
Abstract:

Arbitrary Weight Changes in

Oynami c Trees

Kurt Mehlhorn

Fachbereich 10 - Angewandte
Mathematik und Informatik
Universitat des Saarlandes
0-6600 SaarbrUcken

Bericht 78/04

Mai 1978

We describe an implementation of dynamic weighted trees.
called O-trees. Given a set{Bo •...• Bn} of objects and
access frequencies qo.ql •...• qn one wants to store the
objects in a binary tree such that average access is
nearly optimal and changes of the access frequencies re­
quire only small changes of the tree. In O-trees the
changes are always limited to the path of search and
hence update time is at most proportional to search time.

- 1 -

I. Introduction

One of the popular methods for retrieving information by
its 'name' is to store the names in a binary tree. In this
paper we treat dynamic weighted binary search trees.

Given a subset {Bo .B1 •••.• Bn} from an ordered universe U
and access frequencies qo.ql •...• qn €~. the problem is to
store the objects Bo .B 1 •...• Bn in a binary tree such that

1) The weighted path length (and hence average search time)
n
L

j=o

n
q.a. / L q

J J j=o j

is (nearly) minimal. Here aj denotes the depth of Bj in
the tree .

2) Changing the access frequency qj of Bj by an arbitrary
amount d € Z requires only small changes of the tree. In
particular. it should be possible to insert new objects
into the tree (qj = 0) and to delete objects from the tree
(d = -qj)'

The above problem comes up in many contexts. Consider for example a library system.
The objects would be books. Every request for a book would increase its frequency
count by 1. Retirement of a book corresponds to the deletion of an object (d = -qj)'
Furthermore. acquisition of a new book corresponds to the insertion of an object.
i.e. qj was zero and will be increased to some positive level. It is conceivable
that a librarian might want to make an initial guess at the popularity of a book
and set d to an appropiate value; this corresponds to the insertion with arbitrary
positive d. Furthermore. one might want to update the weight of objects not after
every single request. but sum up the requests separately. and increase the
weight qj by d at one blow. say whenever the weight has doubled.

In this paper we introduce D-trees which provide us with a solution to the above
problem which is optimal up to a constant factor.
1) The average search time (average weighted path length) is always ~ 2 . search

time in an optimal tree.
2) The cost of updating the structure after an arbitrary weight change is at

most proportional to search time. This is achieved by restricting the changes
of the tree structure to the path of search.

- 2 -

A solution to the above problem is called a dynamic
weighted tree; weighted because of 1) and dynamic because
of 2) . An immense amount of knowledge is available about
weighted trees (access frequencies are static and no in­
sertions and deletions take place) and dynamic trees (access
frequencies are 1, but insertions and deletions are allowed).
In particular, the weighted path length of a binary tree for

access frequencies Qo,Ql"" ,Qn i s at least

n q .
= L _1 log -.iL/ log 3

; =0 VI qi
n

wh ere W = L qi [cf. rleh 1 horn 77 J • Implementations of dynamic
i =o

trees are known which allow insertions and deletions in O(log
units of time.
Seve r al kinds of dynamic weighted trees were already proposed.
Saer proposed the fir s t solution, however he gave no theore-

n)

tical analy s is of it. Allen & Munro describe and analyse a probabi-

listic approach. Unterauer introduced B1/ 3 trees. The wei ghted
path length of B1/ 3 trees is always nearly optimal and the
expected update time after the insertion of a new key is pro­
portional to the length of the path of search. The underlying
as sumptions about the distribution of access frequencies are
reasonable. However, the update time may be exponential in the
size of the tree i n the worst case. O-trees were introduced in
[~l e hlh or n 79, see also Mehlhorn 77 J . In O-trees the frequency
change s a re re s tricted to + 1. D-tree exhibit the following be­
hav io r .

1) Th e wei ght ed pa t h le ngt h of a O-t ree i :; al"li ay s near-ly op t ima l.
I n pa rti cul ar aj = o (10 9 W/ q j) ~Ihere a · i s the de pth n; obj ec t

J
V'

B·
J

in t he O-tree.

2) Update time is at most proportional to s earch time in the
wor s t cas e.

In t hi s pap er we gen eralize O-trees and prov e the following
theorem.

- 3 -

Theorem: Let (qo.ql •...• qn) be a frequency distribution

and let W := qo+ql+ ... +qn' Let T be a D-tree for this

frequency distribution.

1) Searching for object Bi (which has frequency qi) takes
time O(log W/qi)' In particular. the depth of object Bi
in the tree T is bounded by 2 log W/qi + 3. Average
weighted path length is bounded by 2·A + 3 ~ 2·Y! . Popt + 3

where Popt is the weighted path length of an optimal search
tree.

2) Updating the tree structure after increasing qj by d takes
time O(log W/max(l.qj) + log max(l.d/W».

3) Update time after decreas i ng qj by d is
O(log W/max(qj-d .1». c

~ote that the factor log max(l.d/W) is usually negligible and
hence update time is proportional to search time. Since the
search time is within a constant factor of optimality we conclude
that D-trees provide a realization of dynamic weighted trees
which is optimal up to a constant factor. Hence they generalize
the behavior of balanced trees (AVL-trees. 2-3 trees) from the
unweighted to the weighted case.

D-trees are based on weight-balanced trees [Nievergelt & Reihgold]
As a byproduct of our analysis we obtain that weight-balanced trees
su pport the full repertoire of Concatenab1e Queue Operations
(Insert. Delete. Member. Concatenate. Split) wi th logarithmic
execution time per operation.

I n sect ion II we review weigh t -balan ce d trees and introduce
D-trees. In section III we show how to support concatenable
queues by weight-balanced trees. in section IV we deal with
weight increases and in section V with weight decreases.
Section III is mainly intended as a warm-up.

Knowledge of [Mehlhorn 79) is helpful but not required.

- 4 -

II. Preliminaries D-trees

D-trees [Mehlhorn 77 a or 77b] are an extension of
weight-balanced trees [Nievergelt & Reingold]. Weight­
balanced trees are a special case of binary trees.
In a binary tree a node has either two sons or no son.
Nodes with no sons are called leaves.

Definition:

Let T be a binary tree. If T is a single leaf then the
root-balance p(T) is 1/2, otherwise we define p(T)=IT~I/ITI,
where IT ~I is the number of leaves in the left subtree of
T and ITI is the number of leaves in tree T.

