
ABSTRACTS OF THE TALKS AT THE
SECOND INTERNATIONAL WORKSHOP
ON THE SEMANTICS OF PROGRAM­
MING LANGUAGES IN BAD HONNEF

MARCH 19-23, 1979
Edited by

K. Indermark (*) and J. Loeckx

A 79/10

Fachberei ch 10
Universität des
Saarlandes
0-6600 Saarbrücken

(*) Rheinisch-Westfälische Technische Hochschule, Aachen

The present report contains
the abstracts of the talks
at the Second International
Workshop on the Semantics
of Programming Languages
which took place in Bad Honnef
on March 19-23, 1979, in the
buildings of the Elly-Hölterhoff­
Böcking Stiftung. The Workshop
was sponsored by the European
Association for Theoretical
Computer Science and financially
supported by the Deutsche For­
schungsgemeinschaft and the
Minister für Wissenschaft und
Forschung des Landes Nord-Rhein­
Westfalen.

A B S T R A C T S o F T H E TAL K S

(in the order of their presentation)

INFINITE PROOF RULES FOR WHILE PROGRAMS

Fred Kröger (München)

Many methods and formal proof rules for proving partial correctness
of (while) loops by inductive assertions have been proposed in the
literature. Well known keywords are for example ~2~e~t~~i2~_i~9~~:
~i2~, e~~9i~~~~_~~~Q~f2~~~~~, ~~~~~~~~~!_i~9~~~i2~ ana others which
all focus - in one way or the other - on the fundamental notion of
loop invariants, most concisely expressed in Hoare's original rule
PAB[rrJp-~-prwhlle B do rr od]PA,B.As also known, this rule bears a
certain kind of incompleteness: we cannot really verify all correct
while loops by it.

We introduce infinite proof rules (rules with infinitely many pre­
mises) for whlle-loops in order to overcome this proof-theoretical
incompleteness and to get same insight into it. In fact, partial
correctness of while programs can be completely axiomatized using
sucha rule. However, these rules are also of practical interest:
they put the invariant method into a more general framework and
open the view to other kinds of inductive assertions carrying a
proof through a loop. They naturally suggest to use "parameter
representations" of invariants which might be more manageable in
same appl ications. This being principally not different from the
invariant method, the infinite rules give rise also to a proper
extension of the latter method: the method of 9~~~~a!i~~9_in­
variants. A generalized invariant is an assertion which neea not
hoTa-äfter each single run through the loop but recurs in possibly
longer (not necessarily fixed) periods. There are programs for
which an induction over such arbitrary "pillars" is adequate and
much simpler than an induction with a classical invariant.

AN AXIOMATIC PROOF SYSTEM FOR WHILE-PROGRAMS

Jacques Loeckx (Saarbrücken)

The axiomatic system presented is an extension of the first­
order predicate calculus. It is characterized by additional for­
ßlulas and a few additional inference rules.

The additional formulas are of the form
i j : q

where i and j are cutpoints in a while-program and where q is a
formula of the predicate calculus. Intuitively ij:q means that
q holds for each path leading from cutpoint i to cutpoint j.

The additional inference rules correspond to classical proof
methods: two inference rules may be viewed as an implementation
of the inductive assertion method, two further inference rules
implement the subgoal induction method and the fifth inference
rule implements the well-founded sets method.

For proving the partial correctness or termination of a while­
program it suffices to "translate" this program in a set of
axioms and then to apply the inference rules.

While being completely formal, proofs are substantially shorter
and more readable than proofs in the Hoare system; this essentially
results from the simplicity of the formalism used. Some experience
with the abstract data programming language Alphard suggests that
this may be a definite advantage in practical work.

A formal description of the axiomatic system may be found in [1,2];
a consistency proof is in [2].

[1] J. Loeckx, I. Glasner, "A calculus for proving properties of
programs"; presented at the Intern. Conf. on Math. Studies of
Inf. Proc. in Kyoto, 1978 (the proceedings of this Conference
are to be published as Springer Lecture Notes in Comp. Science)

[2] I. Glasner, "Formale Beweise über while-Programme : Ein Kalkül
und sein Modell", Diplomarbeit, Fachbereich 10, Universität des
Saarlandes, Saarbrücken, 1978

RECURSIVE TYPE OPERATORS WHICH ARE MORE THAN TYPE SCHEMES

C.P. Wadsworth (EdinburghJ

To date, natural examples of recursive type operators have been re­
latively few and limited in the nature of their recursion. Lists,
parameterized on the type of their elements, and binary trees, para­
meterized on the type of their tips, are two well-known examples;
these are "schematic" in the sense that they are a schema for a
single recursive type definition at each particular type instance
of their type parameter (since, e.g., lists of elements of some
type a have tails which are lists of elements of the same type a).

This talk presents programming examples of non-schematic recursive
type operators, arising from data structures, called tries, for

fast searching of a collection of records indexed by keys (as
in, e.g., Knuth, Vol. 3). Tries, parameterized on the type of
the records indexed, become nested recursive type operators
when the keys are terms of more general languages than charac­
ter strings. This is illustrated for a simple language of terms
which includes combinations (tl t 2), where t l and t 2 are terms
called the rator and rand, respectively. The genesis of the
nested recursion of types is that the (sub-)collection of records
indexed by combinations is first partitioned into terms indexed
by the terms occurring as rators, the item indexed by each par­
ticular rator tl being thecollection of records indexed by the
rands of all combinations whose rator is t l ; then the parti­
tioning is continued recursively for ra tors and rands which are
themselves combinations.

Some implications for typechecking are mentioned briefly, ob­
serving that the examples lead to recursively defined,polymor­
phic functions whose inner and outer calls are at different
instances of their "generic", polymorphic type.

The generalized tries are currently used for programming the term
matching part of the simplification package in the Edinburgh LCF
system, to determine "simultaneously" whether a subject term mat­
ches any one of a set of pattern terms occurring as the left hand
side of simplification rules.

ABOUT ALGEBRAIC SEMANTICS

Irene Guessarian (Paris)

We study two usual properties of program schemes : termination and a
simplification property. To this end, we introduce the notion of
useless occurrence which enables us to consider these two problems
in a unifying setting /1/; algebraic semantics provides us with a
quite flexible framework for this study in that we can introduce
the exactly desired amount of semantic information and derive the
corresponding results.

