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Abstract: Each algorithm recognizing any generator of the 

class of context-free languages requires space 
U(log n) and time x space U(n 2). 

RestJIOO: "Chaque algorithme reconnaissant un quelconque 

g~n~rateur du cOne rationnel des langages alg~briues 
necessite l'espace U(log n) et un produit espace x 

temps en U(n 2)." 



O. In troduc tion 
=============== 

A frequently used method in complexity theory is reduction. 

The idea is the fOllowing: Assume, that there are given 
two formal languages L, c ~* and L2 c L* (~,L finite 
alphabets) and a recursive partial function g : ~* ~ L* 

with the property: 

We denote this property by L1 ~ L2 . 
g 

Assume further, that there is an algorithm A to recognize 

L2. Then the following algorithm B recognizes L1 (input w): 

1. compute g(w) 

2. apply A 

So the time (space) requirements of B are those of A plus 

those to compute g. 

Thus upper bounds for the complexity of L2 turn into upper 

bounds for L1 and lower bounds for the complexity of L1 turn 
into lower bounds for L2 . 

The most well-known application of reduction is to show that 

certain languages are NP-complete [1]. 

The importance of reductions between languages in complexity 

theory delivers a connection to algebraic language theory. 
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One result of the latter theory is that for every generator G of 

the rational cone of context-free languages there is a certain fixed 
language E1 and a simple reduction g with E1 g G. For this language 

we will show ( again by reduction) lower bounds for space­

complexity and the product of time and space complexity. So 

we have these lower bounds for all generators of the class 

of context-free languages. 



By this we have a complexity criterion that certain 

languages are non-generators by giving recognition 
algorithms whose complexities are below the lower bounds 

mentioned above. 

1. The product of time- and space complexity of a multitape 
=========================================================== 

turing machine 
============== 

In the following we mean by 'multitape turing machine' 

an offline turing machine with one read-only input tape 

and several work tapes. 

We say that it has time complexity T(n) if it performs 

at most T(n) steps for each input of length n. Space 
complexity Sen) means that for each input of length n at 
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most Sen) cells of the work tapes are used. For two functions 

f,g : N ~ N, where N is the set of natural number, f = O(g) 

means that there exists a constant c, such that fen) < c.g(n) 

for almost all n E N. f Q(g) means that there exists a con­
stant c > 0 such that f(n) _< c'g(n) for infinitely many n E N. 
For reasons of simplicity we assume that the Turing-machines are deterministic 

but the proofs and results apply to nondeterministic machines as well. There 

exists a close connection between the product of time and space complexity 
of multi tape turing machines and the time complexity of one-tape-Turing-machines. 

In fact the following holds (cf. [3]): 

Theorem 1: 

To every multi tape-Turing machine M with time complexity T 

and space complexity S one can construct an equivalent one­

tape turing machine with time complexity T.S. 

Proof (for a more detailed version see [ 3 ]): 

If M has k-1 work tapes, M' has k tracks on its tape . 

We simulate an arbitrary configuration of M 



input tape 

finite contr. 

(a) • 
• s ta te : s • 

by the following configuration of M': 

Xl ,-1 x10 x 11 #: x 1Z x 13 x 14 x 15 

(b) 
x zz x Z3 x Z4 1/: x Z5 x Z6 x Z7 x Z8 

· · · · · · · · · · · · · · · · · · · · · · · · 
xko xk1 xkZ #- xk3 xk4 xkS x k6 

'W/ 
finite contr. 

state . s . 

The special symbol ~ marks in each track the head position 

on the corresponding tape of M. 
So M' reads exactly the tuple which is read by the k head s 

of M and can simulate one step of M by overprinting the symbols 

on the tracks and moving the ~'s according to the movement of 
M's heads. 
This operation obviously requires constantly many steps. 
After this M' has to bring back all ~'s in one cell again 

according to (b). 

This is done by shifting each of the tracks Z to k. Since 

on these tracks there are at most Sen) non blank cells, the 
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time complexity for this is OlSen)). So the time 

complexity of M' to simulate one step of M is OlSen)) 
i.e. the whole time complexity i s O(S(n)·T(n)). 

