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Abstract : 

In several papers,e.g. [COOK] or [APT] the problems of 
correctness and completeness of Hoare calculi have been 
studied. The purpose of this paper is to present a simple 
approach to this subject by restricting the attention to 
a very small class of programs, the so-called while-programs. 
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1. Preliminaries 

As Hoare logic is an extension of first order predicate logic. 
a few definitions and notations of mathematical logic are 
shortly recalled: 

A first order predicate language t is built up from a basis 

B = (.E. p. V). where 

F is a set of function symbols; with each element of F is 
associated an integer k ~ O. called its arity 

P is a set of predicate symbols; with each element of P is 
associated an integer h ~ O. called its arity 

V is an infinite set of variables . 

.E. f and V are disjoint 

The terms and formulas (well-formed formulas, wff's) of the 
language £ are constructed in the well-known manner. 

An in t erpre tation J for t consists of 

a nonempty set D (the domain of J) 

a function J o ' which assigns 
to each k-ary function symbol f € F a function 
Jo(f) : Qk ... Q. 
to each h-ary predicate symbol p € P a predicate 
Jo(p) : Qh ... {true. false} 

A s ta t e 0 (for i and J) i s a 
L will denote the set of all 
known from the context). For 
by o[x/dl the state 0' with 

o'(x) = d 

function 0 : V ... D. - -
states (t and J will always be 
o € ~. x € V and d € D we denote 

0' (y) = o(y) for y + x 



Let J be an interpretation and a a state. 
Then it is well-known, how to define 

J ( t, a) E D fo rate rm t 0 ft, 
J(p,a) E {true, false} for a wff pEt. 

Instead of J(p,a) = true we also write F==J p. ,a 

P is called vaUd in J (or: J-vaUd, notation: F==J p), 
if F==J,a p for all a E L. 

P is called va~id (notation: F== P), if F==J p for all 
interpretations J of 1,. 

Let T be a subset of .:e . 
q is called a va~id ~onsequence of T (notation: T ~ q), 
if F==J q holds, whenever F==J p holds for all pET. 

T is called an axiom system for J, if 

- every pET is J-valid 
- every J-valid formula q E :lis a valid consequence of T. 

p; denotes the formula obtained by substituting the term t 
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for every free occurrence of x (being understood that variables 
of p must possibly be renamed before substitution). 

The substitution lemma then states that 

The 
way 

J(p;, a ) = J(p,a[x/J(t,a)l) 

definition and the lemma may be generalized in the usual 
for simultaneous substitution (notation: ptl,""xtk) 

xl"'" k 
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2. A Hoare logic for while programs 

2.1 Syntax 

Let 'i E and t A be two fi rst order predicate languages wi th 

tE =tA; iE is called the expression Language,;eA the 

assertion Language. 

The set::f of while programs (for.iE) is defined as the 

least set for which: 

i ) For ea c h va r i ab 1 e x and te rm t 0 fiE: x : = t E :f 
ii) If SI' S2 E f ,then: SI; S2 E ::f 

iii) If SI' S2 E j and e is a quantifier free formula ofiE, 

then if e then SI else S2 ii Et 
iv) If S E:f and e is a quantifier free formula of i E, 

then while e do S od E ':f 

The language ~ of Hoare Logic (for lA and j) is now defined 

as the set 

';1e = "£A U {{ p} S {q} lp, q E 'l A' S E ~/} 

The elements of ae are called Hoare-formuLas. 

Note that the language iE is used in the definition of f 
and the language iA in the definition of 1f. The reason 

why lE c:: 'lA is allowed, will become clear in the sequel. 



2.2 5emantics 

Intuitively the meaning of a Hoare formula {p} 5 {q} is: 

"If P holds before the execution of 5 and 
5 terminates, 
then q holds after the execution of 5". 

(partial correctness of 5 with respect to p and q). 

In order to formulate this more precisely, it is necessary 
to define "what the program 5 does", i.e. the semantics 
for the programming language j has to be defined clearly. 

2.2.1 An operational semantics for f 

Let J be an interpretation for '£ E. 
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The relation • on (i U {E}) x r (which of course depends 
on J) is defined as follows: 

i) (x .- t; R,o) • (R,o[x/J(t,o)l) 

ii) (if e then 51 else 52 fi; R,o) 

r (51 ;R,o) 

L (5 2 ;R,o) 

iii) (while e do 5 od; R,o) 

if J(e,o) = true 

if J(e,o) = false 

• 
((R,O) if J(e,o) = false 

L5; while e do 5 £i; R,o) if J(e,o) = true 

(where R E j U {E}, ° E ~ and e,x,t,5,5 1,5 2 as in section 
2.1) . 

