
ActiveMath - Generation and Reuse of Interactive
Exercises using Domain Reasoners and Automated

Tutorial Strategies

Giorgi Goguadze

Dissertation

zur Erlangung des Grades Doktor der Ingenieurswissenschaften
(Dr.-Ing.) der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Saarbrücken, 2010

Dekan Prof. Dr. Holger Hermanns, Universität des Saarlandes
Vorsitzender Prof. Dr. Raimund Seidel, Universität des Saarlandes
Gutachter PD. Dr. Erica Melis, Universität des Saarlandes

Prof. Dr. Jörg Siekmann, Universität des Saarlandes
Prof. Johan Jeuring, Universiteit Utrecht

Beisitzer PD. Dr. Helmut Horacek, Universität des Saarlandes
Kolloquium 30. Mai 2011

iii

Abstract

In this thesis we present an approach to interactive exercises for mathematical
domains. We have defined a generic knowledge representation for multi-step
interactive exercises and developed the exercise sub-system within the
ActiveMath learning environment. In order to achieve deep domain diag-
nosis and automated feedback generation in multiple mathematical domains,
a distributed semantic evaluation service architecture was developed. This
architecture allows to remotely query multiple domain reasoning services us-
ing a domain-independent query format.

In our approach, we allow for hand-crafted exercises for which we provide
authoring tools, as well as fully or partially automatically generated exercises.
We have also built an extensible framework for tutorial and presentation
strategies, which allows for reusing the same exercise with different strategies.

iv

v

Kurzzusammenfassung

In dieser Arbeit wird ein Ansatz für interaktive Übungsaufagen für mathema-
tische Domänen vorgestellt. Wir haben eine generische Wissensrepräsentation
für die mehrschrittigen, interaktiven Aufgaben definiert und ein Übungs-
aufgabenmodul der Lernplattform ActiveMath entwickelt. Um die tiefe
Diagnose der Lerneraktionen und die automatische Feedback-Generierung
für eine Mehrzahl der mathematischen Domänen zu erreichen haben wir
eine Service-Architektur für verteilte semantische Auswertungen entwickelt.
Diese Architektur erlaubt Fernanfragen an eine Mehrzahl der ”domain rea-
soning services” mittels eines domäne-unabhängigen Anfrageformats.

Bei unserem Ansatz erlauben wir die manuelle Erzeugung von Aufgaben
und bieten dafür Autorentools an, so das die Aufgaben manuell, aber auch
ganz oder zum Teil automatisch generiert werden. Wir haben auch ein er-
weiterbares Framework für tutoriellen und Präsentationsstrategien entwick-
elt, das es ermöglicht, die gleiche Aufgabe mit mehreren Strategien wiederzu-
verwenden.

vi

vii

Acknowledgment

First of all, I would like to thank Erica Melis who was the supervisor of
my thesis for her continuous support and valuable advices. Her ideas and
guidance made this work possible. Her careful proofreading of this thesis has
lead to significant improvements.

I am deeply indebted to Jörg Siekmann who has been extremely sup-
portive to me all these years. Both his enthusiasm and critics have played a
constructive and motivating role in my work. I would also like to thank him
for the detailed review of this thesis and a lot of valuable feedback.

I would like to thank my colleagues and ex-colleagues at Saarland Uni-
versity and DFKI for their support, in particular the members of the Ac-
tiveMath team Eric Andres, Michael Dietrich, Ahmad Salid Doost, Andrey
Girenko, Alberto González Palomo, Paul Libbrecht, Bruce McLarren, Dimi-
tra Tzovaltzi, Oliver Scheuer, Sergey Sosnovsky, Stefan Winterstein, Martin
Homik, and Arndt Faulhaber, as well as members of the former Ωmega
group Andreas Meier, Marvin Schiller, Marc Wagner, and Claus Peter Wirth
for a very fruitful and inspiring research environment during the past several
years.

Special thanks to Alberto González Palomo for his ideas and his contri-
bution to the implementation of big parts of the Exercise Subsystem of
ActiveMath. Additional thanks to Marvin Schiller who helped organizing
the bibliography for this thesis, thanks to Stefan Winterstein for providing
the data on scalability tests, thanks to Britta Seidel for correcting my Ger-
man text.

Last but not least, I am infinitely grateful to my parents who encouraged
me to do this work and supported me in all possible ways; and I am thankful
to my brother for he has always been there for me.

viii

ix

Extended Abstract

We present a generic approach for intelligent interactive exercising within
an e-learning environment. The backbone of this approach is the generic
descriptive knowledge representation format for multi-step interactive exer-
cises and the distributed semantic evaluation service architecture of Active-
Math that allows to connect to domain-aware semantic services for multiple
domains.

The knowledge representation and its semantics is part of a framework for
user-adaptive tutorial strategies, in which multiple strategies can be applied
to the same exercise. The main novelty of the semantic domain reasoning
service architecture is a generic format for queries, specific to the educational
purpose of the respective exercise. A domain reasoner provides a refined
diagnosis upon user actions in order to generate feedback in multiple domains.

The exercise sub-system within the ActiveMath learning environment
can be viewed as a multi-domain ITS system capable of fully automatic exer-
cise generation, as well as playing authored exercises, and hybrid - partially
authored and automatically enhanced exercises. The latter give more control
to teachers, who can decide which parts of the exercise need to be authored
manually, so that the rest can be left to be automatically generated with the
help of domain reasoners.

In comparison to other ITS’, for each new domain the exercise sub-system
of ActiveMath only needs a domain reasoning component to be connected
as a service to the semantic evaluation service architecture. The other ITS
components in ActiveMath such as the tutorial module, and the student
model can be reused, if they are populated with the domain ontology for
the new domain. We have also developed a framework for the creation of
new domain reasoners as modules for the YACAS system, which is already
connected to ActiveMath as a service. This makes the implementation of
new domain reasoners easier and removes the efforts of the integration with
the ActiveMath system.

x

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 5
1.3 Overview . 7

2 Background and Related Work 9
2.1 Interactive Learning Environments 10

2.1.1 IMS QTI Standard . 10
2.1.2 CAS-powered Exercise Systems 11
2.1.3 Intelligent ILEs with Stepwise Solutions 13

2.2 Early Computer Aided Instruction Systems 14
2.3 Intelligent Tutoring Systems 15

2.3.1 ITS Architecture . 15
2.3.1.1 Domain Model 15
2.3.1.2 Student Model 18
2.3.1.3 Teaching Model 19
2.3.1.4 User Interface 22

2.3.2 Scholar . 23
2.3.3 Model Tracing Tutors 24

2.3.3.1 The PUMP Algebra Tutor (PAT) 24
2.3.3.2 Andes Physics Tutor 25
2.3.3.3 Ms. Lindquist 27

2.3.4 Constraint Based Tutors 27
2.3.5 ITS Authoring . 29

2.3.5.1 Eon Tools . 29
2.3.5.2 REDEEM Environment 30
2.3.5.3 CTAT - Cognitive Tutors Authoring Tools . . 30

2.4 The ActiveMath Learning Environment 31

xi

xii CONTENTS

3 Knowledge Representation 35
3.1 Requirements and Motivation 35
3.2 Structure of an Exercise FSM 37
3.3 Types of Exercise States . 40

3.3.1 Task. 40
3.3.1.1 Metadata of Tasks 40
3.3.1.2 Usage of the Task Metadata 42

3.3.2 Feedback . 43
3.3.2.1 Usage of Feedback Metadata 48

3.3.3 Interaction . 51
3.3.3.1 Selections . 52
3.3.3.2 Multiple Choice Questions 52
3.3.3.3 Orderings . 54
3.3.3.4 Mappings . 54
3.3.3.5 Fill-in-blank 56

3.4 Transitions Between Exercise States 58
3.4.1 Diagnosis . 58
3.4.2 Condition . 61

3.4.2.1 Evaluating Multiple Choice Questions 63
3.4.2.2 Evaluating Mappings 64
3.4.2.3 Evaluating Ordering 64
3.4.2.4 Evaluating Blanks 65

3.4.3 Evaluation using a CAS 66
3.4.4 Context Evaluation . 69
3.4.5 Generic Query Format 71
3.4.6 Interoperability between different CASs 73
3.4.7 Diagnosis using a CAS 74
3.4.8 Further Intelligent Diagnoses 75
3.4.9 Domain Reasoner Queries in the Exercise Transitions . 77
3.4.10 Special Requests . 78

3.5 Modifications and Extensions of the Exercise Representations 79
3.5.1 Parameterized Exercises using Randomizer 80
3.5.2 Static and Dynamic Language Mappings 82
3.5.3 Hierarchical Exercise Representations 84
3.5.4 Attaching Tutorial Strategies 86
3.5.5 Atomic Strategies . 86
3.5.6 Strategies in MatheFührerschein and LeActive-

Math . 87

CONTENTS xiii

3.5.7 Composite Strategies in ATuF and ALOE 88
3.5.8 Exercises with local strategies 91
3.5.9 Multi-Exercises in MAPS MOSSAIC 92
3.5.10 Feedback generation 95
3.5.11 Local Exercise Generators in a Curve Sketching Exercise 97

3.6 Interoperability of the Exercise Format 100
3.6.1 Compliance to IMS QTI Standard 100
3.6.2 Relation to Other Exercise Languages 101

4 Exercise System Architecture 103
4.1 Exercise Controller . 105
4.2 Exercise Manager . 106
4.3 Diagnoser . 106

4.3.1 Employing Mathematical Services 108
4.3.2 Semantic Service Broker 111
4.3.3 Syntactic and numeric comparisons 111
4.3.4 Semantic evaluation using CAS 112
4.3.5 Domain Reasoner Diagnosis 112

4.4 Exercise Generator . 113
4.4.1 StaticGenerator . 114
4.4.2 Domain Reasoner Exercises 115

4.5 Exercise Events . 116
4.6 Local Student Model . 116
4.7 Applying Tutorial Strategies 117
4.8 Presentation Strategies . 118

5 Exercise Authoring 123
5.1 Visual ”Authoring-by-Doing” Tool 123

5.1.1 Editing Exercise Nodes 125
5.1.2 Editing Transitions . 126
5.1.3 Adding Metadata . 127
5.1.4 Authoring Parametrized Exercises 129
5.1.5 Comparison to Related Tools 130
5.1.6 Further Development 130

5.2 Exercise Generation using Domain Reasoners 130
5.2.1 Selecting Tasks for Problems 131
5.2.2 Authoring Parameters for Exercise Generation 131
5.2.3 Prolog-based Domain Reasoners 132

xiv CONTENTS

5.2.3.1 SLOPERT 133
5.2.3.2 MathCoach 133

5.2.4 YACAS Reasoners . 134
5.2.4.1 Domain Reasoner for Fraction Arithmetics . . 135
5.2.4.2 Domain Reasoner for Integrals 135

5.2.5 Haskell-Based Domain Reasoners 136

6 Evaluation of coverage and performance 139
6.1 Range of Expressive Power 139
6.2 Performance tests . 141

7 Conclusion and Future Work 147
7.1 Authoring Tutorial Strategies 147
7.2 More Domain Reasoners . 148
7.3 Authoring Advanced User Interfaces 148
7.4 Exercise Log Data Analysis 149

Bibliography 151

A Curve Sketching Problem 173

B Sample Complex Strategy 193
B.0.1 Self-Regulation with Solicited Worked Example 194
B.0.2 Control Strategy . 203

List of Tables

3.1 Values and sub-values of PISA competencies 41
3.2 Feedback classification in ActiveMath exercises 47
3.3 Generating meta-cognitive feedback from observable student

behavior . 51
3.4 Forms and presentation styles of interactive elements 52

6.1 Total numbers of exercises and exercise nodes 140
6.2 Tutorial and presentation strategies implemented in Active-

Math . 140

xv

xvi LIST OF TABLES

List of Figures

2.1 Sample encoding of an early ActiveMath exercise 12
2.2 Inner and outer loops of an ITS 19
2.3 CBM tutor architecture . 28
2.4 Coarse architecture of ActiveMath 32

3.1 Structure of an exercise . 38
3.2 A simple exercise graph . 39
3.3 Metadata of the task . 42
3.4 Pizzas representing fractions 42
3.5 A simple exercise graph transformed by the strategy 49
3.6 A presentation of a multiple choice in ActiveMath 53
3.7 Representation of multiple choice questions 53
3.8 Sample ordering . 54
3.9 The presentation of an ordering exercise in ActiveMath . . 55
3.10 Example of a mapping . 55
3.11 Presentation of a mapping exercise 56
3.12 Representation of fill-in-blank 57
3.13 Different presentations of blanks in ActiveMath 58
3.14 Excerpt from an ontology of the fractions domain. 60
3.15 Representation of the misconception M1 60
3.16 Exercise diagnosing the misconception M1 61
3.17 Condition for the correct answer in a multiple choice 63
3.18 Evaluation matrix for a mapping 64
3.19 Condition matching a mapping answer 64
3.20 Condition for the correct answer in an ordering 65
3.21 Simple condition for multiple free inputs 65
3.22 Complex Boolean condition for multiple free inputs 66
3.23 Evaluation in different contexts in Maxima CAS 68

xvii

xviii LIST OF FIGURES

3.24 Diagnosis and feedback generation with CAS 74
3.25 Applying the query ’getResults’ 77
3.26 Buggy rules in the exercise solution space 78
3.27 Matching correct answers with domain reasoner 79
3.28 Representation of a hint request 79
3.29 Sample exercise generator representation 80
3.30 Transitions in the randomized exercise 81
3.31 Custom format for simple fill-in-blank exercises 82
3.32 Mapping of the omdoc quiz module 83
3.33 Hierarchical exercise representation 84
3.34 Simple format for hierarchical solutions 85
3.35 Exercise strategy in MatheFührerschein 87
3.36 Exercise Strategy in LeActiveMath 88
3.37 ALOE two-phase exercise strategy 89
3.38 ALOE exercise rendering . 89
3.39 Additional relation types in an ATuF exercise 90
3.40 ATuF exercise rendering . 91
3.41 Sample representation of local strategy 92
3.42 MAPS MOSSAIC strategy example 93
3.43 Representation of subgoal templates 94
3.44 MAPS MOSSAIC subgoal ordering 95
3.45 Feedback generation using CAS 96
3.46 Commonly used generated KR feedback 96
3.47 Feedback generation using a domain reasoner 97
3.48 Representation of domain reasoner-powered sub-exercise . . . 98
3.49 Representation of a sub-exercise using a tutorial strategy . . . 99
3.50 Calculating intersections with coordinate axes 99

4.1 Architecture of the exercise subsystem 105
4.2 Defining a custom diagnoser 107
4.3 Semantic Service Broker . 110
4.4 Excerpt from the hierarchy of Exercise Generators 113
4.5 Explorative CAS Console in ActiveMath 114
4.6 Domain reasoner-powered feedback 115
4.7 Applying Tutorial Strategies 118
4.8 Custom feedback layout . 119
4.9 Different presentations of flag feedback in ActiveMath . . . 120
4.10 Two interaction interfaces . 121

LIST OF FIGURES xix

4.11 Different multiple interaction interfaces 121

5.1 Exercise authoring user interface 124
5.2 Sample exercise graph . 125
5.3 Microstructure editor window 126
5.4 Authoring blanks and selections 127
5.5 Defining transitions . 128
5.6 Authoring relevant metadata 128
5.7 Authoring Randomizer variables 129
5.8 Authoring Domain Reasoner Exercises 132
5.9 Explorative Domain Reasoner Console 134
5.10 Custom error feedback in fraction exercises 136
5.11 IDEAS Domain Reasoner exercises use the same generator . . 137

6.1 Average values of the stress test results 143
6.2 Median values of the stress test results 144
6.3 90th percentile values of the stress test results 145

xx LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Interactive exercises are essential for learning in any ITS/e-learning system.
As a counterpart of other (static) learning objects containing factual or exem-
plary information about the domain, interactive exercises represent learning
objects that can train and assess the skills of the learner.

Due to the rich domain knowledge and student models Intelligent Tutor-
ing Systems (ITS) developed a very close interaction with the student and
were able to provide the student’s learning progress comparable to traditional
individual instruction [Corbett, 2001].

Most Intelligent Tutoring Systems integrate complex domain models for
diagnosis. All the other components, such as the student interface, teaching
model and student model also rely on the structure of the domain. Even
though the domain knowledge is in some cases separated from the pedagogical
knowledge, the authoring of content for such ITS systems involves a lot of
work to adapt the teaching strategies and student model to the concrete
domain. The current practice is to build a new Tutoring System for each
domain rather than building one generic system and then ”load” a domain
into it, e.g. Cognitive Tutors [Anderson et al., 1995], [Murray, 2004]. Also,
Andes [Van Lehn et al., 2005] - is built for Physics, particularly for Newton
mechanics problems; Ms. Lindquist [Heffernan, 2001] - for algebra, Cognitive
Tutors [Anderson et al., 1995] - each implemented specifically for the domain
(Algebra Word Problem Tutor, Geometry Tutor, LISP Tutor etc.).

Building such Tutoring System is expensive. It requires domain experts,

1

2 CHAPTER 1. INTRODUCTION

educationalists and programmers to implement it.
Programming the domain model and adjusting the reasoning to the peda-

gogical needs of individual exercises is a tedious process and might take years.
For example, the Andes Physics Tutoring System has been in development
for about 10 years and the total amount of existing problems in the system,
mentioned in [Van Lehn et al., 2005] is 356.

Another issue that has not been properly addressed so far is the com-
position of ITS systems to tackle cross-domain problems. Since the domain
model is tightly integrated with the student model in most ITS systems and
tutorial models are customized for the domain of instruction, there are no
mechanisms for seamlessly merging several ITS’ from different domains.

Unlike ITS, recent Web-based e-learning systems that try do define a
generic representation for an interactive computer instruction are only able
to provide shallow feedback on student actions, since they lack the depth of
the domain knowledge. They are mostly restricted to simple multiple choice
questions and do not possess a learner model. Such are, for example, systems
using Question and Test Interoperability Standard of IMS Global Learning
Consortium [IMS Global Learning Consortium, 2005]. Even if some free stu-
dent input is possible, it is mostly analyzed using literal string comparison.
Such exercises are easy to create without having any tools providing domain
intelligence. However they cost plenty of time and effort, since for providing
the correct diagnosis of the learner’s answer many equivalent solutions have
to be hand-crafted.

Other recent e-learning systems such as older versions of ActiveMath
[Büdenbender et al., 2002a], MathDox [MathDox, 2007], STACK and AIM
computer aided assessment systems (CAA) [Sangwin, 2008, Sangwin, 2004],
use Computer Algebra Systems (CASs) to verify the correctness of student’s
answer. Here, the system remotely queries the CAS for the result.

This approach provides some domain knowledge, where the semantic eval-
uation is possible, but it is restricted to the functionalities of the CAS which
originally was not designed for providing intelligent diagnosis. The knowl-
edge representation of exercises in these systems is mostly a mixture of the
syntax of a particular CAS with own custom syntax. Such knowledge rep-
resentation is mostly procedural and bound to the syntax of a particular
CAS. For instance, AIM is using Maple [Maple, 2009], STACK uses Max-
ima [Maxima, 2010], and old exercises in ActiveMath were using Mupad
CAS [MuPAD, 2009]. The Mathdox system is not bound to the syntax of
CAS but to the usage of a particular CAS. It uses the generic semantic

1.2. CONTRIBUTIONS 3

markup language OpenMath for encoding mathematical expressions, but
the instructions describing how to evaluate the student’s answer point to a
particular CAS’s evaluation method. It also uses other specific script lan-
guages such as the Jelly platform and XForms which makes exercises de-
pendent on these technologies. This makes authoring more difficult for a
non-programmer.

The European research project LeActiveMath has shown that Com-
puter Algebra Systems are not able to provide enough diagnosis upon learners
actions which would be sufficient for generating informative feedback within
a tutorial dialogue and properly updating the learner model about learner’s
current mastery of domain concepts [Consortium, 2004]. This is due to the
fact that CASs have no support for incremental problem solving as humans
perform it and are not aware of typical errors of students. Moreover CAS
systems do not provide a generic possibility to evaluate an expression in a
particular mathematical context. As the mathematical context of the task
we understand the specification of the domain concepts or rewrite rules the
learner can apply to the mathematical object in the problem statement in
order to proceed to the next step. Context evaluation can be achieved only
after non-trivial programming that maps the mathematical contexts onto
commands of a particular CAS. Even this is possible only for some CASs.

Such a tradeoff of generality versus intelligence has been among the topics
of discussion of authoring technology for ITS Systems [Murray, 2004].

1.2 Contributions

In this thesis we present a module of the web-based learning platform Ac-
tiveMath that we refer to as Exercise Subsystem, that has several novel
aspects as compared to other approaches. This system combines features
of an Intelligent Tutoring System and a generic framework for hand-crafted
exercises, similarly to the ASSISTment Systems [Turner et al., 2005] and
the Example Tracing Tutors of CTAT [Aleven et al., 2009]. However, there
are some substantial differences to the above mentioned systems.

We build a system for interactive exercises, that combines hand-crafted
and automatically generated exercises, and defines generic representation for
exercises suitable for many domains. It is capable of quick CAS evaluation of
constraints upon student’s input, and uses intelligent domain reasoners for
detailed diagnosis of student’s input. The system can also generate various

4 CHAPTER 1. INTRODUCTION

types of feedback and give an author the opportunity to decide which parts
of the exercise will be hand-crafted leaving the rest to be automatically gen-
erated. Finally, authors can employ automated tutorial strategies to enhance
the exercises with the needed tutorial behavior.

We believe that this thesis contributes to knowledge representation of in-
teractive exercises, authoring of Intelligent Tutoring Systems, Intelligent Tu-
toring Systems Architectures, educationally oriented semantic web-services,
and provides a growing set of tools for educationalists and cognitive psychol-
ogists for research and practice strategies for math education. In summary:

Contribution I. A knowledge representation format for multi-step inter-
active exercises is developed that is suitable for (but not limited to) tasks
within mathematical domains that deal with incremental problem solving.
This representation allows for hand-crafted interactive exercises which can
be automatically enhanced by intelligent domain reasoning tools and auto-
mated tutorial strategies. Interactive exercises in ActiveMath can combine
generative and evaluative approaches to intelligent tutoring and give freedom
to human tutors to have more control over exercise at several levels.

Contribution II. A knowledge representation for generic queries to the
domain reasoning services is defined which allows for generative and evalua-
tive queries. We show that the expressive power of these queries is suitable
for serving deep diagnosis and intelligent feedback generation for interactive
exercises in several mathematical domains. Such a query format is novel and
gives rise to a concept of pluggable educational domain reasoner.

Contribution III. The domain intelligence is provided to the system by
multiple remote mathematical reasoning services accessed via a context-
aware broker. Currently, the platform for remote educational domain reason-
ing services in ActiveMath integrates several Computer Algebra Systems,
and about 10 domain reasoning services for several mathematical domains.
Guidelines for implementation of educational domain reasoners are proposed
and two domain reasoners have been implemented in ActiveMath follow-
ing these guidelines. All the integrated services can be used simultaneously
and the semantic context-aware broker distributes the queries to the needed
system. This is the first case known to the author in which several domain
reasoners are used by one ITS, doing it simultaneously for the same exercise.

1.3. OVERVIEW 5

Contribution IV. An extensible framework for tutorial and presentation
strategies for interactive exercises has been developed. Strategies can be ap-
plied to authored and generated exercises and to their parts. Authors can
also manually attach and configure strategies in different parts of exercises.
Various tutorial strategies have been developed that satisfied the needs of
educationalists and cognitive psychologists within several research and em-
pirical projects.

1.3 Overview

This thesis has the following structure:

Chapter 2 gives an overview on the background for this thesis: several
types of Interactive Learning Environments and Intelligent Tutoring Systems
are considered. We discuss their strengths and how we can combine them in
our system.

Chapter 3 defines a generic knowledge representation for Interactive Ex-
ercises, showing how the annotations of exercise states and transitions allow
for application of intelligent strategies to the exercises. We also define a
generic format for educational queries to external domain reasoning services.

Chapter 4 describes a modular architecture of the Exercise Subsystem

and the work flow of an exercise solving process.

Chapter 5 describes tools for authoring and generation of interactive ex-
ercises. Here, we consider in more detail the function of the Exercise Ge-

nerator component and describe different methods of generating exercises.

Chapter 6 provides an evaluation of the expressive power of the defined ex-
ercise language w.r.t. usability for different mathematical courses in schools
and Universities. We also provide some technical evaluation of performance
of the exercise subsystem, by presenting results of the so-called stress-tests.

6 CHAPTER 1. INTRODUCTION

Chapter 7 concludes with a short summary of main achievements of this
work and defines several directions of further research, such as adding more
domain reasoners, authoring tutorial strategies and advanced user interfaces
for interactive exercises.

Chapter 2

Background and Related Work

In this chapter we look at several systems and technologies, which are related
to the goals of this work.

First we consider general Interactive Learning Environments (ILE) that
aim at generality and simple coaching without deep domain expertise. The
most generic ILE systems represent interactive exercises as simple multiple
choice questions. They are simple to build, easy to deploy, and usually have
little educational impact.

Somewhat more advanced systems allow free input of the learner which
is then analyzed by an integrated Computer Algebra System and the corre-
sponding correct/incorrect feedback can be given to a learner. However no
deep diagnosis is possible, and there is no informative feedback on errors.

Next we consider Intelligent Tutoring Systems (ITSs) that are designed
carefully for each domain and enjoy deep domain expertise, detailed student
models and automated teaching strategies. They are difficult to build, al-
though the general architectures for such systems are well-studied and there
are many implementation guidelines and techniques, as well as some author-
ing tools. The design of an ITS system is highly impacted by the domain
and, more concretely, topics addressed in this domain. The design of do-
main reasoning modules is mostly driven by the structure of the domain, but
sometimes it is also influenced by pedagogical decisions. For instance, the
tutorial model of the Andes2 system is aimed to use only one ideal solution
of the problem and if the learner is trying to follow an alternative path, the
system tries to bring the learner back to the ideal one.

Even though the main modules of an ITS are distinct and well separated,
the domain model of a particular system communicates with the rest of this

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

system in a fixed way, so it is not possible to connect several reasoners to the
same system in a general way.

There are two well-known techniques we discuss below, which ITS systems
use for reasoning within a domain: Model Tracing and Constraint Based
Modeling.

There are more general approaches to authoring Intelligent Tutoring Sys-
tems, such as the Eon framework and the REDEEM tool, which makes the
procedure of ”authoring” an ITS somewhat more comfortable, but the re-
sulting ITSs are in general less advanced as compared to the traditional ones.

Finally, we describe ActiveMath - a web-based learning environment
which combines features of all three types of systems mentioned above. It
is suitable for teaching various domains of knowledge, it possesses a central
Student Model and Extensible Teaching Module (called Tutorial Component)
and provides the infrastructure for populating the system with different do-
main ontologies and integrating intelligent domain reasoners.

2.1 Interactive Learning Environments

Interactive Learning Environment (ILE) is a general term for a computer
system designed to help students to learn a domain in an interactive way.
These systems usually define two kinds of interactive exercises. The first is
based on simple multiple choice questions, puzzles or other kind of selections
in which the whole domain expertise is hand-crafted into exercise content.
They don’t require domain diagnosis tools.

Exercises of the second type allow for free input of the learner. In order to
check the correctness of the learner’s answers, mostly syntactic comparisons
are used. In cases when the free input is a mathematical formula, some
semantic evaluation might be possible if a Computer Algebra System is used
as a back-engine. In this case all the expressions, equivalent to a correct
answer, will be accepted as a valid answers as well.

2.1.1 IMS QTI Standard

In a industrially oriented standardization attempt, the IMS Global Learn-
ing Consortium has produced a specification of a knowledge representation
format for simple one-step interactive exercises, called IMS Question & Test
Interoperability (QTI), which has been used by a variety of systems. Many

2.1. INTERACTIVE LEARNING ENVIRONMENTS 9

tools have been built for authoring and rendering QTI exercises. Later, a
second version of the standard was issued that allowed for the representation
of multi-step interactive exercises.

The QTI format offers several types of interactivity such as multiple
choice questions and other kinds of selection-based interactions such as map-
ping or reordering. Free input is also offered, which could only be evaluated
literally, using simple string comparison.

There has been an extension of QTI within the JISC-funded project
”Serving Mathematics in a distributed e-learning environment” 1 addressing
the special requirements of Mathematics within QTI. This extension offers
presentation MathML and OpenMath formats for representing mathe-
matical formulas. This extension, however, was never standardized by IMS
Consortium.

The QTI format is a highly verbose and heterogeneous format, which
represents a flow of an exercise program dressed into XML syntax. The
format allows uncontrolled usage of flag-like variables possessing arbitrary
implicit semantics which allow for ”representing” exercises, which can then
be run by systems that understand the implicit semantics of the flag vari-
ables. The specification of QTI version 2 supports templates that define
common marking schemes for interoperability. For more information about
the issues of the QTI format and its comparison to other exercise languages,
see [Goguadze et al., 2006].

2.1.2 CAS-powered Exercise Systems

There have been several Computer Assisted Assessment (CAA) systems for
mathematical domains, that used Computer Algebra Systems as back en-
gines for evaluating interactive exercises. Among the most prominent ones
are AiM [Sangwin, 2004] operating with Maple, STACK [Sangwin, 2008] op-
erating with Maxima, and the commercial MapleTA TM [MapleTATM, 2010]
using Maple. Also earlier versions of ActiveMath encoded such exercises
[Libbrecht et al., 2001] using Maple and Mupad CAS [MuPAD, 2009] as a
back engine. The exercises in these systems are represented using a custom
syntax mixed with the syntax of the corresponding CAS. They also contain
small programs for the cases when the simple CAS command was not enough
for evaluating the student’s answer. In Figure 2.1 a sample representation of

1http://maths.york.ac.uk/serving_maths

http://maths.york.ac.uk/serving_maths

10 CHAPTER 2. BACKGROUND AND RELATED WORK

an exercise for permutations is shown (taken from [Libbrecht et al., 2001]).
This code is not likely something school math teachers would be able to
encode.

<code i d=”mapleExerc ises Code1 ”>
<data>
<s tar tup><command>evalSilent</command><param>
with (group) ;
P1:=[[1 ,3,4,2]] ;
P2:=[[1 ,4,6,2,3,5]] ;

</param></ s tar tup>
<s tar tup><command>eval</command><param>
printf (”Compute the i nv e r s e o f the f o l l ow i ng two permutat ions : ”) ;

</param></ s tar tup>
<s tar tup><command>eval</command><param>
printf (”1 : %a 2 : %a\n”,P1,P2) ;

</param></ s tar tup>
<s tar tup><command>eval</command><param>
printf (” Please use the v a r i a b l e s Q1 and Q2 f o r the r e s p e c t i v e i n v e r s e s ! ”) ;

</param></ s tar tup>
<eva l><command>eval</command><param>
if assigned (Q1) and assigned (Q2)
and evalb (mulperm (P1,Q1)= [])
and evalb (mulperm (P2,Q2)= []) then

1
elif assigned (Q1) and assigned (Q2) and evalb (Q1=I1) then

printf (”Answer Q1 i s c o r r e c t but not Q2, s i n c e \n
%a ∗ %a = %a”, P2, Q2, mulperms (P2,Q2))
<>
fi ;

</param></ eva l>
</data>
</code>

Figure 2.1: Sample encoding of an early ActiveMath exercise

Other systems such as WALLIS [Mavrikis and Maciocia, 2003] , and Math-
Dox2 exercises, are using semantic markups OpenMath or content MathML
for representing formulas, which makes them less dependent on a concrete
CAS.

However, MathQTI inherited the other QTI problems described above,
and the MathDox language mixes a custom XML format with other scripting
languages bound to the concrete programming environments which makes it
again quite messy and hard to understand by human encoders.

The WALLiS format is most similar to the early versions of Active-
Math’s exercise format. It is generic, not bound to a particular implemen-

2http://www.mathdox.org

http://www.mathdox.org

2.1. INTERACTIVE LEARNING ENVIRONMENTS 11

tation, nor to the concrete CAS to be used as a back-engine. For more about
the interoperability of these formats, see [Goguadze et al., 2006].

2.1.3 Intelligent ILEs with Stepwise Solutions

Two important examples of intelligent ILEs capable of guiding the students
through the stepwise solutions of mathematical problems are MathXPert
[Beeson, 1996] and Aplusx [Nicaud et al., 2003]. These systems implement
their own mathematical reasoning engines, instead of using the existing
CASs. Such decision is motivated by the fact that CASs are not designed for
pedagogical purposes and are not capable of stepwise reasoning.

MathXPert is an ILE for algebra and calculus which provides students
with an interface for solving problems in a stepwise manner. In this interface
the student can choose a rewrite rule he wants to apply to an expression from
the menu and the system applies the rule for him. The student can also tell
the system to do the step or the rest of solution completely automatically.
In this tool there is no room for free student input and hence the student is
not given an opportunity to make a mistake in his calculations.

The mathematical reasoning engine of MathXPert has been imple-
mented from scratch. The problem solving strategies used by the system
are designed to be similar to those of humans. Granularity of a step in the
interaction with a student is based on the level of detail generally appropriate
for the topic. For example, if the student is performing differentiation, it is
considered that the arithmetic transformations can be all done in one step.

In the previous versions of the system the granularity of steps was made
adaptive to each student individually. Since MathXPert has a student
model which keeps track of the knowledge level for each concept involved,
the system could configure itself to suggest bigger steps for concepts already
learned by the student. However, such adaptation lead to badly structured
solutions very irregular granularity of steps and the decision was made to
abandon such an adaptation.

Aplusx is an ILE for learning algebra. It provides students with an
interface for stepwise problem solving, but as opposed to the menu-based
interaction in MathXPert, it allows the students to enter arbitrary math-
ematical expressions using a graphical user interface for entering formulas.
The system gives several types of feedback, such as correctness of the step,
and some progress indicators, such as ”the exercise is solved”, ”you still
have to reduce” and so on. Additionally, Aplusx defines several commands

12 CHAPTER 2. BACKGROUND AND RELATED WORK

such as calculate for numerical expressions, expand-and-reduce and factor for
polynomial expressions, solve for equations and inequalities. These com-
mands can be executed on request of the student and the system performs
the needed calculations for the student automatically.

As in the MathXPert, the underlying mathematical reasoning engine
is implemented from scratch. In addition to the reasons the MathXPert
implementers had for developing own reasoning module, another reason for
doing so in Aplusx is the wish to provide a self-contained system not relying
on an external CAS which might be expensive.

2.2 Early Computer Aided Instruction Sys-

tems

The first generation of computer based tutors are so-called Computer-Aided
Instruction systems (CAI). Preceding the rise of Intelligent Tutoring Sys-
tems (ITS), discussed in the next section, there has been some evolution
of early CAI systems, so called AFO (ad-hoc frame oriented) systems. See
[Nwana, 1990] for an overview of these systems.

The first kind of CAI systems in the 1950s were ’linear programs’ de-
scribed in [Skinner, 1954], in which the material was presented step by step
in a series of so-called frames. Each of the frames contained a simple ques-
tion and the student received immediate notification of correctness. But
independently of the student’s results, the system proceeded to present the
next frame in the sequence.

The next type of systems were ’branching programs’ that used the stu-
dent’s response for choosing the next problem [Crowder, 1959]. But in this
case the teaching material became unmanageably big.

The next generation called ’generative systems’ generated teaching ma-
terial and adapted automatically to the student’s performance and required
difficulty.

The latter systems were the closest to ITS, but lacking a structured view
of fundamental aspects, such as knowledge representation for the instruction
domain. The tutoring strategies were ad-hoc and not supported by any the-
ories of learning. The student’s performance and knowledge state was not
systematically modeled and hence not used for making the systems dynami-
cally adjustable to the student.

2.3. INTELLIGENT TUTORING SYSTEMS 13

The Intelligent Tutoring Systems, that started to be developed in the
1970s, addressed these issues and the methodology developed since then has
been used until now for hundreds of systems.

2.3 Intelligent Tutoring Systems

Intelligent tutoring systems are advanced ILEs, that aim at personalized
learning similar to one-to-one tutoring. This goal has been set in order to
address Bloom’s two-sigma problem. A study, described in [Bloom, 1984],
showed that one-to-one tutoring compared to a group instruction achieved 2
standard deviations (2 sigma) more learning effect. In particular, the study
has shown that 50% of students who had been tutored in a one-to-one in-
struction setting, performed better than 98% of the students who had been
taught in the classroom. Moreover, comparing the effect of one-on-one tu-
toring with the effect of a number of other variables and treatments, Bloom
found that none of the others produced an effect as effective as 2 sigma.

In the following section we present the general structure and methodology
of ITS followed by the brief description of some well established systems.

2.3.1 ITS Architecture

The main goals to be addressed by an ITS architecture are to specify what
the system should be teaching, whom it is teaching, and how.

All traditional ITS systems contain at least four main components: a
domain model, a student model, a teaching model, and a student interface.

2.3.1.1 Domain Model

This component contains the material what to teach and represents the
knowledge about the domain of instruction. This information is used by the
ITS to instruct the learner about the subject, it evaluates student’s answers
in exercises and provides feedback.

A domain model of an ITS consists of two parts. First, there are domain
concepts, represented, for example, by using semantic networks or ontologies.
Second, it consists of the representation of the problem-solving ability to be
taught in the form of production rules or constraints.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

There have been different approaches to domain modeling in ITS. Cur-
rently, two most established general approaches are Model Tracing and Con-
straint-Based Modeling techniques.

These two approaches emerge from two theories of learning, while they
agree upon one main principle: learning means to convert facts to procedural
knowledge (problem solving skills). However, they differ in how to facilitate
this process.

Model Tracing is based on the ACT-R theory of Anderson [Anderson, 1993]
that considers the direct mastering of procedural knowledge as the key to
learning. Declarative knowledge is only used for introduction, necessary for
learning the production rules of the domain. The rest of the time the stu-
dent is learning to apply the production rules of the domain to construct the
incremental solutions of problems, thus training procedural knowledge.

Model Tracing (MT) tutors represent the domain by a set of production
rules within a so-called domain reasoner module. For each problem, the
reasoner can generate one or more stepwise solutions, constructed by incre-
mentally applying the production rules that transform the task expression.

Constraint Based Modeling (CBM) is based on the theory of Ohlsson (see
[Ohlsson, 1996]) who claims that the key to acquiring procedural knowledge
is to help the student to first understand the declarative knowledge. There-
fore, the problems given to the student should not necessarily concentrate on
training the incremental rules, but rather on understanding the declarative
knowledge.

The CBM systems represent the domain by a set of constraints. For
each problem, the constraints that are relevant for this problem have to be
satisfied. If the solution of the student is violating some of the relevant
constraints feedback is presented to the student that explains the error and
provides a conceptual hint.

Each of the approaches have pros and cons, which were extensively dis-
cussed in [Mitrovic et al., 2003a], [Kodaganallur et al., 2005], and further in
[Mitrovic and Ohlsson, 2006], and in [Kodaganallur et al., 2006].

The main difference between MT and CBM tutors is the approach to
evaluation of the learner’s action. MT tutors use so-called process-centric
approach, in which the process of the solution needs to be traced, whereas
CBM tutors are product-centric in that they only evaluate the current state
of learner’s solution. Another fundamental difference is that if the MT tutor
can not find the student’s answer any of its generated solution paths, the
answer is considered incorrect, whereas the CBM tutor does not impose any

2.3. INTELLIGENT TUTORING SYSTEMS 15

particular solving strategy for the problem, so that if the student’s answer
does not violate any constraints relevant for the given problem, the answer
is considered correct.

The main advantage of the Model Tracing tutors is the ability to generate
consequent solution steps starting at any point in the set of all possible
solution paths. This gives the opportunity to provide hints on how to proceed
and give out correct next steps. The main limitation of the Model Tracing
domain reasoners is the combinatorial explosion when building the solution
space for the exercise, which has to include all possible expert and erroneous
solution paths.

The main advantage of the CBM tutors is that they are easier to build and
more scalable then MT tutors. The main limitation of the CBM tutors, is
that they can not (easily) provide feedback on the next steps in the solution,
given the student’s answer.

