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Abstract: It is shown that the average number of rebalancing
operations (rotations and double rotations) in weight-balanced
trees is constant.

Kurzfassung: Es wird gezeigt, daB die mittlere Anzahl von

Balancierungsoperationen (Rotationen und Doppelrotationen)
bei gewichtsbalancierten Bdumen konstant ist.



Introduction

Balanced trees are a popular method of maintaining
sets in a digital computer. The basic set operations
MEMBER, INSERT, DELETE have 0(log n) processing time
for a set of n elements.

Balanced trees come in two kinds. The balance criterion
is either on the height (AVL-trees [AL], 2-3 trees [AHO],
brother trees [0S],...) or on the weight (weight-balanced
trees) of the subtrees. In the first kind of trees one
either allows subtrees to have only small differences in
height (AVL-trees) or one allows nodes of different arity
(2-3 trees, brother trees). Here we deal with weight-
balanced trees. Weight-balanced trees were introduced by
Nievergelt and Reingold [NR].

A node in a binary tree either has two sons or no son
at all. Nodes with no sons are called leaves.

Definition: Let T be a binary tree. If T is a single leaf
then the root-balance p(T) is 1/2, otherwise we define

p(T) = [T,/ [T|, where |T2| is the number of leaves in the
left subtree of T and |T| is the number of Teaves in tree T.

Definition: A binary tree T is said to be of bounded balance
a, or in the set BB[a], for 0 < a < 1/2, if and only if

1. a < p(T) < 1l-a

2. T is a single leaf or both subtrees are of
bounded balance «,

Remark: Note that [T _|/|T[ = 1-p(T). By interchanging
left and right we may therefore assume w.l.0.g. that
p(T) < 1/2.



Balanced trees share many common properties.
1) The depth is bounded by 0(log [T]).

2) Upon insertion or deletion of a leaf at most

0(log |T|) rebalancing operatiaons (rotations and double
rotations in the case of AVL-trees and BB[a]l-trees, node
splittings and combinations in the case of 2-3 trees and
brother trees) are required to rebalance the tree. The
rebalancing operations are limited to the path of search.
In all known examples of balanced trees it is easy to
construct examples which require each node on the path

of search to be rebalanced (usually after the deletion

of a leaf).

Example: Consider the following 2-3 tree.

Inserting a new leaf in front of the left-most leaf gives
rise to the following sequence of rebalancing operations,

i SRR



Note however, that inserting yet another leaf will
require at most one rebalancing operation. This suggests
that on the average (averaged over a random sequence of
insertions and deletions) a smaller number of rebalancing
operations suffices. Note also, that deleting the left-
most leaf will reverse the sequence above and recreate
the original tree.

3) Simulation results show that on the average (random
sequence of insertions and deletions) a constant number

of rebalancing operations suffices. Karlton et al [KFS5K]
report that on the average 0.46 (0.23) rebalancing operations
(£ rotations and double rotations) are required to re-
balance an AVL-tree upon the insertion (deletion) of a

leaf. There are plausibility arguments which support the
empirical evidence [F,KN Vol. 3 p. 462, NRI].

The plausibility arguments are based on the unjustified
assumption that node balances (the height difference between
left and right subtrees in AVL-trees, the root balance in

BB[al-trees) are independent random variables. The
plausibility arguments yield constants which are in close

agreement with empirical evidence.

Here we give a rigorous proof that the average number of
rebalancing operations in BB[a]-trees is bounded by a
constant., Actually we prove a stronger result.

There is a constant ¢ (depending on ) such that: The total
number of rebalancing operations required for executing an
arbitrary sequence of n insertions and deletions on an
initially empty BB[a]-tree is bounded by c-n.

This contrasts with simulation results which by their

nature consider random sequences of insertion and deletions.
We do not average over many sequences of insertions and
deletions but only over the elements of a single sequence

of insertions and deletions. (This implies for every heuristic
that a constant number of rebalancing eperations will suffice
on the average. For this reason we do not ¢ive any particular
heuristic.



