Lower Bounds on the Efficiency of
Transforming Static Data Structures
into dynamic Structures
by
Kurt Mchlhorn
A 80/05

April 1980
revised, November 1980

and February 1981

Fachbereich 1o -

Angewandte Mathematik
und Informatik

Universitiit des Saarlandes
6boo Saarbricken

West Germany

Abstract: In this paper we study the e¢fficiency of
general methods for converting static data structures

to dynamic structures. The cfficiency is measured

in terms of two quantities: query time and update time
penalty factors. We provide lower bounds on the trade-off
between these quantitics and show certain known transforms

to be essentially optimal.

I. Introduction

Recently several efforts were made to develop general methods
for turning static solutions (only searches are supported) to
problems into dynamic ones (insertions and (maybe deletions)
are also supported). Bentley [1] and later Saxe and Bentley [4]
made the important observation that a general approach to
"dynamization" is especially relevant to the class of so-
called decomposable searching problems. A searching problem
can be viewed as a problem in which one asks a question about
an arbitrary object x of type T1 and a {(static or dynamic)

set of objects (from now on called points) of type T, with

an answer of type T3. We can denote such a query as
Q : Ty x Z - T

For instance, in a Member query, T1 and T2 are identical and

T3 is boolean.

T
Definition 1.1: A searching problem § ; T, * 2 © T, is
called decomposable if there exists a '"'trivially'" computable
operator O on the elements of T%’ satisfying
T

VALBE 2% wxerT Q(x,AUB) = o(Q(x,A),Q(x,B))

1
For instance, a Member query is decomposable (o = or).
Saxe/Bentley [4] and later v. Leceuwen/¥Wood [2], Mehlhorn/
Overmars [2], Overmars/v.Leeuwen [3], Willard [6] presented
several general methods for dynamizing static data structures.

The basic principle is the following

Suppose we have a static data structure for some searching
problem which supports queries on point sets of n elements

in time QS(n) and which can be constructed for a point set of n
elements in time Ps(n). We will assume (as is customary in the

field) that functions QS(n) and PS(n)/n are nondecreasing.

Transformations from static to dynamic data structures adhere
to the following principles (cf. [4], p. 324 - 328, for a

very detailed discussion):

a) A set S of n elements is represented Qy static structures

TT""’Tr for sets 51""’Sr where S = 'UT S
1:

b) A search (query) about set S is answered by searching

sets 81""’Sr and then putting the individual answers

together to a final answer.

c) A new element x is inserted by creating a static structure
T for singleton set {x} and then (maybe) taking some existing

structures T. ,T. ,...,T. for sets S. ,...,S. and building
11 12 lS 1.] lS

new structures for a repartioning of those sets.
Remark: Note that we do not require the sets S1""’Sr
in a) to be pairwise disjoint, as Bentley and Saxe did in

their original definition of decomposable searching problems.
Of course, this greater flexibility in set representation

will restrict the class of decomposable searching problems,

e. g. the membership problem is decomposable in this restricted
sense, however, the problem count (number of appearances

in a multi-set) is not. On the other hand, this greater
flexibility might lead to more efficient transforms for

the restricted class of problems. One of the outcomes of

this paper is that this is not the case.

Different transformations arc obtained by different

strategies for dividing a large set into pieces.

The performance of a transformation is measured by two
quantities: the query penalty factor k(n) and the update

penalty factor h(n).

Let r, be the number of blocks in the representation of
set S after the i-th insertion, and let my be the total
size of the sets handled after the i-th insertion (for a

precise definition cf. section II). Then

k(n) = max{ri; 1 <i < n}
n
h(n) = £ mi/n

1=1

The names for quantities k(n) and h(n) are justified
by the observation that k(n)-QS(n) bounds the time for
a query when at most n points are in the structure and
h(n)-PS(n] bounds the cost for inserting the first n
points. (Note that this cost is

n

E Ps(mi) =Xm. Po(m,)/m.

1 > T, gl ™y Pg(n)/n = h(n)+Pg(n).)

< X :
o ml
5

i
The pair (k(n), h(n)) is called the characteristic of

the transformation.

Transformations with various characteristics were presented
in Saxe/Bentley [4] and Overmars/v. Leeuwen [3], e. g.
the binary transform with characteristic (log n, log n)
the k-binomial transform with characteristic ((k!n)l/k,k)...

Saxe/Bentley [4] also began a study of lower bounds on

the efficiency of transformations, i. e. a study of the
trade-off between update and query penalty factor. More
specifically, for a restricted class of transformations
(called arboreal strategies; a definition can be found in
section IT bhelow) they prove lower bounds on update
penalty factor as a function of query penalty factor.

