
Smoothsort's Behavior on

Presorted Sequences

by

Stefan Hertel

Fachbereich 10

Universitat des Saarlandes

6600 Saarbrlicken

West Germany

A 82/11

July 1982

Abstract: In [5], Mehlhorn presented an algorithm for

sorting nearly sorted sequences of length n in time

0(n(1+log(F/n») where F is the number of initial inver­

sions. More recently, Dijkstra[3] presented a new algorithm

for sorting in situ. Without giving much evidence of it,

he claims that his algorithm works well on nearly sorted

sequences. In this note we show that smoothsort compares

unfavorably to Mehlhorn's algorithm. We present a sequence

of length n with O(nlogn) inversions which forces smooth­

sort to use time Q(nlogn), contrasting to the time

o (nloglogn) Mehlhorn's algorithm would need.

- 1

O. Introduction

Sorting is a task in the very heart of computer science,

and efficient algorithms for it were developed early.

Several of them achieve the O(nlogn) lower bound for sor­

ting n elements by comparison that can be found in Knuth[4].

In many applications, however, the lists to be sorted do

not consist of randomly distributed elements, they are

already partially sorted. Most classic O(nlogn) algorithms

- most notably mergesort and heapsort (see [4]) - do not

take the presortedness of their inputs into account

(cmp. [2]). Therefore, in recent years, the interest in

sorting focused on algorithms that exploit the degree of

sortedness of the respective input.

No generally accepted measure of sortedness of a list has

evolved so far. Cook and Kim[2] use the minimum number of

elements after the removal of which the remaining portion

of the list is sorted - on this basis, they compared five

well-known sorting algorithms experimentally. Mehlhorn[5],

on the other hand, uses F, the number of inversions, i.e.

the number of pairs of elements such that the bigger ele­

ment precedes the smaller one in the sequence. He deve­

loped a new algorithm based on sorting by insertion and

analysed its running time to be O(n(1 + log(F/n»).

Without indicating his measure of sortedness, Dijkstra[3]

now presented a new algorithm for sorting in situ. He

claims that it is well-behaved: "I wanted to design a

sorting algorithm of order n in the best case, of order

- 2 -

nlogn in the worst case, and with a smooth transition

between the two (hence its name)." However., not much

evidence is given to support that claim.

We use the number-of-inversions-measure to show that

smoothsort compares unfavorably to Mehlhorn's algorithm.

In particular, a sequence of length n with O(nlogn)

inversions is presented which forces smoothsort to use

time n (nlogn) where Mehlhorn's algorithm would need only

o (nloglogn) time.

The following section gives a high-level presentation of

smoothsort. In section 2, then, some simple results

concerning smoothsort's running time are proved. In

section 3, we exhibit a small example where inversions

caused by a single exchange of two elements are only

removed one by one. The same one-by-one removal of in­

versions is the key observation that proves our main

result in section 4.

1. The algorithm

Smoothsort is a two-pass algorithm for sorting an array

A[l • • n] in situ. In the original paper, a forest of

recursively defined unbalanced binary trees is construc­

ted - the sizes of the trees are given by the so-called

Leonardo numbers which stand in a simple relation with

Fibonacci numbers.

It is much easier, however, to describe and analyse

smoothsort if one uses complete binary trees instead. The

asymptotic behavior stays the same, and one can use binary

- 3 -

logarithms that are more comfortable to handle than

those to the base (V5+1)/2.

This way, an outline of smoothsort is as follows:

In the first, the forward pass, a forest of complete

heaps with the root being the last element of the array

portion considered is constructed such that each tree

has maximal size with respect to the remainder of the

sequence. The roots of the heaps are sorted in ascendi ng

order. The second, the backward pass, consists of a

repetition of the two operations: Remove the root of the

respective last tree, and rebuild the structure.

Algorithm: Smoothsort

Input: Array A[1 • • n] of elements

Output: A, sorted into nondecreasing order

Method: We make use of Aho/Hopcroft/Ullman's procedure

HEAPIFY [1] that makes a new heap out of two heaps of

equal size and a new root. In addition, we use

proc MAKEHEAP(l,r: int):

for i:=l to r do HEAPIFY(l,i)

corp

that makes A[l •• r] into a heap with root r.

We define a Eo~t=s~r!e~ !oEe~t_o! £e~p~ to be an ordered

forest of heaps of decreasing size (the last two heaps

may have equal size) such that the respective roots form

a nondecreasing sequence.

RESTRUCT(r) basically transforms a root-sorted forest of

- 4 -

r-1 heaps and an additional heap with size (heaPr)

S size(heaPr_1) into a root-sorted forest of r heaps.

It is described in more detail later.

