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Abstract 
======== 

We consider search trees under time-varying access probabi-
t lities. Let S = {B 1 , ... ,Bn } and let Pi be the number of 

accesses to object Bi up to time t, wt = L pi . We intro­

duce D-trees with the following properties. 

1) A search for X = Bi at time t takes time O(log wt/pi). 

This is nearly optimal. 

2.) Update time after a search is at most proportional to 

search time, i.e. the overhead for administration is small. 
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I. Introduction 
===========:;;;;;;:== 

"One of the popular methods for retrieving information by its 

' name' is to store the names in a binary tree. We are given n 

names B1 ,B 2 , . • . ,Bn and 2n+1 frequencies ~1' •.. '~n,ao, .•. ,an 

with L~.+La.=1 . Here ~ . is the frequency of encountering name 
l. J l. 

B. and a . is the frequency of encountering a name which lies 
l. J 

between B. and B.+1 , a and a have obvious interpretations" 
J Jon 

[K 71]. 

A binary search tree T is a tree with n interior nodes (nodes 

having two sons), which we denote by circles, and n+1 leaves, 

which we denote by squares . The interior nodes are labelled 

by the B . in increasing order from left to right and the leaves 
l. 

are labelled by the intervals (B j ,B j +1 ) in increasing order from 

left to right. Let b i be the distance of interior node Bi from 

the root and let a i be the distance of leaf (B j ,B j +1 ) from the 

root . To retrieve a name X, b . +1 comparisons are needed 
l. 

and a i comparisons are required if Bj <X<B j +1 . Therefore 

define the weighted path length of tree T as : 

p = 
n 
L ~ . (b.+1) + 

i=1 l. l. 

n 
L a

J
. a

J
. 

j=o 

if X=B . 
l. 

we 

A large number of papers was written on the subject of con­

structing optimal or nearly optimal binary search trees [BAY, 

FM, GM, GW, GMS, HO, HT, K 71, L, M 75, M 77a, Rl. 

We quote two results: 

It is possible to construct a tree T, even in time linear in 

the number of nodes, such that 

and 

[FM, M 77a, M 77bl. Furthermore these bounds are almost sharp for 

most nodes and leaves [GMS, M 77bl. More precisely, for any d E ~ 



and h > 0 let 

and 

-d (10g(1/a j )-h)/10g(2+2 )} 
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-d = {j; b
i

+1 ~ (log 1/Bi -h-d)/10g(2+2 )} 

Then 

i.e. only a small percentage of the nodes can be considerably 

higher in the tree than stated in the upper bound. These results 

show that the best we can expect from binary search trees is 

"logarithmic" behaviour. 

In many applications the access frequencies are 

a) not known in advance 

b) changing over time 

and therefore (nearly) optimal binary trees are not readily 

applicable. In this paper we introduce D-trees (dynamic-trees) 

in an attempt to resolve this difficulty and thus answer a 

challenge of Knuth [K 711: "A harder problem, but perhaps solvable, 

is to devise an algorithm which keeps its frequency counts empi­

rically, maintaining the tree in optimum form depending on the 

past history of the searches. Names occuring most frequently 

gradually move towards the root, etc.". 

We suggest the following model. With every node B. and leaf 
t ~ t 

(B j ,B j + 1 ) we associate its frequency count Pi and qj respectively. 

Here pi is the number of searches for X=Bi performed up to time t 

and qt
J
. is the number of searches performed for XE(B.,B.+1 ) per-

t t t ) ) 
formed up to time t. We use W = LPi+ Lq . for the total number of 

accesses up to time t. Then si = pi/wt ~a~=q~/wt) is the relative 

access frequency of node B. (of leaf (B.,B. 1)) at time t. A 
~ ) J+ t t 

search for X E Bi (X e (B j ,B j + 1 ) at time t increases Pi (qj) by one. 

We drop the upper index t when it is clear from the context. Our 

tree structure exhibits the following behaviour: 

1. The tree is always nearly optimal, i.e. a search for X=B. 
t ~ 

(XE(B j ,B j + 1 )) can be carried out in time O(log 1/Bi) (O(log 
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2. The time needed to update the tree structure is at most 

proportional to search time. This is achieved by restricting 

updating to the path from the root to the node (leaf) searched 

for. 

3. New names can be inserted in time O(min(n, log W». 

In section II we review some facts about weight-balanced trees 

[NR] . 

In section II we introduce D-trees and show properties 1) and 2) 

above. 

In section IV we give an alternate definition and work out some 

of its properties. Section V is dedicated to compact D-trees, 

in section VI we give some extensions. Finally, we apply D-trees 

to TRIES. 
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II. Preliminaries: Weight Balanced Trees 
======================================== 

Nievergelt and Reingold introduced weight balanced trees 

(cf. [NR] and [M 77b} ). We review some of their definitions 

and adapt them for our purposes. In a binary tree every node 

has either two sons or no son at all. Nodes with no sons are 

called leaves. 

Definition: Let T be a binary tree. If T is a single leaf then 

the root-balance pIT) is 1/2, otherwise we define p(T)=ITil/ITI, 

where ITil is the number of leaves in the left subtree of T and 

ITI is the number of leaves in tree T. 

Definition: A binary tree T is said to be of bounded balance a, 

or in the set BB[a) , for 0 ~ a ~ 1/2, if and only if 

1. a ~p(T) ~ 1-a 

2. T is a single leaf or both subtrees are of bounded balance a. 

The depth of a tree T of bounded balance a is O(logITI). We add a 

leaf to a tree T by replacing a leaf by a tree consisting of one 

node and two leaves. "If upon the addition of a leaf to a tree in 

BB[a) the tree becomes unbalanced relative to a, that is, some 

subtree of T has root-balance outside the range [a,1-a) then that 

subtree can be rebalanced by a rotation or a double rotation. In 

Fig. 1 we have used squares to represent nodes, and triangles to 

represent subtrees; the root-balance is given beside each node". 

Symmetrical variants of the operations exist. 

Fig. 1 
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Fact (Nievergelt and Reingold) If a S l-v2/2 and the 

insertion of a leaf in a tree in BB[a) causes a subtree T 

of that tree to have root-balance less than a, T can be re­

balanced by performing one of the two transformations shown 

above. More precisely let a2 denote the balance of the right 

subtree of T after the insertions has been done. If 

a2 < (1-2a)/(1-a) then a rotation will rebalance T, otherwise 

a double rotation will rebalance T. 

The search time in weight-balanced trees is proportional to 

the logarithm of the number of leaves. Updating the structure 

upon insertion (or deletion) of a leaf can be done in time 

proportional to the search time. It takes constant time on the 

average [BM). In the next section we adapt weight-balanced trees 

to binary search trees. 
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III. D-Trees: The basic scheme 
============================== 

In this chapter we restrict the discussion to the case that 

only searches for the leaves of a binary search tree are per­

formed. Let qj be the number of searches for some X€(B j ,B j +1 ), 

o ~ j ~ n, performed up to now and let W = Eq. be the total 
J 

number of searches performed so far. We assume qo = qn = 1 

to avoid some technical difficulties. This can always be 

achieved by adding two extra names. 

