
Complexity Arguments in

Algebraic Language Theory

by

Helmut Alt
Kurt Mehlhorn

Bericht A 78/10

July 1978

Fachbereich 10 -
Universitat des Saarlandes
D-6600 SaarbrUcken
W-Germany

Bericht A 78/10

July 1978

Abstract: Each algorithm recognizing any generator of the

class of context-free languages requires space
U(log n) and time x space U(n 2).

RestJIOO: "Chaque algorithme reconnaissant un quelconque

g~n~rateur du cOne rationnel des langages alg~briues
necessite l'espace U(log n) et un produit espace x

temps en U(n 2)."

O. In troduc tion
===============

A frequently used method in complexity theory is reduction.

The idea is the fOllowing: Assume, that there are given
two formal languages L, c ~* and L2 c L* (~,L finite
alphabets) and a recursive partial function g : ~* ~ L*

with the property:

We denote this property by L1 ~ L2 .
g

Assume further, that there is an algorithm A to recognize

L2. Then the following algorithm B recognizes L1 (input w):

1. compute g(w)

2. apply A

So the time (space) requirements of B are those of A plus

those to compute g.

Thus upper bounds for the complexity of L2 turn into upper

bounds for L1 and lower bounds for the complexity of L1 turn
into lower bounds for L2 .

The most well-known application of reduction is to show that

certain languages are NP-complete [1].

The importance of reductions between languages in complexity

theory delivers a connection to algebraic language theory.

- , -

One result of the latter theory is that for every generator G of

the rational cone of context-free languages there is a certain fixed
language E1 and a simple reduction g with E1 g G. For this language

we will show (again by reduction) lower bounds for space­

complexity and the product of time and space complexity. So

we have these lower bounds for all generators of the class

of context-free languages.

By this we have a complexity criterion that certain

languages are non-generators by giving recognition
algorithms whose complexities are below the lower bounds

mentioned above.

1. The product of time- and space complexity of a multitape
===

turing machine
==============

In the following we mean by 'multitape turing machine'

an offline turing machine with one read-only input tape

and several work tapes.

We say that it has time complexity T(n) if it performs

at most T(n) steps for each input of length n. Space
complexity Sen) means that for each input of length n at

- 2 -

most Sen) cells of the work tapes are used. For two functions

f,g : N ~ N, where N is the set of natural number, f = O(g)

means that there exists a constant c, such that fen) < c.g(n)

for almost all n E N. f Q(g) means that there exists a con­
stant c > 0 such that f(n) _< c'g(n) for infinitely many n E N.
For reasons of simplicity we assume that the Turing-machines are deterministic

but the proofs and results apply to nondeterministic machines as well. There

exists a close connection between the product of time and space complexity
of multi tape turing machines and the time complexity of one-tape-Turing-machines.

In fact the following holds (cf. [3]):

Theorem 1:

To every multi tape-Turing machine M with time complexity T

and space complexity S one can construct an equivalent one­

tape turing machine with time complexity T.S.

Proof (for a more detailed version see [3]):

If M has k-1 work tapes, M' has k tracks on its tape .

We simulate an arbitrary configuration of M

input tape

finite contr.

(a) •
• s ta te : s •

by the following configuration of M':

Xl ,-1 x10 x 11 #: x 1Z x 13 x 14 x 15

(b)
x zz x Z3 x Z4 1/: x Z5 x Z6 x Z7 x Z8

·
xko xk1 xkZ #- xk3 xk4 xkS x k6

'W/
finite contr.

state . s .

The special symbol ~ marks in each track the head position

on the corresponding tape of M.
So M' reads exactly the tuple which is read by the k head s

of M and can simulate one step of M by overprinting the symbols

on the tracks and moving the ~'s according to the movement of
M's heads.
This operation obviously requires constantly many steps.
After this M' has to bring back all ~'s in one cell again

according to (b).

This is done by shifting each of the tracks Z to k. Since

on these tracks there are at most Sen) non blank cells, the

- 3 -

time complexity for this is OlSen)). So the time

complexity of M' to simulate one step of M is OlSen))
i.e. the whole time complexity i s O(S(n)·T(n)).

Bya well known result in complexity theory (cf .[8)) the
constant in the O-term can be reduced to 1.

Since one knows lower bounds on the time complexity of one­

tape turing machines ([8), [7)) we have herewith lower bounds

on the time-space-product of arbitrary turing machines:

Let be PAL c {O,1,~}* the language of palindromes over {O,1},
i.e.