Definition:

A binary tree T is said to be of bounded balance a, or in the

set BB[a] , for 0~a~1/2, if and only if

1. a ~ p(T) ~ I-a

2. T is a single leaf or both subtrees are
of bounded balance a.

Remarks: a) The definition of root-balance is apparently unsymmetric with respect to
left and right. But note that ITI = IT~I + Tr where ~rl is the number of leaves in the
right subtree and thus ITrl/lTI = 1 -IT~I/ITI. This shows that the un symmetry is

inessential.
b) If T is in class BB[a], then IT~I ~ (l-a)'ITI, IT.Q,I ~ a'ITI, IT.Q,I ~ [(I-a)/a] 'I Tr l
and IT I > [a/(l-a)]'IT I. As an immediate consequence we infer that the depth of

.Q, - r
a BB[a] tree is O(log ITI)·

We add a leaf to a tree T by replacing a leaf by a tree consisting of one node and
two 1 eaves . "If upon the addi ti on of a 1 eaf to a tree in BB [a] the tree becomes un­
balanced relative to a, that is, some subtree of T has root-balance outside the
range [a,l-a] then that subtree can be rebalanced by a rotation or a double rotation.
In Fig . 1 we have used squares to represent nodes, and triangles to represent sub­
trees; the root-balance is given beside each node" .
Symmetrical variantes of the operations exist .

- 5 -

A
Rotation

B ~ 81
1---482 81+(1-81)82

A

Double
A 81 Rotation 81+(1-81)8283 B

c 82
82(1-83)

Fi gure 1

A
C

B 83

If we denote by x1,x 2, ... the number of leaves in the
respective subtrees show in Fig . 1 then the root-balance
of B after the rotation is (x1+x2)/(x1+x2+x3)' Using
~2 = x2/(x 2+x 3) and ~1 = x1/(x 1+x 2+x 3) this is easily seen

1-8283

to be equal to a1 + (1 - ~1)~2' The expressions for the other
root-balances are verified similarly .

For the sequel,a is a fixed real number, 2/11 ~ a ~ 1-V2/2

Nievergelt and Reingold state in their paper (without proof)
that rotations and double-rotations suffice to rebalance a
tree after the insertion or deletion of a leaf. provided that
a is restricted to the range 2/11 ~ a ~ 1-V2/2. In [Blum and
Mehlhorn] an rigorous proof may be found. They also show that
a constant number of rebalancing operations suffices on the
average provided that a < 1-V2/2. i.e. they show that the total
number of rotations and double-rotations needed to process an
arbitrary sequence of n insertions and deletions starting with
an empty tree is O(n). Here. we need a more detailed outlook
at the effect of rotations and double-rotations in weight­
balanced trees.

- Sa -

Lemma 1:

Let 0 < a ~ 1 - V2/2. Let T be a binary tree with left (right)
subtree T ~ (Tr) such that

1) Ti and Tr are in BB[al

2) a(l-a) ~ pIT) < a

Then a rotation about the root of T will produce a
tree in BB[a] if p(Tr) .::.. (l-2a)/(l-a) and a double
rotation otherwise .

Proof:

- 6 -

Compute the balance parameters of the trees obtained by
rotation and double rotation and show that they are in
the interval [a,l-a] . We give one example and leave the
rest to the reader.

Suppose we perform a rotation. Then the balance parameter

of the root is a1+(1-a 1)a 2 .

By assumption

a(l-a) -"'- a1 -"'- a

and a-",-a 2 -",-(1 - 2a)/(l-a).

Since a1 + (1-a 1)a2 is increasing in both arguments:

a1+(1- a1)a2 < a+(1-a)(1-2a)/(1-a) I-a
and

a1+(1-a 1)a2 > a(l-a)+(l-a(l-a))'a -

2
= a(1-a+1-a+a)

> a

if 2-2a+a 2 > 1 if (a_1)2 > O. "
A symmetrical variant of lemma 1 e xists. Togethe r they
show that rotations and double-rotations suffice to re­
balance a BB[a)-tree as long as the root-balances are in
the range [0(1-0),1-0(1-0)) .

Definition : A node v in a binary
balance p(v) of v is in [a(l-o),
of real numbers is ba1ancab1e if

tree is ba1ancab1e if the
1-0(1-0)). A pair (a,b)

b a E [0(1-0),1-0(1-0)].

- 7 -

D-trees are an extension of BB[a] trees. Given objects
Bo ,B 1,··· ,B n and access frequencies qo,q1, ... ,qn let T

be a BB[a] tree with W = qo+q1+ ... +qn leaves. We label

the leaves of T according to the following rule. The
left-most qo leaves are labelled by Bo' the next q1
leaves are labelled by B1 ,

Definition:

a) A leaf labelled by Bj is a j-leaf.

b) A node v of T is a j-node iff all leaves in the subtree
with root v are j-leaves and v's father does not have
this property.

c) A node v of T is the j-joint iff all j-leaves are
descendants of v and neither of v's sons has this
property.

d) Consider the j-joint v. qj j-leaves are to the left of
v and q~ j-leave~ are to the right of v. If qJ! > q~

J - J
then the j-node of minimal depth to the left of v is
active, otherwise the j-node of minimal depth to the
right of v is active .

e) The thickness th(v) of a node v is the number of leaves
in the subtree with root v.

A D-tree is finally obtained from the BB[a]-tree T by

1) Pruning all proper descendants of j-nodes

2) Storing in each node

a) a query of the form "if X < Bi then go left else
go right"

b) the type of the node: joint node. j-node or neither
of above.

c) its thickness
d) in the case of the j-joint the number of j-leaves

in its left and right subtree.

It was shown in [Mehlhorn 77a] that

- 8 -

a) the depth aj of the active j-node is O(log W/ q j) ,

more precisely aj ~ c l log W/qj + c2 where

c l = 1/1 og (1/ (1-a)) and c2 = l+c l ·

b) changes of the tree structure after increasing (decreasing)
access frequency qj by 1 are limited to the path from the
root to the active j-node and hence take time O(log W/qj) .

Compact D-trees were also introduced. They give the same
access time and update time bound, but use less space.