From now on a is fixed, 0 < a~1-V~"I2. 

Let T be a tree in BB[al with W leaves. The leaves of Tare 

labelled from left to right according to the following rule. 

The first qo leaves are labelled with (,B 1 ), the next q1 

leaves are labelled with (B 1 ,B2 ), .•. • The idea of duplicating 

leaves appears implicitely in [M 77al and explicitely in [Ll. 

Definition: 

a) A node v of T is a j-node, 0 ~ j ~ n, if all leaves in the 

subtree with root v are labelled with (B j ,B j +1 ) and v's father 

does not have this property. 

b) A node v of T is the j-joint, if all leaves labelled with (B j , 

Bj +1 ) are descendants of v and neither of v's sons has the 

property. 

In general, the j-joint is not a j-node. If it is, then there 

is just one j-node. Fig. 2 shows the relative position of j-nodes 

and the j-joint. 
J-Jolnt 

__ ----0-----
~ ,~ 

, 

--t< j-nodes 

Fig_ 2 Dotted 1 ines .. , denote zero or more tree edges. 
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Definition: 

a) Consider the j-joint v. qj of the leaves labelled with 

(B j ,B j +1 ) are left of v and qj are right of v. If qj ~ qi 

then the j-node of minimal depth to the left of v is active, 

otherwise the j-node of minimal depth to the right of v is 

active. 

b) The thickness th(v) of a node is the number of leaves in the 

subtree with root v. 

Lemma 1: 

Let a
j 

be the depth of the active j-node in tree T. Then 

a j S c 1 log 1/aj +c2 , where c 1=1/10g(1/(1-a», c 2=1+c
1 

and 

a j = q/W. 

Proof: 

Let v be the active j-node, a j the depth of v and let w be the 

father of v. We show th(w) ~ qj/2. If v is the j-joint then 

th(v) = qj and we are done. Otherwise v is a left or right 

descendant of the j-joint. Suppose v is a left descendant. Then 

~ qj/2 of the leaves labelled with (B j ,B j +1 ) are in the left 

subtree of the j-joint. All of them are descendants of w. Hence 

th(w) ~ qj/2. w has depth a j -1. Since the tree T is of bounded 

balance 

and hence 

a.-1 
th(w) S (l-a) J W 

a. s 2 
J 

a -1 
(l-a) j 

Taking logarithms yields the result. 

Example: 

a 

Let a = 1-V2/2. Then c 1=2, c 3=3 and hence a j S 2 log 1/a j +3. 

No analogue to lemma 1 exists if one takes height-balanced 

trees instead of weight-balanced trees as the underlying tree 

structure. 



Next we have to assign queries to the nodes of tree T. 

The queries are of the form 

"if X < Bj then go left else go right". 
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We assign queries in such a way as to direct a search for 

X E (B j ,B j +1 ) to the active j-node. Then lemma 1 assures 

us that search time is logarithmic and thus nearly optimal. 

Let v be any node of T. Let j be maximal with: the active j-node 

is left of v. Then we assign the query "if X < Bj + 1 then left 

else right" to v. 

This rule assigns queries to all nodes of v. It is apparent that 

a search for X E (B j ,B j +1 ) is directed to the active j-node. 

Fig. 3 is Fig. 2 redrawn; this time the queries are shown. 

'-

, 

'-
'-

F i 9. 3 

'­
'-

, 

'- B. 
) 

B. 
J 

act ive 
L_~j-node , 

Bj +1 

, 

, 
.-

" 

Before we describe searching in and updating of our tree structure 

we have to say more about the information stored in the nodes. 

1. All proper descendants of j-nodes are pruned. 

2. In each remaining node of the underlying tree of bounded 

balance a we store 

a} the type of the node: joint node or j-node or neither of 

above 

b) its thickness 
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c) in the case of a joint node the number of j-leaves in 

its left and right subtree. 

d) in the case of a j-node a pOinter to the element B. of 
J 

a linear list containing the names B1 , •.. ,Bn in that order. 

An array will do if the insertion of new names is not 

required (cf. section VI). 

Suppose now that we search for some X E (B j ,B j + 1). We descend 

the tree as directed by the queries and end up in the active 

j-node. As we descend the thickness of every node encountered 

during the descent is increased by one. Then we ascend and re­

balance the trees as in the case of trees of bounded balance a. 

Three new problems arise. Assume that we reach node w from its 

right son v. Then we searched below v. The thickness of wand v 

were both increased by 1. If the root balance p(w) ; (th(w)-th(v))/ 

th(w) is less than a then we have to rebalance the tree. We treat 

the case of a rotation and leave the case of a double rotation 

for the reader 

Rotation 

Figure 4: 

Problem 1: 

v is a j";node for some j. Then the trees 2 and 3 do not exist 

explicitely. We recreate them by splitting v into 2 j-nodes of 

thickness lth(v)/2J and rth(v)/21 respectively. Then 

1/3 $ p(v) ; lth(v)/2J/th(v) $ 1/2 because of th(v) ~ 2. A 

rotation will rebalance the tree.Note further that the j-node 

v is to the left of the j-joint (cf. figure 2). Hence the query 

assigned to v after the rotation should be 

The name Bj can be found using the pOinter 

containing all names. 

.. if X < B. 
J 

.. 
into the linear list 
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Problem 2: 

w is a j-node after the rotation. Then we have to combine the 

two trees 1 and 2 into a single node. 

Problem 3: 

Queries have to be changed. This can only happen if the active 

nodes change. This can only be the case if the active node is 

split (problem 1) or combined (problem 2) or if the distribution 

of the leaves labelled with (B
j

,B j + 1 ) with respect to the j-joint 

changes. The first two cases were treated already. The distribution 

of the leaves labelled with (B j ,B j +1 ) with respect to the j-joint 

can only change if the j-joint is one of the nodes involved in 

the transformation, i.e. it either node w or v in the figure 

above. If v is the j-joint then the distributions does not change. 

If w is the j-joint then we have to distinguish two cases. 

Case 1: The tree ~ contains no j-node. Then all j-nodes to 

the right of w (the j -joint) are elements of the subtree .6 . 
This can be checked by comparing the thickness of the root of 

~ with the number stored in the j-joint w. In this case nothing 

has to be changed. 

Case 2: The tree ~ contains a j-node. Then ~ is a j-node and its 

thickness is strictly smaller than the number stored in w. Then w 

ceases to be the j-joint, v becomes the j-joint. The query assigned 

to w after the rotation is "if X < Bj then •.. ". The distribution 

of the j-leaves with respect to the new j-joint v can be computed 

from the thickness of the j-node ~ and the distribution stored 

in the old j-joint w. The distribution is stored in v and the 

appropiate query is assigned to v. Again the names Bj and Bj +1 
be found using the pointer stored in the j-node ~ • 

Problem 4: Nodes change their type. 

Case 1: A joint node can only change its type if it is 

involved in the rotation. Hence this problem was treated 

already in problem 3. 