They also pose the problcm to generalize their lower bounds
to a peneral class of transiormations. We answer this

challenge in this paper and show:

Theorem: There is a constant ¢ > O such that for any

transformation with characteristic (k(n), h(n))

h(n) > c-ﬁ(n) for all n
where
" log n / loglk(n)/log n]l 1if k(n) > 2log n
h(n) =
k(n) n'/K(M if k(n) < 2log n

This theorem implies that certain known transformations
such as the binary transform and the k-binomial transform
are optimal up to a constant factor. More generally,

this thecorem has to be seen in context with the result

of Mehlhorn/Overmars [2], in which the corresponding

upper bound is proven.

Theorem (Mehlhorn/Overmars [2]): Let k(n) be a function

such that k(n)/log n is either increasing or decreasing.
Then there is a transform with characteristic (0(k(n)),
O(h(n))), where h is defined as above. Moreover, this

transform can be obtained in a systcmatic way.

Together, the theorems characterize the trade-off between

update- and query penalty factor up to a constant factor.
More specifically, table 1 describes some sample

query penalty update pcnalty
1 2(n)
K q(kn'/Ky
log log n Q[(log log n)-n1/10g HoE 4
log n 2(log n)
1/k
(k)
n Qrn

Table 1: Sample applications of main theorem

applications of the main theorem. Onc remark is in order
about the abundance of "big-omegas'" in table 1. The proof
of the main thcorem shows that ¢ can be taken to be 1/512.
However, working through the proof for any particular
{unction f(n) gives much smaller values of ¢ (cf. proof
of corollary 3). Also for the sample applications
transformations with characteristic (k(n), O(ﬁ(n)) are

known.

We should also mention that the Mehlhorn/Overmars
construction yieclds arborcal transformations; thus the
two theorems above imply that for every transformation
with characteristic (k(n), h(n)) there is an arborcal

transformation with characteristic (O(k(n), O(h(n)))

(provided that k(n) is sufficiently smooth). This shows
that arboreal transformations is all one needs to consider.

Finally, we should mention that our lower bounds for
general transformations are slightly weaker (by a constant
factor of 4) than the results of Bentley and Saxe for
arboreal transformations. We believe that this loss of

a factor of 4 could be avoided by a more careful analysis.

I11. Efficiency of Transferms

In section I we outlined the general principles
underlying all (existing) transformations from static
to dynamic structures. We will repeat the principles
in more detail here in order to derive from them a

model of computation.

a) a set S = {X1""’Xn} of n elements is represented
by (static structures for) sets 51""’Sr where

T
5= U5 .
i=1

b) a search (query) about set S is answered by searching
sets S1,...,ST and then putting the individual answers

together to a final answer.

¢) a new element X1+ is inserted by constructing (a static

ks

structure for) singleton set {x__,
d) at some points the transformation may want to reshape
the current representation of the set. It has two means for
doing so:

d1) It can destroy one of the existing structures, if
the remaining sets suffice to represent set S.

d2) It can take some of the existing sets, say TI""’Tk’
and repartition them; more precisely, 1t can construct new

sets 51""’Sh’ where S1 u ... U Sh = T1 u ... U Tk'

Also it may want to delete some of the sets Tiseees Ty

say T.l ,...,Ti , after adding the new sets.

1 1
With the identification i X;, a transformation
handles sets of integers using the following instruction
set. We use S, Sy, Sy, ..., T, TT’ TZ’ ... to denote sets
of integers.

I) (insertion): construct {il}, with meaning: if the class
{Sj; j € I} of sets exists before execution then the

elass {Sj; j €I} U {{i}} exists afterwards.

1
IT) (reshaping): construct Sqs--+,S5;, from TyseeenTy

delete T, ,...,T; ,with meaning: if the class {Sj; j € I}

1 1
exists before execution and T1,...,'i“k € {Sj; j € 1} and
1 1
S, U ... uS T, U ... UT; then the class
1 h — 1 k

1 1
({Sj; j€ I u s, ...,5) - {Ti1""’Ti1} exists

after execution.

ITI) (reshaping): delete T with meaning: if the class
{Sj; j € I} exists before execution, then the class

{Sj; j € I} - {T} exists afterwards.

A transformation is an infinite straightline program
over the above instruction set satisfying the additional
restriction that the integers 1, 2, 3, ... are inserted

in order. This leads to the following definition.

