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THE COMPRUMTCATION COMPLENITY OF VLS CIRCUITS

Thomas Lengaver

tract: Yery Large Scale Integration (WLSI}) s & quickly emerging
dTscipline ia Computer Science that also raises wany theogratica
asestions, The concept of 3 YLSI cosputation is very mich diffarent
fron classical concepts of 3 (sequential) computation. & VLSI coepu-
tation is perfomed by many switching efements {5.2.°s) that are
1aid out or tre plarar ¢hip surface and connected aren3 each other
with wires. These $.e.'s cen perform computations in parallel. The
conputatior of any <.e. depends on data recéived over wires fron
other §.0,.'3, Saveral measures of coaplexity are of intersst In this
context: The chip area A, 1.e., the area of wires and 5.e.'s, the
computing tine 1 and the switching energy £, Clearly there exist
tradeoffs betwoon & and T, In this_paper e Survey lower bounds on
the condined complexity weasure AT, The lower bounds are proved by
acceunting for the amount of work necessary just to cormuaicate
intermediate results batween §.e.'s. In many <ases the Tower bounds
ne get are {asyrptoticaliy) tight, 9iving evidence for the fact that
commnication cost dominates the cormplexity of many VLSI computations.

TAZLE OF CONTENTS:

1. Introduction

2. The VLSE Model

1. The homer Bound Argqummnt

4. A Geovelric Separator Theoren

5. The Cormunication Corplesity of Bodlean Fredicates

6. ™e Corrynicacion Corplcaity of Beolean Functions Hith Manmy Gutputs
7. A Lower Beusd on the Switching Erorqy of WLSI Chips

1. [NTR00UCTICN

[n recent years the area of Very Large Scale Integration (VLS{) which origi-
nally mas reserved to electrical engizeering gairsd 1rCreasing interest srong
torputer scientists. The book of Head and Comway ([NCE0]) trigger=d & lat of
activity 1n VLSI design at the cinpuler science defartnonts of the umiversities
and 3150 Tocussed the 3ttlénlion of theoretical corputer scienti:sts and mathera-
ticians on the area.
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Several authers proposed theoretical models for YLS] computations ([TAD,B<8;,
CME1,L58),L481) ). These mcdels are designed to capturye the essentfal charactar-
jstics of the VLST techaology such &s for instance the planarity of the chip.
Qn the other hand they abstract frea extrangous techrplogical detail. Their purs
pose is to facilstate genera] statements om YLS] computations, specifically,
lewer bounds on their corplexity.

The main cosplaxity measures studied are the chip area A and the computing
tine T. For A we neasure the area on the chip surface that 1s taken up by
switches and wires, the so-called ase{ve erea ([T90,1LVEL)). resp., the area of
the enclosiag rectangle, the so-called eosal area ([(3K8) ,(N31,LSE1])). The first
ared seasure 15 directly related to the ¢hip yield during fabrication. ™e sec
ond Ared reasure accounts for the total size of the chip. For our purposes doth
arca messures arn equivalent ([L¥8L1)). T™w quostion how Lo medsure tine is more
difficult to answer, Most authors only study Synchronous circuits. Fere a global
cleck counts the synchronous steps of the corputation parforsed by the switching
elements. [T20,8K81,L581,L¥81) interpret T 3¢ the munber of clock cycles spent
on the corputation. Note that this is not a “physical® masure of time, since
the length of a clock ¢ycle may ftself vary with the size of the chip. However,
35 long as the delay of signal propagation along wires 15 mot significantly
lorger thon the delay of the switching clements the muder of clock cycles gives
a good representation of the time spant, f.e., 1S asymptotically accurate, As
the mumder of transistors On & chip incredses this ceases to be the case, hows
aeir. [CVBL) fntroduce & physical tive measure T by measuring Lime in seconds
uncer the asdunption that signals are propagated 3long wires ot a constant speed,
They get dramtically different lower bounds On circuit complaexity. Not oely
are treir lomer Dounds larger, as we expect, but the optimal chips according
to their corplexity measures differ significantly frum the optim! caips §7 T
is measured in clock cycles. This s, because [C¥8L) pay 2 peraity for lorq
wires 3<ross which comumicetion is expensive. The tire measure of [CNOL) may
becorme technolegically significant cventually, 35 the speed of light decoros the
limiting foctor in signail propacation on YLST ¢hips. In the mcantine, homever,
other paysical time wadsures may Leé more appruoriate, such 3s the ome Tntroduced
in [(M3D) thel is based on the capacitive propercies of YLSI structures.

14 this paper we will caly count clock cycles §n synchromous YLSL circuits.
Our main observation, namely that the chip complexity is coninated by Lhe cost
of communiZalion, holds for the octher tise reasuras 25 well. Heomever, the tine
masere we consider hes the most developed bhody of twory amd thus is best
suited to rake our point.

Siace synchromous circuits can te pipelined anothar complexity measure gaing
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significance, mnely the period P. A pipelined circuit receives input to a ~=w
problen to be solved before it has Finished soiviag the 01d prodies, P 15 the
nurber oF ¢10ck cycles between the first input to two corsecutive prubless [see
Figure 1).

¢ problens e 1

b I 4 14 T T T ? ¢ clock cycles

figure 2

L5 3 circult s0Tves many probiless, §.€., a nueber n of problems such that of >2T,
P assume the role of T since the Line T+{n-1)P to sulve &1l n problers dous mot
differ significantly from nP. He will not discuss P explicitly in this piper but
Just mention that the lower bounds we prove hold even §f we substitute P for T
and ke the appropriate medificalions in the relevant definitions.

Finally the switching esergy € has Deen considercd 35 0 corglexity measure
for VLSI compytations, The switching #sergy £ is messured based on the following
Issurption:

[very wmit of active chip 1red COngumes one ymit Of switching emerqy cach
tire St changes its <tate from 0 to 1 or vice verds,

Thic corplexity neasure 15 closely related to the energy cissipated when
charqing a wire. In technologies without nigh d.c. currents the switching enerqy
coainates the toral enerqgy dissipation ca the chip.

Lower bounds om A can be obtained in many cases [[VB0,LM31])}. Mownever, the
respective arqurents are besed on measuring the storage capacity necessary for
the ¢omputation and do not involve cormunication coaplexity. ¥e therefore dJo not
discuss these resvlss here. Locking for lower bounds on T reduces to the sare
prodlea in Boolean circuit complexity, wshich is knowe to be very hard. A lowar
Lourd on € will be provnd 1n Secticn 7 of this paper. It stors fram [LM31],

The above corplexity messures can be conbined to form new interesting comploxs
ity messurces. Clearly there is 3 tradeoff between A and T, since more available
chip arca a1lows greater on-chip concurrency. Thus the cuantity AT 15 an Sater-
esting complexity measurc. Homower, with respect to AT masy circuSts are cptinal
that w0 Satuitively would not consider cood WLSI chips. (&0 exdrple is the bit-
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sqerial adder.) This 15, because concurrency fe the computatiom is not given suf-
ficient priority. e can m2ke the complexity more sersitive to concurrescy by
givimg the T companent a neavier meight, This motivates the Tavectigation of aT?
85 4 coaplexity measure. (T80) has presented & proof method for deriving lomer
bounds on the A‘lz corplexity of YLS! chips, and later authors rave claborated
on fL,This mathod will be the matn sudject of this paper, The method measures
the amcunt of informatica that has to be exchamged between different components
of the chip and relatas it to the chip ares and corputirg timg. 1t only accounts
for the cost of comsunication, not for the cost of coeputation or storage. The
fact that many of the derived lower bounds are (asymptotically) tight shows that
the complexity of VLST computations 15 in many cases dominated by the cost for
covynicating fntermediate results across the chip,

In Section 2 we present the radel for syncAranous YIS clrcuits we are using.
In Section 3 we give an iatuitive owtline of the methoed for proving "2 Tomer
bounds. In Sections 4 to 6 we provide the formal tools for proviag the lower
bounds. Secticn ¢ contains the gqeometric too! in the fom of a separator theoranm,
Sectfioms S ane 6 provide the Information theoretic teols for Beolean predicates
resp. for Boolean functioms with many outputs. Finally, in Section 7 we use the
idoas developed in the earlior chapters to prowve a-lcwer dound on the switching
energy consumed by YLSI <Aips.