Case 2: A j-node can only change its type if it is involved 

in the rotation. Hence this problem reduces to problems 1 

and 2. 

can 
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We summarize the discussion. We use trees of bounded balance in 

order to implement search trees. The depth of the active j-node 

is always less than c 1 log 1/as+c2 for some small constants c 1 and 

c~. Here, ~; is the relative frequency of leaf (Bj ,B j +1 ) at 

t1me t. Updating is restricted to the path from the root to 

the active j-node. In each node of the path a constant amount of 

work is necessary. Thus searching and updating the structure 

can be performed in time O(log 1/a j ) . 

Theorem 1 : 

Consider a D-Tree based on a BB[a] -tree with 0 < a S 1-V2/2. 

t 
a) Let qj be the number 

to time t 

of searches for X E (B . ,B .+1 ), 0 S j < n, 
t t J J 

performed up and let W = Eqj' Then at time t a 

search for X E (B
j

,B j +1 ) can be executed in time O(c 1 lOg W1q!+c2 ) 

where c
1 

= 1/log(1/1-a» and c 2 = 1+c1 . The time needed to update 

the tree structure is proportional to the search time. 

t tt t t t t b) Let a
j 

= qj/w, H = H(a
o

,a1 , •.• ,an ) = -Ea j log a j , let Popt 

be the weighted path length of an optimal search tree for the 

distribution and let P be the weighted path length of the D-tree 

at time t Then 

where c 1 ,c2 are defined as in a) 

c) The number of nodes in a D-tree is O(n(1+log W» 

Proof: 

a) is immediate from lemma 1 and the preceeding discussion. 
t 

b) Let a . be the depth of the active j-node at time t. 
t J t 

Then a j S c 1 log 1/aj + c 2 by lemma 1. Hence 

P = 
t t 

Ea .a. 
J J 

S t log 1/ al:) Ea j (-c 1 + c 2 J 

S c 1 'H + c 2 

S c 1 'Popt + c 2 



since H ~ P
opt 

by Gilbert and Moore [GM, K 73, M 77bJ. 

c) Suppose there are k j-nodes v" ... ,vk of thickness 

- '2 -

(' ) (k). . d th q , ... ,q respect~vely. k, of these J-no es are to e 

left of the j-joint. Among these v, has maximal depth and v k , 
has minimal depth. Let w be the father of v k . Then , 

and hence 

th(v
k 

) / th(w) ~ a , 

Furthermore , ~ q(') = th(v,). The depth of node v, in the 

tree with root w is bounded above by c, log (th(w)/th(v,)) + c
2

• 

(Lemma '). v, has depth ~ k,. 

Thus 

From this we conclude that the number of j-nodes is 

~ d, log qj + d 2 for suitable constants d, and d 2 . Hence the 

total number of j-nodes, 0 ~ j ~ n, is 

n 
d, . j:O log qj + d 2 (n+') 

Since the j-nodes are the leaves of the D-tree the total 

number of nodes is O(n(' + log W)). c 

Example: Figure 5 shows a D-tree for the distribution (qo,q" 

q2,q3,q4) = (2,3,',8,2) based on a tree in BB['/4J. The j-nodes 

are indicated by square boxes, the active j-nodes are underlined, 

the thickness of the j-nodes is written on top of them and 

finally the distribution of the j-leaves with respect to the 

j-joints is written on top of the joint nodes. 
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1 B3 7 

Figure 5 

Suppose we search for X < B1 . The search is directed towards the 

active O-node and destroys the balance in the node between the 

O-joint and the 1-joint. A rotation about that node rebalances 

the tree. One gets 
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1 

unchanged 

2 1 

unchanged 

Figure 6: 
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IV. A Modified Definition 
========================= 

Recall that the active j-node is the minimal depth j-node 

in that subtree of the j-joint which contains at least one 

half of the j-leaves. Hence the active j-node is not necessarily 

a j-node of minimal depth. An example is shown in figure 7. 

Figure 7: A D-tree for qo = 5, ql = 18. 

Of course, search time could be improved by ensuring that the 

active j-node is always a j-node of minimal depth. This leads 

to the following alternate definition of active j-node. 

Definition: (alternate definition of active j-node). Exactly 

one of the j-nodes is active. The active j-node is a j-node 

of minimal depth. 

Lemma 1 and hence Thrn. lb) is obviously true for the alternate 

definition of active j-node. However, the bound for the weighted 

path length can be improved considerably. 

Theorem 2: 

(Average Search Time in D-trees with the alternate definition 

of active j-node). 

where c = 1 + l/a. 
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Example: Let a = 1 - V2/2. Then 1/H(a,1-a) = 1.09 and 

c = 3 + 1/2 '" 4.41. Because of !' ~ H(aO'''' ,an) [GM,K73,M77ti! 

always, average search time is at most 9% above the optimum. 

Proof: Suppose there are mj j-nodes v 1 , ... ,vm . with thickness 
) 

q. , ... ,q. and depth a. , . • . ,a. respectively. Then 
)1 )mj )1 )mj 

qj = q . + ... + qjm. )1 ) 
and 

a j = min (a. , ... /a. 
) 1 )mj 

) . 

A 
n mj Thus 

P " P = L L (q. /w) a . . 
j=O i=1 )i )i 

An easy induction argument on the height of the D-tree shows 

p" d . H(a01,a02, ... ,aomo,a11, .• . ,a1m'''') 

where d = 1/H(a,1-a) and a . = q . /W. By the grouping axiom 
)i )i 

n 
= H(ao, ... ,a ) + L 

n j=O 
) . 

Choose k such that v 1 , • •• , v K are left of the j-joint and 

vK+1 , . • . ,vm . are right of the j-joint. Let a)~ = a. + . . . +a . 
) ) 1 )K 

and aj = a j - aj. Again, by the grouping axiom 

a. a . 
) 1 )m. 

H(---, ... ,~) " a. a. 
) ) 

a~ 
H(....J. 

a. ' 
) 

a'! 
....J.) + a. 

) 

1 a. a. 
~)1 )K 

H(---" ••• ,--,-) + a . a. a. 
) ) ) 

a. a. 
)K+1 )m. 

H( a'~ , ... ,~). 
) a j 

Consider nodes v
1
""'v

K
• Among these v 1 has maximal depth and 

vk has minimal depth (cf. figure 2). For 2 " ~ " k let w~be the 



father of v i and let z i be the other son of wi . Then 

th(wi ) = th(v1 )+ ... +th(vi ) + x 

th(z i ) = th(v1 )+ ... +th(vi _ 1 ) + x 

for some number x. Furthermore th(z i ) S (l-a )th(wi ) 

since the underlying tree is in BB[a] Hence 
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for 2 Si S k. By repeated application of the group ing axiom 

a . 

a~ H(..2! 
J a~ 

J 

Hence 

and 

a. 
J k 

I ••• I ~ 
J 

= 

k 
E 

i =2 

k-2 
E 

i =O 

i (l-a) . (a . + ... +a . ) 
J 1 Jk 

(l/a)·(a. + ... +a . ) 
J 1 J k 

P S (l / H( a ,l-a )) • [H( a O, ... , a n ) + 1 + l/a] . 