We begin with a purely syntactic stage, and, working in the free
interpretation, obtain easily at this stage quite worthwhile sim­
plifications. Then we introduce some amount of semantic informa­
tion, and, working in a class of interpretations defined by alge­
braic conditions, show how we can delete some of the useless
occurrences and non-terminating procedures with respect to that
class of interpretations; this is achieved by using only the al­
gebraic specifications of the program scheme and of the class of
interpretations. Finally, we show how one can, making more and
more precise the specifications of the interpretations, derive

in the same way more and more refined simplifications of the pro­
gram scheme /2/.
/1/ I. GUESSARIAN, Program transformations and algebraic semantics,
t 0 a p pe ar i n TC 5, 19 79
/2/ F. ERMINE & I. GUESSARIAN, About termination and simplification
of program schemes, in preparation

INFINITE TREES IN NORMAL FORM AND
RECURSIVE EQUATIONS HAVING A UNIQUE SOLUTION

Bruno Courcelle (Bordeaux)

A system of recursive equations is C-univocal if it has a unique
solution module the equivalence associated with a class C of inter­
pretations. This concept yields simplified proofs of equivalence of
recursive program schemes and correctness criteria for the validity
of certain program transformations, provided one has syntactical
easily testable conditions for c-univocality. Such conditions are
given for equational classes of interpretations.
They rest upon another concept: the normal form of an infinite tree
with respect to a tree rewriting system. IhlS concept yields a sim­
plified construction of the Herbrand interpretation of certain
equational classes of interpretations.

The equivalence of two program schemes is a very strong requirement
since they must compute the same function in every interpretation.
We define the C-equivalence (denoted by =c) slmllarly, with respect
to a given class C of interpretations instead of the full class of
all interpretations. This flexibility is necessary for practical
applications. In particular, the library of Darlington and Burstall
[11] is in fact a set of triples <cp,lji,A> of two schemes cp and lji and
a set A of conditions such that ~ is CA - equivalent to lji (where CA
is the class of all interpretations which meet A).

It has been remarked by Courcelle [4], and by Elgot et al. [12]in a
restricted case, that a system L has a unique solution in Mn(F,V),
under some not very stringent syntactical conditions. Let us say that
such a system is univocal. More generally, a system is C-univocal if
it has a unique SoTutlon in M;(F,V)/=c' We raise the following problem:

Problem 1: Which systems are C-univocal ?

Clearly the answer will depend on the way the cl ass C is specified.
We shall only answer to the question by giving sufficient conditions,
in the case where C is defined by equations. Before describing these
conditions we give two applications to program proofs and program
transformations of the concept of C -univocality.

Application 1: Simplified pro~ram proofs.

Let E be a system of the form < ~l (vI"" ,v k) = Tl"'"
1

~n (vI"" ,v k) = Tn> ;
n

let al"" ,an be functions defined by another system of equations E'.

Assume that < a l , ..• ,an> satisfies the system E module =ci .e. that :

(1.3.1) a i =CTi{a/~l' ... ,an/~n} for all l:Oi :o n.

(The right hand side of each equation is the substitution of a j for
each occurrence of ~. in T.). This means that for all interpretation

J ,
I in C, <al , ... ,an > is a particular solution of L hence that~. :O a.

I I '1 '1

since <~l , ... ,~ > is the least solution of L in I. Since this holds
I n1

for all I E C we write this:

This is essentially the Recursion 1nduction of McCarthy [23] or the
Fixpoint 1nduction of Park.
1f we also know that L is C-univocal, we can infer directly (1.3.3.)

from (1.3.1.);

(1.3.3) ~i =c a i for all l :o ; :o n.

Hence we obtain a powerful method, provided the conditions insuring
the c-univocal ity of L are not too difficul t to test.

Application 2: Validation of certain transformations of tecursive
programs.

Let us recall the transformation method of Burstall and Darlington
[3] using the "unfold-fold-redefine" technique. Given a system L
reduced to a single equation: ~(vl'" .,v k) = T (this is only to
simplifiy this informal presentation but the extension to general
systemsis straightforward) and a fixed class of interpretations c,
one wants to find L' : ~'(vl' ... ,vk) = T' such that ~'=C~ and L'

is simpler than L in some sense.
A possible way to find T' is to build a sequence To,Tl"" ,Tm such

that TO = T and for all O ~ i < m

Ti + 1 l:)t i

Ti =C Ti +1

i.e. some ~ in Ti has been rewritten as T
("unfolding" of[3)) or

("folding" of [3)) or

by some property of the base functions (such that
associativity of a binary function) always satis­
fied in c ("using lawsabout primitives" of [3)).

Assuming that Tm is "simpler" than T we would like to take
T' = Tm {~'/~}. A sufficient condition is that the equation

L' : ~'(v1, ... ,vk) = T' is C-univocal. It is clear that Ti=cTi+1
for all i hence that ~=cTm' This means that ~ (defined by L) is a
par t i cu 1a r sol u t ion 0 f L'. He n c e ~ = C~' if L' i s C - uni v 0 c al .
(Note that ~ ' ~ C~ always holds; an example such that ~'tc~ is given
in (5.22)).

RATIONAL OPERATIONS ON TREES WITH APPLICATION
TO CONTROL STRUCTURES

Guy Cousineau (Paris)

Regular trees can be defined as solutions of regular systems of
equations or equivalently as those trees that have only a finite
number of distinct subtrees. Here we characterize them as the tree
that can obtained from finite ones by means of a finite number of
applications of so-called rational operations including some con­
catenation and star operation on trees. We should like to emphasize
the fact that giving such a characterization was not merely for us
a tree-theoretic task (if it had been the case, other notions of
rationality could have been chosen) but we wanted our rational ope­
rations to be meaningful as program constructs.

The tree we manipulate are elements of l~oo(F,IN)in the notations of
Nivat when F is a set of function symbol s of arity ~ l and IN the
set of integers. Concatenation is defined by a1·a? = a, [o\a 2) and
star by a*= +(aoo) where aOO is the 1 imit of the sequenCe an and + an
operation that decreases by one all the integers that can be found
in a tree.

Let us point out some resu1ts that can be obtained using this
formalism:

1. Semantics of programs containing 100ps can be very natura11y
defined and properties of rational e xpressions induce properties
of programs. For examp1e the fact that you can solve a regular
system into a rational expression e xp1ains why f10wchart programs
can be structured using repeat - exit and hierarchy resu1ts on
rational expressions induce the Kosaraju hierarchy on repeat -
exit schemes.

2. The ru1e used to solve regular equations can be used to
design a Sa10maa-1ike system for proving identities of rational
expressions. From that system, one can derive asound and com­
p1ete transformation system to deal with syntactica1 transfor­
mations of programs.

3. The forma1ism extends very easi1y to non-regular ca ses and it
gives a way to measure the expressive power of different c1asses
of programs by means of the associated cl ass of trees.