Additional methods are used to avoid the usual combinatorial explosion,
mostly custom designed for the domain of instruction. For instance, the
Andes system uses the ”color-by-numbers” method in order to evaluate the
correctness of an equation entered by the student. In Andes, the solution
graph of the problem contains the list of all variables in the problem together
with their value when the problem has been solved. ”Color-by-numbers” sub-
stitutes these values into the student’s equation. If the resulting arithmetic
equation numerically balances, the student’s answer is correct, and incor-
rect otherwise. If not all variables in the problem have values, so-called
’ugly numbers’ (randomly chosen numerical values) are substituted instead
of these variables. If the equation balances with the ugly value it is likely
that it would balance with the symbolic value as well.

Another method, which has become custom for domains of physical quan-
tities, used by Andes is to compare the dimensions of the physical quantity
in the student’s answer. If the dimensions of student’s answer are not the
same as in the correct answer, it is clear that the answer is wrong without
further reasoning. These and other optimization techniques are described in
[Shapiro, 2005].

Production rule systems of model tracing tutors, often referred to as
domain reasoners, usually consist of two types of rules - expert rules, rep-
resenting the expert model of the domain and so-called buggy rules, rep-
resenting frequently occurring erroneous reasoning patterns. Systems like
BUGGY [Burton and Brown, 1978], DEBUGGY [Burton, 1982], and SLOP-
ERT [Zinn, 2006] make extensive use of buggy rules and allow for combining

16 CHAPTER 2. BACKGROUND AND RELATED WORK

them with each other and with expert rules to model complex errors. The
Andes system defines a hierarchy of so-called error handlers, as described
e.g. in [Van Lehn et al., 2005]. In this hierarchy, some general typical er-
rors are modeled and the more specific context dependent error handlers can
override the general ones.

Some domain reasoners make restrictions on the depth of recursion when
combining expert and erroneous reasoning rules while diagnosing complex
errors. It makes sense from a pedagogical perspective and at the same time
reduces the computation time. It is unlikely that the student combines more
then a certain number of correct and buggy reasoning steps within a single
interaction with the system. The precise number might depend on the do-
main and the cognitive parameters of the learner. Specific constraints can be
also constructed, the violation of which diagnose a typical error and triggers
corresponding feedback.

2.3.1.2 Student Model

The student model represents the student, whom the ITS system aims to
instruct. The function of the student model is to enable the system to adapt
to individual learners in order to present the instructional content that corre-
sponds to the current needs of the student. The student model observes the
student’s performance and creates qualitative representations of his knowl-
edge of domain concepts and skills.

Some systems model the student’s expertise using skill taxonomies to
represent different aspects of the mastery of domain concepts.

Other information on the student’s performance, such as the interaction
history, statistics on the correctness of solved problems etc. can also be
stored in such a model. However, the student model is not only a (continu-
ously updated) storage of the student’s data, but also a reasoning component,
transforming the observable student behavior, such as the responses of the
student into the modeled unobservable data such as beliefs about the stu-
dent’s achieved literacy.

The simplest student models developed by early ITS are so-called scalar
models defining one common measure of student’s progress throughout the
domain topics.

Much more information is collected in overlay models, which assigns
knowledge mastery values to each domain concept.

An extension of these models are differential models, which differentiate

2.3. INTELLIGENT TUTORING SYSTEMS 17

between the domain knowledge which the student has already been exposed
to and which has not yet been presented to the student.

In addition to modeling student’s knowledge of concepts, many ITSs
model student’s errors, by so-called perturbation or buggy rules, which ex-
tend the expert model with a bug library. The goal of the tutoring system
is to grow the student’s subset of the expert knowledge alongside with elim-
inating the buggy subset.

There are various techniques for realizing student models such as Bayesian
belief networks [Millán et al., 2010], Transferable Belief Model [Smets, 1994],
models based on formal logic, expert systems, plan recognition and others
(see e.g. [B.P.Woolf, 2008] Chapter 3 for an overview).

2.3.1.3 Teaching Model

The teaching model encodes the instructional strategies used by the tutoring
system. It represents the tutorial behavior of the system, specifying how to
teach.

According to [Van Lehn, 2006] the instructional behavior of the Intelli-
gent Tutoring System consists of two feedback loops, as depicted schemati-
cally in Figure 2.2.

Exercise

inner loopExercise

inner loop

Exercise

inner loop

outer loop

Figure 2.2: Inner and outer loops of an ITS

18 CHAPTER 2. BACKGROUND AND RELATED WORK

The inner loop refers to feedback given to the student within a single
exercise as a reaction to the student’s actions, whereas the outer loop selects
the next problem based on the current knowledge state of the student.

The outer loop has been addressed only partially by some systems. Ac-
cording to [Van Lehn, 2006], four methods for selecting tasks have been used
so far:

• The student selects a next task manually from the given menu

• The tasks are assigned by the system in a fixed sequence

• A mastery learning scenario is used, in which students keep getting
exercises for training the same knowledge components until they are
mastered

• A macro adaptation method chooses the next task based on the over-
lap between the knowledge components needed for the task and the
student’s mastered knowledge components.

The ACT Programing Tutor is an example of a system using a mastery
learning scenario [Corbett and Anderson, 1995]. One of the recent achieve-
ments addressing the outer loop is the development of PAIGOS [Ullrich, 2008]
- a hierarchical task network planner for adaptive course generation within
the ActiveMath learning environment.

The inner loop, to which this thesis mainly contributes, concentrates on
feedback in response to student’s action within an exercise step. There are
several aspects that play a major role in this process, such as the content
of the feedback, its timing, the appropriate scaffolding strategy, etc. There
are various types of feedback, as described e.g., in [Van Lehn, 2006] and
[Van Lehn et al., 2005]:

• minimal feedback: just a correct/incorrect notice, possibly highlighting
the error position (flag feedback)

• error-specific feedback on an incorrect step

• procedural hints on what to do next

• conceptual hints providing information about the involved knowledge
components

2.3. INTELLIGENT TUTORING SYSTEMS 19

• bottom-out hints or correct solutions for a problem or a problem step

Depending on the tutorial goals several other parameters can be taken
into account for feedback presentation:

• feedback timing : immediate vs delayed feedback

• turn taking of a tutorial dialogue: solicited vs unsolicited feedback

Immediate feedback is presented directly after each student step. Delayed
feedback is presented only after the student presented his complete solution.

Solicited feedback is only given on request of the student, whereas unso-
licited feedback is given independently of the student’s request.

Complex combinations of feedback types and other parameters such as
feedback timing, number of trials for the step, solicited and unsolicited help,
form different tutorial strategies for the inner loop.

Most ITS systems have a hard-coded standard tutorial strategy. For ex-
ample, model tracing tutors (described in Section 2.3.3 below) have been crit-
icized for a too simple tutorial model, where the error feedback was directly
attached to the buggy production rule. It was presented to the student when
the rule application was diagnosed. The same holds for Constraint Based
Systems (see section 2.3.4 below), that attach error feedback directly to the
constraints and present it to the student in case the constraint is relevant for
the solution, but not satisfied.

For example, the Andes system implements a so-called minimal non-
invasive strategy [Lehn et al., 2002], that is hard-coded in the system and
applies to all exercises. This strategy helps students to follow the expert
solution path and gives feedback on request. In Andes, the strategy im-
plements three types of feedback: flag feedback, error feedback and what’s
wrong help. The sequence of hints of several types leads the student to follow
the expert solution path. The order in which different feedback types are
given is predefined. In the Atlas-Andes system, the situation is improved
by introducing a dynamic strategy, conducting a dialogue with the student,
based on a solution path of the problem. This dialogue uses a hierarchical
menu of possible principles applications and it aims at eliciting the knowledge
construction by the student [Rosé et al., 2001]. The ITS for algebra, called
Ms. Lindquist [Heffernan, 2001], [Heffernan et al., 2008] proposes a similar
dialogue-based architecture, called ATM (Adding Tutorial Model).

20 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1.4 User Interface

The user interface is a very important part of an ITS system, as it establishes
the interaction between the student and the system. It carries the important
function of presenting the domain of instruction to the learner and providing
means of interaction of the student with the problem. The problem solving
environment is highly dependent on the domain of instruction as well as on
pedagogical strategies. Until now there has not been a systematic classifica-
tion of user interfaces in ITSs.

User interface modules range from simple multiple choice and free text
input to complex simulation environments.

Following a tutorial strategy with immediate feedback, the User Inter-
face might allow the student to construct his solution step by step with the
possibility to enter one step at a time and provide immediate feedback, be-
fore the next step. In this cases, the interface for the next user interaction
might even depend on the result of the previous interaction. For example, if
the student provides only a partial answer, the next interaction can present
the same step with the partial answer filled in. Once the student provides
the complete answer, the next task will be presented. The stepwise solu-
tion strategies can define various types of scaffolding which have an impact
on the complexity of the User Interface. Natural language dialogue systems
need the least complexity - the student only needs a text field for submitting
his answer. Based on the student’s interaction history the dialogue system
adapts the content and timing of feedback, as well as the turn taking of a
tutorial dialogue.

Depending on the diagnostic capabilities of the system and the tutorial
strategy, some disambiguation questions or socratic sub-dialogues might be
suggested by the system. The challenging part for the User Interface is not
to overload the student with interface components and let him concentrate
on the problem solution instead.

In case of a delayed feedback strategy the student can submit the com-
plete solution to a problem and the system has to analyze this solution.
Depending on the domain of instruction and the diagnosis possibilities it can
be a challenging task to design a User Interface for delayed feedback strategy.

Some systems, capable of natural language understanding, allow the stu-
dent to enter the solution in the form of an essay and then tries to analyze
the text.

Other systems provide template-based input, suggesting the structure of

2.3. INTELLIGENT TUTORING SYSTEMS 21

his solution to the student. This can, on the one hand, make it easy for
the system to analyze the student’s solution. On the other hand, it can be
easier for the student to just fill in the suggested solution structure instead
of writing long sentences of text.

Systems like Andes or the Algebra Cognitive Tutor provide a complex
User Interface consisting of several interaction areas in which the student
can manipulate different representations of the problem using graphs, tables,
diagrams, as well as formula input. These different components of the User
Interface help to analyze the problem and enter the solution.

Another type of User Interface is a simulation environment, in which the
student can virtually interact with simulations of components of a complex
physical environment such as, for instance, a large air compressor
[Rickel and Johnson, 1999] or a nuclear power plant [Méndez et al., 2003].

2.3.2 Scholar

The first Intelligent Tutoring System was Scholar [Carbonell, 1970]. This
tutoring system was capable of a mixed initiative tutorial dialogue on geog-
raphy of South America. The input of the student and the output of the
program were sentences in english.

The knowledge in the expert knowledge module was represented in a se-
mantic network whose nodes instantiated geographical objects and concepts.
This network also represented the ideal student model - an overlay model, in
which each node was associated with a flag to indicate whether the student
knows the domain concept represented by that node. Moreover, modeling
of student errors was proposed by introducing so-called perturbations. How-
ever, this proposal was never realized.

The tutorial strategies of Scholar consisted mainly of logical topic se-
lections from the agenda, provided by a teacher. If the topic was too general,
Scholar randomly generated a subtopic.

In order to communicate with the student, Scholar possessed some
language processing capabilities. The text of questions and feedbacks was
generated using a set of templates, filled with information from the semantic
network. The parsing of student’s answer was done by matching keywords
from a list that was dynamically generated from the network for each ques-
tion.

Important contribution of Scholar is that it introduced many central
methodological principles of ITS design, such as separation of tutorial strate-

22 CHAPTER 2. BACKGROUND AND RELATED WORK

gies from domain knowledge, more explicit representation of knowledge using
a semantic network, and student modeling.

2.3.3 Model Tracing Tutors

The Model Tracing approach to ITS is based on the ACT-R theory of An-
derson [Anderson, 1993]. The knowledge is constructed using a rule based
production system.

There have been a variety of Model Tracing Tutors built for the various
domains of instruction, e.g. LISP programing [Anderson and Reiser, 1985],
Geometry [Anderson et al., 1985], Algebra [Koedinger and Anderson, 1997].
We give a brief overview of the most important systems below.

2.3.3.1 The PUMP Algebra Tutor (PAT)

The PUMP Algebra Tutor (or PAT) is a Model Tracing Tutor for teaching
introductory algebra [Koedinger and Anderson, 1997]. Each problem in this
system involves some algebraic problem with several quantities. Using the
complex multi-part graphical interface, students have to represent quantities
as spreadsheet columns, answer the questions in the spreadsheet rows, con-
struct algebraic representation of the relationships between these quantities
and graph these relationships.

PAT is a classical Model Tracing tutor, which solves each problem step-
by-step with the student and provides assistance if necessary. It tries to trace
the student’s solution path and checks it against many possible solution paths
in its domain model. Tracing the student step-by-step gives an opportunity
to provide individualized instruction, concentrating on the current solution
state. The system gives flag feedback on errors, and in case a typical error is
diagnosed by matching the student’s answer against a buggy rule, the system
presents feedback that indicates what is wrong with the answer.

In addition to the error feedback, PAT also provides help on request. The
system gives three types of advices, such as a reminder of the current goal, a
general description of how to achieve the goal (conceptual hint), and finally a
description of exactly what problem solving action to take (procedural hint).
For each of these three types of feedback, several levels of detail are possible.

The PAT tutor uses two student modeling techniques: Model Tracing and
Knowledge Tracing. Model Tracing is used to monitor the student’s progress
within one exercise and Knowledge Tracing is used to monitor student’s

2.3. INTELLIGENT TUTORING SYSTEMS 23

growing knowledge from problem to problem. As the student solves problems,
the PAT tutor estimates the probability that each domain concept is in the
learned state, based on the students actions. This process involves a simple
Bayesian decision process described in [Corbett et al., 1997].

The PAT tutor implements a mastery learning strategy for the outer
loop. The students continue solving problems until the probability that each
involved domain concept is at the learned state has almost reached certainty.

2.3.3.2 Andes Physics Tutor

Andes is an intelligent problem solving environment for quantitative prob-
lem solving in introductory college physics [Van Lehn et al., 2005]. It was
designed for the purpose of an intelligent homework environment. It does
not have an automated outer loop, but suggests a hierarchical menu from
which the student can select problems manually.

There are two major versions of the Andes system: Andes1 and An-
des2. Both systems share the same domain model and the user interface.

The domain model of Andes (1,2) consists of a set of production rules
that are used to automatically generate solution spaces of problems in the
domain of Newton mechanics. Apart from rules, for each of the major me-
chanics principles Andes has developed a problem solving method, that
incorporates a multi-step hierarchical plan for generating an application of
the principle. Solving a problem is realized as a form of state-space search,
that iteratively chooses the problem solving methods to be applied. For
more details on problem solving in Andes, see [Van Lehn et al., 2005] (pages
30-31).

Andes also possesses a library so-called called error-handlers which can
match typical errors of the student and then help to generate error-related
feedback.

Andes (1,2) possesses a complex user interface, in which the students can
read the problem statement, draw coordinate axes and vectors representing
Newtonian forces, define variables and input equations. The system has a
mathematics package, that solves equations for students to free them from
mathematical steps and let them concentrate on aspects of physics.

Andes (1,2) implements an elaborate but fixed tutorial strategy for feed-
back. The system gives unsolicited feedback on slip errors and several types
of feedback on student’s request: what’s wrong help pointing to the error and
providing error specific feedback. It also generates a sequence of hints on

24 CHAPTER 2. BACKGROUND AND RELATED WORK

how to proceed (next step help) with different levels of detail. Typically the
next step help consists of a teaching hint containing information about the
concepts involved, and the bottom out hint giving out (parts of) the correct
solution. The module for Next Step Hint generation is called Procedural
Helper.

Another pedagogical decision in Andes is to relieve students from al-
gebraic manipulation tasks by providing them with algebraic manipulation
tools such as the equation solver. This way the students can concentrate on
actual physics principles rather then on algebraic calculations.

The main difference between Andes1 and Andes2 is the content of feed-
back produced by the Procedural Helper. The Andes1 has a plan recognition
module, based on the Bayesian network student model. The system attempts
to recognize the plan of the student and gives the next step hint following
this plan [Gertner et al., 1998].

Empirical studies have shown that although Andes1 was successful and
increased learning outcomes by 1 standard deviation in comparison with
traditional instruction, the Bayesian student model was not the key to its
success. It turned out that the elaborate tutorial strategy was key to its
success. Also, since the Andes system does not have an automated outer
loop and the next exercises to tackle are manually assigned to students, the
Bayesian student model was not used for selecting the next tasks.

Inconsistencies in the plan recognition results suggested that in most cases
of erroneous reasoning the learner does not have any expert solution plan. So
the Procedural Helper in the Andes2 is giving hints directed to return the
learner back to the fixed standard expert solution path, rather than trying
to recognize the student’s path.

Another method used in Andes2 was the Conceptual Helper module,
which was called when Andes2 decided that the student is unfamiliar with
a specific principle of physics or has a misconception. In this case the Con-
ceptual Helper presented so-called ”mini-lessons” to the learner, which are
adapted to the student’s problem solving context.

Years of research, continuous evaluation and deployment allowed Andes
researchers to build a powerful learning environment for introductory physics
and make significant contributions to the methodology and architectures of
Intelligent Tutoring Systems. It is now used widely in the US and elsewhere
in more then 200 schools.

2.3. INTELLIGENT TUTORING SYSTEMS 25

2.3.3.3 Ms. Lindquist

The new generation of model tracing tutors with an advanced tutorial model
was announced by Ms. Lindquist - a system using multiple tutorial strategies
for teaching ”symbolization” in an algebra domain [Heffernan et al., 2008].
The kind of problems considered contain a modeling step in which the stu-
dents have to formalize some aspect of the real world. This introduces the
need for a more strategic approach to student feedback then in simple incre-
mental problem solving.

Ms. Lindquist implements an elaborate tutorial dialogue architecture,
called ATM (Adding Tutorial Model), built on top of a model tracing tu-
tor. In addition to the traditional outer and inner loops, this system defines
a so-called knowledge-search loop. This means, that when the student has
reached an impasse in his reasoning, the system starts asking him ques-
tions, the answers of which are not always parts of the problem solution, but
elicit the knowledge construction of the student that helps him to solve the
problem. Such scaffolding also appears in Atlas-Andes within the modified
Conceptual Helper in which the static ”mini-stories” of Andes2 are replaced
by interactive knowledge-eliciting dialogues, realized as multiple-choice ques-
tions.

In comparison to classical model tracing tutors, that generate feedback
from text templates coupled with production rules, the ATM architecture
generates a dialogue plan for each error student makes. The tutorial model
of Ms.Lindquist contains seventy seven rules to generate these plans.

After the student model has made a diagnosis of the student’s action,
there are three types of responses: give a bug message, give a hint or use the
tutorial sub-strategy addressing the error. There are two kinds of strategies
involved - so-called Knowledge Remediation Dialogue and Knowledge Con-
struction Dialogue that invoke multi-step plans to deal with particular errors.

Evaluations of Ms.Lindquist have shown the effectiveness of multiple tu-
torial strategies applied to algebra ”symbolization” problems.

2.3.4 Constraint Based Tutors

The Constraint Based Modeling (CBM) approach is based on the theory of
learning from performance errors [Ohlsson, 1996].

The basic idea of the constraint-based approach is to define a set of con-
straints that describe the expert domain knowledge and model the student

26 CHAPTER 2. BACKGROUND AND RELATED WORK

behavior by diagnosing whether the constraints relevant to the current prob-
lem have been satisfied.

The structure of a domain model has the similar structure for all CBM
tutors. The domain model is a collection of so-called state descriptions. Each
state description is a triple consisting of a relevance constraint, satisfaction
constraint and feedback in case of constraint violation. When evaluating
a student’s solution, first the relevance constraints help to identify which
constraints were relevant to the current state of the problem and then the
satisfaction constraints of the relevant state descriptions are checked. If a
violation is detected, the student is provided with feedback to inform him of
the violation. Different tutorial behaviors w.r.t. feedback presentation can
be expressed in cases when several constraints are violated at once. Several
levels of feedback and hints are possible, as well as some macro-adaptation.

All CBM tutors have similar architecture, as shown in the Figure 2.3.

Student Model

Pedagogical
Module

User Interface

Domain Model

CBM Constraints

Problems/
Solutions

Figure 2.3: CBM tutor architecture

It refines the general ITS architecture with CBM specific components,
such as a constraint database, a constraint based modeler, and database of
problems and their solutions.

The most prominent Constraint Based Tutors built so far are: SQL Tu-
tor teaching the well-known database language [Mitrovic and Ohlsson, 1999],

2.3. INTELLIGENT TUTORING SYSTEMS 27

COLLET-UML for object oriented design [Baghaei et al., 2005], NORMIT
for data normalization [Mitrovic, 2002], CAPIT - a tutoring system for capi-
talization and punctuation [Mayo et al., 2000]. Finally, an authoring frame-
work ASPIRE [Mitrovic et al., 2008] has been built to support rapid devel-
opment of new CBM tutors.

2.3.5 ITS Authoring

Since building an ITS for each new domain from scratch has significant costs,
there have been approaches to domain independent tools for authoring all
main modules of an ITS: the domain model, the teaching model, the stu-
dent model and the user interface. Requirements and principles for building
educationally oriented authoring tools are summarized in [Murray, 2003b].
We briefly present some important examples of generic authoring tools, rel-
evant for our work on representation and authoring of exercises and tutorial
strategies.

2.3.5.1 Eon Tools

The first system was called KAFITS (Knowledge Acquisition Framework for
ITS)[Murray, 1991]. An authoring tool for the domain ontology and an editor
for creating instructional strategies was created. The strategies had a form
of so-called Parametrized Action Networks.

The results of a study with human tutors using these authoring tools
showed for the first time that intelligent tutors can be built with human
resources comparable to building CAI.

In the follow up project further authoring tools have been developed,
called Eon tools [Murray, 1998, Murray, 2003a]. Here, the domain model to
be authored may consist of a domain ontology and learning objects as well as
an executable (e.g. rule-based) part, representing domain inference and prob-
lem solving. Apart from expert knowledge, Eon allowed to create a database
of buggy rules. It also represented misconceptions attached to the domain
ontology. Eon has a layered overlay user model, in which the layers represent
several decision layers, that assign mastery values to each level of domain
hierarchy: Lessons, Topics, Topic Levels, Presentation Contents and events.
Eon uses so-called ’flowlines’ for authoring tutorial strategies. These are di-
agrams, graphically representing the procedure of a strategy. Each strategy
can have input parameters, local variables and can return values. In order to

28 CHAPTER 2. BACKGROUND AND RELATED WORK

choose among strategies some meta-strategies are used. Each meta-strategy
has application conditions and strategy parameters, where the application
conditions of meta-strategies can be adaptive to student’s behavior, as in-
ferred from the student model.

2.3.5.2 REDEEM Environment

Similarly to Eon, the REDEEM system (Reusable Educational Design En-
vironment and Engineering Methodology) creates an ITSs with less effort,
less training and knowledge, and provides support for authors to help them
create tutorial strategies. (Murray, 1999).

But, they have little domain knowledge compared to other ITS systems.
According to Murray, this system is primarily concerned with the develop-
ment of Tutoring Strategies (like Eon). REDEEM does not support the
construction of a domain model.

It is routine for AI researchers to represent domain knowledge in produc-
tion rules, but unintuitive for most teachers. Therefore, REDEEM reduces
the teacher’s options to modify low level instructional behavior for ease of
authoring.

Instead, REDEEM focuses on the authoring of pedagogical rules. It al-
lows tutors to set parameters of tutorial strategies and to define application
conditions for tutorial actions. However, the strategies themselves are not
freely definable, like in Eon, but they are all pre-defined.

2.3.5.3 CTAT - Cognitive Tutors Authoring Tools

Another approach that makes authoring of Intelligent Tutoring Systems eas-
ier for non-programmers is the Cognitive Tutors Authoring Tool (CTAT),
developed at CMU [Koedinger et al., 2004]. Here the ease of implementation
for tutors is not the only goal, but another goal is to improve the cognitive
task analysis and the exploration of pedagogical content knowledge.

Apart from authoring Cognitive Tutors, the CTAT tool allows to author
so-called ”Pseudo Tutors” (now also called Example Tracing Tutors) that
mimic the behavior of an intelligent tutor. Instead of automated AI tools,
the teachers author the exercise by demonstrating and recording student’s
behavior and the reaction of the system. This means that instead of encod-
ing the domain production rules as in the rule based model tracing tutors,
the author simulates the student’s possible solution path together with the

2.4. THE ACTIVEMATH LEARNING ENVIRONMENT 29

feedback of the system. This process is recorded by a so-called Behavior
Recorder into an annotated exercise graph which is later used to trace the
student’s steps through the problem solution.

Such a simple tool removes the necessity of programming domain pro-
duction rules, that makes it more accessible to teachers. But since there
is no automatic pattern matching that can combine any possible next step
with any possible next but one step, all the alternative correct and incorrect
solutions have to be hand-crafted by the author.

Each step can be annotated with one or more hints, which are ordered
sequentially at runtime. Finally, so-called knowledge labels are attached to
the links in the behavior graph to refer to the underlying domain concepts.

Studies have shown that the Pseudo Tutor system finds intelligent tutorial
behavior equivalent to the production based Cognitive Tutor. Authoring
both kinds of systems is comparably time consuming.

The recorded behavior graphs, used for building Pseudo Tutors, can be
also used to guide the development and testing of a cognitive model for use
in a Cognitive Tutor, as described in [Aleven et al., 2006]. However, Pseudo
Tutors do not remove the necessity to program domain production rules. The
behavior graphs just help to explore the cognitive model of the domain and
can be used as unit tests for the domain model.

A collection of tools for authoring Cognitive Tutors includes a number
of further components, assisting building the Cognitive Tutors as well as
external editor for editing Jess rules for the cognitive model.

CTAT tools have also been used for a machine learning approach to
rule creation, using the Simulated Student - a machine learning agent
[Matsuda et al., 2005]. This agent analyses the sample behavior graphs pro-
duced by the human tutor and infers production rules. The Simulated

Student agent is integrated into the CTAT tools, so that the authors can
test the generated production rules by letting Simulated Student solve the
new problems. Advanced authors can then manually modify the generated
Jess rules, if desired.

2.4 The ActiveMath Learning Environment

The web based interactive learning environment ActiveMath is an intelli-
gent tutoring system that supports advanced outer and inner feedback loops.
Figure 2.4 shows the coarse architecture of ActiveMath.

30 CHAPTER 2. BACKGROUND AND RELATED WORK

CAS

Tutorial
Component

Student
Model

Knowledge
Base

Exercise
Subsystem

Client

Presen
tation

Engine
Search
Index

Books

Vi
ew

s

External
Diagnosis
Systems

Figure 2.4: Coarse architecture of ActiveMath

One of the major features of ActiveMath is adaptivity. The Tutorial
Component of ActiveMath, responsible for the adaptation in the outer
loop, is capable of automatic course generation and presentation which is
adapted to the learner’s goals, the given learning scenario and other indivi-
dual parameters of the learner, as presented in [Ullrich, 2008] and in
[Ullrich and Melis, 2009].

The Tutorial Component actively communicates with the ActiveMath
Student Model, gathering information about the learner’s progress and mak-
ing conclusions about his current knowledge mastery.

An important feature of the ActiveMath’s Student Model is that it
dynamically extracts relations and metadata from the content ontology and
makes use of their semantics. This metadata, together with the diagnosis
of the student actions in interactive exercises, enables the Student Model

to estimate the student’s competencies. This way the Student Model of
ActiveMath is not bound to any concrete domain, but can work with any
domain, that can be ”loaded” into the system. For more information on the
Student Model of ActiveMath see [Faulhaber and Melis, 2008].

The Exercise Subsystem of ActiveMath implements the inner loop
and provides the Student Model with evidence about learning progress,

2.4. THE ACTIVEMATH LEARNING ENVIRONMENT 31

based upon the diagnosis of learning events in interactive exercises.
Early versions of ActiveMath provided only hand-crafted interactive

exercises, which lacked deep diagnosis of the learners’ actions and provided
the Student Model only with a flag feedback.

This thesis shows how we enriched ActiveMath with intelligent reason-
ing tools in multiple domains and provided a framework for reusable tutorial
strategies for the inner loop.

Among other advantages of the ActiveMath Exercise Subsystem, is
the possibility to create hybrid, partially authored and partially generated
exercises. This allows for more control of the exercise design by the author
or teacher, letting the automatic intelligent tools assist and not control the
tutoring process. The author or teacher can reuse the automatic existing
tutorial strategies or devise his own strategies manually.

The authored part of the ActiveMath exercise is similar to the behavior
graph of CTAT. This graph is, however, more compact than the graph pro-
duced by CTAT. Some of the alternative steps of the learner can be evaluated
by a CAS, and hence all the semantically equivalent steps of the learner can
be collapsed into one. Each step is annotated with some relations to domain
concepts, which is similar to the knowledge labels in CTAT. However, in Ac-
tiveMath the exercise steps are annotated with more educational metadata
such as difficulty, competency and others, as described in Section 3.3. Such
annotation provides a basis for application of different tutorial strategies, as
we show later in this thesis.

We make use of domain reasoner systems connected to the ActiveMath
as Web-services, and use a generic format for educational queries and seman-
tic Web broker for distributing these queries. Thus, we offer a web service
architecture that can be connected to multiple interoperable domain reason-
ing services.

This gives us the unique possibility of semi-automatically creating cross-
domain exercises, that use several domain reasoners simultaneously.

The framework for tutorial strategies of ActiveMath seems to fulfill the
requirements of educationalists and cognitive psychologists as demonstrated
in several research projects, see, e.g. [Tsovaltzi et al., 2009] for the ALOE
project, [Eichelmann et al., 2008] for the ATuF project, and [Polushkina, 2009]
for the MAPS MOSSAIC project. Many more strategies were built for the
needs of teachers in schools and universities where ActiveMath exercises
are used for teaching different mathematical subjects.

As opposed to other generic environments that construct multiple tutorial

32 CHAPTER 2. BACKGROUND AND RELATED WORK

strategies, such as Eon and REDEEM, ActiveMath allows human tutors to
customize the automated strategies and locally overwrite them or manually
tune their parameters. This is decided because in many cases teachers wish
to have custom strategies, which are statically attached to the tasks within
exercises.

Also, generic automatic tutorial strategies that model the tutorial process
in various domains, are insensitive to the needed values of parameters when
applied to a concrete task. In comparison, an experienced tutor will always
have some rough estimate on the average values of such parameters, e.g.
the maximal number of trials or hint levels sensible for the current task. In
case of an adaptive strategy, the values of strategy parameters may change
dynamically, as the strategy continuously adapts to the learner.

Chapter 3

Knowledge Representation

3.1 Requirements and Motivation

One of the goals of this work is to find a balanced way to incorporate man-
ually authored and automatically generated exercises. Hence, knowledge
representation becomes an important part of this thesis. This is due to the
fact that the intuitive representation for human authors might not be suit-
able for automatic generation and vice versa. So joining them in one system
is among the novelties this work produces.

Exercises in the highly domain-sensitive Intelligent Tutoring Systems do
not have a fixed body. Feedbacks to the actions of the learner and the
respective next steps are generated using the diagnosis of the learner’s answer
to the current task and previous interactions with the learner. In this case
the tutorial dialogue is fully controlled by the system and can not be directly
influenced by a human tutor/author.

Interactive Learning Environments that aim at generality, define knowl-
edge representation for exercises that do not require any domain intelligence
for the evaluation of the learner’s answers. In this case, exercises are rep-
resented as (possibly nested) multiple choice questions only and the domain
information needed for an exercise is then encoded by the author of the ex-
ercise. He provides the content for the choices and leaves to the learner to
choose among the alternatives. Exercises allowing free input are not fre-
quently used, since there are no means to automatically analyze such input.
An example of a general-purpose representation is the IMS Question Test
Interoperability (QTI) standard [IMS Global Learning Consortium, 2005].

33

34 CHAPTER 3. KNOWLEDGE REPRESENTATION

The knowledge representation of the third type of systems, such as AIM
and STACK, MathDox, and MathCoach, uses semantic representation
for mathematical formulas. This allows to evaluate the free input of the
learner by a Computer Algebra system. However, such a knowledge repre-
sentation is bound to the syntax of a particular CAS and contains program
code. Such exercises can not be authored by teachers without programming
skills.

Our goal is to design a generic knowledge representation that allows for
the best features of these ILEs. We define a declarative exercise format,
suitable for authoring and automatic generation. We allow for different types
of interactivity including free input of the student.

Mathematical expressions use a semantic knowledge representation that
can be interpreted with different tools, such as CASs - for quick evaluation
of constraints upon the student’s input, as well as powerful domain reason-
ers that achieve deeper domain diagnosis and generate (parts of) a correct
solution. We also go beyond the existing approaches to interactive exercises
by enabling hybrids of authored and generated exercises and their reusability
using different tutorial strategies.

In this chapter, we define a knowledge representation format for interac-
tive exercises, that satisfies the following criteria:

1. The format is suitable for representing exercises from different mathe-
matical domains. It can represent problems that are solved incremen-
tally.

2. The format is not bound to the concrete implementation (several ex-
ercise players possible). This means that the knowledge representation
of an exercise provides all information needed for running it and does
not define semantic under-specifications that have to be made concrete
in the implementation of the exercise player.

3. Different tutorial strategies can be applied to the same exercise repre-
sentation. The exercise representation can be automatically enriched
by the tutorial strategy that defines general patterns for reacting to the
actions and requests of the learner while solving the exercise.

4. Exercise representation does not hardcode any presentation informa-
tion. Different presentation strategies can be applied to the same ex-
ercise representation, that define the placement and look of the tasks

3.2. STRUCTURE OF AN EXERCISE FSM 35

and feedbacks, style of interactive elements, and other presentational
aspects.

5. Different mathematical services can be used for providing diagnosis of
the learner’s actions. This is achieved via a uniform knowledge rep-
resentation standard -OpenMath for mathematical expressions and
a generic query language, specifying how this expressions have to be
manipulated for exercises (see Section 3.4.5).

6. The format is suitable for hand-crafted exercises as well as automati-
cally generated exercises, and the hybrid types, such as partially gen-
erated exercises that use a hand-crafted skeleton.

Writing Convention. In the following, we assume that formulas in Ac-
tiveMath are represented using the OpenMath format but due to the
verbosity of this format we use the OpenMath notation in example listings
only if it is necessary to show the microstructure of particular formulas. In
all other cases, formulas are represented in a more human-readable way.

3.2 Structure of an Exercise FSM

A multi-step solution of a mathematical problem can have one or more cor-
rect solution paths, that are sequences of solution steps. When solving a
problem the learner can also follow erroneous paths. The set of all correct
and erroneous paths can be viewed as a directed graph. An interactive ex-
ercise can be seen as a process in which the learner is moving step by step
within this graph and each next node he is visiting depends on the answer
he provides for the task at the previous step.

Therefore, an exercise can be coded as a finite state automaton of states
representing tutorial actions of the system and transitions between these
states which represent reactions to the learner’s answers.

We define three basic types of exercise states. These are: task, interaction
and feedback.

• task defines the problem statement of the current task to be solved by
the learner

36 CHAPTER 3. KNOWLEDGE REPRESENTATION

• interaction contains interactive elements by which the learner pro-
vides the solution to the task or performs other actions such as asking
for hint or solution, giving up the exercise etc.

• feedback represents feedback to the learner’s action

Each state contains a set of transitions issued in this node.There can
be two types of transitions between exercise states: unconditional and
conditional. Unconditional transitions connect tasks with interactions

and feedbacks with the following tasks. Conditional transitions connect
interactions with feedbacks given the learner’s action satisfies a particular
condition. Each transition contains a pointer to the target state. The condi-
tional transition also contains a condition to be satisfied by the learner’s
input which triggers this transition and a diagnosis of the learners answer.
The states that do not issue any transitions are terminal. As soon as the
terminal state is reached the exercise is finished.

Schematically, nodes and transitions of a sample exercise are shown in
Figure 3.1.

Task

Interaction

Feedback
Task

Transition

Condition
Diagnosis

FeedbackTransition

Condition
Diagnosis

Figure 3.1: Structure of an exercise

An instance of these three types of states of an exercise represent a single
case of an internal feedback loop, which we call an exercise step. The
separation between task, interaction and feedback is important for the
reusability of the exercise representation with different tutorial strategies,
which rely on such a structure. It is not mandatory to have all three types of
nodes in each exercise step. For example, it can happen that the exercise

3.2. STRUCTURE OF AN EXERCISE FSM 37

provides no feedback on student’s actions. An exercise can also contain loops
in which there is an unconditional transition from a feedback back to the
task, as shown in Figure 3.1.

Consider the exercise, in which the learner has to differentiate the function
f(x) = 2 · x, i.e., to calculate f ′(x) = (2 · x)′

The simple solution space of this exercise is shown in Figure 3.2.

task1
Calculate (2x)'

feedback22

You failed!
feedback21
Well done!

Interaction1

ihteraction2

task2
Calculate (2x)'

2(x)'

2

2default

default

feedback11
Correct!

Figure 3.2: A simple exercise graph

The first state (task1) defines the task to calculate (2x)′. An uncondi-
tional condition leads to the interaction node (interaction1). If the learner’s
answer is equal to 2 · (x)′ the next state will be feedback11. The learner re-
ceives feedback and is forwarded to the next state task2. If the learner enters
the final correct answer - 2, he is forwarded directly to the final state feed-
back21. In all other cases, the default transition is triggered and the learner
is forwarded to feedback22. Negative feedback is then given and the exercise
is finished. Similarly, in the interaction2, in case of the correct answer the
learner is forwarded to the final state feedback21, and in case of any other
answer the learner is presented with the final feedback22.

38 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.3 Types of Exercise States

In this section we consider three types of exercise nodes : task, feedback
and interaction.

The elements task and feedback are static and each of them has its own
metadata. The element interaction has a more complex internal structure
aimed at a complex interactivity.

3.3.1 Task.

Each task contains a description of the task for the learner to perform. This
element can contain text with formulas, images, applets, links and other
multimedia and formatting elements.

Each task trains or assesses particular cognitive dimensions of some do-
main concept at a certain difficulty level. The domain concepts are repre-
sented as items in the knowledge base of the ActiveMath system. Relation
to these concepts have to be provided in the task metadata.

There are two main reasons for annotating the tasks of the exercise states
with these metadata.

First, the Student Model needs information about the the concepts and
their cognitive dimensions that need to be mastered in the task together with
the diagnosis upon the learner’s answer to this task in order to update the
learner’s mastery values. The quality of this updating defines the estimation
of the learner’s current literacy in the domain which, in turn may activate
further tutorial actions of the system.

Secondly, as indicated e.g. in [Narciss, 2006] the design of feedback strate-
gies is strongly influenced by the learning goals and other cognitive and meta-
cognitive parameters of the task. In manually authored exercises as well as
in automatically enhanced ones, these metadata annotations together with
the diagnosis of the learner’s answer serve as the basis for feedback author-
ing/generation.

3.3.1.1 Metadata of Tasks

For describing cognitive dimensions of the concepts that the task is train-
ing we use a competency approach adopted from PISA, as described in
[Niss, 2002] and [Klieme et al., 2004].

3.3. TYPES OF EXERCISE STATES 39

The set of values and sub-values of competencies are summarized in Ta-
ble 3.1.

competency value sub-value

think scope, formulate, generalize

argue judge, find_choose

model decode, encode

solve apply_algorithms

represent decode_understand_representations,
decode_understansd_relations, switch_choose

language translation, interpret_manipulate, formal_rules

communicate none

tools calculator, search, concept_map, CAS, plotter

Table 3.1: Values and sub-values of PISA competencies

In our approach, the assumption is that different competencies are the
building blocks of mathematical literacy: the student is mathematically lit-
erate if he has sufficient degrees for the set of competencies. These degrees
are represented by the competency levels. We define the following values
for competency levels : ’elementary’, ’simple conceptual’, ’multi step’, and
’complex’, as taken from PISA specification [Klieme et al., 2004] 1.

Additionally to the competencies and their levels, an orthogonal difficulty
level is used. The difficulty dimension is adopted from IEEE LOM stan-
dard [IMS Global Learning Consortium, 2002] and represents the technical
difficulty of the task for the target audience. The target audience is repre-
sented by another LOM metadata learningcontext. The possible values
for difficulty are ’very easy’, ’easy’, ’medium’, ’difficult’ and ’very difficult’.