The implementation of D-trees with the alternate definition 

of active nodes is considerably more difficult than the one 

suggested in section III. This comes from the following fact: 

With the old definition of active j-node a different j-node 

can become active after a transformation only if the distri­

bution of the j-leaves with respect to the j-joint changes. 
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This can only be the case if the j-joint node is involved 

in the rotation or double rotation. However, this is no 

longer true for the modified definition of active j-node. 

A different j-node may become active if the distance of 

some j-node to the j-joint changes. This can happen even 

if the j-joint is not involved in the tree transformation 

but rather the transformation takes place far below the 

joint node. This forces us to include some additional in­

formation in aD-tree: 

For every j(O ~ j ~ n): The j-nodes and the j-joint are 

kept in a doubly linked list in symmetric order. With each 

link of the list we associate the distance of the j-node 

(if the j-node is of minimal depth) or the distance to the 

father of the j-node above. Figure 8 shows the D-tree of 

figure 5 with the additional data structure. 



p ~ --? . . + 3lf"" V-jOl"" 

~~\ " 3 

,- >:'~ X j II " /I =~ '~1 
",-~,'P.l~ \ \ \\3 "'-0 :R 

, _ I! / \ • 

_ ·rX'h~ \\2\ \).1\ I'A:~ IX 
lor I=S \~\ [C~) C~] !k~_Jl ~ ,=:f, 6 r--' f~r p \~"'~I ,-4) ,~, , "" .... _~~_._._I '---_d.--.. .. - __ . _ _ .',, .. _ __ .. ,J L ____ • _ ___ • __ ._.......-_ .. ___ ••. .•. ~_ .. _ _ ._ __ - I, .---- -!.--, - .. --.. .. ~ .-y----.J 

'" 1 .. - - '.l c".~ ./ 

-- / l' ~ ~>- ./,. 
"f" 

., 

~~ 

/" 

( 1: ) 
; ~ n "t ) :1, J. 

(1;2 1 7) I _ (~7 1~) 
~; Cl?'1; ) 

Figure 8: The D-tree of figure 5 redrawn for the modified definition of active node. 
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It remains to describe the search and update process. 

Assume we search for some X E (B
j

,Bj +1 ). We descend the 

tree as directed by the queries and end up in the active 

j-node. The nodes passed during the descent are stacked. In 

addition, the nodes are entered into two linked lists, the 

R-list and the L-list. A node is stored on the R-list if it 

is left via its right link; the L-list contains all nodes 

which are left via their left links. 

Example: Assume that we search for X E (B2 ,B3 ) in the tree 

of Fig. 8. Then the stack contains 

~r--R-list 

3-joint, 1-joint, B3 ' B2 ,active 2-node 

~ '---=--L-list 

with the R- and L-lists as shown. 

Furthermore the thickness of every node (including the active 

j-node) encountered during the descent is increased by one. 

Then we ascend (using the stack). Suppose we reach node v from 

node w. We may assume w.l.o.g. that w is v's right son. 

Case 1: th(w) $ (1-a)th(v). Then everything is fine. We delete 

v from the stack and the R - and L-list (wherever it is on) and 

ascend one more level. 

Case 2: th (w) > (1- a) th (v). We distinguish two cases. 

Case 2.1 : w is a j-node for some j. Then w is the j-node with 

X E (B j ,B j +1). We split w into 2 j-nodes w1 , w2 of thickness 

Lth(w)/2J and Lth(W)/2 J respectively. 
v 

u 

w 

Figure 9: 
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Then a ~ peW) ~ 1/2 ~ (1-2a)/(1-a). Remember that a ~ l-v2/2 

and thew) ~ 2. By fact 1 a rotation will rebalance the tree. 

We obtain 

w 

Figure 10: 

If either v or w was the j-joint before the rotation when w is 

the j-joint afterwards. In either case we insert w1 ,w2 (and may 

be w) into the proper place of the doubly linked list of j-nodes. 

The rotation demotes u by one level. This might cause 

a node below u to become inactive. Let (B j ,B j + 1 ) 

x~ ______ __ 

,0 , 

figure 11: 

be the leftmost leaf below u and let x be the first node on the 

R-list. Three cases may occur. 

a) x is the j-joint. Then we increase the number associated with 

the link from x to the j-node below u by 1. Then we compare the 

number with the number associated with the link to the left and 

change the query assigned to x if necessary. Note that this will 

direct future accesses to X E (Bj ,B j +1 ) to the newly active 

j-node. 
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b) the other subtree of x is an j-node. Then we increase the 

distance from this j-node to the j-node below u by 1. 

c) neither of above. Then the active j-node is also below u 

and we have nothing to do. This finishes case 2.1 . We delete 

v from the stack and the R- and L-list (wherever it is on) and 

ascend. 

Note that w is not a j-node for any j after the rotation is 

performed. This shows that case 2.1 occurs only in the first 

step of the ascent. 

Case 2.2: w is not a j-node. We have the following picture. 

figure 12: 

If p(w) ~ (1-2~)/(1-~) then we perform a rotation, otherwise a 

double rotation. Since a double rotation is just two rotations 

we only have to treat the case of a rotation. A rotation about v 

demotes subtree a one level and promotes subtree b one level. 

Hence we have to go through the routine described above for the 

left- and rightmost leaves of subtrees a and b. We also have to 

distinguish whether u is a j-node for some j or not. The details 

are left to the reader. 

We summarize the discussion. Modifications of the tree structure 

are limited to the path of search. In each node of that path a 

constant amount of work is required. Hence update time is pro­

portional to search time. Theorem 1 is true even for the modi­

fied definition of active nodes. 
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v. Compact D-Trees 

The tree structure of section III achieves ' one main goal : search 
time is logarithmically bounded and update time is proportional 
to search time. However, our solution might use O(n.log W) storage 
cells. In addition, the depth of a node, though being bounded by 

O(log wt/qj), can be arbitrarily large compared to n. Consider the 

case that qj = 1 for all t and wt becomes large. 

However, most of the nodes are only present to make rebalancing 
and bookkeeping easy to explain. In this section we propose a 
compact version of the tree structure. It exhibits the same 
search time and update behavior as the basic structure of section 
III; in addition, it requires only O(n) storage cells and permits 
a linear time construction. Also the depth of the active j-node 

t t is bounded by O(min(n, log w /qj)). 

We obtain a compact tree from a D-tree in the sense of section III 

which we call an extended tree from now on by node deletion and 

path compression. The compact tree is formed by the query nodes 

which contain active nodes in both subtrees, the jOint nodes 

and the active nodes. All other nodes are deleted. Applying this 

process to the tree of figure 5 yields: 

7 

[0,1] 

figure 13: The compact version of the tree in figure 5. 

We remember the deleted nodes by storing expressions of the 

form [number, numbe~ along the compressed edges. For example 

between the node B4 and the active 4-node we deleted two 
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left subtrees representing a total number of 3 leaves labelled 

(B3 ,B4 ) and no leaves labelled (B4 , ). We denote this by the ex­

pression [3,0] on the left side of the edge joining B4 and the 

active 4-node. The right subtree of the 1-joint was deleted com­

pletely. It contained one O-leaf and one 1-leaf. This is denoted 

by the expression [1,1]. 

More formally, the edge labels are assigned as follows. Consider 

any node x of the extended tree which is not deleted and any 

edge emanating from it. 