SYNTAX-DIRECTED, SEMANTICS-SUPPORTED
PROGRAM SYNTHESIS

Wol f gang Bibe l (Mü nc he n)

The semantics of programs s;mp1ifies substantia11y if a1gorithms
are represented by their 10gic and their contro1 separate1y.
Therefore the question arises whether it is feasib1e to synthesize
the 10gic and the contro1 of a1gorithms in separate steps. In this
talk a number of strategies for the synthesis of the 10gic part
of a1gorithms from a given input-output specification of a problem
are presented which are centered around a few basic principles. It
has bp.en verified for more than ten different a1gorithms that their
uniform app1ication in all cases resu1ts in a successfu11 deductive
synthesis, among which are a spanning-tree a1gorithm, a graph­
circuits a1gorithm, a finding-the-ith-smal1est-e1ement a1gorithm,
and a linear (string) pattern matching algorithm. In all cases the
subsequent determination of the contro1 is a simple, mechanizab1e
task. Also the correctness of the resu1ting a1gorithm is guaranteed
by the genera ted deduction.

This provides some support to the thesis that such a "logic pro­
gramming" approach is not on1y desirab1e but also feasib1e. It
also revea1s arguments in favor of a c1assification of a1gorithms
according to relevant syntactic properties of the 10gic of a1go­
rithms as opposed to one according to program (contro1) structures
such as program schemes.

FUNCTIONAL SEMANTICS OF A RELATIONAL DATABASE­
QUERY-LANGUAGE WITH SOME RESPECT TO A HOSTLANGUAGE

Thomas OZnhoff (StuttgartJ

Database~ublanguages become embedded into major programming­
languages (e.g. PASCAL by J.W. Schmidt). The semantic-descrip­
tion should not fall short of these sublanguages. A program­
state can be split into a non-db-component and a db-component.
This talk is mainly concerned with describing a query-sublangu­
age's semantics as a state-mapping of the db-component.

A database description mostly distinguishes three kinds of
models: the external, conceptual and internal model. Several
external models are mapped into a conceptual one which is
mapped into the internal one. A query is formulated by means
of external objects. Its final interpretation is done by inter­
nal objects.

The query-language studied has the power of the relational
algebra confined to the operators select, join, project.
The mappings we allow from one model to th~ other are noted
as well - formed sentences of the query-language (QL). Another
language (OQL) is used to express the query on the internal
model. Thereby we hope to be able to give the semantics of a
query as a state-function being the composition of "elementary"
functions that can be thought of as abstractions of modules
interpreting the query in an actual implementation.

How equivalence of sentences q and oq (q of QL, oq of OQL)
can be decided is sketched.

The Vienna-Definition-Method is used as the metalanguage for
the presentation of this talk.

AN EXERCISE IN BEHAVIOUR ALGEBRA;

PROVING THAT A QUEUE WORKS PROPERLY.

Robin MiZner (EdinburghJ

A queue system built from active cells was considered. Each cell
represents a place in the queue, and it may be in one of three
states. It may contain a member, in which case it can (if allowed)

pass this member forward to the next higher place, and become
empty itself. An empty place has two capabil ities - it may re­
ceive a member passed from the next lower place, or it may re­
ceive a signal from the next lower place that it should become
the end place. An end place has two capabilities; it may signal
to the next higher-pTace (if empty) to become the end place, or
it may receive a new member from outside and then divide into
two places -an occupied place and an end place. Any communication
requires both participants to perform it simultaneously.

In Behaviour Algebra, the behaviours of the three kinds of place
may be defined by mutual recursion

An occupied place:
An empty place
An end place

Place (a)
Empty
End

=
=
=

a 1 a. Empty
ß 1 r. Pl ace (r)+ß 2 . End
a2 ·NIL+ yr. (Place(r)cEnd)

The five ports a1,a2 ,ß 1 ,B 2 ,y are for the following purposes

~1 Pass a member (up)
a 2 Signal (up) to become end place
BI Receive member (from below)
ß2 Receive si gnal (from below) to become end pl ace
y Receive member (from outside)

The chaining combinator C is used to join ports of places
(al to BI' a2 to B2); e. g. the queue wi th two members (al and a2)
ana no empty places is represented by

Place (al) c:, Place (a 2) ~ End.

The exercise consisted in defining, by recursive equations, the
behaviour that a queue should have (that is giving its specification)
and then proving that this is identical with the behaviour of the
composite queue system.

For this purpose, the Laws of Behaviour (presented inthSynthesis
of Communicating Behaviours" by the author, in Proc. 7 MFCS
Colloquium, Zakopane, Poland, 1978 (Springer - Verlag)) were used,
together with three further laws which are part of an equational
system whi ch we hope to prove compl ete (tha t i s, behavi ours wi 11 be
provably identical iff they are observationally equivalent).
The proof used a simple ca se of induction upon the iterates of
recursively defined behaviours.

SEMANTICS FOR CONCURRENTLY COMMUNICATING
FINITE SEQUENTIAL PROCESSES, BASED ON PREDICATE TRANSFORMERS.

W. P. de Roever (Utr echtJ

Denotational semantics are obtained for the flow-of-control of
finite, communicating, sequential processes in Hoare's language
CSP (CACM aug. '78). The project derives its interest from occur­
rence of two different forms of nondeterminism, (a) local nonde­
terminism restricted to one process only, and (b) global nonde­
termini sm, which can only be resolved after consultation between
processes. SinCe only finite executions of processes are focussed
upon, and resulting local final states of each process should
satisfy postconditions - e.g., a parallel sorting routine should
produce a sorted outcome - we utilize a variant of Dijkstra's
weakest precondition semantics wp[S~ q, S denoting a CSP command,
q a postcondition on tuples (s,T) of local states s, and communi­
cation futures T. Integration of communication in this framework
takes place by introducing (a) a-priori semantics for every pro­
cess P. , describing p. 's behaviour for every message communicable
which contributes to termination of S inside q, and (b) a binding
operator which "binds" the a-priori semantics of all communlcatlng
processes by establishing matching pairs of input/output commu­
nications, preserving the relative order in which messages are
communicated. A system of simple equations for constructs of CSP
is obtained improving upon previous result by Francez, Hoare,
Lehmann, de Roever. The rule for boolean guarded commands for non­
communicating computation must be changed because of inter-process
communication . Equations for do-loops are of the same order of
comple xity as for the sequential case.

THE USE OF A FORMAL SEMANTICS TO PRODUCE AND
PROVE COMPILERS

M.C. Gaudel (Iria, RocquencourtJ
C. Pair (CRIN, Na ncy)

We present a formal semantics which is used to specify, produce
and prove compilers. The basic idea is to use some results on the
representation of algebraic abstract data types and the validation
of such representations.

In the system currently developed , adefinition of the Source

Language and of the Target Language is given. The same formalism
is used to describe the semantics of these two languages . Then
the translation process can be specified in a formal way, and
proved. To each language is associated an algebraic abstract
data type, i.e. a list of names of type; a list of names of ope­
rations with their domains and co-domain; a list of axioms to
define the relationship between the operations. The semantic value
of a program is a term of the abstract data type.The translation
of the semantic values of Source pro grams to semantic values of
Target programs can then be specified and proved as the represen­
tation of an abstract data type by another one.