III. Concatenable Queues based on Weight-Balanced Trees

Aho, Hopcroft and Ullman introduced the concept of con­
catenable queues .A Concatenable queue is a family of
subsets of some ordered universe U together with the
operations INSERT, DELETE, MIN, MEMBER, CONCATENATE

and SPLIT where

INSERT (a,S)
DELETE (a,S)
fIIN(S)

MEMBER (a, S)
CONCATENATE (SI,S2,S3)

SPLIT (a,S,SI,S2)

S+Su{a}
5+5-{a}
min{a; a € 5}
the predicate a € 5

51 + 52 U 53
51 + {x; X < a and x € S}

52 + { x; x > a and x € 5}

The operation CONCATENATE is only applicable if max 52<min 53.

The sets 52 ,5 3 (the set 5) cease to exist after an application
of CONCATENATE (, 52' 53) (SPLIT (, S, ,)).

Various implementations of Concatenable queues exist
[cf. e.g. Aha, Hopcroft & Ullman, Mehlhorn 77b}.
All of them are based on some sort of height-balanced trees
(2-3 trees, HB-trees) and require O(log n) time units per
operation.

- 9 -

In this section we show that weight-balanced trees
also support the full repertoire of concatenable queue
operations. A set 5 of size n is represented by a BB[a] -
tree with n leaves. The leaves are labelled from left to
right by the elements of 5 in increasing order. An (interior)
node is labelled by the label of the rightmost leaf in the
subtree rooted at v. In order to search for an element X in
the tree with root v we only have to compare X with the
label of the left son of v . If X is not greater than we
continue the search process in the left subtree. otherwise
we proceed to the right subtree. It i s well known that the
operations IN5ERT. MIN. DELETE. MEMBER can be performed in
O(log 151) time units. [Reingold & Nievergelt. Mehlhorn 77b] .

CONCATENATE: Let sets 51 .52 be represented by BB[a]-trees

T1 and T2 • max Sl < min S2. Assume w.l.o.g. that IS 1 1 ~ IS 2 1.

Let vo 'v 1 •...• vm be the right spine of T1; i.e. Vo is the root.

vi+1 is the right son of vi for 0 < i < m. and vm is a leaf.
We will construct the following tree.

'\
/i---_...I

In order to make that construction work we only need to
show that there exists some i such that vo •...• vi and v
are balancable in the new tree. This follows from the
following lemma .

- 10 -

Definition: A sequence wo'w1,w2, ... of positive reals is a-admissible if

w. l/w. E [a, I-a]
1+ 1

for all i.

Remark: Let vo'v1,v2, ... be a path through a BB[a]-tree, Vo being the root.

Le t wi = th(v i) be the thickness of node v. Then wo,w1,w2, ... is a-admissible.

Remark: In the following estimations we will often use the fact that for

b > a the function fIx) = (x+1)/(x+b) is strictly increasing in x and
g(x) = (x-a)/(x-b) is strictly decreasing in x.

Spine-Lemma: Let wo ,w 1 ,w 2,oo .,wn be an a-admissable sequence

and 1 e t d E IR +. I f

then there exists some i namely

otherwise

such that

1) (w. l+d,d)
1+

i s balancable or = n

2) (d+w.,d+w· 1)
J J+

i s balancable for j < i

3) i :: max(c 1 log (wo/d) + c2 , - 1) whe re

c1 = 1/10g (l/(l-a)) and c2 = 1 + c1 log a.

Proof: If d/(w +d) > a then put o - . - -l.

Otherwise let i be maximal such that

Then d/(w i +1+d) ~ a or

d ~ aw i +1/(1-a).

n, d < aw i /(l-a) and

- 11 -

1) We have to s how: If i < n then (w i +1+d,d) is balancable.

Since d/(d+wi+l) ~ 0 by definition, it remains to s how
tha t

d(d+wi +1) ~ l-a(l-o).
For i = -1 t his is true by assumption, for i > 0 we even show

d/(d+w . 1) < I-a.
1+ -

Si nce d < ow i/(1-0),

<

w. 1 > ow. and
1 + - , a < 1/3

a/(1-a)
o/(l-a)+ o

o

a+a(l-o)

o
< 3/ 5

50/3
< 2/ 3 < 1-0

2) (d+Wj' d+w j +1) is balancable for j < i .

Certainly

Also d < aw i /(I-o) < aw/(I-o) and Wj+l < (l-a)w j . Hence

<

<

0,{1-0)+(1-0)
0/(1-0) + 1

0+(1-0)2 = a+I-20+0 2

=
d/wo --"-!...::..."'--- > 0

d/IV +(I-o)k o

if d/w o > 0(1_0)k-1, i.e. k-1 > log(d/owp)
10g(1-a)

l-a(1-0)

- 12 -

5ince is chosen such that d/(d+w i) < a we cannot have

- 1 > log (awo/d) / log (1/(I-a))

Hence

i < log (awo / d)/log (1/(I-a)) + 1

This proves 3) in the case i > O. For i = -1 there
is nothing to show. c

Let Wj = th(v j) for 0 ~ j < m. Then Wo = 151 1 and wm = 1.

Let d = I 52 1 ~ 1. Then

d/(w +d) < 1/2 < l-a(l-a)
0--

and hence the spine lemma applies. Let i be defined as in
the spine lemma. 5ince d/(wm+d) = d/(I+d) ~ 1/2 > a we
have i < m. We construct a new node v, make vi+l the left
son of v, make the root of T2 the right son of v and finally

make v the right son of vi' The label of v is the same as
the label of the root of T2 . The balance of node v is

wi+l/(1521 + wi +l), the balance of Vj (j ~ i) is

1-[Wj +l +d)/(W j +dD. By 1) and 2) of the spine lemma v ,vi"" ,v o
are balancable. Hence we only have to walk back to the root
and restore balance by rotations and double-rotations.

Finally i = O(log wold) = O(log 1511 - log 1521). This proves:

Lemma: Concatenate (,5 1 ,5 2) takes 0(/10gI511- 10g I521/) units
of time. Here I I denotes absolute value.

5PLIT: Let the set 5 be represented by BB[a]-tree T and let a

be an arbitrary element of the universe. We first search for a
in tree T. This takes 0(10g I51) units of time. Then we delete
all nodes on the path of search and collect the left and right
subtrees of that path in two sets J~ and Yr respectively. ~~

is an ordered forest of BB[a] trees T1,T 2, ... ,Ta for some q:. log 15!.

- 13 -

Let ti be the thickness of Ti , 1.::. i .::. q.

