
Abstract:

THE EXPONENTIAL STORAGE COST OF

D-SCHEMES

by

Ralph TINDELL

A 76/10 XI/1976

Structured programming has been studied recently in the context

of program schemes. It is in this setting that we wish to examine

the question of the "inefficiency" of structured programs. In

particular, we study the "intrinsic size" of structured program

schemes when compared to equivalent nonstructured schemes. The

notion of equivalence used is the one requiring equivalent schemes

to compute the same function for each interpretation of their

common operator and predicate symbols.

To study the "intrinsic size" of a structured scheme, we examine

the size of a smallest equivalent structured scheme, and compare

this with the size of a smallest equivalent nonstructured scheme.

The general class of schemes studied in the present paper is the

class of lanov schemes, and the "structured" schemes considered

- 1 -

are the so-called Dijkstra schemes . The primary result is, from

some pOints of view, a negative one

the intrinsic size of Dijkstra schemes may be exorbitant.

To be precise, we construct a sequence Fn of Dijkstra schemes

such that for each n, no smaller Dijkstra scheme is equivalent

to Fn , and the number of edges in Fn grows exponentially.

We then show there are weak equivalent nonstructured schemes

Gn whose size grows only linearly.

- 2 -

Introduction

Flowchart schemes have been studied in recent times by many

authors, with the schemes modelled after structured programs

recieving a great deal of attention. Essentially, a flowchart

scheme is a flowchart in which actual funCtions and predicates

have been replaced by appropriate uninterpreted symbols. Then,

by allowing a variety of interpretations of these symbols as

functions and predicates over various sets one obtains a class

of structurally similar flowchart algorithms, each of which

computes a partial function on the domain of the interpretation.

A notion of equivalence widely considered is that of weak

equivalence, for which one requires that the two schemes compute

the same partial function for each specific interpretation of

the symbols.

In the present paper we consider monadic schemes with one input

and one output, and study simple while schemes [3], or D-schemes

[2] built using composition, if-then-else, and while-do operations.

In particular, we are interested in the size of smallest D -sche~s

relative to smallest "nonstructured" schemes within weak equivalence

classes. The major result of the paper is the construction of

weak equivalent schemes F and G , with F a "smallest" D-scheme, n n n
such that the size of Fn grows exponentially with n, while th e

size of Gn grows linearly. These examples may be viewed as a

theoretical verification of the opinion held by many that struc

tured prograns tend to be very large.

- 3 -

Definitions and Notation

Let r=(Q,IT) be an ordered pair of disjoint sets; the ele ~ ents

of Q are called operator symbols and those of IT, predicate

symbols. A r-flowchart scheme F is a (locally) ordered directed

graph F with a distinguished begin vertex b, a distinguishe d

exit vertex e of outdegree 0, and a labelling function assi g nin ~

to each outdegree 1 vertex an operator symbol and to each out

degree 2 vertex a predicate symbol. We assume there are no

vertices of outdegree 3 or more, and that the exit e is the only

vertex of outdegree O. "Locally ordered" may in this context be

taken to mean that the two outedges of each predicate vertex

have been labelled in a nonrepetitive way by $("false") and

T("true").

An interpretation of r over a set X is an assigment to each fE n

a function I(f):X+X and to each nEIT a predicate I(n):X+{ $,T }.

Given an interpretation I, a r-scheme F determines, in a fashion

we assume clear, a partial function r(I):X+X. Two r-sche me s F

and G are said to be w-equivalent (Elgot (2), Kosaraju (5)) if

they compute the same partial function under any interpretation :

that is, for any interpretation I, F(I) = G(I). We shall later

define a set of words determined by F, called the weak behaviour

IFI with the property that F is w-equivalent to G iff IFI = IGI.

We shall utilize this latter formulation in our proofs.

Certain schemes are singled out by their simplicity. A scheme

with one vertex and no exit is called a trivial scheme, and a

- 4 -

scheme with two vertices, begin and exit, and a single edge

from the begin to the exit is called an atomic scheme . There

is an obvious no tion of isomorphism of schemes and we hence

forth identify isomorphic schemes. Thus, there is now a unigue

trivial scheme, henceforth denoted T; and for each f in n ,

a unique atomic scheme with begin labelled by f. We shall denote

this latter atomic scheme by its operator label f .