! is defined to be the reflexive, transitive closure of • 
The while program 5 E j is said to terminate for 0, if 
there is a state 0' E ~, such that: 

(5,0) ! (E,O') 

(i.e. there is a finite "computation sequence" 

(5,0) = (51'01) • (5 2,°2) •...• (5 k,ok) = (E,O') ) 
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Note that the relation • is even a partial function, which 
is defined for any (R,o) provided R + E. Therefore, if 5 

• terminates for E, the state 0', such that (5,0) • (E,O'), is 
uniquely determined (in other words : the introduced semantics 
is "deterministic"). 

2.2.2 Interpretation of Hoare formulas 

Let ~ be the language of Hoare logic for iA and 'f. Let J 
be an interpretation for 'lA and 0 € ~ a state for i A and 
J. As iE ~t,A' J may be considered as an interpretation for 

'tr. and 0 as a state for lE and J, and the definitions of 
section 2.2.1 may be applied. 

Now, for every h € '<1e - quite similar to mathematical logic -
an element J(h,o) € {true,false} is defined by : 

i)h€'iA: 

Then J(h,o) is the usual value from mathematical logic. 

ii) h is of the form {p} 5 {q} : 

J(h ) tr 
{

If J(p,o) = true and 
,0 = ue.... --

def. then J(q,o') = true 

• (5,0) • (E,O'), 

- {

J(P'O) = false 
or: 5 does.not terminate for 0 

or: (5,0) • (E,O') and J(q,o') = true 

Instead of J(h,o) = true, one again writes: F==J,o h. 

h is called vaUd in J (I==J h), if I==J,o h for every 
o€ I:. 

Hence F==J {p} 5 {q} means: 

• "For every 0 € E: If J(p,o) = true and (5,0) • (E,O') 
then J(q,o') = true". 



This is now the formal definition of "partial correctness" 
needed in the sequel. 

Finally, h is called valid (1== h), if l:=J h for every 
interpretation J for i-A. 

2.3 Examples 

a) Let:e A = iE = iN be the language of Peano arithmetic 
and J the standard interpretation. 

Consider the formula h : {x ~ O} x := 2*x {x = 2} 

Then 

{
o(X) < 0 

or: o(x) = 1 J(h,o) = true .. 

b) With the same notations as in a) we have 

F==J {x ~ O} x := 2*x {x ~ O} , 
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but of course this may be wrong, if J is not the standard 
interpretation. 

c) The formula {true} while true ~ x := x+l od {false} 
is valid, because the program does not terminate for 
any state 0, independently of the interpretation J. 
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3. A Hoare calculus for while-programs 

3.1 The axioms and rules 

Let i E, 'lA'':! andg{ be as above. The Hoare calculus for 

~ consists of one axiom scheme and four rules of inference 
(see e.g. [APT]) 

(AI) 

( RI) 

( R2) 

(R3) 

( R4 ) 

{p}51{q},{q}5 2{r} 

{p}51; 52{d 

p=>q, {q }5{ d, r=>s 
{q}5{s} 

for every variable x and 
term t of ;lE and every 

p € 'lA 

for 51' 52 € j 

p,q,r € iA 

for every quantifier free 
formula 

e € 'lE' p,q € tA' 51,5 2 € ~ 

for every quantifier free 
formula 

e E lE' P E 'f.,A' 5 E j 

for p,q,r,s E;eA 

5 € j 

As this calculus can be applied to any arbitrarily given 
languages .:e E and i A' one may really speak of a "calculus 
for while programs". In order to deduce reasonable formulas 
for a given iE' i-A and interpreation J for tA' it must of 

course be augmented by 

a) The axioms and inference rules of the predicate calculus. 
b) An axiom system T for J. 
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This leads to the following 

Definition: 

Let ~ be the language of Hoare logic for iA and :/ , and let T 

be a subset of £A. 

Then we wri te 

I--T h 

for h E ~ , 

if h can be derived from 

- instances of (AI) 

- formulas of T 

- the axioms of the predicate calculus 

by fi~tely many applications of : 

- the rules (RI) - (R4) 

- the inference rules of the predicate calculus 

3.2 Correctness of the calculus 

What do we mean by saying that the calculus for ~ is correct? 

