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Summary

A program fails. What now? A programmer must debug the program to fix the
problem, by completing two fundamental debugging tasks: first, the program-
mer has to reproduce the failure; second, she has to find the failure cause. Both
tasks can result in a tedious, long-lasting, and boring work on the one hand, and
can be a factor that significantly drives up costs and risks on the other hand.
The field of automated debugging aims to ease the search for failure causes.

This work presents JINSI, taking a new twist on automated debugging that
aims to combine ease of use with unprecedented effectiveness. Taking a single
failing run, we automatically record and minimize the interactions between
objects to the set of calls relevant for the failure. The result is a minimal unit
test that faithfully reproduces the failure at will: “Out of these 14,628 calls,
only 2 are required”. In a study of 17 real-life bugs, JINSI reduced the search
space to 13.7 % of the dynamic slice or 0.22 % of the source code, with only 1
to 12 calls left to examine—a precision not only significantly above the state
of the art, but also at a level at which fault localization ceases to be a problem.

Moreover, by combining delta debugging, event slicing, and dynamic slic-
ing, we are able to automatically compute failure reproductions along cause-
effect chains eventually leading to the defect—both efficiently and effectively.
JINSI provides minimal unit tests with related calls which pinpoints the circum-
stances under which the failure occurs at different abstraction levels. In that
way, the approach discussed in this thesis ensures a high diagnostic quality and
enables the programmer to concentrate on automatically selected parts of the
program relevant to the failure.






Zusammenfassung

Ein Programm liefert ein falsches Ergebnis. Was nun? Ein Entwickler muss
das Programm, mit dem Ziel den eigentlichen Defekt im Programmcode zu
beheben, debuggen. Hierzu sind zwei fundamentale Schritte erforderlich: der
Entwickler muss den Fehler zunéchst reproduzieren, und er muss schlieflich
die genaue Fehlerursache finden. Diese Aufgabenstellung kann einerseits in ei-
ner mithsamen, langwierigen und auch langweiligen Suche miinden, anderseits
kann sie einen Faktor darstellen, der die Kosten der Entwicklung erheblich in
die Hohe treibt und die damit verbundenen Risiken schwer kalkulierbar macht.
Ziel des Gebietes der Automatischen Fehlersuche ist es, jene Suche nach den
genauen Ursachen von Programmfehlern zu vereinfachen.

Die vorliegende Dissertation beschreibt JINSI, ein neuartiges Verfahren zur
automatischen Fehlersuche, welches Anwenderfreundlichkeit mit beispiello-
ser Leistungsfihigkeit vereint. Anhand eines einzelnen fehlschlagenden Pro-
grammlaufes zeichnen wir Objektinteraktionen auf und vereinfachen diese, bis
lediglich jene Interaktionen verbleiben, die fiir den Fehler relevant sind. Das
Ergebnis ist ein minimaler Unittest, der den Fehler originalgetreu und nach
Belieben reproduzieren kann: “Von den 14.628 Methodenaufrufen werden nur
2 bendtigt.” In einer Untersuchung von 17 Fehlern aus der Praxis reduzierte
JINSI den Suchraum auf 13,7 % des dynamischen Slices bzw. auf 0,22 % des
Quelltextes. Dabei blieben 1 bis 12 Interaktionen iibrig, die zum Auffinden der
Fehlerursache untersucht werden miissen. Diese Prizision iibertrifft nicht nur
den bis dato letzten Stand der Forschung, sondern ist auch auf einem Niveau,
auf dem das Problem der Fehlerursachenbestimmung aufhort zu bestehen.

Durch die Verkniipfung von Delta Debugging, Event Slicing und Dynami-



schem Slicing sind wir in der Lage Fehlerreproduktionen vollautomatisch ent-
lang von Ursache-Wirkungsketten zu bestimmen — vom Symptom bis zur Ur-
sache des Fehlers. JINSI bestimmt Unittests mit zusammenhéngenden Interak-
tionen die genau festlegen, unter welchen Umsténden ein Fehler auf verschie-
denen Abstraktionsebenen innerhalb des Programmes auftritt. Auf diese Weise
erreicht das in dieser Arbeit diskutierte Verfahren eine hohe Diagnosequalitit
und hilft dem Programmierer sich auf die Teile des Programmes zu konzentrie-
ren, die fiir das Fehlschlagen relevant sind.
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1 Introduction

When a program fails, a developer must debug it in order to fix the problem.
Debugging consists of two essential steps. The first is reproducing the failure.
Reproducing is essential because without being able to reproduce the failure,
the developer will have trouble diagnosing the problem and eventually demon-
strating that it has been fixed. Reproducing failures depends on the knowledge
about the circumstances that lead to a failure; if these are little known or hard to
recreate, reproducing can be a tough challenge. The second step in debugging
is finding the defect. For this purpose, one must trace back the cause-effect
chain that leads from defect to failure—a search across the program state and
the program execution to identify the cause of the problem. The search space
can easily involve millions of states, each consisting of thousands of variables.
This enormous size not only makes debugging tedious, but also risky, as one
cannot predict when a particular defect will be found.

While debugging often is a tedious, long-lasting, and boring work from the
developer’s point of view, seen from a different angle, debugging is one thing
in particular: it is expensive as it drives up development costs. Furthermore,
bugs can result in tremendous cost. There are many studies that support these
observations—Zhivich and Cunningham present several examples from diverse
critical systems [75]. For instance, the August 2003 blackout in the United
States and Canada partially occurred because of a software failure [30]. The
estimated costs associated with this blackout were between $7 and $10 bil-
lion [63]. Moreover, software bugs can be even deadly. In February 1991,
for example, a Patriot system—the US Army’s mobile surface-to-air missile
defense system—failed to intercept an incoming Iraqi Scud missile in Saudi
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Arabia. The software failure, caused by a rounding error, allowed the enemy
missile to reach its target, killing 28 American soldiers [53]. These and other
examples compiled by Zhivich and Cunningham show that software errors af-
fect many critical systems, and in some cases result in fatal consequences.
They argue that, despite of academic work in several disciplines, such as model
checking, software verification, static analysis, and automated testing, software
is inadequately tested for supporting critical systems reliably—in other words,
that software still contains severe bugs that have to be debugged.

A study commissioned by the National Institute of Standards and Technol-
ogy (NIST) concluded that software errors (usually also referred to as bugs) are
so detrimental and so prevalent, that they cost the US economy an estimated
59 billion'! every year—in spite of the fact that 50 % of software development
budgets are spent for testing [61]. While that study was already conducted
in 2002, bugs still pose a problem, and the financial—or, even injurious—
implications are getting more serious as more and more people and business
rely on software-based systems:

Tokyo Stock Exchange crashes. On November 1, 2005, exchange at Tokyo
Stock Exchange (TSE) was incapacitated due to a bug in a newly in-
stalled transactions system for hours. Because of ongoing problems,
many faulty securities orders were placed even during the following
weeks. In one case, such an erroneous order caused a considerable fi-
nancial damage of $350 million. As a consequence, Takuo Tsurushima,
chief executive of TSE, and two other senior executives had to resign [29].

German debit card system fails. At the beginning of 2010, large numbers
of bank customers” had problems withdrawing cash from cash points
using EC cards and other debit/credit cards containing EMV chips. The

IThat is about 0.6 % of the gross domestic product of the United States.
2 About 20 million EC cards and around 3.5 million credit cards were affected. On the retail side,
200,000 terminals were affected.




problem was caused by a certain type of chip which contained a software
error in the processing of the year 2010. The problem finally was fixed
by reconfiguring ATMs and point of sale terminals to work around this
software error in the cards [26].

Because of the manifold negative consequences caused by bugs (see Fig-
ure 1.2 on page 11 for more examples, which cause image damage at the very
least), many researchers have been devising new methods to prevent bugs from
occurring [48]. These approaches include both technical and organizational im-
provements; for instance, programming languages like JAVA, which eliminates
whole classes of errors [54], and software development methodologies like Ex-
treme Programming, which relies, among other concepts, on early feedback in
order to enforce that flaws are detected early [4]. However, as the above ex-
amples show, modern software still contains bugs, and we continue to need
techniques that help us debug software systems.

The field of automated debugging aims to ease the search for failure causes.
Statistical debugging [40, 74] determines features of the execution that corre-
late with failures, and thus gives hints on where to search first. Delta debugging
narrows down failure causes in input [72], program state [68], or version histo-
ries [71] by means of automated experiments. As of today, all these techniques
can substantially reduce the search space, but require successful executions to
compare against—the higher the number of these executions and the more sim-
ilar they are, the higher the chance to isolate a failure cause in the difference
between failing and passing executions. In contrast, the alternative of program
slicing [64] requires only the failing execution. It eliminates those parts of the
program that could not have contributed to the failure; however, the remaining
slice can still contain thousands of locations not all of which are relevant.

This work presents JINSI, taking a new twist on automated debugging that
aims to combine ease of use with unprecedented effectiveness. JINSI treats an
execution as a series of object interactions—e.g., method calls and returns—
that eventually produce the failure. JINSI can record and replay these interac-
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tions at will, thus addressing the problem of reproducing failures. Taking a
single failing run, JINSI minimizes its object interactions to the amount required
for reproducing the failure, using a combination of delta debugging and slicing
on method calls. The result is a unit test involving precisely those objects and
interactions required to reproduce the failure. The reduction in search space
is impressive: In an evaluation of 17 real-life bugs in JAVA programs, JINSI re-
duces the source code to an average of 13.7 % of the dynamic slice, or 0.22 %
of the original source code, with only 1 to 12 calls left to examine. On top
of that, the resulting unit test has a high diagnostic quality, explaining exactly
how the failure came to be.

1.1 Contributions
In this work, we will make the following contributions:

1. We show how to minimize object interactions and thus executions, using
a combination of delta debugging and slicing. In contrast to the state of
the art, our approach

a) requires only one single failing run (and easily integrates statistical
approaches in the presence of multiple runs);

b) has a high diagnostic quality, the result being a single unit test
with related calls which pinpoints the circumstances under which
the failure occurs;

c) is fully automatic, not requiring any selection, annotation, or other
interaction with the programmer.

2. We evaluate the approach on 17 bugs, demonstrating

a) the effectiveness of the approach, namely a reduction in debug-
ging search space to only 0.22 % of the source code, or 1 line out
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of 450—a precision not only significantly above the state of the art,
but also at a level at which fault localization ceases to be a problem;

b) areduction to only 13.7 % of the dynamic slice, the relevant bench-
mark for having only a single failing run;

c) the scaleability of the approach, scaling to JAVA programs with
100,000 lines of code;

d) the generality of the approach, providing a full diagnosis on 16 out
of 17 bugs examined.

JINSI is easy to apply; all it takes is one single failing execution of a JAVA
program.

1.2 JINSI in a Nutshell

To show in a nutshell how JINSI® works, consider Listing 1.1 on page 6, which
shows a piece of code that interacts with the JODA TIME library, a replacement
for the JAVA date and time classes [17]; the example code, taken from the JODA
TIME documentation, illustrates how to create a complex time zone. This code
works just well when run in UTC. However, when run west of Greenwich, this
code crashes JODA TIME 1.6, the latest release at the time of writing, and pro-
duces an exception.

This bug is hard to reproduce, as it depends on the current time zone. And it
is hard to search for the defect: The 23 calls result in a trace containing no less
than 484,745 executed lines, covering 1,528 out of 26,534 JODA TIME source
code lines.

Here is how JINSI helps in both reproducing and simplifying the problem.
The key idea of JINSI is sketched in Figure 1.1 on page 7. JINSI wraps around

3JINSI stands for “JINSI Isolates Noteworthy Software Interactions”. “Jinsi” is also the Swahili
word for “method”, which is the most common interaction between objects.
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DateTimeZone America_Los_Angeles

new DateTimeZoneBuilder ()

.addCutover (-2147483648, 'w’, 1, 1, 0, false, 0)

.setStandardOffset (-28378000)

.setFixedSavings ("LMT", 0)

.addCutover (1883, 'w’, 11, 18, 0, false, 43200000)
.setStandardOffset (-28800000)

.addRecurringSavings ("PDT", 3600000, 1918, 1919, 'w’, 3, )
.addRecurringSavings ( 5 0, 1918, 1919, ’'w’, 10, )
.addRecurringSavings (" ", 3600000, 1942, 1942, 2, )
.addRecurringSavings ("PPT", 3600000, 1945, 1945, 8, )
.addRecurringSavings ("PST", 0, 1945, 1945, 9, )
.addRecurringSavings ("PDT", 3600000, 1948, 1948, 3, )
.addRecurringSavings ( , 0, 1949, 1949, 1, )
.addRecurringSavings ( 3600000, 1950, 1966, 4, )
.addRecurringSavings ( 0, 1950, 1961, 9, )
.addRecurringSavings ( ST", 0, 1962, 1966, 10, )
.addRecurringSavings ( ", 0, 1967, 2147483647, 10, )
.addRecurringSavings ("E 3600000, 1967, 1973, 4, )
.addRecurringSavings ("P 3600000, 1974, 1974, 1, )
.addRecurringSavings ("PDT", 3600000, 1975, 1975, 2, )
.addRecurringSavings ("PDT", 3600000, 1976, 1986, 'w’, 4, )
.addRecurringSavings ("PDT", 3600000, 1987, 2147483647, 'w’', 4, )

" .

America/

.toDateTimeZone (

LOs_Angele

5"

Listing 1.1: Crashing JODA TIME. This code, taken from

the JODA TIME

manual [17], crashes JODA TIME when run in the western
hemisphere. Please note that we had to shorten the argument lists

due to lack of space.

DateTimeZone America_Los_Angeles
.addRecurringSavings ("PDT", 3600000
.toDateTimeZone ("Americ

>S_Ange

new DateTimeZoneBuilder ()

, 1987, 2147483647, 'w', 4, ...)

les");

Listing 1.2: Minimized reproduction.
Listing 1.1, JINSI produces

When fed with the execution in
a unit test with just the relevant calls.

Of the 23 calls, only three suffice to reproduce the failure.
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0) unmodified software

software system

interactions

|
'

—_—

external
services

<---

1) capture on component level

software system

<---

=|

<---

—(‘external
<+--= (services

captured events

event
log

Figure 1.1: Capturing interactions. JINSI intercepts and records (1) the in-
teractions between a component and its environment, and (2) all
interactions of objects within that component.

a component, for instance the component building time zones, and records all
interactions of the component with its environment and external services, like
the operating system’s time zone settings. JINSI then replays these captured
interactions and thus reproduces the original failure. In the motivating exam-




1 Introduction

ple, JINSI records all constructor and method calls to the time zone builder and
replays these interactions to reproduce the problem at will—in any time zone.

We are now able to reproduce executions. But which parts of the execution
are actually relevant for the failure? Does the problem really depend on the
exact sequence of calls on the time zone builder? Do we need these 23 calls
altogether? Would it be sufficient to add only one recurring daylight saving
time rule, instead of all 16 rules? Such questions can be answered automati-
cally—by systematically simplifying the interactions between objects.

The basic idea of JINSI is to apply delta debugging to the captured interac-
tions—more precisely, on the incoming method calls—to systematically nar-
row down the sequence of failure-inducing calls. Out of the 23 calls in List-
ing 1.1 on page 6, delta debugging would omit one call after another, and re-
peat execution again and again to check whether the failure persists. In the
end, a minimal subset remains in which every call would be relevant to re-
produce the failure. In our example above, this minimal subset consists of
just three calls (Listing 1.2 on page 6): invoking the time zone constructor,
adding one single recurring daylight saving time rule, and calling the converter
toDateTimeZone ().

Applying JINSI to all objects of the failing call stack* yields a run that covers
only 193 lines instead of 1,528. JINSI determines that out of these 193 lines,
only 54 can possibly contribute to the failure. JINSI thus has narrowed down
the search space to 54 lines—that is, 3.6 % of the executed lines and 0.2 % of
the JODA TIME source.

But even within these 54 lines, not all have the same relevance. Of the
three calls in Listing 1.2 on page 6, the first and last one form a context: We
evidently need both the constructor and the crashing method to have the fail-
ure occur. However, the second method addRecurringSavings () is set
within this context. Without it, the test simply passes, which makes it very in-

“The call stack can be easily obtained from the thrown exception, as in JAVA an exception contains
a snapshot of the execution stack and allows programmatic access to the stack trace informa-
tion. Figure 4.3 on page 75 shows the exception caused by the bug in JODA TIME.
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teresting: Obviously, the problem is related to daylight savings rules—and our
investigation would start right within this very method.

1.3 About this Thesis

The remainder of this thesis is structured as follows:

o We will present the state of the art in automated debugging, as applied
to the motivating example, in Chapter 2, and discuss each approach’s
advantages and disadvantages.

e In Chapter 3, we will see how JINSI captures and replays object interac-
tions within a faulty program run to reproduce an observed failure at will,
allowing the programmer to investigate the problem in any environment.

e Chapter 4 will describe how JINST applies different techniques to simplify
the problem. These techniques include delta debugging and different
slicing techniques. Delta debugging simplifies the recorded interactions
until only the failure-inducing sequence remains; slicing can help make
simplification both more efficient and effective.

e In Chapter 5, we will see how the JINSI approach can be applied to the
bug in the motivating example. In that chapter, we will concentrate on
the diagnostic quality of the minimal, failure-inducing sequence of inter-
actions.

e JINSI’s ability to automatically select the objects to be observed will be
broadened and deepened in Chapter 6. In that way, JINSI is able to com-
pute cause-effect chains that lead to the failure. Furthermore, we will see
how JINSI can be extended to non-crashing bugs—which are notoriously
difficult to debug.
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e While the previous chapters address the general JINSI approach and how
it can be applied to any object-oriented program, in Chapter 7 we will see
how the approach is specifically implemented for the JAVA programming
language, which involves a series of challenges. That chapter will focus
on the most important challenges only; in the following Chapter 8, we
will discuss more issues and their respective solutions to complete the
discussion.

e In Chapter 9, we will investigate how well our approach works in prac-
tice by conducting an experimental evaluation on six different JAVA sub-
jects, ranging from relatively small standard subjects to industrial-size
projects. As we will see, JINST is highly effective in reducing the debug-
ging effort.

The thesis will conclude with a summary and ideas for future work in Chap-
ter 10. The remainder of this chapter will define common terms used through-
out the thesis, and will finally list publications related to this thesis.

1.4 Terminology

When talking about bugs and software failures, regularly various terms are
used: error, defect, flaw, mistake, failure, or fault. Unfortunately, in different
contexts these terms have different meanings. To avoid misunderstandings in
this work, we will introduce the model of defects, infections, and failures. That
widely accepted model for software failures was presented by Zeller in his
book on systematic debugging [70]. The model defines how an unexpected or
unwanted—or, more formally, incorrect—behavior of a software comes to be.

In the beginning, a programmer introduces a defect in the program code. If
the program is executed, the incorrect code may cause an infection: the ac-
tual program state differs from the intended one. Finally, the infection in the

10
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program state will cause a failure if the effect is an externally observable er-
ror. Thus, the defect is the piece of code that is initially causative for the
eventually observable failure; lying in between, there are one or more infec-
tions. The infection initially caused by the defect usually propagates through
the program state, and can cause other infections—for the programmer seem-

ingly unrelated—spread over the program run, which makes finding the root
cause tedious and expensive.

is is the first time
thiT Lour compuier. 1f

k for viruses on uour
f4 drives or hard drive ]
make sure it is properl
o CHKDSK JF to check for 2
tart u Gter . "

2

(a) Crashed ATM (b) Crashed advertising panel

Figure 1.2: Blue screen on ATM and advertising panel. Crashed WINDOWS
operating systems displaying a blue screen on publicly accessible
systems. This failure not only affects desktop computers, but also
systems many people rely on.’

For instance, a programmer may declare a condition-controlled loop, where
the loop condition is never changed within the loop (the defect). If that loop
is executed, the unintended condition will cause an infinite loop, but the pro-

3The image on the left (1.2a) was originally posted to Flickr by user hashashin, the one on the
right (1.2b) by user thirdrail. Both are licensed under the terms of the Creative Commons
license (cc-by-sa-2.0 and cc-by-nc-nd-2.0, respectively).
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grammer’s intention was to repeat the loop only a few times (the infection).
A user who uses the program may observe that the user interface does not re-
spond anymore (the failure), because of the never-ending loop. A well-known
example of software failures is the so-called Blue Screen of Death, the error
screen displayed by the MICROSOFT WINDOWS operating system family upon
encountering a critical error that caused the operating system to crash. This
failure does not affect desktop systems only, but publicly accessible systems
like automated teller machines (ATM) and even electronic advertising panels as
well, as shown in Figure 1.2 on page 11.

In the event of a failure, we say that the program fails. Furthermore, we
speak of a failing run, in contrast to a passing run. To summarize the above
model:

Defect. An incorrect program code.
Infection. An incorrect program state.

Failure. An observable incorrect program behavior.

Throughout this work, we will use the above terms. Furthermore, when we talk
about bugs, we usually address defects.

As soon as we encounter a failure, we want to identify the defect in the
program code in order to remove the defect. After we will have removed—or,
fixed—the defect, the observed failure will no longer occur, and the program
will behave correctly. This methodical process of finding and fixing defects in
a computer program is called debugging. Zeller divides the debugging process
into seven steps:®

1. Track the problem. Enter the issue in a ticket tracking system that
manages software problems. This ensures that the defect will not be lost.

SWhich subsume and refine, respectively, the steps “reproducing the failure” and “finding the
defect” mentioned at the very beginning of this chapter.

12
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Most tracking systems define a workflow that automates the lifecycle of
the issue.

. Reproduce the failure. Create a test case that reproduces the failure.
This helps to verify the fix for the defect and to find regressions.

. Automate and simplify. Concentrate on the relevant circumstances by
leaving out the irrelevant. Ideally, use a method that automates this pro-
cess.

. Find infection origins. Every failure can be traced back to the defect
via its infections. Find possible infection origins by going back this trail.

. Focus on likely origins. If you find more than one possible origin, focus
on the most likely (for example, so-called anomalies or code smells).

. Isolate the infection chain. By transitively isolating the origins, create
an infection chain from the defect to the failure.

. Correct the defect. Remove the defect from the code, and verify the
result; for instance, by running the test case created in step number two—
that test case must not reproduce the failure anymore.

The subject of this work is mainly related to steps 2 to 7. Locating the defect
is the most time consuming activity in the debugging process. Providing a
good hint for the location of the defect—or even pinpointing the defect—the
whole debugging process could be completed faster. In most cases, the cost
of correcting the defect is negligible compared to the preceding steps—exactly
those steps, that JINSI helps make much easier, as we will see in the evaluation
(Chapter 9).

13
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1.5 Publications
This thesis builds on the following publications (in chronological order):

e Alessandro Orso, Shrinivas Joshi, Martin Burger, Andreas Zeller. Iso-
lating Relevant Component Interactions with JINSI. In WODA ’06: Pro-
ceedings of the 2006 International Workshop on Dynamic Systems Anal-
ysis, pages 3—10, New York, NY, USA, 2006. ACM.

e Martin Burger. JINSL: Isolation fehlerrelevanter Interaktion in Produk-
tivsystemen. In Proceedings of the 9th Workshop Software Reengineer-
ing (WSR 2007), Bad Honnef, Germany, 2007. Proceedings also ap-
peared in Softwaretechnik-Trends (27:2), published by the Gesellschaft
fiir Informatik (GI).

e Martin Burger, Andreas Zeller. Replaying and Isolating Failing Multi-
Object Interactions. In WODA '08: Proceedings of the 2008 Interna-
tional Workshop on Dynamic Analysis, pages 71-77, New York, NY,
USA, 2008. ACM.

e Martin Burger, Andreas Zeller. Minimizing Reproduction of Soft-
ware Failures. To appear in ISSTA ’11: Proceedings of the 2011 In-
ternational Symposium on Software Testing and Analysis, Toronto, ON,
Canada, 2011. ACM.
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How does JINSI compare to the state of the art in automated debugging? Using
the motivating example in Listing 1.1 on page 6, let us discuss the current state
of automated debugging and how JINSI improves on it.

2.1 Statistical Debugging

The basic idea of statistical debugging is to identify features of the program
execution that statistically correlate with failures. This approach allows us
to focus on anomalies: the differences between a multitude of faultless pro-
gram runs and one single—or, several—faulty runs. The passing runs provide
properties that are common across all regular runs; by contrast, the failing run
specifically provides properties about the abnormal behavior. Having these
properties at hand, we can examine the differences—differences that usually
are likely to hint at the cause. One type of property that can be examined, for
instance, is code coverage [40]: in the failing run, the defective code must be
executed to trigger the failure; moreover, code that is executed in a failing run
only is more likely to cause the failure, to cause abnormal behavior.! Further
properties include function return values (i.e., erroneous function behavior tied
to overall failures) [74], and branches (i.e., suspicious evaluation of conditional
branches) [46].

ISimilar approaches include extensions to coverage comparison like the nearest neighbor con-
cept [55] and call sequence differences [22].
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To obtain significant results, statistical approaches must consider thousands,
or even tens of thousands of executions?, either obtained from an extensive
test suite [40], or sampled in the field [14]—this is in contrast to JINSI, which
requires only one single failing run. But even given a large number of execu-
tions, the results may still be imprecise. The best statistical approach so far,
the CP model by Zhang et al. [73] reduces the search space to 5% or less for
50% of the test cases examined.> While 5% initially may sound impressive, it
still means a huge absolute number of lines to examine. Also, these results are
obtained from the so-called Siemens suite [36]—a frequently used benchmark
in fault localization. The Siemens suite is not only very small and has arti-
ficial bugs, it also comes with an extremely extensive test suite, which is the
main reason statistical approaches fare relatively well. As it minimizes object
interaction, JINSI is not applicable to the (non object-oriented) Siemens suite.

For a simple comparison, we applied the TARANTULA [39] approach to the
bug in Listing 1.1 on page 6, using JODA TIME’s test suite with 3,496 individ-
ual tests. We chose TARANTULA for its simplicity and because it fared only
marginally worse than CP [73]. Following down the ranking, the developer has
to inspect the 522 most suspicious lines until she finds the defective line, or 2 %
of the code. However, this is still almost ten times as much as the total 54 lines
(0.2 %) identified by JINSI. Even modern approaches combining test case gen-
eration with statistical debugging [1] would be challenged by this precision. In
addition, the locations returned by statistical approaches are scattered across
the code, whereas JINSI’s locations are related to each other through the single,
minimal unit test.

A further disadvantage of statistical debugging is its runtime performance:
applying TARANTULA took several hours. First of all, all 3,496 tests had to

2For instance, Zheng et al. assume that “sampled data from thousands of actual user runs” is
available [74]; Liblit et al. require up to 21,000 runs to isolate all of the bug predictors [46].

3A further closely related work was published by Baah et al. [3]. Their approach reduces the
search space, approximately, to a percentage between 3% and 12 % for 50 % of the test cases
examined, depending on whether best or worst case performance is taken into account.
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be run individually, each single test run in a fresh instance of the JAVA virtual
machine (because of the tool that was used to collect the coverage data); fur-
thermore, more than 3 GB of coverage data had to be collected and analyzed.
In contrast, applying JINSI is a matter of minutes (see Section 9.5).

In contrast to statistical debugging, which must consider thousands, or even
tens of thousands of executions, JINSI requires just one single failing run.

2.2 Program Slicing

A further technique to focus on those parts of a program that could have con-
tributed to the failure is program slicing [64]. This approach yields a subset
of the program execution—called program slice—that is relevant for a specific
state or behavior. Slices are based on dependencies between statements: A
statement S, depends on a statement Sy, if §; can influence the program state
accessed by S,. Starting from a statement, the transitive closure over all depen-
dencies forms a program slice (see Section 4.2 for details).

In debugging, computing the backward slice for a failing statement returns
all statements that could have influenced the failure. An important distinction
is made between static and dynamic slicing. While a static slice applies to
all possible runs, and therefore is computed without making any assumptions
about a concrete (failing) program run, a dynamic slice just applies to the fail-
ing run and thus is more precise.

Binkley and Harman studied static slice sizes in 43 C programs [5]. The av-
erage size was smaller than 30 % of the original program. In a basic evaluation
on three C programs, Gyiméthy et al. compared static and dynamic slicing [33].
The static slice on average contains 58 % of the statements in the entire pro-
gram, whereas the dynamic slice only contains 5%. Thus, as for statistical
debugging, for the programmer the absolute number of suspicious statements
may be still too large to find the actual defect in a timely manner.
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Just like JINSI, dynamic slicing requires only one failing run; it is thus the
benchmark we compare against. As shown in our evaluation (Chapter 9), a
dynamic slice applied to the motivating example contains only 512 suspicious
lines out of 26,534 lines in total. Thus, only about 2% remain, already pro-
ducing a remarkable improvement for the programmer who has to debug this
failure. However, applying JINSI reduces the number of suspicious lines fur-
ther to only 193. Combining both techniques even results in only 54 lines—an
amount that can be easily reviewed one by one. In contrast to the dynamic
slice, the run minimized by JINSI is executable. Thus, the programmer can use
her familiar debugger to further investigate the bug.

JINSI improves upon program slicing by systematic experiments. Our
approach is able to narrow down possible failure causes more precisely, and
the minimized run is executable.