Trees T
i
+1, ... ,Tq are subtrees of the right brother tree

of Ti . Hence

t. 1 + ... + t < [(l-o)/ol·t. 1+ ~ - 1

by the remark following the de f inition of BB[ol-trees.
The tree T" ... ,T represent sets 51 , ... ,5 . I·Je execute

~ q q

Concatenate (5 l' 5 l' 5), Concatenate (5 2,5 2' 5 1) q- q- q q- q- q-- -. . . , Concatenate (5 1 ,5 1 ,5 2) and obtain a tree T which re­

presents the first set obtained in the split 5plit (a,5, ,).

Executing the above sequence Qf q-1 Concatenate-Operations

take

units of time.Here I log denotes absolute value. 5ince

15i+11+ . .. + 15q l

15 i 1

we have

t. 1 t 1+ + . . . + q
<

1-0

log
15i+1 1+ ... +1 5q l

1 5 . 1
1 if 1 5 . 1 >

1 -

log (1-0)/0 otherwise

<
1 1 5

1. 1

2·log -0 + log ----!..-__ _

o ISi +1 1+ ... +1 5q l

and hence
q-1

E O(llog(ISil/(I\+ll+ ... +ISq l))I)
i = 1

q-1
E 0 (2 10g(1-ex)/ex + 10gIS· I/(IS·+ 1 1+ ... + ISq l))

. 1 1 1
1 =

q-1
=O(q)+O(E

i = 1
10gIS· I/(IS. 11+ ... +IS I))

1 1+ q

q
O(q) + O(E f(x i))

i = 1

for every function f and arbitrary xis

= O(q) + O(log
q-1
n Is·I/(ls. 11+ ... +IS I))

i=l 1 1+ q

= O(q) + O(logISl I/ISql)

= O(q + 10g1Sl l) = O(log ISI)

- 14 -

This shows that Splits can also be executed in
Note further that non-trivial bounds for q and
us to improve the time bound. This fact will be

time O(log S).

Sq would allow
used in the

discussion of case 1 in section weight decreases.

Theorem 1: Weight-Balanced Trees support the full

repertoire of Concatenable Queue operations with a
performance bound of O(log n) per operation.

IV. Weight Increases in aD-tree

We now return to D-trees. In this section we treat weight
increases, in the next section weight decreases. Let T be

a D-tree for weights qo,q1' ... ,qn. Suppose we want to increase
qj by d. If d = 1 then the problem was treated already in
[Mehlhorn 77a]. If d is small with respect to qj (precisely
d < ~/(l - ex»qj) then the spine lemma is almost the answer.
This is worked out in IV.1 . If d is large with respect to
qj then we need an extension of the spine lemma, the path
lemma (see IV.2) .

I V . I. Small Weight Increases: - 15 -

In this section we show how to deal with small weight increases.
Theorem 2 is almost a direct consequence of the spine lemma.

Theorem 2: Let T be a O-tree of total thickness

W = qo+ql+·· ·+qn· Increasing qj by d can be done in time
O(log W/qj) provided that d < (a/(I-a)) qj or d = I.

Proof:

The case d = I is treated in [Mehlhorn 77aJ.

Suppose d < (a/(l-a)) qj. We first acc ess the active

j-node. This t akes time O(log W/qj). Let vo'v l ,··· ,v k '
.. . ,v m be the path from the root of T to the acti ve

j-node; vk is the j-joint. It is possible that k = m.

In this case there i s exactly one j-node .
I-a Let Wj = th(v j) for 0 < j < m. Then wk ~ qj) -a- d and

hence d/(d+w k) < a. Let be defined as in the spine

lemma. Then > k.

Ca s e I: > m-I . (This case will certainly apply if the

ac tive j-node i s the j-joint). Then we increa s e the thicknes s
of the active j-node by d, i.e. we increase its thickness from

vm to vm+d. By part 2) of the spine lemma the nodes vo '··· ,v m_1

remain balancable. So we only have to walk back to the root

and restore balance by rotations and double-rota t ions as
de scr ibed in [Mehlhorn 77aJ.

Case 2: i < m-2 . The relative position of j-joint and
active j-node i s as shown in the following figure.(We assume

w.l.o.g. that the active j-node is a left descendant of the

j-joint) .

, , , ,

j-joint

active j-node vm

We change the tree into

, , , , , , , ,
, ,

, , , , , , ,

- 16 -

j-joint

active j-node

d

v is a new node. Its right son is the new active j-node

of thickness d. By the spine lemma v,v i ,vi_I"" ,vo are

balancable. Hence we only have to walk back to the root
and restore balance by rotations and double rotations as
described in [Mehlhorn 77a).

In either case O(log W/qj) time units suffice to restore

the D-tree property.

If a = 1/4 then theorem 1 solves the problem as long as
weights are never increased by more than 33% in a single

step. Iterating this process gives us a solution to the
general problem with time bound O(max(l, log d/qj).IOg W/qj)'
Namely write d = d1+d 2+ ... +d k where

- 17 -

for < k

and

Then k = O(max(l, log d/qj)). Increase qj by d1 , then

by d2 , Since
W+d 1+d 2+·· .+d i

qj+d 1+d 2+·· .+d i
< W we obtain the

qj

above time bound. We show next that we can turn the multi­
plicative factor max(l,log d/qj) into an additive factor.

IV. Arbitrary Weight Increases:

We want to improve upon the procedure described at the end
of the previous section. Suppose we want to increase qj by d.
Let vo 'v 1 , ... ,v m be the path from the root to the active

j-node. As above we want to identify a node vi such that we
can leave the total weight increase below v. without destroying

1
the balance above vi too much. However, it will not be possible
to leave the total weight increase d in one additional j-node

Rather we will build two copies of the subtree rooted at vi+l.
In one copy we replace the left subtrees along the path from
vi+l to the active j-node by new j-nodes of the appropiate
weight, in the other copy we replace the right subtrees. Then
we make these copies the sons of a new node v. v is the new
j-joint. Finally v will take the position of vi+l as a son

Of vi.

..

,

V.
1 - 18 -

new j-joint

new j-nodes

In order to show that this strategy works we need to

prove a lemma s imilar to the spine lemma . Before st ating

the lemma we need to discus s one of the assumptions in
that lemma. Let's revi s ite the proof of Theorem 2 again.

Let vo 'v 1 , ... ,v m be the path from the root to the act ive

j-node and let i be defined as in the spine lemma, namely

i = rna x {j; d / (d +w .) < a) . If i > m- 1 the n cas e 1 0 f the
J -

proof applies. In that case we did not make us e of the

fact that i ~ k, i.e . vi i s a descendant of the j-joint.
In other word s , if d/(d+w m_

1
) < a then we s olved the

problem already .