PAL = {w 4 wR I w E {O,1}*}

It is known (cf. Th . 10.7 in (8)) that anyone tape Tm .

recognizing PAL has time complexity Q(n 2).

So we get

Corollary 1:

- 4 -

Let M be a multitape turing machine with time complex ity T(n) and

space complexity Sen) recognizing PAL. Then

2. Complexity Lower Boun~for the Recognition of Generators
===

In this chapter we will establish lower bounds on the

complexity of algorithms recognizing generators of the

class of context-free languages. (i.e. languages G with

- 5 -

the property that every context-free language can be obtained

by applying a rational transducer (= nondeterministic finite

automaton with output) on them. For more details see [5]).

We get the lower bounds by the fact that every generator is

"easily" reducible to some fixed language E
l

, which is itself

"easily" reducible to PAL.

Let El c {a,b,c,d}* be the language generated by the grammar

S ... aSbScld

Then in [4] the following is shown:

Theorem: For any generator G of the class of context-free

languages there exists a regular language K and a homo­

morphism $ such that

El $-l(G)nK.

This result delivers us an "easily" computable reduction from

any generator G to El .

In fact let G be a generator and let $, K be chosen as in the

theorem above. Then obviously

w E El -- $(w) E G and w E K

Let R, be a finite automaton with output computing •

and R2 a finite automaton rec ognizing K.

- 6 -

If now M is some (multitape-) turing-machine recognizing G

then the following turing machine M' will recognize E,:

I I I a I \ I I I input tape

y

'\

R, l R2

A
I I I I I I of- contains • (a)

I "'input head of M

I

finite
control of

M
. .. .

£
~ I I 1\ l I I I I i

• work tapes
• of M (and
•

A •

1 \ I I I I I I L 1

/
~

of M ,)

finite
control of
M'

- 7 -

If RZ ha s determined that the input is in K the input head

i s res e t t o the beginning of the input and M' works in the

following way: The finite tape in the finite control will

contain ~(a) if a is the symbol just read by M' . If M' 's

input head is going to leave this t ape at its right (left)
border· R will produce ~ (b) where b is the symbol right (left)

from a in the input.

So the amount of time (space) of M' in addition to the

requirement of M is linear (constant) in the length of

the input. Since obviously linear time is necessary to
recognize any generator G, it holds:

Corollary Z:

If some generator G is recognizable by some Turing machine

with time complexity T and space complexity S then El is
recognizable with time T and space S too .

With this corollary it is possible to transfer lower bounds

for the recognition of El to the recognition of any generator.

In order to establish these lower bounds, we consider the

language PAL .

PAL is reducible to E1 , i . e. it holds

Lemma 1: There exists a function

g: {O, 1, ¢}* .. {a,b,c,d}* with:

a) PAL ~ El
g

b) g is computable in linear time and constant space.

Proof: We define g by

i)g(w)=E if w ~ {0,1}* · {¢}·{O, 1}*

~l'~Z are the homomorphismus defined by

x 0 ¢

~1 (x) adb a d

~Z(x) c bdc E:

'l(arbi trary)

and we claim: w E PAL ~ g(w) E El for all w E {O,l,¢l*.

Proof:

~: Induction on k = (Iwl-l)/Z, where Iw l denotes the

If k = 0 then w ¢ length of w.

~ g(w) = d EEl.

k ~ k+l w E PAL with Iwl > 1. Then obviously

w = aw'a with ex € {O,l},w' E PAL.

By induction hypothesis g(w') E E1 •

If a o then

g(w) = adb g(w')c

and hence
* S ~ aSbSc ~ adbg(w')c = g(w).

An analogous statement holds, if a = 1.

~: Let w be such that g(w) E E1 . We showby induction on

Ig(w) I that w E PAL. If Ig(w) I ~ 3 then g(w) = d and hence
w = ¢ . Assume now Ig(w) I > 3. Then by definition of g

..
for some wl ,wz E {O, 1l

- 8 -

Since g(w) E El g(w) cannot begin or end with a 'd'

and hence w1 ,w Z t £ •

Assume that

Then

w = Ow'¢w'l 1 Z

g(w) = adb g(w') bdc

for some wj'W ZE{O,1}*

where w'=w'¢w' 1 Z

Since the first three letters of g(w) can only be

generated by

S ~ aSbSc ~ adbSc

it follows

adbSc * ~ g (w)

i. e.
* S ~ g(w')bd

- 9 -

This is not possible since obviously no word in E] with lenght ~ Z ends

with a 'd'. In the same way the assumption that w = lwj¢wzO

leads to a contradiction, such that

w aw'
1 ¢ w'a Z for some aE{ 0, 1} w j , w Z E { 0, 1} *

Assume that a = 0.