2.3 Delta Debugging

Delta debugging is a technique to systematically narrow down failure causes
by means of automated experiments. This method was devised by Zeller and
Hildebrandt to simplify failure-inducing input [72]: delta debugging would re-
peat the failing program run while systematically suppressing parts of the input,
eventually coming up with a simplified input of which every remaining part is
relevant for producing the failure. In this way, they have been able to minimize
an initial 896-line HTML document that caused the Mozilla browser to crash to
one single SELECT tag (see Section 4.1 for details).

In addition to input, delta debugging was applied to further circumstances,
like failure causes in version histories [71]. While generally effective, these
techniques are not applicable to the motivating example, as we lack a working
older version or a controllable external input; therefore, hybrid approaches
combining delta debugging and slicing [32] are also excluded.

18



2.4 Capture/Replay

An interesting alternative could be to apply delta debugging to program
states [16], isolating differences in the state and the behavior induced by the
time zone change. However, manipulating states in JAVA programs is a daunt-
ing task, as the program state is not under direct control by the program. For
instance, the JAVA run time system makes it hard to change private object at-
tributes directly; the only unsanctioned method to manipulate objects is to in-
voke methods. It is therefore unclear whether this approach would be appli-
cable to JAVA programs; on top, it again requires a (hopefully similar) passing
run.*

Most of the precision of JINST in fault localization comes from applying delta
debugging to object interaction. This was first attempted for generated call se-
quences (i.e., generated test cases): Lei and Andrews [44] were the first to ap-
ply delta debugging to calls to minimize generated test cases; Leitner et al. [45]
combine this with static slicing to speed up minimization. In contrast to these
approaches, JINSI works on recorded calls, which is not only applicable to all
sorts of failures (instead of only generated ones), but also more challenging:
While applying delta debugging to generated call sequences simply means to
twist the generator, applying it to recorded interaction means one will have
to care about missing initializations, missing targets, or missing parameters
whenever some object interaction is optimized away.

JINSI is the first technique to apply delta debugging to captured method calls
as recorded in real-life programs with actual bugs.

2.4 Capture/Replay

A research field innately closely related to our work is capture/replay. In gen-
eral, the approaches and tools in this area enable developers to first capture—or,

4That also excludes approaches that highly depend on both manipulating program states and
comparing passing and failing states, like the work by Jeffrey et al. [38].
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record—program runs, and to later replay these recorded runs ar will for testing
and debugging purposes. Most of the capture/replay techniques that have been
presented to date fall into one of the two following categories. They represent
different strategies to gather sufficient information in order to be able to replay
the previously recorded runs:

Checkpointing. This strategy records information on program state at well-

defined points in a program run. During replay, the recorded execution
can be re-run starting from these checkpoints. Approaches using check-
points to replay include the work by Xu et al. [67], and RECRASH, a tool
developed by Artzi et al. [2]. RECRASH, for instance, performs a check-
point at each method entry and maintains a shadow stack. In this way,
the tool allows the developer to observe a run in several states before the
actual crash. Because this strategy only captures program runs at certain
points in execution, it may miss information that is crucial to reproduce
the original failure faithfully, as we will see below.

Event based. In contrast to gathering information about the program state

itself, and at certain points in time only, this strategy captures the infor-
mation required for later replay as a sequence of interactions that lead
to a certain program state; typically, the state where the failure becomes
apparent. In this way, this strategy describes how the faulty state came to
be, and thus can reveal how the faulty program state evolves. Typically,
the captured interactions are written as events to some sort of trace or log
file. JINSI captures object interactions in the form of events, and in this
way is able to show how selected objects are constructed and eventually
lead to a faulty state. Steven et al. presented JRAPTURE [60], a tool that
uses events in a comparable way. In contrast to JINSI, their tool requires
customization of the JAVA API for each version of the JAVA runtime en-
vironment and captures complete input/output information. Further ap-
proaches that use event based capture/replay include fest factoring [57]
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and ADDA [15]. Like JINSI, test factoring captures at the method level,
whereas ADDA records events at the level of C standard library and file
operation functions.

JINST had been initially inspired by the SCARPE prototype, presented for the
first time by Orso and Kennedy [52], a further event based tool to capture/re-
play JAVA programs. JINSI uses capture/replay to generate unit tests that exer-
cise only selected aspects of the original program run to help focus on relevant
information. Similar work was presented in test factoring [57] and test carv-
ing [28], the latter of which extracts relevant parts of the program state to
create unit tests. However, JINST goes one step further and simplifies these tests
automatically until only the minimized information remains. Like Leitner at
al. [45], JINSI uses a combination of slicing and delta debugging to automati-
cally minimize the sequence of failure-inducing interactions. However, JINSI is
designed to isolate failure-inducing interactions in faulty runs of real-life appli-
cations, whereas Leitner et al. presented a technique that applies to randomly
generated—thus, artificial—unit tests.

The true power of capture/replay comes as it is being combined with diag-
nostic features. As already mentioned above, tools using checkpoints, however,
may miss crucial information and therefore may neither be able to reproduce
the failure, nor to deduce a helpful diagnosis. RECRASH, for instance, may not
be able to reproduce the crash at the crucial moment—exactly at the moment
the fault is initially caused. RECRASH replays crashes starting from the individ-
ual frames on a stack trace that is produced when throwing an exception. This
is very efficient, but assumes that the stack trace actually contains the code (and
state) that caused the failure.

In our motivating example, an ArithmeticException is thrown (see
Figure 4.3 on page 75). While RECRASH is able to reproduce this crash at the
upper stack frames in all time zones, it fails to reproduce the crash starting at
the most interesting frame where the failure is initially caused. Exactly there,
the crucial time zone is obtained via a static method call. RECRASH serializes
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the program state at the individual checkpoints as it is reachable via direct
object references.” However, these do not include state reachable via static
method calls only. The reproduced run thus still relies on the system’s current
time zone and will not reproduce the run east of Greenwich; which renders the
approach—in this particular example—unusable. By contrast, JINSI captures
and replays all calls by design, and thus is able to replay and minimize the
original failure.

A further advantage of JINSI over RECRASH is its ability to naturally cap-
ture/replay non-crashing bugs. While in this case the developer using RECRASH
has to provide proper checkpoints manually, JINSI captures the required infor-
mation without additional assistance.

By design, JINSI captures and replays all interactions for an automatically
selected set of objects—because any of these interactions may be relevant
for the failure.

2.5 Earlier Versions of JINSI

The current version of JINSI bases on earlier proof-of-concept prototypes [11,
51]. These prototype implementations already applied delta debugging to mini-
mize incoming calls to some object, introducing and demonstrating the promise
of delta debugging on method calls. However, JINSI previously required the
programmer to manually select the object in question, providing a hint on
where the fault might be, and to provide a predicate, which distinguishes a
passing from a failing run; also, it was never demonstrated on more than a
single real-life example (COL-1 in this paper). In contrast, JINSI now is fully

SRECRASH provides several strategies to capture state, from copying only references to copying
the entire state. Copying the entire state, RECRASH would loose its performance advantage and
still may not catch the relevant information as in the motivating example.
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automatic, requiring no hints by the programmer, and generates predicates au-
tomatically; it also works for non-crashing bugs, where a single initial predi-
cate (typically, a test oracle) is needed to distinguish expected from observed
behavior. Furthermore, JINSI’s precision is greatly increased by including dy-
namic slicing both as a filter and a strategy guide. Finally, JINSI is demonstrated
on a wide range of real bugs (see Chapter 9 for an evalutation), scaling up to
problems of considerable complexity.

JINSI is fully automatic as it both generates predicates and selects the
objects to be observed automatically—even for non-crashing bugs.

23






3 Reproducing Failures

In the next chapters, we shall walk through the individual steps JINSI takes to
minimize failure reproduction. These include capture/replay to reproduce the
problem (this very chapter), and applying delta debugging and slicing tech-
niques to simplify the problem (Chapter 4). Figure 3.1 on page 26 shows a
schematic overview of the whole process.

The very first task in debugging in general is to reproduce the problem in
order to examine it, and eventually to check whether a fix is successful. To
reproduce a problem, we have to recreate both

1. the environment in which the problem occurred, and

2. the problem’s history; thus, the steps that lead to the problem.

Basically, there are two options to reproduce the environment: on-site with the
user, or in the developer’s laboratory. Usually, the second alternative is quite
expensive and has modest prospects of success, while reproducing on-site is
comparatively economical and more likely to succeed because the user was
already able to (re-)produce the problem at least once. In our example above, it
is very easy for the user who is in the right time zone to reproduce the failure,
while a developer located in the wrong one would encounter a challenge. In
such cases, JINSI can be applied on-site to produce a minimal reproduction of
the failure which eventually can be sent to the developer who then is able to
reproduce and investigate the original failure in question—even if she or he
would not be able to reproduce that failure locally.
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(a) Complete Execution  (b) Capture/Replay (c) Event Slice (d) Delta Debugging () Dynamic Slice (f) Minimal Unit Tests

Figure 3.1: How JINSI works. JINSI captures and replays (b) a failing execu-
tion (a). Event Slices (c), Delta Debugging (d), and Dynamic Slices
(e) all minimize the relevant object interaction. Repeating the pro-
cess while gradually incrementing the set of observed objects, JINSI
produces a set of unit tests at varying abstraction levels (f).

Either way, after having reproduced the environment, we have to reproduce
the program execution (thus, the problem’s history), basically by reproducing
the input—a program’s input in general predetermines its outcome'. Unfortu-
nately, there are many different types of input: data, user interaction, sched-
ules, and randomness, to name but a few examples. We could apply different
techniques on each type, like tracing events on the operating system level, or
capturing events in the graphical user interface. However, a better approach
would be to find an abstraction over all types of input.

JINSI employs such an abstraction that is inherently defined by the objects
used in an object-oriented program. This kind of abstraction “offers a mecha-
nism that captures a model of the real world” [6]. Thus, as described by Bloch,
classes and methods provide a natural abstraction, which further is easily un-
derstandable by developers. In a nutshell, JINSI captures and replays on the
object level to reproduce the environment, and on the method level to repro-
duce the problem’s history. In this sense, the JINSI approach in principle can be
applied to all object oriented programs.”

'Even a non-deterministic algorithm uses input in the most general sense: user input, random
values, or hardware errors.
2However, the current implementation is done for JAVA programs only.
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In object-oriented programming, an object combines data (commonly called
fields) with a set of methods for accessing and managing that data. This pro-
gramming paradigm encourages programmers to place data where it is not
directly accessible by the rest of the program; instead, the data is encapsu-
lated within the object and can only be accessed by calling specially written
functions, commonly called methods. An object-oriented program typically
contains different types of objects, each one representing a particular kind of
complex data to be managed. At a certain abstraction level, that complex data
usually corresponds to real-world objects or concepts such as a bank account,
computer systems, or time zones. Thus, those objects represent the state of
particular aspects of the program’s environment.

An object-oriented program may thus be viewed as a collection of inter-
acting objects: each object is capable of receiving messages (namely, method
calls), processing data, and sending messages (e.g., return values of such a
method call) to other objects. In this way, different objects represent different
aspects of a program’s environment, and methods provide a way to manipulate
the environment (to be exact, its representation). Obviously, a sequence of ob-
ject interactions beginning with the initialization of a program, and ending in a
program failure is a natural way to represent the problem’s history. JINSI exactly
takes advantage of these intrinsic properties of object-oriented programs—
objects to represent certain aspects of the real world and the program’s en-
vironment, respectively, and methods to manipulate that representation—to re-
produce the problem that occurred within the program.

3.1 Capture

The very first step in reproducing a failure with JINSI is to observe and store
(i.e., capture) suitable information on relevant interactions on the object level
for later replay; thus, for the actual reproduction. In the following, we first out-
line the capture phase to give a brief overview on the related concepts. Here-
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inafter, we describe these concepts in greater detail, while staying on a concep-
tional level—independent of the actual programming language the program to
be debugged is implemented in.> Chapter 7 finally provides explanations on
how JINST is applied to JAVA programs concretely and describes how JINSI deals
with JAVA-specific language features.

JINSI’s aim is to capture interactions between a suspicious component (de-
fined by a set of classes, called observed) and its environment (called unob-
served), as well as between all objects within that component (i.e., instances
of the component’s classes). For this purpose, JINSI’s capture/replay technique
identifies possible interactions between these objects, correspondingly instru-
ments the program, and captures the relevant interactions at runtime (Figure 1.1
on page 7). In this way, JINSI captures (and replays) only selected parts of the
program (see Section 3.1.1).

Interactions are captured as different events: constructor and method calls,
return values, field accesses, and exception flow. For each of these, JINSI distin-
guishes incoming events, originating from the unobserved part, and outgoing
events, originating from the observed component. Section 3.1.4 describes ob-
ject interactions and their corresponding events in more detail.

JINSI uses instrumentation techniques to alter the program for the purpose of
gathering data related to object interactions. Basically, JINSI introduces addi-
tional methods calls (so-called probes), which collect that data at proper points
during the program execution. The concrete instrumentation depends on the
event to be captured. For instance, to capture an outgoing method call OMC and
its return value (including exception flow), JINSI

3This chapter also describes some topics that JINSI has to address due to properties specific for
the JAVA programming language; essentially, we address exceptions, a primary feature of JAVA.
However, we stay on a high level of abstraction, so that the concepts presented here can be
adapted to other object-oriented languages as well. Chapter 7 contains more details on lessons
learned with regard to the JAVA programming language. This includes handling of arrays: in
JAVA, arrays are not implemented as full-fledged objects, but as a kind of special container
object that holds a fixed number of values of a single type.
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import org.joda.time.DateTimezone; public Observed() {

IEventId id = JINSI.outgoi 11(this, DateTimeZone.class,

public class Observed { "getDefault”, new Object([0]);
private DateTimeZone timezone; try {

this.timeZone = DateTimeZzone.getDefault();

public Observed() { }

this.timeZone = DateTimeZone.getDefault(); catch(RuntimeException e) {
} JINSI.outgoingThrowable(id, e);
throw e;

public String getTimeZoneName() {
return this.timeZone.toString(); JINSI.outgoingMethodReturn(id, this.timezone);

i i

}

Original Code Ci with ing calls instr by JINSI

Figure 3.2: Capturing outgoing method calls. JINSI captures outgoing
method calls by inserting several probes. In this way, JINSI
records all information required for later replay of the call to
DateTimeZone.getDefault ().

1. precedes OMC with a probe that records the source and the target of that
call, the corresponding method name, and its actual arguments;

2. surrounds OMC with a try-catch-block (or extends existing blocks if any)
to record possible exceptions; and

3. adds a probe directly after OMC that records the actual return value.

Figure 3.2 on page 29 shows how JINSI instruments an outgoing call which
obtains the default time zone similarly as it happens in our motivating exam-
ple. While capturing, JINSI records two events: one describing the outgoing
method call itself, including attributes needed for replaying like the given ar-
guments (their types and unique IDs, see Section 3.1.2); and one representing
the returned time zone (or the exception, should one be thrown).

When capturing data, the type of information ranges from simple primi-
tive values to complex objects like an object representing a time zone. While
capturing primitive values is easy, gathering comprehensive information about
entire composite objects would be much more expensive. To overcome this
problem, JINSI records only a bare minimum of information required for replay

29



3 Reproducing Failures

(see Section 3.1.3 for details). In our approach, we

1. only have to capture those objects that directly affect the concrete com-
putation, and

2. incrementally capture the information at runtime as soon as it is re-
quired.

Besides capturing events, all we require to replay a program run are unique
object IDs, their types, and primitive values—no serialization as is involved in
RECRASH, for instance. This way, JINSI can capture/replay arbitrarily complex
objects, and dramatically reduce the space and time costs of the capture phase,
as already evaluated by Joshi and Orso, who basically had used the same tech-
nique [41].

In our simplified example (Figure 3.2 on page 29), while observing an in-
coming constructor call to class Observed, JINSI captures the outgoing call to
method DateTimeZone.getDefault () and maps the returned time zone
instance to a unique object ID id. While observing a subsequent incoming call
to method get TimeZoneName (), JINSI associates the callee—the time zone
referenced by field t imeZone—to the already known id. The returned time
zone name is recorded depending on the actual time zone of the system where
that code is run. If JINSI captures on-site with the user, JINSI will capture ex-
actly the time zone that is relevant for the failure. In this way, JINSI is able to
capture both the environment and all the steps that lead to the original failure
in question.

In the following, we describe the fundamental concepts for capturing rel-
evant information on object interactions in more detail: observing selected
parts of a program (Section 3.1.1), using object IDs to clearly identify single
objects (Section 3.1.2), saving the cost for expensive object serialization, or
other means to persist program state, by capturing partial information incre-
mentally (Section 3.1.3), using events to describe relevant object interactions
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(Section 3.1.4), and eventually the actual capture of these events for future ref-
erence during replay (Section 3.1.5).

3.1.1 Selectivity: Observed and Unobserved Objects

One of the main characteristics of JINSI’s capture/replay approach is its selec-
tivity. Instead of manipulating the whole program and to capture complete ex-
ecutions, JINSI selects a subsystem (or component) of interest and captures all
the interactions between this subsystem and the rest of the application. While
this fundamental idea was first introduced by Orso and Kenedy [52] in order
to (a) provide an efficient capture/replay technique practically applicable in the
field, and (b) to overcome privacy issues, JINSI also takes advantage of the ap-
proach’s selectivity to provide a step-wise diagnosis over different abstraction
levels (see Chapter 6 for details).

For this purpose, JINSI divides the program to be debugged into two parts:
the subsystem of interest—the part JINSI is to capture interactions for—is called
observed, while the remaining part of the program is called unobserved. This
name-giving distinction also applies to the respective entities contained in these
two parts. The observed part of the program is defined by a given set of ob-
served classes, or observed set in short. Instances of observed classes are called
observed objects. Observed constructors, observed methods, and observed
fields are constructors, methods, and fields in observed classes and objects,
respectively. Similarly, we define unobserved classes, unobserved set, unob-
served objects, unobserved constructors, unobserved methods, and unobserved
fields. Figure 3.3 on page 32 gives a formal definition of these entities.

Figure 3.4 on page 33 illustrates the division of the program into two distinct
parts. You can visualize that an imaginary boundary encloses all observed ob-
jects, while the unobserved objects are located outside of this boundary. Thus,
the interactions of interest are those that either occur within that boundary
(strictly between observed objects), or that cross that boundary (thus, either
enter or leave the observed part of the program). This also illustrates the selec-
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Observed and unobserved classes. Let C be the set of all classes of a program, and
let C, be the set of observed classes. Then, the set of unobserved classes C, is defined
by C\C,. C, is also called observed part of the program, and C, is accordingly
called unobserved part of the program.

Observed and unobserved objects. An instance o, of an observed class
co € C, is called observed object, an instance o, of an unobserved class ¢, € C, is
called unobserved object.

Observed and unobserved members. All members (methods and fields) of
object o, are called observed members (observed methods and observed fields),
while members of object o, are called unobserved members (unobserved methods
and unobserved fields). This applies correspondingly to class members (fields and
methods that belong to the class, rather than to an instance of the class) of ¢, and ¢,
respectively. Furthermore, constructors of class ¢, are called observed constructors,
while all other constructors are called unobserved constructors.

Figure 3.3: The definition of observed and unobserved entities in a nutshell.
The property observed (and its complement attribute unobserved)
divides the program, its classes, all class instances, and their mem-
bers into two distinct sets.
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Observed component
= set of classes Aand B

Instances of class B - Initiating interaction
e.g. method call

O Instances of class C

Unobserved objects - Returning interaction
O Instances of class D e.g. method return

Figure 3.4: Dividing the program into an observed and an unobserved
part. Interactions occur between objects both in observed and un-
observed parts of the program. Observed objects are enclosed by
an imaginary boundary. JINSI only captures interactions that either
cross this boundary or occur within this boundary.

tivity of the approach: the boundary in a way selects the interactions of interest
to be captured. However, it does not only select the interactions itself, but also
defines the data to be captured as we will see in Section 3.1.3. Figure 3.5 on
page 34 gives a formal definition of interactions of (no) interest.

To capture interactions of individual observed objects and to associate sin-
gle interactions with their corresponding objects, JINSI has to identify objects
uniquely. For this purpose, JINSI assigns unique IDs to all the objects involved
in capture. We will see how these IDs are determined and assigned in the next
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Let O, be the set of all observed objects, and O, the set of all unobserved objects
of a program run. Furthermore, let (o5,0,) be an interaction between two objects
os and o,. Object oy is called sender;, and object o, is called receiver of that interaction.

An interaction (o5,0,) with o5 € Oy A o € O, (both unobserved) is of no in-
terest. All other interactions, thus oy € O, V o, € O, (at least one involved object is
observed), are of interest.

The definition of being of (no) interest correspondingly applies to interactions
between classes, and between classes and objects, respectively.

Figure 3.5: The definition of (un)interesting interactions in a nutshell. We
classify all interactions within a program run either as being of in-
terest, or as being of no interest. This property is derived from the
character of the objects involved in that interaction: according to
whether these objects are observed or unobserved.

section.

3.1.2 Object IDs

A further fundamental concept is the one of object identifiers (object IDs for
short). An object ID is an ordered pair (id, type) whose first entry id is
a positive numeric (i.e., id€ Np) unique identifier that bijectively names an
object obj (e.g., an instance of class TimeZone), and whose second entry
type is the actual type of that object (in that case class TimeZone).

To assign object IDs to individual objects, JINSI uses a numeric global counter
which is initialized to zero when capture starts, and further maintains a global
object mapping that associates object IDs with objects. JINSI populates the map-
ping incrementally: whenever the tool needs to determine an object’s identity
(see Section 3.1.3), it tries to look up the corresponding object ID in the map-
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ping. If the mapping does not contain object ob j already (first lookup for this
object), JINSI will associate the object with both the current value of the global
counter and its actual type by adding ((id,type),obj) as new entry to the
object mapping, and by increasing the counter by one afterwards. Otherwise,
JINSI will use the existing pair (id, type), which was assigned before and
therefore is already contained in the mapping (subsequent lookups).

The second component, the object’s actual type, can be easily derived from
the object itself. While for objects the first entry id would be sufficient in
order to identify all objects uniquely (by numbering them in order of occur-
rence), the second component t ype describes the object’s runtime type, and
allows JINSI to create proper instances during replay; for later replay, JINSI does
not persist the complete mapping including the actual objects (which would in-
volve techniques like object serialization including all their disadvantages, see
Section 3.1.3), but only all ordered pairs (id, type). JINSI uses that structure,
instead of simple numbers, for another reason: to identify classes involved in
interactions.

3.1.2.1 Class Members

In addition to re-creation of objects during replay, the structure (id,type)
enables JINSI to distinguish between different class members* involved in in-
teractions; in object oriented programming, interactions can act on the class
level rather than at the object level. In this case, a method call or a field access
does not refer to a specific instance of the class, but to the class itself—in JAVA,
these methods and fields are usually called szatic.

For this reason, next to IDs for individual objects, JINSI assigns IDs for in-
dividual classes as well if necessary. For static method calls and static field
accesses, JINSI assigns a unique ID (—1,type) to the corresponding class in-
volved in the interaction. While the 1d is fixed to —1, the t ype describes the

“4In contrast to instance members which belong to an instance of a class, class members belong
to the class.
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actual class; for instance (—1,StringUtil s)5. In this way, JINSI can easily
distinguish between individual objects and classes which are involved in inter-
actions. Please note that in the following, an object ID may both refer to a true
object (thus, a class instance), as well as to a class. Furthermore, when we
talk about object interactions, this will include interactions that involve class
members (where applicable).

Section 8.7 contains more details on objects IDs in general and on object IDs
during capture in particular. In fact, for object mapping, JINSI uses different
map implementations to map objects to their IDs (and vice versa) depending
on whether JINSI is doing capture or replay. For instance, during capture JINSI
ensures that the object mapping does not influence garbage collection.

3.1.3 Partial Information

When capturing data flowing across the boundary that separates the observed
from the unobserved part (e.g., values assigned to a field), a major issue is that
the types of such data range from simple scalar values to complex and com-
posite objects. Whereas capturing scalar values can be done inexpensively,
collecting object values is computation- and space-expensive. A straightfor-
ward approach that captures all values through the system (e.g., by serializing
objects passed as parameters) would incur tremendous overhead, and therefore
would render the approach impractical [52]. The key intuition to address this
problem is that

1. we only need to capture the subsets of those objects that affect the com-
putation, and

SA utility class defines a set of methods that perform common, often re-used functions. Most
utility classes define these common methods under static scope; thus, define class member
methods. In the example, this would be a class that provides static methods to deal with
String objects.
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boolean hasPositiveElement (Set set) {
boolean found = false;

Element e = null;
Iterator it = set.iterator();
while (it.hasNext ()) {

e = it.next();

if (e.value > 0) {
found = true;
break;

}

return found;

}

Listing 3.1: Replaying interactions. The hasPositiveElement ()
method. Replaying interactions requires only a minimum of
recorded information: capturing partial information and only
scalar values in particular suffice to replay the original run.

2. we can conservatively approximate such subset by capturing it incremen-
tally and on demand, without using sophisticated static analyses.

As an example, consider the code shown in Listing 3.1 on page 37. Method
hasPositiveElement (Set set) takes a set as a parameter and returns
true if the set contains at least one positive element. Consider now a call
to hasPositiveElement (...) in which the third element returned by
the iterator is positive. In this case, even if set would contain millions of
elements, we will only need to store the first three elements accessed in order
to replay the call.
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In fact, we do not need to store objects at all. Ultimately, what affects the
computation are the scalar values stored in objects or returned by objects’
methods. Therefore, as long as we can automatically identify and intercept
accesses to those values, we can disregard the objects’ state. For instance, in
the example considered, the only data we need to store to replay the call to
hasPositiveElement (.. .) arethe boolean values returned by the calls
to the iterator’s method hasNext (), which determine the value of the while
predicate, and the values associated with the three elements accessed.

Although it is in general not possible to identify in advance which subset
of the information being passed to a method is relevant for a given call, we
can conservatively approximate such subset by collecting it incrementally. To
this end, when logging data that crosses the boundaries of the component, we
record the actual value of the data only for scalar values. For objects, we only
record their unique numeric identifier and type (their object ID in other words).
With this approach, object IDs and scalar values are the only information re-
quired to replay executions, which can dramatically reduce the space and time
costs of the capture phase.

3.1.4 Object Interactions and Events

As briefly mentioned above, JINSI captures (and replays) object interactions
(interaction for short) in terms of different events. During capture, JINSI iden-
tifies and stores every relevant interaction either originating from, or targeting
an observed object as an event with a set of attributes—thus, an event describes
an interaction between objects during a program run. The events, together with
their attributes, are finally recorded in an event log®.

©This event log could be any mechanism that is able to store and load the events. Currently, JINST
uses a regular file and stores the events as XML data. While using XML at first sight could be
regarded as a questionable choice because of its demanding memory requirements compared
to other formats, like some customized binary format, this potential downside does not become
important in our context: even the largest XML event log as occurred in doing our experiments

38



3.1 Capture

3.1.4.1 Events in General

Most generally, JINSI distinguishes between incoming and outgoing interac-
tions and events, respectively—in doing so, the observed part’s point of view
defines the perspective:

Incoming An interaction that targets an observed object is called incoming.
This also applies to its corresponding event.

Outgoing Analogously, an interaction that originates from an observed object
is called outgoing. Again, the same applies to the corresponding event.

For each of the above two basic types of events, there is the same set of sub-
classes of events which describe the concrete type of interaction in terms of be-
havior (method call, field access, etc.). Depending on this type of interaction,
JINSI stores a different set of attributes. Figure 3.6 on page 40 shows a greatly
simplified class diagram that describes the basic hierarchy and attributes of the
events as used by JINSL It defines a set of abstract event classes that subsume
the attributes that different concrete types of events have in common, and a set
of concrete event classes each representing a concrete type. At the top of that
hierarchy, JINSI defines an abstract event that shares the attributes event [D and
location which all events have in common:

e An event ID is an ordered pair (id,threadId) of which both entries
are positive numeric values. The first uniquely identifies the event; all
events are numbered sequentially in order of occurrence. The second en-
try denotes the corresponding thread ID in which the event has occurred.

contains not more than 15MB of textual data. After using gzip to compress this event log
file, only 668kB remain. This amount of output data is easy to manage even by actual laptop
machines—as used for conducting the experiments.
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Event
Returning [: eventld
event location
behaviorCall
anayValues = _ ObjectWithid
vent with biectld
target 1 oblec
{1 type
Return event | | [ Throw event | Source yp
returnValue throwable target
void
I
Behavior call Field access
event event
arguments accessedValue
paramTypes fieldName
Constructor Method call I_Field read Field write
call event | event access event | | access event |
methodName

Figure 3.6: Schematic overview of different events. JINSI defines abstract
events that subsume attributes common to several events, and con-
crete events for the different types of interactions (e.g., method
calls). For simplicity, the diagram omits the distinction between ob-
served and unobserved objects. Actually, there are individual con-
crete event classes for incoming constructor calls, outgoing field
reads, and so on.
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While the id already uniquely identifies the event, the threadId is
used to be able to assign events to their respective threads.’

e A location has three attributes: (1) a file name, (2) a line number, and
(3) a context. While the first two attributes define the location in the
program’s source code where the interaction is declared (e.g., a method
call statement), the latter defines whether the interaction occurred within
a class initializer, a constructor, or a method. This information is used
for synchronization purposes during replay and minimization (see Sec-
tion 4.1.2).