Case 1: x has no right (left) descendant which is not deleted. 

Then the right (left) subtree of x contains no active node and 

hence at most two kinds of leaves. The right (left) subtree is 

replaced by the expression [n1 ,n2] where n 1 (n2 ) denotes the 

number of the first (second) kind of leaves. If the query assigned 

to x is "if Bj .•• " and the edge is right emanating then n 1 denotes 

the number of (B . 1,B.) - leaves and n 2 denotes the number of 
J- J 

(B j ,B j +1)-leaves. An analogous statement holds if the edge is 

left emanating. 

Case 2: x has a right (left) descendant which is not deleted. Let 

y be such a descendant of minimal depth. Then all proper descen­

dants of x which are not descendants of y were deleted. (Other­

wise y is not minimal depth). Hence the path from x to y is com­

pacted to a single edge. 

The left (right) subtrees along the path from x to y contain no 

active node and hence at most two kinds of leaves. Their respective 

numbers are stored in the expressions [!1'!2],[r1 ,r2]. The above 

comment about the meaning of n 1 ,n2 holds analogously . 

Note also that more than one extended tree may be represented 

by the same compact tree. E.g. the compact tree above also re­

presents the tree whose right subtree looks as follows: 

Figure 15 



- 25-

So every compact D-tree represents a whole class of extended 

D-trees. We will operate on a compact D-tree as if we were 

operating on one of the extended D-trees represented by that 

compact D-tree. Hence we need a method to (locally) construct 

an extended tree from a compact tree. The method is based on 

the following facts about the edge labels in compact trees. 

Lemma 1: Let T be an extended D-tree and let TC be the compact 

D-tree constructed from it. 

1) Consider any edge 

x 

in TC
• Let i = i1 + i2 and r = r 1 + r 2 and y = a/(l-a) where a 

is the balancing parameter. Then either 

a) i = r = 0 or 

b) i ~ at and (r ~ Y (Ht) or r=O) or 

or i =O). c) r 0: at and (i ~ Y (r+t) 

2) Consider any node x in the compact tree and an edge 

right emanating from it. Then either 

or 

x 

and x is a jOint node, say the j-joint, 

and n 1 " q/2 

Then y has at least one active descendant. 

Let the active (j+1)-node be the leftmost 

active descendant of y and let the active 

(k-1)-node be the rightmost active descen-

y dant of y . Let t = th(y) 
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2.') If £z + 0 then j+' = k-1, Y is the active (j+')-node, 

rZ=r,=O, £z+1 ~ t/y and either £,+£Z ~ t/y or 

(tHZ+1) ::; (£,-') /Y. 

Z.Z) If r 1 f 0 then j+' = k-', Y is the active (j+')-node, 

£'=£Z=O, r,+1 ~ t/y and either r,+r 2 ~ t/y or 

(t+r 1+1) ::; (r2-')/y 

2.3) If £, f 0 then x is a descendant of the j-joint, 

if £Z + 0 then x is a descendant of the (j+')-joint. 

2.4) If r 2 + 0 then x is a descendant of the (k-')-joint, if 

r, 4 0 then x is a descendant of the (k-l)-joint. 

2.5) If x is the j-joint then let [£~'), ], •.• ,[£~m), 1 be the 

edge labels on the left frontier of the subtree with root 

y. Then 0 < £, + ~ £(p) ~ QJo/2. 
p=' i 

Proof: ') The path from x to y in the extended D-tree has 

length k, k ~ ,. If k = , then y is a son of x, no subtrees 

were deleted and hence £ = r = o. Suppose k > ,. Let w f y 

be the son of x on the path from x to y. Then th(w) = £ + r + t. 

Let c, (c2 ) be the thickness of that subtree of w which contains 

y (does not contain y). Then either C z ~ r or c 2 ::; £ and 

c, + c 2 = th(w). Furthermore, 

c 2 " u·th(w) 

c
1 

~ (1-u) th(w) 

Hence c 2 ~ y c 1 and therefore either £ 0: Y (t+r) or r 0: y (£+t) . 

If Y is in the left (right) subtree of w then the same argument 

applied to a node v (if it exists) on the path from x to y such 

that y is a right (left) descendant of v finishes the proof. 
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2) If x has an edge right emanting from it but no right 

descendant then x does not have active nodes in both of its 

subtrees. Hence x must be a joint node by the definition of 

compact D-tree. Say node x is the j-joint. Then n 1 is the 

number of j-Ieaves to the right of x and hence n 1 ~ qj/2 since 

the active j-node is a left descendant of x. 

Suppose x has a right descendant, say y. Since every node in 

a compact D-tree has at least one active descendant (not ne­

cessarily proper), so does y. Let the active j+1 be the left­

most active descendant of y and let the active k-1 node be the 

rightmost active descendant of y. Suppose ~ 2 ~ o. ~2 is the 

number of (j+1)-leaves which are members of the left subtrees 

of the path from x to y in the extended tree. Hence the 

(j+1)-joint w is a proper ancestor of y. w is either to the 

left of y or to the right of y in tree T. If w is to the left 

of y then ~1 = 0 and the left subtree of the path from x to y in 

the extended tree are (j+l)-nodes. But then the active (j+1)-node 

is not of minimal depth. Contradiction. 

Suppose that the (j+1)-joint is to the right of y. Then 

k-1 = j+1 and there is only one active descendant of y. 

Hence y is either the (j+1)-joint or the active (j+1)-node. 

In the first case we have a contradiction since w was supposed 

to be the (j+1)-joint. In the latter case r 2 = 0 and hence 

r 1 = O. In the extended tree the path from x to y has k ~ 1 

left subtrees. All of them have to contain j-Ieaves because 

otherwise y would not be a (j+1)-node. The thickness of the 

left subtree of the father of y must be ~ t/y where t = th(y) 

since the underlying tree is in BB[a] . This subtree contains 

~2 (j+1)-leaves and at least 1 j-Ieaf . Hence ~2 + 1 ~ t/y. 

If k = 1 then even ~1 + ~2 ~ t/y . If k > 1 let s = ~1 + ~2 > ~2 

be the thickness of the left subtree of the father of y and 

let ~1 be the thickness of the left subtree of the grandfather 

of y. Then s ~ ~ 2 + 1 and ~1 ~ ~1 + ~ 1 ~ 1 + y(t+s) ~ 1 + y(t+ ~ 2+1). 

This proves 2.1 . A similar argument proves 2.2 . 



Suppose ~1 f O. Hence x has j-leaves below it in the 

extended tree and is a descendant of the j-joint. This 

shows 2.3. The same argument proves 2.4 . 
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Finally 2.5 follows from the definition of active j-node 

and the fact that the active j-node is a proper left 

descendant of node x. 

Note as a consequence of lemma 1 that at most two of the 

4 numbers stored in the labels of an edge can be t O. This 

reduces the space requirement of compact trees somewhat. 

The crucial observation is that the conditions of lemma 1 

are strong enough to characterize compact D-tree. Let TC 

be a compact D-tree. In particular, the edge labels of TC 

satisfy lemma 1. We want to construct an extended D-tree 

[J 

T such that compacting T gives TC • The construction will 

only use the properties of the edge labels stated in lemma 1. 