A sample metadata record of the task element is shown in Figure 3.3.
In this task the learner has to encode the graphical representation of the
fraction into a formal one. The focus concept for this task is the concept of
a fraction, the competency value is ”model” with a sub-value ”encode”, and

1The complete names of the competency levels are: Level I, Computation at an el-
ementary level; Level II, Simple conceptual solutions; Level III, Challenging multi-step-
solutions; Level IV, Complex processings (modelings, argumentations)

40 CHAPTER 3. KNOWLEDGE REPRESENTATION

the competency level is ”simple conceptual”.

<task>
<task metadata>
<r e l a t i o n t ype=” f o r ”>
<r e f x r e f=”mbase: //openmath−cds/ r a t i o n a l 1 / f r a c t i o n ”/>

</ r e l a t i o n>
<competency va l u e=”model” su b va l u e=”encode”/>
<competencyleve l va l u e=” s imp l e conceptua l ”/>
<d i f f i c u l t y va l u e=”easy ”/>

</ task metadata>
<content>
<CMP xm l : l ang=”en”>Write down a fraction shown in the

picture in the form of the pizza .</CMP>
</ content> . . .

</ task>

Figure 3.3: Metadata of the task

Depending on the concrete pizza, the difficulty can vary. In our case the
pizza, displayed in Figure 3.4a has been annotated as ”easy”. It would be a
more difficult task to deal with a pizza from Figure 3.4b. These values are
estimated by the author of the exercise.

(a) 1
3 (b) 5

6

Figure 3.4: Pizzas representing fractions

3.3.1.2 Usage of the Task Metadata

Summarizing the above, the task of an exercise step contains the relation to
the focus concept of the task, the record of competencies trained/assessed in
this task, a competency level of the task, and the level of difficulty.

Given the exercise step is annotated with this metadata record, after each
exercise step is performed, this metadata record together with the success
rate of the student is propagated to the Student Model of ActiveMath,

3.3. TYPES OF EXERCISE STATES 41

as described in Section 4.5. Based on this information, the Student Model

updates the mastery values for the corresponding domain concept. The mas-
tery of a concept consists of a vector of masteries w.r.t. to each competency.
Updating takes the competency level and difficulty into consideration.

Another usage of the metadata of the task element is to generate user-
adaptive feedback. An elaborate tutorial strategy might decide what kind
of feedback should be presented to the learner, based upon the metadata
of the task. For example, if the value of the competencylevel is ”ele-
mentary” the strategy might decide that a simple procedural feedback is
enough for the learner to be able to proceed. In the given case the value
of the competencylevel is ”simple conceptual” which means some concep-
tual modeling is present. In this case some conceptual feedback should be
presented. Furthermore, if the competency value is ”model” the strategy
might decide to present a conceptual feedback which elaborates the different
models of the corresponding domain concept.

Depending on the difficulty of the task the strategy might decide whether
a simple hint is enough or a complex hint sequence is necessary. Of course,
this decision is based not only upon the metadata of the task, but also upon
other parameters, such as the diagnosis of the student’s answer, as well as
the current state of student’s knowledge of the concept.

3.3.2 Feedback

A feedback element represents the feedback to the previous action of the
learner. This element can contain text with formulas and multimedia and
formatting elements. It can be annotated with metadata classifying this
feedback.

There has been extensive research on feedback and its usage in ITS sys-
tems and a variety of types of feedback have been used in various ITS systems.

[Van Lehn, 2006] classifies the following categories of feedback:

• minimal feedback: correct/incorrect notice

• flag feedback, highlighting error position

• error-specific feedback on an incorrect step

• procedural hints on what to do next

42 CHAPTER 3. KNOWLEDGE REPRESENTATION

• conceptual hints providing information on involved knowledge compo-
nents

• bottom-out hints or correct solutions for a problem or a problem step

Some systems research the effect of meta-cognitive feedback helping the
student to guide his own problem solving by including, for example, as-
pects such as help-seeking [Roll et al., 2006] behavior, or self-explanation
[Conati and VanLehn, 1999]. Other types of feedback related to motivation
and other affective parameters of the student [du Boulay et al., 2008] have
been recently addressed, which are, however, out of the scope of this thesis.

In the European project LeActiveMath 2 the following classification of
feedback was used.

The feedback has been divided into four categories: procedural, concep-
tual, product and meta-cognitive.

• procedural feedback tries to help the learner to proceed towards the
solution. It contains information about what to do next, suggesting
the concepts to be used or rules to be applied or reducing the task by
decomposing it into sub-tasks or suggesting a similar simpler task.

• conceptual feedback represents the factual knowledge about focus con-
cepts in the tasks and the connections between them.

• product feedback gives away (parts of) the solution.

• meta-cognitive feedback represents feedback and suggestions for the
meta-cognitive behavior of the learner, such as help seeking behavior,
self-assessment and self-explanation.

In [Narciss, 2008] and [Narciss, 2006] a rich classification of feedback com-
ponents within the ITF(Informative Tutorial Feedback)-framework is given.
This multidimensional classification is based on findings from systems theory
and integrates some results of empirical research.

The ITF framework differentiates such dimensions of feedback as function
(instructional goals), content and form (presentation).

We employ Narciss’ classification of feedback for annotating feedback

elements with metadata. The function of feedback and its form are used

2http://www.leactivemath.org

http://www.leactivemath.org

3.3. TYPES OF EXERCISE STATES 43

as parameters of automated tutorial and presentation strategies respectively.
These strategies are the subject of consequent sections.

We operationalize the following types of feedback, which represent dif-
ferent aspects of instructional context (in the brackets we specify the corre-
sponding feedback category in the Van Lehn’s classification above) :

• KP - knowledge of performance
• KR - knowledge of result (correct/incorrect notice)
• KCR -knowledge of correct result (bottom out hint or correct

solution)
• KTC - knowledge of task constraints
• KC - knowledge of concepts (conceptual hints)
• KM - knowledge of mistakes (error-specific feedback)
• KH - knowledge on how to proceed (procedural hints on what to

do next)
• KMC - knowledge on meta cognition

Below are some examples for each category of feedback, taken from
[Narciss, 2008].

Knowledge of performance [KP] :
• 15 of 20 task correct
• 85% of the tasks correct

Knowledge of result/response [KR] :
• correct / incorrect
• 3 of 4 points (e.g. in multiple choice questions 3 of 4 choices

correct)

Knowledge of the correct result [KCR] :
• description of the correct response
• indication of the correct response (e.g. for multiple choice ques-

tions)

Knowledge on task constraints [KTC] :
• Hints/explanations on type of task
• Hints/explanations on task processing rules
• Hints/explanations on subtasks
• Hints/explanations on task requirements

44 CHAPTER 3. KNOWLEDGE REPRESENTATION

Knowledge about concepts [KC] :

• Hints/explanations on technical terms
• Examples illustrating the concept
• Hints/explanations on the conceptual context
• Hints/explanations on concept attributes
• Attribute-isolation examples

Knowledge about mistakes [KM] :

• Number of mistakes
• Location of mistakes
• Hints/explanations on type of errors
• Hints/explanations on sources of errors

Knowledge on how to proceed [KH] (”know how”) :

• Bug related hints for error correction
• Hints/explanations on task-specific strategies
• Hints/explanations on task processing steps
• Guiding questions
• Work-out examples

Knowledge on meta-cognition [KMC] :

• Hints/explanations on meta-cognitive strategies
• Meta-cognitive guiding questions

We use some of these examples to derive sub-types for each of the feedback
types introduced above.

Merging the newly defined classification of feedback content into more
general feedback categories defined in LeActiveMath, we group the newly
defined dimensions within the corresponding category.

A summary of this classification is shown in the Table 3.2. Each type of
feedback has a category assigned to it, together with the value and a possible
sub-value.

In order to enable sequences of feedback with an increasing level of detail,
we introduce a depth metadata element that can be applied to the feedback
of all types.

3.3. TYPES OF EXERCISE STATES 45

category value subvalue definition

procedural KTC knowledge of task constraints

KTT knowledge of task type

KTPR knowledge of task processing rules

KST knowledge of sub-tasks

KTR knowledge of task requirements

KH know how to proceed

ER error remedial

TSS task specific strategies

TPS task processing steps

GQ guiding questions

WOE worked out examples

conceptual KC knowledge about concepts

CD concept definition

CI concept-illustrating example

CAD concept attribute definition

AIE attribute isolation example

KCC knowledge about concept connections

product KM knowledge of mistakes

KNM knowledge of number of mistakes

KML knowledge of mistake location

KMT knowledge of mistake type

KMO knowledge of mistake origin

KR knowledge of result

KCR knowledge of correct result

meta-cognitive KMC knowledge of meta-cognition

KP knowledge of performance

Table 3.2: Feedback classification in ActiveMath exercises

46 CHAPTER 3. KNOWLEDGE REPRESENTATION

Finally, each feedback can have a cost metadata, representing the penalty
for the learner’s mastery w.r.t. the focus concepts in the task. This infor-
mation is important for properly updating the Student Model, since the
estimation of learner’s mastery depends on what kind of feedback and how
much of it was given to the learner before he could accomplish the current
task.

3.3.2.1 Usage of Feedback Metadata

Each exercise is a directed graph of nodes, which represent exercise states,
and edges, which represent transitions between these states. A tutorial strat-
egy is a transformation that is applied to the exercise graph and produces
a new exercise derived from the original graph in which the new nodes and
edges might appear, and the existing ones rearranged, or even deleted.

Such a transformation does not modify the meaning of the tasks in the
exercise steps, but the way the learner can navigate through the solution
space. This is independent of whether he can repeat the attempts to solve
the task in case of failure, whether or not he receives feedback and hints of
different types and in which order.

We define a rich set of annotations for feedback having the following two
usage scenarios in mind:

1. To provide the author with a set of annotations that allow him to
manually define a rich exercise solution space that can be reused with
various tutorial strategies, where each strategy selects a subset of the
given feedback types

2. To provide a rich vocabulary of feedback types that can be generated
on the fly by an elaborate tutorial strategy using intelligent domain
reasoning tools

Consider the following easy example of a feedback strategy that can be
applied to an exercise:

• if the learner’s input in a step is incorrect, then provide him with the
feedback of a type ’Knowledge of Result’ (KR) specifying that the
answer is incorrect

• allow the student to repeat the step again

3.3. TYPES OF EXERCISE STATES 47

In order to apply such a strategy to an authored exercise, the feedback
of the type KR should be authored in the exercise solution space for each
exercise step.

Figure 3.5 shows how the graph of the easy exercise considered in the
Figure 3.2 transforms when this strategy is applied to it.

The exercise on the left hand side only accepts correct answers in order
to proceed to the next steps. In case of an incorrect answer, the student
is directly forwarded to the terminal state, containing the feedback ”You
failed!”.

The transformed exercise on the right hand side has to clone the ”Incor-
rect!” feedback node as many times as there are steps in the solution, because
each time this feedback is given the system forwards the student back to the
corresponding solution step, thus giving him another chance.

From this example we can see that the strategy can add nodes and edges
to the exercise graph, but it can also remove other nodes and edges. In
the given example the nodes ”Incorrect!” are added to each step together
with transition edges from and back to the corresponding interaction nodes.
On the other hand, the node ”You failed!” is removed together with the
transition edge from both interaction nodes.

Calculate
(2x)'

You failed! Well done!

Calculate
2(x)'

Calculate
(2x)'

Calculate
(2x)'

Well done!Incorrect!

Incorrect!

2(x)'

2

2

2(x)'

2

2

default

default
default

default

Correct! Correct!

Figure 3.5: A simple exercise graph transformed by the strategy

The feedback annotations defined above are useful for elaborate tutorial
strategies. Many of the feedback types can be generated automatically using

48 CHAPTER 3. KNOWLEDGE REPRESENTATION

intelligent domain reasoning tools capable of diagnosis of the user actions.
For example, the knowledge of result feedback (KR) can be generated know-
ing the task and the student’s answer, the KCR (correct solution) can also
be generated by the generative domain reasoner for the given task. Different
kinds of feedback on mistakes (KM) can be generated: the location of mis-
takes in the student’s answer (KML) as well as more specific error feedback
if the domain reasoner encodes buggy rules.

The exercise player in ActiveMath has a built-in mechanism for gen-
erating KR feedback, in case at least one correct answer is provided in one
of the transitions originating at the given interaction. This mechanism also
allows (in a restricted number of cases) to generate feedback of types KNM
(knowledge of number of mistakes) and KML (knowledge of mistake loca-
tion). The restriction is that in such an interaction with multiple input fields
there should be only one way to enter a correct solution. This should be
taken as a reference to compare the student’s input.

Knowledge on how to proceed (KH) can be generated on different levels,
starting from the names of concepts (rules) to be applied for the given step
to actually generating the next step.

Conceptual hints can be generated by extracting definitions or explana-
tions of participating concepts from the static content database. Examples
of automatically generated feedback using domain reasoners will be given in
the subsequent Sections.

Feedback about the student’s performance (KP) can be generated by
the system with the help of the local history of student’s actions and their
diagnosis, stored in the system.

Meta-cognitive feedback (KMC) can be generated on the fly using the
local history of student’s interactions with the system. This can be informa-
tion about the usage of hints by the student, number of trials of the single
steps, learning time for interactions of different types and other data about
meta-cognitive behavior of the student.

Some examples of meta-cognitive behavior of the student and correspond-
ing feedback that can be automatically generated by the system are shown
in the Table 3.3

The local history of the exercise process which records the relevant in-
formation about the student’s performance is stored in the Local Student

Model component, as discussed in Section 4.6

3.3. TYPES OF EXERCISE STATES 49

Observable Behaviour Generated Feedback

Student always asks for hints directly,
without even trying to solve the task

Please, try to solve the problem first and
ask for a hint only if you are in trouble

Student tries to solve the task many times
without success and is not asking for hints

Perhaps asking for a hint now will give you
an insight on how to proceed

Student asks for many hints in a row and
then submits the correct answer

Consider trying to answer after each hint,
maybe you do not need so much
assistance

Student thinks too long before providing
the answer to the task

You might consider asking for a hint or
trying an easier problem first

Table 3.3: Generating meta-cognitive feedback from observable student be-
havior

3.3.3 Interaction

An interaction element represents the actual interaction with the learner.
It may contain some text, formulas, and placeholders for different types of in-
teractive elements. These placeholders can be placed anywhere in the content
and, in particular, inside the formulas.

A special element called interaction map groups all the interactive el-
ements and maps them to the placeholders in the content. This separation
of content and interactive elements has the purpose to give easy access to
interactive elements in order to change their style or content following a par-
ticular tutorial or presentation strategy. Examples of different presentation
for blank and selection are shown in Figures 3.11 and 3.13.

We differentiate between two fundamental types of interactive elements -
blanks and selections. A blank is an interactive element that represents an
interaction with the learner in which the learner has to enter information into
one or more input fields. As opposed to the blank, a selection represents
an interaction with a learner in which the learner has to manipulate objects
that are already presented to him on the screen. Here the learner selects
one or more objects, groups the objects in some particular order, or forms
several groups of objects. We call this process selection as the result of
such manipulation consists of a list of (lists of) selected objects.

The set of possible types and presentation styles of these interactive ele-

50 CHAPTER 3. KNOWLEDGE REPRESENTATION

ments is shown in the Table 3.4.

Name Type Style Definition

blank literal literal comparison only

formula allows for semantic evaluation

item_reference link to the concept from the
knowledge base

selection mcq_single_answer radio_button_inline
radio_button_block
marking
drop_down

multiple choice questions with
only one possible answer

mcq_multiple_answer check_box_inline
check_box_block
marking

multiple choice questions with
one or more possible answer

mapping table
graphical

mapping two lists of objects

ordering reordering a list of objects

Table 3.4: Forms and presentation styles of interactive elements

3.3.3.1 Selections

Selection represents the set of choice elements one or more of which have to
be selected by the learner. There are several types of selections: single-answer
in which only one choice can be selected, multiple-answer selections in which
more then one choice can be selected, as well as orderings and mappings.
These interactive elements might be rendered in various ways depending on
the learner profile and the tutorial strategy. Presentation ranges from simple
check-boxes and radio buttons to complex graphical puzzles.

3.3.3.2 Multiple Choice Questions

There can be two types of multiple choice questions - those in which the user
can select only one option and those in which several options can be selected.

The presentation of a simple multiple choice question block is shown in
Figure 3.6. In this case, only one answer can be ticked, and a radio button
is used, in case of multiple answers check boxes are used.

3.3. TYPES OF EXERCISE STATES 51

Figure 3.6: A presentation of a multiple choice in ActiveMath

Figure 3.7 shows a representation of the multiple choice questions from
the Figure 3.6.

<task i d=” task1 ”>
<content><CMP>

Suppose you have various (continuous)
curves, all passing through two given points .

</CMP></ content>
<t r a n s i t i o n t o=” i n t e r a c t i o n 1 ”/>

</ task>
< i n t e r a c t i o n i d=” i n t e r a c t i o n 1 ”>
<content><CMP>

How do then their average slopes between these

two points differ ? <with x r e f=” s e l e c t i o n 1 ”/>
</CMP></ content>
<i n terac t ion map>
<s e l e c t i o n t ype=” mcq s ing le answer ” i d=” s e l e c t i o n 1 ”>
<cho i c e>
<CMP>All curves have the same average slope .</CMP>

</ cho i c e>
<cho i c e>
<CMP>All curves have different average slopes .</CMP>

</ cho i c e>
<cho i c e>
<CMP>Some curves have the same average slope,

some have different average slopes .</CMP>
</ cho i c e>

</ s e l e c t i o n>
</ i n terac t ion map> . . .

</ i n t e r a c t i o n>

Figure 3.7: Representation of multiple choice questions

The interaction node contains a placeholder element, called with. This

52 CHAPTER 3. KNOWLEDGE REPRESENTATION

element has a reference to the selection element that is placed inside
the interaction map. The value ’mcq single answer’ for the type attribute
stands for multiple-choice questions with single answer.

3.3.3.3 Orderings

Consider the type of selection, where the learner has to order the elements in
a list according to some criteria, as defined in the task of the exercise step.
Figure 3.8 shows the representation of a sample ordering.

< i n t e r a c t i o n i d=” step1 ”>
<content>
<CMP>Arrange the steps of a proof by induction

in the right order . <with x r e f=” order ing1 ”/></CMP>
</ content>
<i n terac t ion map>
<s e l e c t i o n t ype=” orde r ing ” i d=” order ing1 ”>
<cho i c e>
<CMP> Induction hypothesis: assume

that the statement holds for some n > 1 </CMP>
</ cho i c e>
<cho i c e>
<CMP> Anchor of induction: prove

that the statement holds for n = 1 </CMP>
</ cho i c e>
<cho i c e>
<CMP> Inductive step: prove that

the statement holds for n+ 1 </CMP>
</ cho i c e>

</ s e l e c t i o n>
</ i n terac t ion map>
</ i n t e r a c t i o n>

Figure 3.8: Sample ordering

The corresponding rendering of this ordering task in ActiveMath is
shown in Figure 3.9. The choices are presented within boxes that can be
dragged by the student for changing their order.

3.3.3.4 Mappings

Now, consider a more complex selection, in which the learner has to provide
a mapping between two selections. For example, he is given a list of functions
and the list of their derivatives and he has to link the functions from the first
list to their derivatives in the second list. The representation of this mapping
is shown in Figure 3.10.

3.3. TYPES OF EXERCISE STATES 53

Figure 3.9: The presentation of an ordering exercise in ActiveMath

< i n t e r a c t i o n>
<content>
<CMP>Pair the formulas in the left with their derivatives

in the right, by reordering the list at the right side:

<with x r e f=”mapping1”/></CMP>
</ content>
<i n terac t ion map>
<s e l e c t i o n t ype=”mapping” s t y l e=” graph i c a l ” i d=”mapping1”>
<s e l e c t i o n s t y l e=” f i x ed ”>
<cho i c e><CMP>(f(x) + g(x))′</CMP></ cho i c e>
<cho i c e><CMP>(xn)′</CMP></ cho i c e>
<cho i c e><CMP>(−cos(x) + C)′</CMP></ cho i c e>
</ s e l e c t i o n>
<s e l e c t i o n>
<cho i c e><CMP>sin(x)</CMP></ cho i c e>

<cho i c e><CMP>n · xn−1 </CMP></ cho i c e>
<cho i c e><CMP>f ′(x) + g′(x)</CMP></ cho i c e>
</ s e l e c t i o n>
</ s e l e c t i o n>
</ i n terac t ion map>
</ i n t e r a c t i o n>

Figure 3.10: Example of a mapping

54 CHAPTER 3. KNOWLEDGE REPRESENTATION

The mapping consists of two selections that are mapped onto each other.
There are two ways to present a mapping - using draggable boxes, and using
a table, as shown in Figure 3.11 .

Figure 3.11: Presentation of a mapping exercise

In the presentation with draggable boxes, the elements of the first list are
fixed and the elements of the second list can be reordered by dragging. Such
a presentation is possible only for one-to-one mappings in which the number
of elements in both selections are equal. The presentation as a table can be
used also for the cases where the number of choices in the first and second
selection are not equal or the mapping is not one-to-one, which means that
more then one element from the second list can correspond to one element
from the first list, and there can be elements from the second list that do not
correspond to any element from the first list.

3.3.3.5 Fill-in-blank

Another example of an interaction element containing fill-in-blank fields is
shown in Figure 3.12.

The interactive element blank represents an input field in which the
learner can enter the answer to the task in an exercise step. We differen-
tiate three types of blank input. Free text that has to be literally compared
to the reference value is represented by the blank of a type ’literal’. Formal
input that can be interpreted as an OpenMath expression is represented
by the blank of the type ’formula’ (default value). Finally, a reference to

3.3. TYPES OF EXERCISE STATES 55

<task i d=” task1 ”>
<content>
<CMP> Use the Chain Rule to find the derivative of the

following function: y = 1/(1− 2x)2 with respect to x .</CMP>
</ content>
<t r a n s i t i o n t o=” i n t e r a c t i o n 1 ”/>
</ task>
< i n t e r a c t i o n i d=” i n t e r a c t i o n 1 ”>
<content><CMP>

<OMOBJ><OMA>
<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMV name=”y”/>
<OMV name=”blank” x r e f=” ou t e r l a y e r ”/>

</OMA></OMOBJ>
<OMOBJ><OMA>

<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMV name=”u”/>
<OMV name=”blank” x r e f=” i nn e r l a y e r ”/>

</OMA></OMOBJ>
</CMP></ content>
<i n terac t ion map>
<blank i d=” ou t e r l a y e r ”/><blank i d=” i nn e r l a y e r ”/>

</ i n terac t ion map> . . .
</ i n t e r a c t i o n>

Figure 3.12: Representation of fill-in-blank

the domain concept from the Knowledge Base is represented by the blank

of type ’item reference’.

Th representation of a blank element does not define the way it is pre-
sented. Depending on the strategy and the preferences of the learner, differ-
ent presentations and user interfaces for the blank can be chosen. Figure 3.13
shows two different presentations for the same complex formula with blanks
whose representation is shown in Figure 3.12. In the first case the student
has to use a structured linear markup to enter formulas, in the second case
a palette-based editor is invoked to assist formula editing.

The presentation style of the blank element can be manually assigned in
the content of the exercise, as well as automatically assigned on the fly by
a presentation strategy. The set of values of the style attribute is not fixed
and can be customized.

More complex presentation strategies for blank elements are presented
in Section 4.8.

56 CHAPTER 3. KNOWLEDGE REPRESENTATION

Figure 3.13: Different presentations of blanks in ActiveMath

3.4 Transitions Between Exercise States

Each state of an exercises can contain a set of transitions pointing to fur-
ther steps. These transitions can be conditional and unconditional. Each
transition contains a pointer to the target exercise state.

A Conditional transition contains a condition to be satisfied for the
learner’s answer and a corresponding diagnosis. An unconditional transi-
tion can be originated only by a non-interactive state and contains only a
pointer to the target state.

In order to avoid conflicts in case the learner’s input matches conditions
of several transitions, they have to be ordered by the author.

Transitions are evaluated by the system in the order of their occurrence
in the transition map. Therefore, it is the responsibility of the author of an
exercise to order transitions in such a way that each transition can be possibly
reached by the system. If the set of conditional transitions in an interaction
is not covering all possible user inputs, a special transition is authored at the
end - called default transition. This transition does not have any condition
and fires in case when the user input is not matched by any other transition.

3.4.1 Diagnosis

In order to have information about the learner’s progress, we need to annotate
each possible action of the learner with some diagnosis information. This
information is placed inside a diagnosis element.

The success rate of the learner’s answer w.r.t. the task of an exercise state

3.4. TRANSITIONS BETWEEN EXERCISE STATES 57

is represented by an element called achievement with values ranging from 0.0
to 1.0. This success rate is used for several purposes. First, the achievement
defines a weight for updating the learner’s competency values in the Student
Model. Secondly, the achievement value for each step is stored in the Local

Student Model (see Section 4.6) and used by the tutorial strategies.

Some transitions may match specific incorrect answers of the learner.
These are frequent procedural and conceptual errors (CAPEs). There can be
two types of CAPEs in ActiveMath – misconceptions and buggy rules.
Buggy rules mostly indicate the application of an incorrect rule or the in-
correct application of an expert rule. Misconceptions refer to developmental
errors that happen, for example, in cases where the new knowledge to be
acquired comes in conflict with what is already known.

CAPEs are represented as items in the knowledge base and are annotated
with the relationship to the corresponding concept and with the key com-
petencies addressed by the CAPE. For more information about CAPEs in
ActiveMath see [Melis and Goguadze, 2006].

If a CAPE can be diagnosed by an exercise, the relation from the ex-
ercise to the corresponding CAPE has to be provided in two places: in the
metadata of the exercise (used by the Tutorial Component for choosing this
exercise) and in the diagnosis element in a transition matching the CAPE.
This information will be used by the Student Model to propagate the corre-
sponding penalty to the learner’s mastery computation of the related concept.
In order to refer to a CAPE the relation element with the type ’diagnoses’
is used. In fact, the relation to a CAPE in the metadata can be generated
automatically, given it is provided in a diagnosis of some transition within
the exercise. It is only needed as a top level metadata, since the Tutorial

Component does not look inside the content of the learning objects when
selecting them, but only checks their metadata.

Figure 3.14 shows an excerpt from an ontology of the domain of fractions,
in which the CAPEs are linked to the corresponding concepts using a relation
of a type ’of’. The exercises that diagnose these CAPES have a relation of
a type ’for’ to the corresponding domain concepts and a relation of a type
’diagnoses’ to the CAPEs they diagnose.

58 CHAPTER 3. KNOWLEDGE REPRESENTATION

Figure 3.14: Excerpt from an ontology of the fractions domain.

The examples and exercises that can help to remediate the CAPEs are
linked to the CAPEs using a relation of a type ’against’.

Figure 3.15 shows the representation of the misconception M1, in which
the learner considers the numerator and denominator as independent parts of
a fraction. This element refers to the corresponding concepts of the fractions
domain using ’of’ relations.

<cape i d=”M1” t ype=”misconcept ion ”>
<metadata>
<r e l a t i o n t ype=” o f ”><r e f x r e f=” f r a c t i o n s / f r a c t i o n ”/></ r e l a t i o n>
<r e l a t i o n t ype=” o f ”><r e f x r e f=” f r a c t i o n s /numerator”/></ r e l a t i o n>
<r e l a t i o n t ype=” o f ”><r e f x r e f=” f r a c t i o n s /denominator ”/></ r e l a t i o n>

</metadata>
<CMP> Numerator and denominator are

independent parts of a fraction . </CMP>
</ cape>

Figure 3.15: Representation of the misconception M1

Figure 3.16 shows the source of the exercise in which the transition match-
ing the particular wrong answer or the learner has a relation of a type ’di-

3.4. TRANSITIONS BETWEEN EXERCISE STATES 59

agnoses’ pointing to the identifier of the corresponding misconception. The
exercise also encodes the ’for’ relation to the concept of fraction comparison.

<e x e r c i s e i d=”diagnos ing exc M1”>
<metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” f r a c t i o n s / comparison”/></ r e l a t i o n>
<r e l a t i o n t ype=” diagnose s ”><r e f x r e f=” f r a c t i o n s /M1”/></ r e l a t i o n>
</metadata>
< i n t e r a c t i o n i d=” i n t e r a c t i o n 1 ”>

. . . Which comparison is correct ? . . .
<i n terac t ion map>
<s e l e c t i o n>
<cho i c e>3/5 < 3/7</ cho i c e>
<cho i c e>3/5 = 3/7</ cho i c e>
<cho i c e>3/5 > 3/7</ cho i c e>

</ s e l e c t i o n>
</ i n terac t ion map>
<t rans i t i on map>
<t r a n s i t i o n t o=” choice1 wrong ”>
<d i a gno s i s>
<r e l a t i o n t ype=” diagnose s ”><r e f x r e f=” f r a c t i o n s /M1”/></ r e l a t i o n>
</ d i a gno s i s>
<cond i t i on> . . . </ cond i t i on>
</ t r a n s i t i o n>
</ t rans i t i on map>
</ i n t e r a c t i o n>
</ e x e r c i s e>

Figure 3.16: Exercise diagnosing the misconception M1

Since it is not always possible, to match all possible answers of the learner,
it is recommended to define a default transition to be triggered in case none
of the conditional transitions match the learner’s answer. If such a transition
is not defined, and the learner’s answer does not match any of the defined
transitions, the finite state machine of the exercise just stays in the same
state and the action of the learner is ignored.

In case of an incorrect answer or in case of a hint request, the diagnosis
can explicitly encode the average penalty value for the competencies involved
in the learner’s answer. The penalty is represented using the cost element
and has float values from 0.0 to 1.0.

3.4.2 Condition

An element condition represents conditions that have to be satisfied by the
learner’s answer. The condition consists of one or more compare elements

60 CHAPTER 3. KNOWLEDGE REPRESENTATION

that represent comparisons of the learner’s answer to the reference values.
Comparisons can be simple and complex in structure.

Simple comparisons. Simple comparisons are represented using a compare
predicate containing the reference value to be compared to the learner’s an-
swer. The compare predicate can be extended with a context attribute that
defines the mathematical evaluation context, as described in more detail in
Section 3.4.4. There are three basic contexts defined for all domains of ex-
ercises: syntactic, numeric and semantic. In case of a syntactic context,
the learner’s answer is literally compared to the reference value. A numeric
comparison is used for comparing real numbers modulo some epsilon, rep-
resented as an attribute of the compare element. A semantic comparison is
used to check whether the learner’s answer and the reference value are se-
mantically equivalent. Such an equivalence can be validated by a Computer
Algebra System, employed as the semantic evaluation by ActiveMath. If
the context attribute is omitted, a syntactic context is used by default.

In case the learner has to submit multiple inputs to the system in one
step, e.g. an answer to multiple choice questions or to fill in several blanks,
a grouping element composite is used as a container of single comparison
elements. A composite condition is considered satisfied if and only if all
component comparisons are satisfied. In case it is not important to evalu-
ate all components of a composite comparison but only some of them, the
composite element can be annotated with a map attribute, containing a list
of positions of single inputs that have to be evaluated. The rest of inputs
will then not be evaluated by the system.

If the learner’s answer consists of several elements, they are compared to
the list of reference values in the order of their occurrence. If the order is
not important, the value of the attribute ordered of the element composite

is set to ”false”. The default value of this attribute is ”true”, which is used
by the system, if the attribute is omitted in the representation.

The order of transitions in the transition map is important when eval-
uating the same expression successively in different contexts. For example,
if the first transition contained a condition comparing the learner’s answer
to the reference value semantically and the second transition contains a con-
dition comparing the learner’s answer to the reference value syntactically,
then the second transition would never be reached by the system. However,
assume a syntactic comparison transition is followed by a semantic compar-

3.4. TRANSITIONS BETWEEN EXERCISE STATES 61

ison transition. Then the second transition fires with the learner’s answer
only if the condition of the first transition is not satisfied. Therefore, if the
second transition fires, we already know that the first transition did not fire,
so the learner’s answer is not syntactically equal to the correct solution, but
semantically equivalent.

Complex constraints. In case of more complex constraits upon the learner’s
answer, the composite element can contain a single expression representing
a complex constraint upon the learner’s answer. It is represented as a math-
ematical formula (using the OpenMath format as for any mathematical
expression in ActiveMath), possibly consisting of a Boolean combination
of atomic predicates. An example of a complex constraint is shown in Fig-
ure 3.22.

3.4.2.1 Evaluating Multiple Choice Questions

Conditions for evaluating multiple choice questions are represented by com-
posite comparisons, containing as many elements, as there are choices in the
selection. Each atomic comparison compares the learner’s answer for the
current choice to 1 if the choice has to be selected and to 0 otherwise. Al-
ternatively, it is possible to represent more complex constraints consisting of
Boolean combination of atomic predicates, as it is shown in Section 3.4.2.4
for blanks.

Consider the example of a multiple choice from the Figure 3.7. The
condition matching the correct answer is shown in the Figure 3.17. Here, the
first and the third choice are selected, and the second choice is left unchecked.

<cond i t i on>
<composite>
<compare>1</compare>
<compare>0</compare>
<compare>1</compare>

</ composite>
</ cond i t i on>

Figure 3.17: Condition for the correct answer in a multiple choice

62 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.4.2.2 Evaluating Mappings

Mappings can be modeled as two-dimentional selections. In case of a mapping
with dimensions - m× n, the number of atomic comparisons will be m · n.

Consider the case of a mapping exercise from Figure 3.10. Figure 3.18
shows the matrix of values matching the learner’s answer in this mapping.

Figure 3.18: Evaluation matrix for a mapping

The corresponding composite comparison is shown in Figure 3.19. The
matrix is entered as a flat list of zeros and ones.

<cond i t i on>
<composite>
<compare>1</compare><compare>0</compare><compare>0</compare>
<compare>0</compare><compare>1</compare><compare>0</compare>
<compare>0</compare><compare>0</compare><compare>1</compare>

</ composite>
</ cond i t i on>

Figure 3.19: Condition matching a mapping answer

3.4.2.3 Evaluating Ordering

A special case of a mapping exercise is an ordering exercise. In such exercises
the list of choices is mapped to itself. The correct answer to the ordering
from the Figure 3.9 is to reorder the first and the second choices.

3.4. TRANSITIONS BETWEEN EXERCISE STATES 63

Therefore, we need a condition representing mapping of choices from the
original order 1,2,3 into 2,1,3. In our representation of mapping comparisons,
this transformation is represented by a matrix: 0 1 0

1 0 0
0 0 1

Figure 3.20 shows a representation of the corresponding condition.

<cond i t i on>
<composite>
<compare>0</compare><compare>1</compare><compare>0</compare>
<compare>1</compare><compare>0</compare><compare>0</compare>
<compare>0</compare><compare>0</compare><compare>1</compare>
</ composite>

</ cond i t i on>

Figure 3.20: Condition for the correct answer in an ordering

3.4.2.4 Evaluating Blanks

In order to evaluate blanks, the compare element is used as well. This
element can have a context attribute, specifying the type of comparison,
as described in Section 3.4.4. If the learner has to fill in several blanks
in one step, that have to be evaluated independently from each other, the
corresponding condition element contains a composite grouping element
that consists of a list of comparisons, each corresponding to the respective
blank. A sample condition is shown in Figure 3.21.

<cond i t i on>
<composite>
<compare c on t e x t=” syn t a c t i c ”>1</compare>
<compare c on t e x t=” syn t a c t i c ”>2</compare>
<compare c on t e x t=” semantic ”>1 + 2</compare>
</ composite>

</ cond i t i on>

Figure 3.21: Simple condition for multiple free inputs

64 CHAPTER 3. KNOWLEDGE REPRESENTATION

In this condition, the first input of the learner is syntactically compared
to number 1, the second input is syntactically compared to the number 2,
and the third input is semantically compared to 1 + 2.

In order to allow for an arbitrarily complex evaluation of multiple free in-
puts, any constraint involving the learner’s answers can be used. Figure 3.22
shows a sample condition, in which the first input of the learner can be ar-
bitrary, but the second input must be twice the first one and the third input
must be three times the first one.

<cond i t i on>
<composite>
<compare c on t e x t=” semantic ”>

λx, y, z.(y = 2 · x)&(z = 3 · x),
true

</compare>
</ composite>
</ cond i t i on>

Figure 3.22: Complex Boolean condition for multiple free inputs

We use a lambda expression for representing this constraints, in which the
bound variables x, y and z are automatically mapped by the system to the
corresponding learner’s answers. The result of the expression which involves
the learner’s answers is compared with the reference result. In our case, the
result is Boolean and it is compared to true.

3.4.3 Evaluation using a CAS

In order to compute the diagnosis of the learner’s answer one has to formulate
a query to an intelligent mathematical service. Computer Algebra Systems
are among such services used by ActiveMath [Büdenbender et al., 2002a].
As we see below, these systems are generally not sufficient to provide feedback
according to human like solution steps, but they are still useful for a quick
correct/incorrect evaluation.

The most frequent query is to check the correctness of the learner’s answer
by comparing it semantically to the task expression. In order to formulate
such a query we need to have the answer of the learner and one of the
following:

• a task to be performed by the learner

3.4. TRANSITIONS BETWEEN EXERCISE STATES 65

• an expected correct answer and the way to compare it to the given
answer

This information is a way to represent the mathematical context of the
task. In general such a context specifies which domain specific production
rules have to be applied to the task.

Computer Algebra Systems use various commands in order to specify
what to do with a mathematical expression. The most frequently used ones
are different variants of ’evaluate’, ’simplify’ and ’solve’. The mathematical
context of such a task is sometimes fixed for a particular command, or can
be passed to the command as a parameter.

Surprisingly, Computer Algebra Systems develop no systematic investi-
gation to the mathematical context within which the expression has to be
manipulated. CAS commands sometimes use additional arguments to spec-
ify a fixed context only. The design of commands is not homogenious, argu-
ments of CAS commands that deal with semantics of mathematical context
are mixed with other parameters that need to be introduced due to technical
limitations of the system. Thus it is necessary for the user to learn the syntax
and programing constructs of each particular CAS.

There are historical and practical reasons for such design decisions in
CAS. Computer Algebra Systems were not designed for remote use as back
engines for an intelligent tutoring system. They were designed to be used as
mathematical tools, directly interacting with the human user. Irregularities
within the usage of different commands, notational overload and the pref-
erence for many commands with simple a structure are due to facilitate an
easy and direct interaction with the human user.

In ActiveMath, it is necessary to restrict the evaluation of the learner’s
answer to a particular context in order to provide a proper diagnosis of his
answer. For example, we need to detect if the learner just repeats the problem
statement rather than to give a correct answer, or makes a mathematically
valid transformation, that does not get him closer to the solution. But a
Computer Algebra System does not have any means to trace the solution
process in a stepwise manner.

Consider an example: the task is to differentiate a function, and the
system needs to check whether the learner has already applied all the dif-
ferentiation rules, such that only some algebraic simplification is left to be
applied. In order to do this, the learner’s answer has to be semantically com-
pared to the correct solution without applying differentiation rules. So the

66 CHAPTER 3. KNOWLEDGE REPRESENTATION

CAS has to be blocked for the application of differentiation. In some CASs
there is a possibility to program such context checks.

Figure 3.23 shows a screen shot of Maxima, where an expression with a
differentiation is evaluated. In step (%i1) Maxima only simplifies common
members and expands brackets, without applying differentiation. In the step
(%i2) the system also performs differentiation.

Figure 3.23: Evaluation in different contexts in Maxima CAS

In this particular case computing the differentiation or just expanding
w.r.t. the arithmetics rules is triggered by the second argument of the com-
mand ’ev’. This is one of several variants of the ’evaluate’ command of
Maxima. The values ’expand’ and ’diff’ of this parameter represent the
mathematical context of the task, and the ’ev’ command itself represents a
type of action to be performed.

