
"~hbe.d~h 10

... ng nd Moth_aUk und

Info ... tlk de . Unlver.lt.t

d .. S ... hnde.

D-.~ Sa •• brU~. en

110 Stadt .. ald

A H/L2

S.pt_< ItH

S_ry:
In thi. paper, we prove lower bounds for the space requirement
of the membershlpproblem of context-free languages. A context-

* free language L ~ L is called strongly non-regular if there
exi •• word. u,v,w,.,y E r'" with L fl uv*wx"y non-regular.

Main Theorem: To decide the membershipproblem of strongly non
regular context-free langua,es requires O(log n) space infinitely
often.

A. corollaries we obtain lower bounds for several families of
determ1ni.tic languages ,e.g. realtime languages, and about
the minimal growth rattof tape constructable functions.

- 1 -

Context-free languages are an important topic in practical

as well as in theoretical computer science. Much effort was
devoted to the construction of time - and (or) space - efficient

recognition algor ithms.

Early results were obtained by Lewi s, Hartmanis and Stearns [5J

Every context-free language can be recognized on an off-line
Turing machine in space 0(10g2n) , where n is the length of the

input. Recent results by Sudborough [7] and Monien [6J indicate

that it is probably very hard to beat this bound. They showed that

the existence of a general context- f r ee recognition algorithm

working in logarithmic space would imply the equality of deter

ministic of nondeterministic context-sensitive languages, i.e.

a solution to Myhill's LBA-problem.

However, it is conceivable that l arge subclasses of the context

free languages (e.g. the deterministic languages) are recognizable

in less than 0(10g2n) units of space. In [lJ Alt and Mehlhorn

attacked this problem by proving that the word-problem for many

classes of deterministic context-free languages r equires at least

O(log n) units of space infinitely often . Hotz and Messerschmidt

[4J attacked the problem from the other end: Dyck-languages can
be recognized in O(log n) units of space. We extend their results

and show that every bracket - language can be recognized in O(log n)

units of space.

For the notation we refer the reader to [3J • A context-free grammar
is a 4-tuple G z (V, I, P, S), where V i s the set of non- terminals

(variables), I is the set of terminals, P is the set of productions
and S is the startsymbol. (,) a re two special symbols in I. A

production A -+ (a) is called bracketed iff a E « I"v) _ { (,)})'tf .

A context-free language L is a bracket-language if it can be

generated by a

braoketed. The

In the .equel,

word of length

context-free grammar G all of which rules are

braoketing is a linear encoding of the syntax tree.
• L i. alway. a braoket-language and w t L i. a

n. We want to decide if w e L.

- 2 -

Fi~.t, we find out if there is a correct number of brackets
in w. To do so, we scan w from left to right once always
keeping a count (in binary) of the number of unmatched open
brackets . This number should always be positive except when

scanning the very last symbol of w.

If w fails this test then it is rejected. Otherwise, the brackets

in w encode a tree. This tree must be the parse-tree. So, we only

have to find out if there is a consistent labelling of the interior
nodes of the tree by the variables of the grammar. This can be
done by labelling the tree bottom-up according to the following

rules:

I) The leaves of the tree are labelled by the symbols of w from

left to right.

II) Let Vo be a node with sons v1'···,vk • If Vi is labelled by

Vi (; V, I :S i :S k, then Vo can be labelled by

Vo ~{A ; A + Al A2 • •• Ak f. P and Ai C Vi for I :S i :S k}

A tree is a parse of w according to G if the label of the root
contains the start symbol S. Note the similarity of this labelling
procedure with Younger's recognition algorithm [aJ .

The label of a node is used only once: when its father is
labelled. Thereafter its label is never used again. Therefore
we can discard it.

Definition:An interior node (non-leaf) v is called essential

if it is labelled , but its father is not labelled.

We want to l abel the node. of the tree in .uoh a judioiou. order,

.0 to keep the maximal numb.r of node. which ar •• imultaneou.ly
•••• ntial a. small a. po •• ible. There 11 a well known strat.qy

- 3 -

for achieving this. Label larger subtrees first [2, fl .
It is incorporated in the following marking procedure.

procedure labsl (tree T) ,

begin l et v be the root of T ,

end,

1f all of v's sons are leaves

begin

end

else
begin

let the i-th son of v be labelled

by ai € r , 1 SiS k;

label v with {A; A .. a 1 ••• ak <= pb

comment v is now an essential node;

let T1 ,T 2 , ••• ,Tk be the direct subtrees of TI

let n be that permutation of { 1, ••. ,k}

satisfying

(1) IITn (l)11 ~ IITn (2)11 ~ ••• ~ IITn(k)11

(2) IITn (ll II - IITn Cl+d I implies n (ll < n n+l)

(Here I ITI I is t he number of leaves of tree T)

for l-l ~ k do label (T);

let Vi ' lSi S k , be the label of the root
of subtree Ti l

label v by

{AI A .. AI " .Ak E P and Ai ~ Vi}

commont v is now .n •••• nti.l node I
the root. of the .ubtr ••• Ti .re not •••• ntial
.nymore,

- 4 -

The following facts are easily proved by induction on the

data structure.

Fact 1: ([3]) At most r · (log Iwl +
essential. where r - max { lal; A +

1) nodes are simultaneously

aEP}.

Consider any call of the recursive marking procedure. Let T' be

the argument of the active call and let v' be its root. Let

further vm.vm_ 1 •..•• v 1 with v' = vm be the path from v' to the

root.