Definition: Let n be an integer. A program P = 11,...,Im

of m instructions of the form above is admissible for n if
a) for every i; 1 € 1 < n; there is gxactly one dnstruction
Construct {i}

b) if I_ = Construct {i} and I, = Construct {j} and

i < j then s < t, i. e. elements are inserted in order
c) if the class'{Si; i € I} of sets exists after

execution of P then US, = [lsmeman =

Remark: If P is admissible for n then any prefix of P
is admissible for some i < n.
Definition: a) An infinite program P = I

1° IZ’ «.. 15

admissible if for every n there is a prefix L of P which

1s admissible for n.

b) a transformation is an infinite admissible

program.

Example: The following program is 3 admissible; sets
{2,3}, {1,2} exist after execution

Construct {13

Construct {2} ;

Construct {3};

Construct {1,2} from {1}, {2}, delete {1};

Construct {2,3} from {2}, {3}, delcte {2};

delete {3}

Bentley and Saxe ([4]) considered a subclass of trans-

formations, called arboreal transformations.

Definition: A transformation P = I1, IZ, is an

arborcal transformation, if

a) there are no instructions of type IIT and each
instruction of type II is of the form
construct T1 u ... u Fk from li""’qk’ delete T1""’Tk'

In particular, this implies that the sets which exist at
any onec time during the execution of the program are pairwise
di’s foint,

b) cach set constructed is a contiguous subset (interval)
of N

c¢) unions are executed as early as possible, 1. e. in an
instruction

construct T1 u ... U Tk from T1""’Tk’ delete TT""Tk

at least one T, is a singleton set, say {j}, and that singleton
set was built by the immediately prcceding instruction.

Next we define the cost and the width of a program P.

Definition: Let P = RS be a finite program.

a) The cost c(P) is defined as

c(P) = _
1

™M=

C(Ii)
where c(I) is zero for an instruction of type I or III,
h

and c(I) = I |S.| +
=t 7]

M™M=

|le for an instruction of type II.
1

b) The width W of P after instruction It of P is the number
of sets which exist after execution of instruction It' The

width w(P) is defined as

w(P) = max{w, ;1 <t <m}.

The width of program P is the maximal number of sets which
exist at any point during the execution of P. w(P) corresponds
to the query time penalty factor. The cost of an instruction
is defined as the cost of reading sets T, and constructing

sets Sj’ 1 <i<k, 1 <j<h. Thus ¢(P)/n corresponds to

the update time penalty factor, where P is admissible for n.

At this point we are able to state our main theorem : A tradeoff
between cost and width of admissible programs.

Theorem 1: There is a function Lk(n) (of two arguments k and n)

such that for all k,n

1) if P is admissible for n and w(P) = k then c(P) > %-Lk(n)
h+1+k

2) if n = (K) for some h then

h+k+2, _ k h+k+2

Ly(m) = h+k+1(k+1) =TT RekeT DM

3) Lk(n)/n is non-decreasing in n.

A proof of theorem 1 can be found in section III.
Corollaries 1 to 3 below describe the content of
theorem 1 more explicitely. Theorem 1 extends a
similar result by Bentley and Saxe. They showed that
every arboreal program P which is admissible for n
and has w(P) = k must have c(P) > Ly (n), where

. K
L) = —— +(h+1)
K K+1 !

for n = (K). Note that Lk(n) above and their Lk(n)

is essentially the same. The factor 2/4 in our bounds
comes from two places. Firstly, we defined cost
differently; the cost of instruction construct

T1 u ... u Tk from TT""’Tk delete T1""’Tk is

Z-ZITiI in our case and only ZITiI in their case. This

accounts for the factor of 2. Secondly, in our lower
bound proof we loose a factor of 4 in the proof of
lemma 1. We believe that more careful proofs of lemmas

1 to 3 will avoid that loss.

Corollary 1: There is a constant ¢ > O (¢ = 1/512 will do)

such that for every transformation P, Pn the shortest
prefix of P including the instruction construct {n},

k(n)
h(n) = c(Pn)/n the normalised cost (update penalty

Il

w(Pn] the width (query penalty factor) of P,
factor)

c-a(n)

h(n)

[v

where log n/loglk(n)/log n] if k(n) > 2log n

h(n)
k(n) n1/k(n) if k(n) < 2log n

Proof: Consider any n. Let P_ be the shortest prefix of P

including the statement construct {n}. Then P_ is admissible

for n. Let k = k(n) = w(P_) be the width of program P
n n

and let neh(n) = C(Pn} be the cost of program Pn' Let h

be such that n' = (h+;+k) sl (h+i+k).
Then h(n) = C(Pn)/n
> Z-Lk(n)/(dn) part 1) of theorem 1
= 2-Lk(n')/(4n') part 3) of theorem 1
> 2. (k/(k+1))* ((h+k+2)/ (h+k+1))*h°n'/(4n')

by part 2) of theorem 1

> h/4 since k > 1

It remains to derive lower bounds for h in terms of n

and k = k(n). We distinguish three cases according to the
relative size of k and log n. In the following derivations
we will make frequent use of the inequality m! > (m/e)m,

e = 2.71..., which follows immediately from Sterling's
formula.