Bya well known result in complexity theory (cf .[ 8)) the 
constant in the O-term can be reduced to 1. 

Since one knows lower bounds on the time complexity of one­

tape turing machines ([8), [ 7)) we have herewith lower bounds 

on the time-space-product of arbitrary turing machines: 

Let be PAL c {O,1,~}* the language of palindromes over {O,1}, 
i.e. 

PAL = {w 4 wR I w E {O,1}*} 

It is known (cf. Th . 10.7 in (8)) that anyone tape Tm . 

recognizing PAL has time complexity Q(n 2). 

So we get 

Corollary 1: 
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Let M be a multitape turing machine with time complex ity T(n) and 

space complexity Sen) recognizing PAL. Then 



2. Complexity Lower Boun~for the Recognition of Generators 
=========================================================== 

In this chapter we will establish lower bounds on the 

complexity of algorithms recognizing generators of the 

class of context-free languages. (i.e. languages G with 
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the property that every context-free language can be obtained 

by applying a rational transducer (= nondeterministic finite 

automaton with output) on them. For more details see [5]). 

We get the lower bounds by the fact that every generator is 

"easily" reducible to some fixed language E
l

, which is itself 

"easily" reducible to PAL. 

Let El c {a,b,c,d}* be the language generated by the grammar 

S ... aSbScld 

Then in [4] the following is shown: 

Theorem: For any generator G of the class of context-free 

languages there exists a regular language K and a homo­

morphism $ such that 

El $-l(G)nK. 

This result delivers us an "easily" computable reduction from 

any generator G to El . 

In fact let G be a generator and let $ , K be chosen as in the 

theorem above. Then obviously 

w E El -- $(w) E G and w E K 



Let R, be a finite automaton with output computing • 

and R2 a finite automaton rec ognizing K. 
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If now M is some (multitape-) turing-machine recognizing G 

then the following turing machine M' will recognize E,: 

I I I a I \ I I I input tape 

y 

'\ 

R, l R2 

A 
I I I I I I of- contains • (a) 

I "'input head of M 

I 

finite 
control of 

M 
. .. . 

£ 
~ I I 1\ l I I I I i 

• work tapes 
• of M ( and 
• 

A • 

1 \ I I I I I I L 1 

/ 
~ 

of M ,) 

finite 
control of 
M' 
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If RZ ha s determined that the input is in K the input head 

i s res e t t o the beginning of the input and M' works in the 

following way: The finite tape in the finite control will 

contain ~(a) if a is the symbol just read by M' . If M' 's 

input head is going to leave this t ape at its right (left) 
border· R will produce ~ (b) where b is the symbol right (left) 

from a in the input. 

So the amount of time (space) of M' in addition to the 

requirement of M is linear (constant) in the length of 

the input. Since obviously linear time is necessary to 
recognize any generator G, it holds: 

Corollary Z: 

If some generator G is recognizable by some Turing machine 

with time complexity T and space complexity S then El is 
recognizable with time T and space S too . 

With this corollary it is possible to transfer lower bounds 

for the recognition of El to the recognition of any generator. 

In order to establish these lower bounds, we consider the 

language PAL . 

PAL is reducible to E1 , i . e. it holds 

Lemma 1: There exists a function 

g: {O, 1, ¢}* .. {a,b,c,d}* with: 

a) PAL ~ El 
g 

b) g is computable in linear time and constant space. 

Proof: We define g by 

i)g(w)=E if w ~ {0,1}* · {¢}·{O, 1}* 



~l'~Z are the homomorphismus defined by 

x 0 ¢ 

~1 (x) adb a d 

~Z(x) c bdc E: 

'l(arbi trary) 

and we claim: w E PAL ~ g(w) E El for all w E {O,l,¢l*. 

Proof: 

~: Induction on k = (Iwl-l)/Z, where Iw l denotes the 

If k = 0 then w ¢ length of w. 