As we are only interested in the axioms and inference rules of 

the Hoare calculus, we have to abstract from those of the 

predicate calculus and the axiom system T. 

Theorem 1: (Correctness of the Hoare calculus) 

Let'l be the language of Hoare logic for iA and 'f and let J 

be an arbitrary interpretation for lA. If T is a set of J-valid 

formulas of 'tA' then for every formula h E'de : 

1-- h 
T 

implies ~ h 
J 
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Proof: 

In order to prove this theorem, one shows 

- every instance of (AI) is a valid Hoare formula 

- for each of the rules (RI) - (R4) 

if all the premises of the rule are valid in some 
interpretation J of tA' then the conclusion is valid in J 

A detailed proof is left to the reader. 
c 



3.3 The problem of completeness 

In section 3.2 we have seen, that our axiom system yields 
~ J-valid Hoare formulas, if the formulas of the under­
lying set Tare J-valid. 
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The question is now, whether one can deduce all J-valid 
Hoare formulas by using an appropiate set T of J-valid 
formulas. The following theorem states that, in general, 
there is no recursively enumerable set T with this pro~erty. 

Theorem 2: (Incompleteness of the Hoare calculus) 

Le t 'fA = £1 =;eN be the language of Peano arithmetic and 

I N its standard interpretation. 

Then there is no recursively enumberable set T of IN-valid 
formulas, such that for every h € 'de 

t==J h 
N 

implies 

(i.e. by theorem 1: F=J h 
N 

iff 

Proof : Consider the formulas of the form {true} S {false} 

a) Let T be a recursively enumerable set of IN-valid formulas. 
Then the set of axioms and inference rules of our proof system 
(i . e . the Hoare calculus together with the predicate calculus 
and the set T) is recursively enumerable. This implies that 
the set of formulas, which can be deduced from this system, 
i.e. {h € ~ I f--T h} is recursively enumerable. and finally 
{S €f l r--T {true} S {false}} is recursively enumerable 
(as it is possible to decide whether h has the form 
{true} S {false}). 

b) {S I F=J {true} S {false}} is the set of all S € 1 . which 
N --

do not terminate for any 0 € ~. This set is not recursively 
enumerable. because one can simulate Turing machines by pro­
grams of f. and the set of Turing machines which do not halt 
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for any input, is not recursively enumerable. (Note that we 
need the interpretation I N for simulating Turing machines.) 

From a) and b) (and theorem 1) we get: 

There exists a program S € ':! for which 

~J {true} S {false} but not ~T {true} S {false } 
N 

Another proof : 

It is a well-known (but non-trivial) result of first order 
predicate logic, that there exists no recursively enumerable 
a xiom system T for I N. As iN is a subset of 'at' (and formulas 
of iN can not be deduced with the aid of (AI). (RI) - (R4)). 
the theorem is obvious. 

The result of theorem 2 (or even more the second proof) 
suggests us to start from a - not necessarily recursively 
enumerable - axiom system T for every interpretation J of 
t A• e.g. let T be the set of all J-valid formulas of 'lA ' 
Of course the existence of a non recursively enumerable 
axiom system T for J is of no help for practical purposes. 
but it enables us to study the completeness of the Hoare 
calculus while making abstraction from incompleteness features 
caused by the set T. 

Unfortunately. there is still another reason which can 
lead to incompleteness of the Hoare calculus: It is possible. 
that the assertion language tA is not "powerful enough". 
An example may be found in [WAND]. As the study of such 
examples is rather difficult. we only try to explain by a 
small example. what "powerful enough" means. in order to 
give a motivation for the definitions of section 3.4 : 

c 

c 



Then the fo 11 owi ng Hoare formula is clearly valid in I N 
{z > O} y . - 1 ; x . - Z; 

while x > 0 do Y · - y*x; x . - x-I od 

while x < z do x · - x+l; y . - y~x od {y = 1} · -

Both assertions, "z > 0" and "y = 1" are wff's of tA. 

In order to deduce the above formula one needs an assertion p, 
for which 
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{z > O} y : = 1; x : = Z; while x > 0 do Y .- y*x; x := x-I ,2i{p} 

~JN {p} while x < z do x := x+l; y := y~x od {y = I}, 

e.g. let p be "z > 0 A X = 0 Ay = z!". 