The general scheme of the system is:

SOURCE LANGUAGE
lJEFlNITION: Syntax+
types and operations
of the A.D.T + Seman­
tic Functions.

REPRESENTATION of J
the Source Ä.D.T by
the Target A.D.T

TARGET LANGUAGE
DEFINITION: types
and operatlons of
the A.D.T + Code
Generation

'--->

>

>

Source Program
I

S TEP 1

Term of the Source A.D.T

Term of
$
the Target A.D.T

STEP 3

Target Program

The translators obtained work in three steps. The axioms are used
to perform proofs of the second step of translation.

The specific goal of this paper is to show, by the way of an
example, what the semantics of a realistic programming language
looks like in this formalism. We consider a usual Algol -like
programming language which allows to declare and use simple vari­
ables, arrays and procedures. Simple and mutual recursivities can
occur. Procedure parameters are called by value or called by
variable.

The characteristic axioms of this language are stated and the
semantic functions are given.

AN ABSTRACT NOTION OF ONE-DIMENSIONAL
ARRAY WITH SOME APPLICATIONS ON FORESTS AND TREES.

C. Boehm (Roma)

The non adequacy of Church's tuple concept in A-calculus as an
abstract model for one-dimensional arrays is first illustrated.
In fact there is no operation which independently of the 'nature'
of the components, can compute the length of each array, or even
select lts first element; there is moreover no predicate dis­
tinguishing the empty array from the non-empty ones. It is pro­
bably true that because of such difficulties J.Mc Carthy decided
twenty years ago to deviate from the pure A-calculus by designing
the programming language LISP.

Strangely enough, the preceding 'impossibilities' can all be
eliminated by a different basic approach to the notion of one
dimensional array: this choice enables one arso to describe two
important operations on arrays, the 'append' operation and the
'rotation to the right' by two non recursive operators.

Operators for handling errors may also be introduced. As a further
application of the preceding notion to the case where atoms (nodes)
are restricted to be non negative integers, it is possible to
develop a consistent notion of ordered forest and tree, giving a
semantic counterpart to LISP data structures.

PURE LISP IN LCF, AGAIN

Malcolm C. Newey (Canb e ~~a)

Six years ago the author pushed the Stanford LCF system to its
limits w~th experiments in the verification of some LISP programs.
At the tlme of the workshop, one of these experiments was being
repeated to gauge the effectiveness of improvements to LCF. This
was the proof of correctness of some Pure LISP functions, notably
the EVAL function given by McCarthy.

With an interpretive semantics completed and about 50 useful
theorems about Pure LISP proved (in the new system) it is concluded
that the formal description of this language was more elegant and
that deduction had proceeded at about three to four times the pace.

The most significant improvement in expressive power was found to
be the much richer type structure - one that brings LCF users more

into line with other people operating on Scott foundations. In
particular, the use of the new type building operators made the
axiomatisation of the domain of S-expressions much cleaner. The
talk uses this domain to illustrate a technique of domain de­
finition using type equations that gives greater confidence in
the consistency of the theory being developed.

Another advance in LCF which had a significant effect in this
experiment was that of polymorphic types. A general theory of
equality had already been developed for arbitrary domains and
so the usual theorems about equality were available without cost.
Furthermore, this and other uses of the theories feature impart
much needed structure and modularity to the enterprise.

In developing the theory of Pure LISP, most time was spent proving
the orems and so the most valuable advance, that Edinburgh LCF has
contributed to the technology of machine checked proof, is the use
of a special purpose programming language. The talk illustrates
how, in using ML to code proof recipes, enormous amountsof human
effort can be saved. So far, some proofs have been shortened by a
factor of five (in terms of keystrokes). However, the theorems
proved so far have been quite simple; even larger savings are ex­
pected on more complex proofs.

NON DETERMINISTIC COMPUTATIONS IN METRIC SPACES

A. Arnold & M. Nivat (Poiti ers , Paris)

In the now standard theory of computation in an ordered domain one
proves the equivalence between the definition of the computed func­
tion as the smallest fixed point of certain functional and the
definition of the same function by means of terminating computation
sequences of the program at a given point. This equivalence holds
when the computation domain is a flat, or discrete, domain in
which different defined values are incomparable: the only con­
verging sequences whose terms are all equal, for sufficiently
large n, to the limit of the sequence . In such a domain it is
cle ar that any computed value is the result of some terminating
computation sequence.

The situation is entirely different if, following D. Scott, one
starts computing in a partially ordered domain which contains
infinite ascending chains. A computed value may then be the lub
of such a chain and as such can well be the result of no finite
computation: a typical example is the domain of real numbers,
if basic functions are the four arithmetic operations and the
initial values are rational numbers, after any finite amount of
time one will have computed only a rational number when the re­
sult may well be irrational.

We propose in this situation to give a meaning to successful
infinite computation sequences which will be said to produce
a result and to define the computed function by stating that
its value at a given point is the set of results of both finite
terminating and infinite successful computation sequences at
that point. Obviously doing so ~ne accepts the idea that a
computed function is many valued since there is absolutely no
reason why all computation sequenceswould lead to the same re­
sult. But indeed many-valued functions were already considered
as the normal output of non deterministic programs.

Our point of view thus amounts to consider deterministic programs
as special cases of non deterministic programs with the advantage
that our result will hold in the general case of non deterministic
programs (this was in fact the original motivation of the whole
study) .

In order to give a meaning to successful computation sequences
we found extremely convenient to replace the order structure on
the computation domain by a complete metric topology. (This is
not at all to say that one cannot use the st~ucture of a cpo to
build a theory in many respects analogous to ours and indeed it
has been done).

The results we get to are mainly conditions for the equivalence
of this definition of the computed function and a mathematical
definition by means of fixed point: it happens that in a very
natural way one is lead to consider greatest fixed points rather
than smallest. Intuitively this corresponds to the idea that, at
the beginning of the computation we only know that the value of
the computed function lies in a certain range, a priori the whole
computation domain and in the course of the computation this range
is reduced (may be to j~st one value but usually to a set of values) .
This is dual of the point of view expressed by Dana Scott that an a
priori undefined initial value gets more and more defined in the
course of the computation. We have borrowed for a large. part this
idea of decreasing range to L. Nolin (in a uncountable number of
discussions) .

In the course of our study we consider infinite trees for the
following reason: algebraic infinite trees which can be generated
by a recursive program scheme are at the basis of the theory called
"algebraic semantics" of recursive programs. .

The algebraic tree thus attached to a program scheme incorporates
the whole semantics of the program in the sense that an interpretation
being defined as a morphism, the function computed by the program
resulting of the interpretation of the scheme is the morphic image
of this algebraic infinite tree. Whence many results concerning
classes of interpretation and families of computation domains .