Case 1: k = k(n) < (log n)/3. We will show h > h(n)/(2e)
for n > 64.

Assume first, that h < k + 2. Then

h+2+k

& i 3 % 2 22(k+2)

<n for n > 64 ,

a contradiction. Hence h > k+2 for n > 64. Assume next, that

h < h(n)/(2e). Then

k
h+2+k 2h (2h) 2eh. k
. 33 L) a8 G

(Lﬁﬁl)k =
h

n , a contradiction. This shows

| A

(n)/(2e) for n > 64 1in case i

Case 2: (log n)/3 < k = k(n) < 2log n. Then h(n) < 16log n.

It therefore suffices to show h > (log n)/8
otherwise. Then h < (log n)/8 - 2 and hence

o & (h+£+k) < ((log n%gS + k)
< ({log n)/8 + 2log n) it

— Zlog n

- 2. Assume

k < Zlog n

((2+1/8)10g n) 2 [(2+1/8)10g n](lOgn)/8

(1/8)-log n [(log n)/81]!

< [e(2+1/8)log n](103 n)/8
(log n)/8

< n

(log(17e))/8
< n

a contradiction. This finishes the proof in case 2.

Case 3: k = k(n) > Z2log n. We will show h > ﬁ(n)/6 - 2.

Assume otherwise. Then h+2 < h(n)/6 and hence

h+2=#]c 2k
) 2 G

since h+2 < h(n)/6

< (log n)/6 < k

Let s = k(n)/log n. Then ﬁ(n)

b) /hiln)

< G < (Gek(n)/h(n))

h(n)/6

log n/log s and hence

< 6e(s-log n)/[log n/log s]
= 17 &8~leg 5
< 56 siimge & > 2

Thus n < (6e k(n)/ﬂ(n))h(n)/G

P S6 log n/(6log s) _

This finishes the proof in case 3.

n, a contradiction.

In either case we have shown h > c¢'-h(n)-2 for some

constant ¢! > 0. This proves the corollary.

11

»

We close this section with some applications of our

results to known transformations.

a) The binary ?ransformation ([1,4]) represents a set
Sofn=2% aizl, a; € {0,1}, elements by a; sets of size

21 for i > 0. It achieves update and query penalty
factor O(log n).

Corollary 2: (Optimaly of the binary transform):

If P is any transformation with width (query penalty
factor) k(n) = 0(log n) then the normalized cost

(update penalty factor) h(n) = Q(log n).

Proof: It is simple to show that k(n) = O(log n)

implies ﬁ(n) = Q(log n) where ﬂ is defined as in
corolldry 1 o

Corollary 2 generalizes a result of Saxe/Bentley who

proved optimality in the class of arboreal transformations.

b) The k-binomial transformation ([4]) represents a
sct S of

.H, dy > dy_y > ... >dy >0, clements by
d

k sets of size (il), 1 =i £k, respectively. It has
query penalty factor k and update penalty factor

1/k

(kin) ¥ w fereInt K, where @ = 2.77wes

Corollary 3: (Optimality of the k-binomial transform):

Let P be any transformation with width k(n) < k. Then
the normalized cost h(n) of P satisfies h(n) >
(2/8) (k/(k+1)) (k1) /K ol/k LA

Proof: In order to get the large constant we need to

- o(n

take a closer look at the proof of corollary 1. It was
shown there that h(n) > (2/4) « (k/(k+1)) + h where h

is such that (h+ﬂ+k) <n < (h+§+k). It remains to show

1/k 1/k

that h > (kin) o(n). Assume otherwise. Then

12 -

there is some & > O such that for arbitrarily

large n h/(k!n)”k < 1-¢ and hence

- 17Kk
Gl]

. (h+2+k) ¥ . Ik+2+(1-¢) (k!n)
A T K1

[(kin) /KK

£ i = n, a contradiction o

Corollary 3 extends a result of Bentley/Saxe who

proved optimality in the class of arboreal transforms.

c) More generally, Mehlhorn/Overmars ([2]) describe
for every smooth function k(n) a transformation P
with width (query penalty factor) O(k(n)) and
normalized cost (update penalty factor) O(ﬂ(n)) where
ﬂ(n) is defined as in corollary 1. This shows that the
bound in corollary 1 and hence in theorem 1 is optimal

up ‘to consbant factors.

