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Abstract: In [5], Mehlhorn presented an algorithm for 

sorting nearly sorted sequences of length n in time 

0(n(1+log(F/n») where F is the number of initial inver­

sions. More recently, Dijkstra[3] presented a new algorithm 

for sorting in situ. Without giving much evidence of it, 

he claims that his algorithm works well on nearly sorted 

sequences. In this note we show that smoothsort compares 

unfavorably to Mehlhorn's algorithm. We present a sequence 

of length n with O(nlogn) inversions which forces smooth­

sort to use time Q(nlogn), contrasting to the time 

o (nloglogn) Mehlhorn's algorithm would need. 
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O. Introduction 

Sorting is a task in the very heart of computer science, 

and efficient algorithms for it were developed early. 

Several of them achieve the O(nlogn) lower bound for sor­

ting n elements by comparison that can be found in Knuth[4]. 

In many applications, however, the lists to be sorted do 

not consist of randomly distributed elements, they are 

already partially sorted. Most classic O(nlogn) algorithms 

- most notably mergesort and heapsort (see [4]) - do not 

take the presortedness of their inputs into account 

(cmp. [2]). Therefore, in recent years, the interest in 

sorting focused on algorithms that exploit the degree of 

sortedness of the respective input. 

No generally accepted measure of sortedness of a list has 

evolved so far. Cook and Kim[2] use the minimum number of 

elements after the removal of which the remaining portion 

of the list is sorted - on this basis, they compared five 

well-known sorting algorithms experimentally. Mehlhorn[5], 

on the other hand, uses F, the number of inversions, i.e. 

the number of pairs of elements such that the bigger ele­

ment precedes the smaller one in the sequence. He deve­

loped a new algorithm based on sorting by insertion and 

analysed its running time to be O(n(1 + log(F/n»). 

Without indicating his measure of sortedness, Dijkstra[3] 

now presented a new algorithm for sorting in situ. He 

claims that it is well-behaved: "I wanted to design a 

sorting algorithm of order n in the best case, of order 
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nlogn in the worst case, and with a smooth transition 

between the two (hence its name)." However., not much 

evidence is given to support that claim. 

We use the number-of-inversions-measure to show that 

smoothsort compares unfavorably to Mehlhorn's algorithm. 

In particular, a sequence of length n with O(nlogn) 

inversions is presented which forces smoothsort to use 

time n (nlogn) where Mehlhorn's algorithm would need only 

o (nloglogn) time. 

The following section gives a high-level presentation of 

smoothsort. In section 2, then, some simple results 

concerning smoothsort's running time are proved. In 

section 3, we exhibit a small example where inversions 

caused by a single exchange of two elements are only 

removed one by one. The same one-by-one removal of in­

versions is the key observation that proves our main 

result in section 4. 

1. The algorithm 

Smoothsort is a two-pass algorithm for sorting an array 

A[l • • n] in situ. In the original paper, a forest of 

recursively defined unbalanced binary trees is construc­

ted - the sizes of the trees are given by the so-called 

Leonardo numbers which stand in a simple relation with 

Fibonacci numbers. 

It is much easier, however, to describe and analyse 

smoothsort if one uses complete binary trees instead. The 

asymptotic behavior stays the same, and one can use binary 
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logarithms that are more comfortable to handle than 

those to the base (V5+1)/2. 

This way, an outline of smoothsort is as follows: 

In the first, the forward pass, a forest of complete 

heaps with the root being the last element of the array 

portion considered is constructed such that each tree 

has maximal size with respect to the remainder of the 

sequence. The roots of the heaps are sorted in ascendi ng 

order. The second, the backward pass, consists of a 

repetition of the two operations: Remove the root of the 

respective last tree, and rebuild the structure. 

Algorithm: Smoothsort 

Input: Array A[1 • • n] of elements 

Output: A, sorted into nondecreasing order 

Method: We make use of Aho/Hopcroft/Ullman's procedure 

HEAPIFY [1] that makes a new heap out of two heaps of 

equal size and a new root. In addition, we use 

proc MAKEHEAP(l,r: int): 

for i:=l to r do HEAPIFY(l,i) 

corp 

that makes A[l •• r] into a heap with root r. 

We define a Eo~t=s~r!e~ !oEe~t_o! £e~p~ to be an ordered 

forest of heaps of decreasing size (the last two heaps 

may have equal size) such that the respective roots form 

a nondecreasing sequence. 