2. THC VLST MODEL

Our WLSI rode) is based on Boolean circuits. This chofee 15 adequats &150 for
madellima more general “muiti-directional® VLSI strectures, e.9., buses ([LMB1]).

CEFINITION 1: A ohfp x=(I,A,0); consists of three structuves:

a) The edreude 1 A synchronous Boolean circuit with feeddack and unbounded fFan-
in, Forrally, this 15 3 directed dipartite graph [=!Y,£) where ¥ 15 partitiones
into & set S of writches and @ Set M of wirea. Here S«PyG where ? 15 3 set of
pores l1aballad in or cut and G s 2 5@t of guces labelled and, or, nind,or mor,
For $€5 and weM, §f [s,v]€E then w ¢ called an cutput of s, if [w,5]€E then w

is called an saput of 5. A1l gates have out-degree L, al) wires hawe in-degree 1,
Each input port has one input and ane output, Each outzwt port has two inputs and
no outpnt. The “additional” input <ignal for the ports is an enable signal cea-
puted on the chip that a2ctivates the port.

B) The Liwesee A: The layoul naps avery vertex in the circail into 3 <COpact con-
nected yegion in the plane. Ferthersore, 2ach point in the region 1ies inside
some Squane of stde leagth A>0 that 15 conpletely contained 1n the region.
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[This provision sodels the finfte resolution of the fabricatiomn process for YLSI
chips.) Each point 1n the plane belongs to the interior of at most \@2 regions.
{The paraseter v is another fabrication process spacific constint repretenting
the nurter of fuactional layera on the ¢hip, Since v2? 3150 noe-planar circuits
T can be 12id out.) Two regfoms touch erxactly if the vertices thay reprasent ave
reighbours in . (Ne say that regions R, and Ry touch if alnnz-a dut R?rﬁgei.
where R‘l’. ‘f; are the interiors of Ry reso. Rye)

c) ™2 momal &z The mamgal s a set of directions for the comrunscation bLelween
the chip and 1ts envirorment. [t coatains for every fnput port & sequence of
nubers that fdentify the input bits that enter through this port, The sequence
2150 dererrines the order in which the input dits enter.Uhen fts enable signal

is rafsad the port requests the next iaput bit in the sequence to enter. Analo-
gously,far each culgut port tre manual contains 3 sequerce of nurbers identifying
the output dits procuced at that port and their order. hhen its enadle signal is
raised the port procuces the next dutput bit in the sequerce,

After defining all cospoments of the chip w@ con define the operaticn of the
circuit. To this end we associate with aach port a word web®, B«{D,1), that e
cald i1s Aatory. Furthermore, we iabel each wire with 2n initial Boolean value
from BU{X}. [X stands for the undefined Boolean value, QaX=0, lvX=l, DvX=laX=X.)
Such a labelling we call a srate of the circuit. The initial state s wost often
the conpletely undefined state. Tn the f-th cycle the cirquit does the fellewing.
Exch gate “reads”® the valugs on a1l fts input wires and computes the Boclean
operatign given by ts label. The resulting value §5 put on its output wire, Each
input port puts an X on 1ts output wire §f its enadble signal is 0, otherwise it
puts the eat dit fron 1t history on its output wire. Each output port checks

if its enable signal $5 1, and if so it puts 1ts other input at the end of 11s
history. Thus Srgut ports consuze their histories and cutput ports produce Them,
ALl actions of the gates happen In parallel, Thus & new state §s reached on which
the [§+]]-s1 cycle of the computation i3 startad.

Finally we discuss, what A, T and £ xean in this comtext, The area A 5 the area
of the set M of 311 points in tre plane that belong to at feast one ¥24i0n in
the loyout, (Thus we messure actire ared,) The time T is the rumber of steps
taken by the circuft to produce the desired outputs im 135 OLtpuUt histories. The
switching emergy € §s based on the area of the regfons in the layout.

fhere has besn <ope confusion about Jiffereat kinds of manuals in the past.
Therefore we discuss the issu2 here at greater length.

™e 2anual wsed in Definition L §5 ¢3lled airoaply sherv-obliviouwg 1n (LKEL).
Many suthors vse nmanuals of a diffapert dind to prove the same lower boweds,
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{LS81] call a manual wiwra-obl fyfous {whereobdlivious) if the port [cycle) at
whick an input bit is requested resp. on cutput bit 15 produced is indeperfent
of the input. In this paper we will 2150 comsider ndquals which are both where-
anc wren-gblivigus. Such manuald simply 115t for each [/0 bit the time and 20rt
at mhich it crosces the chip boundary, These data are independsnt of the Trout.
(Note that strongly where-oblivious wanuals are in ganeral not when-ocblivious.)
IT w2 vestrict ourselwes to mnais which are where- and shan-oblivious then we
do not have to require the 1/0 ports to be activated by emable signals which are
produced by the circuit. e can iastead assume that al) ports ark active all the
tine, and that they scoetives consume resp, produce bits which ere insignificant
for the problen to be solved. This assurption takes some computatiomal burden off
the chip, because it caa “blindly* consume and produce bits without having to
corpute the knouledge om what data §t 15 currently working, Even so, we can still
prove the same loaer tounds as for strongly where-oblivious chips. This is, be-
cause 1f the manual is whaere- and when-oblivious tren avam om "blind* chips so-
Tutforns to different problews are alwdys represented by different [/0 histories.
If the nanual is streegly where-cdlivious this is rot the case, homaver, and the
chip has to “inow® what bits cross 1ts boundary when and where, If this knowledye
were 20t conputed by the chip but ¢ould be found irside the manual, every preblen
could be solwad by a trivial chip with a rona) that contafns 211 the coputas«
tiom. (The chip tokes mo input, rums for Lo cycles and produces o O in the first
and 4 1 in th= second cycle at its unique cutput gort. One of these two values
is the unique output and the marual says which one ¢ s, depeading cd the ine
put.)

Me distinguish two kinds of coaplexity analysis: Norst case amalysis and ave-
mge casa aralysis. [n worst case analysis we ask for Lhe greatest vaiue of a
complexity measyre (A,T,E} for 33) possible input sequences of the sare Yength.
In dverage case onalysis we average the corplexity masure over a1l fnput se-
quences of the sare length under the assurption that they are cqually likely.
For tho ares A worst <ase analysis and average case aralysis coincide. For the
switching erergy £ they may differ. For T they colncice 1f the mamal 5 where-
and when-cblivious, ard they may differ, if the manual is strongly where-cbli-
vious.