The elementary structured programming operations of concatenation,

if-then-else, and while-do may be formulated as operations on

schemes. More precisely, given schemes F and G, and a predicate

symbol w, we define the following schemes. F·G is the scheme

obtained from the disjoint union of F and G by identifying the

exit of F with the begin of G. F:w:G is the scheme obtained from

the disjoint union by identifying the two exits and adding a new

begin vertex labelled by w, with ~-edge directed to the begin

of F and the T-edge to that of G, w[F) is the scheme obtained

from F by adding a new begin labelled w, having its $-edge directed

to a new exit and its T-edge to the begin of F, and then identi

fying the exit of F with the new begin. One similary defines

the scheme i[F) modelled after "while(not w)do F", AD-scheme

is defi~ed to be a scheme constructed using only trivial and

atomic schemes and the four types of operations given above,

That is, the class ~ of D-schemes is the smallest class con

taining T and all atomic schemes and closed under all the

D-operations . Some silJllle D-schemes are given in figure 1.

- 5 -

Contracted Schemes and Weak Behaviour

Given a r-scheme F we now define an associated labelled directed

graph F' called the contraction of F. To do so, we need some

preliminary definitions. First we must order the predicate

vertices: r=br 1, ... ,1Ir}. Now, given a nonexit vertex u of F and
r a string t1 ... trE{$,T} , we define a path initiating at u as

follows. Beginning at u, traverse the unique outedge if u is an

operator vertex, and traverse the outedge labelled tj if u is

labelled by 1I j • From this pOint on, the path terminates if an

operator vertex is encountered; it continues along the edge

labelled tk if we have entered a vertex labelled 11 k, The above

process defines a path we denote by P[u;t1 ... trl, which either

ler~~Rates at an operator vertex, at the exit, or is an infinite

path.

We may now define the contraction F' of a scheme F. The vertices

of F' are the operator nodes of F,which retain their operator

labels, together with the exit e of F and a new vertex b' called

the begin of F'. We now speci fy the di rected edges of F', each

of which recieves a unique label from {$,T}r. If the begin b of

the scheme F is an operator vertex or the exit (F=T) then all

edges in F' from b' are directed to b, and there is one such for

every possible label t1".t r . If, on the other hand, b is a

predicate vertex in F there is to be an edge in F', labelled

t1".t r , from b' to a vertex v iff the path P[b;t 1" .trl in F

terminates at v. The edges originating at an operator vertex u

- 6 -

are specified similary : there is an edge with label t 1t 2 . . . t r
in F' from u to v iff the path P[u;t 1 ... t r 1 in F terminates at

v. The description of F' is now complete. By way of e xample,

the D-scheme F1=(f.(T:rr 2:g)):rr 1:g and its contraction F'l are

depicted in figure 2.

The weak behaviour IFI of a scheme F is determined from its

contraction F' as follows. IFI is to be a set of words of the

form w=a of 1a 1f 2 ... fka k where

{<I> ,-dr. The words in IFI are

each f . is in n and each a . is in
1 1

to be those which are the "traces"

of "successful" paths Q in F'. If we as usual view a path as an

alternating sequence Q=voeovl ... ekvk+l of vertices and edges,

then it is successful if vo:b' and vk+l is the exit e; the word

w above is the trace of Q if, for each i>o, a . is the label in
- 1

F' of the edge e. and, for l<i<k, f . is the label of the verte x
1 - - 1

Vi' Referring to figure 2,we see that the weak behaviour of Fl

is given by :

where the symbol [t1j denotes the set of all strings t1 ... t r
in {<I>,T}r satisfying tj:t.

Our definition of contracted scheme and weak behaviour is taken

directly from Elgot [21, who points out that by Rutledge [7] and

Luckham, Park and Paterson [61, it follows that schemes F and G

are w-equivalent iff IFI = IGI.