Since CASs are external for ActiveMath and the availability of them
is changing with time, there is a need to be able to connect to several dif-
ferent CASs. In order to be able to use multiple CASs as back-engines for
providing a diagnosis of the learners answer, there is the need to introduce a
generic notion of a CAS query that abstracts from concrete CAS-dependent
commands. The back and forth mapping between this generic format and
the syntax of the concrete CAS has to be provided via a so-called phrase-
book, which consists of transformations that perform such a mapping. See
[Cohen et al., 2005a] for a description of phrasebooks realized within the Le-
ActiveMath project.

3.4. TRANSITIONS BETWEEN EXERCISE STATES 67

3.4.4 Context Evaluation

As introduced in Section 1.1 above, under a context of the task we under-
stand a reference to the set of mathematical expressions that represent either
rewriting rules or operations that can be applied to transform a mathematical
expression. In Computer Algebra Systems, the context evaluation is usually
realized by restricting the amount of operations to be applied to the expres-
sion by explicitely forbidding some of them. In the case of a CAS one can
not always specify the particular derivation rules that can be allowed for a
CAS to use. In general, Computer Algebra Systems are pretty unsystematic
with respect to restricting the evaluation of a mathematical expression and
they do not provide a generic way of doing so.

Another problem with CAS evaluation is that different CASs have dif-
ferent notions of simplification and provide different solutions to the same
problem. Many problems are caused by differences in notation. Unless the
participating systems use some form of a semantic knowledge representation
for formulas, such notational confusions might have as a consequence the
wrong evaluation of mathematical expressions [Davenport, 2008].

Specifying the mathematical context, independently of any particular
CAS and making sure they are understood by all CASs is a step towards
solving the interoperability problem.

Examples. OpenMath content dictionaries are designed in such a way
that the operations that belong to the same mathematical theory are grouped
within one content dictionary. So, sometimes it is adequate to use content
dictionaries as contexts.

For example, we can define a context ’arith1’ that describes the context of
an arithmetic transformation as the list of symbols from the ’arith1’ content
dictionary 3:

’arith1’ := {”lcm”, ”gcd”, ”plus”, ”minus”, ”unary minus”, ”times”, ”divide”,
”power”, ”abs”, ”sum”, ”product”}

Another content dictionary ’transc1’4 that defines transcendental func-
tions can be used as the appropriate context:

’transc1’ := { ”log”, ”ln”, ”exp”, ”sin”, ”cos”,”tan”, ”sec”, ”csc”, ”cot”,
”sinh”, ”cosh”, ”tanh”, ”sech”, ”csch”, ”coth”, ”arcsin”, ”arccos”, ”arctan”, ”arc-
sec”, ”arccsc”, ”arccot”, ”arccosh”, ”arctanh”, ”arcsech”,”arccsch”, ”arccoth” }

3see http://www.openmath.org/cd/arith1.ocd
4see http://www.openmath.org/cd/transc1.ocd

68 CHAPTER 3. KNOWLEDGE REPRESENTATION

Then we can build a context ’elementary functions’ by unifying ’arith1’
and ’transc1’.

’elementary functions’ := ’arith1’ ∪ ’transc1’

One can also specify the context by defining rewrite rules in the format of
OpenMath objects. The rewrite rules can be introduced by specifying their
symbol name or by giving formal OpenMath representation of the rule.

For example the context ’diff rules’ can be defined as:

’diff rules’ := {”const term rule”, ”const mult rule”, ”lin term rule”, ”sum rule”,
”prod rule”, ”power rule”, ”exp rule”, ”exp function rule”, ”quot rule”, ”chain rule”,
”sin rule”, ”cos rule”, ”tan rule”, ”arcsin rule”, ”arccos rule”, ”arctan rule”}.

where, for instance, the ”sum rule” can be represented as

<OMOBJ xmlns=” ht tp : //www. openmath . org /OpenMath”>
<OMS cd=” d e r i v a t i o n r u l e s ” name=” sum rule ”/>
</OMOBJ>

or as

<OMOBJ xmlns=” ht tp : //www. openmath . org /OpenMath”>
<OMA>
<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMA>
<OMS cd=” ca l cu l u s 1 ” name=” d i f f ”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” plus ”/>
<OMV name=” f ”/><OMV name=”g”/>

</OMA>
</OMA>
<OMA>
<OMS cd=” ar i t h1 ” name=” plus ”/>
<OMA>
<OMS cd=” ca l cu l u s 1 ” name=” d i f f ”/><OMV name=” f ”/>
</OMA>
<OMA>
<OMS cd=” ca l cu l u s 1 ” name=” d i f f ”/><OMV name=”g”/>
</OMA>
</OMA>

</OMA>
</OMOBJ>

A context can be referred to by a single identifier (e.g., ’arith1’ as above)
which is supposed to be known in the phrasebook. The names of these single
functions or rules have to be mapped from OpenMath to the syntax of the
external system and back. The set of available contexts with their description
should be made available for exercise authors.

3.4. TRANSITIONS BETWEEN EXERCISE STATES 69

3.4.5 Generic Query Format

Based on the research conducted within the European Project LeActive-
Math [Goguadze, 2005], a format for queries to intelligent mathematical
services has been developed by the author, in which a query consists of the
following parts:

• action - an abstract representation of the type of action to be applied
to the mathematical expression(s)

• a (list of) expression(s) in OpenMath format, the input expressions
of the query

• context (or a list of contexts) describing the mathematical operations
that should be used

• an (optional) number of iterations to be used by the reasoning system
(only applicable to rule-based systems)

Providing a generic classification of types of actions that an abstract in-
telligent reasoning service might perform and defining hierarchies of contexts
is beyond the scope of this work, although this would be beneficial.

Instead, we concentrate on queries that ActiveMath needs in order to
provide a sensible diagnosis of the learner’s answer.

Currently two main CAS queries that we use are ’evaluate’ and ’compare’.
The architecture of the exercise sub-system of ActiveMath allows to keep
this set of queries extensible. We have defined a large set of queries for the
communication with external domain reasoners, that are capable of provid-
ing a more detailed diagnosis of the learner’s answer which we described in
Section 3.4.8.

The set of contexts is also extensible. Teachers can define their own con-
texts that consist of a formal representation of rewrite rules for mathematical
expressions. The generic rule-based engine, connected to the ActiveMath
system is able to employ teacher-defined rules for defining the context of
evaluation. This engine is a customized version of the YACAS Computer
Algebra System, which will be discussed in more detail in Section 4.3.5.

In order to show the usage of the context parameter of a query, consider
the query ’evaluate’, used in the example (%i1) as shown in Figure 3.23
and the expected results of this query in two different contexts - ’arith1’

70 CHAPTER 3. KNOWLEDGE REPRESENTATION

and ’diff rules’, representing arithmetic simplification and the set of rules for
calculating derivatives respectively.

Given the expression

f(x) = x · (x+ 1) (3.1)

The query

query(’evaluate’,
d

dx
(x(x+ 1)), ’arith1’)

should result in

d

dx
(x2 + x)

since for this expression only the arithmetic transformation rules are applied,
and the query

query(’evaluate’,
d

dx
(x(x+ 1)), ’diff rules’)

should result in

1 · (x+ 1) + x · (1 + 0)

since all the differentiation rules were applied, but no further arithmetic
simplifications follow.

If we use the union of the two contexts ’diff arith’=’arith1’ ∪ ’diff rules’,
the query

query(’evaluate’,
d

dx
(x(x+ 1)), ’diff arith’)

results in

2 · x+ 1

The ’evaluate’ query is mostly issued while running an interactive exer-
cise, if the system needs to verify whether the learner’s input satisfies the
conditions provided in the current exercise step. Using this query the system
can compute a specific diagnosis of the learner’s action in the exercise even
if the correct answer to each step is not specified in the exercise content.

3.4. TRANSITIONS BETWEEN EXERCISE STATES 71

Suppose, we know the task T of the learner, the learner’s input I and the
context C of the task. By issuing a query ’evaluate’ one obtains the correct re-
sult for this taskR = query(’evaluate’, T, C). Then, the query(’evaluate’, (I =
R), C) returns the correctness status of the learner input w.r.t. the task T .
The latter query is a special case of the Boolean query ’compare’, that is
used to check for equivalence of two expressions in a given context. This
query is represented as follows: query(’compare’, (I, R), C). In general how-
ever, an equivalence is not necessarily represented by an arithmetic equality,
but it is specified by the context. For example, if the evaluation context is is
’propositional logic’, the equivalence means the equivalence of two formulas
of propositional logic.

3.4.6 Interoperability between different CASs

Since the format of a query does not depend on the syntax of a particular
Computer Algebra System, such queries can be reused by the system when
there are different CASs available. For each new CAS that is connected to the
ActiveMath system, a new dedicated service can be defined, as described
in Section 4.3.2. This service prepares the query before being sent to the
CAS, so the service includes among others a phrasebook that translates the
query to the format of the CAS and also translates the resulting expression
from the CAS back into the OpenMath format.

In the LeActiveMath project, a connection to several CASs has been
established [Cohen et al., 2005a, Goguadze, 2005] and we have phrasebooks
for each of them [Cohen et al., 2005b].

A common issue concerning the interoperability of different CASs is that
the evaluation of the same expression in different CASs might lead to different
results. This is a well known problem in the CAS community. For example,
the arcsin function returns different results in different CASs, since some
CAS define the arcsin function to return an angle between −π and π and
others between 0 and 2π.

In ActiveMath we do not bind the query actions to the particular CAS
in the representation of the query. It is the task of the phrasebook routine
to map the query action into the appropriate CAS command for each CAS,
connected to ActiveMath.

72 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.4.7 Diagnosis using a CAS

The basic diagnosis of a CAS provides a binary correct/incorrect diagnosis.
But more often then not we need a more informative diagnosis.

In addition to check the correctness, authors can encode constraints for
typical errors in particular steps and have the system perform a semantic
comparison of the learner’s answer to these typical errors. LeActiveMath
authors used this technique for several types of exercises.

Figure 3.24 shows several kinds of feedback, based on the CAS diagnosis.
In the first trial the learner was diagnosed with a typical error, where he forgot
to put the exponents in front as factors when differentiating monomials.
A specific transition matching this answer and all other equivalent wrong
answers was authored for this exercise step.

Figure 3.24: Diagnosis and feedback generation with CAS

In the second trial the learner has entered a correct, but not fully simpli-
fied fraction. This has been detected by a transition, that contains a semantic
comparison and the corresponding feedback was presented. Finally, in the
last trial the correct answer was given and the transition containing the syn-
tactic comparison fired with the corresponding feedback. Note that in this
exercise the part of the feedback of the type KR (knowledge of result) is auto-
matically generated by the system. It consists of a decoration of the learner’s
answer with different colors that indicate the correctness of the answer. The
color of the generated decoration depends on the value of the achievement

of the learner, annotated within the diagnosis element of the transition.

3.4. TRANSITIONS BETWEEN EXERCISE STATES 73

3.4.8 Further Intelligent Diagnoses

In order to facilitate the generation of intelligent feedback we defined the
following queries to the abstract domain reasoner (the abbreviations have
the meanings: T - Task, LA - Learner’s Answer, C - context):

• query(’getExpertSolutionPaths’, T, C,N) returns the list of the first N
steps of each solution path beginning at the current task T in a given
context C. If N = 1, we obtain the list of possible next steps.

• query(’getStandardSolutionPath’, T, C,N) returns the list of the first
N steps of the shortest solution path.

• query(’getNextStep’, T, C) returns the next step in the standard solu-
tion path. It is a special case of the previous query in case N = 1.

• query(’getResults’, T, C,N) - returns the list of final nodes of the first
N steps of all solution paths.

• query(’evaluate’, T, C) - returns the final result of the computation in
the given context

• query(’getUserSolutionPath’, (T, LA), C,N) - returns the shortest path
from the point T to the point LA in the solution space (this would
include erroneous paths if the context contains buggy rules).

• query(’compare’, (T, LA), C) - returns the correctness value of the learner’s
answer in the given context.

• query(’getRelevance’, (T, LA), C,N) - returns the relevance measure
(the step is relevant if the learner gets closer to the final solution).

• query(’getConcepts’, T, C,N) - returns the reference to the domain con-
cepts related to the task.

• query(’getMisconceptions’, (T, LA), C,N) - returns the references to
the misconceptions of the learner (if any have been detected).

• query(’getNumberOfStepsLeft’, T, C) - gets the number of steps left
until the solution is reached (following the shortest solution path).

74 CHAPTER 3. KNOWLEDGE REPRESENTATION

• query(’isFinished’, (T, I), C) - returns the Boolean indication of whether
the learner’s answer can be accepted as a final step of the solution.

These queries serve the diagnosis of the user’s actions and the subsequent
generation of intelligent feedback. Having detailed information on the po-
sition of the learner in the solution space of the exercise, knowing which
concepts are participating in the step and which misconceptions the learner
has, provides the basis for the generation of feedback of different granular-
ity and hints of different types. Even just presenting the diagnosis to the
learner will give him much more information then just the correct/incorrect
statement.

We have formulated our queries for the generation of feedback dimensions
in Section 3.3.2 in order to generate elaborate tutorial feedback following the
research of Narciss [Narciss, 2006]

Consider again the expression 3.1 from the example in Section 3.4.5, for
which we formulate some more queries from the list above.

Figure 3.25 shows the results of the query:

query(’getResults’, ((x+ 1)x)′, ’diff arith’, 2)

This query returns the list of nodes collected from all possible expert
solution paths after two iterations of the rule engine. The corresponding
nodes are highlighted in green. Such a query serves the generation of the
next step to be presented to the learner as a hint.

Figure 3.26 shows the solution graph containing possible erroneous paths
introduced by the buggy product rule for function differentiation. Consider
results of some queries of this solution graph in different contexts.

query(’compare’, (((x+ 1)x)′, 1), ’diff arith’) = false

Comparing the task with the number 1 within this context results in
false, but

query(’compare’, (((x+ 1)x)′, 1), ’diff arith buggy’) = true.

Here, the buggy context ’diff arith buggy’ includes the context ’diff arith’
and in addition the following buggy product rule : (f(x)·g(x))′ = f ′(x)·g′(x).

query(’compare’, (((x+ 1)′ · x)′, 1), ’diff arith’) = true

3.4. TRANSITIONS BETWEEN EXERCISE STATES 75

((x+1)*x)’

(x^2+x)’
(x+1)’*x+(x+1)*x’

(x’+1’)*x+(x+1)*x’

arith

(x^2)’+x’ (x+1)’*x+(x+1)

(1+1’)*x+(x+1)*x’

(x^2)’+1

2x+x’

2x+1

(1+0)*x+(x+1)*x’

x+(x+1)*1

x+(x+1)

...

product_rule

sum_rule

linear_rule

power_rule

power_rule

Figure 3.25: Applying the query ’getResults’

The rest of the computation, starting from the application of the buggy
rule, can be still performed correctly with respect to the expert context.
Using these queries we can diagnose the learner’s errors and his position in
the solution graph.

In the following sections we will see more examples of diagnosis and feed-
back generated with the help of the above queries.

Another important task is to allow for partially authored exercises, giv-
ing the teacher an opportunity to author his exercise manually and request
intelligent diagnosis and some automated feedback generation from the ex-
ercise content. In subsequent sections we will see examples of such a hybrid
approach to exercises.

3.4.9 Domain Reasoner Queries in the Exercise Tran-
sitions

Some of the evaluative queries to the intelligent reasoning components that
can be used for diagnosis, such as the ’evaluate’ or ’compare’, can be directly
used in the body of the condition element. Figure 3.27 shows an example
of using domain reasoner queries inside the body of a condition. The first
query asks the domain reasoner whether the learner’s answer is the final step

76 CHAPTER 3. KNOWLEDGE REPRESENTATION

((x+1)*x)’

(x^2+x)’
(x+1)’*x+(x+1)*x’

arith

(1+1’)*x+(x+1)*x’

(x^2)’+1

2x+x’

2x+1

(1+0)*x+(x+1)*x’

x+(x+1)*1

x+(x+1)

...

product_rule

sum_rule

linear_rule

power_rule

power_rule

(x+1)’*x’

(x’+1’)*x’

1

buggy_product_rule

sum_rule

...

(x^2+x)’

(x’+1’)*x+(x+1)*x’
(x+1)’*x+(x+1)

Figure 3.26: Buggy rules in the exercise solution space

of the solution in the given context.
The second query compares the learner’s answer with the task equation

in the given context. It will match any equation, equivalent to the task.

3.4.10 Special Requests

Some conditions match actions of the learner that are not just the answer
to a task, e.g., different hint or solution requests, requests to finish or give
up the exercise. In order to represent these requests using the same Open-
Math format as for other formal input of the learner, we have introduced
an ActiveMath-internal OpenMath content dictionary, which defines the
collection of user requests, named org.activemath.exercises.user requests.
This collection defines the following symbols, representing different learner’s
requests: ’hint’, ’process hint’, ’conceptual hint’, ’product hint’, ’next’, ’giveup’,
or ’finish’. Note that, depending on the tutorial strategy it can happen that
the learner receives a hint even if he does not request it. Therefore, it is
sometimes necessary for the system to know, whether the learner did actu-
ally request a hint or not. This information is collected by the local user
model, as described in Section 4.6.

A sample representation for a hint request is shown in the Figure 3.28.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS77

<t r a n s i t i o n x r e f=” f i n a l c o r r e c t ”>
<d i a gno s i s><achievement va l u e=” 1 .0 ”/></ d i a gno s i s>
<cond i t i on>
<query ac t i on=” i sF i n i s h ed ” c on t e x t=”math . l i n e q ”>

3∗x+5=9+x

</query>
</ cond i t i on>
</ t r a n s i t i o n>
<t r a n s i t i o n x r e f=” co r r e c t ”>
<d i a gno s i s><achievement va l u e=” 1 .0 ”/></ d i a gno s i s>
<cond i t i on>
<query ac t i on=”compare” c on t e x t=”math . l i n e q ”>

3∗x+5=9+x

</query>
</ cond i t i on>

</ t r a n s i t i o n>

Figure 3.27: Matching correct answers with domain reasoner

<cond i t i on>
<compare>
<OMOBJ>
<OMS cd=”org . activemath . e x e r c i s e s . u s e r r e qu e s t s ” name=” hint ”/>

</OMOBJ>
</compare>
</ cond i t i on>

Figure 3.28: Representation of a hint request

3.5 Modifications and Extensions of the Ex-

ercise Representations

The exercise subsystem of ActiveMath supports extensions and modifica-
tions of the exercise language.

There are two main reasons for extending the exercise format. On the
one hand, there can be additional annotations necessary in order to enable a
specific functionality of an exercise, which is not possible given the expressive
power of the standard ActiveMath exercise language.

On the other hand, there could be some specific tutorial behavior, which is
representable by means of the standard exercise language, yet it requires a too
verbose representation. Such high verbosity can be avoided by extracting the
needed tutorial behaviour from the actual representation into an automated
procedure. Such a procedure can be applied to a basic exercise in order to

78 CHAPTER 3. KNOWLEDGE REPRESENTATION

automatically transform it into a more complex one. It modifies the exercise
automaton in which it adds or removes transitions and feedbacks. A tutorial
strategy that describes the behavior of the system in response to learner’s
actions can employ such procedures. The advantage of this approach is that
more then one strategy can be applied to the same basic exercise.

The extension of the exercise representation can be realized by attaching
an exercise generator element to the exercise. Below we present some
examples of frequently used extensions.

3.5.1 Parameterized Exercises using Randomizer

The Randomizer generator is used for authoring parameterized exercises, for
which the author can define the generic problem statement using variables in
places of concrete numbers or mathematical expressions, together with the
solution space of this exercise.

When defining such a general exercise, the author can employ the Randomizer
generator that substitutes random values from a given value range for the
parameter variables. Figure 3.29 shows a simple example.

<e x e r c i s e g en e r a t o r name=”Randomizer”>
<parameter name=” constant ”>

A,1,2,3,4,5,6,7,8,9,10
</parameter>
<parameter name=” constant ”>

B,1,2,3,4,5,6,7,8,9,10
</parameter>
<parameter name=” constant ”>

A plus B, A+B
</parameter>
<parameter name=” eva lua t ed cons tant ”>

A plus B evaluated, A+B
</parameter>

</ e x e r c i s e g en e r a t o r>

Figure 3.29: Sample exercise generator representation

This generator accepts two kinds of parameters: so-called constants and
evaluated constants. A parameter (V, S) consists of a variable V , and the
set of admissible values S. Each instance of the exercise instantiates the
parameter by a randomly chosen value from S.

For instance the variable A plus B denotes an OpenMath expression,
which after substitution represents the sum of the numbers substituted for

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS79

the constants A and B. The so-called evaluated constants represent ex-
pressions that are evaluated by a CAS at each exercise instance and the
result of this evaluation is used in the exercise. So, the value of the variable
A plus B evaluated is equal to the value of the sum of A and B.

Figure 3.30 shows the usage of the variables A plus B representing the
sum expression and the A plus B evaluated representing the final answer of
a calculation.

<t rans i t i on map>
<t r a n s i t i o n t o=” f i n a l c o r r e c t ”>
<d i a gno s i s><achievement va l u e=” 1 .0 ”/></ d i a gno s i s>
<cond i t i on>
<compare c on t e x t=” syn t a c t i c ”>A plus B evaluated</compare>

</ cond i t i on>
</ t r a n s i t i o n>
<t r a n s i t i o n t o=” s t ep chea t i ng ”>
<d i a gno s i s><achievement va l u e=” 0 .0 ”/></ d i a gno s i s>
<cond i t i on>
<compare c on t e x t=” syn t a c t i c ”>A plus B</compare>

</ cond i t i on>
</ t r a n s i t i o n>
<t r a n s i t i o n t o=” s t e p c o r r e c t ”>
<d i a gno s i s><achievement va l u e=” 0 .8 ”/></ d i a gno s i s>
<cond i t i on>
<compare c on t e x t=” semantic ”>A plus B</compare>

</ cond i t i on>
</ t r a n s i t i o n>

</ t rans i t i on map>

Figure 3.30: Transitions in the randomized exercise

The first transition matches the final correct answer - the sum of the
instances of the variables A and B. In this transition the learner’s answer is
syntactically compared to the number A + B. In the second transition the
learner’s answer is syntactically compared to the problem statement in order
to find out whether the learner is just repeating the problem statement. The
last condition checks whether the learner’s answer is semantically equivalent
to the task.

The possible values of the randomization variables do not have to be
integers or reals but can be any mathematical expressions. In the extended
version of the Randomizer, developed in a Student Project at the University
of Saarland, one can randomize over integer and real intervals, and over sets
of functions [Dudev and Palomo, 2007].

80 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.5.2 Static and Dynamic Language Mappings

One of the standard generators used for static transformation of exercises
from other XML formats into the ActiveMath format is the XSLT Gener-
ator.

This generator takes two parameters: a custom exercise representation
and an XSLT stylesheet, 5 and transforms this custom representation into
the ActiveMath language.

Figure 3.31 shows an example of a custom exercise format for very simple
fill-in-blank exercises, powered by the XSL generator.

<e x e r c i s e>
<metadata> . . .</metadata>
<e x e r c i s e g en e r a t o r name=” Xslt ”>
<parameter name=” s t y l e s h e e t ” h r e f=” . . / data/ s imple− f ib . x s l ”/>
</ e x e r c i s e g en e r a t o r>
<problem>

Find the derivative of a function

f(x) = x · sin(x)
</problem>
<hint> Use the product rule . </ hint>
<s o l u t i o n> f ′(x) = x′ · sin(x) + x · (sin(x))′; . . . </ s o l u t i o n>
<answer> sin(x) + x · cos(x) </answer>
<s t e p c o r r e c t> This step is correct .</ s t e p c o r r e c t>
<a l l c o r r e c t> Well done ! </ a l l c o r r e c t>
<wrong> This step is incorrect . </wrong>
<proceed> Please, proceed with your solution: </proceed>
<repeat> Please, try again: </ repeat>
</ e x e r c i s e>

Figure 3.31: Custom format for simple fill-in-blank exercises

This format specifies the templates for problem statement, possible hints,
solution, correct answer, and several templates for feedback in case of correct
or incorrect answers. The XSL stylesheet defines rules that transform such
an exercise template into an ActiveMath exercise representation. Note
that the XSL stylesheet can also define some default feedback phrases, which
can be used if the author is happy with the default feedback. In this case
authoring the exercise takes even less time.

This extension allows for creating custom XML high-level descriptive lan-
guages for different kinds of exercises alongside with the transformation into
the ActiveMath exercise language. Also, the XSLT generator supports

5See http://www.w3.org/TR/xslt

http://www.w3.org/TR/xslt

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS81

the integration of any other exercise language, that can be statically mapped
into the ActiveMath exercise format.

The OMDoc Quiz module is a part of the OMDoc representation format
for mathematical documents [Kohlhase, 2006]. This module defines a simple
representation language for one-step multiple choice questions.

Figure 3.32 shows a sample representation of an OMDoc multiple choice
exercise. Each exercise can consist of several choice-answer blocks. The
choice element contains the statement of a choice, and the answer element
represents the corresponding feedback of the system. Each answer element
is annotated with a verdict attribute defining the correctness of the current
choice. Exercises can also contain hint and solution elements.

<e x e r c i s e>
<CMP>Problem Statement</CMP>
<hint><CMP> Hint statement</CMP></ hint>
<s o l u t i o n><CMP>Solution Statement</ s o l u t i o n>
<mc>
<cho i c e><CMP>choice1</CMP></ cho i c e>
<answer v e r d i c t=” true ”><CMP>Correct answer 1</CMP></answer>
</mc>
<mc>
<cho i c e><CMP>choice2</CMP></ cho i c e>
<answer v e r d i c t=” f a l s e ”><CMP>Incorrect answer 2</CMP></answer>
</mc>
<mc>
<cho i c e><CMP>choice3</CMP></ cho i c e>
<answer v e r d i c t=” true ”><CMP>Correct answer 3</CMP></answer>
</mc>
</ e x e r c i s e>

Figure 3.32: Mapping of the omdoc quiz module

This representation implicitly implies that the implementation of the quiz
module automatically combines the feedbacks for all the choices that are se-
lected by the learner. In our representation each combination of the learner’s
answers yields a unique next state, therefore in order to handle such an exer-
cise, we have to create nn states of combinations of answer elements, in case
of n choices.

Such a transformation can be performed by a static XSLT, but in order to
avoid the combinatorial explosion we chose another way where the mapping
is generated dynamically.

An Exercise Generator for the OMDoc Quiz module, receives the
learner’s input in a step and generates a corresponding feedback on the fly,

82 CHAPTER 3. KNOWLEDGE REPRESENTATION

creating a new node that combines the feedbacks corresponding to each se-
lected choice.

3.5.3 Hierarchical Exercise Representations

There is one implicit construct in the exercise representation that allows
to include a hierarchy in the representation of exercises: If the task of a
problem has several subtasks, then several subgoals are introduced together
with unconditional transitions to all subgoals from the main task node. If
more then one unconditional transition is authored in an exercise node, the
system follows all of these transitions in the order of their occurrence. The
Exercise Subsystem of ActiveMath will then play each sub-problem in
the sequence in which the transitions occur. It will follow the first transition,
then run all the consequent steps until the final node of the subgraph is
reached and finally return back to the second transition and so on.

However, such a representation would not allow for the full flexibility, that
the non-hierarchical representation offers. For example, a student can not
provide the final answer to the problem from inside a subgoal. Figure 3.33
shows a hierarchical exercise graph. In this case, allowing the final solution
inside the subgoal would mean to define the transition, depicted by a dashed
arrow.

task1
Calculate (2x)'

feedback22

Incorrect!

feedback21
All Correct!

Interaction1 ihteraction2

task2
Calculate (2x)'

2(x)'

2

2

default default

feedback11
Correct!

task:
task1
task2

feedback22

Incorrect!

Figure 3.33: Hierarchical exercise representation

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS83

However, there could be conceptual problems that arise with such a rep-
resentation. For example, if there is a direct transition possible from inside
the first subgoal to the third one, it is not clear whether one should consider
the second subgoal solved in this case, or should the system go back to it
after solving the third one?

In order to avoid these inconsistencies, we decided to ”linearize” the hi-
erarchical solutions by fixing the order of subgoals to tackle. Namely, all the
subgoals will have to be solved in the order of their occurrence.

Furthermore, since hierarchical solutions are natural for the class of prob-
lems we address in this thesis, we suggest a simple representation format for
hierarchical solutions. An excerpt from this representation is shown in Fig-
ure 3.34. In this format, a solution consists of sequence of steps, represented
by step elements. Each step has a textual content, within the content ele-
ment and the next step element, containing the correct answer for the step
and a pointer to the next step. Alternatively to the next step element, a
step can contain one or more subtask elements containing pointers to next
steps.

For supporting this representation, we provide an XSLT stylesheet, which
can be applied to hierarchical solutions to produce exercise representations
in the ActiveMath format.

Alternatively, hierarchical solutions can be stored directly in the database
and the transformation can be applied at runtime, using the XSLT generator.

<s o l u t i o n>
<s tep i d=” step1 ”>
<content>Differentiate the function: (2 · x+ 1)′ .</ content>
<next s t ep x r e f=” step2 ”>(2 · x)′ + (1)′</ nex t s t ep>

</ step>

<s tep i d=” step2 ”>
<content>The next step is: (2 · x)′ + (1)′</ content>
<subtask x r e f=” subtask21 ”/>
<subtask x r e f=” subtask22 ”/>
<subtask x r e f=” subtask23 ”/>

</ step>
. . .

</ s o l u t i o n>

Figure 3.34: Simple format for hierarchical solutions

84 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.5.4 Attaching Tutorial Strategies

A tutorial strategy can be manually assigned to an exercise by attaching
the exercise generator which referrs to the identifier of the strategy to be
used. The value of the attribute type has to be set to ”strategy”. A tutorial
strategy consists of a pedagogical strategy, represented by a program that
transforms the exercise automaton to induce the needed tutorial behavior and
a presentation strategy that defines graphical parameters such as placement
of feedbacks, highlighting, folding and other presentational aspects that play
a role in perception of the exercise content.

A tutorial strategy of an exercise can be also assigned by the Tuto-
rial Component of ActiveMath, instead of being included into the con-
tent. In such cases the Exercise Subsystem creates the corresponding
exercise generator element on the fly and inserts it into the exercise con-
tent, before playing the exercise.

3.5.5 Atomic Strategies

Consider now some examples of simple strategies used in ActiveMath and
their various combinations.

A KR strategy inserts the feedback of type ’KR’ after each learner inter-
action. It outputs the learner’s answer and provides the correct/incorrect
feedback, by decorating the learner’s answer, and specifying the error loca-
tion in case of multiple answers.

A KCR strategy inserts the feedback of type ’KCR’ if the learner’s answer
is incorrect and forwards the learner to the next step.

A KH (knowledge on how to) strategy inserts a sequence of procedural
hints on how to proceed that can be presented on request of the learner.

A KC (knowledge on concepts) strategy inserts a sequence of conceptual
hints of different types that can be presented on request of the learner.

A KM (knowledge of mistakes) strategy inserts error related feedback if
the learner’s answer is incorrect.

The AUC (answer until correct) strategy returns the learner to the same
step until he provides the correct answer or gives up the exercise.

The Exercise Generator classes which implement corresponding strate-
gies, can be reused when implementing more complex strategies, as described
in Section 4.7. For example, the Exercise Generator for the KR strategy
is reused for the KRKCR strategy, and the Exercise Generator for the AUC

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS85

strategy is reused for the KRAUC strategy.

3.5.6 Strategies in MatheFührerschein and LeActive-
Math

The German project MatheFührerschein running at the Fachhochschule
Dortmund in collaboration with the ActiveMath group aims at preparing
the school graduates for technical college or university. In order to achieve
this goal, a collection of learning materials that contains a large set of in-
teractive exercises is served by the ActiveMath system. Each interactive
exercise consists of a single step and uses a simple tutorial strategy, shown
in Figure 3.5.6.

Figure 3.35: Exercise strategy in MatheFührerschein

This strategy was proposed by educationalists. The learner enters his so-
lution for the problem and clicks the button ”Stimmt’s?” (”Is it correct?”). If
the answer is correct, the system acknowledges the correctness by highlight-
ing the correct answer in green. If the answer is incorrect, the flag feedback is
presented as well, highlighting the incorrect answers in red. Additionally, the
button for requesting the correct solution is presented. However, the learner
is still allowed to go back to the interaction and try answering again.

Another simple tutorial strategy, shown in Figure 3.5.6, was used within
the EU-project LeActiveMath. After each incorrect answer the learner
receives the correct/incorrect feedback, including specific error feedback in
case a typical error is detected. Then it returns to the same step to try again.

86 CHAPTER 3. KNOWLEDGE REPRESENTATION

Sequences of hints of increasing level of detail followed by the correct solution
can be authored for each step of the exercise. The system will automatically
count the number of hints already given in order to provide the subsequent
hint at the next request. Additionally, the student can always give up the
exercise, using the dedicated giveup button.

Figure 3.36: Exercise Strategy in LeActiveMath

3.5.7 Composite Strategies in ATuF and ALOE

Some tutorial strategies need additional parameters for identifying specific
steps of the exercise. For example, we have defined strategies in the projects
ATuF (Adaptive Tutorial Feedback) and ALOE (Adaptive Learning with
errOneous Examples) that differentiate between two phases in some exercises.
Each of these phases uses a different tutorial sub-strategy.

Although such a two-phase strategy is completely independent of the
exercise representation, the strategy needs to be provided with the identifier
of the exercise node at which the second phase starts in order to change the
tutorial procedure.

In case of the ALOE strategy, it is sufficient to specify the identifier
of the step at which the second phase of the exercise begins. The strategy
should not hardcode the identifiers of particular exercise steps, since it has
to work for all exercises.

Figure 3.37 shows the representation of such a language extension in which
the strategy generator uses the parameter second phase id.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS87

<e x e r c i s e i d=”eewh PaulEx”>
<metadata> . . . </metadata>
<e x e r c i s e g en e r a t o r name=” a loe ” t ype=” s t r a t e gy ”>
<parameter name=” second phase id ” x r e f=”eewh PaulEx phase2”/>

</ e x e r c i s e g en e r a t o r>
<task> . . .
</ e x e r c i s e>

Figure 3.37: ALOE two-phase exercise strategy

The screenshot of the exercise as presented to the student is shown in
Figure 3.38, where the first phase of the exercise consists of a multiple choice
question which aims at the identification of the wrong step in a given erro-
neous solution. In the second phase the learner has to correct the erroneous
step.

Figure 3.38: ALOE exercise rendering

A specific presentation strategy is used in ALOE exercises. The feedback
is always presented immediately after the learner’s answer. Irrelevant previ-
ous steps are folded, but not removed from the screen. The learner can still
get back to the previous steps by unfolding them. A new hybrid interactive
element is introduced in the second phase: a multiple choice question is com-
bined with a free input. First, the learner has to click on the step he wants

88 CHAPTER 3. KNOWLEDGE REPRESENTATION

to modify - at this stage all the steps are clickable and act as multiple choice
questions. After the learner clicks on one step, the other steps are fixed and
they are not clickable any more, the current step is crossed through and an
input field appears.

In case of the ATuF strategy the second the phase is triggered in a similar
way as in ALOE - a parameter for the tutorial strategy is defined pointing to
the initial node of the second phase. However, in this case more annotations
need to be assigned to the second phase sub-strategy, such as the references
to the different kinds of feedbacks.

<e x e r c i s e i d=” Represent Peter ”>
<metadata> . . . </metadata>
<e x e r c i s e g en e r a t o r name=” atu f ” t ype=” s t r a t e gy ”>
<parameter name=” sequence ”>ch, ce, kcr</parameter>
<parameter name=” second phase ” x r e f=” Erwe i t e rn Klaus s tep2 ”>
<r e f t ype=”kcr ” x r e f=” Erwe i t e rn K lau s so lu t i on ”/>
<r e f t ype=”ch” x r e f=” Erwe i t e rn Klaus conc h in t ”/>
<r e f t ype=”ph” x r e f=” Erwe i t e rn Klaus proc h in t ”/>
<r e f t ype=”ce ” x r e f=” Erwe i te rn Klaus conc exp ”/>
<r e f t ype=”pe” x r e f=” Erwe i te rn Klaus proc exp ”/>

</parameter>
</ e x e r c i s e g en e r a t o r>
<task> . . .
</ e x e r c i s e>

Figure 3.39: Additional relation types in an ATuF exercise

Using these annotations, the strategy can define the sequence and the
types of feedbacks presented in a concrete instance of the exercise, depending
on the value of the sequence parameter. The value of this parameter can be
modified by the Tutorial Component of ActiveMath on the fly. Without
the application of the strategy all the feedbacks would have been presented
in the order of their occurrence.

Figure 3.39 shows a sample representation of such strategy parameters
for the ATuF strategy.

The screenshot of the resulting exercise is shown in Figure 3.40.
ATuF employs a complex graphical presentation strategy. The first phase

is a multiple choice question, the second part has a complex graphical layout.
The user interaction and its results are presented on the left, and the feedback
and hints of different types are presented on the right of the screen, as shown
in Figure 3.40. As in the case of ALOE, the previous steps are folded, but
the learner has a possibility to unfold them and look at them.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS89

The presentation strategy of ATuF introduces a new kind of interactive
element, in order to facilitate the learner’s interaction with the system. The
interactive element consists of a drop-down selection. After the learner selects
an appropriate response, a structured template is presented to the learner,
which contains blanks at some places.

Figure 3.40: ATuF exercise rendering

This exercise can be reused with a different strategy, in which the value
of the parameter sequence is changed. In this case the strategy will change
the sequencing of different kinds of feedback in a local feedback loop.

For more information about the usage of strategies in the projects ATuF
and ALOE see [Eichelmann et al., 2008] and [Tsovaltzi et al., 2009] respec-
tively.

3.5.8 Exercises with local strategies

The next natural step is to build a mechanism which allows to use different
tutorial strategies for different parts of the same exercise. In order to do so,
we apply each of them locally to the exercise at the places where they are
needed. Hence, we allow to insert the exercise generator element not only

90 CHAPTER 3. KNOWLEDGE REPRESENTATION

at the top level of an exercise, but within any exercise step. The starting
point of the strategy is the node at which the local strategy generator is
inserted. There can be more then one final node of the local strategy, since
the sub-exercise to which such local strategy is applied can have several
terminal states.

Alternatively, the local strategy generators can be listed at the beginning
of the exercise parametrized by the identifiers of all the initial and final
nodes. In this case we need to specify only once that the same local strategy
is applied to several sub-exercises, instead of putting the generator element
in the body of each initial node.

Figure 3.41 shows the sample source code of a local strategy, called
’KRKCR-N’. This strategy gives the learner several trials for the task, each
time presenting some KR feedback which tells the learner whether his an-
swer is correct or not. After a number of incorrect trials, the correct solution
(KCR) is given. The number N of trials is one of the parameters of the
strategy. Another parameter is the identifier of the node, containing a KCR
feedback. KR feedbacks are automatically generated, based on the diagnosis
of the learner’s answer. Since the strategy is used locally, the identifiers of
initial and final nodes are among the parameters of the strategy.

<e x e r c i s e g en e r a t o r name=”KRKCR−N” t ype=” s t r a t e gy ”>
<parameter name=” i n i t i a l n o d e ” x r e f=” c r o s s a x i s−y i n t e r a c t i v e ”/>
<parameter name=” f i na l node ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=” f i na l node ” x r e f=” c r o s s ax i s−y co r r e c t ”/>
<parameter name=” kcr id ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=”N”>2</parameter>

</ e x e r c i s e g en e r a t o r>

Figure 3.41: Sample representation of local strategy

3.5.9 Multi-Exercises in MAPS MOSSAIC

The exercise language of ActiveMath was employed to represent a multi-
exercise which has been reused by several complex tutorial and presenta-
tion strategies within the project MAPS MOSSAIC (MAthematical Problem
Solving and MOdelling: Scaffolding Self-Regulated Acquisition of Interdis-
ciplinary Competencies). Under a multi-exercise we understand a collection
of exercises that are integral parts of one problem. The order of execution
of each of these exercises and the tutorial strategy used for each of them is

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS91

controlled by another top-level strategy. Tutorial strategies developed in this
project have varied the sequencing of sub-exercises, representation of tasks
and presentation and sequencing of feedback and hints. For more information
on the research goals of the project see [Polushkina, 2009].