ITI. Proof of Theorem 1:

The proof of theorem 1 proceeds in several steps.

In section III.1 we introduce normal form programs

and show that in the transformation to normal form
programs the cfficiency does not seriously deteriorate.
In section III.2 we relate the cost and width of normal
form programs to properties of trees and binary trees.
Finally, in section III.3 we solve the problem in

terms of banaryv trees.

The ideas in section III.1 are original with the
author, section III.2 is similar, but more involved
than the corresponding claims in Bentley/Saxe and
section III.3 was essentially done in Bentley/Saxe.
We believe that our organisation of the material in

scction III.3 is simpler than theirs.

13 -

IIT.1 Standard Form Programs

The transformation to standard form programs is in
three steps via simple and simple, disjoint programs.
We first state the necessary definitions and lemmas and
then give the proofs of the lemmas.

Definition: A program is simple if

a) every instruction of type II is of the form

construct 51""’Sh from T1""’Tk’ delete T1""’Tk

b) in every instruction of type II either h = 1 or k = 1
c) instructions of type III are not used. o

Lemma 1: Let P be admissible for n. Then there is a simple
program P'" which is admissible for n such that c(P")

<4 « c(P) and w(P") < w(P).

Definition: A program P = 11,...,Im is gdisjoint if far

all t, 1 <t < my the sets which exist after execution

of I, are pairwise disjoint.

Lemma 2: Let P be a simple program which is admissible
for n. Then there is a program P' such that P' is simple,
disjoint, admissible for n and c(P') < c(P) and

w(P') < w(P).

Definition: A program P is in standard form, if it is

simple, disjoint and h = 1 in all instructions of type II.
Remark: Standard form programs are still more general

than arboreal programs. They satisfy condition a) of the
definition of arboreal transformation, but they do not
necessarily satisfy condition b) and c) of that definition.

Lemma 3: Let P be simple, disjoint and admissible for n.
Then there is a P'" such that P'" is in standard form, is
admissible for n and c(P") < c(P) and w(P") < w(P).

Lemma 4: Let P be admissible for n. Then there is P!
in standard form and admissible for n such that c(P')
< 4 « c(P) and w(P') < w(P).

Proof: immediately from lemmas 1 to 3. a)

It remains to prove lemmas 1 to 3.

Proof of lemma 1: Consider any instruction I, of type II
in P, say

construct 81”"’Sn from T1""’Tk delete Ti1""’Ti1'
We replace instruction It by the following two
instructions; here T = T1 U T2 U s U Tk and

{j1,...,jp} = L ama kB {i1""’il}'

Construct T from T1""’Tk’ delete T1""’Tk

construct 81,...,Sh, T.

yeesyl. from T, delete T.
J1 J

P

Let P' be the program obtained in this way. Then

c(P') <4 « c(P), w(P') < w(P) and P' is admissible

for n. P' satisfies condition a) and b) of the definition
of simplicity. This implies, that whencver a set is used
in dn dnstriction 6f type IT and IIT 4 s also deleted.

Hence a sét is msed at most ence 4s such an dinstruction.
We obtain P'" from P' as follows. Consider any instruction

I, of type III in P', say '"delete T'". Consider the

largest t' < t with: I is of type Il and constructs

t'
I (It' cannot be of type I because P is admissible). We
delete T from the set constructed by Lo and we delete
instruction It from P. Obviously c(P") < c(P') and

w(P") < w(P'). Since T is used in instruction I of P'

it is never used in an instruction of type II in P';

thus the elimination is allowed and P" is admissible. o

s =

Proof of lemma 2: Let P = 11""’Im be a simple program.

If P is not disjoint then there exists a maximal t such
that It is of the form

construct ST""’S1 from S, delete S

]

such that 81,...,8h are not pairwise disjoint.

Let S, R1,...,R be the sets which exist prior to

%
execution of instruction It' Eo¥ EVeEry 1 ‘€ S one ol the

following two cases applies.

Case 1: Replacing Sj by Sﬁ = Sj = {1¥ £for all j,

1 < j <h, in instruction It and in future references

(there is at most one) to set Sj will not destroy

16 -

admissibility. In this case we carry out this replacement.

It will increase neither cost nor width.

