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S_ry: 
In thi. paper, we prove lower bounds for the space requirement 
of the membershlpproblem of context-free languages. A context-

* free language L ~ L is called strongly non-regular if there 
exi •• word. u,v,w,.,y E r'" with L fl uv*wx"y non-regular. 

Main Theorem: To decide the membershipproblem of strongly non
regular context-free langua,es requires O(log n) space infinitely 
often. 

A. corollaries we obtain lower bounds for several families of 
determ1ni.tic languages ,e.g. realtime languages, and about 
the minimal growth rattof tape constructable functions. 
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Context-free languages are an important topic in practical 

as well as in theoretical computer science. Much effort was 
devoted to the construction of time - and (or) space - efficient 

recognition algor ithms. 

Early results were obtained by Lewi s, Hartmanis and Stearns [5J 

Every context-free language can be recognized on an off-line 
Turing machine in space 0(10g2n ) , where n is the length of the 

input. Recent results by Sudborough [7] and Monien [6J indicate 

that it is probably very hard to beat this bound. They showed that 

the existence of a general context- f r ee recognition algorithm 

working in logarithmic space would imply the equality of deter

ministic of nondeterministic context-sensitive languages, i.e. 

a solution to Myhill's LBA-problem. 

However, it is conceivable that l arge subclasses of the context

free languages (e.g. the deterministic languages) are recognizable 

in less than 0(10g2n ) units of space. In [lJ Alt and Mehlhorn 

attacked this problem by proving that the word-problem for many 

classes of deterministic context-free languages r equires at least 

O(log n) units of space infinitely often . Hotz and Messerschmidt 

[4J attacked the problem from the other end: Dyck-languages can 
be recognized in O(log n ) units of space. We extend their results 

and show that every bracket - language can be recognized in O(log n) 

units of space. 

For the notation we refer the reader to [3J • A context-free grammar 
is a 4-tuple G z (V, I, P, S), where V i s the set of non- terminals 

(variables), I is the set of terminals, P is the set of productions 
and S is the startsymbol. (,) a re two special symbols in I. A 

production A -+ (a) is called bracketed iff a E « I"v) _ { (,)})'tf . 

A context-free language L is a bracket-language if it can be 

generated by a 

braoketed. The 

In the .equel, 

word of length 

context-free grammar G all of which rules are 

braoketing is a linear encoding of the syntax tree. 
• L i. alway. a braoket-language and w t L i. a 

n. We want to decide if w e L. 
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Fi~.t, we find out if there is a correct number of brackets 
in w. To do so, we scan w from left to right once always 
keeping a count (in binary) of the number of unmatched open 
brackets . This number should always be positive except when 

scanning the very last symbol of w. 

If w fails this test then it is rejected. Otherwise, the brackets 

in w encode a tree. This tree must be the parse-tree. So, we only 

have to find out if there is a consistent labelling of the interior 
nodes of the tree by the variables of the grammar. This can be 
done by labelling the tree bottom-up according to the following 

rules: 

I) The leaves of the tree are labelled by the symbols of w from 

left to right. 

II) Let Vo be a node with sons v1'···,vk • If Vi is labelled by 

Vi (; V, I :S i :S k, then Vo can be labelled by 

Vo ~{A ; A + Al A2 • •• Ak f. P and Ai C Vi for I :S i :S k} 

A tree is a parse of w according to G if the label of the root 
contains the start symbol S. Note the similarity of this labelling 
procedure with Younger's recognition algorithm [aJ . 

The label of a node is used only once: when its father is 
labelled. Thereafter its label is never used again. Therefore 
we can discard it. 

Definition:An interior node (non-leaf) v is called essential 

if it is labelled , but its father is not labelled. 

We want to l abel the node. of the tree in .uoh a judioiou. order, 

.0 to keep the maximal numb.r of node. which ar •• imultaneou.ly 
•••• ntial a. small a. po •• ible. There 11 a well known strat.qy 
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for achieving this. Label larger subtrees first [2, fl . 
It is incorporated in the following marking procedure. 

procedure labsl (tree T) , 

begin l et v be the root of T , 

end, 

1f all of v's sons are leaves 

begin 

end 

else 
begin 

let the i-th son of v be labelled 

by ai € r , 1 SiS k; 

label v with {A; A .. a 1 ••• ak <= pb 

comment v is now an essential node; 

let T1 ,T 2 , ••• ,Tk be the direct subtrees of TI 

let n be that permutation of { 1, ••. ,k} 

satisfying 

(1) IITn (l)11 ~ IITn (2)11 ~ ••• ~ IITn(k)11 

(2) IITn (ll II - IITn Cl+d I implies n (ll < n n+l) 

(Here I ITI I is t he number of leaves of tree T) 

for l-l ~ k do label (T); 

let Vi ' lSi S k , be the label of the root 
of subtree Ti l 

label v by 

{AI A .. AI " .Ak E P and Ai ~ Vi} 

commont v is now .n •••• nti.l node I 
the root. of the .ubtr ••• Ti .re not •••• ntial 
.nymore, 



- 4 -

The following facts are easily proved by induction on the 

data structure. 