For heuristics cf. see [Y],[KN]}. However, our constant is much

larger than empirical evidence suggests. (About 27 for
« = 1/4). We do not claim that our constant is best possible.

We also correct a serious mistake in the original
paper of Nievergelt and Reingold on BB[a]-trees.

In our drawings we will not draw leaves, j.e. the tree
stands for

Inserting a leaf means replacing a leaf by a tree con-
sisting of one node and two leaves and deleting a leaf

means replacing the father of the leaf by the other subtree.
Deletion of the right son of node x gives

o

which stands for

Note that the balance p(x) of node x is the quotient of
the number of leaves in the left subtree and the total
number of leaves. Hence p(x) = 2/3.

The motivation for this paper is twofold. Firstly it

treats an interesting theoretical question in tree
searching and narrows the gap between theory and practice.
Secondly it treats an important question of practical
relevance. The updating behavior of a tree structure is

the bottleneck in time-shared tree manipulation (see [BS]).



II. The Effect of Rotations and Double-Rotations

in Weight-Balanced Trees

BB[al-trees are balanced by rotations and double-
rotations. The following figure (Fig. 1) is taken
from [NR]. Squares represent nodes, triangies re-
represent subtrees, the root-balance is given beside
each node. Symmetrical variants of the operations

exist.
Rotation
Al B - B Y1=Bl+(1-31)32
By
a Bz B YZHBI'['(]-"B:[)BZ A c
b c a
Double Rotation
A Bl Y B Yl=Bl+(1_Bl)BZB3
B By .
G A ], P2liBs)
a By+(1-B1)BR5 3 1-8,8,
b c

Figure 1



Nievergelt and Reingold state the following
theorem in [NR] without proof.

Fact (Nievergelt and Reingold): If o < 1 -vZ/2 and

the insertion or deletion of a node in a tree in BB[a]
causes a subtree T of that tree to have root-balance
less than o, T can be rebalanced by performing one of
the two transformations shown above. More precisely,
let B, denote the balance of the right subtree of T
after the insertion or deletion has been done. If

B, < (1 - 2a)/(1 - a), then a rotation will rebalance
T, otherwise a double rotation will rebalance T.

This theorem is false. Consider the following example:
a = 2/11.

Figure 2

The root v of this tree has balance p(v) = 2/11.
Deleting one of the leaves with father X requires
the root to be rebalanced; it has balance 1/10.

A double-rotation gives

Figure 3



Node v has balance 1/6 < 2/11. A rotation makes the
balance of v even worse. This example shows that the
"theorem" of [NR] is wrong for 1/6 < a« < 2/11. The

same counter example works for any « with 0 < o < 2/11.
More precisely, replace the triangle in Figure 2 by

a BB[a] tree with b leaves such that

_......_<a5.._2._
b+1 b+6

Such b exists for all a, 0 < a < 2/11.
This follows from the observation that
1 2

<

b+l — (b+l)+6

for b > 5 and that 2/(b+6) = 2/11 for b = 5.

We show in this section that a stronger version of the
above theorem is indeed true for 2/11 < o < 1-VZ/2. Before
doing so we want to show that Figure 1 correctly gives

the root-balances of all nodes. Also we state a lemma about
the effect of an insertion or deletion on root-balances.

Let a,b,c,d be the number of leaves in the subtrees shown
in Figure 1. We treat the case of rotation and leave the
case of double rotation to the reader. By the definition
of root-balance

By = a/(a+b+c) and By = b/(b+c).

Then
(a+b)

By (a+b+c) + B,(bec)

By(a+b+c) + By((a+tb+c)-a)

1

(Bl+52(1—51))(a+b+6).

Hence the root-balance of node A after the rotation is



a/(a+b) = Bl/(ﬂl+32(1"ﬂl))
and the root-balance of node B is
(a+b)/(a+b+c) = B +B,(1-8y)

Next we study the effect of insertion and deletions
on root-balances.