Figure 3.42 shows a structured interaction interface in one of the phases
of this complex strategy. On the left we see templates for the statements of
the subgoals of the current exercise phase. The statements of the subgoals
which are not yet solved have placeholders for the missing values, for the
solved subgoals these placeholders are filled with the correct answers.

Figure 3.42: MAPS MOSSAIC strategy example

In order to enable such a subgoal presentation, additional information
needs to be attached to the exercise representation, as shown in Figure 3.43.
Namely, the strategy parameter with the name ’subgoals’ is introduced,
which consists of the reference to the main task and the list of subgoals,
represented using a subgoal element. Each subgoal has two child elements
- the template element which is used by the presentation strategy while
the subgoal is not yet solved, and the answer element which replaces the

92 CHAPTER 3. KNOWLEDGE REPRESENTATION

template as soon as the subgoal is correctly answered. If the learner fails
to solve the subgoal correctly after several trials, the strategy informs the
learner of the correct answer and replaces the template element with the
answer.

As we can see in Figure 3.42, there are several graphical structure ele-
ments, such as a horizontal bar indicating the learner’s progress, a list of
subgoals on the left, a custom placement of feedback and hints. All these
graphical components are realized by a presentation strategy which uses the
metadata of the feedbacks and the additional annotations of the content by
the tutorial strategy.

<e x e r c i s e g en e r a t o r t ype=” s t r a t e gy ” name=” s e l f r e g ”>
<parameter name=” subgoa l s ”>
<task x r e f=” s e l f r e g t a s k 2 ”/>
<subgoa l x r e f=” subgoa l2 1 ”>
<template><with s t y l e=” s e l f r e g 2 ”>Entfernung Haus - Tankstelle:

<t ab l e>
<t r><td>Landstrasse <with s t y l e=”blank”/> km</ td></ t r>
<t r><td>Autobahn <with s t y l e=”blank”/> km</ td></ t r>

</ t ab l e></with>
</ template>
<answer>
<with s t y l e=” s e l f r e g 2 ”>Entfernung Haus - Tankstelle:

<t ab l e>
<t r><td>Landstrasse <with s t y l e=”blank”>12,5</with> km</ td></ t r>
<t r><td>Autobahn <with s t y l e=”blank”>10</with> km</ td></ t r>

</ t ab l e></with>
</answer>

</ subgoa l> . . .
</parameter> . . .
</ e x e r c i s e g en e r a t o r>

Figure 3.43: Representation of subgoal templates

Apart from the sophisticated tutorial strategies for each of the sub-exercises,
we implemented several global strategies for navigating between the sub-
exercises in order to realize the meta-cognitive aspects of the MAPS MOS-
SAIC strategies. Figure 3.44 shows a so-called self-regulation panel where
the learner chooses himself the order of solving the subgoals. This is followed
by an automatic reordering of the subgoal templates in the consequent steps.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS93

Figure 3.44: MAPS MOSSAIC subgoal ordering

Note that the additional information needed for specific tutorial behavior
is represented within the parameters of the tutorial strategy. Therefore, all
the exercises can also be reused using the default strategy.

See Appendix B for the more detailed description of the important as-
pects of the MAPS MOSSAIC strategies which were fully realized by the
ActiveMath system.

3.5.10 Feedback generation

In this section we describe, which feedback can be automatically generated
in a hybrid exercise.

First of all, some standard feedback commonly used in a tutorial dialogue
can be inserted automatically. For instance, flag feedback can be generated
automatically based upon the diagnosis of the learner’s answer. Other feed-
back types that can be inserted automatically are the requests to repeat the
step, motivational feedback which warns about unfinished task and other
domain independent feedback.

We have extended the exercise language such that it supports insertion of
requests for automatically generated feedback in any exercise step, using the
feedback generator element. Figure 3.45 shows an example representation
of the commonly used automatic KCR feedback, placed in the body of a
feedback. It takes the current task and the context as parameters and

94 CHAPTER 3. KNOWLEDGE REPRESENTATION

generates the correct solution for the task.

<feedback>
<feedback metadata>
<t ype category=”product ” va l u e=”KCR”/>

</ feedback metadata>
<f e edback genera tor c on t e x t=” semantic ”>

<parameter name=” task ”>(x3 − 5x2 − 6x)′</parameter>
</ f e edback genera tor>

</ feedback>

Figure 3.45: Feedback generation using CAS

A specific kind of KR feedback that is frequently used in ActiveMath
exercises is generated from the content of the previous interaction, in which
the learner’s answer is substituted into the interactive elements and deco-
rated automatically using colors or other decoration styles depending on the
correctness of the answer. An example of such generated feedback is shown,
e.g., in Figure 3.24. This feedback can be represented as a special kind of
content element within any feedback. This element has an empty body
and an attribute from specifying the id of the previous interaction, as well as
an attribute input decoration specifying the type of decoration for the user
input. This content element can be possibly followed by another content

element representing additional custom feedback, as shown in Figure 3.46.

<feedback i d=” in te rac t i on1 wrong ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” i n t e r a c t i o n 1 ” input de co ra t i on=”automatic ”/>
<content><CMP>Not quite, you forgot to put the exponents as

factors in front . Try again:</CMP>
</ content>
<t r a n s i t i o n t o=” i n t e r a c t i o n 1 ”/>

</ feedback>

Figure 3.46: Commonly used generated KR feedback

Another kind of automatically generated feedback is based upon an intelli-
gent diagnosis of the learner’s answer if a domain reasoner service is available.
The feedback generation architecture can send queries to intelligent domain
reasoner services in order to generate single feedbacks.

Figure 3.47 shows the representation of a next-step hint to be generated.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS95

<feedback>
<feedback metadata>
<t ype category=”product ” va l u e=”KH”/>

</ feedback metadata>
<f e edback genera tor c on t e x t=”math . l i n e q ”>
<parameter name=” task ”>3x+ 5 = 9 + x</parameter>

</ f e edback genera tor>
</ feedback>

Figure 3.47: Feedback generation using a domain reasoner

Even though the domain reasoner services are remote and do not neces-
sarily have their own internal state, each query needs some initial parameters
that might depend on the state and on the runtime parameters of the ex-
ercise. For instance, the query getNextStep, requesting the computation of
the next possible correct steps needs a current task as input parameter.

In order to use problem related procedural feedback generation within
the authored exercise, the author should use the specific Exercise Genera-

tor called DRGenerator. This Exercise Generator takes care of keeping
track of the domain reasoner related runtime parameters, such as a current
task. In this case it is enough to specify the initial task as the parameter of
feedback generation, and it will be updated automatically in a subsequent
request for feedback generation.

3.5.11 Local Exercise Generators in a Curve Sketching
Exercise

Here we describe another complex exercise that serves as a good illustration of
the combined approach to authoring interactive exercises in ActiveMath,
and a cross-domain exercise diagnosis powered by domain reasoners. Both
aspects can currently only be achieved with the ActiveMath system.

As a part of a standard calculus course, students learn to perform the so-
called curve sketching. The students have to be able to sketch the curve of a
function, investigating important features of the function. They use standard
calculus techniques such as finding zeros of the function, local extremum,
monotonicity intervals, inflection points, and so on.

In ActiveMath we offer students to perform this procedure within an
interactive exercise. This exercise consists of several sub-exercises, in which
the student is given the standard tasks used in curve sketching. Each of the
sub-exercises is either authored manually or generated automatically with

96 CHAPTER 3. KNOWLEDGE REPRESENTATION

the help of some domain reasoner. In this exercise several domain reasoners
were used for different sub-exercises.

< !−− c r o s s i n g a x i s x −−>

<task i d=” crossax i s−x ”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / root ”/></ r e l a t i o n>

</ task metadata>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

3 . Now find the points at which the graph of the

function is crossing the x axis . In order to

do this, solve the following equation:

</parameter>
<parameter name=” context ”>algebra . equations . polynomial</parameter>
<parameter name=” task ”>

x3 − 5x2 − 6x = 0
</parameter>

</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=” crossax i s−y ”/>

</ task>

Figure 3.48: Representation of domain reasoner-powered sub-exercise

Figure 3.48 shows the knowledge representation of a sub-exercise, gener-
ated using a Domain Reasoner. In order to represent such a sub-exercise,
the exercise generator element is employed. This generator has several
parameters: the name of the Exercise Generator, a problem statement for
the exercise, a reasoning context and a formally represented task.

Figure 3.49 shows the knowledge representation of a manually authored
sub-exercise, parametrized with a tutorial strategy. The parameters of the
corresponding exercise generator include the name of the strategy, iden-
tifiers of initial and final nodes and a custom parameter, representing the
maximal number of trials for each step of a sub-exercise, running with this
strategy.

3.5. MODIFICATIONS AND EXTENSIONS OF THE EXERCISE REPRESENTATIONS97

< !−− c r o s s i n g a x i s y −−>

<task i d=” crossax i s−y ”>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>4 . Now find the coordinates of crossing axis

y . In order to do this, calculate f(0):</CMP>
</ content>
<t r a n s i t i o n t o=” c r o s s a x i s−y i n t e r a c t i v e ”/>

</ task>
< i n t e r a c t i o n i d=” c r o s s a x i s−y i n t e r a c t i v e ”>
<e x e r c i s e g en e r a t o r name=”KRKCR−N” t ype=” s t r a t e gy ”>
<parameter name=” i n i t i a l n o d e ” x r e f=” c r o s s a x i s−y i n t e r a c t i v e ”/>
<parameter name=” f i na l node ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=” f i na l node ” x r e f=” c r o s s ax i s−y co r r e c t ”/>
<parameter name=” kcr id ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=”N”>2</parameter>

</ e x e r c i s e g en e r a t o r>
<content> . . .</ content>
<i n terac t ion map> . . .</ i n terac t ion map>
<t rans i t i on map> . . .</ t rans i t i on map>

</ i n t e r a c t i o n>

Figure 3.49: Representation of a sub-exercise using a tutorial strategy

The sub-exercises represented in 3.48 and 3.49 are shown in Figure 3.50.
The presentation on the left shows the domain reasoner-powered exercise, in
which the automatically generated next step hint and a complete generated
solution are shown. The presentation on the right shows the application of
the KRKCR strategy on the next sub-exercise, in which after 2 unsuccessful
trials, the learner is presented with the correct answer.

Figure 3.50: Calculating intersections with coordinate axes

See Appendix A for a full commented listing of this hybrid multi-exericse.

98 CHAPTER 3. KNOWLEDGE REPRESENTATION

3.6 Interoperability of the Exercise Format

In the following we describe the interoperability of the ActiveMath exercise
format with the known standards for knowledge representation of interactive
exercises and the relations to other exercise languages.

3.6.1 Compliance to IMS QTI Standard

In order to make the ActiveMath exercises available to a wider community
than only ActiveMath users it is wished to export the exercises of Active-
Math to some widely used standard knowledge representation, in order to
run these exercises within systems other than ActiveMath platform.

The most popular full-featured platform for eLearning representation is
IMS Global Learning Consortium Standardization Platform. It consists of
IMS Content Packages, SCORM Sequencing of learning materials and Learn-
ing Object Metadata (LOM) for instructional objects. Another IMS stan-
dard is Question and Test Interoperability (QTI) which is a general purpose
format for interactive exercises.

Until recently QTI was a format for representing single step multiple-
choice exercises. In version 2.0, the QTI format has been extended to support
multi-step exercises. Another format for interactive exercises was developed
at the University of Edinburgh [Mavrikis and Maciocia, 2003] for the eLearn-
ing system WALLiS. This format has been partially derived from the first
versions of ActiveMath exercise language and shares notational similarity
with QTI. Later, this format gave rise to MathQTI - the extension of the QTI
standard, which enabled semantic evaluation of fill-in-blank exercises by us-
ing the semantic markup OpenMath format for mathematical formulas, just
as in the exercise language of ActiveMath. For more information about
the described formats and their interoperability, see [Goguadze et al., 2006].

Thus, QTI-2 with MathQTI extension is a good candidate for a general-
purpose standard which the ActiveMath exercises can be exported to.
Such export leeds to the partial loss of information, since QTI does not
represent all the metadata classifying the tasks and feedbacks.

A transformation tool exporting an earlier version of the ActiveMath
exercise format was built by a Bachelor Project at University of Saarland
under the supervision of the author.

3.6. INTEROPERABILITY OF THE EXERCISE FORMAT 99

3.6.2 Relation to Other Exercise Languages

Another widely used format for interactive exercises is the CTAT format of
so-called example-tracing tutors (former pseudo-tutors). Using the CTAT
tool one can author the exercise by demonstrating and recording student’s
behavior and the reaction of the system [Koedinger et al., 2004]. The tool
is ”recording” such an intelligent behavior into a so-called behavior graph.
The nodes of this graph are the exercise steps and the edges are the tran-
sitions simulating the learner’s answer. Each step can be annotated with
one or more hints, which are ordered sequentially at runtime. Also, so-called
knowledge labels are attached to the links in the behavior graph to refer to
the underlying domain concepts.

From the description above it is easy to see that the CTAT behavior
graphs can be isomorphically mapped into the exercise language of Active-
Math. The only obstacle on the way to implement such a transformation is
that the specification of the CTAT format is not publicly available.

There have been recent developments that provide three mechanisms to
generalize the behavior graphs, as described in [Aleven et al., 2009]. The
first mechanism allows the teacher to define the arbitrary nested groups of
steps that should be ordered or unordered. This can be realized in Active-
Math exercises by a tutorial strategy. The second mechanism extends the
evaluation capabilities by allowing the author to specify the range of student
inputs by providing the numeric range, set of values, or a regular expression.
The third mechanism specifies how one step depends on others by attaching
”Excel-like” formulas to the links in a behavior graph.

Similar mechanisms have been implemented in the tutorial strategies of
the MAPS MOSSAIC project, in which the custom constraints between some
types of the exercise states were programmed as a part of the strategy behav-
ior. In the exercise representation we avoid the custom relationships between
the exercise states, which influence the exercise behavior at runtime. Such a
representation is not declarative and involves programming, which increases
the authoring effort.

Another exercise format, called MathDox was developed at the Tech-
nical University of Eindhoven (TUE) in the Netherlands. The extensions,
made to the MathDox language made it quite similar to the ActiveMath
exercise language. In this language the exercises also consist of states and
transitions with the difference that the conditions use MONET queries 6 for

6http://monet.nag.co.uk/monet/

100 CHAPTER 3. KNOWLEDGE REPRESENTATION

evaluating the learner’s answer.
In order to enable the interoperability of MathDox and ActiveMath

exercises within the LeActiveMath project, a dynamic Exercise Gene-

rator was implemented by the author, and a remote TUE service answering
some dedicated queries of ActiveMath has been implemented by TUE.

The mechanism for this interoperability is based on a statefull communi-
cation. The exercise system of ActiveMath requests every new step of the
exercise from the MathDox exercise repository, and sends to the MathDox
the learner’s answer represented in OpenMath format. In order to keep the
state of the exercise additional state information is passed by the Math-
Dox to the ActiveMath, which passes it back in the next step request.
The requested new step is returned to the ActiveMath, converted to the
ActiveMath exercise format on the fly and rendered for ActiveMath.

Note that the exercise is not only rendered in ActiveMath in order to
use its presentation facilities, but the learner’s results also update the Stu-

dent Model. In order to achieve such a proper updating of the Student Mo-

del, the MathDox exercises have included the ActiveMath metadata into
their own metadata e.g., educational metadata such as PISA competencies,
difficulty and learningcontext of the exercise tasks.

Thus, properly annotated MathDox exercises, stored in the MathDox
repository in TUE, can be used from within the ActiveMath system and
inform the student model of ActiveMath about the learner’s progress.

Chapter 4

Exercise System Architecture

The Exercise Subsystem is responsible for interpreting the knowledge rep-
resentation of interactive exercises, as described in the Chapter 3 and also
for running these exercises in the ActiveMath user interface. Running an
exercise typically includes the presentation of the exercise task to the learner,
evaluating the results of learner interaction and choosing or generating the
feedback and the task for the next step.

The Exercise Subsystem has a modular architecture, initially defined in
[Goguadze et al., 2005a] and [Palomo, 2006]. Since then it has been signifi-
cantly extended. We will show how the separation of components contributes
to the reusability of exercises and why it makes it easy to implement different
extensions to the functionality realized via tutorial and presentation strate-
gies.

The central component of the Exercise Subsystem is the Exercise

Manager. It traverses the graph of the exercise nodes and passes the evalu-
ation and feedback generation to the Diagnoser and Exercise Generator

respectively. The Exercise Controller is a layer between the Exercise

Manager and the rest of ActiveMath. It handles the basic exercise ses-
sion and collects all the necessary parameters to be communicated between
the Exercise Subsystem and the rest of ActiveMath. It also employs
the presentation system of ActiveMath for rendering the steps in the GUI
(browser).

Figure 4.1 shows the basic architecture of the Exercise Subsystem. The
workflow can be described as follows:

• the Exercise Controller receives an exercise together with an ID of

101

102 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

the tutorial strategy and other exercise parameters

• the Exercise Controller initializes the exercise session and passes
the exercise and the parameters to the Exercise Manager

• the Exercise Manager queries the Exercise Generator for the initial
state and passes the received initial state to the Exercise Controller

• the Exercise Controller applies the presentation strategy and sends
the ready initial state to the User Interface

• the initial state of the exercise is presented to the learner

• the learner submits his answer to the system via the User Interface

• the Exercise Controller receives the learner’s input and passes it to
the Exercise Manager

• the Exercise Manager sends the learner’s input to the Diagnoser

• the Diagnoser sends queries to the evaluation services and receives the
diagnosis of the learner’s answer

• the Diagnoser sends the obtained diagnosis to the Exercise Manager

• the Exercise Manager updates the state of the Local Student Model

which stores the runtime information needed for tutorial strategies

• the Exercise Manager queries the Exercise Generator for the next
state

• based upon the diagnosis the Exercise Generator selects (generates)
the next step of an exercise (consulting the tutorial strategy and the
Local Student Model) and returns it to the Exercise Manager

• the Exercise Manager sends the next step to the Exercise Control-

ler

• the Exercise Controller updates the Student Model of Active-
Math with metadata and diagnosis of the current step

• the Exercise Controller applies the presentation strategy and passes
the ready step to the User Interface

Below we explain the function of each component in detail.

4.1. EXERCISE CONTROLLER 103

Tutorial
Component

Student
Model

Knowledge
Base

Exercise
Manager

User
Interface

Presentation
Engine

Presentation
Strategies

Tutorial
Strategies

Diagnoser

Exercise
GeneratorLocal Student

Model

Feedback
Generator

Query
Broker

Domain
Reasoner

Domain
Reasoner

CAS
strategy ID

exercise

user input

event

user data

step result

presentation strategy

user input query

resultdiagnosis

local data

feedback

exercise state

strategy

step

diagnosis

step presentation

Exercise
Subsystem

Exercise
Controller

exercise
parameters

user
input

step result

Figure 4.1: Architecture of the exercise subsystem

4.1 Exercise Controller

The Exercise Controller is a part of the Model-View-Controller archi-
tecture of ActiveMath. This architecture separates application logic (con-
troller) from application data (model) and the presentation of that data (view
layer), as described in [Ullrich et al., 2004].

The Exercise Controller establishes the connection of the Exercise

Subsystem to the User Interface and other parts of the ActiveMath
system. The task of the Exercise Controller is to handle the basic session
management of the exercise and invoke the Exercise Manager with needed
parameters. It also applies the presentation strategy to the exercise step
and passes the result to the view layer of the presentation architecture of
ActiveMath.

An exercise can be started by the learner request from the ActiveMath
content collection, and it can be initialized by the Tutorial Component of
ActiveMath. The Exercise Controller initializes the exercise session,
creates a new instance of the Exercise Manager and passes it the exercise
representation and other initial parameters. It also produces an Exercise

Started event. Events are special messages to the rest of the system deliv-
ering the necessary data to the Student Model and other interested compo-
nents of ActiveMath system (see section 4.5). After each step, the Exer-

cise Controller passes the result of the step to the Presentation System

104 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

and issues an Exercise Step event, that contains the metadata of the step
and the diagnosis of the learner’s answer. After the last step, an Exercise

Finished event is fired.

4.2 Exercise Manager

The Exercise Manager is the central component that manages the tutorial
dialogue within an exercise session. It interprets the knowledge representa-
tion of the exercise and the tutorial strategy, and has direct access to the
generative and evaluative components of the Exercise Subsystem.

After being initialized by the Exercise Controller, the Exercise Mana-

ger requests the Exercise Generator for the initial exercise step. The
representation of the initial exercise step, received from the Exercise Ge-

nerator is then sent to the Exercise Controller, that applies the needed
presentation strategy and sends it further to the User Interface via the
Presentation System of ActiveMath.

The learner can provide the answer to the task in the exercise step, us-
ing the interactive elements in the User Interface, such as blanks and
selections, as well as perform other actions such as request help or give
up the exercise by clicking on corresponding buttons. After the interac-
tion, the learner’s answer is sent by the User Interface back to the Exer-

cise Manager (via Exercise Controller), which forwards the answer to
the Diagnoser, asking for the diagnosis.

After the diagnosis is received, the Exercise Manager queries the Exer-

cise Generator for the next step, based upon the diagnosis of the learner’s
answer. Finally, the next exercise step is sent to the User Interface via
Exercise Controller and the interaction/feedback loops starts again.

When the final step is reached the Exercise Manager terminates.

4.3 Diagnoser

The Diagnoser is responsible for providing a diagnosis upon the learner’s
answer to the task in the exercise step.

In case of hand-crafted exercises a number of transitions is authored for
each interaction node of an exercise. The transitions contain conditions to be
satisfied in order for the transition to fire, together with the corresponding

4.3. DIAGNOSER 105

diagnosis record and the identifier of the next node of the exercise. In this
case Diagnoser just verifies the conditions of each transition in the order of
their occurrence and stops at the first transition that fires. Then it returns
the diagnosis contained in this transition and the identifier of the next state.

In case of generated or partially generated exercises it can happen, that
no transitions are authored in a step, and the next step has to be generated
on the basis of the current one and the diagnosis of the learner’s answer.
In order to generate the diagnosis, the Diagnoser employs some semantic
evaluation services. The queries it sends to the semantic services depend on
the semantics of the current task and the tutorial strategy.

A custom Exercise Generator might need to access the Diagnoser di-
rectly to define custom diagnostic queries. In order to achieve this, the
default Diagnoser class can be extended by a custom class, which is defined
as an inner class of a custom Exercise Generator, as shown in the Fig-
ure 4.2. This gives the custom Exercise Generator access to the extended
Diagnoser that can be configured to send queries to the semantic services,
that are specific for the given domain or task.

For instance, if the task in the exercise is to factorize the polynomial
a2 + ab − ab − b2, the next step in the solution is the expression a(a + b) −
b(a + b), whereas if the task is to simplify this expression, the next step in
the derivation would just be a2− b2. Therefore, the queries to the evaluation
services would have different values for the context parameter in case of
these two tasks.

Diagnoser customDiagnoser;

Custom Exercise Generator/
Custom Strategy

getDiagnosis(.)
...

Custom Diagnoser

getDiagnosis(.)
Diagnoser

Service Broker

<<subClassOf>>

query

Figure 4.2: Defining a custom diagnoser

Similarly, a specific tutorial strategy can define a custom algorithm for
feedback generation. A tutorial strategy can decide to learn more about the
learner’s error in order to generate the error feedback and in this case it will
try to match the learner’s answer against a buggy rule and issue a query

106 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

’getBuggyRules’ or ’getUserSolutionPath’, as described in Section 3.4.8. An-
other strategy can be satisfied with a simple correct/incorrect diagnosis in
the first step, and then proceed by decomposing a task into simpler steps
instead of trying to identify the error.

4.3.1 Employing Mathematical Services

We have designed a specific query format for the set of queries we use to access
remote mathematical services, such as CAS or more sophisticated domain
reasoners capable of automatic generation of different expert and erroneous
solution paths for the problem. We use a set of domain-independent queries,
as described in 3.4.5.

The semantic OpenMath markup for mathematical formulas
[Buswell et al., 2004] used by ActiveMath and the generic format for queries
to the semantic services support the interoperability of different CASs and
reasoners when serving complex domains.

Currently, ActiveMath integrates and communicates with the following
CASs: YACAS, 1 Maxima, 2 and WIRIS; 3 phrasebooks for Maple 4 and
Mathematica 5 are available too. Apart from these CAS, several domain
reasoners are also connected to ActiveMath and their services are available
for ActiveMath exercises.

In the architectures of the ITS systems, the domain reasoning engine is
incorporated into the system, tightly communicating with the learner model
and the teaching module. ActiveMath instead uses domain reasoners as
external remote services. In our case the Diagnoser component itself has
no knowledge of the domain, but it uses educationally oriented queries to
extract the needed diagnosis and other domain knowledge from the remotely
connected reasoners. This gives us an opportunity to reuse the same cus-
tom Exercise Generators for multiple domains. As shown in Figure 4.4,
there is one generic Exercise Generator, called DRGenerator for all exer-
cises generated using the set of queries to a domain reasoner. DRGenerator

automatically generates all the states and transitions of the exercise, us-
ing the queries to the domain reasoner for obtaining the diagnosis of the

1see http://yacas.sourceforge.net
2see http://maxima.sourceforge.net
3see http://www.wiris.com
4see http://www.maplesoft.com
5see http://www.wolfram.com

http://yacas.sourceforge.net
http://maxima.sourceforge.net
http://www.wiris.com
http://www.maplesoft.com
http://www.wolfram.com

4.3. DIAGNOSER 107

learner’s answer and generating the feedback. Therefore, the most of the
code for exercise generation can be reused for exercises in several domains.
The DRGenerator has no knowledge of a concrete domain, but specific gen-
erators, extending the DRGenerator are defined for every new task. They
are used for configuring the task generation and other parameters specific to
the concrete topic of instruction.

The following domain reasoners have been connected to ActiveMath:
SLOPERT and MathCoach reasoners, implemented in PROLOG for the
domain of symbolic differentiation, two domain reasoners for the domains of
fraction arithmetics and integrals implemented as YACAS modules, several
IDEAS domain reasoners for the domains of linear equations, propositional
logic, higher order equations, symbolic differentiation, arithmetics, imple-
mented in Haskell [Gerdes et al., 2008].

Figure 4.3 shows the different ways of connecting to external services that
we realized within our framework. Such a variety of interfaces is due to the
different technologies used by the external services.

A general utility class OpenMathService is defined for handling Active-
Math queries. Furthermore, for each of the connected external systems, a
specific class is created, that extends the OpenMathService by defining the
client objects for the specific external service.

A WIRIS CAS server is connected to ActiveMath via XML-RPC and
contains an internal OpenMath phrasebook. The Maxima server commu-
nicates via WDSL and the queries are piped through an external phrase-
book. Connection to WIRIS CAS and Maxima, as well as phrasebooks for
Maple and Mathematica was implemented within the EU-project LeAc-
tiveMath 6.

The YACAS server is a multi-threading web service built for the Com-
puter Algebra System YACAS. It has native support for OpenMath and
can communicate with ActiveMath directly via an internal OpenMath
protocol, as well as using an HTTP protocol. The YACAS server can be
configured to be used for a general semantic evaluation, as well as loading
additional domain reasoning modules for the domains of fractions and inte-
grals, specifically developed to serve more detailed diagnosis and incremental
problem solving in these domains.

Domain Reasoners SLOPERT and MathCoach are implemented as

6see http://www.leactivemath.org

http://www.leactivemath.org

108 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

Exercise
Subsystem

Query
Broker

query

result

YACAS
Service

YACAS
(Internal

Phrasebook)

WIRIS CAS
Service

XML-RPC

MAXIMA
Service
WDSL

SLOPERT
Service

XML-RPC

MATHCOACH
Service

XML-RPC

IDEAS
Service
HTTP

WIRIS CAS
(Internal

Phrasebook)

MAXIMA
Phrasebook

MAXIMA
CAS

SLOPERT
Phrasebook

SLOPERT
Domain

Reasoner

MATHCOACH
Phrasebook

MATHCOACH
Domain

Reasoner

IDEAS
Domain

Reasoner
(Internal

Phrasebook)

OpenMath
Service

Figure 4.3: Semantic Service Broker

PROLOG programs running with SWI PROLOG 7 embedded into wrapper
servers written in java to which ActiveMath can connect via an XML-RPC
protocol. The MathCoach server is a good example of a service that is run-
ning entirely independently from ActiveMath and even receiving queries
from clients other than ActiveMath 8.

The IDEAS reasoners are available as web services and most of them
understand our OpenMath format. They are connected to ActiveMath
via an HTTP protocol.

Some of the domain reasoners, such as YACAS domain reasoners for
fractions and integrals, SLOPERT, and most of the IDEAS reasoners are
capable of typical error diagnosis using buggy rules. Naturally, the buggy
rules diagnosed by the domain reasoners have to be represented as nodes in
the domain ontology of ActiveMath and they must have some relation to
the corresponding concepts. This is necessary in order to properly use the
diagnosis information and to remediate the misconceptions of the learner.

The proper mapping of concepts and buggy rules between ActiveMath
and an external service is provided by a phrasebook - a routine attached to

7see http://www.swi-prolog.org
8see http://mathcoach.htw-saarland.de

http://www.swi-prolog.org
http://mathcoach.htw-saarland.de

4.3. DIAGNOSER 109

the service translating the OpenMath representation of the query input to
the internal representation of the service and then translating the output of
the service back to OpenMath.

4.3.2 Semantic Service Broker

Queries to semantic services, issued by the Exercise Subsystem are received
by a Query Broker, that distributes them to the corresponding semantic
service. In order to select the appropriate semantic service, the Query Bro-

ker is using the context of a query, as defined in 3.4.5.
Each semantic service is configured in ActiveMath such that it can

answer within one or more contexts. Therefore, in order to select an appro-
priate service, the Query Broker is matching the given context of the query
against the contexts of the services, configured in ActiveMath and selects
the one within the given context. If no service is found to answer the query,
the service returns an empty result.

The queries to semantic services of ActiveMath can have a composite
context, that needs to involve several services. In order to ensure the inter-
operability of semantic services, the following conditions have to be satisfied
by each semantic service, configured in ActiveMath:

1. If a service can answer the queries in the context C and an expression
to evaluate has a form f ◦ fC, where fC can be evaluated in the context
C, then EvC(f ◦ fC) = f ◦ (EvC(fC)), where EvC is evaluation in the
context C.

2. If no evaluation is possible, the service returns the input expression
unchanged.

The first condition means that the service knows how to recurse inside
the unknown functions and tries to evaluate the arguments. Given that these
conditions are matched, the composition of services can be achieved in the
following way: if an expression has to be evaluated in the contexts C1 and
C2, it is first evaluated in the context C1, then in C2 and then recurses until
both services return unchanged expression.

4.3.3 Syntactic and numeric comparisons

Syntactic and numeric comparisons are realized as core functions within the
OpenMathService class, so they do not require any remote mathematical

110 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

services.
Since mathematical formulas are represented in the XML format, the

XML fragments are being compared in this case, which includes certain
equivalence cases related to which objects are considered to be identical in
XML. For example, the order of occurrence of attributes in an XML element
makes no difference when comparing two elements. However, the order of
occurrence of child elements does play a role, since the child elements could
represent, e.g., the arguments of a non-commutative function.

Numeric equivalence is used for comparing numeric values and accepts
an additional parameter epsilon with float values. This parameter defines
the approximation tolerance threshold of the numeric comparison.

4.3.4 Semantic evaluation using CAS

Global semantic evaluation is used to compare the learner’s answer with the
given reference value, as well as evaluating more complex constraints upon
the learner’s answer. In this case, the value of the context parameter is
set to ’global’ and the Query Broker automatically forwards the query to
the CAS service. Figure 4.3 shows several CAS services that can be made
available in ActiveMath. Some CASs can be configured to be answering
queries only in particular contexts, but there is only one CAS at a time
configured for the global evaluation. The choice of a particular CAS for an
ActiveMath installation is a matter of tradeoff between the trust in quality
of computations and the license price.

4.3.5 Domain Reasoner Diagnosis

In order to obtain a detailed diagnosis of the learner’s answer, the domain
reasoners are used rather then just CAS. As described in 3.4.8, several queries
can be used to obtain a detailed diagnosis. So, the query ’getUserSolution-
Path’ returns the shortest (possibly erroneous) path that the learner might
have followed in order to obtain his answer from the given task, the query
’getBuggyRules’ returns the list of buggy rules that are used for the genera-
tion of the erroneous solution path of the learner.

For each available domain reasoner service, a configuration entry is de-
fined in ActiveMath that specifies the context(s) supported by this domain
reasoner. This information is used by the Query Broker when choosing the
appropriate service for a given query.

4.4. EXERCISE GENERATOR 111

4.4 Exercise Generator

Figure 4.4 shows an excerpt from the current hierarchy of Exercise Genera-

tors in ActiveMath. An Exercise Generator is a component responsible
for selecting or generating the next steps of an exercise based upon the di-
agnosis of the learner’s answer and the information available in the exercise
graph.

ExerciseGenerator

StaticGenerator DRGenerator

IntegralsGenerator IDEASGeneratorFractionsGenerator

<<subClassOf>> <<subClassOf>>

<<subClassOf>> <<subClassOf>>

<<subClassOf>>

XsltGeneratorRandomizer

<<subClassOf>><<subClassOf>>

Other
Generator

<<subClassOf>>

OMDocGenerator

<<subClassOf>>

OmegaTutorGeneratorCasConsole

<<subClassOf>>

<<subClassOf>>

Figure 4.4: Excerpt from the hierarchy of Exercise Generators

In case of a fully authored exercises the Exercise Generator just selects
the needed nodes from the given graph of the exercise. In case of a generated
exercise, the states of the exercise are generated on the fly.

The OMDocGenerator, interpreting exercises represented in the OMDoc
Quiz module format are not static, because the feedback nodes are composed
on the fly, depending on the learner’s answer.

The CasConsole, shown in Figure 4.5, is a generator that provides a
simple explorative tool for the user. The learner can enter mathematical
expressions using a GUI and receives the feedback that is generated on the
fly and represents the result of the evaluation of the entered mathematical
expression in the Computer Algebra System.

The OmegaTutorGenerator is an Exercise Generator using the external
proof assistant Omega in order to generate interactive exercises training the
learner in assertion level proofs for the domain of basic set theory. For more
information on this interactive tutor, see [Schiller, 2010].

112 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

Figure 4.5: Explorative CAS Console in ActiveMath

4.4.1 StaticGenerator

The StaticGenerator is responsible for interpreting fully authored exercises
and has extensions that handle parametrized exercises. The attribute ’Static’
reflects the fact that the knowledge representation of the exercise is fixed and
is not changing in the process of running the exercise.

The fully authored exercise contains all the information necessary for
running it without generating any additional states or transitions. In this
case the identifier of the next step is extracted from the transition that fires
in the Diagnoser. The Exercise Generator receives the identifier of this
next step, extracts it from the representation of the exercise and returns it
to the Exercise Manager.

There are several extensions of the StaticGenerator that are commonly
used in ActiveMath. One of the extensions is the Randomizer Exercise

Generator, considered in Section 3.5.1 that allows to define parametrized
exercise representations to indicate the range of possible parameter values.

For more information on the functionality of the Randomizer and its
extensions, see [Dudev and Palomo, 2007].

Another extension of the StaticGenerator is an XSLT generator, con-
sidered in Section 3.5.2. In the initialization phase it transforms the custom
exercise format into the ActiveMath format using an XSLT stylesheet and
calls the parent Static generator to run the resulting exercise.

4.4. EXERCISE GENERATOR 113

4.4.2 Domain Reasoner Exercises

Another commonly used Exercise Generator is a DRGenerator, which pro-
vides an additional infrastructure to be used by the Exercise Generators.

The DRGenerator is a generic class facilitating domain reasoner-powered
generation of interactive exercises in several domains, such as fraction arith-
metics, linear and non-linear equations, derivatives and integrals, etc. This
Exercise Generator, naturally, covers only a restricted amount of tasks in
the listed domains. It implements a general structure of a simple multi-step
exercise, that involves calculation. This Exercise Generator has several
subclasses, specializing on concrete tasks in given domains.

The DRGenerator generates exercise building blocks and defines a general
problem solving strategy. This problem solving strategy can be overwritten
by a more specific one, if necessary.

Figure 4.6 presents a sample feedback, that can be generated using a
domain reasoner.

Figure 4.6: Domain reasoner-powered feedback

In the screenshot on the left the reasoner can detect a ”jumping step”,
if more then one rule application has been applied in a step. The threshold
of how many steps the learner is allowed to do at once can be controlled by
a tutorial strategy. As defined in 3.4.5, each query can have a parameter
that contains the number of iterations to be made by a reasoner. By varying
this number we can define the granularity of steps. In the screenshot on the
right the minimal error feedback is presented, in which the domain reasoner is
trying to reconstruct the erroneous path the learner is following, and indicates
which steps are incorrect in this path.

114 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

4.5 Exercise Events

Exercise events are part of the general ActiveMath event architecture, that
views different ActiveMath components as Web-services and implements
the communication between them using a specific messaging architecture.
In this approach, all components report on their activities to one common
pool of events. A component interested in receiving events from another
component is registering its interest and the messaging system is propagating
the needed events to the interested component. For more information on this
approach, see the section ”Communication of Components and Services” in
[Melis et al., 2006].

The Exercise Subsystem produces three types of events. At the initial-
ization time of the exercise, the ExerciseStartEvent is fired, signaling that
the exercise has started. The exercise ID and other initial parameters are
included into the event. Each time the learner performs an exercise step,
the ExerciseStepEvent is sent. This event includes metadata of the task,
such as the relationship to the domain concept, competency and difficulty
of the task, as well as diagnosis of the learner’s performance and possibly
identifiers of diagnosed misconceptions. After the exercise is finished, the
closing ExerciseFinishedEvent is published.

Each event includes a time-stamp, which allows to calculate durations of
steps and of the whole exercise. Just as all the other events generated by other
components, the exercise events are published at a central location. Other
components, interested in receiving particular events, have to ”subscribe” for
these events.

The Student Model of ActiveMath receives the events issued by the
Exercise Subsystem. After each ExerciseStepEvent the Student Model

receives new evidence for updating the learner’s mastery of domain concepts.

4.6 Local Student Model

In order to react to the student’s progress and actions a Local Student Mo-

del is used. It keeps track of visited exercise nodes, the number of times
they were visited, the record of visited hints for each interaction, and other
information locally available within the exercise session.

The tutorial strategies use the Local Student Model by dealing with
repeated trials of steps, giving sequenced hints and changing behavior de-

4.7. APPLYING TUTORIAL STRATEGIES 115

pending on the history of the learner’s actions.
It is important to note that by default not all the variables are active in

the Local Student Model. Each variable defined there is activated by the
strategy that needs to use this variable. This way we prevent the Exercise

Subsystem from storing and constantly updating unused information.
Consider a strategy, which gives the student a certain number of trials for

solving each exercise step. In case of a wrong answer, the strategy presents
flag feedback to the learner and goes back to the same step to let the student
try again. After the fixed number of trials, the correct solution is presented.
This strategy needs to keep track of the number of trials of the same exercise
step, which is represented by a variable in the Local Student Model. This
variable can be used by all tutorial strategies that need to count the number
of trials of a step.

The Local Student Model is used to generate the learner’s score for the
exercise, since it has all the runtime information about learner’s progress in
the exercise. The score provides an average success rate of the learner for
this exercise.

The default formula for computing the average score is defined as follows:
If N is the amount of steps, n(k) is the amount of trials of the k-th step

(for k = 1..N), and Success(i, n(k)) is the success rate of the i-th trial of the
n(k)-th step, then the total average success rate S is equal to

S =
1

N
·
N∑
k=1

 1

n(k)

n(k)∑
i=1

Success(i, n(k))

The algorithm for computing the score can be customized by the assess-

ment strategy or any other tutorial strategy that uses the Local Student

Model.

4.7 Applying Tutorial Strategies

Tutorial strategies are special Exercise Generators that modify the exercise
graphs according to the tutorial behavior of this strategy.