- 7 -

We close this section with several useful lemmas. First. we

extend the definition of P[u;tl ... trl given above to show how an

initial segment w"oofl ... fio i of a word 0of •... fioi ... fko k in

IFI uniquely determines a path in F starting at the begin b of

F. If b is an operator vertex or the exit (in case F=T). define

Po to be the constant path from b to itself; otherwise set

Po=P[b;ool. If i>o and VI is the terminal point of Po' define

P2=P[v I ;oI1. Continuing in this fashion. we have paths

po.P I • ••. 'P i and we define the path P(w) to be the composition

of these paths:P(w)=P/I ... Pi . It is clear from the definition

that P(w) terminates at the exit iff w is in IFI. Since a path

terminating at the exit may not be extended. we may deduce the

following "initial segment lemma".

LEMMA I :

No proper initial segment of a word in IFI is itself in IFI.

It is convenient to define a special product on words of the

type found in weak behaviours. exactly analogous to composition

of paths. Given w=oofI .. . fio i and z=aogl ... gja j their composite

w·z is undefined if 0ifao and otherwise is given by

w·z = ° fl" .f.o·g l ·· ·g ·a·. This definition extends in the usual o 1 1 J J

way to sets of words of the appropri ate type and the definition

is so constructed that the following are easily established .

LEMMA 2 :

If F and G are schemes, IF.GI = IFI • IGI.

- 8 -

LEMMA 3 :

If F and G are schemes and rrjEIT, then

IF:rrj:GI = [4»j'IFIU[T)j'IGI.

For the final lemmas of the section, we introduce two more

notions. Ifw=oof1 ... fio i , and F is a scheme, then

Lw(IFI) = {zlw'z is in IFI}. Next, given a vertex v of F, define

the flow from v in F, denoted F<v,e>, to be the labelled sub

digraph of F consisting of the vertices and edges lying on paths

initiating at v. If the exit e is in F<v,e>, then we may, by

designating v as the begin of F<v,e>, turn F<v,e> into a scheme .

An example where this is possible would be where v is the terminal

vertex of the path determined by an initial segment of a word

in IFI. It is a straightforward matter to deduce the next result.

LEMMA 4

If v is the terminal vertex of the path in F determined by an

initial segment w of a word in IFI, then Lw(IFI) = IF<v,e>l.

The final lemma of the section is a direct corollary of the

characterization theorem for D-schemes given in (8).

LEMMA 5 :

If vertex v of aD-scheme F lies on no cycle in F, then F<v,e>

is itself aD-scheme.

- 9 -

An Exponentially Inefficient Sequence of D-Schemes

We now come to the construction of the schemes promised in the

introduction, and the verification of their properties. We de-

fine the sequence of D-schemes inductively by setting Fo=T and

for n~o, setting Fn+l = (fo(T:1T2:goFn)):1Tl:(goFn) ' We make

precise the notation of "smallest" D-scheme in the obvious way :

aD-scheme F is w-minimal over ~ if no weak equivalent D-scheme

has fewer edges than F. Fn+1 is pictured in figure 3.

Our first, and only difficult task is to show that each of the

D-schemes just constructed is w-minimal over~ . First we give

the recursive calculation of their weak behaviours:

The scheme Fl of the present sequence is the same as the scheme

depicted in figure 2. It will be notationally simpler for us to

presume n={n 1,n2}; howeve~ subsequent arguments, with only minor

modifications, are valid even if n and IT are infinite. As a

preliminary to showing w-minimality, we examine forced properties

on D-schemes w-equivalent to the D-schemes under consideration.

LEMMA 6

If H is aD-scheme w-equivalent to F I' n>o, then the begin n+ -
of H is a predicate vertex, and H is not of either of the forms

n[G] or neG].

- 10 -

Proof :

The opposite of the second claim may be ruled out since

IFn+1In{~'T }2 is empty; and that of the first by the fact that

IFn+11 may not be written as {~,d2hL for any h in n and any set L.

The next lemma follows by a straight forward induction on n.