Lemma l:Let T be a tree in BB[a] with root v.

1) If we insert a leaf into the right subtree of T
then p(v) > of/(1+a) after the insertion

2) If we delete a Teaf from the left subtree of T then

a% . _%  after the deletion, where & is the

p(v) > >
L+]1-a 2-a

number of leaves in the left subtree after the deletion.

Proof: Let T have n+l leaves, its left subtree have 2+1

leaves. Then

< 2+l and hence n < =—— -

g n+l o

1) After inserting a leaf into T's right subtree we have

2+1 5 2+1
n+2  (2+1)/a+l

p(v) =

> L since — %L s monotonically
1/a+l (2+1}/a+l
increasing in & and & > 0
= =%
l+a

2) After deleting a leaf from T's left subtree we have



p(v) = £ > —=
(2+41)/a-1
1 o since : is
Z o751 © o5 (2+1)/a+1 1
o

monotonically increasing
in 2 and ¢ > 1.

Remark: —Em L

= Biag for 0 < a < 1/2.

We are now able to state the correct version of
Nievergelt and Reingold's theorem. We will actually
prove more. We not only show that rotations and double-
rotations suffice to rebalance the tree but, moreover,
that they suffice to move all root-balances into the
interval [(1+8 a,1-(1+8)a] for some small §. This observation
will allow us to show in the next section that the
average number of rebalancing steps per insertion and
deletion is constant.

Let g(ax,8) = g . Then g(a,0) = 0,
[1+(1+8)(1l-a)](2-a)

g is increasing in o and § (0 < a <1 and & > 0). Also
g(as8) < 8/(2-a) and g(a,8) > 0.5 - 8/(2-a) for 2/11 < a <1
and 0 < § < 0.01. (We only need that range later on).

Theorem 1: There is a continous, increasing function c:
[0, 0.01] » R with ¢(0) = 0, ¢(0.01) = 0.0043 such that:

For a€R, 2/11 < a < 1-y2/2 - c(8), and for T a binary
tree with subtrees T2 and Tr such that:

1) T, und T. are in BB[a]

2
2) |T£[/|T| < a and either



2.1) [T 1/(IT]-1) > & (T is obtained by
insertion of a leaf into the right subtree of T) or

2.2) (T 1+1)/(|T[+1) > « (T is obtained by
deletion of a leaf from the left subtree of T)

3) B, is the root-balance of T .

We have:

If B, < o + g(a,8) then a rotation rebalances the tree,
2-a

more precisely

Yi:Y, € [(1+8)a, 1-(148)a«]

after the rotation, where Yq and Yo are as shown in Fig. 1.

If BZ > =y + g(a,8) then a double rotation rebalances the
2-uo

tree, more precisely

Y19Y23Y3 € [(1+6)0€, 1'(1+(5)d]

where Y12YpsY3 are shown as in Figure 1.

If 2/11 < a < 1/4 and |[T| < lo then we only claim
Y12Y2 (resp. Yl’YZ’YB) € [a,l-a]

Remark 1: For 6= 0, this corrects the theorem of Niever-

gelt and Reingold.

Remark 2: A Tlarger range of values for & is possible. However,
subsequent computations become more complicated and no
additional insights are gained.

Proof: We need to show that nodes A,B (A,B,C) have balances
in the interval [(1+8)a,l-(148)a] after a rotation (double
rotation). This is done by tedious but simple calculations.



o
By Lemma 1 we may assume By & == in case 2.1 and
l+o

By > a[T£|/(|T£I+1-a) > af(2-a) in case 2.2 ; in any case
B

| v

i ?%E . Also B,,B5 € [a,1-a] since T  is in BB[a].

Case I: B, < 4 g{a,8), i.e. rotation is applied.
2-a

I.1) We have to show: (l+8)a < ¥ £ 1-(1+468)a

Y, = By+(1-B;)By the RHS is increasing in B, and
increasing in B;.