Here infinite trees also play a role, in fact a crucial role.
For the link between a semantics defined in an ordered structure
and the semantics defined in a topological structure lie s in
the fact that the set of infinite trees MOO(F, V} has both an ordered
str ucture and a topologic a l str uct ure which are c losely related
(in fact an increasing function is order continuous iff it is
continuous for the topology). The free complete F-magma M"(F, V}
thus appears as the mother structure in which the phenomena of
computation can be better described.

SOME THEORETICAL RESULTS CONCERNING PROLOG

K.R . Apt (Rotterdam)

A program in the programming language PROLOG is a set of definite
clauses. A definite clause is a construct of the form A + B1&·· .&B n where A,B 1 , ... ,Bn are atomic formulae and is to be understood as
vXl' ... ,xk (B 1& ... &B n ::> A). A program is activated by a goal state­
ment which is a construct of the form + A1&·· .&A n (understood as

vx 1,···,x R, --, (A 1&···&A n})·

From a goal

where n .:: 1, 1 < i < n

with se lected atomic formula Ai one derives a goal

+ (A 1 & ... & Ai - 1 & Bl & ... & Bm & Ai+l & ... & An) 0

for every clause A + B1 & ... &B m (m.:: O) such that Ai and A are
unifiable with most general unifier 0. A derivation (computation)
successfu lly terminates if an empty clause is derived. Whether a
computation successfully terminates depends on the selection rule
and on the search algorithm used to search for an empty clause
in the tree of goal statements.

The above can be seen as a special type of a resolution (called
SLD -reso lution). We prove the soundness and completeness of this
resolution: a goal +N is a root of a tree containing an empty
clause if f S U {+N} is inconsistent. Whether a tree with a goal
+ N as a root contains an empty clause is independent on the
selection rule used.

A COMPLETE SET OF ASSERTIONS ON CONCURRENT SYSTEMS

Anto ni Maz urk i ewicz (War saw)

A s impl e concurrent system consisting of a finite number of sequen­
tial (nondeterministic) components is considered. Each component
i s built up from finitely many actions joined together by their
input and output places. Two different components have disjoint
sets of places; some actions, however, can be common for two (or
more) components. The only synchronization between components is
the requirement that an action, common for several components
is to be performed by them coincidently (at the same time). This
model is very c lose to the "path expressio n" model [Campbell ,
LauerJ. A configuration of the system is a vector of places, one
place is taken from one component. The system can move from one
configuration to another producing a history [Shields & Lauer 78J -
a vector of strings, each string (an individual history) being a
sequence of actions genera ted by one component.

We say that an assertion set for the system is given, if to each
place a predicate (over hlstories) is assigned. An assertion set
is sa id to be sound, if for any configuration, reachable from a
given initial conflguration, the conjunction of predicates to its
places is true for corresponding histories. An assertion set is
sa id to be complete, if whenever the conjunction of predicates
assigned to a conflguration i s true for a vector of strings, this
configuration is reachable from the initial one and the vector of
strings forms a corresponding history.

It is shown that for any conc urrent system as above asound and
complete assertion set can be constructed in such a way that the
following requirements are satisfied:

(i) (1 st locality principle). Only local conditions need to be
satisfied by predicates to form an assertion set; such a
lo cal con dition concern s exclusively predicates assigned
to places around an action.

(ii) (2 nd locality principle). Values of (history) variables in
the scope of predicates assigned to places of a component
are not changed when this component is suspended and other
components are allowed to run.

Predicates constructed depend not only on individual history vari­
ables but also on "skew" his~ory variables intended to keep so­
ca lled "told" and "heard" histories. These variables are the only
ghost variables in predicates forming assertion sets.

NONDETERMINISTIC KAHN NETWORKS

David Park (WarwickJ

Let L be a finite alphabet. (KL,l) is the domain with elements
KL = L* U LW and with the prefiX ordering u ~ V~(3W)V = uw.
(P(K L) ,~) is the conventional power-set of KL (not the power­
domain). A nondeterministic Kahn network over L is a system of
defining relations, of the form W,. € f. (W W.), l ~ i ~ N,

, , 1 ' n. n . ,
where the functions f i : K ' +P(KL) are associated with compu-
ting stations and the variables Wi stand for (histories of)
communication lines. Such a sequence of relations may be used to
specify an asynchronous
cating through buffers.
produces just singleton
Proceedings 471-5].

computing network, with devices communi-
The deterministic case, that each f. . ,
sets, was presented in [Kahn: IFIP 74

There it was convincinglyargued that the f i must be continuous
functions in the sense of Scott. The operational behaviour was
then obtained abstractly as the least fixpoint ~f, for the
f : KL N +K L

N got by combining the f i . A similar analysis for the
general case has long presented an open problem, most importantly
when some f i is a (nondeterministic) "fair merge" of sequences, an
interleaving guaranteed on infinite sequences to absorb all of each
sequence. This paper presents a solution, arguing in four stages:

1. Conceptual Problems: what is the nondeterministic analog of
"continuity" ? Let D,E be bounded-complete w-algebraic domains.

Writing w+X for (3X) [W<X&XEX] and using standard notions from
[Plotkin: SIAM J. Comp.~, 452-487]

D e f n: f : D + P (D) i s co her e n t i ff (i) x i y => f (x) iM f (y)
(ii) if w+f(x) then (3v)[v<x&w+f(v)]
Theorem: f is coherent iff (i) above & (ii') if UEf(x),
there exist
vo<v 1<v 2< , wo<w 1<w 2< with UV i = x,

UW i = u and wi+f(vi),all i.

Theorem: if all values of f are singletons then f is coherent iff
f{x) = {g(x)}, all x, for some continuous g.
Oefn: the finite behaviourof f : 0 ~ P(E) is the relation

{eI · · .e n} IN f(d) between finite elements of 0 and finite sets of
finite elements of E.

Theorem: There is a unique maximal coherent , :_0 ~ P(E) with the
finite behaviour of som~ coherent f, such that f(x) ~ f(x) for all
f with that behaviour. f can be obtained from the unTque continuous
f M : 0 ~~M(E) (to the Plotkin powerdomain) determined by the be-
haviour, by taking f(x) as the maximal representative of theequi-
valence class fM(x), for each x. _ -

3 2. Oefining 'fair merge': Let IR (KL:) be the Boolean algebra of3 3-ary
relations on KL:; 'lJX.-y{x) , \lX.';;Y(x), for monotone ':3': tR 3(KL:) ~ dt (KL:)
are resp. the maximal and minimal fixpoint operators. The graph of
'fair merge' is :

where

-vi X. (\l Y . (:r L (Y) U '1'R (\l Z . (-::Y L (X) U YR (Z))))

1'L(W) = {(A,y, A) Iy E KL:} U {(ax,y,az) loH, (x,y,z) E W}

'1'R(W) = {(y,A, A)ly E KL:} U{(x,ay,az)l a EL:, (x,y,z) E W}

A denoting the null string

3. Negative length buffers: W e merge (Ow,W) appears to have anomalous
solutions, e.g. W - wO w, any w E L:*. The anomaly disappears on adopting
a nonstandard operationa-l notion - permitting any 'queue' on a commu­
nication line to take negative length, in which case it is to be taken
as a sequence of predictions by the consumer of the producer's future
behaviour, which must conform to them if the computation is to be
permitted. The set of tuples satisfying the defining rel-ations (in
the sense obtained by writing 'E' for 'e') is shown to be the opera­
tional behaviour assuming this notion.

