time are given, often
algorithmic concepts enter the system only scantily. Computa-
tional expericnce with the systems suggests that the running
time is highly non-linear. For example, it is reported that
CABBAGE takes time O(n'®?
tors and wires. In HHILL82 we improved upon this and implemented
an O(n log n) algorithm. A more elegant and flexible O(n log n)
algorithm is described in [L82a,L83) and will be used in HILLS83.

) to compact a circuit with n transis-

llowever, even this algorithm will not do for large scale circuits,
because of its Q(v/n) space requirement. The solution to this
problem is to compact hierarchically, see [L82b].

The main structuring device in HILL is that of a "cell". A
ccll is the specification of a subcircuit of the chip to be de-
signed. This subcircuit will in general function as a module in
the chip that communicates with its surroundings through rela-
tively few connections (pins) and performs a specific subfunction
of the chip function. It is rectangular in shape with the pins
arranged on its boundary. It is very much reminiscent of a function
in a scquential programming language like PASCAL. As procedure
paramcters form the (up to side effects exclusive) interface
between the function and its call environment, so the pins of
a ccll facilitate the interface between the cell and the circuitry
around its location of placement on the chip. The only way to
contact to a cell is through one of its pins. Like procedures
cclls can be compiled scparately and defined externally. For
"instantiating™ a cell only a description of its rectangular
boundary, its so-called "template'" has to be given. The template



contains no (electrical or topological) information about any
of the inner workings of the cell. llowever, it contains both
clectrical and topological information about the cell boundary.
Pins can be related to cach other clectrically in the template,
and they have to be '"placed" in order to specify the order in
which they appear around the cell boundary.

In addition to specifying in which order the pins occur on
each side of the cell, HILL also rcquires to specify the relative
positions of pins on opposite sides of a cell. This is done by
giving two partial orders, one for the x-dircction and one for
the y-direction. The system checks whether the symbolic layout
given for a cell can be distorted such that it conforms to any
linear extension of the partial orders. An example of this is
given in the next section. The distortion mechanism implemented
in HILL83 is one-dimensional for reasons of efficiency, and
therefore one of the partial orders mentioned above has to be
a linear order. Even with this limitation HILL cells are quite
flexible and hence adapt easily to changes in the environment of
their placement. On the other hand, the cell template captures
enough information about the topology of a cell for the designer
to keep track of the relative placement of his circuit components
while stepping through the design hierarchy. We believe that this
is a must if the designer wants to keep control of his layout
while working on it hierarchically.



3. The HILL Specification of a Recursive Carry Look-Ahcad Adder

We now give an example that highlights many of the features of the
ITLL specification language. We design the carry chain for an adder
with complete carry look-ahcad according to the construction given
in [GV82] which is particulcarly well suited for NMOS technologies.
The fabrication process for which we design the circuit is de-
scribed in [MC80]). This circuit accepts the two numbers to be added

not in binary notation a=a__4...a5, b=b -+ .by but encoded as

n-1
two strings of carry generate bits 8=8,_1---8g and carry propagate

bits P=Dy. - llere

g, = A, A h.l Py wa; ® bi 120, 50011

The Bit pairs (gi’pi) i=0,...,n-1 are then used to compute the
carry bits y out of each bit position i=0,...,n-1. Here an
associative opcration o on bit pairs is used that is defined
as follows:

(g,p) o (g',p') = (gv(pag'),pap')
The carry chain computes the carry bit ci=ai0bi°ci_1 12000 9950
(c_]=0) out of cach bit position recursively using the o-operation.
Specifically, it computes

(Gi’pi) = (gi’pi)o(gi—]’pi-])o..'o(gO'I)O) i=0’noo,n-1
Note that Gi=ci'

The circuit for the carry chain is defined recursively. Its bottom
lcvel element is the following basic cell.

out.g out.p cin
3 1 1
basic
v T 1 § | § ¥ ]

inl.g inl.p clout inO.g inO.p cOout



Note that in0O, inl, and out denote pairs of pins. The cell performs
the following function.

out = inl o 1in0

cOout cin

clout = in0.g v (cin A inO.p)

Thus, if we set cin=0 the basic cell computes the carry bits of
the sum of two 2-bit numbers and provides them at the pins cOout
and clout.

For n=2%, i>1, the carry chain is built up out of two carry chains
for n/2-bit numbers according to the following diagram.

out.g out.p cin
1 \ A

I ] § L ’ 1 ] 1 | 1 ) |

in.g in.p out
"ol S

data[n-1] data[0]

It is shown in [GV82) that this construction indeed computes the
carry bit < and provides it at the pin data[i].out.