LEMMA 7 :

If o~l~n, the following are subsets of IFn+11

(7. 1)

(7. 2)

(7.3)

In light of (7.1) and (7.3), the initial segment lemma implies

the following.

LEMMA 8

1 m If w is a word from ([Tl 1g) [~llf[Tl2(g[Tl1) , then w is in

IFn+11 iff o<l<n and m=n-1+1.

Having shown in lemma 6 that no ·whi1e-do· is w-equiva1ent to

F we now consider compositions. n + I'

LEMMA 9

Suppose H=H1oH2 is w-equiva1ent to Fn+1' n~o. Then one of HI

and H2 is w-equiva1ent to the trivial scheme.

- 11 -

P roo f :

By lemma 2. every word in IFn+11 may be "split" as a composite

of a word in IH11 with a word in IH 2 1. and lemma 1 implies this

splitting is unique. To establish lemma 9. we will consider

certain words known to be in IFn+11 by lemma 7. and determine

their unique splittings. using lemma 8 as needed.

First. suppose w is in ([T]l g)n+1 and y is in {<p .T}2. By (7.1).

wy is in I Fn+1 1. If the unique splitting of wy places wy in IH1 1

and y in IH21. the initial segment lemma would then imply that

this is the splitting for wy for ~ y in {<p.T}2. Thus. we would

2 have {<P .T } c1H21. and it is then immediate that IH21 = ITI. and

lemma 9 is valid. We may now suppose that no word wy in

n+ 1 2 . ([T]l g) {<P.T} spl,ts with wy in IH11.

2 To be more specific. if v is in [T]l and y is in {<P.T} • there

is a unique k with o~k~n such that (vg)kv is in IH11 and

(vg)n-k+1y is in IH21 . Lemma 1 implies this splitting is valid for

every y in I H21. so we have

(9 . 1)

(9 • 2) and o<k<n.

By lemma 8. we know that (vg)kv is not in I Fn+11. so (9 . 1)

implies that v is not in IH11. Since this is valid for all v

in [T]l (because in each instance the value for k is not n+1).

we may conclude:

- 12 -

(9. 3)

Combining (9.3) with the fact from (7.2) that [~11f-r~c:1 F n+ll,

we have

(9.4)

(9.5)

[~llc:IHll

[~11 fT~cl H21.

2 Because {~,T} nlFn+ll is empty, it follows from (9.4) that

(9.6)

We next determine the splitting of (Vg)k~Tf~~, which is in

IFn+ll by (7.2). In view of (9.6), the initial segment lemma

applied to (9.1) eliminates all possibilities except:

(9. 7)

(9.8)

(Vg)k~T is in IHll;

~Tf~~ is in IH 2 1.

We now examine w=(Vg)k~Tf~T(gv)n-k+l. We

of 1 F n+ll places

claim that

(Vg)k~T in

the unique

splitting for this word

n-k+l .
~Tf~T(gv) 1n 1 H21· To establish this, we eliminate all

other possibilities. Applying the initial segment lemma to

(9.1) and to (9.2) we have that (Vg)mv is in 1 HII iff m=k, and

(Vg)mv is in IH21 iff m=n-k+l. This eliminates all splittings

of w except the desired one and the one with (Vg)k~Tf~T in 1 H11.

However, when combined with (9.5), this implies that (Vg)k~Tf~Tf~T

is in 1Fn+ll; this is not possible since one readily sees that

f never appears as consecutive operator symbols in a word of

- 13 -

I Fn+11· Therefore, we have

(9.9) <P Tf<pT(gv)n-k+l is in IH2 1.

I I
n-k+l Applying (9 . 4), we have <PT in HI' hence <pTf<pT(gv) is in

IFn+11. From lemma 8, it follows that k=o, so that, returning

to (9.1), we see that vEl H11. As v was an arbitrary element of

[T]I' we have [T]lcIH21. Combining this with (9.4), we have
2 {<p,T} clH21, and thus H2 is w-equivalent to T. This completes

the proof of lemma 9.

THEOREM 1

For each i~o, Fi is w-minimal over f/J .