With these procedures, the algorithm is as follows.

begin

array R[1 •• rlog(n+1)1] of int; {indices of the heap

roots in the current

forest}

m:= 0; ' {A[1 •• m] currently under consideration}

r:= 0; ' {current number of heaps over A[1 •• m]}

while m < n

do

' {invariant 1: A[1 •• m] is a root-sorted

forest of r heaps}

k:= llog(n-m+1)J; '{k-1 is height of next tree}

MAKEHEAP(m+1, m+2k-1);

m: = m+2k-1;

r:= r+1;

R[r]:= m;

RESTRUCT(r)

od; . {m = n}

while m > 1 . {invariant 2: inv.1 & A[m+1 •• n] contains

the n-m biggest elements of A in

ascending order}
do

size:= R[r] R[r-1]; , {size of last heap}

if size = 1 ~ r:= r-1

o size > 1 ~ . {split last heap}

R[r+1]:= R[r] - 1;

R[r]:= R[r+1] - (size-1) /2;

r:= r+1;

od

end

fi;

m:= m-1

- 5 -

RESTRUCT (r-1) ;

RESTRUCT (r)

We still have to describe RESTRUCT.

RESTRUCT(r) takes ROOT, the root of the last heap, and

swaps it with its left root neighbor as long as the left

neighbor of ROOT is bigger than the top three elements

of ROOT's current tree. Then ROOT is sifted down into

its current tree to restore the heap property.

proc RESTRUCT(r: int):

r':= r;

while r' > 1 cand

do

A[R[r'-l]] > max of A[R[r']] and its current

two children (if they exist)

swap(A[R[r'-l]], A[R[r']]);

r':= r l -1

if r' = 1 ~ HEAPIFY(R[r'], 1)

o r' > 1 ~ HEAPIFY(R[r'], R[r'-l]+l)

fi

- 6 -

2. Simple running time results

Lemma 1: The forward pass is of time complexity O(n).

Proof: We have to check the two procedures MAKE HEAP and

RESTRUCT.

MAKEHEAP(l,r) is a parameterized version of BUILDHEAP

in [1] and thus is known to make A[l •• r] into a heap in

linear time. Since the sum of the sizes of all heaps

constructed is n, all calls to MAKE HEAP take total time

o (n) •

RESTRUCT is called once for every new heap constructed,

i.e., as is easily seen, at most rlog(n+1)1 times.

Consider one call to RESTRUCT:

The loop can be executed at most O(logn) times (R[r] moves

all the way to the leftmost tree), and HEAPIFY(i,j) is

known from [1] to need time O(logli-jl) ~ O(logn).

Hence the total time for RESTRUCTuring in pass one is

o «logn) 2) •

Everything else in pass one takes constant time per

loop iteration. Thus

time for pass one

= O(n + (logn)2 + clogn) = O(n). c

Lemma 2: Smoothsort is of order O(n) for sequences that

are initially sorted.

Proof: The forward pass is handled by lemma 1.

Not any structure rebuilding is necessary in the backward

pass, i.e., per iterative step, the loop in RESTRUCT is

never executed, and HEAPIFY is not called recursively. c

- 7 -

Lemma 3: Smoothsort always runs in time O(nlogn).

Proof: By lemma 1 it suffices to consider the backward

pass. From the proof of lemma 1 we know that one execution

of RESTRUCT takes time O(logn). Since RESTRUCT is executed

not more than n times (in more than half of the cases,

the size of the last heap is 1), a total time of O(nlogn)

results. 0

3. Slow removal of inversions

It is clear that if given an input sequence with the

(2i-1)st and the 2i-th elements interchanged, i = 1,

.• , Ln/2J, i.e. a permutation with Ln/2J inversions,

smoothsort cannot do better than using one swap each to

remove one inversion. Can we force smoothsort to act

likewise in nontrivial cases? A first answer gives the

following theorem.

Theorem 1: An otherwise perfectly sorted sequence with

a single interchange of two elements of logarithmic

distance may force smoothsort to use one swap per inversion.

Proof: Suppose w.l.o.g. that n = 2k_1 for a positive k.

Exchange s, the rightmost leaf of the left subtree in

the perfectly sorted heap of size n with b,the leftmost

leaf in the right subtree, as shown in figure 1.

figure 1

- 8 -

Notice b is smallest in T2 , and precisely those elements

on the path from s to r 1 are greater than s in T1• Thus,

T1 having a height of k-2, sand b are distance k-1

= O(logn) apart, and their interchange is responsible

for a total of 2k-3 inversions.

The given algorithm now works as follows:

In pass one, b moves up to r 1 's place in k-2 swaps.

In pass two, upon uncovering s, schanges its place with

b, and subsequently sinks down to its correct position

in k-2 swaps. Thus 2k-3 swaps are performed. c

Of course, this behavior is not crucial in such a small

example since the overall running time stays O(n). How­

ever, we shall see in the next section that much larger

examples exhibiting that same behavior can be constructed.