4 . The hat trick: to restore the standard operational notion of buffer,
one can adjust the functions f. so that negative queues do not occur.
Add a new symbol 'A' to L:; ~ ='L: U {A}. If w E Kf , doff(w) is the
sequence obta i ned by del eti ng 'A' from w. Gi yen f : K~ ~ P(KL:) (co­
herent) a coherent f : K~ ~ P(K_) can be otained satisfying:

L: L:
(i) if each wi is finite, w E f(w l ... wn), then length (w) > length(w i)

(ii) if w E f(w l ... wn), then doff(w) = f(doff(w l) ... doff(w n)).

The intended behaviour, with standard operational notions, is
then {(doff(w 1) .. . doff(WN))IW i E fi(Wil" .Wi n .)}, assuming
each f. is coherent. 1

1

[This device was suggested by WadgeJ.

AN EXERCISE IN PROOF RULE JUSTIFICATION

J.W. de Bakker (Amsterdam)

Abstract not received.

FAIR OR-TREES AND NON DETERMINISTIC PROGRAM SCHEMES

M. Nivat (Paris)

A non deterministic program scheme (ndrps)S is a system of defining
equations S ~.(vl""'v) = T., i = 1, ... ,N

1 n . 1
1

where Ti € M(F U 1>U{or}, {v1'''''V n .})
1

The choice operator or is interpreted operationally by giving the
rules

which are applicable at all steps of a computation sequence.

The most natural idea to give a semantics of a ndrps S is to first
look at the vector of trees T = <T1, ... ,T N> which are generated by
S in Moo(F U {or}, V) according to the standard theory of deter­
ministic recursive program scheme. Afterwards one tries to break
the ~'s that is to define a morphism 0: Moo(F U {~}, V) ->(Y(Moo(F, V))
The morphism 0 is easily defined on finite trees by

O(v) = {v}

0(f (t 1 ' ... , t n)) = f (0(t 1) , ... , 0(t n))

0(~ (t 1 ' t 2)) = 0(t 1) U 0(t 2)

And we try to extend it by continuity using on Moo(F U {or}, V)
the topology induced by the Micielski-Taylor metric d ano on
J(M~(F,V)) the Hausdorff metric defined from d between closed subsets.
A necessary and sufficient condition to define 0(T), where T is in­
finite is that

'Ir. 3n d(t,T) < n and d(t',T) < n q d(0(t),0(t')) < r.

We say that 0 has bounded oscillation at T.
I t i s k n 0 \~ n t hat if we d e f i ne G(T), f 0 r all s u c h T' s, b Y

0(T) = lim 0(t n) for all t n which converges towards T
then 0 is continuous at T. Results from Arnold,Nivat can be
applied namely the set of results of all computations of the ndprs 5
at ~l(vl' ... ,v n) equal to 0(T l) if 0 has bounded oscillation at Tl·
We are lead to ~~ve conditions for 0 to have bounded oscillation at
T and prove that this is true if T is a fair or-tree i . e. satisf ies
on al l infinite branch of T, for all depth n, there exists an F­
symbo l of depth greater than n. In other words T does not contain
an "infinite or-branch".

From this we easily derive that Tl is fair if and only if 5 is a
Greibach-schem~ which is also the condition for the theorem on the
equivalence of operational and greatest fixpoint semantics of
Arnold,Nivat. -

In conc lusion:- the Greibach condition on S stems out from a
necessary condition of continuity to extend the natural mapping of
or-trees into sets of ordinary trees - the us~ of the metric topo­
logy allows us to write local continuity conditions which appear
naturally in the theory.

MODULAR OENOTATIONAL SEMANTIC5

Peter Mosses (A arhus)

Oenotational semantics is a fine tool for analysing and describing
the fundamental concepts of programming l anguages . Howev er, denota­
tional semantics (05) has not become popular for giving formal de­
finitions of the meanings of "rea li stic " languages: the difficulty
of reading and writing the definitions seems to increase much faster
than the complexity of the languages. I consider that this is due
to the lac k of modularity in OS descriptions.

The proposed approach is based on the work of Burstall and Goguen:
it is t o structure OS by specifying a theory corresponding to each
"concept" used. For example, the concept of a store (update, con­
tents, new) can be described by one theory, and that of an envi­
ronment or symbol-table (bind, find) by another theor~. More sig ­
nificantly, the operation of seq uen cing "actions" can be described
without prejudging the issue of whether jumps are to be allowed,
thu s one can avoid the whole semantic specification being permeated
by the choice between the "direct" and "continuation" style.

One might "derive" all the individual theories from the Scott theory
of domains. However, I would argue that the reader of a OS wants to

be told (at least some of) the laws which the primitive semantic
operations obey. This, together with the desire to build directly
on ßurstall and Goguen's work on algebraic theories, encourages
me to keep to equational algebraic specifications, defining se­
mantic operators implicitly by equations expressing their in­
fluences on each other.

I would not claim that such implicit specifications are parti­
cularly easy to construct. What makes the effort worthwhile is
that it should be possible to re-use (most of) the specifications
time and time again, in describing different programming languages.
I have worked out so~e algebraic theories which I believe to have
this generality.

Once one has put together the specifications of such primitive
semantic concepts as are necessary, what remains is to specify
the main semantic functions. Here, I keep to the denotational
rule: the meaning of a phrase of a programming language should
be equated with some composition of the meanings of its sub­
phrases. Thus, close contact with OS is maintained, and one can
build on the experience gained in the last 10 years. In fact, I
would like a standard OS to be an interpretation of the semantic
theory.

Another hoped-för feature of the proposed approach is the ability
to handle abstract syntax, context-sensitive constraints, syntactic
proof-rules and various sorts of semantics just one formalism:
that of (structured) algebraic theories. This, together with the
conceptual simplicity of algebraic equations, might make formal
specifications accessible to those who need them most: the de­
signers, implementors and users of programming languages.

REASONING AB OUT FAIRNESS IN UNSCHEOULEO ACTOR-SYSTEMS

A. Ke pp, W. Ob epdö ps t e p, P . Rau le f s (Bann)

A method for reasoning about fairness in the CSSA-actor model of
computation is developed.