Whenever an interaction occurs, there must be two objects that are involved:
the first one that initiates the interaction (sends a message), and the second
one that perceives the effect (receives the message) of this very interaction.®
Therefore, JINSI provides the corresponding events with a source and a target
object:

Event with target This is the abstract superclass of all events that describe an
interaction in which a sender and a receiver are involved: (1) constructor
calls, (2) method calls, and (3) field accesses. Therefore, these events
share a source and a target as their attributes. Each of these attributes
contains an unique object number and the type of the corresponding ob-
ject. Thus, source and target are equal to an object ID (see Section 3.1.2).
In this way, JINSI is able (a) to clearly identify the two objects involved

7In the current implementation, JINSI replays all interactions regardless of the thread where they
occurred, and in the same order as they were captured; thus, JINSI serializes the program in a
way. In the evaluation (see Chapter 9), JINSI was mainly applied to single-threaded applica-
tions. In the COLUMBA example, JINSI was applied to a multi-threaded program; however, we
captured interactions that occurred within the same thread only.

81t is possible that sender and receiver are the same object; e.g., whenever an object calls a method
on itself. However, JINSI does not capture these self-directed interactions explicitly. Instead,
these interactions re-occur naturally during replay.
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in an interaction, and (b) to re-create these objects during replay (see
Section 3.2.1).

In the following, we address in detail how concrete interactions are represented
by specific events. As method calls are the most common type of interaction in
object-oriented programs, we start with these.

3.1.4.2 Method and Constructor Calls

Since methods and constructors are very similar in nature’ and describe a sort
of behavior of an object, they share a set of common attributes: every construc-
tor and method has a list of parameters specifying input by means of data types,
and every call accordingly has a list of arguments'®. JINSI therefore subsumes
constructor and method calls under abstract, so-called behavior call events:

Behavior call event Such an abstract event represents a behavior call; i.e., ei-
ther a constructor or a method call. They share two attributes: firstly,
a list of parameter types defining the possible input variables, and sec-
ondly, a list of arguments describing the actual values as seen at runtime.
If the passed value is scalar, JINST will record the actual value. Otherwise,
if it is complex, JINSI will record the object’s object ID. In this way, JINSI
will be able to properly re-create the captured arguments during replay
(analogous to the source and target of an interaction).

In order to be able to distinguish between constructor and method calls, JINSI
uses two different concrete events:

Constructor call event Represents a constructor call.

9 A constructor is a special type of (static) method that does not have an explicit return type but
implicitly returns an instance of the relevant class.

10 parameters refers to the list of input variables in a method’s declaration, while arguments will
be the actual values passed in when the method is invoked. When invoking the method, the
arguments passed must match the declared parameters in order and type.
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Method call event Analogously, represents a method call. Additionally, con-
tains the method name to complete the method’s signature; thus, to de-
scribe a method uniquely.

Behavior calls have two final important properties: First, they can enclose fur-
ther interactions. For instance, a called constructor can access other object’s
fields during initialization. Second, they usually have a return value. In order
to take these properties into account, JINSI defines an abstract returning event:

Returning event This event represents the return of a previously captured be-
havior call, and its actual result; it is captured whenever such an inter-
action exits. This type of event contains a reference to its corresponding
behavior call event.

For returning events, there are two concrete subclasses that distinguish between
(1) a regular return of a behavior call, and (2) an exceptional exit of such a call:

Return event This event describes a regular return of behavior calls; thus,
when such a call returns control together with a value (unless its a void
method) to the invoker. This type of event includes the attributes return-
Value representing the actual return value (i.e., either a scalar value, or
a complex object represented by its object ID), and the boolean flag void
that indicates whether the called behavior has a return type. The latter
makes it easier to distinguish between a method with some return type
that returned null, and a void method without any return type.

Throw event A throw event describes the exceptional termination of a behav-
ior call. Usually, an exception is caused either by an explicit throw
statement, or an abnormal execution condition detected automatically
(such as a division by zero). This event includes attribute throwable,
which describes the actual exception thrown at runtime.
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For the sake of simplicity, we omitted the concrete types of events that distin-
guish between incoming and outgoing events. These concrete events represent
the different interactions as they can actually occur during a program run, for
instance incoming method calls and outgoing constructor call returns.'! How-
ever, the definition of these events is fairly straightforward and would not yield
any new concept of further interest. In addition to behavior calls, JINSI captures
field accesses as described in the following.

3.1.4.3 Field Accesses

Interactions between objects can also occur via accesses to fields. JINST uses an
abstract field access event to take into account both read and write accesses:

Field Access Event This specialization of an event with target describes a
field access in general. It contains both the accessed value (either as
scalar value, or as object ID for complex objects) either read from or
assigned to the field, and the name of the field that had been accessed.

To be capable of distinguishing between read and write accesses, JINSI uses two
corresponding, concrete events:

Field read access event This type of event is used whenever a field was read.

Field write access event Analogously, this type is used whenever a field was
written.

Similar to behavior calls, we omitted the fact that JINST actually uses four in-
stead of two different events for field accesses: for each of the two access
types, JINSI again uses one concrete type for incoming, and one for outgoing

1 Actually, there are 10 different event types describing behavior calls and their corresponding
events: from incoming constructor call events, to incoming method call returns and outgoing
method calls, and finally to outgoing throw events.
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accesses. In contrast to SCARPE [52], which does not capture incoming read
accesses, JINSI captures all four different instances; hence, including incoming
read accesses. At first sight there is no need of replaying this type of inter-
action because an incoming read access actually does not modify the state of
the observed part of the program. However, JINSI requires to capture incoming
read accesses as well. During capture, this mainly is for debugging reasons: it
proofed to be helpful during debugging JINSI itself, especially when manually
analyzing the captured data. However, during replay, incoming read accesses
are used to add objects to the object pool if required (see Section 3.2.1).

3.1.5 Interception and Recording of Interactions

In the following, we shall address the actual interception and recording of ob-
jectinteractions. For the individual interactions, JINSI uses different appropriate
techniques in order to identify, intercept, and process interactions; and eventu-
ally to record interactions of interest in terms of events. They all have in com-
mon: Before the program starts, JINSI identifies possible object interactions
based on the set of observed classes, and accordingly modifies the program.
This enables it to intercept interactions between observed and unobserved ob-
jects at runtime. The modifications are mainly done by inserting probes; i.e.,
by adding new code to the program. When the modified program runs, the
modified parts and statements will transiently hand over control to JINSI, which
then will process the current interaction and will decide whether an event has
to be stored or not. In the former case, an event will be eventually written to
the event log, in the latter the interaction will be ignored.

In this context, a major difference between SCARPE and JINSI comes into
play: while SCARPE captures and replays interactions with respect to observed
code, JINSI captures and replays object interactions. As an important possible
consequence, SCARPE is not able to completely distinguish between different
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objects within an inheritance hierarchy [52] 12 furthermore, this crucial differ-
ence is especially important when capturing incoming constructor and method
calls. Chapter 7 contains details on the various consequences for the instrumen-
tation of JAVA programs; in this section, we concentrate on the universal con-
cepts that generally hold true for object-oriented programs. Generally speak-
ing, in contrast to SCARPE, JINSI has to check for the majority of interactions
of possible interest at runtime whether each one actually is of interest. This
is due to the fact that, in many situations and because of polymorphism and
dynamic binding, the dynamic type of an object is determining whether an in-
teraction is outgoing or incoming, or of no interest. Thus, it is often impossible
to exactly decide during instrumentation—which is done statically—whether
an interaction affects an observed or unobserved object; only at runtime JINSI
can analyze the dynamic type. In summary it can therefore be said that JINSI
works on a lower abstraction level (objects) than SCARPE (classes). Only be-
cause of that lower abstraction level, JINSI can use delta debugging together
with slicing techniques, like event slicing and dynamic backward slicing, in
order to efficiently minimize the faulty program behavior which, starting at the
actual defect, across many different object interactions eventually leads to an
observable failure (see Chapter 4 for details).

In the remainder of this section, we will address the different methods JINSI
uses to capture the events described above. Please note that in addition to the
actually relevant information (e.g., method call arguments), for each interaction
in question, the inserted probes always pass information about the current loca-
tion (i.e., file name, line number, and context of the corresponding statement,
see above) to JINSIL, and for returning events the unique event ID of the cor-
responding call event as well. For simplicity, we omit this information when
describing the individual modifications. The actual instrumentation provides
this information in all cases.

12When observing class c, all subclasses of ¢ are observed automatically. This circumstance limits
the approach’s selectivity (compare Section 3.1.1).
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3.1.5.1 Constructor Calls

Before an interaction between objects can occur, the involved objects will have
to be constructed; hence, we start with this kind of interaction. Usually, con-
structor call declarations already define at compile time which concrete in-
stance will be constructed—in contrast to the receiver of a method call (see
below). Thus, JINSI can decide at instrumentation time whether the correspond-
ing interaction-to-be will target an observed or unobserved object. However,
whether the source is observed or unobserved can be decided at runtime only.
In order to capture an outgoing constructor call OCC, JINST

1. precedes OCC with a probe that will pass the actual source object, the
statically known farget type and parameter types, and its actual argu-
ments to JINSI; and

2. adds a probe directly after OCC that will pass the recently constructed
object to JINSI.

At runtime, JINSI can decide whether the intercepted interaction actually is an
outgoing one, and can accordingly either store an event or discard it. For in-
stance, when observing class ¢, JINSI instruments all constructor call statements
declared within ¢. However, only at runtime JINSI can definitely decide on the
actual type of the instance of ¢ (thus, the source of that interaction): if the ac-
tual object is an instance of unobserved subclass ¢’ of c, it is not an outgoing
call, but rather a call originating in an unobserved object (however, it might be
an incoming constructor call if the receiver is observed; see below). Thus, only
if the actual dynamic type of the source object is c, it will be an outgoing call
originating from an observed object.

The list of parameter types enables JINSI to distinguish between different
constructors with different signatures. For the given list of arguments, JINSI
either stores the actual scalar value, or a proper object ID in case of a complex
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object. All that information will be recorded as an outgoing constructor call
event.

Right after the actual constructor call, the second probe added by JINSI will
be called, and JINSI will be provided with the recently constructed object. This
second probe enables JINSI to record the object ID of the newly created object.
In a nutshell, JINSI adds two probes that capture (1) the actual outgoing con-
structor call, and (2) its corresponding return value—the constructed object.
Capturing two events enables JINSI further to capture interleaving events: the
call event marks the beginning of the constructor call that again can trigger
further interactions; the return event eventually marks the end of the call. In
languages that allow exception handling, like the JAVA programming language,
an exception that has been thrown is another possible cause for a constructor
(or method) call to abortively return control back to its caller. In fact, JINSI
extends the above technique by exception handling, which will be described
for the sake of clarity in an own section below (see page 53).

For incoming constructor calls, JINSI adds similar probes. At runtime, anal-
ogous checks will ensure that only actually incoming calls are captured. How-
ever, besides the direction of the interaction, there is a further main difference
between capturing outgoing and incoming constructor calls: because the target
of a constructor call is determined at compile-time (i.e., the programmer has
to decide during coding which constructor will be called at run-time), for out-
going constructor calls, JINSI only has to instrument observed classes (and all
their super- and subclasses if necessary, see Section 7.1), while for incoming
constructor calls, it has to instrument unobserved classes as well. However,
JINSI can rule out most'? of the constructor calls declared within unobserved
classes already during instrumentation: if a constructor call is declared within
an unobserved class and its target type is not observed, which is known stat-
ically, this constructor call can be safely ignored—in contrast to potentially
incoming method calls, which are subject to dynamic binding (see below).

130n the supposition that only a relatively small number of all classes are observed.
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While capturing constructor calls seems to be straightforward, it poses sev-
eral challenges when applied to JAVA programs, especially when it comes to
incoming constructor calls. Section 7.1 describes in detail how JINSI instru-
ments JAVA programs for capturing that kind of interaction.

3.1.5.2 Method Calls

While method calls are very similar to constructor calls at first glance (see Sec-
tion 3.1.4.2), capturing them is a more complex and difficult task, in particular
with respect to incoming method calls, as we will see shortly. Capturing out-
going method calls has been realized in a similar way as the above approach
for outgoing constructor calls. However, in contrast to constructor calls, the
actual receiver of a method call and its type are unknown at compile time. To
capture an outgoing method call OMC, JINSI

1. precedes OMC with a probe that will pass the actual source object and
target object, the statically known method name and parameter types,
and its actual arguments to JINSI; and

2. adds a probe directly after OMC that will pass the recently returned value
(if any) to JINSIL

Similar to outgoing constructor calls, JINST checks at runtime whether an inter-
cepted potentially outgoing method call actually is an outgoing one (depending
on both the source and target object) and, if applicable, will record an appro-
priate event. The list of parameter types and the method name allow JINSI to
clearly distinguish between different methods declared within one class.'* The
arguments are stored either as scalar value or object ID. After the called method
has returned control back to its caller, the second probe allows JINSI to record

14 And, together with the run-time type of the object the method was called on, JINSI can properly
handle polymorphism, as inherently and frequently used in object-oriented programming, as
well.
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the return value, and the end of that interaction. In the case of methods without
a return type, JINSI does not store any value but only the return event itself.

Compared to outgoing constructor calls, JINSI can not rule out as many pos-
sible calls because the actual receiver type is unknown. However, the set of
observed classes considerably limits the number of possible locations: an out-
going call can only occur within an observed object. This reduces both the
number of locations where JINSI has to insert probes (thus, to modify the pro-
gram), and the number of run-time checks which slow down the execution—in
contrast to incoming method calls which can occur virtually everywhere in the
program.

This is due the fact that in object-oriented programming polymorphism'
is an essential and therefore widely used concept: the ability of objects be-
longing to different types to respond to method calls (or field accesses), of
the same name, but each one according to an appropriate, possibly different,
type-specific behavior. Thus, the programmer (as well as both the program and
JINST) does not necessarily know the exact type of the object in advance (stat-
ically, which is equivalent to instrumentation-time), and so the exact behavior
is determined only when the program is executed (dynamically). As a direct
result, to capture incoming method calls in a similar fashion using probes as
for outgoing ones and constructor calls, JINSI would have to instrument the pro-
gram in much more places, because JINSI could not rule out most of the possible
calls.'® This would result in much more modifications of the program which
might be error-prone (see Chapter 7 for the actual risk of modifying JAVA pro-
grams), and much more run-time checks which would slow down the program
considerably. To capture incoming method calls, JINSI therefore uses a differ-
ent approach than modifying the caller: it extends and modifies the observed

15To be precise, subtype polymorphism. However, in the context of object-oriented programming
it is almost universally called just polymorphism.

16For instance, if an observed object implements a very common interface like Comparable
in the JAVA language, JINSI would basically have to insert probes at all the places where this
interface is used.
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methods themselves. To capture an incoming method call TMC to methodm (),
JINSI

1. firstly replaces m () with a proxy method and an actual method. The ac-
tual method has the same body as m () (modulo some instrumentation),
but has a modified name m’. The proxy method, conversely, has ex-
actly the same name as m () , but a different implementation. The proxy
method (1) creates and logs the appropriate call event, (2) calls the ac-
tual method m’ () by specifying the modified name m’, (3) collects the
value returned by the actual method (if any), logs a return event, and (4)
returns to its caller the collected value (if any); and

2. secondly, modifies all calls from observed methods to other observed
methods by using the modified name m’ mentioned above. In this way,
we are guaranteed that calls that do not cross the boundaries of the ob-
served part invoke the actual (and not the proxy) method and do not log
any spurious incoming call or incoming return (these calls and returns
occur naturally during replay).

Figure 3.7 on page 52 shows an example of a simple method div which divides
two given numbers. For capturing incoming calls to div, JINSI introduces a
proxy method under the name of div, and the actual method renamed to div’
as described above. By using such proxy methods, JINSI is able to capture
incoming method calls while minimizing both the number of locations where
the program has to be modified and the number of possible run-time checks.

3.1.5.3 Field Accesses

Besides method calls, objects can interact with each other via field'” accesses.
Similar to methods, a field either can be shared with all class instances (static

17 Also called member variable, or member field; thus, field for short.
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Figure 3.7: Capturing incoming method calls. JINSI replaces the original
method div (top) with method div’ which contains the actual
body and runs the original computation, and proxy method div
which passes all the relevant information about the incoming call
to JINST and forwards the call to the actual implementation (bottom).

field), or each instance of a class can have its own copy of the variable (in-
stance variable). JINSI handles both cases by assigning proper object IDs. Field
accesses differ from each other by being either a read or a write access; in our
context we further have to differentiate between incoming and outgoing ac-
cesses. Capturing these four different event types is relatively straightforward,
especially compared with (incoming) method calls. For instance, to capture a
possibly incoming field write access ITFW, JINSI precedes IFW with a probe that

Observed method div

}

public int div(int a, int b) {
return a / b;

Actual method div'

Instrumentation

Proxy method div

public int div' (int a, int b)
return a / b;

}

{

passes

o

public int div(int a, int b)
// log incoming call event
int result = div'(a, b);
// log return event
return result;

{

1. the source object which writes the new value,

2. the target object the written field belongs to,
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3. the field name, and

4. the value that is to be written.

Using a simple run-time check, JINSI determines whether the intercepted
write access is an incoming one, and accordingly writes an event (if applica-
ble). Both the source and target objects are recorded using their corresponding
object ID; the written value is either stored as scalar value or as object ID. By
recording the target object together with the field name, JINSI can handle shad-
owing'® of fields.

For the other kinds of field accesses, JINSI uses closely related techniques.
To capture incoming field read access, JINSI adds a similar probe; however,
the probe is introduced right after the actual access. Instead of recording the
value which is about to be written, JINSI records the read value. For outgoing
field write and outgoing field read accesses, JINSI basically uses properly in-
verted run-time checks. Section 8.4 contains detailed information on how JINSI
handles field accesses in practice and JAVA programs, respectively.

3.1.5.4 Exceptions

Many programming languages'®—including JAVA—have built-in support for
exceptions and exception handling to allow the program to report and to han-
dle erroneous situations. An exception is an eventZ?, which occurs during the
execution of a program, that disrupts the normal control flow: when an error
occurs within a method, the method creates an exception object, which is pro-
vided with information about the circumstances of the error, and hands it off to

1$When extending a class, you can shadow a field with the same name in the base class. In contrast
to (method) overriding, the field in the base class is only hidden and is thus still accessible.

19Such as Ada, C++, Delphi, Erlang, Haskell, JAVA, OCaml, Perl, Python, Ruby, Smalltalk, and
Visual Basic, to name but a few.

20Here not to be confused with an event in the sense of events as used by JINSI to capture interac-
tions.
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the runtime system. This procedure is called throwing an exception. The most
important fact in our context is that the method in this case changes the normal
flow of program execution—as one might say the method returns abortively
but controlledly. Thus, throwing an exception is another way a method (or con-
structor) can terminate, in addition to returning a value explicitly, and therefore
can also cause interactions to occur.

The possibility of an exception being thrown can be expressed explicitly, for
instance by enclosing a method call within an exception handler.>! However,
an exception basically can happen to occur whenever a method is called, even
if it is not expressed explicitly in the code; such exceptions include arithmetic
exceptions, for instance when dividing by zero. In this case, if a method may
throw an unchecked exception, the compiler would not complain about an un-
handled exception. Furthermore, JINSI has to capture and replay all exceptions
as they might occur in a program run; otherwise, replaying would result in a
different behavior than originally happened and observed by the user. To cover
all those cases where an exception might be thrown, JINST extends the probes
that capture constructor and method calls by exception handling—it basically
wraps relevant behavior calls in appropriate t ry-catch blocks. If there is no
explicit exception, JINSI introduces such a block. Otherwise, if there is already
an exception handler, JINSI incorporates that handler. Figure 3.8 on page 55
shows how proxy method div (see Figure 3.7 on page 52) is extended in order
to handle possible exceptions. Apparently, the actual method div’ will throw
an arithmetic exception if argument b is 0 (division by zero). The extended
proxy method will record that exception if any. Chapter 7 contains detailed
information on capturing exceptions as they might occur in JAVA programs.

In the next section, we shall see how JINSI uses the captured object inter-
actions and events, respectively, to replay those events, and thus to reproduce
program failures.

211 JAVA, for instance, using a t ry-catch block.
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Actual method div' and proxy method div

public int div' (int a, int b) {
return a / b;

}

public int div(int a, int b) {
// log incoming call event
int result = div' (a, b);
// log return event
return result;

Instrumentation extended
by exception handling

v

Proxy method div with exception recording.

public int div(int a, int b) {

try {
// log incoming call event
int result = div'(a, b);
// log return event
return result;

} catch(RuntimeException e) {
// log exception
throw e;

Figure 3.8: Capturing exception flow. To capture possible exceptions, JINSI
extends proxy method div by a custom exception handler that
catches any thrown exception, reports the exception to JINSI, and
finally re-throws it. In this way, JINSI ensures to capture exception
flow while not altering the program flow.
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3.2 Replay

To finally reproduce the original failure, JINSI replays the previously recorded
interactions. Analogous to capture, it performs two steps before it runs the
actual replay: JINSI identifies possible interactions between the observed com-
ponent and the unobserved rest of the application, and accordingly instruments
the application. For replay, JINSI completely replaces the component’s envi-
ronment (see Figure 3.9 on page 57). After instrumenting, the tool reads the
previously captured events from the event log, processes them, and for each
event, either triggers the incoming interaction on the observed objects®?, or
consumes the outgoing interaction originating from the observed component
and provides a proper return value. Interactions between observed objects are
not intercepted>’; they happen naturally as a result of the incoming interactions
initiated by JINSI.

In this way, JINSI acts as both a driver and a stub during replay: it provides
a scaffolding that mimics the behavior of the unobserved part as seen during
capture. For incoming interactions, it passes both control and proper arguments
(if any) to the observed objects which repeatably behave exactly in the same
way as before. Whenever an observed object returns control to the unobserved
part, JINSI takes over and provides a proper answer to that outgoing interaction.
The tool will repeat this procedure until all the captured events are completely
processed. In the end, JINSI reproduces both the environment and the problem’s
history, and therefore is able to reproduce the actual failure.

Similar to capture, in the following we first outline the replay phase to give
a brief overview on the related concepts, and afterwards we discuss the funda-
mental ideas in detail while staying on a conceptual level. Again, Chapter 7
will provide details on replaying JAVA programs in practice.

Listing 3.2 on page 58 exemplifies an instrumented component on the basis

22JINST uses the JAVA reflection API for that purpose; see Chapter 7 for details.
23 Constructor calls constitute an exception, see Section 3.2.1.
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Observed component
= set of classes Aand B

Initiating interaction
Observed objects e.g. method call

Instances of class B
Returning interaction
é _— -
I:l JINSI e.g. method return

Figure 3.9: JINSI completely replaces the component’s environment. JINSI
acts both as a driver and a stub: it triggers incoming interactions
and provides proper reactions for outgoing ones. Interactions be-
tween observed objects occur naturally; they happen directly and
indirectly in consequence of the synthetically initiated incoming
interactions.

of class Observed (see Figure 3.2 on page 29). JINSI has replaced the two
invocations with calls to JINSI.getReturnValue (.. .) whichreturns a
proper value depending on the concrete captured event. For instance, while
replaying an incoming constructor call, JINSI consumes the replaced call to
getDefault () and returns a mocked instance of DateTimeZone. Since
JAVA does not allow to create instances without explicitly calling a constructor,
JINSI returns a mock object that is just an empty—thus stateless—hull rep-
resenting an instance of proper type. When a subsequent incoming call to
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public class Observed {
private DateTimeZone timeZone;
public Observed() {

this.timeZone = (DateTimeZone)
JINSI.getReturnValue (this, DateTimeZone.class,
"getDefault", new Object[0])
7
}
public String getTimeZoneName () {

return (String)
JINSI.getReturnValue (this, this.timeZone,
"toString", new Object[0]);

}

Listing 3.2: Replaying outgoing method calls. JINSI replaces outgoing
method invocations with calls to itself and returns proper values
depending on the captured event.

method get TimeZoneName () is replayed, JINSI again consumes the orig-
inally captured outgoing call via getReturnvValue (. ..), which returns
the captured St ring representing the time zone at capture time.>*

In our initial example, if the user captures on-site, the developer—having the
captured events at hand—will be able to reproduce the original problem in any
time zone. Other types of interaction, like constructor calls and field accesses,
are captured and replayed in a similar fashion.

In the remainder of this chapter, we shall see how JINSI re-creates both
observed and unobserved objects (Section 3.2.1), replays method calls (Sec-

24This is in contrast to tools like RECRASH [2], which capture only the objects on the heap, and
which, in this example, return the current time rather than the captured time.
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tion 3.2.2), field accesses (Section 3.2.3), and exceptions (Section 3.2.4) fi-
nally.

3.2.1 Object Re-Creation

Before JINSI can replay any object interaction, it has to instantiate the objects
that were involved during capture. For this purpose, JINSI extracts object IDs
(see Section 3.1.2) from the event log, and basically re-creates objects of the
corresponding type. If an object is needed for the first time, JINSI will instanti-
ate a new one; otherwise, it will retrieve the previously created instance from
an object pool. In contrast to capture when an object mapping, which is similar
to an object pool, mainly is used to map objects to their corresponding identi-
fiers, during replay JINSI manages a pool that firstly maps identifiers to objects
mainly, and that secondly establishes a set of initialized objects that are kept
ready to use.”

Each time JINSI processes an event whose attributes contain an object ID
(e.g., as receiver or argument of an interaction), it attempts to retrieve the cor-
responding object from the pool.”® If the lookup is successful, it will use the
retrieved object to reproduce the event. If the object was not contained in the
pool, JINST will either create a placeholder (mock) object if the object is unob-
served, or will create a true object otherwise. In both cases, JINSI ensures that
the re-created object is of the appropriate type. Finally, it will create a new
entry in the pool that maps the object ID to the newly instantiated object.

While JINSI uses the same pool to manage both unobserved and observed ob-
jects, it uses different strategies to create appropriate instances. For unobserved
objects, JINSI creates not an actual instance of the originally observed type, but

25This is for performance reasons; using an object pool saves the cost for instantiating the same
object over and over again.

26Except for cases when not an actual class instance, but a class itself is required. For instance, if
an outgoing interaction refers to a class member, JINSI will not require to use an object but the
corresponding class.
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a mock object that basically represents a placeholder: the mock object’s type
and identity are meaningful; however, the object itself has no state at all. The
object’s type actually is a sub-type of the unobserved object in order to sup-
port type comparison, and its identity is properly restored in order to support
the comparison of object references.”’ Because the mock object does not hold
any state, JINSI has to step in every time its state is accessed, which includes
method and field accesses (we will see how JINSI replays these interactions be-
low). Thus, one could say that these mock objects and JINSI itself, respectively,
mimic the problem’s environment.

The usage of mock objects instead of true instances is in contrast to SCARPE,
which also creates true objects for unobserved ones. While that simpler method
works well at first glance, it causes severe issues when applying the JINSI ap-
proach to JAVA programs. In brief, using mock objects instead of actual in-
stances of unobserved types avoids the occurrence of unwanted interactions
and side-effects while creating new objects (see Chapter 7 for details).

For observed objects, JINSI creates instances of the originally observed type;
after all, we want to reproduce their original behavior by re-executing the code
contained therein while providing a proper environment, so that mocked ob-
served objects are out of the question. In contrast to the unobserved mock ob-
jects, which are created on demand, JINSI instantiates observed objects proac-
tively. Whenever an incoming constructor call has to be processed, JINSI ac-
tively calls the corresponding constructor along with passing proper arguments,
and finally adds the newly created object to the object pool, so that it can be
retrieved later; e.g., when an incoming method call will be executed on that
very instance.

Replaying constructor calls is similar to method calls, which we will discuss
next. Please note that capture and replay have in common that JINSI has to
check at runtime, where necessary, whether an interaction actually is outgoing,

27JAVA provides the type comparison operator instanceof to compare an object to a specified
type. Object references are compared using the identity operator (==).
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incoming, or of no interest at all. In the following, we do not discuss these
runtime checks explicitly; however, JINSI checks for that property when inter-
cepting interactions of potential interest, and either handles the interaction by
itself (e.g., by providing proper return values to outgoing method calls), or just
passes control back immediately (thus, if the interaction is of no interest; e.g.,
if an observed object accesses the field of another observed object).

3.2.2 Replaying Method Calls

For each captured incoming method call, JINSI extracts the corresponding re-
ceiver, the method called, and the arguments from the event log. In the event
log, the receiver is represented by its object ID. If the method called is a class
member, JINSI does not need to obtain the receiver from the pool and immedi-
ately calls the method on the appropriate class. Otherwise, JINSI uses the iden-
tifier to obtain the actual receiver (an observed object) from the object pool.
Because all incoming method calls and field accesses on an observed object
have to be preceded by an incoming constructor call (an object must have been
created before further interactions can occur), it is guaranteed that the receiver
object had been added before JINSI executed the incoming constructor call.”®

Next to obtaining the receiver, JINSI has to pass proper arguments when call-
ing the method. For these arguments, it distinguishes three cases:

Scalar values Scalar values are obtained from the event log. For instance, if
integer value 11 was observed during capture, JINSI passes that simple
numeric value as argument.

null references Similar to scalar values, JINSI passes a null reference as
argument.