Let x be any node in TC and let B. be the query assigned to 
J 

node x. Consider any edge right emanating from x. (Left ema-

nating edges are treated similarly). If the edge is dangling 

i.e. x has no right descendant,then let [n1 ,n2 ] be the edge 

label. We have to connect the dangling edge to a subtree with 

n 1 j-leaves and n 2 (j+1)-leaves . If either n 1 = 0 or n 2 = 0 

then we construct a j or (j+1)-node of the appropiate thick­

ness. Otherwise, suppose n 1 ~ n 2 (the symmetric case is treated 

analogously). Then there exists a p ~ -1 with 

In this case we construct 
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/(j+1)-node / p+1) 
n 2-(2 -1)n1 

( . +1) -node 

, 2P .n 
, 1 

( ' +1) -node 

( ' +1) -node 

n 1 

2·n 
1 

It is easy to see that this tree is weight-balanced. 

It remains to consider the case that x has a right son y in 

the compact tree. Let [""1 '""2 1 , [ r l' r 2 1 be the labels of the 

edge from x to y. If ""1 + "" 2 = ~ + r 2 = 0 then there is 

nothing to do. Assume otherwise. We treat the case "" 1 + "" 2 = 0 

+ r 1 +r2 ; the other cases being similar. Let r = r 1 + r 2 . Then 

r l: yt where t = th(y) by lemma 1. In the extended tree there 

is a path from x to y such that the right subtrees along that 

path contain r 1 (k-1)-leaves and r 2 k-leaves for some k. We 

show later how to determine k. If r ~ t/y thenwe construct 

a subtree with r 1 (k-1)-leaves 

and r 2 k-leaves constructed as 

above 

Note that the newly constructed node satisfies the balance 

criterion. Suppose r> t/y . Let s = max(r
1
+1, t). Choose 
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p, p ~ -1, such that 

2 (p+1) (s+t) :0 (l-a) (t+r) :0 2 (p+2) (s+t). 

If s = r 1 + 1 > t and hence r 1 t 0 then p exists since 

(l-a) (t+r) = (l-a) (t+r1+r2 ) 

~ (l-a) (t+r 1+y(t+r1+1)+1) 

= t+r1+1=2- 1+1 (s+t) 

If s = t then p exists since 

(l-u) (t+r) ~ (l-u) (t+t/y) 

= t(l-a)· (1+1/y) 

= t/y > 2·t 

since y = a/(l-u) :0 0.43 and hence l/y ~ 2.3 • 

We construct the following tree 

x 0--___ _ 
~ k-node I 

y 

P+1 r 2-(2 -1) (s+t)-(s-r,J 

k-node 
2P (s+t) 

/ 

k-node 
(s+t) 

"a subtree with r 1 (k-1)-leaves and s-r1 k-leaves 

constructed as above. 
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All newly constructed nodes satisfy the balance criterion: 

The father of y satisfies it since r 1+1 ~ t/y , the son of 

x sati sfies it since its thickness is t+r, the thickness 

of its left subtree is 2P+1 .{t+s) and the choice of p 

(remember that a ~ 1 - 1/2/2 and hence (1- a ) / 2 ~ a ). The other 

nodes trivially satisfy the balance criterion. This ends 

the description of the expansion process. 

It remains to be seen that the extended tree obtained in this 

way is actually a D-tree. The newly constructed nodes satisfy 

the balance criterion, the other nodes satisfied the balance 

criterion as nodes of the compact tree and hence satisfy it 

as nodes of the extended tree. 

It is also easy to see that the joint nodes of the compact 

tree are still joint nodes of the extended tree. Let x be the 

j-joint in the compact tree. It follows from 2.3 and 2.4 of 

lemma 1 that the j-joint in the extended tree cannot be below 

x. Hence x is the j-joint in the extended tree. 

Finally, consider the active j-node z in the compact tree. We 

want to show that z is the active j-node in the e x tended tree ob­

tained by the expansion process. Certainly z is on that side 

of the j-joint which contains ~ qj / 2 of the j-Ieaves (by 2.5). 

Hence if z were not active in the extended tree then there must 

be a j-node of smaller depth on the same side o f the j-joint. Since 

this j-node does not exist in the compact tree, it was con­

structed during the expansion process. Hence there must be an 

edge x 

x 

y 

in the compact tree such that the active j-node is the leftmost 

active descendant of y and ~2 + 0 or it is the rightmost activ e 

descendant of y and r 1 + O. In either case y is the active j-node 
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(2.1 or 2.2 of lemma 1) and either r 1+r 2 = 0 or ~1 + ~2 = o. 
We treated the case ~1 + ~2 = 0, r 1 + 0 of the expansion 

process in detail above. It does not introduce any j-nodes 

of smaller depth than y. 

Lemma 2: Let TC be a compact D-tree. The expansion process 

applied to TC yields an extended D-tree T. 

Proof: By the discussion above. 

Another property of the expansion process is usefull in 

the sequel. Expansions can be done locally, i.e. knowing 

the edge label and the thickness of the end point permits 

proper expansion of an edge. Furthermore, it is possible 

to expand an edge partially. Say, only to generate father 

and grandfather of the end point y and son and grandson 

of the starting point x. 

We are now able to describe the searching process in compact 

D-trees. Assume we search for some X E (B
j

,B j + 1). 

the tree as directed by the queries and end up in 

We descend 

the active 

j-node. The nodes passed during the descent are stacked, their 

thickness is increased by one and they are entered into an 

R-list and L-list as described in section IV. Then we ascend. 

Suppose w.l.o.g. we reach node x from its right son y. Two 

things can happen which require an action. Either the edge 

label of the edge from x to y does not satisfy lemma 1 anymore 

or node x has gone out of balance or both. 

Case l:The label of the edge from x to y does not satisfy lemma 

1 any longer. Then either condition 1 or 2.1 or 2.2 is violated. 

Violations of conditions 2.1 and 2.2 are treated analogously. 

So suppose 2.2 is violated. Then y is the active (j+1)-node 

for some j+1. Let t be the thickness of y before the search. 

Then (t+r1+1) ~ (r2-1)/y < (t+r1+2). Furthermore r 1 + 1 ~ t/y. 

Hence r = r 1+r2 ~ c·t for some constant c dependent only of a. 

Hence the expansion of the edge from x to y yields a path of 

bounded length, the bound only depending on a. So we can afford 

to expand the right subtree of x complete and operate on it 

as we did in the case of extended D-trees. This shows how to 
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handle violations of 2.1 or 2.2 . Suppose now that condition 

is violated. Then either 0 < ~ < Y(t+1) or 0 < r < y(t+1) or 

(r < y(r+t+1) and ~ < y(r+t+1) and ~ + 0 + r) .Here t denotes 

the weight of the right subtree of x before the search. In the 

first two cases we have to expand the edge from x to y only 

near y (generation of y's father suffices) and in the third 

case we can afford to expand the edge completely. Note also 

that using the L- and R-lists it is possible to determine 

what kind of leaves have to be constructed. In either case 

we reduced the operations on compact trees to the corresponding 

operations on expanded trees. 