Case 2: Replacing Sj by Sj = Sj - {i} for all j,

1 < j < h, destroys admissibility. Then there exists
jo’ j0 € {1,...,h}, such that replacing Sj by Sj for all

Je 4 % D53 will not destroy admissibility. j0 can be

found by working backwards through program P. After
execution of P there is at least onec set which contains
i. Choosc one of them, say R. Consider the instruction
which produces R, say It" If t' < t then we are 1n case
it t' = t then R = Sj « JE " » £ then one ‘of the sets

0

deleted by instruction Iy contains i. Let R be one of

these sets and continue.

1,

Replacing Sj by 53 for j + jO will increase neither width

nor cost, nor will it destroy admissibility.

In either case we increased the '"disjointness'" of our
program without increasing cost or width. An induction

argument finishes the proof of lemma 2.

Proof of lemma 3: Let P = 11""’Im be simple, disjoint

and admissible for n. If P is not in standard form then
there 1s a maximal t such that It is

construct 81""’Sh from S, delete S

with- h > 2. Since P ds disjoint 'S

1""’Sh are a partition
of S (81""’Sh must be pairwise disjoint by disjointness

of P, their union must be S by admissibility).

We define the depth of a set R with respect to a standard form
program P' as follows

0 if R exists after execution
of P!
depth(R) =
1+depth(R') if R is destroyed by in-
struction I, of P'
and I, produces R'
Since P' = It+1"'Im is in standard form, depth (Sj) is defined

for all j, 1 < j < h. Let jo’ j. € {1, . .x,h} be sich that

0]

depth (Sj) < depth (Sj) for all j, 1 < j < h. We obtain P" by
0
deleting instruction It, deleting all references to Sj’ j ¥ jo’

and replacing the (possible) reference to Sj by a reference
)
to S.

Apparently, w(P") < w(P). Next we have to show that
c(P") < c(P). For i, i € {1,...,n}, let s(1) be the
number of times element i changes sets during execution

of P'. Since P is disjoint, s(i) is well defined. Then

c(P') = 2 =

M™M=
—

s(i). From depth (Sj) < depth (Sj} for

1 0

all j =+ jo’ we conclude s'(i) < s(i) where s' is defined

.,1_of P". Hence

with respect to instructions I "

4100

c(P") < c(P). An induction argument finishes the proof. o

ITI.2 Standard Form Programs and Trees

In this section we associate ordered forests with
standard form programs and express the cost and width
of a standard form program in terms of the associated
trees.

Let P = 1 1 be a standard form program which is

170"
admissible for n. We associate an ordered forest F(P)
with n leaves and m-n internal nodes with P. For

every i, 1 < i < n, we have a leaf. These leaves also
represent the n instructions of type 1. The m=m internal
nodes represent the m-n instructions of type II. Consider
any instruction I, of type II. Since P is in standard

form, It is of the form

construct S1 u S2 Uu ... U Sk from 81""’Sk’ delete 51""’Sk'
We may assume w.l.o.g. that min S1 < min S2 < ... < min Sk'

Let I, be the instruction which produces set S;, 1 < i < k.
i
Then v(It), the node corresponding to instruction Ies

has sons V(It),...,V(It) in that order from left to right.
1 k

Finally, if ¥ sets exist after sxeciition of program P
then forest F(P) has r roots. Again we order the roots
according to minimal elements in the sets represented by

them.

Definition: With every node V(It) of forest F(P) we

associate its lifespan [t,u], where either u = m and
V(It) is a root of F(P) or V(It] is not a root and

V(Iu+1) is the father of V(It).

For node v let s(v) be the depth of v in forest F(P),

the depth ©of & root belng zZero.

Lemma 5:

a) c(p) = 2 - z s(v) (=2 + external pathlength)
v leaf of F(P)

b) w(P) = max I{v; t belongs to the lifespan of v}|

T <t<m o

Proof: obvious.

At this point, we almost arrived at a managable representation
of the problem. We related the cost of P with the external
path length of a forest and we related the width of P with

the "width" of forest P. The second quantity becomes more
managable 1f we consider the standard way of representing an
ordered forest as a binary tree.