1. THE LCWER 30UND ARGUMENT

In this section me give on “ntuitive out!ing of the argument Tor oroving
lewer bounds on the ATC casplexsty of VLSI chips.

Lot us assuze that we hava 3 rectangular chip computirg some Boolean predicate
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p:8"5. The chip has side lergths a and b, asb. Let us furthermore assume that
the chip has n input ports ard one oulput port, and that 3 waique (/0 bit is
assigned to each port. Clearly we can cut the chip into two halves L and R Dy

a 1ine C parallel to the sides of length 3 of the chip, such that about half the
input ports lie on the side L resp. R.We first observe that the Tength of the
cut 15 1g{Cl=a5vA, ™e chip 15 where-oblivious and therefore we can also assign
to each input bit a side arorg L,R through which 1t enters the chip, indegen-
dently of the input. This partitions the input dits into bw ¢lasses X and Y
corresponding to the sides L and R. Let us assume 1hat the owtput port 1ies on
s1de R. [f we now can show that 1n order to computé the output bit we have to
keow wany, €.9. w of the 1nput D1ts fn X we can argue as follous: Since the chip
is planar the inpul Bits in X ¢an only be cowmunicated to the side R across the
cut C. By our layowt model C can only be crossoed by & nurter of wires that 1s
proportional to its length. Thus duriag each cycle only 0(13(C}) bits can be con-
mmicated across C. Since @ bits have to ¢ross € this takes tine T-Q(w/19(C)}.
By our bound on 1g9(C) we get T-0(w/vA), or .\}2.19(“2’,

Thus the arqumnt 15 divided into two parts. The first part {s the proof of
a geometric separator theorem that says that any well behaved (e.q. rectangular)
region in ta¢ plang with arga A representing the chip layout can be cut by a
nicely behaved [e.q. strafght) 1ine Into two “dalanced” halves {9.g. with respect
to the nusber of Seput ports ia them). Furthermore the length of the cut line
fs wnall, i.e.,0{v/A). Me call such a th=oremn a separator theorem, The notion of
8 seperator is known from graph theory ([LY79]), eénd in non-trivial cases the
mthods from qraph theory can de carried gver to prove gecmtric separator theo-
rems. We will prove A general separator theorem in Sectfon 4 that allows the
application of the Jomer bound srgument for the case that we are interested in
Active ared. The ocbvious Separator thaorer for reciangles comtained in the adove
outline applies to the noticn of tola? area,

The second part of the lower bound argurent 1ies in the definition of a cer-
tain notion of “communication complexity* for the 2odlecan furction p to Se cea-
puted. Several cifferent rotions are possidlg here. We will ciscuss them in co-
Lafl in Section S and 6, [ntyitively, the comsunication complexity of 3 function
p is the arount of information that has tu be eachenged between two coopsrating
precessors that each have a partial kmowledge of the input and thet want to aid
eech other In conputing p, e comunicating processars are im this case the two
halwes 0f the chip as divided by the cut €. The comtunicalion complexity of p
then tekes the part of the quantity u in thq above outline.

Treze ideas will be made more precise in the following sections.
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4. A GEQYETRIC SEPARATOR THECREM

™his section gives a separator theoren for compact plene regions. The thegrem
is & special case of o move ganeral separator thecren preseated in [LNB1]. The
proof 15 pattarmed after the proof of a sinilar separator theorem for planar
graphs gfven in [LT79].

THECREM 1: Let M %@ 3 corpact plare region. Let Pres--op, be r diffgrent pofnts
inside v interior of M of which n are specially “marked”. Tham N can be cul dy
s set C for three straight cuss Intd o corpact sets My 2nd M such that:

1. Hl J Hr - N ﬂt n Hr e C

2. Ig(C) s 2mM where A i3 the arer of M.

3. "t‘ "r d0th hawe 2t wsSC 2n/3 marked points of Ppocessb, in their irterior
and ncn= of the points Pysesesb, OB thetr border.

PROOF: First we note that becauwse Lhe set P:[p‘.....p'} 15 rinfte M ¢can be put
into a Cartesian coordinate system such that no Time parallel to the x~ or y-
axis conlains more tham one point in P, Me devise tse follewing procedure for
cutting M.

V.1.0.9. assuse that [n/2] of the mvked points 1ie tbove the x-axis, |n/2}
of the wmarked points e 2elow the x-ax58, and no point in P 19es on Lhe x-axis.
Let M_ = [{x,y)Q4;y20} and N_ = ((x,y)M;y20). Let A, e the ares of M, and A
be the area of N_ (A +A_«A). The method for cutting N has two steps:

Step L: For any veal 1, let c,* ({x,y)eM;y~2}. W& choose two cuts of N parallel
to the x-33:1s at distances r-'-l.tn-o and y:lb-cC. C, and C, <ut M into Uhree parts

e )
Moo Mo anc M 35 swggested by Figure 2.

N, "t
& ctt
v\ }
\,‘l —-# { x-ex1$§ ?‘Nw
%
all

Figure 2
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We croose b, such that :9(ctt)"‘t s /W and 2, < ZK . Analogously we choose
ty soch that 1g(Cy 1%, s A, and %, 2 ~/ZK_. Such L, and & can be found. For

assuma that such In ‘:t does not 2axist. Than
- 2K ELS
R, v g 19(C,) et 2 &‘ 19(C,) dz > s‘ (FZR, -) di = A,

which fs 3 contracictlion, Im Fact we can assume that ro point of P lies on l:lt

since the set (2;0<2</ZR and 19{C )+t < vZK,) must have & positive reasure.
An analogous arquegnt applies to Ly

How, iF B contains no more tham 23 marked points of P then we are dome.
Because I'lt and l% both have at most /2 warked paints of P we only have to choose
M, to be the ona of the three sets with the mst marked roints of P in ft.

1f, howewer, lllo has more than 2n/) marked peints in it Lhen we have Lo conbinue
tutting.

Step 2: Mo bisact M with a Ying x=L such that half the mirked points fn N are
on efther side on the line, Nore precisely, the cut consists of the segment
{(xuy)innt and 2 >2e, }. fow clearly the half of ¥ containing the most mrked
points of P will serve a5 My-

The total length of the ¢ut C is bounded by
1g{C) Jg(tit] * 1g{l:.b) t (R t) s TR W s JTR SERR)) < 2R

since the function 2(x)=v%¢/T-x hos & maximun cf /2 et x:1/2.0

5. THE COMMRIICATION COMPLEXITY OF 300LEAN PREDICATES

As motivaled in Secliom J we stort fron the following definfticn,

DEFINITICN 2 ((¥Y79]): Let p:X«¥-2 be 2 Boolean predicata, Ke ¢all X the sat of
lTaft inputs and ¥ the set of right inputs. Let L and R be two computing agents
ong of whick kntres 2€X and the otver of which knaws »Y. L and R vant to cenpute
pi{x,y) by exchanging information Eotwoon each other. We are primarily interested
in deterministic corgputations:

A deter=iniatio algoritin 15 given by twe reponse funcCigns ol:m-v-s and
oa:'ﬂB'-B and the partial outgul function a:B*-8. For computing px,¥) L starte
cending the bit ulapL[x.c] to R. R respands with uz-oR(y.wl}; L returas

wy=ey (xy) and 50 on, wnti] "v"“"'k(x.y]““"“]' At this point the corputation
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stops with the resylt a["'l"”"t[x ”)-p{x.y}. k{x.y] is the longth of the con-
L
putation,

Tre deterministic two-way ccanication compiexity of p is given by

C AT LeR) = o0in max Kk (x,
det e Ay}
yeY

whare R is any deteministic algorithm computing p and Kp(X,¥) is the length of
the <oaputation on input (x,y). 1f algoritha & 15 vsed.

