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Abstract

We present the new and fast method Recco for analyzing a multiple alignment regarding recom-
bination. Recco is based on a dynamic program that explains one sequence in the alignment with
the other sequences using mutation and recombination. The dynamic program allows for an intui-
tive visualization of the optimal solution and also introduces a parameter a controlling the number
of recombinations in the solution. Recco performs a parametric analysis regarding o and orders
all pareto-optimal solutions by increasing number of recombinations. « is also directly related to
the Savings value, a quantitative and intuitive measure for the preference of recombination in the
solution. The Savings value and the solutions have a simple interpretation regarding the ancestry
of the sequences in the alignment and it is usually easy to understand the output of the method.
The distribution of the Savings value for non-recombining alignments is estimated by processing
column permutations of the alignment and p-values are provided for recombination in the align-
ment, in a sequence and at a breakpoint position. Recco also uses the p-values to suggest a single
solution, or recombinant structure, for the explained sequence. Recco is validated on a large set of
simulated alignments and has a recombination detection performance superior to all current me-
thods. The analysis of real alignments confirmed that Recco is among the best methods for re-
combination analysis and further supported that Recco is very intuitive compared to other me-
thods.

Kurzfassung

Wir présentieren Recco, eine neue und schnelle Methode zur Analyse von Rekombinationen in
multiplen Alignments. Recco basiert auf einem dynamischen Programm, welches eine Sequenz
im Alignment durch die anderen Sequenzen im Alignment rekonstruiert, wobei die Operatoren
Mutation und Rekombination erlaubt sind. Das dynamische Programm ermdglicht eine intuitive
Visualisierung der optimalen Losung und besitzt einen Parameter a, welcher die Anzahl der
Rekombinationsereignisse in der optimalen Losung steuert. Recco fiihrt eine parametrische
Analyse beziiglich des Parameters o durch, so dass alle pareto-optimalen Losungen nach der
Anzahl ihrer Rekombinationsereignisse sortiert werden konnen. a steht auch direkt in Beziehung
mit dem sogenannten Savings-Wert, der die Neigung zum Einfiigen von Rekombinationsereignis-
sen in die optimale Losung quantitativ und intuitiv bemisst. Der Savings-Wert und die optimalen
Losungen haben eine einfache Interpretation beziiglich der Historie der Sequenzen im Alignment,
so dass es in der Regel leicht fillt, die Ausgabe von Recco zu verstehen. Recco schitzt die Vertei-
lung des Savings-Werts fiir Alignments ohne Rekombinationen durch einen Permutationstest, der
auf Spaltenpermutationen basiert. Dieses Verfahren resultiert in p-Werten fiir Rekombination im
Alignment, in einer Sequenz und an jeder Position im Alignment. Basierend auf diesen p-Werten
schldgt Recco eine optimale Losung vor, als Schétzer fiir die rekombinante Struktur der erklérten
Sequenz. Recco wurde auf einem grofien Datensatz simulierter Alignments getestet und erzielte
auf diesem Datensatz eine bessere Vorhersagegiite in Bezug auf das Erkennen von Alignments
mit Rekombination als alle anderen aktuellen Verfahren. Die Analyse von realen Datensétzen
bestétigte, dass Recco zu den besten Methoden fiir die Rekombinationsanalyse gehort und im

Vergleich zu anderen Methoden oft leichter verstindliche Resultate liefert.
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1 Introduction

As sequencing technology advanced and generated more genetic sequence data, it be-
came feasible to study the evolution of the genotype in addition to the evolution of the
phenotype. The genetic sequence accumulates differences by operations such as muta-
tion, recombination, insertion and deletion. Comparing genetic sequences therefore usual-
ly requires that we interpret differences as the result of these operations. Most of these
operations take a single parental sequence as input and produce one or more child se-
quences. Recombination is different, though, as it combines the information of two or
more parental sequences to produce the recombinant child sequence. For example, the
two sequences AA and CC may produce the recombinant sequence AC (a more accurate
definition is given in Chapter 2). In the following, we show why the analysis of se-
quences regarding recombination is important and which questions occur during the anal-
ysis of recombinant sequences.

Many methods for studying the evolution of a set of sequences assume that recombina-
tion does not occur and often produce wrong results otherwise. For example, phylogenet-
ic tree inference assumes that the ancestry of the sequences can be described by a tree.
But recombination violates this assumption, as recombination produces one (or more)
child sequence from two or more parental sequences. The estimated tree then is not only
wrong, but can also lead to wrong conclusions, such as exponential population growth or
substitution rate heterogeneity among sites (Schierup and Hein 2000). It is therefore im-
portant to rule out the option of recombination in the alignment before these methods are
applied. Hence, detecting recombination in an alignment is already an important task.

But it is also interesting to study the recombination process and the products of recombi-
nation itself. It is very likely that the recombination process plays an important role in
evolution as it is extremely common in nature. Recombination, or at least the exchange
and mixing of genetic information, may occur in principle during the reproduction of
numerous organisms. Several proteins that allow for strand exchange and recombination
are well-conserved across the three domains of life: eukarya, archea and eubacteria (Hey-
er, Ehmsen et al. 2003). Recombination in homo sapiens and many other sexually repro-
ducing eukaryotes even requires complex biochemical machinery and is a strongly con-
trolled process during cell division. Recombination can also occur during the replication
cycle of several viral families, such as retroviruses (Mansky 1998; Negroni and Buc
2001) and flaviviruses (Gould and Solomon 2008). But do these organisms also generate
recombinant sequences in nature?

Our current knowledge varies widely across different organisms. It was only recently dis-
covered that Candida albicans may reproduce parasexually under rare circumstance and
could therefore allow for recombination (Heitman 2006). The role of recombination is
also unclear for several other pathogenic fungi. An interesting hypothesis is that these

fungi have a clonal population under normal circumstances, but allow for sexual repro-
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duction if environmental conditions change (Heitman 2006). Recombination plays an im-
portant role in shaping the genetic diversity in the population of many other pathogens.
Plasmodium falciparum, one of the protozoans causing malaria, is well known to recom-
bine frequently and shows large differences in recombination rates between subpopula-
tions (Mu, Awadalla et al. 2005). Recombination frequently occurs in several bacteria
and is probably the most important force shaping the genetic diversity in Escherichia co-
li, Neisseria meningitidis and other bacteria (Spratt, Hanage et al. 2001). Recombination
also increases the speed of Escherichia coli adapting to adverse conditions in vitro
(Cooper 2007). HIV, the causative agent of the AIDS pandemic is particularly well stu-
died. The process of recombination is at least partially understood at the molecular level
(An and Telesnitsky 2002) and several hypotheses about preferred recombination loca-
tions exist (Negroni and Buc 2001; Baird, Gao et al. 2006). The rate of recombination in
HIV is about ten to one hundred times larger than the rate of mutations in vitro (Jetzt, Yu
et al. 2000; Levy, Aldrovandi et al. 2004) and the prerequisites for frequent and visible
recombination are also met in nature (Jung, Maier et al. 2002). Recombinant forms are
common in HIV and play an important role in the pandemic (Kijak and McCutchan
2005). The role of recombination in the evolution of HIV is controversial, though. Theo-
retical studies show that, in general, recombination is only beneficial under certain selec-
tive conditions and for a certain range of effective population size (Althaus and Bonhoef-
fer 2005; Fraser 2005; Suryavanshi and Dixit 2007). But it is unclear whether these selec-
tive conditions are met for HIV in vivo. Some researchers argue against this and propose
that recombination merely allows HIV to recover from defects in the genome (Bonhoef-
fer, Chappey et al. 2004). However, in vitro experiments showed that recombination faci-
litates the emergence of drug resistance (Moutouh, Corbeil et al. 1996). Finally, recombi-
nation is an important aspect in the evolution of the human genome and has been a matter
of active research for decades. Genetic maps measure the distance along a chromosome
as the probability of recombination between two loci and are important for assembling
genomes and for studying disease-marker associations (Kong, Gudbjartsson et al. 2002).
Recently, recombination hotspots have been discovered (Jeffreys, Kauppi et al. 2001) and
are estimated to account for about 60% of recombination in the human genome (Consor-
tium, Frazer et al. 2007). These findings along with high-throughput genotyping technol-
ogies allow for studying the connection between genotype and phenotype in humans to an
unprecedented scale and greatly advance our understanding of genetic diseases in hu-
mans.

The high prevalence of recombination in nature calls for specialized methods that allow
for analyzing recombination in sequence data. Depending on our knowledge of the re-
combination process in an organism and on the goal of the analysis, there are many dif-
ferent questions we would like to address. If an organism allows for recombination, what
is the rate of recombination and the distribution of recombination breakpoints across the
genome? What is the impact of recombination on the evolution of the organism? For ex-

14



ample, do recombinant sequences sometimes have a higher fitness and does recombina-
tion therefore speed up adaptation to changing environmental conditions? Which geno-
types or phenotypes were combined for successful recombinant sequences?

For some organisms, such as Candida albicans, it is unclear whether recombination oc-
curs in nature. A method for detecting potential recombination events in the studied se-
quence set can either find evidence for recombination or confirm that standard phyloge-
netic methods apply. For other organisms and viruses, such as HIV, it is clear that recom-
bination occurs frequently in nature, but the role of recombination for adapting to new
selective pressures is poorly understood. In this case, it is often informative to determine
the recombinant sequences and study these in more detail. For example, the geographic
distribution of the different subtypes and recombinant forms of HIV allows for monitor-
ing the progress of the pandemic. The composition of the recombinant forms regarding
the parental sequences is also interesting, as it may help to explain the success of the re-
combinant forms in the pandemic. The composition of recombinant sequences is also in-
teresting for intra-patient data, as multi-drug resistance might arise by recombination of
several single drug resistant sequences. Other types of analyses are more relevant for the
human genome. Methods from population genetics can estimate the recombination rate
for each locus and can identify potential recombination hotspots (McVean, Myers et al.
2004). Some methods even try to infer the genealogy with recombination for a set of se-
quences and use this information to increase the accuracy of association studies (Mini-
chiello and Durbin 2006; Wu 2007).

In this thesis, we describe Recco (Maydt and Lengauer 2006), a novel method for the
analysis of recombination in a set of sequences. Recco mainly addresses four questions:
1) Is there recombination in the dataset? 2) Which sequence is the recombinant? 3)
Where are the recombination breakpoints? 4) And what is the composition of the recom-
binant sequence? To be more specific, Recco infers potential recombination events in the
alignment and returns a point estimate for a recent part of the genealogy. This type of
analysis is particularly popular for studying the evolution of HIV and other viral patho-
gens. As already mentioned before, there are many other types of analyses addressing re-
combination and we do not cover them in this thesis. For example, population genetic
methods estimate parameters such as the recombination rate or the distribution of recom-
bination breakpoints across the genome (Kuhner, Yamato et al. 2000). Several other me-
thods implicitly allow for recombination in the dataset, but do not have the objective of
studying the recombination process itself. Methods for association analysis, for example,
can predict the position of a disease marker even more accurately if there is recombina-
tion in the dataset.

The study of recombination may eventually assist in resolving the enduring paradox of
sex and recombination (Otto and Lenormand 2002): why is sex and recombination so
ubiquitous in nature, despite its apparent cost? Sexual reproduction requires the individu-
al to invest much more effort into reproduction. Finding a mate obviously takes time and
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energy. The unit of sexual reproduction is the couple and not the individual — if the re-
productive rate in the population should stay the same, each couple has to produce twice
as many offspring as a single individual. Finally, mixing the genome with another indi-
vidual does not necessarily lead to a selective advantage. And still, nature has evolved
and maintained sex and recombination for at least a billion years. Is sexual reproduction
simply an “infective” reproduction mode that spreads through the population (Otto and
Lenormand 2002) and then selects the conditions for its own preservation (Azevedo, Lo-
haus et al. 2006)? Or does sexual reproduction confer a selective advantage as natural
populations are finite in size and as recombination can reduce the effects of linkage and

drift in finite populations (Otto and Lenormand 2002)?

1.1 Outline

Chapter 2 describes the replication cycle in several species as it is the process that causes
genetic changes during evolution. In particular, the current knowledge about the recom-
bination process of HIV-1, HERVs and homo sapiens is summarized, paving the road for
an appropriate model of recombination. We also discuss processes similar to recombina-
tion and precisely define the type of recombination that we model in the following. We
draw several conclusions from biological reality and motivate, for example, that it is ap-
propriate to use multiple sequence alignments as input for recombination analysis.
Chapter 3 approaches evolution from a theoretical point of view. We show that the neu-
tral theory of evolution is a fundamental assumption for the analysis of recombination.
Then, we describe the coalescent with recombination as it introduces the ancestral re-
combination graph (ARG), an accurate model for representing the ancestry of sequences
subject to recombination. The ARG contains all information on past recombination
events and is important for two reasons: it serves as a model for simulating sequences for
validation, and it leads to fundamental insights regarding the analysis of recombination.
For example, some types of recombination events cannot be reconstructed from sequence
data.

Chapter 4 defines the objectives and the results we expect from recombination analysis in
more detail and provides a summary of many methods for recombination analysis. We
also discuss several strategies that are common for these methods. The methods and strat-
egies are then compared regarding their advantages and limitations for the analysis of re-
combination.

Chapter 5 introduces Recco, the method for recombination analysis developed in this the-
sis. We describe the fundamental optimization problem of Recco and the structure of the
optimal solutions. Two types of sensitivity analysis then allow for assessing the robust-
ness of these solutions. Particularly one type, the parametric analysis, provides much
more information on the recombination signal and allows for a fully automated recombi-
nation analysis of sequence alignments. Furthermore, we show how to address most ob-

jectives of recombination analysis and derive p-values to assess the robustness of our es-
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timates. Finally, we compare Recco to other methods for recombination analysis and de-
scribes the unique aspects of our approach.

Like some other methods for recombination analysis, Recco may not perform well if
there are large gap regions in the alignment. Chapter 6 first discusses several common
strategies for treating gaps in phylogenetic analysis and then describes the problem of
adequately treating gaps in recombination analysis and for Recco in particular. Treating
gaps as missing data is particularly attractive, but is difficult to achieve for Recco. We
propose a different strategy that requires some manual interaction for difficult recombina-
tion scenarios. A more detailed analysis of gap cost functions and their impact on the
output of Recco also provides deeper insights about reasonable gap costs.

Chapter 7 compares Recco with several other methods for analyzing recombination on
simulated and on real alignments. Recco usually has a higher power for detecting recom-
bination, the recombinant sequence or the breakpoint than other methods on simulated
alignments. We also test Recco on HIV-1 and HERYV alignments. Recco tends to predict
recombination events more conservatively than other methods for HIV-1 subtyping. The
analysis of the HERV alignments is particularly challenging as they contain several large
gaps.

Finally, Chapter 8 discusses several avenues for further research, both for recombination
analysis in general and for Recco, in particular. Some extensions for Recco are discussed

in more detail, such as a strategy to reconstruct the ARG heuristically.
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2 Evolution From a Biological Perspective

Recombination occurs during the replication cycle of organisms and can generate new
genetic sequences. But the evidence that recombination leaves in the genetic sequences
depends on many aspects of evolution and not only on the recombination process itself.
For example, selection may clear recombinant sequences from the population, such that
we do not observe recombination in practice.

Hence, we describe the evolutionary process briefly from an abstract point of view and
clarify the interactions between the replication cycle, fitness and selection. The replica-
tion cycle and in particular the recombination process in two viral species, human immu-
nodeficiency virus (HIV) and human endogenous retroviruses (HERVs), are described in
more detail. We also use sequence data from both species for validation in chapter 7. The
mutation process is not described in detail as the mathematical models for the mutation
process are close enough to reality for our purpose (see section 3.2). Furthermore, selec-
tion and the relationship between phenotype and genotype are only briefly addressed, not
only because they are far too complex, but also because methods for analyzing recombi-
nation commonly assume that most mutations are neutral (see section 3.1.1).

The recombination process is particularly well studied for HIV. The prerequisites that are
necessary to produce recombination visible in sampled sequences are also well known for
HIV and are good examples for the disparity between the potential of recombination and
visible recombination. The recombination process in HIV also serves as a prototype for
modeling recombination in Recco. The model of the recombination process is very sim-
ple, but applies to recombination in many other species as well. We also present several
processes that are similar to recombination and describe their unique characteristics. For
example, gene conversion is particularly relevant for eukaryotic evolution and can also be
studied by methods for recombination analysis. Based on the analysis of the recombina-
tion process in biology, we then draw several conclusions that are directly relevant for the
analysis of recombination. For example, we can usually use a multiple alignment as an

input for the analysis without imposing unrealistic assumptions.

2.1 Introduction to Evolution

Evolution in a broad sense is the principle of continuing adaptation, based on the intro-
duction of small modifications and selection for the best alternative. Evolution proceeds
by repeatedly applying the operations of selection and replication to the entities in a pop-
ulation. Selection ensures that entities with a higher fitness have a higher probability of
replicating and become more abundant in the population. Replication, or the copy
process, introduces small modifications, such that the fitness of the copies can differ from
that of the template. The copies are then subject to selection and the process is repeated.
A consequence of the process of evolution is that the fitness of the population usually in-

creases and the population is better adapted to the environment. Again, selection usually
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does not force modifications to occur if they are beneficial, but only increases the surviv-
al probability once they occur in the population. The evolution of living organisms is
more complex, as the copy process is also subject to selection. For example, the copy
process could be selected such that it modifies a certain gene if some environmental con-
dition is present. But evolution of the copy process is usually rather simple: for example,
the mutation rate per nucleotide base differs by several orders of magnitude in different
organisms and is probably the result of selection (Drake, Charlesworth et al. 1998; Snie-
gowski, Gerrish et al. 2000).

The effect of selection is commonly classified into positive and negative selection. Posi-
tive (negative) selection occurs if a modification is associated to a fitness that is higher
(lower) than the average fitness in the population. As a consequence, positive (negative)
selection leads to an increased (decreased) frequency of the modification in the popula-
tion. Negative selection can also cause different mutation rates among genes in the same
organism. If a gene is important, many modifications are negative or even lethal for the
individual and therefore negative selection prevents these modifications from persisting
in the population. The result is that the observed mutation rate of important genes can be
lower than the mutation rate of other genes, even though the underlying mutation rate is
the same.

Evolution can be described in rather abstract terms as above and is generic enough to en-
compass not only the evolution of biological individuals, but also the evolution of ideas
or information. However, the process of evolution of an organism or a virus is inherently
bound to the phenotype that interacts with the environment and to the cellular machines
that store, transport and duplicate the genomic information. It is important to understand
these aspects in some detail, as a thorough analysis of genetic sequences is impossible
otherwise. Hence, this chapter only covers the evolution of genetic information such as

RNA, DNA and protein sequences.
2.1 HIV Evolution and Biology

2.1.1 HIV Origin and Subtypes
The human immunodeficiency virus (HIV) is the cause of the global AIDS pandemic. It

has evolved by cross-species transmission and adaptation of the simian immunodeficien-
cy virus (SIV) in two ape species. HIV-1 originated from SIV in chimpanzees, while
HIV-2 evolved from SIV in sooty mangabeys (Heeney, Dalgleish et al. 2006). At least
three cross-species transmission events gave rise to genetically distinct groups in HIV-1:
group M, group N and group O (Keele, Heuverswyn et al. 2006). Similarly, HIV-2 falls
into group A to group H. The focus of this section is group M of HIV-1, as it is the cause
for the AIDS pandemic and is of premier interest. Nevertheless, the replication cycle and
many other molecular mechanisms are very similar in HIV-2 and in other retroviruses.
Phylogenetic analyses of group M revealed clusters of sequences that were termed sub-
types A to K (Robertson, Anderson et al. 2000). These subtypes often occur
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Figure 2.1: HIV-1 genome organization. The three major genes gag, pol and env are
surrounded by the long terminal repeat regions. Each major gene encodes a protein

precursor that is cleaved into several different proteins. See text for details. Reprinted
from (Freed 2004) with kind permission from Elsevier.
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Figure 2.2: Schematic representation of the virion structure of HIV-1. The two viral
genomes are packaged together with protease, reverse transcriptase and integrase into
the capsid. Reprinted from (Freed 2001) with kind permission from Springer
Science+Business Media.

predominantly in certain geographic regions: subtype B predominates in Europe, Austral-
ia, North and South America, subtype C in southern Africa and India and subtype A in
East and Central Africa and East Europe (Thomson and Néajera 2005). Even though this
suggests that the subtype structure is a result of founder effects, there is also evidence that
some subtypes are due to incomplete sampling: several strains in Central Africa that were
recently sequenced fall between previously described subtypes (Rambaut, Posada et al.
2004). Hence, the subtype structure in HIV-1 may get blurred as more sequences become
available. The analysis of subtypes is further complicated because recombination between
subtypes is possible, giving rise to circulating recombinant forms (CRFs) or unique re-
combinant forms. HIV-1 recombinant forms are estimated to account for 20% of world-
wide HIV-1 infections today (Galetto and Negroni 2005). More recombinant forms were
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found in regions where several diverse HIV-1 strains circulate, supporting the concept of
geographic recombination hotspots (Thomson and Néajera 2005). This highlights the im-
pact of recombination on HIV-1 genetic diversity and either suggests that recombination
between subtypes is very frequent or that the CRFs are positively selected and exhibit a
selective advantage over pure subtype strains.

Estimating the mosaic subtype composition of the recombinant forms of HIV-1 is often
interesting and helps to understand the spread of the pandemic in more detail. Several
methods have been developed for this purpose (see section 4.3.3), as traditional phyloge-
netic analysis cannot be used in the presence of recombination. The subtype composition
of the recombinant forms is often further confirmed and analyzed manually. Consequent-
ly, the recombinant forms provide a good opportunity to validate methods for the analysis
of recombination, such as Recco, the method developed in this thesis (see section 7.2.2).

2.1.2 HIV-1 Genes and Structure

A unique feature among retroviruses such as HIV is that they package two genomic
RNAs into each virion. Each RNA genome of HIV-1 has a length of about 9.2kb and en-
codes the three major genes that are common to all retroviruses: gag (group-specific anti-
gen), pol (polymerase) and env (envelope) (Freed 2001). The genes encode protein pre-
cursors that are cleaved by the protease of HIV-1 or by the cell machinery into several
other functional proteins. The gag gene codes for matrix, capsid, nucleocapsid and other
smaller proteins. These proteins drive the assembly and release of virus particles and en-
capsidate the viral RNA genome. The pol gene codes for protease, reverse transcriptase,
and integrase. These proteins cleave viral proteins, perform reverse transcription of the
viral RNA into DNA and integrate the viral DNA into the host cell genome. While gag is
also synthesized individually, pol is only synthesized in conjunction with gag as the gag-
pol polyprotein. Finally, the protein product of env is cleaved into the surface glycoprote-
in gp120 and the transmembrane glycoprotein gp41, which are necessary for the viral en-
try into the host cell. In addition, HIV-1 also codes for several other regulatory and acces-
sory genes (Figure 2.1), such as tat and rev. The structure of an HIV-1 virion is displayed
in Figure 2.2.

2.1.3 The Replication Cycle in HIV-1 (and Other Retroviruses)

The replication cycle of retroviruses is divided into an early phase and a late phase. The
early phase encompasses all steps from viral entry to integration of the viral cDNA into
the cell genome. The late phase starts with expression of the viral genes and ends with the
release of new virions from the cell. Even though the replication cycle is very similar for
many retroviruses, the following exposition is restricted to the replication cycle of HIV-1.
The retroviral replication cycle is well understood and a lot more information can be
found in several reviews (Freed 2001; Freed 2004; Nisole and Saib 2004), and in (Rub-
bert, Behrens et al. 2007). In essence, the replication cycle of HIV-1 proceeds by the fol-
lowing steps (also see Figure 2.3):
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Figure 2.3: The steps of the retroviral replication cycle are described in the text. Re-
printed by kind permission from Macmillan Publishers Ltd: Nature Reviews Microbiol-

ogy (D'Souza and Summers 2005), copyright 2005.

Binding and Entry

After attachment to the target cell (mainly T-lymphocytes and macrophages), the surface
protein gp120 recognizes CD4 on the target cells. Conformational changes then facilitate
interaction of one of the coreceptors CXCR4 or CCRS5 with the viral envelope. Finally,
viral and cellular membranes are fused and the viral core is released into the host cell.

Uncoating and Reverse Transcription

After its release into the cytoplasm, the viral core starts disassembling, forming a reverse-
transcription complex and later on a pre-integration complex. The reverse transcriptase
(RT) copies the two viral RNA genomes, or templates, into a double stranded DNA. The
DNA is usually not an exact copy: besides introducing point mutations, the RT can also
switch from one template to the other and effectively produce a mosaic of both viral
RNAs. The reverse transcription step is described in more detail in the next section, as it

is the main source for genetic variation in HIV-1.

Nuclear Entry and Integration

The pre-integration complexes move to the cell nucleus by hijacking the cell machinery
for cellular transport. Unlike other retroviruses, lentiviruses such as HIV-1 can actively
cross the nuclear membrane and infect non-dividing cells. Integration of the viral DNA is
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mediated by the integrase protein and occurs preferentially in genes that are highly tran-
scribed by RNA Polymerase II.

Transcription and Export of mRNA

The transcriptional transactivator protein tat increases RNA synthesis of the HIV-1 provi-
rus by more than two orders of magnitude and ensures efficient viral replication. The vir-
al protein rev ensures the export of complete RNA transcripts from the nucleus and
avoids that all transcripts are spliced by the cell before nuclear export. Translation then

synthesizes the viral proteins.

Particle Formation

The precursor polyproteins gag and gagpol associate with the plasma membrane and
build the viral particles through several interactions with each other, the plasma mem-
brane and the viral RNA. The viral particles also incorporate other viral proteins, such as
the envelope proteins and the protease.

Budding and Maturation
The process of budding releases the viral particles from the plasma membrane. During
maturation the viral protease then cleaves gag and gagpol which leads to extensive pro-

tein rearrangements and formation of infectious particles.

The interaction of the virus with the cell machinery is even more involved than the de-
scription above would suggest. For example, the accessory gene vif (viral infectivity fac-
tor) inactivates the host cell protein APOBEC3G, a cytidine deaminase that interferes
with reverse transcription (Freed 2004). Obviously, selection plays a vital role in the rep-
lication cycle of HIV-1 and adjusts all genes to reach high efficiency in a wide range of
settings. But the success of HIV-1 also depends crucially on its capability of adapting to a
fast changing environment. HIV-1 almost always causes persistent infections in spite of
changing drug and immune pressure and even adapts to patient specific factors, such as
HLA type (Ahlenstiel, Roomp et al. 2007; Bhattacharya, Daniels et al. 2007).

While selection targets the phenotype of the virus and determines its success in different
environments, the phenotype of the virus depends on the genotype. Hence, selection can
only work if the replication process introduces variation into the genome. In principle, the
genome of HIV-1 can change during reverse transcription to the proviral DNA and during
transcription of the provirus into genomic RNAs. The latter is part of the cellular machi-
nery and has a very high accuracy. In comparison, the reverse transcription step introduc-
es much more variation by mutation and recombination and is the driving force behind
the evolution of HIV-1. The next section therefore only describes the reverse transcrip-
tion step in more detail.
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Figure 2.4: All steps of the reverse transcription process are shown, starting with the
viral RNA and ending with the proviral double stranded DNA (shown as a bold line).
From (An and Telesnitsky 2002), reprinted with permission from Publications Per-
manyer SL. a) Synthesis of the (-) strand DNA already involves a strong-stop template
switch at the primer binding site (PBS). b) The RT digests the RNA template during
DNA synthesis. ¢),d) Synthesis of the (+) strand DNA also involves a forced template
switch at the central polypurine tract (cPPT).

2.1.3.1 Mechanisms of Recombination in HIV-1

There are several reviews about the recombination mechanism in HIV-1 and other retro-
viruses. The review by An and Telesnitsky (An and Telesnitsky 2002) also refers to expe-
rimental techniques for studying the recombination process. Negroni and Buc (Negroni
and Buc 2001; Negroni and Buc 2001) and Galetto and Negroni (Galetto and Negroni
2005) provide more details on the putative process of template switching during reverse
transcription in retroviruses.

Recombination occurs during the reverse transcription step when the reverse transcriptase
(RT) enzyme switches from one template that it copies to another. Reverse transcription

is a rather complex process and involves two basic steps in HIV-1 (see Figure 2.4). First,

25



a) asynchronous

RNaseH cleavages
reverse transcription

- P — A ¥ 3

<~ DNA synthesis

5¢ 3
b) nascent DNA and
acceptor RNA basepair 3 / \ 7

\
RNaseH cleavages
3
c) branch migration

positions the acceptor L

Y
5
d) primer strand 3
template switch 5 N
———————=

Figure 2.5: Template switching during (-) strand DNA synthesis follows a defined
process. RNA is shown as a thin grey line and DNA is shown as a dark grey or black
line. From (An and Telesnitsky 2002), reprinted with permission from Publications
Permanyer SL. a) Reverse transcription can start simultaneously for both RNA strands
and synthesize two nascent (-) strand DNAs. RNaseH cleaves and digests the copied
RNA during DNA strand synthesis. b) The synthesis of the lower DNA strand is faster
than the synthesis of upper DNA strand. This allows for the lower DNA strand to inte-
ract with the complementary upper RNA strand. ¢) RNaseH can now cleave the upper
RNA strand, which in turn interrupts the synthesis of the upper DNA strand. d) The
RT that is bound to the lower DNA strand may then switch templates and continue to

copy the upper RNA of the virus, effectively producing a recombinant DNA.

the RT copies the genomic RNA into the (-) strand DNA and simultaneously digests the
copied part of the RNA. As a result, the (-) strand DNA is a complement of the RNA at
every position and matches A with T (or U in the RNA) and G with C. The (+) strand
DNA is then synthesized from the (-) strand DNA and therefore encodes the original
RNA sequence. The two DNA strands hybridize and form the double stranded proviral
DNA. Both steps of reverse transcription involve several discontinuities where the RT
dissociates from the template it copies and resumes copying at a different position, piec-
ing together a complete copy of the viral genome (for details refer to (An and Telesnitsky
2002)). Recombination happens if the RT dissociates from the template and resumes co-
pying on a different template. Even though recombination can take place during both
steps of the proviral DNA synthesis, experimental data suggests that recombination dur-
ing (-) strand DNA synthesis is much more frequent (An and Telesnitsky 2002). In the
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following, only mechanisms that lead to recombination during (-) strand DNA synthesis
are reviewed. Hence, we refer to the (-) strand DNA as the nascent DNA, to the RNA that
is copied before recombination takes place as the donor RNA and to the RNA that is co-
pied after the recombination event as the acceptor RNA.

Several mechanisms have been proposed to cause recombination during the synthesis of
the (-) strand DNA, yet they all share the same basic principle: the RT dissociates from
the donor RNA and continues polymerization of the nascent DNA using the acceptor
RNA as a template (see Figure 2.5). An important requirement for the template switch is
that the copied RNA is hydrolyzed by the RNaseH domain of the RT enzyme a few nuc-
leotides behind the DNA polymerization site. This leaves the nascent DNA free to inte-
ract with other complementary sequences, for example the other genomic RNA packaged
into the virion. As the DNA and the acceptor RNA form a complex, the acceptor RNA
may displace the donor RNA and the RT continues to copy the acceptor RNA. While
RNA degradation and hybridization of the nascent DNA to another RNA molecule are
prerequisites for recombination, the actual site where the template switch occurs depends

on the mechanism of recombination. Several mechanisms have been proposed:

Strong-Stop Strand Transfer

As mentioned above, the nascent DNA is never polymerized in a single run. Reverse
transcription starts at the primer binding site close to the 5’ end of the RNA and proceeds
further towards the 5’ end, thus only copying a tiny stretch of RNA. As the RT reaches
the end of the RNA it dissociates from the RNA it copies (see Figure 2.4). The 5’ and 3’
end of the RNA genome encode the same repeat sequence. The nascent single stranded
DNA can therefore transfer and anneal to the 3’ end of any of the two RNAs and reverse
transcription can then resume. The choice of the RNA to use as a copy template could be
different from the RNA used to copy the 5’ end and lead to a template switch. Unlike all
other mechanisms of recombination, the recombination breakpoint for strong-stop strand
transfer always occurs at the same position in the genome.

Forced Copy-Choice Strand Transfer

If the RNA template is not continuous and contains breaks, reverse transcription stops at
the breaks. The same process as described for strong-stop strand transfer then causes RT
to switch to another template and resume polymerization. While forced copy-choice
strand transfer is an important mechanism to rescue proviral DNA synthesis in the pres-
ence of genome breaks, it does not seem to be the major cause for recombination in retro-
viruses. Experiments showed that the number of genome breaks is usually much smaller
than the number of recombination breakpoints (Negroni and Buc 2001; Galetto and Ne-
groni 2005).
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Pause-Driven Strand Transfer

It seems plausible that the probability of a strand transfer increases if the acceptor RNA
has more time to displace the donor RNA from the interaction with RT. Some sites in the
HIV-1 genome are known to stall reverse transcription. In contrast to forced copy-choice,
the obstacle is not enduring and reverse transcription can resume on the donor RNA
without a template switch. Experimental evidence showed that at least one strong pause
site in HIV-1 contributes significantly to efficient strand transfer at the pause site (Negro-
ni and Buc 2001; Galetto and Negroni 2005). While there are some pause sites that corre-
late with strand transfer, this is not true in the majority of cases. Experiments in murine
leukemia virus and in vitro showed that slowing down reverse transcription in general
also leads to a higher frequency of template switches. The emerging picture today is that
pausing might facilitate strand transfer independent of the underlying mechanism, but is
not genuinely correlated with hotspots of recombination (Galetto and Negroni 2005). It is
also unclear whether the template switch itself causes a pause in reverse transcription and
therefore whether pausing is the consequence and not the cause of a template switch.

Secondary-Structure Mediated Strand Transfer

A putative model of recombination proposes that the secondary structure of the RNA it-
self triggers the template switch. To be more specific, as the RT proceeds through a hair-
pin structure in the RNA, the nascent DNA, the donor and the acceptor RNA may engage
in a rather complex interaction that brings the acceptor RNA close to the catalytic site of
RT. Details on the interactions inside the hairpin structure can be found in (Negroni and
Buc 2001; Galetto and Negroni 2005). Secondary-structure mediated strand transfer oc-
curs preferentially after the bulge of the hairpin. The hairpin structure may also slow
down reverse transcription and lead to pause-driven strand transfer. However, secondary-
structure mediated and pause-driven strand transfers are different, as the latter predicts a
strand transfer at the base of the hairpin.

Despite many experiments involving the reverse transcription step in HIV-1 it is still not
clear if one mechanism for strand transfer dominates. Another source of uncertainty is
that experiments are often conducted in gammaretroviruses or murine leukemia virus and
not in HIV-1. Even the recombination rate differs remarkably between these retroviruses
and the results on the mechanisms of template switching may not always generalize to
HIV-1.

An interesting observation is that the sequences involved in the template switch usually
share a high sequence similarity around the recombination breakpoint, as the cDNA and
the acceptor sequence have to hybridize before the template switch. Indeed, experiments
in vitro have shown that the efficiency of template switches decreases about 100- to
1000-times if the two RNAs differ in the region surrounding the recombination break-
point (An and Telesnitsky 2002). In gammaretroviruses, a stretch of 12 identical
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Figure 2.6: (a) Two sequences A and B, represented with different colors, recombine
and produce a recombinant that is identical to A in the left part and identical to B for
the rest of the sequence. (b) Both sequences usually have a high sequence identity
around the recombination breakpoint. Consequently both sequences are usually homo-
logous at the recombination breakpoint and are aligned correctly before recombina-

tion. Hence, they can be represented in a multiple alignment.

nucleotides between donor and acceptor RNA is sufficient to align the sequences accu-
rately before the template switch. However, such a short stretch of sequence similarity
lowers the frequency of the template switch. Hence, the donor and acceptor sequences
usually share a high sequence similarity around the recombination breakpoint and it is
very likely that the sequence donor and the acceptor are aligned globally before recombi-
nation. In this case, the product of recombination can be visualized in a multiple sequence
alignment together with the donor and acceptor sequence (see Figure 2.6).

In summary, recombination in HIV-1 has a very simple structure: the recombinant is
composed of the donor sequence in the first part up to the recombination breakpoint and
the remainder of the recombinant is derived from the acceptor sequence. The recombinant
is always composed as depicted in Figure 2.6 (a).

2.1.3.2 Visible Recombination

It is estimated that template switching occurs in HIV-1 at a rate of three to nine template
switches per genome per replication round (Jetzt, Yu et al. 2000; Levy, Aldrovandi et al.
2004) and exceeds the estimated mutation rate of about 0.25 mutations per genome per
replication round (Mansky and Temin 1995) by far. But template switching does not suf-
fice to generate visible recombinants. If the donor and acceptor sequences are identical
and correctly aligned before recombination, the result of recombination is the same as if
no recombination occurred. Visible recombination can only occur if a host cell is infected
by at least two genetically different HIV-1 strains and if two different RNAs are then co-
packaged into the same viral particle. The heterozygous virion can then generate a re-
combinant upon infection of another cell.

Several aspects of the replication cycle of HIV-1 have the potential of interfering with
and preventing multiple infections and co-packaging of different RNAs. First, the viral
proteins vpu, nef and env interact with CD4 and the host cell after infection to stimulate
degradation of CD4 and prevent its trafficking to the plasma membrane (Freed 2001). As
HIV-1 depends on CD4 for cellular entry, it was believed that multiple infection of the
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same host cell by HIV-1 would be rare. However, a recent study showed that 75%—-80%
of infected cells harbor more than one provirus and that the proviruses are genetically di-
verse (Jung, Maier et al. 2002). Second, co-packaging usually happens if two RNAs form
a non-covalently linked dimer, initiated by a dimer initiation site near the 5’ end of the
HIV-1 genome. As dimerization may be ineffective or even impossible for different
RNAs, co-packaging could preferentially pair highly similar sequences and inhibit visible
recombination. But it was shown that two RNAs can still become co-packaged with a
possibly lower efficiency, even if the dimer initiation site of the two RNAs are unable to
interact properly (An and Telesnitsky 2002).

Hence, visible recombination occurs frequently in HIV-1, but the rate of visible recombi-
nation is quite different from the rate of template switching. Unfortunately, it is impossi-
ble to obtain an accurate estimate of the fraction of template switches that lead to visible
recombination, as the data available are based on small sample sizes. A rough estimate is
still possible. Let us assume that co-packaging occurs randomly and does not limit the
generation of heterozygous viral particles. In this case, the number of heterozygotes is
predicted by the Hardy-Weinberg equilibrium: if a cell is infected by two proviruses A
and B and both are expressed with frequencies f; and f3, the probability of generating a
heterozygous (or homozygous) virion is 2f;f3 (or f4*+/3°). Assuming that both proviruses
are expressed at similar levels and hence f; = fz = 0.5, half of the produced viral particles
are heterozygous and could result in visible recombination. It is trivial to extend the ar-
gument to more than two proviruses. The probability of multiple infection by 1, 2, 3, >3
proviruses is about 20%, 15%, 28%, 37% for HIV-1 (Jung, Maier et al. 2002). Assuming
that cells with more than three proviruses generate only heterozygotes, the average
amount of generated heterozygotes is 15%/2+28%-3/8+37%=55%. Hence, even with
these optimistic assumptions, only about half the viral particles are heterozygotes and

lead to visible recombination.

2.2 Evolution of HERVs

HERVs, or human endogenous retroviruses, are remnants of exogenous retroviruses that
have been integrated into the human germ line in the past. In contrast to exogenous retro-
viruses, HERVs are transmitted vertically from parents to their progeny and usually co-
lonize every cell in the body. HERVs make up about 8% of the human genome and there-
fore play an important role in the evolution of the human genome (Bannert and Kurth
2004). Today, most HERVs are deeply fixed within the human and primate population.
By continuous accumulation of mutations, the provirus of these older HERVs has become
defective and is not transcribed nor does it code for proteins anymore. The genesis of
these HERVs probably dates back to early mammalian evolution. Younger HERVs are
exclusive to the primate lineage, and the youngest HERV family, HERV-K, started to
endogenize about 45 million years ago. Few HERV-K loci still contain proviruses with

intact ORFs, such that all three structural proteins gag, pol and env are transcribed. It is
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therefore unclear to which degree these HERVs are still active and whether they are able
to retrotranspose or form viral particles. There are two mechanisms driving the evolution
of HERVs: the viral replication cycle (see section 2.1.3) and the human replication cycle
(see section 2.3). As both mechanisms are described elsewhere, it is sufficient to explain
the lifecycle of HER Vs at a coarse scale.

2.2.1 Lifecycle of HERVs

The lifecycle of an HERV starts with infection of the host with an exogenous retrovirus
and subsequent infection of germ line cells of the host (Lower, Lower et al. 1996; Gifford
and Tristem 2003). If such an infected germ line cell gives rise to progeny, the provirus is
part of every cell in the progeny and the retrovirus becomes an endogenous retrovirus, or
HERY if the host is a human. As the provirus is still intact, it can create infectious virions
that integrate not only into somatic cells, but also into germ line cells. Again, the human
replication cycle continues and the progeny may contain a higher copy number of the
HERV. This process of increasing copy number is called amplification and may continue
for some time. Over time, the virus may loose its ability to create infectious virions and
only amplifies by retrotransposition or similar processes. These processes usually reverse
transcribe and integrate the genomic RNAs that are expressed in the cell, but do not need
a viral particle for infecting other cells. However, it is clear that aggressive amplification
is deleterious to the host, for example because the HERV may inactivate vital genes dur-
ing its integration and cause cancer. In other words, harboring the HERV has a negative
effect on the survival probability of the host. As a result, amplification should decrease
over time and eventually stop. HERVs then only evolve as part of the human genome.

Evolution of an HERV involves selection pressure on both, the host and the HERV. The
host may evolve mechanisms that prevent integration of retroviruses into the germ line,
restrain HERV amplification or cause the deletion of the provirus from the genome. For
example, the DNA can form a loop connecting the long-terminal repeats (LTRs) at both
ends of the provirus such that a recombination removes the provirus from the host ge-
nome, leaving a solitary LTR as the remainder. Alternatively, mutations introduced into
the provirus during the copy process of the human genome may also render the provirus
defective and unable to amplify. On the other hand, the HERV provirus is exposed to two
very different selection pressures: the provirus has to ensure its own survival just like
every gene in the human genome, but also has to allow for the survival of the host.
Hence, it may still be preferable for the HERV to occur in high copy number in the hu-
man genome and counteract the mechanisms that inactivate or clear the HERV from the
genome. But in comparison to its exogenous phase, the HERV now does not have to
build infectious particles anymore to be successful and spread in the human population.
Its survival is directly linked to the fitness of the host — and it is sufficient that the host is
successfully replicating. As a result, the HERV evolves a slower rate of amplification or
even looses this ability altogether. Eventually, the HERV often ends up as junk DNA. A
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few HERVs may acquire an important function for the host and ensure their survival. For
example, one of the proviruses in the HERV-W family is important for forming the
boundary layer between maternal and fetal tissue and plays an important role in the ma-
ternal-fetal exchange (Bannert and Kurth 2004).

In summary, HERV evolution is characterized by selection and rare random events. It is
probably a rare event that a retrovirus successfully integrates into the germ cell which
gives rise to progeny and that the integration event is non-lethal to the progeny. Duplica-
tion and modification of the HERV provirus occur during the retroviral replication cycle
(see section 2.1.3) and during the human replication cycle (see section 2.3). The retroviral
replication cycle occurs during the exogenous phase of the HERV and allows for a high
mutation and recombination rate, but probably stops quite early in HERV evolution. In
contrast, the human replication cycle has a much higher fidelity, but acts throughout time.
It is unclear which process dominates the evolution of HERVs. The mutation rate of
HERVs has been estimated to about 2.3x10™ to 5x10” substitutions per site per year and
is about the same as the rate of substitution in pseudogenes and non-coding regions of

mammalian genes (Johnson and Coffin 1999).

2.3 Evolution of Homo Sapiens and Other Eukaryotes

The evolution of humans in the following is only relevant to the extent that the recombi-
nation process is described accurately. Humans and many other eukaryotes have a diploid
set of chromosomes in each cell, where one haploid set of chromosomes came from the
mother and the other set came from the father. During meiosis, the diploid chromosome
set is doubled and separated into four gametes with a haploid chromosome set. As the
chromosomes are separated, two homologous chromosomes may become aligned and
produce two recombinant chromosomes upon separation. The process of recombination is
assisted by several cellular proteins, but the product of recombination mostly depends on
the Holliday junction. Finally, as the gametes of the mother and the father merge to be-
come the zygote of a child, a diploid chromosome set is created again.

2.3.1 The Holliday Junction

In many organisms, such as humans and other eukaryotes, recombination involves an in-
termediate Holliday junction between two double-stranded DNA molecules (see Figure
2.7) (Lodish, Berk et al. 2001; Heyer, Ehmsen et al. 2003). The Holliday junction forms
when two homologous double-stranded DNA molecules become aligned and break at
least partially. The strands are exchanged between the DNA molecules and the cuts are
joined to the other chromosome, giving rise to the Holliday junction. The branch point of
the Holliday junction can then move easily and create a region of heteroduplex DNA. To
be more specific, heteroduplex DNA occurs whenever a strand of one double-stranded
DNA hybridize to a strand of another double-stranded DNA. The Holliday junction is
then resolved by cutting one strand of each DNA and joining them appropriately.
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Figure 2.7: The Holliday junction and the recombination process, adopted from (Lo-
dish, Berk et al. 2001). (a), (b) Strand breaks in the DNA molecules lead to the forma-
tion of a Holliday junction. (¢) As the branch point moves, the heteroduplex region
grows. (d1) The Holliday junction is resolved such that it causes no recombination.
The heteroduplex regions may still lead to gene conversion when it is resolved as is
shown exemplarily in the Figure. (d2) The Holliday junction is resolved such that it

causes recombination.

Resolution occurs in two different ways, one leading to recombination together with
some heteroduplex region at the recombination breakpoint and the other leading only to a
heteroduplex region. Other, more sophisticated models for the formation and resolution
of the Holliday junction exist, as well as models for recombination that do not involve the
classical Holliday junction (Heyer, Ehmsen et al. 2003). However, in contrast to the mod-
els in HIV-1, all models predict that some heteroduplex DNA can be formed.

The mismatch repair system recognizes the heteroduplex DNA and selects one strand of
the double-stranded DNA as a template for correcting the other. Consequently, both
strands are complementary again. In some cases the selected template strand did not be-
long to the original double-stranded DNA molecule, and the result is a gene conversion
(see Figure 2.7). In essence, gene conversion transfers one allele from one chromosome
to the other and may change for example the alleles 4a at one locus to A4 or aa. In con-
trast to recombination, gene conversion results in an asymmetric exchange of a small
DNA region.

Besides the possibility of gene conversion, there are several other minor differences be-
tween recombination in eukaryotes and recombination in HIV-1. Recombination in euka-
ryotes is symmetric: both DNA molecules exchange parts of their information, such that
both original DNA molecules could be reconstructed from the recombinants. But the
symmetry hardly makes a difference, as only one of the two DNA molecules is passed on
to the progeny. Recombination hotspots are likely to depend on other parameters and se-

quence motifs than in retroviruses, because the proteins involved in the process are very
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different. Finally, the product of gene conversion resembles a recombination with two

crossovers in close vicinity.

2.4 Other Mechanisms That Mix Genes and Genomes

There are several other mechanisms that combine the genetic information of two or more
ancestors, but do not result in a recombination as described so far. It is important to intro-
duce and understand these mechanisms, as they are often not well defined in the literature
regarding methods for analyzing recombination. In addition, some methods refer to one

or several of these mechanisms in conjunction with recombination.

Horizontal gene transfer, or lateral gene transfer, refers to a mechanism for acquiring
novel DNA and is a major source of genome innovation in bacteria and other prokaryotes
(Gogarten and Townsend 2005). There are bacteria that can directly take up raw DNA
from their environment, integrate it into their genome and pass the DNA on to their prog-
eny in a process called natural transformation (Thomas and Nielsen 2005). Similarly,
conjugate transfer comprises the exchange of plasmids between bacteria and can lead, for
example, to resistance to antibiotics. Finally, transduction refers to a gene transfer me-
diated by viruses, for example bacteriophages, that package some of the host’s genes into
their progeny by chance and reinfect other bacteria. Hence, horizontal gene transfer oc-
curs by several different processes, but all lead to the exchange of genes and possibly in-
tegration into the host’s genome.

Hybridization often refers to a crossing between two species such that the hybrid has
one chromosome set of each parental species (Mallet 2007). The hybrid, for example a
mule, is often infertile and unable to reproduce, because the chromosomes cannot pair
properly during meiosis. However, if the chromosome set from each species is duplicated
(allopolyploidy), pairing during meiosis is possible and the hybrid can be fertile. Other
mechanisms can also lead to hybridization. Overall, hybridization is an important strategy

for speciation and adaptive radiation, in particular in plants.

Reticulation or reticulate events comprise a diverse set of evolutionary processes, includ-
ing hybridization, horizontal gene transfer, recombination, or gene duplication and loss
(Huson and Bryant 2006). The unifying aspect of these events is that they lead to contra-
dictory evidence concerning the ancestral relationship: while some parts of the genome
are derived from one species or ancestor, other parts are not. The term reticulation is not
clearly defined in literature and is also used to refer to network-like evolution. Some au-
thors refer to reticulation as hybridization and gene transfer (Nakhleh, Warnow et al.
2005), others even refer to it as hybridization only (McBreen and Lockhart 2006).
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Horizontal gene transfer and hybridization lead to the exchange of genetic information
between organisms or species. Recombination, on the other hand, usually exchanges ge-
netic information between homologous DNA molecules. Hence, in contrast to horizontal
gene transfer and hybridization, recombination respects the linearity of the genome: the
ordering of genes and alleles involved in recombination is important. Methods for analyz-
ing recombination events can therefore use this aspect of recombination to achieve a

higher accuracy or sensitivity.

2.5 Implications for the Analysis of Recombination

Analysis and inference need abstract models, but models without a foundation in the real
world are usually irrelevant. The biology described above gives valuable input for the
analysis of recombination in HIV-1 and other organisms, but the input is mostly qualita-
tive. For example, the dominant mechanism of recombination in HIV-1 is unclear and
even the rate of recombination cannot be accurately estimated. Both would be useful for
developing a more accurate model for analyzing recombination, for example by provid-
ing an a priori probability of the recombination rate. But the risk of imposing a wrong
prior is too high and may severely bias the results of the analysis: if the prior assumes a
high recombination rate, the method actually infers a lot of spurious recombination
events. On the other hand, if no informative prior is used, methods for analyzing recom-
bination can provide estimates of the recombination rate or may even be used to find out
which recombination mechanism dominates.

Nevertheless, biology contributes information that is important for the analysis of recom-
bination. The knowledge that recombination does occur is already of high value for ana-
lyzing recombination by itself. Recombination must be inferred from mutation, as it only
generates new combinations from existing mutation patterns. In other words, recombina-
tion events do not leave direct evidence in the sequence data. Hence, it is impossible in
principle to infer that recombination does not occur.

Another interesting observation is that the replication cycle of HIV-1 causes an effect
called negative interference: if two sequences are involved in one recombination event,
the probability for additional recombination breakpoints is very high. The reason is sim-
ple: if two sequences recombine they must have been co-packaged into one virion which
results in a high chance for additional template switches during reverse transcription.
Furthermore, intra-patient evolution and the evolution of the HIV-1 pandemic itself are
qualitatively different. Even though co-infection of a patient with several different HIV-1
strains does occur, it is a rare event. The most prominent examples of recombination be-
tween patients are the CRFs of HIV-1. But even though the prevalence of CRFs in the
HIV-1 pandemic is quite high, it does not indicate that CRFs are frequently generated. A
better estimate is the number of distinct CRFs in the population, as selection probably
leads to a high prevalence once a successful recombinant form arose in the population.

The impact of recombination on intra-patient evolution is much more pronounced than on
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Figure 2.8: Equal recombination is not a contradiction to insertions and deletions. The
depicted alignment represents homologous loci or nucleotides by using the same num-
ber and indicates sequence similarity by color. Sequences A, B and C are different and
represented by different colors. The recombinant sequence R is composed of se-

quences A and B and inherits the deletion of sequence A.
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Figure 2.9: Unequal recombination can lead to sequences that are incompatible with a
multiple alignment. As in Figure 2.8, loci are numbered and colors represent sequence
similarity. (a) The alignment contains a gap, because sequence C is the result of an
unequal recombination between A and B. (b) An unequal recombination between C
and A leads to sequence D. The second and the third nucleotide of sequence D contra-
dict the ordering of the sequence, and a consistent multiple alignment is not possible.
(c) A multiple alignment that aligns the first ‘4’ in sequence D correctly. (d) The other
option is to correctly align the second ‘4’ in sequence D correctly, but misalign the

first one.

the evolution between patients, as co-packaging of different strains occurs in every pa-
tient. Hence, methods that analyze sequences of different patients can ignore the effect of

recombination to some extent.

2.5.1 Multiple Alignments and the Analysis of Recombination

Based on the exposition of the recombination process in HIV-1 and in humans we can
distinguish three different kinds of recombination events, depending on the position of
the breakpoint in the donor and acceptor sequence and on the local homology between
sequences. If the recombination breakpoint occurs at the same genome position for both
sequences, it interchanges homologous nucleotides and usually also involves sequences
that are highly similar. We refer to this type of recombination as equal recombination in
the following. Unequal recombination refers to a recombination event that occurs at dif-

ferent genome positions in the donor and acceptor sequence. A simple consequence is
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that the product of recombination contains an insertion or a deletion. Unequal recombina-
tion can be classified further depending whether the donor and acceptor sequences are
locally similar or locally dissimilar.

A particularly important observation is that most recombination events in HIV-1 and in
eukaryotes are caused by equal recombination. As described before for humans and for
HIV-1, unequal recombination is very inefficient if the involved sequences are dissimilar
at the recombination breakpoint and therefore only happens very rarely, if at all. Unequal
recombination involving locally similar sequences is much more efficient. The probabili-
ty of such an event is still quite low, as there are not many different regions that share a
longer stretch of identical nucleotides. Furthermore, if unequal recombination results in
frame shifts or deletion of an important region, the genetic sequence is usually not viable
and is quickly cleared from the population by negative selection. Hence, most observed
recombination events must be due to equal recombination.

Equal recombination does not exclude insertion and deletion events. It is only required
that the breakpoint position in the donor and the acceptor sequence occur at the same po-
sition in the genome, i.e. in the same column of a global pairwise alignment of both se-
quences. It is not possible to shuffle the homologous positions of a sequence if this re-
striction is satisfied. As a consequence, a multiple alignment exists and the recombination
breakpoint always occurs between two columns in the multiple alignment, as shown in
Figure 2.8. In contrast, unequal recombination allows to reorder a sequence, such that a
consistent multiple alignment cannot be constructed (Wang, Ma et al. 2000) (see Figure
2.9). An analysis of such a sequence dataset is considerably more complicated and is not
covered in this thesis.

It is usually possible to create a multiple alignment without the artifacts shown in Figure
2.9 in practice — at least if a comparatively small part of the genome is considered. Even
if unequal recombination occurs in nature, it apparently does not affect the ordering of
loci and is therefore identical to equal recombination with a mechanism that introduces

insertion and deletion events.
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3 Modeling Evolution

The biological process of evolution and the effect it has on the genetic sequence are diffi-
cult to understand without an abstract model of evolution. The process of evolution in
viruses and in humans is very different and still, it is possible to describe the evolution of
genetic sequences in both species using the same models. The most important abstraction
introduced is that of neutral evolution (see section 3.1): genetic mutations do not change
the fitness of an individual. In this case, the genetic sequence does not affect the success
of the lineage, and the ancestral process is independent of the mutation process. To be
more specific, a sequence dataset can be simulated by drawing a random ancestry first
(see section 3.3) and then simulating the mutation pattern along the ancestry (see section
3.2). Hence, sequences share similarity by common descent and the ancestry can be esti-
mated from sequence data.

A particularly useful model for the ancestral process is the coalescent, as it is a simple
and robust approximation of many other ancestral processes. The coalescent with recom-
bination introduces the ancestral recombination graph (ARG), an accurate representation
of the ancestry of sequences subject to recombination. As the coalescent is a stochastic
process, it also describes how to randomly draw ARGs. In combination with a random
mutation process it is possible to generate artificial, but quite realistic sequence align-
ments for validation. But the ARG also helps to understand the complexity of inference if
the ancestry includes recombination. If recombination occurs, each site may evolve ac-
cording to a different evolutionary tree and the ancestry alternatively can be represented
as a set of trees. However, even if these trees are known, they do not directly provide in-
formation on recombination events. We still have to infer recombination events from the
trees indirectly as a subtree-prune-and-regraft operation. Finally, we distinguish different
types of recombination events depending on their representation in the ARG. These as-
pects help to classify methods for the analysis of recombination in the next chapter and
also allow understanding the limitations of each method in more detail.

3.1 The Neutral Theory and Selection in Sequence Analysis

The common understanding of evolution before the late 1960°s suggested that the genetic
composition of an organism was largely optimized and determined by the action of selec-
tion. Most genetic mutations would be deleterious for the individual and could not persist,
while only few mutations would confer a selective advantage and become quickly fixed
in the population. Here, mutation refers to a change on the level of an individual, whereas
substitution occurs when a mutation spreads through the population. To be more specific,
a substitution occurs when all other variants are eliminated and the mutation gets fixed in
the population. Hence, it was assumed that selection is so ubiquitous and dominating that
every amino acid substitution had some unique survival value for the organism. Random

mutations could occur, but would be quickly cleared from the population by negative se-

39



lection and not become fixed. Polymorphisms in the population could only be maintained
by balancing selection. Balancing selection occurs, for example, if heterozygotes are
more fit than homozygotes and the average fitness in the population is larger with poly-
morphisms than without. In other words, the common perception was that selection for
favorable traits (positive selection) adapts the phenotype to the environment and the se-
lected phenotype determines the genetic sequence.

In contrast to this, even Darwin had already postulated that there could be variations that
are neither positive nor negative and therefore would not be affected by selection. In 1968
Kimura challenged the view that the genome is mainly shaped by selection and proposed
the neutral theory of molecular evolution (Kimura 1968; King and Jukes 1969). Based on
the observation of amino acid substitution rates between mammalian species, he esti-
mated that the nucleotide substitution rate amounts to at least one nucleotide substitution
in the population every second year. Such a high rate of substitution could not be ex-
plained by balancing selection. Therefore, Kimura proposed that most mutations are al-
most neutral regarding selection and that positive selection is a rare event which only af-
fects few sites. Neutral mutations fluctuate randomly in frequency and get fixed in the
population by pure chance, an effect called random genetic drift. The neutral theory also
allows for a substantial amount of deleterious mutations if their negative fitness effect is
so strong that they are cleared rapidly from the population. It was assumed that the neu-
tral mutations could occur at synonymous and non-coding DNA sites, but also at coding
sites if the protein retains its functionality.