We will now describe these cells in HILL. We need three types of
cells. The first cell has the name op and implements the o-opera-
tion. Its definition in HILL looks as follows:



!
o
]

aggrcgate cbits = record g,p: poly end;
ps = record vd: mctal sig=vdd;
gd: metal sig=gnd

end;

cell op (z: int);

temp pins out, inb, inr: cbits;
gout: metal;
1,7 PS5
order implicit y
sides top out;
bottom in;
right r.vd at 2, inr.p, r.gd, inr.g;
left goutl, 1.vd, 1l.gd at 4

pmet

external;

The above text only describes the rectangular boundary of the cell.
Its interior, i.e., its layout is input with the interactive
graphics editcr. This results in the following picture.
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It can be easily checked that this cell realizes the following
function:

goutl = out.g = ing.g v(inb.p A inr.g)
out.p = inb.p inr.p

The cell has an integer parameter z. This parameter determines
the strength of the transistors in the cell, which has to be
different in different levels of the recursive hierarchy of the
chip specification (see [GV82]).



The speciflication of cell op is preccded by an aggregate-
statenent that forms groups of pins. llere corresponding carry
generate and carry propagate lines are paired up, and a power
supply bus is defined.

We now describe the specification of cell op. The header containing
the numerical parameter is followed by a so-called template en-
closed in the parentheses temp and pmet. The template gives in-
formation about the rectangular boundary of the cell op. It is
followed by a definition of the layout of the interior of the cell.
For graphically defined cells the symbol extcrnal issubstituted

for this part of the specification.

The template lists all pins of the cell in the pins section. Each
pin has a sort that identifies the layers it exists upon and can
be accompanied by some specification of the electrical signal it
carries, e.g., gnd or vdd. Each pin also has a location on the
boundary of the cell. In the sides section each pin is assigned

a side of the tcmplate and the ordering of the pins on each side
is determined by enumeration. Pins on opposite sides can also be
rclated to each other w.r.t their positions. This can happen in
two ways. In the above example the pins on the vertical sides (the
y-pins) are paired up implicitly by assigning coordinate values to
them. These values are assigned according to the sequence of
cnumeration except for explicit changes (e.g. r.vd is assigned the
value 2). Thus pins 1l.vd and r.vd as well as pins l.gd and r.gd
arc paired,i.e., they receive the same y-coordinate in each sym-
bolic layout of the cell. The locations of the x-pins of the cell
op are not constrained w.r.t. each other. This reflects the fact
that cut.g and out.p are free to slide along the top side to the
position required by the specific surroundings in which the cell
is placed. Only limited use is made of this freedom in our example.
When using cell op we could have always aligned out.p with inb.p
and out.g with inb.g. llowever the freedom is carried out to the
boundary of the ccll containing the carry chain, where it may be
uscd in a placement of the whole carry chain circuit higher up

in a chip specification hierarchy.
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This flexibility is a critical part of the cell concept underlying
HILL. It allows for detailed information about the topology of the
cell layout as we step through the chip specification hierarchy.

We use cell op to define cell basic. Cell basic can also (and
should) be defined graphically, but we will specify it with a HILL
program to exemplify the explicit layout mode provided in HILL.

out.g out.p cin
L o
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Y |
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inl.g inl.p clout in0.g inD.p cOout

cell basic (z:int);

temp pins out, in0O, inl1: cbits;
cin, cOout, clout: poly
1b, rb: ps;



order implicit y

sides top out, cin;
bottom inl, clout, in0, cOout;
left 1b;
right rb;

constraints begin out.p leftof clout;

cin above cOout
end

Qmet
lnyout

extend order to top out, cin after 3;
bottom inl, clout, in0O, cOout;

components ri,r2: op(z) extend order to top out; bottom in;

makegrid(0,0,1,3,0,2,0,1,1,4);

place rl1 on (allx 0,3 ,ally 0,5 );

place r2 on (allx 7,10 ,ally 0,5 );
route inl.g to rl.inb.g;

route inl.p to rl.inb.p;

route ri.r.vd to r2.1.vd;

route rl.r.gd to r2.1.gd;

route rZ2.r.vd to rb.vd;
route r2.r.gd to rb.gd;

route clout up layer metal right to r2.goutl;
route ri.inr.p right 3 layer poly down 3 layer metal

to in0.p;
route layer metal rZ.inr.g to cOout;
route layer metal r2.inr.p right 1 down to rb.g

end



This specification contains a lot of information about cell
basic. Let us begin with the template. Again the y-pins are
matched up against each other, but this time the x-pins on the
top and bottom sides are also partially constrained. As can be
seen from the figure cin must have the samec x-coordinate as cOout
and out.p cannot come to lie to the right of clout. This is
stated in the constraints section of the template. If this

specification were not given the processing of the cell basic would
terminate with an error, because the system checks whether all the
freedom among pins allowed by the template can be realized by the
cell layout. This is important since this frecdom may be exploited
higher up in the chip hierarchy. In this way we assurc that the
layouts specified hierarchically really resemble the planar chip
layout after all cells are expanded. Thus the designer does not

get trapped into forming faulty images of what his layout looks
like after expansion.

The constraints on the pins allow several layouts of the cell
interior. These layouts can be transformed into each other by a
process called non-uniform stretching. In order to keep this trans-
formation feasible HILL restricts cells to allowing this freedom
of pin placement only in one dimension. In the other dimension
the pins have to be ordered linearly; no freedom of relative
placement exists.