But there 
formula in 
section 4, 

is no 

iN' 
that 

factorial symbol in iN' hence one must find a 
which is equivalent to p. We shall prove in 

enough" in 
cases (for 
exist . 

such a formula exists, i.e. that 
our example. But, as mentioned above, 
other languages iA and tE) where such 

3.4 Expressiveness 

£A is "powerful 
there are other 
formulas do not 

As indicated in 3.3, the language iA must be powerful enough to 
express certain formulas in order to have a chance to deduce every 
J-valid Hoare formula. This notation of "powerful enough" will now 
be defined precisely. 

Definitions: 

Let tA' "i.E,j and J be as usual. 

a) For every q € iA and S € j the Hoare formula 

{true} S {q} 



is called the weakest precondition of 5 and q. 

b) fA is called J-expressive with respect to tE (or j) 
if for every q € tA and 5 € j there exists a formula 

p € tA' which is equivalent to {true} 5 {q} (i.e. 

J(p,o) = J({true} 5 {q},o) for every a € ~). 

- 13 -

We shall use the name "weakest precondition" also for the 
formula p. Of course p is only determined up to equivalence, 
but this will suffice for our purpose. (A way out is to choose 
the first such p in an enumeration of the language tAl. 

Note tha t 

J({true} 5 {q},o) = true .. 

. * (If (5,0) .. (£,0') then J(q,o') = true) 

As a straightforward consequence we get the following lemma, 
which explains the name "weakest precondition". 

Lemma 1: 

a) For every r € ~E : F==J {r} 5 {q} iff for every a € L 

J(r,o) = true implies J({true} 5 {q},a) = true 

b) If P € tA is the weakest precondition of 5 and q, then 

for every r € tE 

I==J {r} 5 {q} iff ~J r => q , 

i.e. p is the "weakest" formula for which ~J {p} 5 {q} 

Proof: 

a) " .. ": If J(r,o) = true 

then F==J {r} 5 {q} implies: If (5,0) * .. (£,0') then 

J(q,o') = true 
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i . e . : J({true} 5 {q},a) = true 

"~": If J(r,a) = true, then J{{true} 5 {q},a) = true 

i . e . : 
* if (5, a ) .. (£, a ') then J(q,a) = true 

But this is exactly the definition for ~ 
J 

b) is an immediate consequence of a). 

Examples: 

Let £ A = i E = iN and J = I N 

{r} 5 {q} . 

a) The weakest precondition of y . - 4 and y = 5 

is:false, 

because J({true} y := 4 {y = 5},a) = true 

iff J(y = 5, a[y/4]) = true 

and this doesn't hold for any a. 

Hence ~J {r} y := 4 {y = 5}, 

iff r is equivalent to false. 

b) The weakest precondition of 

while y + 5 do y := y+1 od 

is: y > 5 , 

and false 

because J({true} while ... od {false},a) = true 

iff the while-statement does not terminate for a, 

i.e. iff a(y) > 5. 

The weakest precondition of the same program and 

y = 5 is: true , 

c 

because J({true } wh i le . . . od {y = 5},a) = true for every a. 

Note that the definition of weakest precondition slightly 

differs from Dijkstra's definition (see e.g. [DIJ], section 3). 

In his sense, the weakest precondition of 5 and q is true for 
* --

a state a iff 5 terminates for a with (5,a) .. (£,a') and 
J(q,a? = true. 



3 . 5 Relative completeness of the calculus 

The notion of relative completeness was first introduced 
in [COOKl. 

Theorem 3: 

(Relative completeness of the Hoare Calculus or 
Completeness in the sense of Cook) 

Let (f,A,i?E,f and J be as usual. 
If 

- T is an axiom system for J and 
- £A is J-expressive with respect to tE 

then 

for every Hoare formula h : 

l=:=J h implies I--T h 

( i . e .: l=:=J h i ff I--T h) 

P roo f: 

The theorem is trivial for h E fA. 

For h of the form {p} S {q} the property is proved by 
induction on the structure of S. 

a) Assume ~J {p} x . - t {q} 

In order to prove 

I--T {p} x . - t {q} 

it is sufficient to prove 

I--T (see (AI) and(R4)) 

or, because T is complete 

~J ( 1 ) 
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As for every 0 E! : (x := t,a) ~ (c,a[x/J(t,a)l), 

J(p,a) = true implies J(q,a[x/J(t,a)l) = true 

and by the substitution lemma of the predicate calculus 
one gets 

t J(qx,a) = J(q,a[x/J(t,a) l) = true 

Hence ( 1 ) is proved. 

