
Relative completeness of a
Hoare-calculus for while-programs

Kurt Sieber

A 80/01
Februa ry 1980

Fachberei ch 10 -

Angewandte Mathematik
und lnformatik
Universitat des Saarlandes
6600 SaarbrUcken
West Germany

Abstract :

In several papers,e.g. [COOK] or [APT] the problems of
correctness and completeness of Hoare calculi have been
studied. The purpose of this paper is to present a simple
approach to this subject by restricting the attention to
a very small class of programs, the so-called while-programs.

- 1 -

1. Preliminaries

As Hoare logic is an extension of first order predicate logic.
a few definitions and notations of mathematical logic are
shortly recalled:

A first order predicate language t is built up from a basis

B = (.E. p. V). where

F is a set of function symbols; with each element of F is
associated an integer k ~ O. called its arity

P is a set of predicate symbols; with each element of P is
associated an integer h ~ O. called its arity

V is an infinite set of variables .

.E. f and V are disjoint

The terms and formulas (well-formed formulas, wff's) of the
language £ are constructed in the well-known manner.

An in t erpre tation J for t consists of

a nonempty set D (the domain of J)

a function J o ' which assigns
to each k-ary function symbol f € F a function
Jo(f) : Qk ... Q.
to each h-ary predicate symbol p € P a predicate
Jo(p) : Qh ... {true. false}

A s ta t e 0 (for i and J) i s a
L will denote the set of all
known from the context). For
by o[x/dl the state 0' with

o'(x) = d

function 0 : V ... D. - -
states (t and J will always be
o € ~. x € V and d € D we denote

0' (y) = o(y) for y + x

Let J be an interpretation and a a state.
Then it is well-known, how to define

J (t, a) E D fo rate rm t 0 ft,
J(p,a) E {true, false} for a wff pEt.

Instead of J(p,a) = true we also write F==J p. ,a

P is called vaUd in J (or: J-vaUd, notation: F==J p),
if F==J,a p for all a E L.

P is called va~id (notation: F== P), if F==J p for all
interpretations J of 1,.

Let T be a subset of .:e .
q is called a va~id ~onsequence of T (notation: T ~ q),
if F==J q holds, whenever F==J p holds for all pET.

T is called an axiom system for J, if

- every pET is J-valid
- every J-valid formula q E :lis a valid consequence of T.

p; denotes the formula obtained by substituting the term t

- 2 -

for every free occurrence of x (being understood that variables
of p must possibly be renamed before substitution).

The substitution lemma then states that

The
way

J(p;, a) = J(p,a[x/J(t,a)l)

definition and the lemma may be generalized in the usual
for simultaneous substitution (notation: ptl,""xtk)

xl"'" k

- 3 -

2. A Hoare logic for while programs

2.1 Syntax

Let 'i E and t A be two fi rst order predicate languages wi th

tE =tA; iE is called the expression Language,;eA the

assertion Language.

The set::f of while programs (for.iE) is defined as the

least set for which:

i) For ea c h va r i ab 1 e x and te rm t 0 fiE: x : = t E :f
ii) If SI' S2 E f ,then: SI; S2 E ::f

iii) If SI' S2 E j and e is a quantifier free formula ofiE,

then if e then SI else S2 ii Et
iv) If S E:f and e is a quantifier free formula of i E,

then while e do S od E ':f

The language ~ of Hoare Logic (for lA and j) is now defined

as the set

';1e = "£A U {{ p} S {q} lp, q E 'l A' S E ~/}

The elements of ae are called Hoare-formuLas.

Note that the language iE is used in the definition of f
and the language iA in the definition of 1f. The reason

why lE c:: 'lA is allowed, will become clear in the sequel.

2.2 5emantics

Intuitively the meaning of a Hoare formula {p} 5 {q} is:

"If P holds before the execution of 5 and
5 terminates,
then q holds after the execution of 5".

(partial correctness of 5 with respect to p and q).

In order to formulate this more precisely, it is necessary
to define "what the program 5 does", i.e. the semantics
for the programming language j has to be defined clearly.

2.2.1 An operational semantics for f

Let J be an interpretation for '£ E.

- 4 -

The relation • on (i U {E}) x r (which of course depends
on J) is defined as follows:

i) (x .- t; R,o) • (R,o[x/J(t,o)l)

ii) (if e then 51 else 52 fi; R,o)

r (51 ;R,o)

L (5 2 ;R,o)

iii) (while e do 5 od; R,o)

if J(e,o) = true

if J(e,o) = false

•
((R,O) if J(e,o) = false

L5; while e do 5 £i; R,o) if J(e,o) = true

(where R E j U {E}, ° E ~ and e,x,t,5,5 1,5 2 as in section
2.1) .