In order to apply a tutorial strategy to an exercise, the strategy gener-
ator is composed with the Exercise Generator of the given exercise and
overwrites its functions. As shown in Figure 4.7, some strategies are only ap-
plicable to static exercises, so they just extend the StaticGenerator. Other

116 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

strategies that are applicable to all kinds of exercises extend the base class
Exercise Generator.

OtherStrategy

<<subClassOf>> ExerciseGenerator

DefaultStrategy

FirstDepthHint
Strategy

Mathefuehrersc
heinStrategy

ATuFStrategy

ALOEStrategyOtherGenerator

StaticGenerator
<<subClassOf>>

<<subClassOf>>
<<subClassOf>><<subClassOf>>

<<subClassOf>>

<<composition>>
<<subClassOf>>

<<subClassOf>>

<<composition>>

Figure 4.7: Applying Tutorial Strategies

The Exercise Subsystem includes a growing set of tutorial strategies.
These strategies can be further specialized and composed with each other in
order to form more complex ones.

4.8 Presentation Strategies

Depending on the educational approach and the domain of instruction, it is
often useful to have a certain graphical presentation for the exercise. The
presentation can influence all parts of the exercise: the learner interaction
interface, the feedback form and layout, the coloring schemes for instruction
elements and others.

In order to allow for different presentation, we have introduced an ad-
ditional transformation by a presentation strategy, which is applied to the
exercise steps, before sending them to the User Interface.

The presentation strategy is applied to the exercise nodes before they
are processes by the Presentation System. These exercise nodes contain
semantic annotations such as the separation into the interactions and feed-
back. The presentation strategy can, e.g., choose to present all the feedbacks
in the immediate vicinity of the learner’s answer.

In Figure 4.8, the screenshot on the left assumes the existence of hints
and solutions and reserves the bottom right corner of the screen for it. The

4.8. PRESENTATION STRATEGIES 117

presentation strategy on the right does not divide the screen into regions. It
just provides all the feedback in a vertical sequence. So, all the feedbacks,
hints and solutions, are handled in the same way.

Figure 4.8: Custom feedback layout

In the strategy on the right, the answers of the learner can be decorated
using red, yellow and green colors in the cases of wrong, almost correct,
and entirely correct answers, respectively. Those parts of the exercise that
contain the learner interaction results are highlighted by thin borders. All
the feedback of the system and the learner interaction stays on the screen
even after the interaction and it is presented sequentially.

The more complex strategy on the left shows the exercise divided into two
parts: the first part is multiple choice interaction presented by the default
presentation strategy. The second phase is a sub-exercise with free input,
where the learner interaction appears in the left part of the screen, and the
feedback of the system, hints of different types and the correct solution are
presented in the right part of the screen. The second phase consists of several
steps but as soon as the learner makes one step and moves to the next one,
only the hints and feedback, as relevant to the current step stay on the screen,
the previous steps are folded away. At the same time, the first phase of the
exercise always stays visible for each step in the second phase, since it is a
part of the presentation strategy.

118 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

Flag feedback can be presented by coloring correct parts of the learner’s
answer green and incorrect ones red. Alternatively or in addition to colors,
different smiley icons can be used. Another possibility of marking without
colors is by checks and crosses, or by textual feedback. In Figure 4.9, the
above mentioned decoration styles are shown.

Figure 4.9: Different presentations of flag feedback in ActiveMath

The user interface to the exercise can look very different for different
types of interactions and presentation strategies. If the learner is supposed
to receive immediate feedback in each step, it is enough to provide him with
the interactive elements that are needed in the current step. Interaction
interfaces for the case of immediate feedback are shown in Figure 4.10. In
both cases the learner has to fill in the fixed number of blanks.

However, if the learner is supposed to input the complete solution, a more
complex interaction interface is needed. Figure 4.11 shows a simple and more
complex (multiple interaction) interface, that was used for the ALOE and
ATuF research projects. On the right is a simple interface, which allows
the learner to enter as many intermediate steps as necessary for his solution.
More steps can be added using the ’+’ button and the unnecessary steps can
be deleted using the ’-’ button. There is one reserved field for a final answer.
On the left of Figure 4.11 a more complex interface is shown. Here, the
learner can not only add steps, but he can also decide what type of step he
wants to perform, which domain concept to use or which rule to apply. The
list of alternatives is suggested to the learner in a drop-down menu. After
the learner chooses one of the items from the list, a structured template for
the interaction appears, where the learner has to fill in the blanks. As in the
case on the right, there is one reserved field for a final answer. An additional
GUI element of this presentation strategy is a so-called ”confidence slider”.

4.8. PRESENTATION STRATEGIES 119

Figure 4.10: Two interaction interfaces

It is a horizontal slider bar, by moving which the learner can specify how
confident he is about his answer.

Figure 4.11: Different multiple interaction interfaces

120 CHAPTER 4. EXERCISE SYSTEM ARCHITECTURE

Chapter 5

Exercise Authoring

In this chapter we describe our tools for the authoring of interactive exer-
cises for ActiveMath. They either support authoring hand-crafted exercise
graphs or support the automatic generation exercises or parts thereof with
the help of powerful domain reasoning tools.

5.1 Visual ”Authoring-by-Doing” Tool

A visual ”authoring-by-doing” tool ExAMAT for exercises in ActiveMath
has been implemented in the ActiveMath group, under the supervision of
the author. This tool provides a visual user interface for authoring exercises
step by step and it plays the completed parts of the exercise. We call such
exercise creation procedure ”authoring-by-doing” because it is similar to ac-
tually solving the exercise following all possible solution paths. The author
can create an exercise step, then input several possible answers of the learner
to this step, which will trigger the creation of the consequent steps, following
the corresponding answers, and so on. This way the exercise solution space
is created by simulating the behavior of potential learners. This procedure is
similar to authoring behavior graphs in CTAT Cognitive Tutors Authoring
Tools [Koedinger et al., 2004].

ExAMAT offers WYSIWYG authoring of the representation of multi-
step exercise and its visualization as a graph. The author can visually ma-
nipulate the graph of an exercise, edit the nodes and edges of an exercise
graph and run the edited exercise at each step of its creation. ExAMAT
combines features of systems such as Maple TA TM [MapleTATM, 2010] for

121

122 CHAPTER 5. EXERCISE AUTHORING

creating tests and assignments and CTAT Cognitive Tutors Authoring Tools,
cited above.

The user interface for editing steps of an exercise with interactive elements
enables a semantic evaluation of the learner’s answer using a Computer Al-
gebra System (CAS). It can create parametrized exercises using randomized
variables in the exercise solution space.

The ExAMAT tool is browser-based and as it is embedded into the
ActiveMath learning environment, it gives, among others, easy remote
access to an online authoring environment.

The main window of ExAMAT tool consists of 3 main frames, shown in
Figure 5.1. On the right is the visualization of the exercise structure in form
of a graph, the vertexes of which represent the nodes of an exercise and the
edges represent the transitions between these nodes. The upper frame on the
left is for editing the nodes of the exercise and the lower frame is for editing
the transitions.

Figure 5.1: Exercise authoring user interface

A sample graph of the exercise nodes and transitions between them is
shown in Figure 5.2. By right-clicking on the node of the graph the context

5.1. VISUAL ”AUTHORING-BY-DOING” TOOL 123

menu is called, in which the author can select one of the options - edit the
node, running the exercise, or deleting this node.

When deleting an exercise node all the transitions to and from this node
are deleted as well. When selecting the edit option, the node is loaded into
the node editor window and the transitions issued at this node are also loaded
into the transition editor window.

Figure 5.2: Sample exercise graph

5.1.1 Editing Exercise Nodes

The exercise nodes are authored within the node editor, that is shown on
the top left in Figure 5.1. The author can enter text with formulas, images,
tables and other formatting elements . He calls a popup microstructure editor
window by clicking on the ’text’ button in the sidebar. The microstructure
editor window is shown in Figure 5.3.

The author can enter text in several languages by switching to the cor-
responding tab in the microstructure editor. The formulas are edited in a
separate input field on the top left, using the embedded formula editor. In
order to insert formulas, created in the formula editor field, the author has
to press the Σ button in the toolbar. The WIRIS1 formula editor, used

1See http://www.wiris.com/

124 CHAPTER 5. EXERCISE AUTHORING

Figure 5.3: Microstructure editor window

in ActiveMath, produces a semantic representation of mathematical ex-
pressions that make it possible to evaluate these expressions with external
mathematical tools.

For inserting images, tables and other media and formatting elements the
author clicks on the corresponding icons in the toolbar of the microstructure
editor.

In order to author interactive elements the microstructure editor is used
too: for authoring blanks, the formula editor is used with the special blank
symbol in the palette. The formula editor is necessary in cases of dealing with
blanks inside complex formulas. For authoring selections, the microstructure
editor is used as well.

5.1.2 Editing Transitions

In order to author a transition, an author has to use the bottom left panel
of the ExAMAT tool. There he/she has the choice to define transitions of
different type that lead to a new or to an existing step. Conditions can be
conditional, default, hint request, or unconditional.

The body of a transition is authored using the transition editor, that
pops up in a new window, and the existing transitions can be viewed in
the main ExAMAT window in the bottom left panel body, as shown in

5.1. VISUAL ”AUTHORING-BY-DOING” TOOL 125

Figure 5.4: Authoring blanks and selections

Figure 5.1.

Figure 5.5 shows the GUI of the transition editor for authoring of a tran-
sition for a fill-in-blank interaction. This transition contains a link to a target
step, diagnosis information such as correctness of the learner’s answer (ele-
ment achievement), and a reference to misconceptions, if any. The author
can insert additional feedback into the target exercise node of the transition.

Finally, the condition is authored, for the comparison of the learner’s
answer to the control expression entered by the author. A comparison can
be performed within a mathematical context, as described in Section 3.4.3.

On the right of Figure 5.5 a default transition is presented. This transition
does not define any condition, it fires if none of the conditional transitions
apply. This condition leads to an existing step, whose identifier is selected
from a dynamically generated drop-down menu containing identifiers of all
existing steps.

5.1.3 Adding Metadata

Popup interfaces for authoring metadata of the relevant parts of the exercises
are available. Figure 5.6 shows a part of the interface for authoring exercise
metadata. Some metadata, such as competency or difficulty, can be en-
tered by selecting the values from drop-down menus. Other metadata, such
as, e.g., a relation to the focus concept has to be entered in the input field.

126 CHAPTER 5. EXERCISE AUTHORING

Figure 5.5: Defining transitions

Figure 5.6: Authoring relevant metadata

5.1. VISUAL ”AUTHORING-BY-DOING” TOOL 127

5.1.4 Authoring Parametrized Exercises

ExAMAT provides the possibility to employ a Randomizer generator (see
Section 3.5.1) for parametrizing the exercise task and the solution space.

Using the pop-up interface shown in Figure 5.7 the author can define
custom variables together with sets of possible values and use these variables
in the authored exercise. As soon as the variables are defined they appear
as special symbols in the palette of the formula editor and they can then be
used within formulas in all relevant parts of the exercise tasks, feedbacks,
and conditions.

Figure 5.7: Authoring Randomizer variables

Since not only numbers are possible values of variables but any mathe-
matical expression, variables can be composed of other variables, as shown in
Figure 5.7. If such a variable is set to be evaluated, using the corresponding
checkbox in the interface, the value of the variable will be evaluated in the
CAS before the instantiation.

For example, if the exercises A,B and C from Figure 5.7 are used in
an exercise, then if after instantiation the values of A and B are 2 and 3

128 CHAPTER 5. EXERCISE AUTHORING

respectively, the value of C is 5. If the variable C was not marked to be
’evaluated’, the value at instantiation would be a numeric expression 2 + 3.

5.1.5 Comparison to Related Tools

The authoring-by-doing procedure of ExAMAT is similar to the behavior
recorder of the CTAT tool. One of the major differences to CTAT is that
when authoring so-called Pseudo-Tutors, the author has to enter all possible
correct answers, creating an edge for the behavior graph for each possible
answer. In ExAMAT one can author one edge for a whole class of equivalent
answers.

The interface of the microstructure editor is similar to the authoring
tool in Maple TA TM. The difference is, however, the underlying semantic
representation of mathematical formulas, which can be evaluated with sev-
eral different computer algebra and other mathematical reasoning systems,
provided the mapping from and to the OpenMath syntax (phrasebook) is
implemented.

5.1.6 Further Development

The exercise authoring tool does not yet fully support all the expressive power
of the exercise language. For example, an interface is still to be implemented
for authoring of complex constraints. This is needed, e.g., for multiple an-
swers in one interaction that cannot be evaluated component-wise but only
as a whole.

The exercise editor has to be extended to support an extended version
of the Randomizer, described in [Dudev and Palomo, 2007]. It is able to
randomize over continuous or discrete intervals and the set of elementary
functions and their compositions.

5.2 Exercise Generation using Domain Rea-

soners

As we have seen in Section 4.4.2, the exercise system of ActiveMath allows
for exercises, in which each step is generated on the fly by an DRGenerator.
Subsequent steps are generated based on the results of the learner’s interac-
tion with the system in the previous step.

5.2. EXERCISE GENERATION USING DOMAIN REASONERS 129

In the following sections we describe examples of different mathematical
domains, for which we provide support because we already have domain
reasoners for those domains integrated with ActiveMath.

5.2.1 Selecting Tasks for Problems

Selecting tasks for problems is a delicate issue, where human tutors still
need to be heavily involved. Although domain reasoners are programmed
to solve classes of problems in a given domain and although they are able
to randomly generate problems, it does not yet mean that these problems
would be pedagogically suitable for the current learner.

Human tutors can manually select pedagogically valuable tasks from ex-
isting sources, such as textbooks or lecture scripts. These manually selected
tasks can be annotated with metadata and attached to the Exercise Gene-

rator powered by a domain reasoner.
Moreover, the task selection can be a semi-automatic process, in which

the possible tasks are generated automatically and reviewed by the tutor,
and then saved in the database after approval of the tutor. An example
of such a mixed initiative authoring process is shown in Figure 5.8. This
figure shows a small tool for authoring the parameters for exercises to be
generated automatically using domain reasoners. This tool is developed in
ActiveMath and is described in Section 5.2.2 below.

So far we have used the following methods for authoring tasks:

1. Generating tasks with the help of a domain reasoner (parametrized by
difficulty and other metadata)

2. Teachers create lists of pedagogically valuable tasks and annotate them
with metadata in order to enable metadata-based selection

3. Teachers define parametrized tasks, in which parameters are instanti-
ated by random parameters.

4. Students can define their own task (explorative scenario)

5.2.2 Authoring Parameters for Exercise Generation

All ActiveMath exercises, generated with the help of Domain Reasoners
share the common architecture of the DRGenerator, while addressing differ-
ent tasks in different mathematical domains. In order to facilitate exercise

130 CHAPTER 5. EXERCISE AUTHORING

generation and in order to give more control of the generation process to
the teacher, we have designed a small form-based authoring tool within Ac-
tiveMath, as shown in Figure 5.8. This tool helps to provide the necessary
parameters to the DRGenerator, such as a domain of instruction and a task,
encoded with the context parameter, as well as some other metadata. More-
over, an author can generate an exercise task in a given context automatically,
using a remotely connected Domain Reasoner. If the author does not like the
generated task, the he can keep generating more tasks, until the suitable one
is selected. Finally, after selecting the task and authoring other parameters,
the author can let the system generate an exercise, prepared to run within
ActiveMath and save it in the database.

Figure 5.8: Authoring Domain Reasoner Exercises

5.2.3 Prolog-based Domain Reasoners

The first domain reasoners connected to ActiveMath were implemented in
PROLOG - a symbolic programming language 2.

2See, e.g. http://www.swi-prolog.org/

http://www.swi-prolog.org/

5.2. EXERCISE GENERATION USING DOMAIN REASONERS 131

5.2.3.1 SLOPERT

SLOPERT is a powerful domain reasoner to serve interactive exercises in
the domain of symbolic differentiation. This was implemented within the Le-
ActiveMath consortium for the needs of LeActiveMath project, aiming
at tutorial dialogues in the domain of symbolic differentiation [Zinn, 2006].
This reasoner is rule-based and uses a number of expert and buggy rules to
generate a hierarchical solution space of an exercise.

The integration into ActiveMath was successful, but the exercises, pro-
duced with the help of this reasoner had one limitation - the reasoner accepted
only answers, free of a differentiation operator. It could accept answers to
the whole task or any of the subtasks, but not an intermediate answer, con-
taining differentiation in a subexpression. For example, when differentiating
the function f(x) = 2·x+x2, the answers 2, 2·x and 2+2· would be accepted
as correct steps, but the expression (2 · x)′ + (x2)′ was not recognized.

Another difficulty in using this and other PROLOG reasoners is that
the condition necessary for interoperability with other reasoners, as specified
in the section 4.3.2 is not satisfied. As soon as the PROLOG engine sees
an unknown expression, it returns this expression unchanged, not trying to
recurse inside.

5.2.3.2 MathCoach

MathCoach is a family of domain reasoners developed at the Hochschule für
Technik und Wirtschaft (HTW) in Saarbrücken [Grabowski et al., 2005]. It
was implemented taking SLOPERT as a model. As opposed to SLOPERT,
the MathCoach reasoner is stateless. In each query we have to set the new
task for the reasoner. MathCoach does not encode buggy rules and can
not track the student’s solution.

MathCoach implements reasoners in several domains, but currently we
have integrated only the reasoner for symbolic differentiation.

An explorative dialogue strategy has been implemented by the author for
MathCoach-powered exercises, called Explorative Differentiation Console,
similar to the explorative CAS console, described in Section 4.4. An example
of such an exercise dialogue is shown in Figure 5.9.

The student chooses a function that he wishes to differentiate, and the
system assists in solving this problem by evaluating the correctness of every
step the student makes and provides three levels of hints for each step. First,

132 CHAPTER 5. EXERCISE AUTHORING

Figure 5.9: Explorative Domain Reasoner Console

a general procedural hint is generated, telling which differentiation rule has
to be applied. It is followed by a conceptual hint, giving the definition of the
needed rule to be applied. Finally, the bottom-out hint presents the result
of the application of the needed rule to the expression in the current step. If
the final step of the solution is reached, the system asks the student whether
he would like to stop his exercise or differentiate another function.

5.2.4 YACAS Reasoners

The computer algebra system YACAS has been adapted by A. González
Palomo, a member of the ActiveMath team, to serve as the generic se-
mantic evaluation engine for ActiveMath. YACAS was chosen because of
its modular architecture, that allows to restrict the reasoning engine to par-
ticular contexts. Other Computer Algebra Systems such as Maple, Maxima
or Mathematica do not have a standardized way of restricting the evaluation
context to a particular set of concepts, as discussed in Section 3.4.3. An-
other reason to use YACAS was, that it satisfies interoperability conditions,
as specified in Section 4.3.2.

The integration of YACAS into ActiveMath consisted of implementing
native support for the OpenMath format, and implementing a YACAS web-

5.2. EXERCISE GENERATION USING DOMAIN REASONERS 133

server, that accepts semantic queries.
The service can be parametrized by the mathematical context, which

restricts the evaluation engine to only tackle problems in this context.
Currently there are three main contexts within which YACAS is serving

ActiveMath. First of all, YACAS is used as a main semantic evaluation
engine for CAS exercises. Furthermore, there are two Domain Reasoners,
currently developed as YACAS modules (described below). The author su-
pervised the implementation of those reasoners.

5.2.4.1 Domain Reasoner for Fraction Arithmetics

A domain reasoner for fraction arithmetics has been developed as a Master’s
project at the Saarland University under the supervision of the author. One
of the main requirements for the reasoner was to answer the set of queries,
described in Section 3.4.8.

The domain reasoner consists of a package of scripts for the YACAS
system, that has been installed as a module on the YACAS server, answering
queries in the context of fractions and defining several sub-contexts, such as
fraction reduction, or fraction addition contexts.

This domain reasoner is rule-based and encodes a number of expert and
buggy rules, adopted mainly from [Henneke, 1999]. For a full presentation
of this work, see [Masood, 2009].

Figure 5.10 shows a typical exercise automatically generated by this do-
main reasoner. Here, the informative error-related feedback is generated
using a template attached to the corresponding buggy rule.

5.2.4.2 Domain Reasoner for Integrals

Another domain reasoner for the domain of integrals has been developed as
a YACAS module. This work was done by Anatoly Belchusov. Our goal was
again to ensure that the set of queries, defined in Section 3.4.8 is answered
by the service.

A rule-based reasoner for the domain of function integration has been
implemented, including a large number of expert and some buggy rules. The
reasoner has been tested with a set of commonly practiced integrals, taken
from a schoolbook. As a side product of this implementation, some errors
in the main YACAS module which handles integrals were found and fixed.
Also, more expert rules for table integrals were introduced.

134 CHAPTER 5. EXERCISE AUTHORING

Figure 5.10: Custom error feedback in fraction exercises

Some examples of feedback, generated with the help of this reasoner are
shown in Figure 4.6 in section 4.4.2. The reasoner is able to variate the
granularity of steps, detect equivalent suboptimal solution paths, as well as
attempt to reconstruct student’s erroneous solution path.

5.2.5 Haskell-Based Domain Reasoners

A number of domain reasoners for various mathematical domains have been
developed within the IDEAS project at the Open University of the Nether-
lands (OUN), in the group of Prof. Johan Jeuring 3, who collaborates with
us in the EU-project MathBridge.

These domain reasoners have been developed in the programing language
Haskell and can answer a set of queries defined in ActiveMath.

This made it easy to deploy these reasoners as semantic web-services
serving interactive exercises in our system as well. The growing set of IDEAS
Domain Reasoners cover such topics as linear, quadratic and higher order
equations, systems of linear equations, different problems in the domain of
arithmetics, propositional logic, derivatives, and others.

All the IDEA Reasoners are integrated with ActiveMath using the
same Exercise Generator program, although the tasks can be as differ-

3See project page under http://ideas.cs.uu.nl/

http://ideas.cs.uu.nl/

5.2. EXERCISE GENERATION USING DOMAIN REASONERS 135

ent as solving equation, differentiating a function, simplifying expression, or
bringing a logical formula into its disjunctive normal form. The only dif-
ference between the instances of the program, generating the three exercises
shown in Figure 5.11 is the value of the context parameter, pointing to the
concrete mathematical context of the task in a corresponding domain.

Figure 5.11: IDEAS Domain Reasoner exercises use the same generator

136 CHAPTER 5. EXERCISE AUTHORING

Chapter 6

Evaluation of coverage and
performance

In this chapter we briefly describe a coverage of the Exercise Subsystem of
ActiveMath and provide some results of technical performance evaluation.

6.1 Range of Expressive Power

We have investigated the expressive power of the ActiveMath exercises
with respect to the coverage of mathematical domains and pedagogical ap-
proaches.This expressivity was driven by projects and pedagogues.

We describe the mathematical domains, for which the exercises have been
authored and tested, targeted audiences of learners, different tutorial and
presentation strategies for exercises that were realized within the projects.

For each content collection, Table 6.1 shows the total numbers of inter-
active exercises and the corresponding total number of exercise states. The
total number of exercise states is important since each state of the exercise
informs the Student Model of ActiveMath and contributes to the training
and the assessment of the learner’s mastery of the domain concepts.

Table 6.1 presents the summary of most of the strategies that were imple-
mented by the author and used within the above mentioned projects. Note
that the strategies were implemented in order to define specific tutorial be-
havior of the exercises. But the exercises can be reused without this specific
behavior and run with the default strategy.

137

138CHAPTER 6. EVALUATION OF COVERAGE AND PERFORMANCE

Content Package Number of exercises Total number of exercise nodes

LeActiveMath calculus 473 6243

AMOR 552 4439

School Mathematics 885 2889

Matheführerschein 315 1040

ATuF 90 637

ALOE 76 644

ALOE Collaborators 56 432

MAPS MOSSAIC 34 1275

Table 6.1: Total numbers of exercises and exercise nodes

Project Tutorial Strategy Presentation Strategy/
Formula Editor

LeActiveMath Default Strategy, Assesment Strategy Default, WIRIS formula
editor

AMOR Default Strategy Custom, WIRIS formula
editor

Matheführerschein Matheführerschein Strategy Custom, linear formula
input

ATuF Pre/Post Test Strategy, Treatment
Strategy, Familiarization Strategy

Custom, MathDox formula
editor

ALOE Pre/Post Test Strategy, Treatment
Strategy, Familiarization Strategy,
Default ALOE Strategy

Custom, MathDox formula
editor

MAPS MOSSAIC Control Strategy, Treatment
Strategies 1-7

Custom, linear formula
input

Table 6.2: Tutorial and presentation strategies implemented in Active-
Math

6.2. PERFORMANCE TESTS 139

Using the Exercise Subsystem of ActiveMath for the projects, men-
tioned above, we have reached the following objectives:

Usage for learning. The exercise representation format, the diagnostic
capabilities of the system and the tutorial and presentation strategies suited
the needs of teachers at schools and universities. The course contents within
the ActiveMath system including hundreds of interactive exercises are used
for learning in various schools and Universities in several countries.

Value as research tool. The rich expressive power of the exercise lan-
guage and easily extensible framework for tutorial and presentation strate-
gies allowed to design and perform various research and empiric studies in
the field of computer-based education.

6.2 Performance tests

In ActiveMath we have performed automated tests measuring the per-
formance of the exercises, as part of general performance testing for the
ActiveMath system. These tests have been developed using the JMeter
framework. 1

A part of this automated performance tests were tests with artificial users.
”Stress-tests” have been performed with up to 200 artificial users using the
system simultaneously. Note that the typical learning time of the exercises
was not taken into account, since not every exercise had such metadata. So,
a fix delay of 3 seconds was used between the actions of artificial users. This,
however, is in most of the cases too little time for performing an exercise
step. This means that in the case of real human users the delay between
exercise steps will be longer, so the system will have to answer less requests
per time unit, which would increase it’s efficiency.

The results of the stress tests are shown in Figures 6.1, 6.2 and 6.3. We
present three views of these result, that are most commonly used in perfor-
mance testing, showing average, median and 90% line values respectively.

The average view shows us the sum of all time measurements divided by
the number of observations. The median (or 50% line) is a number which
divides the samples into two equal halves - the first half is smaller then the

1See http://jakarta.apache.org/jmeter/

http://jakarta.apache.org/jmeter/

140CHAPTER 6. EVALUATION OF COVERAGE AND PERFORMANCE

median and the other half is greater. The median value of the (multi)set
of numbers can be obtained by ordering all the values and taking the one
positioned in the middle of the list. The median might be a better indication
of central tendency then the arithmetic mean, and the measure it gives is
more robust then the mean in the presence of outlier values (i.e., values that
are numerically distant from the rest of the data). The 90% line is the value
below which 90% of the samples fall. This value is robust in the presence of
only a few outlier values.

From the tests we can see that the exercise system scales well for up
to 100 simultaneous users, which corresponds to serving up to three school
classes simultaneously using the same instance of the ActiveMath server.
In this case the average request time for exercises is below 2 seconds and the
median and 90% line are below 1 second. For 150 users the average value is
about 3 seconds, which is still tolerable, the median value is below 1 second,
and the 90% line value is pretty high (9 sec). For 200 students the average
value reaches 9.3 seconds, which is practically unusable.

Therefore, currently the ActiveMath exercises scale well for 100 simul-
taneous users per instance of the ActiveMath system, which is feasible for
practical usage in the classroom.

One of the main reasons for using the same instance of the system for
the whole class is to ease the collection of the performance data of students
in order to generate group performance reports. Of course, there are other
practical reasons, such as the need for a separate server to host each running
instance of the ActiveMath system.

6.2. PERFORMANCE TESTS 141

Figure 6.1: Average values of the stress test results

142CHAPTER 6. EVALUATION OF COVERAGE AND PERFORMANCE

Figure 6.2: Median values of the stress test results

6.2. PERFORMANCE TESTS 143

Figure 6.3: 90th percentile values of the stress test results

144CHAPTER 6. EVALUATION OF COVERAGE AND PERFORMANCE

Chapter 7

Conclusion and Future Work

In this work we have defined a knowledge representation for interactive ex-
ercises and developed the Exercise Subsystem within the ActiveMath
learning platform. This system has several novel aspects as compared to
other existing systems that serve interactive exercises. Firstly, thanks to our
framework of distributed semantic services and generic query format, we can
connect to several external systems simultaneously in order to obtain diag-
nosis of student’s answers. A quick diagnosis can be computed by a CAS, a
more detailed diagnosis can be provided by a domain reasoner.

Secondly, we support a combination of manually authored and automati-
cally generated exercises. Moreover, the exercises can be reused with different
automated tutorial strategies.

A variety of presentation strategies allows for custom layout of feedback
and via combining various user interface components we can implement dif-
ferent approaches to user interaction.

There are several directions of further research we plan to conduct, which
we briefly describe in the following sections.

7.1 Authoring Tutorial Strategies

Currently, the tutorial strategies for exercises are realized as programs. We
have also developed a framework in which these strategies can be combined
with each other to form more complex strategies.

One of the directions of further research is to devise a knowledge rep-
resentation for tutorial strategies and implement a module of the Exercise

145

146 CHAPTER 7. CONCLUSION AND FUTURE WORK

Subsystem that interprets such a representation and applies the correspond-
ing tutorial behavior to the given exercise. Further step would be to develop
an authoring tool for such strategies. As opposed to the low level proce-
dure representation such as the so-called flow-lines in the EON strategy
editor [Murray, 2003a], we aim at more high-level declarative representation
that will allow the teachers to express their wishes for the tutorial behavior
of the strategy without programming.

7.2 More Domain Reasoners

In ActiveMath, we have defined guidelines for implementing domain rea-
soners suitable for interactive exercises, as described in Section 4.3.2. Two
domain reasoners have been already implemented following these guidelines.
These reasoners are implemented as modules for the YACAS system, in which
the mathematical contexts are defined by sets of rewrite rules. The next step
is to develop a graphical user interface, allowing authors to create new math-
ematical contexts by specifying sets of rewrite rules for the given mathemat-
ical domain. These new contexts can be saved as executable modules of the
YACAS system. This procedure would facilitate ”authoring” new domain
reasoners without programing.

Another research question could be comparing the educational value of
different domain reasoners for the same domain. In order to perform such a
comparison, we would connect several domain reasoners for the same domain
to the ActiveMath system and compare the learning gains of the interactive
exercises generated using these reasoners.

7.3 Authoring Advanced User Interfaces

In order to facilitate the learner interaction we need to introduce more struc-
ture into the user interface for the exercise steps. However, more structure
does not necessarily mean more buttons and palettes, but finding the right
balance between prescribing the interaction format and giving enough free-
dom to the student for entering the solution. Currently, several formula
editors are used in ActiveMath and some extensions of the user interface
were made in projects ATuF and ALOE in order to extend the learner’s
working area by providing the student with structured input templates. Cur-

7.4. EXERCISE LOG DATA ANALYSIS 147

rently, the set of these templates is hardcoded for each domain. Important
further work would be to provide a general tool for authoring such templates
for various contexts, or generating them using domain reasoners.

7.4 Exercise Log Data Analysis

The knowledge representation of exercises allows for further analysis of the
log data after the learner’s interaction.

For example, typical errors can be machine-learned from such log data,
in which the incorrect answers of different users are compared to each other
using semantic comparisons in order to identify the classes of most common
errors. Such work has been tried within a Bachelor thesis project at the
Saarland University [Bellem, 2008].

An interesting further development would be an automated procedure
that collects the most frequent student errors, generates rewrite rules that
match these errors and stores them within the domain reasoner module as-
signed to the given context.

148 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.4. EXERCISE LOG DATA ANALYSIS 149

References to Own Work

In the following we list publications, containing parts of this work that have
been published at national and international conferences and workshops,
leading journals in the fields of Educational Technology, and the scientific
reports on research conducted within several national and European research
projects.

[Tsovaltzi et al., 2009], [Tsovaltzi et al., 2010a], [Tsovaltzi et al., 2010b],
[Goguadze, 2009b], [Goguadze, 2009a], [Goguadze and Melis, 2009],
[Goguadze and Melis, 2008a], [Goguadze and Melis, 2008b],
[Goguadze and Tsigler, 2007], [Melis et al., 2007], [Melis and Goguadze, 2006],
[Melis et al., 2006], [Goguadze et al., 2006], [Goguadze, 2005],
[Goguadze et al., 2005b], [Goguadze et al., 2005a], [Goguadze et al., 2004b],
[Goguadze et al., 2004a], [Melis and Goguadze, 2004a],
[Goguadze and Palomo, 2003], [Goguadze et al., 2003b], [Melis et al., 2003c],
[Melis et al., 2003a], [Melis et al., 2003b], [Goguadze et al., 2003a],
[Büdenbender et al., 2002b], [Goguadze, 2002b], [Goguadze, 2002a],
[Melis et al., 2002], [Goguadze et al., 2001], [Melis et al., 2001a],
[Melis et al., 2001b], [Siekmann et al., 2000]

150 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[Ainsworth et al., 2003] Ainsworth, S., Major, N., Grimshaw, S., Hayes, M.,
J. Underwood, B. W., and Wood, D. (2003). Redeem: Simple intelli-
gent tutoring systems from usable tools. In Murray, T., Blessing, S., and
Ainsworth, S., editors, Authoring Tools for Advanced Technology Learning
Environments, chapter 8, pages 205–232. Kluwer Academic Publishers.
Printed in the Netherlands.

[Aleven et al., 2009] Aleven, V., McLaren, B., Sewall, J., and Koedinger, K.
(2009). Example-tracing tutors: A new paradigm for intelligent tutor-
ing systems. International Journal of Artificial Intelligence in Education
(IJAIED). Special Issue on ”Authoring Systems for Intelligent Tutoring
Systems”, 19:105–154.

[Aleven et al., 2006] Aleven, V., McLaren, B. M., Sewall, J., and Koedinger,
K. R. (2006). The cognitive tutor authoring tools (ctat): Preliminary
evaluation of efficiency gains. In [Ikeda et al., 2006], pages 61–70.

[Anderson, 1993] Anderson, J. (1993). Rules of the Mind. Lawrence Erlbaum
Associates, Inc. ISBN: 0-8058-1199-0.

[Anderson et al., 1985] Anderson, J., Boyle, C., and Yost, G. (1985). The
geometry tutor. In Proceedings of the 9th international joint conference on
Artificial Intelligence, pages 1–7, Los Angeles, California. Springer-Verlag.

[Anderson et al., 1995] Anderson, J., Corbett, A., Koedinger, K., and
R.Pelletier (1995). Cognitive tutors: Lessons learned. The Journal of
the Learning Sciences, 4(2):167–207.

[Anderson and Reiser, 1985] Anderson, J. and Reiser, B. (1985). The lisp
tutor. Byte, 10:159–175.

151

152 BIBLIOGRAPHY

[Anderson et al., 2001] Anderson, L., Krathwohl, D., Airasian, P., Cruik-
shank, K., Mayer, R., Pintrich, P., and Wittrock, M. (2001). A Taxonomy
for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxomnomy
of Edicational Objectives. Longman, New York.

[Asperti et al., 2003] Asperti, A., Buchberger, B., and Davenport, J. H., ed-
itors (2003). Mathematical Knowledge Management, Second International
Conference, MKM 2003, Bertinoro, Italy, February 16-18, 2003, Proceed-
ings, volume 2594 of Lecture Notes in Computer Science. Springer.

[Baghaei et al., 2005] Baghaei, N., Mitrovic, A., and Irwin, W. (2005). A
constraint-based tutor for learning object-oriented analysis and design us-
ing uml. In Proceeding of the 2005 conference on Towards Sustainable and
Scalable Educational Innovations Informed by the Learning Sciences: Shar-
ing Good Practices of Research, Experimentation and Innovation, volume
133 of Frontiers in Artificial Intelligence and Applications, pages 11–18.

[Beeson, 1996] Beeson, M. (1996). Design principles of mathpert: Software
to support education in algebra and calculus. In N.Kajler, editor, Human
Interfaces to Symbolic Computation, volume 19, pages 105–154. Springer-
Verlag.

[Bellem, 2008] Bellem, M. (2008). Creation and analysis of a problem space
based on no-feedback exercises. Bachelor thesis, Saarland University.

[Bloom, 1956] Bloom, B., editor (1956). Taxonomy of Educational Objec-
tives, Handbook I: Cognitive Domain. David McKay, New York.

[Bloom, 1984] Bloom, B. (1984). The 2-sigma problem: The search for meth-
ods of group instruction as effective as one-to-one tutoring. Educational
Researcher, 13(6):4–16.

[B.P.Woolf, 2008] B.P.Woolf (2008). Building Intelligent Interactive Tutors,
Student-Centered Strategies for Revolutionizing E-Learning. Elsevier &
Morgan Kaufmann.

[Brusilovsky et al., 2003] Brusilovsky, P., Corbett, A. T., and de Rosis, F.,
editors (2003). User Modeling 2003, 9th International Conference, UM
2003, Johnstown, PA, USA, June 22-26, 2003, Proceedings, volume 2702
of Lecture Notes in Computer Science. Springer.

BIBLIOGRAPHY 153

[Büdenbender et al., 2002a] Büdenbender, J., Frischauf, A., Goguadze, G.,
Melis, E., Libbrecht, P., and Ullrich, C. (2002a). Using computer algebra
systems as cognitive tools. In [Cerri et al., 2002], pages 802–810.

[Büdenbender et al., 2002b] Büdenbender, J., Frischauf, A., Goguadze, G.,
Melis, E., Libbrecht, P., and Ullrich, C. (2002b). Using computer algebra
systems as cognitive tools. In [Cerri et al., 2002], pages 802–810.

[Burton, 1982] Burton, R. (1982). Diagnosing bugs in a simple procedural
skill. In Brown, I. D. S. . L., editor, Intelligent Tutoring Systems. Academic
Press, London.

[Burton and Brown, 1978] Burton, R. and Brown, J. (1978). Diagnostic
models for procedural bugs in basic mathematical skills. Cognitive Sci-
ence, 2:155–191.

[Buswell et al., 2004] Buswell, S., Caprotti, O., Carlisle, D. P., Dewar, M. C.,
Gaëtano, M., and Kohlhase, M., editors (2004). The OpenMath Standard
version 2.0. The OpenMath Society.

[Carbonell, 1970] Carbonell, J. (1970). Al in cai: An artificial intelligence
approach to computer-assisted instruction. IEEE Transactions on Man-
Machine Systems, 11:190–202.

[Carette et al., 2009] Carette, J., Dixon, L., Coen, C. S., and Watt, S. M.,
editors (2009). Intelligent Computer Mathematics, 16th Symposium, Cal-
culemus 2009, 8th International Conference, MKM 2009, Held as Part of
CICM 2009, Grand Bend, Canada, July 6-12, 2009. Proceedings, volume
5625 of LNCS. Springer.

[Cerri et al., 2002] Cerri, S. A., Gouardères, G., and Paraguaçu, F., editors
(2002). Intelligent Tutoring Systems, 6th International Conference, ITS
2002, Biarritz, France and San Sebastian, Spain, June 2-7, 2002, Proceed-
ings, volume 2363 of Lecture Notes in Computer Science. Springer.

[Cohen et al., 2005a] Cohen, A., Cuypers, H., Jibetean, D., Spanbroek, M.,
Caprotti, O., amd D. Marques, R. E., and Pau, A. (2005a). LeActive-
Math integrated cas with OpenMath, LeActiveMath deliverable d12.
Technical report, LeActiveMath Consortium.

154 BIBLIOGRAPHY

[Cohen et al., 2005b] Cohen, A., Cuypers, H., Jibetean, D., Spanbroek, M.,
Caprotti, O., Eixarch, R., Marques, D., , and Pau, A. (2005b). LeActive-
Math phrasebooks. LeActiveMath Deliverable D14, LeActiveMath
Consortium.

[Collins et al., 1989] Collins, A., Brown, J., and Newman, S. (1989). Cogni-
tive apperenticeship: Teaching the crafts of reading, writing, and mathe-
matics. In Resnick, L., editor, Knowing, learning, and instruction: Essays
in honor of Robert Glaser, pages 453–494. Lawrence Erlbaum Associates,
Inc., Hillsdale, NJ.