For theoretical purposes it is often interesting %0 introduce non-determine
iom into the podel. In an non-deteministic 31gorithn we are allowed guessas as
to the outcome of certain covputations, These guesses then caly Weve to be veri-
fied, N.1.0.9. we can assune for ron-deterministic algorithms that information
is only sent from L to R, (L could goess all of the informotiom sent fron R and
R Just Pas to werify Lhese guesses.)

DEFINITION 3: A mon-deterministic (ore-vay) algorithn is given by a sat ;\_(x}ea
for every x and by a respoase functica d:Y»>B8*+8. On input (x,y), L sends scme
word w&l[x) to R and R outputs b{y.w). In arder for R to know when L has Fine
fshed sending its inforsation we assume o'_(x) to o prefix«free.) The non-deter-
ministic algarithm conputes p if p(x,y)z1 exactly if theve ic & '“‘l':"] swh that
b(y.w)=l, The noa-deterministic communication complenity of p 1s

cmtu.m) - nin x; rrin(lul;npl.“{:] and by(y,wj=1}
A yeY
fx,y)=l
A non-deterministic algorithn i3 waabiguoua if the Yast winfmm in the above
equation is taken over singletons (end can thus ba omitted]. We define

C

Mb(f.u«] = nin may In{x,y)!

A ;g‘

where wix,y) iz e unique w such that wep, ,ix) and bly,w)=1.

A third class of algorithns which are of interess arg 'L3s Yegas' alparithng,
Las Yegas alqgerithas use frternial rancemizetion [coin flipping] to detoreine the
resul L, Mowever, the random$23tion does mot affect the culconme of the comoutation
but just its corpicaity.Les Veaas algorithes are not oaly of theoretical imterest
dut of practical significance singe the realization of true cofm Flipping cevices
fn VLS[ technglogies seoms in t realn of the possible.
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OEFIRLTION 4: A Las Yegas alqorithm is given Dy two response functioms

05_:!"3"‘3"3 and OR:T"U"‘B"‘B ané tre partfal output functfon a:6%+B. Ve dssune
thet both L and R first toss t coias to determizme the third argasents t ., to in
the response functions, ard then stark 3 deterministic computation as in fefini-

tioa 2, The corputation erds when ["l"""l‘l:l.y.t tﬂ))emza].lts rogult fs
. L.

3(Wya-..om ). The Las Vagas communication complexity of p is

CylPile=R) = min T kfxyt b2t
t.t
»h
Ly-alg
We can 3l50 defime 3 deteministic awarage case comunfcation complexity of
p by Just averadging over all inputs instesd of réxinizing over them:

C“u(p.l.—-«l!) = nin I th{x.y)l[llth’l}

A x€X,yeV
det

T™e relation of the quantities defined above to the ATz corplexity of chips
will be discussed later in this section. Kowever, they are also of use for
concerms outside the WLS] area, For instance, they apply to probless in one-
tapa Turing machine complexity, Indsad, they cin be used &5 & basis for & thecry
of cormmication covplexily, oand as such we will consicder them mom. This kind
of cosplexity theory has been studied in [¥79,781 Wr22).

We now study methods for finding 1owmer bounds On the ¢cantunication corplexity
of Biolcun praedicates, The rethods <consider the Boolean predicate p as on
IXI%IY! matrix P of zeroes nd ones.The input x selects the raw, y selecls Che
COlurn Of the matrix. fhus ny-p[n.y].

METHOO ) (Crossing Sequerces):

This eathod 5 an adaptation of the crossing scquence technique for showing
1ower Lime bourds for one-tape Turing machine complexity. It was First prosons
ted in owur, context in [531]. Tt f5 based on the following theoren,

[HEOREM 2: Consider the mtrix P defining the Boclean precicate p. By persuting

b
rcus and columns independently put P nto the forn (i %} wheve | 15 ar ren
N

fdontity matrix and » €5 35 large 83 possidble. Then Cdﬂ{p,l_-.lz]z]ng n.

PROCE: The proof §s an application of the pigeon holag principle. Assuse that
cde‘(p.l.uR]doq n. Then thern is 2 detemninistic algorithn corguting p that
almays exchanges less than loa m dits, Trus there are two inputs [xl.yl) and
{*5.¥,) COrrasponding 1o disgomal clezants in the identity satrix 1 of P for
ahich the same information is exchanged between L and R. By Dafinition 2 the
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same infcrmation is also exchanged on fnputs (%y4¥5) Tesn, (nz.yl]. Thus the al-
rithe yialgs the same result for all four input values. Since (xl.yzl and (xz.y:
are off the dizgomal in | the 31goritha must therefare yield incorrect results
on scme of the four Irput values.o

CORDLLARY L: Tre sbove thearen is still true 1f we substitute CM“ or cumm
for Cd“.

PROOF: Analogows to the proof of Theorem 2.0

Corvilary L is the manifestation for communicatioa ¢onplexity of the well
known fact that the ¢rossing sequance tochnigue 15 mot able to differentiate
detwean detersinism and non-detorminign.

Note that Method 1 15 not strong emdwgh to show average case lower baunds.
inis 15, because we bound the commynication complexity of a Boolean pradicate
froa Delow by showing that i1t entails an fdentity predicate §d(x,y):=(xsy) for
strings of scoe length, But identity predicates are easy to conpute on the ave-
rage. In fact, most often tha inputs (x,y) of 2 identity predicate will rot agree
and this can be found out very fast. (Discrepancies will occur in the first bit
half the time,) One easily shows that Caypl ThleR)s2.

ATthcugh Corvllary 1 may at first sight seem to show a strength of Nethos 1,
it really exhibits 3 weakness, Mon-deterministic lower bounds are fn general weak-
er than deteministic lower bounds becavee nan-determinism §9 3 wore powmerful
concept tham determinism, Thus Nethod 1 will yield bad results for pradicates
that are difficult to compute dererministically but easy to compite non-deterni-
nistically. Scmatimes ore can get bettar results by coaplezenting the prodicate,
f.e.. by considering B = 1-p instead of p. p has datevainistically e sam <om-
nication coeplexity 35 » but may be herder rom-deléerministically. A exarple
for such e prodicate s again the identity predicato. By Corollary | we have for
the identity pradicate on strings of lenrgth n cmt\'td.b—k)&. Hoanud*, we cin
show thas Cndut'ﬁ.bﬂls lcg n + 1, This is, bacause in order to show that xey,
L only kas to quass ome DIt sesition im which x and y differ, [L then sends the
nurber of this pesition (log » >1ts) ard the corrasponding bit value of x (1 bit)
to R. Thus 7@ 1 easy to corputs non-deterministically. However, we can still
show 3 c00d deterministic Tower bound on ccel:.(ﬁ""_a) by applying Method L to
its corplement id, which is difficult to compute non-datormiaistically.