As sequence data became more and more abundant, the neutral theory was tested exten-
sively on many datasets and deviations from the neutral theory were found. It is clear to-
day that selection plays a role even for the evolution of synonymous sites and non-coding
DNA if the population size is large (Chamary, Parmley et al. 2006). But even though
most sites in the genome are subject to selective pressure, the selective pressure is often
too weak to dominate genetic drift. The nearly neutral theory incorporated this observa-
tion and introduced the notion of nearly neutral mutations whose fate is determined by
both, drift and selection (Ohta 2002). Interestingly, the strength of drift depends on the
effective population size: it is weak in large populations and even small selective forces
can dominate drift in this case.

The formulation of the neutral theory was a big step forward for the analysis of genetic
sequences. The neutral theory assumes that the major force which shapes substitutions in
the population is not selection and therefore the environment, but the random process of
mutation and descent. The selectionist viewpoint and the neutral theory also differ fun-
damentally concerning the relevance of polymorphisms (Bamshad and Wooding 2003).
The selectionist viewpoint assumes that polymorphisms are the signature of selection and
are therefore functionally relevant. In contrast, the neutral theory assumes that polymor-
phisms are noise caused by random genetic drift and conserved regions are the result of
strong negative selection indicating functionally relevant parts. Compared to purely selec-
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tion-driven evolution, the neutral theory makes several testable, quantitative predictions
(Kimura 1991; Takahata 1996). For example, the neutral theory predicts that the proba-
bility of fixation for a neutral mutation is equal to its current frequency in the population
and hence that the fate of a mutation depends on random genetic drift. In this case, it can
be shown that the rate of neutral mutation is equal to the rate of substitution. Furthermore,
the genetic diversity in a population, i.e. the average number of differences between two
randomly sampled sequences, is proportional to Nu where N is the population size and u
is the mutation rate per generation. The neutral theory also provides a rationale why phy-
logenetic trees can be inferred reliably from genetic data: as the neutral theory predicts
that sequences diverge over time by accumulating random mutations at a rather constant
pace, the time of divergence of two sequences is proportional to their genetic distance and
the evolutionary tree can be recovered from these distances. The constancy of rates is also
referred to as the molecular clock. The molecular clock has been useful for dating evolu-
tionary events in the past, even though its estimates suffer from a high variance and con-
founding effects such as varying population sizes (Bromham and Penny 2003). But the
neutral theory has also lead to the development of other quantitative sequence analysis
methods besides phylogenetic tree inference. For example, tests for neutral evolution al-
low detecting deviations from the neutral model and provide evidence that selection
played a role (Bamshad and Wooding 2003).

3.1.1 Selection and Drift in Sequence Analysis

Selection and random genetic drift are two very different forces that shape genetic se-
quences. Drift is caused by the ancestral relationship of the sampled sequences and the
mutation process, while selection shapes the genetic sequence mainly depending on the
environment and the genotype-phenotype relationship. Sequence analysis often tries to
elucidate the cause of polymorphisms, for example the ancestral relationship or the geno-
type-phenotype relationship. If drift dominates, the ancestral relationship and the muta-
tion process can be estimated, for example by phylogenetic inference if the ancestral rela-
tionship can be described by a tree. On the other hand, association studies try to find po-
lymorphisms that cause a disease and explain part of the genotype-phenotype relation-
ship. In essence, association studies look for genetic regions that discriminate between
diseased and healthy individuals, as these genetic regions are more likely to cause the
disease.

The analysis is complicated considerably if both, selection and drift play a role in mole-
cular evolution. In this case, sequence similarity is not only caused by common ancestry,
but also by convergent evolution due to a similar selection pressure. It is difficult and of-
ten impossible to discern these effects in an analysis (Bamshad and Wooding 2003). For
example, consider estimating a phylogenetic tree if selection dominates the evolution of
the genetic sequence. The phylogenetic tree then may not represent the ancestral relation-
ship anymore, but rather the similarity of the selective environment associated with the
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sequences — and the analysis becomes biased. It is more frequent that the analysis of se-
lection is complicated by common ancestry, as common ancestry and drift always plays
an important role in sequence evolution. Common ancestry essentially leads to linkage
between sites and can confound the genotype-phenotype relationship in the search for
disease markers. If all individuals that suffer from a genetic disease are closely related,
their genetic makeup is very similar because of their common ancestry and does not con-
tain much information on the cause of the disease. Hence, common ancestry is usually
taken into account in the analysis of selection if individuals in the study differ widely in
their degree of kinship. An example is linkage analysis, which focuses on samples of in-
dividuals that are related by a known pedigree. Interestingly, recombination also plays a
major role in the analysis of disease genes, as it breaks up linkage and restricts the effect
of common ancestry to small regions of genetic material. Recombination therefore helps
to localize disease genes more accurately.

The subject of this thesis is the analysis of molecular sequence data regarding recombina-
tion events. Recombination events do not cause point mutations and therefore do not
leave direct evidence in the observed sequence data. Consequently, recombination events
solely affect the ancestry of the sequences and we can only derive information on recom-
bination events from neutrally evolving sites. Selection interferes with recombination
analysis to a much larger extent than it does with phylogenetic inference. As recombina-
tion breaks up linkage, recombination analysis inherently depends on evaluating sequence
similarity only for a small region in the sequences and not for full length sequences. The
probability that a small region in the sequences shows similarity due to selection is much
higher than for full length sequences — also because functionally related and jointly se-
lected sites are often close by. Strong selection pressures may actually lead to patterns
similar to that of recombination and lead to wrong results. For example, a strongly se-
lected region can be similar in otherwise unrelated sequences and result in a pattern simi-
lar to recombination or gene conversion. Hence, the method developed later in this thesis
assumes that mutations are neutral and selection does not occur. As recombination only
transfers existing mutations between sequences, it is difficult enough to infer recombina-
tion events based on sequence data without the effect of selection.

3.2 Models of Nucleotide Substitution and Mutation

Duplicating a genetic sequence always bears a chance that the copy introduces one or
several mutations and that the copy differs from the original sequence. These mutations
are then subject to selection: we can only observe mutations that are non-lethal or not un-
der strong negative selection. However, the copy process itself may introduce mutations
by pure chance and at any position in the sequence, as predicted by the neutral theory (see
section 3.1). The models introduced in the following are not only used for the nucleotide
substitution process between species, but also for the mutation process within a popula-

tion. Both, substitution and mutation process are very similar if the sequences evolve ac-
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cording to the neutral theory. As the models in the literature are usually referred to as
substitution models, the term substitution is used in the following even if the mutation
process is more relevant for this thesis.
As the genetic sequence defines the biochemical composition of an organism, it also en-
codes the machinery for copying the genetic sequence. Consequently, the copy process is
a memoryless process that does not depend on how the genetic sequence evolved so far,
but only on the current state. Hence, the copy process can be described by a time-
homogeneous Markov chain, at least if the environment does not change its effect on the
copy process. In other words, each genetic sequence defines a separate probability distri-
bution over the sequence space for the copies it can create. As the state space of such a
Markov chain is too large, it is typically assumed that each sequence induces the same
probability distribution and each nucleotide changes according to the same Markov chain.
In other words, the changes of each nucleotide in the genetic sequence are described by
an independent, but identically distributed Markov chain with the state space {a,g,c,t}. It
is fairly simple to extend this model and allow for example heterogeneous mutation rates
at different genome positions. Some of these extensions are discussed later in this section.
In the following, the substitution models are presented as time discrete Markov chains.
More details regarding the substitution models and an introduction to continuous time
Markov chains are presented in (Ewens and Grant 2001). A more comprehensive and
more practical introduction is given in (Li 1997). Both books also discuss amino-acid
substitution models. As amino-acid substitution models are also implemented with Mar-
kov chains and share a lot of similarity with nucleotide substitution models, they are not
presented here. Finally, these books also describe extensions that allow for a different
substitution rate at different positions in the genome.
Let p,. be the probability that a nucleotide x remains unchanged after one copy operation
and analogously define p,, as the probability of a change from nucleotide x to nucleotide
y after one copy operation. The discrete-time Markov chain is then best represented as a
matrix, where the transition probability from one state to all other states is given as a row
in the matrix:

Pu Pog Puc Pa

po| o Pu Poe Pul (3.1)

Py Py Peo Pa

Pu Py P Pu
As each row describes the probability of a transition from one nucleotide to all others, the
rows in the matrix sum to 1. The columns sums amount to the probability of a transition
to a specific nucleotide. Now, define x=(x4,x.,xg,X;) as a vector of probabilities, where x,
is the probability for nucleotide a. Then x,+x.+x,+x~=1 and the resulting probabilities af-
ter a transition are computed as xP. For example, if the frequency of nucleotides in a se-
quence is described by a vector x, the expected frequency of nucleotides in the sequence

after one transition is xP.
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All substitution models introduced in the following and almost all substitution models in
literature are finite, aperiodic and irreducible Markov chains. As a consequence, they
have a stationary distribution and are time-reversible. The stationary distribution 7 is the
eigenvector of P with eigenvalue 1 and therefore does not change after a transition:
nP=n. For the Markov chains considered here, any probability vector x converges to-
wards 7 the more transitions it undergoes: xP" — m as n goes to infinity. Thus, the nuc-
leotide frequencies of a sequence become more and more similar to & as the sequence
evolves. If a Markov chain is time reversible, it is impossible to infer whether a sequence
of state changes was recorded forward or backward in time. To be more specific, taking
into account the prior probability for observing nucleotides x and y, the probability of a
transition from x to y is equal to the probability of a transition from y to x. In mathemati-
cal terms, the probability matrix therefore has to satisfy the detailed balance equation
TP =T,py, for all states x and y. There is an important detail if the substitution process is
simulated: the starting sequence should be drawn from the stationary distribution of the
substitution process. If the composition of the starting sequence deviates from the statio-
nary distribution, every transition renders the sequences closer to the stationary distribu-
tion on average, and the direction of time can be inferred.

The simplest model of nucleotide substitution, the Jukes-Cantor (JC) model (Jukes and
Cantor 1969), assumes that there is a single parameter «, the probability of substituting a
nucleotide with any other nucleotide. The JC model is described by the following transi-

tion matrix

1-3a a a a
a 1-3a a a
3.2)
a a 1-3a a
a a a 1-3a

The stationary distribution of the JC model is (0.25, 0.25, 0.25, 0.25) and assumes that
each nucleotide occurs with the same probability. It is usually necessary to normalize a
substitution model such that the probability of mutation is equal to the mutation rate u per
nucleotide per genome. The probability of mutation is 3a for the JC model, regardless of
the current state and it is sufficient to set a=u/3 to normalize the JC model. Obviously,
normalization eliminates one parameter and the JC model reduces to a parameter-free
model if the mutation rate is given.

To obtain a more realistic model, Kimura proposed the Kimura-two-parameter (K2P)
model (Kimura 1980) that introduces different transition probabilities a and £ for transi-
tions and transversions, respectively. Transversions are changes between states in {a,g}
and states in {c,t}, where {a,g} are purines and {c,t} are pyrimidines. Transitions refer to

changes within the categories of purines and pyrimidines. The transition matrix is

l-a-2p4 a B s
a l-a-2p Vi g (3.3)
B B l-a-2p4 a
B B a l-a-248
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The stationary distribution of the K2P model also assumes that each nucleotide occurs
with the same probability. Again, normalizing the substitution model to a given mutation
rate x is simple. Define the transition-transversion ratio as k=a/ff and observe that the rate
of mutation is a+2f=xf+2f. If we set f=u/(xk+2) and o=ru/(x+2), the K2P model has the
same transition-transversion rate and introduces a mutation with probability y.

There are several other substitution models introducing additional parameters. Some al-
low for a stationary distribution that is fully parameterized, while others have additional
parameters to distinguish between different types of state transitions. The general time
reversible model has ten parameters and as its name suggests is the most general model
that is still time reversible. Other substitution models capture the influence of neighboring
nucleotides and have a much larger state space. Codon models, for example, use nucleo-
tide triplets as states in the model, leading to a total of 64 states. As the number of states
and the number of free parameters grows, it becomes more difficult and unreliable to es-
timate all model parameters from sequence data.

The extensions described so far either pursue a more detailed description of the Markov
chain or relax the independence assumption among nucleotides. But the assumption that
every nucleotide evolves identically to all others is often violated, too. As it is infeasible
to model each position with a different Markov chain, it is usually assumed that one Mar-
kov chain describes the evolution of all positions well enough. However, every position i
could have a different substitution rate 4z, where A; modulates the substitution rate for
position i. The mean of 4; is usually set to one, such that u represents the average substitu-
tion rate. A value 4; smaller or greater than one may then represent a functional constraint
or a mutation hotspot at position i, respectively. A common assumption is that the ; are
drawn from a gamma distribution with a mean of one (Yang 1996). Setting the mean to
one eliminates one parameter from the gamma distribution and leaves a single shape pa-
rameter y. The shape parameter y represents the amount of rate variation. A high value of
y corresponds to a low amount of rate variation, and for y=co all sites evolve according to
the same rate. Again, the model does not specify which positions evolve according to
some rate A, but only that the distribution of the rates obeys the gamma distribution.

3.3 The Ancestry of a Sample of Genes

The following section introduces several concepts and models of population genetics that
describe the ancestry of a sample of genes, the so-called genealogy. It is important to
model the genealogy with recombination, as recombination only affects the genealogy
and can only be inferred from the genealogy. We first introduce some terminology and
then describe several population genetic models, such as the Wright-Fisher model. Final-
ly, we introduce the coalescent with recombination and the Ancestral Recombination
Graph (ARG) as an accurate model of the genealogy with recombination.

The term “gene” in this section only refers to the object of evolution; it is equivalent to a

chromosome or any other continuous genetic sequence. In particular, individuals in the
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population are reduced to their genetic information. The term individual either corres-
ponds to a single gene if the genome is haploid or to a pair of genes if the genome is dip-
loid. Population genetics usually describes the evolution of individuals in a homogeneous
population and estimates population parameters such as population growth or migration
rates. Conversely, phylogenetics classically studies evolution at a coarse scale and ad-
dresses the ancestral relationship between species. Hence, the terms phylogeny and gene-
alogy refer to species evolution and gene evolution, respectively. Both terms are not con-
sistently distinguished in literature, though, as methods for phylogenetic inference also
work for data sampled within a population.

Population genetic models of evolution address a diverse set of questions regarding evo-
lution. They were first used to study evolution theoretically and to derive expectations for
parameters, such as sequence diversity or number of polymorphic sites. These parameters
are also used to design statistical tests, for example to test for neutral evolution (Simon-
sen, Churchill et al. 1995). As population genetic models are quantitative descriptions of
the process of evolution, they are also often used to simulate the ancestry of sequence da-
tasets. In contrast to biological data, the parameters of evolution and in particular the an-
cestry that generated the sequence dataset are known for simulated sequences. This is es-
pecially important for validation in our case, as biological datasets with a known history
of recombination events do not exist. Inference is also possible in population genetics, but
presents a much more involved problem. There are several programs for estimating popu-
lation genetic parameters, such as population growth or migration rate from sequence da-
ta. Finally, population genetics introduces an accurate model for the ancestry with re-
combination, the ARG. In essence, recombination analysis infers some parameters of the
ARG, for example, the recombination rate or the position of recombination breakpoints.
The mutation process itself is usually not affected by recombination, and the ARG con-
tains the complete information on the recombination events. The ARG also provides a
platform for a more thorough analysis of the effect of recombination and helps to classify
recombination events into different categories of complexity.

There are several good books that describe the Wright-Fisher model and the coalescent.
Most of this section is based on these books. Felsenstein (Felsenstein 2004) gives a short
and illustrative introduction to these models. The book by Hein and coworkers (Hein,
Schierup et al. 2005) presents many more details and introduces applications of the
Wright-Fisher model and the coalescent along with several real-world examples. Finally,
Tavaré (Tavaré 2004) gives a detailed mathematical treatment of these models.

3.3.1 The Wright-Fisher Model

A simple, but influential and instructive probabilistic model of genealogies is the Wright-
Fisher model. The Wright-Fisher model builds genealogies forward in time, starting in
the past and progressing towards the present. Each generation is non-overlapping and
consists of N haploid individuals or genes. Genes of generation t+1 are created by
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Figure 3.1: Realization of the Wright-Fisher model for a population of N=10 genes.
Genes are represented by circles. (a) Genes in generation #+1 choose their parents ran-
domly from the genes in generation #. (b) As the ordering of the genes is arbitrary,
they can be reordered to untangle the lines of descent between generations. Some
genes do not give rise to progeny and their lineage dies out. (¢) Genes that are not an-
cestral to the present generation are represented by dashed circles. As there is no in-
formation about these genes in the present generation, they are irrelevant for the anal-
ysis of the present generation. A sample of three genes and their descent have been
marked in orange. The MRCA of the three genes is shown in red. All sets of genes of
the present generation find their MRCA within the displayed eight generations.

randomly choosing a gene of generation ¢ as depicted in Figure 3.1. As an example, the
first gene in generation #+1 chooses each gene in generation ¢ with probability 1/N. A
natural consequence of randomly choosing parents is that some lineages die out, while
others duplicate by pure chance. Going back in time, lineages coalesce when genes
choose the same parent, and the genealogy can be described by a tree as in Figure 3.1(c).
Hence, the lineages of any sample of genes eventually go back to a single gene, the most
recent common ancestor (MRCA) of the sample. The MRCA is of particular interest: the
sample does not contain any information on evolutionary events that happened before the
time of the MRCA. Conversely, only a single gene of the present generation is the ances-
tor of all genes in some future generation. This is also the cause for random genetic drift:
a variant of a gene becomes fixed in the population purely by chance effects.

The Wright-Fisher model affords a simple scheme for simulating random genealogies. It
is usually assumed that only a small sample of & genes is of interest and not the whole
population, and that all sampled genes are drawn from the same time point. Starting in the

past, successive generations of N genes are simulated forward in time until all genes in
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the sample are derived from a single MRCA within the simulated time span. This ensures
that every gene evolved from a single ancestor. The ancestry of the sample can then be
traced backwards in time. A particularly attractive feature of the Wright-Fisher model is
that it easily extends to various scenarios, such as selection, migration and recombination.
In these cases, sequence simulation is still straightforward, but inference becomes diffi-
cult or even impossible.

The Wright-Fisher model as described above is based on several assumptions. Fortunate-
ly, many assumptions do not affect its generality, as deviations can often be modeled by
adjusting the population size N. To be more specific, the effective population size N, of a
real world population refers to the size N of a population in the Wright-Fisher model that
in some sense approximates the real world population best (Hein, Schierup et al. 2005).
In other words, the Wright-Fisher model with population size N, is a good approximation
of the real world population. Obviously, the Wright-Fisher model with population size N
has an effective population size of N.=N. In detail, the assumptions of the Wright-Fisher
model are (Hein, Schierup et al. 2005):

Discrete and non-overlapping generations

All individuals of a generation exist exactly for the same duration and die at the time
point when the next generation starts to exist. Even though this assumption is unrealistic,
it turns out that models with overlapping generations produce very similar genealogies if
the effective population size is adjusted accordingly.

Constant population size

Each generation is composed of exactly N individuals or genes. An extension of the
Wright-Fisher model to varying population sizes is obvious: generation ¢ has N, individu-
als that are sampled randomly from the N, individuals of generation #-1. Varying popula-
tion sizes can clearly affect the generated genealogies and a simple adjustment of the ef-
fective population size does not suffice. For example, if the population grows exponen-
tially, there are more genes in each consecutive generation and the probability that a gene
becomes extinct by random sampling is much smaller. It is easy to extend the coalescent
to varying population sizes both for simulation and inference.

Haploid individuals and no male and female subpopulation

The haploid and the diploid Wright-Fisher model do not differ much: a diploid individual
merely combines two genes. There is actually no difference for the structure of the gene-
alogy if selfing is allowed and there are no male and female subpopulations. The two
genes of a diploid individual each pick a random parent gene from the previous genera-
tion as before, ignoring the pairing of genes introduced by diploidy. The only difference
is that a diploid model has two genes per individual and 2N genes in the whole popula-
tion. Hence, the diploid model is obtained from the haploid model by substituting N by
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2N in all formulas. If there are male and female subpopulations as in the human popula-
tion, each individual picks one random gene from the male subpopulation and one ran-
dom gene from the female subpopulation. The resulting genealogies can be modeled by
an effective population size that is lower than the actual population size.

No migration and no geographical or social structure

Individuals in a population are often more likely to mate with geographically close indi-
viduals or individuals of a similar social status. There are several approaches to this sce-
nario. A classical approach is the two island model, where the progeny of an individual
usually stays on the same island. The genes in the Wright-Fisher model can therefore be
partitioned into two groups. Genes of each group usually pick their parents from the same

group, unless there is a migration event.

No fitness difference among genes

Apparently, the Wright-Fisher model assumes that each gene has the same chance to re-
produce, irrespective of the genetic sequence. It is straightforward to extend the Wright-
Fisher model to selection and introduce fitness as a function of the genetic sequence. Let
/i be the fitness of the i-th gene in the parental generation and assume that f; is normalized
such that the fi’s sum to one. We can then model the effect of selection by choosing each
gene i with probability f; as a parent. After the parents of all genes in the current genera-
tion have been determined, the fitness f; of each gene in the current generation is com-
puted and the procedure repeats. Even though it is simple to simulate the Wright-Fisher
model with selection, there is an important difference to the case without selection: muta-
tions are not neutral anymore, and the genetic sequences have to be simulated together
with the ancestry. Hence, selection slows down sequence simulation and makes inference

very difficult.

No recombination

Recombination deeply changes the structure of the genealogy as each recombinant is de-
rived from two parental genes in the simplest case. The probability of recombination per
gene per generation is referred to as r in the following. In other words, every gene in the
current generation is derived by recombination with probability » and then picks two dis-
tinct parents randomly from the previous generation in that case. Otherwise the gene se-
lects a single parent as before. The recombinant is usually derived from the parents by
equal recombination as in Figure 2.6, without insertion and deletion. The recombination

breakpoint is often assumed to occur uniformly distributed along the genetic sequence.

3.3.2 The Coalescent Without Recombination

Even though the Wright-Fisher model is very intuitive for simulating sequences, it is
quite difficult to obtain analytical results and estimate parameters of the model such as
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the mutation rate x. In 1982 Kingman (Kingman 1982) introduced the coalescent, a con-
tinuous-time approximation of the Wright-Fisher model that only has a single parameter:
the effective population size N,. As this section is based on the standard Wright-Fisher
model where N.=N and for notational convenience, N, is referred to as N in the following.
The coalescent is introduced for a haploid population, but the diploid coalescent is just as
common in literature. If the population is diploid, N must be substituted by 2N in all for-
mulas to account for the fact that there are twice as many genes than in a haploid popula-
tion. The coalescent is based on the assumption that only a small sample of k genes is of
interest and that k(k-1) is small compared to N. Kingman showed that the coalescent is a
robust approximation of many different discrete-time population genetic models. It is of-
ten sufficient to calibrate the effective population size and hence the time-scaling of the
coalescent to approximate different discrete-time models. As the analysis of Kingman is
mathematically involved, only a simple motivation for the coalescent is given in the fol-
lowing.
In contrast to the Wright-Fisher model, the coalescent studies the ancestry of a sample of
k genes looking back in time and observes how lineages coalesce and reduce in number.
The idea is to approximate the time until the first coalescent event, as it reduces the num-
ber of lineages by one. To be more specific, let 7 denote the time measured in number of
generations until a coalescent event reduces the number of lineages from £ to &-1. In the
Wright-Fisher model, the probability that two particular lineages coalesce in the parental
generation is 1/N. Hence, the probability that two particular lineages coalesce exactly j
generations back in time is
1Y 1
Pr(7, :j):(l—ﬁj - (34)
and T» is geometrically distributed with parameter 1/N. As (1+1/x)'~e and therefore
(1-1/x)*=1/e for large x, T» can be approximated by an exponential distribution if N is
large:
1y Y

Pr(7, >j):(1_ﬁ] :(l_ﬁ] ~e V. 3.5)

A similar expression can be derived for 7} using an additional approximation. From the

Wright-Fisher model it follows that the probability that all £ genes in the sample choose

35

as the first gene may choose any parent, the second gene may choose any of the remain-

different parents is

ing N-1 parents and so on. If we multiply all terms out, we get

(1_%{1-%}.(1-%):1-%+0[$}:1-%+0($) (3.7)

It is valid to ignore terms with a divisor of N* or larger as k(k-1) is much smaller than N.

In essence, the approximation assumes that there is not more than one coalescent event in
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Figure 3.2: A coalescent tree as a random realization of the coalescent process for a
sample of /=5 genes. The population size N is immaterial here, as it only determines
the time scaling. Vertical branch lengths are proportional to time and all genes are
sampled at the same time point in the present. Apparently, more time is spent waiting

for the last few lineages to coalesce.

every generation. Given the probability that no coalescent event occurs in one generation,

it is again easy to derive the probability that no coalescence event occurs for j generations

Jj _ktk 1)/
Pr(T, >j):[l—k(§&l)j xe W, (3.8)

The approximation effectively substitutes the geometric distribution by an exponential
distribution, which is reasonable if k(k-1) is small compared to N. In other words, the
waiting time until any pair of & lineages coalesce is exponentially distributed with para-
meter k(k-1)/2N if time is measured in generations. It turns out that many mathematical
expressions are simpler if we measure time in units of 2N generations. Define ¢ as the
time measured in units of 2N generations, such that /=j/2N. The waiting time 7; measured
in 2N generations until any of k lineages coalesce is then exponentially distributed with

parameter k(k-1):

T, i KD, py
Pr(ﬁ>§jzpr(rf St)ze N =gt (3.9)

The formulation shows that the coalescent process is the same for populations of different
sizes — only the time scaling changes.

As the coalescent only tracks lineages ancestral to the sample, it is much easier to obtain
analytical results and perform inference. For example, a simple result of the coalescent
process is that more and more time is spent waiting for the last few lineages to coalesce.
The sum of the waiting times for k lineages to coalesce to a single lineage is

E{iﬂ}:iE[T‘]:Zk: 2N :2N(1—%). (3.10)

i i = ii=1)
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A sample of k genes therefore needs on average less than 2N generations to find its
MRCA. The expected time for the last two lineages to coalesce is N generations. In other
words, approximately half of the time is spent waiting for the last two lineages to coa-
lesce, a fact that is clearly visible in Figure 3.2.

Simulating genealogies with the coalescent is very efficient, as only the lineages of genes
in the sample are traced backwards in time. Given the size of the sample £, the waiting
time until the first coalescent event is drawn from an exponential distribution with para-
meter k(k-1). Then, two random lineages are drawn from the & lineages of the sample and
their lineage is coalesced. Finally, k is decreased by one and the process repeats until & is
equal to 1. A random realization of the coalescent for k=5 is presented in Figure 3.2. In
contrast to phylogenetic trees, coalescent trees are always rooted, have branch lengths
proportional to time and usually assume that all genes are sampled at the same time point.
In summary, the coalescent essentially generates genealogies by drawing k-1 waiting
times and then drawing a random tree topology. In other words, the coalescent not only
separates the process generating the genealogy from the mutation process, but further
splits the genealogical process into one that generates times of coalescence events and
another one that generates tree topologies. Compared to the simulation process of the
Wright-Fisher model, the coalescent is much more efficient as it only tracks the genealo-
gy of the sample and never simulates events that do not affect the genealogy. However,
the coalescent is not as flexible and intuitive as the Wright-Fisher model. Extensions to
incorporate population structure, migration or selection are not trivial.

Particularly for inference, but also for simulation, it is important to incorporate the muta-
tion process into the coalescent. In the simplest case, the mutation process is modeled
with a constant rate of 4 mutations per genome per generation. There are more complex
models of the mutation process, but it is usually possible to derive an average mutation
rate u (see section 3.2). As time is scaled in units of 2N generations in the coalescent, it
makes sense to measure the mutation rate in units of 2NV generations, too. The coalescent
with mutation therefore introduces a parameter 6=2Nu that measures the mutation rate
per genome per unit of scaled time ¢. A simple result is that there are on average 6 muta-
tions per sequence from the root to a leaf of a random coalescent tree, as the expected
height of the tree is 2N generations. For simulating sequences, the only relevant parame-
ters are k and 6, but not N: using £ as an input, the coalescent generates a random geneal-
ogy, where branch lengths are measured in 2N generations. But the time scaling is irrele-
vant as it only matters that there are on average # mutations for any branch of length 1.
Given the genealogy, the mutation process can then be simulated forward in time as in
the Wright-Fisher model. Using a similar reasoning, it is only possible to infer the com-
pound parameter 0, but not NV if all sequences are sampled at the same time point and the

mutation rate u is unknown.
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3.3.3 The Coalescent With Recombination

The Wright-Fisher model with recombination assumes that recombination events occur
with a rate of » recombinations per gene per generation. If a gene is created by recombi-
nation, two parents are chosen from the ancestral generation and their genomes are com-
bined. Looking back in time, a recombination increases the number of lineages by one in
the ancestral generation. The probability that a recombination event and a coalescent
event occur in the same generation is negligible if N is large and recombinations are not
too frequent. Hence, recombination events and coalescent events are independent of each
other and their rate can be studied separately.
Define Tk as the waiting time until one recombination event occurs in a single lineage.
The probability that a recombination event occurs j generations back in time is

Pe(7; = j)=r1—r)” (3.11)
and Ty is geometrically distributed with parameter ». Using the same approximation as in

(3.5), Ty can be approximated by an exponential distribution if » is small:
Pr(T, > j)=(-r) =(1-r)" =€ (3.12)

In the following, time ¢ is measured in units of 2N generations, such that 7=j/2N. The
waiting time 7; for a recombination event in a single lineage is distributed as

Pr(Ty >t)me ™ =" (3.13)
where p=2Nr is the scaled recombination rate. As recombination events occur in every
lineage independently, the waiting time for a recombination in any of k lineages is ap-
proximately exponentially distributed with parameter kp. As shown before, the waiting
time for a coalescent event is exponentially distributed with parameter k(k-1). Hence, the
waiting time until any of the two events occur is exponentially distributed with parameter
kptk(k-1). The probability that the event is a recombination is

ko ___»p (3.14)
kptk(i=1) ptk-1

and the probability that it is a coalescent event is (k-1)/(p+k-1). Based on these observa-
tions, Hudson (Hudson 1983) described a method for randomly drawing genealogies
from the coalescent with recombination. As before, the genealogy is constructed starting

in the present looking back in time:

1. while &>1

2. draw the waiting time till the next event from an exponential distribution with pa-
rameter kp+k(k-1)

3. with probability (k-1)/(p+k-1) it is a coalescent event: pick two random lineages,
coalesce them, decrease k by one and go to 1.

4. with probability p/(p+k-1) it is an recombination event: pick a random lineage,
split it in two lineages, increase k by one and go to 1.

53



As the rate of recombination is linear in & and the rate of coalescence is quadratic in £, all
lineages coalesce eventually and the algorithm terminates. The genealogy of a sample
subject to recombination is represented most accurately by the ancestral recombination
graph (ARG), a concept that is described in more detail by Griffiths and Marjoram (Grif-
fiths and Marjoram 1996; Griffiths and Marjoram 1997). Looking back in time, an ARG
visualizes how lineages split up and coalesce, until they find their MRCA (see Figure
3.3).

The recombination breakpoints are often annotated in the ARG and add a lot of com-
plexity. We usually assume that all loci in a sequence are represented by the interval [0,1]
and recombination breakpoints are numbers in this interval. Looking forward in time, a
recombination event takes the left part of one ancestral gene and the right part of the oth-
er ancestral gene to compose the gene in the next generation. Looking back in time, the
situation is analogous: a recombination event distributes the ancestral material onto two
genes in the parental generation. Ancestral material refers to all loci of a lineage that are
relevant for the sample and is sometimes also annotated in the ARG (see Figure 3.3).
Recombination breakpoints and the corresponding ancestral material are important as
they identify which loci of a lineage are relevant for the sample. If all loci of a lineage are
irrelevant for the sample, the lineage does not contain any ancestral material and is irrele-
vant for the sample. Another interesting effect is that some coalescence events bring to-
gether lineages that do not have any overlapping ancestral material. These coalescence
events are referred to as non-merging coalescence events in the following, as they do not
merge ancestral material. Finally, we can also recover the ancestry for a single locus. For
each locus only one of the two lineages created by recombination is relevant, as the ance-
stral material of the other lineage does not contain the locus. A recombination is therefore
resolved to a simple connection between two lineages, and the ancestry for each locus is a
coalescent tree. Alternatively, we can also follow the lineages of the sample back in time
and decide for each recombination event which lineage to pursue. In summary, the set of
all recombination breakpoints partitions the interval [0,1] into sets of loci, such that the
ancestry of each partition is a local coalescent tree.

3.3.3.1 Hudson’s Algorithm — Sampling ARGs Efficiently

Even though the algorithm described before is perfectly valid for sampling ARGs, Hud-
son (Hudson 1983) also introduced a much more efficient version. Hudson’s algorithm is
based on two observations: recombination events occurring in non-ancestral material may
be irrelevant to the sample, and the MRCA can be different for different loci (Hein,
Schierup et al. 2005).

Suppose that a recombination event occurs in a gene whose left part is not ancestral to the
sample. If the recombination occurs in the non-ancestral part, one parent provides all an-

cestral material, while the other parent only provides the non-ancestral part left of the
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Figure 3.3: An ancestral recombination graph (ARG) for a sample of k=3 sequences.
Sequence 2 evolved by recombination. The recombination occurred in the middle of
the sequence, combining the left part of the ancestor of sequence 1 with the right part
of the ancestor of sequence 3. The recombination breakpoint is annotated above the
recombination event as a number in the interval [0,1]. The ancestral material of se-
quence 2 also visualizes the breakpoint and is shown as a fat red line, with dots indi-
cating non-ancestral material. The coalescent tree for all positions <0.5 and >0.5 is
also shown and describes the ancestry for a smaller region of the sequences. It is
common to show the local coalescent trees with the same structure as they are embed-

ded in the ARG, even though only the topology and the vertical branch lengths matter.

recombination breakpoint. Hence, one parent is irrelevant for the sample and the recom-
bination event can be discarded from the ARG. There is an important special case: if non-
ancestral material is trapped between ancestral material as shown in Figure 3.4(b), a re-
combination in the non-ancestral material is relevant for the sample, as it creates two li-
neages with ancestral material.

The other aspect that speeds up the simulation is that some parts of the sequence may find
their MRCA long before the complete genes have found their MRCA (see Figure 3.4). It
is simple to track the number of active lineages for each locus if the ancestral material is
annotated in the ARG. As soon as there is only a single active lineage for a locus, the lo-
cus has found its MRCA. The tree describing the evolutionary history for the locus is
known and the locus can be removed from the simulation. Hence, it is sufficient to obtain
the coalescent tree at each locus — also termed local coalescent tree in the following — for

sequence simulation.

3.3.3.2 Recombination as a Subtree-Prune-And-Regraft Operation

As noted above, an ARG defines a set of coalescent trees, where each tree is associated to
some set of loci. Trees of adjacent loci are correlated and share much of the ancestry, as
only some recombination nodes in the ARG are resolved differently between two adja-
cent loci. A recombination node has a simple effect on the local coalescent trees directly
left and right of the recombination breakpoint: it removes an edge in the right tree and
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Figure 3.4: An ancestral recombination graph (ARG) for a sample of £=2 genes. The
ancestral material of the left (right) sequence is shown in red (blue), and material that
is ancestral to both sequences is shown in purple. Non-ancestral material is shown as a
dotted line. (a) Looking back in time, a recombination event in the blue sequence dis-
tributes the ancestral material onto two lineages. The recombination breakpoint is lo-
cated at position 0.3. (b) A coalescent event that creates a lineage with trapped non-
ancestral material. (¢) A recombination event that is irrelevant for the sample, as it
leaves one lineage without ancestral material. (d) The right part of the sequence has
already found its MRCA at this time point. (¢) The complete sequence has found its
MRCA. (f) The coalescent trees embedded in the ARG. The genetic region relevant
for each tree is annotated below the trees. The left and the middle tree are identical, as
the recombination in (a) is undone by the coalescent event in (d). Therefore, all loci in
[0,0.6) find their MRCA at the same time point.

reattaches the subtree below the edge to some other branch to arrive at the left tree. A re-
combination can therefore also be described as a subtree-prune-and-regraft (SPR) opera-
tion on a coalescent tree (see Figure 3.5).

Not all SPR operations lead to an effect equivalent to a recombination event, as an SPR
operation may contradict the time-ordering of coalescent events (Song and Hein 2003;
Song 2006). Each coalescent event in the local tree occurs at a specific time point, and
even more importantly, time introduces a relative ordering of the coalescent events. If the
ordering of the coalescent events after an SPR operation is different from the ordering
before, the SPR operation does not represent a recombination event (see Figure 3.6).
Hence, an SPR operation corresponding to a recombination event must ensure that the

relative order of coalescent events is retained. Conversely, inferring recombination events
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Figure 3.5: Recombination as an SPR operation. A recombination is displayed sche-
matically in the center. Whole subtrees are shown as triangles and the rest of the ARG
is shown as a dotted line. The left tree differs from the right tree by one SPR opera-
tion. The corresponding SPR operation is shown as a dotted arrow. The SPR operation
cuts the branch at the base of the arrow and reconnects it to the branch at the tip of the

arrow.
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Figure 3.6: An SPR operation that contradicts the relative ordering of the CEs in the
tree. (a) The tree before the SPR operation is shown. The dotted edge marks the edge
to be removed and the arrow points to the destination in the tree. The coalescent
events between the sequences {1,2} and {3,4} contradict this operation. (b) The tree
resulting from the illegitimate SPR operation cannot be generated by a single recom-
bination event from (a) as the coalescent event between 1 and 2 occurs at a different
time point. (c) It is possible to construct an ARG that contains trees (a) and (b), but it
requires two recombination events. The graph cannot be drawn without intersections
and the recombination breakpoints are not annotated here. The only relevant observa-
tion is that sequences 1 and 2 coalesce before 3 and 4 for some locus, but much later

for another locus.

always adds some time ordering to the coalescent events, as a recombination event can
only occur after the lineages involved in the recombination exist.

SPR operations are also of interest for inference. Given the trees of two adjacent loci, a
sequence of SPR operations that transform one tree into the other (and vice versa) can be
interpreted as a set of recombination events with a recombination breakpoint between the
loci. The minimum number of SPR operations needed to transform the trees of two adja-
cent loci is a lower bound on the number of recombination events at that locus in the
ARG. Song (Song 2006) gives more details on SPR operations on ordered binary trees
and derives bounds on the size of the neighborhood of a tree with respect to SPR opera-
tions. Hein and coworkers (Hein, Schierup et al. 2005) gives a nice example how the SPR
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distance differs if the trees are unrooted, rooted, ordered or if they are coalescent trees
and specify a time for each coalescent event.

It is remarkable that the idea of ARGs as a set of local trees also leads to a different algo-
rithm for sampling ARGs. An ARG can be constructed starting at the leftmost locus and
continuing to the right end of the sequence (Wiuf and Hein 1999). The algorithm starts
with a random coalescent tree in the leftmost locus and adds more and more recombina-
tion events as it progresses towards the right. As the process has to keep track of all trees
encountered, it is not a Markov process. It is also less efficient than Hudson’s algorithm

and is mainly of interest for a theoretical analysis of the coalescent with recombination.

3.3.3.3 Equivalent ARGs

The ARG is an accurate model for representing the evolution of sequences with recombi-
nation. But there is a certain problem when it comes to inference: it is impossible to dis-
tinguish between all ARGs using sequence data alone. The limitations of inference are
presented in more detail in the following.

Reconstructing the ARG can only be successful if there is enough information in the se-
quence data. For example, the sequences should be long enough and the mutation process
has to introduce enough polymorphisms. Assume in the following that the sequence data
contain an infinite amount of information and that genetic distances can be estimated ac-
curately. In other words, the time point when a locus last shared a common ancestor for
two sequences is known. Another prerequisite is that each locus accumulates mutations
independently of the other loci and correlated mutations do not occur.

As the distances are known, the coalescent tree for each locus can be inferred. The coa-
lescent events in the local coalescent trees are also sufficient for simulating sequence da-
ta. Consequently, all other events do not change the sequence data and have to be inferred
indirectly from the set of trees. A common characteristic of these events is that looking
back in time they do not combine overlapping ancestral material from two or more li-
neages onto a single lineage. In other words, they are not “merging” ancestral material
and hence we refer to these events as non-merging events in the following. The exact
time point of a non-merging event is not specified by the local coalescent trees and there-
fore also cannot be inferred. There are only two types of non-merging events: recombina-
tion events in general, and some coalescent events. Looking forward in time a recombina-
tion event always combines the genetic material of both parents, but it does not merge
ancestral material looking back in time. It is immaterial when the recombination event
occurs, as loci accumulate mutations independently of each other. The only restriction is
that both parental lineages have to exist before the recombination event and the recombi-
nant lineage can only be involved in another event after the recombination event (see
Figure 3.7, left ARG). Non-merging coalescent events satisfy a similar property. The
non-merging coalescent event (b) in Figure 3.7 for example could occur at any time point

between the surrounding events. This case also illustrates why it is important that each
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Figure 3.7: To the left, a modified version of the ARG of Figure 3.4 is shown, but
many irrelevant events have been removed (see Figure 3.8 for a fully simplified
ARG). Non-merging events are annotated and explained in more detail below. To the
right, an equivalent ARG is shown that contains all types of irrelevant events. (a) Both
recombination events are non-merging events and could occur at any time point be-
tween ¢, and #3, or even up to #4 if the coalescent event (b) is adjusted accordingly. (b)
The time point of the non-merging coalescent event cannot be inferred from sequence
data and could occur between #, and #4. As both recombination events can also vary in
time, the coalescent event could actually have occurred between #; and #, if the time
points of the recombination events are adjusted accordingly. (¢) Both, the recombina-
tion and the coalescent event are irrelevant. The recombination event creates two li-
neages which immediately coalesce again. (d) A recombination event in non-ancestral
material is irrelevant if the non-ancestral material is not trapped between ancestral ma-
terial. (e) A recombination event in ancestral material is irrelevant, as the ancestral
material has already found its MRCA. (f) The coalescent event only merges ancestral
material that has already found its MRCA. The loop created by recombination event

(e) is therefore irrelevant.

locus evolves independently and that there are no correlated mutations. Correlated muta-
tions could link the evolution of the left and right part of the sequence and the time point
of the non-merging coalescent event would matter. But if correlated mutations do not oc-
cur, the time point of a non-merging coalescent event cannot be inferred.

Obviously, it is possible that the admissible time interval for a non-merging event de-
pends on other non-merging events. In this case, the admissible time interval can be ex-
tended as the other non-merging events move within their admissible time interval. Even
more interestingly, some non-merging events can cancel each other. The net effect of a
recombination and coalescent event in succession is the same as if no event happened, as
depicted in Figure 3.7 (a). Other events are also irrelevant and can be completely elimi-
nated from the ARG without changing its representation as a set of coalescent trees (see
Figure 3.6 and Figure 3.7).

In summary, many ARGs are equivalent in the sense that they lead to the same distribu-

tion of sequences. The ARG as a model of ancestry can be misleading for inference, as it
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Figure 3.8: The ARG shown in Figure 3.7 can be further simplified. (a) The ARG in
the left panel of Figure 3.7. (b) The non-merging coalescent event can be moved into
the past, until a trifurcation occurs. (¢) The trifurcation actually contains one non-
merging coalescent event that can be moved towards the present: the coalescent event
merging the lineages of the blue sequence. (d) Eliminating the loop in the blue lineag-
es results in the fully simplified version of the ARG. It is not possible to further reduce

this ARG, as every coalescent event is a merging event.

is only possible to infer the set of coalescent trees from sequence data but not always the
ARG. Recombination events can only be inferred as SPR operations between coalescent
trees of adjacent loci and are not explicitly represented by the set of coalescent trees. As
the ARG is the only model that explicitly and accurately visualizes all events, the ARG is
still the most appropriate model for describing evolutionary scenarios if all irrelevant
events in the ARG are removed.

3.3.3.4 A Classification of Recombination Events

As recombination events can only be inferred indirectly from adjacent coalescent trees, it
is possible to classify recombination events regarding the change that they cause in adja-
cent trees. This is important, as methods for the analysis of recombination often can only
detect recombination events that change the unrooted topology of adjacent trees.

Looking back in time, a recombination event distributes the ancestral material of a li-
neage onto two lineages. Eventually, the ancestral material and the lineages are merged
again onto a single lineage. As a result, each recombination event generates a loop in the
ARG (marked red in Figure 3.9 and Figure 3.10). We can distinguish three types of re-
combination events depending on the number of lineages that coalesce to the loop created
by a recombination event (Wiuf, Christensen et al. 2001; Hein, Schierup et al. 2005). Re-
combination events of type 1 occur if no lineage coalesces with the loop. In this case, the
two lineages created by the recombination immediately coalesce again and the recombi-
nation event cannot be detected. Recombination events of type 2 occur if one lineage coa-
lesces with the recombination loop or if there are three or fewer ancestral lineages at the
time of the recombination event. Recombinations of type 2 result in a change of the
branch lengths but do not change the unrooted topology (see Figure 3.9). The reasoning is
simple: if only one lineage coalesces, the topology remains the same and only the branch
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Figure 3.9: Recombination events of type 2 do not lead to a change in unrooted topol-
ogy. The left and right tree is shown for comparison. (a) If the recombination loop on-
ly coalesces with a single lineage, the unrooted and rooted topologies do not change. It
does not matter how many lineages exist at the time point of recombination, and this is
visualized by the attached subtree. (b),(¢) If the recombination loop coalesces with
two lineages and there are three or fewer lineages at the time of the recombination

event, the rooted topology changes, but the unrooted topology does not.
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Figure 3.10: Recombination events of type 3 lead to a change in the unrooted topolo-

gy. (a) The recombination event always changes the unrooted topology if more than
two lineages coalesce to the loop. It does not matter how many other lineages exist, as
the recombination structure already requires more than three existing lineages. (b),(c)
These are the same events as in Figure 3.9, but an additional lineage exists at the time

of the recombination event. As a result, the unrooted topology changes, too.
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lengths change. If there are three or less ancestral lineages at the time of the recombina-
tion event, the unrooted topology cannot change as there is only one possible unrooted
topology for three lineages. Finally, all other recombination events are of type 3 and
change the unrooted topology (see Figure 3.10). This only occurs if two or more lineages
coalesce with the loop and if there are more than three lineages at the time of the recom-
bination event. The authors also give expectations for each type of event in randomly
sampled ARGs. In essence, the more sequences are sampled, the higher the fraction of
recombination events of type 3 compared to recombination events of type 1 or 2.

It is actually easier to understand this classification based on the representation of recom-
bination events as an SPR operation between trees. If an SPR operation results in a
change of the unrooted topology, the SPR operation has to connect two branches that are
separated by at least two coalescent events in the unrooted tree (see Figure 3.11). If the
tree is rooted and the SPR operations work on rooted trees, the condition is almost the
same. Just as before, an SPR operation changes the rooted topology if and only if it con-
nects two branches that are separated by at least two coalescent events in the rooted tree.
However, the root node in the rooted tree counts as a coalescent event, too. Consequently,
there is only one possible scenario for an SPR operation that changes the rooted topology,
but leaves the unrooted topology unchanged: the SPR operation must connect two
branches separated by one coalescent event and the root node (see Figure 3.11).

The original classification by Wiuf and coworkers (Wiuf, Christensen et al. 2001) refers
to a single recombination event in an ARG and does not — and also does not have to —
consider the effect of non-merging coalescent events. It is possible to construct scenarios
that are wrongly classified by the description based on recombination loops if there is
more than one recombination event (see Figure 3.12). The classification introduced above
can be extended for these cases: in essence, non-merging coalescent events are not
represented in the local trees and therefore should not be counted as coalescent events in
the recombination loop.

3.4 Implications for the Analysis of Recombination

This chapter introduced the ARG as a model for the ancestry with recombination. The
ancestry is particularly relevant as recombination events do not leave any direct evidence
in the sequence data and have to be extracted from the ancestry itself. However, we can
only hope to infer the ancestry if the majority of mutations are neutral. In fact, neutral
mutations are much more important for recombination analysis than for phylogenetic tree
inference, as recombination breaks up linkage and only small segments of the alignment
can be used to infer parts of the ancestry.

Furthermore, there are several other restrictions and limitations for the analysis of recom-
bination. The ARG is an accurate description of the ancestry with recombination and
provides complete information on the time point and other properties of all recombination

events. Unfortunately, it is impossible to reconstruct the ARG from sequence data alone.
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Figure 3.11: SPR operations that change the topology of the tree. (a) The SPR opera-
tion connects branches that are separated by two coalescent events and leads to a
change in the unrooted topology. (b) The SPR operation only changes the branch
lengths, but does not change the unrooted topology. If the tree is rooted at the white
dot, the SPR operation (b) changes the rooted topology, but not the unrooted topology.
(¢) The ARG only containing the SPR operation (b). (d) The ARG only containing the
SPR operation (a).
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Figure 3.12: It is possible to construct ARGs that contradict the classification of re-
combination events based on the number of lineages merging to the recombination
loop, particularly if the coalescent events inside the recombination are non-merging
events. (a) Two recombination events of type 2 can cancel each other, such that both
are recombination events of type 1 and do no leave any trace in the sequence data. The
coalescent events for the left and right part are not exactly drawn on the same time
point for visualization purposes. (b) The same overall effect can be achieved if both
coalescent events in the recombination loops are non-merging. (c) It is also possible to
construct a recombination event of type 3 that does not result in a change of unrooted

topology.
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In particular, the time point of non-merging events cannot be inferred, and some non-
merging events can even be eliminated from the ARG without changing the probability
distribution of the sequence data it generates. Consequently, several ARGs are equivalent
regarding the sequence data they generate.

Alternatively, we can describe the ancestry with recombination as a set of coalescent
trees. The set of trees is sufficient for simulating sequences and hence, we cannot hope to
extract more information from sequence data alone. The set of trees is also uniquely de-
fined if there is enough information in the sequence data. Hence, there is a one-to-one
correspondence between the set of trees and sequence data in this case. Unfortunately, the
set of coalescent trees does not directly provide information on non-merging events and
in particular on recombination events. Recombination events have to be inferred indirect-
ly as an SPR operation that transforms a local coalescent tree into the coalescent tree of a
neighboring locus.

The representation as a set of trees also motivates a simple but very common strategy for
recombination analysis: reconstruct evolutionary trees on sufficiently small regions of the
genome and compare trees reconstructed from adjacent regions. Recombination is de-
tected if adjacent trees differ significantly. Recombination events can subsequently be
inferred as SPR operations. Such a strategy depends critically on many details. For exam-
ple, the size of the region for tree inference has to be chosen very carefully. If the region
is too small, we cannot infer the tree robustly. If it is too large, we risk inferring trees
from recombining regions and end up with wrong trees and wrong results. Finally, it is
also difficult to decide when two trees are significantly different.

This chapter also shows how to classify recombination events regarding the differences in
the local coalescent trees. Recombination events of type 1 do not cause any change and
cannot be inferred from sequence data. Recombination events of type 2 only cause a
change in the rooted topology, while recombination events of type 3 also change the un-
rooted topology of the local coalescent tree. This classification is interesting as methods
for recombination analysis sometimes can only detect changes in the unrooted topology.
For example, it is notoriously difficult to root phylogenetic trees and we may only infer
unrooted topologies for the strategy introduced above. As a result, the strategy cannot
detect recombination events that only change the rooted topology and requires at least

four sequences in the dataset.
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4 Recombination Analysis

The following chapter serves as an introduction to recombination analysis and critically
examines many existing methods. As recombination is a widespread biological process,
there are many areas of research concerned with the analysis of recombinant sequences.
For example, methods that search for disease markers or methods that construct genetic
maps analyze recombinant sequences. However, the following chapter is restricted to the
analysis of recombination in a strict sense: the goal is to infer recombination events in the
ancestry of a set of sequences.

The task of recombination analysis is separated into several clearly defined steps that are
often solved sequentially. The different steps in recombination analysis not only help to
understand the problem of recombination analysis better, but also provide a system for
classifying existing methods for recombination analysis. Similarly, assumptions that are
common to several methods for recombination analysis are presented together with their
implications. This is particularly useful as there are a rapidly increasing number of me-
thods, which are often based on known concepts and assumptions. It is often possible to
understand their advantages and disadvantages solely based on the assumptions inherent
to the method. Finally, several methods for recombination analysis are presented and crit-
ically discussed.

4.1 Questions in Recombination Analysis

There are several types of questions that are relevant for the analysis of a sequence data-
set regarding recombination. As the questions are presented by increasing complexity, the
last question answers all previous questions, but is extremely difficult to answer. There-
fore, it usually makes sense to approach a dataset step by step, begin with first question
and check whether there is recombination in the dataset at all. Questions 2, 3 and 4 are
mutually dependent and roughly have the same complexity, so that it does not matter if
they are solved in a certain order or not.

1. Is there recombination in the dataset?

This is obviously the most fundamental question and is also called recombination detec-
tion. The result is of particular relevance. If there is no recombination in the dataset,
many methods for sequence analysis can be used, for example methods to infer phyloge-
netic trees or to detect selected sequence positions. On the other hand, if there is recom-
bination in the dataset, it is necessary to use special methods that work in the presence of
recombination, as recombination can otherwise severely bias the results (Schierup and
Hein 2000). It only makes sense to perform a more detailed analysis of recombination
and target the other questions stated here, if there is recombination in the dataset. But it is
also interesting from a biological standpoint to detect recombination in a dataset, as it

provides evidence that the organism or virus is able to recombine. Methods for
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Figure 4.1: It is often difficult to determine from sequence data which sequence is the
recombinant and which are the parental sequences. Two possible scenarios are pre-
sented and they are compared regarding the local trees they induce. (a) There are two
parental sequences 1 and 2 and a recombinant R. (b) An alternative scenario where
sequence 1 is the recombinant. The left trees are identical in both scenarios. Only the
right trees differ and provide information about the correct scenario. The right trees
are more dissimilar if A¢; is large and Az, is small. The reason is simple: if Az is large
and Az, is small, the sequences R and 2 (1 and 2) in the upper (lower) right tree are
more similar, and it is easier to keep both scenarios apart. (¢) An alignment resulting
from scenario (a) is shown schematically, where the color of the sequence indicates
homology. If a hypothetical sequence R’ is added, the recombination is symmetric and

every sequence could be the recombinant.

recombination detection vary in the type of output given. Ideally, the method provides a
p-value for the hypothesis that there is recombination in the dataset as a measure of con-
fidence. Some methods only provide an arbitrarily scaled indicator for recombination, but
it is often possible to transform the indicator into a p-value using the column permutation
test (see section 4.2.4). As a variation of recombination detection, some methods even
provide a quantitative measure for recombination and estimate the population scaled re-

combination rate p.

2. Where are the recombination breakpoints?

If the positions of the recombination breakpoints are known, the alignment can be split up
into segments that evolved without recombination. Each segment can be analyzed by me-
thods that do not account for recombination. In particular, it is possible to reconstruct
phylogenetic trees for each segment and to analyze trees of neighboring segments regard-
ing the SPR distance. Recombination breakpoints can also provide information on possi-
ble recombination hotspots or on the prevalent recombination mechanism in HIV-1.
Some methods also give a list of recombination breakpoints and even provide the p-value
for each breakpoint. However, there is a fundamental problem associated with detecting
recombination breakpoints: every possible breakpoint in an alignment may involve a

66



reference alignment reference tree local trees for parts of the alignment

Ll

Q—— 1 2 3 1Q2 31Q23 1 2Q3

Figure 4.2: An illustration of the subtyping problem. To the left, the reference align-
ment with sequences 1, 2 and 3 is shown. The query sequence Q is displayed below
the reference alignment and homology is indicated by different colors. The subtyping
task is to determine the composition of the query sequence Q given a reference align-
ment and the corresponding reference tree. As subtypes are usually derived from cur-
rent sequences in the reference alignment, the query sequence only involves recent
recombination. In other words, the query sequence is derived from leaves in the refer-

ence tree, but not from older branches.

statistical test for significance. As there are so many possible breakpoints in an alignment,
it is necessary to filter the relevant breakpoints first, or to correct for multiple testing.

3. Which sequences are recombinants?

If the recombinant sequences are removed, the resulting dataset evolved without recom-
bination and can be analyzed for example by phylogenetic inference. But a more detailed
analysis of the recombinant sequences is often also of interest. For example, the recombi-
nants may show unusual properties in the lab, such as multi-drug resistance. In any case,
the recombinant is often subject to further analysis as presented in question 4. Ideally, a
method provides a p-value for recombination for each sequence in the alignment. As for
question 2 it is necessary in principle to correct for multiple testing. But the number of
sequences is usually well below 50 and much smaller than the number of possible break-
points, so that the multiple testing problem is not a major concern. An inherent problem
of finding the recombinant sequence is that the parental sequences also exhibit some re-
combinant structure (see Figure 4.1). It is difficult to infer which sequence is the true re-

combinant and which are sequences parental to the recombinant.

4. What is the structure or composition of a recombinant sequence?
Once a sequence has been identified as a recombinant sequence, the next step is to deter-
mine the parental sequences and the location of the recombination breakpoints. The in-
formation on the parental sequences often provides valuable insight into the properties of
the recombinant. For HIV-1 the structure of the recombinant also suggests whether it is a
novel recombinant form or a circulating recombinant form. Subtyping in HIV-1 is a spe-
cial case of this problem, as the input sequence is usually derived directly from the se-
quences in the alignment, but not from the ancestors of the sequences (see Figure 4.2).
Still, subtyping in HIV-1 is one of the most important questions in recombination analy-
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sis today. Given that the input sequence is a known recombinant, a method should pro-
pose one or more hypotheses for the structure of the recombinant, possibly ordered re-
garding their likelihood. A measure of confidence for each hypothesis, such as a p-value,
is also valuable.

5. What is the ARG underlying the sequences?

Inferring the ARG is the ultimate challenge in the analysis of recombinant sequences and
gives complete information about recombination that took place in the dataset. The ARG
answers all questions introduced before. Unfortunately, inferring the ARG is often im-
possible and intractable for all but the smallest datasets. Inferring ARGs is a more general
case of phylogenetic tree inference, which is already an NP-complete problem by itself.
The combinatorial space associated with inferring ARGs is much larger than that of phy-
logenetic tree inference, particularly if there are many recombination events. The large
combinatorial space is also the reason why it is often impossible to infer a relevant ARG.
The information in the sequence data often does not suffice to reconstruct the ARG un-
ambiguously, particularly if the recombination rate is high. In this case, each local tree in
the ARG only corresponds to a small region of the alignment and it is not possible to re-
construct the tree accurately. A high recombination rate requires a different approach for

the analysis of recombination is not discussed here.