28Even if an observed object 0; constructs another observed object 0,, JINSI will intercept this
inter-observed call in order to add object 05 to the object pool. In this way, it is guaranteed that
all observed objects will be contained in the object pool, even if they are directly constructed
by other observed objects.
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Complex objects JINSI uses the object ID to obtain the corresponding object
from the object pool. The actual object is either directly obtained from
the pool (in case it was created before), or is created on demand as de-
scribed above.

This way, JINSI is able to re-create all the arguments required for the actual
method call. Technically, JINSI uses JAVA reflection in order to call the method
while passing the previously retrieved arguments (see Chapter 7 for details).
After JINSI has called the observed method, control will flow to the observed
object, which will behave exactly as during capture. Note that passing a mock
object (i.e., an object without any state) does not compromise the replay be-
cause all interactions of the observed objects with unobserved ones will be suit-
ably identified, intercepted, and handled by JINSI—such as outgoing method
calls (see below).

As soon as the called observed method finishes its execution and thus control
flows back to JINSI, the tool once again takes over and consumes the return
value (if any). It then, as the case may be, compares the returned value to
the one stored in the corresponding incoming method return event. If they
match, the failure reproduction continues with the next incoming interaction;
otherwise, JINSI would report a warning because that could indicate an error
within JINSL If the return value is a complex object, it will be furthermore
added to the object pool (together with its object ID).

Outgoing method calls are also consumed by the scaffolding. JINSI instru-
ments all possible outgoing calls and replaces them with

1. acall to a specific method getReturnvalue (.. .) inthe scaffolding
that will intercept the original call at runtime; and

2. an assignment that stores the returned value to the appropriate variable
in the original code (if applicable).

Listing 3.2 on page 58 shows an example. Method getReturnvalue
passes information about both the caller and the callee, the method itself, as
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well as possible arguments to JINSI. Whenever that method is called, control
flows to JINSI which retrieves the next outgoing method call event from the
event log and compares the passed information with the captured one. If they
match, replay continues with the next event. Otherwise (e.g., the next event is
not an outgoing method call), JINSI will issue an error.

As soon as JINSI has to pass back control to the observed object, thus to the
caller of method get ReturnValue, it processes the information in the cor-
responding outgoing method return event, retrieves the captured return value
in the usual way (i.e., depending on its type), and finally passes the value to the
observed object, which continues computation using the captured value.

Due to the fact that constructor calls basically are specialized method calls,
they are handled in a similar way. For outgoing constructor calls, JINSI replaces
possible instances with a call to method getNew (. . .) and returns an object
according to the recorded one during capture; thus, JINST returns a mock object
(see above). For incoming constructor calls, the tool replays them by calling
the appropriate constructor while passing proper arguments as for incoming
method calls.

3.2.3 Replaying Field Accesses

Field accesses in general are handled in an analogous way to method calls. For
incoming field accesses, JINSI replaces the unobserved part and executes the
actual field access. To replay an incoming write access, it first reads from the
corresponding event (1) the receiver object®” (the receiver class in case of class
members), (2) the name of the field to be modified, and (3) the value to be
written. As usual, the latter can either be a scalar value, or a complex object,
and is retrieved in the usual way.>® The observed receiver then is obtained

2 As for incoming method calls, the observed receiver is guaranteed to be contained in the object
pool already.

30To be more precise, the value to be written can be either (1) a scalar value, (2) a null reference,
(3) an unobserved mock object, or (4) an observed true object.
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from the object pool. Finally, JINSI simply writes the value to the field. While
an incoming read access can not have any modifying effect on the observed
part of the program—because such an access does not change its state—JINSI
nevertheless executes these as well for the following reasons: firstly, the read
value is compared to the captured one in order to check whether replay is still
in sync (otherwise JINSI would again issue a warning), and secondly in order to
add the read object to the object pool (if the read value is an unobserved mock
object or observed true object). Apart from that, read accesses are processed in
the same way as write accesses, save that the value is not written but read.

For outgoing field accesses, JINSI replaces all possible accesses by a call
to a specific method in scaffolding, comparable to outgoing method calls.
For outgoing write accesses, JINSI replaces the access with a call to method
handleWrite (...), which at runtime receives information about both the
object that writes the value and the object whose field is written, the field name,
and the value to be written. From the observed part’s point of view, JINSI just
consumes this value. However, as for incoming read accesses, it uses the writ-
ten value to check for synchronicity, and to add the value to the object pool (if
it is not a scalar value and if the object is not contained already). Eventually,
JINSI just passes control back to the observed part as there is no need for return-
ing any value; thus, there is no change in the state of the observed part. Finally,
outgoing read accesses are handled in a very similar way—all possible out-
going read accesses are replaced with a call to method getvalue (...)—
except that JINST does not only handle back control but also obtains the value
as recorded during capture from the event log and eventually returns this value
(thus, either a scalar value or an object reference) to the observed object. For
the observed object, the effect of the artificial, introduced method call does not
differ from the actual read access—in both cases, the observed object gets the
requested value.
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3.2.4 Replaying Exceptions

The remaining interactions to be replayed are thrown exceptions. They can
occur in consequence of both outgoing and incoming method calls, which
includes constructor calls in this context. For outgoing calls, exceptions are
handled analogous to regular return events: instead of passing a return value,
JINSI constructs a proper exception based on the captured information, which
is retrieved from the event log, finally throws the exception, and thus handles
control back to the observed part. There, the exception will be processed in
the same way as during capture (e.g., by executing an exception handler which
reacts to the exception with some resolution).

For incoming calls, JINSI consumes any exception by providing an exception
handler that catches the thrown exception. During normal replay as discussed
here, JINST uses the caught exception to check whether replay is in sync. If the
returning event that belongs to the incoming call is not an exception event, this
would be a strong indicator for a failure caused by JINSI; consequently, the tool
would issue an error. During delta debugging, which we shall discuss in the
next chapter, the caught exception is used as predicate to distinguish between
failing and unresolved runs.

As we have seen above, JINST completely assumes the unobserved part’s role
and both triggers incoming interactions and provides exactly those reactions to
outgoing interactions as they occurred during the observed, faulty program run,
and thus reproduces the failure in question. After reproduction, the next task
in debugging is to find out which circumstances are relevant for the failure.
Irrelevant circumstances can be ignored; relevant ones must be investigated.
JINST’s aim is thus to simplify the execution such that only relevant object in-
teractions remain. For this purpose, it uses three techniques (Figure 3.1): delta
debugging, event slicing, and dynamic slicing—which we shall all discuss in
the following chapter.
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After we are able to reproduce the failure in question, the next important task
for us in debugging is to simplify the problem; thus, we want to find out what
circumstances are truly relevant. A circumstance may be any aspect that influ-
ences the problem like input, scheduling—or, method calls. As during repro-
duction, these aspects are subsumed under the problem environment, and the
steps in the problem history. By experimentation, we can eliminate those cir-
cumstances that are not relevant and thus isolate the failure-inducing ones. The
benefits of this approach include cutting away irrelevant information; it also
typically results in shorter program runs which cover less of the code (as we
will see in Chapter 9). A well known technique that automates this procedure
by means of automated experiments is delta debugging. In the following, we
shall see how JINSI applies delta debugging to minimize the interactions which
lead to the failure (Section 4.1). Additionally, as we will see in the second
part of this chapter (Section 4.2), it applies different slicing techniques to re-
duce the initial sequence of interactions to be minimized on the one hand (Sec-
tion 4.2.1), and to further reduce the code executed by the minimal sequence
of interactions on the other hand (Section 4.2.2).

4.1 Delta Debugging

Zeller and Hildebrandt devised a method called delta debugging, an automatic
technique that narrows down a failure cause by systematically running auto-
mated experiments [72]. Beginning with a set of possible circumstances, delta
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debugging isolates—or, simplifies—the failure-inducing circumstances, which
negatively affect the function of a program. Delta debugging automates the sci-
entific method of debugging: The basic idea is to first establish a hypothesis on
why something does not work; for instance that specific method calls with par-
ticular arguments have to be called in a certain order to produce the problem.
Afterwards, you test this hypothesis, and you refine or reject it depending on
the test outcome. Applied to method calls, this basically would mean to first se-
lect an initial sequence of method calls, and to run this sequence to test whether
the problem in question occurs. If the problem is (re-)produced (i.e., the test
fails), you would refine the sequence: you could remove some method calls,
for instance. Afterwards, you would run the test again to assess the outcome of
the now smaller sequence—which could be a more precise fault description at
the same time. Otherwise, if the problem in question does not occur anymore
(e.g., the test passes now because you have removed the method that directly
triggers the failure), you would reject your hypothesis; for instance, by starting
over with a different initial sequence of method calls. To automate the whole
process, delta debugging in general only requires a test which assesses a given
set of circumstances—in our case a given sequence of method calls.

However, it would not be sufficient if that test could differentiate between
two test outcomes (passing and failing) only. Instead, it has to be able to han-
dle a third outcome called unresolved as well. Fundamentally, delta debugging
in some sorts implements a binary search: it tests the first half of a given set
of circumstances and depending on the outcome, continues either with the first
half, or proceeds with the second half. If the first half produces the failure,
the failure-inducing circumstance has to be included there. Otherwise, if the
failure is not reproduced, that circumstance has to be in the second half. While
this might work when applied to a set of unrelated circumstances (and, where
only one single element is failure-inducing)', it is easy to construct an exam-

!For instance, a set of numbers as input in that one single particular element is sufficient to cause
the program to crash. Then, you could identify that very failure-inducing number by applying
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1: o = ml()
2: o.m2()
3: o0.m3()
4: o.md () @
Initial sequence
(failing)
1: o =ml() 3: o.m3()
2: o.m2() 4: o.md ()
First half Second half
(passing) (unresolved)

Figure 4.1: Simple binary search fails for method calls. If you would apply
a binary search algorithm in order to simplify a failing sequence
of method calls, you would get stuck because neither half would
reproduce the original problem. The first half would just pass the
test, while the second half could not be executed at all, because the
receiver of the method calls to be assessed would not have been
constructed; thus, nonexistent. The latter unresolved outcome is
used by the delta debugging algorithm to extend binary search in
order to provide a solution for that case.

ple where this will not work anymore. For instance, if you have a sequence of
four method calls m;, my, ms, and my4: constructor call m, which instantiates
object o, followed by three further method calls my, m3, and my, all executed
on the initially instantiated object o. Furthermore, only executing the very last
method call m4 would crash the object. If you would test the first half of that
sequence (thus, m; and my), the test would pass because m4 would not be in-
cluded. According to binary search, you would therefore test the second half

a binary search algorithm.
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(m3 and my4). While this sequence would include the failure-inducing call mq,
you could not run it because you would have missed the crucial constructor
call m; which would instantiate the receiver o in the first place. In this lat-
ter case, the test outcome would be unresolved—you can not clearly decide
whether the outcome is passing or failing in the sense of the original failure;
instead, a different error will occur. Hence, neither the first, nor the second half
would reproduce the original failure in question (see Figure 4.1 on page 69 for
an illustration). To deal with this problem, delta debugging actually extends
binary search by splitting the set as soon as an unresolved outcome occurs, and
thus performs a ternary, quaternary, or—generally—n-ary search if necessary.
Figure 4.2 on page 71 shows the formal definition of the actual delta debugging
algorithm that minimizes a given set of possible circumstances. For details and
more definitions, see the work published by Zeller and Hildebrandt [72].

Zeller and Hildebrandt applied the algorithm on program input: delta de-
bugging would repeat the failing program run while systematically suppressing
parts of the input, eventually coming up with a simplified input where every re-
maining part is relevant for producing the failure. In this way, they have been
able to minimize an initial 896-line HTML document that caused the Mozilla
browser to crash to one single SELECT tag. Printing out this single line re-
produced the failure in question, thus, crashed Mozilla. By simplifying input,
delta debugging helps focus on suspicious code as well: having the minimized
input at hand, the programmer can concentrate one those parts that are involved
in printing that particular HTML tag, instead of going through all the statements
that are related to the print feature in some way.

Unfortunately, applying delta debugging to input involves a number of non-
trivial requirements. Firstly, we need a method to reproduce the run auto-
matically. In the example above, this is a time-consuming task because the
application has to be automated by simulating user interactions that load and
attempt to print the simplified HTML input. Secondly, we need to control the
input. In many cases, inputs are produced by other parts or external services.
For instance, HTML pages typically are generated by servers. If Mozilla would
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Let % be the set of all possible circumstances. Let rest : 27 — {X,¢/,?} be a testing
function that determines for a test case ¢ C ¢ whether some given failure occurs (X)
or not (¢) or whether the test is unresolved (?).

Now, let rest and cx be given such that test(0) = ¢/ Atest(cx) = X hold.

The goal is to find ¢}y = ddmin(cx) such that ) C cx,test(cy) = X, and cy is
1-minimal.

The Minimizing Delta Debugging algorithm ddmin(c) is

ddmin(cx) = ddminy(cy,2) where

ddminy(A;,2) ifJie{l,...,n} test(A) =X
ddminy(Vi,max(n—1,2)) if3die{l,..., n}-test(V;) =X

ddminz(c&,n) = P i S
ddminy(cy, min(|cy|,2n)) if n <|cy|

cy otherwise

where V; = ¢y — Aj ¢y = A{UAyU---UA,, all A; are pairwise disjoint,
and VA;-|Aj| = |¢y|/n holds.
The recursion invariant (and thus precondition) for ddminy is test(cly) = ¥ An < |cy|.

Figure 4.2: In a nutshell: Delta debugging. The minimizing delta debugging
algorithm simplifies a given set of circumstances and thus yields a
set of failure-inducing ones.
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not had provided a method to load HTML data from a local file, we would have
had to control a web server to systematically deliver parts of the initial data.
Thirdly, we need knowledge about the input structure. While having knowl-
edge about textual input may lead to performance improvements (for instance,
by cutting down HTML data tag-by-tag instead of character-by-character), hav-
ing no knowledge about the structure of non-textual data may render delta de-
bugging practically useless, because this could easily trigger the delta debug-
ging worst case complexity of O(n?) [72].

Next to input, delta debugging was applied on further circumstances, like
failure causes in version histories [71] and program states [16]. However, all
these methods cannot be applied on the failure that occurs in the motivating
example: (1) the code producing the failure does not use any apparent input,
(2) we do not know what previous version exactly would pass the test, let alone
whether there is some version that would, and (3) compared to delta debugging
on program states, JINSI is much more robust”, and scales to applications with
non-accessible state (e.g., native code or distributed applications).

Instead of the applications above, JINSI leverages delta debugging to sys-
tematically suppressing parts of the program interactions to narrow down the
failure-inducing ones, as already exemplified in the motivating JODA TIME ex-
ample (see Figure 1.1 on page 6 and Figure 1.2 on page 6). While delta de-
bugging on input requires knowledge about the input structure and specific
scaffolding to manipulate the input, JINSI subsumes this as a special case, since
all input-processing methods are part of the interaction to be minimized. Delta
debugging on version history requires this very history, whereas JINSI does not
require any history at all. Finally, JINSI naturally utilizes the abstraction lay-
ers available in the program and thus does not depend on complex and large

2In 2004, Karsten Lehmann—as part of his diploma thesis—worked on DDSTATE, an ECLIPSE
plug-in that applies delta debugging to program states [10], as had been described earlier
in [68], and realized in the ASKIGOR debugging server [69]. While he was able to provide
a rudimentary prototype, it was not possible to apply it on large programs. As it turned out,
capturing, comparing, and especially transferring states of JAVA programs has been too tricky.
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program states, as opposed to earlier work [10, 16].

In the remainder of this section about delta debugging, we will see how JINSI
assesses individual delta debugging tests as either failing, passing, or unre-
solved. Furthermore, we will see how it handles outgoing interactions that are
unexpected in the strict sense: because delta debugging tests partial sequences
of recorded incoming interactions, program flow can be altered, and thus inter-
actions different to the recorded ones can occur.

4.1.1 Predicates

As already mentioned above, the underlying delta debugging algorithm re-
quires a testing function that determines for a given set of possible circum-
stances whether some given failure occurs or not, or whether the test is unre-
solved (see Figure 4.2 on page 71). In the context of JINSI, a possible circum-
stance is an incoming interaction: JINSI actively minimizes incoming interac-
tions only, because it is only possible to appropriately suppress that kind of
interaction—by omitting selected interactions exactly as the delta debugging
algorithm does. In this sense, JINST has control over the incoming interactions
and is capable of either executing or excluding these interactions freely. As op-
posed to this, it is not possible to drop outgoing interactions directly—except
for removing the corresponding statements from the code, which is beyond
the scope of this work. JINSI rather has to provide a proper return value for
each outgoing interaction, and hence makes use of the captured interactions
for exactly this purpose.®> Furthermore, interactions in general are inherently

3However, outgoing interactions indirectly caused by an incoming interaction are omitted auto-
matically as soon as the corresponding incoming interaction is suppressed. Another way to
influence the outgoing interactions would be to return different return values than the recorded
ones; e.g., returning 0 instead of 13 to possibly break a loop earlier, or returning fal se instead
of true to possibly change the predicate of conditional statements. Still, this would also be
beyond the scope of this work.
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well-ordered.* Hence, in this application of the algorithm, a set of possible cir-
cumstances and a sequence of incoming interactions are to be equatable. Delta
debugging step by step simplifies that initial sequence—typically the complete
sequence of captured incoming interactions—and eventually provides a mini-
mal sequence which reproduces the original failure. JINSI provides a generally
applicable testing function, which basically executes all the given incoming in-
teractions sequentially, and finally returns whether the outcome was passing,
failing, or unresolved. Depending on that return value, the delta debugging al-
gorithm is able to decide how to proceed and when to terminate. The only thing
that is missing to debug an individual failure is a predicate specially adapted
for the failure in question. That predicate has to determine whether the fail-
ure in question is reproduced (failing outcome), or does not occur anymore
(passing outcome); if something different happens (for instance, because JINSI
suppressed a needed constructor call), the test will be classified as unresolved.
Depending on the type of a bug’s symptom—whether it is a crashing or a non-
crashing bug®—JINSI uses different types of predicates.

4.1.1.1 Predicates for Crashing Bugs

For crashing bugs, JINSI compares the exception thrown to check whether the
simplified run reproduces the original failure. In this we assume that a crash-
ing bug causes an exception to be thrown, as it is the case for many computer
languages that have built-in support for exceptions and exception handling,
which includes the JAVA programming language. For other symptoms of crash-
ing bugs, like segmentation faults, the same approach could be used as long as
both a backtrace and some signal or similar distinct notification about the fault
is available.

4Because the respective events are numbered consecutively using natural numbers, the interac-
tions are well-ordered as a consequence.
5See Chapter 6 for details on the difference between crashing and non-crashing bugs.
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Exception in thread "main" java.lang.ArithmeticException:
Adding time zone offset caused overflow

at ZonedDurationField.getOffsetToAdd (ZonedChronology.java:357)

at ZonedDurationField.getDifference (ZonedChronology. java:339)

at BaseChronology.get (BaseChronology. java:260)

at BasePeriod.<init> (BasePeriod.java:100)

at Period.<init>(Period.java:441)

at PrecalculatedZone.create (DateTimeZoneBuilder. java:1439)

at toDateTimeZone (DateTimeZoneBuilder. java:398)

at JINSI.TestDriver.main(TestDriver. java:37)

Figure 4.3: Exception while constructing new time zone. Running the code
from the API example (see Listing 1.1 on page 6), JODA TIME crashes
with an ArithmeticException caused by an integer overflow.

In our motivating example, an ArithmeticException is thrown, be-
cause adding a time offset caused an integer overflow (Figure 4.3 on page 75
shows the actual exception). As long as a simplified, smaller subset reproduces
the same exception, the failure in question is reproduced and delta debugging
can continue to further minimize this set. Two exceptions are considered equal
if they have the same type (thus, describe the same error or exceptional event),
the same message, and the same location. In other words, the original failure’s
context has to be retained. Note that the stack trace data does not have to be
the same, because JINSI replaces classes on the stack as needed during the de-
bugging process (see Chapter 5 and Section 6.2.2), and therefore the backtrace
may contain different classes than in the original, observed run.

A different exception results in an unresolved outcome, just as any other
problem detected by JINSI during applying the delta debugging algorithm. For
instance, a simplified sequence of incoming interactions might not contain an
essential method call like a setter method which would initialize some field
f on object o, and therefore a subsequent method call on o could cause a
NullPointerException because £ would not have been initialized; or,
due to the altered (simplified) sequence the program flow within an observed
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object might be changed, and therefore an outgoing interaction could occur that
would not have been captured before (JINSI could not provide a proper return
value; Section 4.1.2 shows how it handles unknown program flow).

4.1.1.2 Predicates for Non-Crashing Bugs

For non-crashing bugs, where an exception in particular, and a backtrace in
general are not available, JINSI uses alternative predicates both on further ex-
ternally observable properties and internal program state (see Section 6.2
for details on how JINSI derives such predicates fully automatically). For in-
stance, JINSI uses predicates on output on the console like “The output con-
tains "result: -1".", and properties on attributes of objects like “Attribute
name of object with id 13 has value "UTC".” Similar to crashing bugs, as long
as a smaller, simplified subsequence reproduces the same observable failure—
this time characterized by a predicate on observable properties in general®—the
originally observed failure is reproduced and delta debugging will continue to
try to further minimize the incoming interactions which lead to that failure.
This enables JINSI to also debug failures other than crashes caused by excep-
tions, as we will see in detail in Chapter 6.

4.1.2 Synchronization

While applying the delta debugging algorithm, JINST has to handle outgoing
interactions that are unexpected in the strict sense: because delta debugging
tests partial sequences of recorded incoming interactions, both program state
and control are likely to vary in the consequent program run, and thus out-
going interactions different to the recorded ones can occur. For instance, a

SIn fact, an exception principally is a special case of an externally observable property that char-
acterizes a failure. However, as we will see in Chapter 6, using an exception, if available, and
its backtrace helps find the failure cause efficiently because stack traces tend to give hints about
the actual failure cause.
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loop could be executed less often, or the predicate of an if-then construct could
evaluate differently. In both cases, the program would follow a different path
in the control flow graph. Thus, it probably would execute either completely
different statements, or a subsequence—the program run being simplified and
the recorded sequence of interactions would diverge and would be out-of-sync
eventually. If JINSI would respond with an unresolved test outcome in all such
cases, delta debugging would require a higher number of tests, which could
result in a significant longer processing time.” As we will see in this section,
it solves this issue by providing corresponding return values if available, and
tries to re-synchronize between the program run being simplified and the se-
quence of recorded events.

Basically, if the program follows a path in the control flow graph that is a
shortcut (as it may be the case if a loop is executed less often) of the original
one as occurred during capture, JINSI will search for the corresponding outgo-
ing interactions in the event log by skipping those that would not occur during
replay. Otherwise, if the actual path follows an unknown alternative (e.g., if
the program follows an else branch which has not been executed at all during
capture), JINSI will respond with an unresolved test outcome, because it would
not know the requested return values.

Listing 4.1 on page 78 shows simple® JAVA class NumberWriter that
writes a numerical sequence 1,2,...n to a previously specified output file. If
method setNumbers (n) is called, the given number n will be used as end-
point of that sequence; otherwise, no numbers will be written at all. Setter
method setFile () specifies the output file; while a call to setNumbers ()
is optional, method setFile () must be called before producing any se-
quence, because only this method specifies the file where the numbers will

7If every test fails, the algorithm will converge in logarithmic time; if all tests are unresolved or
passing, it will require quadratic time [72].

8For the sake of simplicity, we spare, for instance, error handling like both the usual try-catch-
block that would surround all the calls to the internal FileWriter instance, and a better
solution than just printing a warning if the output file has not been set.
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class NumberWriter {
String file = null;
int numbers = 0;

NumberWriter () { /* empty constructor =*/ }

void setFile(String file) { this.file = file;

}

}

void setNumbers (int num) { this.numbers = num;
vold writeNumbers () {
if (this.file == null) {
System.err.println ("Output has not been set.
return;

FileWriter writer = new FileWriter (this.file
for (int n = 1; n <= this.numbers; n++) {
writer.write(n);

}

writer.close();

}

)i

Listing 4.1: Example program for varying program flow.

NumberWriter writes a numerical sequence to an output file.
If that file has not been set via method setFile (), the class will
issue an error (conditional statement). Method setNumbers ()
sets the sequence’s endpoint. Method writeNumbers writes the
sequence to the output file. For this purpose, it uses a loop that
counts from 1 to the endpoint of the sequence (for loop / iteration
statement). Depending on the evaluation of the predicate and the
loop counter, the program will follow a different execution path.
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be written to. Method writeNumbers () finally writes the sequence to
the specified file. For this, it first checks whether the output file was spec-
ified; if not, it will issue an error to the console and will return immedi-
ately. Otherwise, the method will create an instance of class FileWriter,
which will be used to write the individual numbers to the output file. Then,
a loop iterates over all numbers 1...n by counting, and writes each num-
ber to the file writer instance. Eventually, that writer will be closed prop-
erly, and method writeNumbers () returns. For example, when first calling
both setFile ("output.txt") and setNumbers (2) on an instance of
NumberWriter, a subsequent call to method writeNumbers () will write
numbers 1 and 2 to the output file.

When JINST regards class NumberWriter as observed and captures the
above incoming constructor call and the three subsequent method calls, JINST
will capture a sequence of interactions as shown in Figure 4.4 on page 80.
It will accordingly capture eight events in total’; of these, the first four are
incoming call events (events 1 to 4), and the remaining four are outgoing ones
(events 5 to 8). While the first three incoming events do not contain any further
outgoing interaction, the event representing the call to writeNumbers ()
involves four outgoing calls: the FileWriter object is created (event 5),
numbers 1 and 2 are written (events 6 and 7), and eventually the writer is closed
(event 8). When replaying the complete sequence of incoming interactions
(thus, events 1 to 4), JINSI will intercept the four outgoing calls and will provide
the captured return values.'”

When simplifying this sequence of four incoming interactions'' while ap-

9To simplify matters, we ignore the corresponding returning events of both the incoming and
outgoing calls.

101f any; in this concrete example, JINSI will return a placeholder for the instance of class
FileWriter, and will only receive the outgoing method calls to again return control to the
observed caller without the need to provide any return value.

For simplicity, we go without a concrete failure to minimize, as such a sequence can occur as
subsequence of a longer sequence to be minimized.
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Incoming
<<creates>>
Event 1 NumberWriter
1
setFile("output.txt" !
Event 2 (foutp ) U
setNumbers(2) i
Event 3 I—:_I
writeNumbers ' i
Event 4 0 . Outgoing
<<creates>>
Event 5
1
write(1) 1
I_I Event 6
1
write(2) 1
I_:_I Event 7
close() '
u Event 8
1
X
T
Figure 4.4: Example interactions for varying program flow. When run-

ning class NumberWriter in Listing 4.1 on page 78 by call-
ing (event 1) its constructor, methods (2) setFile (), (3)
setNumbers (), and (4) writeNumbers (), the sequence of
interactions shown in the above sequence diagram will occur. The
last call triggers four further outgoing interactions (5 to 8) to an in-
stance of class FileWriter. Depending on whether the individ-
ual setter methods are called, a different sequence of interactions
will occur.
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plying delta debugging, the two—in this context—interesting subsequences
(1,3,4) and (1,2,4) could be tested. In the first case (the call to method
setFile () wouldbe omitted while set Numbers () would be called), JINST
would have to assess the test with an unresolved outcome, because the pred-
icate in the if-clause (line 14 in Listing 4.1 on page 78) would evaluate to
true, and the instance of class NumberWriter would consequently follow
the branch that would issue the error message. However, because JINSI does
not have any information about possible interactions in this branch (as it was
not executed during capture), it neither could return a proper placeholder ob-
ject for the outgoing field access to System.err, nor could it handle the
subsequent outgoing method call to println (). In the other case (method
setFile () would be called, but method setNumbers () would not), JINSI
would find the corresponding outgoing interactions by skipping those that oc-
curred within the for-loop. Because method setNumbers () would not be
called, field this.numbers would be set to 0, and therefore the instance of
NumberWriter would not execute the for-loop at all. Instead, the call to the
constructor of class FileWriter would be immediately followed by the call
to method close () —the latter is known to JINSI, and JINSI would continue
with this very interaction. In this way, JINSI is able to handle shortcuts of the
original execution path as they frequently occur during delta debugging. Al-
gorithm 1 on page 82 illustrates the algorithm as used by JINSI to synchronize
outgoing method calls. The same fundamental idea is also applied to synchro-
nize all other outgoing interactions, like filed accesses; the concrete algorithm
is adapted to the different properties of each respective event.

