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Structured programming has been studied recently in the context 

of program schemes. It is in this setting that we wish to examine 

the question of the "inefficiency" of structured programs. In 

particular, we study the "intrinsic size" of structured program 

schemes when compared to equivalent nonstructured schemes. The 

notion of equivalence used is the one requiring equivalent schemes 

to compute the same function for each interpretation of their 

common operator and predicate symbols. 

To study the "intrinsic size" of a structured scheme, we examine 

the size of a smallest equivalent structured scheme, and compare 

this with the size of a smallest equivalent nonstructured scheme. 

The general class of schemes studied in the present paper is the 

class of lanov schemes, and the "structured" schemes considered 
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are the so-called Dijkstra schemes . The primary result is, from 

some pOints of view, a negative one 

the intrinsic size of Dijkstra schemes may be exorbitant. 

To be precise, we construct a sequence Fn of Dijkstra schemes 

such that for each n, no smaller Dijkstra scheme is equivalent 

to Fn , and the number of edges in Fn grows exponentially. 

We then show there are weak equivalent nonstructured schemes 

Gn whose size grows only linearly. 
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Introduction 

Flowchart schemes have been studied in recent times by many 

authors, with the schemes modelled after structured programs 

recieving a great deal of attention. Essentially, a flowchart 

scheme is a flowchart in which actual funCtions and predicates 

have been replaced by appropriate uninterpreted symbols. Then, 

by allowing a variety of interpretations of these symbols as 

functions and predicates over various sets one obtains a class 

of structurally similar flowchart algorithms, each of which 

computes a partial function on the domain of the interpretation. 

A notion of equivalence widely considered is that of weak 

equivalence, for which one requires that the two schemes compute 

the same partial function for each specific interpretation of 

the symbols. 

In the present paper we consider monadic schemes with one input 

and one output, and study simple while schemes [3], or D-schemes 

[2] built using composition, if-then-else, and while-do operations. 

In particular, we are interested in the size of smallest D -sche~s 

relative to smallest "nonstructured" schemes within weak equivalence 

classes. The major result of the paper is the construction of 

weak equivalent schemes F and G , with F a "smallest" D-scheme, n n n 
such that the size of Fn grows exponentially with n, while th e 

size of Gn grows linearly. These examples may be viewed as a 

theoretical verification of the opinion held by many that struc

tured prograns tend to be very large. 
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Definitions and Notation 

Let r=(Q,IT) be an ordered pair of disjoint sets; the ele ~ ents 

of Q are called operator symbols and those of IT, predicate 

symbols. A r-flowchart scheme F is a (locally) ordered directed 

graph F with a distinguished begin vertex b, a distinguishe d 

exit vertex e of outdegree 0, and a labelling function assi g nin ~ 

to each outdegree 1 vertex an operator symbol and to each out

degree 2 vertex a predicate symbol. We assume there are no 

vertices of outdegree 3 or more, and that the exit e is the only 

vertex of outdegree O. "Locally ordered" may in this context be 

taken to mean that the two outedges of each predicate vertex 

have been labelled in a nonrepetitive way by $("false") and 

T("true"). 

An interpretation of r over a set X is an assigment to each fE n 

a function I(f):X+X and to each nEIT a predicate I(n):X+{ $ ,T }. 

Given an interpretation I, a r-scheme F determines, in a fashion 

we assume clear, a partial function r(I):X+X. Two r-sche me s F 

and G are said to be w-equivalent (Elgot (2), Kosaraju (5)) if 

they compute the same partial function under any interpretation : 

that is, for any interpretation I, F(I) = G(I). We shall later 

define a set of words determined by F, called the weak behaviour 

IFI with the property that F is w-equivalent to G iff IFI = IGI. 

We shall utilize this latter formulation in our proofs. 

Certain schemes are singled out by their simplicity. A scheme 

with one vertex and no exit is called a trivial scheme, and a 
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scheme with two vertices, begin and exit, and a single edge 

from the begin to the exit is called an atomic scheme . There 

is an obvious no tion of isomorphism of schemes and we hence

forth identify isomorphic schemes. Thus, there is now a unigue 

trivial scheme, henceforth denoted T; and for each f in n , 

a unique atomic scheme with begin labelled by f. We shall denote 

this latter atomic scheme by its operator label f . 