! is defined to be the reflexive, transitive closure of •
The while program 5 E j is said to terminate for 0, if
there is a state 0' E ~, such that:

(5,0) ! (E,O')

(i.e. there is a finite "computation sequence"

(5,0) = (51'01) • (5 2,°2) •...• (5 k,ok) = (E,O'))

- 5 -

Note that the relation • is even a partial function, which
is defined for any (R,o) provided R + E. Therefore, if 5

• terminates for E, the state 0', such that (5,0) • (E,O'), is
uniquely determined (in other words : the introduced semantics
is "deterministic").

2.2.2 Interpretation of Hoare formulas

Let ~ be the language of Hoare logic for iA and 'f. Let J
be an interpretation for 'lA and 0 € ~ a state for i A and
J. As iE ~t,A' J may be considered as an interpretation for

'tr. and 0 as a state for lE and J, and the definitions of
section 2.2.1 may be applied.

Now, for every h € '<1e - quite similar to mathematical logic -
an element J(h,o) € {true,false} is defined by :

i)h€'iA:

Then J(h,o) is the usual value from mathematical logic.

ii) h is of the form {p} 5 {q} :

J(h) tr
{

If J(p,o) = true and
,0 = ue.... --

def. then J(q,o') = true

• (5,0) • (E,O'),

- {

J(P'O) = false
or: 5 does.not terminate for 0

or: (5,0) • (E,O') and J(q,o') = true

Instead of J(h,o) = true, one again writes: F==J,o h.

h is called vaUd in J (I==J h), if I==J,o h for every
o€ I:.

Hence F==J {p} 5 {q} means:

• "For every 0 € E: If J(p,o) = true and (5,0) • (E,O')
then J(q,o') = true".

This is now the formal definition of "partial correctness"
needed in the sequel.

Finally, h is called valid (1== h), if l:=J h for every
interpretation J for i-A.

2.3 Examples

a) Let:e A = iE = iN be the language of Peano arithmetic
and J the standard interpretation.

Consider the formula h : {x ~ O} x := 2*x {x = 2}

Then

{
o(X) < 0

or: o(x) = 1 J(h,o) = true ..

b) With the same notations as in a) we have

F==J {x ~ O} x := 2*x {x ~ O} ,

- 6 -

but of course this may be wrong, if J is not the standard
interpretation.

c) The formula {true} while true ~ x := x+l od {false}
is valid, because the program does not terminate for
any state 0, independently of the interpretation J.

- 7 -

3. A Hoare calculus for while-programs

3.1 The axioms and rules

Let i E, 'lA'':! andg{ be as above. The Hoare calculus for

~ consists of one axiom scheme and four rules of inference
(see e.g. [APT])

(AI)

(RI)

(R2)

(R3)

(R4)

{p}51{q},{q}5 2{r}

{p}51; 52{d

p=>q, {q }5{ d, r=>s
{q}5{s}

for every variable x and
term t of ;lE and every

p € 'lA

for 51' 52 € j

p,q,r € iA

for every quantifier free
formula

e € 'lE' p,q € tA' 51,5 2 € ~

for every quantifier free
formula

e E lE' P E 'f.,A' 5 E j

for p,q,r,s E;eA

5 € j

As this calculus can be applied to any arbitrarily given
languages .:e E and i A' one may really speak of a "calculus
for while programs". In order to deduce reasonable formulas
for a given iE' i-A and interpreation J for tA' it must of

course be augmented by

a) The axioms and inference rules of the predicate calculus.
b) An axiom system T for J.

- 8 -

This leads to the following

Definition:

Let ~ be the language of Hoare logic for iA and :/ , and let T

be a subset of £A.

Then we wri te

I--T h

for h E ~ ,

if h can be derived from

- instances of (AI)

- formulas of T

- the axioms of the predicate calculus

by fi~tely many applications of :

- the rules (RI) - (R4)

- the inference rules of the predicate calculus

3.2 Correctness of the calculus

What do we mean by saying that the calculus for ~ is correct?

As we are only interested in the axioms and inference rules of

the Hoare calculus, we have to abstract from those of the

predicate calculus and the axiom system T.