[Conati and VanLehn, 1999] Conati, C. and VanLehn, K. (1999). Teaching
meta-cognitive skills: implementation and evaluation of a tutoring system
to guide self-explanation while learning from examples. In Lajoie, S. P.
and Vivet, M., editors, Artificial Intelligence in Education, pages 297–304,
Amsterdam. IOS Press.

[Conati and VanLehn, 2000] Conati, C. and VanLehn, K. (2000). Toward
computer-based support of meta-cognitive skills: A computational frame-
work to coach self-explanation. International Journal of Artificial Intelli-
gence in Education, 11:398–415.

[Consortium, 2004] Consortium, LeActiveMath. (2004). Requirement
analysis, deliverable d5. Technical report, LeActiveMath Consortium.

[Corbett, 2001] Corbett, A. (2001). Cognitive computer tutors: Solving the
two-sigma problem. In Bauer, M., Gmytrasiewicz, P., and Vassileva, J.,
editors, UM 2001, volume 2109, pages 137–147. Springer-Verlag Berlin
Heidelberg.

[Corbett and Anderson, 1995] Corbett, A. T. and Anderson, J. R. (1995).
Knowledge tracing: Modeling the acquisition of procedural knowl-
edge. User Modeling and User-Adapted Interaction, 4:253–278.
10.1007/BF01099821.

[Corbett et al., 1997] Corbett, A. T., Koedinger, K. R., and Anderson, J. R.
(1997). Intelligent tutoring systems. In [Helander et al., 1997], chapter 37,
pages 849–874.

BIBLIOGRAPHY 155

[Crowder, 1959] Crowder, N. (1959). Automatic tutoring by means of in-
trinsic programming. In Automatic Teaching: The State of the Art, pages
109–116. Wiley, New York.

[Davenport, 2008] Davenport, J. H. (2008). Aisc meets natural typography.
In et al., S. A., editor, Proceedings of AISC/Calculemus/MKM 2008, num-
ber 5144 in LNAI, pages 53–60. Springer-Verlag.

[Dimitrova et al., 2009] Dimitrova, V., Mizoguchi, R., du Boulay, B., and
Graesser, A. C., editors (2009). Artificial Intelligence in Education: Build-
ing Learning Systems that Care: From Knowledge Representation to Af-
fective Modelling, Proceedings of the 14th International Conference on Ar-
tificial Intelligence in Education, AIED 2009, July 6-10, 2009, Brighton,
UK, volume 200 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

[du Boulay et al., 2008] du Boulay, B., Mendez, G., Luckin, R., Miron,
E. M., and Harris, A. (2008). Motivationally intelligent systems: Three
questions. In Second International Conference on Innovations in Learn-
ing for the Future, Future e-Learning 2008, Istanbul. Istanbul University
Rectorate Publication No: 4793.

[Dudev and Palomo, 2007] Dudev, M. and Palomo, A. G. (2007). Generating
parametrized exercises. Technical report, Student Project at the University
of Saarland, March 2007. http://www.matracas.org/escritos/edtech_
report.pdf.

[Eichelmann et al., 2008] Eichelmann, A., Narciss, S., Faulhaber, A., and
Melis, E. (2008). Analyzing computer-based fraction tasks on the basis
of a two-dimensional view of mathematics competences. In Zumbach, J.,
Schwartz, N., Seufert, T., and Lester, L., editors, Beyond Knowledge: The
Legacy of Competence. Meaningfull Coumputer-Based Learning Environ-
ments. EARLI SIG 7 Learning and Instruction with Computers in coop-
eration with SIG 6 Instructional Design (EARLI SIG-6 & 7), September
2-4, 2008, Salzburg, Australia, pages 125–134. Springer.

[Faulhaber and Melis, 2008] Faulhaber, A. and Melis, E. (2008). An efficient
student model based on student performance and metadata. In Ghallab,
M., Spyropoulos, C. D., Fakotakis, N., and Avouris, N. M., editors, Pro-
ceedings of 18th European Conference on Artificial Intelligence (ECAI-08),

http://www.matracas.org/escritos/edtech_report.pdf
http://www.matracas.org/escritos/edtech_report.pdf

156 BIBLIOGRAPHY

Patras, Greece, July 21-25, 2008, volume 178 of Frontiers in Artificial In-
telligence and Applications (FAIA), pages 276–280. IOS Press.

[Gerdes et al., 2008] Gerdes, A., Heeren, B., Jeuring, J., and Stuurman, S.
(2008). Feedback services for exercise assistants. In Remenyi, D., editor,
Proceedings of the 7th European Conference on e-Learning (ECEL 2008),
Lecture Notes in Artificial Intelligence (LNAI), pages 402–410, Cyprus.
Academic Publishing Limited Reading.

[Gertner et al., 1998] Gertner, A., Conati, C., and Lehn, K. V. (1998). Pro-
cedural help in andes: Generating hints using a bayesian network student
model. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence AAAI-98, pages 106–111, Cambridge, MA. The MIT Press.

[Goguadze, 2002a] Goguadze, G. (2002a). Metadata for mathematical li-
braries. Technical report, Report n. D3.a, Project IST-2001-33562
MOWGLI.

[Goguadze, 2002b] Goguadze, G. (2002b). Metadata model. Technical re-
port, Report n. D3.b, Project IST-2001-33562 MOWGLI.

[Goguadze, 2005] Goguadze, G. (2005). Generic cas interaction. LeActive-
Math Deliverable D25, LeActiveMath Consortium.

[Goguadze, 2009a] Goguadze, G. (2009a). Representation for interactive ex-
ercises. In Carette, J., Dixon, L., Coen, C. S., and Watt, S. M., editors,
Intelligent Computer Mathematics, 16th Symposium Calculemus 2009, 8th
International Conference MKM 2009, Grand Bend, Canada, July 6-12,
2009, Proceedings, volume 5625 of LNCS, pages 294–309. Springer.

[Goguadze, 2009b] Goguadze, G. (2009b). Semantic evaluation services for
web-based exercises. In Spaniol, M., Li, Q., Klamma, R., and Lau, R.
W. H., editors, ICWL, volume 5686 of LNCS, pages 172–181. Springer.

[Goguadze et al., 2005a] Goguadze, G., González Palomo, A., and Melis, E.
(2005a). Interactivity of exercises in activemath. Towards Sustainable and
Scalable Educational Innovations Informed by the Learning Sciences Shar-
ing. Good Practices of Research, Experimentation and Innovation, Fron-
tiers in Artificial Intelligence and Applications.

BIBLIOGRAPHY 157

[Goguadze et al., 2005b] Goguadze, G., González Palomo, A., and Melis, E.
(2005b). Interactivity of exercises in activemath. In Proceedings of In-
ternational Conference on Computers in Education (ICCE05), December
2005, Singapore. also published as Journal Article (see below).

[Goguadze et al., 2004a] Goguadze, G., González Palomo, A., Tsigler, I.,
and Winterstein, S. (2004a). LeActiveMath presentation architecture,
LeActiveMath deliverable d9. Technical report, LeActiveMath Con-
sortium.

[Goguadze et al., 2006] Goguadze, G., Mavrikis, M., and Palomo, A. (2006).
Interoperability issues between markup formats for mathematical exer-
cise. In Seppälä, M., Xambo, S., and Caprotti, O., editors, Proceed-
ings of WebAlt 2006, First WebALT Conference and Exhibition, Jan-
uary 5-6, 2006, Technical University of Eindhoven, Netherlands, pages
69–80. http://webalt.math.helsinki.fi/webalt2006/content/e31/

e176/webalt2006.pdf.

[Goguadze and Melis, 2008a] Goguadze, G. and Melis, E. (2008a). Feed-
back in ActiveMath exercises. In 11th International Conference on Math-
ematical Education ICME 11, July 6-13, Monterrey, Mexico. http:

//tsg.icme11.org/document/get/232.

[Goguadze and Melis, 2008b] Goguadze, G. and Melis, E. (2008b). One exer-
cise - various tutorial strategies. In Woolf, B. P., Aı̈meur, E., Nkambou, R.,
and Lajoie, S. P., editors, Intelligent Tutoring Systems, 9th International
Conference, ITS 2008, Montreal, Canada, June 23-27, 2008, Proceedings,
volume 5091 of LNCS, pages 755–757. Springer.

[Goguadze and Melis, 2009] Goguadze, G. and Melis, E. (2009). Combin-
ing evaluative and generative diagnosis in activemath. In Dimitrova, V.,
Mizoguchi, R., du Boulay, B., and Graesser, A. C., editors, Artificial Intel-
ligence in Education: Building Learning Systems that Care: From Knowl-
edge Representation to Affective Modelling, Proceedings of the 14th Inter-
national Conference on Artificial Intelligence in Education, AIED 2009,
July, volume 200 of Frontiers in Artificial Intelligence and Applications,
pages 668–670. IOS Press.

http://webalt.math.helsinki.fi/webalt2006/content/e31/e176/webalt2006.pdf
http://webalt.math.helsinki.fi/webalt2006/content/e31/e176/webalt2006.pdf
http://tsg.icme11.org/document/get/232
http://tsg.icme11.org/document/get/232

158 BIBLIOGRAPHY

[Goguadze et al., 2001] Goguadze, G., Melis, E., and Asperti, A. (2001).
Structure and meta-structure of mathematical documents. Technical re-
port, Report n. D1.b, Project IST-2001-33562 MOWGLI.

[Goguadze et al., 2003a] Goguadze, G., Melis, E., Izhutkin, V., and Isulanov,
Y. (2003a). Interactively learning operations research methhods with ac-
tivemath. In H.G.Bock, Domschke, W., Fahrion, R., Juenger, M., Ko-
gelschatz, H., Liesegang, G., Reinelt, G., Rendl, F., and Waescher, G.,
editors, Operations Research 2003, Annual Conference of the german Op-
erations Research Society. Heidelberg, page 159, Heidelberg.

[Goguadze et al., 2003b] Goguadze, G., Melis, E., Ullrich, C., and Cairns,
P. A. (2003b). Problems and solutions for markup for mathematical ex-
amples and exercises. In Asperti, A., Buchberger, B., and Davenport, J. H.,
editors, Mathematical Knowledge Management, Second International Con-
ference, MKM 2003, Bertinoro, Italy, February 16-18, 2003, Proceedings,
volume 2594 of Lecture Notes in Computer Science, pages 80–92. Springer.

[Goguadze and Palomo, 2003] Goguadze, G. and Palomo, A. G. (2003).
Adapting mainstream editors for semantic authoring of mathematics. In
Mathematical Knowledge Management Symposium, 25-29 November 2003,
Heriot-Watt University Edinburgh, Scotland.

[Goguadze and Tsigler, 2007] Goguadze, G. and Tsigler, I. (2007).
Authoring interactive exercises in ActiveMath. In Proceedings of
the MathUI Workshop at the Sixth Mathematical Knowledge Man-
agement Conference, Schloss Hagenberg, Linz, June 27, 2007.
http://www.activemath.org/workshops/MathUI/07/proceedings/

Goguadze-Tsigler-ExAMAT-MathUI07.pdf.

[Goguadze et al., 2004b] Goguadze, G., Ullrich, C., Melis, E., Siekmann, J.,
Groß, C., and Morales, R. (2004b). LeActiveMath structure and meta-
data model, deliverable d6. Technical report, LeActiveMath Consortium,
Saarland University.

[Grabowski et al., 2005] Grabowski, B., Gäng, S., Herter, J., and Köppen,
T. (2005). Mathcoach and laplacescript: Advanced exercise programming
for mathematics with dynamic help generation. In Proceedings of the
ICL2005 Workshop, at International Conference on Interactive Computer
Aided Learning ICL, Villach, Austria.

http://www.activemath.org/workshops/MathUI/07/proceedings/Goguadze-Tsigler-ExAMAT-MathUI07.pdf
http://www.activemath.org/workshops/MathUI/07/proceedings/Goguadze-Tsigler-ExAMAT-MathUI07.pdf

BIBLIOGRAPHY 159

[Heffernan, 2001] Heffernan, N. (2001). Intelligent Tutoring Systems have
Forgotten the Tutor: Adding a Cognitive Model of Human Tutors. Doc-
toral dissertation, School Of Computer Science Carnegie Mellon Univer-
sity, CMU-CS-01-127.

[Heffernan et al., 2008] Heffernan, N., Koedinger, K. R., and Razzaq, L.
(2008). Expanding the model-tracing architecture: A 3rd generation in-
telligent tutor for algebra symbolization. The International Journal of
Artificial Intelligence in Education, 18(2):153–178.

[Helander et al., 1997] Helander, M., Landauer, T. K., and Prabhu, P. V.,
editors (1997). Handbook of Human-Computer Interaction. Elsevier Sci-
ence B.V., Amsterdam, second, completely revised edition edition.

[Henneke, 1999] Henneke, M. (1999). Online Diagnose in intelligenten math-
ematischen Lehr-Lern-Systemen. PhD thesis, Universität Hildesheim.

[Ikeda et al., 2006] Ikeda, M., Ashley, K. D., and Chan, T.-W., editors
(2006). Intelligent Tutoring Systems, 8th International Conference, ITS
2006, Jhongli, Taiwan, June 26-30, 2006, Proceedings, volume 4053 of
Lecture Notes in Computer Science. Springer.

[IMS Global Learning Consortium, 2002] IMS Global Learning Consortium
(2002). IEEE learning object metadata standard. http://www.

imsglobal.org/lom.

[IMS Global Learning Consortium, 2005] IMS Global Learning Consortium
(2005). IMS question and test interoperability overview version, 2.0 final
specification, 24 january 2005. http://www.imsglobal.org/question/

qti_v2p0/imsqti_oviewv2p0.html.

[Izhutkin et al., 2004] Izhutkin, V., Melis, E., Toktarova, V., and Goguadze,
G. (2004). Interactive education methods for the solution of extremal
tasks with the help of the learning system activemath. In Telematika
2004, Moskow.

[Kinshuk et al., 2005] Kinshuk, Sampson, D. G., and Isáıas, P. T., editors
(2005). Cognition and Exploratory Learning in Digital Age, CELDA 2005,
14-16 December 2005, Porto, Portugal, Proceedings. IADIS.

http://www.imsglobal.org/lom
http://www.imsglobal.org/lom
http://www.imsglobal.org/question/qti_v2p0/imsqti_oviewv2p0.html
http://www.imsglobal.org/question/qti_v2p0/imsqti_oviewv2p0.html

160 BIBLIOGRAPHY

[Klieme et al., 2004] Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gru-
ber, H., Prenzel, M., Reiss, K., Riquarts, K., Rost, J., Tenorth, H., , and
Vollmer, H. J. (2004). The development of national educational stan-
dards - an expertise. Technical report, Bundesministerium für Bildung
und Forschung / German Federal Ministry of Education and Research.

[Kodaganallur et al., 2005] Kodaganallur, V., R.Weitz, and Rosenthal, D.
(2005). A comparison of model-tracing and constraint-based intelligent
tutoring paradigms. IJAIED, 15(2):117–144.

[Kodaganallur et al., 2006] Kodaganallur, V., R.Weitz, and Rosenthal, D.
(2006). An assessment of constraint-based tutors: A response to mitrovic
and ohlsson’s critique of ”a comparison of model-tracing and constraint-
based intelligent tutoring paradigms”. IJAIED, 16:291–321.

[Koedinger et al., 2004] Koedinger, K., Aleven, V., Heffernan, N., McLar-
ren, B., and Hockenberry, M. (2004). Opening the door to non-
programmers: Authoring intelligent tutor behaviour by demonstration.
In [Lester et al., 2004], pages 162–174.

[Koedinger and Anderson, 1997] Koedinger, K. and Anderson, J. (1997). In-
telligent tutoring goes to school in the big city. International Journal of
Artificial Intelligence in Education, 8:30–43.

[Kohlhase, 2000] Kohlhase, M. (2000). OMDoc: Towards an OpenMath
representation of mathematical documents. Seki Report, FR Informatik,
Universität des Saarlandes.

[Kohlhase, 2005] Kohlhase, M. (2005). OMDoc: An open markup format
for mathematical documents (version 1.1). Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh, Pa 15213, USA.

[Kohlhase, 2006] Kohlhase, M. (2006). OMDoc: An Open Markup Format
for Mathematical Documents (Version 1.2), (the technical specification,
Primer, and discussion of the upcoming version 1.2 of OMDoc). Number
4180 in Lecture Notes in Artificial Intelligence (LNAI). Springer Verlag.
Errata, LNAI 4810 with Corrections.

[LeActiveMath, 2004] LeActiveMath (2004). Leactivemath project, funded
under the 6th framework programme of the european commission, 2004-
2006. http://www.leactivemath.org.

http://www.leactivemath.org

BIBLIOGRAPHY 161

[Lehn et al., 2002] Lehn, K. V., Lynch, C., Taylor, L., Winstein, A., Shelby,
R., Schulze, K., Treacy, D., and M.Wintersgill (2002). Minimally invasive
tutoring of complex physics problem solving. In S.A. Cerri, G. G. and
Paraguaçu, F., editors, Proceedings of ITS 2002, number 2363 in LNCS,
pages 367–376. Springer-Verlag Berlin Heidelberg.

[Lester et al., 2004] Lester, J. C., Vicari, R. M., and Paraguaçu, F., editors
(2004). Intelligent Tutoring Systems, 7th International Conference, ITS
2004, Maceiò, Alagoas, Brazil, August 30 - September 3, 2004, Proceedings,
volume 3220 of Lecture Notes in Computer Science. Springer.

[Libbrecht et al., 2001] Libbrecht, P., Frischauf, A., Melis, E., Pollet, M.,
and Ullrich, C. (2001). Integration of mathematical systems into the ac-
tivemath learning environment. In Wang, P., Kajler, N., and Diaz, A.,
editors, ISSAC-2001 Workshop on Internet Accessible Mathematical Com-
putation.

[Maple, 2009] Maple (2009). MapleTM, c©Maplesoft, a division of Waterloo
Maple Inc. 2009. http://www.maplesoft.com.

[MapleTATM, 2010] MapleTATM(2010). MapletaTMtesting, evaluation and
grading software c©maplesoft. http://www.maplesoft.com/products/

mapleta.

[Masood, 2009] Masood, S. (2009). A domain reasoner for fraction arith-
metics, serving intelligent exercises. Master’s thesis, Saarland University.

[MathDox, 2007] MathDox (2007). Mathdox tool for interactive mathemat-
ical documents. http://www.mathdox.org.

[Matsuda et al., 2005] Matsuda, N., Cohen, W. W., and Koedinger, K. R.
(2005). Applying programming by demonstration in an intelligent author-
ing tool for cognitive tutors. In AAAI Workshop on Human Comprehensi-
ble Machine Learning. Technical Report WS-05-04, pages 1–8, Menlo Park,
CA. AAAI association.

[Mavrikis and Maciocia, 2003] Mavrikis, M. and Maciocia, A. (2003). Wallis:
a web-based ile for science and engineering students studying mathematics.
In Workshop of Advanced Technologies for Mathematics Education in 11th
International Conference on Artificial Intelligence in Education, Sydney
Australia.

http://www.maplesoft.com
http://www.maplesoft.com/products/mapleta
http://www.maplesoft.com/products/mapleta
http://www.mathdox.org

162 BIBLIOGRAPHY

[Mavrikis and Palomo, 2004] Mavrikis, M. and Palomo, A. G. (2004). Math-
ematical, interactive exercise generation from static documents. Electronic
Notes on Theoretical Computer Science, 93:183–201.

[Maxima, 2010] Maxima (2000-2010). Maxima, a computer algebra system.
http://maxima.sourceforge.net/.

[Mayo et al., 2000] Mayo, M., Mitrovic, A., and McKenzie, J. (2000). Capit:
an intelligent tutoring system for capitalization and punctuation. In In-
ternational Workshop for Advanced Learning Technologies IWALT2000,
December 4-6, Palmerston North, pages 151–154.

[Melis, 2005] Melis, E. (2005). Choice of feedback strategies. In
[Kinshuk et al., 2005], pages 183–189.

[Melis et al., 2001a] Melis, E., Andrès, E., Büdenbender, J., Frischauf, A.,
Goguadze, G., Libbrecht, P., Pollet, M., and Ullrich, C. (2001a). Active-
math: A generic and adaptive web-based learning environment. Journal
of Artificial Intelligence in Education, 12(4):385–407.

[Melis et al., 2001b] Melis, E., Andres, E., Goguadze, G., Libbrecht, P., Pol-
let, M., and Ullrich, C. (2001b). Activemath system description. In Moore,
J., Redfield, C., and Johnson, W., editors, Proceedings of AIED 2001,
10th World Conference of Artificial Intelligence and Education, May 19-
23, 2001, S. Antonio, Texas. IOS Press.

[Melis et al., 2002] Melis, E., Büdenbender, J., Goguadze, G., Libbrecht, P.,
and Ullrich, C. (2002). Semantics for web-based mathematical education
systems. In Semantic Web Workshop at WWW 2002, Hawai, USA.

[Melis et al., 2003a] Melis, E., Büdenbender, J., Goguadze, G., Libbrecht,
P., and Ullrich, C. (2003a). Knowledge representation and management
in activemath. Ann. Math. Artif. Intell., 38(1-3):47–64.

[Melis et al., 2008] Melis, E., Faulhaber, A., Eichelmann, A., and Narciss,
S. (2008). Interoperable competencies characterizing learning objects in
mathematics. In Woolf, B. P., Aı̈meur, E., Nkambou, R., and Lajoie, S. P.,
editors, Intelligent Tutoring Systems (ITS 2008), 9th International Con-
ference, Canada, June 23-27, 2008, Proceedings, volume 5091 of LNCS,
pages 416–425. Springer.

http://maxima.sourceforge.net/

BIBLIOGRAPHY 163

[Melis and Goguadze, 2004a] Melis, E. and Goguadze, G. (2004a). Towards
adaptive generation of faded examples. In Lester, J. C., Vicari, R. M.,
and Paraguaçu, F., editors, Intelligent Tutoring Systems, 7th International
Conference, ITS 2004, Maceiò, Alagoas, Brazil, August 30 - September 3,
2004, Proceedings, volume 3220 of Lecture Notes in Computer Science,
pages 762–771. Springer.

[Melis and Goguadze, 2004b] Melis, E. and Goguadze, G. (2004b). Towards
adaptive generation of faded examples. In [Lester et al., 2004], pages 762–
771.

[Melis and Goguadze, 2006] Melis, E. and Goguadze, G. (2006). Represen-
tation of misconceptions. In Spector, J., Isaias Kinshuk, P., and Sampson,
D., editors, Cognition and Learning in the Digital Age (CELDA-2006),
pages 208–214. IADIS.

[Melis et al., 2006] Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ull-
rich, C., and Winterstein, S. (2006). Semantic-aware components and
services of activemath. British Journal of Educational Technologyy, 37(3).

[Melis et al., 2003b] Melis, E., Goguadze, G., Libbrecht, P., and Ullrich, C.
(2003b). Wissensmodellierung und -nutzung in activemath. KI, 17(1):12–.

[Melis et al., 2003c] Melis, E., Goguadze, G., P. Libbrecht, I. N., Ullrich, C.,
and Winterstein, S. (2003c). Education-relevant features in actinmath. In
ONLINE EDUCA BERLIN 2003 - 9th International Conference on Tech-
nology Supported Learning and Training. December 3 - 5, 2003, Berlin.

[Melis et al., 2007] Melis, E., Moormann, M., Ullrich, C., Goguadze, G.,
and Libbrecht, P. (2007). How ActiveMath supports moderate con-
structivist mathematics teaching. In Milková, E. and Pražák, P., ed-
itors, Proceedings of the 8th International Conference on Technology
in Mathematics Teaching (ICTMT 2007), Hradec Králové, Czech Re-
public, 1-4 July 2007. http://www-ags.dfki.uni-sb.de/~melis/Pub/

MelisSupportingModerateConstructivism-ICTMT8.pdf.

[Méndez et al., 2003] Méndez, G., Rickel, J., and de Antonio, A. (2003).
Steve meets jack: the integration of an intelligent tutor and a virtual envi-
ronment with planning capabilities. In 4th International Working Confer-
ence on Intelligent Virtual Agents (IVA03). Irsee, Germany. 15-17 Sept.,

http://www-ags.dfki.uni-sb.de/~melis/Pub/MelisSupportingModerateConstructivism-ICTMT8.pdf
http://www-ags.dfki.uni-sb.de/~melis/Pub/MelisSupportingModerateConstructivism-ICTMT8.pdf

164 BIBLIOGRAPHY

2003. Intelligent Virtual Agents, number 2792 in LNAI, pages 325–332.
Springer-Verlag.

[Millán et al., 2010] Millán, E., T.Loboda, and de-la Cruz, J. L. P. (2010).
Bayesian networks for student model engineering. Computers & Education,
55(4):1663–1683.

[Mitrovic, 2002] Mitrovic, A. (2002). Normit, a web-enabled tutor for
database normalization. In Kinshuk, R.Lewis, Akahori, K., Kemp, R.,
T.Okamoto, Henderson, L., and Lee, C.-H., editors, Proc. ICCE 2002,
pages 1276–1280, Auckland.

[Mitrovic et al., 2003a] Mitrovic, A., Koedinger, K., and Martin, B. (2003a).
A comparative analysis of cognitive tutoring and constraint-based model-
ing. In et al., P. B., editor, Proceedings of the 9th International Conference
on User Modeling (UM2003), number 2702 in LNAI, pages 313–322, Berlin
Heidelberg New York. Springer-Verlag.

[Mitrovic et al., 2003b] Mitrovic, A., Koedinger, K. R., and Martin, B.
(2003b). A comparative analysis of cognitive tutoring and constraint-based
modeling. In [Brusilovsky et al., 2003], pages 313–322.

[Mitrovic et al., 2008] Mitrovic, A., McGuigan, N., Martin, B., Suraweera,
P., Milik, N., and Holland, J. (2008). Authoring constraint-based tutors
in aspire: a case study of a capital investment tutor. In ED-MEDIA 2008,
Vienna, 30.6.-4.7.2008, pages 4607–4616.

[Mitrovic and Ohlsson, 1999] Mitrovic, A. and Ohlsson, S. (1999). Evalu-
ation of a constraint-based tutor for a database language. International
Journal of Artificial Intelligence in Education, 10:238–256.

[Mitrovic and Ohlsson, 2006] Mitrovic, A. and Ohlsson, S. (2006). A critique
of kodaganallur, weitz and rosenthal, ”a comparison of model-tracing and
constraint-based intelligent tutoring paradigms”. International Journal of
Artificial Intelligence in Education, 16(3):277–289.

[MuPAD, 2009] MuPAD (1994-2009). MuPAD computer alebra system
c©1994-2009 The MathWorks, Inc. http://www.mupad.de.

[Murray, 1991] Murray, T. (1991). Facilitating teacher participation in intel-
ligent computer tutor design: Tools and design methods. Technical report,

http://www.mupad.de

BIBLIOGRAPHY 165

Univ. of Massachusetts. Ed.D. Dissertation, Computer Science Tech. Re-
port 91-95.

[Murray, 1998] Murray, T. (1998). Authoring knowledge based tutors: Tools
for content, instructional strategy, student model, and interface design.
Journal of the Learning Sciences, 7(1):5–64.

[Murray, 1999] Murray, T. (1999). Authoring intelligent tutoring systems:
Analysis of the state of the art. Int. J. of AI and Education, 10(1):98–129.

[Murray, 2003a] Murray, T. (2003a). Eon: Authoring tools for content,
instructional strategy, student model and interface design. In Murray,
Ainsworth, and Blessing, editors, Authoring Tools for Advanced Technol-
ogy Learning Environments, pages 309–339. Kluwer Academic Publishers.

[Murray, 2003b] Murray, T. (2003b). Principles for pedagogy-oriented
knowledge based tutor authoring systems: Lessons learned and a design
meta-model. In Murray, Ainsworth, and Blessing, editors, Authoring Tools
for Advanced Technology Learning Environments, pages 439–467. Kluwer
Academic Publishers.

[Murray, 2004] Murray, T. (2004). Design tradeoffs in usability and power for
advanced educational software authoring tools. Educational Technology,
44(5):10–16.

[Narciss, 2004] Narciss, S. (2004). The impact of informative tutoring feed-
back and self-efficacy on motivation and achievement in concept learning.
Experimental Psychology, 51(3):214–228.

[Narciss, 2006] Narciss, S. (2006). Informatives tutorielles Feedback.
Entwicklungs- und Evaluationsprinzipien auf der Basis instruktionspsy-
chologischer Erkenntnisse. Waxmann, Münster.

[Narciss, 2008] Narciss, S. (2008). Feedback strategies for interactive learn-
ing tasks. In Spector, J. M., Merrill, M. D., van Merriënboer, J. J. G., and
Driscoll, M. P., editors, Handbook of Research on Educational Commu-
nications and Technology, pages 125–144. Lawrence Erlbaum Associates,
Mahwah, NJ, 3rd edition.

[Narciss and Huth, 2004] Narciss, S. and Huth, K. (2004). How to design
informative tutoring feedback for multi-media learning. In Leutner, D.,

166 BIBLIOGRAPHY

Niegemann, H., and Brünken, R., editors, Instructional design for multi-
media learning. Proceedings of the 5th International Workshop of SIG 6
Instructional Design of the European Association for Research on Learn-
ing and Instruction (EARLI), June 27-29, 2002 in Erfurt, pages 181–195,
Münster. Waxmann.

[Narciss and Huth, 2006] Narciss, S. and Huth, K. (2006). Fostering achieve-
ment and motivation with bug-related tutoring feedback in a computer-
based training for written subtraction. Learning and Instruction, 16:310–
322.

[Narciss et al., 2004] Narciss, S., Koerndle, H., Reimann, G., and Mueller,
C. (2004). Feedback-seeking and feedback efficiency in web-based learn-
ing: How do they relate to task and learner characteristics? In Gerjets,
P., Kirschner, P., Elen, J., and Joiner, R., editors, Instructional design
for effective and enjoyable computer-supported learning. Proceedings of the
first joint meeting of EARLI SIGs Instructional Design and Learning and
Instruction, pages 377–388, Tübingen. Knowledge Media Research Center.

[Nicaud et al., 2003] Nicaud, J., Bouhineau, D., Chaachoua, H., and amd
A. Bronner, T. H. (2003). A computer program for the learning of alge-
bra: description and first experiment. In Proceedings of PEG2003, Saint
Petersburg. Springer-Verlag.

[Niss, 2002] Niss, M. (2002). Mathematical competencies and the learning
of mathematics: the danish KOM project. Technical report, Roskilde Uni-
versity. http://www7.nationalacademies.org/mseb/Mathematical_

Competencies_and_the_Learning_of_Mathematics.pdf.

[Nwana, 1990] Nwana, H. S. (1990). Intelligent tutoring systems: an
overview. Artificial Intelligence Review, 4:251–277.

[Ohlsson, 1996] Ohlsson, S. (1996). Learning from performance errors. Psy-
chological Review, 103(2):241–262.

[Palomo, 2006] Palomo, A. G. (2006). Exercise system in ActiveMath.
Technical report, Saarland University.

[Polushkina, 2009] Polushkina, S. (2009). Selbstreguliert modellieren ler-
nen mit einer e-lernumgebung für schüler/innen: Kompetenzförderung

http://www7.nationalacademies.org/mseb/Mathematical_Competencies_and_the_Learning_of_Mathematics.pdf
http://www7.nationalacademies.org/mseb/Mathematical_Competencies_and_the_Learning_of_Mathematics.pdf

BIBLIOGRAPHY 167

durch lernunterstützungen. In Tagungsband zur 43. Jahrestagung der
Gesellschaft für Didaktik der Mathematik, Oldenburg, 2009.

[Reiss et al., 2005] Reiss, K., Moormann, M., Groß, C., and Ullrich, C.
(2005). Formalized pedagogical strategies. Deliverable D20, LeActiveMath
Consortium.

[Rickel and Johnson, 1999] Rickel, J. and Johnson, W. L. (1999). Animated
agents for procedural training in virtual reality: Perception, cognition, and
motor control. Applied Artificial Intelligence, 13:343–382.

[Roll et al., 2006] Roll, I., Aleven, V., McLaren, B. M., Ryu, E., de Baker,
R. S. J., and Koedinger, K. R. (2006). The help tutor: Does metacognitive
feedback improve students’ help-seeking actions, skills and learning? In
[Ikeda et al., 2006], pages 360–369.

[Rosé et al., 2001] Rosé, C. P., Jordan, P., Ringenberg, M., Siler, S.,
Van Lehn, K., and Weinstein, A. (2001). Interactive conceptual tutor-
ing in atlas-andes. In Moore, J. D., Redfield, C. L., and Johnson, W. L.,
editors, Artificial Intelligence in Education: AI-ED in the Wired and Wire-
less Future, Proceedings of AIED 2001, pages 256–266, Amsterdam. IOS
Press.

[Sangwin, 2004] Sangwin, C. J. (2004). Assessing mathematics automatically
using computer algebra and the internet. Teaching Mathematics and its
Applications, 23(1):1–14.

[Sangwin, 2008] Sangwin, C. J. (2008). Assessing elementary algebra with
stack. International Journal of Mathematical Education in Science and
Technology, 38(8):987–1002.

[Schiller, 2010] Schiller, M. (2010). Granularity Analysis for Tutoring Math-
ematical Proofs. PhD thesis, Department of Computer Science, Saarland
University. Submitted.

[Shapiro, 2005] Shapiro, J. A. (2005). An algebra subsystem for diagnosing
students’ input in a physics tutoring system. International Journal of
Artificial Intelligence in Education, 15(3):205–228.

[Siekmann et al., 2000] Siekmann, J., Benzmüller, C., Fiedler, A., Franke,
A., Goguadze, G., Horacek, H., Kohlhase, M., Libbrecht, P., Meier, A.,

168 BIBLIOGRAPHY

Melis, E., Pollet, M., Sorge, V., and Ullrich, C. (2000). Adaptive course
generation and presentation. In Peylo, C., editor, Proceedings of the Inter-
national Workshop on Adaptive and Intelligent Webbased Education Sys-
tems held in conjunction with 5th International Conference on Intelligent
Tutoring Systems (ITS’2000), Montreal, Canada. Technical Report of the
Institute for Semantic Information Processing Osnabrück.

[Skinner, 1954] Skinner, B. (1954). The science of learning and the art of
teaching. Harvard Educational Review, 24:86–97.

[Smets, 1994] Smets, P. (1994). What is dempster-shafer’s model? In Yager,
R. R., Kacprzyk, J., and Fedrizzi, M., editors, Advances in the Dempster-
Shafer theory of evidence, pages 5–34. John Wiley & Sons, Inc, New York,
NY, USA.

[Spaniol et al., 2009] Spaniol, M., Li, Q., Klamma, R., and Lau, R. W. H.,
editors (2009). Advances in Web Based Learning - ICWL 2009, 8th Inter-
national Conference, Aachen, Germany, August 19-21, 2009. Proceedings,
volume 5686 of LNCS. Springer.

[The MONET Project, 2002] The MONET Project (2002). Monet. http:

//monet.nag.co.uk/monet.

[Tsovaltzi et al., 2010a] Tsovaltzi, D., McLaren, B., Melis, E., Meyer, A.-K.,
Dietrich, M., and Goguadze, G. (2010a). Learning from erroneous exam-
ples. In V.Aleven, J.Kay, and J.Mostow, editors, Proceedings of Intelligent
Tutoring Systems, 10th International Conference (ITS 2010), volume 6095
of Lecture Notes in Computer Science, Subseries: Programming and Soft-
ware Engineering, pages 420–422, Pittsburgh, PA, USA. Springer-Verlag
Berlin Heidelberg. Proceedings, Part II.

[Tsovaltzi et al., 2010b] Tsovaltzi, D., Melis, E., McLaren, B., Meyer, A.-
K., Dietrich, M., and Goguadze, G. (2010b). Learning from erroneous
examples: When and how do students benefit from them? In Wolpers,
M., Kirschner, P., Scheffel, M., Lindstaedt, S., and Dimitrova, V., edi-
tors, Proceedings of the 5th European Conference on Technology Enhanced
Learning (EC-TEL 2010), volume 6383 of Lecture Notes in Computer Sci-
ence, Sustaining TEL: From Innovation to Learning and Practice, pages
357–373, Barcelona, Spain. Springer-Verlag Berlin Heidelberg. Proceed-
ings, Part II.

http://monet.nag.co.uk/monet
http://monet.nag.co.uk/monet

BIBLIOGRAPHY 169

[Tsovaltzi et al., 2009] Tsovaltzi, D., Melis, E., McLaren, B. M., Dietrich,
M., Goguadze, G., and Meyer., A.-K. (2009). Erroneous examples: A
preliminary investigation into learning benefits. In Cress, U., Dimitrova,
V., and Specht, M., editors, Proceedings of the Fourth European Conference
on Technology Enhanced Learning, Learning in the Synergy of Multiple
Disciplines (EC-TEL 2009), number 5794 in LNCS, pages 688–693, Nice,
France. Springer-Verlag Berlin Heidelberg.

[Turner et al., 2005] Turner, T., Macasek, M., Nuzzo-Jones, G., Heffernan,
N., and Koedinger, K. (2005). The assistment builder: A rapid develop-
ment tool for its. In Looi, C., McCalla, G., Bredeweg, B., and Breuker,
J., editors, Proceedings of the 12th International Conference on Artificial
Intelligence In Education, pages 929–931, Amsterdam. ISO Press.

[Ullrich, 2008] Ullrich, C. (2008). Course generation as a hierarchical task
network planning problem. KI, 3:72–74.

[Ullrich et al., 2004] Ullrich, C., Libbrecht, P., Winterstein, S., and
Mühlenbrock, M. (2004). A flexible and efficient presentation-architecture
for adaptive hypermedia: Description and technical evaluation. In Pro-
ceedings of the 4th IEEE International Conference on Advanced Learning
Technologies (ICALT 2004), Joensuu, Finland.

[Ullrich and Melis, 2009] Ullrich, C. and Melis, E. (2009). Pedagogically
founded courseware generation based on htn-planning. Expert Systems
with Applications, 36(5):9319–9332.

[Van Lehn, 2006] Van Lehn, K. (2006). The behavior of tutoring systems,
international journal of artificial intelligence in education. International
Journal of Artificial Intelligence in Education, 16:227–265.

[Van Lehn et al., 2005] Van Lehn, K., Lynch, C., Schulze, K., Shapiro, J. A.,
Shelby, R., Taylor, L., Treacy, D., Weinstein, A., and Wintersgill, M.
(2005). The andes physics tutoring system: Lessons learned. International
Journal of Artificial Intelligence in Education, 15(3).

[Woolf et al., 2008] Woolf, B. P., Aı̈meur, E., Nkambou, R., and Lajoie,
S. P., editors (2008). Intelligent Tutoring Systems, 9th International Con-
ference, ITS 2008, Montreal, Canada, June 23-27, 2008, Proceedings, vol-
ume 5091 of LNCS. Springer.

170 BIBLIOGRAPHY

[Zinn, 2006] Zinn, C. (2006). Supporting tutorial feedback to student help
requests and errors in symbolic differentiation. In Ashley, K. and Ikeda,
M., editors, Proceedings of Intelligent Tutoring Systems 8th. International
Conference ITS-2006, volume 4053 of LNCS, pages 349–359.

Appendix A

Curve Sketching Problem

We present a commented listing of the multi-exercise on curve sketching as
an example, which was also briefly addressed in Section 3.5.11.

This exercise can serve as a good reference for authors, since it includes
most of the constructs of the exercise format, such as different interactive
elements, manually authored and automatically generated sub exercises, and
application of tutorial strategies to sub exercises.

Here the learner has to investigate properties of a polynomial function
f(x) = x3 − 5x2 − 6x. This exercise consists of several sub exercises each
corresponding to a particular task in curve sketching process.

In the preamble of the exercise, the title and other metadata are authored,
such as relations to the mathematical concepts involved in this exercise, diffi-
culty of the exercise, and the competency metadata. This top-level metadata
of the exercise is used by the Tutorial Component of ActiveMath for se-
lecting this exercise when generating an adaptive course. Also, the search
component of ActiveMath allows to search for learning objects by their
metadata, so the learner can find this exercise in the knowledge base by its
metadata.