4.2 Common Strategies for Recombination Analysis

Methods for recombination analysis often implement similar strategies or make similar
assumptions. It is often possible to describe these strategies and assumptions and discuss
their consequences without referring to a particular implementation. First, I introduce
several common assumptions regarding the input data and then discuss several strategies
that are either common or of particular interest for recombination analysis.

A particularly interesting, but complex and usually intractable strategy is to infer the best
ARG by maximum likelihood or maximum parsimony. Simpler strategies are based on
the fact that ARGs define a set of local trees and that the evolutionary signal differs for
the regions left and right of a recombination breakpoint. It is quite simple to scan for a
change of the evolutionary signal by sliding a window over the sequence alignment. Sev-
eral approaches detect recombination if the alignment is better described by more than a
single tree, for example because trees reconstructed from adjacent parts of the alignment
differ significantly.

4.2.1 Input Alignment

Many methods assume that the sequence dataset is given as a multiple alignment, but this
is rarely a limiting assumption. As described in section 2.5 it is usually possible to con-
struct a multiple alignment even if the sequences evolved subject to recombination. If a
method does not require a multiple alignment as input, it usually only compares two se-
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quences or implicitly constructs a multiple alignment. Interestingly, constructing the mul-
tiple alignment implicitly seems to increase the hypothesis space and results in a high
computational cost (see e.g. the jpHMM method) or even a reduced power of detecting

recombination.

4.2.2 Using Polymorphic and/or Synonymous Sites in the Alignment

Some methods, such as the Maximum Chi-Squared method (see section 4.3.1.1), detect
recombination if mutations are not evenly distributed along the alignment. Without pre-
processing, these methods detect recombination in any conserved region or mutation
hotspot in the alignment. A simple, but effective strategy is to eliminate all constant col-
umns from the alignment and only use polymorphic sites in the alignment as an input.
The Maximum Chi-Squared method, for example, detects recombination only if a seg-
ment of polymorphic sites indicates that two sequences are more similar than expected.
Sliding window-based methods often only use polymorphic or informative sites as input,
too, to ensure that each window has about the same information content regarding the an-
cestry. It is important to realize that the analysis depends on the sequence context if only
polymorphic or informative sites are used. Hence, the sequences in the alignment should
be chosen with care. Finally, a simple and common strategy to counter the effect of selec-
tion is to restrict the analysis to synonymous sites in coding sequences as they are less
affected by selection.

4.2.3 Assuming the Infinite Sites Model

The infinite sites model is a common assumption in population genetics and is also a pre-
requisite for methods that bound the number of recombination events (see section
4.3.8.2). The infinite sites model assumes that each mutation occurs at a different site in
the genome. As there are no recurrent mutations in this case, each local tree fits to the
mutation pattern perfectly and the total number of mutations in the ancestry of the se-
quences is equal to the number of polymorphic sites. As a result, the recombination par-
simony problem (see section 4.2.7) does not have to penalize mutations, but only has to
minimize the number of recombinations in the inferred history. Even though inferring the
ancestry is easier in this case, it is still very difficult and a variant of the problem where
ancestral sequences are given has been claimed to be NP-hard (Song, Wu et al. 2005).

Unfortunately, the infinite sites assumption is often violated for real sequence data, unless
there are few polymorphisms in the alignment. If recurrent mutations exist, methods
based on the infinite sites assumption usually infer artificial recombinations such that the
model fits the data. High mutation rates or mutation hotspots can therefore lead to falsely

detected recombination events.

4.2.4 The Column Permutation Test

Many methods only compute an arbitrarily scaled indicator for recombination, but do not
provide p-values. The absolute value of these indicators usually depends on basic proper-
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ties of the alignment, such as number of sequences, sequence length or sequence diver-
gence and is not indicative for recombination. Fortunately, it is often possible to trans-
form an indicator for recombination into a p-value using a simple permutation test. To be
more specific, the null hypothesis for the case of recombination detection is that the
alignment evolved without recombination. A permutation p-value can be computed if it is
possible to sample alignments from the null hypothesis, while retaining the basic proper-
ties of the alignment. The p-value for recombination is the probability that the original
indicator value was observed, given that indicator values are distributed as for alignments
of the null hypothesis.

A common approach is to simulate alignments by permuting the columns of the align-
ment, as described for example in (Wiuf, Christensen et al. 2001). Permuting the columns
of an alignment does not change the basic properties of the alignment, such as sequence
divergence, but eliminates linkage between sites. In other words, the sequence of local
coalescent trees is also permuted for the permuted alignment. For an alignment that
evolved without recombination, there is only one coalescent tree for all sites, and a col-
umn permutation does not change the tree. But if there is one recombinant in the align-
ment, there are two local coalescent trees, one for the left part and another for the right
part of the alignment. The column permutation for such an alignment distributes the local
coalescent trees across the alignment and effectively decorrelates the local coalescent
trees. A possible ancestry for the permuted alignment therefore involves a high number of
recombination events. Finally, if the alignment evolved with an infinite amount of re-
combination, all sites in the original alignment are unlinked. A column permutation does
not change the expected distribution of alignments in this case. Overall, the null hypothe-
sis corresponding to column permutations is that either all sites are linked and there is no
recombination, or all sites are unlinked and evolved according to an independent history.
The column permutation test only works for methods for analyzing recombination that
respect the ordering of sites during the analysis. For example, if a method only uses the
global distances between sequences as input, the input does not change by a column per-
mutation and the permutation test cannot be used.

It might seem counterintuitive to test for recombination by comparing an alignment with
a few recombinations to alignments that were created with a high number of recombina-
tions. But there is a simple justification. If there is a high number of recombination in the
alignment, all sites are unlinked and the information content on recombination is much
lower than for the case of a single recombination. A method would therefore rather as-
sume that the local coalescent trees vary due to noise and not because an enormous
amount of recombination could be inferred. Consequently, the indicator for recombina-
tion usually suggests little recombination in this case.

The column permutation test is very simple and general enough to apply for many differ-
ent methods. As most methods rely on the column permutation test to compute p-values,
exceptions from this rule are explicitly stated in the description of the method. There are
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two related shortcomings for the column permutation test, though. First, it is necessary to
compute the indicator for every permuted alignment. The permutation test therefore re-
quires considerable computing time and cannot realistically be used for compute intense
methods. Second, the smallest possible p-value depends on the number of permutations,
but the number of permutations increases the computing time linearly. If there are 10"
permutations, the smallest p-value is roughly 1/10". If p-values below 0.05 are considered
significant, it is usually sufficient to compute p-values based on 100 to 200 permutations,
and the permutation test is still feasible. The number of permutations can increase dra-
matically if the p-values have to be corrected for multiple testing, for example because
several sequences or several putative breakpoints were tested for recombination. A com-
mon approach is to use Bonferroni correction and multiply the p-values with the number
of tests performed before their significance is evaluated. In other words, if p-values are
corrected for ten tests, only p-values below 0.005 are significant before correction and it
is already necessary to perform 1000 to 2000 permutations to achieve an appropriate ac-

curacy.

4.2.5 Based on a Sliding Window

A recombination results in different evolutionary trees left and right of the recombination
breakpoint. Hence, many methods use a sliding window and compute some measure de-
pending on the tree for the left and the right part of the sliding window. If the two meas-
ures suggest that the trees are different, a recombination breakpoint is inferred at the cen-
ter of the sliding window. Many methods condition the test on a query sequence in the
alignment, such that recombination breakpoints are only detected in the query sequence.
As a simple example, recombination in the query sequence can be detected if the closest
sequence to the query sequence is different in the left and right part of the sliding win-
dow. Methods based on a sliding window usually can compute p-values for recombina-
tion breakpoints using a modified version of the column permutation test. In contrast to
the original column permutation test, only the columns inside the sliding window are
permuted. However, all approaches based on sliding windows share a major problem. It
is often difficult to set the size of the sliding window appropriately. If the sliding window
is too small, the measure depending on the tree is not stable and spurious recombination
events may be inferred. If the sliding window is too large, it may cover more than one
recombination breakpoint. In this case, there is no correct tree for the left or right part of
the sliding window and the method may fail to detect the recombination event as the es-
timated trees are arbitrary. A large window size also leads to a poor spatial resolution of
the recombination breakpoint, as neighboring windows share much of the signal if they
are overlapping. Hence, several recombination breakpoints in close proximity are de-
tected if there is no additional post-processing step. Finally, as adjacent windows are
usually overlapping, each part of the alignment is evaluated more than once and a sliding
window based approach adds quite some computational cost.
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4.2.6 Based on Comparisons of (Unrooted) Tree Topologies

Several methods reconstruct trees for different parts of the alignment and infer recombi-
nation if the reconstructed trees differ. There are several implications of such an ap-
proach. First, tree topologies in adjacent regions are similar. Reconstructing the trees in
adjacent regions independently introduces more parameters than theoretically necessary
and the trees may be less stable. Second, only informative sites provide information on
the tree topology if the method uses parsimony, compatibility or another simple scoring
scheme to reconstruct trees. Non-informative sites are ignored by these methods even
though they may contribute information on past recombination event. Third, there is only
one unrooted topology for three sequences, and therefore there must be at least four se-
quences in the alignment to detect an unrooted topology change. Finally, most methods
based on comparisons of unrooted tree topologies have to define when a topology change
is significant. As the tree is inferred from a limited region in the alignment, the inferred
tree may be unstable and topology changes can occur by chance. A common approach is
to use a measure of robustness, for example the bootstrap value (Bootscanning in section
4.3.4.1) or the posterior probability of a topology, and detect topology changes depending
on the robustness of the inferred trees. An inherent problem remains even if the local
trees are correctly inferred: a post-processing algorithm has to extract the information on
recombination events from the trees, for example by minimizing the number of SPR op-

erations between the trees.

4.2.7 The Recombination Parsimony Problem

A widely used approach to reconstruct phylogenetic trees is that of maximum parsimony.
Given a sequence alignment, maximum parsimony finds the tree topology connecting the
sequences such that the number of mutations along the branches is minimized. A similar
criterion can be used to reconstruct the history of a sequence alignment subject to muta-
tions and recombinations (Hein 1990; Song and Hein 2005). The cost function then de-
pends on the recombination cost 7, the local topology 7, for each position p, the mutation
cost m(p,t,) induced by the topology 1, at position p and a distance measure d for topolo-
gies. The corresponding optimization problem is called recombination parsimony and
solves

arg min {rid(r/,,rw)+§:m(p,fl,)} 4.1

R

The recombination parsimony problem requires that the distance d counts the number of
recombinations necessary to transform two trees into each other. As described in section
3.3.3.2, the number of recombinations is equal to the number of SPR operations on
rooted, ordered binary trees (Song and Hein 2003; Song 2006). The topologies 7, there-
fore have to be rooted, ordered binary trees for the recombination parsimony problem.
Obviously, the state space of recombination parsimony is huge, as the topology may vary
for every position and the number of topologies grows super-exponentially with the

72



start end

node node
nodes representing nodes representing
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Figure 4.3: The dynamic program that solves the maximum parsimony problem with
recombination is shown, but some transitions are left out for clarity. Each column cor-
responds to a column in the alignment and all nodes in a row correspond to the same
topology. Therefore, a transition between nodes in different rows represents a recom-
bination event and is weighted according to the SPR distance between the topologies.
The node in row i and column p is weighted by the mutation cost m(p,z;,) and depends
on the topology 7;, that the node represents. The cost optimal path connecting the start

and the end node describes a solution for the recombination parsimony problem.

number of sequences (Felsenstein 1978). The recombination parsimony problem is a
more general version of the NP-complete Steiner problem in phylogeny (Foulds and Gra-
ham 1982) and can only be solved exactly for very few sequences and positions.
Hein (Hein 1990; Hein 1993) describes a method for recombination parsimony that per-
forms far better than a brute force approach, but of course cannot mitigate the inherent
complexity of the problem. The important observation is that 4 only depends on pairs of
adjacent topologies 7, and 1,+;, but does not model any long range effect. Consequently,
recombination parsimony can be solved by dynamic programming. The tableau f;, of the
dynamic program stores the best solution up to position p depending on the topology ¢ for
position p (see Figure 4.3). The recursion equations are:

S =0

/,, =min {fp,m +m(p,t)+ d(t,t')}

t'eT

4.2)

where T is the set of all possible tree topologies. The dynamic program requires O(NT?)
operations, where 7 is the number of rooted, ordered binary topologies, and is not prac-
tical for more than a few sequences.

Given the solution of the recombination parsimony problem, it is easy to extract the an-
swer for all questions of recombination analysis. As recombination parsimony is compu-
tationally intractable for all but very small sequence alignments, it is still mainly interest-

ing in a theoretical context and as a basis for developing heuristic algorithms.

4.3 Methods for Recombination Analysis

The following section describes several methods for the analysis of recombination. A
comparison regarding output, recombination detection performance, inherent limitations
of the method and speed is provided later (see section 4.4). The output may solve any of
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the five questions introduced before in section 4.1 and should ideally also provide a
measure of confidence, such as a p-value. It is also important to compare the accuracy of
the output for the different methods. Unfortunately, the validation in the original publica-
tions is often useless for this purpose, as methods are usually validated on different
alignments and under different conditions. There are two publications that compare the
power of detecting recombination for several methods (Posada and Crandall 2001; Wiuf,
Christensen et al. 2001) and these are used as a reference for comparing the accuracy of
the methods in the following. As a result, the comparison does not cover all methods and
only refers to the task of recombination detection. More details on the setup for a compa-
rable power study are given in section 7.1. Particularly interesting for practical reasons is
also the running time of the method, as it may vary from seconds to days for a typical
alignment with 10-20 sequences and 1,000-10,000 sites.

There are numerous methods for recombination analysis and a complete description of all
these methods is out of scope for this thesis. The focus of this section is on methods com-
parable to the method developed later in this thesis. Most of these methods are fast and
widely used or at least of potential interest for a biologist or virologist. Many other me-
thods are also briefly introduced to cover a broad range of strategies, but they are not dis-
cussed as comprehensively. For example, coalescent methods are extremely slow and dif-
ficult to set up. Several other advanced methods even define a restricted version of re-
combination parsimony and solve it optimally. Unfortunately, most of these methods do
not provide a measure of robustness for their output and are not thoroughly validated.

For sake of clarity, all methods are presented using the same notation as far as possible.
In the following, N is the number of sites in the alignment, M is the number of sequences,
p=1,...,N denotes positions in the alignment and w is the window size if a sliding window
is used. Furthermore, the multiple alignment is represented as a matrix A with elements

Ajp and columns 4,,.

4.3.1 Methods Testing the Distribution of Mutations

The following methods are based on statistical tests that check for an unequal distribution
of mutations in the alignment. The p-value is then computed with the column permutation
test. As all methods are based on simple test statistics, they are extremely fast. Neverthe-
less, the power study by Posada and Crandall (Posada and Crandall 2001) showed that
these methods are among the best methods for detecting recombination in an alignment.
A more detailed analysis of recombination using these methods is not always possible as
they may not compute a p-value for recombination in a sequence or for a recombination
breakpoint. It is also difficult to interpret their output in terms of estimating the structure

of a recombinant sequence.
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4.3.1.1 Maximum Chi-Squared (MC?) Method

Initially the Maximum Chi-Squared (MC?) method (Smith 1992) was described as a
hand-driven protocol that analyzes a single sequence for a recombination signal, but it
can also be used in an automated procedure. The input is usually a multiple alignment in
which all sites that are not polymorphic are removed. The MC? method detects recombi-
nation if the differences between two sequences are not uniformly distributed along the
alignment, but cluster in one part of the alignment. The MC? method is based on the 2x2
chi-square test statistic ¢ (Spencer 2003): suppose there are n polymorphic sites in the
alignment and position & is tested for a recombination signal. If the two sequences differ
at s sites and there are r differences to the right of position £, the chi-square statistic is
computed as:

€T kszlr(llivl;):l;)j s) (4.3)
In essence, the chi-square test compares the observed number of differences to the right
of position k& with the number of differences that are expected if they were distributed
equally along the sequence. The chi-square statistic ¢ attains a high value if the differenc-
es significantly cluster to the left or to the right of position k. The most significant break-
point in the alignment is the position  that maximizes the value of c. The MC? method
then computes a p-value for the maximum value of ¢ by the column permutation test. An
exact method for computing the p-value is also available (Spencer 2003). The p-value is
the probability of observing such an uneven distribution of differences by chance and
therefore represents the p-value for recombination in the evolution of the sequence pair. It
is straightforward to extend the MC? for recombination detection to the whole alignment:
the maximum value of ¢ is computed over all sequence pairs and all positions k. A similar
approach could be used to compute a p-value for the recombination breakpoint. A fun-
damental problem of the MC? method is that it only checks for a significant bipartition of
the alignment. If a sequence evolved by more than one recombination or by gene conver-
sion, the MC? method is suboptimal and can fail. Maynard Smith proposed a manual
work-around to this problem (Smith 1992).

4.3.1.2 Geneconv

Geneconv (Sawyer 1989) (http://www.math.wustl.edu/~sawyer/geneconv/) uses poly-
morphic sites in the multiple alignment as an input and detects recombination if two se-
quences are more similar in a region than expected. For each region a score is computed
to reflect similarity: matches count as +1 and mismatches count as —x where x is a user-
specified parameter. Geneconv detects recombination in a sequence pair if the maximum
score over all possible regions in the sequence pair is significantly large. The p-value for
recombination in the sequence pair is either obtained with a permutation test or by analyt-
ical means. Geneconv can also calculate p-values for recombination in the whole align-

ment by computing the maximum score over all sequence pairs and all regions. The
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p-value is again obtained by the column permutation test. As Geneconv only provides a
list of significantly scoring regions, it is difficult to infer the structure of a recombinant
sequence. In contrast to the MC? method, Geneconv does not depend on a bipartition of

the alignment and works well even if a sequence contains more than one recombination.

4.3.1.3 PhylPro

PhylPro (Weiller 1998) computes the distance vector of the query sequence to all other
sequences for the left and right part of each sliding window. The correlation between the
left and right part of the sliding window is computed and plotted along the alignment. A
low correlation between the distances in the left and right part of the window indicates a
recombination breakpoint, as the evolutionary trees for the left and right part of the win-
dow then are usually different. Usually, every sequence in the alignment is taken as the
query sequence in turn. Thus, there are N different lines in the plot in total, one for each
possible query sequence. The lines in the plot showing a strong recombination signal cor-
respond to the recombinant sequences. The column permutation test could be used for
computing p-values, but PhylPro does not implement it.

PhylPro is a fast and simple algorithm and is rated as one of the better methods for detect-
ing recombination if p-values are computed by the column permutation test (Posada and
Crandall 2001). A major problem of PhylPro is that it takes quite some experience to in-
terpret the plots correctly, as the result strongly depends on the sequences in the align-
ment. The author suggests selecting the set of sequences carefully by hand to obtain bet-

ter signals for a detailed analysis of recombination.

4.3.2 Compatibility Methods

Two sites are called compatible if a tree describing their evolution does not contain any
recurrent mutation. If sequences only consist of 0’s and 1°s, the criterion is very simple:
two sites are compatible if there only occur three of the four possible states {00, 01, 10,
11} in every sequence at the two sites (see Figure 4.4). A similar criterion can be defined
if each site has more than two states. Pairwise compatibility is usually represented as a
matrix C where an element Cj; is 1 if site i and j are compatible with each other and 0
otherwise. As only informative sites can lead to incompatibility between sites, methods
that are based on compatibility usually remove all non-informative columns from the
alignment. A site p is informative if the column A4, contains at least two different states
and each state occurs at least twice. In this case, the informative site partitions the se-
quences into clusters of two or more sequences and contains information about the evolu-
tionary tree.

Compatibility can be used to detect recombination, as a recombination event usually
leads to incompatible sites to the left and right of the recombination breakpoint. To be
more specific, if there are no recurrent mutations and only informative sites are used as
input, sites to the left of the recombination breakpoint are incompatible with sites to the
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Figure 4.4: The tree minimizes the number of mutation events and shows all ancestral
sequences and all mutation events that are required to generate the four sequences at
the leaves of the tree. Only two states are allowed at each sequence position. Mutation
events start with M and are followed by the position that is changed. As the two sites

are incompatible, the tree infers a recurrent mutation event M2.

right of the recombination breakpoint, but all pairs of sites to the left or right are compat-
ible with each other. However, incompatibilities can also arise if the infinite sites model
is violated and recurrent mutations occur.

Methods based on compatibility are usually very fast as they compute the compatibility
matrix once and then derive simple statistics based on it. Even though they are fast and
easy to implement, compatibility methods belong to the best methods for detecting re-
combination in an alignment regarding accuracy (Posada and Crandall 2001; Bruen, Phi-
lippe et al. 2006). Nevertheless, compatibility is inherently limited regarding the analysis
of recombination. Compatibility can only detect recombinations that change the unrooted
topology of the local coalescent trees. A more serious limitation is that compatibility me-
thods cannot detect the recombinant sequences in the alignment. Also, no method pre-
sented here detects recombination breakpoints even though, in principle, breakpoints
could be inferred from the compatibility matrix. Compatibility methods are therefore best
used as a fast scan for detecting recombination, before a more detailed analysis is con-
ducted with other methods.

4.3.2.1 Neighbor Similarity Score (NSS)

The NSS (Jakobsen and Easteal 1996; Jakobsen, Wilson et al. 1997), also known as Reti-
culate, computes the fraction of elements in the compatibility matrix with the same value
as the neighboring element

1 N N-1
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where N is the total number of sites in the alignment. The NSS measures whether the
compatibility matrix shows some clustering of 0’s and 1’s. The NSS is closer to 1, if 0’s
and 1’s occur in blocks in the matrix. Two adjacent blocks are indicative of a recombina-
tion event, as a set of adjacent sites is incompatible with a set of other adjacent sites. The
p-value for recombination in the alignment is computed by the column permutation test.
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4.3.2.2 Pairwise Homoplasy Index (PHI)

The PHI test (Bruen, Philippe et al. 2006) defines a quantitative version of incompatibili-
ty: the incompatibility score of two sites is the minimum number of recurrent mutations
needed to explain the two sites by a tree. In the following, C;; refers to the incompatibility
matrix that tabulates the incompatibility score for every pair of informative sites 7/ and ;.
The PHI test computes the average of the incompatibility score, sliding a window of size
w (measured in informative sites) across the alignment. To be more specific, the test sta-

tistic is defined as
5 nowt ]

@ g P— Z::‘ /;] C, 4.5)
where 7 is the total number of informative sites in the alignment. A small value of ® in-
dicates that all sites within a window are usually compatible. The distribution of ® can be
approximated, but it is also possible to use the column permutation test for computing the
p-value for recombination in the alignment. A significant p-value suggests that adjacent
sites on average have a significantly higher incompatibility score than a random set of
sites. The PHI test is more robust w.r.t. mutation rate heterogeneity and exponential
population growth than the NSS test or the MC? test. The window size introduces an ad-
ditional parameter, and the p-value for recombination depends on it.

4.3.3 Methods for Subtyping

Subtyping is an important problem in HIV-1 sequence analysis. The goal of subtyping is
to determine the structure of a possibly recombinant query sequence with respect to a ref-
erence alignment of non-recombining sequences. In other words, the task is to find the
corresponding subtype in the reference alignment for every position of the query se-
quence. The separation between subtyping methods and other methods for recombination
analysis is often quite artificial. A subtyping method can usually also process an arbitrary
alignment and take each sequence in the alignment as a query sequence in turn to analyze
the full alignment. The result of such an analysis identifies recombination in the align-
ment, recombinant sequences and also predicts recombination breakpoints. However,
some subtyping methods also require as input a phylogenetic tree for the sequences in the
reference alignment and are therefore limited to sequence alignments that only contain a
single recombinant sequence. Furthermore, subtyping methods often are only available
via a website and take the query sequence as input, but assume a fixed reference align-
ment. As a result, the implementations of subtyping methods are often not suitable for a
more general analysis of recombination. A more general analysis requires that the pro-
gram allows the user to specify the reference alignment and that the program tolerates
recombinant sequences in the reference alignment. Finally, most subtyping methods im-
plement very simple strategies and do not work well for recombination analysis in gener-

al.
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4.3.3.1 RIP

RIP (Siepel, Halpern et al. 1995) (http://www.hiv.lanl.gov/content/sequence/RIP/
RIP.html) is the subtyping program of the Los Alamos National Laboratory website. As a
first step, RIP computes the distance dj, between the query sequence and sequence i in the
reference alignment for every sliding window position p. Then, RIP compares the dis-
tance of the best matching reference sequence i to the second best matching reference se-
quence i’ and computes the z-score of the difference d;,-d, for every window position p.
If the z-score is significant, the best matching reference sequence is the predicted subtype
for window position p. The query sequence is a recombinant if there are two or more pre-
dicted subtypes for different window positions. RIP also visualizes the distances d, by
plotting them along the alignment.

RIP is a simple and fast approach to scan a query sequence for recombination. RIP can
even predict the structure of the putative recombinant sequence and provides a simple
measure of confidence. It is probably safe to assume that RIP performs worse than Boots-
canning or other more complex sliding window approaches, even though a thorough

evaluation has never been done.

4.3.3.2 STAR

STAR (Gale, Myers et al. 2004; Myers, Gale et al. 2005) is a subtype analysis program
specifically designed for the pol region of HIV-1. STAR derives positional amino acid
frequency profiles for each subtype and for the whole alignment using the subtype refer-
ence alignment of the Los Alamos HIV Database (http://www.hiv.lanl.gov/). For each
position p of the query sequence and each possible subtype i, an odds ratio 0,; is com-
puted as the probability that the query is derived from the subtype profile as compared to
the alignment profile. An overall score S; is computed using two thresholds a and b

N N
S, :Zow >a Zow <b (4.6)
p=l1 p=l1

where op>a is 1 if o, is greater than a and 0 otherwise. The predicted subtype of the
query is the subtype i for which the score S; is maximal. A z-score is computed from the
S; by assuming that the S; are normally distributed. The thresholds a and b are optimized
on the subtype reference alignment, such that they result in a high z-score for correctly
classified sequences. Recombination is detected if the query sequence results in a z-score
below 2.5. In this case, the fit of the query sequence with each subtype profile is com-
puted using a sliding window and compared to the fit with the predicted subtype. Ob-
viously, STAR is a very simple method and cannot be expected to perform better than
Simplot (section 4.3.4.1) or other sliding window methods.

4.3.3.3 Jumping Alignment

Jumping alignments (Spang, Rehmsmeier et al. 2002) is a method for remote homology
detection in sequence database searches. Even though jumping alignments were never
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Figure 4.5: The structure of the jpHMM model for two short subtype sequences. Not

all transitions are shown. The upper and the lower part of the HMM correspond to a
profile HMM for each subtype, where M, D and I are match, deletion and insertion
states, respectively. A transition between the two profile HMMs may never jump
backwards such that a tandem-repeat would be created. The Figure is taken from
(Schultz, Zhang et al. 2006) and is used under the Creative Commons Attribution Li-

cence.

used for subtyping, they introduce an optimization problem that is closely related to the
subtyping problem and also inspired the jpHMM approach for subtyping (see below). A
jumping alignment is essentially a pairwise alignment of a query sequence with the col-
umns of a reference alignment and therefore matches each position of the query sequence
with a column in the reference alignment. The jumping alignment can introduce gaps in
the query sequence or columns of gaps in the reference alignment, but cannot introduce
gaps in a single sequence of the reference alignment. The mismatch cost for pairing a po-
sition of the query sequence with a column of the reference alignment is computed as fol-
lows. At each position only a single sequence of the reference alignment is used to de-
termine the mismatch cost. A change of the selected sequence in the reference alignment
between adjacent positions is penalized and corresponds to a recombination event. Over-
all, the nucleotides along the path of selected sequences in the reference alignment define
a recombinant sequence that is aligned to the query sequence. Hence, a jumping align-
ment assigns a reference sequence to every position in the query sequence and can be in-
terpreted as the subtype structure of the query sequence. A jumping alignment depends
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on the cost for mismatches, indels and the cost for jumps between selected reference se-
quences. The cost-optimal jumping alignment is computed by dynamic programming in
time proportional to O(MN?) if query sequence and reference alignment are of length N.
A jumping alignment not only infers the positions of the recombination breakpoints, but
also provides detailed information on the (possibly recombinant) structure of the query
sequence. For an application in the field of subtyping, there are two important additional
requirements. First, the mismatch and indel cost, and the cost for recombination have to
be set carefully such that the method performs well for subtyping. Second, the method
only outputs the structure of the query, but does not provide any p-values for recombina-
tion, for breakpoints or for the structure. Some measure of robustness of the output would
be extremely valuable.

4.3.3.4 Jumping profile Hidden Markov Model (jpHMM)

JpHMM (Schultz, Zhang et al. 2006; Zhang, Schultz et al. 2006) is an extension of jump-
ing alignments and is designed especially for subtyping. A profile HMM models a distri-
bution of sequences and is composed of match states, insertion and deletion states. For a
given sequence, it is possible to determine the path through the states that maximizes the
probability that the sequence was observed. JpHMM models each subtype with a separate
profile HMM, but also allows for transitions between the profile HMMs for different sub-
types, similar to the jumping alignment method (see Figure 4.5). Transitions between the
profile HMMs are restricted to destination positions equal to or forward of the source po-
sition, such that the generated sequences do not contain a repeat. Emission probabilities
and transition probabilities within a subtype can be estimated from the subtype reference
alignments. The transition probability (or probability for recombination) between sub-
types has to be set a priori, as the reference alignments do not contain any inter-subtype
recombinant sequence and therefore do not provide any information on the probability of
a transition between subtypes. Given a query sequence, the path with the highest proba-
bility determines the subtype structure of the query sequence.

JpHMM is not suitable as a general method for recombination analysis, as it requires a set
of sequences for each subtype to estimate the parameters of the model correctly. JpHMM
shares the drawbacks of the jumping alignment approach as it does not provide p-values
or another measure for the robustness of the solution. The strength of jpHMM is clearly
that it handles gaps easily and very accurately. On the other hand, the large number of
transitions for insertion and deletion events leads to a time complexity quadratic in the
sequence length N. As a result, the running time is slow compared to other approaches
even if the path with the highest probability is only approximated with a heuristic.

4.3.4 Methods That Compare Local Trees and Use a Sliding Window

The most frequent strategy in recombination analysis is to compare local trees that are
inferred in a sliding window across the alignment. In this case, it is not only difficult to

81



set the size of the window (see section 4.2.5), but the method also has to define when a
change in local tree topology is significant. This category is very popular among re-
searchers, probably because tree inference is well understood and accepted. But the accu-
racy of the resulting recombination analysis methods is quite poor. Two methods in this
category, Bootscanning and PLATO, were evaluated in the power study (Posada and
Crandall 2001) and performed worse than many other methods. Interestingly, the sliding
window based approach PhylPro was among the best methods in this study. PhylPro is
quite similar to Bootscanning, as it extracts distance vectors from the left and right part of
the window, but then it directly compares these vectors without reconstructing a tree.
This indicates that the tree reconstruction step may hurt more than it helps. In essence,
there are two potential sources for errors in a tree-based approach: the tree reconstruction
method itself and the method used to compare tree topologies. Both error sources proba-
bly play a role in the failure of Bootscanning in the power study. On the positive side,
reconstructing trees usually allows for inferring the parental sequences and the structure
of a recombinant query sequence.

There are many other methods that fall into this category, but are not discussed in detail
below. VisRD (Strimmer, Forslund et al. 2003; Forslund, Huson et al. 2004) for example
is based on quartet-mapping and computes the quartets for each sliding window. VisRD
then detects recombination solely based on a visual inspection of two summary statistics
that aggregate the topologies of the quartets. VisRD does not provide a single measure
indicating recombination and is also not evaluated quantitatively on simulated data. RDP
(Martin and Rybicki 2000; Martin, Williamson et al. 2005) detects recombination using a
sliding window approach on sequence triplets if the two sequences that are most similar
over the whole alignment are not as closely related to each other as the third sequence to

any of the two for some region in the alignment.

4.3.4.1 Bootscanning (Simplot)

One of the most popular methods for the analysis of recombination is Bootscanning
(Salminen, Carr et al. 1995), also known by the name of the widely used implementation
Simplot (Lole, Bollinger et al. 1999). Bootscanning is based on phylogenetic tree infe-
rence and bootstrap support values. Bootstrap support values are a measure of confidence
for the edges of an inferred phylogenetic tree. To be more specific, cutting an edge in a
phylogenetic tree separates the set of leaves in the tree into two sets and can therefore be
represented as a bipartition. The bootstrap support of a bipartition or edge in the tree is
the percentage of bootstrapped alignments that result in a phylogenetic tree with the same
bipartition. Each bootstrapped alignment is generated by randomly sampling the columns
of the alignment with replacement. In essence, bootstrapping generates alignments that
only contain on average 60% of the columns of the original alignment (Hastie, Tibshirani
et al. 2001) and a high bootstrap support therefore indicates that the bipartition is robustly
inferred.
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Bootscanning usually only analyzes a single query sequence in the alignment and seeks to
infer the structure of the query sequence. As a precomputation step, bootscanning infers a
phylogenetic tree with bootstrap support values for each sliding window. The phylogenet-
ic trees are often inferred by a distance method, but maximum likelihood is also possible.
Then, bootstrap support values for the bipartition pairing the query sequence with every
other sequence in the alignment are plotted for every sliding window position. The result
is a plot that shows for each sliding window a measure of similarity of the query to any
other sequence in the alignment. Significant evidence for recombination is detected if
there are at least two windows in which the query pairs with a different sequence and the
bootstrap support values are higher than 70%. Recombination breakpoints are inferred at
the positions where the lines indicating bootstrap support cross in the plot. The column
permutation test can be used to compute p-values for recombination in the alignment, in a
sequence or at a putative breakpoint, but this is usually not part of the analysis and is not
implemented in Simplot. Simplot also implements another method for visually scanning
for recombination. Sliding a window over the alignment, the similarity of the query with
every other sequence in the alignment is plotted. As before, p-values are not computed by
Simplot.

The output of Bootscanning and of the similarity method of Simplot is difficult to interp-
ret. The signal is usually very noisy, particularly if there are many sequences in the
alignment. The authors suggest including only the potential parental strains in the analy-
sis to eliminate noise, but this requires manual interaction and an interpretation of the
noisy signal. Despite its popularity, Bootscanning was one of the worst methods in the
power study (Posada and Crandall 2001).

4.3.4.2 SlidingBayes

SlidingBayes (Paraskevis, Deforche et al. 2005) uses the same basic idea as Simplot to
analyze sequences regarding recombination. The main difference to Simplot is that Sli-
dingBayes infers the phylogenetic trees for each sliding window with a Bayesian method
and not with a distance or maximum likelihood method. Instead of the bootstrap support,
SlidingBayes plots the posterior probability of a partition of the sequences. Overall, Sli-
dingBayes does not differ significantly from Simplot and inherits all advantages and dis-
advantages. As phylogenetic trees in Simplot are usually estimated with a distance me-
thod, SlidingBayes is usually more accurate, but also a lot slower.

4.3.4.3 Partial Likelihoods Assessed Through Optimization (PLATO)

PLATO (Grassly and Holmes 1997) is a method for scanning a sequence alignment for
different phylogentic evidence in separate regions of the alignment, so-called spatial phy-
logenetic variation. PLATO was also proposed as a method for detecting recombination
by the authors. PLATO first finds the maximum likelihood phylogeny for the whole

alignment. Given the maximum likelihood phylogeny, it is possible to compute the like-
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lihood Z; for each site i, as phylogenetic inference usually assumes that each site evolves
independently. The idea is then to find regions that are characterized by a low average
likelihood. The statistic computed for every window position p and several window sizes

prw-1
> lnL,/w
Q“” = - N
[ZlnL,+ > 1nL,]/N—w
i=l

i=p+w

wis

4.7

The numerator and denominator compute the average log-likelihood inside and outside
the window, respectively. A large negative numerator represents a low likelihood, as log-
likelihoods are always negative. Large values of Q,,, therefore indicate that the sites at
positions p to p+w-1 do not fit to the global tree very well. Recombination is inferred if
the maximum value of Q,, over w and p is significantly large. PLATO introduces two
methods to obtain p-values for the maximum value of Q,, and detect recombination in
the alignment. As the maximum value of Q,, is approximately normally distributed, an
analytical p-value for recombination in the alignment can be computed. Alternatively, it
is possible to compute p-values based on a permutation test: as the global phylogeny has
been estimated, alignments without recombination are generated by simulating sequences
along the global phylogeny. The same procedure as above is then used to compute a
p-value for the maximum of Q.

PLATO assumes that there is an evolutionary tree for the majority of sites in the align-
ment and that this evolutionary tree can be recovered. Consequently, PLATO is inherent-
ly limited to small recombinant regions. As the recombinant regions grow larger, there is
no predominant tree anymore and PLATO can fail to detect recombination. PLATO also
does not perform well compared to other methods in the power study (Posada and Cran-
dall 2001).

4.3.4.4 TOPAL

TOPAL (McGuire and Wright 1998; McGuire and Wright 2000) is similar to PhylPro, as
it compares the evolutionary signal in the left and right part of the sliding window. But in
contrast to PhylPro, TOPAL includes a tree estimation step and does not depend on speci-
fying a query sequence. TOPAL first computes the distances /; and r;; between sequences
i and j in the left and right part of the window and then normalizes the distances to the
same mean. TOPAL then reconstructs an evolutionary tree from /; and recovers the dis-

tances #; encoded in the evolutionary tree. The DSS statistic is computed as
DSS =31, —1,) + > (r, - 1,)°|. (4.8)
ij i

Small values of DSS indicate that the tree is a good model of evolution for the left and
right part of the sliding window. If there is a recombination breakpoint in the middle of
the sliding window, the tree reconstructed from the left part encodes different distances
than that of the right part and DSS is large. Using the column permutation test, TOPAL
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can compute p-values for recombination in the alignment and for the recombination
breakpoint. The recombinant sequence cannot be recovered, though. The recombination
detection performance of TOPAL was not compared to other methods in a power study,
but as it is a mixture between PhylPro and Bootscanning it should perform similar to one
of the two methods.

4.3.4.5 Probabilistic Divergence Method (PDM)

The basic idea of PDM (Husmeier and Wright 2001) is to compute the distribution of
phylogenetic tree topologies for each window position in the alignment and detect re-
combination if the topology changes. To be more specific, PDM approximates the post-
erior probability P, for every window position p and every possible topology 7 by Mar-
kov chain Monte Carlo. The posterior probability Q. of the global topology is obtained by
averaging P, over all p. Similar to PLATO, a recombination is detected globally if the
distribution P, of topologies at some position p is significantly different from Q.. The
distributions Py, and Q; are compared using the Kullback-Leibler divergence and p-values
can be derived analytically. PDM also uses a local measure for detecting recombination:
PDM detects recombination at position p if Py, and P+ are significantly different. PDM
is severely limited by computation time and the number of sequences in the alignment, as
the number of topologies 7 grows super-exponentially with the number of sequences (Fel-
senstein 1978). The recombination detection performance of PDM is only slightly better
than TOPAL and usually does not justify the high computational cost.

A recent extension (Kedzierska and Husmeier 2006) improves the PDM by modeling the
transitions between topologies more accurately. A small change in topology is often not
significant, for example changes involving closely related sequences. Hence, the new me-
thod only records the posterior probability of a cluster of topologies. However, the most
important improvement is that a hidden Markov model is used to describe the sequence

of topology clusters in a similar fashion as the HMM approach (see section 4.3.5.3).

4.3.5 Methods that Compare Local Trees and Optimize Breakpoints

The methods introduced in the previous section use a sliding window to cut the alignment
into regions that are then compared concerning changes of local topology. However, an
inherent problem of sliding window-based approaches is the window size, as it limits the
accuracy of the estimate. It is desirable to eliminate the sliding window and to use a more
accurate partitioning of the alignment into non-overlapping segments. Unfortunately, the
number of possible partitions N* of the alignment grows exponentially with the number
of putative breakpoints K. Hence, only few methods try to optimize the partitioning of the
alignment and compare trees on these partitions. These methods often only output a se-
quence of unrelated trees. It is difficult to determine the cause for the changes and identi-

fy the recombinant sequence or its structure.
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4.3.5.1 Genetic Algorithm for Recombination Detection (GARD)

GARD (Pond, Posada et al. 2006; Pond, Posada et al. 2006) is based on a model selection
technique and compares the hypothesis of no recombination with the hypothesis of at
least one recombination. First, GARD estimates a phylogenetic tree topology by neighbor
joining for the whole alignment and optimizes branch lengths and mutation model para-
meters in a maximum likelihood framework. Then, GARD estimates a tree topology to
the left and right of every position p using the same technique as for the global tree and
sums the likelihoods for the left and right tree. The likelihood with recombination is
based on two topologies with branch lengths and involves 2M-3 additional parameters
compared to the likelihood without recombination. GARD uses the Akaike Information
Criterion (AIC) (Hastie, Tibshirani et al. 2001) to penalize for the number of parameters
and compares likelihoods involving different numbers of parameters. GARD detects re-
combination at position p if the AIC with recombination at position p is larger than the
AIC for the global tree. Multiple breakpoints are handled analogously: GARD searches
for the positions of the breakpoints in the alignment, such that the AIC is maximized. As
the number of breakpoint configurations explodes with the number of breakpoints,
GARD implements a genetic algorithm to search for the optimal configuration of break-
points.

GARD implements an interesting strategy as it uses model selection to find the best fit-
ting explanation of the sequences in the alignment. However, GARD introduces too many
free parameters for the likelihood with recombination and ignores the correlation between
adjacent trees. For example, if there is a single recombination between adjacent trees, the
trees are related by one SPR operation and are very similar. One SPR operation only re-
quires three parameters: the source edge in the tree, the destination edge and the position
in the destination edge. A major problem of GARD is that it falsely infers recombination
if two regions in the alignment evolve with different rates, for example because of a mu-
tation hotspot. In this case, two trees with the same topology but different branch lengths
may provide a better fit to the data than a single tree. Rate variation in simulated data
does not fully reproduce this effect, as the rates vary randomly across the alignment and
do not cluster in regions. GARD does not provide p-values for its output. Nevertheless, a
detected recombination is usually significant, as the method is based on a model selection
strategy. According to the authors, the performance of GARD is comparable to the best
methods in the power study (Posada and Crandall 2001). But GARD may perform worse
in practice as the power study does not consider the case of different mutation rates for
different parts of the alignment. GARD is only available as a web-service, runs on a
compute cluster and has a prohibitive running time if more than a single recombination

breakpoint is allowed.
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4.3.5.2 Multiple Change Point Model (MCPM)

The MCPM (Suchard, Weiss et al. 2002; Suchard, Weiss et al. 2003) is a Bayesian me-
thod for detecting spatial phylogenetic variation (see also PLATO) and for detecting re-
combination as a special case of spatial phylogenetic variation. The fundamental idea of
the MCPM s to partition the alignment at K breakpoints with locations x; and to allow
for a separate topology 7, branch lengths b; and mutation model 6y in each partition. The
overall likelihood of an alignment is then

L:ﬁ ]'i Pr(4,|7,.b,.6,) 4.9)
where xo=1, xg+1=N+1 and Pr(4,|z,br,0) denotes the probability of the p-th column in the
alignment given the parameters. The basic MCPM assumes an uninformative prior on the
topologies and does not model that adjacent topologies are correlated by SPR operations
in the case of recombination. It is theoretically possible to incorporate a more detailed
model of recombination into the prior of the 7;’s and account for SPR operations. The
MCPM only considers a rather simple prior and assigns the same prior probability
Pr(zi|t..;) to any topology change. In this case, the MCPM is very closely related to the
HMM approach described below. The MCPM specifies priors for all parameters K, x;, 7,
b; and 6; and then samples the number of breakpoints, the breakpoint locations and the
topologies from the posterior using Markov chain Monte Carlo. It is not simple to detect
recombination using the output of the MCPM, as the number of inferred breakpoint loca-
tions depends on the prior for K. An extension to the MCPM uses a Bayes factor test as a
more robust alternative to detect the presence of recombination in the alignment (Su-
chard, Weiss et al. 2002). The MCPM is very compute intense and is only applicable to
few sequences and short alignments. In particular, the number of topologies increases su-
per-exponentially with the number of sequences M (Felsenstein 1978).

There is an interesting extension to the basic MCPM approach that avoids the problem
that the topology space grows quickly with the number of sequences (Suchard, Weiss et
al. 2002). The idea is to restrict the analysis to the subtyping problem and assume that the
topology of the reference sequences is given and fixed. In this case, the MCPM only has
to determine where the query sequence attaches to the topology of the reference se-
quences. In other words, if there are M reference sequences, there are only 2M-3 topolo-
gies to consider, as there are only 2M-3 edges to which the query sequence could be at-
tached. This restriction leads to a heavily optimized implementation of the MCPM (Fang,
Ding et al. 2006), such that subtyping a 1500nt query sequence regarding eight reference
sequences takes about one minute. The output of the MCPM is particularly attractive as it
computes the posterior probability that the query sequence is related to each of the refer-
ence sequences. This is also a good measure of robustness of the estimate.

There is another extension to the MCPM that is of interest for recombination analysis.
The basic MCPM assumes that all parameters z;, b; and 6; change at the same breakpoint.

A breakpoint is therefore not genuinely related to recombination, but could also occur at
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the boundaries of a mutation hotspot. To model recombination more accurately, the au-
thors suggest a dual MCPM (Minin, Dorman et al. 2005) that introduces a sequence of
breakpoints ¢; that is independent of the b;’s. Changes in topology and branch lengths are
only allowed at the breakpoints b; and changes of the mutation model parameters may
only occur at the breakpoints ¢;. The same sampling approach is applied as before.

The MCPM was not compared to other methods in a power study, but is probably the
most accurate model for subtyping and should perform very well in practice. In the case
of subtyping, the MCPM models recombination accurately, as there is at most one SPR
operation between two sites. But in the more general case, the simple prior does not mod-
el recombination accurately. Finally, the MCPM approach is computationally very de-
manding and can only be applied to short alignments with very few sequences.

4.3.5.3 A Hidden-Markov Model for Computing the Likelihood (HMM)

Husmeier and co-workers introduced a likelihood approach to the analysis of recombi-
nant sequences and considered two different criteria for optimization: maximum likelih-
ood (Husmeier and Wright 2001; 2005) and Bayesian inference (Husmeier and McGuire
2002; Husmeier and McGuire 2003; 2005). Let A=(41,...,Ax) be the alignment with col-
umns A,, T=(,...,7y) the unrooted topologies for positions 1 to N and v the probability
for recombination. To control the computational complexity, the input is limited to four
sequences and there are only three unrooted topologies. Define a set of parameters 6,
representing the branch lengths and the mutation model for each tree topology ¢. In other
words, if there are two positions i and j with the same topology z/=t;, the branch lengths
and mutation model are the same for both positions. For notational convenience, intro-
duce a vector 0=(0,,0,,65) that contains the mutation model and branch lengths for the
three tree topologies. The likelihood Pr(4,|r,,0) of a column p in the alignment depends
on the tree topology 1, and the parameters 0. The likelihood of an alignment can then be

decomposed as

Pr(A,‘r | O,V) = Pr(A | T,G,V)P(‘r) = Pr(A1 | TI,G)Pr(z'l )HPr(AP | ‘rp,ﬁ)Pr(‘rp | rpf,,v) (4.10)
p=2

where Pr(z|7,.1,v) models the dependency between adjacent topologies. In theory,
Pr(z|z,-1,v) could model recombination accurately and assign a lower probability to to-
pology changes that involve a larger number of SPR operations. In practice, every topol-
ogy change is considered equally likely. As Pr(z,|7,-1,v) is only conditional on the neigh-
boring topology 7,.1, the state sequence T can be represented with a hidden Markov model
and inference is tractable even for larger alignments. Maximizing Pr(A,t|0,v) with respect
to T, 0 and v results in the maximum likelihood estimate of the local trees T and the re-
combination probability v. The actual optimization is carried out with an expectation-
maximization algorithm, where the E-step estimates the probability of the topologies T
given the other parameters and the M-step maximizes the likelihood of the other parame-

ters 0 and v. The Bayesian approach uses Markov chain Monte Carlo (MCMC) to sample
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topology sequences T from the posterior. The Bayesian approach is implemented in TO-
PALi (Milne, Wright et al. 2004) and is referred to as HMM analysis in the following.
The result of an HMM analysis can be visualized by plotting the posterior distribution for
each topology along the sequence positions. Recombination is detected if the posterior
suggests different topologies for different positions in the alignment.

The HMM analysis is similar to the MCPM approach, but models transitions between
topologies in more detail. Nevertheless, recombination is not correctly modeled as an
SPR operation on rooted, ordered binary trees, and the parameters 0 are also fixed for
each possible topology. The restriction to only four input sequences is very limiting in a
practical setting. It is difficult to select four sequences from the alignment such that the
recombination signal is clearly shown in the analysis. An unknown alignment requires
extensive manual interaction and a lot of experience to consolidate the information from
several runs with different sequence subsets. As a result, the HMM method is more inter-
esting from a theoretical point of view than it is for practical use.

4.3.6 Methods That Infer a Restricted ARG

There are several methods that reconstruct a restricted version of the ARG and avoid the
NP-complete recombination parsimony problem. Nevertheless, some approaches still

have a very high computational demand.

4.3.6.1 RecPars

Hein (Hein 1990) not only described the recombination parsimony problem (see section
4.2.7), but also introduced several algorithms to arrive at an approximate solution. The
first approximation is based on the fact that the number of rooted, ordered binary tree to-
pologies grows much faster than the number of unrooted tree topologies. Therefore and
since inferring the root position is usually a difficult problem, only unrooted topologies
ideally would be considered in the algorithm. However, every SPR operation on an un-
rooted topology introduces constraints on the possible position of the root, and this in-
formation has to be carried over as a restriction for subsequent SPR operations. Hence,
Hein (Hein 1990) described how to restrict the search algorithm to root restricted topolo-
gies, a class of topologies between unrooted and fully rooted topologies. Interestingly,
Hein (Hein 1993) later found out that this algorithm does not accurately solve the recom-
bination parsimony problem. Root restricted trees ignore the ordering of nodes and the
SPR operations may not represent recombination correctly. We cannot avoid considering
all rooted, ordered binary tree topologies if recombination is modeled correctly.

Based on the formulation of recombination parsimony as a dynamic program, Hein (Hein
1993) developed a heuristic algorithm called RecPars. RecPars makes several simplifying
assumptions. First, for each site at most one recombination is allowed that has a break-
point just right to the site, so that neighboring trees only differ by a single SPR operation.
Second, the correct tree topology for the first site should be known. Finally, only un-
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rooted topologies are considered. The relative ordering of coalescent events is ignored
and it might be impossible to interpret an SPR operation as a single recombination event.
RecPars then determines the topologies for each site by scanning the alignment from left
to right. Given the correct topology at the first site, RecPars considers all topologies that
are one SPR operation away for the second site. As the dynamic program progresses to-
wards the last site, it may become optimal to switch to another topology. If this happens,
all topologies that are one SPR operation away from the newly optimal topology are gen-
erated and the dynamic program only continues to scan these topologies for optimality for
the following sites. As soon as the alignment is fully processed, the topology for each po-
sition can be recovered and the breakpoints can be estimated, too. Hein (Hein 1993) also
describes a heuristic for optimizing the initial tree. The tree for the full alignment, or al-
ternatively for the first couple of sites, is reconstructed as a preliminary estimate for the
initial tree. Then, RecPars performs a full scan from left to right, determining the trees for
each site and in particular for the last site. The hope is that the optimized tree for the last
site does not depend much on the potentially wrong estimate of the initial tree and should
therefore be more accurate than the initial tree estimate. Using the tree for the last posi-
tion as input, RecPars then performs a final run from right to left and recovers the optimal
solution.

There are several aspects that may cause RecPars to find a suboptimal solution, even if
there is at most one recombination per site. First, restricting the analysis to unrooted to-
pologies misses recombination events that do not change the unrooted topology, but
cause a change of the rooted, binary topology. Fortunately, this does not falsely infer re-
combination events and only reduces the power of detecting recombination. Second, a
wrong initial tree may affect the solution of RecPars, but the details of this effect are un-
clear. Finally, if there are multiple topologies that involve the same cost, RecPars only
greedily follows a single topology and may miss the optimal path through the tableau.
The work of Hein (Hein 1990; Hein 1993) is groundbreaking in many respects. It intro-
duces the fundamental recombination parsimony problem and also describes many details
of recombinations as SPR operations. However, the complete definition of a recombina-
tion as an SPR operation on rooted, ordered binary trees was developed later in (Song and
Hein 2003; Song 2006). In comparison to other approaches, Hein models the correlation
between adjacent trees accurately and does not rely on the vague criterion of different
trees for different regions. RecPars is also one of the few methods that attempt inferring
the full history of a set of sequences. Even though the basic approach is very promising,
RecPars is limited by the assumptions it introduces. RecPars can only detect recombina-
tion in unrooted topologies and is therefore restricted to alignments with more than three
sequences. The solution that RecPars proposes also depends heavily on the cost for re-
combination. It can be difficult to judge whether the recombination events RecPars infers
are correct or if they are the result of recurrent mutations and a low cost associated with
recombination. The column permutation test can be used to compute the p-value for re-
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combination in the alignment, for example by comparing the inferred number of recom-
bination events in the original and in the permuted alignments (Posada and Crandall
2001). But it is actually not clear how to derive p-values for other parts of the output of
RecPars. Power studies (Posada and Crandall 2001; Wiuf, Christensen et al. 2001) have
shown that the p-value derived from RecPars often performs worse for detecting recom-
bination than simple methods, such as the MC* method or NSS. In special scenarios, such

as exponential growth, RecPars performs better than simple methods.

4.3.6.2 Minimal Ancestral Recombination Graph (MARG)

The MARG method (Song and Hein 2005) models recombination accurately as an SPR
operation on rooted, ordered binary trees. In comparison to RecPars, it does not only
model recombination on unrooted topologies, allows for more than one recombination
event with the same breakpoint position and does not require a correct topology for the
first site as an input. In other words, the MARG method attempts to solve the recombina-
tion parsimony problem accurately. Unfortunately, it is even difficult to compute the min-
imum number of SPR operations for transforming a rooted, ordered binary tree into
another. A simple solution is to precompute all trees that are one recombination away for
every rooted, ordered binary tree and use the stored results later in the algorithm. Interes-
tingly, this representation works particularly well for the infinite sites model, because the
recursion equations of the dynamic program in (4.2) can be nicely adapted to it. Align-
ments of about 10 sequences can be processed in reasonable time in this case. It is possi-
ble to extend the algorithm to the finite sites model, but the recursion equations involve a
large state space (see section 4.2.7) and require a prohibitive running time.

The MARG method provides many insights into the combinatorial structure of the re-
combination parsimony problem, particularly with respect to SPR operations on rooted,
ordered binary trees. As far as the recombination analysis of real world sequences is con-
cerned, it is unclear if the assumptions introduced by RecPars are more deteriorating than
the infinite sites assumption of the MARG method. The validation of the MARG method
only considered evolutionary scenarios that satisfy the infinite sites assumption and com-
pared it to several other methods estimating the minimum number of recombination

events.

4.3.7 Estimators of the Recombination Rate p

Several estimators of the scaled recombination rate p have been developed based on the
coalescent framework. Estimators of the recombination rate are concerned with properties
of the population, such as the overall recombination rate or the local variation of the re-
combination rate. They usually do not attempt to analyze the recombination signal in
more detail and estimate the recombination structure of a single sequence, for example.

Estimates of p are very useful for studies that map disease genes, but they can also be
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used to detect recombination in the alignment or the locations of recombination hotspots
(Stumpf and McVean 2003).
There are three different categories of estimators (Stumpf and McVean 2003). Moment-
based estimators use simple summary statistics to estimate p and are usually fast, but not
very accurate. Approximate likelihood estimators compute the likelihood of p for the
whole alignment by summing the likelihood of p for parts of the alignment (Smith and
Fearnhead 2005). For example, Hudson’s method (Hudson 2001) sums the likelihood of
p for every pair of sites i and j to obtain the likelihood estimate of p for the whole align-
ment. Finally, full-likelihood approaches compute the probability distribution of p given
the alignment and are very accurate, but extremely slow.
The full-likelihood approaches are of particular interest as, in principle, they can estimate
other quantities as well. RECOMBINE (Kuhner, Yamato et al. 2000) samples a set of
ARGs from the posterior probability
Pr(4|G)Pr(G|p,.6,) 4.11)

where Pr(4|G) is the probability of the alignment given an ARG G and Pr(Glpo,6p) de-
notes the coalescent probability of the genealogy G depending on some starting parame-
ters po and . Pr(4|G) can be computed by methods known from maximum likelihood
phylogenetic tree inference. Given the sampled ARGs, RECOMBINE then approximates
the joint likelihood distribution Pr(4|p,f) for the population genetic parameters p and 6
and computes their maximum likelihood estimate. The estimate is biased by the starting
parameters po and 6o, such that the method should be rerun several times with the maxi-
mum likelihood estimates as the input. Interestingly, it is also possible to approximate the
likelihood distribution of other statistics that depend on the sampled ARGs, for example,
the probability for recombination between every site.
RECOMBINE can also be used for detecting recombination in an alignment (Brown,
Garner et al. 2001). Unfortunately, it is difficult to infer that the recombination rate is ze-
ro, as there might have been invisible recombination events in the alignment. An ap-
proach to avoid this difficulty is to use a likelihood ratio test:

LRT:L(A|p:O)/n1;¢71x{L(A\p)} (4.12)

Recombination is then detected if the likelihood ratio test statistic LRT is significantly
large than the LRT for alignments simulated without recombination. Brown and cowork-
ers conducted a power study with a protocol that has a small bias in favor of the likelih-
ood ratio test. The power study showed that the likelihood ratio test performs much better
than some of the best classical methods, such as Geneconv or NSS. Hence, there is still
room for further improvement in recombination detection.

Even though full-likelihood estimators are a promising approach for the analysis of re-
combination, there are several problems that often prevent their application in practice.
The user usually has to correctly set several parameters, such that the method samples
enough genealogies and the estimate converges. Unfortunately, it is difficult to assess
whether the method already sampled enough genealogies. This is not a problem specific
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to RECOMBINE and affects other approaches as well (Fearnhead and Donnelly 2001).
The running time of the full-likelihood estimators are usually in the order of hours or
even days for alignments with 10,000 sites and 50 sequences (Fearnhead and Donnelly
2001). Finally, full-likelihood estimators only approximate the likelihood of the recombi-
nation rate p or the recombination rate at every site. As the estimated quantities become
more complex, RECOMBINE has to sample a lot more genealogies to arrive at a good
estimate of the likelihood.