Hence
Y12 ==+ (1-—)a
2-o 2-a
2-a 2-a
since [ 1 is decreasing in «
# 1.40 and a < 1/3
Also

v, <o+ (l-a)(—— + g(a,6))
2-a

Consider

h(o,8) = 1-(1+8)a-l[at+(1l-a)(—— + g(a,8))]
2-0

We have to show

h(«,6) > 0 for 0 < § < 0.01 and 2/11 < a < 1-VZ/2-c(8).

hifo, 8} = T=2a= 2% sa-(i~a)g (oo
2-a
2&2-4a+1

= = -So-(l-a)g(a,8)
(2-a)



Since 2a’-4a+l = 2(a-2a+1/2) has zeroes
1-v2/2 and 1+y2/2 we conclude

h{(«,0) > 0 for a < 1-vZ/2.

Furthermore &o+(l-a)g(a,6) < 5[a+l:£]
2-o

and hence

202-4a+1-8[a{2-a)+(1-a)l

2-a

h{x,8) >

The numerator is a quadratic expression in o and is
decreasing in &. Hence h(a,8) > 0 for « <1-V2/2-c;($)
where cl(O) =0, Cq continuous and increasing and
c;(0.01) = 0.0043.

I.2) We have to show (1+8)a < Yo < 1-(1+8)

B
Y, = 1 the RHS is decreasing in g,

B1*(1-81)8; and increasing in g,

We want to show Yy 148)a first. We have g; > of (1+a)

>
> afT [/([T,|+1-a) in case 2.2.

in case 2.1 and B1

We treat the case [T,| = 1 seperately.

m
If |T1I > 2 or if case 2.1 applies then we have
By >min(o/ (1+a), 2a/(3-a)) = 20/ (3-a) for o < 1/3. Hence
2a/ (3-a)
20/ (3-a)+[1-2a/(3-a)][ 1/ (2-a)+g9(a,8)]

Yo

|v

1

*Q

| v

+ 3—3a[1+6]
2 —Z '‘Z7-a

since g(a,8) < &§/(2-u)
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1
a-béiljgl(l-a)

v

since o« > 0 and ¢ < 0.01

v

1.2 > (1+46)a

since f(a) = a+3.03°(1-a)/4 is increasing in a and
a < 1-v2/2 < 0.3.

It remains to consider the case 2.2 and |T£| = 1.
Since a > 2/11 and ([T2| + 1)/(|T] + 1) > a > 2/11
we have |T| < 9. Our tree |[T| has the following form

Y, is smallest when b is as large as possible. Hence we
only have to consider the case that b/(b+c) < 1/(2-a)+g(a,8)
< 1.01/(2-a) and b as large as possible.

Furthermore b+c = |T| - 1.

If 2/11 < « < 1/4 then we have to show Yo 2 O otherwise
we have to show Yy 2 (1+ ) a

[T| = 9. Then a < 2/10 and hence b < [1.01/1.8]-8 = 4.49.
Hence b = 4 and y, = 1/(b+1l) = 1/5 > «a.

|T]| = 8. Then & < 2/9 and hence b < [1.01/(2-2/9)1-7 = 3.97
Hence b = 3 is maximal and Yo = 1/(b+l) = 1/4 > «

T| = 7. Then o < 2/8 and hence b < [1.01/(2-2/8)]1-6 = 3.46.
Hence b = 3 is maximal and Yo = 1/(b+l) = 1/4 > a.
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T| = 6. Then @« < 2/7 and hence b < [1.01/(2-2/7)]-5 = 2.94
and hence b = 2 is maximal and y, = 1/(b+1) = 1/3 > (1+68)a.
[T] = 5. Then a < 1-v2/2 and hence b < [1.01/(2-1+vZ/2)] 4 =~2.37
and hence b = 2 is maximal and Yo = 1/(b+1) = 1/3 > (1+6)a.