During delta debugging and in contrast to replaying strictly sequentially'?,
JINSI checks for every outgoing interaction whether replay is still in sync. For

121n addition to applying delta debugging, JINSI is able to replay a captured sequence of inter-
actions in exactly the same order as the respective events occurred during capture. In this
mode, any interaction that is out-of-sync would hint at a probable fault either in capture or
replay. Therefore, when JINSI replays the given events strictly sequentially, it will not try to
re-synchronize, but will issue an error instead.
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let s be the sequence (ip, . ..,i,) of all n+ 1 captured interactions
let i;,. be the incoming interaction currently being executed
let iy.; be the corresponding returning interaction of i,
// Thus, 0 < inc < ret < n holds, because i, has to be followed by ire
let my,; be the method’s name of the currently requested outgoing method call
let pour be that method’s parameter list
let t,,; be the type of that call’s receiver
// We store the event last used for synchronization
if synchronizing for the first time then
llast < linc
end if
for all interactions ¢y, in subsequence (ijgsri1,-- - irer—1) do
if i.,,- is not an outgoing method call then
continue
end if
let m, be the method name of i,
let pcyr be the parameter list of i,
let #.,, be the target type of iz,
if meyr = Mour A Peur = Pour Neur = tous then
last < Teur
return i.,,
end if
end for
return unresolved

Algorithm 1: Finding alternatives to synchronize outgoing interactions. To
synchronize between the sequence of recorded interactions and
varying program flow during delta debugging, JINSI uses the
above algorithm. While that algorithm is specialized on method
calls, the same fundamental idea is applied to all possible types
of outgoing interactions (e.g., field accesses). The algorithm en-
sures that an alternative event is found in the appropriate context,
and that each one is utilized only once to avoid infinitive loops
otherwise caused by synchronization.
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this purpose, it checks the respective properties for each type of interaction: the
tool compares the properties of the currently outgoing, intercepted interaction
and the recored interaction that is next. If their properties match, replay is
in sync; otherwise, JINSI tries to re-synchronize as exemplified above. To track
which recorded event is next, JINSI uses an event counter—similar to a program
counter—which indicates where replay is in its recorded event sequence.

For instance, JINSI checks for each outgoing method call whether the location
in code, the method name, its parameter types, and the runtime type of the
receiver match between the currently intercepted call and the recorded one. If
both interactions match, JINSI basically will retrieve the recorded return event,
will provide a proper return value (if any), and eventually will return control to
the observed caller. If they do not match, JINSI will search for a proper event
in the subsequence between the incoming interaction currently being executed
and its corresponding returning event (every outgoing interaction is triggered
by an incoming one). For this, the tool iterates over all the events contained
in that subsequence, and again compares their properties as described above,
with the exception that it does not check the location this time: already during
implementation and early testing it turned out that comparing the exact location
is too restrictive. In the vast majority of all cases JINSI was not able to find an
alternative, proper event, because frequently program flow is changed in a way
that JINSI could not relay on interactions recorded at the very same location.'?
Instead, JINSI tries to find an alternative event within the same context, which
is defined by the circumscribing, triggering incoming interaction. Thus, if it is
able to find a proper event that occurred within the same triggering interaction,
it will use that one to obtain a proper return value. If that alternative value is
completely wrong, the program will usually be totally out-of-sync—thus, JINSI
will not be able anymore to find an alternative event—at a later point, and JINSI
will assess the current test as unresolved. Otherwise, if the original failure can

13For instance, the predicate of an if-then statement evaluates to false instead of true during mini-
mization, causing control to jump to the end of that if-then statement.
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be reproduced while providing that alternative value, the choice will have been
proper for our purpose.

In addition to the context, alternative events used for re-synchronization are
subject to one further restriction: in order to avoid infinite loops, each alterna-
tive event is used only once during each delta debugging test. For instance, if
the condition of a while loop uses an outgoing method call in its evaluation,
and the alternative event repeatedly used for that call would return true, that
loop condition would always evaluate to true, and thus the program may loop
endlessly. However, because alternative events are used only once, it is guar-
anteed that such infinite loops—at least such caused by synchronization—can
not occur. '

As we have seen, JINSI applies delta debugging to minimize the interac-
tions which lead to the failure. That underlying algorithm isolates the failure-
inducing interactions by means of automated experiments, and requires both a
testing function that determines the test outcome for a given sequence of possi-
bly failure-relevant interactions, and a predicate that is specially adapted for the
failure in question. JINSI provides a suitable testing function as well as predi-
cates that, depending on the type of a bug’s symptom, classify the outcome. In
order to be capable of handling outgoing interactions that are unexpected due
to the fact that delta debugging tests parts of the whole sequence of captured
interactions, JINSI provides a technique to re-synchronize between the program
run being simplified and the sequence of recorded events.

In the second part of this chapter, we shall see how JINSI applies different
slicing techniques to first reduce the initial sequence of interactions to be min-
imized, and to further minimize the statements executed by the minimal test
driver as determined by applying delta debugging.

140f course, infinite loops induced by other causes are not prevented by that technique.
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4.2 Slicing Techniques

In automated debugging, program slicing [64] (or slicing for short) is a widely
spread technique used to narrow down those source code statements that could
possibly have contributed to a failure. Thus, slicing helps programmers—
similar to delta debugging, which, however, is more universal—focus on those
statements that are relevant for a failure. More generally, slicing uses an al-
gorithm that yields for a given program and statement of interest c, the slicing
criterion, a slice by following data and control dependencies; see Figure 4.5 on
page 86 for formal definitions of data and control dependencies, and Figure 4.6
on page 87 for an illustration. That slice is the subset of all program statements
that only contains those statements that either are influenced by ¢, or that influ-
ence c. The former slice is called forward slice, the latter one backward slice.
Figure 4.7 on page 88 contains a formal definition of forward and backward
slices.

While forward slicing is rarely used in automated debugging, backward slic-
ing is more common: basically, forward slicing yields all statements that are
influenced by c after executing c, and thus gives a diagnosis of the future after
something has just happened; in contrast, backward slicing yields all state-
ments that had an influence on ¢, and thus gives hints about possible failure
causes in the past. Usually, in automated debugging we are interested in the
latter: where does this incorrect value come from? Indeed, JINSI uses slicing
techniques that are related to backward slicing: it implements a slicing algo-
rithm that yields a backward slice on the recorded events, and directly takes
advantage of dynamic backward slicing to filter the minimized program run.

Slicing can be applied either statically or dynamically. Static slicing ap-
plies to a given program and analyzes the source code of that program to make
statements about the program in general—about all possible program runs. By
contrast, dynamic slicing analyzes one concrete program run and its specific
input; thus, it yields properties of a specific program execution and therefore is
more precise. For this reason, dynamic backward slicing is well suited to nar-
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Data dependency: A statement S, is data dependent on a statement Sy if

e S writes some part P of the program state that is being read by S,, and
e there is at least one path in the control flow graph from S} to S, in which P is
not being written by some other statement.

Thus, the outcome of S| can influence the data read by S5.

Control dependency: A statement Sp is control dependent on a statement S|
if $5’s execution is controlled by S;. Thus, the outcome of S| determines whether S,
will be executed.

Dependence graph: The data and control dependencies form the so-called
program dependence graph Gp = (V,Ep, Ec) with

e V = {§|Sis a statement with data or control dependency on}, and
e Ep={(51,52)|S1,52 € VAS,is data dependent on S} }, and
o Ec={(51,52)|51,82 € VAS,is control dependent on S }.

Thus, the vertices V represent all the statements with some dependency on, and the
edges Ep and E¢ represent actual data and control dependencies, respectively; using
two sets for the edges allows to distinguish between data and control dependencies.
See Figure 4.6 on page 87 for an illustration of the program dependence graph.

Furthermore, the dynamic dependence graph is derived from one single pro-
gram run. Thus, it does not contain possible, but actual dependencies as occurred in
that concrete run.

The definitions of the data and control dependencies are freely adapted from Zeller’s
book on systematic debugging [70].

Figure 4.5: In a nutshell: Data and control dependencies, and program de-
pendence graph. Statements in a program can depend on each
other via data or control dependencies. These dependencies can be
used to build the program dependence graph, which various pro-
gram analysis techniques base on.
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Program max Program dependence graph

Entry: max (a, b) j

int max(int a, int b) { ¢ ‘:7'.\
max = a; N

A
if (a <b) if (a < b
max = b; 7

return max; /
/
}

!

A

S —> S Si— > S, Sy >S5,

Control dependency: Control flow: Data dependency:

S, controls S,'s execution; S precedes Sy; S,'s data is used by S,;

S, is control dependent on S, S, follows S S, is data dependent on S,

Figure 4.6: Program dependence graph. Program max is exemplarily trans-
formed into a program dependence graph. The illustration also con-
tains the control flow which is used to derive the data dependencies
(see definitions in Figure 4.5 on page 86). However, the control
flow graph is not part of the program dependence graph proper,
which includes data and control dependencies only.
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Forward Slice. Given a program statement ¢, the forward slice S* contains
all those statements s whose read variables or execution could be influenced
by slicing criterion c:

SF(c) = {s|lc = +s}

Backward Slice. Given a program statement ¢, the backward slice S® con-
tains all those statements s that could influence the read variables or execution
of slicing criterion c:

SB(c) = {s|s — +c}

The symbol — + stands for the transitive closure on the control and data dependencies.

Figure 4.7: In a nutshell: Forward and Backward Slices. The slice on slic-
ing criterion c is defined by the transitive closure.

row down those statements that could possibly have had influence on a given
program failure that manifests itself in a particular program run.

In the next section, we will see how JINSI applies a dynamic backward slicing
technique to reduce the initial sequence of interactions to be minimized. In this
way, it indirectly reduces the number of tests the delta debugging algorithm has
to run to narrow down the failure-inducing interactions. As we will see, this
preceding filtering can result in a significant speed up of the delta debugging
part of the JINSI process (see Figure 3.1 on page 26), while—compared to the
overall archived speed up—the time spent for slicing the events can be ignored.

4.2.1 Event Slicing

The computation time JINST has to spent for applying delta debugging depends
on the number of unresolved test outcomes: if every test fails, it converges in

88



4.2 Slicing Techniques

logarithmic time; if all tests are unresolved or passing, it requires quadratic
time [72]. Thus, in the best case delta debugging behaves like a logarithmic
binary search algorithm and executes in O(logn) time. However, with many
tests having an unresolved outcome, it tends toward executing in O(n?) time.
Because JINSI observes the interactions of individual objects, and a large
number of different instances can occur during one single observed program
run, JINSI may capture a large number of different observed objects. Thus, the
sequence of captured interactions will contain a correspondingly large num-
ber of incoming constructor calls. For instance, the recorded event log of test
subject COL~-1 (see Chapter 9) contains 38,031 interactions in total which in-
clude 401 incoming constructor calls. While this number seams to be rela-
tively small, even that amount can cause a very long computation time. With-
out event slicing, applying JINSI takes almost 4 hours'’ because of the large
number of 4,578 tests—caused by many unresolved tests due to missing in-
coming constructor calls. Because the delta debugging algorithm is generally
not aware of any structure of the circumstances to be tested, it does not know
about the relations between the objects and interactions, respectively, involved
in a subsequence to be tested. Consequently, the algorithm tests arbitrary com-
positions of interactions, and thus also produces subsequences that will result
in an unresolved test outcome in any case, because some crucial interaction—
e.g., an incoming constructor call—is missing from the start. Thus, in addition
to this issue related to missing constructor calls, there are many more possible
causes for unresolved outcomes. For instance, a method call that initializes
or sets a value required for some computation may be missing. Therefore, it
is best to filter the interactions to be minimized beforehand wherever possi-
ble.!® In the above example, a total number of 401 observed objects is created.

15 All experiments were conducted on a MacBook machine built in 2008 with a 2.1 GHz Intel Core
2 Duo processor and 4 GB memory.

15Note that it would be possible to extend the delta debugging algorithm by a so-called splitrer
that splits any given set of circumstances into n new sets [7]. While the default implementation
of the algorithm splits the given set into n equally sized sets, a more sophisticated implemen-
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However, only one is directly connected to the failure, the one whose called
method throws the exception causing the crash. All the other 400 observed
objects might be connected to the failure, but only if they are related by data
dependencies; they might be totally unrelated just as well.

JINSI applies a dynamic slicing technique before it uses delta debugging (see
Figure 3.1 on page 26), to filter out those captured events that could not have
had any influence on the failure—it throws away all events that are not related
to the failure for sure. In this way, it reduces the initial number of interac-
tions to be minimized directly, and the number of tests to be carried out indi-
rectly. JINSI thus reduces the number of potentially unresolved test outcomes
and hereby speeds up the delta debugging process. In the example above, with
event slicing applied before, the delta debugging algorithm has to run only 4
tests, and the whole process takes only 68 seconds—in this case event slicing
yields a tremendous speed-up.

The slicing technique used for this purpose was inspired by the work on ef-
ficient test case minimization by Leitner et al. [45]. However, in contrast to
applying static program slicing to the program code, JINSI slices the captured
sequence of interactions. Hence, as already mentioned briefly before, JINSI
applies dynamic slicing on the captured interactions of a specific, observed
failure. Figure 4.8 on page 91 gives a formal definition of the so-called event
slice'’. The key idea of using slicing to filter interactions is straightforward.
We start from the event of interest directly connected to the failure. By follow-
ing back data dependencies, we establish the subset of the events (i.e., the event
slice, or slice for short) that possibly could have influenced the initial event of

tation could take advantage of information on the used circumstances and their structure to
produce a valid set of circumstances. For instance, we could ensure to include missing incom-
ing constructor calls automatically. However, this would only solve the issues related to that
kind of interactions, and other issues related to, for instance, missing setter methods would
remain. Thus, event slicing is a more general approach, which might be complemented by a
more sophisticated splitting of interaction sequences.

17Because that slicing technique works on the recorded events, we decided to call it event slicing,
rather than interaction slicing.
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Event Slice. Given a captured event of interest ¢ called slicing criterion, the
event slice S contains all those events e that could transitively influence the
variables read by, or the execution of event c:

SE(c) = {ele — +c}

Thus, similar to program slices, the event slice is described by the transitive
closure on ¢. However, here the transitive dependencies are produced by
possible data dependencies.

Figure 4.8: In a nutshell: Event Slice. Event slicing yields all interactions
that had an influence on an interaction of interest ¢, and thus filters
out all interactions and events, respectively, that could not have had
any influence on c.

interest. Any event that is not in the slice can consequently be removed.

More concretely, by transitively following back possible data dependencies
on the captured sequence of incoming interactions recorded as events, we es-
tablish a list of possibly relevant interactions that describes the constructions
and usages of all observed objects that are involved in the captured sequence
of interactions that reproduces the failure. We have to settle for possible data
dependencies because we do not know for sure whether an event actually pro-
duces a data dependency or not: We only know whether an object’s data might
has been used by an interaction because we only see the outer shell of this
interaction!3, but we do not know the interaction’s effect on the receiver ob-
ject in detail, as we lack information about the concrete respective computa-
tion and the object usage involved in that interaction. Thus, a (possible) data
dependency on object 0 may be produced by event e and its corresponding

I8For instance, for a method call we know the receiver, the passed arguments, and the returned
value (if any).
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interaction, respectively:

1. If o was returned by e. For instance, an incoming constructor call could
create 0. We also have to include method calls that return object o, be-
cause the method might have modified that object.

2. If o was passed as argument to e. That interaction could have modified
the object’s data.

3. If o was the actual receiver of e; for instance, o as callee of an incoming
method call could be modified by this very call.

In these cases, we add e to the event slice and regard o as further object of
interest. While we could use different static and dynamic analyses to find out
whether an interaction in fact produces a data dependency, it turned out that the
approach’s uncertainty actually has not become important.'”

For example, to slice the events captured while observing a crashing bug
we start at the incoming method call that throws the exception causing the
crash, and we put all objects involved in this interaction in an initial set. This
includes the callee object, the returned object (if any), and all non-primitive
arguments. We then transitively include all events (and again the objects in-
volved as described above) where objects in the initial set are involved. We
thus obtain those interactions that can actually affect the execution of the last
interaction—the ones that make the program fail. Figure 2 on page 94 provides
a high-level description of the event slicing algorithm. The algorithm shown is

19The obvious downside is that our event slice still contains events that are not relevant for the
failure. For instance, calling a pure method whose return value is not involved in other interac-
tions of interest can not be connected to the failure (because a pure method does not change the
callee’s state). However, the current approach is good enough; the downstream delta debug-
ging identifies such method calls as irrelevant at the latest. In fact, we applied Dallmeier’s tool
for dynamic purity analysis for JAVA programs [21]. However, while applying a purity analysis
indeed can omit some further events from the slice, during experimentation it turned out that
applying purity analysis, all things considered, does not pay off.
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a straightforward version which clarifies the basic principle of following pos-
sible data dependencies between events produced by objects shared by those
events—JINSI actually uses optimizations that speed up the computation (see
below, Section 4.2.1.1).

Figure 4.9 on page 95 exemplifies the above event slicing algorithm on a se-
quence of eight incoming interactions. Three different XML elements x, r, and
c are created, and each one gets its name set. Furthermore, element c is added
as child to element r. Eventually, method getNumberOfChildren () is
called on element r. One would expect that this method call would return 1;
however, in this example the method throws an exception and thus produces
a crash. Starting at that last interaction, event slicing first adds corresponding
event 8 to the slice and object r involved in that interaction to set depends,
and then iterates backwards over all events. Events 6, 4, and 3 are added to
the slice because they contain possible data-dependencies on object r which
was initially involved in event 8. Event 5 is also added in the first iteration
because it is related to previously added event 6: they both have object c in
common and thus have a possible data-dependency. In the second iteration,
the algorithm includes event 7 because now set depends contains object c,
which was not regarded as of interest at this point in the first iteration; it was
added to depends only when the algorithm iterated over event 6. In the third
an last iteration, the algorithm does not find any event to be added to the slice
and eventually terminates. Events 1 and 2 are not included in the final slice
{3,4,5,6,7,8} because they are not related at all to any event contained in
the slice. On the assumption that setting the elements’ name is not related
to the failure—counting the children may fail even if all the elements do not
have a name—the downstream delta debugging algorithm would further re-
move events 4 and 7, and will thus reduce the initial sequence of interactions
to (3,5,6,8).
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let interacts be a sequence of incoming interactions
let criterion be the interaction of initial interest
slice + {criterion}
// callee, arguments, and return value of criterion
// initiate set of possible data dependencies
depends <~ get_objects (criterion)
repeat
slice_size < size(slice)
for all events e in reverse(interacts) do
for all objects o in depends do
if o is (target \V argument V return value ) of e then
slice + sliceU{e}
depends < depends U get_objects (e)
end if
end for
end for
until slice size =size(slice)
return slice

Algorithm 2: Event slicing. Similar to dynamic backward slicing, event slic-
ing yields all interactions that could have previously influenced a
given interaction of interest c (called slicing criterion). Starting
with c, the algorithm repeatedly scans all interactions backwards
and joins those which have a possible data dependency on the
slice established by then. A data dependency between two in-
teractions will be given if the two use the same object; either as
callee, argument, or return value. The slicing algorithm termi-

nates as soon as a fixed point is reached.
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event

Event Slicing depends  slice

.1 | x = new XMLElement() |

2

6

| x.setName("some-element") |

| r = new XMLElement()

5) constructor call returns r {r.c} {3,4,5,6,8}

| r.setName("root")

4) method call has r as target {r,c} {4,5,6, 8}

| ¢ = new XMLElement()

3) constructor call returns ¢ {r,c} {5,6,8}

| r.addChild(c)

2) method call on r has ¢ as {r,c} {6,8}

argument; and has r as target

| c.setName("child")

6) method call has c as target {r,c} {3,4,5,6,7,8}
= final slice

| n= r.getNumberOfChiIdren()&I

1) method call produces {r} {8}
failure; and has r as target

Figure 4.9: Example for event slicing. Event slicing filters all events that are

transitively involved in construction and usage of the objects di-
rectly used by an event of interest—usually the event directly in-
volved in the failure. In this example, event 7 is only included in
the slice eventually because event 6 was included before. Thus, it
would not be sufficient to sequentially process over all events only
once. In the end, events 1 and 2 can be dropped before applying
delta debugging.
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4.2.1.1 Efficient Implementation

Basically, instead of iterating over all events repeatedly until a fixed point is
reached?”, JINSI first creates a directed graph that represents all inter-event de-
pendencies, and then obtains the connected subgraph that contains the slicing
criterion—this subgraph contains exactly the event slice. The graph can be
constructed by iterating over all events only once; its vertices represent the
events, its edges possible data dependencies. To determine the subgraph which
represents the slice, JINSI transitively follows all edges (dependencies) starting
at the slicing criterion by doing a breadth first search. The resulting subgraph’s
set of vertices contains exactly those events that are in the event slice.

While using a graph structure to represent all the dependencies and to com-
pute the slice results in time complexity O(|E|+ |V |)—since every vertex and
every edge will be explored in the worst case—and thus, in theory, again in
O(n?) as |E| = O(|V|?), it turned out during experimentation that this approach
outclasses the above naive one in practice. Using the naive approach, we were
not able to compute the event slice at reasonable cost, especially in terms of
computing time. As opposed to this, we were able to compute the event slice
within seconds to a few minutes using the graph based approach. However,
that latter approach entails an issue: the built graph easily contains hundreds of
millions of edges, and thus involves memory problems. To deal with this issue,
JINSI uses an adjacency matrix consisting of bit arrays®! to represent which

20Thus, the basic slicing algorithm in Figure 2 on page 94 is in O(n?). Having sequences of
captured events with several tens of thousands of elements, this poses a serious issue regarding
the runtime of the slice computation. JINSI initially implemented that naive algorithm; as
it turned out quickly during early experimentation, that approach was computationally too
inefficient.

21 Also known as a bitset. We actually use uncompressed bitsets as provided by the JAVA runtime
environment. Because uncompressed bitsets are wasteful data structures for sparse sets, we also
tried different implementations of compressed bitsets, like word-aligned hybrid compressed
bitsets. However, as it has turned out, the spatial advantages were outweighed by runtime
disadvantages.
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vertices (events) of the used graph are adjacent to (depend on) which other ver-
tices: because each entry in the adjacency matrix requires only one bit, they
can be represented in a very compact way; besides avoiding wasted space, this
compactness also encourages locality of reference which enables the computer
to cache the data more efficiently.

Using a graph represented by an adjacency matrix enabled us to apply event
slicing to event logs containing tens of thousands of elements on a laptop com-
puter with only 4 GB memory; thus, no especially powerful machine is required
to run the analysis in a reasonable amount of time. Furthermore, applying event
slicing in general helps reduce the number of tests the delta debugging algo-
rithm has to execute, and thus reduces the total runtime of applying JINSI on a
failure.

In the motivating example, applying the event slice to the 14,629 incoming
interactions takes 24 seconds and 1,940 interactions remain. The downstream
delta debugging needs 38 seconds and 39 tests to minimize these interactions
until the two failure-inducing ones remain (see Listing 5.1 on page 106). With-
out event slicing, delta debugging would have taken 102 tests and two minutes.
With event slicing, JINSI needs less than one minute for the entire process.
While it is not guaranteed that applying event slicing yields a significant speed
up, we observed some cases where event slicing was able to filter out unrelated
events for the most part (see Chapter 9 for details), and JINSI was able only
in this way to minimize the initially captured sequence of interactions within
minutes, instead of hours.

In the remainder of this section, we will see how JINSI applies dynamic back-
wards slicing on the minimized program run to further reduce the amount of
program statements that are relevant to the failure.

4.2.2 Dynamic Slicing

After applying event slicing and delta debugging to the captured program run,
JINST finally applies dynamic program slicing using Hammacher’s dynamic
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slicer for JAVA [34]. While delta debugging computes the minimal sequence
of interactions that reproduce the failure, the subsequently applied dynamic
backward slice computes all statements that possibly could have influenced the
failure within the minimal run. In this way, JINSI reduces the number of lines
to be inspected by the developer still more. For instance, in the motivating
example, the minimized run covers 193 lines, whereas the slice within this run
contains only 54 lines.

JINSI applies delta debugging on the captured interactions and therefore min-
imizes on the method level at that phase. That granularity consequently pro-
vides a diagnosis not finer than on the method level: it basically provides a set
of methods?? that are related to the failure—to reproduce the failure, one has
to call these methods. Additionally, that set also provides a set of source code
statements that have contributed to the failure: exactly those statements that are
executed by the minimized method calls. However, these method calls usually
also cover lines that are not strictly related to the failure, but that are technically
required to replay the minimized program run. For instance, a failure-inducing
constructor call may initialize fields that are not strictly required to reproduce
the failure—it may initialize a cached hash code>>—but by calling that con-
structor we automatically execute all its statement?*. However, we can neither
selectively execute nor minimize single statements within a method because
JINSI applies delta debugging exactly on the method level.

In contrast, dynamic program slicing yields all statements that could have
contributed to the failure. Thus, it provides a diagnosis on the statement level,

220ne can easily derive that set from the minimized sequence. Strictly speaking, that set further
contains both method and constructor calls, as well as field accesses.

2 For complex objects meant to be put into a collection, caching the probably expensive compu-
tation of the hash code usually is a good strategy to speed up the provision of these objects by
the collection.

24 At least the statements covered by the call triggered by JINST; there might be statements not
covered, for instance the statements within an else-branch while the corresponding then-branch
gets executed.
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an abstraction level lower than the method level and thus with a finer granu-
larity. However, it typically yields more statements than strictly required to
reproduce the failure, too. For instance, the dynamic slice may contain state-
ments in methods executed in the observed faulty run, but not required by the
minimized run to reproduce the failure. Fortunately, the set of statements pro-
vided by delta debugging and the one provided by dynamic backward slicing
are not congruent: they both typically contain different statements that are not
strictly required, so they may not be contained in the respective other set at the
same time.

JINSI combines advantages of both worlds and basically computes the in-
tersection between the statements provided by delta debugging, and the ones
given by dynamic backward slicing. More concretely, it applies dynamic back-
ward slicing on the minimized program run, and thus is able to provide a set
of statements that could have influenced the failure within the already mini-
mized run. Figure 4.10 on page 100 illustrates this approach. The left col-
umn contains simplified class XMLE lement that provides methods to set an
element’s name, and to manage its child elements. We assume that a faulty
program run executes all five methods; thus, all methods and lines would
be covered by that run. The middle column shows the methods and state-
ments executed by the simplified run as minimized by delta debugging. We
assume that the minimal run is similar to the one in the above example (see
Section 4.2.1 on event slicing); thus, setting a name is not required to trig-
ger the assumed failure in method getNumberOfChildren (), and method
removeAllChildren () mustnot be called®. The statements executed by
the minimal sequence contain the technically required statement that initializes
the element’s name in the constructor, but that does not strictly influence the
failure: the name is not connected to the failure at all. Thus, while we obtained
a minimal sequence or set of interactions, respectively, by applying delta de-

25Otherwise, the effect of calling addChild () would be reverted and therefore addChild ()
could not be contained in the minimal sequence.
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Observed Class

Delta Debugging

yields minimal set of interactions and thus
minimizes program code as well:

Dynamic Program Slice

filters out statements not related to the
failure in question:

class XMLElement {

String name;
Vector children;

XMLElement() {
this.name = null;
this.children = new Vector();

void setName(String name) {
this.name = name;

}

void addChild(XMLElement element) {
this.children.add(element);

}
int getNumberOfChildren() {
return this.children.size();

void removeAlIChildren() {
this.children.clear();

}
}

class XMLElement {

String name;
Vector children;

XMLElement() {
this.name = null;
this.children = new Vector();

}

void setName(String name) {
this.name = name;

}

void addChild(XMLElement element) {
this.children.add(element);

}
int getNumberOfChildren() {
return this.children.size();

void removeAllChildren() {
this.children.clear();

}
}

class XMLElement {

String name;
Vector children;

XMLElement() {
this.name = null;
this.children = new Vector();

}

void setName(String name) {
this.name = name;

}

void addChild(XMLElement element) {
this.children.add(element);

}
int getNumberOfChildren() {
return this.children.size();

void removeAlIChildren() {
this.children.clear();

}
}

Interactions and statements executed
in minimized run.

Intersection between minimized run
and dynamic backward slice.

Figure 4.10: Combining delta debugging with dynamic slicing. Compar-
ison of applying delta debugging alone and combining it with
dynamic backward slicing. The dynamic backward slice con-
tains statements that are not executed by the minimized run
(this.children.clear ()). Thus, the combination of delta
debugging and dynamic slicing can result in smaller sets than ap-
plying dynamic slicing alone.
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bugging, we still are faced with statements not required to understand the fail-
ure. The right column finally shows both the statements in the dynamic slice of
the original, non-simplified program run, and the statements contained in the
dynamic slice applied to the minimized run. While the initialization of the ele-
ment’s name is not contained in both slices as expected, the slice of the original
run would contain the statement in method removeAll1Children () which
actually is not required to be called to reproduce the failure. Thus, applying dy-
namic backward slicing on the minimized run helps identify statements that do
not have any data dependency on the slicing criterion, and thus usually reduces
the minimized run even more.

As we have seen, JINSI uses two dynamic slicing techniques to speed up the
delta debugging phase, and to further reduce the set of executed statements that
are relevant to the failure. In this way, JINSI is able to provide a diagnostically
conclusive result both efficiently and effectively. Chapter 9 provides an em-
pirical study that supports this hypothesis. In the next chapter, we shall see
how JINSI is able to automatically pinpoint a defect in practice. For this, we
apply the tool to the JODA TIME bug discussed in the introductory example of a
crashing bug that is hard to debug manually.
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In the previous chapter, we have seen how JINSI successively applies three
different techniques—event slicing, delta debugging, and dynamic program
slicing—to simplify a faulty program run to finally provide a minimal sequence
of interactions that reproduces a given failure. Algorithm 3 on page 104 reca-
pitulates this approach: this algorithm computes both the minimal sequence
of interactions that reproduce the original failure, and a set of statements that
could have possibly contributed to the failure within the minimized run. While
the first diagnosis—failure-inducing interactions—is suitable for replaying the
original failure at will, and thus for examining the simplified run, the latter—
relevant source code statements—-helps one to directly focus on program state-
ments that contributed to the failure on the source code level.