4.3.8 Other Methods and Problems

There are many publications that propose an optimization problem related to the analysis
of recombination and then analyze the complexity of the problem or develop algorithms
for finding an optimal or near-optimal solution. However, it is often difficult to judge
whether the optimization problem is relevant for the analysis of recombination, particu-
larly as the algorithms are often not implemented and usually not validated on realistic
datasets. Important questions for an application in practice are often ignored, for example
measuring the robustness of the output. Still, these publications can be a great resource
for finding problem settings related to recombination parsimony, which are solvable in

polynomial time or have other desirable properties.

4.3.8.1 Methods Related to Recco

The next chapter introduces Recco, the method developed in this thesis. Several optimi-
zation problems in literature are related to Recco, but do not fit the definition of recombi-
nation analysis as described before.

Kececioglu and Gusfield (Kececioglu and Gusfield 1998) study the problem of recon-
structing a spanning history of a set of sequences allowing for mutation and recombina-
tion. The input can be an arbitrary set of sequences and does not require a multiple
alignment. The history of a set of sequences is modeled by a path in a directed hyper-
graph. Each edge in the hypergraph connects three nodes: two parental nodes and the
child node. The sequence of the child node can be derived by recombination from the
parents. The problem is then to find the pair of sequences in the dataset and a path in the
hypergraph such that all sequences in the dataset are reconstructed with minimum cost.
Even though this problem is NP-complete in general, it can be solved in polynomial time
for restricted models of the recombination operator. The authors also introduce a dynamic
algorithm that reconstructs a child sequence with minimum cost from the two parental
sequences, allowing for mutation and unequal recombination. As described earlier, the
effect of unequal recombination is similar to allowing for insertions and deletions. The
complexity of the algorithm for the most general case is O(N?).

Lajoie and El-Mabrouk (Lajoie and El-Mabrouk 2005) use a multiple alignment as input
and derive a query sequence in the alignment from the other sequences, allowing for mu-
tation, recombination and gene conversion. As for the jumping alignments method, every
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Recombination

Figure 4.6: The query sequence consists of all 1’s and is not shown in the multiple
alignment. The method (Lajoie and El-Mabrouk 2005) then explains the query se-
quence by a path from left to right through the alignment. The path is visualized by the
1’s that are colored red. Each transition to another sequence is either caused by a gene
conversion or by a recombination event. Gene-conversion event 1 integrates part of
sequence H3 into H4. The resulting sequence is then subject to gene-conversion event
2 and so on. Irrelevant parts for the gene-conversion events are not enclosed in a co-
lored box for simplicity. The example is adopted from (Lajoie and EI-Mabrouk 2005).

position of the query sequence is derived from a single sequence in the alignment. Con-
sequently, the query sequence can also be described by a path from left to right through
the multiple alignment (see Figure 4.6). The optimal solution is computed by dynamic
programming in time O(NMS?), where S is the maximum length of a segment exchanged

by a gene conversion event.

4.3.8.2 Bounds on the Minimum Number of Recombination Events

Suppose that the sequences in the input alignment evolved according to the infinite sites
model. As there are no recurrent mutations in this case, each local tree fits the mutation
pattern perfectly and the total number of mutations is equal to the number of polymorphic
sites. Thus, the recombination parsimony problem (see section 4.2.7) does not have to
penalize for mutations, but only has to minimize the number of recombinations in the in-
ferred history. An important problem in this setting is to infer the minimum number of
recombination events R,;, necessary to explain an alignment. Unfortunately, even this
problem is very difficult. A variation of the problem where the sequence of the MRCA is
given, is claimed to be NP-hard (Wang, Zhang et al. 2001; Song, Wu et al. 2005). One
approach for computing R, is the MARG method (see above). There are several other
methods that provide lower bounds for R,,;, (Myers and Griffiths 2003; Bafna and Bansal
2004; Song, Wu et al. 2005), but even newer methods often need minutes to process
alignments with less than 1000 sites and 25 sequences if an accurate bound is desired
(Song, Wu et al. 2005).

The column permutation test can be used to compute a p-value for recombination in the

alignment based on the approximate value R,;,. But the high computational demand
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usually forbids such an approach. Nevertheless, a comparison of these methods with oth-
er recombination detection programs would be of general interest, as the impact of the
infinite sites assumption could be assessed. However, the field is mainly concerned with a
better and faster estimate of R, and validation is usually restricted to alignments simu-
lated according to the infinite sites model.

4.4 Comparison of Methods for the Analysis of Recombination

Table 4.1 lists most methods of the previous section and compares them regarding accura-
cy, speed and output. Most comparisons in the table are qualitative and approximate. The
reader should refer to the corresponding section for more details on each method. The
table also lists Recco, the method developed later in this thesis. It is usually difficult to
compare the accuracy of the methods objectively if the method is not evaluated in one of
the power studies (Posada and Crandall 2001; Wiuf, Christensen et al. 2001). Moreover,
the comparison in the power studies only refers to the power of detecting recombination,
but does not evaluate the accuracy of more detailed predictions, such as predicting the
recombinant sequence or the breakpoint. The power study presented in section 7.1 is
more detailed and provides a comparison of Recco with Geneconv, NSS, PHI, RecPars
and the MC? method regarding the power of detecting the recombinant sequence, too.
The table also does not convey if the output of a method is easy to interpret. Finally, the
table lists whether it is possible to treat gaps as missing data, but the reasoning is devel-
oped later in chapter 6. Some methods such as TOPAL also do not implement a sensible
gap model even though they could do so in principle.

The most important criterion for comparing methods is accuracy. It is surprising that
simple methods based on the distribution of mutations (section 4.3.1) or on compatibility
(section 4.3.2) perform consistently well for detecting recombination in an alignment.
They are also very fast and do not depend on any important input parameter such as the
window size. Unfortunately, these methods do not easily allow for a more detailed analy-
sis of the recombination signal. Geneconv and MC? only detect recombination in a se-
quence pair, but not in a single sequence and also do not estimate the structure of a re-
combinant sequence. Methods that optimize breakpoints and compare local trees (section
4.3.5) may perform similarly or better than the simple methods. However, they require
much more computation time and are usually not validated on a larger dataset. The output
of these methods is a sequence of unrelated trees and is usually difficult to interpret. An
exception is the MCPM in the case of subtyping, as it has been adapted specifically for
subtyping.

Few methods enable inferring the structure of recombinant sequences or can solve the
more restricted subtyping problem (section 4.3.3). Most methods for subtyping (section
4.3.3) implement very simple strategies that probably do not perform well in practice.
The jpHMM is an exception from the rule, but it does not compute p-values and is not

suitable for recombination analysis in general. Methods that compare local trees and use a
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sliding window (section 4.3.4) allow for a more detailed analysis of the recombination
signal and are therefore very popular. Unfortunately, they do not perform well for detect-
ing recombination in an alignment and probably are also inaccurate regarding the other
predictions. The window size is also critical, as it selects between resolution and robust-
ness of the inferred breakpoint locations.

Methods that try to infer the ARG by maximum parsimony (section 4.3.6) are particularly
interesting, as they model the ARG quite accurately. The output is a sequence of trees
related by SPR operations and in principle allows addressing all questions in recombina-
tion analysis. The recombination parsimony problem would be an interesting gold stan-
dard for recombination analysis if it could be solved in reasonable time. As this is not
possible, the methods introduce several simplifying assumptions. The MARG method
falsely infers recombination events if there are recurrent mutations and is probably inap-
propriate for real alignments with a lot of mutation. RecPars only infers SPR operations
on unrooted topologies and may return a history of recombination and mutation events
that cannot be represented as an ARG. The approximation of RecPars is conservative and
does not falsely infer recombination events. RecPars does not perform as well for detect-
ing recombination in an alignment, but its false detection rate is also often very much be-
low 0.05.

An important criterion for practical use is also that an implementation is readily available
and easy to use. Besides the web-based methods for subtyping, there are several stand-
alone programs. The website of Robertson
(http://www.bioinf.manchester.ac.uk/recombination/programs.shtml) is an excellent re-
source for finding recombination detection programs. Geneconv is a robust and extremely
fast command-line program that is ideal for a comparison method in power studies.
Likewise, PHI is also very fast and implements the PHI method, the MC? method and
NSS. RecPars was also implemented as a command-line program
(http://www.daimi.au.dk/~compbio/recpars/recpars.html) and is also quite fast. RDP
(Martin and Rybicki 2000; Martin, Williamson et al. 2005) provides a very comprehen-
sive analysis tool and combines many different methods in a single GUI, for example the
MC? method, Geneconv, PhylPro, Bootscanning and TOPAL. Unfortunately, RDP is still
beta and crashes quite often. Simplot (Lole, Bollinger et al. 1999) is a very popular pro-
gram for recombination analysis and computes and visualizes a Bootscanning analysis of
an alignment. TOPALi (Milne, Wright et al. 2004) robustly implements the methods
TOPAL, PDM and HMM and also provides a simple GUI. Other implementations are

less relevant for the analysis of recombination or simply do not work.

4.5 Conclusion

In comparison with tree-based phylogenetic analysis procedures, procedures for analyz-
ing recombination are immature. Recent power studies on recombination detection me-

thods uncovered that it can be hard even to decide whether there is recombination in a set
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of aligned sequences (Posada and Crandall 2001; Wiuf, Christensen et al. 2001) and that
it is still possible to improve the accuracy of current methods (Brown, Garner et al.
2001). A more detailed analysis of the recombination signal is even more challenging and
includes detecting the recombinant sequences, the recombination breakpoints or estimat-
ing the structure of a recombinant sequence. Only few methods perform an analysis of
recombination in this detail. But they do not perform well for recombination detection,
and it is questionable whether their other predictions are more accurate. The best methods
for detecting recombination in the alignment scan the alignment for an unequal distribu-
tion of mutations or incompatible sites, but cannot estimate the structure of a recombinant
sequence. These methods also do not model recombination accurately. It is often difficult
to interpret the output of the method and extract recombination and mutation events. As
the methods only search for indirect evidence of recombination, such as a change of the
tree topology across the alignment, they may also falsely detect recombination for specif-
ic evolutionary scenarios.

There are several methods that model recombination more accurately and infer a limited
version of the ARG, for example based on parsimony or maximum likelihood. As the un-
derlying problem is intractable for all but the smallest alignments, the methods have to
define a restricted version of the problem. The corresponding model assumptions are
usually much more transparent than for methods that do not model recombination direct-
ly, and the resulting limitations of the method are more clearly defined. It is often possi-
ble to interpret the output as an ARG and extract many details of the inferred recombina-

tion and mutation events.
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5 Recco — Recombination Analysis Through Cost Op-
timization
The following chapter introduces Recco (Maydt and Lengauer 2006), the method for re-
combination analysis developed in this thesis. The fundamental idea of Recco is to recon-
struct one sequence in the alignment from the other sequences using mutation and recom-
bination, such that the sum of costs for mutation and recombination is minimized. The
optimization problem can be solved efficiently by dynamic programming and introduces
parameters for the mutation and recombination cost (see section 5.2 and 5.3). In practice,
a single parameter a representing the cost of mutation against recombination cost is
usually sufficient. The minimum-cost solution identifies the best recombination break-
points and the parental sequences for the query sequence. But the minimum-cost solution
heavily depends on the parameter a and does not provide a measure of robustness. Recco
addresses these problems by two types of sensitivity analysis for the optimization prob-
lem (see section 5.4). The first analysis studies the minimal cost of configurations that are
close to the minimum-cost solution regarding their configuration and identifies critical
and robust parts of the minimum-cost solution for a fixed a. The second analysis de-
scribes a parametric analysis regarding a, such that all pareto-optimal solutions can be
recovered. Particularly the second analysis is useful in practice and allows for computing
the Savings value, an intuitive indicator of recombination in the query sequence. The
Savings value measures how many mutations can be eliminated from the solution by in-
troducing one additional recombination. Section 5.5 then draws the connection to the
ARG and describes the Savings value and the pareto-optimal solutions that we would ex-
pect for an alignment simulated according to a known ARG. Section 5.6 brings the dif-
ferent parts together and describes the full analysis performed by Recco. Recco computes
p-values for recombination in the alignment, in a sequence and for a breakpoint using the
column permutation test. But Recco also introduces the concept of a recombination event
list and determines a cutoff, such that a robust hypothesis for the query sequence is ex-
tracted. Section 5.6 also describes a simple heuristic that avoids an inherent limitation of
the Recco analysis: the basic approach cannot identify a recombination event for a se-
quence if there is a highly similar sequence contained in the alignment. This limitation is
not critical for a manual analysis, but has a negative impact on the fully automated re-
combination detection performance. Finally, section 5.7 discusses several options for im-

proving the speed of the Recco analysis.

5.1 An Example Alignment

In order to illustrate Recco, I refer to the same sequence alignment throughout the discus-
sion. The alignment was generated by the program Seq-Gen (Rambaut and Grassly 1997)
using the genealogy depicted in Figure 5.1. Sequences R1 and R2 are created by recom-
bining the ancestor of A1l to the left of the breakpoint with the ancestor of B1 to the right
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A2 A1 R1R2B1 B2

Figure 5.1: The genealogy used for generating the example alignment. See the text for

details.

of the breakpoint and only differ by mutations that occurred after the recombination
event. The breakpoint occurs in the middle of the sequence after the 50 nucleotide and
all sequences have a length of 100 nucleotides. Nucleotide substitution was simulated
with the Jukes-Cantor model of nucleotide evolution (Jukes and Cantor 1969) (see sec-
tion 3.2) such that there are on average 0.25 substitutions per site from the root to any of
the tips of the genealogy. The alignment is shown several times throughout this chapter,
for example in Figure 5.6. The alignment poses a particular problem for Recco, as both
recombinants R1 and R2 are very similar. Hence, the discussion usually refers to the
alignment without sequence R2 for the purpose of the exposition. The full alignment in-

cluding sequence R2 is analyzed in section 5.6.6.

5.2 The Basic Optimization Problem

Recco takes a multiple alignment as input and uses one sequence of the multiple align-
ment as the query sequence. In the following, assume that the query sequence is removed
from the multiple alignment, as this representation is more suitable for the mathematical
presentation. To be more specific, N is the number of sites in the alignment and M is the
number of sequences excluding the query sequence. The multiple alignment excluding
the query sequence is represented by a matrix A where 4, is the p-th nucleotide of the
i-th sequence and 4; represents the i-th sequence of the alignment. Let s=s,,...,sy be the
nucleotide sequence of the query. Let ma «(7,2)>0 be the cost of substituting 4;, with s,,.
As many functions depend on A and s in the following, these dependencies are omitted
and my (i,p) is referred to as m(i,p). A common choice in practice is to use Hamming dis-
tances and set m(i,p)=&4p.s,) Where &x,y) is defined as &x,y)=0 if x=y and &x.,»)=1 oth-
erwise. Recombination cost is measured by 7(i,/,p)>0 and represents the cost of recombin-
ing A; on the left side of position p with 4; on the right side, hence resulting in the se-
quence A;,...,Aip,Ajp+15...,4jn. Note that this definition is different from the publication
of Recco (Maydt and Lengauer 2006), as r(i,j,1) refers to a recombination affer the first
nucleotide. It makes sense to set 7(i,i,p)=0 for all i and p, as this does not represent a visi-
ble recombination event. We usually also assume for the theoretical analysis that the re-
combination cost does not depend on the donor and acceptor sequences 4; and 4;, but on-
ly on the position p. In other words, r(i,j,p)=&i,j)r(p), where r(p) is the cost of a recom-
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bination at position p. All empirical analyses use an even simpler setting, the so-called
Hamming distances for recombination cost: r(i,j,p)=&i).

The goal is to find a series of mutation and recombination events that produce the query
sequence from the sequences in A with minimum cost. A more suitable representation of
the series of events in our case is a path u=(u,...,uy) through the alignment, where
u,e{1,...,M} for all p determines which sequence of the alignment is used to explain po-

4

uy N

sition p of the query sequence. In other words, a path u defines a sequence s'= 4

composed of the sequences in 4 and introduces a mutation event if 4,  #s,. The total cost

of mutation from s to s’ is then M(u,1,N), where

,

M(u,x,y) =Y m(u,,p) (5.1

=
is the cost of mutation in the interval [x,y]. The path u also introduces recombination
events at, or more exactly directly after the positions A(u)={p|u,#u,+ } in the alignment.
The recombination cost associated with a path u is defined as R(u,1,N), where R(u,x,y) is
the recombination cost in the interval [x,y]:

y-1

R(u,x,y):Zr(uP,ulH,,p). (5.2)

The total cost of a path u is ¢,(u,1,N), where ¢,(u,x,y) is the total cost in the interval [x,y]
and the parameter a.€[0,1] weighs mutation cost against recombination cost:

@, (u,x,y) =(1-a)R(u,x,y) +aM (u,x,y). (5.3)
A path u is called a-optimal or an a-optimal solution if it minimizes ¢,(u,1,N) for a given
o and therefore if ¢q(u,1,N)<pq(v,1,N) for all paths v. The basic optimization problem
then finds all a-optimal paths for a given a:

N-1 N
argmin ¢, (u,1, N) = arg min {(l —a)y r(u,,u,,,p) oy m,, p)} . 5.4
" " Pl =

The parameter o accounts for the fact that a recombination event can always be substi-
tuted by mutation events. If a is close to zero, the a-optimal paths favor mutations. As a
converges towards zero, the a-optimal path eventually explains the query sequence only
by mutation from the closest sequence i. For =1 recombination costs nothing and each
a-optimal path uses a nucleotide 4;, that is most similar to s, at each position p.

If we use Hamming distances for recombination cost and mutation cost, each recombina-
tion costs as much as (1-a)/a mutations. For example, each recombination costs as much
as four mutations if =0.2. In other words, a quantifies the global preference for recom-
bination against mutation. Hence, the mutation cost m(i,p) and the recombination cost
r(i,j,p) can be designed and normalized independently from each other. They model prior
knowledge on the recombination and mutation process, such as local changes in recombi-
nation and mutation frequency. A mutation hotspot or a position p in a variable region
might have a lower cost m(i,p) for substitution than other positions. Also, mutation to a

rare nucleotide can incur a higher cost than mutation to a common nucleotide, thereby
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accommodating nucleotide composition bias. There are many publications on methods
estimating mutation rate heterogeneity (Pesole and Saccone 2001; Meyer and von Haese-
ler 2003) or global mutation rate matrices (Altschul 1991; Henikoff and Henikoff 1992),
although some of these assume a tree-like evolutionary history and may not directly apply
to recombinant sequences. But in principle, the resulting information is easily incorpo-
rated into the mutation cost.

The recombination cost parameter 7(i,j,p) can also vary among positions and capture the
lower cost at recombination hotspots. However, it is also possible to model much more
complex effects, as r(i,/,p) also depends on the sequence pair (i,j). For example, several
mechanisms proposed for HIV recombination (see section 2.1.3.1) depend on the donor
sequence i, on the acceptor sequence j or on the pair of parental sequences (i,/) that pro-
duce the recombinant. Such effects can easily be accounted for by increasing or decreas-
ing the respective recombination cost 7(i,/,p) in a preprocessing step. But as the prevalent
recombination mechanism is unknown, it is more conservative to use Hamming distances
for r(i,j,p) or a similarly simple setting. Imposing a structure on r(i,j,p) affects the solu-
tion and complicates its interpretation considerably. For example, the solution favors re-
combinations at positions p where r(p) is small. Furthermore, all proofs in this chapter
depend on the assumption that 7(i,j,p)=&i,j)r(p) or even r(ij,p)=Xiy), as the structure of
the optimal path is much more complex otherwise and does not allow for an analytical
result. It is also possible to develop a faster solver for the optimization problem if

r(ij,p)=&ij)r(p). Finally, all empirical analyses in this thesis use the simple settings of
m(i,p)=Adip,sp) and r(iyj,p)=&ij)-

5.3 Formulation as a Dynamic Program

Several additional definitions are used in the following. A path u is (a,p)-prefix optimal if
all paths v with v,=u,, satisfy ¢,(u,1,p)<p.(v,1,p). In other words, there is no cheaper path
v for positions 1 to p ending in sequence u,. The cost of an (a,p)-prefix optimal path end-
ing in sequence u, is therefore

Jopp =, min {o, (w1, p)}. (5.5)

A path u is (a,p)-suffix optimal if all paths v with v,=u, satisfy ¢.(u.p,N)<g.(v.p,N). The
cost of an (a,p)-suffix optimal path ending in sequence u), is
b“//_p = min {(/1” (u,p,N)} . (5,6)

Clearly, an (a,p)-prefix optimal path is (a,p-1)-prefix optimal and an (a,p)-suffix optimal
path is (a,p+1)-suffix optimal. It also follows directly from the definitions above that an
o-optimal path u is (a,N)-prefix optimal and (a,1)-suffix optimal. However, an
(a,N)-prefix optimal path is not necessarily a-optimal, as there might be a path that does
not end in sequence uy and involves a lower cost. An (a,N)-prefix optimal path u ending

in sequence uy is a-optimal if and only if there is no other (a,N)-prefix optimal path v
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with ¢q(v,1,N)<g.(u,1,N). These observations carry over to suffix optimality in a similar
way.

The proposed optimization problem (5.4) can be solved efficiently by dynamic program-
ming, as the cost function is separable (Domschke and Drexl 1998):

Observation “Separability of the Cost Function”:
The cost function ¢, is separable into ¢,(u,x,y)=(u.x,z)t@(u,z+1,)+(1-a)r(u.,u.+1,z) for

any x,y,z with x<z<y.

Proof:
The recombination and mutation cost functions can be decomposed for any x,y,z with

x<z<y:

y

Mux,y) = Yy, p) = 3y p)+ Y mG,p)

p=z+l

=M(u,x,z)+M(u,z+1,y) (5.7)

y-1

y-1 z-1
R,x, ) = (i, p) = D <ttt p)+r(e_ ., )+ Y .1, p)
p=x 1

p=x = p=z+

=R(w,x,z)+R,z+Ly)+r(u, ,u,,,,z)
Consequently, the cost function ¢, can also be decomposed for any x,y,z with x<z<y:

9, (u,x,y)=(1-a)R(u,x,y)+aM(u,x,y)

=(-a)[Ru,x,2)+ R,z +1, )+ r(u,,u,,,2)|+a[M@u,x,z)+ Mu,z+1,y)] (5.8)

=0, (0,x,2)+ ¢, (u,z+1, y) + (1-a)r(u,,u.,,,2)

5.3.1 Forward Recursion Equations

The forward recursions construct an (a.p)-prefix optimal path u ending in sequence u,
based on an (a,p-1)-prefix optimal paths v ending in some sequence v,.;. In other words,
the dynamic program only considers two columns in the alignment at a time and finds the
transitions (u.1, ) at position p, such that path u is (a,p)-prefix optimal. It is quite easy

to derive the forward recursion equations for computing the cost of a prefix optimal path:

oy = min {g, (wlp)}= r;l{‘rl{ll‘fg§§7{¢a(u,l,p)}}

Uyl

:min{ min {(pa(u,l,p—l)Jr%(u, p,p)+(1—a)r(upil,up,p—l)}}

[ (P

~min min {g, (w1, p =D} 0,0 p.p)+ (=), 1, p D) (59)
= min {f.,,,,_,,,, +9,(uwp,p)+(-a)r(u, ,u,,p —')}
=min{/, . +(-a)r, .u,p-D|+am,,p)

The recursion is terminated by the cost f, | =am(y,1) of an (a,1)-prefix optimal path end-

ing in any sequence u;€{1,...,M}. We can rewrite the recursion equations without refe-

rencing a path u, as the equations only depend on the source and destination sequences j
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Figure 5.2: The structure of the dynamic program tableau is shown for the forward re-
cursions. The circles represent the cost f;, and b, in the tableau. The diamonds and the
boxes specify the place at which recombination and mutation occur, respectively. In-
side the boxes, the mutation cost relative to the putative recombinant s is given. The
vertical double lines separate the stages of the dynamic program and also visualize that

the actual sequence A4, corresponds to the values fj, and 5,. An o-optimal path

u=(2,2,1,1) for a=1 is marked with a red line and explains the putative recombinant s
by A and 4, using one recombination and no mutation event. The forward recursion
initializes the leftmost circles with 0 and solves the dynamic program from left to
right. The value for each circle is computed by considering all possible transitions
from the circles one position to the left.

and 7, respectively. For implementation, it is also more convenient to introduce a dummy
state at position 0 with f;(=0 for all sequences i and define r(7,j,0)=0 for all sequences i
and j, resulting in the following recursion equations
Sy =min{f, . +(=a)r(ji.p =D} +ami.p)
fa=0 '

The tableau shown in Figure 5.2 is a more intuitive representation of the recursion equa-

(5.10)

tions above. The dynamic program then computes the optimal values for f;, from left to
right in the tableau. The cost of an a-optimal path is the minimum of fiy over i — the mi-
nimal cost of an (a,N)-prefix optimal path ending in any sequence i. Section 5.3.3
presents details on recovering the a-optimal paths from the tableau.
The forward recursions require O(NM?) time and O(NM) space for the tableau. For the
common case if #(i,j,p)=&ij)r(p) and r(p)>0 for all p the time complexity can be reduced
to O(NVM). The idea is to precompute the minimum of f; ,.; regarding j once

MinCost(p) = m’m{/u)} (5.11)

and rewrite the forward recursion equations to handle the case /=j in the minimization

separately:
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Sy =min{f, ., +1=a)8G))r(p=-D}+amli.p)

i
mm{ ot + (=8 (p=D} -1 + (=30 (p= D)+ am( p)
(5.12)
{mm Sy} + A= (p=Df, ., |+ am,p)
=min {MmCost(p -D+(-a)r(p-1), 1, } +am(i, p)
In other words, either there is a transition without recombination from f; i to f;, or there
is a transition with recombination to fj, from one of the f;,.; involving minimal cost. Both

cases can also occur simultaneously.

5.3.2 Backward Recursion Equations

The backward recursion equations for recovering the cost of suffix optimal paths are de-

rived analogously to the forward recursion equations for prefix optimal paths:

b, = r‘nm {0, (u,p,N)} = m,in {bwm +( —a)r(i,j,p)}+am(i,p)

(5.13)
by, =0
The backward recursions do not correspond to the tableau shown in Figure 5.2, as by,
measures the cost ending in sequence 7 including the mutation cost for position p. It is
sometimes more intuitive to define backward recursions corresponding to the tableau in
Figure 5.2, particularly for the forward-backward analysis presented in section 5.4.1:
b, =b, —am(i.p)
= min{ on (1= a)r(i,j,p)} +am(i, p)—am(i, p) 514
—mln{b, o tam(j,p+)+1-a)rG, J, p)} ©-14)
by =0
The same idea as for the forward recursion leads to a faster algorithm if #(i,j,p)=&i.j)r(p)
and 7(p)>0 for all p. The time complexity for the backward recursions is O(NM) if the

minimum of b;, over i is precomputed:
b,, = min {mm {b/,,m } +(-a)r(p).b, ., } +am(i, p) (5.15)

and substituting b, =5, +am(i, p) gives

b, = min{mln {b

Jap+l

+am(j, p+ D} +(1=a)r(p)b, ., +am(i, p+1)| . (5.16)

5.3.3 Recovering the Set of a-Optimal Paths

There is often more than one a-optimal path for the optimization problem, particularly if
o is large and if there are many recombinations in the a-optimal paths. Recovering only a
single a-optimal path is not acceptable in this case. The recombination breakpoint can
vary greatly between different a-optimal paths, and a single a-optimal path does not suf-
fice to describe the solution space. Unfortunately, the number of a-optimal paths grows
very quickly with increasing a, so that it is not possible to recover all a-optimal paths in
general. There are two approaches to this problem: we can summarize the set of
o-optimal paths and only recover the positions of the recombination breakpoints.

105



A

O O
(@) (b)

Figure 5.3: Two adjacent columns of the dynamic programming tableau are shown,
where circles correspond to the values fj, as in Figure 5.2. It is sufficient to focus on
transitions between any two adjacent columns in the dynamic program, as the rest of
the tableau is immaterial for finding the optimal transition between these columns. (a)
Only transitions to the red circle are visualized. The recursion equations for the red
circle are only satisfied for transitions coming from the blue circles. The paths passing
through the blue circles from the left are independent from each other, unless they
merge again as shown in (b). (b) Only transitions from the blue circle are visualized.
The two paths running through the red circles from the right are independent from
each other. However, both paths merge at the blue circle and are equivalent to the left

of the blue circle. Both scenarios (a) and (b) can occur in the same column, though.

Alternatively, we can visualize the set of a-optimal paths intuitively if 7(i,j,p)=&i,j)r(p).
In any case, the forward recursions and the backward recursions can be used to recover
the set of a-optimal paths by backtracing. The approach is similar for both, so that only
the forward recursions are presented. The backtracing step described in the following can
recover all (a,p)-prefix optimal paths for all p. The a-optimal paths are then recovered by

backtracing the (a,N)-prefix optimal paths with minimum cost.

5.3.3.1 Recovering all ¢-Optimal Paths and Their Breakpoint Positions

First, consider the problem of reconstructing all a-optimal paths. The structure of the dy-
namic program enables us to focus on two adjacent columns of the alignment at a time
(see Figure 5.3), where each column in the alignment also corresponds to a column in the
dynamic program. The tableau f;, only stores the cost of the (a,p)-prefix optimal paths
ending in sequence i and for all p, but it is easy to reconstruct the transitions on these
paths. The transitions 7, occurring on any (a.p)-prefix optimal paths from any sequence j
at position p-1 to any sequence i at position p then directly follows from the recursion
equations (5.10):

T, ={(:)| f;) = ;0 +A=@)r(oi, p=D) + am(i, p)} . (5.17)
It is convenient to define 7,(i)={(j,i")e T,|i =i} as the set of transitions ending in sequence
i. It is easy to see that |7,(i)|>1 for all i as there is at least one (a.p)-prefix optimal path
ending in every sequence i. A simple recursive algorithm suffices to recover all
(a,p)-prefix optimal paths for any p ending in sequence i:
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recover_paths(p,i)
initialize U={}
if (p>1) set U ={recover_paths(p -1, /)| (j.i) € T, (i)}
else set U={u} where u is an arbitrary path
for every ue U set u,=i
return U

Now define MinCostSeq(p) as the set of (indices of) sequences, for which fj, is minimal
for position p:

MinCostSeq(p) =argmin{f, } = {i| f, = MinCost(p)} (5.18)
The set of a-optimal paths is then equivalent to the set of (a,N)-prefix optimal paths end-
ing in any sequence i€ MinCostSeq(N) as these prefix optimal paths involve the minimum
cost overall. As described before, the number of paths grows too quickly and the recov-
er_paths algorithm is too slow in practice. Fortunately, it is possible to recover the set of
all recombination breakpoints for all a-optimal paths in O(NM?) time. Starting with
I=MinCostSeq(N), I is updated to represent the set of sequences on a-optimal paths at po-
sition p-1 by tracing back the transitions in 7},

recover_breakpoints:
initialize I=MinCostSeq(N) and set breakpoint(p)=false for all p
for every p=N,...,2 do
set breakpoint(p)=true if there exists i€/ and a transition (j,i) € T),(i) with j#i
initialize [«—{j|(j,i))eT,(i) and i€l} to the set of sequences j that are reachable
from i

return breakpoint

5.3.3.2 The a-Optimal Paths for Simple Recombination Costs

Suppose that r(i,j,p)=&ij)r(p) and that we are interested in the transitions on
(a,p)-optimal paths. As the recursion equations can be rewritten as in (5.12), the set of
transitions 7}, on (a,p)-optimal paths satisfies

T, ={(j.0)| j € MinCostSeq(p 1) A f,, = MinCost(p ~1)+ (1= a)r(p - 1)+ am(i, p)| 6519
w{@D1 1, = 1, +aml, p)}
T, is much more constrained than before. First, focus on the transitions (j,i)e T)(i) that
involve a recombination and therefore satisfy j#i. It directly follows from (5.12) that a
transition (7,i)eT,(i) with j# must satisfy jeMinCostSeq(p-1), as only in this case
JSir=MinCost(p-1)+(1-a)r(p-1). All transitions (j,i) with j’e MinCostSeq(p-1) are also cost
minimal and satisfy (j,i)e T,(i). Any other transition (j,i) with j#i and j& MinCostSeq(p-1)
incurs a higher cost and is not contained in the set 7,(7). The essential insight is that two
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sequences i and i’ allowing for a transition with recombination at position p both satisfy
(7,))eT,(7) and (j,i )eT,(i’) for the same sequences jeMinCostSeq(p-1). Transitions (j,i)
without recombination satisfy j=i and are independent of the discussion above. These in-
sights help to formalize the structure inherent to 7). Define
RecSeq(p):{H(j,i)eTp/\i¢j} (5.20)
NoRecSeq(p) = {i |G,i) e Tp}
where RecSeq(p) corresponds to sequences i such that there is a transition with recombi-
nation ending in sequence i, and NoRecSeq(p) corresponds to sequences i such that a
transition with recombination is not necessary. Some sequences i may satisfy both,
ieRecSeq(p) and ie NoRecSeq(p).
As shown above, a sequence ieRecSeq(p) allows for transitions from any sequence
JjeMinCostSeq(p-1). All other sequences jgMinCostSeq(p-1) with j#i do not lead to an
optimal transition (j,i)eT,(i). Transitions (i,i)eT,(i) occur independently and for all
ieNoRecSeq(p). Hence, the set of transitions 7, can also be represented as follows:

T, = {(j,i) | j € MinCostSeq(p—-1)ni e RecSeq(p)} V] {(i,i) lie NoRecSeq(p)} . (5.21)
Consequently, it is sufficient to identify the set of source sequences MinCostSeq(p-1), the
set of destination sequences RecSeq(p) and the sequences in NoRecSeq(p) to recover all
transitions in 7, (see Figure 5.4(a)). Furthermore, several simple arguments lead to the

following relations:

(a) RecSeq(p)wNoRecSeq(p)={1,...,.M}
This is true, because there is at least one transition ending in an arbitrary sequence
ie{l,....M}.

(b) RecSeq(p)mMinCostSeq(p-1)=2
Suppose there is a sequence i with ie MinCostSeq(p-1) and i€ RecSeq(p). It then
follows from (5.19) that the transition (i,i) incurs less cost than any other transi-
tion (j,i) for j#i. Hence, (j,i)e T, and i cannot be an element of RecSeq(p).

(c) NoRecSeq(p)o>MinCostSeq(p-1)
This directly follows from (5.19): if ie MinCostSeq(p-1), fip-1 1s minimal and the
transition (i,i) is cost optimal. Every other transition (j,7) with j#i incurs a higher
cost, as it introduces a recombination. Hence, i€ NoRecSeq(p-1) for every
ie MinCostSeq(p-1).

(d) Y16, e T,3=NoRecSeq(p)
In other words, all transitions from p-1 to p begin at a sequence in NoRecSeq(p).
The  reasoning is simple: from (5.21) it follows  that
{lG.i) e T} =NoRecSeq(p)oMinCostSeq(p-1), and the proposition follows from
(c), because NoRecSeq(p)oMinCostSeq(p-1).

We are usually only interested in the set of transitions on all a-optimal paths and there-
fore we only need to identify and track a subset of RecSeq(p) and NoRecSeq(p) at each
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O RecSeq O RecSeq’
@ NoRecSeq “* @ NoRecSeq’
O MinCostSeq -~ O MinCostSeq’

p2 p-lp

Figure 5.4: The same example for the structure of the transitions in 7, and 7)., is
shown in all plots, but the coloring scheme differs slightly between plots. The arrows
represent all transitions in 7, and 7).;. Dotted arrows and circles represent transitions
and states that are not of interest for the analysis given in a plot. (a) Dotted arrows and
circles do not lie on an (a,p)-prefix optimal path and therefore are not reachable if we
trace back all circles from the rightmost column to the leftmost column following ar-
rows in the opposite direction. The coloring of the circles visualizes the association to
the different sets introduced in the text and some circles are split to indicate that they
belong to two sets. As the transitions 7)., are not given, we cannot color the circles in
the leftmost column accordingly. It is sufficient to identify sequences in RecSeq(p),
NoRecSeq(p) and MinCostSeq(p-1) to recover the transitions in 7,,. For example, there
are always transitions from all sequences in MinCostSeq to all sequences in RecSeq.
(b) In comparison to the previous plot, dotted arrows and circles indicate that they do
not lie on an a-optimal path and are therefore also uncolored. In this example, the third
and the fifth sequence counting from top at position p do not lie on an a-optimal path

and trigger several other sequences to become dotted for position p-1.

position p. To be more specific, we can define the set of sequences on the a-optimal paths
at each position recursively:
OptPathSeq(N) = MinCostSeq(N)

o : (5.22)
OptPathSeq(p—1) = {_/ [G.i)eT, nie OptPathSeq(p)}

and define the following restricted sets
MinCostSeq'(p) = MinCostSeq(p) N OptPathSeq(p)
RecSeq'(p) = RecSeq(p) N OptPathSeq(p) . (5.23)
NoRecSeq'(p) = NoRecSeq(p) N OptPathSeq(p)

Figure 5.4 (b) visualizes only these sets and allows to focus exclusively on the a-optimal
paths. It is possible to implement this coloring scheme in Recco, but it is impractical to
use two colors for each nucleotide. Hence, Recco implements a much simpler coloring
scheme and only uses a single color for the nucleotides on all a-optimal paths. In general,
it is not possible to reconstruct all transitions along the a-optimal paths from such a re-
presentation. But recombination breakpoints are often clearly visible in practice as shown
in Figure 5.5.
The special structure of 7, also allows for recovering the set of recombination break-
points on a-optimal paths in O(NM) time. As before, the algorithm traces the set of se-
quences / on a-optimal paths:
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predicted breakpoint locations

Figure 5.5: The a-optimal paths are shown for query sequence R1 using 0=0.2 and
Hamming distances for mutation and recombination cost. The background color of the
nucleotides visualizes the result of the optimization problem: white represents the
query sequence, red denotes nucleotides on an a-optimal path, and any other nucleo-
tide is shown with a blue background. A white foreground color visualizes mutations
regarding the query sequence. The true recombination breakpoint occurs in the middle

of the alignment and is shown by the black, dotted line.

GAAGAGTTCCCACCAACATGACCTAAAAAATAGTGEAGACARACTTTACGL CTGCGTGAGAATCGTTCATGTGCTTGC CTCGATTTCGTTTECGCTGETA

GGAT A AGT TCC GA

GCC C G A o A AGT TCCTGCA
CA ACG A

GCA  CG

Figure 5.6: The a-optimal path for the alignment including sequence R2 uses R2 for
explaining R1.

recover_breakpoints:
initialize I=MinCostSeq(N)
initialize breakpoint(p)=false for all p
for every p=N,...,2 do
set breakpoint(p)=true if there exists iel with
fir=MinCost(p-1)+(1-a)r(p-1)+om(i,p)
if (breakpoint(p)=true) I<—(NoRecSeq(p)n\I)uMinCostSeq(p-1)
else [<—NoRecSeq(p)NI

return breakpoint

5.3.4 Examples of a-Optimal Paths

Figure 5.5 shows the a-optimal paths for the example alignment described in section 5.1.
The optimization run used Hamming distances for mutation and recombination cost and
set o to 0.2, such that each recombination costs as much as (1-0.2)/0.2=4 mutations. In
other words, a recombination only pays off if it avoids four or more mutations. All
a-optimal paths use sequence Al for the first part of the alignment and sequence B2 for
the rest of the alignment. The paths only differ regarding the location of the recombina-

tion breakpoint. The breakpoints are predicted at several, but not at all positions within
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the marked range. For example, a recombination breakpoint from sequence Al to B2 be-
tween the two G’s in Al with a white foreground leads to a higher mutation cost and is
not optimal. However, this effect is not explicitly shown in Figure 5.6.

The a-optimal paths closely resemble the true ancestry of R1, but wrongly predict B2 as
the sequence ancestral to R1 in the right part of the alignment. Now consider the full
alignment including R2. What is the expected a-optimal path if R1 is the query sequence?
Apparently, R2 is very similar to R1 for the whole alignment, and therefore it is more
parsimonious to explain R1 without recombination. The a-optimal path simply covers R2

and does not require many mutations (see Figure 5.6).

5.3.5 Speedup by Preprocessing the Alignment
If the mutation cost is the same for all sequences in a column, we can actually remove the
position from the input. The relevant observation is given in the following Lemma, where

A(u) refers to the set of recombination breakpoints of path u as defined before.

Lemma: Assume that r(i,j,p)=d(i,j/)r(p) and suppose that m(i,p)=const for all i and all
pela,b]. Define the positions of minimum recombination cost in the interval [a,b]

as X =arg min {r(p)} . Given an a-optimal path u, it follows that

pela.b)
(a) |A(u)[a,b]|<1 (there is at most one recombination in the interval [a,b]), and
(b) if |A(u)N[a,b]|=1 and xe A(u)[a,b], then a path v that moves the breakpoint to

any position ye X is also a-optimal.

Proof:
(a) Suppose that |A(u)N[a,b][>1. Hence, there exist two breakpoints x,ye[a,b] with x<y.
But the path that only introduces a recombination breakpoint at position y involves less
cost. To be more specific, define path v with v,=u, for all pe[1.x]U[y+1,N] and v,=u, for
all pe[x+l, y]. From the separability of the cost function (see (5.8)) and as
0a(u,1,x)=p,(v,1,x) and ¢, (u,y+1,N)=p.(v,y+1,N) it follows that
2, (WLN)=@, (V.LN) =g, (wx+1y)+8(u.u,, ) r(x)+8(u,u,,, )r(y)

0 (Vx4 Ly) =8 (00 ) r() =8 (7,0, ) ()

=[8(u0u.0)~5(v, v, )]r(x)+[5(u‘;,urm)75(vv,vw )]r(y)
and resolving d(vy,vy+1)=0 yields

@, (WLN)=@, (V,LN)=r(x)+r(»)—r(»)>0.

This contradicts the assumption that path u is o-optimal and it follows that
[A(w)N[a,b]I<1.
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(b) Now suppose that there is exactly one recombination breakpoint xeA(u)N[a,b] and
let ye X. If x<y, we can define a path v as above: v,=u, for all pe[1 x]U[y+1,N] and v,=u,
for all pe[x+1, y]. As yeJ, it follows that the cost difference is
@, (wLN)-p,(v,LLN) :[5(ul,um)76(vx,vm):lr(x)+[6(uj,,u‘;+,)76(v‘;,vw)]r(y)
=r(x)—-r(»)=0

and v is also a-optimal. The case for y<x is analogous.

In other words, if there is a region of columns p€[a,b] with m(i,p)=const for all i and all
peEla,b], the dynamic program does not have to process the columns in [a,b]. Instead, we
define an alternative recombination cost r’ that only differs from r at position b+1:
r(b+1)=min{r(p)|pela,b]}. We can then solve an alternative dynamic program using r’ as
a recombination cost and skip columns a to b. In other words, f; s+ depends on f;..; and
not on fj. If the alternative dynamic program predicts a recombination breakpoints exact-
ly before position b+1, then the original dynamic program introduces recombination

breakpoints for all positions arg rqir}nj{r( p)}-
pelab

5.4 Sensitivity Analysis

We are often not only interested in the solution of an optimization problem, but also in a
sensitivity analysis of the solution. There are two fundamentally different approaches for
a sensitivity analysis in our case. The first approach is subsequently called sensitivity
analysis of the a-optimal paths and studies the cost of paths that are cost optimal for a
restricted configuration space. The restricted configuration space we consider does not
allow the paths to include a certain nucleotide in the alignment and can tell us whether
the nucleotide is critical for attaining the low cost of the a-optimal paths. As an example,
assume that the a-optimal paths incur a much lower cost than the cost optimal paths that
avoid a certain nucleotide. In this case, we know that the nucleotide is very important for
the low cost of the a-optimal paths and represents a robust part of the a-optimal paths.
The second approach for a sensitivity analysis is subsequently called parametric analysis.
A parametric analysis studies how the solution depends on the input parameters of the
optimization problem, such as a, m(i,p) and r(i,j,p) in our case. More exactly, a parame-
tric analysis partitions the space of parameter settings into regions that yield the same so-
lution. Hence, a parametric analysis helps to assess the impact of uncertainty of parame-
ters, e.g. due to measurement or estimation errors, on the structure of the solution. It is
particularly rewarding to study the parameter o for the given optimization problem, as it
allows for measuring the strength of the recombination signal in the query sequence.
Apparently, both approaches address different questions regarding the stability of the
a-optimal paths. Both approaches have also been applied separately to the problem of se-
quence alignment (Mevissen and Vingron 1996; Zimmer and Lengauer 1997).
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5.4.1 Sensitivity Analysis of the a-Optimal Paths

In the following, I transfer an idea by Mevissen and Vingron (Mevissen and Vingron
1996) from traditional sequence alignment to the optimization problem introduced in the
previous section. Mevissen and Vingron describe a method for assessing the robustness
of a pairwise sequence alignment. In a first step, they compute the minimum cost ¢; of a
pairwise alignment matching position i of the first sequence with position j of the second
sequence. Computation of ¢; is very efficient and only requires the forward and backward
tableaus as input. The second step computes the minimum cost dj; of a pairwise alignment
that does not match position i with position j. The robustness value of pairing position i
with position j is then r;=c;-d; and is positive for pairings on the optimal path. A high
robustness value also indicates that the pairing is important for attaining a low overall
cost.
As the optimization problem of Recco determines a path u through the alignment, robust-
ness is defined regarding the choice of sequence u, for position p. The first step is there-
fore to compute the minimum cost ¢, of a path running through nucleotide 4;, in se-
quence i at position p. The minimal cost of such a path u with u,=i can be computed from
the forward and the backward tableau:
¢, = H}ig{% (u,1,N)}

= min {0, (w1, p)+g,(u, p.N)-am(u,. p)} (5.24)

= f, +b, —am(i,p)

=y +h,
The minimum cost dj, of a path avoiding sequence i at position p is obtained analogously

d, =min {g, (0,1, N)}

wu, #i

:‘{3’%2{% (u,l,p)Jr(pa (u, p,N)—am(up,p)} (5.25)

=II]1:’1’1{/W Jrb/.u 7am(_/,p)}

=mn {fi/f +bm} = n;ll,n {ci/r}

=
It is more intuitive to use the values 5, and f;, corresponding to the same tableau for these

equations, as these values refer to the same circle in Figure 5.2 and therefore their sum
corresponds to a complete path from left to right running through a specific circle. In
analogy to (Mevissen and Vingron 1996), the robustness measure is then defined as
rp=cip-d;p for every i and p. In words, r;, is the sacrifice in cost that is incurred by forcing
a solution to avoid position p in sequence i in our alignment. If 7, is small then the
choice of position p in sequence i does not buy us much in terms of alignment cost. Larg-
er values of r;, indicate more robust sequence positions. The values c;, and 7, can be
computed in time O(MN) for all combinations of p and i if the forward and backward tab-
leau f;, and b;, are given.

Both values, c¢;, and 7;,, are useful in our scenario (see Figure 5.7). ¢;, is particularly at-

tractive for visualizing the optimal paths of the dynamic program. It is easy to compute
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Figure 5.7: The variability of the a-optimal paths for explaining sequence R1 is visua-
lized by different approaches. (a) Nucleotides corresponding to the minimal ¢;, are
shown with a red background as in Figure 5.5. (b) A red (blue) background indicates a
low (high) value of c;,. The analysis suggests that it is possible to construct a path us-
ing B1 instead of B2 for the right part of the alignment without affecting the cost
greatly. This also matches the expected result. (¢) Red and blue backgrounds indicate
high and low robustness values r;,, respectively. The a-optimal paths are less reliable

at the predicted recombination breakpoint and in the right part of the alignment.

the representation of the a-optimal paths shown in Figure 5.5, as all nucleotides 4;, that
are part of an a-optimal path have the same, minimal c;,. Alternatively, we can visualize
the ¢;, by coloring the background of the alignment 4;, according to c;,. For positions at
which the solution is uncertain or close to a recombination breakpoint, low values of ¢;,
occur for several sequences to indicate the ambiguity. On the other hand, if we ask how
robust the choice of a specific nucleotide 4;, is, we can rely on the values of r;,. Regions

that are uncertain are characterized by a lower robustness of the optimal solution.

5.4.2 Parametric Analysis Regarding a

The a-optimal paths, or the solutions of the optimization problem, depend on the parame-
ters a, m(i,p) and r(ij,p). The parameter a controls the amount of recombination in
a-optimal paths and is the only parameter studied in the following for several reasons.
First, setting m(i,p) and r(i,/,p) to Hamming distances usually gives good results in prac-
tice and also allows for a simple interpretation of the parameter a. In comparison to
m(i,p) and r(i,j,p) it is also much more difficult to set the parameter a appropriately, as a
depends on the relative sizes of recombination rate and mutation rate in the organism or
virus under study. Second, a has the most significant impact on the a-optimal paths, as it
determines the amount of recombination in the paths. The parametric analysis of a also
has a clear interpretation regarding the recombination signal in the alignment and allows
for extracting statistics for recombination analysis automatically. Third, an analysis of
two or more parameters leads to a multi-dimensional output that is much harder to com-

prehend or to process automatically. Finally, analyzing more than one parameter requires
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Figure 5.8: The parametric cost curve g is shown in red. The y-axis and x-axis
represent the cost of g(a) and a, respectively. The recombination cost R; and the muta-
tion cost M; of a path ue U; correspond to the abscissa of the line segment of U; at a=0
and a=1, respectively, and both points also completely define the line. The dotted line
segment corresponds to a degenerate a-optimal path for a=a; and is not studied in the

parametric analysis.

complex algorithms and may require a careful assessment of the numerical accuracy

(Zimmer and Lengauer 1997).

5.4.2.1 The Structure of the Cost Curve

A parametric analysis regarding a investigates how ¢.(u,1,N) changes as « is varied, both
for a fixed solution u and for u subject to optimization. If u is fixed, ¢,(u,1,N) is linear in
a and has the derivative
09, (u,1,N)
oa
where R(u,1,N) and M(u,1,N) are the recombination and mutation cost of path u not

=—R(u,1,N)+M (u,l,N) (5.26)

weighted by (1-a) or a. Now, define the minimum cost of ¢,(u,1,N) if u is subject to op-
timization as

g(a):mﬂin{qpﬂ(u,l,N)} 5.27)
As ¢, is linear in «a for every path u, g(a) is a piecewise-linear concave function in a (see
Figure 5.8). Each linear piece corresponds to a fixed set of minimum cost solutions.
Clearly, the function value g(a) and the corresponding a-optimal paths can be computed
for every a with the dynamic program presented before.
Now define K as the number of segments of g(a) and define ap<a;<...<ag as the segment
boundaries where ay=0 and ax=1. The k-th segment covers [ay.1, ox]. Let Uy be the set of
o-optimal paths for the A-th segment, such that ue Uj is a-optimal for all ae[oy.1, ax]. In
addition to the a-optimal paths in Uy, there may exist several degenerate a-optimal paths.
A degenerate a-optimal path u is only a-optimal for one specific a€ {aq,...,ax}. Degene-
rate a-optimal paths are not of interest here, but complicate the algorithm for the parame-
tric analysis. All paths ue Uy incur the same amount of mutation and recombination cost,

as they correspond to the same segment of g(a) and have the same derivative. Hence, we
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can define the recombination cost as R=R(u,1,N) and the mutation cost as M;=M(u,1,N)
for every k, where u is an arbitrary element in U;. With increasing o and increasing k, the
a-optimal paths u contain less mutation cost and more recombination cost and it follows
that 0=R;<...<Rg and M,>...>My. The paths U are therefore ordered by increasing re-
combination cost and decreasing mutation cost.

It is interesting to understand the a-optimal paths for specific values of a. Clearly, one
unit of recombination cost R(-) effectively contributes as much to the overall cost of the
path as (1-a)/a units of mutation cost M(-) for all a, because @,(-)=(1-a)R(-)+oM(-). The
a-optimal paths for =0 only use mutations for explaining the query sequence. Conse-
quently, the line corresponding to U, always intersects the origin and R,=0. However,
there are several degenerate solutions for a=0, as any path u without recombination in-
curs the same cost ¢g(u,1,N)=0. We can avoid this complication by using a small a>0, for
example a=a,/2. Clearly, an a,/2-optimal path u=(i,...,i) then simply selects a sequence i
that is closest to the query sequence in terms of mutation cost only. The mutation cost of
u is therefore

M, = @n{’zvm(i, p)} (5.28)
=
and the line corresponding to U, is defined as aM;.
The structure of a-optimal paths and the cost curve g is also restricted if o=1. To avoid
the problem of degenerate solutions, assume that a is close enough to 1, for example
o=(ag.1+1)/2. An a-optimal path u then only minimizes the mutation cost

M, :mjn{im(uﬁ,p)}:Zv:m‘in{m(i,p)}. (5.29)

=l Pl

In other words, Mk sums the minimum mutation cost for each column. Interestingly, My
and M, do not change if we use a column permutation of the original alignment as input.
Now assume that we use Hamming distances for mutation and recombination cost. If
0>2/3, it follows that a/(1-a)>2 and therefore each mutation costs more than two recom-
binations. It is never optimal to introduce a mutation for a>2/3 if there is a matching nuc-
leotide in the same column for some other sequence. Consequently, ax.1<2/3 and there is
only one line segment in the interval [2/3,1]. Mk counts the number of columns in which
the query sequence has a unique nucleotide compared to all other sequences. In practice,
the a-optimal paths in Uk are usually not relevant because of their strong preference for
recombination.
We can extract even more information from the cost curve if we compare the a-optimal
paths in U with Uyyy. Paths in Uy reduce the mutation cost by M-M;.+1>0 and increase
the recombination cost by Ri+1-Ri>0 when compared to paths in Uy. In other words, each
additional unit of recombination cost reduces the mutation cost by
M, -M,,,

5.30
Rk+1 _Rk ( )

Savings, =
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and a high value of Savings; indicates that recombination is advantageous. If Hamming
distances are used for mutation and recombination cost, Savings; simply measures how
many mutations are eliminated for every additional recombination event in the path. For
example, if Ry-R;=2 and M,-M,=11, then there are two recombination events that each
eliminate Savings;=5.5 mutations. Savings; is also related to the cutpoint a; of the lines
corresponding to Uy and Up+1. The cutpoint a satisfies
(1-a)R, +a,M, =(1-a)R,,, +a.M,., . (5.31)

Solving for oy yields
_ -R, +R,., _ 1

R, +R., +M M, Savings, +1

[

(5.32)

*

or equally Savingsi=(1-o4)/oy. 1t follows that Savings;>...>Savingsk.1, as the a;’s are or-
dered increasingly.

Savings, is the maximum of Savings; and is particularly interesting as it quantifies
whether a query sequence prefers a path with recombination. It is also possible to bound
Savings, from above:

M -M, M, -M, MM,

R,-R ~ R,—0 R, (5.33)

Savings, =

For the common case that Hamming distances are used for recombination, the bound
simplifies to

Savings, < % <M,-M, =0 (5.34)

5

as R»>1 in this case. The bound o is usually weak in practice, as it is rare that a single re-
combination (R,=1) eliminates all mutations (K=2). A simple prediction is still possible:
Savings, cannot be large if M, or ¢ is small — for example because there is a sequence
similar to the query sequence in the alignment. A particularly attractive feature of the
bound o is that it is invariant with respect to column permutations, as M; and Mk do not
change if the columns of the alignment are permuted.
We can also interpret oy just as we did with Savings; and draw conclusions about the
strength of the recombination signal from the ;s alone, as there is a functional depen-
dency between oy and Savings;. If the transition from Uy to Ui, happens at a small value
ax, recombination events are introduced even though they are penalized strongly when
compared to mutations. Each additional unit of recombination cost in Uy as compared to
U decreases the mutation cost by (1-ax)/ay=Savings; units, as all paths in Uy and Uy are
ax-optimal. Hence, we know that there is no path increasing the recombination cost of
any a-optimal path by one unit and reducing the mutation cost by more than a,/(1-a;)
units, as the original a-optimal path would otherwise not be a-optimal.

5.4.2.2 Recovering the Parametric Cost Curve

We can use the algorithm of Eisner and Severance (Eisner and Severance 1976) to com-
pute the parametric cost curve g efficiently, as the parametric analysis only involves a

single parameter. The algorithm requires a method for recovering the cost ¢,(u,1,N) and
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Figure 5.9: (left) The parametric cost curves for each sequence in the example align-
ment are shown to the left. As a changes from 0 to 1, the cost for mutation increases
and the cost for recombination decreases. The cost curve of R1 shows the highest ben-
efit from recombination. A recombination is already introduced into the a-optimal
paths for 0,~0.077 and reduces the number of mutations by Savings;=12 compared
with the a-optimal path without recombination. (right) The table summarizes the ob-
served Savings; values and also shows the bound . The Savings; value for R1 is par-
ticularly high when compared to . A1l also shows some preference for recombination,
but the other sequences do not. The preference of Al is also expected from the ARG

(see section 5.5).

the derivative of ¢,(u,1,N) for an a-optimal path u, as this defines the line corresponding
to u (see (5.26)). The algorithm correctly handles degenerate solutions, such that it is suf-
ficient to compute R(u,1,N) and M(u,1,N) of an arbitrary a-optimal path u. Both values
can therefore be computed easily by a modified backtrace algorithm.

The principle of the algorithm of Eisner and Severance is easily described by a recursion.
However, the original algorithm is iterative. It starts with an interval [x,y], an x-optimal
path u, and a y-optimal path u,. If both paths u, and u, yield the same line in the parame-
tric cost curve, the concave function g is equal to this line for the full interval [x,y] and
the recursion terminates. Otherwise, compute the value z where the lines corresponding to
u, and u, intersect and recover a z-optimal path u.. As the lines for u, and u, intersect at z,
we know that ¢.(u,,1,N)=¢.(u,,1,N). The lines corresponding to u, and u, fully define g in
the interval [x,y] if ¢-(u;,1,N)=¢.(u,,1,N)=¢.(u,,1,N). Otherwise ¢-(u.,1,N)<¢-(u,,1,N) and
¢-(u;,1,N)<¢.(u,,1,N) and the algorithm recursively processes the intervals [x,z] and [y,z].
The speed of this algorithm is dominated by the number of calls to the dynamic program
for recovering an a-optimal path. The algorithm requires one call for every cutpoint z be-
tween two adjacent lines, as it has to ascertain that there is no better z-optimal path u,.
Besides this, the algorithm requires one call for every line segment in the cost curve.
Hence, it needs 2K-1 calls to the dynamic program in total.