Definition:

a) a tree T is a Binary Tree if
al) the edges of T are labelled by L and R
a2) every node of T has outdegree < 2. If node v

has outdegree 2 then the outgoing edges are labelled
differently.
b) Let T be a Binary Tree and let v be a node of T.
We define:
b1) ITl = number of nodes of T without a left son,
b2) td(v) (rd(v)) = number of edges labelled L(R)
on the path from the root to ¥,
b3) LdA(T) = £{2d(v); v is a node of T and has no
left: son}, -and
b4) rd(T) = max{rd(v); v is a node of T}. o

Let P be a standard form program which is admissible for n.
Let F(P) be the ordered forest associated with it. F(P)

has n leaves and m-n internal nodes. We will construct a
Binary Tree T(P) with m nodes as follows. If v is a node (leaf
or internal node) of F(P) then ¢ denotes the corresponding
node of T(P).

1) Let v be an internal node of F(P) with sons ViseeesVy in
that order. Then in T(P) there is a left edge from ¥ to 01
and there are right edges from ¢, to 0,4, 1 <1 < k.

2) Let r ,¥. be the roots of F(P) in order. Then there

1reeesTp
are right edges from Ti to ?i+1 for 1 < i < p.

Lemma 6:

a) v is a leaf of F(P) iff ¥ has no left son

b) s(v) = 2d(?¥)

c) ¢c(P) =2 - % s(v) =2 « ¥ d(9) = 2-Ld4d(T(P))
v leaf of F(P) has no left son

d) w(P) > max{rd(?); ¢ has no left son}

1l

rd(T(P))

proof: a), b) and c) are obvious.
d) Let © be a node of T(P) with rd(%) = k = rd(T(P)). Since
T(P) is finite we may assume that ¥ has no son. Let 01,...,0k

be the nodes which are left via right edges on the path from
the root to node ¥, let ?k+1 = ©. Let Vs be the node of F(P)
which corresponds to vi, let It be the instruction represented
i
by v, and let S; be the set constructed by It :
' i

Then Sk = {j} for some j. Furthermore,
;-+'I

min S1 < min S2 £. '€ Min Sk < min Sk+1 = j by definition of

F(P) and T(P).

Note first, that t is in the lifespan of node Viewy = Vo

k+1

For i, 1 < i < k, consider the sequence ?.

= 9.,9.
i,o i

i, 107
of nodes which are reachable from ﬁi via left edges. For
distinct i's these paths are disjoint. Also, the lifespan of
the last node of such a path begins before ST since

min Si < j. Hence any such paths contains a node whose
lifespan contains SR This shows w(P) > k.

Lemma 6 finally reduced our problem to a managable problem
about binary trees.

Definition: Ll(n) = min { Ld(T); T is a finite Binary Tree
<
with |T| = n and rd(T) < k}

We summarize Lemmas 1 to 6 in

Lemma 7: (part 1 of theorem 1) Let P be a program which is

admissible for n. Let k = w(P). Then
c(P) > (2/4) + Ly (n)

proof: By lemma 4 therc is a standard form program

P' admissible for n with c(P') < 4.c(P) and w(P') < w(P).
Let T(P') be the Binary Tree associated with P'.

Then c(P') = 2-Ld(T(P*)) and rd(T(P')) < w(P') by Lemma 6.

llence rd(T(P')) < k and thus Ld(T(P')) > Lk(n) since |T(P')! = n
by admissibility of P and P'. This shows that c(P) > 2/4-Lk(n). o

I11.3 Determining L, (n)

In this section we will compute Lk(n) for infinitely many n

(Lemma 9) and show that Lk(n)/n is non-decreasing (Lemma 8).

Definition: T is optimal for k and n if rd(T) < k, |T| = n
and LA(T) = Ly (n).

Lemma 8: (part3 of theorem 1) Lk(n+1]/(n+1} > Lk(n)/n
for all n > 1.

proof: Let T be optimal for n+1 and k. Let v be a node of T

of maximal left-depth and without right son. Let T' be obtained
by deleting v from T. Then !T'| = n since |T'!'> |T|-1 = n

is obvious and |T'| = n+1 contradicts the opti;ality af T
Hlence v is a right son. Furthermore, Lk(n) < LA(T");

T A0 VY o T sy I R SR PR Vo1 r

- 99 =

L, (n+1) = Ld(T)
Ld(T) # 1dfv]
(1+1/n)Ld(T")

=
> (1+1/n)Lk(n]