So g (w) = adb g (w')c.

Like above it follows that

* S ~ g (w')

i.e. g(w') E E1 . By induction hypothesis we get: w' E PAL

and thus

w = ow'o E PAL.

Analogously one can show that w E PAL if a 1.

The fact, that g is computable in linear time, is obvious.

Using the same construction as in corollary 2, we get:

Lemma 2:

If El is recognizable with time T and space S the sa-me holds

for PAL.

Moreover, if any generator G is recognizable with time T and

space S the same holds for PAL.

- 10 -

Now the lower bounds on the recognition of PAL can be transferred

to any generator G. By corollary 1 we get:

Theorem 1:

Let G be any generator recognizable by some turing machine with

time complexity T and space complexity S. Then

The second lower bound on recognition of generators we get by

a result in [2]:

If some non-regular deterministic language is recognizable with

space complexity S then

Sen) rl (log n).

Especially this result holds for PAL, such that we have:

Theorem 3: If some generator G is recognizable with space

complexity S, then

S = rl(log n)

These lower bounds has been known before for some special

generators e.g . for the Dyck-language with two types of brackets

D 2 ([2] and [3]) .

They provide us with complexity criterions in algebraic

languages theory:

In order to show that a language is no generator, it suffices

to give a reco gnltl0n algorithm using le ss than Q(log n) space
or less tha n Q(nZ) time x space .

For example the context-free language

• {O,1 ,#} '{bin(1) j/ bin(Z) I/ ••• N bin(n) In E N}

where bin (i) is the binary representation of the number i,

cannot be a generator since it is recognizable with space

O(loglogn). (cf. [9]).

- 11 -

Furthermore the languages {anbn ; n E N} and D;*(Dyck-language with

one bracket type) cannot be generator, since they are recognizable

in space x time O(n(log n)2). The ordinary counter automaton
with its counter represented in binary does the job. We l eave it

as an exercise to the reader that both languages are recognizabl e
in space x time O(n log n) . In the first case it is only neces sary

to observe that one half of the carries propagate only one position,

an additional one quarter propagates only two positions, ...
In the second case this observation ha s to be combined with a

redundant numb er representation.

~one of the applications above is new. Moreover, having space x
time complexity{L(n2) i s only a necessary condition for being

generator. The criterion seems to fail for the language Lo in [6].

fhe relevance of this contribution certainly lies in giving a
connection between complexity theory and algebraic langua ge theory .

References
==========

[1] Aho, A.V., Hopcroft, J.E., Ullman, J . D.:

The Design and Analysis of Computer Algorithms,

Addison-Wesley, Publ. Comp., 1974

[2] Alt, H., Mehlhorn, K.:

- 12 -

Lower Bounds for the Space Complexity of Context-free

Recognition, 3rd ColI. on Automata, Languages and Programming,

Edinburgh, 1976

[3] Alt, H.:

Einige Beobachtungen zum Produkt von Zeit und Platzbedarf

bei Turingmaschinen,

Universitat des Saarlandes, Fachbereich Informatik,

Report A76/09

[4] Beauquier, J.:

G~n~rateurs alg~briques non-ambigus,

3rd Colloquium on Automata, Languages and Programming,

Edinburgh 1976

[5] Boasson, L.:

Classification of the Context-Free Languages, MFCS 1977,

Lecture Notes in Computer Science, Vol. 53, pp. 34-43

[6] Boasson, L.:

Un Langage Algebrique Particulier,

to appear in R.A.I.R.O. Informatique Theorique

[7] Hartmanis, J.:

One-Tape Turing Machine Computations, JACM 15, 1968,

pp. 325-339

[8] Hopcroft, J.W., Ullman, J . D.: Formal Languages and their

Relation to Automata, Addison-Wesley, Reading,Mass. 1969

[9] Lewis, P.M., Hartmanis, J., Stearns, R. E.:

Memory Bounds for the Recognition of Context-Free and

Context-Sensitive Languages, IEEE Conference Record on

Switc hing Circuit Theory and Logical Design, 179-202,

1965

	A_1978_10 0001_1heitscover_2
	A_1978_10 0002
	A_1978_10 0003
	A_1978_10 0004
	A_1978_10 0005
	A_1978_10 0006
	A_1978_10 0007
	A_1978_10 0008 copy
	A_1978_10 0009
	A_1978_10 0010
	A_1978_10 0011
	A_1978_10 0012
	A_1978_10 0013
	A_1978_10 0014