IT] = 4. Then « < 1-VZ/2 and hence b < [1.01/(2-1+v2/2)]-3~1.78

and hence b = 1 is maximal and Y, = 1/(b+l) = 1/2 > (1+8)a.

|T] <3 is impossible since [T,|/|T| < o is one of the
hypotheses of the theorem,

Next we have to show: v, < 1 -(1+68)a

Y2 < 2 -
a + (l-a) * « 2-a

<1 -1.01la

if 1 < 2-a-2.02a+1.01u2
if 1 < 2-3.02a
if o < 1/3.02

This finishes case 1 of the proof.

Case Il: B, > 1/(2-a) + g(a,8) > 1/(2-a), a double rotation
is applied.

II.1}) We have to show: (l+8)a < vy < 1-(1+8)«a

I

Yy = By + (1-By)B,Bs the RHS is increasing in B;,

By and Bg.

vy > a/(2-a)+(l-a/(2-a))Q/(2-a))a

o + 2-2a
7-¢ - °

(2-a)

| v




I1.2)

-~ 15

[ v
Q

since f(a) wsvaae TN increasing for a« < 2/3

1.045 > (1+8)a

<a+ (l-o)(l-a)(l-a)

<
—
A

1-2a + 3u2 —u3

2

(1-a) - (a® - 3a + 1)a

2

< (l-a) - (0.3° - 3:0.3 + 1)«

since a>-3a+l is decreasing in « for o < 3/2 and

« < 1-v2/2 < 0.3
< 1-1.1a < 1-(1+6)«

We have to show (1+8)a < Yo % 1-(1+8)a. We show
Y, > (1+8)a first. By lemma 1 By > aof (1+a) in

case 2.1 and B, > a&/(&+l-a) in case 2.2 where 1

is the number of leaves in the left subtree of T.
Furthermore

By i
Yo = =
C B1+(1_BI)B2B3 1+(1/Bl-1)BZB3

is increasing in By and decreasing in B, and Bj.



Case 2.1: By > o/ (l+a). Then

o/ (1+a)
of (1+a)+(l-a/(1+a)) (1-a)
=~—-—-—»-—«——»~—-2-l e o
ag+(l-a)
i . i lgla > (1+8)a
1-2/11+4(2/11) 103

since l-a+a® is decreasing in a for o < 1/2 and o > 2/11.

Case 2.2: By > af/(2+1l-a). We treat the case |[T,| > 3

o
analytically and the case |T£| < 2 by explicite consideration.
If |T£[ > 3 then B, > 3a/(4-a). Hence

3o/(4-a)
30/ (4-a)+(1-3a/ (4-a) (1-a)?

v

Y2

= . 3 . Qo
3o+4:(1-a)
3
2 g " 0
3-2/11 + 4-(9/11)

since 3a+4'(1-u)3 is decreasing for o < 1/2 and
2/11 < o < 1-y2/2
> 1.09x > (1+68)a

It remains to consider case 2.2 and |T2| < 2.

Since a > 2/11 and ([T2|+1)/(|T[+1) > a > 2/11 we have
|T| < 15. The tree T has the following form
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Yoy is smallest when b is as large as possible. Hence we
only have to consider the case that b/(b+c) < l-a and
(btc)/(b+c+d) < l-a and b maximal. Hence

b < [(l-u)(b+c)J < L(l-u)L(l-a)(b+C+d)JJ
L(1=0) " [(1-a) ([T]= 1T, ) ]]

[Tl = 2:

T|= 15: Then a < (|T,[+1)/([T[+1) = 3/16 and

b < [(9/11[(9/11-13) ]) | = 8. Furthermore y, = 2/(b+2) > 2/10

> (1+68)a

T] = 14: Then a < 3/15 and b < 7.

Hence Yo = 2/(b+2) > 2/9 > (1+8)«.
T| = 13: Then « < 3/14 and b < 7.
Hence Y, > 2/9 > (1+8)a.

|[T|= 12: Then a < 3/13 and b < 6.

Hence Yo > 2/8 > (1+8)a.