RESTRUCT(r) basically transforms a root-sorted forest of 
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r-1 heaps and an additional heap with size (heaPr) 

S size(heaPr_1) into a root-sorted forest of r heaps. 

It is described in more detail later. 

With these procedures, the algorithm is as follows. 

begin 

array R[1 •• rlog(n+1)1] of int; {indices of the heap 

roots in the current 

forest} 

m:= 0; ' {A[1 •• m] currently under consideration} 

r:= 0; ' {current number of heaps over A[1 •• m]} 

while m < n 

do 

' {invariant 1: A[1 •• m] is a root-sorted 

forest of r heaps} 

k:= llog(n-m+1)J; '{k-1 is height of next tree} 

MAKEHEAP(m+1, m+2k-1); 

m: = m+2k-1; 

r:= r+1; 

R[r]:= m; 

RESTRUCT(r) 

od; . {m = n} 

while m > 1 . {invariant 2: inv.1 & A[m+1 •• n] contains 

the n-m biggest elements of A in 

ascending order} 
do 

size:= R[r] R[r-1]; , {size of last heap} 

if size = 1 ~ r:= r-1 

o size > 1 ~ . {split last heap} 

R[r+1]:= R[r] - 1; 

R[r]:= R[r+1] - (size-1) /2; 

r:= r+1; 



od 

end 

fi; 

m:= m-1 
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RESTRUCT (r-1) ; 

RESTRUCT (r) 

We still have to describe RESTRUCT. 

RESTRUCT(r) takes ROOT, the root of the last heap, and 

swaps it with its left root neighbor as long as the left 

neighbor of ROOT is bigger than the top three elements 

of ROOT's current tree. Then ROOT is sifted down into 

its current tree to restore the heap property. 

proc RESTRUCT(r: int): 

r':= r; 

while r' > 1 cand 

do 

A[R[r'-l]] > max of A[R[r']] and its current 

two children (if they exist) 

swap(A[R[r'-l]], A[R[r']]); 

r':= r l -1 

if r' = 1 ~ HEAPIFY(R[r'], 1) 

o r' > 1 ~ HEAPIFY(R[r'], R[r'-l]+l) 

fi 
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2. Simple running time results 

Lemma 1: The forward pass is of time complexity O(n). 

Proof: We have to check the two procedures MAKE HEAP and 

RESTRUCT. 

MAKEHEAP(l,r) is a parameterized version of BUILDHEAP 

in [1] and thus is known to make A[l •• r] into a heap in 

linear time. Since the sum of the sizes of all heaps 

constructed is n, all calls to MAKE HEAP take total time 

o (n) • 

RESTRUCT is called once for every new heap constructed, 

i.e., as is easily seen, at most rlog(n+1)1 times. 

Consider one call to RESTRUCT: 

The loop can be executed at most O(logn) times (R[r] moves 

all the way to the leftmost tree), and HEAPIFY(i,j) is 

known from [1] to need time O(logli-jl) ~ O(logn). 

Hence the total time for RESTRUCTuring in pass one is 

o «logn) 2) • 

Everything else in pass one takes constant time per 

loop iteration. Thus 

time for pass one 

= O(n + (logn)2 + clogn) = O(n). c 

Lemma 2: Smoothsort is of order O(n) for sequences that 

are initially sorted. 

Proof: The forward pass is handled by lemma 1. 

Not any structure rebuilding is necessary in the backward 

pass, i.e., per iterative step, the loop in RESTRUCT is 

never executed, and HEAPIFY is not called recursively. c 
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Lemma 3: Smoothsort always runs in time O(nlogn). 

Proof: By lemma 1 it suffices to consider the backward 

pass. From the proof of lemma 1 we know that one execution 

of RESTRUCT takes time O(logn). Since RESTRUCT is executed 

not more than n times (in more than half of the cases, 

the size of the last heap is 1), a total time of O(nlogn) 

results. 0 

3. Slow removal of inversions 

It is clear that if given an input sequence with the 

(2i-1)st and the 2i-th elements interchanged, i = 1, 

.• , Ln/2J, i.e. a permutation with Ln/2J inversions, 

smoothsort cannot do better than using one swap each to 

remove one inversion. Can we force smoothsort to act 

likewise in nontrivial cases? A first answer gives the 

following theorem. 

Theorem 1: An otherwise perfectly sorted sequence with 

a single interchange of two elements of logarithmic 

distance may force smoothsort to use one swap per inversion. 

Proof: Suppose w.l.o.g. that n = 2k_1 for a positive k. 