Numerical accuracy is a problem for large alignments, particularly as M; grows larger. If

a recombination does not reduce the mutation cost much, M, is still close to M; in
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Figure 5.10: The parametric analysis allows to recover the optimal paths for all set-
tings of a. Each set of a-optimal paths is valid for an interval of a, rounded here to two
decimal places. As a gets larger, the a-optimal paths introduce more and more recom-
binations and the inferred recombination events become less significant. The a-
optimal paths in the lowest row for example avoid mutations with respect to the query

sequence by introducing recombinations and are usually not of interest.

absolute terms. Therefore, the algorithm has to compute the intersection of two almost

parallel lines corresponding to U; and U, and numerical instabilities can occur.

5.4.2.3 Parametric Analysis of the Example Alignment

The result of the parametric optimization for our example alignment is shown in Figure
5.9. Each sequence of the alignment was taken as the putative recombinant, in turn. The
parametric cost curve for R1 shows that there are four sets of a-optimal paths that corres-
pond to different intervals for a. Each linear piece and the corresponding set of a-optimal
paths are characterized by a different amount of recombination and mutation cost. As ex-
pected, the curve corresponding to R1 shows a particularly high preference for recombi-
nation: a;~0.077 and Savings,=12. Interestingly, the a-optimal paths with one recombina-
tion are also very robust and remain a-optimal up to ¢,=0.5. Figure 5.10 shows all
a-optimal paths for the query sequence R1 and different settings of a.

5.5 The Connection Between the ARG and the a-Optimal Paths

The a-optimal paths are intuitive as they are the result of cost optimization. But it is un-
clear what we would expect as an a-optimal path if we use sequences as input simulated
according to some ARG. The motivation for studying the expected a-optimal paths is
manifold. First, we can draw conclusions from the a-optimal paths about the ARG under-
lying a sequence alignment. Second, we can check whether the a-optimal paths fit to our

expectations if we simulate sequence alignments according to a given ARG. Finally, we
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time E[Yi00] E[Xio0l E[Y1000l E[Xi000]
8 0.50 0.36 0.050 0.048

4 0.25 0.21 0.025 0.025
3 0.19 0.17 0.019 0.019
2 0.13 0.12 0.013 0.012
A2 A1 R1R2B1 B2 1 0.06 0.06 0.006 0.006

Figure 5.11: The example ARG from Figure 5.1 is shown at the left, where time is
scaled such that there are 25 mutations per sequence from the root to a tip of the tree,
on average. Only the analyses in section 5.5.4 retain sequence R2 in the alignment. A
conversion table is shown at the right. The columns E[Y;¢0] and E[Y1000] correspond to
different sequence lengths N=100 and N=1000 and list the expected number of true
mutations per site between two sequences that coalesce at a given time point. The col-
umns E[Xjg0] and E[Xjo00] list the expected number of observed mutations per site for
the Jukes-Cantor mutation model. The expected number of true mutations per genome
from the root to a tip of the tree is constant for all three scenarios. As N grows larger,
E[Xy] is a better estimate of E[Yy]. Such a simple conversion table is only possible

because all sequences are sampled at the same time point.

can deduce the expected Savings; values for simulated alignments and predict the
strength of the recombination signal that Recco infers for a given ARG.

To keep the discussion limited, this section only conveys an understanding for the ex-
pected a-optimal paths and lacks some mathematical detail. For example, mutation mod-
els and the random process they describe are not introduced in detail. More information
are provided in (Li 1997) and other books. Throughout the discussion it is also assumed
that Recco uses Hamming distances for mutation and recombination cost. A more tho-

rough analysis is left for future work.

5.5.1 Distance Correction and the Expected Number of Mutations

Given an ARG and a mutation model, we can simulate sequences of length N along the
ARG. Branch lengths in the ARG are usually measured in terms of the expected number
of mutations per site, and a larger N would result in more mutations per genome. To
make comparisons possible, it often makes sense to keep the total number of mutations
constant and scale the expected number of mutations per sites appropriately. Another re-
striction is that N must be large enough to represent the different segments in the ARG
appropriately.

Starting with an arbitrary sequence at the root of the ARG, the mutation model generates
random mutations and adds them to the sequences. If we use the infinite sites model,
N=o0 and every mutation occurs at a different sequence position. The finite sites model

allows recurrent mutations, such that several mutations can occur at the same position. If
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we compare two sequences in this case, we may not always observe the true number of
mutations that separate these sequences. In the following, distances in the ARG refer to
the branch lengths in the ARG and therefore to the expected number of true mutations.
Expected genetic distances, or expected distances in the sequences correspond to the ex-
pected number of observed mutations.
A particularly simple mutation model is the Jukes-Cantor model. The Jukes-Cantor cor-
rection (see Chapter 4 in (Li 1997)) predicts that

s(e)= —%In [I —%ej , or equivalently e(s)= %—%exp(—%sj (5.35)
where s is the true number of mutations per site and e is the observed number of muta-
tions per site. There are distance corrections for other mutation models, too. Obviously,
we cannot apply the distance correction to the observed mutations at a site, as e is either 0
or 1 in this case and e=1 leads to a negative logarithm. The Jukes-Cantor correction only
makes sense in practice if the observed number of mutations per site is averaged over the
whole sequence or at least over several sites.
Define Xi(i,p) as the random variable that counts the number of observed mutations at
position p between sequence i and the query sequence for simulated sequences of length
N. Define Y(i,p) as the random variable that counts the number of #7ue mutations be-
tween the two sequences. Yn(i,p) is Poisson-distributed, as the waiting time for a mutation
is exponentially distributed. The mean E[Yy(i,p)] is the distance between the two se-
quences in the ARG. The distribution of Xy(i,p) is more complex. The mean of Xy(i,p)
depends on the distance between the two sequences in the ARG and on the mutation
model. We can determine the mean of Xy(i,p) for the Jukes-Cantor model as described
above: E[Xn(i,p)]=e(E[YM(i,p)]) or equivalently E[Yn(i,p)]=s(E[Xn(i,p)]). This estimates
the distances in the ARG from the distances observed in the sequences. The distances in
the ARG and the distances expected with the Jukes-Cantor model for the example ARG
are shown in Figure 5.11.

5.5.2 Different Distance Estimates Lead to Different Analyses

If we assume Hamming distances for the mutation cost in Recco, m(i,p) is distributed ac-
cording to Xjy(i,p) and counts the number of observed mutations. The expected cost of an
arbitrary path u is then
N
E[p,(wLN)]=E[(1-a)R(u,LN)+a) X, (up,p)}

p=l1

; (5.36)
=(-@)R(wL,N)+ad E[ X, (u,.p)]

=
as the recombination cost is not a random variable, but a property of the path. Conse-
quently, the dynamic program recovers the path u with the expected minimum cost if we
set m(i,p)=E[Xn(i,p)]. The paths of expected minimum cost are also called a-optimal
paths in the following, as the distinction is usually clear. It is important to realize that this
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ARG is known ARG is unknown

m(i,p) correctly ARG Analysis i Ideal Recco Analysis i
estimates distances (© m:li[YN] :_(_'3)_______"_1?)?!________.:
emulate the effect f ..
1 not trivial
il of recurrent mutation v
m(i,p) under- ARG Analysis Recco Analysis
estimates distances  |(d) = E[X] (a) m~Xy

Figure 5.12: There are four different types of analyses. The right column refers to ana-
lyses that estimate branch lengths in the ARG from sequence data and are of practical
use. We can transform the upper-left analysis into the lower-left analysis and vice ver-
sa as shown by the arrow. A similar transformation is not possible for the analyses on
the right hand side. (a) Recco is based on cost optimization and does not correct for
recurrent mutations. It systematically underestimates the distances in the ARG. (b) An
ideal Recco analysis would correct for recurrent mutations and estimate the distances
in the ARG accurately. (¢) It is particularly intuitive to analyze the expected output of
the ideal Recco analysis for a given ARG. (d) We can get an accurate estimate of the
output expected from the Recco analysis if we emulate the missing distance correction
for the branch lengths in the ARG.

approach does not necessarily recover the path u with the maximum likelihood to be
a-optimal. But the differences are not very large in practice. For notational convenience,
the indices i and p are dropped in the following, such that m(i,p)=E[Xy(i,p)] is abbre-
viated as m=E[Xy], for example. As before, the parametric analysis recovers all a-optimal
paths ordered by increasing recombination cost.

An interesting alternative is to set m=E[Yy] and study the a-optimal paths if the mutation
cost accurately estimates the distances in the ARG. In this case, it is actually not neces-
sary to work with N columns in the dynamic program if Hamming distances are used for
recombination cost. The values E[Ya(u,,p)] only change at breakpoint locations in the
ARG, and a large N introduces many identical columns in m(i,p). However, it is subop-
timal to introduce a recombination event between two identical columns, as it is either
optimal to recombine before or after the two identical columns (see section 5.3.5 for a
proof to a closely related problem). Identical columns can be consolidated into one col-
umn and the solution is identical for different N — at least if N is large enough to correctly
represent the local trees in the ARG. This also allows recovering the a-optimal paths for
an ARG manually without using the dynamic program. However, the analysis becomes
quickly complicated if the ARG contains many recombination events.

There are four different types of analyses that are now possible, depending on the m used
as input (see Figure 5.12). If the ARG is given, we can use m=E[Xy] or m=E[Yy] in the
dynamic program. This approach is called ARG analysis in the following. The first
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Figure 5.13: Different paths (or hypotheses) for R1 are visualized in the ARG. Dotted
lines refer to parts of the ARG that do not contribute towards the cost of the path. (a)
The a-optimal path for R1 that does not incur a recombination only covers Al. For the
sake of clarity, the induced paths in the left and right tree of the ARG are shown here.
The left part of the alignment does not contribute much mutation cost, but the right
part does. (b) If one recombination is allowed, the a-optimal path for R1 covers Al in
the right and B1 in left part of the alignment. This is also the a-optimal path that we
would ideally want to recover. The total mutation cost is lower than for (a), but the
path involves a recombination. (¢) The mutation cost increases only little if the path
uses Al and B2 to explain R1. It is difficult to decide between paths (b) and (c) if the
mutation process introduces noise and it is not surprising that the a-optimal path for

the example alignment uses B2 instead of B1.

choice m=E[Xy] recovers the a-optimal paths expected for Recco and underestimates dis-
tances in the ARG. Alternatively, setting m=E[Yy] uses the correct distances in the ARG
for the analysis. The effect of recurrent mutations vanishes as N grows larger, and both
settings lead to the same result in the limit. In any other case, we have to estimate m from
sequence data. As Recco does not perform any distance correction, m is distributed as Xy
and consistently underestimates distances in the ARG. In an ideal scenario, Recco would
use a distance correction on m, such that m is distributed as Yy. Unfortunately, it is not
trivial to implement a distance correction for Recco, as Recco requires distance estimates

for every single column in the alignment.

5.5.3 ARG Analysis for the Example ARG

An ARG analysis based on m=E[Yy] is particularly intuitive, as m directly represents dis-
tances in the ARG. In some sense, an a-optimal path u predicts the sequence u, closest to
the query sequence for every position p. However, depending on a, the a-optimal path
only allows for a limited number of recombinations and restricts the number of closest

sequences to the query. The a-optimal path therefore corresponds to a hypothesis
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Figure 5.14: The two a-optimal paths (a) and (b) of Figure 5.13 are compared in more
detail. Path (a) does not introduce a recombination, but forces the red detour in the
ARG. The detour corresponds to the additional mutation cost M,-M; of path (a) if
m=E[Y100]. The detour has a length of 2d=2-0.25-5/8~0.31 expected true mutations
per site. As the detour only covers the right half of the alignment, it increases the ex-
pected number of true mutations in path (a) by d=50-0.31=15.6. Consequently, the de-
tour corresponds to Savings;=15.6 and a;=1/(1+15.6)=0.06, as we use Hamming dis-
tances for recombination and mutation. Hence, we expect to recover path (a) for
0<0.06 and path (b) for a>0.06.

regarding the local structure of the ARG around the query sequence. The mutation cost of
an a-optimal path can be visualized by following the branches in the ARG from the query
sequence to the other sequences. Figure 5.13 shows the a-optimal paths for the example
ARG that involve zero or one recombinations. Paths with more than one recombination
do not lower the mutation cost and are not a-optimal for a<1, as the minimum amount of
mutation cost is bounded by the ARG. Paths in an ARG analysis are generally not
a-optimal for a<1 if they incur more recombination events than the number of recombi-
nation events reachable from the query sequence. A recombination event is reachable if
there is some position p, such that the shortest path connecting the query and the closest
sequence in the local tree for position p encounters the recombination event. Interesting-
ly, there is a visual interpretation of a; and M>-M,; for the example ARG (see Figure
5.14).

The presented analysis shows the ideal scenario for Recco when distances are correctly
estimated. It also identifies the different a-optimal paths that we hope to recover in reali-
ty. The values @;~0.06 and Savings;=15.6 in the analysis are remarkably close to the val-
ues a~0.077 and Savings;=12 derived from the actual sequence alignment. The analysis
also predicts that an a-optimal path for A1 should introduce a recombination for o>0.14
(see Figure 5.15). Besides R1 and A1, Bl is the only other query sequence that should
theoretically introduce a recombination in the a-optimal path because of the structure of
the ARG. However, the expected value Savings|=3.13 for Bl is so small that it does not
matter in practice.

The result of the ARG analysis for m=E[X)o] is very similar to the previous analysis. The
distances that emulate the effect of recurrent mutations are given in Figure 5.12. The
a-optimal paths are equal to the previous subsection for the example ARG, but their costs
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Figure 5.15: (a),(b) The same analysis as in Figure 5.14 is performed for the query
sequence Al. The detour is much smaller and only increases the expected number of
true mutations by d=50-2-0.25-2/8=6.25. Hence, path (a) is preferred over path (b) for
0<0.14. Even though Al is not a recombinant, we expect that an a-optimal path for Al
in a simulated alignment involves a recombination. (¢) As expected, the a-optimal

paths for the example alignment and a=0.2 correspond to path (b).

differ. However, for different ARGs, the a-optimal paths may differ between the two ana-
lyses. The expected number of mutations for path (a) and (b) in Figure 5.14 is
M;=100-(0.5-0.12+0.5-0.36)=24 and M,~=100-(0.5-0.12+0.5-0.17)=14, respectively.
Hence, the expected values Savings=24-14=10 and ¢,~0.09 are even closer to the values

obtained from the example alignment.

5.5.4 Expected Savings for Different Scenarios

The Savings, value is central to the recombination analysis that Recco performs, as it
compares the cost of a-optimal paths with no and at least one recombination event. This
approach directly transfers to the analysis of ARGs as shown before. In the following,
Savings, is compared for three different scenarios that are all based on the example ARG:
(S1) the example ARG without sequence R2 and sequence length N=100.
(S2) the example ARG without sequence R2 and sequences length N=1000. Time is
scaled such that the average number of mutation events is the same as in (S1).
(S3) the example ARG including sequence R2 and sequence length N=100
The theoretical analysis is augmented by simulating 1000 alignments for each scenario
and computing Savings, for every alignment and query sequence. (S1) and (S2) differ
only in the amount of recurrent mutations, but not in the expected number of true muta-
tions. (S1) and (S3) show the effect on Savings; if a sequence R2 is closely related to the
recombinant R1.
Table 5.1 shows the results of the theoretical and empirical analysis of Savings, for (S1)
and (S2). The mean Savings; values measured in the simulated alignments are close to the
expected Savings; values for R1, Al and B1. The noise introduced by the random muta-
tion process becomes particularly visible for query sequences A2 and B2. The ARG anal-
ysis ignores the noise and predicts Savings;=0 for these query sequences, as it does not
make sense to introduce any recombinations into the a-optimal paths. The empirical
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Query ARG Analysis ARG Analysis Recco ARG Analysis Recco

sequence  m=E[¥1ol m=E[Xi000l __m~Xio00 ___m=E[Xi00] m~Xioo
R1 15.6 14.9 14.0 10.0 9.46
Al 6.25 6.10 6.56 4.87 5.07
Bl 3.13 3.04 4.44 2.34 3.64
A2 0 0 2.40 0 2.27
B2 0 0 2.65 0 2.49

Table 5.1: The expected Savings; value for different query sequences and analyses is
shown for (S1) and (S2). The values for the Recco analyses are obtained from 1000
simulated alignments. The expected values are close to the empirical values and illu-

strate the accuracy of the ARG analysis.
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Figure 5.16: The histogram of Savings, differs for (S1), (S2) and (S3) and the different
query sequences. (a) The effect of recurrent mutations becomes particularly visible for
R1 when (S1) and (S2) are compared. Savings is larger for N=1000 than for N=100 as
there are less recurrent mutations. (S3) shows an important limitation of Recco: taking
R1 as a query does not yield high Savings, values, as R2 is similar to R1. The blue his-
togram actually extends far beyond the display range and almost reaches a frequency
of 0.8. (b) The histograms for Al differ much less than for R1. The effect of recurrent
mutation is less pronounced as Al has a lower Savings; value. Comparing (S1) and
(S3) shows that Savings, increases slightly if R2 is added to the alignment. The in-
crease is expected, as the a-optimal path for A1 with one recombination can now
choose between R1 and R2 and use the sequence that fits better. M, is therefore small-

er and Savings; larger in this scenario.

Savings value for A2 and B2 is larger than zero solely due to the noise introduced in the
mutation process. Figure 5.16 compares the different distributions of Savings, for all sce-

narios and for the query sequences R1 and Al.

5.5.5 a as the Choice Between Resolution and Robustness

The ARG analysis enables predicting the output of Recco for alignments of sequences
that evolved according to a given ARG and also clarifies the role of the parameter a for

126



Recco. Ideally, we would like to recover a path that predicts all recombination events that
are reachable from the query sequence as such a path contains the most comprehensive
information on the ancestry of the query sequence. These paths also do not predict any
detour when mapped to the ARG. In other words, they simply choose the closest se-
quence to the query sequence for each position in the alignment. Given the ARG we can
recover these paths by setting m=E[Yy] and solving the optimization problem for a close
to one or alternatively by finding the closest sequence to the query sequence for every
position in the alignment. But the branch lengths cannot be estimated reliably in practice
and are subject to noise if we try to estimate branch lengths for small windows in the
alignment that only cover a few nucleotides. The parameter o plays a role similar to the
size of the sequence window. For example, one mutation is sufficient to cause a recombi-
nation in the a-optimal path if 0>2/3. Hence, setting a close to one picks up the noise
from the mutation process and erroneously predicts recombination events.

In other words, the parameter o controls the noise that is acceptable for estimating the
distances and determines the size of a detour required to justify a recombination. Setting
a close to 0 smoothes the noise caused by the random mutation process, but also limits
the resolution of the method to large detours. If we assume that m=E[Yy], the method
cannot recover a recombination that corresponds to a detour which involves a mutation
cost less than (1-a)/a. The age of the recombination also plays a role if m=E[Xy] or if
m~Xy. An old recombination does not cause the same Savings, value as a younger re-
combination with a detour of the same size. To summarize, a chooses between robustness
regarding estimation of distance and resolution regarding the size of a detour.

It is interesting to compare the approach of Recco with sliding window-based methods as
the size of the sliding window also selects the tradeoff between resolution and robustness.
A large window size directly leads to more robust estimates of the branch lengths if there
is no recombination inside the window. However, the resolution is limited by the size of
the window, as recombinant regions that are smaller than the window size cannot be de-
tected. In comparison, Recco does not limit the resolution by using a fixed window size,
but by setting the amount of mutation that is required to justify a recombination (or de-
tour) in the ARG.

5.6 Recombination Analysis Using the Parametric Cost Curve

The previous sections introduced the machinery for processing an alignment and recover-
ing all a-optimal paths. Unfortunately, the amount of information is often bewildering
and it is usually neither possible nor interesting to analyze the complete result manually.
In the following, the analysis is extended quantitatively, such that the results can also be
used in an automated procedure discerning recombinant from non-recombinant align-
ments. The final goal is to provide an approach for addressing the main questions in re-
combination analysis (see section 4.1). In particular, I propose an approach for detecting

recombination in the alignment, for detecting the recombination breakpoints and the
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Figure 5.17: The parametric cost curve is annotated with several variables introduced
in the text. The index i is dropped as only the cost curve for one sequence is shown.
The arrows indicate transitions between different sets of a-optimal paths and are anno-
tated with the recombination events that are introduced and with the corresponding

Savings value.

recombinant sequences, and for finding the structure of a recombinant sequence. The ap-
proach also derives p-values for the output using the column permutation test (see section
4.2.4) and is the basis for the power study in the next chapter. To allow for a more con-
crete discussion, we define significant p-values as p-values below 5%.

The first step of the analysis is to collect the full information of the parametric analysis
into an ordered list of recombination events. The list is already helpful by itself and al-
lows for a much easier manual analysis of the recombination signal in the alignment. The
analysis proceeds by computing the parametric cost curve for column permutations of the
alignment, such that several p-values for detecting recombination can be derived. Besides
the Savings value, there are several other features for detecting recombination that were
described in the publication of Recco (Maydt and Lengauer 2006), but performed not as
well for recombination detection.

5.6.1 The List of Recombination Events

The parametric cost curve is particularly attractive as a starting point for recombination
analysis, as it summarizes all different recombination hypotheses and provides a lot of
information on the ancestry of the query sequence. An automated analysis of an align-
ment usually requires taking each sequence in the alignment as a query, in turn. Hence,
we introduce an additional index i for the parametric cost curve to identify the query se-
quence that produced the data. To be more specific, define Uy, as the set of a-optimal
paths corresponding to the k-th segment of the parametric cost curve taking sequence i as
a query. Define Savingsy; as the Savings value corresponding to the transition from Uj; to
Uy, (see Figure 5.17) and o; as the upper bound for Savings;;. A recombination event
(i,jj ,p) is defined by the query sequence i, the location of the recombination breakpoint p
and the sequences j and j’ left and right of the breakpoint. A path u then defines a set of
recombination events e(u,i)={(i,up,up+1,p)[UpFup+ }. Similarly, we can define the set of
recombination events for a set of paths U as

e(U,i)= Ue(u,i). (5.37)

uel
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It is important to understand that e(u,i)Ne(v,i) can be empty for some u,ve Uy;. In other
words, two paths u,ve Uj; do not necessarily have recombination events in common.
If the parametric cost curve is processed from left to right, it orders the Uy; and the cor-
responding recombination events e(Uj;,i) by decreasing Savings value. The paths in Uy
introduce the recombination events Ey=e(Uy+1,)\e(Uy). Hence, we can refer to Savingsy;
as the Savings value corresponding to Ej;, the set Uiy, or to the recombination events
introduced therein. To be more specific, we can define a function

Savings(x) = max({.S‘uvingsk1 [xe e(Uk,,i)} U{O}) (5.38)
for all recombination events x and refer to Savings(x) as the Savings value of the recom-
bination event x. We can then construct a list L containing all recombination events
{e(Upi)|i,k} ordered by decreasing Savings value. Alternatively, it is also possible to
construct an ordered list L; of recombination events for every query sequence i.

5.6.2 Interpreting the List of Recombination Events

It is usually convenient to compile the list of recombination events for the alignment or
for a sequence and then examine each recombination event manually in the order of de-
creasing Savings value (see Figure 5.18). Recco does not list the source or destination
sequence in the list of recombination events. However, selecting a recombination event in
Recco quickly visualizes the associated a-optimal paths Uy; and zooms to the region sur-
rounding the recombination breakpoint. The source and destination sequences are then
easily recovered. This approach is particularly attractive for larger alignments, as it is
usually not possible to visualize the full alignment in this case. As an alternative, the user
can inspect the a-optimal paths Uy ordered by increasing & manually, but then has to
scroll to obtain the complete picture.

Recombination events with a small Savings value are usually not of interest, as the
a-optimal paths corresponding to small Savings values are susceptible to noise by random
mutations. There are two approaches implemented in Recco. The user can specify a cu-
toff ad-hoc and only keep the recombination events x that satisfy, for example, Sav-
ings(x)>5. Alternatively, Recco can also determine a cutoff based on column permuta-
tions and only present recombination events that are significant (see section 5.6.4). It is
often necessary to combine both approaches in practice, as the p-values can be significant
even for small Savings values.

We have to be careful about interpreting the recombination events in the sets Uy; and in
the lists L and L;. The recombination hypotheses Uy; for increasing k are ordered by an
increasing amount of recombination cost. But there is usually no a-optimal path that con-
tains several recombination events of the list. A simple observation is that different
o-optimal paths for the same a can be completely unrelated. For example, the recombina-
tion events (a) in Figure 5.18 are all mutually exclusive and refer to different a-optimal
paths in Uy There is no a-optimal path that contains two recombination events of (a).
However, there is another effect that is counterintuitive and much harder to interpret. As
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i i’ Alignment Sequence

(query) (sm{rce) (dest) (breaﬁpoint) Savings p-value’  p-value’
(a) R1 Al B2 45, 48-50 12 0.0001 0.0001
(b) Al R1 A2 45-46,49-52 7 0.0611 0.0358
(©) A2 B2 Al 19-24 3 0.9549 0.4677
Al A2 B2 72-74 2 1.0000 0.9872
Al B2 A2 95 2 1.0000 0.9872

* p-values are based on 10.000 permutations

GARGAGTTCCCACCARCATGAC CTARRALATAGTGGAGACARL CTTTACGCCTGCGTCAGAATC GTTCATGTGETTGCCTCGATTICGTT TR GCTGETA

T AA AGA TCTC T &

A G A T AL AT &

Figure 5.18: Shown are the first five elements of the recombination event list L for the
example alignment, along with the corresponding a-optimal paths. The list shows re-
combination events in the same row if they only differ by the position of the break-
point. From the ARG, we only expect to recover the first two recombination events in
the list. The third recombination in the list is due to noise. The p-values are in concor-
dance with our expectations: (a) is a highly significant recombination event, (b) is a
borderline case and (c) is not significant anymore. The computation of the p-values
and their interpretation is explained later in section 5.6.3.

R=0 M,=6 Ry=1 M,=2 R3=2 Ms=0
(@ (b) (©
Figure 5.19: The a-optimal paths are shown by an increasing amount of recombina-
tion. As the number of recombinations increase, recombination events introduced ear-

lier may become obsolete and are not part of an a-optimal path anymore. The recom-

bination events introduced in (b) are not encoded in (c) anymore.
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we recover recombination hypotheses with an increasing amount of recombination, we
might expect that the first recombination event is also part of a hypothesis with more re-
combination events. For example, the list in Figure 5.18 correctly suggests that some
o-optimal path for query Al is composed of the second, the fourth and the fifth recombi-
nation event and the predicted path is R1, A2, B2, A2, with breakpoints occurring at the
positions given in the list. But there are cases where this heuristic fails and a recombina-
tion event at the top of the list is replaced by other recombination events later in the list.
To be more specific, it does not hold in general that e(U,;)ce(Ua)c...ce(Ux;) (see Figure
5.19). This effect usually occurs if the parental sequences differ between the a-optimal
paths. For example, the paths in U,; may predict a recombination event x from sequence i
to j at some position p. If x is not part of a path in Us;, all paths in Uj; usually use parental
sequences other than i and j at position p. Hence, an unstable recombination event also
points to a problem of estimating the parental sequences correctly. Although these cases
are not too frequent in practice, they present a challenge regarding the analysis of the re-
combinant structure with Recco. As explained before, we ideally want to recover a robust
a-optimal path corresponding to a Savings value as low as possible. But if there is a re-
combination event with a large Savings value that becomes obsolete for lower Savings
values, it is unclear whether the recombination event should be part of the desired
o-optimal path. Even worse, Recco computes a small p-value for the recombination
events at the top of the list, even though these events may become obsolete as more and
more recombination events enter the a-optimal path. If there is no such recombination
event, we can trust the ordering of events and know that recombination events corres-

ponding to higher Savings values are more likely to represent true recombination events.

5.6.3 P-values for Recombination

Savings; is a good indicator for detecting recombination in a query sequence i, as it
measures the benefit of a recombination in the query. But we cannot rely on its absolute
value for identifying recombination in general. The value of Savings;; depends on para-
meters of the alignment, such as the genealogy, sequence diversity or the sequence length
(see Figure 5.16). Fortunately, the column permutation test provides a simple approach to
derive p-values for the absolute Savings); values. Computing Savings,; for many column
permutations of the original alignment provides a good estimate of the distribution of
Savings; expected under the null hypothesis of no recombination. The p-value then esti-
mates the probability of observing a value as large as Savings;; by chance in the original
alignment and quantifies whether a sequence benefits significantly from introducing re-
combination into the a-optimal path. The p-value for Savings,; therefore can be used to
detect whether sequence i is a recombinant.

The question about recombination in the alignment can be approached in a similar fa-
shion. First, take each sequence of the alignment as a query, in turn, and compute the
Savings,; values for each query. Then, the maximum of Savings); over all query
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Figure 5.20: The values S;, correspond to an array of the same dimension as the
alignment. The maximum of S, over different dimensions can be used to obtain p-
values for different purposes. The numbering (a) to (d) is the same as in the text de-

scribing the p-values below.

sequences i is a good indicator for recombination in the alignment, and the column per-
mutation test applies analogously for computing p-values for recombination in the align-
ment. Methods for computing p-values at a certain position p are discussed in the follow-

ing.

5.6.3.1 The Recombination Profile

The recombination event list summarizes a lot of information on the parametric cost
curve. A different representation is sometimes more suitable for computing p-values, par-
ticularly for detecting recombination breakpoints. The basic idea is to compute a recom-
bination profile S, for every query sequence i that stores the maximum Savings value for
a recombination event at position p. To be more specific, define the recombination profile
as

S, :maX{Savings(x)|x:(i,j,j',p)eL} . (5.39)
Now, let Xj, be the random variable describing the S;,’s for column permutations of the
original alignment. It is particularly intuitive to think of S, as an array of the same di-
mension as the alignment (see Figure 5.20). Processing a column permutation of the orig-
inal alignment results in an array of the same dimension, and the distribution of X, can be
estimated easily. For notational convenience, we abbreviate the maximum of X;, and Sj,
regarding i or p in the following:

Xv,:m’ax{X }, X,

P ip i

) :mgx{Xw}, X:m’?x{X,ﬂ} . (5.40)

S is handled accordingly and satisfies additionally
S, = Savings, and S =max {Savings,} . (5.41)

5.6.3.2 P-values for Recombination in the Alignment, the Sequence and
at a Breakpoint

As depicted in Figure 5.20 there are four different approaches to maximizing S;, over dif-
ferent dimensions. Each approach results in different p-values with different interpreta-
tions:
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(a) P-value for Recombination in the Alignment. As described before, the p-value for
recombination in the alignment tests whether the maximum Savings value in the
alignment is significantly large:

Pr(XZS):Pr(n}gx{X,p}Zr?ix{S[p}). (5.42)
(b) P-value for Recombination in Sequence i. We can also derive a p-value that meas-
ures whether the query sequence 7 significantly benefits from introducing a recombi-

nation into the a-optimal path:

Pr(X,.vZSA):Pr(m:lx{Xw}Zm:lx{S,.ﬂ}). (5.43)
A significant p-value does not necessarily imply that sequence i is a recombinant, but
may only indicate that a closely related sequence is a recombinant. For example, we
expect to detect sequence Al in the example alignment as a recombinant (see section
5.5.3). However, it is in general difficult to separate recombinant sequences from

closely related non-recombinant sequences (see section 4.1).

(¢) P-value for a Recombination Breakpoint at Position p. Computing the maximum
Savings value for each position p in the alignment allows for a simple approach to ob-
tain the p-value for a recombination breakpoint at position p:

Pr(XpZSP):Pr(maX{XW}Zmax{S[p}). (5.44)

(d) P-value for a Recombination Breakpoint in Sequence i at Position p. Finally, we

can also directly compare the Sj, values with the distribution expected under the null

hypothesis and get the p-value for a recombination breakpoint in sequence i at posi-

tion p:
>5,). (5.45)

The different p-values presented above are related to each other, but may still result in
very different predictions regarding the recombination signal in the alignment. For exam-
ple, it is possible that the p-value for recombination in the alignment does not detect any
significant recombination, but that a p-value for recombination in a query sequence is
significant. There are only two factors that determine the p-values and may cause these
differences: the observed values S and S;. in the right side of Pr(:) and the random va-
riables X and X;. in the left side of Pr(-)

Now, let us focus on the random variables first and study how the distribution of Xj, va-

ries for different i and p. Xj, only depends on the distribution of columns in the alignment,
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Figure 5.21: The plots visualize the distribution of X;. for different query sequences i.
The vertical lines visualize the Savings value for the query sequence in the original
alignment, and the dotted vertical lines show the 95% quantile of the corresponding
distribution. The table below the plot lists some values in detail, such as the mean and
the 95% quantile of )X;- and the bound o;. (a) The example alignment without sequence
R2 was used as an input. The two queries show slightly different Savings histograms
for the column permutations. Savings, of R1 is clearly significant, while Savings; of
A2 is not. (b) The effect that the distribution of X;. depends on the query sequence i is
more pronounced for alignments with a higher diversity. The histogram displays the
result of 1000 column permutations of scenario (S3) in section 7.1.2. For the matter of
this plot, it is only relevant that all three query sequences are not involved in a recom-
bination, but differ in the bound o; and M,;. Both values also are highly correlated with
E[X:] and the 95% quantile. All p-values for recombination in a sequence are not sig-
nificant here, but it is clear that a significant p-value for sequence 3 does not require a

Savings value as high as for sequence 7.

as X, is obtained from column permutations of the original alignment. In other words, the
ordering of columns in the alignment is immaterial and only the frequency for each col-
umn state is relevant. Figure 5.21 compares the distribution of X;. for different query se-
quences and alignments and shows that X;. can vary greatly for different i. It is important
to realize that Figure 5.21 is very different from Figure 5.16: the first visualizes the dis-
tribution of Savings for 1000 permutations of one alignment, while the latter visualizes
the distribution of Savings for 1000 alignments simulated according to the same ARG.
Interestingly, the histograms in Figure 5.21 suggest that X;. is approximately Poisson-
distributed. The parameter of the distribution apparently depends on the bound o; for the
Savings value (see section 5.4.2.1) and on M;, but is also influenced by other factors.

Figure 5.22 shows that X, strongly depends on p. High Savings values are much more
likely at the center of the alignment than at the boundaries, because a recombination at
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Figure 5.22: 10° column permutations of the example alignment were processed to ap-
proximate the distribution of X, for all p. The background color encodes the probabili-
ty of observing a certain Savings value by chance. The probability of observing a large
Savings value is much higher at the center than at the boundaries of the alignment.
The black dots visualize the recombination profile S, of the original alignment. Each
black dot corresponds to the p-value color directly below the dot. The recombination
breakpoint in the middle of the alignment is highly significant and has a p-value of
about 10, All other breakpoints have p-values greater than 0.29 and are not signifi-

cant.

the boundary exchanges fewer nucleotides and cannot achieve high Savings values easily.
The same effect also occurs for Xj, if we compare different positions p (not shown). The
distribution of Xj, therefore depends on the query sequence i and on the position p. The
mean of Xj, is small if the position p is close to the boundary or if o; is small, for example
because the alignment contains a sequence similar to the query sequence i.
We can now explain in more detail how the p-values (a)—(d) differ. Define j as the se-
quence and g as the position where S, achieves the maximum. Then it follows that
S;,=S.,=S;=S and we can compare the four p-values for sequence j and position g. For
every realization x;, of X, it holds that

x, <x, <x and x, <x, <x (5.46)
and therefore we know that

Pr(X,

ip

2 §)<Pr(X, 28)<Pr(X2S)

. 5.47
Pr(X, >8)<Pr(X,>8)<Pr(X=S) 47

In other words, the p-value (d) for a recombination breakpoint in sequence ; at position ¢
is at most as large as the p-value (c) for a recombination at position g or the p-value (b)
for a recombination in sequence j. The p-value (a) for recombination in the alignment is
at least as large as any of the other p-values. The p-value for recombination in a sequence
can therefore be significant even though the p-value for recombination in the alignment is
not, simply because the random variables X and ;. differ.
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Even though the p-value for recombination in the alignment is the most conservative, all
four p-values control the false detection rate correctly. If we consider p-values below 0.05
as significant, we expect that less than 5% of the significant p-values detect a false re-
combination signal. The empirical probability is usually well below 5%, as the random
variables X;,, X, X;., X all have a discrete domain (not shown here). However, there is
more than one p-value for (b)—(d) and testing all of these p-values for significance leads
to a multiple testing problem. The multiple testing problem is usually negligible for
p-value (b), as there are often less than 20 sequences in an alignment and the detected
events can still be validated manually. But the p-values (c) and (d) refer to positions in
the alignment. We already expect five spurious recombination breakpoints for the exam-
ple alignment with N=100. Therefore, we would have to adjust for multiple testing, e.g.
using the Bonferroni correction or false discovery rate control (Benjamini and Hochberg
1995). The Bonferroni correction multiplies p-values by the number of conducted tests
before they are compared with the significance level, or alternatively divides the signific-
ance level by the number of tests. A significance level of 0.05 therefore corresponds to a
significance level 0.0005 after correcting for 100 tests. Correcting for 100 tests therefore
requires computing more accurate p-values and increases the number of permutations and
the computation cost by 100 times. But adjusting for multiple testing also renders many
p-values insignificant and decreases the power of detecting breakpoints. In summary,
p-values for recombination in the sequence and/or at a position are not only less conserv-
ative than the p-value for recombination in the alignment, but also entail a multiple test-
ing problem. The p-values for detecting the breakpoints are rarely useful in practice, and

a better approach is presented in the next subsection.

5.6.4 Estimating the Recombinant Structure of the Query Sequence

Given an alignment, we can determine whether there is recombination in the alignment
and which sequences are most likely recombinants. However, the p-values for detecting
the recombination breakpoints are problematic, as they entail a multiple testing problem.
An alternative is presented in the following: instead of testing every position for a signifi-
cant breakpoint, we can determine the largest a that is still robust regarding the noise in-
troduced by the mutation process. The a-optimal path is then a good estimate of the re-
combinant structure of the query sequence and implicitly predicts recombination break-
points.

5.6.4.1 A Robust Savings Threshold

How can we estimate the recombinant structure of a query sequence i? As described in
section 5.5.5, the parameter a and the corresponding Savings value act as a smoothing
parameter. If the smoothing is too strong, Recco does not correctly estimate the recombi-
nant structure. But if the smoothing is too weak, Recco may erroneously introduce re-
combination events into the a-optimal paths. It is often better to be conservative and miss
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a true recombination event instead of detecting a spurious recombination event. Thus, the
smoothing should rather be too strong than too weak.

Given the random variable JX;. it is easy to find a threshold 7; such that Pr(X;>T7})<0.05 for
each query sequence i. In other words, 7; is the 95% quantile of X;. and we expect to ob-
serve a Savings value as extreme as 7; only in 5% of the permuted alignments. Define
7=1/(1+T;) as the a value corresponding to 7;. Then, the z,-optimal paths erroneously con-
tain one or more recombination events only in 5% of the cases. However, a 7,-optimal
path may recover more than one falsely detected recombination event in this case. As an
alternative to 7, we can also find a threshold T for the whole alignment. 7 then satisfies
Pr(X>7)<0.05 and we can define ==1/(1+7). The probability that a r-optimal path infers at
least one recombination event erroneously for any of the query sequences is only 5%, but
it may infer more than one spurious recombination event just like the z;-optimal paths be-
fore. Hence, it is a concern that more than 5% of the detected recombination events are
spurious even if we set the threshold or significance level to 5%.

T; and T work best for different application scenarios, similar to the p-values for recom-
bination in a sequence and in the alignment. 7; estimates the noise of the mutation process
for each query sequence separately. As the mutation process introduces more noise if the
query is distantly related to all other sequences in the alignment, 7; is larger in such a
case. This reflects the fact that it is harder to estimate the ancestral relationship correctly.
The smoothing parameter 7; therefore adapts the sensitivity of Recco regarding recombi-
nation detours to the query sequence. However, T; is problematic if it is very small, as the
smoothing may detect recombination events based only on a few mutations. As these re-
combination events are not very informative, it is usually better to enforce a lower bound
on T;, such as 72>5. The examples in section 5.6.4.3.4 also confirm that the smoothing
may infer too many recombination events if 7} is very small. In contrast to 7}, T estimates
the maximal smoothing necessary for any sequence in the alignment. In analogy to the
p-value for recombination in the alignment, T controls the false detection rate better than
T; and avoids the problem associated with testing several sequences for recombination. 7’
is also conservative in practice and does not infer many spurious recombination events.
Nevertheless, 7; is more appropriate for analyzing recombination in a single query se-

quence.

5.6.4.2 P-values for Recombination Events

The random variables JX;. and X can also be used to assign a p-value to each Savings value
and each recombination event. Recco refers to Pr(X;>Savings(e)) as the sequence p-value
of a recombination event e and to Pr(X>Savings(e)) as the alignment p-value of e (see
Figure 5.18 for the recombination event list including these p-values). For every recom-
bination event e=(i,j,j’,p), we know that the alignment p-value is larger than the sequence
p-value, and that the sequence p-value is larger than the p-value for a recombination

breakpoint in sequence i at position p. Furthermore, large Savings values correspond to

137



small p-values, and the sequence (or alignment) p-values impose the same ordering as the
Savings values for the recombination events in the list L; (or L). We also know that all
recombination events e with Savings(e)>T; (or Savings(e)>T) have a significant sequence
(or alignment) p-value. The thresholds 7; and 7 therefore define the cutoff in the recom-
bination event list that separates significant from insignificant recombination events. As
described before, a problem occurs for the recombination event list if some recombina-
tion events are unstable and become obsolete for low Savings values. In this case, it is
usually better to rely on 7; or T as a smoothing parameter, recover the corresponding z; or
7-optimal path and regard the recombination events therein as the correct estimate.

The p-values for the recombination events also allow for computing a cutoff in the lists L;
and L. Suppose that L; contains the recombination events e, e;, ... . Hence, we can test
Pr(X;>Savings(e1))<0.05, Pr(X;>Savings(e;))<0.05, ... until a test fails and then return all
recombination events that were accepted. The result is identical to returning all recombi-
nation events e with Savings(e)>T;. The analogous approach for the list L recovers all re-

combination events e with Savings(e)>T.

5.6.4.3 Is the Savings Threshold Conservative?

Suppose that the Savings threshold 7; is computed for alignments without recombination.
We know that the 7;-optimal path inserts one or more recombination events with a proba-
bility of only 5%. But it is unclear whether a z-optimal path would introduce more than
one recombination events in such a case. In other words, it may happen that one falsely
detected recombination event causes additional false detections, such that the estimate is
very wrong. Hence, the question for non-recombinant alignments is: what is the probabil-
ity of inferring a second recombination event if the first recombination event is signifi-
cant? A similar question also occurs for alignments containing recombination: do we in-
fer spurious recombination events besides the true recombination events and if we do,

how many?

5.6.4.3.1 The Parametric Cost Curve for Column Permutations

To keep the discussion limited, we assume that Hamming distances are used as recombi-
nation cost. Furthermore, we only study one sequence at a time such that we do not need
to introduce a sequence index for the elements of the parametric cost curve. The parame-
tric cost curve corresponding to sequence i and to 7; then defines the set of paths U for
k=1,...,K, the Savings values Savings\>...>Savingsk.;, and the set of recombination
events E=e(Uj:1)\e(Uy). We can also compute these values for a column permutation of
the alignment. Define y;>...>yk . as the Savings values for a column permutation, where
K’ is not necessarily equal to K and refers to the number of segments in the parametric
cost curve. It is simple to construct a list of the same length from the yy’s, though, by ei-
ther discarding superfluous values y; or by adding artificial values y,=0. Hence, we can
define random variables Y),...,Yx that describe the distribution of the y;’s, where Y; is
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Figure 5.23: A parametric cost curve is shown for sequence i and annotated with the
variables introduced in the text. Savings), z; and z; are all equal and correspond to a;.
The first transition from U; to U, introduces two recombination events as z;=z,. Con-
sequently, the threshold 7; accepts both, z; and z,. This case illustrates that more than
one (potentially false) recombination event can be introduced simultaneously. The
same effect can occur for Savings; as several Savings values can be larger than 7; and

more than one Savings value is (potentially falsely) accepted simultaneously.

identical to the random variable X;. introduced before (see Figure 5.23). The threshold 7;
then determines the maximal ¢ such Savings>T; and classifies the recombination events
in EjU...UE, as significant. We can also define Savings,, Savings,, ... and Y}, Y», ... for
the alignment by maximizing the corresponding Savings; and Y} over all query sequences
in the alignment. These values are referred to as Savings; and Y, of the alignment in the
following.

The previous analysis does not take into account that each Savings value may correspond
to two or more recombination events, though. Remember that Sa-
vingsi=(My-Mj+1)/(Ri+1-Rr) and therefore that each of the Ry 1-Ry recombination events in
an a-optimal path eliminates Savings; in mutation cost. Hence, we can alternatively de-
fine zy,...,z; instead of Savings,...,Savingsk.1, such that each z; corresponds to a single
recombination event in an a-optimal path. For example, if Savings;=5 and R»-R;=2 then
z1=5 and z,=5. It follows that

K-l

- (5.48)

J

M-

Savings, (Rm -R, ) =

k=1 J

Define the random variables Z,...,Z; such that they represent the distribution of zi,...,z;
for column permutations of the alignment. As above, we can also define Z; and z; for the
alignment by maximizing over the corresponding values for all sequences in the align-
ment. As z; (or Savings) is a realization of Z; (or Y) we do not distinguish between z; (or
Savingsy) and any realization of Z; (or Y}) in the following.

The following inequalities result from the definition of z; and Z; and the same inequalities
are also true if we substitute z; by Savings; and Z; by Y

1. zzi>z; for all j and all realizations z; of Z;.
2. it follows directly that Pr(Z.,.>T; " Z;>T;) = Pr(Z; 2T))
3. and hence Pr(Z.,>T;) > Pr(Z.=>T; " Z;>T;) = Pr(Z;>T;) for all ;.
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We can also derive inequalities relating z; and Savingsy for all k<K:

4. By definition we know that z; > Savings for all .
S. It directly follows that Pr(Z; >T,)>Pr(Y;>T;) for all k.

5.6.4.3.2 The Expected Number of Falsely Detected Recombination Events

We can now come back to the initial questions and describe them in more detail. Given
the notation above, we would like to know the expected number of Savings;’s or z;’s that
are erroneously significant. We refer to the first as Errg,, and to the latter as Err.. Errg,,
or Err. are lower for alignments with recombination than for alignments without recom-
bination, as the large Savings values of the true recombination events lowers the Savings
value of falsely detected recombination events (see next section). Consequently, we only
study alignments without recombination in the following, such that Errs,, and Err; are the
expected number of Savings,’s and z;’s that are significant, respectively. We define Errg,,

and Err. as
Erry, = 3 PH(Y, 2 T) (5.49)
k=1
Err =3Pz, 2T) (5.50)

A
where Pr(Z>T;) is the probability of falsely detecting j or more recombination events. It
then follows that Errs,<Err. because K<J and Pr(Y; >T))<Pr(Z; >T;) for all k<K. If Errs,,
or Err. are much larger than our chosen significance level of 5%, we know that the thre-
shold 7; often leads to several falsely detected recombination events in the z-optimal
path. Studying Err. is intuitive from a user’s perspective, as it determines the expected
number of falsely detected recombination events. However, studying Errg,, also makes
sense, as the Savings value inherently controls the number of recombination events in the
a-optimal paths. For example, if we erroneously accept Savings;, we cannot avoid that
the corresponding a-optimal paths may introduce more than one recombination event si-
multaneously. It is already very reassuring if Errg,, is not much larger than 5%, as we
then know that it is infrequent that more than one Savings value is falsely accepted in an
alignment. In other words, even if the 7-optimal path infers too many recombination
events, the a-optimal paths corresponding to the next larger Savings value usually do not.
Hence, we would like to show that it is very rare that two or more Savings; are larger than
the threshold 7}, as we then know that 7; consistently picks conservative 7;-optimal paths.

But when is Errs,, or Err, much larger than 5%? We focus on Err; in the following as it is
more intuitive in practice, but the same results transfer to Errs,, analogously. Recco false-
ly detects more than one recombination event if there are several z;’s that are larger or
equal to the threshold T; and Err: is large if Pr(Z>T;) does not decrease rapidly with in-
creasing j. For example, assume that Z; and Z, are positively correlated and that any rea-
lization z; and z, satisfies z,=z;. In this case, z, is significant if z; is significant and we

detect either zero or at least two false recombination events in the alignment.
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We can quantify this effect in more detail by studying Pr(Z>TiZ;.;>T;), the probability of
detecting a j-th recombination event if a (j-1)-th recombination event has been detected.
Pr(Z>T}|Z;.\=T;) is particularly intuitive as it captures the dependency between Z; and Z;.;.
For all j<J with />1 it holds that

PH(Z,2T,NZ,, >T) Pu(Z,2T)

P(Z,>T|Z,  >2T)= Pz 51T :Pr(z.,] Ty (5.5

j

It directly follows that

STYPZ,, 2 T)=Pi(Z, > T)[[PHZ, 2T 12, >T). (5.52)

0=2
Now suppose that there exists a bound ¢ such that Pr(Z>TiZ;.,>T;)<q for all j<J with j>1.
We can then also provide a bound for the error Err, by rewriting equation (5.50) using the

PH(Z, 2T)=P(Z,2T|Z

J

conditional probabilities:

J
Err, :Zpr(z, >7))
J o J
=PuZ 2T)+Pu(Z, 2T)Y [[P(Z, 27,12, >T))
j=2 0=2
j-1

<PHZ 2T)g" +Pr(Z, 2T)Y g

} (5.53)

=

S

=Pi(Z, zr){iq”‘

j=1

=Pr(Z, zT,.)R’qJ}
—-q

<Pr(Z, > 7})[%}
-q

For example, if the dependent probability is bounded by ¢=0.05 we get Err.<0.053 as
Pr(Z,>T)<0.05 by definition. For g=0.10 we get Err.<0.056 and the error Err; is still ac-
ceptable as it is not far off from our original significance level 0.05.

The bound ¢=0.05 has an intuitive interpretation as it relates to an independence assump-
tion: if two random variables G and H are independent and satisfy Pr(G>T7})<0.05 and
Pr(H>T;)<0.05 it follows immediately that

PHG>T |H>T)=RO2LOH2T) PUAC2TIPUH2T) b 6sry<o0s  (5.54)
T Pr(H >T)) Pr(H >T)) e '

and ¢=0.05 is a bound for Pr(G=T}|H>T;). Obviously, Z; and Z, are not independent, but
we may still hope that Pr(Z>T}|Z.;>T;) is bounded.
We only study Pr(Z,>T|Z\>T;) in the following, as the probability of falsely detecting a

third recombination event is usually not as interesting anymore: first, Pr(Z;>7}|Z,>T;) may
be similar to Pr(Z,>T}|Z>T;). Second, if Pr(Z>>T}|Z,>T;)<0.05, we know that the probabil-
ity of falsely detecting three recombination events is smaller than 0.05°=0.0025. Finally,
the invariant presented in the next section suggests that it is extremely rare that more than

two recombination events are falsely detected.
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5.6.4.3.3 Invariants for the Savings Values

Obviously, a large Savings, also allows for a large Savings,, as the condition Sav-
ings>Savings, must always be satisfied. This condition suggests that the Savings, values
as well as the z; values are positively correlated and that Pr(Z,>T;|Z,>T)) is large. Howev-
er, there is a more intricate restriction for Savings; and z; that suggests a negative correla-
tion between Z; and Z, for the relevant domain. If Savings, is particularly large, Savings,
cannot be very large, because the recombination(s) associated with Savings; already re-
duce the number of mutations on the a-optimal path. The same restriction also applies to
z;. To be more specific, it follows from Savingsy(Ry+1-Ri)=M;-M;+ that

z, . (5.55)

J

M-

K-1 K-1
o=M,-M=>(M,-M,, )= Savings, (R, —R,)=
k=1 k=1

j
The interesting aspect about this equation is that ¢ does not change for column permuta-
tions of the alignment. The sum of z; and Savings; therefore is the same for every column
permutation of the alignment. If a column permutation causes a particularly large z; or
Savings, value, the z; or Savings, value is probably much smaller than for other column
permutations, as the total sum remains constant. If J>1 we can also bound z, by z;:
o523z (5.56)
=
In other words, if z;>6/2 it must also hold that 6/2>z, and z, has to decrease as z; increas-
es. The initial restriction z;>z; becomes obsolete and both values are negatively corre-
lated. As only large z; values can lead to a significant p-value, we may hope that z; and z,
are non-correlated or negatively correlated for the relevant domain and that
Pr(Z,>T|Z\>T)) is small and can be bounded. These observations also carry over to the
Savings; values.

5.6.4.3.4 Empirical Analysis
We first study the joint distribution of Z; and Z, and then come back to Y; and Y>. Figure

5.24 shows an analysis of the joint distribution of Z; and Z, for the example alignment
based on 100,000 column permutations. The mass of the distribution is not directly visi-
ble from the plot, as the distribution is discrete and each point may correspond to more
than one sample. The red lines visualize 7;. A permutation with two falsely detected re-
combination events therefore corresponds to a point to the right of and above the red
lines. The blue line visualizes an analogous threshold for Z,, where the threshold ¢ is the
95% quantile of Z, and satisfies Pr(Z,>)<0.05. The blue curve represents ¢ with
Pr(Z>1|Z,=2,)<0.05, or the 95% quantile of Z, conditioned on Z;. As expected, the blue
curve often indicates a negative correlation between Z; and Z, if Z; is significantly large
(to the right of the red line). The probability of detecting a second recombination event is
less than 5% if the first recombination event is significant, as the blue curve is always be-
low the dotted, red line. Figure 5.25 shows the same plot for the z; values for the align-
ment. Table 5.2 shows several empirical probabilities for the example alignment, based
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Figure 5.24: The scatterplots visualize the dependency between z; and z; for column
permutations of the example alignment. Each plot corresponds to a different query se-
quence. The diagonals represent the constraint z;>z,. The red line visualizes the thre-
shold 7; and is also shown on the y-axis, as Recco uses T; for all recombination events.
The blue line shows the 95% quantile for Z, and the blue curve shows the 95% quan-
tile for Z, conditioned on Z;. The blue lines are not used by Recco, but visualize the
dependency of Z;, and Z nicely. Finally, the red triangle marks the observed values z;

and z for the original alignment.

on 100,000 permutations. Recco is very conservative for the example alignment and only
rarely detects a second recombination event if a first recombination event is detected.

The same analysis can also be conducted for Savings,, Savings, and Y;, Y>. The negative
correlation between Y, and Y, is more pronounced and the probability of falsely detecting
a second Savings value is even lower than for Z; and Z, (not shown).

The analysis was repeated for two random sequence alignments of length N=1000 to en-
sure that the results also hold in other scenarios. The simulation process was the same for
both alignments. First, a random genealogy was drawn from the coalescent using the pro-
gram ms (Hudson 2002). Given the genealogy, we then used the program dawg
(Cartwright 2005) to evolve a random sequence along the genealogy according to the
Jukes-Cantor model. The first alignment was simulated with the parameters 6=500 and
p=0 and therefore does not contain recombination. Hence, there were §/N=0.5 mutations
per position from the root to a leaf of the tree, on average (see section 3.3.2). The second
alignment was simulated with the same scaled mutation rate =500, but used p=16 to in-
troduce a substantial amount of recombination. However, the analysis only compares the
distributions Z; and Z, derived from column permutations of the alignment and does not
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Figure 5.25: The data of Figure 5.24 were aggregated to the maximum z; and z, value
over all sequences. (a) The histograms for Z; and Z; are plotted back to back. The thre-
shold 7 for Z; is shown with a red line and is much higher than the 5% threshold for Z,
shown with a blue line. Hence, the probability to detect a second recombination event
with the threshold 7" is much lower than 5%. (b) The scatterplot shows the alignment
values of Z; and Z, and confirms the negative correlation as before.

example alignment alignment  R1 Al A2 B1 B2

T, T; 8 6.5 7 5.5 2.5 3.5
Pr(Z,>T)) 0.019 0.023  0.037 0.022 0.024 0.044
Pr(Z,>T)) 0.000 0.000 0.000 0.000 0.001 0.001

Pr(Z>Ti|Z1>T) 0.000 0.000 0.000 0.000 0.024 0.019

Table 5.2: The table lists the thresholds 7 and 7; for the alignment and the five se-
quences, respectively. The next rows list the probability to detect at least one recombi-
nation event Pr(Z>T;), the probability to detect a second recombination event
Pr(Z>>T;)) and the dependent probability Pr(Z,>T}|Z,>7;). Note that
Pr(Z>T)|Z\>T))=Pr(Z,>T;)/Pr(Z\>T}) in our case. By construction of the threshold 7;,
Pr(Z,>T)) and Pr(Z,>T;) are always smaller or equal to 5%. The dependent probability
is also well below 5% for the example alignment and shows that the probability to

detect a second recombination event erroneously is lower than 5%.

study the probability of falsely detecting one or two recombination events beside the true
recombination events. The alignment with p=16 guarantees that some permutations may
achieve a very large Savings value. Finally, both alignments contain much more muta-
tions than the example alignment and also have a much higher expected Savings value for

column permutations.
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=500, p=0 aln 1 2 3 4 5 6 7 8 9 10
T; 23.5 1 2 233 233 3.5 5.5 6.5 11.5 115 235
Pr(Z>T) 0.041 0.046 0 0.022 0.042 0.012 0.020 0.041 0.041 0.046 0.041
0
0

Pr(Z>T)) 0.000 0 0.014 0.018 0.002 0.001 0.000 0.000 0.000 0.000
Pr(Z,>T}|Z,>T;) 0.001 0 0.629 0.441 0.166 0.057 0.001 0.001 0.000 0.001

0=500, p=16 aln 1 2 3 4 5 6 7 8 9 10
T 27 125 1.66  2.66 433 433 466 5.5 8.66 135 27

Pr(Z>T) 0.046  0.022 0.029 0.026 0.034 0.047 0.049 0.024 0.049 0.038 0.046

Pr(Z,>T) 0.000 0.017 0.009 0.005 0.015 0.019 0.014 0.003 0.005 0.000 0.000

Pr(Z>T)Z>T;) 0.000 0.768 0.310 0.172 0.446 0.407 0.278 0.125 0.095 0.006 0.000

Table 5.3: The same analysis as for Table 5.2 is shown for the two other alignments.
The sequences are arbitrarily named 1 to 10, such that they are ordered by an increas-
ing T;. Probabilities above 5% are marked in red and indicate that the approach of
Recco may detect many spurious recombination events if the threshold is particularly

small.