Path - lemma :

and 1 et d E
let w ,w 1 ' ·· ·,w 1 o m-

IR+ . If

be an a-admissible sequence

and d/(d+w m_1) > a

then there e xists an (namely

i = min[{j; (d-w j +2)/d > cd U {m-2}]

such that

1) (d,d-w i +2) i s balancable or i+2 =

2) (w i +1+d,d) i s balancable

3) (d+Wj ,d+w j +1) i s balancable for

j < i - log all 0 9 (1-a) + 1. -

m

Proof: If i < m-2 then (d-wi+l)/d ~ a but

- 19 -

(d-w i +1)/d < a and hence d > wi +2/(I-a) and d < wi +1/(l-a).

If i = m-2 then (d-w m_1)/d < a and hence d < wm_1/(I-a) ~

wi +1/(I-a). Finally wi+2 ~ aw i +1 ·

1) If i+2 < m then (d-w. 2)/d > a is true by definition
1 + -

of i. Furthermore

(d-W i +2)/d < 1 - wi+2/d

< 1 - aw i +1/(w i +1/(l-a))

1 - a(l-a)

This proves condition 1).

2) We have to show

a(l-a) ~ d/(w i +1+d) < 1-a(l-a)
2a 2b

We first show 2b. Since d < w. 1/(l-a)
1+

d/(w i +1+d) :".
l+l/(l-a)

1/{1-a)

< 1/(2-a)

< I-a

iff

iff

1 ~ (2-a)(I-a) = 2-3a+a 2

a 2 - 3a + 1 > 0

iff (a-3/2)2 > 5/4

if a < (3-V5)/2 ~ 0.382

This shows 2b. Next we prove 2a.

If i = m-2 then there is nothing to show.

Otherwise d ~ wi +2/(I-a) and wi+2 ~ aWi+l and hence

d > aw i +1/(I-a). Thus

d/(d+w. 1) > alp-a)
1+ - a/(I-a)+1

>
a

= a -
a+l-a

This shows 2a.

3) We have to show

a· (I-a)
d+w'+ 1 < J

3~ d + Wj
< l-a(l-a)

3b

for all j < i-log a/log (I-a) + 1.

d+wj+l
>

Wj+l
a --> .

d + Wj
-

Wj

This shows 3a. Furthermore Wj > Wj +/(I-a) for all j
-

wi-k+l > w./(I_a)k-l
- 1

k d'(I-a)/(I-a)k > wi +1/(I-a) > - -

> d/(I_a)k-l
-

- 20 -

and hence

Thus

iff

iff

iff

iff

d+w" k 1 1- +

d + w" k 1 -

1
k >

(I -a) +1 -

1 > -

<
(1-a) k-l+ 1

(I-a) k-1+_1_
I-a

(1-a)k+ 1- a <

(1-a)k+ 1

(I-a)

k+1
(I -a) +(I-a)

(l_a) k+ 1 < a

k+ 1 > -
log a/1 og (I- a) .

- 21 -

1-a(l-a)

This proves 3b for all j with i-j = k ~ log a /lo g (l-a)-I. c

We are now ready to pre s ent the solution to the general
problem. Suppo s e we want to increase qj by d. Let vo 'v 1 ,··· ,v m
be the path from the root to the ac tive j-node. Let
Wj = th(v j). By the di sc ussi on pre ceeding the path lemma we

may as we ll assume that d/(d +w m_1) ~ a.

Case 1: (d-wo)/d < a. Then the path lemma applies. Let i

be de f ined as in the path lemma. Then i ~m - 2" We may assume

w.1.o.g. that vi+2 i s the right son of vi+1 " Consider the
path from vi+1 to vm_1 (both end points included). Let

L1,."" ,L p (R 1 , ... ,Rq) be the left (right) su btree s along
that path. Lp and Rq are the two son s of vm_1. One of them

i s the active j -node .

v. 2 1+

...
v -1

Let ~j (r j) be the thickness of Lj (R j). Then

Wi+2 =

Construct two copies of the tree T rooted at vi+l'

In the first copy. call it T1 • replace the trees

- 22 -

R1 •...• Rq by j-nodes of thickness r 1 •...• rq respectively.

in the second copy. call it T2 • replace the tree L1 •...• Lp

by j-nodes of thickness d-w . 2'~2""'~ respectively.
1+ p

Finally make Tl (T 2) the left (right) subtree of a new node

v. and let v replace vi+l as a son of vi'

v - 23 -

Remark: Note that on either side it may be possible to
combine j-nodes into larger nodes. This is easily done by
checking if the brothers of the newly constructed j-nodes
are j-nodes. We assume for the sequel that these combinations
are done. In particular, if i = m-2 and vm i s the right
son of vm_1 then the right son of v is a j-node of thickness

d. (Note that wm+2 = rql.

I
I d-wm+2 rq I
L _______________ ~

d

- 24 -

Tl is certainly a tree in BB[al, as is the right s ubtree

of T2 . The right subtree of T2 has thickness wi+2' its
left subtree is a j-node of thickness d-w i +2 . If i = m-2
then we can combine both nodes to a single j-node of

thickness d, cf. the pre ceeding remark. If i < m-2 then

the root of T2 is balancable by condition 1) of the path

lemma. Furthermore v is balancable by condition 2) of

the path lemma.

Next we need to show that the j-leaves still form a
contiguous segment of the leaves of the underlying BB [al

tree,that we can determine the queries assigned to the

new nodes efficiently/and that we can determine the type

of each of the new nodes. The first problem is resolved

by the following observation. Either Lp or Rq is the
active j-node and hence we insert the new j-leave s
immediately adjacent to some already existing j-leaves.

Hence the j-leaves still form a contiguous segment of

leaves. The assignment of queries to the fathers of the
new j-nodes of thickness r 1 , ... ,rq is also easy. The active

j-node has to be to the right of them and hence they

receive the query ".:i..i X ~ Bj _1 then go left else go right':

Analogously the query ".:i..i X ~ Bj then left else right" is

assigned to the fathers of the new j-nodes of thickness

d-w i +2 , i 2 , ... 'ip respectively. It remains to consider
node v. If v is not the j-joint then one of its sons is a j-node and
Vie ass i gn the query as descri bed above. Suppose noVl, that vis

i s the j-joint. The di s tribution of j-leaves
with respect to v is easily computed from the distribution
with respect to the old j-joint and the numbers r 1 , ... ,rq ,

d-w i +2 , i 2 , ... ,ip. Note that the old j-joint has to be one

of the nodes vi +1 ,v i + 2 ' ... vm_1 in this case .