Exchange s, the rightmost leaf of the left subtree in 

the perfectly sorted heap of size n with b,the leftmost 

leaf in the right subtree, as shown in figure 1. 

figure 1 
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Notice b is smallest in T2 , and precisely those elements 

on the path from s to r 1 are greater than s in T1• Thus, 

T1 having a height of k-2, sand b are distance k-1 

= O(logn) apart, and their interchange is responsible 

for a total of 2k-3 inversions. 

The given algorithm now works as follows: 

In pass one, b moves up to r 1 's place in k-2 swaps. 

In pass two, upon uncovering s, schanges its place with 

b, and subsequently sinks down to its correct position 

in k-2 swaps. Thus 2k-3 swaps are performed. c 

Of course, this behavior is not crucial in such a small 

example since the overall running time stays O(n). How­

ever, we shall see in the next section that much larger 

examples exhibiting that same behavior can be constructed. 

4. The central example 

In this section, we show that smoothsort does not achieve 

running time O(n(1 + log(F/n))). More precisely, we show 

that there are input sequences with only O(nlogn) inversions 

which force smoothsort to use time n(nlogn). 

Theorem 2: Sorting a permutation with O(nlogn) inversions 

may require 0(nlogn) swaps. 

Proof: Consider the following initial permutation of 

[1 .• nl in an array of length n: 

Let p be the number of trees in the forest induced by n. 

Let the trees successively have the roots n-p+1, n-p+2, 

••• , n-1, n. The descending sequence n-p, n-p-1, ••• , 1 

is distributed as follows: 
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Fill the last tree by placing n-p at the root of its 

right subtree, n-p-1 at the root of its left subtree. 

Fill the right, then the left subtree recursively. 

Continue in the same manner with the remainig trees 

of increasing size. 

Example: n = 28, P = 4 

~ 25~ 
13 14 

/"-. /'-..... 
5 6 11 12 
/\ /\ /\ /'\. 

1 2 3 4 7 8 9 10 

26 
/ ............ 

19 20 
/'\. /'\. 

15 16 17 18 

27 
I'\. 

21 22 

28 
/'\. 

23 24 

Let us count the number of inversions occurring in such 

a permutation. For simplicity, consider just the case 

of a single tree, i.e. n = 2k_1 for a positive k. 

Obviously, this is no relevant restriction. If k = 1 or 

k = 2, there is no inversion at all. Otherwise, there is 

one inversion between the root of the left subtree and 

each non-root element in the right subtree, in addition 

to the inversions within the subtrees. 

This gives rise to the following recurrence equation: 

inv1 = inv2 = 0, 

invk = 2.inv
k

_
1 + 2k- 1 - 2 

Solving this equation yields 

invk = (k-3) .2k- 1 + 2 

Since k = rlog (n+1) 1, this means that 

invk = O(nlogn). 
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How does smoothsort perform on such a permutation? 

The first pass does not rearrange anything. For the 

second pass, we need a few definitions. 

If we have removed m elements, we call the forest corres-

ponding to n-m the .£u!r~n! !oEe~t.!. The elements at roots 

of the heaps in the current forest are called yi~i£l~, 

all other elements of the current forest covered. - - --
As can be seen by induction on the number of elements 

removed, the following holds true for our permutation: 

At any time during the second pass, all visible elements 

are greater than the covered ones, and the two elements 

uncovered next are following in size. 

Thus, upon uncovering two elements, these two have to 

migrate down to the roots of the two largest trees. 

Consider anyone swap between roots of neighboring trees: 

Removed are the inversions between the greater of the 

two roots and all elements of the right tree, created 

anew are inversions between the smaller of the two roots 

and all non-root elements of the right tree. There are 

no other kinds of swaps, sinking down of an element 

within one heap never occurs. Thus, the total number of 

inversions is reduced by exactly one per swap. 

Hence the total number of swaps performed by smoothsort 

equals the total number of inversions in the initial 

permutation. c 
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5. Conclusion 

We have seen that smoothsort's running time both for 

totally sorted sequences and for random sequences is 

optimal to within a constant factor. However, the 

transition in-between is not very smooth. Namely, we 

notice from theorem 2 that, for presorted sequences, 

it does not outperform Mehlhorn's algorithm [5) which 

has a running time of D(n(l + log(F/n») where F is 

the number of inversions. Still, it should be noted 

that this comparison is not necessarily fair since the 

latter algorithm does not sort in situ. 
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