The problem statement introduces the function to be investigated. It is
followed by a transition, forwarding the learner to the first subtask.
<e x e r c i s e i d=” kurvend i skus s ion ”>
<metadata>
<Ti t l e xm l : l ang=”en”>Curve Sketch Exercise</ T i t l e>
<extradata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / func t i on ”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /domain”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / range ”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /min”/></ r e l a t i o n
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /max”/></ r e l a t i o n>

171

172 APPENDIX A. CURVE SKETCHING PROBLEM

<r e l a t i o n t ype=” f o r ”><r e f x r e f=” ca l cu l u s 1 / d i f f ”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /convex”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / concave ”/></ r e l a t i o n>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” ca l cu l u s 1 / i n t ”/></ r e l a t i o n>
<d i f f i c u l t y va l u e=”medium”/>
<competency va l u e=”model”/>
<competency va l u e=” so l v e ”/>

</ extradata>
</metadata>
<CMP xm l : l ang=”en”>Investigate properties of a polynomial function .</CMP>
<task i d=”problem statement ”>
<content>
<CMP xm l : l ang=”en”>

Consider the function

f(x) = x3 − 5x2 − 6x

 In this exercise we investigate

different properties of this function .
</CMP>

</ content>
<t r a n s i t i o n t o=”domain”/>

</ task>

1. The first sub-exercise is to identify the domain of a function. It is a
manually authored exercise realized as multiple choice questions. The task
of this sub-exercise includes metadata, as described in Section 3.3.1.1. First,
there is a relation to the concept of the domain of the function. Also the
difficulty value of the task is ”easy” and the competency value is ”solve”.

The task is followed by the interaction element, containing a multiple
choice question block. The representation for multiple choice questions was
introduced in Section 3.3.3.2.

< !−− domain s e l e c t i o n −−>

<task i d=”domain”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /domain”/></ r e l a t i o n>
<d i f f i c u l t y va l u e=”easy ”/>
<competency va l u e=” so l v e ”/>

</ task metadata>
<content>
<CMP xm l : l ang=”en”>

1 . Identify the domain of the given function .
</CMP>

</ content>
<t r a n s i t i o n t o=” doma in in t e ra c t i v e ”/>

</ task>
< i n t e r a c t i o n i d=” doma in in t e ra c t i v e ”>
<content>
<CMP xm l : l ang=”en”>

Choose on of the following :

<with x r e f=” doma in s e l e c t i on ”/>

</CMP>

173

</ content>
<i n terac t ion map>
<s e l e c t i o n i d=” doma in s e l e c t i on ”>
<cho i c e><CMP>R</CMP></ cho i c e>
<cho i c e><CMP>{x ∈ R |x > 0}</CMP></ cho i c e>
<cho i c e><CMP>R\{0}</CMP></ cho i c e>
<cho i c e><CMP>Z</CMP></ cho i c e>

</ s e l e c t i o n>
</ i n terac t ion map>

In the transition map, two transitions are authored. The first transition
matches the correct answer, and the second default transition matches any
other answer. Depending on the learner’s answer, two possible KR (knowl-
edge of result) feedbacks can follow. These feedbacks are annotated with
metadata, determining the type of the feedback, as described in Section 3.3.2.

<t rans i t i on map>
<t r a n s i t i o n t o=” doma in s e l e c t i o n c o r r e c t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<composite>
<compare>1</compare>
<compare>0</compare>
<compare>0</compare>
<compare>0</compare>

</ composite>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=” domain se l ec t ion wrong ”>
<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</answer map>
</ i n t e r a c t i o n>
<feedback i d=” doma i n s e l e c t i o n c o r r e c t ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” doma in in t e ra c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=”range ”/>

</ feedback>
<feedback i d=” domain se l ec t ion wrong ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” doma in in t e ra c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>No . This set does not correctly

describe the domain of the given function .

Try again: </CMP>

174 APPENDIX A. CURVE SKETCHING PROBLEM

</ content>
<t r a n s i t i o n t o=” doma in in t e ra c t i v e ”/>

</ i n t e r a c t i o n>

2. The second subtask is to identify the range of the function, which is
also a manually authored multiple choice exercise. The annotations here
are analogous to the previous sub-exercise. The task is now related to the
concept of the range of a function.

< !−− range s e l e c t i o n −−>

<task i d=”range ”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / range ”/></ r e l a t i o n>
<d i f f i c u l t y va l u e=”easy ”/>
<competency va l u e=” so l v e ”/>

</ task metadata>
<content>
<CMP xm l : l ang=”en”>

2 . Identify the range of this function .
</CMP>

</ content>
<t r a n s i t i o n t o=” r an g e i n t e r a c t i v e ”/>

</ task>
< i n t e r a c t i o n i d=”range ”>
<content>
<CMP xm l : l ang=”en”>

Choose on of the following :

<with x r e f=” r an g e s e l e c t i o n ”/>

</CMP>
</ content>
<i n terac t ion map>
<s e l e c t i o n i d=” r an g e s e l e c t i o n ”>
<cho i c e><CMP>R</CMP></ cho i c e>
<cho i c e><CMP>{x ∈ R |x > 0}</CMP></ cho i c e>
<cho i c e><CMP>{x ∈ R |x < 0}</CMP></ cho i c e>
<cho i c e><CMP>R\{0}</CMP></ cho i c e>

</ s e l e c t i o n>
</ i n terac t ion map>
<t rans i t i on map>
<t r a n s i t i o n t o=” r a n g e s e l e c t i o n c o r r e c t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<composite>
<compare>1</compare>
<compare>0</compare>
<compare>0</compare>
<compare>0</compare>

</ composite>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=” range s e l e c t i on wrong ”>

175

<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>
</ i n t e r a c t i o n>
<feedback i d=” r a n g e s e l e c t i o n c o r r e c t ”>
<feedack metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” r an g e i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=” crossax i s−x ”/>

</ feedback>
<feedback i d=” range s e l e c t i on wrong ”>
<feedack metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” r an g e i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>No . This set does not correctly

describe the range of the given function .

Try again:</CMP>

</ content>
<t r a n s i t i o n t o=” r an g e i n t e r a c t i v e ”/>

</ feedback>

3. The next task is to find out where the function crosses the x-axis. For this
the learner has to solve the equation x3 − 5x2 − 6x = 0. This sub-exercise is
automatically generated by the domain reasoner Exercise Generator. This
generator takes several parameters, such as a formally represented task, and
the identifier of the mathematical context that helps choosing a concrete
domain reasoner for this task.

< !−− c r o s s i n g a x i s x −−>

<task i d=” crossax i s−x ”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s / root ”/></ r e l a t i o n>

</ task metadata>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

3 . Now find the points at which the graph of the

function is crossing the x axis . In order to

do this, solve the following equation:

</parameter>
<parameter name=” context ”>algebra . equations . polynomial</parameter>
<parameter name=” task ”>

x3 − 5x2 − 6x = 0
</parameter>

</ e x e r c i s e g en e r a t o r>

176 APPENDIX A. CURVE SKETCHING PROBLEM

<t r a n s i t i o n t o=” crossax i s−y ”/>
</ task>

4. The next task is to find out where the function crosses the y-axis. For
this, the learner has to calculate the value of the function f(x) for x = 0.
This sub-exercise is manually authored, but uses an additional automated
tutorial strategy. In this strategy, after a certain number of unsuccessful
attempts, the learner will be presented with a correct answer for the task.
The strategy is assigned using an exercise generator element. It takes
several parameters, such as the identifiers of the initial and the final nodes,
the identifier of a special feedback element, containing the correct answer to
the task, and the parameter noftrials specifying the number of unsuccessful
trials before the correct solution is presented to the learner.

< !−− c r o s s i n g a x i s y −−>

<task i d=” crossax i s−y ”>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

4 . Now find the coordinates of crossing axis

y . In order to do this, calculate f(0):
</CMP>

</ content>
<t r a n s i t i o n t o=” c r o s s a x i s−y i n t e r a c t i v e ”/>

</ task>
< i n t e r a c t i o n i d=” c r o s s a x i s−y i n t e r a c t i v e ”>
<e x e r c i s e g en e r a t o r name=”KRKCR” t ype=” s t r a t e gy ”>
<parameter name=” i n i t i a l n o d e ” x r e f=” c r o s s a x i s−y i n t e r a c t i v e ”/>
<parameter name=” f i na l node ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=” f i na l node ” x r e f=” c r o s s ax i s−y co r r e c t ”/>
<parameter name=” kcr id ” x r e f=” cro s sax i s−y kc r ”/>
<parameter name=” n o f t r i a l s ”>2</parameter>

</ e x e r c i s e g en e r a t o r>
<content>
<CMP xm l : l ang=”en”>
<OMOBJ>
<OMA>
<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMA>
<OMV name=” f ”/>
<OMI>0</OMI>

</OMA>
<OMV x r e f=” cros sax i s−y b lank ”/>

</OMA>
</OMOBJ>

</CMP>
</ content>
<i n terac t ion map>
<blank i d=” cros sax i s−y b lank ”/>

</ i n terac t ion map>

177

The interaction contains a blank to fill in, and the transition map

contains three transitions. The first transition uses syntactic comparison
to match the learner’s input with the correct answer. The second transition

employes a semantic comparison to match the learner’s input that is not
literally equal, but semantically equivalent to the correct answer. The third
default transition is covering the case of any other answer. Finally, three
KR feedbacks correspond to each of the transitions. The feedbacks are
annotated with the corresponding metadata describing their types.

<t rans i t i on map>
<t r a n s i t i o n t o=” c r o s s ax i s−y co r r e c t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<compare>0</compare>

</ cond i t i on>
</ t r a n s i t i o n>
<t r a n s i t i o n t o=” cro s s ax i s−y equ iva l en t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<compare c on t e x t=” semantic ”>0</compare>

</ cond i t i on>
</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=” crossaxis−y wrong ”>
<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>
</ i n t e r a c t i o n>
<feedback i d=” c r o s s ax i s−y co r r e c t ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” c r o s s a x i s−y i n t e r a c t i v e ” keep=”yes ” input de co ra t i on=”good”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=” c o n s t a n t s i g n i n t e r v a l s ”/>

</ feedback>
<feedback i d=” c ro s s ax i s−y equ iva l en t ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>
<t ype category=”procedure ” va l u e=”KH”/>

</ feedback metadata>
<content from=” c r o s s a x i s−y i n t e r a c t i v e ” keep=”yes ” input de co ra t i on=”near ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Correct ! Go on and simplify your answer .
</CMP>

</ content>

178 APPENDIX A. CURVE SKETCHING PROBLEM

<t r a n s i t i o n t o=” c r o s s a x i s−y i n t e r a c t i v e ”/>
</ feedback>
<feedback i d=” crossaxis−y wrong ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” c r o s s a x i s−y i n t e r a c t i v e ” keep=”yes ” input de co ra t i on=”bad”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Something went wrong, try again :

</CMP>
</ content>
<t r a n s i t i o n t o=” c r o s s a x i s−y i n t e r a c t i v e ”/>

</ feedback>
<feedback i d=” cro s sax i s−y kc r ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KCR”/>

</ feedback metadata>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

The correct answer is : f(0) = 0
</CMP>

</ content>
<t r a n s i t i o n t o=” c o n s t a n t s i g n i n t e r v a l s ”/>

</ feedback>

5. The next task is to identify the constant sign intervals of the function.
This exercise is manually authored and does not use any additional strategy.
The learner interaction is represented using a mapping element, described in
Section 3.3.3.4. In this mapping each of the four intervals (−∞,−1), (−1, 0),
(0, 6), and (6,∞) has to be mapped to either the statement f(x) > 0 or to
f(x) < 0.

< !−− cons tan t s i gn i n t e r v a l s −−>

<task i d=” c o n s t a n t s i g n i n t e r v a l s ”>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

5 . Now fill in the constant sign intervals .

We already know the roots of the function . These are :

x = −1, x = 0, and x = 6 .
Therefore, the intervals at which the function

has different signs are also known .

Select the corresponding sings of the function on

these intervals .
</CMP>

</ content>
<t r a n s i t i o n t o=” c o n s t a n t s i g n i n t e r v a l s i n t e r a c t i v e ”/>
</ task>
< i n t e r a c t i o n i d=” c o n s t a n t s i g n i n t e r v a l s i n t e r a c t i v e ”>
<content>
<CMP xm l : l ang=”en”>
<with x r e f=” s ign int mapp ing ”/>

179

</CMP>
</ content>
<i n terac t ion map>
<s e l e c t i o n t ype=”mapping” s t y l e=” tab l e ” i d=” s ign int mapp ing ”>
<s e l e c t i o n>
<cho i c e><CMP>(−∞,−1)</CMP></ cho i c e>
<cho i c e><CMP>(−1, 0)</CMP></ cho i c e>
<cho i c e><CMP>(0, 6)</CMP></ cho i c e>
<cho i c e><CMP>(6,∞)</CMP></ cho i c e>

</ s e l e c t i o n>
<s e l e c t i o n>
<cho i c e><CMP>f(x) > 0</CMP></ cho i c e>
<cho i c e><CMP>f(x) < 0</CMP></ cho i c e>

</ s e l e c t i o n>
</ s e l e c t i o n>

</ i n terac t ion map>

In the transition map, two transitions are authored. The transition
matching the correct answer has 4x2 = 8 elements, and represents the map-
ping matrix (

0 1 0 1
1 0 1 0

)
,

as explained in Section 3.4.2.2. The second default transition matches all
other answers. Finally, the corresponding KR feedbacks are authored for the
two transitions.

<t rans i t i on map>
<t r a n s i t i o n t o=” c o n s t a n t s i g n i n t e r v a l s c o r r e c t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<composite>
<compare>0</compare>
<compare>1</compare>
<compare>1</compare>
<compare>0</compare>
<compare>0</compare>
<compare>1</compare>
<compare>1</compare>
<compare>0</compare>

</ composite>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=” con s t an t s i g n i n t e r v a l s w r ong ”>
<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>
</ i n t e r a c t i o n>
<feedback i d=” c o n s t a n t s i g n i n t e r v a l s c o r r e c t ”>
<feedback metadata>

180 APPENDIX A. CURVE SKETCHING PROBLEM

<t ype category=”product ” va l u e=”KR”/>
</ feedback metadata>
<content from=” c o n s t a n t s i g n i n t e r v a l s i n t e r a c t i v e ” keep=”yes ”

inpu t de co ra t i on=”automatic ”/>
<content>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=” de r i v a t i v e ”/>

</ feedback>
<feedback i d=” con s t an t s i g n i n t e r v a l s w r ong ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” c o n s t a n t s i g n i n t e r v a l s i n t e r a c t i v e ” keep=”yes ”

inpu t de co ra t i on=”automatic ”/>
<content>
<CMP xm l : l ang=”en”>Something went wrong . Try again:</CMP>

</ content>
<t r a n s i t i o n t o=” c o n s t a n t s i g n i n t e r v a l s i n t e r a c t i v e ”/>

</ feedback>

6. The next task is to calculate the derivative of the function. This sub-
exercise is automatically generated by the domain reasoner Exercise Ge-

nerator. This generator takes several parameters, such as a formally repre-
sented task, and the identifier of the mathematical context that helps choos-
ing a concrete domain reasoner for this task.

< !−− d e r i v a t i v e −−>

<task i d=” de r i v a t i v e ”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” ca l cu l u s 1 / d i f f ”/></ r e l a t i o n>

</ task metadata>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

6 . Now find the derivative of the given function

</parameter>
<parameter name=” i n i t i a l n o d e ” x r e f=” d e r i v a t i v e f i r s t s t e p ”/>
<parameter name=” context ”>calculus . differentiation . polynomial</parameter>

<parameter name=” task ”>(x3 − 5x2 − 6x)′</parameter>
</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=” c r i t i c a l−p o i n t s ”/>

</ task>

7. The next task is to find the critical points of the function. In order to
do this the zeros of the derivative function have to be calculated. Thus, the
quadratic equation 3x2 − 10x − 6 = 0 has to be solved. This exercise is
automatically generated by the domain reasoner Exercise Generator. As

181

always, among other parameters, the generator needs the formally repre-
sented task and the identifier of the context.

< !−− c r i t i c a l p o i n t s −−>

<task i d=” c r i t i c a l−p o i n t s ”>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

7 . Now find stationary points of the given function .
In order to do this, find zeros of the equation:

</parameter>
<parameter name=” i n i t i a l n o d e ” x r e f=” d e r i v a t i v e z e r o s f i r s t s t e p ”/>
<parameter name=” context ”>algebra . equations . quadratic</parameter>

<parameter name=” task ”>3x2 − 10x− 6 = 0</parameter>
</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=” second−der ivat ive ”/>

</ task>

8. The next task is to find the second derivative of the function. This is
equivalent to finding the derivative of the derivative which is already found
in one of the previous tasks, so the derivative of f ′(x) = 3x2 − 10x − 6 has
to be calculated. This exercise is automatically generated using the same
domain reasoner as in the case of calculating the first derivative.

< !−− second d e r i v a t i v e −−>

<task i d=” second−der ivat ive ”>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

8 . Now find the second derivative:

</parameter>
<parameter name=” i n i t i a l n o d e ” x r e f=” s e c o nd−d e r i v a t i v e f i r s t s t e p ”/>
<parameter name=” context ”>calculus . differentiation . polynomial</parameter>

<parameter name=” task ”>(3x2 − 10x− 6)′</parameter>
</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=”min−or−max”/>

</ task>

9. The next task is to find out whether the function reaches a local minimum
or maximum at any of the critical points. For this, the values of the second
derivative at both stationary points have to be calculated and compared to
zero. If the value is positive the function has a local minimum, and if it is
positive the function has a local maximum.

This exercise consists of two manually authored exercises, containing
blanks for learner interaction.

< !−− minimum or maximum −−>

<task i d=”min−or−max”>

182 APPENDIX A. CURVE SKETCHING PROBLEM

<content keep=”yes ”>
<CMP xm l : l ang=”en”>

9 . Using the second derivative test find out at which

of the stationary points x1 = 5
3

+ 1
3

√
43,

x2 = 5
3
− 1

3

√
43 does this function have local

maximum or minimum .

</CMP>

</ content>
<t r a n s i t i o n t o=”min”/>

</ task>

The first sub-exercise deals with the first stationary point x1, which will
appear to be a local minimum point. This exercise uses an additional tutorial
strategy, which gives the learner 2 trials before giving out the correct solution.
In the content of the interaction we present the full OpenMath encoding
of a mathematical equation in order to show the position of the placeholder
for the blank, contained inside the equation.

< !−− min −−>

<task i d=”min”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /min”/></ r e l a t i o n>

</ task metadata>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

First consider f ′′(x1):
</CMP>

</ content>
<t r a n s i t i o n t o=” min i n t e r a c t i v e ”/>

</ task>

< i n t e r a c t i o n i d=” min i n t e r a c t i v e ”>
<e x e r c i s e g en e r a t o r name=”KRKCR” t ype=” s t r a t e gy ”>
<parameter name=” i n i t i a l n o d e ” x r e f=” min i n t e r a c t i v e ”/>
<parameter name=” f i na l node ” x r e f=”min kcr ”/>
<parameter name=” f i na l node ” x r e f=” min cor r ec t ”/>
<parameter name=” kcr id ” x r e f=”min kcr ”/>
<parameter name=” n o f t r i a l s ”>2</parameter>

</ e x e r c i s e g en e r a t o r>
<content>
<CMP xm l : l ang=”en”>
<OMOBJ>
<OMA>
<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMA>
<OMS cd=” ar i t h1 ” name=”minus”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” times ”/>
<OMI>6</OMI>
<OMA>
<OMS cd=” ar i t h1 ” name=” plus ”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” d iv id e ”/>

183

<OMI>5</OMI>
<OMI>3</OMI>

</OMA>
<OMA>
<OMS cd=” ar i t h1 ” name=” times ”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” d iv id e ”/>
<OMI>1</OMI>
<OMI>3</OMI>

</OMA>
<OMA>
<OMS cd=” ar i t h1 ” name=” root ”/>
<OMI>43</OMI>
<OMI>2</OMI>

</OMA>
</OMA>

</OMA>
</OMA>
<OMI>10</OMI>

</OMA>
<OMV name=”blank” x r e f=”min blank”/>

</OMA>
</OMOBJ>

</CMP>
</ content>
<i n terac t ion map>
<blank i d=”min blank”/>

</ i n terac t ion map>

The transition map encodes transitions matching the correct answer
using syntactic and semantic comparisons, as well as a default transition.
Each transition leads to a corresponding feedback.

<t rans i t i on map>
<t r a n s i t i o n t o=” min cor r ec t ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>

<compare>2
√

43</compare>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t o=” min equ iva l ent ”>
<d i a gno s i s>
<achievement va l u e=” 0 .8 ”/>

</ d i a gno s i s>
<cond i t i on>

<compare c on t e x t=” semantic ”>2
√

43</compare>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” x r e f=”min wrong”>
<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>

184 APPENDIX A. CURVE SKETCHING PROBLEM

</ i n t e r a c t i o n>
<feedback i d=” min cor r ec t ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” min i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=” min conc lus ion ”/>

</ feedback>
<feedback i d=” min equ iva l ent ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” min i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Correct, but can be firther simplified .</CMP>

</ content>
<t r a n s i t i o n t o=” min i n t e r a c t i v e ”/>

</ feedback>
<feedback i d=”min wrong”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” min i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Something went wrong . Try again:</CMP>

</ content>
<t r a n s i t i o n t o=” min i n t e r a c t i v e ”/>

</ feedback>

Special KCR (knowledge of correct result) feedback is authored for the
needs of the tutorial strategy. Finally, the sub-exercise ends with the con-
cluding feedback.

<feedback i d=”min kcr ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KCR”/>

</ feedback metadata>
<content from=” min i n t e r a c t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

The correct answer is :
√

172
</CMP>

</ content>
<t r a n s i t i o n t o=” min conc lus ion ”/>

</ feedback>
<feedback i d=” min conc lus ion ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KCR”/>

</ feedback metadata>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Since
√

172 > 0, the function

has a minimum at the point x1 .

185

</CMP>
</ content>
<t r a n s i t i o n t o=”max”/>

</ feedback>

The next sub-exercise deals with the second stationary point x2, which
will appear to be a local maximum point. This exercise uses the same tutorial
strategy, which gives the learner 2 trials before giving out the correct solution.

< !−− max −−>

<task i d=”max”>
<task metadata>
<r e l a t i o n t ype=” f o r ”><r e f x r e f=” func t i on s /max”/></ r e l a t i o n>

</ task metadata>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Now consider f ′′(x2):
</CMP>

</ content>
<t r a n s i t i o n t o=” max in t e rac t i v e ”/>

</ task>

< i n t e r a c t i o n i d=” max in t e rac t i v e ”>
<e x e r c i s e g en e r a t o r name=”KRKCR” t ype=” s t r a t e gy ”>
<parameter name=” i n i t i a l n o d e ” x r e f=” max in t e rac t i v e ”/>
<parameter name=” f i na l node ” x r e f=”max kcr”/>
<parameter name=” f i na l node ” x r e f=”max correct ”/>
<parameter name=” kcr id ” x r e f=”max kcr”/>
<parameter name=” n o f t r i a l s ”>2</parameter>

</ e x e r c i s e g en e r a t o r>
<content>
<CMP xm l : l ang=”en”>
<OMOBJ>
<OMA>
<OMS cd=” r e l a t i o n 1 ” name=”eq”/>
<OMA>
<OMS cd=” ar i t h1 ” name=”minus”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” times ”/>
<OMI>6</OMI>
<OMA>
<OMS cd=” ar i t h1 ” name=”minus”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” d iv id e ”/>
<OMI>5</OMI>
<OMI>3</OMI>

</OMA>
<OMA>
<OMS cd=” ar i t h1 ” name=” times ”/>
<OMA>
<OMS cd=” ar i t h1 ” name=” d iv id e ”/>
<OMI>1</OMI>
<OMI>3</OMI>

</OMA>
<OMA>

186 APPENDIX A. CURVE SKETCHING PROBLEM

<OMS cd=” ar i t h1 ” name=” root ”/>
<OMI>43</OMI>
<OMI>2</OMI>

</OMA>
</OMA>

</OMA>
</OMA>
<OMI>10</OMI>

</OMA>
<OMV name=”blank” x r e f=”max blank”/>

</OMA>
</OMOBJ>

</CMP>
</ content>
<i n terac t ion map>
<blank i d=”max blank”/>

</ i n terac t ion map>

The transitions and feedbacks are similar to the previous case.

<t rans i t i on map>
<t r a n s i t i o n t o=”max correct ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>

<compare>−2
√

43</compare>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t o=”max equivalent ”>
<d i a gno s i s>
<achievement va l u e=” 0 .8 ”/>

</ d i a gno s i s>
<cond i t i on>

<compare c on t e x t=” semantic ”>−2
√

43</compare>
</ cond i t i on>

</ t r a n s t i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=”max wrong”>
<d i a gno s i s>
<achievement va l u e=” 0 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>
</ i n t e r a c t i o n>
<feedback i d=”max correct ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” max in t e rac t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=”max conclus ion ”/>

</ feedback>
<feedback i d=”max equivalent ”>
<feedback metadata>

187

<t ype category=”product ” va l u e=”KR”/>
</ feedback metadata>
<content from=” max in t e rac t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Correct, but can be firther simplified .</CMP>

</ content>
<t r a n s i t i o n t o=” max in t e rac t i v e ”/>

</ feedback>
<feedback i d=”max wrong”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” max in t e rac t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Something went wrong . Try again:

</CMP>
</ content>
<t r a n s i t i o n t o=” max in t e rac t i v e ”/>

</ feedback>
<feedback i d=”max kcr”>
<feedback metadata>
<t ype category=”product ” va l u e=”KCR”/>

</ feedback metadata>
<content from=” max in t e rac t i v e ” keep=”yes ” inpu t de co ra t i on=”automatic ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

The correct answer is : −
√

172 .
</CMP>

</ content>
<t r a n s i t i o n t o=”max conclus ion ”/>

</ i n t e r a c t i o n>
<feedback i d=”max conclus ion ”>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

Since −
√

172 < 0, the function

has a maximum at the point x2 .
</CMP>

</ content>
<t r a n s i t i o n t o=” in f l e c t i o n−po i n t ”/>

</ i n t e r a c t i o n>

10. The next task is to find the inflection points of the function. In order
to do so, the zeros of the second derivative have to be found. For this, the
linear equation 6x− 10 = 0 has to be solved. This exercise is automatically
generated by the domain reasoner Exercise Generator.

< !−− i n f l e c t i o n po in t −−>

<task i d=” in f l e c t i o n−po i n t ”>
<e x e r c i s e g en e r a t o r name=”IDEASGenerator”>
<parameter name=”problemstatement ”>

10 . Now find the inflection point by finding a zero

of the second derivative .

188 APPENDIX A. CURVE SKETCHING PROBLEM

</parameter>
<parameter name=” i n i t i a l n o d e ” x r e f=” i n f l e c t i o n− p o i n t f i r s t s t e p ”/>
<parameter name=” context ”>algebra . equations . linear</parameter>
<parameter name=” task ”>6x− 10 = 0</parameter>

</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=”convex−concave”/>

</ taskn>

11. The next task is to choose the intervals where the function is convex
and where it is concave. This is a manually authored exercise, in which the
two intervals (−∞, 5

3
) and (5

3
,∞) are mapped to the the properties ”convex”

and ”concave”.

< !−− convex concave−−>

<task i d=”convex−concave”>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>

11 . Now Select intervals of convex/concave behaviour

of the function, based on the sign of the second derivative .
We know that the second derivative changes its sign at the

point x0 = 5
3
) . So, there are two intervals :

(−∞, 5
3
) and (5

3
,∞) .

Now choose where the f(x) is convex and where concave .
</CMP>

</ content>
<t r a n s i t i o n t o=” convex−concave inte rac t ive ”/>

</ task>

The interaction consists of a 2x2 mapping.

< i n t e r a c t i o n i d=” convex−concave inte rac t ive ”>
<content>
<CMP xm l : l ang=”en”>
<with x r e f=”convex−concave mapping”/>

</CMP>
</ content>
<i n terac t ion map>
<s e l e c t i o n t ype=”mapping” i d=”convex−concave mapping”>
<s e l e c t i o n>

<cho i c e><CMP>(−∞, 5
3
)</CMP></ cho i c e>

<cho i c e><CMP>(5
3
,∞)</CMP></ cho i c e>

</ s e l e c t i o n>
<s e l e c t i o n i d=” convex−concave se l ec t ion1 ”>
<cho i c e><CMP>convex</CMP></ cho i c e>
<cho i c e><CMP>concave</CMP></ cho i c e>

</ s e l e c t i o n>
</ s e l e c t i o n>

</ i n terac t ion map>

The transition map contains two transitions. The first transition

matching the correct answer, has 2x2 = 4 elements and represents the map-

189

ping matrix (
0 1
1 0

)
.

The second default transition matches all other answers. Finally, the cor-
responding KR feedbacks are authored for the two transitions.

<t rans i t i on map>
<t r a n s i t i o n t o=” convex−concave correct ”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
<cond i t i on>
<composite>
<compare>0</compare><compare>1</compare>
<compare>1</compare><compare>0</compare>

</ composite>
</ cond i t i on>

</ t r a n s i t i o n>
<t r a n s i t i o n t ype=” de f au l t ” t o=”convex−concave wrong”>
<d i a gno s i s>
<achievement va l u e=” 1 .0 ”/>

</ d i a gno s i s>
</ t r a n s i t i o n>

</ t rans i t i on map>
</ i n t e r a c t i o n>
<feedback i d=” convex−concave correct ”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” convex−concave inte rac t ive ” inpu t de co ra t i on=”automatic ” keep=”yes ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Well done !</CMP>

</ content>
<t r a n s i t i o n t o=” i n t e g r a l ”/>

</ feedback>
<feedback i d=”convex−concave wrong”>
<feedback metadata>
<t ype category=”product ” va l u e=”KR”/>

</ feedback metadata>
<content from=” convex−concave inte rac t ive ” inpu t de co ra t i on=”automatic ” keep=”yes ”/>
<content keep=”yes ”>
<CMP xm l : l ang=”en”>Incorrect . Try again:</CMP>

</ content>
<t r a n s i t i o n t o=” convex−concave inte rac t ive ”/>

</ feedback>

12. The last task is to calculate an integral of the given function. This
exercise is automatically generated by the domain reasoner for integrals.

< !−− i n t e g r a l −−>
< i n t e r a c t i o n i d=” i n t e g r a l ”>
<e x e r c i s e g en e r a t o r name=” Integ ra lGene ra to r ”>
<parameter name=”problemstatement ”>

190 APPENDIX A. CURVE SKETCHING PROBLEM

12 . Finally, find the integral of the given function

</parameter>
<parameter name=” i n i t i a l n o d e ” x r e f=” i n t e g r a l f i r s t s t e p ”/>
<parameter name=” context ”>calculus . integral</parameter>

<parameter name=” task ”>
R

(x3 − 5x2 − 6x)dx</parameter>
</ e x e r c i s e g en e r a t o r>
<t r a n s i t i o n t o=” conc lu s i on ”/>

</ i n t e r a c t i o n>

Finally, the concluding feedback is presented and the exercise is finished.

<feedback i d=” conc lu s i on ”>
<content>
<CMP xm l : l ang=”en”>

This was the final step of our investigation . Well Done !
</CMP>

</ content>
</ feedback>
</ e x e r c i s e>

Appendix B

Sample Complex Strategy

In this addition we present in more detail the most complex tutorial and
presentation strategies implemented by the author in ActiveMath exercise
system for the purposes of the MAPS MOSSAIC project, realized within the
research training group on Feedback Based Quality Management in eLearning
at the Technische Universität Darmstadt.

This project has been carried out in cooperation of the working groups
on Didactics of Mathematics, conducted by Mrs. Prof. Dr. Bruder, and
Educational Psychology, conducted by Mr. Prof. Dr. Schmitz. The tutorial
strategies developed within two doctoral research projects (S. Polushkina and
B. Benz) and implemented by the author of this thesis are aimed at investi-
gating the learning effect of self-regulated learning strategy in combination
with presentation of worked examples in a context of a complex modeling
problem.

As briefly described in Section 3.5.9, a collection of exercises is presented
to a learner, in which the sequencing of exercises, and the tutorial strategies
for each exercise are varied for several user groups. The main instructional
aspects investigated in this project are the self-regulated learning strategies
and the usage of worked examples. These two aspects are combined in various
ways within eight complex tutorial strategies, implemented by the author of
this thesis.

Below we briefly describe two of these strategies, concentrating on the
aspects that show the capabilities of the tutorial and presentation strategies
of the Exercise Subsystem of ActiveMath.

191

192 APPENDIX B. SAMPLE COMPLEX STRATEGY

B.0.1 Self-Regulation with Solicited Worked Example

In this sample strategy, we show the self-regulated scenario with solicited
worked examples.

In this real world problem, a brother and sister (Kevin and Mareike) are
solving a complex modeling problem. They want to find out which petrol
station is the optimal one to tank at, considering factors like distance form
their home, driving time, and petrol prices.

They also have a concrete plan of how to proceed: first, they have to
simplify the question to define what is given and what has to be found, then
collect information about subproblems, solve the subproblems, and give the
final answer to the problem. After they decide upon this procedure, in the
consequent steps a progress bar appears showing which stage of this plan
they are currently working at.

193

In the next step they have to select relevant factors in a multiple-choice
exercise, using the AUC (answer until correct) tutorial strategy.

After the relevant factors are selected, the main subproblems are identi-
fied.

194 APPENDIX B. SAMPLE COMPLEX STRATEGY

The learner is presented with the first problem which consists of several
subtasks. In the self-regulation phase the learner has to bring the subtasks
in the correct order by dragging the boxes with task statements.

If the selected order of subtasks is possible the learner is allowed to pro-
ceed. He is also allowed to go back and change the selected order.

195

After the order is selected the learner is presented with the first subtask.
On the left, the structure of the subtasks is shown. The learner is given 3
trials for the task, after failing which the correct solution is presented.

After solving the first subtask, the student wants to proceed, but the
system tells him that the next subtasks in the sequence as the student has
selected before is not possible so he has to change the sequence of the rest of
subtasks in order to be able to proceed.

196 APPENDIX B. SAMPLE COMPLEX STRATEGY

The selection interface is then presented again and the student can select
the new sequence for the remaining subtasks.

After reordering the remaining subtasks the learner can proceed further

197

The next subtask starts with the working example dealing with a problem
similar to the current subtask.

After the worked example is presented, the learner is forwarded to the
analogous problem in the current subtask. He is also given an opportunity to
view the previously given worked example in the same window, by clicking
the button on the right.

198 APPENDIX B. SAMPLE COMPLEX STRATEGY

Similar strategy is used for other subtasks. Finally, after all the subtasks
are done and the summarizing feedback is presented.

199

After that, the reflection upon the changes in the students subtask plan-
ning is presented. This feedback is automatically generated by the system
using the history of learner’s actions. Finally, the student is asked to describe
his solving strategy.

After the reflection on the first task, the next task in the modeling prob-
lem is selected. Each of the tasks is represented as a separate exercise, so it is
possible to apply different strategies to it. In this version, the self-regulation
strategy is applied to all tasks.

200 APPENDIX B. SAMPLE COMPLEX STRATEGY

The learner orders the subtasks as in the previous case and solves them
using the same strategy employing worked examples as hints.

After all the tasks are completed the overview of the results is presented
to the learner again.

After that the learner is requested to submit the final answer to the
modeling problem.

201

Finally, a series of feedbacks is presented reviewing the process of solving
a modeling problem, which concludes the exercise.

B.0.2 Control Strategy

The control strategy is designed to allow the student to edit the subtasks
independently, without the self regulation step. However, if the subtask the
student decides to work upon can not be performed yet because it depends
on some other subtask, the student is forwarded back to the task selection
page. In the beginning all the subtasks are presented without any order in
the form of clickable buttons.

202 APPENDIX B. SAMPLE COMPLEX STRATEGY

By clicking on a button, the student is forwarded to the corresponding
subtask.

Each of the subtasks has series of hints, that are sequenced in the order
of occurrence.

203

Each next hint is placed in place of the previous one, and the previous
one disappears.

After solving the current task, the student is forwarded again to the task
selection page. The tasks that are already performed are not clickable and
are filled with the correct solution.

204 APPENDIX B. SAMPLE COMPLEX STRATEGY

After all the subtasks are solved, the next part of the modeling problem
is presented. After solving all parts, the review of the modeling process is
presented in the form of a sequence of feedbacks.

In total, eight different strategies were implemented by the author as
it was required by the conditions of the study at TU-Darmstadt, in which
different scaffolding was used to elaborate on subtask selection process, in
combination with solicited or unsolicited presentation of worked examples
and sequenced hints for each subtask.

	Introduction
	Motivation
	Contributions
	Overview

	Background and Related Work
	Interactive Learning Environments
	IMS QTI Standard
	CAS-powered Exercise Systems
	Intelligent ILEs with Stepwise Solutions

	Early Computer Aided Instruction Systems
	Intelligent Tutoring Systems
	ITS Architecture
	Domain Model
	Student Model
	Teaching Model
	User Interface

	Scholar
	Model Tracing Tutors
	The PUMP Algebra Tutor (PAT)
	Andes Physics Tutor
	Ms. Lindquist

	Constraint Based Tutors
	ITS Authoring
	Eon Tools
	REDEEM Environment
	CTAT - Cognitive Tutors Authoring Tools

	The ActiveMath Learning Environment

	Knowledge Representation
	Requirements and Motivation
	Structure of an Exercise FSM
	Types of Exercise States
	Task.
	Metadata of Tasks
	Usage of the Task Metadata

	Feedback
	Usage of Feedback Metadata

	Interaction
	Selections
	Multiple Choice Questions
	Orderings
	Mappings
	Fill-in-blank

	Transitions Between Exercise States
	Diagnosis
	Condition
	Evaluating Multiple Choice Questions
	Evaluating Mappings
	Evaluating Ordering
	Evaluating Blanks

	Evaluation using a CAS
	Context Evaluation
	Generic Query Format
	Interoperability between different CASs
	Diagnosis using a CAS
	Further Intelligent Diagnoses
	Domain Reasoner Queries in the Exercise Transitions
	Special Requests

	Modifications and Extensions of the Exercise Representations
	Parameterized Exercises using Randomizer
	Static and Dynamic Language Mappings
	Hierarchical Exercise Representations
	Attaching Tutorial Strategies
	Atomic Strategies
	Strategies in MatheFührerschein and LeActiveMath
	Composite Strategies in ATuF and ALOE
	Exercises with local strategies
	Multi-Exercises in MAPS MOSSAIC
	Feedback generation
	Local Exercise Generators in a Curve Sketching Exercise

	Interoperability of the Exercise Format
	Compliance to IMS QTI Standard
	Relation to Other Exercise Languages

	Exercise System Architecture
	Exercise Controller
	Exercise Manager
	Diagnoser
	Employing Mathematical Services
	Semantic Service Broker
	Syntactic and numeric comparisons
	Semantic evaluation using CAS
	Domain Reasoner Diagnosis

	Exercise Generator
	StaticGenerator
	Domain Reasoner Exercises

	Exercise Events
	Local Student Model
	Applying Tutorial Strategies
	Presentation Strategies

	Exercise Authoring
	Visual "Authoring-by-Doing" Tool
	Editing Exercise Nodes
	Editing Transitions
	Adding Metadata
	Authoring Parametrized Exercises
	Comparison to Related Tools
	Further Development

	Exercise Generation using Domain Reasoners
	Selecting Tasks for Problems
	Authoring Parameters for Exercise Generation
	Prolog-based Domain Reasoners
	SLOPERT
	MathCoach

	YACAS Reasoners
	Domain Reasoner for Fraction Arithmetics
	Domain Reasoner for Integrals

	Haskell-Based Domain Reasoners

	Evaluation of coverage and performance
	Range of Expressive Power
	Performance tests

	Conclusion and Future Work
	Authoring Tutorial Strategies
	More Domain Reasoners
	Authoring Advanced User Interfaces
	Exercise Log Data Analysis

	Bibliography
	Curve Sketching Problem
	Sample Complex Strategy
	Self-Regulation with Solicited Worked Example
	Control Strategy