Theorem 1: (Correctness of the Hoare calculus)

Let'l be the language of Hoare logic for iA and 'f and let J

be an arbitrary interpretation for lA. If T is a set of J-valid

formulas of 'tA' then for every formula h E'de :

1-- h
T

implies ~ h
J

- 9 -

Proof:

In order to prove this theorem, one shows

- every instance of (AI) is a valid Hoare formula

- for each of the rules (RI) - (R4)

if all the premises of the rule are valid in some
interpretation J of tA' then the conclusion is valid in J

A detailed proof is left to the reader.
c

3.3 The problem of completeness

In section 3.2 we have seen, that our axiom system yields
~ J-valid Hoare formulas, if the formulas of the under­
lying set Tare J-valid.

- 10 -

The question is now, whether one can deduce all J-valid
Hoare formulas by using an appropiate set T of J-valid
formulas. The following theorem states that, in general,
there is no recursively enumerable set T with this pro~erty.

Theorem 2: (Incompleteness of the Hoare calculus)

Le t 'fA = £1 =;eN be the language of Peano arithmetic and

I N its standard interpretation.

Then there is no recursively enumberable set T of IN-valid
formulas, such that for every h € 'de

t==J h
N

implies

(i.e. by theorem 1: F=J h
N

iff

Proof : Consider the formulas of the form {true} S {false}

a) Let T be a recursively enumerable set of IN-valid formulas.
Then the set of axioms and inference rules of our proof system
(i . e . the Hoare calculus together with the predicate calculus
and the set T) is recursively enumerable. This implies that
the set of formulas, which can be deduced from this system,
i.e. {h € ~ I f--T h} is recursively enumerable. and finally
{S €f l r--T {true} S {false}} is recursively enumerable
(as it is possible to decide whether h has the form
{true} S {false}).

b) {S I F=J {true} S {false}} is the set of all S € 1 . which
N --

do not terminate for any 0 € ~. This set is not recursively
enumerable. because one can simulate Turing machines by pro­
grams of f. and the set of Turing machines which do not halt

- 11 -

for any input, is not recursively enumerable. (Note that we
need the interpretation I N for simulating Turing machines.)

From a) and b) (and theorem 1) we get:

There exists a program S € ':! for which

~J {true} S {false} but not ~T {true} S {false }
N

Another proof :

It is a well-known (but non-trivial) result of first order
predicate logic, that there exists no recursively enumerable
a xiom system T for I N. As iN is a subset of 'at' (and formulas
of iN can not be deduced with the aid of (AI). (RI) - (R4)).
the theorem is obvious.

The result of theorem 2 (or even more the second proof)
suggests us to start from a - not necessarily recursively
enumerable - axiom system T for every interpretation J of
t A• e.g. let T be the set of all J-valid formulas of 'lA '
Of course the existence of a non recursively enumerable
axiom system T for J is of no help for practical purposes.
but it enables us to study the completeness of the Hoare
calculus while making abstraction from incompleteness features
caused by the set T.

Unfortunately. there is still another reason which can
lead to incompleteness of the Hoare calculus: It is possible.
that the assertion language tA is not "powerful enough".
An example may be found in [WAND]. As the study of such
examples is rather difficult. we only try to explain by a
small example. what "powerful enough" means. in order to
give a motivation for the definitions of section 3.4 :

c

c

Then the fo 11 owi ng Hoare formula is clearly valid in I N
{z > O} y . - 1 ; x . - Z;

while x > 0 do Y · - y*x; x . - x-I od

while x < z do x · - x+l; y . - y~x od {y = 1} · -

Both assertions, "z > 0" and "y = 1" are wff's of tA.

In order to deduce the above formula one needs an assertion p,
for which

- 12 -

{z > O} y : = 1; x : = Z; while x > 0 do Y .- y*x; x := x-I ,2i{p}

~JN {p} while x < z do x := x+l; y := y~x od {y = I},

e.g. let p be "z > 0 A X = 0 Ay = z!".

But there
formula in
section 4,

is no

iN'
that

factorial symbol in iN' hence one must find a
which is equivalent to p. We shall prove in

enough" in
cases (for
exist .

such a formula exists, i.e. that
our example. But, as mentioned above,
other languages iA and tE) where such

3.4 Expressiveness

£A is "powerful
there are other
formulas do not

As indicated in 3.3, the language iA must be powerful enough to
express certain formulas in order to have a chance to deduce every
J-valid Hoare formula. This notation of "powerful enough" will now
be defined precisely.