6=500,p=0  aln 1 2 3 4 5 6 7 3 9 10
T, 235 1 2 233 233 35 55 65 115 115 235
Pr(Y>T) _ 0041 0046 0 0022 0042 0012 0020 0041 0041 0046 0.041
Pr(Y>T) 0 0 0 0 0 0 0 0 0 0 0
Pr(Y>T|Y>T) 0 0 0 0 0004 000l 0004 0 0 0 0
0=500,p=16 __ aln 1 2 3 4 5 6 7 3 9 10
T, 27 125 166 266 433 433 466 55 866 135 27
Pr(Y,>T,) _ 0.046 0.022 0.029 0.026 0.034 0.047 0.049 0.024 0.049 0.038 0.046
Pr(Y>T) 0 0 0 0 0 0 000l 0 000l 0 0

Pr(Y,>T}|Y,>T)) 0 0.003 0.001 0.002 0.008 0.008 0.010 0.001 0.011 0.001 0

Table 5.4: The same analysis as for Table 5.3 is shown, but for ¥, and Y,. Recco is ex-
tremely conservative in this analysis, as it usually does not falsely accept a second

Savings value.

Table 5.3 lists the observed probabilities for the two alignments as described before for
the example alignment. The threshold 7 is very conservative for both alignments and
usually does not detect a second recombination event. However, the threshold 7; does not
work well if 7; is small. For example sequence 3 in the alignment with p=0 corresponds
to 7;=2.33. Recco falsely detects a second recombination event with a probability of
62.9% for this sequence if a first recombination event was detected. For larger 77, the ap-
proach of Recco works well again and does not detect an excess amount of recombination
events. Figure 5.26 shows the scatterplots for the Z; and Z, values for the alignment and
illustrates that the threshold 7 is conservative. Finally, Figure 5.27 shows the sequence
scatterplots for most sequences and confirms the problems discussed for Table 5.3. It is
also very interesting to perform the same analysis for ¥, and Y,. Table 5.4 shows that
Recco has a very low probability to falsely accept a second Savings value. In other
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=500, 0=500,

z, z,
Figure 5.26: The scatterplots for the alignment values of Z; and Z, are shown for the
two other alignments. The same trend is visible as before: significantly large Z; values
usually lead to small Z, values. The red triangle of the right plot does not fall in the
displayed range as it is far to the left and highly significant.

words, there is a simple reason why Recco may falsely detect more than one recombina-
tion event as in Table 5.3: the z;-optimal paths introduce more than one recombination
event simultaneously.

In summary, the approach of Recco is very conservative and usually infers recombination
events falsely in less than 5% of the cases. It is extremely rare that Recco chooses a thre-
shold 7; such that two Savings values are falsely accepted. Consequently, Errs,, is usually
lower than 0.05 in practice. However, the threshold 7; may falsely detect more than one
recombination event if 7; is small and Err. may be large. This effect is usually not as re-
levant in practice, as these recombination events are introduced simultaneously into the
7~optimal paths. In other words, sequence i may not be a highly recombinant sequence if
the corresponding 7; value is small and the z,-optimal paths recover many recombination
events. A manual analysis could be performed to check if the a-optimal paths correspond-
ing to the next larger Savings value are more likely in such a case. In practice, the thre-
sholds 7; actually result in a more conservative estimate of the recombinant structure than
other HIV-1 subtyping methods (see section 7.2.2). Finally, the threshold T is always

conservative and even controls Err; nicely.

5.6.5 Other Features for Recombination Detection

For notational convenience, the index for the query sequence i is dropped in the following
and Savings) refers to the maximum Savings value of query sequence i. Besides the Sav-
ings value, there are several other features of the cost curve that provide information on
recombination in the query sequence. Many of these features do not perform as well as
Savings, for recombination detection or are equivalent to Savings;. One example is a;,

the smallest a-value for which a recombination is introduced in an a-optimal path. A
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Figure 5.27: The scatterplots for the alignment with =500 and p=0 and almost all se-
quences. Sequence 1 is not interesting, as it does not erroneously detect a second re-
combination event. The problematic sequences are clearly visible from the plots. Se-
quence 3, 4, 5 and 6 show a positive correlation between Z; and Z, above the threshold
T;. Consequently, Recco often falsely detects more than one recombination event for

these sequences simultaneously (see also Table 5.3).

p-value based on a; is equal to a p-value based on Savings;: the relation Sav-
ings1=(1-a1)/a, is strictly monotonic for a; €[0,1].
Another feature that is related but not equivalent to Savings, is FirstAngle, the angle in
radians between the first and second linear segment of a cost curve (see Figure 5.28). A
large angle indicates recombination as it points to a significant decrease of mutation cost
and an increase of recombination cost. The last feature we propose is MaxCost, the max-
imum that the cost curve attains. This feature measures how hard it is to derive the puta-
tive recombinant from the other sequences in the alignment. The absolute value of
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ao=0 a /%) az=1

Figure 5.28: Several other features of the parametric cost curve can be used for detect-
ing recombination in an alignment. Not all features are directly related to recombina-
tion, though.

MaxCost depends mostly on the time when the sequence diverged from the other se-
quences in the alignment. A sequence that diverged early in history tends to have a higher
value of MaxCost than a sequence that diverged only recently. However, the absolute
value of MaxCost does not matter for computing p-values. We have to compare MaxCost
to the distribution expected under the null hypothesis. If the query sequence benefits
much from introducing recombination, the slope of the cost curve decreases considerably
at a; and MaxCost is rather small. The cost curve for a column permutation has the same
slope for the first segment, but the slope does not decrease as much for the next segment,
because recombination is not as beneficial. If the query sequence does not benefit from
introducing recombination, we do not expect a significant change of MaxCost.

Both features, FirstAngle and MaxCost, can be used analogously to the Savings value for
deriving p-values for recombination in the alignment or in a sequence. We could also de-
termine the significance cutoff for FirstAngle and MaxCost as we did for the Savings
value and recover the corresponding a-optimal paths. But the Savings value can also be
computed for every segment in the cost curve, such that each recombination event cor-
responds to a Savings value. As this is impossible for FirstAngle and MaxCost, both fea-
tures cannot be used to order the recombination event list or to compute p-values for a
recombination breakpoint. FirstAngle and MaxCost also cannot be interpreted as easily
and are not as intuitive as Savings, such that their application is limited. However, they
capture a slightly different aspect of the recombination signal and are evaluated to some
extent in Chapter 7.

5.6.6 Dealing with Similar Sequences in the Alignment

The basic approach of Recco seeks to recover the recent ancestry of the query sequence
in the ARG. This approach imposes a fundamental restriction regarding recombination
detection: Recco does not detect recombination in a query sequence if there is a closely
related sequence in the alignment. The Savings value for R1 in the example alignment is
small if R2 is included in the alignment. R2 effectively conceals the recombination signal

of R1. This restriction of Recco is acceptable if we perform a manual analysis of the
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alignment, as we can use the information on the recent ancestry of the query sequence to
search for older recombination events. For example, we could reconstruct parts of the
ARG incrementally, starting at the leaves and working towards the root of the ARG. This
idea is quite involved, though, and some details are presented as future work.

A simpler approach is possible and can be performed automatically. If a query sequence
does not benefit much from recombination, the query sequence is most likely involved in
a coalescent event first. Hence, we can pick the closest sequence to the query and replace
both sequences in the alignment by an intermediate sequence. The process is repeated
until we find a significant recombination event. A slight variation is more suitable for
practical purposes (see Figure 5.29). Starting with the full alignment, compute the Sav-
ingsy; value for query sequence i and then eliminate the closest sequence to the query
from the alignment. Repeat the process until there are only two sequences left in the
alignment and record the maximum value of Savings); encountered during this process.
The maximum value of Savings); is referred to as OptSavings; in the following. An alter-
native interpretation of the algorithm is that of a greedy strategy for finding the subset of
sequences in the alignment that maximizes Savings;.

We can obtain p-values with the column permutation test again: compute OptSavings; for
every column permutation and estimate the distribution of OptSavings; under the null hy-
pothesis, such that the p-values for the observed values can be calculated. But OptSaving-
s; introduces another limitation: Savingsy; corresponds to the &-th transition in the parame-
tric cost curve for query sequence i. The cost curve allows for recovering the recombina-
tion events introduced by each transition. But OptSavings; is the result of optimizing Sav-
ingsy; and does not allow for reconstructing a recombination event list. As a workaround,
we can evaluate the parametric cost curve that generated the OptSavings; value and refer
to the Savings values of this cost curve as OptSavings;;.. Consequently, we can construct
the recombination event list as before and assign OptSavings values to each recombina-
tion event. Hence, the same analysis pipeline as for Savingsy; applies to OptSavings;,. Un-
fortunately, it is difficult to interpret the recombination event list based on OptSavingsy;,
as only the recombination events corresponding to OptSavings,; have an interpretation.
The recombination events for OptSavings,; show the highest benefit (or Savings value)
regarding a greedy optimization of the sequence subset. The other recombination events
depend on the optimized sequence subset. It is possible, that the sequence subset conceals
recombination events that would otherwise be part of the recombination event list. Hence,
the interpretation of the recombination event list regarding the ARG is unclear if OptSav-
ings is used. But for an automated analysis OptSavings performs very well.

Table 5.5 shows the recombination event lists based on the Savings value and the Opt-
Savings value for the example alignment including sequence R2. OptSavings performs
much better than Savings and recovers the recombination events that we expect for this

scenario.
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Figure 5.29: The iterations for computing the OptSavings feature for query sequence
R1 in the example alignment are shown from left to right. The red sequence deter-
mines the sequence that is eliminated in the next step, as it is the closest sequence to
R1. The red path visualizes the a-optimal path corresponding to the Savings; value. (a)
R2 is closely related to R1 and does not allow for a high Savings, value. (b) After eli-
minating R2, we obtain the example alignment analyzed before. Interestingly, B2 is
eliminated next, as it is closer to R1 than Al. (¢) This sequence subset results in the
maximum Savings, value. There is actually no better sequence subset for the example
alignment. (d) As there are only three sequences left, it does not make sense to elimi-

nate any further sequences.

i Jj Jj’ )/ Alignment Sequence

(query) (source) (dest) (breakpoint) Savings p-value p-value
Al R1 A2 45-46,49-52 9 0.0075 0.0072
A2 B2 Al 19-24 3 0.9768 0.4898
i j j’ . Alignment Sequence

(query) (sm{rce) (dLst) (breall()point) OptSavings p-gvalue p?\/alue

R2 Al Bl 50 15 0.0001 0.0001

R1 Al Bl 50 14 0.0001 0.0001

Al R2 A2 45-46,49-52 9 0.0335 0.0089

B2 A2 R1 24-26,47-48 5 0.7562 0.0299

Bl A2 Al 58-74 4 0.9641 0.2844

A2 R2/B2 Al 19-24, 58-59 3 0.9995 0.4882

Table 5.5: The recombination event list is shown for the example alignment including
sequence R2. P-values are based on 10,000 permutations, and all events with a Sav-
ings value greater or equal to three are shown. (top) The recombination event list
based on Savings does not list sequence R1 and the associated recombination event.
(bottom) The recombination event list based on OptSavings correctly lists the recom-
bination events in sequences R1 and R2. The first three events in the list correspond to
events expected from the ARG. All other events are not significant and constitute

noise.
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5.7 The Computational Complexity of Recco

Recco processes an alignment by building more and more complex analyses on top of
each other. The steps in their hierarchical order are:

(a) The dynamic program (section 5.3). The dynamic program is very fast and only re-
quires O(NM) operations for the forward, backward and backtrace steps if the heuris-
tic of section 5.3.1 is used.

(b) The parametric analysis (section 5.4.2). The parametric analysis requires about 2K
calls to the dynamic program if the cost curve has K segments. It is not simple to es-
timate K for a given alignment, as the number of segments depends on the diversity of
the alignment and to a much lesser degree on the length of the alignment. K also va-
ries for column permutations of the alignment. The example alignment has about 3.5
segments for each parametric cost curve, and this does not change much if the length
is increased to N=1000. But more diverse alignments have ten or sometimes even one

hundred segments in the cost curve.

(¢) Computing the OptSavings values (optional). This step requires repeating (a) and
(b) about M times, as the sequences are eliminated from the alignment.

(d) Taking each sequence in the alignment as a query. A full analysis of the alignment
requires taking each sequence in the alignment as a query, in turn.

(e) The column permutation test (section 5.6.3). The column permutation test requires
repeating steps (a)—(c) many times. If we consider p-values below 0.05 as significant,

it is usually sufficient to perform 100 permutations.

Other parts of the analysis, such as constructing the recombination event list, do not re-
quire a lot of computation and are irrelevant for the running time of Recco. The approx-
imate running time for steps (a) to (c) is usually less than one second for an alignment of
N=1,000 positions and M=10 sequences. The total running time for an alignment of the
same size is about 30 seconds if we do not compute OptSavings; and about 100 seconds if
OptSavings, is also computed. The overall complexity of Recco is therefore O(NM*KP) if
OptSavings; is not computed and O(NM’KP) otherwise. It would be more intuitive to ex-
press K in terms of M and N, as K does not directly depend on the input. An exact expres-
sion is not easily possible, but K grows slowly with the diversity and length of the align-
ment and the complexity of Recco is therefore slightly worse than linear in N.
There are several approaches that could increase the speed of Recco significantly. The
permutation test is a particularly promising step for optimization. For example, the Sav-
ings value of column permutations appears to be Poisson-distributed (see Figure 5.21). If
a theoretical analysis provides evidence for this assumption, we could simply estimate the
parameter of the distribution and obtain accurate p-values from a few permutations. It
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might also be possible to approximate the parameter of the distribution from simple
summary statistics of the original alignment and avoid column permutations altogether.

Another approach reduces the running time for each column permutation and only re-
quires a slightly more complex implementation. If we are not interested in p-values for
recombination breakpoints, we can restrict the parametric analysis for the permuted
alignments. To be more specific, we may choose to compute p-values only for some Sav-
ings values in the recombination event list, for example for Savings values greater or
equal to 5. Consequently, it is sufficient to construct the cost curve for the interval
[0,1/6], as a-optimal paths for o>1/6 correspond to a Savings value smaller than 5 and are
not relevant for computing p-values of the selected Savings values. The probability for a
Savings value smaller than 5 is about 1% for the example alignment. Step (b) would
therefore often require only a single call to the dynamic program instead of O(K) calls.
However, some parts of the analysis of Recco cannot be performed in this case. The
MaxCost feature, for example, requires most of the cost curve and could not be explored

otherwise.

5.8 Conclusion

This chapter introduced Recco, a new method for the analysis of recombination in se-
quence alignments. The basic optimization problem and the dynamic program of Recco is
very similar to several other approaches that use dynamic programming and cost minimi-
zation. All these approaches only differ by the set of allowed operations and by the input
type. Recco was originally motivated by the work of Kececioglu and Gusfield (Kececiog-
lu and Gusfield 1998) (see section 4.3.8.1), which reconstructs a single sequence from
two other sequences using mutation, recombination and indels, and does not require a
multiple alignment as input. Lajoie and El-Mabrouk (Lajoie and El-Mabrouk 2005) (see
section 4.3.8.1) reconstruct one sequence in an alignment from the others using mutation,
recombination and gene conversion. Jumping alignments (Spang, Rehmsmeier et al.
2000; Spang, Rehmsmeier et al. 2002) (see section 4.3.3.3) reconstruct one sequence
from a multiple alignment of background sequences and allow for mutation, recombina-
tion and indels. The dynamic program of Recco is a restricted version of the last two ap-
proaches, as it does not allow for gene conversion or indels.

The dynamic program of Recco and the restrictions it imposes were carefully tailored to
the requirements of recombination analysis in practice. The dynamic program of Recco
allows for an intuitive visualization of a// optimal solutions simultaneously and can also
assess the robustness of the solution regarding small deviations from the optimal solution
using the 7, values. The other approaches could only visualize one optimal solution, and
require more than two dimensions for a similar analysis of the robustness of a solution.
The dynamic program of Recco is also considerably faster than the other approaches. Fi-
nally, Recco does not impose unrealistic assumptions, even though it is more restricted.

Gene conversions can be represented as two independent recombination events. This may
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reduce the accuracy of the model, but simplifies the dynamic program significantly.
Jumping alignments can simultaneously align and analyze a query sequence regarding a
reference alignment of sequences. But for general datasets it is usually unclear which se-
quence is the recombinant and each sequence of the dataset is considered as the query
sequence in turn. In this case, there is virtually no benefit in automatically aligning the
query sequence, as there is a different reference alignment for each possible query se-
quence.

Recco introduces several analyses that are not shared by other methods. The parametric
analysis is the most informative and recovers all pareto-optimal paths. But the parametric
analysis also allows for comparing neighboring segments of the parametric cost curve
and assigns a Savings value to the transitions. The Savings value is an intuitive and quan-
titative measure for recombination in the alignment and in a sequence. The Savings value
also provides a natural ordering for the recombination events in an a-optimal path, the
recombination event list. The recombination event list is particularly useful for a manual
analysis of the alignment, as it provides a condensed view of the recombination signal
and allows focusing our attention to important events first. In some cases, the ordering
might fail, though. The ARG Analysis explains how the Savings value and the a-optimal
paths depend on the ARG underlying the alignment and encourages using the largest a in
practice that does not introduce noise into the a-optimal paths. This also motivates inter-
preting o as the choice between robustness and resolution regarding recombination de-
tours. The ARG Analysis also shows that Recco takes an entirely different approach to
recombination analysis than many other methods: Recco does not try to infer local trees,
but looks at the ARG bottom-up instead of left-right. This approach is particularly attrac-
tive, as recent events can be estimated far more accurately than older events in the pres-
ence of recombination. Finally, the column permutation test allows for computing
p-values and helps to estimate the a for recovering robust o—optimal paths. As a conse-
quence, Recco does not introduce any critical parameters into the analysis: we can usual-
ly use the value for a that is suggested by the column permutation test, or alternatively
scan the recombination event list manually and pick a cutoff by hand.

Methods that are based on a similar optimization problem as Recco are often not adapted
to the analysis of recombination and do not provide a connection between the optimiza-
tion problem and inferring parts of an ARG. Even though they could benefit from the pa-
rametric analysis, the output would be difficult to interpret. There are also usually more
than two types of cost for these methods and therefore more than one parameter in the
parametric analysis. Methods testing the distribution of mutations, such as Geneconv and
the MC? method, are designed to detect a recombination signal and do not introduce any
parameters. Unfortunately, these methods also do not allow for an easy interpretation of
the output regarding the ARG, and it is difficult to assemble a recombination hypothesis
manually. Methods based on compatibility, such as PHI and NSS, only test for recombi-
nation and do not allow any further interpretation. Methods that compare local trees and
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use a sliding window, such as the popular Bootscanning method, introduce a critical pa-
rameter: the sliding window size. The interpretation of the output is clear if the sliding
window never covers a recombination breakpoint and is large enough to reconstruct the
genealogy robustly. But this is usually not the case, as the window moves across the se-
quence. Methods that optimize the breakpoints and compare local trees, such as GARD,
the MCPM or the HMM approach, overcome some of these problems and may correctly
estimate trees for different regions of the alignment. But the interpretation of the se-
quence of local trees is difficult and does not directly correspond to the ARG, as recom-
bination is not modeled as an SPR operation. Finally, the MARG method models recom-
bination accurately and has a clear interpretation regarding the ARG — but only works for
the infinite sites model and wrongly infers recombination in the presence of recurrent mu-
tations. RecPars is probably a better compromise in this case. But the output of RecPars
depends critically on the tradeoff between mutation and recombination cost. This tradeoff
is not modeled and analyzed with a parameter like o.

Despite the merits of Recco, there is still ample room for improvement. Recco does not
estimate the ARG and can only infer recent mutation and recombination events. The
OptSavings value provides a simple workaround for automated recombination detection,
but it is not as easy to interpret as the Savings value if the result is analyzed manually.
Recco also does not correct distances for recurrent mutations, as it is based on parsimony.
The connection to the ARG is only intuitive and simple if the estimated distances in Rec-
co correspond to branch lengths in the ARG and becomes inaccurate as more and more
recurrent mutations occur. Finally, handling gaps is a particular problem for Recco and is

discussed in more detail in the next chapter.
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6 Treating Gaps in Recco

Nucleotide sequences of the same gene across different species or individuals differ
widely in length. A multiple sequence alignment of these sequences introduces gap cha-
racters into the sequences with the goal that all sequences have the same length and nuc-
leotides at the same sequence position are similar to each other. Similarity between nuc-
leotides is usually measured on an evolutionary, structural or functional scale and de-
pends on the purpose of the multiple sequence alignment (Edgar and Batzoglou 2006).
Hence, gap characters are a result of the multiple sequence alignment and have to be ana-
lyzed with great caution. While nucleotide bases in the same column of a multiple align-
ment represent homologous bases, this is not the case for gap characters. Two gap charac-
ters in the same column may represent two different insertion or deletion events and then
do not represent similarity. It might be possible to partially resolve this ambiguity by in-
ferring and encoding an evolutionary pathway that gave rise to the gaps (Simmons and
Ochoterena 2000). Still, it is essential to realize that a gap character only indicates a miss-
ing homologous base and not an evolutionary event or a fifth nucleotide state. In the fol-
lowing, we refer to a single gap character as an indel and to a maximal consecutive
stretch of indels as a gap.

Multiple sequence alignments are often the basis of subsequent analyses that build on the
homology given by the alignment. For example, programs for inferring phylogenies use
homology to estimate the evolutionary distance between different taxa. Recco uses ho-
mology to estimate cost (or distance) between the putative recombinant and the other se-
quences at each position. It is important that these methods can process gapped align-
ments correctly and do not return wrong or biased results. However, the specific strategy
for treating gaps depends heavily on the problem itself and can vary greatly. A multiple
alignment program may implement an affine linear gap cost function to penalize long
gaps more than short gaps in total. For phylogenetic inference it is more appropriate to
model insertion and deletion as evolutionary events or treat gaps as missing information.
Another simple, but common strategy is to discard all columns that contain indels.

In the following, we discuss different strategies for handling gaps, evaluate their suitabili-
ty for Recco and their potential impact on the output. Section 6.1 introduces several
common strategies for dealing with gaps in phylogenetics and then discusses their appli-
cation for recombination analysis. Treating gaps as missing data is particularly favorable
but is not easily possible for Recco and several other methods. Section 6.2 presents how
gaps enter the model of Recco, derives properties of reasonable gap cost functions and
then introduces a general functional form for gap costs in Recco. A simple case is imple-
mented in Recco and treats gap characters as a fifth nucleotide. Section 6.3 derives
bounds for reasonable gap costs in Recco and proposes gap costs that share some charac-
teristics with treating gaps as missing data. This analysis may eventually lead to a
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Sequence Alignment Gap Coding

Al AARAAANAANARAAR 0 0
A2 AAF--ARAAR----B 1 1
A3 ARMA---AAR--ARR 2 2
Al nabooamanboanh 1 2

Figure 6.1: An example alignment that has two additional columns for coding gaps.
Each region that contains overlapping gaps is coded independently with a separate
character. Sequence A2 and A4 have the same gap in the first region and therefore are
assigned the same character for coding the gaps of the first region.

strategy for treating gaps as missing data in Recco. A more detailed analysis and an im-

plementation of the proposed gap costs are left for future research.

6.1 Related Work

A comprehensive summary and comparison of gap treatment in recombination detection
methods would be very interesting. Unfortunately, many recombination detection me-
thods ignore the impact that the treatment of gaps has on the analysis and do not explain
the strategy that they implement. Particularly recombination detection methods that are
based on a local reconstruction and comparison of phylogenetic trees often do not provide
any details on their strategy, for example TOPAL, PLATO and Simplot (see chapter 4 for
a description of these methods). However, they usually employ the strategies that are
common for phylogenetic tree inference. In addition, many of these strategies are also
applied in other recombination detection methods.

6.1.1 Strategies for Treating Gaps in Phylogenetic Inference

There are many strategies for treating gaps in phylogenetic analysis (see for example
(Simmons and Ochoterena 2000; Ogden and Rosenberg 2006; Ogden and Rosenberg
2006)):

a) Remove all columns from the alignment that contain an indel. This strategy has
the advantage that the analysis is unbiased, at least if the columns containing indels
do not show special properties relevant for the analysis. It is also very simple to im-
plement. Furthermore, gap regions in the alignment are often hard to align, thus re-
moving them from the analysis may actually remove noise. Unfortunately, removing
gap columns from the alignment also discards a lot of information and potentially

leads to a higher variance of the estimated output.

b) Treat indels as a fifth nucleotide state. This option is mainly used for inferring phy-
logenetic trees by maximum parsimony or distance methods and incorporates gap in-
formation. But the underlying assumption that each indel is an independent event is
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)

d)

e)

usually wrong. It can only be justified if a gap should involve a cost linear in its
length.

Treat indels as missing data. The resulting effect is best explained for the problem
of inferring phylogenetic trees by maximum parsimony. Before computing the muta-
tion cost for a fixed tree topology, indels are replaced by the best fitting nucleotide for
the tree. In other words, indels are effectively treated like a wildcard and gaps are
filled with sequence data from the closest node in the tree. Maximum parsimony then
chooses the tree topology that results in the smallest mutation cost, optimizing the
wildcard for each topology separately. The result is that indels do not count towards
the cost of the phylogenetic tree and thus do not influence the tree. Even though this
is a rather conservative choice, it discards all information on gaps. For example, if
two sequences share a gap and a third does not, but the sequences are equal otherwise,
they are all regarded as equal by this strategy.

Code gaps as separate characters. A newer strategy in phylogenetics codes gaps as
a separate character in the alignment (see Figure 6.1) and uses the information on
gaps for inferring the tree (Simmons and Ochoterena 2000; Cheynier, Kils-Hiitten et
al. 2001; Young and Healy 2003). Each gap state in the alignment is encoded as a dif-
ferent character and the transition cost between these characters approximates the cost
of the insertion and deletion events that are required for a transition between the cor-
responding gap states. A standard maximum parsimony tree for the augmented
alignment then minimizes the total cost of mutation, insertion and deletion events
along the tree and approximates a cost minimal history of these events. However, gap
coding only codes gaps and gap states that are present in the alignment. The parsimo-
nious tree therefore cannot infer intermediate gap states that are not present in the
alignment. Furthermore, the methods penalize each transition between the different
gap states equally and do not implement a model that incurs a larger penalty for larger

gaps.

Infer the history of a set of sequences allowing for mutation, insertion and dele-
tion events. We can extend the concept of parsimony and infer the history of a set of
sequences minimizing the cost of mutation, insertion and deletion events (Schwi-
kowski 1998). In comparison to d), such a strategy allows for reconstructing interme-
diate gap states that are not contained in the alignment. The same conceptual strategy
is also possible in a maximum likelihood framework (Lunter, Miklos et al. 2003).

The first three strategies are widespread strategies in phylogenetic analysis, d) is uncom-

mon and was only proposed for maximum parsimony and e) requires a lot of computa-

tional power and is still subject to research.

Ogden and Rosenberg (Ogden and Rosenberg 2006) studied the accuracy of maximum

parsimony tree inference on simulated sequence alignments and compare the strategies
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b), ¢) and d). Treating gaps as missing data was inferior to the other strategies if the simu-
lated sequence alignments were directly used as an input. In this case, the alignment is
accurate and treating gaps as missing data does not use the information on gaps for esti-
mating the ancestry more accurately. To study the effect of errors in the alignment, the
authors realigned the sequences using ClustalW and therefore generated alignments that
are closer to our expectation in practice. All three methods achieved a similar accuracy on
this dataset, probably because the information on gaps was too unreliable to be useful. In
conclusion, it is not possible to identify the single best strategy for real sequence data, at
least if all nucleotides and encoded gaps are weighted equally as in the article. Consistent

results across different strategies can increase the reliability of the inference, though.

6.1.2 Strategies for Treating Gaps in Recombination Analysis

Most of the strategies used in phylogenetics directly apply to methods for recombination
analysis. But phylogenetic tree inference differs from recombination analysis regarding
the assumptions about the input and the desired output. Phylogenetic tree inference often
assumes for the input that each site evolves independently from each other, whereas re-
combination analysis depends on the ordering of the sites in the alignment and additional-
ly has to estimate sequence similarity for local regions in the alignment. The resulting
complications are manifold. For example, treating indels as missing data in phylogenetic
tree inference imputes the indels of a sequence using the nucleotides of the closest or best
fitting sequence globally. But we cannot refer to the best fitting sequence globally for re-
combination analysis anymore as we have to evaluate sequence similarity locally. The
column permutation test can also become inappropriate. It basically tests whether the par-
ticular ordering of columns in the input alignment is significant — but gaps consist of
many consecutive indels and also depend on the ordering of columns. A column permuta-
tion distributes the indels of a gap across the alignment. The permuted alignment is there-
fore structurally different from the original alignment and potentially leads to wrong
p-values and to falsely detected recombination events. The specific effect depends on the
strategy for treating gaps, though. Finally, the output of recombination analysis has to
estimate the breakpoint of a recombination event and therefore critically depends on the
spatial resolution of the breakpoint hypotheses. Recombination analysis can become in-
accurate or even biased if we do not allow to infer a recombination breakpoint between
every position of the alignment. These differences regarding the input and the output of
the analysis make it much more difficult to treat gaps appropriately for recombination
analysis when compared to phylogenetic inference.

Our goal for recombination analysis is usually to recover as many true recombination
events as possible while keeping the probability of falsely detecting recombination events
at a minimum. The reasoning is that a falsely detected recombination event often has
much stronger implications. It may wrongly indicate that the sequences evolved subject
to recombination and therefore suggest a totally different mode of evolution for the or-
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ganism. This asymmetry does not prevail for all tasks in recombination analysis, though.

Our conclusions may not depend as much on a falsely detected recombination event if we

want to estimate the recombinant structure of a sequence and know that there is a fair

amount of recombination in the alignment. In this case, only some part of the estimate is

wrong and the overall conclusion is not affected as severely. In any case, we can usually

control the false detection rate nicely with the column permutation test if there are no

gaps in the alignment (see chapter 7). As described above, gaps in the alignment can in-

terfere with the column permutation test and make it much more difficult to control the

false detection rate. In summary, there are several desirable properties for recombination

analysis that are difficult to achieve:

i)

ii)

Never infer a recombination event based on indels only. As described above, we
are interested in detecting and reconstructing only true recombination events and
therefore have to control the number of falsely detected recombination events. This is
difficult as most strategies for treating gaps may falsely infer recombination events
only because of a gap. Consequently, we only want to infer a recombination event if
the evidence comes from polymorphisms other than indels and would rather want to
miss the recombination event otherwise. In other words, we do not want to use the in-
formation on gaps for inferring recombination events. This objective is very impor-

tant but rather imprecise and is discussed in more detail in section 6.2.2.3.

It is appropriate to use the column permutation test. The column permutation test
is an elegant approach to assessing the significance of a recombination event. Howev-
er, it depends on the strategy for treating gaps whether the test correctly controls the
false detection rate for recombination events. The reason is simple: each gap may
cover hundreds of nucleotides and an indel therefore does not represent an indepen-
dent event. If we permute the columns of the alignment, we distribute the indels of
each gap across the alignment. Consequently, permuted alignments often differ sig-
nificantly from non-permuted alignments only because of the shorter gap lengths.
Some strategies for treating gaps result in wrong and possibly significant p-values for

recombination based on this effect.

iii) The information on polymorphisms in gap regions is retained. A strategy for

treating gaps could simply discard all columns containing an indel. But estimating the
recombinant structure of a single sequence may not depend on all other sequences and
in particular may not depend on sequences containing a gap. For example, the red and
blue paths in Figure 6.2 do not touch and do not depend on the gap. Hence, it is desir-
able to keep all polymorphisms in gap regions for the analysis such that we can esti-

mate the recombinant structure more accurately.
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a) b) ¢) d) e

i)  never infer a recombination event based on indels only - -+ -0
ii) the column permutation test is applicable + () ? +

iii) information on polymorphisms in gap regions is retained - +

iv) can infer recombination breakpoints in gap regions -+ + -

v) number of additional parameters for gaps 0 0 >1 =1

Table 6.1: The strategies for treating gaps are compared regarding several properties.
All properties are formulated such that a ‘+’ indicates a desirable state. Values in
brackets indicate that the property depends on the implementation of the strategy and

are usually discussed in more detail in the text describing each strategy.

iv) Recombination breakpoints in gap regions can be inferred. Some strategies for

V)

treating gaps do not allow for inferring recombination events inside gap regions and
can limit the spatial resolution of recombination analysis considerably. For example,
if we encode a gap region as a separate character, we cannot infer a recombination
breakpoint within the gap region as this would split the character that encodes the gap
region into two pieces. As a result, the accuracy of the breakpoint estimate suffers.

Even worse, the overall estimate can also become affected adversely.

The number of parameters introduced for treating gaps should be limited. A
high number of parameters is not by itself negative. However, it is often difficult to
set the parameters correctly if the strategy for treating gaps introduces many parame-

ters and if the output of the recombination analysis depends critically on them.

Some of these properties are interrelated. For example, we can 1) falsely infer recombina-

tion events if we iii) discard polymorphisms in gap regions or iv) disallow recombination

in

gap regions (see Figure 6.2). We can now study in more detail if it is easy to transfer

the strategies for treating gaps to recombination analysis and if the strategies have an ad-

verse impact on the properties described above (see Table 6.1):

a)

Remove all columns from the alignment that contain an indel. As described be-
fore, this approach is particularly simple to implement, but discards a lot of informa-
tion. We cannot infer recombination events within gap regions and may therefore
loose some accuracy or miss some recombination events. Even worse, we discard all
information on polymorphisms in gap regions even if the gaps do not interfere with
the analysis of the query sequence under study. Although the loss of information is a
rather subtle effect, it may cause wrong results under special circumstances and even-
tually lead to falsely detected recombination events (see Figure 6.2).
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Removing columns containing gaps Coding gaps as a separate character
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Figure 6.2: Strategies for treating gaps can fail in special situations. Black lines
represent sequences in the alignment. A space in the line and a grey background indi-
cate a gap. Sequence G always contains one or more gaps, but is not relevant for the
analysis otherwise. The goal is to estimate the recombinant structure of the query se-
quence. The query sequence is not shown in the alignment, but the black dots on the
sequences represent mutations with respect to the query sequence. The red arrow spe-
cifies the true recombinant structure and the blue arrow shows a wrong estimate if
gaps are treated inappropriately. Even though the visualization of the estimates partic-
ularly resembles Recco’s approach, other methods for recombination analysis produce
similar results. (a) Sequence A fits to the query sequence well. The few mutations are
not sufficient to support recombination events if gap regions are included in the analy-
sis. However, if we remove the gap regions from the alignment, we also remove all
mutations in sequence B and infer a recombination event erroneously. (b) We may
also miss a recombination event if we remove all gap regions from the alignment.
Missing a recombination event is usually not as critically as falsely detecting a recom-
bination event and the first probably also occurs more frequently than the latter in
practice. (¢) Coding gaps as a separate character can also cause inferring false recom-
bination events. The recombination event of the red path is supported by mutations in
the gap region. But the recombination event cannot be inferred if we do not allow for
recombination events inside the gap region. Consequently, the blue path predicts two

false recombination events.

b) Treat indels as a fifth nucleotide state. This strategy retains all polymorphisms in
gap regions and even uses the information on gaps for the estimate. However, such a
strategy is very sensitive to the cost assigned for a transition to or from an indel state.
Each gap can cover tens or hundreds of nucleotides and introduces polymorphisms of
the same length. Depending on the cost setting, a gap may be detected as a significant
clustering of polymorphisms and lead to falsely detected recombination events. The
column permutation test is also not as easily applicable anymore, as a large gap caus-
es a sequence of polymorphisms that are scattered across the alignment in column
permutations. As a result, recombination events often do not only depend on the cost

parameter for scoring indels, but the p-value of the recombination event also changes
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in a complex way as the cost parameter is adjusted. This strategy and the impact it has
on the output of Recco is discussed in more detail in section 6.2.3.

¢) Treat indels as missing data. Treating indels as missing data is a conservative
choice for phylogenetic tree inference, as indels then do not influence the inferred
tree. But it depends on the particular problem how we should treat or impute missing
data appropriately and it is not easy to transfer the idea from phylogenetic tree infe-
rence to recombination analysis in general. As described before, we only want to infer
a recombination event if the evidence comes from polymorphisms other than indels
only and we have to impute missing data accordingly. Nevertheless, this objective is
quite imprecise and several specific strategies for different recombination analysis
methods are discussed in section 6.1.2.1. The properties listed in Table 6.1 are there-
fore only a rough guideline.

d) Code gaps as separate characters. Coding gaps also retains all polymorphisms in
gap regions and uses the information on gaps for the estimate, just like strategy b). In
comparison to this strategy, coding gaps does not allow for inferring recombination
events in the gap region. It is difficult to find an appropriate cost for scoring gaps or
indels and as a consequence we may detect false recombination events (see Figure
6.2).

e) Infer the history of a set of sequences allowing for mutation, recombination, in-
sertion and deletion events. This strategy is computationally infeasible even if we do
not allow for indels. We also have to decide on the cost for insertion and deletion in
addition to the cost for mutation and recombination. However, the estimate could be
more accurate than the output for any other strategy if the parameters are set appro-
priately.

Apparently, there is no single best strategy for treating gaps in recombination analysis as
any method fails for some situations. Treating gaps as missing data is probably the most
attractive strategy as it avoids inferring recombination events based on gap information
only and also compares favorably with respect to the other strategies (see Table 6.1).

6.1.2.1 Treating Gaps as Missing Data

Treating gaps as missing data is favorable compared to other strategies, but the imple-
mentation of such a strategy inherently depends on the method for recombination analy-
sis. In the following, we discuss several methods that allow for treating gaps as missing
data quite easily. The discussion often does not refer to the actual strategy that is imple-
mented in a method for recombination analysis, as this information is frequently unpub-
lished. A notable exception is the program RDP (Martin, Williamson et al. 2005)
(http://darwin.uvigo.es/rdp/rdp.html) that implements several methods for recombination
analysis and also discusses how it treats gaps.
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Figure 6.3: A recombination analysis method that estimates local trees has to use a
measure of robustness, as it can otherwise falsely detect recombination events based
on very few polymorphisms. Shown is an alignment of four sequences, where each
line corresponds to a sequence and colors indicate homology. A missing line
represents a gap in the sequence and a dotted box indicates a sliding window. The
small strips of homology that conflict with the overall homology could be caused by
random mutations. The first and the second sliding window support the same tree to-
pology, because the conflicting signal in the first window is not strong enough. The
third sliding window covers the gap region and does not have much sequence informa-
tion for sequences A and B. The tree estimated from the third window conflicts with
the other trees, and we can detect a recombination event if we do not take into account
the robustness of the trees. But the third tree is only supported by very few polymor-
phisms and is not robust. Taking this into account, the trees may not differ significant-

ly anymore.

Methods that infer a phylogenetic tree on a sliding window or a local coalescent tree dur-
ing their computation often transfer the idea from phylogenetic tree inference directly.
Particularly sliding window-based methods (for example Bootscanning, PLATO and
TOPAL) usually assume that some appropriate strategy for treating gaps is used during
phylogenetic tree inference. Treating gaps as missing data often works well for these me-
thods. But gaps may cause problems even in this case, because the partitions of a tree in-
ferred from a gapped region are sometimes based only on a few polymorphisms (see Fig-
ure 6.3) or because two overlapping sliding-windows impute the gap differently. It is
therefore essential that we also compute a measure of reliability for each tree partition,
for example by bootstrapping (see section 4.3.4.1). The bootstrap values can then be used
to assess whether two neighboring trees differ significantly and often avoid falsely infer-
ring recombination events at gap boundaries. Bootscanning (see section 4.3.4.1) uses
such a strategy, but apparently does not process the information appropriately and still
detects spurious recombination events for specific alignments (see Figure 6.4). A similar
strategy is possible for other methods that infer a local tree as well. For example, methods
that find the optimal position for recombination breakpoints and infer local trees between
the breakpoints (see section 4.3.5 and 4.3.6) can also treat gaps as missing data as in phy-
logenetic inference. Some of these methods use the same basic strategy within a Bayesian
framework for inference and can detect significant changes of local coalescent trees di-

rectly from the posterior without bootstrapping.
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Figure 6.4: The plot shows the output of Simplot (see section 4.3.4.1) using a window
size of 100 bases, a step size of ten bases and sequence A as a query for the bootscan-
ning plot. The input alignment is schematically visualized in Figure 6.3. Strips of con-
flicting homology are ten bases long and occur at positions 101-110 and 301-310. We
either expect to detect no recombination at all or to explain both strips of conflicting
homology by two recombination events. Even though bootscanning uses a measure of
robustness, it does not treat the gap region correctly and detects a recombination event
only for the second strip of conflicting homology. The alignment is very challenging
in general and several other methods either crash (PDM and several implementations
in RDP) or also detect a recombination event only at the gap boundary (TOPAL).
GARD is an exception and detects as expected two recombination events around both

strips of conflicting homology.

Interestingly, the fundamental building block of this strategy for treating gaps is not phy-
logenetic inference. It is only important that each sliding window or each region between
the proposed recombination breakpoints does not contain a recombination event. In this
case, we can impute the missing data for each gap by phylogenetic inference or alterna-
tively by using the most similar sequence as a template. As before, we just have to assess
potential recombination events very carefully as we may impute the gap based on very
few polymorphisms or impute it differently for adjacent sliding windows.

Methods based on compatibility (see section 4.3.2) can implement a particularly elegant
strategy for treating gaps as missing data, as the concept of compatibility easily extends
to gaps. Indels simply do not cause incompatibility as we can safely assume that each in-
del represents a compatible nucleotide.

Finally, the maximum chi-squared method (see section 4.3.1.1) can also treat gaps as
missing data, as it is based on processing pairs of sequences only. We can simply remove
all positions with an indel in either of the two sequences for each sequence pair that we
process (see the RDP Manual at http://darwin.uvigo.es/rdp/rdp.html for more details).
This only results in a minimal loss of information and effectively treats indels as missing
data.
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6.1.2.2 Other Strategies for Treating Gaps Implemented in Practice

As described above, many methods for recombination analysis do not provide any infor-
mation on the implemented strategy for treating gaps. Most methods based on a sliding
window or on estimating local trees treat gaps as missing data by default, for example
Bootscanning, PhylPro and GARD. RecPars computes the maximum parsimony cost of a
column given a tree topology and can also treat gaps as missing data. The implementation
of TOPAL in TOPALi (Milne, Wright et al. 2004) recently introduced an undocumented
“gap threshold” setting, resulting in less false positives due to gaps than previous versions
of TOPALI. In 2007 and before, TOPALIi apparently treated a gap as a fifth nucleotide
and weighted it equally to other polymorphisms. Gap regions often caused different trees
inside and outside the gap region, for example when two very similar sequences do not
share a gap. A large gap almost always resulted in a strong recombination signal at the
first and last gap position. Finally, compatibility methods and the maximum chi-squared
method use the strategies outlined before.

Several methods and papers do not treat gaps as missing data and propose a different
strategy. The authors of some phylogeny-based methods such as PDM discard columns
containing indels before the analysis (Etherington, Dicks et al. 2005; Husmeier, Wright et
al. 2005) to avoid potential problems with treating gaps. Geneconv determines runs of
contiguous sites containing indels that are maximal in length and treats them as single,
large polymorphisms. This gap coding strategy could accommodate for arbitrarily com-
plex transition cost between the large polymorphisms. But Geneconv assigns the same
weight to each polymorphism even if it covers a large gap region. Large gap regions then
contribute only very little to the overall diversity and the effect is very similar to that of
removing gap regions. The HIV-1 subtyping method jpHMM implements a very interest-
ing strategy, as it also models insertion and deletion events explicitly in the hidden Mar-
kov model. But jpHMM requires a large set of training sequences to estimate the proba-
bility of insertion and deletion events as well as the transition probabilities between nuc-
leotides. A large training set is not a problem for HIV-1 subtyping, but it is much more
difficult in the general case. It would be necessary to tune the parameters manually or es-
timate them from sequences other than the sequences under study.

6.2 Gaps Entering the Model of Recco

Most strategies for treating gaps that were described before can also be implemented for
Recco and have similar consequences for the analysis. We can easily implement the strat-
egies a) remove all columns containing an indel, b) treat indels as a fifth character and d)
code gaps as separate characters. But Recco does not use a fixed size sliding window and
therefore we cannot easily c) treat gaps as missing data. Strategy a) is particularly simple
and does not require a separate analysis. Strategy d) seriously limits the possible locations
of recombination breakpoints just like a). Hence, our focus in this section is on treating
gaps as a fifth nucleotide and on treating gaps as missing data.
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As a first step, we extend the cost function of Recco and add a term for scoring gaps. We
are very flexible scoring gaps in Recco from a technical point of view, as we only require
that the gap cost function is computable by dynamic programming. But not all gap cost
functions are relevant in practice. Using simple arguments we can motivate several desir-
able properties of the gap cost function and can restrict the set of potential cost functions
considerably. We then proceed studying the types of artifacts in the output of Recco in
more detail and obtain a better understanding for the complexity of treating gaps appro-
priately. A first result of this analysis is a cost function that treats gaps as a fifth nucleo-
tide if they occur in the a-optimal path.

6.2.1 A Modified Cost Function

We can extend the cost function that was introduced in Chapter 5 and add a term for scor-
ing gaps. The cost of a path is then composed of the total cost for recombination, muta-
tion and gaps. The cost for recombination and mutation differ qualitatively: the cost for
recombination only depends on the path u, while the cost for mutation is computed by
comparing the putative recombinant sequence s and the sequence s’ that is implied by u,
but it does not directly depend on the path u. Clearly, the cost for gaps should only de-
pend on the two sequences s and §°, just like the cost for mutation. Thus, the decision
about a gap cost function is the decision about a function taking as input two sequences
of equal length, s and s”.
Now define a gap indicator g4(i,p) with g4(i,p)=1 if 4;, is an indel and g4(i,p)=0 other-
wise and let g«(p) be the gap indicator for the putative recombinant sequence s. Define
G,(u,x,y) as the cost function that scores gaps in path u, where G, implicitly depends on
the gap indicator functions. The only computational requirement for G, is that it can be
computed by dynamic programming. We clarify the structure of G, in the following. In
analogy to (5.3), the total cost of path u between positions x and y is

@, (u,x,y) =(1-)R(u,x, y) +aM (u,x,y) + G, (u,x, y) . (6.1
As we still want to compute the cost function ¢, by dynamic programming, we assume
that we can decompose ¢, as

P, (W, x,9) =@, (0,x,2) + ¢, (W, 2+1,y) +7,(u_,u_,,2) (6.2)

for any x,y,z with x<z<y where 7,(u.,u.+1,z) is some transition cost. The transition cost
models the cost for recombination, but can also incorporate some costs for scoring gaps.

The general form of the cost function above motivates the following form for G,
O, 9) = 27,y tt 1P+ 2o, () 63)

where y, and 7, are arbitrary cost functions that could, for example, resemble recombina-
tion and mutation cost, respectively.

The terms y, and 7, are very flexible for designing gap cost functions. We can model ar-
bitrary gap extension cost or substitution costs for indels with #,(u,,p) and therefore we

assume without loss of generality that m(i,p)=0 for all i and p with g4(i,p)=1 or g«(i,p)=1.
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The term y,(up,up+1,p) can actually model a fixed cost for opening a gap in either of the
two sequences s and s, as y, depends on the nucleotides and indels that path u covers at
position p and p+1.

It is also important that G, depends on a. Mutations in the a-optimal path incur a high
cost if a is low, but their cost decreases as a approaches 1. If G, assigns a fixed cost to a
gap that does not depend on a, the a-optimal path may incorporate the gap for a close to
0, but has to avoid the gap as a increases because mutations are cheaper relative to the
gap in this case. In other words, the parameter « would determine whether we incorporate
a gap into the a-optimal path and therefore results in an undesirable effect. It is more ap-
propriate to weight gaps by a similar to mutations such that a still controls the amount of
recombination and does not force the a-optimal path to avoid gaps. Section 6.3.4 provides
more details and shows that a good gap cost function should include terms weighted by a
and terms weighted by (1-a).

6.2.2 A First Analysis

We can motivate several properties of the gap cost function without a deeper mathemati-
cal analysis and restrict the space of relevant gap cost functions.

6.2.2.1 Recco is Not Pairwise Alignment

The gap cost function compares a pair of sequences, s and s’. It is tempting to use a func-
tion similar to the gap costs for pairwise alignment and use gap open and gap extension
cost for scoring gaps. But there are several aspects that we have to take into account.
First, the two sequences are not the result of a pairwise alignment. Both sequences are
constructed from a multiple sequence alignment and an indel in one sequence can be
paired with an indel in the other sequence. This case does not indicate a real indel or a
missing homologous base and should not be penalized. A gap cost function should there-
fore result in the same cost if all positions that pair two indels in s and s’ are removed be-
fore evaluating the cost function. This is only a technical aspect and can be handled easily
in the dynamic programming formulation. Hence, we limit our discussion in the follow-
ing to cases where an indel in the recombinant is paired with a base in the explanation or
vice versa.

Second and more importantly, the column permutation test does not work reliably any-
more and may cause wrong results if we introduce a gap open cost. We have already de-
scribed this effect before and provide a more detailed justification here. A column permu-
tation rips apart each gap and distributes it across the alignment, giving rise to several
smaller gaps. Clearly, the a-optimal paths of a column permutation usually do not incor-
porate a region covering multiple gaps if the gap open cost is high. As a consequence, the
probability of a large Savings value in column permutations is greater if the gap open cost

is high compared to situations without gap open cost. Hence, the original alignment dif-
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fers significantly from column permutations with respect to costs and the p-values are not
correct anymore.

Finally, scoring gaps with gap open and extension cost also requires that we set and tune
two parameters appropriately. But it is even difficult to tune a single gap parameter as
there is no real sequence data with a know history of recombination events.

6.2.2.2 Gap Costs in the Query Sequence and in the a-Optimal Path Dif-
fer

Another important insight is that an indel in the query sequence and an indel in the
a-optimal path are qualitatively different. The asymmetry is founded in the goal of Rec-
co: reconstruct the query sequence from the other sequences in the alignment with mini-
mum cost. As a consequence, nucleotides in the a-optimal path that are paired with an
indel in the query are superfluous and represent additional information as they are not
necessary for explaining the query. In evolutionary terms this might be the result of a
non-homologous recombination or a deletion event that removes part of a sequence. An
appropriate cost penalty for such an indel would be small or even zero. On the other
hand, indels in the a-optimal path imply missing information as some parts of the query
sequence were not derived from the given sequence alignment. Thus, the cost for indels
in the a-optimal path should be higher than for indels in the query sequence.

Now assume that there is a gap in the query sequence. If the gap incurs zero cost, that
means pairing an indel to another nucleotide is not penalized, the a-optimal path is indif-
ferent about the choice of the explanatory sequence at the gaps’ positions. The effect is
the same as removing all columns from the alignment where the query sequence contains
an indel thus discarding much less information than removing all columns that contain an
indel in any sequence. As the cost for the gap increases, the a-optimal path prefers pair-
ing indels in the query with indels in the path and may introduce additional recombina-
tion events. These recombination events are only caused by the attempt of pairing indels
with each other (see Figure 6.5). But the paired indels do represent homology and may
not even correspond to the same evolutionary insertion or deletion event. In other words,
the resulting recombination events are not based on reliable information. Therefore, we
assume in the following that indels in the query sequence incur a cost of zero without re-
gard to the indel or nucleotide they are paired with and set #,(i,p)=0 for all i and p where
gs(p)=1. This strategy is conservative and resembles treating gaps as missing data. As an
equivalent strategy, we can also remove all columns with an indel in the query sequence
and then simply assume that there are no indels in the query sequence for all subsequent
analysis steps. Hence, we only have to handle the case when indels in the a-optimal path
are paired with nucleotides in the query sequence in the following.
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Figure 6.5: The plot describes the a-optimal paths for an alignment containing an indel
in the query sequence R. Only the mutation cost matrix at the top right is relevant for
the a-optimal paths. The alignment at the top left is displayed for illustrative purposes
only. Each a-optimal path is represented in the plot by an arrow through the cost ma-
trix. Each row shows the a-optimal path for an increasing parameter ¢, i.e. an increas-
ing number of recombination events. The ordering is qualitative only and columns do
not necessarily represent similar a-values. The cost of pairing an indel with a nucleo-
tide is also kept variable and is represented by g on the y-axis and in the cost matrix.
The bottom row in the plot corresponds to gap costs below zero that are too low to
make sense and are only included for completeness. Particularly interesting for the
given scenario are the paths highlighted by a grey background. They show that a gap
can force the a-optimal path through a specific sequence, which may then affect the

path in regions further away from the gap.

6.2.2.3 The Impact of Gaps on the a-Optimal Path

This section analyzes the impact of a gap on the a-optimal path if the gap occurs in a se-
quence other than the query sequence. In essence, we assume that an indel is treated as a
fifth nucleotide and then increase the cost of an indel from zero to infinity, observing
changes in the a-optimal path. We also assume that the cost of the indel is weighted mul-
tiplicatively by a just like the mutation cost, so that « still controls the amount of recom-
bination in the a-optimal path correctly. The following analysis is general enough to
represent many other scenarios despite our focus on a single indel in the alignment, as a
gap that covers several consecutive columns often results in the same output as a com-
bined column.

Figure 6.6 shows two cases where it is clear whether the gap should be part of the
a-optimal path. Even though these cases are too simple for real world scenarios they illu-
strate important artifacts in the a-optimal path. The gap may involve less cost than any
other alternative sequence or path if we use a very low gap penalty. As a result, the
a-optimal path is forced to cover the gap and may introduce recombination events solely
for this purpose (see Figure 6.6 a), bottom row). In an extreme scenario, the explanation
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Figure 6.6: Each plot describes the a-optimal paths for an alignment as in Figure 6.5.
In comparison to Figure 6.5 the gap occurs in the alignment and not in the query se-
quence and a grey background highlights paths that do not make sense. The align-
ments visualize very simple cases where the desired output of Recco is clear. Only ex-
treme settings for the cost of an indel cause a different output. (a) Sequence B is iden-
tical to A in the regions excluding the gap and involves the least possible cost in the
gap region. Consequently, an a-optimal path should always prefer sequence B over
sequence A. (b) Sequence A fits the recombinant perfectly, but has a gap. The a-
optimal path covers sequence A even if we replace the gap with the worst alternative

cost and score it with a cost of 1.

might even jump to a gapped sequence only to avoid a region of higher mutation cost.
Obviously, these recombination events do not make sense. As the gap cost increases, the
gap loses its advantage over the other sequences. Eventually, the gap incurs such a high
cost that it is avoided by the a-optimal path under all circumstances. Even if the optimal
solution mainly uses the sequence which contains the gap, the gap itself is not part of the
solution anymore and additional recombination events are introduced into the path (see
Figure 6.6 b), top row). Figure 6.7 presents two alignments that are more difficult to in-
terpret and do not show such strong artifacts.

In summary, we have to choose the cost associated with an indel or a gap carefully, as
gaps should not induce spurious recombination events due to a high or low gap cost. This
is impossible to achieve for some alignments if we penalize all indels in the alignment
equally. For example, indels have to be penalized heavily if other sequences in the gap
region fit poorly to the query sequence as the indels would otherwise attract the a-optimal
path and introduce spurious recombination events. But a second gap may not require such
a high gap penalty, for example because the other sequences fit the query well. Even
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Figure 6.7: The plots visualize the a-optimal paths for more complex alignments
where the desired output is not clear. As in Figure 6.6, a grey background highlights
paths that do not make sense. (a) Overall, sequence A fits the query better than B, but
not as well as C. The mutation cost in the gap region of sequence A lies between zero
and one. Such a cost penalty also seems plausible for penalizing the gap region and
recovers the a-optimal paths in the middle row of the plot. But it is not clear if the path
in the center of the plot is supported by the data. The path introduces a recombination
event only to avoid the mutation cost in sequence C at least if the gap in sequence A
incurs a cost g<l. The gap incurs a lower penalty than the mutation in sequence C in
this case. (b) This scenario is less problematic as all reasonable gap costs lead to the
same recombination breakpoints. Nevertheless, it is unclear whether the paths with a
grey background are reasonable as sequence A is predicted as the most similar se-

quence to the query sequence overall.

worse, a high indel cost can force the a-optimal path to avoid the gap by all means, intro-
ducing additional recombination events. Hence, the a-optimal path can predict recombi-
nation events to include or exclude a gap for such an alignment no matter how we set the
cost of an indel. We could avoid such an artifact by penalizing indels differently depend-
ing on their position in the alignment. Section 6.3 provides more details on such a strate-

gy-

6.2.2.4 A Simple Gap Cost Function

We can now consolidate our insights regarding the gap cost function and define the func-
tional form in more details. In summary, the gap cost function should

a) not have a term for gap open cost.
b) not penalize gaps in the query sequence.

¢) not cause spurious recombination events due to a high or low gap cost.

171



The last point is too vague for restricting the gap cost function and is the basis for a more
detailed analysis in section 6.3. We also assume that the term y, is always zero even
though y, does not necessarily represent gap open cost. But the analysis in the following
is much easier without this term and y, is also not necessary for a good gap cost function.
In summary, we propose the following gap cost function:
G (w0 = 3, 0,0) (64)
p=

where #,(u,,p)=0 if gy(p)=1, so that we do not penalize a gap in the query sequence.

6.2.3 Treating Gaps as a Fifth Nucleotide

The analysis of HERV sequences in section 7.2.1 required that we implement a strategy
for treating gaps. As we have outlined before, our options for treating gaps in Recco are
limited as we cannot easily treat gaps as missing data. A practical alternative is to treat an
indel as a fifth nucleotide and implement a strategy that helps detecting potential artifacts
and questionable recombination events in the output. These recombination events can
then be validated manually.

The basic idea of this strategy is to use the simple gap cost function of section 6.2.2.4 and
penalize all indels in the a-optimal path with the same cost g, thereby setting #,(i,p)=g for
all i and p with g4(i,p)=1 and g«(p)=0 and setting 7,(i,p)=0 otherwise. We then vary g be-
tween 0 and 1 and perform a full Recco analysis for each setting. The output of all runs is
consolidated automatically as described in section 7.2.1.2. In essence, recombination
events that are only predicted for some settings of g are considered questionable and
should be analyzed manually.

A particularly interesting outcome of the analysis in section 7.2.1 is a characterization of
the ambiguous recombination events. These recombination events were not only caused
by a gap that attracts or repels the a-optimal path, but also by more complex effects. For
example, the Savings value of a recombination event can vary together with the gap pe-
nalty even if the a-optimal path does not cover the gap. Section 7.2.1 provides a classifi-
cation of questionable recombination events together with several examples and explains
the protocol of the analysis in more detail.