I>,·
/ ,{

i •

Y"" ; v' \
\

,Il
l .);. Y~-1 \

/ / ,' \ \

Fact 2: Let v be any essential node. Then v is the son of some

vi for 1 SiS m-1.

Fact 3: If none of vi's sons (1 SiS m-1) is essential then

v i + 1 is the root of the leftmost subtree (of the tree with root vi)

having a maximal number of leaves.

We may summarize these three facts as follows: The essential

information is concentrated along the path from the root of the

argument of the active call to the root of the total tree. The

amount of essential information is logarithmically bounded in the

length of the input.

- 5 -

Definition s A node v is called part1Qlly analyzed if at least

one, but not all of its sons are labelled.

Note that the partially analyzed nodes are exactly the fathers

of essential nodes. Therefore we may reformulate the three facts

listed above.

Fact l's At most r·(log jwj + 1) nodes are simultaneously

partially analyzed.

Fact 2'1 Let v be any partially analyzed node.

Then v is some Vi' 1 siS m-l.

Fact 3' s If Vi' 1 siS m-l, is not partially analyzed, then

v i +1 is the root of the lef tmost subtree (of the tree with root Vi)

having a maximal number of leaves.

We associate with every partially analyzed node an r-tuple over

2v v (*} The l-th component of this r-tuple is

V' ~ V if the root of the l-th subtree is (already)
labelled by V' £ V,

otherwise.

USing these concept s we can rewrite our algorithm. We keep the

r-tuples aSSigned to the partially analyzed nodes in a stack.
As before , we label larger subtrees first. Whenever we return

from a call of label,with argument T say, we recompute the rank

(leftmost largest, rightmost smallest, other) of the argument tree

among its brother trees. If T is the leftmost largest subtree then

we create a new r-tuple and push it on the stack. Then we proceed

with the second largest subtree. If T is the rightmost smallest

subtree then all its brother trees are already labelled and their

labels are stored in the top element of the stack. We use this

element to compute the label of the root of the supertree of T

and pop the stack. Then we return one level in the recursion. Other

wise we update the top stack element and proceed with the next
smaller subtree . This leads to t he following non-recursive program.

- 6 -

1) ~: T ; subset of V: H

2) let T have k subtrees ;

3) if k > r then reject

4) if all of T's subtrees are leaves

5) then begin let ai be the label of the i-th subtree;
6) H<-{A;A+al ••• akEP}

end

(7) else begin T<- leftmost maximal subtree of T;

8) goto (4)

end

(9) compute the position of T among its brother treesl

(10) case position of

(11) leftmost largest: create a new r-tuple;
(12) if T is the t-th subtree then let ita

t-th component be HI
(13) push the r-tuple on the stack;

(14) rightmost smallest : if T is the t-th subtree then set the
t-th component of the top stack element
to III

(H)

(16)

(17)

(18)

(19)

let k be the number of non * components
of the stack top;

H"- {A; A + AI" .Ak E P and At ~ t-th
component of stack top};

pop the stack;

T<- super-tree of T/

go to (9)

(20) other

esac ;

- 7 -

if T is the Z-th subtree then set the

Z-th component of the stack-top to H;

(21) T ~ - - next smaller brother of T;

(22) go to (2);

The correctness of this algorithm follows from the preceding

discussion. Furthermore, fact 1 ensures us that the length of

the stack will never exceed . r (log /wl + 1). It is obvious

that lines (2), (3) , (7), (9), (18) and (21) can be computed

in logarithmic space. Therefore we obtain .

Theorem: Every bracket language can be recognized by a

O(log n) space-bounded Turing machine.

Alt and Meh l ho rn show in [1J that bracket languages also

require O(log n) space infinitely often.

Corollary : The space complexity of the word problem for

bracket languages 1s exactly O(log n).

We want to close with a remark on the time complexity of our

recognition procedure . Since the machine is O(log n) space

bounded it is certainly polynomially time bounde d. I n f act,

it is easily s een that the time complexity is 0(n 2).

Bibliography

[lJ H. Alt, K. Mehlhorn : Lower Bounds for the Space

Requirement of Some Families of Context-Free Languages,

Techn. Bericht de r Univ. des Saarlandes 1975.

[2 [Cook , S.A.: An Observatio n o n time-storage trade-off,

lCSS, 9, 308-316 (1974)

[31 Hopcroft, J.E and Ullman J.D.: Formal languages and their

r elation to automata, Addison-Wesley, Reading, Mass., 1969

141 Hotz, G. and M.ssorschmidt, J •• Dyck-Sprachen sind in

Bandkomp1exitl1t log n analysierbar, 'rechn. Bericht der

Univ . des Saarlandes, 1974

[5] Lewis , P.M., Hartmanis, J., and Stearns, R.E •• Memory bounds

f or the recognition of context-free and context-sensitive

langu ages, IEEE Conference Record on Switching Circuit

Theory and Logical Design, 191-202, 1965

[6J Monien, B.: Transformational methods and their application

to complexity problems, 2-te GI-Fachtagung, Kaiserslautern,

1975

[-7-1 Sudbor ough , 1. H.: On tape-bounded complexity classes and

multihead finite automata , 14 th IEEE SWAT Conference,

138- 1 44, 197 3

r 8] Younger, D.H. : Recognition and parsing of context-free

l anguages i n time n 3 , Inf . and Control, 10, 189-208, 1967

	A_1976_05 0001_1heitscover_2
	A_1976_05 0003
	A_1976_05 0004
	A_1976_05 0005
	A_1976_05 0006
	A_1976_05 0007
	A_1976_05 0008
	A_1976_05 0009
	A_1976_05 0010
	A_1976_05 0011