IT| = 11: Then o < 3/12 and b < 5.



Hence vy, > 2/7 > (1+68)a
5 2 =

T| <10: Then b < 4.
Hence v, > 2/6 > (1+8)(1-v2/2) > (1+4¢)a.

Tgl = 1: Since (|T£]+1)/(|T]+1) > a > 2/11
we have |T| < 9.

T| = 9: Then a < 2/10 and b < 4. Hence Y, = 1/(b+1)=1/5>a

|T] = 8: Then a < 2/9. If b < 3 then Yo 1/4 > o . If
b = 4 then c+d < 3 and hence either ¢ <1 or d < 1. Hence
o

< 1/5 and Yo 2 1/5 > a,

T, =7: Then a < 2/8 and b < 3. Hence Yo > 1/4 > a.

T{ = 6: Then o

If b = 3 then ¢

2/7. If b < 2 then v, > 1/3 > (14§)«a
d = 1 and hence « < 1/5. Thus Ty = 1/4 > «a.

A

|T] < 5: Then « < 1-V2/2 and b < 2 since ¢ > 1 and d > 1,

Y

Hence Yy = 1/3 > (1+8)(1-v2/2) (1+8) .

Next we show Yo < 1-(148) «

a

Y2

|A

at(1-a) (7= + 9(a,8))a

2 - o

| A

2-a+(l-a)(1+8/2)

Consider

h(o,s ) Sl))

(2-a)+(1l-a)(1+5/2)

1-(1+48)a -

1]

_ (20°-20+1)-8a(3-2a)+(1-a) 28/ 2-a6% X a-a)

(3-2a) + (l-a)- &2



The numerator of this expression is a quadratic

equation in o« and is decreasing in 6. (6 < 0.01,
o < 1/2). For §= 0 its zeroes are 1-vZ2/2, 1+V2/2.
Hence h(o,8) > 0 for a < 1-vV2/2 - c,(§) with
c2(0) = 0, C, continuous and increasing and

L)

(0.01) ~ 0.0016.

II.3) We have to show: (l+8)ax < v3 < 1-(1+68)a.

iff

iff

iff

This

Also

yq = —— is increasing in B,
1'3213'3 and decreasing in Bg
” 1 - (1-qa)
ST 1/(1/(2-a)+9(a,6))-(1-a)
> (l+6)a
1

> (1+8)
1/(1/(2-a)+9(a,8) )} -(1-a)

1+{1l-a)(148) > (l#9)(2-0)
1+(2-0a) g(o,8)

glw, 8] (2=a) » {1*r8)(2-a) - T gm §

- 19 -

T l+(l-a) (148) 1+(1l-a)(1+6)

is true by definition of g(«,d).



1
<1 - < 1-(1+8)a
1-2/11+(2/11)2

since 1—a+o:2 is decreasing for o < 1/2 and « > 2/11.

Finally taking c(¢§) = max[c,(8), 02(6)]finishes the
proof of the theorem.

Corollary: If 2/11 < a« < 1-y2/2 then rotation and
double rotation along the path of search suffice to
rebalance the tree after insertion or deletion of
a leaf.

Proof: Inserting a leaf creates a subtree of the form

n”il\“u. It has root balance 1/2. Deleting a leaf

means replacing a tree by one of its direct subtrees.
In either case the new subtree is in BB[al. Theorem 1

20 -

implies that we can walk back to the root and rebalance

the tree by rotations and double rotations.

The corollary above is the correct version aof the
“theorem" stated in Nievergelt and Reingold. In the
next section we use Theorem 1 to prove an upper bound
on the average number of rebalancing operations.



III. The Average Number of Rebalancing Operations

In this section we will prove our main theorem:
the average number of rebalancing operations is
constant. We need some notation first.

A transaction is either an insertion or a deletion.