~ g(w) = d EEl. 

k ~ k+l w E PAL with Iwl > 1. Then obviously 

w = aw'a with ex € {O,l},w' E PAL. 

By induction hypothesis g(w') E E1 • 

If a o then 

g(w) = adb g(w')c 

and hence 
* S ~ aSbSc ~ adbg(w')c = g(w). 

An analogous statement holds, if a = 1. 

~: Let w be such that g(w) E E1 . We showby induction on 

Ig(w) I that w E PAL. If Ig(w) I ~ 3 then g(w) = d and hence 
w = ¢ . Assume now Ig(w) I > 3. Then by definition of g 

.. 
for some wl ,wz E {O, 1l 

- 8 -



Since g(w) E El g(w) cannot begin or end with a 'd' 

and hence w1 ,w Z t £ • 

Assume that 

Then 

w = Ow'¢w'l 1 Z 

g(w) = adb g(w') bdc 

for some wj'W ZE{O,1}* 

where w'=w'¢w' 1 Z 

Since the first three letters of g(w) can only be 

generated by 

S ~ aSbSc ~ adbSc 

it follows 

adbSc * ~ g (w) 

i. e. 
* S ~ g(w')bd 
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This is not possible since obviously no word in E] with lenght ~ Z ends 

with a 'd'. In the same way the assumption that w = lwj¢wzO 

leads to a contradiction, such that 

w aw' 
1 ¢ w'a Z for some aE{ 0, 1} w j , w Z E { 0, 1} * 

Assume that a = 0. 

So g (w) = adb g (w')c. 

Like above it follows that 

* S ~ g (w' ) 

i.e. g(w') E E1 . By induction hypothesis we get: w' E PAL 

and thus 

w = ow'o E PAL. 

Analogously one can show that w E PAL if a 1. 



The fact, that g is computable in linear time, is obvious. 

Using the same construction as in corollary 2, we get: 

Lemma 2: 

If El is recognizable with time T and space S the sa-me holds 

for PAL. 

Moreover, if any generator G is recognizable with time T and 

space S the same holds for PAL. 
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Now the lower bounds on the recognition of PAL can be transferred 

to any generator G. By corollary 1 we get: 

Theorem 1: 

Let G be any generator recognizable by some turing machine with 

time complexity T and space complexity S. Then 

The second lower bound on recognition of generators we get by 

a result in [2]: 

If some non-regular deterministic language is recognizable with 

space complexity S then 

Sen) rl (log n). 

Especially this result holds for PAL, such that we have: 

Theorem 3: If some generator G is recognizable with space 

complexity S, then 

S = rl(log n) 

These lower bounds has been known before for some special 

generators e.g . for the Dyck-language with two types of brackets 

D 2 ([ 2] and [ 3 ]) . 



They provide us with complexity criterions in algebraic 

languages theory: 

In order to show that a language is no generator, it suffices 

to give a reco gnltl0n algorithm using le ss than Q( log n) space 
or less tha n Q(nZ ) time x space . 

For example the context-free language 

• {O,1 ,#} '{bin(1) j/ bin( Z) I/ ••• N bin(n) In E N} 

where bin (i) is the binary representation of the number i, 

cannot be a generator since it is recognizable with space 

O(loglogn). (cf. [9]). 
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Furthermore the languages {anbn ; n E N} and D;*(Dyck-language with 

one bracket type) cannot be generator, since they are recognizable 

in space x time O(n(log n)2). The ordinary counter automaton 
with its counter represented in binary does the job. We l eave it 

as an exercise to the reader that both languages are recognizabl e 
in space x time O(n log n) . In the first case it is only neces sary 

to observe that one half of the carries propagate only one position, 

an additional one quarter propagates only two positions, ... 
In the second case this observation ha s to be combined with a 

redundant numb er representation. 

~one of the applications above is new. Moreover, having space x 
time complexity{L(n2) i s only a necessary condition for being 

generator. The criterion seems to fail for the language Lo in [6]. 

fhe relevance of this contribution certainly lies in giving a 
connection between complexity theory and algebraic langua ge theory . 
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