In this chapter, we will focus on the diagnostic quality of the minimal se-
quence of interactions. For this, we will see how the JINSI approach applies
to the crashing bug in the motivating JODA TIME example', and how the mini-
mized run helps pinpoint the defect. Chapter 9 finally contains an experimental
evaluation that helps us investigate how well our approach works in practice on
a broader scale.”

In order to assist the developer to debug a failure and finally fix the defect,
JINSI requires a suspicious set of classes to start with. If a program crashes, the
tool by default starts with the topmost class on the stack trace, and automat-

! As a reminder, the code in Listing 1.1 on page 6 crashes JODA TIME when run in the western
hemisphere

ZFor this, we will compare against dynamic slicing and therefore will then exploit the set of
possibly failure-inducing statements as computed by JINSI.

103



5 Pinpointing the Defect

let captured be the sequence of all captured interactions
let predicate be the predicate assessing delta debugging test outcomes
procedure MIN(captured, predicate)
prefiltered < EVENT_SLICE(captured)
MiNinteractions <— DD-MIN(prefiltered, predicate)
MiNstatements <— DYNAMIC_SLICE(MiNinseractions)
return (minintemcti()ns’ minsmlements)
end procedure

Algorithm 3: Minimizing interactions. For a given sequence of captured in-
teractions and a predicate, JINSI combines event slicing (see Sec-
tion 4.2.1 for details), delta debugging (see Section 4.1), and dy-
namic program slicing (Section 4.2.2) to compute a minimal se-
quence of interactions that reproduce the original failure, and a
set of statements that could have possibly contributed to the fail-
ure within the minimized run.
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ically follows all the objects on the stack; one after another, the correspond-
ing classes are added to the set of observed classes. This iterative process
stops when the bottommost stack element is reached, providing the developer
with failure reproductions at various abstraction levels. The lowest abstraction
level contains the topmost class only, and thus directly describes the location
of the crash and its closest context, respectively. By contrast, the highest level
contains all classes on the stack, and thus provides a failure description on
the outermost hull: Listing 1.1 on page 6, for instance, shows the JODA TIME
failure at the highest abstraction level, which is useful to understand the fail-
ure in its general context. However, to actually fix the failure, it is wiser to
start at the lowest abstraction level, the topmost class on the stack. In our
example (see Figure 4.3 on page 75 for the full stack trace and the excep-
tion thrown), this is class ZonedDurationField. Following this, one pro-
ceeds along the various abstraction levels towards the bottom by adding more
and more involved classes. In our example, this successively includes classes
ISOChronology3, Period, and so on.

This iteration strategy will pinpoint the defect in JODA TIME after only three
iterations.* Examining the minimized unit test after adding the Period class
shows that only two interactions are required to reproduce the failure (see List-
ing 5.1 on page 106 for the minimal unit test): the Period constructor fails
on the given parameters. Why does this happen? Because the given parameters
stand for a time that does not exist in a time zone west of Greenwich. And how
can a time given in seconds not exist? Because when daylight savings time
ends, local time shifts by one hour—in North America, 1:59 a.m. is followed
by 3 a.m., for instance. On this day, 2:30 a.m. is indeed an illegal time.

31soChronology is the concrete instance at location BaseChronology. java:260.

4 Although there are five elements on the stack trace starting at class Period, there are only
three different objects involved: frames Period.init and BasePeriod.init belong to
the same instance of class Period, frame BaseChronology.get belongs to the instance
of class ISOChronology, and the uppermost two frames belong to the same instance of class
ZonedDurationField.
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I PeriodType 089 = (PeriodType) JINSI.getMock (89);
2 new Period(-9223372036854775808L, -2717640422000L, 089);

Listing 5.1: JODA TIME: Minimized test driver. After only three iterations,
JINSI isolates the crucial interaction that pinpoints the defect:
the Period constructor fails on the given parameters, because
they stand for a time that does not exist in a time zone west of
Greenwich.

To finally fix the defect, we must call the Period constructor with legal
values—namely, force the local time zone to UTC. Figure 5.1 on page 107
shows how the JODA TIME developers fixed the bug: by passing a fourth argu-
ment to the Period constructor that fixes the chronology to UTC.

To debug the issue with JINSI, the developer would only have to examine
three minimized unit tests until she has reproduced the original failure and
executed the defective code. Each of these minimized unit tests consists of two
lines or less, and executes only 54 lines overall. JINSI cannot fix the bug on its
own; but the amount by which the search space is reduced considerably eases
debugging.

This example shows two further benefits—in addition to leading the devel-
oper to the defect—of the diagnosis as it is yielded by applying JINSI:

Mocked Environment. While JINST actually creates an instance of observed
class Period, it by contrast mocks the required parameter object 089
of type PeriodType. Thus, the programmer can concentrate on those
living, observed objects that are indeed relevant to the failure. JINSI re-
places all other objects by mock objects that behave just like observed
during capture. Apart from that, the programmer could—if desired—
add so far unobserved classes to the observed ones in order to examine
their actual behavior. However, in the case above, calling the constructor
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class DateTimeZoneBuilder$PrecalculatedZone {
static PrecalculatedZone create(...) {
/..
p = new Period(trans[i], trans[i + 1],
- PeriodType.yearMonthDay () ) ;
PeriodType.yearMonthDay (),
+ ISOChronology.getInstanceUTC()); // <- FIX
/..

+

Figure 5.1: JODA TIME: Fix for crashing bug. The above patch was applied
by the developers of JODA TIME to fix the crashing bug in our moti-
vating example: the time zone is set explicitly. Thus, the code does
not depend on the system’s time zone anymore, which explains why
the former code fragment caused a crash in some time zones, while
it worked as expected in others. After this fix has been applied
to JODA TIME, the minimized test driver as computed by JINSI (see
Listing 5.1 on page 106) succeeds as well.

of class Period already pinpoints the defect.

Executable Unit Test. JINSI converts the minimal sequence of failure-induc-
ing interactions into a unit test which enables the developer to run these
interactions as a JAVA program (JINSI provides the proper scaffolding
which handles the outgoing interactions). In this way, the developer is
able to examine the defect within her familiar environment (e.g., her de-
bugger). Furthermore, the form of common JAVA source code makes it
easier for the developer to read and understand the interactions, espe-
cially in contrast to the event log which stores the individual events as
XML data.

In the following chapter, we will go into details about how JINSI automati-
cally selects the observed objects whose interactions are to be minimized. As
we will see, depending on the type of the bug—whether it is a crashing or a
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5 Pinpointing the Defect

non-crashing bug—IJINSI uses a different strategy to determine these objects. In
both cases, the tool in this way provides failure reproductions at different ab-
straction levels—along cause-effect chains—as seen above. For non-crashing
bugs, we will further see how JINSI generates proper predicates also automati-
cally.
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In the previous chapters, we have seen how JINSI in its entirety captures and
replays objects interactions to reproduce failures, and how it applies different
techniques to eventually minimize those failure reproductions. Finally, in the
preceding chapter, we have seen in concrete terms how JINSI is able to provide
failure reproductions at different abstraction levels by following all the objects
on the exception’s stack trace, and, in this way, to pinpoint the defect causing
a crash. In this very chapter, we will expand on JINSI’s ability to automati-
cally select objects of interest—a selection process that starts with a failure
and eventually leads to its causing defect.

As already broached, a central feature of JINSI is its ability to automatically
select the objects to be observed—and thus, the objects whose interaction is to
be minimized. JINSI starts with the object in whose context the failure occurs,
and gradually extends the set of objects along cause-effect chains [68] that lead
to the failure: first, this happened, therefore, that happened, and therefore the
program failed. In the context of JINSI, the cause-effect chain includes objects
and their corresponding interactions; it involves the constructions and usages
of all observed objects that are involved in the interactions that reproduce the
failure. This way, JINSI ensures that both the eventually failing object, as well
as the object that initially causes the failure are included in the diagnosis. This
chapter discusses the two general strategies used by JINSI to select observed
objects for both crashing and non-crashing bugs.

In debugging, software bugs can be classified into two categories: crash-
ing and non-crashing bugs. The former category refers to bugs that cause the
program to crash: the program execution gets interrupted by an exception or
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signal.! The latter refers to bugs that do not cause crashes, but different symp-
toms like unexpected output, or wrong results in general. One main differ-
ence between crashing and non-crashing bugs is the availability of a backtrace:
while crashing bugs often cause the underlying system to provide a call stack of
the crashing function, non-crashing bugs usually manifest themselves by more
subtle symptoms, and therefore are more difficult to debug. In the following,
we will first recap how JINSI takes advantage of a crashing bug’s stack trace to
select the objects to be observed. In the remaining main part of this chapter,
we will finally see how JINSI handles non-crashing bugs, where an exception
and thus a stack trace is not available.

6.1 Crashing Bugs

In a crashing bug, an exception is thrown from the topmost object on the call
stack; such bugs tend to be easier to be debugged because the stack trace fre-
quently provides good hints about the defect location [58]. For crashing bugs,
JINSI uses the stack trace, and hence the control-flow information contained
therein, as a cause-effect chain:

1. Tt starts observing the topmost object and minimizes its incoming in-
teraction using the presence (or non-presence) of the same crash as a
predicate for minimization; as long as the same crash occurs, the failure
in question is reproduced.

2. In the following steps, the set of objects is gradually expanded to include
more and more callers.

Algorithm 4 on page 111 formalizes this strategy.

'In JAVA programs, crashing bugs cause an exception—shorthand for the phrase “exceptional
event”—to be thrown. In other programming languages, crashes may cause other symptoms,
like signals in Unix applications.
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6.1 Crashing Bugs

let exception be the thrown exception
// predicated is derived from type of exception, its message, and its location
predicate < DERIVE PREDICATE(exception)
// set of observed classes
observed < 0
// following down the stack
for all objects obj on stack of exception do
class <— CLASS_OF(obj)
observed <+ observed U {class}
captured <— CAPTURE(observed)
// for MIN, see Figure 3 on page 104
min < MIN(captured, predicate)
print UNIT_TEST(imin)
end for

Algorithm 4: Iteration strategy on objects for crashing bugs. JINSI takes
advantage of the control-flow information contained in the stack
trace to derive observed objects and classes, respectively. Start-
ing with the topmost element on the stack, JINSI follows down
the stack while it successively minimizes the corresponding ob-
ject interactions and outputs the minimal unit test. The predicate
initially derived from the exception stays the same all along the
stack.
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L'Stack of ArithmeticException Observed Objects
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Figure 6.1: Selecting observed objects for crashing bugs. For crashing bugs
like the one in JODA TIME, JINSI starts with observing the topmost
target object (01) on the call stack, successively expanding the set
of objects from caller to caller (03, 03, ...). Due to calls of 0| and 03
on themselves, there are only three different objects but five meth-
ods on the stack. The minimization predicate p derived from the
exception stays in the topmost method, identifying the crash, and
thus minimizing the interaction that leads to the crash. The result is
a cause-effect chain of interactions along the control-flow in which
every chain element is minimized. Algorithm 4 on page 111 for-
malizes this strategy.
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6.1 Crashing Bugs

Figure 6.1 on page 112 illustrates this strategy by the JODA TIME crash—
as already exemplified and discussed in detail in the previous chapter. JINSI
minimizes the interactions into the failing object (01), then the additional inter-
actions into its caller (0), then those into the caller of the caller (03), and so
on. The result is a cause-effect chain of interactions along the control-flow in
which every chain element is minimized. The main advantage of this strategy is
that it takes advantage of the crash early principle® of exceptions: the distance
in execution time between the defect being executed and its final manifestation
as crash is relatively short; thus, the cause-effect chain is short as well.

However, this strategy—as the case may be—has a weak point: it will work
particularly well in those cases if and when the stack trace contains the de-
fective class; thus, if the trace directly involves an instance of that class with
the defect in its code. Only then, JINSI would eventually select the defective
class as observed, and thus would include it in the minimizing reproduction. If
not, JINSI will nevertheless be able to compute minimal failure reproductions
at all the individual abstraction levels and stack frames, respectively. Yet, the
diagnosis would neither contain the defective class which would have to be
manually defined as observed for this purpose, nor would it execute the defec-
tive code as the defective class will be mocked. Thus, if we want to include the
defective class into the diagnosis automatically, we would have to use a differ-
ent strategy to select objects to be observed. Indeed, JINSI provides a further
strategy that does not only work in such cases where the defective class is not
on the stack, but that also works for non-crashing bugs. In the following, we
will see the alternative strategy used by JINSI to effectively and automatically
debug non-crashing bugs as well—as we will see moreover, this strategy is a
generalization of the one for crashing bugs.

2The crash early principle tells that whenever an error occurs in your software you should crash
immediately, and not later in the program run, because then it would be hard to find the cause for
the error (thus, the defect). This principle and its maxim “A dead program normally does a lot
less damage than a crippled one” are described in detail in the book by Hunt and Thomas [35].

113



6 Selecting Observed Objects

6.2 Non-Crashing Bugs

In a non-crashing bug, a failure comes to be as some incorrect output—or, more
generally, as an unexpected observable behavior caused by an infection of the
program state. Such infections are usually much harder to debug than a crash,
because the infection itself is caused by a defect early in the program execution,
but often discovered only at the end of the execution once the defect manifests
itself as the externally observable failure.? In such a situation, the programmer
must identify the source of the infection chain, progressing backwards along
the origins of values.*

This is where a dynamic backward slice is most helpful, as it contains pre-
cisely those parts of the program that could have influenced a specific set of
variables at some point. In particular, this technique can be applied to the vari-
ables that are obviously connected to the observed failure—like the variables
that are used when printing some incorrect output—yielding only those parts
of the program that are connected to the failure via data dependencies (see
Section 4.2 for details on program slicing).

6.2.1 Object Dependencies

While dynamic slicing according to the standard definition yields a set of state-
ments only, Hammacher’s slicer for JAVA [34] additionally provides a dynamic
dependence graph (see Figure 4.5 on page 86 for definitions of data and control
dependencies, and of the program dependence graph). Similar to a dynamic

3The infection usually affects the innermost scope of the program state, which is hard to be
observed by the programer. Usually, the programmer has to cope with a debugger to find and
examine such infections, which often is a tedious work. By contrast, the failure appears on
the observable surface of the system and can therefore be noticed without taking any particular
measures.

4Such a situation can also happen with crashing bugs, although this was not the case in the bugs
we observed. On the contrary, cause-effect chains along the stack trace tend to be much shorter
than the ones in non-crashing bugs—in accordance with the crash early principle of exceptions.
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slice, that graph is derived from one single program run, and therefore does not
contain possible, but actual data and control dependencies as they occurred in
the concrete run.

The dynamic dependence graph enables JINSI to deduce information on de-
pendencies between objects, and to determine subslices to be minimized: For
instance, if a statement y executed within object ¥ depends on a statement x
executed within object X, JINSI deduces that object Y depends on object X;
there is an object dependency’ between Y and X. In other words, object ¥ gets
some required information from object X, either represented by a data or by a
control dependency. Thus, these object dependencies represent an ordered set
of objects on the dynamic program slice. Having a long chain of these object
dependencies, a subslice is defined by a set of connected chain links. Further-
more, while dynamic program dependencies in fact result in graphs but not
in linear chains (and, by implication, in object dependence graphs rather than
simple chains), in the following we assume, for the sake of simplicity, that we
work on linear structures. However, all concepts and strategies presented in
this section can be easily® adapted to graph structures as well—in reality, JINSI
applies these to the occurring graphs. Figure 6.2 on page 116 shows a defi-
nition of both object dependencies and the thereof derived object dependence
graph.

For non-crashing bugs, JINSI takes advantage of the information on dynamic
program and object dependencies, respectively, to track back the infection
chain, and to minimize individual subslices and their corresponding object in-
teractions to eventually obtain a sequence of minimized unit tests along the
cause-effect chain similar to crashing bugs.” JINSI basically starts with a given

SJINSI always works on one single (faulty) program run. Therefore, in the context of JINSI, we
consider dynamic dependencies only.

5By doing a breadth-first search on the graph structure instead of simply following the links in a
strictly serial chain.

7Because the dynamic dependence graph includes both data and control dependencies, it contains
the control dependencies of a possible stack trace as well. Consequently, the approach for
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Object dependency: An object instance O, of class C; is dependent on an
object instance O of class C| if there is either

e a statement s, in C; that is data dependent on a statement s in Cy; or

e a statement s, in C, that is control dependent on a statement s in Cj.

Thus, object O, gets some required information from object Oy, either
represented by a data or by a control dependency: either O, reads some
data previously written by O;, or O; had determined that the program’s
execution continued in 0. In the context of this work, we consider dynamic
dependencies only; therefore, object dependencies are derived from a
single program run, and in fact are dynamic object dependencies—object
dependencies for short.

Object dependence graph: The object dependencies form the so-called
object dependence graph Go = (V,E) with

e V ={0|Ois an object with an object dependency on}; and
o E={(01,0,)| 01,0, €V A O, is object dependent on O }.

Thus, the vertices V represent all the objects with some dependency on, and
the edges E represent actual object dependencies.

Because that graph is derived from (dynamic) object dependencies, the
object dependence graph also contains actual dependencies as they occurred
within a single program run.

Figure 6.2: In a nutshell: Object dependencies and the thereof derived
graph. Object dependencies and the corresponding dependence
graph are defined on top of—and, similar to—data and control de-
pendencies (see Figure 4.5 on page 86).
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predicate on externally observable state (typically, a failing test oracle) and de-
termines the dynamic backward slice from that object, and the corresponding
dynamic dependence graph. It then progresses along the deduced object de-
pendencies using a sliding window approach: First, the interaction into the last
object on the slice (o) is minimized. Then, the interaction into the objects o
gets data from (0;) is minimized. Then, the interaction into the next level of
dependency (03) is minimized, and so on.

However, non-crashing bugs pose a special challenge to minimization, as
the set of involved objects can potentially grow very large. If we were to apply
a similar strategy as for crashing bugs (i.e., including more and more caller
objects), we would eventually include all objects on the dynamic slice, which
results in a huge number of interactions, and finally in a diagnosis which would
be less conclusive. Instead, we go for a stepwise minimization: rather than
minimizing the entire set on the dynamic slice, we basically minimize each
element on the chain in stages—that is, for every object, only the object itself
as well as the objects it directly depends upon. Though, the window size is not
fixed (e.g., a window size of 2); JINSI rather adjusts the window size, as we will
see in the following example of a crashing bug.

Listing 6.1 on page 118 shows the incorrect output caused by a non-crashing
bug: NANOXML, an XML parser for JAVA (see issue NAN-6 in Section 9.1 for
details), reads a given XML file and pretty prints the parsed data to the con-
sole. Unfortunately, the output contains an artifact which is not contained in
the input. Thus, somewhen between reading the file and printing the output
somewhere a defect had been executed that had caused the initial infection and
eventually led to the faulty output.

To minimize the object interactions along the object dependencies—which
are in principle derived from the dynamic slice, and thus along the cause-effect
chain—IJINSI starts with object oy, an instance of XMLWriter, that writes XML

non-crashing bugs is a generalization of the one applied by JINSI to crashing bugs. However,
following the control dependencies directly given by the stack trace of a crashing bug, JINSI
can exactly follow the cause-effect chain as represented by that stack.
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<FOO>
<BAR/>
<BAR x="1"/>
<BAR x="1" y="2"/>
<BAR>
<BAR/>
<BARBAR/>
<BA/>
<F00/>
</BAR>
<BAR>blah</BAR>
<BAR x="1">blah</BAR>
<BAR>&1t; &amp; &gt; &apos; &quot; </BAR>
<BAR>abc</BAR>
&1t; &amp; #38; &gt ; &quot; &apos; ! : &#x2030;
</F00>

Listing 6.1: Defective output as issued to the console by NANOXML. The
content of root element FOO should not contain the artifact
#38; (Line 15). The expected, correct content would be
&1t; &amp; &gt; &quot; &apos; ! : &#x2030;.

public class XMLEntityResolver {
public XMLEntityResolver () {

/]

this.entities.put ("amp", "&#38;#38;");
+ this.entities.put ("amp", "&#38;");

/]

Figure 6.3: Actual fix in NANOXML. The resolver was not initialized cor-
rectly. Instead of “&#38; 7, the entity “amp” was initialized with
“&#38; #38; "—precisely the artifact being present in the faulty
output.
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element o; to the console, and follows along objects 0, and o3, of which the
latter builds the written XML element, and so on. Eventually, the cause-effect
chain ends at an instance of EntityResolver which executes the actual
defect as shown in Figure 6.3 on page 118. Thus, JINST had minimized along the
data and control dependencies of the dynamic slice. This strategy finally results
in the initial link of the cause-effect chain—thus, the actual defect. Figure 6.4
on page 120 illustrates the strategy on object dependencies as used by JINSL

While the above strategy enables JINSI to proceed along the cause-effect
chain as given by the dynamic slice, it results in a further challenge: the sliding
window approach requires JINSI to drop the initially observed object—o, the
instance of class XMLWriter in the above example—from the set of observed
objects. Thus, it looses the initial predicate that is defined on this very object.
In the remaining part of this chapter, we will see how JINSI generates new pred-
icates fully automatically in order to still be able to decide on success or failure
during delta debugging.

6.2.2 Generating Predicates

Removing the initial failing object (thus, o; in the above examples) from the
set of observed objects brings another challenge: we lose the original predicate
deciding on success or failure, and thus have no predicate anymore to minimize
against. For instance, because the above predicate is defined on the output
written to the console, and object 0 exactly writes that output, without o4
being observed and thus being substituted by JINSL, no output would be written
at all—the predicate would be of no use.

JINSI therefore generates alternative predicates (shown as p/ and p// in Fig-
ure 6.4 on page 120). A predicate needs to distinguish passing and failing runs;
to derive such predicates automatically, we could compare known passing and
failing runs to deduce distinctive features which would identify a run either as
passing, or as failing—for instance, we could use statistical debugging for this
purpose. However, since we start with a single failing run only, where do we
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Figure 6.4: Selecting observed objects for non-crashing bugs.

Console Output:

&amp; #38; &gt ;
]

Object Data Dependencies

Data Dependency
/

/
01 : XMLWriter 05 : XMLElement 03 : StdXMLBuilder | .. e’ 07 : EntityResolver
defective
p Observed Objects
—_
p

For non-

crashing bugs, JINSI progresses by stages along object dependencies
basically derived from the dynamic backward slice, minimizing ob-
ject interactions in individual subslices to finally obtain minimized
unit tests along the cause-effect chain. Because JINSI removes the
initial failing object oy, it loses the original predicate to minimize
against. JINSI therefore generates alternative predicates (p/ and
p!). For simplicity, we omitted the actual graph structure of the
underlying dynamic dependence graph.
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get the passing runs from? The answer is simple: delta debugging yields sim-
ilar passing runs as a by-product.® These synthetic passing runs are the base
for the subsequent predicate generation.

Similar to the work of Zeller [68], JINSI extracts memory graphs for both the
single failing run and all the produced passing runs, computes differences on
objects and their attributes using these graphs, and finally derives proper predi-
cates from these differences. In this way, JINSI automatically obtains predicates
like “In the failing run, Attribute name of object with id 13 has value "UTC".”,
or “The list with id 13 contains 5 (instead of 4) elements.” These predicates
then are used to minimize the interactions against.

The concept of memory graphs has been exhaustively discussed in the work
on visualizing memory graphs by Zimmermann and Zeller [76]. Therefore,
we briefly and succinctly present the most important aspects only. Basically,
memory graphs are a means to capture and explore program states. They give
a comprehensive view of all data structures of a program; the therein contained
data items are related by operations like dereferencing, indexing, or member
access. Furthermore, what is of especial interest in the context of JINSI, two
memory graphs can be used to easily compute the differences between the
corresponding program states.

A memory graph Gy = (V,E,root) models memory and a program state,
respectively, by a set V of values (the graph’s vertices), a set E of references
between these values (the graph’s edges), and a dedicated vertex root. The
memory graph encompasses the entire program state and basically gets ex-
tracted and entirely unfolded by automatically dereferencing pointers (e.g., in

8This is due the I-minimality of the delta debugging algorithm—no single interaction can be re-
moved without removing the failure [72]. For instance, if JINSI computes a sequence of one
constructor call and three subsequent method calls, we would know for sure that removing that
constructor call or any of the three method calls would result in either a passing or unresolved
run. Furthermore, it is guaranteed that at least one interaction is directly failure-inducing:
removing this interaction from the minimal set would result in a passing run; the other interac-
tions could all be, by contrast, interactions that would set up the proper context for the failure
to re-occur (a constructor call is a typical example for that latter kind).
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C programs) and references (e.g., in JAVA programs) starting at roof. One main
benefit of the abstraction from concrete values yielded by using the above graph
structure is that comparing program states becomes a rather simple graph op-
eration: detecting the greatest common subgraph is sufficient to determine dif-
ferences in the graphs; thus, differences in the program states.

For more details, refer to the afore mentioned work [76] as it contains, for
instance, definitions on the formal structure of memory graphs, their construc-
tion, and how to compare them to yield differences between program states.
While that work applies the presented techniques to C programs and their data
structures, we adapted these techniques for our needs: JINSI applies them to
JAVA programs and their corresponding data structures like arrays and lists, and
thus is capable of computing differences between states of JAVA programs, and
finally of deriving alternative predicates from those differences.

In the above NANOXML example, JINSI starts with a predicate’ on the exter-
nally observable output: as long as the output contains the artifact, the run is
classified as failing. In this way, JINSI is able to minimize both the interac-
tions into the writing object o1, as well as the interactions captured for 0y and
XML element o; (stages 1 and 2 in Figure 6.4 on page 120). While minimizing
the incoming interactions into the latter two observed objects, delta debugging
yields a passing run which is produced by removing the incoming method call
o2.setContent (...) from the minimal sequence of interactions. Logi-
cally, as soon as the (faulty) content is not propagated to the later written XML
element anymore, there will be no infection, the writer will not obtain this con-
tent from the written element, and, in the end, the output will not longer contain
the artifact. By comparing the failing and passing XML elements, JINSI finds
the crucial difference in their content, and deduces from this very difference
the predicate “Field content of XML element 0, must contain #38;.” which
exactly describes the infection in the written XML element (shown as p/ in Fig-

9Typically, given by a failing test oracle. In this example, the programmer could define the initial
predicate which specifies the unwanted output on the console.
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ure 6.4 on page 120). Now, having a predicate on XML element 0, the initially
observed writer 01 can be dropped (stage 3 in Figure 6.4 on page 120). In the
following 4th stage, JINSI includes the object on which XML element o; directly
depends: the St dXMLBuilder instance o3 which again builds the infectious
XML element—and actually calls method 02 .setContent (...).

Now, an interesting case occurs: although builder 03 propagates the infection
to the XML element, there is no difference in the builder’s state between failing
and passing runs. This is because, in this context, the builder merely is a static
and thus stateless utility class which obtains information about the element
being constructed and immediately discards this information as soon as the
element was finished. To resolve this issue, JINSI includes the object on which
builder o3 depends (thus, 04). This is repeated until a usable difference and a
new predicate, respectively, is found. Thus, instead of using a sliding window
approach with a fixed window size of 2, JINST actually uses a flexible window
size which increases until a predicate on a newly observed object is found; then,
JINSI resets the window size and starts over.

6.2.3 Algorithm for Non-Crashing Bugs

Algorithm 5 on page 125 shows the basic algorithm used by JINSI to debug non-
crashing bugs.'® The algorithm combines the above findings for non-crashing
bugs, and thus takes advantage

1. of the data- and control-flow information provided by the slicer to select
observed objects (Section 6.2.1);

2. and of the I-minimality of the delta debugging algorithm to generate
predicates (Section 6.2.2).

10Pjease note: For simplicity, we only show how the algorithm would work on linear data depen-
dencies. In fact, the slicer yields a dynamic dependence graph. JINSI therefore extends the
above algorithm by a breadth-first search. Furthermore, we omitted the upstream event slice
and the downstream dynamic slice (see Algorithm 3 on page 104).
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JINSI actually extends this algorithm by a breadth-first search in order to min-
imize objects on subslices on the dynamic dependence graph. In this way,
JINSI is able to provide minimal unit tests along the cause-effect chain of non-
crashing bugs which faithfully reproduce the different infection stages—going
from the externally observable failure to the actual site of infection; thus, the
defect to be fixed.

As for crashing bugs, applying JINSI to the above non-crashing bug results
in a considerable reduction of the search space. Applying dynamic slicing to
the statement that prints to the console yields a set of 313 lines—out of 3,295
lines of source code, which is 9.5 % of the source code. JINSI minimizes object
interactions along the object dependencies, which start at the object that prints
to the console, and in this way computes a minimal set of relevant statements of
only 75 lines, or 2.3 % of the source code. The evaluation in Chapter 9 contains
results for further non-crashing bugs.