In this model, we only make very weak and general assumptions about
concurrent computations in actor systems:
(1) Computation is done by a society of independent, concurrent se­

quential machines we call actors.

(2) Actors may communicate by sending messages to each other. An
actor may only transmit a message to an actor it is acquainted
with. Actor systems form communication networks having actors
as-nodes and acquaintance links as directed edges. Since actors

may be dynamically created or destroyed, and acquaintance
lin ks may be communicated among actors, the communication net­
work formed by an actor may dynamically change throughout the
course of a computation.

(3) Transmitting messages takes a positive, but indefinite amount
of time. Computation done by actors takes no time at all.

Although assumption (3) is quite realistic, it very much complicates
reasoning about concurrent systems of sequential processes when com­
pared to models assuming synchronized communication as a primitive.
This i s due to the fact that whenever messages are under way, there
is no way of knowing anything about the order of their arrival at
target actors, so we have to consider all possibilities . It is our
int ention to investigate concurrent actor systems under this extreme­
l y weak assumption first, and then determine in which way more
restricted communication primitives reduce the complexity of the
semant ical model and the difficulty of reasoning about such systems.

Usually, methods are developed to synchronize a system of concurrent
processes by adding schedulers to the system. Distributing the actions
done by schedulers among individual processes leads to nlore efficient
yet not necessarily less well-structured solutions. We consider the
problem of reasoning about fairness without the presence of explicit
schedulers.

Dur approach consists in looking at particular combinators between
actor systems that allow to form more complicated actor systems. The
identification merge combinator maps two actor systems into a new one
5y ldentlfying two actors of same type (= same actor script) in each
system .

Based on a denotational semantics we develop a proof theory for
static actor systems (no actors are created/destroyed throughout the
course of a computation) that allows to establish fairness of such
identification merges.

This nlethod is illustrated at a particularly simple solution of the
"dining philosophers"-problem: We present two actor scripts for forks
and philosophers s.t. for any n > 2, a fair system of n philosophers
and forks can be uniformly generated. The fairness proof consists of
consider ing philosophers/two-forks - triangles, and (1) deriving the
fairness of isolated triangles, followed by (2) deriving the fairness
of the identification merge of two triangles, and (3) inferring the
fairness of the entire system.

This example suggests a uniform proof method for showing fairness of
"regularly" constructed actor systems which we call actor crystals.

A TOPOLOGICAL CLOSURE OF FREE X-CATEGORIES

Gunter Hatz {Saarbrücken}

x-Categories were introduced in [Ho] 1965 to develop an algebraic
calculus for representations of switching functions by boolean net­
works. The morphisms of free x-categories represent these networks.
Here we generalize this theory to an algebraic calculus of infinite
networks, which together with a functorial interpretation repre­
sent infinite f~nctions. The infinite networks note how to compute
the values of the functions for arguments by means of certain ele­
mentary operations. In the case of computable functions one may
look at these networks as universal enfoldings of programs to compute
the function.

Mathematically we construct a topological closure of the free x­
categories. This closure is induced by a partial ordering < of the
morphism rYlof the free x-category'f . < is defined by "derivations"
which are generated by substitutions of variables of the generator
set of T by morphisms of ~ with the same domain and codomain - in
my lecture_I_ restricted to substitution of the empty word. We get_
a T - s pa ce m.. T h e 0 per a t ion s x a n d 0 c a nun i q u e 11. b e d e f i n e don "\1L,
We ~onstruct in this way a continuous x-category r which contains
F as a sub-x-category. The trace of the topology on the "terminal
morphisms" seems to be a Hausdorff space.

Now one finds for explicit recursive equations solutions in T .
One can use the construction of Wolfgang Weidner given in his
dissertation to construct an algebraic closure of'f in r. His
constructions use a fin~r topology as our's iso But this topology
istoo fine to construct aspace in which all "enfoldings" are con­
vergent.

Literature:

[Ho] G. Hotz: Eine Algebraisierung des Syntheseproblems von Schalt­
kreisen I und 11, EIK Vol I, pp. 185-205, (209-231), 1965

[W] W. Weidner: Der algebraische und topologische Abschluß freier
x-Kategorien, Dissertation an der Universität d~s Saarlandes,
1977 .

REGULAR ALGEBRAS

Jerzy Tiuryn {Aachen}

The idea laying behind regular algebras is that when dealing with
fixed point semantics of programming languages one never needs to

work with complete lattices or cpo's equipped with (directed-) con­
tinuous maps, but rather with structures where certain lub's exist,
and with maps preserving these lub's. More to the point, there are
structures (connected with semantics of non-deterministic procedures)
with operations being not continuous but still having a very nice
property allowing to solve an arbitrary finite system of fixed-
point equations, built up from these operations, \/ithin w steps of
iterations. Briefly speaking, ordered algebras with this property
are called regular algebras.

The lecture was a kind of a survey of results on regular algebras got
by the author since 1975/76. The following topics were mentioned
during the lecture:

1. The analogy with continuous algebras.
2. Examples of phenomena leading to non-continuous functions

having the above-mentioned properties.
3. Free regular algebras and regular polynomials.
4. Varieties of regular algebras defined by equalities as

weIl as by inequalities between regular polynomials.
5. Connections with rational algebraic theories.

ON *-ALGEBRAS

Kla us In de rmark (A ache n)

According to their arities the operations on an algebra A form a he­
terogeneous (many-sorted) algebra: the derived algebra D(A).
As this construction is reiterated in the algebraic analysis of
functions defined by auxiliary recursion on higher functional types,
one has to use troublesome indices for th e carrier sets of Dn(A).
Here, we suggest a simple method to overcome that notational burden.
Disregarding arities we allow an operation to have an arbitrary number
of arguments. This is no restriction insofar as arities can be si­
mulated by means of ~ E A. On the other hand, many operations share
this property, as e.g. projections, composition and resolution
operators.

To be precise, let ~(A) := {flf:A*~A} for any set A.
If n is a set of operation symbols (without rank!) and ~:n ~ Ops(A),
then A := <A;~> is called an n-algebra. The class Algn of n-algebras
contains for each set X Fn (X), freely generated bY-X.
Similarly, if A is a cpo and Ops(A) is restricted to continuous opera­
tions, we get the subclass Al98 of complete n-algebras containing the
free complete Ffi(X) for any generating set X. As in the ranked case,
the carrier sets Fn (X) and F8(X) are representable by finite and in-

finite trees. However, labelling by operation symbols is unrestric­
ted.

c If X = {xl,x Z",,} , then any t E Fn(X) represents an operation on
each A E Alg~ : the derived operation of t on A.

This derivation operator deroPA : F~(X) --> Ops(A) is defined by

deroPA (t) (al··a n)·- [al··an,.l] (t) where [a,.l](x i) := i.! i 2 .!..9.(a)

then a. else .1 and
-- 1

denotes the homomorphic extension.