Case 2: Node x has gone out of balance. A rotation or double 

rotation will rebalance the tree. Performing the transformation 

might require to partially expand the edges emanating from x. 

This causes no problems. 

We summarize the discussion in 

Theorem 3: Consider a compact D-tree based on a BB[ a ]-tree with 

o < a ~ 1-12/2 • 

a) Let qj be the number searches for X E (B
j

,B j +1), 0 ~ j < n, 

performed up to time t and let wt: Eqj. Then at time t a 

search for X E (B
j

,B j +1 ) can be executed in time O(c 1 log Wyq~+c2) 
where c 1 = l/log(l/l-a )) and c 2 = 1+c1 . The time needed to 

update the tree structure is proportional to the search time . 

b) A compact D-tree has O(n) nodes and edges and thus requires 

storage space O(n). 

c) Given a distribution (qo,q1, ... ,qn) it is possible to con­

struct a compact D-tree for it in linear time O(n) . 

Proof: a) was proved by the discussion above. 

b) A compact D-tree has ~ 2n interior no des and hence ~ 4n edges . 

In each node and edge only a fixed c o nstant numbe r of fi e lds 

are required. 

c) In [M77a] (cf. also [M77b]) an algorithm for constructing 

nearly optimal binary search trees was introduced. It essentially 

construc ts a compact-tree except for the labels of the edges. 

The labeling process is easily incorporated in that procedure. 

The details are left to the r e ader. 
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VI. Extensions 
============== 

VI.l General Search Trees 

So far, we considered only searches for elements not in the 

name set, i.e. X ~ {B
1

, •.. ,Bn }. We drop that restriction and 

return to the model described in the introduction. Let Pi (qj) 

the number of searches conducted for X=Bi ((X E (B j ,B
j

+1 ) 

up to now and let 

n 
W = 1: 

i=l 

n 
1: q. 

i=O J 

be the total number of searches conducted so far. Then 

~i = Pi/W 

X = Bi (X 

(a.=q./W) is 
J J 

E (B j ,B j +1 » 

the relative access frequency of 

at this pOint of time. 

Define new frequencies qj' 0 ~ j ~ n, by qo = qo and 

q~ = q. + 
J J 

Pj for 1 ~ j ~ n, i.e. we change the open intervals 

(B j ,B j +1 ) into the 

the tree structure 

half-open intervals [B j ,B j +1), and construct 

of section III (the compact tree of section V) 

for the new set of frequencies. A search for a name X is carried 

out as above. With search argument X E [B
j

,B j +1 ) we wil reach 

the j-active node. (Note that we assigned queries of the form 

"if X < Bi then left else right"). In the j-active node we will 

distinguish between X = Bj and X E (B j ,B j +1 ) by one more com­

parison. A search for X E [B j ,Bj + 1 ) will take time 

O(log W/qj) = O(log W/Pj) (= O(log W/qj»' i.e. we still have 

logarithmic behaviour. 

The trick used here to due to D.E. Knuth [Vol. 3, section 6.2.2, 

exercise 36]. 
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VI.2 Insertions 

Suppose we want to insert a new name B f {B1 , ... ,Bn } into 

the name set, say B E (B j ,B j + 1). A search for B will end 

in the active j-node representing the half open interval 

[B j ,B j +1). We have to split the interval [B j ,Bj +1 ) and the 

associated frequency p. + q. into two intervals [B. ,B) and 
J J J 

[B,B . +1 ) with frequencies p. + q~ and 1 + q'! respectively 
J J J J 

(1 is the frequency of name Band q. = q~ + q'!). The splitting 
J J J 

of qj into qj and qj may be prescribed arbitrarily. 

Using the distribution of j-leaves with respect to the 

j-joint (stored in the j-joint) and the thickness of the 

various j-nodes we identify that j-node v such that the 

j-nodes to the left (right) of v contain ~ q~ (~ l+q'!) j-leaves. 

We split this j-node into two nodes of type TBj,B) a~d [B,Bj +1). 

Then we perform the required changes to the tree structure. 

The j-joint gets new distribution numbers, the active j-node 

may change and we need to create a new [B,B j + 1)-jOint (the 

father of node v). It is easy to see that these changes can be 

carried out in time proportional to the depth of the newly 

created nodes of type [Bj,B) and [B,B j +1 ). This depth is 

bounded by O(log max (w/g~, w/q'!)) in the case of extended 
J J 

D-trees and by O(min (n, max (w/gj' w/qj)) in the case of 

compact trees. 
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VII. Experimental Results 
========================= 

compact D-trees were implemented by H. Reinshagen and 

A. Del Fabro. They kindly provided some of the results 

of their experiments. 

A node of a compact D-tree is represented by six components, 

the query, the pointers to the two sons, the thickness, and 

the labels of the incoming edge. The distribution of j-Ieaves 

with respect to the j-joint is stored in the son pointers 

of the active j-node. The type of a node is stored in the sign 

bits. Since a compact D-tree has between 2n and 4n nodes and 

leaves the storage requirements are between 12n and 24n 

storage cells. Some additional savings are possible. Lemma 1 

of section V states that the label of an edge has only one 

non-zero component except in two special cases. This observation 

can be used to reduce the space requirements somewhat. A more 

promising approach is to delete all interior nodes which do not 

have active nodes in both subtrees. The updating is more com­

plicated in this case but space requirement goes down to 12n. 

Experiments of the following form were carried out. Starting 

with an arbitrary tree searches were performed according to 

a fixed probability distribution. After some number of searches 

the weighted path length PD of the D-tree was computed and 

compared with the weighted path length Popt of an optimal tree 

for the fixed underlying probability distribution. The optimal 

tree was constructed by means of the Hu & Tucker algorithm. 

Two probability distributions were used. 

-100 100i 
Distribution 1: n = 200; pi=e -rr- ' 1~i~200, Poissondistri-

bution 

Distribution 2: n = 200; the second distribution was obtained 

by counting the number of words in a German dictionary starting 

with different two letter combinations. 
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Table 1 shows the statistics for the first 5000 searches 

in the case a = 0.25. The table shows the deviation (in percent) 

from the weighted path length of the optimum tree (PD-Popt)/Popt 

and the total number of rotations and double rotation (.R+DR) 

o 
100 

200 

500 

1000 

2000 

3000 

4000 

5000 

Distribution 1 

48.6 

36.3 

33.4 

20.9 

15.3 

8.8 

6.3 

5.2 

4.9 

o 

13 

18 

22 

25 

33 

34 

34 

35 

Distribution 2 

31.5 

14.4 

12.4 

8.1 

5.9 

5.4 

5.2 

5.2 

4.9 

Table l:a = 0.25, different distributions 

o 
52 

7] 

106 

145 

187 

207 

229 

244 

Table 2 shows the statistics for the same initial tree, but 

different values of a. The second distribution was used. 