The layout specification following the template gives an cxample
layout for the cell. This layout is assembled on a square grid.
Here pins always come to lie on grid points and wires always come
to lie on grid lines. First the pins are placed on grid points
by the same mechanism that is used for matching up pins on opposite
sidea of a template. This happens in the section following the
keyword extend order to.

After processing this section the system provides thc following
grid for placement:



out cin
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Now the components to be placed on the grid are declared. They

arc two cells rl1 and r2 of type op(z), with their pins matched as
given by the following extend order to section. (A consistency check
is made here.) Then the placement begins. First additional grid
lines are created to expand the grid to the required size. (This

can also happen dynamically during the placement.) This yields the
following enlarged grid.
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Then the cells rl1 and r2 are placed by specifying the grid

lines that are covered by their templates. (llere these grid lines
arc simply given as sublists of the list allx off all vertical
grid lines resp. the list ally of all horizontal grid lines.
However, one can also form lists of non-adjacent grid lines,

thus stretching the cell before placement.) A quite elaborate
routing statement allows to route wires flexibly and to create
contacts between layers implicitly where needed.

Finally we have to recursively put the cells of type basic
together. This is done completely differently from the speccifi-
cation of cell basic. We use composition mode here. In compo-
sition mode no grid is used, but existing cells are copied and
plugged together in x-direction using the xx-operator or in
y-direction using the yy-operator. For this operation to
succeed the corresponding sides of the cells have to match.

The recursive specification looks as follows:

cell recadd (n: int);

temp over: cbits;
cin: poly;
data: array [0..2"-1] of record in: cbits; out: poly end;
psl, psr: array [1..n] of ps;

order implicit y;

sides top out, cin;
bottom data reverse;
left psl;
right psr;
constraints begin cin above data O .out;
out.p leftof data(2™ '-11.0ut

end



comnoscd

- 18 -

hcgig if n>2 then

recadd

clse

end

recadd

:= basic(n) yy (recadd(n-1) xx recadd(n-1))

:= basic(n)



4. Additonal features of the HILL Specification Language

The HILL specification language centails a number of features
that have not been used in the above example. These will be
described in the following.

4.1 Maintenance of Electrical Information

HILL has the concept of an electrical signal. Electrical
signals are associated with points in the circuit and grouped
into classes by the link-statement to form electrical networks.
The designer <can build up completely or in part the elec-
trical network he wants to realize with a layout. The HILL
system encompasses tools for checking whether the nctwork
realized by the layout is the same as the intcnded network.
HILL is also designed to be augmented with automatic layout
routines that realize an intended electrical network with an
automatically genrated layout. Only a PLA generator cxists

at this point. Global signal names allow to implement naming
conventions for signals that pervade the whole specification
hierarchy (like power supﬁly and clock signals).

4.2 Control over the Proportions of the Mask Layout

The cell concept used in HILL ensures complete control over

the topology of the symbolic layout, even when specifying a chip
hierarchically. However, control over the mask layout is only
indirect, since an automatic compacter determines the final
proportions of the mask layout, and the sizes of cells in the
mask layout are not known when specifying a chip hierarchically
in a top-down fashion. However, floor planning and performance
optimization of a layout require direct influence on a subsect

of the mask data. For this purpose HILL provides the kecep state-
ment. The keep statement formulates explicit constraints that
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have to be obeyed during compaction. The existence of the
Keep statment also allows to include pre-compacted cells
into a symbolic layout specification. This is the basis
for compatibility with cell libraries generated with other
laybut systems and for hieraxhical compaction to be imple-
mented in the future.

4.3 Top-Down Design

HILL supports top-down design of chips in several ways.

One of them has been mentioned in 4.2. Another is the strict
separation of the template and the interior layout of a cell.
This allows to use subcells in a hierarchical specification,
cven if they have not been designed yet. The detailed informa-
tion given in a template serves as a guide both to the user of
the subcell and to the designer who has to fill in the layout
of the subcell independently. A fill statement is used in

HILL to fill the empty template with a layout that makes up the
intcrior of the cell. However, for floor planning not all tem-
plates have to be filled for the chip to be processed.



& 3 =

S. Conclusion

The HILL specification language is a powerful tool for
describing planar circuit layouts. It has a cell concept
that is flexible, yet keeps track of all the relevant
topological information that has to be transferred across
cell boundaries. This enables the designer to go through
with a truly hierarchical design. HILL allows to choose
between three modes of layout description (graphical,

by composition, by explicit layout) that cater to different
design styles and tasks. It provides the full mechanism

of a high level language to allow the algorithmic description
of layouts that a regular, yet non-trivial. Furthermore it
separates electrical, topological, and geomterical
information, which results in excellent interfacing of

the different design phases (circuit, layout).

Supplemented with an efficient switch level simulator
and a powerful compacter we believe that the HILL system

serves well for the hierarchical specification of symbolic
layouts.
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