The proof of theorem 1 is by induction on i, beginning easily

as Fo=T has no edges. Now suppose, for o~i~n, that each Fi is

w-minimal over RJ and let H be aD-scheme w-minimal over ~ and

w-equivalent to Fn+l ' From lemma 6, we know that the last

D-operation used in forming H was not a while-do; nor was it a

nontrivial composition, due to the w-minimality of H and the

result of lemma 9. Therefore we may assume that H=H 1:n:H 2 for

some D-schemes HI' H2 and some n in IT.

We shall have need of the following corollary to the characteri-

zation of D-schemes given in [8]; this result also appears in

Elgot [2].

- 14 -

LEMMA 10

Let C be a cycle in aD-scheme G. Then there is a unique

predicate vertex z in C such that, for any path Q in G from b

to e, if Q intersects C, then z is both the first and the last

point of C encountered in traversing Q.

RecaTl that a simple path is one in which no vertex is repeated.

Evidently a simple path from b to e can intersect a cycle C in

at most its unique "base point" z. One way in which simple paths

occur that is of particular interest to us is when the path

terminates at the exit and always, when exiting from a predicate

vertex, obeys a constant "instruction string" a in {.,T}2.

Such a path must be simple as a repeated vertex would force the

path to cycle infinitely. For example the path determined in

Fn+l by the word •• f .. is simple. An important consequence of

this is the fact that the terminal point v 1 of P[b; •• l lies on

no cycle in F; this is because v 1 is an operator vertex

(labelled by f) and a simple path contacts cycles in predicate

vertices only.

Now consider the path P in Fn+l determined by the word
n+l w= •• fTT(gTT) ,which is in IFn+ll by (7.3). We may write

P=P//' where Po=P[b;"l terminates at vI' and P1=P[v 1;TTl

terminates at v2 'P o is an inftial segment of the simple path

determined by •• f •• , and so is itself a simple path. Also, since

PIP' terminates at the exit and obeys the constant "instruction"

- 15 -

TT, it too is a simple path. Since vI lies on no cycle we may

conclude that it is the unique point of intersection of Po and

P/'. Thus P=P oP1P' is a simple path, so the operator vertex v2
on P cannot lie on any cycle in Fn+l'

We may now invoke lemma 10 to show that H<V 2 ,e> is aD-scheme.

Moreover, since the begin of H is a predicate vertex with

H=H 1 :w:H 2 , and we reached v2 after leaving the begin by "obeying"

the "instruction" •• , v2 is in Hi and H<v2,e>=H
1

<v 2 ,e>.

Because v2 is labelled by the operator symbol g, H1<v 2 ,e> =

=g.H 1<v 3 ,e>, where v3 is the target of the unique outedge from

v2. If we now apply lemma 4 to the word w= •• fTTgTT, we have

Lw(IHI) = Lw(IFn+lll = IH 1<v 2 ,e>1 = gIH 1<v 3 ,e>l. By direct

calculation one sees that Lw(IF n+11) = glFn l , so we conclude

that IH 1<v 3 ,e>1 = IFni. Since H1<v 3 ,e> is a D-scheme and Fn is

w-minimal over~, we have that H1<v 3 ,e> has at least as many

edges as Fn' If we let E(G) denote the number of edges in G, we

may write this as E(Hl<v3,e»~E(Fn)'

If we examine the simple paths determined by •• f •• and

•• f(TTg)n+l TT respectively, we see that they coincide until

reaching v 1 and that at some predicate node, prior to v2 on the

latter path, they part. Thepredicate node cannot be in H1<v 2 ,e >,

so we may count edges to conclude that E(Hl)~3+E(Hl<v2,e~=

=4+E(Hl<v3,e»~4+E(Fn)=E(f'(T:w2:g'Fn))'

An even simpler version of this argument shows that

- 16 -

E(H2)~1+E(Fn)=E(g.Fn) · Since H=H 1:rr:H 2 , HI and H2 have no

edges in common; taking into account the two outedges of the

begin of H, we have

IHI=2+IH11+IH21~2+E(f.(T:rr2:g·Fn))+E(g.Fn)=E(Fn+1)·

We have thus shown that Fn+1 is w-m inimal over lb, completing

the proof of the orem 1. It should be noted that the above

arguments , slightly extended, show that in fact H=Fn+1' so that

for this particular weak equivalence class we have a unique

minimal D-scheme.