Let ql (q2) be the number of j-leaves to the left (right)

of it in the D-tree before the insertion. Then ql+rl+ ... +rq

(q2+d-wi+2+i2+ ... +ip) j~eaves are to the left (right) of v.

It remains to show how to determine the type of the new nodes.

This was done already in the case of v. Consider any of the

new nodes in T1 . If such a node has an Li as its left son

then it is an "xyz"-joint if the corresponding node

in T was a an 'xyz'-joint. If it does not have an Li
as its left son then it is of no special type. An

analogous statement holds for T2 .

- 25 -

This shows that we still have a O-tree after the weight

increase of qj by d except that some of the nodes

vo'v 1 , ... ,vi,v root of TZ may be out of balance. Also

O(log(W/qj)) time units were spent up to this point.

Example: a = 1/4, we want to increase

20

14
+ d 13

4

3

5

ctlve J-no = j-joint

1
1

4

qj from 1 by 13. The path from the root to the active
j-node defines the following a-admissible sequence
48.28.14.10.7.2.1.

In the path lemma we have = 2. We construct:
__ ~ Vo

20

v

v·
3

VB
3

-no

VB
4

1
1

------11--
I v5
I
I

I 5
I

-no
1

I

I I ------------
2

- 26 -

3

- 27 -

Node v is the new j-joint. Among the nodes vo 'v 1,v 2 ,v,v;

only v2 is out of balance. It's balance is 4/27 < 1/4(1-1/4).
Hence v2 is not even balancable. This is in accordance with

claim 3) of the path lemma. c

It remains to show how to rebalance nodes vo 'v 1,··· ,vi ,v,
root of T2 . By claims 1 and 2 of the path lemma nodes v,

root of T2 are balancable. Hence we can use rotations and

double rotations as described in [Mehlhorn 77al.
Furthermore,by claim 3 there is some p < log o/log(l-o)-l

such that (d+w.,d+w. 1) is balancable for all j ~ i-p and
J J+

either (d+w. +l,d+w. 2) is not balancable or i-p+l=i+l, l-P l-P+
i.e. p = O. If P = 0 works then we only have to walk back

to the root and restore balance by means of rotations
and double-rotations. Suppose p > O. (In our example i = 2

and p = 1). Consider the path from vi - p+1 to the root v
of the newly constructed tree T of thickness d+w i +1.

Let L1 ,L 2. , ".L r and R1, ... ,R q be the left and right

subtrees along that path. Let R-s (r s) be the thickness of

Ls (R s)' So we are left ~ith an ordered forest

{ L1,L 2 , ... ,Lr,tree T with root v, Rq"" ,R 1} of D-trees.
This forest contains p+l trees. Consider any left subtree

Ls' Its thickness R-s is equal to Wj-Wj+l for some j,
i-p+l~j~i .
Hence

by the proof of the path lemma. Also

1-0(1-0) <

<

Thus

and

w. l+d J+

Wj + d

((1-0)/0)(w j -w j +1)+d

o(l-o)d

- 28 -

We want to use the spine lemma to insert Lr'" .,L 1
(in that order) into the left spine of T and Rq"" ,R 1
(in that order) into the right spine of T. T has thickness

d+w i +1. Hence

<
(l-a)d

(1-a)d+d

1-a 1

2-a
< 2"

and the s pine lemma applies (w j -Wj +1 play s the role of d
and d+w'+ 1 the role of w in that lemma). From the proof

1 0 1
of the path lemma we know wi+2 ~ (1-a)d and wi+1 ~ a Wi+2'

Hence wi+1 ~ ((1-a)/a)d. After inserting the first (p-1)
trees into the left and right spine of T its thickness has
grown to at most

d+w i +1+(p-l).(1-a)d ~ [1/a + (p-1)(1-a)1 d

Hence the i of the spine lemma is in

O(log [1 / a+(p-1)(1-a)ld) = 0(1). This s hows that the trees
ad

Lr , . . . ,L 1 , Rq , ... ,R 1 will be inserted above some constant

depth in T and hence these insertions take time 0(1). It is
easy to see how to update the additional O-tree information

during the insertion process. Finally, we use rotation s and
double-rotations to resto r e balance above v. . This s hows

1 - P

that increasing qj by d can be done in time O(log W/qj)
provided that (d-wo) / d < a, i.e. d < wo/(1-a).

Example continued: In our example we have p = 1, i . e. we
need to in s ert the left subtree of v2 in t he left spine of
the tree with root v. We obtain:

j-joi nt = v

-no e
1

u

6

5

Case 2: (d-w)/d > a , i.e. o -

Choose any d' < d such that

v

v

20

3
-no

2 5

d ~ w/{l-a).

(d'-wo)/d' < a and (d'-w1)d' > a.

Then go through the above with d' instead of d.

Case 1 applies with i = -1 and hence the tree shown in the
discussion of case 1 will be the entire D-tree after increasing

qj by d'. Now the root of the D-tree is the j-joint and hence
we may apply Theorem 2 repeatedly in order to increase qj by

additional d-d' units. The discussion following theorem 1 shows

that O(log (d/wo)) iterations \"/i11 suffice each of \"/hich costs

0(1) units of time.

- 29 -

Theorem 3: Let T be a D-tree of total thickness W = qo+ql+ ... +qn.

Increasing qj by d can be done in time O(log W/qj + log (max(l,d/W))).

So we can increase access frequencies by an arbitrary amount with

hardly paying any penalty (only O(log d/W) time units in addition to the

access cost). It is left as an exercise to the reader that the penalty

can be bounded by a constant in compact D-trees, i.e. weight increases
in compact trees take time O(log W/qj).

- 30 -

v. Weight Decreases

In this section we will show how to decrease the
access frequency qj by d £ IN. ~Je will a ssu me 0 ~ d ~ qj.

The solution will rely heavily upon the spine lemma.

Let vo ,v 1 ' ... ,v n be the path from the root to the

active j-node, let vk be the j-joint, k ~ n. Remember
that the number of j-leaves to the left and right
of the j-joint are stored in the j-joint and that the
thi ck ness w 1 of the father v 1 of the active j-node n- n-
is at least qj /2. This follows from the fact that all
j-Ieaves which are on the s ame side of the j-joint as

the active j-node are descendants of v 1. Hence the n-
thicknes s wn of the active j-node is at least a qj /2.