The elementary structured programming operations of concatenation, 

if-then-else, and while-do may be formulated as operations on 

schemes. More precisely, given schemes F and G, and a predicate 

symbol w, we define the following schemes. F·G is the scheme 

obtained from the disjoint union of F and G by identifying the 

exit of F with the begin of G. F:w:G is the scheme obtained from 

the disjoint union by identifying the two exits and adding a new 

begin vertex labelled by w, with ~-edge directed to the begin 

of F and the T-edge to that of G, w[F) is the scheme obtained 

from F by adding a new begin labelled w, having its $-edge directed 

to a new exit and its T-edge to the begin of F, and then identi

fying the exit of F with the new begin. One similary defines 

the scheme i[F) modelled after "while(not w)do F", AD-scheme 

is defi~ed to be a scheme constructed using only trivial and 

atomic schemes and the four types of operations given above, 

That is, the class ~ of D-schemes is the smallest class con

taining T and all atomic schemes and closed under all the 

D-operations . Some silJllle D-schemes are given in figure 1. 
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Contracted Schemes and Weak Behaviour 

Given a r-scheme F we now define an associated labelled directed 

graph F' called the contraction of F. To do so, we need some 

preliminary definitions. First we must order the predicate 

vertices: r=br 1, ... ,1Ir}. Now, given a nonexit vertex u of F and 
r a string t1 ... trE{$,T} , we define a path initiating at u as 

follows. Beginning at u, traverse the unique outedge if u is an 

operator vertex, and traverse the outedge labelled tj if u is 

labelled by 1I j • From this pOint on, the path terminates if an 

operator vertex is encountered; it continues along the edge 

labelled tk if we have entered a vertex labelled 11 k, The above 

process defines a path we denote by P[u;t1 ... trl, which either 

ler~~Rates at an operator vertex, at the exit, or is an infinite 

path. 

We may now define the contraction F' of a scheme F. The vertices 

of F' are the operator nodes of F,which retain their operator 

labels, together with the exit e of F and a new vertex b' called 

the begin of F'. We now speci fy the di rected edges of F', each 

of which recieves a unique label from {$,T}r. If the begin b of 

the scheme F is an operator vertex or the exit (F=T) then all 

edges in F' from b' are directed to b, and there is one such for 

every possible label t1".t r . If, on the other hand, b is a 

predicate vertex in F there is to be an edge in F', labelled 

t1".t r , from b' to a vertex v iff the path P[b;t 1" .trl in F 

terminates at v. The edges originating at an operator vertex u 
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are specified similary : there is an edge with label t 1t 2 . . . t r 
in F' from u to v iff the path P[u;t 1 ... t r 1 in F terminates at 

v. The description of F' is now complete. By way of e xample, 

the D-scheme F1=(f.(T:rr 2:g)):rr 1:g and its contraction F'l are 

depicted in figure 2. 

The weak behaviour IFI of a scheme F is determined from its 

contraction F' as follows. IFI is to be a set of words of the 

form w=a of 1a 1f 2 ... fka k where 

{<I> ,-dr. The words in IFI are 

each f . is in n and each a . is in 
1 1 

to be those which are the "traces" 

of "successful" paths Q in F'. If we as usual view a path as an 

alternating sequence Q=voeovl ... ekvk+l of vertices and edges, 

then it is successful if vo:b' and vk+l is the exit e; the word 

w above is the trace of Q if, for each i>o, a . is the label in 
- 1 

F' of the edge e. and, for l<i<k, f . is the label of the verte x 
1 - - 1 

Vi' Referring to figure 2,we see that the weak behaviour of Fl 

is given by : 

where the symbol [t1j denotes the set of all strings t1 ... t r 
in {<I>,T}r satisfying tj:t. 

Our definition of contracted scheme and weak behaviour is taken 

directly from Elgot [21, who points out that by Rutledge [7] and 

Luckham, Park and Paterson [61, it follows that schemes F and G 

are w-equivalent iff IFI = IGI. 
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We close this section with several useful lemmas. First. we 

extend the definition of P[u;tl ... trl given above to show how an 

initial segment w"oofl ... fio i of a word 0of •... fioi ... fko k in 

IFI uniquely determines a path in F starting at the begin b of 

F. If b is an operator vertex or the exit (in case F=T). define 

Po to be the constant path from b to itself; otherwise set 

Po=P[b;ool. If i>o and VI is the terminal point of Po' define 

P2=P[v I ;oI1. Continuing in this fashion. we have paths 

po.P I • ••. 'P i and we define the path P(w) to be the composition 

of these paths:P(w)=P/I ... Pi . It is clear from the definition 

that P(w) terminates at the exit iff w is in IFI. Since a path 

terminating at the exit may not be extended. we may deduce the 

following "initial segment lemma". 