Next, we consider rational schemes, since they playa central role in
the analysis of higher type recursion and, moreover, they serve for
studying iterative control structures.

Ex te n d i n 9 n toR (n) : = n I:J {rr . I i > l} I:J {~, IR} we d e f i ne
1 -

Ratn := FR(n) as the algebra of rational n-schemes. For any interpre­
tation Ac Alg~ we construct Ops(A) := <~(A); ... '> E Alg~(n)

wh e re F' me ans I e ft - c 0 m pos i ti 0 n, rr ~ pro je c t ion, ~' co m pos it ion an d IR '
resolution of regular equations wilh parameters. The unique R(n)-homo­
Ißorphism hOpS(A) : Ratn --> Ops(A) describes the semantics of Ratn
with respect to A.

Then, we extend E'~(X) to F~(X)r E Alg~(n) such that derop A becomes
an R(n)-homomorphism. Hence, the semantics hOps(A) splits into

tree c r derop
Ratn --, E'n(X) A, Ops(A). A rational tree t E tree(Ratn)
represents an equivalence cl ass of rational schemes. From their
regular and equational normal forms we infer degrees measuring the
iteration complexity of a rational tree. We briefly discuss sonle
relationship to the star-height hierarchy of regular languages and
the Kosaraju-hierarchy of repeat-exit schemes that has also been
studied by G. Cousineau.

List of participants

ALBER, K. / Lehrstuhl für Informatik / Gaußstraße 12 /
0-3300 Braunschweig

APT, o. / Kamer H 5-12 / Burgemeester Oudlaan 50 / Erasmus Uni­
versiteit / NL-Rotterdam

ARNOLO, A. / Universite de Poitiers / Laboratoire d' Informatique /
Batiment de Mathematiques / 40, av. du Recteur Pineau /
F-86022 Poitiers-Cedex

de BAKKER, J. / Mathematisch Centrum / 2e Boerhaavestraat 49 /
HL-1091 Amsterdam

BIBEL, W. / Institut für Informatik / TUM / Arcisstraße 21 /
0-8000 München

BOEHM, C. / Istituto Matematico 'G. Castelnuovo' / Piazzale delle
Scienze / 1-00815 Roma

CLAUS, V. / Lehrstuhl für Informatik / Postfach 500 500 /
0-4600 Dortmund 50

COURCELLE, B. / Universite de Bordeaux 1 / Mathematiques-Informa­
tique / 351 Cours de la Liberation / F-33405 Talence-Cedex

COUSINEAU, G. / Institut de Programmation / Universite Paris VI /
4, Place Jussieu - Cedex 05 / F-75230 Paris

CREMERS, A. / Lehrstuhl für Informatik / Postfach 500500 /
0-4600 Dortmund 50

DAMM, W. / Lehrstuhl für Informatik 11 / Technische Hochschule /
Büchel 29-31 / 0-5100 Aachen

EHRICH, H. / Lehrstuhl für Informatik / Postfach 500500 /
0-4600 Dortmund 50

FEHR, E. / Lehrstuhl für Informatik 11 / Technische Hochschule /
Büchel 29-31 /0-5100 Aachen

GAUOEL, M. / IRIA Oomaine de Voluceau / Rocquencourt / B.P. 105 /
F-78150 Le Chesnay

GUESSARIAN, I. / Laboratoire d' Inform. Theorique et Programmation /
Universite Paris 7 / Tour 45-55 / 2, place Jussieu / F-75005
Paris

HOTZ, G. / Fachbereich 10 - Informatik / Universität des Saarlandes /
0-6600 Saarbrücken

INDERMARK, K. / Lehrstuhl für Informatik 11 / Technische Hochschule /
Büchel 29-31 / 0-5100 Aachen

KRöGER, F. / Institut für Informatik / TUM / Arcisstraße 21 /
0-8000 München 2

LANGMAACK, H. / Institut für Informatik / Christian-Albrecht-Uni­
versität / Olshausenstraße 40-60 / 2300 Kiel 1

LEHMANN, S. / Fachbereich 10 - Informatik / Universität des Saar­
landes / 0-6600 Saarbrücken

LOECKX, J. / Fachbereich 10 - Informatik / Universität des Saar­
landes / 0-6600 Saarbrücken

MAZURKIEWICZ, A. / Computer Centre / Polish Academy of Sciences
PKIN, P.O. Box 22 / PL-OO.901 Warszawa

MILNER, R. / Computer Science Oepartment / Edinburgh University /
Mayfield Road / GB-Edinburgh EH 93 JZ

MOSSES, P. / Oept. of Computer Science / University of Aarhus /
OK-Aarhus

NEWEY, M. / Computer Center / Australian National University /
Canberra AcUAustralia 2600

NIVAT, M. / Universit~ Paril 7 / Tour 45 - 55 / 2, place Jussieu /
F-75005 Paris

OLNHOFF, T. / Institut für Informatik / Azenbergstraße 12 /
0-7000 Stuttgart 1

PARK, O. / University of Warwick Coventry / GB-Warwickshire CV 47 AL
RAOULT, J. / Universit~ de Paris Sud-Orsay / L.R.I. / Batiment 490

F-91405 Orsay Cedex
RAULEFS, P. / Institut für Informatik / Wegelerstraße 6 /

0-5300 Bonn
REISSIG, W. / Lehrstuhl für Informatik lI/Technische Hochschule /

Büchel 29-31
de ROEVER, W. / University of Utrecht / Oept. of Computer Science /

Budapestlaan 8, P.B. 80012 / NL-3508 TA Utrecht
SIEBER, K. / Fachbereich 10 - Informatik / Universität des Saar­

landes / 0-6600 Saarbrücken
TIURYN, J./Lehrstuhl für Informatik lI/Technische Hochschule /

Büchel 29-31 / 0-5100 Aachen
WAOSWORTH, C. / Oept. of Computer Science / King's Building /

University of Edinburgh / GB-Edinburgh EH 9 3 JZ

	fb1979-10-0001_f
	fb1979-10-0002_f
	fb1979-10-0003_f2
	fb1979-10-0004_f
	fb1979-10-0005_f
	fb1979-10-0006_f
	fb1979-10-0007_f
	fb1979-10-0009_f
	fb1979-10-0010_f
	fb1979-10-0011_f
	fb1979-10-0012_f
	fb1979-10-0013_f
	fb1979-10-0014_f
	fb1979-10-0015_f
	fb1979-10-0017_f
	fb1979-10-0018_f
	fb1979-10-0019_f
	fb1979-10-0020_f
	fb1979-10-0021_f
	fb1979-10-0022_f
	fb1979-10-0023_f
	fb1979-10-0024_f
	fb1979-10-0025_f
	fb1979-10-0026_f
	fb1979-10-0027_f
	fb1979-10-0028_f
	fb1979-10-0029_f