4. The central example

In this section, we show that smoothsort does not achieve

running time O(n(1 + log(F/n))). More precisely, we show

that there are input sequences with only O(nlogn) inversions

which force smoothsort to use time n(nlogn).

Theorem 2: Sorting a permutation with O(nlogn) inversions

may require 0(nlogn) swaps.

Proof: Consider the following initial permutation of

[1 .• nl in an array of length n:

Let p be the number of trees in the forest induced by n.

Let the trees successively have the roots n-p+1, n-p+2,

••• , n-1, n. The descending sequence n-p, n-p-1, ••• , 1

is distributed as follows:

- 9 -

Fill the last tree by placing n-p at the root of its

right subtree, n-p-1 at the root of its left subtree.

Fill the right, then the left subtree recursively.

Continue in the same manner with the remainig trees

of increasing size.

Example: n = 28, P = 4

~ 25~
13 14

/"-. /'-.....
5 6 11 12
/\ /\ /\ /'\.

1 2 3 4 7 8 9 10

26
/

19 20
/'\. /'\.

15 16 17 18

27
I'\.

21 22

28
/'\.

23 24

Let us count the number of inversions occurring in such

a permutation. For simplicity, consider just the case

of a single tree, i.e. n = 2k_1 for a positive k.

Obviously, this is no relevant restriction. If k = 1 or

k = 2, there is no inversion at all. Otherwise, there is

one inversion between the root of the left subtree and

each non-root element in the right subtree, in addition

to the inversions within the subtrees.

This gives rise to the following recurrence equation:

inv1 = inv2 = 0,

invk = 2.inv
k

_
1 + 2k- 1 - 2

Solving this equation yields

invk = (k-3) .2k- 1 + 2

Since k = rlog (n+1) 1, this means that

invk = O(nlogn).

- 10 -

How does smoothsort perform on such a permutation?

The first pass does not rearrange anything. For the

second pass, we need a few definitions.

If we have removed m elements, we call the forest corres-

ponding to n-m the .£u!r~n! !oEe~t.!. The elements at roots

of the heaps in the current forest are called yi~i£l~,

all other elements of the current forest covered. - - --
As can be seen by induction on the number of elements

removed, the following holds true for our permutation:

At any time during the second pass, all visible elements

are greater than the covered ones, and the two elements

uncovered next are following in size.

Thus, upon uncovering two elements, these two have to

migrate down to the roots of the two largest trees.

Consider anyone swap between roots of neighboring trees:

Removed are the inversions between the greater of the

two roots and all elements of the right tree, created

anew are inversions between the smaller of the two roots

and all non-root elements of the right tree. There are

no other kinds of swaps, sinking down of an element

within one heap never occurs. Thus, the total number of

inversions is reduced by exactly one per swap.

Hence the total number of swaps performed by smoothsort

equals the total number of inversions in the initial

permutation. c

- 11 -

5. Conclusion

We have seen that smoothsort's running time both for

totally sorted sequences and for random sequences is

optimal to within a constant factor. However, the

transition in-between is not very smooth. Namely, we

notice from theorem 2 that, for presorted sequences,

it does not outperform Mehlhorn's algorithm [5) which

has a running time of D(n(l + log(F/n») where F is

the number of inversions. Still, it should be noted

that this comparison is not necessarily fair since the

latter algorithm does not sort in situ.

- 12 -

References:

[1] A.V.Aho/J.E.Hopcroft/J.D.Ullman, "Heapsort - an

o (nlogn) comparison sort", in "The Design and

Analysis of Computer Algorithms", Addison-Wesley

1974, pp. 87-92

[2] C.R.Cook/D.J.Kim, "Best sorting algorithm for

nearly sorted lists", CACM 23, 11 (Nov. 1980),

620-624

[3] E.W.Dijkstra, "Smoothsort, an alternative for

sorting in situ", Sc. of Comp. Prog. 1, 3 (May

1982), pp. 223-233

[4] D.E.Knuth, "The Art of Computer Programming",

vol. 3, Sorting and Searching, Addison-Wesley 1973

[5] K.Mehlhorn, "Sorting presorted files", in Th. CSc.

4th GI Conf., LNCS 67, Springer-Verlag 1979,

pp. 199-212

	fb1982-11_0001_f
	fb1982-11_0002_f
	fb1982-11_0003_f
	fb1982-11_0004_f
	fb1982-11_0005_f
	fb1982-11_0006_f
	fb1982-11_0007_f
	fb1982-11_0008_f
	fb1982-11_0009_f
	fb1982-11_0010_f
	fb1982-11_0011_f
	fb1982-11_0012_f
	fb1982-11_0013_f