We now define w-equivalent "nonstructured" schemes Gn , n~I,

by taking the "minimal automaton" of Fn ' Specifically, G1 and

the recursive construction for Gn+1, are given in figure 4.
tor,.

That Gn is w-equivaleniYis immediate from the notion of minimal

automaton (more precisely, minimal scheme [8]), but this may be

verified by computi ng IG 11, and by seeing that the recursive

computation for IG n+1 1 is exactly the same as for IFn+ll.

It is a simple matter, after the proof of theorem I, to show

that each G is w-minimal over the class of all schemes.
n ---

Computing E(F n+l) and E(G n+l) is made simple by their recursive

definitions, so that E(Fn+I)=7+2E(Fn) and E(G n+1)=5+E (G n); henc e

E(F n+1)=7(2 n+1-1) and E(G n)=5n. We have thus met the objeXives

given in the introduction, and we gather together our observations

into a theorem.

- 17 -

THEOREM 2 :

For each n~.1. there are schemes F and G n n such that

(1) F n is a D-scheme w-minimal o ve r ~ ;

(2) Gn is w-equivalent to F . n •

(3) F n has 7(2 n-1) edges; and

(4) Gn has 5n edges.

ACKNOWL EDGEMENTS

The work in this paper was carried out while the author was at

t he Universitat des Saarlandes on leave from Stevens Institute

of Technology. I am pleased to express my gratitude to the

Uni versitat des Saarlandes. and especially to Professor

GU nter Hotz. for support provided during this period. I would

al s o l i ke to thank Professor Kurt Mehlhorn for posing a question

to th e au thor that provided the stimulus for the present work.

- 18 -

REFERENCES

[1] C.BHhm and G.Jacopini,"Flow diagrams, Turing machines,

and languages with only two formation rules". Comm.ACM

9(1966),366-371.

[2] C.C.Elg ot , "Structured programming with and without go to

statements". IEEE Trans. on Software Engineering, 5E-2

(1976), 41-54.

[3] S.A.Greibach, "Theory of program structures: schemes,

semantics, verification". Lect. Notes in Computer Science

36(1975), Springer-Verlag.

[4] D. E.Knuth and R.W.Floyd, "Notes on avoiding 'Go To' state

ments". Information Processing Letters 1(1971), Errata.

1(1972).

[5] S.R. Kosaraju, "Analysis of structured programs". Journal

Computer System Sci. 9(1974), 232-255.

[6] D.C. Luckham, D.M.Park, and M.S.Paterson, "On formalized

computer programs". J. Comput. Syst. Sci. 4(1970),220-249.

[7] J.D.Rutledge, "On Ianov's program schemata". J .ACM 1 1(19 64),

1-9.

[8] R. Tindell , "The existence of unique minim a l D-schemes",

to appear.

<\> 1: 1:

q,

f

E.XIT EXIT EXIT EXIT

1.1 t 1.2. f:1t: 3 1.3 1C[fJ 1. 4 7t [.fJ

fIGURE 1

-
--::;:_..-:,.-1 X u.J

I-
X LL~

.u..1

r!.
c...9 .q-

I..Ll I- cL
x. :::> L1.l

'-' -
LL

	1976_03 0001_02_1heitscover
	1976_03 0003
	1976_03 0004
	1976_03 0005
	1976_03 0006
	1976_03 0007
	1976_03 0008
	1976_03 0009
	1976_03 0010
	1976_03 0011
	1976_03 0012
	1976_03 0013
	1976_03 0014
	A_1976_03_17
	A_1976_03_18
	A_1976_03_19
	A_1976_03_20
	A_1976_03_21
	A_1976_03_22
	A_1976_03_23
	A_1976_03_24
	A_1976_03_25_neu
	A_1976_03_26