LEMMA I : 

No proper initial segment of a word in IFI is itself in IFI. 

It is convenient to define a special product on words of the 

type found in weak behaviours. exactly analogous to composition 

of paths. Given w=oofI .. . fio i and z=aogl ... gja j their composite 

w·z is undefined if 0ifao and otherwise is given by 

w·z = ° fl" .f.o·g l ·· ·g ·a·. This definition extends in the usual o 1 1 J J 

way to sets of words of the appropri ate type and the definition 

is so constructed that the following are easily established . 

LEMMA 2 : 

If F and G are schemes, IF.GI = IFI • IGI. 
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LEMMA 3 : 

If F and G are schemes and rrjEIT, then 

IF:rrj:GI = [4»j'IFIU[T)j'IGI. 

For the final lemmas of the section, we introduce two more 

notions. Ifw=oof1 ... fio i , and F is a scheme, then 

Lw(IFI) = {zlw'z is in IFI}. Next, given a vertex v of F, define 

the flow from v in F, denoted F<v,e>, to be the labelled sub

digraph of F consisting of the vertices and edges lying on paths 

initiating at v. If the exit e is in F<v,e>, then we may, by 

designating v as the begin of F<v,e>, turn F<v,e> into a scheme . 

An example where this is possible would be where v is the terminal 

vertex of the path determined by an initial segment of a word 

in IFI. It is a straightforward matter to deduce the next result. 

LEMMA 4 

If v is the terminal vertex of the path in F determined by an 

initial segment w of a word in IFI, then Lw(IFI) = IF<v,e>l. 

The final lemma of the section is a direct corollary of the 

characterization theorem for D-schemes given in (8). 

LEMMA 5 : 

If vertex v of aD-scheme F lies on no cycle in F, then F<v,e> 

is itself aD-scheme. 
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An Exponentially Inefficient Sequence of D-Schemes 

We now come to the construction of the schemes promised in the 

introduction, and the verification of their properties. We de-

fine the sequence of D-schemes inductively by setting Fo=T and 

for n~o, setting Fn+l = (fo(T:1T2:goFn)):1Tl:(goFn) ' We make 

precise the notation of "smallest" D-scheme in the obvious way : 

aD-scheme F is w-minimal over ~ if no weak equivalent D-scheme 

has fewer edges than F. Fn+1 is pictured in figure 3. 

Our first, and only difficult task is to show that each of the 

D-schemes just constructed is w-minimal over~ . First we give 

the recursive calculation of their weak behaviours: 

The scheme Fl of the present sequence is the same as the scheme 

depicted in figure 2. It will be notationally simpler for us to 

presume n={n 1,n2}; howeve~ subsequent arguments, with only minor 

modifications, are valid even if n and IT are infinite. As a 

preliminary to showing w-minimality, we examine forced properties 

on D-schemes w-equivalent to the D-schemes under consideration. 

LEMMA 6 

If H is aD-scheme w-equivalent to F I' n>o, then the begin n+ -
of H is a predicate vertex, and H is not of either of the forms 

n[G] or neG]. 
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Proof : 

The opposite of the second claim may be ruled out since 

IFn+1In{~'T }2 is empty; and that of the first by the fact that 

IFn+11 may not be written as {~,d2hL for any h in n and any set L. 

The next lemma follows by a straight forward induction on n. 

LEMMA 7 : 

If o~l~n, the following are subsets of IFn+11 

(7. 1 ) 

( 7. 2 ) 

(7.3) 

In light of (7.1) and (7.3), the initial segment lemma implies 

the following. 

LEMMA 8 

1 m If w is a word from ([Tl 1g) [~llf[Tl2(g[Tl1) , then w is in 

IFn+11 iff o<l<n and m=n-1+1. 

Having shown in lemma 6 that no ·whi1e-do· is w-equiva1ent to 

F we now consider compositions. n + I' 

LEMMA 9 

Suppose H=H1oH2 is w-equiva1ent to Fn+1' n~o. Then one of HI 

and H2 is w-equiva1ent to the trivial scheme. 
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P roo f : 

By lemma 2. every word in IFn+11 may be "split" as a composite 

of a word in IH11 with a word in IH 2 1. and lemma 1 implies this 

splitting is unique. To establish lemma 9. we will consider 

certain words known to be in IFn+11 by lemma 7. and determine 

their unique splittings. using lemma 8 as needed. 