In this very chapter, we have seen how JINSI is able to automatically select
the objects to be observed, and thus how the tool is able to compute minimal
tests that faithfully reproduce the observed failure along cause-effect chains,
eventually leading to the defect—regardless of whether the defect causes a
crash, or a non-crashing failure. After having covered all central aspects and
strategies of the JINSI approach in general terms, in the following chapter we
will see how this approach is specifically applied to JAVA programs; we will see
how JINSI deals with the practical challenges mainly caused by features specific
to the JAVA programming language. This discussion enables other people to
re-implement the JINSI approach for JAVA programs, or programs written in a
different—but still similar to JAVA—Ilanguage.
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let dyn_slice be the dynamic slice of the failing run
let pred be the initial predicate given by test oracle
let obs_init be the initial observed object given by test oracle
observed < {obs_init}
while obs_next < next_by_distance(dyn_slice) do
observed < observed U {obs_next}
captured < capture(observed)
1_min < dd(captured, pred)
state_f < mem_graph(1_min,obs_next)
let pred be an empty predicate
for all interactions int in 1_min do
subset < 1_min\ {int}
if outcome(subset) is passing then
state_p < mem_graph(subset ,obs_next)
dif f < mem_dif f(state_p,state_f)
if dif f is not empty then
pred_on_dif f < predicate(dif f)
pred < pred N\ pred_on_dif f
end if
end if
end for
if pred is not empty then
observed < {obs_next}
end if
end while

Algorithm 5: Selecting objects and generating predicates for non-crashing
bugs. JINSI takes advantage of the data- and control-flow in-
formation provided by the slicer to select observed objects, and
of the /-minimality of the delta debugging algorithm to gener-
ate predicates. JINSI extends the set of observed objects accord-
ing to their distance on the dynamic slice, and computes alterna-
tive predicates on newly observed objects by comparing program
states. As soon as a new predicate is found, JINSI can drop the pre-
viously observed objects and continues with the newly observed
ones and the new predicate.
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To capture, replay, and minimize interactions in JAVA programs, JINSI has to
extensively modify' a given program, for example by inserting probes and
method proxies to capture and replay interactions as described on a concep-
tional level in Chapter 3. Applying all the techniques described in the previous
chapters to JAVA programs involves a series of challenges. In this chapter, we
will discuss the most important ones only, while Chapter 8 will cover further is-
sues to complete the discussion. Both chapters together will provide solutions
for all main challenges encountered while applying JINSI to JAVA programs,
ranging from small toy examples to industrial-sized projects. The findings in
these chapters will enable other people to understand how JINSI is applied to
JAVA programs and its language features; moreover, the knowledge contained
therein enables other people to re-implement the JINSI approach for JAVA pro-
grams. The challenges and solutions presented in this chapter will include:

e Capture constructor calls. Basically, the first statement in a construc-
tor’s body has to be either super (...) or this (...). Thus, itis
not possible to obtain information about this, the object being con-
structed, until all the super and alternate constructors, respectively, will
have been executed. However, while these constructor calls are being ex-
ecuted, other interactions interwoven with the initial one to be captured
are likely to occur as well. In Section 7.1, we will see how JINSI deals

1JINSI modifies given JAVA programs on the byte code level using JAVASSIST, a class library for
editing byte code. See Section 8.1 for more details.
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with pitfalls related to these and other issues related to constructor calls
as they are implemented in the JAVA programming language.

o Capture incoming method calls. JAVA uses dynamic method lookup
for (non-static) methods. Thus, at compile time it is not known which
concrete method implementation will be invoked later at run-time. To
capture incoming method calls effectively and efficiently, JINSI replaces
observed methods by a logging proxy method, as we will see in Sec-
tion 7.2.

e Who calls whom? To know whether a call to an observed object is
actually incoming from the perspective of the observed object, you have
to know its caller. However, in JAVA it is not possible to dynamically
obtain the caller of a method. You only have access to this (thus,
the callee) and the passed arguments. Unfortunately, instrumenting the
call side instead—where you would have access to a reference to both
the caller and the callee—is not an option in practice. As we will see
in Section 7.2.1, JINSI instead has to register all callers of potentially
incoming method calls at the respective call side in order to obtain their
runtime type and to decide on whether that call is incoming or not.

e Inheritance. If you want to observe class B that extends unobserved
class A that again defines method calc(...), you will want to ob-
serve all calls to method calc (.. .) on instances of B only—however,
not on instances of A. In Section 7.3, we will see how JINSI handles
inheritance by a combination of instrumenting both observed classes
and their—in most cases—unobserved superclasses, and proper runtime
checks to ensure that all interactions of interest are captured properly.

In the following, we will address the above challenges in more detail. All
the language features discussed here (and, in Chapter 8) are described in the
official JAVA Language Specification by Gosling et al. [31]; for the sake of
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simplicity, we will not cite that book for every single feature discussed in this
work individually. We will instead refer to the book of Gosling et al. only at
passages where it will be of peculiar interest.

7.1 Capture Incoming Constructor Calls

To replay the construction of observed objects, JINSI has to first intercept and
record all incoming calls to constructors in observed classes. A straightforward
approach would be to insert probes—artificial method calls to JINST that inform
JINST about interactions—at the beginning and at the end of each observed con-
structor: The probe at the constructor’s beginning would record the incoming
call including its given arguments, the one at the end would record the return
from this call. All interactions originating from the object being constructed in
between, for example outgoing method calls, could be linked to this specific
object.”

However, as we will see in the following sections, inserting probes in con-
structor declarations of observed classes, and thus capturing incoming calls to
these constructors from within, involves many issues that are not fully resolv-
able. In addition to the principal difficulties, JAVASSIST contained several bugs
related to instrumenting constructors when JINSI’s capture feature had been de-
veloped.® In Section 7.1.6 we will see how JINSI avoids all the issues by cap-
turing incoming constructor calls from the call side instead, but first we will
start with the discussion of manipulating constructor declarations directly as
the initial idea implies.

2This would be similar to the proxy methods that capture incoming method calls. These also
record respective call and return events, while the interactions caused by the observed method
itself are recorded in between (see Section 7.2 for details).

3JINSI uses JAVASSIST to instrument JAVA programs for its purposes; see Section 8.1 for de-
tails. For instance, JAVASSIST had problems with calls to super and this; see bug
JASSIST-53 [37].
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Observed class Observed in Listing 7.1 on page 130 provides a basic ex-
ample of a constructor declaration. The class’ single-argument constructor
Observed (Unobserved init) assigns boolean field enabled to the
value obtained by calling method isEnabled () on the given unobserved
argument init.

public class Observed {
private boolean enabled;
public Observed (Unobserved init) {

this.enabled = init.isEnabled();

}

Listing 7.1: A simple observed class providing a constructor for initialization.

The instrumented version of constructor Observed (. ..) with probes in-
serted according to the above idea would look similar to the one in Listing 7.2
on page 130. The single statement to assign the field would basically be sur-
rounded by calls to JINSI to capture the start and the end of all incoming con-
structor calls.*

public Observed (Unobserved init) {
JINSI.recordIncomingConstructorCall(...);
this.enabled = init.isEnabled();
JINSI.recordIncomingConstructorReturn(...);

}

4This instrumented version is not complete for the sake of simplicity: the constructor as shown
in Listing 7.2 on page 130 would contain a surrounding try-catch-block to capture exceptions,
and further calls to JINSI to capture outgoing calls, like the one to init.isEnabled ().
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Listing 7.2: Instrumented version of Observed’s constructor with probes
inserted at the beginning and at the end.

In practice, JINSI would further instrument the constructor to capture the out-
going call to init.isEnabled (). In this way, the outgoing call could be
associated to the very instance under construction (by assigning proper object-
IDs as described in Section 8.2).

7.1.1 super () is Called Automatically

Unfortunately, the first statement in a constructor has to be a call to one of its
superclass constructors super (. ..). Even if a constructor does not explic-
itly invoke a superclass constructor, the JAVA compiler automatically inserts a
call to the no-argument constructor super () of the superclass.5 If the su-
perclass does not provide a no-argument constructor, the compiler would issue
a compile-time error as the programer would have to explicitly choose which
one should be called.

Because a subclass constructor always invokes a constructor of its super-
class®, either explicitly or implicitly, there will be a whole chain of construc-
tors called, all the way back to the constructor of the primordial class Object.
This mechanism is called constructor chaining, and we need to be aware of it
as soon as we want to capture interactions of classes involved in any inheri-
tance hierarchy. Consequently, the instrumented constructor looks like the one
in Listing 7.3 on page 132: super () is necessarily called first—thus, even
before the incoming call would be recorded by JINSI.

S1n this case, the compiler inserts a call to super (), an invocation of the constructor of its
direct superclass that takes no arguments. See §8.8.7 “Constructor Body” in the JAVA language
specification [31].

SMore precisely, either super or this (call to an alternate constructor in the same class, see
Section 7.1.4) has to be called. However, in both cases, eventually a chain of constructors
ending in Ob ject () will be executed.
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public Observed (Unobserved init) {
super(); // has to be the first statement;
// added automatically to byte code if missing
JINSI.recordIncomingConstructorCall(...);
this.enabled = init.isEnabled();
JINSI.recordIncomingConstructorReturn(...);

}

Listing 7.3: Calling super () has to precede the inserted probe.

In this simple example, JINSI could record all required information anyway,
because Observed (...) calls super () as defined in class Object7; its
only no-argument constructor Object () is an empty constructor that does
not contain any statement. Thus, no interaction could occur before JINSI would
record the incoming call to Observed(...). However, as soon as there
is some outgoing interaction in superclasses of observed ones, inserting such
probes would not be sufficient anymore, as we will see in the following exam-
ple that involves a inheritance hierarchy of depth three.

A more complex example involving both inheritance and statements that
trigger interactions in super constructors can be found in Listings 7.4 and 7.5:
Class SuperClass in Listing 7.4 on page 132 defines a constructor that logs
its calls to the console. The log message contains both the class’ name and
the individual instance’s hash code. The class name enables us to see which
constructor gets called, the hash code allows us to identify the concrete instance
that issues the log message. Its extending subclass SubClass in Listing 7.5
on page 133 overrides this constructor and logs all calls with its own name
instead of the one of its superclass. Note that neither the superclass, nor the
subclass calls super () explicitly.

public class SuperClass {

"Because class Observed directly subclasses class Object.
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public SuperClass () {
// super () in class Object is called implicitly

System.out.println ("SuperClass — hashCode: " +
this.hashCode());

Listing 7.4: Class SuperClass: logs its construction to the console.

public class SubClass extends SuperClass {

public SubClass () {
// super () in class SuperClass is called
implicitly.
hashCode: " +

AR [

System.out.println("SubClass
this.hashCode());

public static void main(String[] args) {
new SuperClass();
new SubClass();

}

Listing 7.5: Class SubClass: overrides its super constructor and logs its
construction to the console. The class name in the log message
is adapted.
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In addition to overriding its super constructor, SubClass provides method
main () torun a small sequence of constructor calls that demonstrates the is-
sues caused by inheritance relating to constructor calls. That method first cre-
ates an instance of SuperClass, and afterwards an instance of SubClass.
Without already knowing that super () is called automatically, you might
expect only two lines of output: The first line would contain the log message
from the constructor in SuperClass, the second line would contain the log
message from SubClass. Though, the actual output is different and consists
of three lines instead, as shown in Listing 7.6 on page 134.

SuperClass — hashCode: 1965484127
SuperClass - hashCode: 405223709
SubClass - hashCode: 405223709

Listing 7.6: Sample output of constructing one instance of SuperClass and
one instance of SubClass.

As you can see by this example, constructor SuperClass () is called
twice: The first time explicitly in method main (), the second time implicitly
via super () in SubClass () which was called explicitly in main () —the
JAVA compiler had introduced that call in order to comply the JAVA language
specification. This involves a problem for JINSI: When calling constructor
SubClass (), an outgoing interaction from the instance currently being con-
structed to method println () already occurs in SuperClass () before
JINSI’s probe in SubClass () would be called.

Apparently, an extended approach would be to insert a probe in the con-
structor Object () that is called by all classes in any case. Then, it would be
sufficient to insert the probe for the incoming call in class Ob ject, the one for
the corresponding constructor return at the end of all constructors in observed
classes.
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7.1.2 Constructor Object () Cannot Be Instrumented

However, it is very error-prone to instrument class Object. It easily results
in various errors, like segmentation faults in the JAVA virtual machine® or un-
expected exceptions at run-time”. This is mainly caused by optimizations done
by the JAVA virtual machine, which assumes some properties like number and
order of fields in Ob ject. Furthermore, some internal library code assumes a
specific depth of the stack when objects are constructed.

Another disadvantage would be performance: JINSI would have to check
for virtually every single object—there could easily be millions—whether an
incoming constructor call goes to an observed object or to an unobserved one.
In the first case, JINSI would have to record the call, in the second case it would
have to discard the event. This could only be achieved by executing a run-
time check at every constructor call. Furthermore, with the current—as of this
writing—version of JAVASSIST it is not possible to instrument class Ob ject
because of bug JASSIST-88 [9]. Therefore, instrumenting Object () to
capture incoming constructor calls is not an option at all.

7.1.3 Instrumenting Constructors in the Inheritance
Hierarchy

Another option would be to instrument all the constructors along the inher-
itance hierarchy in a similar way as described above—but just not in class
Object itself. Instead, we could insert the probe for incoming calls in all
Object’s direct subclasses that are superclass of an observed class. Thus,
the constructors in an observed class would still get probes that capture the
constructor return, but its superclass that is the direct child of Object would
be instrumented for the incoming call. Basically, the probe for incoming calls
would be pushed down from class Object to its direct descendants. Because

8http://mail-archive.ow2.org/asm/2007-05/msg00027.html
9http://forums.sun.com/thread. jspa?threadID=5119309&tstart=0
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constructor Object () does not contain any code, we know for sure that there
would be no interaction triggered by this constructor. Thus, calling super ()
in Object’s direct descendant before JINSI is notified about the incoming call
would be safe.

In the previous (rather simple) example, we would instrument both the con-
structors in classes SuperClass and SubClass. If SubClass would be
observed but not SuperClass, JINSI would have to decide at runtime whether
a potentially incoming call actually goes to an observed instance (object of
type SubClass) or to an unobserved one (instance of SuperClass but not
SubClass).

However, in large projects with more complex class hierarchies, this scenario
usually gets more complicated. If both classes are observed, we would have to
insert probes for the constructor return in both of them: an incoming call to
SuperClass () as well as to SubClass () would have to be recorded as a
proper event. The probe for the return at the end of SuperClass () would
then have to check whether the incoming call is constructing an instance of
SuperClass or SubClass. In the first case, the probe in SuperClass ()
would have to record the constructor return, otherwise it would have to ignore
it because instantiation would continue in SubClass (). In this latter case,
the instance of SubClass () would have to record the constructor return in
the end.

Despite the complexity of such an approach, it would get even more difficult
to be implemented as soon as you want to observe several classes in a more
complex inheritance hierarchy. Furthermore, constructors may call other con-
structors; this results in complex interleaving of constructor calls of observed
and unobserved classes. To solve this issue, JINSI would have to maintain its
own stack of constructor calls, so as to track incoming calls and their relations
with each other.
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7.1.4 Calling an Alternate Constructor

Another related topic that has not been covered so far is calling this (). In
contrast to super, which references to the super class, this references to the
object currently being instantiated; thus, the object whose constructor is being
called. From within a constructor, this keyword calls an alternate constructor
in the same class. Just like for super, the invocation of an alternate construc-
tor must be the first statement in the constructor. In fact, the first statement
of a constructor body has to be either an explicit invocation of another con-
structor of the same class (call to this () ), or of the direct superclass (call to
super () ). Thus, either this () or super () has to be called first.

Similar to super (), this () calls for a very sophisticated and thus com-
plicated instrumentation in observed and unobserved constructors as well. Dur-
ing implementing JINSI for JAVA programs, experience has shown that pursuing
the idea to capture incoming constructor calls within the object being instanti-
ated fails for many cases of application.

7.1.5 Capturing Exceptions

Besides capturing regular constructor returns, JINSI has to track exceptions as
well; when calling a constructor, an exception may occur. In addition to the two
probes for the incoming call and its return, the instrumentation has to surround
the constructor with a try-catch-block. This incorporates even more complexity
into the byte code that has to be added to capture incoming constructor calls—
and again would increase the error-proneness of the approach.

In the following, we will see how JINSI avoids all the various issues involved
in manipulating constructor calls. Instead of inserting probes in observed con-
structors, and thus extensively manipulating the called constructors, JINSI cap-
tures incoming constructor calls from the outside—thus, from the call side.
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7.1.6 Capturing Constructors from the Call Side

In JAVA, a constructor of a class is invoked by using the special function name
new. This operator instantiates a class by first allocating memory for a new
object, and returning a reference to that memory afterwards. The new operator
also invokes the object constructor. Its single postfix argument is the call to a
constructor; the name of this constructor determines the name of the concrete
class to instantiate. Thus, it is defined already at compile-time which particular
constructor is called when constructing a new object.

Therefore, JINSI can statically determine the called constructor already dur-
ing instrumentation, and therefore knows exactly which class will be instanti-
ated. JINSI does not require any run-time check or any other sophisticated anal-
ysis and can simply surround the new statement with probes that capture the
construction of observed objects. Consequently, constructors of unobserved
classes can be left untouched safely.

Listing 7.7 on page 138 contains a basic example of a call side. First, an
unobserved object is instantiated, afterwards this object is passed as argument
while calling new to instantiate an observed object.

public class CallSide {

public void someMethod () {
Unobserved unobserved = new Unobserved();
Observed observed = new Observed (unobserved) ;

Listing 7.7: Call side of an incoming constructor call.

Because the call to new specifies the name of the class to be instantiated,
JINST already knows during instrumentation that the first call goes to an unob-
served constructor, whereas the second call goes to an observed one. Thus,
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JINSI only surrounds the second instantiation with probes (1) to capture the
incoming call that is going to occur, (2) to capture the newly instantiated ob-
served object, and (3) to capture possible exceptions which may have been
thrown during the observed instantiation.

A simplified instrumented version of the call side can be found in Listing 7.8
on page 140. Capturing in that example works as follows:

1.

JINSI captures all information that is required to replay the call (target
type, parameter types, and actual arguments) and stores the event’s id in
a local variable. Later, this id is used to link the corresponding return
event with the initial call event.

. The call to new is surrounded by a new try-catch-block to capture pos-

sible exceptions.

. The actual instantiation is executed; thus, new is called.

. The very next statement after the successful instantiation is a call to JINSI

to capture the newly created object. The parameters include the event id
stored before, as well as the created object. JINSI cannot identify the
object before it is constructed, therefore JINSI cannot assign an object id
in the first step. Instead, this object id is obtained after constructing the
object!? and stored in the return event. Because the return event is linked
with the call event via the stored event id, the call event in return is linked
with the object id.

. The closing catch block handles all unchecked exceptions, which can

be thrown during the normal operation of the JAVA virtual machine. A
method is not required to declare any unchecked exception that might
be thrown during the execution of the method but not caught. Thus, by

10To be more precise, the object id may be obtained already at the first outgoing call during the
instantiation.
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catching all run-time exceptions, JINSI ensures that all possible excep-
tions are captured. The handler itself records the run-time exception and
again uses the event id to link the throw event with the call event.!!

public void someMethod() {

Unobserved unobserved = new Unobserved();

EventId eventId = JINSI.
recordIncomingConstructorCall(...);

Observed observed = null;

try {

observed = new Observed (unobserved);

} catch (RuntimeException e) {
JINSI.recordIncomingThrowable (eventId, e, ...);
throw e;

}

JINSI.recordIncomingConstructorReturn (eventId,

observed, ...);

}

Listing 7.8: Capturing incoming constructor calls by surrounding the new
statement with probes.

Using this relatively simple approach—compared to the various trials de-
scribed before—IJINSI is able to capture all incoming constructor calls. We can
avoid all the pitfalls like calls to super or this, inheritance, and interleav-
ing of different constructor calls. From JINSI’s perspective, calls to super or
this happen in a totally transparent and natural way.

However, this approach involves a downside in principle. As long as we

11f the method would declare any checked exception in its throws clause, JINSI would add this
exception to the surrounding try-catch-block and thus could capture this type of exception as
well (see Listing 8.4 on page 159 for an example).
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observe custom JAVA code'? only, this approach works as expected. Construc-
tors declared in custom code can be called in the very same code only. There
is no way to explicitly call the constructor of a custom class in the core JAVA
libraries, for example, as that constructor would have to be already known.
Consequently, to capture incoming constructor calls to custom code, JINSI has
to instrument custom code only. However, if we want to observe core JAVA
classes like Vector, we would have to instrument all the call sides of con-
structors declared in class Vector. Unfortunately, classes like Vector are
instantiated in very crucial parts of the core JAVA library, and it is very er-
ror prone—as already discusses above—to instrument these parts. Therefore,
with the this approach it is virtually impossible to observe all instantiations of
classes like Vect or as JINSI would miss constructor invocations in classes that
cannot be instrumented for technical reasons. To solve this issue, JINST handles
classes like Vector similar to class St ringBuilder (see Section 8.6.2 for
details).

JINSI captures incoming constructor calls at their call side. In this way, we
can avoid all the pitfalls like calls to super or this, inheritance, and
interleaving of different constructor calls.

7.2 Capture Incoming Method Calls

While the approach to capture incoming calls by surrounding them with probes
at their call side is well suited for observed constructors as shown above, it is
in general not applicable to method calls. In contrast to constructor invoca-
tions, JAVA uses dynamic method lookup for (non-static) method calls, because
overriding may occur. For such method invocations, an instance method is to

12Code developed by first-party developers and thus not contained in the core JAVA libraries. Usu-
ally, we are interested in observing that part of a program as we are interested in failures and
defects, respectively, in the custom part of a program.
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be invoked, and there is a target reference to a target object. This target ob-
ject is looked up at run-time only.'> Therefore, JINSI cannot decide in advance
whether a possibly observed method will be invoked on an actual observed or
on an unobserved object—whereas for constructor calls this is known at com-
pile time. This issues becomes especially important as soon as we want to
observe classes that implement interfaces.

For example, an observed class may implement a very common interface,
like Comparable: this interface defines method compareTo (...) and
imposes a total ordering on the objects of each class that implements it. That
interface is defined by the JAVA Collections Framework and, for example, is
used in sorted maps and sorted sets. If we would capture incoming method
calls at the call side, we would have to surround every single call to method
compareTo (. ..) with probes—in the whole program at places where this
method might be called at runtime, including JAVA libraries and other third-
party components that use Comparable. For each call, JINSI would have to
check at run-time whether the actual target instance of Comparable is an
instance of an observed class (thus, an incoming call), or an instance of an
unobserved one that implements Comparable as well (thus, not an incoming
call). Such interfaces play a crucial part in the JAVA Collections Framework
and therefore are used frequently in JAVA programs. Thus, the issues imposed
by dynamic method lookup are the rule rather than the exception.

Another issue would be imposed by methods in class Object, especially
very common ones like equals (...) and toString (). Again, if we
would capture incoming method calls at the call side, JINSI would have to sur-
round every single call to these methods in the whole program. This would re-
sult in many locations where JINSI would have (a) to instrument the byte code,
and (b) to check at run-time if the target object is observed actually—resulting
in an in practice inapplicable approach. Therefore, JINSI implements a different

13See §15.12.4 “Runtime Evaluation of Method Invocation” in the JAVA language specifica-
tion [31] for more details about how methods to invoke are located.
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approach (see Section 3.1.5 for a detailed description on the conceptual level)
and replaces all observed methods m by logging proxy methods p (having ex-
actly the same signature as m), which basically capture the incoming call, and
delegate the incoming call to the original method m.

Whenever an actual observed method m is dynamically looked up, JAVA will
invoke the newly introduced logging proxy p instead. Listing 7.9 on page 143
contains a simple example of an observed method m. This method takes one
parameter and returns a St ring value.

public class Observed {

public String m(Unobserved u) {
return u.toString();

}

Listing 7.9: Simple observed method that takes one parameter and returns
String value.

Listing 7.10 on page 143 shows the JAVA code after being instrumented by
JINST: Method m (logging proxy p) captures the incoming call and delegates
the call to method mOriginal (original method m); finally, the return value
is returned to the caller.'* For the caller it is completely transparent that it
actually called a proxy method instead of the original one—the signature stays
the same and eventually decides on the concrete implementation that is called
by the JAVA virtual machine.

private String mOriginal (Unobserved u) {
// instrumentation for outgoing call disregarded

14This is very similar to the approach described in Section 8.3 to capture incoming constructor
calls within this by replacing it with a factory method.
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return u.toString();

public String m(Unobserved u) {
EventId eventId = JINSI.recordIncomingMethodCall
(..

try {
// obtaining return value from original method
String returnValue = this.mOriginal (u);
JINSI.recordIncomingMethodReturn (eventId,

returnValue, ...);

return returnValue;

} catch (RuntimeException e) {
JINSI.recordIncomingThrowable (eventId, e, ...);
throw e;

}

Listing 7.10: The original method m was replaced by a logging proxy with the
same signature.

By introducing these proxy methods, JINSI is able to efficiently and effec-
tively capture incoming method calls. However, we still have to resolve the
following issue: What if an observed object calls method m, and therefore the
proxy, on itself by invoking this.m (.. .)? With the approach as described
above, JINSI would record this as an incoming call—although the interaction
does not leave the instance at all. A possible approach would be to replace
all calls to the proxy p by a call to the original method m’ : in our example,
this.m(...) would become this.mOriginal (...). Then, instances
of class Observed would invoke the non-logging original implementation
mOriginal of m rather than the logging proxy. Still, another similar issue
turns up: what if an instance of Observed calls method m on a different in-
stance? What about inheritance? We will see how JINSI solves this issue in the
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following section. For now, we can record the intermediate result:

JINSI introduces logging proxy methods to capture incoming method calls.
Thus, in contrast to incoming constructor calls, the probes are not
introduced at the call side, but in the observed class itself.

7.2.1 Knowing the Caller of Observed Methods

As indicated above, introducing a logging proxy to capture incoming method
calls is not sufficient. Because JINSI needs to know the caller of an incoming
method call for later analyses, it has to record not only the called object (target,
or callee), but the caller (source object) as well. Unfortunately, in JAVA it is
not possible to dynamically obtain the caller of a method. Within a method,
you only have access to this (callee) and the passed arguments.'> Therefore,
JINSI cannot avoid to instrument the call side of observed methods as well.
Nevertheless, the required instrumentation is much more light-weighted than
using probes at the call side.

JINSI implements class CallRegistry that keeps track of all callers of
possibly observed methods. JINSI registers the actual caller at the call side right
before a possibly observed method is called. A possibly observed method is
either (1) a method declared in an observed class, (2) a method declared in
a superclass of an observed class, or (3) a method declared in an interface
implemented by an observed class.

By default, JINSI instruments calls only to those methods declared in super-
classes of observed ones (see (2) above) that are either not declared in class

I5Method Thread.currentThread () . getStackTrace () returns an array of stack trace
elements representing the stack dump of a thread. However, each element only contains the
name of the class that declares that method. If subclass B of superclass A calls method C. c ()
inA.a () (method a is implemented in A but not overridden in B.), the visible caller of c ()
will be A, but not B. Thus, it is not possible to obtain the actual runtime type of a caller via this
method.
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Object, or that are declared in Ob ject but overridden in some subclass at
the same time. For example, if method Object.equals (.. .) isnotover-
ridden in an observed class or in one of its superclasses, calls to that method
will not be registered and therefore the call side will not be instrumented: meth-
ods implemented in Object like toString, hashCode, and equals do
not contain any interaction of interest and therefore can be omitted. In this
way, the number of places where JINSI has to instrument the call side is kept
minimal—especially, JINSI avoids to instrument crucial core JAVA classes.

Listing 7.11 on page 146 shows class Caller that calls a method declared
in an observed class, before it calls method equals, which is not overridden
by that observed class. Thus, JINSI registers the caller only at the first call, as
shown in Listing 7.12 on page 146.

public class Caller {
public void method (Observed o) {

o.observedMethod () ;
o.equals (new Object());

}

Listing 7.11: Call side of an observed class. Firstly, a method declared in that
observed class, secondly the not overridden method equals is
called.

public void method (Observed o) {

JINSI.registerCaller (this, o, ...);
o.observedMethod () ;

// equals(...) not overridden in class Observed
// —> call not registered

o.equals (new Object ());
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Listing 7.12: JINST instruments only the first call at the call side.

As seen in Section 7.2, it is not desirable to instrument all call sides—on
the other hand JINSI requires the caller. However, tracking callers is a good
compromise. Instead of doing a runtime check at every single call to a possibly
observed method, JINSI just keeps a reference to the caller. Only if an observed
method is called (the dynamic lookup makes a preliminary selection), JINSI
uses the stored reference to check if the call is an incoming one. Furthermore,
introducing the call to the registry (a single method call without any conditional
statement) is less complex than inserting a probe that does the actual runtime
check. Therefore, this kind of instrumentation is less likely to fail—as seen
in practice while implementing JINSI for JAVA programs and conducting the
experiments.

Implementing the approach described above, JINSI is able to obtain informa-
tion about the actual caller of observed methods. However, JINSI still might
miss some callers. For instance, if an observed class implements an interface
like Comparable (see Section 7.2), not all call sides are instrumented: cru-
cial classes in java.lang or in the JAVA Collections framework are not in-
strumented because doing so is very error prone (as described in Section 7.1).
If an observed method is called from such a class, JINSI will not have any infor-
mation about the caller; or, the registered caller still refers to a method invoked
before. If JINSI would use this outdated reference, the captured information
would be incorrect and could lead to faulty replays.