6.3 First Steps for Treating Gaps as Missing Data in Recco

A gap cost function should ideally treat gaps as missing data — or at least prevent the arti-
facts described before. But the gap cost function introduced in section 6.2.2.4 does not
even prevent us from inferring recombination events only because of a gap. To be more
specific, gap costs above or below certain bounds always exclude or include the gap in
the a-optimal path. These artifacts can be avoided if the cost of a gap lies between certain
bounds and we can derive even better bounds for the gap costs based on other simple ar-

guments. Even though the following analysis is still incomplete and does not conclude
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with a specific gap cost function, it provides a solid foundation for future research and
may eventually allow for treating gaps as missing data in Recco.

6.3.1 Definitions and Prerequisites

To limit the complexity of the analysis, we assume that r(i,j,p)=r(p) Xi,/)>0 such that the
cost for a recombination does not depend on the donor and acceptor sequences i and ;.
We clearly indicate if we also require that r(p)=const for all p such that the cost of re-
combination does not vary across positions. We also assume that all positions with a gap
in the query sequence are removed from the alignment before the analysis such that we
can limit the analysis to gaps in the a-optimal path.

The derivation is based on decomposing the cost functions G, and ¢, for any path u and
any z with x<z<y:

G,(,x.y)=G,(x2)+G,Wz+1y)

2. (0x,0) = 9, (0,5,2) + @, W,z +1, ) + (=) () u,) 6.3)
Now define the set of paths that do not use an indel between positions x and y as
P(=x,y)={v|g,(v,,p) =1 forall p & [x,y]} (6.6)
and the set of paths that do not touch path u anywhere between positions x and z as
P(u,x, ) ={v|v, #t,,...v, #u,} . (6.7)

We also refer to a path ve P(u,x,y) as an alternative path to u. We usually only refer to an
alternative path if path u covers a gap between x and y and satisfies g4(u,.p)=1 for all
pE[x,y]. The bounds we derive are based on the cost of the best alternative path to u or
the best path that does not use indels between positions x and y:

B,(-x,y)= min {g,(v,x,y)} and B, (u,x,y)= min {g,(v,x,y)}. (6.8)

veP(-x,y) veP(u,x,y)
If path u covers a gap between x and y it follows that B,(—x,y)>B.(u,x,y) because P(—
X, )CP(u,x,y). Finally, we can also base gap costs on the path u* that does not use any
indels and incurs minimal cost:

w*=argmin{g, (v,1,N)} . (6.9)

veP(—,1,N)
If there is more than one path u*, we break ties arbitrarily. Furthermore, we introduce a
bound based on u*

B, (=x,y)=¢,(u%x,y). (6.10)

6.3.2 Lower and Upper Bounds for Gap Cost in Recco

The following lower and upper bounds are based on a simple observation: if a gap in-
volves a very low or a very high cost, it must be included or avoided by the a-optimal
path irrespective of the sequence context (see Figure 6.6 a) bottom right and Figure 6.6 b)
top right). The central observation is given by Lemma 1 and Lemma 2 then introduces the
bounds for the gap cost function.
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Pa(u,y,N)
>0(V.y,N)H(1-a)r(y-1)

Po(u,1,x)
>0V, 1Lx)+(1-a)r(x)

cost for recombination is r(x)

Figure 6.8: The plot illustrates the ideas of Lemma 1. Dotted lines represent the se-
quences in the alignment excluding the query sequence. The red and blue lines
represent path u and v and are scribbled to indicate that the paths can have recombina-
tion events anywhere in the alignment. The middle part of path v is light blue as it is
not relevant for the illustrated analysis. Path u is not (a,x+1)-prefix optimal if it incurs
a higher cost than using path v between positions 1 and x plus a recombination event
to path u at position x. The same observation follows for the end of the alignment in-

dependently.

Lemma 1: Let o be constant and consider an arbitrary path u. If there is some path v and
some x with g,(u,1,x)-¢,(v,1,x)>(1-a)r(x) then u is not (a,x+1)-prefix optimal. Similarly,
if there is some path v and some y with @,(u,y,N)-¢,(v,y,N)>(1-a)r(y-1) then u is not
(a,y-1)-suffix optimal. Finally, if there is some path v and some x and y with x<y and
Oa(Wx))-0(V,x,)>(1-a)(r(x-1)+r(y)) then wu is not (a,+1)-prefix optimal and not
(a,x-1)-suffix optimal. Path u is also not a-optimal in these cases as it is a necessary con-
dition that an a-optimal path is prefix and suffix optimal.

Proof:
As defined in section 5.3 a path u is (a,x+1)-prefix optimal if and only if all paths v with
Vyr1=Uyt1 satisfy @q(u,1,x+1)<p.(v,1,x+1). Now suppose there is a path v and an x with
0, 1,%)-04(v,1,x)>(1-a)r(x). We can then show that the path k=(vi,...,vy,Uy1,. . .,1y) con-
tradicts with the prefix optimality of u as shown in Figure 6.8. Consider the decomposi-
tion of paths u and k:
¢,(u,Lx+1)=¢,(u,Lx)+@,(u,x+1Lx+1)+(1A-a)r(x)o(u,u,,)
o,k Lx+) =0, (v,Lx)+@,(u,x+Lx+1)+(1-a)r(x)o(v,,u,,,)
It follows that
@, Lx+D)—p, & 1Lx+1) =@, 1) - @, (v,)]+(1-a)r(x)[ 5, u,, )~ 5u,,u,,,)]
>(1-a)r(x)+(1-a)r(x) [5(144‘ ) =0, u )]
>0
because Ka,b)-Ac,d)>-1 for all a,b,c,d. Thus, u is not (a,x+1)-prefix optimal because
kyi1=uy1 and @q(u,1,x+1)>p4(k,1,x+1).

The other proofs are very similar, but are provided for completeness. Suppose there is a
path v and some y with @u(uy,N)-0uv,y,N>(1-a)r(y-1). Define a path

k=(uy,...,uty.1,Vy,...,vy) and decompose paths u and k
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2, Wy =-LN) =9, (W y=Ly-D+p, Wy, N)+(1=a)r(y =D, ,u,)
2,06 y=LN) =@, (W,y-Ly-D+p,(v,y,N)+(-a)r(y =D, ,.v,)
It follows that
2,0,y =1L,N) =, (K, y=1,N) = [0, (u,,N) =g, (v,, )]+ (A= a)r(y = D[ 5, ,u,) =8, ,,v,)]
> (-a)r(y =D+ 1A=y -1 8, u,) -5, ,,v,) ]
>0
and therefore ¢, (u,y-1,N)>p.(k,y-1,N) and u is not (a,y-1)-suffix optimal as k,.;=u,.;.

Finally, assume there is a path v and some x and » such that
Pa(WX,0)-0,(V.x,)>(1-a)(r(x-1)+7(y)). We can assume that x>1 and y<N, because other-
wise the first part of the Lemma directly applies. Define a path
K=(u1,...,Ux1,V5,. . .sVpsliyi1,. . y) and consider the decompositions
?,(w,Ly) =9, (uLx-D+g,(ux,y)+(1-)r(x-Do(u,,,u,)
2. K1Ly)=0,@Lx=1)+p,(v,x,y)+(-a)r(x-Dd(u,,,v,)
leading to the following inequality
2. (WL y) =g, & 1Ly) =g, @,x,1) -, (V,x, )]+ -)rx-D[5, ,u,) -6, ,v,)]
>(I-a)(r(x=D)+r(»)+U-a)r(x =[5, ,u,) -6, ,v,)] .
2 (1-a)r(y)
Consequently, the first part of the Lemma applies and path u is not (a,)+1)-prefix optimal
as there is a path k and some y with ¢,(u,1,y)-9.(k,1,y)>(1-0)r(y). We can similarly con-
clude that path u is not (a,x-1)-suffix optimal by decomposing ¢,(u,x,N) at position y
@, (,x,N) =9, (u,x,y)+ ¢, W,y +LN)+1-a)r(»)6(u,,u,.,)
0, (KX, N) =, (v,x, )+ @, (W, y+1LN) + (1-)r(y)6(v,.u,,)
leading to
2, (%, N) =9, (K, X, N) = 0, (0, %, ) = 0, (v, %, ) + (1= (0)[ 8, 1,.,) - 5(v, 1,.) |
>(1-a)(r(x=D+r(»)+1- a)r(y)[é‘(u} Jyy) =Sy, )]
>(l-a)yr(x-1)

and it follows from the first part of the Lemma that u is not (a,x-1)-suffix optimal.

Lemma 2: Suppose there is a gap in sequence i covering positions « to b and a path
i=(i,...,i) that covers the gap. A reasonable gap cost function G, must then satisfy for all x
and y with a<x<y<b

B, (i,x,y)-(1-a)(r(x=1)+r(»)) < G,(1,x,y) < B,(i,x,y) +(1-a)(r(x=D)+7(»))
as an a-optimal path must otherwise either include or exclude part of the gap irrespective

of the sequence context of the gap.

Proof:

Suppose that G,(i,x,y)<B.(ix,y)-(1-a)(r(x-1)+r(y)) for some x and y with a<x<y<h. We

show that the gap cost function does not penalize gaps strong enough in this case. Con-
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sider an arbitrary path u with u,#i for all pe[x,y] such that it avoids the gap between posi-
tions x and y. By definition, we know that ueP(i,x,y) and therefore it follows that
B,(i,x,y)<p(ux,y) as By(ix,y) is the minimal cost of a path in P(i,x,y). Remember that
path i covers the gap from @ to b and that ¢.(ix,y)=G(i,x,y) for any x and y with
a<x<y<b. We obtain
9. (i,x,9) =G, (i,x,y)
<B, (i,xy)-1 —(z)(r(x—l) + r(y))
<, (ux,y)~(1-a)(r(x-1)+r())
and it follows from Lemma 1 that path u is not a-optimal. Any a-optimal path u therefore
satisfies u,=i for some pe[x,y] and includes at least part of the gap. In other words, gap
costs below the lower bound force an a-optimal path to cover some part of the gap.
Now suppose that G,(i,x,y)>B,(i,x,y)+(1-a)(r(x-1)+r(y)) for some x and y with a<x<y<b
and consider an arbitrary path u with u,=i for all pe[x,y]. By definition of B,(i,x,y) there
exists a path ve P(i,x,y) with v,#i for all pe[x,y] and gu(v,x,y)=B(i,x,y). We get
?,(u,x,9) =G, (u,x,y)=G,(i,x,y)
> Ba(i,x,y)Jr(l—a)(r(x—l)Jrr(y))
=@, (v.x, ) +(1-a)(rx-1)+r(»))
and u is not a-optimal due to Lemma 1. Any a-optimal path u therefore satisfies u,#i for

some pe[x,y] and exclude at least part of the gap.

6.3.3 An Improved Lower Bound for Gap Costs

The bounds introduced in Lemma 2 are necessary to avoid artifacts in the a-optimal path,
but they are not sufficient. We can actually improve the lower bound considerably using a
simple argument: an a-optimal path should never introduce recombination events to in-
corporate only the gap or part of it. To be more specific, any a-optimal path that recom-
bines into a gap and out of the gap without incorporating any surrounding nucleotide of
the gapped sequence is non-sense. Based on this observation, we can derive an improved
lower bound for the gap cost. Lemma 3 provides the essential insight and Lemma 4 ob-

tains the result about gap costs.

Lemma 3: Let o be constant and consider an arbitrary path u with recombination events
at the positions A(w)={x[u,#u,1}. Path u is a-optimal if and only if
0a(uxt1,))<p,(v,x+1,y) for all paths v and all x,ye A(u)u{0,N} with x<y. In other words,
a path is a-optimal if and only if the cost of the path between any two recombination

breakpoints is lower or equal to the cost of any other path between these breakpoints.
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PaU 51 )Spu(V,6+1y)

Figure 6.9: The plot illustrates the idea of Lemma 3. As in Figure 6.8, the dotted lines
represent all sequences excluding the query sequence and scribbled lines indicate that
the path could contain arbitrary recombination events. Clearly, if path u is a-optimal
any other path v must incur a cost at least as high as u for every region between two
recombination breakpoints x and y of path u. Otherwise it pays off to recombine from
the red path to include the blue path between x and y.

Proof:

First, assume that ¢,(u,x+1,)<p(v,x+1,y) for all x,ye A(u)u{0,N} with x<y and all paths
v. It is easy to show that path u is a-optimal: with x=0 and =N it follows that
9a(u,1,N)<p4(v,1,N) for all paths v.

Now assume that u is a-optimal. Let x,yeA(u)U{0,N} with x<y and let v be an arbitrary
path. We want to show that g,(u,x+1,)<p.(v,x+1,y) and make a case distinction depend-
ing on x and y.

a) x=0 and y=N: The desired result follows because u is a-optimal and therefore

0a(,1,N)<po(v,1,N).

b) x=0 and y#N: Define a path k=(vi,...,v;,uy+,,...,uy) and decompose it into
2, (K, LN)=0,(v.L,y)+@,(,y+LN)+(1-a)r(y)6(v,,u,.,)
2, (WLN) = 0,1 )+ ¢, @y +1LN) +(1-a)r(0)6u, u,,)

As u is a-optimal we know that 0<p,(k,1,N)-¢.(u,1,N) and it follows that
0<0,(kLN)-@,(W.LN) =0, (v.Ly) =@, u.Ly)+1-a)r()(60,.u,,) -5, .u,,)) .
With a€[0,1], Kuy,uy+1)=1 and &i,7)<1 for all i we get
A=) () (8,.1,.) = 8t 1,,,)) < r()(S(v,.u,.)~1) <O
leading to the desired result
020, (%,1,2) =0, (W1,y)+ (=) (80,0, = 8w, u,..))
<, kLy)-¢,(uly)

¢) x£0 and y=N: This case is analogous to b) using a path k=(u1,...,ux,Vy+1,...,VN).

d) x#0 and y#N: The basic idea is the same as in case b). Define a path

k=(u1,... e, Va1, ., Vyly+1,...,uy) and decompose the costs of paths k and u into
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Figure 6.10: The topmost sequence contains a gap from position a to ». The gap region
is also visualized with a grey background. The black path only covers the gapped se-
quence from position x to y and therefore recombines to include only the gap or part of
it. Such a path does not make sense biologically as we only recombine to explain the
nucleotides in the query sequence using indels. Lemma 4 provides a necessary condi-

tion to prevent this artifact.

< [
(0, )
A x g Xx
(-x, 0) B x 0 x
c 0 x 0
(=20, x)
number of recombinations

Figure 6.11: A grey background marks the a-optimal paths that we would like to
avoid. The paths shown in the upper and in the middle row are both a-optimal for g=0
and setting g=0 corresponds to the case G,(u,x,y)=B,(u,x,y). All paths in the right col-
umn are a-optimal for x>0 and g=0 and one path also includes only the gap. Fortunate-
ly, both paths predict recombination breakpoints at the same position, such that this
case is not as harmful. This observation actually holds for arbitrary alignments if we

penalize gaps by G(u,x,y)=B,(u,x,y) but it is not proven here.

2, (k,LN) =0, (,1,x)+0,(v.x+1,y) + 0, W,y +LN)+(1-a) (r(0)8(u,.v,,) + 1S, .u,,,))

2, (WLN) = 0, (W1,x) + 9, (W x+1,)+ 0, (W, y+ LN+ (=) (r0)S @, u,,) + (03w, u,,,))
It follows that

0< g, (K,1,N)—gp,(u,1,N)
=0, (v x4 1,3) =0, (W x+1,y)+ (1= @) [ 1080, v,) = 8t 1,.)) + () (80, m,.) = 5, ,,0)) |
and we can perform the same approximation using a€[0,1], Xutx,ux+1)=&uy,uy+1)=1 and
Ai,j)<1 for all i and j:
(A=) P (8(tv,,) = St 11, + 7 () (SO, 0,,) = 5wy, |
<r()(8(.v,) 1)+ r(0) (8, 1,,)~1) <O

and obtain the desired result:

0<g,(k,1L,N)-@,(u,1N)
<@, (Vx+Ly) -, (ux+1,y)’
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0.5,00)| ——> —"

(0,0.5)

(-0, 0]

number of recombinations

Figure 6.12: Many separate gaps in a sequence can cause gap costs that are systemati-
cally too low if the gap costs are derived from B,(-,x,y) or B(i,x,y). Sequence A has a
mutation in the middle of the alignment and fits as well as sequences B and C outside
the gap region. Consequently, an a-optimal path should not cover any part of sequence
A, as A is not advantageous compared to the other sequences and as the a-optimal
path should not include a gap only. But the lower bounds for the gaps are Bo(-
X,Y)=B,(i,x,y)=0 and it is sufficient to set g<0.5 to obtain an a-optimal path that only
covers sequence A. This artifact does not occur if we score gaps equal to or above
B (-,x,y). If a is small, the path u* is one of the paths in the right column and both
gaps incur a cost of g>0. Thus, sequence A incurs a higher cost than any path in the
right column and is not a-optimal. If a is large, the path u* is one of the paths in the
upper left of the plot: one gap then incurs a cost of g>1 and the other gap uses g>0.

Again, sequence A is not part of any a-optimal path.

Lemma 4: Suppose there is a gap from position a to b in sequence i. Assume there exists
x and y with a<x<y<b and a path u that covers sequence i only from position x to y (see
Figure 6.10). In other words, u satisfies u,=i for all positions pe[x,y] and
x-1,yeA(u)U{0,N} such that x-1 and y are either recombination breakpoints or the boun-
dary of the alignment. A sufficient condition and for some alignments also necessary
condition that path u is not a-optimal is G,(u,x,y)>B,(u,x,y).

Proof:
It is important to realize that the recombination breakpoint of path u is x-1 and not x. By
construction of path u we know that ¢,(u,x,y)=G,(u,x,y) as there is no recombination
event between x and y in path u. Lemma 3 is applicable because x-1€A(u)u{0},
yeA(u)U{N} and x-1<y. From Lemma 3 it then follows that path u is a-optimal only if
0a(W,x,))=Go(u,x,y)<p,(v,x,y) for any path v. This condition must also be fulfilled for all
paths ve P(u,x,y) and therefore G,(u,x,y)<B,(u,x,y). In other words, a necessary condition
for path u to be a-optimal is G,(u,x,y)<Bu(u,x,y) and therefore G,(u,x,y)>By(u,x,y) is a
sufficient condition to prevent such a path u. Finally, the example in Figure 6.11 illu-
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strates that the condition G,(u,x,y)<B,(u,x,y) is sufficient to allow for a path like u at least

for some alignments and some a.

6.3.4 Towards a Reasonable Gap Cost Function

If we combine the bounds of Lemma 2 and Lemma 4, we obtain

B,(i,x,y)<G,(i,x,y)<B, (i,x,y)+(1 —zx)(r(x—l) + r(y)) . (6.1 1)
These bounds already represent a big step towards treating gaps appropriately in Recco.
The lower bound is also very intuitive: a gap should never incur a cost less than the least-
cost alternative that avoids the gap. It is important to understand that this property de-
pends critically on bounds for gap costs that change with a. Gap costs equal to the lower
bound are probably also acceptable and are more practical to implement. The only restric-
tion is that a-optimal paths should never predict a recombination breakpoint between two
indels, i.e. inside a gap region. We can enforce this restriction for example by altering the
set of permitted transitions in the dynamic program for each site. Furthermore, the bounds
suggest a simple strategy for increasing the penalty of a gap in analogy to the strategy
proposed in section 6.2.2.4. We could first use a gap cost at or close to the lower bound
and then slowly increase the cost of the gap towards the upper bound while observing
changes in the a-optimal path.
But there are still many open questions: what is the impact on the analysis if there are
several gaps in the alignment, for example if there are two gaps at the same position or if
there are two gaps in the same sequence in succession? Is there a simple gap cost function
that satisfies these bounds? It is often difficult to provide a definite answer to these ques-
tions. The following exposition is therefore not exact in mathematical terms and is rather

a guide for further investigations.

a) What happens if there are several indels or gaps at a position? In essence, the
analysis is still valid although it does not treat this case explicitly. The main problem is
that the lower bound for a gap could refer to another gap and introduce a cyclic reference.
To be more specific, suppose that there is a gap in sequences i and j covering positions x
to y. In this case, we could set B,(i,x,y)=B.(j,x,y) if we allow scoring gaps at the lower
bound. As a result, the cost of the gaps would be arbitrary. There is a simple strategy to
avoid this problem. We can use the lowest cost of a path avoiding all indels, B,(-.x,y),
instead of B,(i,x,y).

b) What is the impact of a sequence that contains several gaps in succession? In
this case, gap costs close to B,(-,x,)) or B(i,x,y) can actually result in gap costs that are
systematically too low. If there are many separate gaps in succession, we choose the best
alternative sequence or path as a basis for the cost of each gap but do not penalize if we
choose a different alternative for each gap. As a result, the a-optimal path may erroneous-

ly favor the gapped sequence (see Figure 6.12). We can penalize selecting a different al-

180



ternative for each gap with a simple strategy: determine the minimum cost path u* that
does not cover any indels and impute the cost of the gaps from u* (see section 6.3.1 for
the exact definition of u*). In other words, we use the cost B (-,x,y) as the lower bound
for gaps. This strategy prevents the artifact shown in Figure 6.12. However, it would be
desirable to show that the strategy also prevents this artifact for arbitrary alignments.

c¢) Does the column permutation test still work correctly? We have at least two op-
tions for assigning gap costs. We can assign gap costs for the original alignment once and
then use the assigned gap costs for the column permutations. Alternatively, we can de-
termine the gap costs for the original alignment and for each column permutation sepa-
rately. It seems that the first option is preferable, as we would assign gap costs only once
and would not score gaps differently for each column permutation.

d) Is there a gap cost function that satisfies the bounds? Obviously, we also have to
show that there is a function satisfying the bounds. We would ideally want to score gaps
as close to B!(-,x,y) as possible and then slowly increase the gap costs observing
changes in the a-optimal path. Figure 6.13 illustrates how gap costs close to the lower
bound could be implemented. The basic idea is to assign the mutation cost of u* at posi-
tion p to an indel at position p. As recombination cost occurs between two positions, we
have to distribute the cost for a recombination event at position p in u* to the neighboring

positions p and p+1.

e) Can we justify that a gap is incorporated into the a-optimal path if gaps are
scored at or above the bound B (-,x,y)? Lemma 5 below formalizes an interesting ob-
servation for these gap costs (also see Figure 6.14). Suppose that the a-optimal path v
covers a gap. Any path that extends path u* around the gap incurs a higher cost than path
v outside the gap region. In other words, the gap is incorporated into the a-optimal path
because it is cheaper outside the gap region and not because the gap costs are excessively
low. Unfortunately, this observation is only true for paths that extend path u*. There can
be other paths that incur a lower cost than v outside the gap region and a higher cost in-
side the gap region such that the argument is invalidated partly.

f)  Can we still compute the Savings value? The analysis of Recco depends critically
on the Savings value. Computing the Savings value requires that we can compute the de-
rivative of ¢, with respect to a and therefore also the derivative of G,. The implementa-
tion of gap costs proposed in Figure 6.13 clearly allows computing the derivate of G,
with respect to a. However, the path u* may change with « such that the derivative of G,
also changes with a. As a result, the parametric analysis described in section 5.4.2 does
not apply anymore and needs to be modified. Even worse, it may be difficult to interpret
the Savings value in the presence of gaps. A recombination event can avoid gap costs and
not only mutation cost. But gaps also involve a cost term similar to recombination cost.
The question is therefore: does such a recombination event avoid recombination cost?
This complicates the analysis considerably.
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recombination breakpoint: x |x+1
* o a
path u - -
(L-a)r(x)
gapped sequence -+ a a+ 0+ 0
(1-a)r(x)2|(1-0)r(x)/2

Figure 6.13: Each nucleotide of path u* is represented by a rectangle and each rectan-
gle shows the mutation cost with respect to the query sequence. Path u* also has a re-
combination breakpoint at position x. The gapped sequence has indels at all shown
positions. We can infer appropriate gap costs for the gapped sequence based on path
u*: assign the mutation cost of u* to the same position of the gapped sequence and
distribute the cost for recombination in u* to the neighboring positions of the gapped

sequence.

a-lla

¢a(V,X,y) ZB:II(—,X,y):¢a(W,X,y)

Figure 6.14: The plot illustrates the argument of Lemma 5. The topmost sequence con-
tains a gap from position x to y. The blue path w represents an arbitrary path that is
equal to u* in the gap region and for one nucleotide surrounding the gap. The red path
v is a-optimal and covers the gap. Lemma 5 shows that the costs of path v outside the
gap region are smaller than the costs of path w. The argument is simple. Path v is a-
optimal and incurs less cost than any other path between a and b. But path w costs less
or equal than v inside the gap region therefore incurs more cost than v outside the gap

region.

Lemma 5: Suppose there is a gap in sequence i from position x to y and an a-optimal
path v that covers sequence i from a to b with a<x<y<b (see Figure 6.14). Assume that we
score gaps at or above the lower bound such that B* (-,x,») <G, (i,x,y) . It follows that any
path w with w,=u*, for all p [x-1,)+1] (i.e. there is no recombination event at positions
x-1 and y) satisfies:

P.(¥,%,9) 2 ¢, (W, X, )
and

o, (W,a,x=D)+@, (W,y+1,b) 2 ¢, (v,a,x-1)+ ¢, (v,y+1,b)
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In other words, path v incurs a lower cost outside the gap region than any path w that
covers path u* between positions x and y if w also has no recombination breakpoints at

positions x-1 and y.

Proof:
The first inequality follows as path v covers a gap from positions x to y and as w is equal
to u* between x and y:
0, (V%) 2 B (=,%,3) = ¢, (W,x, ) .
The second inequality requires that we decompose paths v and w:
@, (V.a,b) =, (V,a,x=1)+¢,(V,x, )+ ¢, (v, y+1,b)
@, (W,a,b) = @, (W,a,x~1)+ B (=, x,y) + @, (W,y+1,b)
As path v is a-optimal and because of Lemma 3 it follows that
0<¢,(w,a,b)—p,(v,a,b)
and therefore
0<@,(w,a,b)-¢,(v,a,b)
=0, (W,a,x=D) =, (v,a,x=1)+ B2 (=%, 7) =0, (v, %, ) + ¢, (W, y + 1,b) =@, (v, y +1,b)
<@, (w,a,x-1)-¢,(v,a,x-1)+¢, (W, y+1,b)~¢,(v,y+1,b)

and the desired result follows by rearranging the terms:

o, (v,a,x=D)+e,(v,y+1,b)< @ (W,a,x=1)+ ¢, (W,y+1,b).

6.4 Outlook

We have analyzed common strategies for treating gaps in phylogenetics and in recombi-
nation analysis and provided an extensive discussion of their implications. Treating gaps
as missing data is difficult for Recco as well as for several other methods for recombina-
tion detection. Simple strategies often discard a lot of information or even result in falsely
detected recombination events.

We have proposed a simple and practical strategy that treats an indel as a fifth nucleotide
and varies the cost of an indel. The strategy processes the output of Recco semi-
automatically and detects artifacts in the output. Uncertain recombination events can be
consolidated and analyzed manually.

We have also analyzed possible artifacts in the output of Recco and motivated several
properties of reasonable gap costs for Recco. This analysis is an important step towards
treating gaps appropriately in Recco and already restricts the space of potential gap cost
functions considerably. Several properties of these gap costs are very attractive, for ex-
ample that we never incorporate a gap without any surrounding nucleotides into the
o-optimal path and that we can motivate if gaps are part of the a-optimal path. However,
there are many aspects that are not studied in detail yet. It is particularly disturbing that it
is much more difficult to interpret the Savings value for the proposed gap costs. Eventual-

ly, this analysis may lead to a strategy that treats gaps as missing data in Recco.
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7 Validation

Validation is difficult for recombination detection programs and even harder for pro-
grams finding the recombinant sequences. One reason is that real alignments either show
a recombination signal that is easy to detect, or that there is still uncertainty about wheth-
er recombination actually took place (Posada 2002). In comparison, simulated alignments
have many advantages, such as an unlimited amount of alignments and total control over
the simulated recombination scenario. Section 7.1 validates Recco on two types of simu-
lated alignments: alignments corresponding to a fixed ARG and alignments correspond-
ing to random ARGs drawn from the coalescent. The first approach allows for studying
the power of identifying recombinant sequences or recombination breakpoints, as both
are known for a fixed ARG. This approach is similar to the analysis of the example
alignment in chapter 5. But we also study the effect of noise introduced by the mutation
process and examine one thousand alignments for each ARG. The second approach
works well for comparing different methods regarding their power of detecting recombi-
nation. Finally, section 7.2 validates Recco on real alignments from HERVs and HIV-1.

The recombination signal is also discussed in more detail.

7.1 Validation on Simulated Alignments

Validating a method on many simulated alignments is indispensable, as it ensures that the
method works well for arbitrary scenarios and as it allows for a quantitative comparison
with other methods. We can only know the ancestry of a set of sequences and the corres-
ponding mutation and recombination events with certainty for simulated alignments. But
we can also test the method for many different simulation parameters and possibly un-
cover distinct strengths or weaknesses of the method. The only risk is that the simulation
model is unrealistic and that the results do not transfer to real alignments. Fortunately, the
methods for simulating sequence alignments are already quite mature and produce align-

ments close to the ones seen in practice.

7.1.1 Parameter Settings for Recco and Other Methods

The same parameter settings for Recco are used throughout the validation process. In par-
ticular, Recco uses Hamming distances for mutation and recombination cost, and con-
structs the full recombination event list for each alignment. P-values are estimated from
100 column permutations of the alignment and p-values below 0.05 are regarded as sig-
nificant. Depending on the objective, the p-value for recombination in the alignment, for
recombination in a sequence or for a breakpoint in the alignment is used. P-values are not
corrected for multiple testing.

The methods used for comparison are Geneconv, PHI, NSS, MC? and RecPars (for de-
tailed discussions refer to chapter 4). These methods dominate any other method regard-
ing the power of detecting recombination in the power study (Posada and Crandall 2001),
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unless the scaled mutation rate 6 is lower or equal to ten. In other words, there is no other
method with a better recombination detection performance for any setting of p and 0, if
6>10. A scaled mutation rate ¢ smaller or equal to 10 corresponds to an alignment where
the two most diverged sequences only differ by about 20 mutation events. Obviously, it is
not only difficult but sometimes also futile to detect recombination events in these scena-
rios as the number of mutations often does not allow for robustly inferring recombination.
The parameter settings for the methods were usually chosen as in (Posada and Crandall
2001). The optimal parameters for Geneconv depend on the validation scenario. Only the
results for the best parameters of Geneconv are reported in the following. For the fixed
recombination scenarios, Geneconv performs better if it penalizes mismatches by x=-1.
For random ARGs, Geneconv achieves a higher power if it disallows mismatches (x=-o)
and only searches for regions of maximum length where two sequences are equal. Even
though the power of this setting is higher than for x = —1, it often finds significant regions
that do not correspond to the regions exchanged during recombination. Recombination in
an alignment was detected if Geneconv returned at least one fragment with a significant
p-value. The implementation of PHI also includes the methods NSS and MC?. The im-
plementation only returns a p-value for recombination in the alignment and does not pro-
vide details on the recombination signal. PHI uses the default window size of 100 nucleo-
tides and was set to perform 1,000 column permutations for computing p-values. Finally,
RecPars is available as a command-line program
(http://www.daimi.au.dk/~compbio/recpars/recpars.html) and outputs the predicted trees
for different regions in the alignment and the total mutation cost required. Recombination
cost was set to two times the cost of a mutation. Instead of relying on the absolute output
of RecPars as in (Posada and Crandall 2001), we perform 100 permutations of the origi-
nal alignment and detect recombination if the total mutation cost is significantly lower
than the total mutation cost of column permutations. As RecPars only outputs a set of
trees, it is difficult to determine the recombinant sequence in an automated fashion, and
RecPars is only used for detecting recombination in the alignment in the following.

There are several new methods besides PHI that were not compared in (Posada and Cran-
dall 2001) and could outperform the methods used for comparison. However, these me-
thods require much more computation time, are usually not available as a command line
program and are therefore unsuitable for a power study. For example, methods that op-
timize the recombination breakpoints (see section 4.3.5) usually require tens of minutes
or even hours for a single alignment. The validation in this section is based on more than
50,000 alignments, and the computing time would be infeasible even with a compute
cluster.

7.1.2 Validation on Fixed Recombination Scenarios

A total of four recombination scenarios are analyzed in the following (see Figure 7.1).
Scenarios (S1) and (S2) are generated using the example ARG introduced in chapter 5,
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A2A1 RI1 BI1B2 A2A1RIR2B1B2
(S1) (S2)

[ 1

IRI2R23 4R35 6 7 8 IRI2R23 4R35 6 7 8
(S3) (54)

Figure 7.1: The genealogies used to simulate alignments for scenarios (S1), (S2), (S3)

and (S4). Recombinations are marked with dotted lines for scenarios (S3) and (S4), as
the ARG representation is not easy to draw for these ancestries. Recombination break-
points always occur in the middle of the sequences. More details on the parameters
can be found in Table 7.1.

where scenario (S1) does not include sequence R2. Scenarios (S3) and (S4) were origi-
nally introduced in (Holland, Huber et al. 2002). As all scenarios only contain recent re-
combination events, the recombination signal has a very simple structure and should be
fairly easy to detect. (S1) and (S2) use the Jukes-Cantor model (JC) for the mutation
process and (S3) and (S4) use the Kimura-two-parameter model (K2P) with a transi-
tion/transversion ratio of 2 (see section 3.2 for mutation models). 1,000 alignments were

simulated using Seq-Gen (Rambaut and Grassly 1997) for each ARG and each setting.

7.1.2.1 Detecting Recombination in the Alignment

The power of detecting recombination is given in Table 7.1 along with the parameters of
the simulation. For scenarios (S1) and (S2), alignments with two different sequence
lengths were simulated to show the effect of recurrent mutations. The total number of ex-
pected mutations is the same and only the number of recurrent mutations differs between
alignments of different length. Processing time for one alignment was less than one
minute for any method and any scenario. Geneconv performs better if mismatches are
allowed and penalized by -1 than if mismatches are disallowed. Only the power corres-
ponding to this setting is shown in the table. If mismatches are not allowed, the power of
Geneconv is much lower and the column would read 0.33, 0.42, 0.48, 0.58, 1.00, 0.98.

It is surprising that all five methods used for comparison are strongly affected by recur-
rent mutations. The power of detecting recombination increases from about 50% to 70—
80% for Geneconv and MC? if we compare the different sequence lengths of scenario
(S1) and (S2). Recurrent mutations affect the compatibility methods PHI and NSS to an
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Sce- N= Tree Mut. ts/tv Gene- MC?> PHI NSS Rec- Savings Opt- First- Max-
nario  (nt) height model ratio conv Pars Savings Angle Cost
(S1) 100 025 \[¢ - 049 052 049 048 0.24 0.86 0.89 0.03  0.54
(S2) 100 025 JC - 051 0.60 0.50 044 0.28 0.42 0.92 0.01  0.08
(S1) 1000 0.025 JC - 073 079 090 0.88 0.6l 0.97 0.98 0.05  0.64
(S2) 1000  0.025 \[¢ - 076 0.84 093 0.81 0.61 0.64 0.99 0.01 0.10
(S3) 1000  0.15 K2P 2 1.00  1.00 1.00 1.00 1.00 1.00 1.00 0.30 091
(S4) 1000  0.15 K2P 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90  0.99

Table 7.1: The power of detecting recombination is shown for different methods and

scenarios. For each scenario, 1,000 alignments were generated and then processed by

different methods. Tree height is given as mutations per site from the root to a tip of

the tree. ts/tv ratio refers to the transition to transversion ratio. The best value in each

row is marked in red — OptSavings clearly outperforms all other methods.
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Figure 7.2: The probability of detecting a sequence as recombinant is shown for dif-

ferent methods and different scenarios. The significance level of 0.05 is marked by the
dotted line at the bottom of the plots. Top: The results for scenarios (S1) and (S2) are
only shown for a sequence length of 100 nucleotides. Bottom: The results for scena-
rios (S3) and (S4). See text for a detailed discussion.

even greater extent, as recurrent mutations reduce the compatibility between sites and

compete with the signal for recombination. The power of detecting recombination in-
creases from 50% to 90% in scenario (S1) and (S2) for PHI and NSS if the sequence
length is increased. Scenario (S3) and (S4) are apparently too simple and do not pose a

challenge for any recombination detection method.

The p-value for recombination based on the Savings value (shown in the Savings column)

performs much better for (S1) than the methods used for comparison, but is worse for

(S2). (S2) includes sequence R2 in the alignment, and the evidence for recombination is

actually only derived from sequence Al and not from the recombinant sequence R1 (see
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Figure 7.2 for more details). The OptSavings value completely eliminates this deficit of
the Savings value; the p-values corresponding to OptSavings show an excellent recombi-
nation detection performance for any scenario. Both Savings and OptSavings are also less
affected by the amount of recurrent mutations than the other methods. The features Firs-
tAngle and MaxCost perform worse than Savings or OptSavings. Only MaxCost can

compete with Geneconv in scenarios (S1) and (S4).

7.1.2.2 Detecting Recombination in a Sequence

The same alignments as before were used to study the power of detecting recombination
in a sequence. For scenarios (S1) and (S2) only the sequence length N=100 is analyzed.
The same settings as before were used for Geneconv. Geneconv only detects recombina-
tion in sequence pairs, such that both sequences in the pair are considered as a recombi-
nant.

Finding the recombinant sequence is more difficult (see Figure 7.2), particularly because
it is very hard to discriminate between the true recombinant and sequences involved in
the recombination. This is intrinsic to the problem itself and affects every method. In oth-
er words, many methods have a high probability of finding recombination in a parental
sequence or a sequence closely related to the recombinant. The absolute feature value or
the p-value may still suggest that the true recombinant shows a stronger recombination
signal, though, but the strength of this effect cannot be determined from Figure 7.2.
Geneconv detects sequence Al in scenario (S2) as a recombinant with almost the same
probability as R1 and R2, probably because the pair of sequences often involves Al as
well. OptSavings has an even stronger tendency of detecting recombination in other se-
quences in (S3) and (S4): sequences 3, 5, 6 and 7 are not involved in a recombination but
are still detected as a recombinant. The reason is that OptSavings removes parental se-
quences until other related sequences also benefit from recombination. It is possible that
the absolute value of OptSavings for different sequences can discriminate between re-
combinant and non-recombinant sequences, but this is not visualized in the plots. In con-
trast, Savings only detects recombination in recombinants and their parental sequences
for (S3). The true recombinant sequences show the highest probability, though. Savings
detects some non-recombinants as recombinant for (S4), but the overall pattern is similar
to (S3). MaxCost performs worse than Savings for detecting the true recombinant se-
quences and shows the same pattern detecting related sequences as a recombinant. Only
FirstAngle shows a different pattern and just detects the true recombinants for (S1) and
(S3). For (S4), only sequence 4 and 8 are classified as recombinant, too. However, it is
unclear if this effect is mainly caused by the lower overall recombination detection per-
formance of FirstAngle.

The results for scenarios (S1) and (S2) are as expected: OptSavings and Savings are very
similar if there are no closely related sequences to the recombinant in the alignment. But

for (S2) Savings does not detect recombination in the recombinants R1 and R2, and ex-
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tracts the evidence for recombination solely based on sequences Al and Bl. In other
words, Savings detects recombination in an alignment of (S1) only based on the recombi-
nation signal in A1 and B1. MaxCost and FirstAngle perform worse than Savings, but
show the same trend as Savings.

In summary, OptSavings performs extremely well for recombination detection, but its
interpretation for detecting recombinant sequences is unclear. Savings works better than
OptSavings and Geneconv for detecting recombinant sequences, but does not find the re-
combinant if it is concealed by another closely related sequence. FirstAngle only has a
poor overall detection performance, but appears to extract a different aspect of the re-

combination signal.

7.1.2.3 Detecting the Recombination Breakpoint

There are several methods for computing p-values for a recombination breakpoint in
Recco. In the following, we only study the p-values for a breakpoint in the alignment, as
the p-values for a breakpoint in the query sequence are very similar if the query is a re-
combinant. “Savings BP-pval” denotes the results based on Pr(X,>S ) and compares the
Savings value to the expected distribution of Savings at the same position. “Savings” cor-
responds to Pr(X>S.,), or the alignment p-value of S.,, and compares the Savings value to
the expected distribution of Savings in the alignment. The latter is more conservative and
represents the output of the recombination event list L if only recombination events with
a significant alignment p-value are retained in the list. Finally, we can also use OptSav-
ings as the input for both types of p-values. The probability of detecting a recombination
breakpoint for each position is shown for scenario (S2) in Figure 7.3.

Figure 7.4 focuses on the false detection rate for detecting the recombination breakpoint
in scenario (S3). Other scenarios show a similar picture. Savings BP-pval and OptSavings
BP-pval detect a recombination breakpoint at positions 1-400 in about 5% of the cases
and control the false detection rate in principle. But this behavior is inacceptable in prac-
tice, as there are about 50 spurious recombination breakpoints detected for an alignment
of length 1,000. Savings and OptSavings perform much better regarding the false detec-
tion rate. Consequently, the method of choice for detecting breakpoints is to construct the
recombination event list and to discard all recombination events with a non-significant
alignment p-value.

The implementation of Geneconv is the only method for comparison that conveniently
outputs predicted recombination breakpoints and the associated p-values. A breakpoint
for Geneconv was defined as the start or end position of a gene conversion fragment with
a significant p-value. Consequently, the alignment boundaries are also detected as recom-
bination breakpoints for Geneconv, but it would be easy to filter this effect. The result for
detecting recombination breakpoints in scenarios (S1) and (S2) is shown in Figure 7.5.
Geneconv has a smaller false detection rate than the Savings value of Recco, but also has

a much lower power. Savings outperforms Geneconv even for scenario (S2). However,
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Figure 7.3: The probability of detecting a recombination breakpoint at a certain posi-
tion for scenario (S2). The true breakpoint is marked by a black, vertical line. The le-
gend is explained in the text. Apparently, Savings is more conservative than Savings
BP-pval. It has a lower power of detecting the true recombination breakpoint, but con-
trols the false detection rate much better. In other words, the peak that represents the
true breakpoint is more localized for Savings and only positions 40 to 60 are detected
as a breakpoint in more than 5% of the cases. As before, OptSavings avoids the limita-
tion inherent to Savings and recovers the recombination signal for (S2). OptSavings
and Savings are almost equal for scenario (S1), as sequence R2 is not included in the
alignment (result not shown here).
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Figure 7.4: The probability of detecting a recombination breakpoint for scenario (S3).
The notation is the same as for Figure 7.3. The complete plot is almost symmetric; po-
sitions 600-1000 are very similar to positions 1-400. Savings BP-pval and OptSavings
BP-pval falsely detect a recombination breakpoint at each position in about 5% of the
alignments. As a result, there are about 50 falsely detected breakpoints per alignment,
which is clearly too high for practical settings. The result for scenario (S4) is very sim-

ilar to (S3) and is not shown here.

Savings also shows a more dispersed profile overall and often detects recombination
breakpoints around positions 40 and 60.

Figure 7.6 studies the cause for the dispersed profile of Savings in scenario (S3). As be-
fore, the result transfers to other scenarios as well. The method “Savings>50" only retains
recombination events with a Savings value greater than 50. The 5% threshold intersects
roughly at the same position as for Geneconv. However, the power of detecting the true

recombination breakpoint for Savings>50 is much higher than for Geneconv. In other
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Figure 7.5: A comparison of Geneconv and Savings for scenarios (S1) and (S2). Ge-
neconv does not suffer from the same limitation as Savings and the plots for (S1) and
(S2) are almost identical. Nevertheless, Savings has a higher probability of detecting
the true recombination breakpoint in both scenarios. On the other hand, Savings also
shows a more dispersed profile and does not localize the breakpoint as well.
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Figure 7.6: A comparison of different methods for scenario (S3). Savings>50 refers to
recombination breakpoints that are significant and have a Savings value greater than
50. (a) Only the positions 450 to 550 are shown. Savings>50 and Geneconv show a
similar dispersion for the breakpoint, but Savings has a much higher power. (b) The
plot for the full alignment shows that all methods control the false detection rate nicely
for positions further away from the true breakpoint.

words, ordering the recombination events by the Savings value helps to find more rele-
vant accurate breakpoints first. It is also interesting that the probability of detecting the
true recombination breakpoint is almost 100% for Savings and for Savings>50. Hence,
the profile of Savings may be more dispersed because sequences other than the true re-
combinant show a recombination signal close to position 500 that is significant, but not as

strong as the recombination signal from the true recombinant. The recombination break-
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point for these other sequences may not be localized as well as for the true recombinant
sequence and cause the observed dispersion.

7.1.3 Validation on Random ARGs

The validation on fixed recombination scenarios compares the different methods in detail
and already provides a good idea on the performance that we expect for alignments of an
unspecified scenario. However, we risk missing scenarios where Recco fails, as the vali-
dation does not cover a wide range of different ARGs. In particular, the recombination
scenarios studied in the previous section only contain recent recombination events. As an
alternative, we can draw random ARGs from the coalescent and simulate an alignment
according to the ARG. The ARGs generated from the coalescent depend on several popu-
lation genetic parameters (see section 3.3): the scaled mutation rate 6, the scaled recom-
bination rate p and the number of sequences in the sample. Consequently, we can com-
pute the power of detecting recombination in an alignment depending on 6 and p. For a
method the power of detecting recombination is the probability that the method returns a
significant p-value for input alignments that contain recombination. Unfortunately, it is
much more difficult to perform a detailed analysis in the case of random ARGs and ex-
tract the power of detecting the recombinant sequence or the recombination breakpoint.
The problem is that the ARG may contain irrelevant recombination events (see section
3.3.3.4) or that it may be difficult to define the recombinant sequence accurately (see sec-
tion 4.1).

7.1.3.1 Simulation Setup

The power study in the following uses similar parameters as the study by Posada and
Crandall. All simulated alignments have a sequence length of N=1,000 nucleotides and a
sample size of M=10 sequences. The program ms (Hudson 2002) was used to simulate
1,000 ARGs for each parameter combination with pe {1, 4, 8, 16, 32} and 6< {10, 20, 50,
100, 200}, resulting in a total of 25,000 ARGs. For each ARG, we have simulated one
alignment with dawg (Cartwright 2005) using the Jukes-Cantor substitution model. As
described in section 3.3.2, the parameter @ directly measures the expected number of mu-
tations per genome from the root to a leaf of the simulated coalescent trees. The two most
diverged sequences in an alignment therefore are separated on average by 20 to 400 mu-
tations, depending on the value of 6.

The simulation procedure described above differs from the original publication of Recco
(Maydt and Lengauer 2006), which relied on treevolve (Grassly, Harvey et al. 1999) for
simulating alignments. There are several reasons why the transition to ms and dawg has
been performed. First, ms and dawg can simulate alignments with a large amount of re-
combination and do not fail for p=32. Second, ms outputs the ARG and in principle al-
lows for analyzing the types of the recombination events in more detail. Finally, dawg
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Figure 7.7: Top: The power of detecting recombination is plotted for Recco and dif-
ferent parameter combinations of @ and p. OptSavings dominates all other methods.
Bottom: The false detection rate does not depend greatly on the level of rate variation
a, but only increases with 6. The false detection rate of OptSavings is only slightly

above 0.05. As expected, Savings 0.12 produces too many false positives.

can also simulate alignments with indels. The last two aspects are not relevant for the
subsequent analysis and only allow for a more detailed analysis in the future.

The power of detecting recombination is only interesting if the recombination detection
method also controls the false detection rate. A method should not erroneously detect re-
combination in more than 5% of the cases. The false detection rate is studied by simulat-
ing alignments with different mutation rates and rate variation among sites, but without
recombination. The simulations were performed with the same approach as before. Rate
variation was modeled using the gamma distribution with shape parameter o (Yang
1996). The shape parameter « is not related to the parameter a in the optimization prob-
lem — o only refers to the shape parameter in the following. A higher value of a
represents a lower amount of rate variation and o= denotes no rate variation at all. The
parameters were varied such that p=0, a {0.1, 0.5, 2, 20, o} and, as before, < {10, 20,
50, 100, 200}. Even though this approach was used in (Posada and Crandall 2001) to de-
termine the false detection rate of the methods, it is clear that the rate variation introduced
in the alignments is quite artificial. Each site belongs to a certain rate category, but the
rate of evolution is independent between sites. Rate variation therefore does not simulate
mutation hotspots or regions that evolve faster than the rest of the gene. However, some
methods such as GARD or PLATO detect recombination as a change in the local tree in-

cluding branch lengths and consequently detect recombination at the boundaries of
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Figure 7.8: The same comparison as in Figure 7.7 is shown for a different selection of

methods. The text provides a detailed discussion.

mutation hotspots. A more complete evaluation of the false detection rate should there-
fore also simulate mutation hotspots as in (Husmeier 2005; Husmeier, Dybowski et al.
2005). On these data, Recco is not adversely affected by mutation hotspots and does not
generate an elevated false detection rate (not shown).

The recombination detection methods used for comparison were run with the same set-
tings as described before (see section 7.1.1). For Recco, we can compute p-values for re-
combination in the alignment based on Savings, OptSavings, MaxCost and FirstAngle.
The Recco publication (Maydt and Lengauer 2006) also defines a method called “Savings
0.12”, which detects recombination if the p-value for recombination based on the Savings
value is below 0.12. Hence, we expect to falsely detect recombination in about 12% of
the cases for Savings 0.12. Savings 0.12 was designed to have a false detection rate com-
parable to Geneconv, such that the power of both methods can be compared more fairly.
However, OptSavings performs better than both methods without changing the signific-
ance level and is preferable for a practical setting. Savings 0.12 is only presented to allow

for a comparison with the original publication.

7.1.3.2 Results

Figure 7.7 compares the results for different methods in Recco. OptSavings performs bet-
ter than Savings 0.12 and limits the false detection rate to about 5%. The MaxCost and
FirstAngle features have a very low power of detecting recombination, but also show a

lower false detection rate than other methods in Recco.
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Figure 7.8 compares all other methods with OptSavings. It is interesting that the shape of
the power curve also reflects the principle of the method. Recco, MC? and Geneconv ana-
lyze the distribution of mutations and can detect recombinations that do not change the
unrooted topology of the local trees. On the other hand, they do not analyze local trees or
infer more ancient evolutionary events. The other methods PHI, NSS and RecPars detect
recombination by finding inconsistencies between local tree topologies, but are limited to
detect recombinations that change the unrooted local tree topology. OptSavings, MC? and
Geneconv work best for lower recombination rates such as p<8. PHI and NSS outperform
these methods if p>8 and <20, but quickly loose their advantage as 6 increases and the
alignments contain more mutations. OptSavings consistently outperforms MC? and Ge-
neconv for all parameter settings and is only inferior to PHI and NSS if p>8 and 6<20.
All methods but Geneconv limit the false detection rate to about 5%. Savings 0.12 is
comparable to Geneconv regarding the power and the false detection rate (not shown
here, see (Maydt and Lengauer 2006) for details). Savings performs worse than Gene-
conv, but controls the false detection rate to 5%. RecPars is an interesting case, as it has a
much lower false detection rate than other methods. A careful selection of the parameters
for RecPars may lead to a higher power for recombination detection at the cost of an in-
creased false detection rate.

7.2 Validation on Real Alignments

Validating methods for recombination analysis on real alignments is difficult and error
prone. There are two major deficits of validating methods on real alignments when com-
pared to validation on fixed recombination scenarios. First, we only have a single align-
ment for each recombination scenario. Second, and much more critical, we never know
the history of recombination and mutation events that generated the alignment. Some
alignments and recombinant sequences have already been analyzed extensively and are
fairly well understood, such as the dataset about HIV-1 subtyping in section 7.2.2. How-
ever, the analysis is often performed using popular methods, for example bootscanning
(see section 4.3.4.1), and the results are manually curated afterwards. Consequently, the
results are often biased by the method used for the initial analysis and cannot be regarded
as a gold standard for recombination analysis.

Nevertheless, there are many good reasons to perform a validation on real alignments.
Only real alignments contain all kinds of genomic variation and population genetic ef-
fects, for example gaps, repeats, migration, population bottlenecks, population growth or
a limited amount of selection. Even very simple aspects of real alignments, such as gaps,
have a significant impact on the analysis of recombination. Some methods for the analy-
sis of recombination ignore gaps in alignments and do not treat them appropriately (see
chapter 6.1). Finally, real alignments can also serve as instructive cases for improving a

method and for determining the most relevant part of the output provided by the method.
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The following section first presents an analysis of a new set of HERV sequences and then
investigates a well-studied set of HIV-1 recombinant sequences. The task for both cases
is to determine the composition of a potentially recombinant query sequence regarding a
set of reference sequences. This is a common task in practice, as it is often assumed that a
set of reference sequences is established in the population and new, potentially recombi-
nant sequences are generated from these reference sequences. Even if intermediate se-
quences were generated, they would usually not harbor many mutations compared to the
reference sequences and could be ignored in the analysis of the query sequence.
Consequently, we use Recco to estimate the composition of the query sequence and only
use the recombination event list for the query sequence to scan for potential recombina-
tion events. To be more specific, we estimate the recombinant structure of the query se-
quence by using a sequence p-value cutoff of 0.05 in the recombination event list Z; (see
section 5.6.2). In other words, we determine the a-value that corresponds to the last sig-
nificant recombination event in L; and then recover the a-optimal path for it. Scoring gaps
appropriately is particularly challenging, and details are given in the respective analysis.
In general, we check manually for artifacts caused by inappropriate gap scoring, for ex-
ample if gaps attract the a-optimal path and should incur a higher cost.

We use the DNA mutation model of Recco to assign costs to mutation events. The DNA
mutation model is a simple extension of Hamming distances allowing for ambiguous
DNA nucleotide symbols. A character in the alignment is best represented as a set of nuc-
leotides in this case and we can compute the cost of a mutation between two sets of nuc-
leotides a and b as

anb

m(a,b)=1- (7.1)

aub’
Hence, the mutation cost is equal to hamming distances if there are no ambiguous nucleo-
tide symbols in the alignment.

7.2.1 Analysis of Expressed HERV-K(HML-2) Sequences

As described in section 2.2, HERVs, or human endogenous retroviruses, amplified mil-
lions of years ago by reintegrating into the human genome over and over again and
created several evolutionarily related HERV families. In other words, the HERV se-
quences encoded in the human genome of one individual are usually related by some sort
of ancestry, for example a phylogenetic tree if recombination does not occur. As reinte-
gration is a rare event today, most HERV loci are shared among the individuals in the
human population. The genetic sequence of a HERV locus may differ slightly between
individuals in the population, just as any part in the human genome can differ between
individuals. The variation between different HERV loci is usually larger than the varia-
tion for the same HERV locus between different individuals. As a consequence, there are
mainly two types of analyses: we can either study the long-term evolution of HERVs and
HERYV families or the short-term evolution of HERVs. The long-term evolution is already
adequately covered by comparing different HERV loci within one individual. However, if
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we are interested in the short-term evolution of HERVs, we have to sequence one HERV
locus in several individuals or scan for new HERV loci in the genome that have a similar
sequence. If the HERV locus evolved even in the recent past, we would expect to recover
similar HERV sequences between individuals at different loci in the genome, or we may
even find that the HERV sequence is missing altogether in some individuals.

The following section focuses on an exceptionally young HERV family,
HERV-K(HML-2) or HML-2 in short and summarizes an analysis of HML-2 sequences
using Recco. HML-2 is particularly interesting, as proviruses of the HML-2 family are
still transcribed in several human tissues and encode many functional viral proteins, such
as gag, pol and env. Based on a sequence analysis, Belshaw and coworkers (Belshaw,
Pereira et al. 2004) found that the env gene is under purifying selection and proposed that
several HML-2 proviruses could still be infective today. Even though some of these pro-
viruses appear to be fully intact, an infectious variant has not been isolated so far. Detect-
ing an infectious and actively replicating HML-2 variant would therefore be a significant
finding.

7.2.1.1 Sequence Data

The input sequences for the analysis with Recco were chosen by a prefiltering step as de-
scribed in the following. Flockerzi and coworkers (Flockerzi, Maydt et al. 2007; Flocker-
zi, Ruggieri et al. 2008) sequenced 642 HML-2 cDNA’s with a length of about 800nt
from the gag region during an HML-2 expression study. These sampled sequences were
compared to 63 reference sequences, called references in the following. The references
comprise the HML-2 proviruses published in the human genome reference sequence and
a HML-2 provirus known to be missing therein, HERV-K113 (Turner, Barbulescu et al.
2001). An important aspect of the reference alignment is that some references corres-
ponding to older HML-2 loci have a 96bp insertion in the gag gene.

The samples and the references were then combined in a multiple alignment and the clos-
est reference for each sample was determined by Locus-Assigner. Locus-Assigner is a
simple Python script that uses Hamming distance as a distance metric, treating gaps as a
fifth character. Most samples could be assigned to one of the references with only few
mutations. However, about 5% of the samples, called HERV-KX in the following,
showed 13 or more nucleotide differences to the closest reference. Clearly, the number of
nucleotide differences could be inflated, as gaps were treated as a fifth character and the
presence or absence of a large 96bp insertion in a sampled sequence could already cause
a high number of differences. The fundamental question remains the same, though: where
do the HERV-KX sequences come from and how did they accumulate the mutations or
indels? Are they indicative of an infectious and rapidly evolving HERV variant?
HERV-KX sequences represent HML-2 sequences that were not observed before. There
are several possible explanations for the origin of these sequences. First, they could

represent a set of yet undiscovered HML-2 variants that are fixed in the genome of a hu-
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man subpopulation. However, it is very unlikely that so many HML-2 variants went un-
noticed so far. Second, they could stem from an active HML-2 provirus that accumulates
mutations in vivo or even produces recombinant sequences. In this case, we would expect
that the HERV-KX sequences are isolated repeatedly from the same individual, in the
same way as the HML-2 reference sequences were often detected in the sampled se-
quences. But the HERV-KX sequences were quite diverse and the same HERV-KX se-
quence was not identified twice. Finally, a third option is that the HERV-KX sequences
are artifacts of the experimental procedure and were generated, for example, by ex vivo
recombination. There are two well-known causes for ex vivo recombination during a se-
quencing procedure: during production of cDNA from the viral RNA by reverse tran-
scriptase (RT) (Luo and Taylor 1990) and during amplification of cDNA by PCR
(Meyerhans, Vartanian et al. 1990). Both processes are well known to cause recombina-
tion ex vivo and may complicate the analysis of sequences considerably. The hypothesis
of ex vivo recombination is tested in the following with Recco by investigating the poten-
tially recombinant origin of the HERV-KX sequences.