Definitions:

Let tA' "i.E,j and J be as usual.

a) For every q € iA and S € j the Hoare formula

{true} S {q}

is called the weakest precondition of 5 and q.

b) fA is called J-expressive with respect to tE (or j)
if for every q € tA and 5 € j there exists a formula

p € tA' which is equivalent to {true} 5 {q} (i.e.

J(p,o) = J({true} 5 {q},o) for every a € ~).

- 13 -

We shall use the name "weakest precondition" also for the
formula p. Of course p is only determined up to equivalence,
but this will suffice for our purpose. (A way out is to choose
the first such p in an enumeration of the language tAl.

Note tha t

J({true} 5 {q},o) = true ..

. * (If (5,0) .. (£,0') then J(q,o') = true)

As a straightforward consequence we get the following lemma,
which explains the name "weakest precondition".

Lemma 1:

a) For every r € ~E : F==J {r} 5 {q} iff for every a € L

J(r,o) = true implies J({true} 5 {q},a) = true

b) If P € tA is the weakest precondition of 5 and q, then

for every r € tE

I==J {r} 5 {q} iff ~J r => q ,

i.e. p is the "weakest" formula for which ~J {p} 5 {q}

Proof:

a) " .. ": If J(r,o) = true

then F==J {r} 5 {q} implies: If (5,0) * .. (£,0') then

J(q,o') = true

- 14 -

i . e . : J({true} 5 {q},a) = true

"~": If J(r,a) = true, then J{{true} 5 {q},a) = true

i . e . :
* if (5, a) .. (£, a ') then J(q,a) = true

But this is exactly the definition for ~
J

b) is an immediate consequence of a).

Examples:

Let £ A = i E = iN and J = I N

{r} 5 {q} .

a) The weakest precondition of y . - 4 and y = 5

is:false,

because J({true} y := 4 {y = 5},a) = true

iff J(y = 5, a[y/4]) = true

and this doesn't hold for any a.

Hence ~J {r} y := 4 {y = 5},

iff r is equivalent to false.

b) The weakest precondition of

while y + 5 do y := y+1 od

is: y > 5 ,

and false

because J({true} while ... od {false},a) = true

iff the while-statement does not terminate for a,

i.e. iff a(y) > 5.

The weakest precondition of the same program and

y = 5 is: true ,

c

because J({true } wh i le . . . od {y = 5},a) = true for every a.

Note that the definition of weakest precondition slightly

differs from Dijkstra's definition (see e.g. [DIJ], section 3).

In his sense, the weakest precondition of 5 and q is true for
* --

a state a iff 5 terminates for a with (5,a) .. (£,a') and
J(q,a? = true.

3 . 5 Relative completeness of the calculus

The notion of relative completeness was first introduced
in [COOKl.

Theorem 3:

(Relative completeness of the Hoare Calculus or
Completeness in the sense of Cook)

Let (f,A,i?E,f and J be as usual.
If

- T is an axiom system for J and
- £A is J-expressive with respect to tE

then

for every Hoare formula h :

l=:=J h implies I--T h

(i . e .: l=:=J h i ff I--T h)

P roo f:

The theorem is trivial for h E fA.

For h of the form {p} S {q} the property is proved by
induction on the structure of S.

a) Assume ~J {p} x . - t {q}

In order to prove

I--T {p} x . - t {q}

it is sufficient to prove

I--T (see (AI) and(R4))

or, because T is complete

~J (1)

- 15 -

As for every 0 E! : (x := t,a) ~ (c,a[x/J(t,a)l),

J(p,a) = true implies J(q,a[x/J(t,a)l) = true

and by the substitution lemma of the predicate calculus
one gets

t J(qx,a) = J(q,a[x/J(t,a) l) = true

Hence (1) is proved.

(1)

Let r E ~A be the weakest precondition of 52 and q; note

that r exists because of expressiveness.

- 16 -

Then, by lemma Ib), F==J {r} 52 {q} holds, and the induction

hypothesis yields: ~T {r} 52 {q}

Now it is sufficient to prove: I==J {p} 51 {r} (2

in fact from (2) one gets ~T {p} 51 {r} by the induction

hypothesis and an application of (RI) leads to ~T {p} 51; 52 {q}.

In order to prove (2) assume

J(p,a) = true and * ~ (c,a').

Then one has to show J(r,a') = true ,

i.e., because r is the weakest precondition of 52 and q:

J({true} 52 {q} ,0') = true (3)

To prove (3) assume that (5 2,0') * ~ (c,a").