Su ppose d> wnfirst. The following figure shows the
relative position of j-joint and j-nodes.

J-joint

-------~-------~ ~

L~ ~
/ -n..--- ----- '

j-nod., ~
Fi g _ 2 Dotted J ines _ . . denot~ zero or Aor e tree edge ~ .

- 31 -

Let Xl be the thickne ss of the active j-node and let

be the di stri bution of j-leaves with respect

to the j-joint, q '.
J

+

Suppose w.1.o.g. that the active j-node i s a left
descendant of the j-joint. We delete t he active
j-node of thickness Xl and updlte the distribution

b ""'" I I 11 -+- q I! i nth e num ers ~ qj ... qj - Xl' qj J

j -joint. If qj > qj then we consider next the j-node of minimal
depth t o the left of the j-joint. Le t its thickness be x2 . As above
(in the first paragraph of this section) one s how s

x2 ~ aqj ~ a{qj + qj) /2 ~ a{qj-X I)/2. We delete the j-node of thick­

ne ss x2. Similarl y , if q~ < q~ then we consider ne xt the j-node of
J - J

minimal depth to the right of the j-joint. In thi s fashion we delete
j-nodes of thick ne ss Xl' '' ' ,x r _l until Xl +X2+ .. ,+xr > d. It is easy

to see that x. > cx{q .- xl - ... -x . 1)/2 for a11 i.
1 - J 1-

If we kee p a pointer t o the j-joint and to t he fathers of t he j-nodes
on either side of the j-joint which were deleted la st then the
proces s above takes time O{r + max depth{x.)). Here and in the

1·1 <l<r

sequel we will misuse not ation and use Xi als o for the j-node of
th ic kness Xi' We need a bound on r and dep th (xi) '

Lemma: Let Y1'Y2''' ' ,Y q E IN with

Let 0 < d < Yl + Y2+" .+Yq = Y and

a) r = O{log min{Y,d/{Y-d)).

b) Yi = n{max{Y-d,l)) for all < r.

Proof: Let i < r. Then

> a/Z (Y r + Yr+l + ... +Y q) > a/2(Y-d)

This proves b). Define

Y .. = y. + y. 1+"'+Y' for i < j.
"J ,,+ J

Then Y,' > a/Z . Y .. and hence
- 1 ,J

Y. 1 . < (1 - al Z) Y. .
1+ ,J "J

and further

Y 1 . > [11 (1- a/Z)] j - 1 y. .
,J J ,J

For j = r-l we obtain

. 1
[Z/(Z-a)]J- Yj'

- 3 Z -

d > Y1 ,r-l > [Z/(Z-a)]~-Z Yr -l ~ Z [2~a]r-z (Y-d)

This proves a)
observe tha t Y

for d < Y. If d = Y then
= Y

1
> [Z/(Z_a)]q-l Y

,q - q

we only have to
> [Z/(Z_a)]q-l

Let x1 'x Z" .. ,x q be the thickness of j-nodes in the order
in which they would be del~ed if we wanted to delete them all.

"

Then qj = x1+x Z+ ... +x q and xi ~ a(qj-x 1-.·.-x i _1)/Z = a/2(x i + • •• +x q).

Hence the lemma applies and we have

r = 0(109 min(qj' d/(qj-d)) and

depth (xi) = 0(109 W/x i) = 0(109 min(W/(qj-d),W)). This

shows that up to now only 0(109 min(W/(qj-d),W)) time units
are spent.

- 33 -

At this point we are left with the following problem.
We are currently working on a j-node of thickness xr

with x1+· .• +x r _1 < d ~ x1+ ... +xr and xr ~ Sl(qj-d).

we deleted j-nodes of thickness x1 •...• xr _1 and thus

created many unbalanced nodes. If d ~ wn then r = 1

and no j-node was deleted so far. Next we distinguish
cases: whether the thickness xr of the currently con­
sidered j-node has to be reduced considerably or not.
i.e. whether x1+ ... +Xr-d is small or not.

Case 1: x1+ ... +xr-d ~ (qrd)/2. i.e. the thickness xr

has to be reduced considerably. In this case we also
delete the j-node of thickness xr completely and in a
second pass increase the j-th access frequency by
(xl+ ... +xr)-d. At this point we deleted some j-nodes

to the left of the j-joint and some j-nodes to the
right of the j-joint. Consider the situation to the
left of the j-joint first. Let Uo be the father of
the j-node of thickness xl and let urn be the father

of the j-node of maximal depth which was deleted to
the left of the j-joint. Let uo'u l •.••• um be the path

from Uo to urn. Then the deleted j-nodes were right
sons of some of the ui's. In particular. the j-node of

thickness xl was the right son of uo· Deleting uo•··· ,u m
leaves us with an ordered forest consisting of the left
subtrees of those ui which are not father of a deleted j-node
plus the left subtree of urn. We want to concatenate these subtrees as described
in section II on concatenable queues. The situation here
corresponds exactly to the SPLIT operation. Let t l •...• t q
be the thickness of the trees in the ordered forest. Then
t1 < tl+···+t < I-a xl since the thickness of the left - q - a

(right) subtree of U o is less then t l + ... +tq (equal to xl).

- 34 -
a Furthermore tq ~ ~ xr since tq is the thickness of

the left subtree of um and the thickness of the right subtree

of um is at least xr ' The analysis of the SPLIT operation (Remark
immediately preceeding the statement of theorem 1. Note that

q ~ depth{xr) and 1511= t l , ISql = t q) shows that

tl
O{depth (x r) + log ~) = O{log min{W, W/qj-d)) time units

q

suffice to concatenate this ordered forest. (Note that tq is
the brother of x and hence tIlt < Wit = O{W/x). Furthermore r q - q r

depth (x r) = O{log W/x r). Finally observe that xr = ~(qj-d)
and that xr ~ 1).

An analogous statement holds for the right side of
the j-joint. Let us summarize what we achieved so far.
We reorganized the tree below the fathers of the j-nodes
of minimal depth on either side of the j-joint. Next we
need to organize above these nodes. We concentrate on
the left side first. Let v 1 be the father of the n-
j-node of thickness xl' By the reorganization described
so far the subtree rooted at v 1 was replaced by a n-
subtree of smaller thickness {at least thickness

tq = ~(qj-d)). This reduction in thickness unbalances

vn 2'v 3"" . However v . will remain balancable for - n- J

j ~ n-p. We will show that p can be bounded by a constant.