7.2.1.2 Methods — A Simple Strategy for Treating Gaps in Recco
The large gap region in the multiple alignment makes the analysis of HERV-KX se-

quences particularly challenging. As described in chapter 6, gaps can lead to several arti-
facts and require a careful analysis. The analysis of gaps in Recco was actually motivated
by the present study of HERV-KX sequences. Hence, we could not rely on the analysis of
chapter 6 back then and only had a limited number of options. We could either (i) discard
sites that contain a gap character, (ii) treat each gap character as a fifth nucleotide state or
(iii) treat each consecutive run of columns containing gaps as a large polymorphism, as in
Geneconv. All these options have certain disadvantages and may cause severe artifacts in
the output. The first option results in an unacceptable loss of information, as the presence
of the 96bp insertion already represents important information. More notably, different
references that harbor the 96bp insertion also show a different sequence for the insertion.
The second option may lead to an artificially high similarity or dissimilarity between se-
quences in gap regions and can produce spurious recombination events. Finally, the third
option prohibits recombinations in any run of columns containing a gap. A sequence with
a long gap may therefore confound recombinations in other sequences. It is also difficult
to choose an adequate scoring term for the large polymorphisms that are generated by this
procedure. In conclusion, these approaches for treating gaps either discard a lot of infor-
mation and thus miss recombination events or may infer spurious recombination events
solely based on gap information.

We decided to develop and implement a heuristic approach that may discriminate be-
tween spurious recombination events inferred because of gaps and recombination events
inferred solely based on nucleotide polymorphisms. The basic idea is to treat gaps as a

fifth nucleotide state, but vary the penalty for incorporating gap characters into the
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a-optimal path and determine the recombination events that are stable over a large range
of gap penalties. As described in chapter 6, we never penalize pairing a gap in the query
sequence with a nucleotide in the explanation. In other words, all columns with a gap in
the query sequence are effectively removed from the alignment. However, we penalize
pairing a nucleotide in the query sequence with a gap character in the explanation, as this
situation corresponds to missing information.

To capture the effect of the gap penalty on inferred recombination events, we execute
Recco for all gap penalties g with ge {0.016, 0.02, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.8}. As
gaps are strongly preferred for gap penalties below 0.016 and result in spurious recombi-
nation events, we do not consider gap penalties smaller than 0.016. The results are then
automatically processed as follows: recombination events with a p-value above 0.05 are
discarded as not significant. If a recombination event with the same start and end position
has a significant p-value for all gap penalties, it is accepted as correct. Other recombina-
tion events are manually examined and consolidated. In total, we confirmed 17 recombi-
nation events automatically and analyzed 25 recombination events manually, most of
which were verified as true recombination events.

It is clear that the same analysis could be performed more accurately and efficiently if the
parametric analysis was extended to cover both parameters, a and g. However, such a pa-
rametric analysis is not only numerically difficult, but also results in a two-dimensional
parametric cost surface. This cost surface is not as easy to interpret as the one-
dimensional cost curve. Nevertheless, such an extended parametric analysis may become
interesting as future work, if we understand the effects of varying g in more detail.
Scoring gaps as a fifth nucleotide mainly causes two artifacts: the a-optimal path may
introduce additional recombination events either to incorporate a gap for low gap penal-
ties or to avoid the gap for high gap penalties. These two artifacts may have several com-
plex effects on the inferred recombination events, as described below, and the p-values of
the inferred recombination events can vary widely for different gap penalties. These re-
combination events are called RiQ (“recombination event in question”) in the following
and require a manual analysis. The output of Recco for different gap penalties was ex-
tremely helpful for identifying the RiQs. There are several effects that may generate an
RiQ:

1. The RiQ is directly caused by the gap.

As a result, the RiQ is only inferred for low or high gap penalties. This effect is the most
frequent for generating RiQ. For example, sequence B282 in Table 7.3 shows a RiQ in
path bl) that is only inferred for gap penalties below 0.023. The gap region in path bl)
covers 397 positions. The alternative path b2) is only inferred for larger gap penalties and
only incurs 9 mutations more than path bl). Consequently, path b2) is preferred for gap
penalties above 9/397=0.023.
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Query Breakpoint Gap Penalty Savings P-value Caused

by
B282 583 0.016-0.02 ~18 0.001 1.
238+ 0.016 5.35 0.061
0.02 6.94 0.022
0.04-0.8 16 0.001
583+ 0.016 5.35 0.061 2.
0.02 6.94 0.022
0.04-0.8 8 ~0.01
B100 510+ 0.016-0.2 5 <0.005 3.
0.4-0.8 5 >0.2
164+ 0.016 75 0.001
0.02 8 0.001
0.001
>0.45 49 0.001

Table 7.2: This table shows part of the recombination event list for different gap pe-
nalties and provides p-values for the recombination breakpoints listed in Table 7.3.
Some breakpoints are only inferred or significant for some gap penalties, and the rele-

vant information is marked in red.

Query Path Breakpoints #Recs #Muts #Gaps Savings O?J;rzal
B282 a) 7 450 - 0 25 0 — all”
bl) 8 121,3 385 583 1 0 397 25-397g 2<0.023
b2) 1 504,3 354 238+ 1 9 0 16 2>0.023
O 1.504,7 450,3 385 238+ 583+ 2 1 0 bl)g)‘ Z97g all?
B100 al) 7 450 - 0 0 54 - <045
a2) 3 385 - 0 96 11 - 2>0.45
al) 54g-5 #
b) 7 450,3 385 164+ 1 5 0 a2)91+11g all
c) 7 450,3 385,7 345 164+, 510+ 2 0 0 5 all’

# for all gap penalties studied in the analysis, i.e. g€[0.016,0.8]

Table 7.3: The optimal paths are shown for different & and gap penalties g. The col-
umn Path describes the sequences involved in the recombination, Breakpoints the
breakpoint location and #rec, #muts, #gaps column shows the number of recombina-
tions, mutations and gaps in the path. For example, path bl) for the query B282 uses
sequence 8 121 up to position 583 and then switches to sequence 3 385. Path bl) re-
quires one recombination, no mutations and 397 gap characters and is only a-optimal
for gap penalties below 0.023. The Savings value corresponding to path bl) is 25-397g
and varies with the gap penalty g. The Savings value for path c) also depends on the
gap penalty: path bl) is only used for comparison if g<0.023 and the Savings value is
therefore (25-397g-1)/(2-1).
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2. The RiQ is indirectly caused by a gap in the a-optimal path with less recombina-
tion.

The Savings value of a recombination event always compares the mutation and recombi-
nation cost of two paths: the a-optimal path including the recombination event and the
alternative a-optimal path excluding the recombination event (for a different a). Hence,
the Savings value and the p-value of the RiQ may change simply because the alternative
path covers a gap. A simple example is path b) of sequence B100 (see Table 7.3). The
path without recombination is al) for gap penalties below 0.45. The mutation cost of the
path increases with increasing gap penalty, because we treat gaps as a fifth nucleotide
state. Consequently, the Savings value of the recombination event in path b) also varies
for different gap penalties below 0.45, as shown in the column “Savings”.

3. The RiQ is indirectly caused, as more complex effects affect the p-value of the
RiQ.

A recombination event may also become insignificant for some gap penalties because the
distribution of X;. changes with the gap penalty. In other words, the gap penalty influ-
ences the distribution of Savings values in column permutations of the alignment. Conse-
quently, a constant Savings value may correspond to different p-values for different gap
penalties. An example is the recombination event at position 510 in path c) of sequence
B100 (see Table 7.3). The recombination event always corresponds to a Savings value of
5, irrespective of the gap penalty. However, the distribution and the maximum of Savings
values for column permutations changes for different gap penalties, just like the Savings
value of path b) does. As a consequence, the Savings value of 5 is insignificant for gap
penalties that are larger than ~0.3 (see Table 7.2).

7.2.1.3 Results and Discussion

Consolidating the results of the analysis involved a lot of manual work and was quite
challenging, as we were unraveling the effects causing recombination events in question.
Table 7.4 shows the results of the original publication (Flockerzi, Maydt et al. 2007). The
heading ‘Locus Assigner’ lists the closest locus to the query sequence and the number of
differences (mutations or gaps) to the closest locus. ‘Recco Analysis’ describes the
a-optimal path for each query sequence deemed most likely by the manual analysis. For
example, Recco predicts that sequence B260 is a recombinant of 7 450 and 5_544 with a
breakpoint at position 164—181. The first part of B260 up to the breakpoint actually
matches 7_450 perfectly and does not introduce any differences. The second part of B260
involves four differences to locus 5 544, such that there are only four differences in total.
‘/...” in the column Loci indicates that more than one locus fits equally well to the query.
Finally, the list also provides the p-value of the path based on 1,000 column permutations
using a gap penalty of 0.2. Some paths do not have a significant p-value but may still

represent a good hypothesis, as Recco often predicts only few recombination events (see
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Locus Assigner

Recco Analysis

Quer; Closest . . . #diff’s to Total
Sequenyce Locus #diff’s Loci Breakpoints Locus P-value #diffs
B251 7_450 56 3.610/... 59-67 0 0.059 4
7450 182-191 0
10_019 385-436 3
1.504/... 1

B100 7_450 54 7_450 164-181 0 0.004 0
3385 510-551 0
7345 0

B260 7_450 53 7450 164-181 0 0.001 4
5_544 4

B81 7_450 52 7_450 192-205 1 0.001 7
1259 6

108 3610 51 21_019 68-181 0 0.001 0
7_450 0

B83 7_450 51 7_450 192-209 3 0.201 7
10_019 437-466 2
1.504/... 2

B358 11_424/... 50 5544 68-181 2 0.004 2
7450 727-752 0
3385 0

B269 3610 48 3.610/... 68-181 0 0.001 0
7_450 0

B281 7_450 43 7_450 238-242 0 0.001 4
1.504/... 4

B268 7_450 41 7_450 164-181 0 0.122 0
1.504/... 583-712 0
7450 0

B270 7_450 39 7_450 267-273 0 0.001 0
3385 502-505 0
3014 0

B282 1_504 36 3.354/... 238-242 1 0.004 1
7_450 583-712 0
3 385 0

B362 1.259 31 11_424 389-401 2 0.102 2
7450 583-624 0
10 019 0

94 11_456 26 11_456 415-422 0 0.003 0
7_450 583-651 0
11_456 0

B98a 3_.496/... 20 10 019 214-263 2 0.001 10
7 _345/... 8

622 3.014 19 6_324/... 316-388 0 0.33 0
3014 676-764 0
3385 0

B276 1_504 18 3.354/... 192-306 0 0.021 0
3.385 521-553 0
7_450 0

B188 11_424 18 1.259/...  256-265 0 0.006 1
7_450 404-414 0
19 352 583-610 1
7_450 0

B262 3496 17 4742 209-226 0 0.001 4
5544 4

B12 5544 14 5544 583-673 7 0.001 7
7450 0

93 7_450 13 77_450 583-610 1 0.001 1
21 019 0

Table 7.4: A slightly modified version of the table in (Flockerzi, Maydt et al. 2007),

distributed under the terms of the Creative Commons Attribution License. The table

only shows the explanation with the highest number of recombinations. A detailed ex-

planation of the columns is given in the text.
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section 7.2.2.2). The prediction of Recco strongly supports that all HERV-KX sequences
are recombinants of two or more loci. The number of differences of the recombinant path
to the known loci is usually below six and may be caused by the allelic variation ob-
served in the human genome. The recombination signal is highly significant for all se-
quences: the first recombination event for each query sequence has a p-value below 0.002
(not shown in the table) and a very high Savings value, even if the p-value of the path in
the table is not significant.

In summary, this study demonstrates that ex vivo recombination can complicate sequence
analysis considerably. Our findings do not rule out in vivo recombination and it is almost
impossible to differentiate between in vivo and ex vivo recombination. However, the hy-
pothesis of ex vivo recombination is more likely in our case, as the HERV-KX sequences
were not isolated multiple times. The potential for ex vivo recombination was also quanti-
fied in a controlled experiment. About 10.5% of the sampled gag sequences contained ex

vivo recombination.

7.2.2 HIV-1 Subtyping
Subtyping is an important task for the analysis of HIV-1 sequence data. The subtype

usually provides information on the geographic origin of the virus and allows for tracking
the spread of the disease more closely. But the analysis becomes more complicated as the
virus recombines and produces recombinant forms. The recombinant subtype structure of
these viruses is of particular interest and is often studied in more detail. As a conse-
quence, there are several subtyping datasets that were studied manually in great detail and
can be used for validating recombination detection methods (see e.g. (Magiorkinis, Pa-
raskevis et al. 2005)). However, the manual analysis does not guarantee that the results
are accurate. In the following, we will therefore compare several methods simultaneously
and assume that their consensus provides a good estimate.

7.2.2.1 Materials and Methods

The analysis in this section closely follows the publication of (Magiorkinis, Paraskevis et
al. 2005) and compares the result of the publication to the output of Recco and jpHMM, a
method for subtyping HIV-1 sequences. The subtypes and accession numbers of the 19
reference sequences are: subtype A (M62320, U51190), B (K03455, M17451), C
(U46016, U52953), D (K03454, A34828), F (AF075703, AF005494, AJ249236), G
(U88826, AF061641), H (AF190127, AF005496), J (AF082395, AF082394) and K
(AJ249239).

Magiorkinis and coworkers analyzed a total of 34 recombinant viral HIV-1 strains. They
first constructed a multiple sequence alignment of the query and the reference sequences
with Clustal W (Chenna, Sugawara et al. 2003). The recombination analysis was then
performed with bootscanning using a sliding window of 400bp and a step size of 50bp. A
recombination breakpoint was detected if adjacent regions support a different HIV-1 sub-
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type classification with a bootstrap value above 70-75%. The subtype classification was
then further confirmed manually by performing a neighbor-joining and a maximum-
likelihood phylogenetic analysis for each genomic region. Some sequences or sequence
regions could not be assigned to a subtype and were further analyzed with a BLAST
search (Altschul, Gish et al. 1990). The result of the BLAST analysis often proposed
more exotic HIV-1 variants as parental strains and is not reported in detail by the authors.
The following discussion is therefore based on the results of the maximum-likelihood
analysis (MLA). MLA usually predicts one of the subtypes for each region (see Figure 1
in (Magiorkinis, Paraskevis et al. 2005)). A special case is that some recombinant se-
quences cluster to the parents of subtype B and D in selected regions and have two poten-
tial parental sequences. This case is represented with an artificial subtype ‘P’ in the fol-
lowing. As the exact location of the breakpoints are not listed for the MLA, they had to
be estimated from Figure 1 in (Magiorkinis, Paraskevis et al. 2005) and are only accurate
to about +£200bp.

The MLA may not recover the correct solution, even though it follows a partially hand-
driven protocol. A major problem is the hierarchical approach, as errors in the bootscan-
ning step propagate to the phylogenetic analysis and cannot be fixed there easily. If the
bootscanning step does not detect a breakpoint, the subsequent phylogenetic analysis is
also inaccurate, as it estimates a single subtype for a recombinant region. On the other
hand, the bootscanning step may also detect too many breakpoints. The phylogenetic
analysis then becomes inaccurate as there may not be enough phylogenetic information in
smaller genetic regions. Unfortunately, the publication does not indicate whether the sub-
typing results were produced with a lot of manual interaction that could partially avoid
these problems. In summary, the output of the MLA may be a good indication for the
subtype structure, but it is far from accurate.

The analysis for Recco is based on the HIV-1 genome alignment (downloaded on
26.2.2008) of the Los Alamos National Laboratory (http://www.hiv.lanl.gov/) and avoids
the alignment step. The whole genome alignment contains all reference sequences and 31
out of 34 recombinant sequences. Three recombinant sequences were not found in the
complete genome alignment and are not analyzed in the following: AF076475, X04415,
AF005495. All columns in the alignment with a gap in the HXB2 sequence were dis-
carded, so that the numbering of columns corresponds to the HXB2 reference sequence.
In a second step, an alignment that contains the query and all 19 reference sequences was
extracted for each recombinant sequence, resulting in a total of 31 alignments. Recco was
then used to estimate the composition of the query sequence for each alignment and 200
column permutations were performed for p-value computation. As the alignments do not
contain many and large gap regions, the gap scoring was not as important as for the anal-
ysis of the HERVs. Hence, we simply used a gap penalty of 0.2 for the analysis and
checked manually if gaps strongly attracted the a-optimal path.
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The subtype composition of the 31 recombinant sequences was also determined using the
web-interface of jpHMM (Zhang, Schultz et al. 2006) (see section 4.3.3.4).

7.2.2.2 Results and Discussion

The subtype prediction of all three methods is too unreliable to provide a gold-standard
for comparison. The breakpoint positions of the MLA were particularly inaccurate as they
had to be reconstructed from a Figure in the publication (Magiorkinis, Paraskevis et al.
2005). In order to allow for a sensible, informative and compact comparison of the results
for all three analyses (MLA, Recco and jpHMM), the results were compared and com-
bined manually (see Table 7.5).

As described in the following, the recombination breakpoints were consolidated manually
to arrive at a representative, but not too fine-grained segmentation of the genome into re-
gions. The breakpoints predicted by Recco and jpHMM rarely differ much for simple
cases. If the two breakpoints fall within 100bp, only the breakpoint predicted by Recco,
rounded to 10bp, is provided and the distance to the breakpoint of jpHMM is color coded:
green denotes a deviation of <30bp, orange 30-50bp and red 50-100bp. If the breakpoint
was only predicted by one of the two methods, it is colored black. The approximate
breakpoint locations of the MLA then often matched a predicted breakpoint of Recco or
jpHMM. If this was not the case, the breakpoint location of the MLA is reported with the
prefix ‘~’ as they are very inaccurate. In summary, the breakpoints of Recco and jpHMM
are used as the most accurate predictions as the resolution of the MLA breakpoints is very
limited.

The breakpoints then define a segmentation of the HIV-1 genome. If there are x break-
points, the HIV-1 genome is divided into x+1 regions in total and the subtype composi-
tion is given for each region and each method. The column “Prediction” shows the output
of the MLA, Recco and jpHMM in the first, second and third row, respectively. The out-
put of Recco and jpHMM is color coded to allow for a faster comparison of the results:
all differences to the prediction of the MLA are shown in red. A region does not count as
a difference if it was predicted as ‘?° for the MLA or for Recco or jpHMM. Similarly, ‘P’
matches subtypes ‘B’ and ‘D’. In some cases, a fourth row provides the output of Recco
for a lower, but non-significant Savings value. The additional subtype predictions then
match some predictions of the other methods more accurately. The “Comments” column
also indicates if Recco recovers the exact output of jpHMM or the MLA for a lower Sav-
ings value. The MLA sometimes predicts no subtype (‘?”) for a region if there is no clear
signal from the analysis. These regions are not always represented explicitly in the table
to avoid generating an excessive number of breakpoints. If Recco and jpHMM do not
predict a breakpoint at the boundaries of a ‘?” region and the region is rather small, the
predicted subtypes of the MLA in the adjacent regions are simply extended to cover the
unclear region. JpHMM can also directly predict the circulating recombinant form ‘1°, a

recombinant between subtypes A and E.
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Table 7.5 shows the output of the methods. Sequence 1 is a very simple example for a
subtype prediction. All methods predict the subtype composition ADA and both break-
points 3060 and 4010 were predicted by jpHMM and Recco with a deviation of less than
30bp from each other. Hence, the methods predict subtype A for positions 1 to 3060, sub-
type B for positions 3061 to 4010, and subtype A for the rest of the sequence from posi-
tions 4011 to 9719. Sequence 2 presents a more complex example. Recco only predicts
one recombination event with a Savings value of 186 and a highly significant p-value.
The next path with an additional recombination event corresponds to a lower Savings
value of 19 and does not have a significant p-value anymore, but recovers the solution of
jpHMM. It is unclear whether the MLA solution is correct, as it is the only method that
predicts subtype C for a small region between positions ~6800 and ~7100. If the Savings
value is reduced to 8, Recco actually also detects subtype C between positions 6790 and
6930. However, Recco is very sensitive to this Savings value and also finds a (potentially
correct) intra-subtype recombination in subtype C at position 6100 and a (probably incor-
rect) recombination close to the end of the alignment due to gaps. Sequence 2 also shows
that some recombination events may become obsolete for lower Savings values (see sec-
tion 5.6.2 for details). Recco predicts a recombination breakpoint at position 6320 with a
Savings of 186 between the parental sequences U52953 (subtype C) and U51190 (sub-
type A). If Savings is reduced to 8, the breakpoint shifts to 6330 and the parental se-
quences also differ (U46016 and M62320), but are still of the same subtype. Fortunately,
the difference does not matter for the purpose of subtyping in this case.

The predictions of the three methods often disagree with respect to the number of seg-
ments and recombination breakpoints. Sequence 4 nicely illustrates these characteristic
differences. Recco predicts the least amount of recombination and only infer subtype A
for the region between position 6340 and 8320. MLA infers an additional region of sub-
type A between position 3790 and 4050. Finally, jpHMM predicts the most recombina-
tion breakpoints and also finds subtype A between positions 5790 and 5950. Recco per-
forms particularly well in this case, as it recovers the MLA solution for Savings=10 and
the jpHMM solution for Savings=7.5. However, the solution for Savings=7.5 is already
very susceptible to noise and predicts subtype A only up to position 5900 and not up to
position 5950 as jpHMM. Subtype A actually only incurs ten mutations less than subtype
D in the region predicted by jpHMM, and the question is therefore whether ten mutations
suffice to justify two recombination events.

In general, jpHMM is very aggressive and tends to predict many recombination break-
points. Regions that are classified as unclear by the MLA often show multiple recombina-
tion breakpoints in jpHMM (see sequences 16, 24 and 30). But other regions are also of-
ten subject to a higher number of recombination breakpoints in jpHMM (for extreme ex-
amples see sequences 6, 7 and 9). Recco is very conservative and predicts fewer recom-
bination breakpoints than jpHMM and the MLA. One exception is due to a potentially
wrong result for the MLA (see sequence 3). All other exceptions occur for alignments
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ID  Accession Prediction Breakpoint Positions Comments
Number (MLA, Recco, jpHMM) (1-9719)

1 AF071473 ADA
ADA
ADA

2 AF067156 CACA? ~6800 ~7100 9130 Recco recovers the jpHMM result
CAAAA with Savings=19 (p-val=0.35). The
CARAC C at the 3™ position of the MLA

may be noise.

3 AF071474 CCACA The MLA may be insensitive for
ACACA small stretches of differing sub-
ACACA types and not detect A at the be-

ginning.

4 AF075701 DADPPPAD 3790 4050 ~5300 5790 Recco recovers MLA result with
DDDDDDAD 5950 Savings=10 (p-val=0.2), and the
DADDADAD jpHMM result with Savings=7.5.

5 AF075702 AAPAAACCC 6860 7320 Gaps at the end of the alignment
DADAAADCA may negatively affect the solution
?ADADADC? of Recco.

6 AF076474 AGHHG?AA??7?KKKKK?? 2890 3850 43804950  JpHMM probably introduces too
AHHHHHHHHHKKKKHHHH 5370 5810 5950 6380 many breakpoints between posi-
AGHCGHAKHGAKAFHGHK 7030 7680 7900 8660  tions 7680 and 8660.

8830 8940

7  AF192135 AJ??JA?JJJI?JJT 2010 2580 28703290 3620 A typical case where jpHMM de-
AJJJIIIIIIIIIIT 4080 4990 6420 6800 7170  tects (too) many recombination
AJDCGACJGJCAJIC 7690 8310 8980 breakpoints.

8 AJ237565 RAAKA?H 8202750 4130 5700 Recco (erroneously) predicts B as
BAKAAH the subtype for the first region
AACACH because of a gap.

9 AJ276595 ACGCAGGAGCCCGGGG 1530 318037204000 Recco generates the output (') for
AAGGGGGGGCCCGGGG 4200 4950 ~5300 Savings=22 (p-val=0.1).
ACGCACGAACACGAGA 7030 7150 8750 9150
ACGGGGGGGCCCGGGG" 9360

10 AJ276596 AGAGGGG 22203210 87309090  Recco recovers the MLA result
AAAGGGG 9360 with Savings=20 (p-val=0.45).
AGAGAGA

11 U76035 GJGJJGAG 3520 4140 4990 5720 Recco generates the output (1) for
GJJJJGAA 8370 Savings=22 (p-val=0.065).
GCGFCGAG
GJJJIGAG

12 U86780 AAAC?ACAAA 1960 2290 3210 3800
AAARAACARA ~5000 7320
ACACCACACA 7510

13 U88823 CACACAC 1820 2700 ~4700 ~5000 Recco recovers the MLA result
CCCCCAC with Savings=25 (p-val=0.1).
CACCCAC

14 U8882S5 GAG 4240 5920 Recco recovers the MLA result
GGG with Savings=11 (p-val=0.92).
GAG

15 AJ239083 AGAGAO 2240 3210 42104870 5830  The last region refers to subtype O
AAAAAD (other) and interferes with Recco’s
AGAGAA analysis, as it introduces many

mutations and gaps.

16 AJ404325 GGHJIGJJKJ??22?A?G? 1060 2140 2700 4130 4880
GGGGGJJJJJARRAAGGG 5100 5500 6050 6280 6640
HGHCGGKKBAALHIAAGH 6910 7190 7430 8330 8440

8640 9010

17 AF362994 BA??7?B 6200 ~6500 7410 7480 Gaps cause Recco to erroneously
BGCKBB 7700 detect the third and fourth break-
B1111B point. The subtypes C and K are

probably incorrect.

Table 7.5: The table lists the HIV-1 subtype prediction for the MLA, Recco and
jpHMM. See text for details.
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ID  Accession Prediction Breakpoint Positions Comments
Number (MLA, Recco, jpHMM) (1-9719)

18 AF377957 AGAAGAGAGGG 2220 3240 5050 5280
AAAGGAGGGGG 8200 ~8500
AGAAGAAAAGA ~9000 9220 9350

19 AF377959 AGGFFA?GGAKH?HHA 1990 2110 2500 2970 The predictions disagree up to posi-
AKKKKKKKKKKHHHAR 3490 3750 4440 4670 tion 5600. It would be interesting to
AAGFGACGAAKHGHHA ~4900 5600 6360 analyze this sequence in more de-

6900 7320 7620 tail.

20 AY046058 AGGAKAGJJJJAAA 1990 2170 2430 3090 JpHMM and the MLA roughly
AKKKKKJJJJJJAA 3920 4070 4780 6050 agree up to position 4780, while
AAGAKAGAGBJAAH 6170 6260 6340 6510 Recco and the MLA concord for

9260 the rest.

21 US1188 A?GA ~6500 ~7800 ~8500 JpHMM contains the sequence to
CRFO1 AAAA subtype (CRFO1) in the training set

1111 and correctly detects it.
22 AF063224 AGAGAGA?GAG 2240 3210 4210 4920 Recco generates the output (') for
CRF02 ARAAAAAGGGG 6070 6190 8160 8370 Savings=15 (p-val=0.8). The MLA
AGAGAGAAGAG 8560 9150 does not introduce an unknown
AGAGGGAGGGG™ region, but the breakpoint could not
be determined accurately enough

and is marked by ‘?°.
23 AF193277 ABA
CRF03 ABA
ABA
24  AF119819 AG??FK?GA?AA???KAH? 2250 2530 2880 Recco generates the output (') for
CRF04 AAAAAAAAAAAAKKKKKHH ~3000 3720 4580 4800  Savings=31 (p-val=0.1).
AGCAFFFAAJAGGACKAHC 5460 5690 6260 6660
AFFFFFFFAAAAKKKKKHH" 6830 7180 7510 7790
8660
25 AF076998 DFDFDFDF 2800 3360 Recco recovers the MLA solution
CRF05 DDDEDFEF 8360 8710 for Savings=12 (p-val=0.6).
DFDEFDFDF
26 AJ288981 AGGGKK?GGGJJJIG?JJJJJ 2460 2760 3150 Recco generates the output () for
CRF06 AGGGKKKKKJJJJGJJJJJJI 3480 3840 4060 4210 Savings=19 (p-val=0.06). The out-
AGACCKDDAAAJKGGJIGJICA 4370 4880 put is similar to the MLA solution
AGGGKKKGGGJIJJIGIIIIII 5100 5640 6030 8170 and assigns subtypes to all regions.
8330 8670 8890 8990
9280
27 AF286230 CBCBCCPCCPC 2060 2550 2980 3180 Recco is more conservative than
CRF07 CCCCCBBBCCC 5700 5850 6430 6650 the other methods. It would be
CBCBCCBCCBC 8840 9060 interesting to study this case in
more detail.
28 AYO008717 CBCBCCC ~1200 ~1500 2850 Recco recovers the jpHMM solu-
CRF08 CCCCCBC 3170 8800 tion for Savings=11 (p-val=0.1).
CCCBCBC
29 AF289548 DCPCPCDCDC 3220 3630 4650 5390
CRF10 DDDDDCDDDC 5790 6400  ~6800
DCDCDCDDDC ~7000 8870
30 AF179368 AJKJIJJAJIGAJG??? 21302480 ~2800 3170 Recco generates the output (*) for
CRF11 AAAAAAAAAAAJIJIT 3580 4170 5830 6150 Savings=25 (p-val=0.06).
AJAAGCAKJIGAAGJIAL 6370 6820 7610 7970
AJIIIIIIIGATIIIT 8570 8750 8950
31 AF385936 KFBFPFBF 5950 Recco recovers the jpHMM solu-
CRF12 BFBFFFFF 6240 8480 8630 tion for Savings=12 (p-val=0.25).
BFBFBFBF

Table 7.5 (continued).

with larger gap regions: Recco erroneously infers recombination breakpoints because of a
gap for sequences 5, 8 and 17. The disparity between Recco and jpHMM regarding the
number of breakpoints probably originates from different underlying principles. Recco is

based on a hypothesis test and only accepts a recombination event if it incurs a significant
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Savings value. In other words, Recco tries to limits the number of falsely detected re-
combination events. In contrast, jJpHMM tries to find the subtyping result with the maxi-
mum likelihood in the hidden Markov model and does not penalize additional recombina-
tion events as much.

The predictions of the three methods agree for many parts and many sequences of the
alignment. The MLA is often similar to Recco or jpHMM, and the consensus may present
an even more accurate prediction. Nevertheless, some sequences show a very complex
recombination signal, such as sequences 6, 19, 20, 24 and 30. These sequences are very
difficult to analyze, as the output of all three methods disagrees. It would be interesting to
analyze these sequences in more detail and estimate their recombination structure accu-
rately. Unfortunately, a manual analysis of recombinant sequences is usually very time
consuming and is out of the scope for this validation.

In summary, Recco performs comparably to jpHMM, even though it was not designed for
subtyping. Recco is much more conservative and only infers recombination if there is
substantial evidence for it. The Savings value as a measure of robustness is also very use-
ful in practice, as it allows exploring different recombination hypotheses quickly. How-
ever, Recco does not model gaps very well, such that the analysis is sometimes negative-
ly affected by gaps in the alignment. Extending Recco to a full subtyping method also
requires a more detailed analysis of the robustness. Recco and jpHMM only infer a sub-
type for every position in the alignment. A measure of robustness for the subtype predic-
tion at each position would be extremely useful.

7.3 Conclusion

Recco works very well for detecting recombination in an alignment and finding the struc-
ture or composition of potentially recombinant sequences. Recco’s power of detecting
recombination in alignments is particularly encouraging. Recco is also very intuitive and
easy to use — at least in our subjective view. Many other popular or graphical methods for
analyzing recombination do not directly provide a recombination hypothesis for the de-
tected recombination signal (for example Topali, RDP and Geneconv) or are too insensi-
tive (for example Bootscanning or Simplot). However, Recco has several shortcomings
that complicate the analysis of biological datasets. The analysis of Recco can be adverse-
ly influenced by gaps in the alignment, just as for many other methods. The analysis
based on the Savings feature also fails if there are sequences similar to the recombinant in
the alignment.

Savings works well for detecting the recombinant sequence in an alignment and is partic-
ularly effective for reconstructing the potentially recombinant composition of a single
query sequence. Savings is also rather easy to interpret and therefore particularly useful
in a manual analysis of the alignment. However, Savings cannot recover the recombina-
tion signal if there is a sequence similar to the recombinant in the alignment. An auto-

mated strategy for consolidating the output of Recco for different query sequences would
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therefore be valuable in practice and may even supersede OptSavings for recombination
detection. The next chapter presents some ideas for future work on such a strategy.

While Savings clearly performs better than Geneconv for specific recombination scena-
rios, it only performs comparably to Geneconv on random ARGs. OptSavings was devel-
oped as a simple strategy of avoiding the limitation of Savings and of investigating the
cause of the reduced performance for random ARGs in more detail. The power of Opt-
Savings in detecting recombination is impressive, particularly for low recombination
rates. OptSavings is better than all other methods used for comparison for most parame-
ters 6 and p. However, OptSavings is not as suitable for manual analysis of the alignment,
as it does not allow for a simple interpretation like Savings. We also cannot use OptSav-
ings to estimate the composition of the query sequence regarding a set of reference se-
quences, as OptSavings may remove some of the reference sequences and produce incor-
rect results. In summary, OptSavings should only be regarded as a first step towards a
more comprehensive analysis of the recombination signal in an alignment.

Recco also performs well for real alignments and in particular for estimating the compo-
sition of a query sequence in the alignment. In comparison to jpHMM, Recco is very con-
servative and only predicts few recombination events. Such a conservative approach is
preferable if we want to confirm that recombination took place and if every estimated re-
combination event has serious implications for the interpretation of the analysis. Howev-
er, it is more appropriate in some cases to infer a composition that does not penalize re-
combination as strongly as Recco. Consequently, it may be interesting to devise a scheme
for finding a less conservative threshold for the Savings value. Still, the most serious li-
mitation of Recco is the scoring of gaps. Just like many other methods, Recco may infer a
wrong output if there are many or large gap regions in the alignment. It is time consum-
ing to scan manually for the effects of an unsuitable gap penalty. Even worse, manually
constructing the correct solution is often difficult or even impossible. A particularly rele-
vant task for the future is therefore to find a robust and appropriate method for scoring

gaps.
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8 Outlook

The validation showed that Recco works well on simulated and real sequence data. Nev-
ertheless, there are many aspects that could still be improved in Recco and some of them
were already discussed in previous chapters. The most pressing need for analyzing real
sequence data is an approach for scoring gaps more appropriately and the corresponding
problem has been studied in more detail in Chapter 6. Section 8.1 discusses several as-
pects about the problem of recombination analysis in general and is not specific to Recco.
Section 8.2 then turns to problems specific to Recco and discusses their potential resolu-

tion.

8.1 Fundamental Aspects of Recombination Analysis

Chapter 3 and 4 describe the ARG and define recombination analysis and the questions it
addresses for the matter of this thesis. In reference to this, the following section focuses
on some simple aspects of recombination analysis and discusses several extensions to the
problem of recombination analysis as we have defined it.

Nevertheless, there are more complex aspects as well. For example, recombination analy-
sis is limited to some population genetic scenarios and only addresses questions about the
ancestry of the sequences. If the sequences are generated with a recombination rate that is
sufficiently high compared to the mutation rate, the ARG cannot be estimated anymore
from sequence data and each site evolves according to a different tree. Consequently, the
ARG and the questions proposed for recombination analysis are not of great interest an-
ymore. Instead, we may assume that sites are almost in complete linkage equilibrium and
rather utilize this information in our analysis, ignoring the difficult problem of estimating
the ARG. However, it is unclear for HIV-1 whether the observed recombination rate in-

side a patient is high enough to justify such an approach.

8.1.1 Timed Sequence Data and Other Additional Information

Starting with a multiple sequence alignment, we have structured the analysis of recombi-
nation into five questions that are usually addressed sequentially (see section 4.1). How-
ever, we often have additional information about the sequences in the alignment that im-
pact the questions we would like to address. For example, the sampling time of sequences
can restrict admissible phylogenetic relationships in standard phylogenetic analysis and
allows for a more accurate estimate. This approach generates new insights in influenza
evolution and nicely illustrates the impact of modeling additional time information
(McHardy, in preparation). The situation is similar for recombination analysis, as we can
often restrict the hypothesis space and arrive at more accurate estimates. We can some-
times exclude potential recombination events if the sequences were sampled at different
points in time, as it is much more likely that older sequences are parental to newer ones

than vice versa. Geographic location and other transmission barriers also provide valua-
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ble information, as recombination is more likely to occur between sequences that are
sampled at the same location. For example, HIV-1 only produces recombinant sequences
if a cell is infected with two or more strains and we can assume that sequences sampled
from different individuals do not recombine, at least not as vigorously as sequences sam-
pled from the same individual. In general, it is the responsibility of the investigator to un-
derstand the additional information and restrictions in detail and to carefully interpret the
results of the recombination analysis.

Nevertheless, some of this information can be incorporated explicitly into a method.
HIV-1 subtyping is a prominent example of a tailored problem definition, as it assumes
that all sampled sequences are recombinants of the known subtypes. In other words,
HIV-1 subtyping assumes that recombination events between recently evolved and poten-
tially recombinant sequences are not relevant for the analysis. Information on the sam-
pling time of sequences is even more interesting, as older sequences are more similar to
the parental sequences of a recombinant and can therefore increase the power of detecting
older recombination events considerably. Surprisingly, current methods for recombina-
tion analysis and for inferring population genetic parameters such as p and 6 do not use
the sampling time of the sequences. A simple approach to incorporating such information
into Recco is to restrict the set of possible parental sequences in the alignment. For ex-
ample, we can remove all sequences with a newer time stamp than the query from the in-
put alignment and reconstruct a recombination hypothesis only using parental sequences
that are older than the query.

8.1.2 Validation and the Strength of the Recombination Signal

The goal of recombination analysis as we have defined it in this thesis is to infer informa-
tion on the recombination events in the ARG underlying the sequence alignment. The
strategy for validation is usually to simulate sequences along an ARG and to investigate
if a method for recombination analysis recovers the recombination events from the se-
quence data. Ideally, we would like to evaluate the power of detecting the recombinant
sequence or the breakpoint for ARGs drawn randomly from the coalescent and not to rely
on predefined ARGs as in chapter 7. But there is a serious complication for this strategy:
the ARG is not unique and many different ARGs generate very similar distributions of
sequences. In other words, recombination events may have no or only little impact on the
sequence data and cannot be reconstructed because of the structure of the ARG and not
because of a deficit in the method.

A first step into this direction is to classify the recombination events regarding the
changes of local tree topology that they cause (see section 3.3.3.4) and determine the
power of detecting recombination events for each type in random ARGs (Wiuf, Christen-
sen et al. 2001). But the strength of the recombination signal also depends on other topo-
logical features of the ARG and hence, we can ask for a quantitative measure of the sig-
nal strength: given an ARG, how strong is the signal regarding some recombination
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Figure 8.1: Shown are the factors that influence the recombination signal in our exam-
ple ARG. The left panel shows the ARG and the right panel presents an exemplary
alignment containing the two parental sequences and the recombinant. Mutations re-
garding the recombinant sequence are visualized as black dots and the parts of Al and
B1 not parental to the recombinant are marked by a grey background. The time
spanned by the recombination loop determines the dissimilarity of the parental se-
quences and therefore only influences the number of mutations in the gray region. The
age of the recombination event also increases the number of mutations in the gray re-
gion, but affects the other genetic regions of Al and B1 similarly. Finally, the location
of the recombination breakpoint determines the size of the exchanged genetic region

and therefore also affects the number of exchanged mutations.

event? To make the analysis simpler, we can assume that the ARG only contains a single
recombination event. In this case, we could measure the strength of the recombination
signal in a generated sequence alignment by counting the number of mutations that are
exchanged by the recombination event, a measure similar to the Savings value. But we
can also quantify the recombination signal in an ARG independent of the realization of
the mutation process and only work with the branch lengths of the ARG. A strong re-
combination signal then requires branch lengths that do not fit well to any possible evolu-
tionary tree.

Intuitively, it is clear that there are three major factors that determine the strength of the
recombination signal: the age of the recombination event, the time spanned by the re-
combination loop and the size of the genetic region that is exchanged (see Figure 8.1).
These factors require that we normalize the ARG and move all non-merging events and
particularly the recombination event as far as possible into the past. The age of the re-
combination event is directly related to the number of mutations that the recombinant se-
quence accumulated. Consequently, older recombination events only exhibit a weak and
degraded recombination signal, as the similarity to the parental sequences is decreased.
The time that the recombination loop spans determines the similarity of the parental se-
quences that recombine. Larger recombination loops lead to stronger recombination sig-
nals. The size of the genetic region that is exchanged depends on the location of the re-
combination breakpoint. If the breakpoint is at the boundary of the alignment, fewer mu-
tations are exchanged and the recombination signal is weaker.
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Figure 8.2: Other factors also influence the recombination signal and therefore deter-
mine our ability to detect the recombination event in the alignment. Left: We can es-
timate the ancestral sequences that participated in the recombination more accurately
(marked by a circle) if the sequences Al and B1 did not diverge as much from the an-
cestral sequences. Right: Likewise, we can reconstruct the ancestral sequences more
accurately if the alignment contains more than one descendant of each ancestral se-

quence.

Interestingly, these three factors also support the statement that Recco is a good approach.
The Savings value that we expect for a recombination event depends on the recombina-
tion detour, which in turn is defined by the three factors introduced above — at least if
there is no sequence similar or equal to the recombinant in the alignment. In other words,
Recco’s ability to recover recombination events depends on their Savings value, which is
similar to the signal strength of the recombination event in the ARG.

A quantitative measure of the recombination signal is also of direct practical use. We
could evaluate the power of detecting a recombination event depending on the strength of
the signal and quantify more accurately the sensitivity of a method regarding weak and
strong recombination signals.

Finally, there are several other factors that determine the strength of the recombination
signal to a lesser extent. For example, the mutation model influences the effect of recur-
rent mutations. If the mutation model has only few states, recurrent mutations are more
likely and the recombination signal is more easily eroded by recurrent mutations. Another
factor is the information contained in the alignment regarding the ancestral sequences that
participated in the recombination event. The recombination signal is easier to detect if

sequence Al is more similar to the ancestral sequence that recombined (see Figure 8.2).

8.2 New Developments for Recco

This section discusses several developments that have a direct impact on Recco. There
are many other simple and incremental steps that could also improve the estimate of Rec-
co for biological sequence data, but that are not discussed in detail. For example, Recco
only uses Hamming distances for the mutation cost and currently does not estimate a mu-
tation cost matrix from the sequence alignment or account for mutation hotspots. A more
accurate model for the mutation cost could improve the accuracy of Recco, but also
makes the interpretation of the Savings value more difficult. The Savings value then does

216



not anymore represent the number of mutations eliminated by an additional recombina-

tion event and is less intuitive.

8.2.1 The Distribution of the Savings Value

Recco depends critically on X or X;., the distribution of the Savings value for column
permutations of the alignment. The distribution is estimated by a compute intense permu-
tation approach in the current implementation. However, the plots in section 5.6.3.2 sug-
gest that the distribution of the Savings value is approximately Poisson-distributed. The
information on the type of the distribution would be extremely valuable as it allows for
estimating the distribution of the Savings value with a parametric approach. Given that
the Savings value is Poisson-distributed, we only have to estimate the parameter of the
distribution and can then estimate the quantiles of the distribution much more accurately
from very few column permutations. The benefit is twofold: the approach is much faster
and it can also estimate smaller p-values.

It may even be possible to estimate the parameters of the Savings distribution entirely by
analytical means. Clearly, the distribution of the Savings value is completely defined by
the distribution of column states in the alignment. Consequently, it may be possible to
devise an efficient algorithm that estimates the distribution of the Savings values directly,
for example by counting the number of column permutations corresponding to a certain
Savings value. We have also introduced a simple bound o; for the Savings value of query
sequence i. The bound o; is interesting as it correlates well to the mean of the Savings dis-
tribution and describes an important aspect of the distribution solely by analytical means.
A closer study of ¢; may guide the way for an entirely theoretical derivation of the Sav-
ings distribution.

8.2.2 Subtyping and the Robustness of a-Optimal Paths

The analysis of new sequences regarding their subtype composition is important for
HIV-1 and for other pathogens. Even though Recco was not designed for this task, it per-
forms well compared to other methods (see section 7.2.2). But it is also interesting to
complement the basic subtyping analysis by additional steps in the procedure and assess
the robustness of the estimate. Such an extended analysis is not offered by any current
subtyping method so far and is also interesting for the output of Recco in general. The
a-optimal path of Recco only is a point estimate of the subtype composition of the query
sequence, just like the output of jpHMM and other subtyping methods. The subtype pre-
diction can differ from the correct solution by three aspects: the number of segments (or
recombination breakpoints), the location of the breakpoints and the predicted parental
sequences. We can address these aspects at least partially with the sensitivity analyses
presented in section 5.4.

The parametric analysis determines if the extracted path is optimal for a large interval of
Savings values and hence, whether it is robust to small changes in a, to the cost of re-

combination relative to mutation or to noise in the mutation process. Fortunately, paths
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corresponding to a higher or lower Savings value often change the prediction locally and
only add or remove a recombination breakpoint, but do not affect the rest of the predic-
tion. Consequently, we can even determine whether a particular recombination break-
point or parental sequence is stable for a larger interval of Savings values. However, the
interpretation is not always as straightforward, as the parametric analysis can also cause
more complex structural changes of the a-optimal path (see section 5.6.2). Alternatively,
we can keep a fixed and assess the robustness of the prediction regarding small devia-
tions from cost-optimality using the values c;, and r;, described in section 5.4.1. This type
of analysis can assess whether the prediction of a parental strain in a region is particularly
stable or if there are other parental strains that also fits well.

As shown above, Recco already implements some tools for analyzing the robustness of a
prediction. These analyses allow the user to investigate the robustness manually and
could provide the building blocks for a fully automated analysis.

8.2.3 The Structure of a-Optimal Paths as a Changes

The recombination event list provides an intuitive summary of all potential recombination
events for the query sequence. But it is sometimes difficult to interpret the list, as recom-
bination events corresponding to a small a-value may become obsolete as the a-value in-
creases — or as the Savings value decreases (see section 5.6.2). It would be very interest-
ing to study this effect in more detail and understand the conditions when it occurs and
how the a-optimal path changes. For example, several recombination events in section
7.2.2 are only predicted transiently in the a-optimal path as the a-value is increased or as
the Savings value is decreased. All of these recombination events follow the same pat-
tern: if a recombination event becomes obsolete, at least one of the two parental se-
quences surrounding the respective recombination breakpoint also change. To be more
specific, if a recombination event becomes obsolete for a larger a-value, it is replaced
with another recombination event that chooses different parental sequences and that in-
troduces a recombination breakpoint at a different position. However, the new breakpoint
position is usually close to the former breakpoint position and the difference is often neg-
ligible. Studying the optimization problem and the structure of the a-optimal path from a
mathematical point of view should allow for understanding the differences of the
a-optimal paths as a changes. As an alternative, we could also implement an approach to
reconstruct the ARG as described in section 8.2.5. The problem should then occur less

frequently as the parental sequences are determined more accurately.

8.2.4 Improving the Accuracy of Recco

Recombination analysis not only detects recombination in the alignment, but also tries to
find the recombinant sequences and the recombination breakpoints. Validation shows that
the latter tasks are quite challenging and that Recco does not always perform better than
other methods. There is probably a simple reason for this shortcoming: Recco also detects

recombination events if the query sequence is a sequence that is closely related or
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Figure 8.3: The colors in both plots indicate homology. (a) The related sequences Al
and B1 can also be described as a recombinant which makes it difficult to discriminate
them from the true recombinant R. (b) The ARG visualizes homology and the predic-
tions of Recco as in (a). (¢) We can also annotate the predictions of Recco for every
sequence and every region of the alignment using a homology graph, indicated by the
arrows in the plot. For example, the arrows from A2 to Al show that A2 is derived
from Al over the full length of the alignment.

parental to the recombinant. For example, sequence Al in Figure 8.3 is closely related to
the recombinant sequence R1 and is often (and incorrectly) detected as a recombinant se-
quence by Recco. However, the Savings value for related sequences is usually not as
large as the Savings value for the recombinant sequences and may correctly discriminate
between recombinant and closely related sequences. Finding the recombinant sequence
remains difficult, though. There is another problem connected to detecting related se-
quences as recombinants: the recombination signal is usually weak for these sequences.
As a consequence, the predicted recombination breakpoint is usually quite inaccurate for
sequences such as Al. In summary, some recombination events are significant, but inac-
curate and only refer to sequences related to or parental to the recombinant sequence.

We can address these shortcomings at least partially by post-processing and consolidating
the output of Recco for different query sequences. For simplicity, we only discuss the ex-
ample alignment in the following and assume that the alignment results in an output in
concordance with the ARG analysis (see Figure 8.3 (a)). In this case, Recco predicts se-
quence R as a recombinant of Al and B1, sequence Al as a recombinant of R and A2,
and sequence B1 as a recombinant of B2 and R. Recco therefore predicts that the left part
of R was derived from A1, and that the same part of A1 came from R. We can now iden-
tify Al as a closely related sequence, as the right part of A1 comes from A2 and incurs
more mutation cost than the right part of R. Hence, we should only keep the more accu-
rate recombination event predicted for R and discard the recombination event for Al. The
same argument identifies B1 as a closely related sequence.

We may even do better if we optimize the recombination breakpoint location for all in-
volved sequences R, Al and B1 simultaneously. We could find the breakpoint location
that minimizes the cost required for deriving A1 from R and A2, R from A1l and B1, and
B1 from B2 and R. Alternatively, we can process the output of Recco for all sequences
simultaneously (see Figure 8.3 (c)). We can represent the output of Recco for a site in the
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alignment and all sequences as a directed homology graph, where nodes correspond to
sequences and edges indicate homology. The homology graph has one outgoing edge for
every node and should not contain cycles involving three or more nodes, as these cycles
are contradictory to any possible local coalescent tree. Then, we can use an approach sim-
ilar to the recombination parsimony problem (see section 4.2.7) where each node corres-
ponds to a homology graph and each homology graph incurs some mutation cost for
some position in the alignment. We can then find the cost optimal position for a transition
from one homology graph to another, thereby optimizing the location of the predicted
recombination breakpoints. In principle, we could also use this approach without restrict-
ing the set of homology graphs in advance. The output then does not provide the optimal
coalescent tree for each position in the alignment, but only presents a restricted history
for the set of sequences that often does not reach far into the past (see the colored parts in
Figure 8.2 (b)). However, the number of homology graphs probably also grows exponen-
tially with the number of sequences and the approach would not result in a significant
speedup compared to the approach for the full recombination parsimony problem.

8.2.5 Reconstructing ARGs With Recco

The validation shows that OptSavings performs much better than Savings for detecting
recombination in sequence alignments corresponding to random ARGs (see section 7.1.3)
and suggests that Recco is quite limited as it can only detect recent recombination events.
But OptSavings does not separate recombinant from non-recombinant sequences as well
as Savings and also does not allow for a simple interpretation like Savings. Ideally, we
would like to have an approach that combines the excellent power of OptSavings and the
interpretability of Savings. A promising approach is to reconstruct the ARG bottom up
from the output of Recco. The most important insight is that the output of Recco recovers
part of the ARG underlying the alignment, at least if the mutation cost in Recco measures
distances in the ARG accurately enough and if the parameter o is set appropriately (see

section 5.5). The heuristic algorithm could then proceed as follows (see Figure 8.4):

i) Determine the composition of all sequences in the alignment, taking each se-
quence as a query in turn. As for subtyping, we can choose an appropriate a-value
by finding the significance threshold for a regarding column permutation and then use
the a-optimal path as an estimate for the composition of the query sequence. This
permutation approach is computationally expensive, as we have to process many col-
umn permutations for each query sequence and each step of the algorithm. As an al-
ternative, we could also choose a fixed a-value and use it throughout the algorithm.
The problem is that a fixed a-value does not adapt the smoothing parameter a to the
query sequence and the specific sequence background of the query sequence and is
therefore inferior to determining a by column permutations. For simplicity, we as-
sume in the following that the composition of all query sequences is correctly esti-
mated and that there is only one a-optimal path for each query sequence.
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Figure 8.4: The example ARG is reconstructed bottom up with the algorithm described
in the text. Each ARG shows an iteration of the algorithm. The a-optimal path with
minimal cost is shown in red; sequences arising from consolidating the path are num-
bered X1 to X4. (a) The a-optimal path that incurs the smallest mutation cost explains
R1 with R2 (or equivalently R2 with R1). (b1) Consolidating R1 with R2 creates a vir-
tual sequence X1 sampled at the current time point. (b2) If we consolidated R1 and R2
by computing the minimum cost we would get a virtual sequence X1 that is ancestral to
R1 and R2. (¢) Consolidating sequence X1 requires to incorporate it into the respective
parts of Al and B1, leading to the new sequences X2 and X3. Bold parts of the se-
quences are the consolidated result. (d), (e), (f) The next steps simply construct the re-
maining tree bottom up using an approach similar to UPGMA.
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Figure 8.5: The algorithm fails if the segments of the recombinant sequence coalesce

at very dissimilar time points. (a) Step ii) does not and cannot choose the correct se-
quence to consolidate. Neither consolidating sequence Al (or A2) nor R results in the
correct ARG topology, and consolidating B1 and B2 incurs a higher cost. (b), (c), (d)
The other steps of the algorithm build upon the wrong decision in step (a). (e) As a

consequence, the inferred ARG is incorrect.
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Find sequence i corresponding to the a-optimal path with the lowest mutation
cost. The reasoning for this step is that the query sequence with the lowest mutation
cost is the first to coalesce to other sequences going back in time and that we want
to minimize the overall cost of the ARG. The recombination cost is irrelevant if a is
chosen appropriately, as only the mutation cost between two sequences measures
the time of divergence. A potential source of error is that different segments of an
o-optimal path with recombination may coalesce at different time points and cause
inconsistencies in the time of coalescence inferred (see below for details).

Consolidate the a-optimal path of sequence i and remove sequence i from the
alignment. The a-optimal path for sequence i stores information on the most recent
coalescent events. We can encode and fix these coalescent events by consolidating
sequence i with the predicted parental sequences and then removing sequence i
from the alignment. Now suppose that the a-optimal path for sequence i predicts
that sequence j is most similar for all positions of the sequence and that we would
like to consolidate this coalescent event. A simple approach then allows for multi-
sets of nucleotides at each sequence position and consolidates sequence i by compu-
ting the union of the multi-sets. To be more specific, consolidating two sequences u
and v with sequence states #, and v, then results in a sequence w with w,=u,v,.
For example, consolidating states {A} and {A,G} would result in a state {A,A,G}.
There are two options for defining the mutation cost between two multi-sets. The
most appropriate choice for a parsimony-based approach like Recco is to define the
mutation cost between two multi-sets @ and b as the average mutation cost between
all states contained within a and b:

m(ap) =3 3 (8.1)

S5 alb]

In other words, if w is the result from consolidating u and v, we compute the muta-
tion cost from sequence t to w as the average of the mutation cost between t and u
and the mutation cost between t and v. The mutation cost between consolidated se-
quences therefore still measures distances in the ARG referring to sampling times
at the bottom of the ARG, as shown in Figure 8.4. Alternatively, we could also de-
fine the mutation cost between two multi-sets a and b as the minimum over all
costs m(x,y). Consolidating two sequences then estimates the ancestral sequence in
a parsimony sense and the mutation cost would measure distances in the ARG re-
ferring to different time points (see Figure 8.4 (b2)). The first approach is prefera-
ble, as the latter can lead to inconsistencies in the reconstructed ARG.

Repeat steps i) to iii) until there is only one sequence left in the alignment. Each
iteration chooses one sequence of the alignment, determines the composition of the

sequence regarding the other sequences, consolidates the sequence with the other



sequences and then removes the sequence from the alignment. If there is only one
sequence left, we have reconstructed all coalescent events in the ARG.

The proposed algorithm is actually equal to UPGMA for constructing phylogenetic trees
if it is used on a sequence alignment without recombination. Each step in the iteration
consolidates the two sequences that are closest to each other and then averages the muta-
tion cost of the two sequences to all other sequences. The proposed algorithm also ad-
dresses the same problems as OptSavings and can recover older recombination events
that are hidden by duplicate or similar sequences. But it probably also detects the recom-
binant sequences more accurately than OptSavings, as the algorithm does not optimize
costs over different sequence subsets and is therefore less susceptible to noise.

The algorithm only describes a greedy and heuristic approach for reconstructing ARGs
and makes several strong assumptions. Step 1) assumes that the estimated composition of
all query sequences is accurate or accurate enough. Errors can occur simply because the
mutation process is stochastic or because we choose the wrong value for a and recover a
path with the wrong number of recombination events. Consequently, it is particularly in-
teresting to combine step i) with an approach that enhances the accuracy of the estimate
as described in section 8.2.4. But step ii) and iii) can introduce errors even if the composi-
tion of the query sequences is accurately estimated, as the algorithm does not work cor-
rectly for all ARG topologies (see Figure 8.5 for an example). As a workaround, we may
consolidate only the closest segment of the recombinant sequence and replace the consol-
idated sequence in the recombinant and the parental sequence. However, it is more diffi-
cult to determine if the recombinant sequence can be removed from the alignment in this
case, as we have to keep track which parts are already consolidated.

Even though the algorithm is a simple heuristic and potentially introduces many errors, it
has several interesting characteristics compared to other approaches that reconstruct
ARGs. Other approaches usually estimate local coalescent trees and infer recombination
events as SPR operations between the local trees (see section 4.3.6). The proposed algo-
rithm reconstructs the ARG bottom up instead, starting with the most recent coalescent
event and ideally progressing towards older coalescent events. Such an approach is par-
ticularly attractive as we can probably estimate recent coalescent events more accurately
than ancient coalescent events. But a bottom-up approach also comes at a cost: we cannot
find the global optimum and may not detect weak and old recombination signals very

well.

8.3 Summary

Recco constitutes a novel and interesting approach for analyzing recombination events in
a sequence alignment. The underlying optimization problem was carefully chosen to re-
flect the common restriction of the recombination process in biology and does not model

recombination events that introduce insertions or deletions. Furthermore, this restriction
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also allows for a simple visualization of the set of a-optimal paths. But the strength of
Recco’s approach is mainly founded in the analysis of the parametric cost curve and in
the Savings value as an intuitive measure of the recombination signal. The correlation of
the Savings value with the strength of the recombination signal can even be directly de-
rived from the ARG and provides a theoretical motivation for the approach of Recco. The
recombination detection performance of Recco on simulated and real alignments supports
that Recco also works well in practice.

Nevertheless, Recco has several inherent limitations. Recco only analyzes the most recent
coalescent events in the ARG and therefore cannot easily detect ancient recombination
events or recombination events that spawn more than one sequence in the alignment.
Recco also suffers from the general deficiencies of a parsimony-based approach in phy-
logenetics and does not accurately model mutation events. However, the most relevant
limitation in practice is the difficulty of scoring gaps appropriately.

It is my earnest hope that Recco provides a valuable and different view of the problem of
recombination analysis and stimulates the investigation of new approaches for analyzing

recombinant sequences.
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