Faomever, there tre natural Boci2an predicates p such that

For such predicates Nethod 1 falls o prove qoad deteministic lower tounds. For
the purpase of proving lower Dounds §n such cases 3 50<0nd nethod is presented,



“e# Cuswunication Complexicy oF JLSL Circolts i3

METHOD 2 (Rank Lower Bound):
This method has Deen presented in [NNG2).

OEFINITISH 5: Let r ba 3 ring and Tet r'™™ 2e tha set of nxn mtrices over r.
The rank of Mr["'“’ over r i1s the mnaimge k sich that A ¢an be wrilten as
A = C.D, vhere Ctr‘"'” and Nr(t'.).

1f r 15 2 field the above dafinition coincides with tha dafinition of satrix
rark known froa linear algebra. Method 2 15 based on the folTowing thearem,

THEQREM 3: Let p de o Beolean predicate, and let P be its assocrated matrix,
Then C*t{p.l.--lt] = log rant“(P) = log rar.kr(P} whore r 15 any Field,

PRCOF: The saceed inequality is known from a19ebra. For the proof of the first
incquality we state the following lasnoa.

LEMM 1 Let r bo a ring, lﬁr("’"’. Btrt"’kl. and CEr{k'"]. Then
rlnk'_[[h B)) S rank (A) + rantr{a)
rlnlc'_[(z)) S renk (A) + rark (C)

PROOF: If Afﬁl-tl and B~0,-E, then

o= 0,051 2)
The proof of the second fnequality is analogous.o

Now consider any deraministic algoritra for coaputing p. [nductively on the
length of WEB® we define the matrix P a5 follows:

fwieD; P~ P

Iwi>D: [f Ivl=22 thes Pm (P“l) 15 obtafred fron P., by selecting al¥ rows x with
91(!.«}=0 (o (xewi=l). [f Iwiv22+1 then Fo (P“I) §5 cbtained frus P, by sefec-
ting all colvans y with gpfy.w)sD (op(y.w)-1).

By Loy 1 we Pave mex lnniN(P“o).mnku{Pﬂ)]z rmkN[Pw].!Z- Norpover, if
widon(a] then ?w mast be moncchrovatic, i.a., all of the entries in P“ LSt have
the same value a[w), and thus rukn(P")ﬁ wst hold. Thus there 35 3 wEden[a)
such that lwlzle; ranhu(P}.n

In [M32] it is shown that in fact tw”h(p,L-R)dlog rank (P} |, On the otrsr
hand €, (P.L=R) can be much smaller, as the following example Shows.
DEFINITION &: Let nek and Xev«{0:2"-11". For x-(xl.....xnlcx and
I-[)’ls---.?n)ﬂ' Ie‘

1 if xT¥y for sone 1,180
Pylxy) ~ 0 othorwise
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The abave definfition is the result of modifying the identity predicate such
that 1t and fts conplemat are non-deterministically abowt equally hard, [n-
stead of checking the identity of cee pair of a<bit words we now chock the idem-
tity of m pairs of a-bit words» If any pair is identical we output 1 alse D,

THEOREM 4: 2] Cy,,(pyole=R) 2 0°
b) Codet Pyt R) = O(m+log n)

©) Cogey(PyoLR) = Ol log

d) cl\otpbl"‘al 0{n{log “‘ )

&) €, lPiL=R] = Bn) o?) .
PROCF:  a) Since P{EaZ  we only hova to show that renkge )Py 2 287),
where GF(2) is the figld of characteristic Z. Let & demote addition module 2.

Ve tramron. tno matrix 'F‘ ass0ciaced with p1 into the {dentsty watrix of
size 2[. }ua"‘ ) by means of linear transformations,
LEVMA 2: Let wl.....un.y,....,yne(o:r“-n. Define
9(“1-----\'"-91----'3"] H ;1. e g a.;(’l.....lu.."l.....’nl
n

™ 2™
th.n q‘"l""'“ﬂ"’l"""ﬂ’ = id‘"t----nua..,lpluubyn}-
PRODF: Omitted.o

b) L quesses the nuvber i€li:n] such that K4y and sends | ard X, to R, [(f
X4=rq then R cutputs 1.

¢) For each i€(1:n) L guesses 3 gesition jo€(l:n] such that x; and y, differ fr
position jt' L sends jo and the corresponding bit of x; %o R. R verifias that
the bits indeed differ.

d) See [MNB2).

e} For 1<1,,..,n L and R alternate sending Dits of Xy TOSP. Y untsl ome bit is
found In which x; and y, d*ffer, Thae L and R prnceeo with [x“l,y” ). If oY
i3 verified then the coeputation stops imeediately. This determinist:ic algorithm
computes o indepenent Identity predicates. Me already noted trat the average
case commrnicetion complexity of the fdentity predicats 1s less than 2. Thus
C“e(pl.LMR]s Zn.o

Part @) of Theoren | shows that Hethod 2 is not strong enough to show averase
cas® lomir boemds either.

With the atove two methods for shoming lomer dounds on the Comrumication Come
plesity af Roclaan predicatos me are now able to devise strategics for saking
statenents abcut the Mz complaxity of chips corputing such predicates,
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DEFINITION 7: Let o ¢ a Boolean predicate with n “rarked® input bdits. p is
celled wgepamabie if for =very partition of the input bits into sets X, Y such
that botk X and Y coatain at most 2n/3 of the marked inpll. bits w2 have

cdit[‘ (x93l R) Z @,

The follewing Theorem energed over 3 serios of capers {[120,8%51,v80,381,
LS81.K82)).

THEDREM 5: Let p be 2n a~scparable Boolean predicate. Then M’z-ﬂ{uzj {or every
(where= and wherrodlivious or strorgly where-oblivicus) chip corguting p.

PRCOF: Let x={I,5.4) be a chip corguting p. Let 7 be an input port and let R, be
1ts associated region in the layout A, Let the fnput bit X enter the chip
throudh 1nput port n, With ¢ach such Xy wa associate 3 point Py in the intarior
of R such that differeat points are associzted with different input bits. For
the purposes of the Tower bound preof we will constder the bit ¢ to enter the
chip through point Py ir X is 3 marked input bit we conzider p; 4 mirked point.

Ne noa spply Theoren 1. Thus we cut the layout arez N into two halves M, &nd
M.. and induce a partition of the input bits as follows:

X - {x';piﬂl‘) LG {xi ;pieﬂr}.
Furtherzore X,Y contain at =08t 24/3 mirked Snguts.

Since the cut C has 2 length of at most 2/A, at most h=0{.A) ragions of A
associatod with corperents of T can intersect C. This i<, because by the YLSI
model, only O(1) regicas can inteérsect any squave of unit arca in AL

Now consicer the compwutation of 9 by x. At each Cycle we assocfate two valuas
mth C. 4 Ieft and a right cmsinq‘ valug. The lert (nqht) crossing valua

'(vl. "h} " :[\‘1.....vh)] containg 3 component "'i (v ) for each region
Ri intersecting C. LF R i$ 3 {rand,nor,and,or| gate then \' (v y IS the (nara,
nor,and,or) of all 1nrut values during the 1ast cycle rhose rorions intarsect
4, (40, IF 2, 15 3 wire then v (v0) 53 the above walue for 1ts nput gate.
Ports act as and-gatas in this context.