I

a
Next we will compute Lk(n) for '"nice'" values of n by
explicitely defining the optimal tree. In the formulation
of lemma 9 we identify a node with the path from the root
to that node given as a sequence of L's and R's. Also we
use]w|L to denote the number of L's in string w.
Lemma 9: (part 2 of theorem 1) Let h, k > 0 and let
_ h+1+k

n = (X)
Consider tree T whose node set consists of all strings
w € {L,R}* with

1) lw\L < h, IWIR < k

2y df 1w|R = k then |w| = w'R
Then T is optimal for k and n and

_ h-k h+k+2

LA(T) = g7 Cxer)

proof: a) We show first that |T| = n. Call a node terminal if it

has no left son. A node w of T is terminal if wL is not a node

of T. Hence we must either have \wIL = h or |w|R = k. In the
second case w cnds in an R. Hence the set of terminal nodes

of T is equal to the union of the set L, = {w;lw|L = i,|w1R =k, w
ends in an R}, 0 < i < h and the set L = {w;[w|L = h,

[wlp < k-1}. Hence

h
ITl = = JL;l + |L]
i=0
B iakety . KT hag
= I Gy r oz O
1=0 j=o J

h+k h+k
= B%9 #600 = P

b) Next we compute the left path length of T. We have
h
Ld(T) = = i|Li| + h-|L|

h s
_ . i+k-1 . ch+k
- 5 1 (i) + h (k_-l)

k+] h
= KGID D

_ h-k h+k+2
® kT O ke)

c) It remains to show that T is optimal for k and n. Assume
otherwise. Then let T' be optimal for h and n and closest to T,
i.e. T' and T share a maximal number of nodes. Let N(T') < {L,R}*
be the set of nodes of T'. If N(T') < N(T) and T' # T then

|IT'| < n,a contradiction. Hence there exists a node w € N(T')-N(T).
Then either |w!L > h or |w|R = k and w ends in an L. In the second

case w does not have a right son (since Iw\R = k) and hence we may
identify w with its father without reducing the number of
terminal nodes but withadecrease in left path length. Hence every

node w of T' with }w|R = k ends in an R.

So there has to be a w in T' with |w|L > h.

Furthermore, there has to be a w' € N(T) - N(T'), since
N(T) € N(T') contradicts the non-optimality of T. We may
assume w.l.o.g. that w is a longest word in N(T')-N(T) and

fe)

w' € N(T)-N(T') is a shortest word.

case 1: w' ends in an R. Then obtain T" by deleting w from T'
and adding w'. Then |T"] = |T'| and Ld(T") < Ld4(T')

case 2: w' ends in an L. Then rd(w') < k. Obtain T" by deleting
w from T' and adding w' and w'R. Then |[T"| = |T'|. And

Ld(T") = Ld(T') - 2d(w) + 2d(w') + 1 < Ld(T").

Hence T'" is optimal for k and n and is closer to T than T'.

In either case we derived a contradiction.

Lemmas 7, 8 and 9 prove theorem 1.

References

(1]

[2]

1.5:]

(4]

[5]

(6]

J.L. Bentley: Decomposable Searching
Problems, Information Processing Letters 8
(5) pp. 244-251, 1979

K. Mehlhorn/M.H. Overmars: Optimal Dynamization
of Decomposable Searching Problems, FB 10,
Universitidt des Saarlandes, Techn. Report No.

A 80/15, to appear in Information Processing
Letters

M.H. Overmars/v. Leeuwen: Two general methods for
dynamizing decomposable searching problems, Techn.
Report University of Utrecht, RUU-SC-79-10, Nov. 79

J.L. Bentley/J.B. Saxe: Decomposable Searching
Problems I. Static-to-Dynamic Transformation,
Journal of Algorithms 1, 301-358 (1980)

J. van Leeuwen/D. Wood: Dynamization of
Decomposable Searching Problems, Information
Processing Letters 10 (1980), 51-56

D.E. Willard: Balanced Forests of k-d Trees as
a Dynamic Data Structure, Harvard Aiken Computer
Lab. Report, TR-23-78

24 -

	fb1980-05-0001_fertig
	fb1980-05-0002_fertig
	fb1980-05-0003_fertig
	fb1980-05-0004_fertig
	fb1980-05-0005_fertig
	fb1980-05-0006_fertig
	fb1980-05-0007_fertig
	fb1980-05-0008_fertig
	fb1980-05-0009_fertig
	fb1980-05-0010_fertig
	fb1980-05-0011_fertig
	fb1980-05-0012_fertig
	fb1980-05-0013_fertig
	fb1980-05-0014_fertig
	fb1980-05-0015_fertig
	fb1980-05-0016_fertig
	fb1980-05-0017_fertig
	fb1980-05-0018_fertig
	fb1980-05-0019_fertig
	fb1980-05-0020_fertig
	fb1980-05-0021_fertig
	fb1980-05-0022_fertig
	fb1980-05-0023_fertig
	fb1980-05-0024_fertig
	fb1980-05-0025_fertig