( 1 ) 

Let r E ~A be the weakest precondition of 52 and q; note 

that r exists because of expressiveness. 
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Then, by lemma Ib), F==J {r} 52 {q} holds, and the induction 

hypothesis yields: ~T {r} 52 {q} 

Now it is sufficient to prove: I==J {p} 51 {r} ( 2 

in fact from (2) one gets ~T {p} 51 {r} by the induction 

hypothesis and an application of (RI) leads to ~T {p} 51; 52 {q}. 

In order to prove (2) assume 

J(p,a) = true and * ~ (c,a'). 

Then one has to show J( r,a') = true , 

i.e., because r is the weakest precondition of 52 and q: 

J( {true} 52 {q} ,0') = true ( 3 ) 

To prove ( 3 ) assume that (5 2,0' ) * ~ (c,a"). 

This leads to * (5 1;52,0) ~ (5 2,0') * ( " ) .. E ,0 , 

hence J(q,a") = true by ( 1 ) . 
Thus, ( 3 ) is proved and the proof of ( 2 ) is completed. 
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c) Assume that S if of the form if e then SI else S2 fi 

and I==J {p} S {q} holds. ( 1 ) 

Wi th the usual arguments (see b) ) it is sufficient to prove 

I::::=J {p " e} SI {q} ( 2 ) 

and 

I::::=J {p ,,"1 e} S2 {q} 3 ) 

Proof of ( 2 ): 

Assume that J( p " e,o) = true and (S1'0) * (c,o' ) • 
Then, as J(e,o) = true, 

* * ( S ,0) • (SI'o) • (c,o' ) 

and, as J(p,o) = true , ( 1 ) yields 

J(q,o') = true 

( 3 ) is proved in a similar way. 

d) Assume that S is of the form while e do S' od 

and I::::=J {p } S {q} holds . ( 1 ) 

Let r E lA be the weakest precondition of Sand q. 

Then, by lemma Ib), F==J P ~ r holds and it is 

sufficient to prove 

~J {r " e} S' {r} ( 2 ) 

and 

I::::=J ( r ", e) ~ q ( 3 ) 

. 

because the induction hypothesis and the rules (R3) and 
(R4) then 1 ead to t--T {p} S {q}. 

To prove ( 2 ) and ( 3 ), first note that 

~J {r} S {q} ( 4 ) 

because of lemma Ib). 



Proof of ( 2 ) : 

Assume that J(r" e, a ) = true and (S' ,a) * • (g, a '). 

One has to prove J( r, a ') = true, 

i.e. J( {true} S {q } , a ') = true. ( 5 ) 

* Assume (S, a ') • (g, a"). 

Then, as J(e, a ) = true, 

* * (S, a ) • (S' ;S, a ) • (S,a') • ( g ,a") 

and, as J(r,a) = true, ( 4 ) yields 

J(q,a") = true. 
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Hence 5 ) is proved, which completes the proof of ( 2 ). 

Pro 0 f 0 f ( 3 ) 

Assume that J(r ", e, a ) = true 

Then, as J(e, a ) = false, (S, a ) • ( £ ,a) 

and by ( 4 ) : J(q,a) = true 

c 



5. Expressiveness of certain languages 

In section 4 we have defined "expressiveness" in order to 
discuss completeness problems of the Hoare calculus. But 
up to now we have 
languages iA,.t E 

not indicated whether there exist 
and an interpretation J, such that iA 

is J-expressive with respect to ~E' We now want to 

examine the problem of expressiveness for a few important 
cases : 

Definitions: 
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a) For a fir st order predicate formula p and a while-program 
S, we denote by var(p) and var(S) the set of variables 
which occur in p and S respectively. 

b) For a Hoare formula h of the form {p} S {q} we define 

var(h) = var(p) U var(S) U var(q). 

Putting var(h) = {x l" .. ,x k}, one easily proves by i nduction 

on the structure of S, that J(h, cr ) depends on cr(x~, .. . ,cr(xk) 

only, or, more precisely, that J(h,cr) = J(h,cr') whenever 
cr (x i ) = cr '(x i ) for all i, 1 < i < k. 