Wilh twse Jelfinitions tha coaputation of p Sy x cen be regirded 24 3 deter-
ministic algorithn in the serse of Definftica 2. The informotion exchenged
between L 2nd R are the crossing values, The left crossing valuas are sent from
L to R, and the right crossing values are seat froe R to L. After the Tast cycle
L and R exchange two more bits which wake thse result of the coegutation troan
globally.

[F the lergth of the YLSI covputation 8 T the coreunicalicn length of the
associated daterministic algorithn is O(Th). We gat TheT/AA=Q(w), or AT“'-‘:!(uz).u
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Motg that if we substituta C . for C . in Pefinition 7 Theorem 5 yields aa
average case lowar bound. Homever, as mentionad before we have no rethods
of proving good average case lower bounds on the coesunication complexity of
2oolean predicates,

The idgntity prodicate fda(x,y) that served as an example for the application
of Yethed 1 is not Q(n)=seperable becsuse we can partition the input bits cle-
vorly to assurc that little inforration has to be exchanged batwean L and R. |
Specifically, if we choose "'{*1-----"nrz"'v""-"nn’ and Y accordingly L has
Lo semd just one bit to R, mnely the bit X17¥] A %35 AweiA J:”z-ym.z e can
wodify the fdentity predicate to yield an Q(n)-separable Boolear predicate.

DEFEINITION B: Let id [1.)’.':) be a predicate of three inputs. % and ¥ are n-bit
strings (n+2") and k i5 an w-bit string encoding a nunber O<k<n. Ve dafine

1 if For al) 1«D,....n"] we have X * -"{tol.} wd n

1 (X k) =
! { 0 othorwise

Tha predicate icll tesis whather ¥ 5 the same 3s x rotated ¢yclically by &
positions,

THEOREM 6: With the choice of X and ¥ 3s the mavked 1nput bits of Idl. 1d
f(n)=separable,

18

PROOF;: Tre proofl §s . an application of Theorem LO in Secticn & to the cyclic
shifts funztion defined in Section 6.0

By ™eoren S, for evary chip computing id‘ we have Mzzl.‘l[nz}.

We cin radify the predicate py in 2 simtlar way to carry Theoren & over to
YLS1. In particular, this yields & predicate P, of K inputs such that for every
chip computing D, we have hTz-n(ﬂ )- Howaver, in a straightforward madification
of the YLS[ model to allow cofn Enssing om 3 ¢hip there 5 3 chip that computes

p, with AT:0(4”/ Zpoly(log K)). For details see (WHE2).

6. THE COMMUNICATION CONPLEVETY OF ROCLEAN SUNCTIONS WITH NAXY DUTRUTS

Boelean functions with mary outputs do nat fit the framguark ocutlined in
Section 5. This is, becouse just to put tre output bELs on the coemwumicalion
charne] will cost a lot. But in VLSI an output bit does not have to Se made
knawn 0 the whele chip, Rather It just has Lo 2@ tndwn o tha cutput gort that
preduces it, Thus in sulliple gutput functions output DIts may be computas "lg-
cally” ond we have to rmésure hoa ruch inforzation has o be gathered from far
Ay to compute each outset bit,
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Therafore when dividing the inputs up batweea L and R we assign 31des to the
output bits 35 well, The corresponding definiticm 15 the following.

DEFINITION 9: Let f:¥=v=2". Lat [,J be a partition of the output bits, Me assume
that L has to corpete [ and R has to comdute J,

A detemeinfstic algorithm is again given by two response functions as in Defi-
nftiom 2. But now for each input XEX and cutput DIT T€] we Mave a partial out-
put function a[x,1):8*+8. Similarily, for each inpul yEY and cutput bit JEJ we
have 3 partial output function 3(y.J):8%+8. The corgutation proceeds as in D2-
finition 2. To awoid coarlicts we Jssure that if w §5 3 prefix of w' and
3(x,i)(w) is defined thea a(x,i){w’) S defimed and a(x,i){w")ea{x,i)(u). (Si-
milarly for a(y,J).) The computation stops as soon 3s a(x,1){w) 1s defined for
a1l €[ anq a(y,J)(w) is cafined for 311 JE). C“t(f.LHQ] fs defined as in
Definition 2.

Definition 9 differs from Definition 2 in that the partial 1nputs x resp,
y <an help $n detemining an output. If m«l thaa Definfticem 8 yields a notion
of coamunication comploxity which 15 #0 greater and at xost 2 less than the
communication complonity defined in Defimition 2. This 15, because cece 2 side
has ¢cmputed the unigue output bit it cam make 1t glodally kndwn by transmit-
ting it to tha other side,

The concept of non-determinisn doos not make sense for muitiple output func-
tions. Las Vegas algorithms can be dafined am3logously to Definition 4.

There 15 one method for proving lower bourds on the coamunication cceplex!ty
of rultiple output funcrLions,

METHOC 3 (Crossing Sequences for Multiple Cutput Functices):

DEFIHITION LO:Lot f:X:x+8™ and lot 1.J Se a parLition of the output bits cf f,
f has orflow if thera {5 2 partial Sngut y2Y such that f restricted to Xx<{y| in
its domain and J in Tts rangd ha¢ yore than 2“"'! differant points Sm its ronge.

THEQREM 7: 1F f has u-flow then £, (f.LsR}2 =,

PR00F: The proof 15 similar o the proof of Theorem 2. Assune that there 1S a
deterministic algorithe corpuling f that has a communication Tength of less
than w, Then for two inputs [x].yl. :xz,y] generating different output configu~
rations in ! the samy cowrunication sequencs w is comerated. Thus for some JEJ
fj[xl.y}ofj[nz.y}. but the elgorithe corgutas f,(xl.:(]'l()'.JHw]'fj{:z.r]. Thus
the 11gorithn coes not carputs f correctly, 3 Contradiction.o

Theorne 7 can te appiied 10 got Tomar bounds on the att covplexity of chips
computing multiple gutput functicms, The corresponding definition and Theocwwn
are the following,
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DEFINITION 31 Lot :0™8™. Let A %o a subsat of the input Dits and B8 be 3 sub-
set of the cutput bils contiining the “marked" /0 dits. f 1s called u-geparadis
if for all parsitions of the 10 b1gs 1ntc sexs X,Y such that both ¥ ard Y
contain at most 2/3 of 371 marked 1/0 bits we have

CanplfilR) = w.
THEGREN B: [f F:8"+8" i3 u-separable then ATZ=o?) for every chip corputing f.
PRCOF: Analogows to the proof of Theorem 5.0

(Y80] gives an exewple of a class of functions to which Method 3 applies.

DEFINETION 12: Let “"1"""n"l""”ul'{’l“""n] be 4 Beolean functiem,

f corgutes a parvrwtation 9owp G on n elewents {f for a1l geG there is an
AssTqnment Spr--na0y to the Sye-eaaSp such that f"l"""n"’]""‘“ﬂ"
(:0“1..-..:9{.]] for all choices of xy,...,x,. We call "1""".“.“'" permwte-
tian irputs and $y,...,5, the control fnputs. F is called trumyiedse of degree
nif G §s » tramsitive group, i.e., if for a1l 1,j=),...,n there 15 3 ¢CG such
that g{i]=j.