First. suppose w is in ([T]l g )n+1 and y is in {<p .T}2. By (7.1). 

wy is in I Fn+1 1. If the unique splitting of wy places wy in IH1 1 

and y in IH21. the initial segment lemma would then imply that 

this is the splitting for wy for ~ y in {<p.T}2. Thus. we would 

2 have {<P .T } c1H21. and it is then immediate that IH21 = ITI. and 

lemma 9 is valid. We may now suppose that no word wy in 

n+ 1 2 . ([T]l g ) {<P.T} spl,ts with wy in IH11. 

2 To be more specific. if v is in [T]l and y is in {<P.T} • there 

is a unique k with o~k~n such that (vg)kv is in IH11 and 

(vg)n-k+1y is in IH21 . Lemma 1 implies this splitting is valid for 

every y in I H21. so we have 

( 9 . 1 ) 

( 9 • 2 ) and o<k<n. 

By lemma 8. we know that (vg)kv is not in I Fn+11. so (9 . 1) 

implies that v is not in IH11. Since this is valid for all v 

in [T]l (because in each instance the value for k is not n+1). 

we may conclude: 
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(9. 3) 

Combining (9.3) with the fact from (7.2) that [~11f-r~c:1 F n+ll, 

we have 

(9.4) 

(9.5) 

[~llc:IHll 

[~11 fT~cl H21. 

2 Because {~,T} nlFn+ll is empty, it follows from (9.4) that 

(9.6) 

We next determine the splitting of (Vg)k~Tf~~, which is in 

IFn+ll by (7.2). In view of (9.6), the initial segment lemma 

applied to (9.1) eliminates all possibilities except: 

(9. 7) 

(9.8) 

(Vg)k~T is in IHll; 

~Tf~~ is in IH 2 1. 

We now examine w=(Vg)k~Tf~T(gv)n-k+l. We 

of 1 F n+ll places 

claim that 

(Vg)k~T in 

the unique 

splitting for this word 

n-k+l . 
~Tf~T(gv) 1n 1 H21· To establish this, we eliminate all 

other possibilities. Applying the initial segment lemma to 

(9.1) and to (9.2) we have that (Vg)mv is in 1 HII iff m=k, and 

(Vg)mv is in IH21 iff m=n-k+l. This eliminates all splittings 

of w except the desired one and the one with (Vg)k~Tf~T in 1 H11. 

However, when combined with (9.5), this implies that (Vg)k~Tf~Tf~T 

is in 1Fn+ll; this is not possible since one readily sees that 

f never appears as consecutive operator symbols in a word of 
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I Fn+11· Therefore, we have 

( 9.9 ) <P Tf<pT(gv)n-k+l is in IH2 1. 

I I 
n-k+l Applying (9 . 4), we have <PT in HI' hence <pTf<pT(gv) is in 

IFn+11. From lemma 8, it follows that k=o, so that, returning 

to (9.1), we see that vEl H11. As v was an arbitrary element of 

[T]I' we have [T]lcIH21. Combining this with (9.4), we have 
2 {<p,T} clH21, and thus H2 is w-equivalent to T. This completes 

the proof of lemma 9. 

THEOREM 1 

For each i~o, Fi is w-minimal over f/J . 

The proof of theorem 1 is by induction on i, beginning easily 

as Fo=T has no edges. Now suppose, for o~i~n, that each Fi is 

w-minimal over RJ and let H be aD-scheme w-minimal over ~ and 

w-equivalent to Fn+l ' From lemma 6, we know that the last 

D-operation used in forming H was not a while-do; nor was it a 

nontrivial composition, due to the w-minimality of H and the 

result of lemma 9. Therefore we may assume that H=H 1:n:H 2 for 

some D-schemes HI' H2 and some n in IT. 

We shall have need of the following corollary to the characteri-

zation of D-schemes given in [8]; this result also appears in 

Elgot [2]. 
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LEMMA 10 

Let C be a cycle in aD-scheme G. Then there is a unique 

predicate vertex z in C such that, for any path Q in G from b 

to e, if Q intersects C, then z is both the first and the last 

point of C encountered in traversing Q. 

RecaTl that a simple path is one in which no vertex is repeated. 

Evidently a simple path from b to e can intersect a cycle C in 

at most its unique "base point" z. One way in which simple paths 

occur that is of particular interest to us is when the path 

terminates at the exit and always, when exiting from a predicate 

vertex, obeys a constant "instruction string" a in {.,T}2. 