A transaction goes through a node v if v is on the
path of search to the leaf to be inserted or deleted
or (alternatively) if the leaf (to be inserted or
deleted) is a descendant of v. A node v takes part in

a rebalancing operation, if it is one of the nodes
explicitely shown in Fig. 1. A node causes a rebalancing
operation if it is the root of one of trees shown on the
left side in Fig. 1. Furthermore nodes retain the identi-
ty as shown in Fig. 1, i.e. if a rotation to the left is
applied to a tree with root A then nede A has subtrees of
weight a and b respectively after the rotation. Note

also that new nodes are created by insertions and that

nodes are destroyed by deletions.Finally consider any
sequence of transactions. We start with a tree TO and

apply the first transaction to it. Then the tree 1is
rebalanced as described at the end of the previous section,
resulting in tree Tl. The next transaction is applied to
T;» Ty is rebalanced ,... Let To’Tl’Tz""’Tm"" be any
such sequence of BB[a]-trees.

Lemma 2: Let 0 < § < 0.01, 2/11 < a < 1-v2/2-c(§) and let
v be a node., If

1) v causes a rebalancing operation in Tm (after the
transaction was applied to Tm) and

2) either v took part in a rebalancing operation before
or v was not a node of the initial tree T0 and never
took part 1in a rebalancing operation before and

3) n is the number of leaves in the subtree with root v
in Tm and n > 11 if a < 1/4



then at least [éan1 transactions went through v since
v took part in a rebalancing operation for the last

time or v was created,

Proof: Let j < m be such that:
v took part in a rebalancing operation in Tj, but not

in T, -sTo_q or v did not exist in Tj but existed

j+l2°°

j+l""’Tm—1 and never took part in a balancing

in T
operation. In the second case the balance p(v) of

node v in T, is 1/2. In the first case the balance

Jj+1
t'/n' of node v in Tj+1 is in [(1+8)a, 1-(1+8)al

p(v)

or « < 1/4 and n' < 10. This is an immediate consequence
of Theorem 1. Also the balance p(v) = t/n of node v in
Tm is outside the interval [a,l-a], say t/n < a.

Node v did not take part in a rebalancing operation in

~-5>To_1- In these trees d, (i7,) deletions

(insertions) were performed in the left subtree of v
and dr (1r) deletions (insertions) were performed in the

right subtree of v. Hence

]
ot
1
o
ks

—

t

n=n'"-d, -d_+ 1, + 1

The number of transactions which went through v is

dl + dr + 1£ + ir. We need a lower bound on that number,

Certainly abs(n-n') is a lower bound. Hence we are done
if n' < 10 and o < 1/4. Suppose n' > 10 or o > 1/4 and hence
t'/n'g H1+ﬁ)a, l—(1+6)a]. Assume to the contrary that

d£ + dr + 12 + 1r < dan

Then
t'/n' - (1+8) & =

t+d9’“'il

- (148) &

n+dg+dr_1g—1r



t+d

< . (1+46)a

n+d£—1r
_<- t+8an _ (1+6)G

n+éaon
fm - (1+6)a

n+dun

2
. ALHO) 007 . 5. & contradiction. o
1+8a

Lemma 2 shows that many transactions go through a
node v between rebalancing operations involving v.

In order to finish off the proof all we need is

a clever way of counting transactions and rebalancing
operations.

With every node v we associate accounts: the transaction
accounts TAi(v) and the balancing operation accounts
BOi(v), 0 < i <w. Furthermore there is a special account
S. All accounts have initial value zero.

Let T0 be a tree in BB[a] and let TO,T s |

1>
be as above a transaction sequence of BB[a]l-tree. Let v

ERRR

be any node of T,» and Tet n be the number of leaves in
the sutree of Tm with root v. Let i be such that

(1/(1-a)) < n < (1/(1-a)) ' *!. Note that n > 2 and hence

1 2 L

If the transaction applied to Tm goes through node v
then we charge one unit to transaction accounts
TAi-l(V)’ TAi(V) and TA1+1(V).