This leads to * (5 1;52,0) ~ (5 2,0') * (") .. E ,0 ,

hence J(q,a") = true by (1) .
Thus, (3) is proved and the proof of (2) is completed.

- 17 -

c) Assume that S if of the form if e then SI else S2 fi

and I==J {p} S {q} holds. (1)

Wi th the usual arguments (see b)) it is sufficient to prove

I::::=J {p " e} SI {q} (2)

and

I::::=J {p ,,"1 e} S2 {q} 3)

Proof of (2):

Assume that J(p " e,o) = true and (S1'0) * (c,o') •
Then, as J(e,o) = true,

* * (S ,0) • (SI'o) • (c,o')

and, as J(p,o) = true , (1) yields

J(q,o') = true

(3) is proved in a similar way.

d) Assume that S is of the form while e do S' od

and I::::=J {p } S {q} holds . (1)

Let r E lA be the weakest precondition of Sand q.

Then, by lemma Ib), F==J P ~ r holds and it is

sufficient to prove

~J {r " e} S' {r} (2)

and

I::::=J (r ", e) ~ q (3)

.

because the induction hypothesis and the rules (R3) and
(R4) then 1 ead to t--T {p} S {q}.

To prove (2) and (3), first note that

~J {r} S {q} (4)

because of lemma Ib).

Proof of (2) :

Assume that J(r" e, a) = true and (S' ,a) * • (g, a ').

One has to prove J(r, a ') = true,

i.e. J({true} S {q } , a ') = true. (5)

* Assume (S, a ') • (g, a").

Then, as J(e, a) = true,

* * (S, a) • (S' ;S, a) • (S,a') • (g ,a")

and, as J(r,a) = true, (4) yields

J(q,a") = true.

- 18 -

Hence 5) is proved, which completes the proof of (2).

Pro 0 f 0 f (3)

Assume that J(r ", e, a) = true

Then, as J(e, a) = false, (S, a) • (£ ,a)

and by (4) : J(q,a) = true

c

5. Expressiveness of certain languages

In section 4 we have defined "expressiveness" in order to
discuss completeness problems of the Hoare calculus. But
up to now we have
languages iA,.t E

not indicated whether there exist
and an interpretation J, such that iA

is J-expressive with respect to ~E' We now want to

examine the problem of expressiveness for a few important
cases :

Definitions:

- 19 -

a) For a fir st order predicate formula p and a while-program
S, we denote by var(p) and var(S) the set of variables
which occur in p and S respectively.

b) For a Hoare formula h of the form {p} S {q} we define

var(h) = var(p) U var(S) U var(q).

Putting var(h) = {x l" .. ,x k}, one easily proves by i nduction

on the structure of S, that J(h, cr) depends on cr(x~, .. . ,cr(xk)

only, or, more precisely, that J(h,cr) = J(h,cr') whenever
cr (x i) = cr '(x i) for all i, 1 < i < k.

This leads to the following

Definition:

Let ;fE' lA' j ,ae, J be as above and let D be the domain of J.

Then for every h E ge. the relation R c Dk

is called the r eLation induced by h.

- 20 -

By the last definition the problem of expressiveness
has been reduced to the question, whether certain relations
can be "e xpressed" by fi rst order formulas .

Definition:

Let i be a first order predicate language and J an inter­
pretation for t with domain D. We say that p E i expre ss e s

a relation ~ = Qk (in the v~riables x1' ... ,x k) iff

J(p, o) = true .. (o(x1), ... , o(x k)) E~.

Lemma 2:

Le t t N a nd I N be the language and the standard interpretation
of Peano a ri thmetic respectively .

If R c Nk is recursively enumerable, then there exists a
f ormula p E iN' which expresses R.

(For a proo f see e . g. [MAL], p. 119).

Theorem 4:

iN is I N-e xpressive with respect to iN '

Proo f:

Let S E j be an arbitrary program and q E £N an arbitrary

formula. By definition £N is IN-e xpressive if there exists

a formul arE tN such that

for all 0 (1)

Let var({true} S {q}) = {x1' ... ,x k} and Rc Nk the relation

induced by {true} S {q}. If r E IN is a formula which expresses

~, then r satisfies (1) .

Hence the theorem is proved if we succeed in finding such a
formula r.