Such a path must be simple as a repeated vertex would force the 

path to cycle infinitely. For example the path determined in 

Fn+l by the word •• f .. is simple. An important consequence of 

this is the fact that the terminal point v 1 of P[b; •• l lies on 

no cycle in F; this is because v 1 is an operator vertex 

(labelled by f) and a simple path contacts cycles in predicate 

vertices only. 

Now consider the path P in Fn+l determined by the word 
n+l w= •• fTT(gTT) ,which is in IFn+ll by (7.3). We may write 

P=P//' where Po=P[b;"l terminates at vI' and P1=P[v 1;TTl 

terminates at v2 'P o is an inftial segment of the simple path 

determined by •• f •• , and so is itself a simple path. Also, since 

PIP' terminates at the exit and obeys the constant "instruction" 
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TT, it too is a simple path. Since vI lies on no cycle we may 

conclude that it is the unique point of intersection of Po and 

P/'. Thus P=P oP1P' is a simple path, so the operator vertex v2 
on P cannot lie on any cycle in Fn+l' 

We may now invoke lemma 10 to show that H<V 2 ,e> is aD-scheme. 

Moreover, since the begin of H is a predicate vertex with 

H=H 1 :w:H 2 , and we reached v2 after leaving the begin by "obeying" 

the "instruction" •• , v2 is in Hi and H<v2,e>=H
1

<v 2 ,e>. 

Because v2 is labelled by the operator symbol g, H1<v 2 ,e> = 

=g.H 1<v 3 ,e>, where v3 is the target of the unique outedge from 

v2. If we now apply lemma 4 to the word w= •• fTTgTT, we have 

Lw(IHI) = Lw(IFn+lll = IH 1<v 2 ,e>1 = gIH 1<v 3 ,e>l. By direct 

calculation one sees that Lw(IF n+11) = glFn l , so we conclude 

that IH 1<v 3 ,e>1 = IFni. Since H1<v 3 ,e> is a D-scheme and Fn is 

w-minimal over~, we have that H1<v 3 ,e> has at least as many 

edges as Fn' If we let E(G) denote the number of edges in G, we 

may write this as E(Hl<v3,e»~E(Fn)' 

If we examine the simple paths determined by •• f •• and 

•• f(TTg)n+l TT respectively, we see that they coincide until 

reaching v 1 and that at some predicate node, prior to v2 on the 

latter path, they part. Thepredicate node cannot be in H1<v 2 ,e >, 

so we may count edges to conclude that E(Hl)~3+E(Hl<v2,e~= 

=4+E(Hl<v3,e»~4+E(Fn)=E(f'(T:w2:g'Fn))' 

An even simpler version of this argument shows that 
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E(H2)~1+E(Fn)=E(g.Fn) · Since H=H 1:rr:H 2 , HI and H2 have no 

edges in common; taking into account the two outedges of the 

begin of H, we have 

IHI=2+IH11+IH21~2+E(f.(T:rr2:g·Fn))+E(g.Fn)=E(Fn+1)· 

We have thus shown that Fn+1 is w-m inimal over lb, completing 

the proof of the orem 1. It should be noted that the above 

arguments , slightly extended, show that in fact H=Fn+1' so that 

for this particular weak equivalence class we have a unique 

minimal D-scheme. 

We now define w-equivalent "nonstructured" schemes Gn , n~I, 

by taking the "minimal automaton" of Fn ' Specifically, G1 and 

the recursive construction for Gn+1, are given in figure 4. 
tor,. 

That Gn is w-equivaleniYis immediate from the notion of minimal 

automaton (more precisely, minimal scheme [8]), but this may be 

verified by computi ng IG 11, and by seeing that the recursive 

computation for IG n+1 1 is exactly the same as for IFn+ll. 

It is a simple matter, after the proof of theorem I, to show 

that each G is w-minimal over the class of all schemes. 
n ---

Computing E(F n+l ) and E(G n+l ) is made simple by their recursive 

definitions, so that E(Fn+I)=7+2E(Fn) and E(G n+1)=5+E (G n); henc e 

E(F n+1)=7(2 n+1-1) and E(G n )=5n. We have thus met the objeXives 

given in the introduction, and we gather together our observations 

into a theorem. 
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THEOREM 2 : 

For each n~.1. there are schemes F and G n n such that 

( 1 ) F n is a D-scheme w-minimal o ve r ~ ; 

( 2 ) Gn is w-equivalent to F . n • 

( 3 ) F n has 7(2 n-1) edges; and 

( 4 ) Gn has 5n edges. 
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