IT v causes a rebalancing operation in Tm then if v
took part in a rebalancing operation before or was not
a node of initial tree T0 then we charge one unit to
account BUi(v) otherwise we charge one unit to special
account S.



Note that for every node v of the initial tree T0
at most one unit is charged to account S and hence
S < ET0|—1. It remains to sum the contents of the
balancing operation accounts BOi(v).

Whenever one unit is charged to account Boi(v) we are
in a situation to which Temma 2 applies: If n > 11 or
o > 1/4 then at least dan transactions went through
v since v took part in a rebalancing operation (if it
ever did) or v was created. Since (cf. Fig. 4 )

n-11/(1-0)1" "1 > son and [1/(1-a)] *%-n > san

[1/(1-a)] %2

- [1/(1_0)]i+1
dan
n .
[1/(1-a)]1]
Sun‘t
[1/(1-0)] 71
Fig. 4

we even know that §gn units were charged to TAi(v) since
v took part in a rebalancing operation (if it ever did)
or v was created. Hence

.i
BO,(v) < —— TA.(v) < {29 1A (v)
dan Sa

ifa > 1/4 or (l/(l-u))i > 11. Since a > 2/11 this is
certainly the case for i > 12.

We are now ready to estimate the total number A of
rebalancing operations required to perform the first
m transactions. Let k be any integer > 12.

Then



- 25 -

v
=5 + X ¥ BO.(v) + & T BO.(v)
v <K 1 i ik L
Now
S < [T, 1 -1
and
I ¥ BO,(v)
v i>k L
< 1/6a- £ T (l-a)' TA,(V)
v oi>
m-1
< 1l/éa* £ T 3 [if the j-th transaction goes
voizk 3=0 through v and for the number n
of leaves in the subtree of Tj
with root v
(1/(1-0)177" < 0 < [1/(1-a) 177
then (l-a)' else 0 ]
m-1
<Y8a: = = £ [...]
j=0 i>k v
m"l _i
< 1/8a- £ ¥ 3:(l-a)
Jj=0 i>k

since Tj is a tree in BB[a] and hence for fixed i a
transaction goes through at most one node v with

[1/(1-a)1% < n < [1/(1-0)17+?

B(l-u)k/éaz] - m

=
and
£ ¥ BO.(v)
v i<k 1
m-1

5 ¥ z 2 [if v causes a rebalancing operation
i = i<
J=0 i<k v in Tj and for the number n of leaves



in the subtree of Tj with root v
[1/(1-a)1" < n < [1/(1-a)1'*?

then 1 else 0 ]

| A
M

maximal depth of a BB[a] tree with
[1/(1-a)1K leaves

< [max. depth of a BB[al-tree with [1/(1-a)1K Teaves]

< (k=1) = m
Altogether we have shown
. k 2
-1 + min [k-1 +3(1l-a) /8a"] * m

KeEN
k>12

T, |

rebalancing operations suffice to perform an arbitrary
sequence of m transactions with initial tree To and
2/11 < o < 1-y2/2 - ¢(8), i.e. we have

Theorem 2: Let 0 < 6§ < 0.01 and 2/11 <a< l—V@?Z— c(§)
where ¢ is defined as in Theorem 1. Then there is a con-
stant d such that:

For T0 any tree in BB[al, at most ]T0[-1+d-m balancing
operations are required to perform an arbitrary sequence
of m insertionsand deletions with initial tree To'

Corollary: There is a constant d such that d-m balancing
operations suffice to perform m insertionsand deletions
on an initially empty tree.

It is worth to estimate the constant d for a specific
example: a = 1/4 and 6§ = 0.01.



Let k = 25, Then 3(1-a)/sa® = 3.61. A BB[1/4]tree

with < (4/3)%° =~ 1329 leaves has depth at most 23.87(cf.[M,NR])
Hence d < 27.48.

Remark: 27 is a rather pessimistic estimate. This constant
could be improved by a more careful version of theorem 1
combined with a detailed analysis of trees of small depth.
(cf. [Y1).
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