Fact 1: ([3] ) At most r · ( log Iwl + 
essential. where r - max { lal; A + 

1) nodes are simultaneously 

aEP}. 

Consider any call of the recursive marking procedure. Let T' be 

the argument of the active call and let v' be its root. Let 

further vm.vm_ 1 •..•• v 1 with v' = vm be the path from v' to the 

root. 

I>,· 
/ ,{ 

i • 

Y"" ; v' \ 
\ 

,Il
l .);. Y~-1 \ 

/ / ,' \ \ 

Fact 2: Let v be any essential node. Then v is the son of some 

vi for 1 SiS m-1. 

Fact 3: If none of vi's sons (1 SiS m-1) is essential then 

v i + 1 is the root of the leftmost subtree (of the tree with root vi) 

having a maximal number of leaves. 

We may summarize these three facts as follows: The essential 

information is concentrated along the path from the root of the 

argument of the active call to the root of the total tree. The 

amount of essential information is logarithmically bounded in the 

length of the input. 
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Definition s A node v is called part1Qlly analyzed if at least 

one, but not all of its sons are labelled. 

Note that the partially analyzed nodes are exactly the fathers 

of essential nodes. Therefore we may reformulate the three facts 

listed above. 

Fact l's At most r·( log jwj + 1 ) nodes are simultaneously 

partially analyzed. 

Fact 2'1 Let v be any partially analyzed node. 

Then v is some Vi' 1 siS m-l. 

Fact 3' s If Vi' 1 siS m-l, is not partially analyzed, then 

v i +1 is the root of the lef tmost subtree (of the tree with root Vi) 

having a maximal number of leaves. 

We associate with every partially analyzed node an r-tuple over 

2v v (*} The l-th component of this r-tuple is 

V' ~ V if the root of the l-th subtree is (already) 
labelled by V' £ V, 

otherwise. 

USing these concept s we can rewrite our algorithm. We keep the 

r-tuples aSSigned to the partially analyzed nodes in a stack. 
As before , we label larger subtrees first. Whenever we return 

from a call of label,with argument T say, we recompute the rank 

(leftmost largest, rightmost smallest, other) of the argument tree 

among its brother trees. If T is the leftmost largest subtree then 

we create a new r-tuple and push it on the stack. Then we proceed 

with the second largest subtree. If T is the rightmost smallest 

subtree then all its brother trees are already labelled and their 

labels are stored in the top element of the stack. We use this 

element to compute the label of the root of the supertree of T 

and pop the stack. Then we return one level in the recursion. Other

wise we update the top stack element and proceed with the next 
smaller subtree . This leads to t he following non-recursive program. 
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1) ~: T ; subset of V: H 

2) let T have k subtrees ; 

3) if k > r then reject 

4) if all of T's subtrees are leaves 

5) then begin let ai be the label of the i-th subtree; 
6) H<-{A;A+al ••• akEP} 

end 

(7) else begin T<- leftmost maximal subtree of T; 

8) goto (4) 

end 

(9) compute the position of T among its brother treesl 

(10) case position of 

(11) leftmost largest: create a new r-tuple; 
(12) if T is the t-th subtree then let ita 

t-th component be HI 
(13) push the r-tuple on the stack; 

(14) rightmost smallest : if T is the t-th subtree then set the 
t-th component of the top stack element 
to III 

(H) 

( 16) 

( 17) 

( 18) 

(19) 

let k be the number of non * components 
of the stack top; 

H"- {A; A + AI" .Ak E P and At ~ t-th 
component of stack top}; 

pop the stack; 

T<- super-tree of T/ 

go to (9) 
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if T is the Z-th subtree then set the 

Z-th component of the stack-top to H; 

(21) T ~ - - next smaller brother of T; 

(22) go to (2); 

The correctness of this algorithm follows from the preceding 

discussion. Furthermore, fact 1 ensures us that the length of 

the stack will never exceed . r (log /wl + 1). It is obvious 

that lines (2), (3) , (7), (9), (18) and (21) can be computed 

in logarithmic space. Therefore we obtain . 

Theorem: Every bracket language can be recognized by a 

O(log n) space-bounded Turing machine. 

Alt and Meh l ho rn show in [1J that bracket languages also 

require O(log n) space infinitely often. 

Corollary : The space complexity of the word problem for 

bracket languages 1s exactly O(log n). 

We want to close with a remark on the time complexity of our 

recognition procedure . Since the machine is O(log n) space

bounded it is certainly polynomially time bounde d. I n f act, 

it is easily s een that the time complexity is 0(n 2). 
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