Lemma: Let wo ,w l , ... ,w n be an a-admissible sequence. Then

(wi-wn,wi+l-wn) is balancable for all

j ~ n - rl og {a 2/{I-a+(2))!log (I-a)

Proof: From wn_k ~ wn/{l-a)k we infer

wn-k+l - wn

wn_k-w n

> -

> -

wn_k+l/wn_k - wn/w n_k

I - w/w n_k

a - (I-a) k

1 k - (I-a)

a (I -a)

- 35 -

if 2 (l-a+a 2) (l_a)k a > -

if k > 109(a2/(I-a+a 2))
- log (I-a)

This prove s the lemma .

The lemma shows that p can be bounded by a constant
even
(Use

if we rep lace v 1 by a node of thickness O. n-
n-l instead of n in the lemma). Since we replace

vn_1 by a tree of non-zero thickne ss this i s even
more true.

Hence we only need to consider the ordered forest of

c

s ubtree s along the path from v to v 1. These subtree s n-P n-
have thickne sses w -w +1'···'w 2-w l' new thickness n-p n-p n- n-
of vn_1 . We merge this subtrees by mean s of the spine
lemma, say by choosing the thickest one and then merging
the other one s into it s left and right spine. All except
one of these merges can be performed in con s tant time.
The single exce ption i s the mergewiththe new subtree with
root vn_1 . However, this s ubt r ee ha s thi ckn ess n (qj-d),

and the other trees certainly have thickne ss ~ W. Hence
the time bound O(log min (W/(qj-d),W)) also holds. The
nodes above v and below the j-joint are balancable. n-p
Here rotations and double rotatio~suffice to rebalance
them. An analogous statement holds for the right s ide
of the j-joint.

Finally we need to balance the j-joint and the nodes above
it. By arguments quite similar to the ones above one can
s how that the same time bound O(log min (W/(qj-d) , W))
again hold s.

Altogether we have shown that the tree can be rebalanced in
O(log min (W/(qj-d),W)) time units after deleting j-node s
of thic kn ess x1 , ... ,xr . The j-th acess frequency now ha s the
value

- 36 -

In a second pass we increase the j-th access frequency
by x1+ ... +xr-d. By theorem 3 this does not destroy the
time bound stated above.

Case 2: x1+ ... +xr-d > (qj-d)/2.

In this case we do not delete the j-node of thickness xr .
Rather we decrease its thickness to xr-(d-xl-x2- ... -xr_l)

and include its remnants into the ordered forests con­
sidered above. Note that the remnants have thickness
>(qj-d)/2 (this is on the order of the bound we had for

xr and tq above) and hence the time bounds developed in
case 1 are still valid.

We summarize:

Theorem 4: Let T be a D-tree of total thickness

W = qo+ql+' ··+qn· Decreasing qj by d can be done in time

O(log min (W, W/ (qj-d))).

So,the time needed to restructure the tree is at most
proportional to the new access time.

Example: We continue our example of the previous section.
Suppose we want to decrease qj by 7 . This forces us to delete
the active j-node of thickness 6. Since

(6+5) - 7 , (14-7)/2

we decrease the thickness of the j-node of thickness 5 to 4 .
Then we rea ss emble the forest consisting of the two trees

1

into

1

e

-no e
1

1

I j-node I
4

I J-node I
4

a~d replace the tree rooted at u by the tree above.
No other changes are required.

If we wanted to decrease qj by 8 then case 1 would
apply. In this case the subtree rooted at u would be
replaced by the tree

-n e

1 1

- 37 -

No other changes are required. In a second pass we would
increase qj by 3.

Bibliography
:::;:;:=:;:;::;:======

Aho, Hopcroft & Ullman: "The Design and Analysis of
Computer Algorithms", Addison Wesley, 1974

- 3B -

Allan, B. & Munro, I. : "Self-Organizing Binary Search Trees",
JACM, Vol. 25 (197B), p. 526-535

Baer, J.L. : "Weight-balanced trees", Proc. AFIPS, Vol. 44,

1975, pp. 467-472

Blum, N., Mehlhorn K. : "On the average number of balancing
operations in weight-balanced trees", 4th GI Conference
on Theoretical Computer Science, Aachen 1979, LNCS Vol. 67,
pp. 67-7B, to appear in TCS

Mehlhorn, K. [79] : "Dynamic Binary Search, SIAM Journal of
Computing, Vol. 8, Nr. 2, 1979, pp. 175-198

Mehlhorn,K. [77]:"Effiziente Algorithmen", Teubner Verlag,
StudienbUcher Informatik, 1977

Nievergelt, J., Reingold, E.M. : "Binary Search Trees of Bounded
Balance", SIAM J. Comput. Vol. 2, No.1, March 1973,

pp . 33-43

Unterauer, K.: "Optimierung gewichtetet Bin~rb~ume zur
Organisation geordneter dynamischer Dateien", Doktor­
arbeit, TU MUnchen, 1977

Unterauer, K. : "Dynamic weighted Binary Search Trees '; Acta
Informatica, pp. 341-362, 1979

	A_1978_04 0000_1heitscover
	A_1978_04 0001
	A_1978_04 0002
	A_1978_04 0003
	A_1978_04 0004
	A_1978_04 0005
	A_1978_04 0006
	A_1978_04 0007
	A_1978_04 0008
	A_1978_04 0009
	A_1978_04 0010
	A_1978_04 0011
	A_1978_04 0012
	A_1978_04 0013
	A_1978_04 0014
	A_1978_04 0015
	A_1978_04 0016
	A_1978_04 0017
	A_1978_04 0018
	A_1978_04 0019
	A_1978_04 0020
	A_1978_04 0021
	A_1978_04 0022
	A_1978_04 0023
	A_1978_04 0024
	A_1978_04 0025
	A_1978_04 0026
	A_1978_04 0027
	A_1978_04 0028
	A_1978_04 0029
	A_1978_04 0030
	A_1978_04 0031
	A_1978_04 0032
	A_1978_04 0033
	A_1978_04 0034
	A_1978_04 0035
	A_1978_04 0036
	A_1978_04 0037
	A_1978_04 0038
	A_1978_04 0039
	A_1978_04 0040