The rost strafghtforwerd example of 4 transitive function of degroe n 15 the
cyelic shift function cs(Xyu... X uS)uee 5050350 00, ) where ne2” and the
Syseeeedpy ancode 3 nuwber k, O<k<n and yirx“* 10d n- €% computas the tryns-
ftive grewd of cyclic perrutations. Other axamples of transitive fumctions of
degree 2f{n) are the sultipltcation of m-dit integers, the aultiplication of
threo /n*/n matrices, the sorting of n mmbers totweea O and n etc.

THEOREM 9: Let £:87™+8" be transitive of daograe n, Then f i n/6-separable,

PROOF: Let G be the transitive group coaputed by F. The equivalence relation
g{1)=n{f) for fixed but arbftrary i€(),...,n} divides G into n equivaience
Classes of size I1GI/n. Let A be the set of all gemmtation input bDILs and let
B be the sa2t of all output bits. Let X,¥ De any partitica of AUB such that
IX1,1¥1<4n/ 3. For each fnput bit § 1n X and ocutgut bit j 1n Y there are [61/n
group elgomznts gEG suxch that gfi)=5. Let w.1.0.9. X be no greater than ¥ and
assure that ¥ contains at least as many input bts as output bits. [The other
cases car be arquad simflariy,) Let S be the set of input bits in X and $° be
the set ¢f output BILS in Y. Then

15118 1 = nf2 « g2 = niss.

For each of the pairs (§,J)E5%3" there are C /r group elenents matching them,
Since there are only & total of 161 group elererts there rust be one elerant
9,66 realizing at 1east nf6 rotehings betwsen inputs in § end cutputs in §',
The partial input y realizing the flow sets the control input bits in ¥ such
togather with appropriate assigesemts to the control isput bits in X trey encode
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this elerent 9., The other input bits in ¥ are assigned arbitrarily.o
We can estadlish & relationship between Method 3 and Mathod 1.

DEFINITION 13: Let F: X+8". The shkmotervsesc prudiccte of £ is the predicate
(PH 78 such that

pelxy) » { V11 rerlx)
0 othervise,

The characteristic predicate of the cyclic shift function cs is the predi-
cate '|dl defined in Definition 8.

THEOREN 10: Let f:xy-8°, Lot Py bo the charactoristic predicate of f. Let [,J
be a partition of the output hits of f, and consider the induced partition of

the input ot'p'. (A 1npyt bst of D¢ corresponding to on cutput f of f entars

on the side an which the output bit is produced.) 1f f has u-flow then ps ful-
fi11s the premise of Theorem 2 with =2,

PR00F: Tha rows asd columns of the identity watrix are given by the 2 input
configurations of g that corredpond to the £ frput configurations of f gene-
rating all different output comfiguratiomns in J, together with the correct
uesses of all cutputs.o

An apgplicatfom of Theorem iQ to the. cyclic shift function cs proves
Thearen 6.

Theorem 10 shows that as Method L, Method 3 is also rether weak: 14 we can
provea lower bound on the comwunication corplexity of £ then wo can prave Ure
same non-deterninistic lower bound on the commmicalivn covplesity of Pe

[n general proving average case lower bounds on the hTz-comieniw of chips
is hard, Howewer, thore are examples where it can be done. [T8D) proves an Jve-
rage case lower bound for the Discrete Fourfer Transfom and for Sorting in a
vodified YLS! nodel. We will now prove an overage cose lowor bounds for the
cyclic shift function. Tre proof is based on two observations. First we ncty
that for the cyclic zhift function every assigrment ‘of the centrol input bSts
irplenents exactly o group clemnt. Second we observe that the worst cose
Tower bound on the musber of matchings realized simultanecusly by a group cle-
mnt (sce proof of Theorsm 9) can te axtended to an average case lomer hound.

LEMNA J: Let F be 3 trangitive function of degrea a catputing the transitive
group G. Then for cach partition of tha [/0 bits of ¥ as In Theorea 9 at loast
IGI/11 group elemante realiza @ach at least n/12 matchings 3¢rdss the cut,

PROCF: Otherwise at wost (IGIF2Y ~1)n o [10GGI/LL *2) (/12 -1) < alGIé
matchings across te cut are realized in total.o



20 Thomas Lengauver

THEOREM 11: For anmy chip corputing the cyclfc shift function c5 w@ mave
ATz-"-{ ) on the average.

PROOF: Let C be the cut bisecting the chip. Let ¢€G be cr2 OF the nfll growp
eleaents that realize nf12 matcnings across the cut €. Consider the assignment
to the coatrol frputs that encodes g, and any assignrent to the 11n/12 pernu=
tation inputs that are not mateded across C. By varying the-n/12 permatation
input bits that are matched across € we have to gaenerate 2.“2 diffarent sequen~
25 of bits across €. The awerage length of each such bSt sequence §§ thys at
least

i
32

. § A2
Thus the average length for all inputs whote control part ancodes g is n/12 -2,

This mans that ca"(cs.t-—-nj 2 (nf12 =2)/11, The rest follows as in the proof
of Theoren 5.0

) V125 a2 -2,

¥otg that by the arguaent known to us from Sectfom 5 1T can be skown that
CavalTdpLeR)=0(1) across any cut bisecting a chip coaguting idy. indeed, one
<an devise chips that compute ldl with AT =0(n poly(log n)) on the average,

"athod 3 2150 applies to romy functions that are not transitive, €.9., Matrix
myltiplication [[S311). In wost cases the 1omer bounds thus proved can be
(azyrptotically) matched with tight upper bounds ([P¥30,PVA1)), This shows
that fedyed the coonunication complexity often doninates the ar conplexity of
8 YLSI chip.

A LOUER SOUND ON THE SWITCHING EMERGY OF YLST CHIPS

In Section 6 ne proved lower btounds on the Atz corplexity of chips ¢omputing
Boolean functions with multiple cutputs by measuring tre anount of ‘nformation
that has =0 flow Jcross & Cut bisecting the ¢hip, We argued that cach bit neads
o Liz, nimely ume <yle, L0 Cross the cut, and that because of the 1inftag
length of the cut orly a limited naber of bits can cross Simultaneous’y. The
wwitching energy essentially courcs the nurber Of State cranges happening in
the ¢frcuit, ¥ore precisely, the switching emergy is defirad Dy the follcwing
‘tatement:

Each unit ofF chip arsa consumes one unit of switchirg energy every time §L
changess its state from 0 to | or vice werea,

Thus, if we want to prove a lower Dound on the switchinag energy considering ome
cut 18 not encugh. Many of the state changes could hapgen ia circuit componants
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that 4o not cross the cut. Therefore wg myst consider mary <uts to cower a
large part of the circuit. By prowing 3 Tower bound on the amount of inform-
tion flowing across each <ut, and suming over all cuts, we can account for
rany of the state chonges hpponirg in the circuit.

Since we have to consider many cuts st once 1t will not suffice Lo consider
functions with & great comtunication cosplexity in the worst case. However, 3
progerty Such as the one praved for transitive fusctions in Lemma 3 will do.

THEQREM 12 ([LM31!): [et F de 2 transitive function of deqree a. Let E be the
worst case switching energy corsumed by any Chip computirg f. Let A be the
(active) chip area and let T be tre worst case conpuling time, Then
2
<
clﬂ‘! xET 2 ——Zﬁ—z 20
leg .‘53’11

for appropriate constants cl.cz,caso.