This leads to the following 

Definition: 

Let ;fE' lA' j ,ae, J be as above and let D be the domain of J. 

Then for every h E ge. the relation R c Dk 

is called the r eLation induced by h. 
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By the last definition the problem of expressiveness 
has been reduced to the question, whether certain relations 
can be "e xpressed" by fi rst order formulas . 

Definition: 

Let i be a first order predicate language and J an inter­
pretation for t with domain D. We say that p E i expre ss e s 

a relation ~ = Qk (in the v~riables x1' ... ,x k) iff 

J(p, o) = true .. ( o( x1), ... , o(x k)) E~. 

Lemma 2: 

Le t t N a nd I N be the language and the standard interpretation 
of Peano a ri thmetic respectively . 

If R c Nk is recursively enumerable, then there exists a 
f ormula p E iN' which expresses R. 

(For a proo f see e . g. [MAL], p. 119). 

Theorem 4: 

iN is I N-e xpressive with respect to iN ' 

Proo f: 

Let S E j be an arbitrary program and q E £N an arbitrary 

formula. By definition £N is IN-e xpressive if there exists 

a formul arE tN such that 

for all 0 ( 1 ) 

Let var({true} S {q}) = {x1' ... ,x k} and Rc Nk the relation 

induced by {true} S {q}. If r E IN is a formula which expresses 

~, then r satisfies ( 1 ) . 

Hence the theorem is proved if we succeed in finding such a 
formula r. 
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Let f be the partial function 

(f is well-defined, as var(S) = {x 1 , ... ,x k}) 

Of course f is a recursive function, because it is computed by 
the program S. Hence, the domain of f : 

an d the graph of f : 

graph(f) = { (n 1,· .. ,n k,m 1,· .. ,m k) l (m 1,· . . ,m k) 

are recursively enumerable sets. 

By lemma 2 there is a formula d E tA' such that 

J(d, o) = true .. (o(x 1), ... ,o(x k)) E dom(f) 

and a formula g E ~A' such that 

Now it i s easily proved that the formula 

d 3y 1 ' . . . , Y k • ( g 
Y1'···'Yk , v 11 q ) 
x1'····x k 

expresses R. 

Lemma 3: 

Let £+ be the language of Presburger arithmetic (i.e . 

iN without a multiplication symbol) and J+ its standard 
in te rp re ta t ion. 

[] 



If R c Nk can be expressed by a formula p E t+, then 

R is recursi ve. 

(For a proof, see e . g . [END]' p . 188) . 

Th eorem 5: 

t+ is not J+-expressive with respect to i+. 

Proof: 

Let R eN be a set, which is recursively enumerable, but 
not recursive. Then the acceptor function f of ~, i.e. 

f : N ~> {l} 

x .... 1 iff x E R 

is recursive . 

Hence there exists a program S, which computes f, i.e . 

S te rm inates for 0 , iff f is defined for o(x), with 

* (S, o ) - (£, o[ x/f( o( x))J) = ( £ ,0[x/1J). 

Note that it i s poss i ble to compute recursive functions 
by while programs for i+ ; the multiplication symbol is 
not necessa ry for this pur pose. 

For the weakest precondition of Sand false we get 

J({true } S {false} , o ) = true 

.. S does not terminate for 

.. f is undefined for o(x) 
"o(x)EN-R 
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But, as R is not recursive, N - R is not recursive, i.e. 
by lemma 3, there exists no formula in t+ which expresses 
the relation N - ~. Hence there exists no formula in i+, 
which is equivalent to the weakest precondition of Sand 
false. c 
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Theorem 6: 

Let i A, iE and J be as usual. 

If the domain D of J is finite, and if for each d € D 

there exists a term t of t-A with J(t,o) = d for every 0 , 

then lA is J-expressive with respect to £, E' 

Proof: 

Let ~ = Qk be a relation. As Q is finite, ~ is finite, 

e . g. ~ = {( d 11 ' .. . , d 1k ) , ... , ( dm I ' ... ,dm k ) }. 

Let t .. , I < i ~ m, I ~ j ~ k, be terms for which 
1 J 

J(tij,o) = dij for every o. Then the formula 

(xl = t 11 "···,,xk = tlk)v .. . v(x I = tml" · ··,,x k = t mk ) 

expresses the relation R. 

In particular there exists an equivalent formula in :i A 
for each weakest precondition. 
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