- 21 -

Let f be the partial function

(f is well-defined, as var(S) = {x 1 , ... ,x k})

Of course f is a recursive function, because it is computed by
the program S. Hence, the domain of f :

an d the graph of f :

graph(f) = { (n 1,· .. ,n k,m 1,· .. ,m k) l (m 1,· . . ,m k)

are recursively enumerable sets.

By lemma 2 there is a formula d E tA' such that

J(d, o) = true .. (o(x 1), ... ,o(x k)) E dom(f)

and a formula g E ~A' such that

Now it i s easily proved that the formula

d 3y 1 ' . . . , Y k • (g
Y1'···'Yk , v 11 q)
x1'····x k

expresses R.

Lemma 3:

Let £+ be the language of Presburger arithmetic (i.e .

iN without a multiplication symbol) and J+ its standard
in te rp re ta t ion.

[]

If R c Nk can be expressed by a formula p E t+, then

R is recursi ve.

(For a proof, see e . g . [END]' p . 188) .

Th eorem 5:

t+ is not J+-expressive with respect to i+.

Proof:

Let R eN be a set, which is recursively enumerable, but
not recursive. Then the acceptor function f of ~, i.e.

f : N ~> {l}

x 1 iff x E R

is recursive .

Hence there exists a program S, which computes f, i.e .

S te rm inates for 0 , iff f is defined for o(x), with

* (S, o) - (£, o[x/f(o(x))J) = (£ ,0[x/1J).

Note that it i s poss i ble to compute recursive functions
by while programs for i+ ; the multiplication symbol is
not necessa ry for this pur pose.

For the weakest precondition of Sand false we get

J({true } S {false} , o) = true

.. S does not terminate for

.. f is undefined for o(x)
"o(x)EN-R

- 22 -

But, as R is not recursive, N - R is not recursive, i.e.
by lemma 3, there exists no formula in t+ which expresses
the relation N - ~. Hence there exists no formula in i+,
which is equivalent to the weakest precondition of Sand
false. c

- 23 -

Theorem 6:

Let i A, iE and J be as usual.

If the domain D of J is finite, and if for each d € D

there exists a term t of t-A with J(t,o) = d for every 0 ,

then lA is J-expressive with respect to £, E'

Proof:

Let ~ = Qk be a relation. As Q is finite, ~ is finite,

e . g. ~ = {(d 11 ' .. . , d 1k) , ... , (dm I ' ... ,dm k) }.

Let t .. , I < i ~ m, I ~ j ~ k, be terms for which
1 J

J(tij,o) = dij for every o. Then the formula

(xl = t 11 "···,,xk = tlk)v .. . v(x I = tml" · ··,,x k = t mk)

expresses the relation R.

In particular there exists an equivalent formula in :i A
for each weakest precondition.

Acknowledgement :

I am grateful to J. Loeckx for useful discussions during

the preparation of this paper.

c

- 24 -

References:

[APT]

[COOK]

[D I J]

[END)

[MAL]

[WAND)

Apt, K.R., "Ten Years of Hoare's Logic, a Survey",
Internal Report, Erasmus University, Rotterdam,
Apr. 1979

Cook, S.A., "Soundness and Completeness of an Axiom
System for Program Verification", SIAM Journal on
Computing 1.., 1 (Febr. 1978), pp. 70 - 90

Dijkstra, E.W., "A Discipline of Programming",
Prentice Hall, 1976

Enderton, H. B. , "A Mathematical Introduction to Logic",
Academic Press, 1972

Malitz, J., "Introduction to Mathematical Logic",
Springer Verlag, 1979

Wand, M., "A New Incompleteness Result for Hoare's
System", Journal of the ACM~, 1 (Jan. 1978),

pp. 168 - 175

	fb1980-01_0001_f
	fb1980-01_0002_f
	fb1980-01_0003_f
	fb1980-01_0004_f
	fb1980-01_0005_f
	fb1980-01_0006_f
	fb1980-01_0007_f_b
	fb1980-01_0008_f
	fb1980-01_0009_f
	fb1980-01_0010_f
	fb1980-01_0011_f
	fb1980-01_0012_f
	fb1980-01_0013_f
	fb1980-01_0014_f
	fb1980-01_0015_f
	fb1980-01_0016_f
	fb1980-01_0017_f
	fb1980-01_0018_f
	fb1980-01_0019_f
	fb1980-01_0020_f2
	fb1980-01_0021_f
	fb1980-01_0022_f
	fb1980-01_0023_f
	fb1980-01_0024_f
	fb1980-01_0025_f
	fb1980-01_0026_f