PROOF: let x=[r,A.4) be any <hip corputing T, The upper bound om £T is trivial,
Ne prove the Tower bound in two steps. First we defined 3 set of rectilinear
cuts through the chip. Second we count state changes in the circuit corporents
crossing the cwts.

In the First step we cut the chip according to a technique devised by [T1r9].
To this end we overlay the chip aith & square grid of mesh size A, Then wo de~
rine cuts Cy,...,00 bisecting the chip as shown in Figure 3.

S E e e e —

- A awnsn v

. L

Figure 3

Heraby ea2ch cut consists of severa]l scctions as sicwn in Figure 4.

vertical {

sectians

A ] niddle seclion

Fimira 4
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The niddle section of cut C, has a length of at rost (2f-1)JA. The vertical sec-
tions of all cuts t:‘i are disjoint. Each cut induces a partition of the permuta-
tion input bits A into sets X,Y and of the output dits B into sets [,J such
that 'XI+1 L1 IY¥1413123n/3. de will count state chamges happening on the uvertical
section of the cuts. Let L1 be the nurber of circuit corponents crossing t‘l and
lat ‘i be the nurber of circuit components crossing the vertical sections of C‘.
Then tiaL‘-coi for some appropeiate constant coso.

In the second step wa start by noting that for sach cut €, (1<i<Q) by Lerma 3
there are 1G1/11 group elerents exch realizing at least af12 matchings across
C*. Tharofore there has to be cme group element F6 raalizing at least n/l2
muchings a<ross a set ¢ of Q/1) cuts. o will prove a Yower bound om the ave-
rage case switching enerqy comsunmed for computimg 9, On any confguration of the
perrutaticn inputs. This s them 2150 3 Tower bound for the worst case enargy
for corputing f cm any input.

Befor=a we start the actual argurent we Jiscuss an encoding that expresses bit
strings in terms of the state changes happening in then.

DEFINITION 10: Let w be an arbitrary bit string weptlit2gt3 %t
a) s{w) is the sunber of state changes in w, i.c. 5{w)st.

b) bin(w) 1S the dit string odtained from w aftar substituting each O with Q0
and cach 1 with 11.

c) corpress(v) « 0 bin{2y) 01 bin{2,) 01 bin[y) OL ... 01 bin{2,).
If the First bit of w 15 a 1 50 §5 the first Bt of corpressin).

EXAMPLE: covpress(00011) = 0 11 11 01 11 0O
Lerma 4: |corpress(w)l s 4s(v) + 25(v) log ——

5(w)
PROCE: lcorpress{w)| % 2s(w) + 2 :.'(C';] (L + log "3'}

sﬁv]
< 45(w) ¢+ 2 109-1J
3~

< 45(u) + 25(w) log =—
s(w)
Heve the Tast incquality is derived using the well kncwn fact thac the ceometric
rean i< po greater thas the arithmetic mear.o

¥e noa Comsider an arditrary but fixed cut C,. We chodse an arbitrary but
Fized oSSignnent of the 1ln/12 permutation inguts: that are not matcred across
¢ end Tet the n/12 cermutation irputs ratehd across ci vory In all 2"“2
possible ways. Thus we ge=nerate 2“”2 different bil Sequences ["ir"'ij' across
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C,. Here v sunmrizes all bits crossing €, in the vertical sections and hu
surmarizes all bits crossing l:1 in the middle snction.(lsjsz"nzj.
LEM 5: let {"‘l"""‘r' be a set of r different DIt strimgs. lhen

T teeapress(w)l 2 {{legr] - 2) r.
lgjsr

PROOF: The mapping v = corgress(v) is fejective. Thus

155" lcoapress(w)l 2 134 - r]sz 4 (r - 2“°9 "]) 1log r] 2(|Yog r}-2}r.o

Using Lers 5 we ncw <owpute aa upper bound on the length of comress{wij] sve-
raged over a1 1552V12,

12
LEMMA 6: vy HCORproess(v, . J1 2 (1- - cplT - 3 2"’ .
1<t i2 (gl = G~ =lT =)

PROOF: Since the length of the middle saction of cut C‘ fs at mst (21=1)) thern
arg at rcst coi ¢ircuit corpoments that intersect the niddle section of cut C‘.
Thus there ire at most t, lst.slcoﬂ. different soquences hu. For each such sa-
quence there is a rumber vy of different sequances UU such that (“U'hiJ] is

generatad by sorm input as described above. Ye have Ui= E U Z Zn.'l! and by
Lenm 5 .

lsgﬂ"nz lcamress(wﬁ)l = an (Tog u, =3)u,

2 U log{l/t) - W
2 21 (0112 - 57 - 3],

Here we wsed the fact that !si%:;t ulog u, is minimn if for a1l k o <lft.c

Using the upper bound on lcompress{w)l derived fn Lomed 4 we can row give 3
loaer bound on the averdge number of state changes in 817 sequences w. .. Let

i
Sy 3 ez S04 4922 be the average numer of state changss occurying
<
in any vy (g2 1),

LD T: (/12 - il - ) < 45, + 25, log &1 .
S,
1

PROOF: Jpply Lerma & and Lervsd 6 and observe thal E /12 s(u‘j) log -
1<)%2 s(ui j’

s msiman if for all j§, t(vupsi.c

4 Q1
We mow sum gver all cuts C.i in ¢, Let & := _{1 L ad S i 'él 5;. Thus S is
1 1=
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the averiage numder of state chamges in the sequences Yyg FrosS all cuts in 3.

LENVA B: I [(n/12 - CDDT - 3) <435 » 25 log (TeSS).
1s1<()/11

PROOF: We manipulate the foraula §n & way sinilar to the proof of Leren 7.0
Caosing 0:(:1—]5)[!0:01' yields:
LEMMA 9: For suitadle coastants ¢,,c>0 snd sufficiently large a we got

2
ST 2 —c?!‘--—z— a
log Cyl°2
n
PRCOF: Substituting the valus for  fato Lessa 8 yields

izdS{H-;-iov?}- (=)

c°1

2
(235,
24

Thus

2 .
1095;!09((&} _L_)-Iog[lfllogﬂl.
24 “o' 2 5
Applying the fnequality log(l+x)<x wp gat

2
109 S 2 2 Tog ( (25" 1y . yoqme) .
24 ST

Substituting this into («) proves the lewra.o

Mo ara left with relaling S to Lhe switching emergy and bounding 2 Frar atove,
Both can be done with the following arguwent.

Let ¢ be a corponent crossing the wertical sectiom of cut ci' [t can be
Shomn that we ¢an charge to c an ares of s92¢ Q(1) inside the layout of con-
ponent © such that areas charged to different componants overlap at most v-fold,
Frea this imwediatoly follows that R:0(A), Furthersore S=0{C+A). (¥e have to
add A herg for the state changes in W;j UMT <an occur when swutching from one
compenent crossing L‘i to the next. Thos2 slate chenges in "U do not correspond
to quanta of switchiag energy dissipaled cn the chip.) Thus

2
ET 2 —S2%— - coh.

log S!’%ﬁ

4]

[l we 2ssure that on cach circuit component there will be At Teast one state

change, say, dwring fafitialization, then the last term ¢an be eaitted proving
the oren.oc
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Note that [f the chip is ATC optimal, §,2.. if AT2.0(n°) them the above lower
bauZd on E is tight up to 3 constant factor. This shows that ard optimal chips
use thetr cemputing resources to capacity {up to a comstant factor).
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