a o. 1 a .. 0.2 a = 0.25 

.of searches (PD-P t)/P t op op 
tR+DR (P -P )/p 

D opt opt iR+DR (PD-P opt) Ip opt tR+DR 

0 22.9 0 22.9 0 22.9 0 

100 23 . 5 0 22.7 7 18.3 22 

200 20.6 20 16.0 38 

500 23.9 9 1 7 • 0 47 14.5 74 

1000 23.3 18 1 5 . 1 80 11.7 1 1 5 

2000 19.9 37 14.6 109 10.5 166 

3000 19.6 43 14 . 4 135 10.5 208 

4000 20.9 48 13 • 9 150 1 0 . 1 232 

5000 1 9 . 4 54 13 • 8 165 1 0 . 1 248 

Table 2: Same initial tree, 2nd distribution, different values of a . 

a • 1-1/'l./2 

(PD-P t) Ip ,t op op 
l\o R+DR 

22.9 0 

14 . 5 52 

12 . 6 79 

9.9 148 

7.6 207 

6.7 273 

6.2 315 

6.0 345 

5.8 370 

W 
0> 
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The examples show that the weighted path length of the 

compact D-tree approaches the weighted path length of the 

optimum tree qUite rapidly. They also show that the over­

head for maintaining the D-tree is not very large. The 

maximal number of rotations and double rotations in the 

first 5000 searches were 370. It is interesting to ob­

serve here that Blum and Mehlhorn [BM) have shown that 

at most c·n rotations and double rotations suffice to 

perform n insertions and deletions on an initially empty 

BB[a) tree. c is a constant independent of n. This is 

in sharp contrast to the self-organizing binary search 

trees proposed by Allan and Munro: A rotation about every 

node on the path of search is required there. In our 

examples the weighted path length of the optimum tree was 

about 6.8 . Hence about 5000.6.8 = 34000 rotations would 

be required for the first 5000 searches. This shows that 

with respect to efficieny self-organizing binary search 

trees are not competitive with D-trees. However, they 

use less space. 
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VIII. An Application to Tries 
============================ 

An alternative to searching based on key comparion is 

digital searching. Here a key is identified by successive 

identification of its component charcters. One such method 

is the TRIE. (ef. [K 73]). A set of strings over some 

alphabet E is represented by its tree of prefixes. So every 

node of a trie corresponds to a word over E. 

Several implementations of tries were proposed. 

1) Each node of the trie is represented by a vector of 

length lEI. Identification of a character is done by indexing 

this vector. This method is very fast (one access per character) 

but it uses a large amount of storage. 

2) Each node of the trie is represented by a linear list 

(Sussenguth). In a node w this list contains only those 

characters a E E such that wa is a prefix of some key. 

Identification of a character is done by a linear search 

through the list. This method is slow (up to lEI comparisons 

per character) but it mostly saves storage space. 

3) Each node of the trie is represented by a binary search tree 

(Clampton). In a node wof the trie this tree contains those 

characters a E E such that wa is a prefix of some key. Identi­

fication of a character is by tree searching. This method is a 

compromise in speed and space requirement. 

There is no a priori reason why the identification of 

characters has to proceed from left to right; any order will 

do. Corner and Sethi show that it is NP-complete to find the 

ordering which minimizes average search time under implemen­

tation 1. 

However, with respect to implementation 3 and nearly optimal 

average search time all orderings will do. Let S ~ {B1 , ..• ,Bn } 

be the set of keys and suppose all keys are of equal length m. 

For a string w E E* let 

pw ~ I{B . ; w is a prefix of B.}I 
1 1 



_ 41 _ 

We represent a node q of a trie by a D-tree (or any 

other kind of nearly optimal s e arch tree) for the distri­

bution {pwa; a E E} . A key Bi = ai1ai2,···,aim is identi­

fied by successively identifying the character a ik in the 

tree corresponding to the node a i1 , •.. ,ai (k-1) of the tree. 

It takes time O(c ·log p /p + c 2 ) 
1 a i1 ,···,ai (k-1) a i1 , ... ,aik 

to identify a ik where c 1 ,c2 only depend on the balance para­

meter (cf. lemma 1). Hence Bi can be identified in time 

O(c1 log p /p + c 2 ·m) = O(c 1 log n + c 2m). Since 
E a i1 , ... ,aim 

log n comparisons are required in any scheme based on com­

parisons with binary outcome and every character of the input 

has to be inspected we have nearly optimal tries unde r imple­

mentation 3. This problem is discussed in greater detail in 

Fredman and GUttIer, Mehlhorn, Schneider. 

We use D-trees to implement the nodes of a trie because we 

want to deal with updates, i.e. insertions and deletions of 

names. Suppose we want to insert a new name B into the set S. 

This amounts to increase p by 1 for aIle prefixes of w. Re-w 
taining near optimality is no problem since we used D-trees 

to implement the nodes of a trie. Conversely, suppose we 

want to delete a name B from the set S. This amounts to decrease 

Pw by 1 for all prefixes of B. 

Again it is no problem to retain near optimality since we use 

D-trees to implement the nodes of a trie. (Although we assumed 

in section III-VI that a search increases the frequency of a 

node by one we used in the proofs only that it changes the 

frequency by at most one. A slight complication arises in the 

case of compact D-trees since the active node can switch sides 

with respect to the joint node; the reader should have no diffi­

culties to remedy that problem). This leads to the following 

Theorem: Let S be a set of keys of m characters each. If a 

trie is used to represent the set S and every node of the trie 

is implemented as a D-tree then searching for a key in S, 

inserting a new key into S and deleting a key from S 

can be done in time O(logls l + m ). 
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In database applications keys frequently are m-tuples 

and comparisons between keys is no longer an elementary 

operation. Balanced tree schemes based on key comparisons 

(AVL-trees, B-trees, ... ) loose some of their usefulness 

in this context. In this case TRIES combined with D-trees 

may prove a real alternative. 

We restricted our discussion to keys o f uniform length 

and equal probability. The results are readily extended 

to the general case [M 77c]. 

IX. Conclusion 

We introduced D-trees as an extension of weight-balanced trees. 

D-trees permit near optimal access under time-varying access 

probabilities. More precisely, let p be the number of accesses 

to object B and let W be the total number of accesses up to 

time to' Then at time to an access to oject B can be performed 

with c 1 ·log(W/p) + c 2 comparisons between keys for some small 

constants c
1
,c2 . Furthermore, updating the tree structure is 

limited to the path of search and takes time 0(c1 log W/p +c2 ) . 

On the average only a constant amount of work is required (NR,BM) 

Two different versions of D-trees are introduced, one favoring 

access time , the other favoring update time. Compact D-trees 

were introduced to cut down on the space requirement of the basic 

scheme. Finally, an application to TRIES is given . Searching in 

a set S of multi-attribute keys (length m), inserting into and 

deleting from it can be done in time 0(c1 10giS I + c 2 ·m). 

Similar problems were considered by Allan & Munro , Baer and 

Unterauer. Unterauer and Baer also describe extensions of weight­

balanced trees. Unterauer proves bounds on the search time 

(similar to ours), however update time may be Q (n 2 ) in the worst 

case. It is O(search time) in the average case. Baer only gives 

empirical results. Allan & M nro describe an extension of self­

optimizing linear list schemes to trees. They derive a bound on 

the asymptotic average search time; updating is limited to the 

path of search; however, a rotation about every node of the 

path of search is necessary. 
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