To identify such situations, JINSI uses the reference to a caller only once
in the method that captures the call (called by the logging proxy method, see
above) and that does the runtime check. As soon as a reference is obtained
from the registry, it is automatically marked as fainted. If the same reference
would be queried a second time, an exception would be thrown indicating that
the caller of an incoming call was missed. Furthermore, while registering a
caller, JINSI checks if it was accessed before. If not and it was an incoming
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call, an exception is thrown indicating that a caller of an actual incoming call
was registered but not used while recording a call via the proxy. By using these
double checks, JINSI is able to control the complex interplay between the caller
registry and the probes in the proxy methods, and can early detect possible
errors in the instrumentation. Anyhow, while conducting the experiments, that
error has never occurred.

JINSI combines logging proxy methods and tracking of callers to capture
incoming method calls. It is not possible to completely avoid instrumenting
the call side of methods, but compared to inserting probes, this combination

provides a light-weighted and error-robust solution.

7.3 Handling Inheritance

We want to observe objects and their respective interactions. Therefore, JINSI
has to instrument superclasses of observed classes as well. If JINSI would only
instrument those classes that are directly declared as observed, it could miss
interactions of interest: For example, let A be the superclass of B, and B again
the superclass of C. Furthermore, let class B be observed, but not A and C.
If 7INST would instrument for outgoing interactions in explicitly observed class
B only, JINSI would miss all outgoing interactions originating in methods and
constructors declared in class A but not overridden in B. Therefore, JINSI has to
instrument for possible outgoing interactions in these superclasses, too.'®
Because we do not know the runtime type during instrumentation, JINSI has
to add runtime checks. For example, methods declared in class A that are in-
strumented for outgoing interactions, among others, can be invoked at runtime
on instances of A, B, or even C. If such a method is invoked on an instance of

16The same holds for incoming interactions as well. For example, for incoming method calls,
logging proxy methods and tracking of callers are used both in observed classes and their
superclasses.
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A or C, outgoing interactions will have to be omitted because these objects will
be unobserved. On the other hand, if the method is invoked on an observed
instance of B, outgoing interactions will have to be captured.

To keep the instrumentation as simple as possible—especially to avoid pos-
sible bugs introduced by JAVASSIST rather than to speed up the capture phase—
JINSI does not introduce these runtime checks in the instrumented code itself.
Otherwise, JINSI would have to introduce additional conditional statements to
the probes. Instead, the probes pass source and target objects to JINSI, and
the tool itself executes the runtime checks. Depending on their outcome, the
initially intercepted interactions are either recorded to the log file, or omitted.

To be capable of capturing all interactions of interest, JINSI has to
instrument both observed classes and their—possibly—unobserved
superclasses. Runtime checks are used to decide during program execution
whether intercepted interactions are incoming or outgoing and therefore to
be recorded, or whether they can be omitted.

The above challenges and respective solutions are only a small sample from
all the issues encountered while implementing the JINSI approach for JAVA pro-
grams. While the above findings represent some of the most important ones,
the following Chapter 8 will complete the discussion.
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In this Chapter, we will complement the findings in Chapter 7; while the pre-
vious chapter focused on the most important challenges only, in the following
we will discuss more issues and their respective solutions to complete the dis-
cussion:

o Bytecode instrumentation. JINSI has to modify the JAVA program to be
debugged in order to intercept interactions during capture, and to trig-
ger interactions during replay. The canonical approach for JAVA pro-
grams is to instrument their bytecode. Different tools and frameworks
are available for this purpose—tools with different advantages and dis-
advantages. We will see which framework JINSI uses; this choice has
different effects on the implementation.

e Partial object information. JINSI has to record data (e.g., arguments
of method calls) that ranges from simple scalar values to complex and
composite objects. We will see how JINSI is able to capture/replay inter-
actions where complex external systems like databases are involved—
without the necessity to have the database available during replay.

e Calls within super(...) or this(...). The first statement in a
constructor has to be a call either to super (...) ortothis(...).
Therefore, further calls enclosed within such a call, like this (new
Observed () ), have to be handled in a special way. For instance, it
is not possible to directly surround the incoming constructor call new
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Observed () with probes—this incoming call instead has to be re-
placed by a static factory method that records the interaction.

Field accesses. While capturing both read and write field accesses can
be implemented by calling probes introduced next to the accesses, for
replay JINSI instead has to replace the field accesses.

Interactions with arrays. In the JAVA programming language, arrays are
objects. However, they have some special properties which distinguish
them from regular objects: arrays contain components, they are dynam-
ically created, it is not possible to subclass them, and there is no way
to manipulate their bytecode—as there is none. Observed objects may
interact with arrays in different ways; therefore, during replay in general
and minimizing in particular, the special characteristics of arrays have to
be taken into account.

Strings and StringBuffers. In JAVA, strings are represented by instances
of class St ring. However, similar to arrays, class St ring has special
characteristics. Due to these properties, JINSI has to treat strings like
literal values. Moreover, the JAVA compiler automatically introduces in-
stances of class StringBuffer to make string concatenation more
efficient. This transparent, automatic transformation has to be taken into
account during capture/replay.

Managing objects. Both during capture and replay, JINSI has to identify
and manage objects that are involved in the observed interactions. For
this purpose, JINSI uses different object pool implementations: to look
up object IDs for given objects during capture, and to look up objects for
given IDs during replay.

Mock objects. To replay interactions on unobserved objects, JINSI has
to create objects that mock the unobserved objects’ behavior as previ-
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ously recorded. As we will see, especially the instantiation of such—in
principle stateless—mock objects is not straightforward.

8.1 Bytecode Instrumentation

To implement capture/replay for JAVA programs, JINST has to manipulate parts
of the program under investigation. A straightforward way to perform the re-
quired manipulation would be to modify the program’s source code. However,
for programs implemented in the JAVA programming language, it is much eas-
ier to manipulate the bytecode' generated by the JAVA compiler, than to modify
the relatively unstructured source code. Manipulating the bytecode has at least
two advantages: first, we do not need the original source code, and second be-
cause JAVA is statically typed, the bytecode innately provides type information,
which would be hard to obtain from the source code.”

For manipulating and transforming bytecode, several libraries and frame-
works are available. Notable are at least the following ones:

e ASM. ASM is a JAVA bytecode manipulation and analysis framework [8].
Compared to other similar frameworks, it claims to be focused on sim-
plicity of use and performance. Instead of using an object representation
of the bytecode (as SERP and BCEL, two further bytecode manipulation
libraries, do), ASM uses the Visitor and Adapter design patterns [43].
However, we still would have to take care of bytecode specific issues, as
instructions are introduced directly at bytecode level.

1JAVA bytecode—in this work, bytecode in short—is the form of machine instructions that the
JAVA virtual machine executes. The virtual machine in itself knows nothing of the JAVA pro-
gramming language [47].

2 Another option would be to use the JAVA Virtual Machine Tool Interface, which allows for native
libraries to capture events and control the virtual machine. However, compared to bytecode
manipulation, this method is relatively slow, as the JAVA virtual machine communicates with
the native libraries via callbacks, while the manipulated bytecode is optimized by the virtual
machine in the usual way.
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MethodCall.replace ("{S1 = 0; S _, = Sproceed(S$S);}");

Listing 8.1: JAVASSIST: Replacing a method call. JAVASSIST provides a
powerful source level API that makes it easy to manipulate method
calls, for instance.

e ASPECTJ. ASPECT]J is an aspect-oriented extension to the JAVA program-
ming language [62]. Using so-called pointcuts and advices, it is possible
to introduce code that is run at well-defined moments in the execution
of a program. A very early prototype of JINSI's capture feature used
ASPECTJ to intercept method calls. However, it turned out that the pro-
vided pointcuts were not sufficiently precise and expressive to define all
required locations where JINSI has to intercept interactions.’

® JAVASSIST. JAVASSIST is a unique class library for editing bytecode in
JAVA [12]. In contrast to other similar bytecode editors, JAVASSIST pro-
vides two levels of API: bytecode level—as all other libraries do—and
source level [13]. It uses a custom compiler that enables its user to di-
rectly apply JAVA source code to manipulate the bytecode. For example,
using JAVASSIST it is relatively effortless to replace a method’s body, a
feature JINSI depends on.

The key feature of JAVASSIST is its powerful source level API. This makes the
instrumentation much easier than, for instance, with ASM. JAVASSIST provides a
special syntax like $1 to access parameters, and Sproceed to access a called
method. For example, the simple snippet in Listing 8.1 on page 154 replaces
the first argument of a method call with value O.

3JINSI used ASPECTYJ in version 1.5.0. Version 1.6.x, a major revision, has been available since
April 2008 and may provide more required features that were not available in 1.5.0.
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We decided to use JAVASSIST for the reasons outlined above. However, dur-
ing implementation of JINSI, we stumbled on several severe bugs in JAVASSIST.
Because of these bugs, some design decision had to be taken, like how to cap-
ture observed constructors (see Section 7.1 for details).

JINSI utilizes JAVASSIST to instrument the JAVA bytecode because of its
easy-to-use and poweful source level API. However, JAVASSIST contained and
still does contain some severe bugs, which implied decisions concerning the

design of the instrumentation.

8.2 Partial Capture of Object Information

The type of data that flows through the boundary between the observed and
the unobserved part of the application to be debugged ranges from primitive
scalar values (for instance, integer value 5) to complex objects (for instance,
a database abstraction). When replaying interactions that involve such data,
JINSI has to provide proper arguments and proper values. Instead of capturing
the entire information about objects, JINSI captures only the subsets of those
objects that actually affect the computation, and approximates such subsets by
capturing incrementally and on demand at run-time. Therefore, JINSI neither
requires a sophisticated static analysis, nor requires to serialize complete object
graphs (see Section 3.1.3 for details).

For example, consider a call to method sumAl1lOrders (...) defined
by the observed class OrderStatistics in Listing 8.2 on page 156. The
method queries table “orders” via the given SQL database statement and sums
up all values in row “ordertotal”. Briefly, it sums up all orders. Because the
method does not open a connection to the database, the given statement has
to point to a connection that has been opened already. Thus, the statement
object must contain references to objects related to querying the database and
the database itself. Capturing all this data, for example by serialization as
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mentioned above, would not only be expensive, but also impossible in this
case. Usually, the natively implemented JDBC driver is a barrier that cannot
be crossed from the JAVA part of the program. Moreover, capturing the whole
database obviously would not be an option.

package partialinformation;

import
import
import

public

//

java.sgl.ResultSet;
java.sqgl.SQLException;
java.sqgl.Statement;

class OrderStatistics {

public float sumAllOrders (Statement stmt) throws
SQLException {
float sum = 0.0f;

/7

execute query against database

ResultSet rs = stmt.executeQuery ("SELECT_*_ FROM,

//

orders") ;

iterate over all rows

while (rs.next()) {

// obtain actual order total and sum it up
sum = sum + rs.getFloat ("ordertotal");

return sum;
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Listing 8.2: Querying a database in an observed class.

Instead, for that call, all we have to capture are the dynamic type of the sin-
gle argument stmt, the obtained result set rs, and the returned scalar values
of methods next () and getFloat (...) called on this set. We even do
not have to capture the whole result set: what affects the computation of the
method’s return value sum are only the scalar values returned by the two out-
going method calls to the set. Thus, the only data we need to store to replay
are the boolean values returned by the calls to the result set’s method next (),
and the float values returned by the calls to its method getFloat (.. .). For
instance, if the result set would contain 100 orders, all we would have to store
would be 100 boolean and 100 float values.

In general, we do not need to capture objects at all. Whenever an object
is accessed, we just need to capture its dynamic type and its unique object ID
that is automatically assigned by JINSL* The object ID is used to differentiate
between individual instances of the same class. In this way, we can collect all
required information incrementally at run-time. In general, it is not possible to
identify in advance (thus, statically) which subset of the information is relevant
for later replay. We have to store the actual data only for scalar values, as seen
in the above example. Thus, collecting object IDs, dynamic type names and
scalar values is all we need to know about objects that cross the border of the
observed part of the program. This minimal information is sufficient for later
replay, and dramatically reduces the cost of the capture phase.

To replay data crossing the border between observed and unobserved parts,
JINSI captures nothing but object IDs, type names, and scalar values. All
required data is collected incrementally and at run-time.

4JINSI uses a hash map with weak references. Thus, JAVA’s garbage collection is not hindered by
references pointing from object references to IDs. See Section 8.7.1 for details.
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8.3 Calls Within super or this

While Section 7.1 addressed most of the issues involved in instrumenting for
incoming constructor calls, one further issue arises from alternate constructor
(this) and superclass constructor (super) invocations.

As we have seen in Section 7.1, the first statement in a constructor body
has to be either an explicit invocation of another constructor of the same class
(this), or of the direct superclass (super). However, it is possible to call an-
other constructor or a static method to instantly pass an argument to this and
super, respectively. For example, a call like this (new Observed())
is a legal invocation. Unfortunately, in this case JINSI cannot instrument for
incoming constructor calls as described in Section 7.1.6. JINSI would have to
capture the call and to assign the event ID before this would be invoked,
resulting in invalid JAVA bytecode. Furthermore, JINSI uses the approach as
described in Section 7.1.6 analogously to capture outgoing constructor calls as
well. Thus, the same issue holds for outgoing constructor calls, as, for instance,
in super (new Unobserved()).

Listing 8.3 on page 158 contains an example for incoming constructor calls
that illustrates the above issue. Constructor Unobserved (Object) invokes
alternate constructor Unobserved (Observed).

public class Unobserved {

public Unobserved (Object obj) throws Exception {
this (new Observed (obij));

public Unobserved (Observed observed) throws Exception

{
//
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Listing 8.3: Instantiating an observed class within this.

To capture the incoming call Observed (obj), JINSI has to replace this
call with a static method. The introduced method has to

1. take and pass the given parameter ob J;
2. log the corresponding events;
3. instantiate the observed object;

4. return the created instance.

To implement this technique, JINSI does, in principle, an “extract method”
refactoring and in this way introduces a private factory method for this spe-
cific constructor call in class Unobserved. Listing 8.4 on page 159 shows
the refactored constructor, as well as the introduced static factory method. The
factory method captures the events exactly as described in Section 7.1.6. This
time, JINSI adds a catch-block for Exception because the constructors in
class Unobserved explicitly declare this type in their throws clause. Ad-
ditionally, the factory method has to return the instantiated object to its caller.

1 public Unobserved(Object obj) throws Exception {
2 this (factoryJINSI (obj));

5 private static Observed factoryJINSI (Object obj) {

6 EventId eventId = JINSI.
recordIncomingConstructorCall(...);

7 Observed observed = null;

8 try {

9 observed = new Observed(obj);
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} catch (RuntimeException e) {

JINSI.recordIncomingThrowable (eventId, e, ...);
throw e;

} catch (Exception e) {
JINSI.recordIncomingThrowable (eventId, e, ...);
throw e;

}

JINSI.recordIncomingConstructorReturn (eventId,
observed, ...);

return observed;

}

Listing 8.4: The incoming constructor call was replaced by a capturing static
factory method.

The same technique is analogously used to capture outgoing constructor
calls like super (new Unobserved () ) inan observed constructor, as well
as to capture incoming or outgoing calls in this and super to static methods.

JINSI extracts custom factory methods to capture incoming and outgoing
calls within invocations of this and super.

8.4 Field Accesses

Next to constructor and method calls, JINST has to capture and replay field ac-
cesses as well. To capture, JINSI inserts probes next to an access. By contrast,
to enable replay JINSI has to replace the access.

8.4.1 Capture Field Accesses

Listing 8.5 on page 161 shows class Observed that executes an outgoing
read access in method readField, and an outgoing write access in method
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writeField. To capture these accesses, JINSI has to insert probes that record
the corresponding interactions.

public class Observed {
private Object myValue;
public void readField(Unobserved u) {

this.myValue = u.value;

public void writeField (Unobserved u) {
u.value = this.myValue;

}

Listing 8.5: Observed class with outgoing read and write access to an
unobserved field.

In Listing 8.6 on page 161, you can see the instrumented version of class
Observed. JINSI has inserted probes that record the information required
for later replay of the outgoing interactions. Compared to constructor (see
Section 7.1.6) and method (see Section 7.2) calls, only one probe is sufficient
to capture all required information; in this probe, JINSI tracks source and target
objects (this and argument u), the accessed field’s name (value), and the
accessed value (this.myValue after and before the access, respectively).

public void readField (Unobserved u) {
this.myValue = u.value;
JINSI.recordOutgoingFieldRead (this, u, "value'",
this.myValue, ...);
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public void writeField (Unobserved u) {
JINSI.recordOutgoingFieldWrite (this, u, "value",
this.myValue, ...);
u.value = this.myValue;

}

Listing 8.6: Instrumented class Observed with probes to record field
interaction.

In the above example, we have seen how JINSI captures outgoing field ac-
cesses. To capture incoming accesses, JINSI applies an analogous instrumenta-
tion. For this purpose, JINSI has to instrument both observed and unobserved
classes. While unobserved objects can only trigger an incoming access, ob-
served ones can trigger both an incoming and an outgoing access within the
same interaction: If unobserved object o1 accesses a field in another, different
observed instance o2, this will be both an outgoing and an incoming access.
We will see in the following Section 8.4.2 how JINSI handles this situation dur-
ing replay.

Like for method calls, JINST has to instrument field accesses in superclasses
of observed classes as well (see Section 7.3). However, in JAVA, there is a major
difference between method calls and field accesses regarding binding: fields in
JAVA are only hidden and not overridden—binding for fields is always static.’
JINSI considers this fact when instrumenting field accesses.

To capture field accesses, JINSI inserts probes next to the access; the access
itself is not modified. JINSI considers that, in JAVA, fields are hidden instead
of overridden.

SORACLE’s JAVA tutorial writes on that matter: “Within a class, a field that has the same name as
a field in the superclass hides the superclass’s field, even if their types are different.” ([S0])
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8.4.2 Replay Field Accesses

To replay field accesses, JINSI has to replace them:

o for outgoing accesses, JINSI replaces the field accesses with substitutive
method calls to itself. Thus, JINST instruments the JAVA bytecode of ob-
served classes to intercept the outgoing field access;

e for incoming accesses, JINSI uses JAVA reflection to read or write the cap-
tured value.

In the following, we will concentrate on outgoing field accesses, as this case is
more interesting.

If the access is an outgoing read, JINSI will receive the introduced method
call and will query its event log for the capture value; this value is returned to
the caller. For the observed object, it makes no difference whether it does an
actual field access or calls the substitutive method. In both cases, the accesses
value is obtained. If the access is an outgoing write, JINSI will receive the value
to be written via the substitutive method call. However, the value is not written,
but consumed by JINSI.

Listing 8.7 on page 163 shows class Observed as instrumented for replay.
In addition to the substitutive method calls, the introduced code contains run-
time checks that test if a field access is in fact outgoing. If not, the access is
not redirected to JINSI but targets the actual object—for example, if an instance
accesses a field on itself.®

public void readField (Unobserved u) {
if (JINSI.isOutgoingFieldAccess(this, u, "value™))
{

SThis is a very common interaction in method equals (Object). In this method, (private)
fields of the given object are accessed to indicate whether the given object is equal to this.
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this.myValue = JINSI.getFieldValue(this, u, "
value", ...);
} else {
this.myValue = u.value;

public void writeField (Unobserved u) {

if (JINSI.isOutgoingFieldAccess(this, u, "value"))
{
JINSI.handleFieldWrite (this, u, "value", this.
myValue, ...);
} else {

u.value = this.myValue;

}

Listing 8.7: For replay instrumented class Observed. Both field accesses will
be redirected to JINSI if the access is outgoing.

As noted above, an observed object can access another, different observed
instance, resulting in an outgoing and an incoming access, depending on the
perspective of the interaction. During replay, this has to be taken into account:
these two interactions belong together and JINSI has to handle them as one
single unit. Furthermore, the outgoing access has to be received by the actual
target object. If the interaction is a read access, the object doing the access has
to read the value from the target object; if it is a write access, the value has to
be written to the target.

If an outgoing access addresses another observed object, JINSI will inter-
cept this access just like a sole outgoing access targeting an unobserved object.
However, instead of querying the event log for the captured value or consum-
ing the write access, JINSI uses JAVA reflection to forward the access again to
the original receiver.
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To replay field accesses, JINSI redirects outgoing accesses to itself by
replacing these accesses with method calls to itself. While intercepting the
access, JINSI either uses the event log to handle the captured value (outgoing
access targets unobserved object), or again forwards the access to the
actual target object (access targets different observed object.)

8.5 Arrays

In JAVA, arrays are objects in principle. However, they have some special prop-
erties and therefore take on a special position:

e arrays contain components;
o they are created dynamically;
e it is not possible to subclass them;

o and there is no way to manipulate their bytecode—there is none, because
arrays are implemented natively.

The consequent main issue is that JINSI cannot use arrays as observed ob-
jects. While it is relatively easy to capture and sequentially replay outgoing
interactions targeting arrays, minimization becomes very tricky. While mini-
mizing, JINSI mainly has to replay subsets of the captured interactions, instead
of the whole sequence; thus, interactions with arrays may be skipped. If we
do not serialize whole array structures, it will be very difficult to reflect these

skipped array accesses in a meaningful way in all cases—without breaking
causality.
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8.5.1 Capturing Array Accesses

Before JINSI can replay interactions that target arrays, JINSI has to capture those
interactions. As we will see, JINSI can capture/replay outgoing array accesses
only, as arrays are invariably unobserved objects. Thus, in the following, we
will see how JINSI captures outgoing array accesses.

Listing 8.8 on page 166 shows an excerpt from an observed class that uses
an array of type byte [ ], referenced by its field values. The class’ method
setValues (...) can be used to set this field to a given array, method
transform() iterates over the internal array and adds value 1 to every ele-
ment, and method init creates an array of length 2 and initializes it with the
given arguments a and b. In this short example, we can see how JINSI handles
(1) arrays as parameter values, (2) read and (3) write accesses to arrays, and
finally (4) array creation and initialization.

private byte[] values;

public void setValues (byte[] values) {

this.values = values;
t
public void transform() {
for (int i = 0; i1 < this.values.length; i++) {
this.values[i] = (byte) (this.values[i] + 1);

public void init (byte a, byte b) {
this.values = new byte[] { a, b };
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Listing 8.8: Observed methods that use a byte array in field values. At
construction time, the array is initialized with null. setValues
uses an array as parameter, transform does a read access
followed by a write access, and init creates and initializes the
array.

When capturing incoming calls to method setvValues (.. .), JINSI cap-
tures minimal information about the given array: its object id, its type, and its
length. Thus, in comparison to other objects, JINSI additionally captures the
array’s length. By default, JINSI does not capture any information about the
contained elements. JINSI also is able to capture partial object information (ob-
ject id and type / scalar values) about every element referenced by the array.
Though, for large arrays (or, even multidimensional arrays) this can get very
expensive—in JAVA, arrays can hold up to 23! — 1 elements—especially if an
array would again contain other arrays (nested arrays). In the latter case, JINST
has to descend the arrays until a component type that is not an array type will
be reached.

In method transform, JINSI replaces all read and write accesses to ele-
ments with method calls to JINSI. In contrast to other interactions (especially
to field accesses, see Section 8.4), these accesses cannot be surrounded with
probes. This is due to the functionality provided by JAVASSIST: it is not possi-
ble to surround array accesses with new JAVA code; it’s only possible to replace
array accesses completely.” At runtime, JINSI receives the redirected array ac-
cess, captures the information about the access, and returns the value read from
the array and writes the given value to the array—via JAVA reflection in both
cases—respectively. Listing 8.9 on page 167 shows the instrumented version
of method transform.

7See method replaceArrayAccess (.. .) inclass javassist.CodeConverter.
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1 public void transform() {
2 for (int i = 0; i1 < this.values.length; i++) {
3 byte element =
4 JINSI.captureArrayReadByte (this, this.values, i
P I i
5 JINSI.captureArrayWriteByte (this, this.values, i,
element, ...);

7 }

Listing 8.9: Instrumented method t ransform. Array accesses are replaced
by method calls to JINSI.

The array creation in method init uses a shortcut syntax to create and
initialize an array. The length of the array is determined by the number of
values provided between { and }, the elements are assigned in the given order.
In fact, at the bytecode level, this creation looks similar to the JAVA code in
Listing 8.10. JINSI again instruments the array write accesses by replacing
them with method calls. The creation is not instrumented at all because there is
no interaction of interest, as it is not necessary to explicitly replay the creation
of arrays, as we will see in Section 8.5.2.

1 private void init (byte a, byte b) {

2 // was: this.values = new byte[] { a, b };
3 this.values = new byte[2];

4 this.values[0] = a;

5 this.values[1l] = b;

Listing 8.10: Unfolded array creation in method init.

If we would want to observe arrays, thus, to capture array accesses as in-
coming interactions as well, we would have to instrument virtually all array ac-
cesses in the whole program unless we would apply some sophisticated static
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analysis. Because we cannot instrument arrays for incoming interactions as for
methods, we would have to instrument all call sides of possible array accesses.
For some widely used methods like arraycopy in java.lang.System®
this is not possible, because this method is implemented natively.” Therefore,
arrays always are unobserved objects; it is not possible to include arrays in the
set of observed classes.

JINSI captures array read and write accesses by replacing them with method
calls to JINSI. The creation of arrays is not captured. Arrays always are
unobserved objects, they cannot be treated as observed.

8.5.2 Replaying Array Accesses

Replaying the previously captured array accesses is relatively straightforward.
Similar to capturing array accesses (and similar to replaying field accesses,
see Section 8.4), JINSI replaces the array accesses as shown in Listing 8.11 on
page 169.

public void transform() {
for (int 1 = 0; i1 < this.values.length; i++) {
byte element =
JINSI.replayArrayReadByte (this, this.values, i,
L)+ 1
JINSI.replayArrayWriteByte (this, this.values, i,
element, ...);

}

8This methods provides a native implementation of copying the contents of arrays. It is much
faster than iterating over all elements in JAVA code and therefore is preferred over this manual
copy.

9We could replace this call to a custom method that provides the same functionality but is not
native. However, then we would have to redirect all respective calls—including in core JAVA
classes, which cannot be instrumented for technical reasons.
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}

Listing 8.11: For replay instrumented method transform. Analogously to
capturing, array accesses are replaced by method calls to JINSI.

This time, instead of recording information about the access, the information
passed to JINSI is used to query the event log for the originally captured value.
Thus, when replayArrayReadByte is called, JINSI uses the passed infor-
mation to get the originally accessed byte value from the event log. Afterwards,
the obtained value is returned to the caller and replaces the array read access.
For the instrumented observed object, this happens completely transparently.
The call to replayArrayWriteByte is used for synchronization purposes
only. Because we intercept all array accesses, subsequent read accesses will
not target the actual array but will be redirected to replayArrayReadByte
again. In fact, JINSI does not write the passed value to the array at all.

You may have noticed that JINSI does not instrument the access to the array’s
field 1ength!?, neither during capture nor during replay. When replaying
method setValues, JINSI uses the captured information to create an empty
array of proper length and type, and passes this empty array while invoking
the method. If the observed object reads the array’s 1ength, the array itself
will return the proper value. Because we redirect all accesses to the array’s
elements, the observed object does not access the empty components, but calls
JINSI instead. For read accesses, JINSI again returns the captured value. From
the observed object’s perspective of view, it makes no difference whether the
object accesses the array, or calls the appropriate methods on JINSI instead.

Method init is instrumented in a similar way. The two write accesses
are replaced by method calls. As for capture, the creation of the array is not
instrumented because there is no interaction of interest.

101n fact, currently with JAVASSIST it is not possible to manipulate accesses to field length of
arrays. In JAVA bytecode, this field access is represented by a special bytecode instruction and
therefore differs from field accesses on regular objects.
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Observed o
o.setValues

new Observed(); // o.values: null
bytel] {1, 2 }); // o.values: { 1, 2 }

(new
o.init ((byte) 7, (byte) 8); // o.values: { 7, 8 }
()i

0. transform

// o.values: { 8, 9 }

Listing 8.12: Example for incoming calls on observed object that uses an array,

see Listing 8.8 for its source code.

Listing 8.12 on page 171 shows a short sequence of incoming calls to the
observed object that uses an array as declared in Listing 8.8 on page 166. Af-
ter creating the observed object o, method setValues is called to set the
array to elements {1, 2}. Immediately afterwards, method init is used to
overwrite these values with {7, 8}. Finally, method transform changes
these values to {8, 9}. When replaying these interactions sequentially, the
following happens:

1.

JINSI creates the observed object o. Thus, we have object o and its field
values refers tonull.

. JINSI calls method setValues with an empty array of component type

byte and length 2. Field o . values now refers to this empty array.

. JINSI calls method init and passes byte values 7 and 8. Again, field

o.values is assigned to a new empty array of length 2. Because the
given values are not written to the array, it still refers to an empty one.

While method t ransform is running, object o accesses field length
on the empty array and obtains its actual length 2. Now, instead of ac-
cessing the empty array, the read accesses are redirected to JINSI. JINSI
queries the event log for each loop iteration, finds value 7 and 8, re-
spectively, and returns this value. Thus, although the referenced array is
empty, the proper values are used within the for loop. The computation
results in correct values 8 and 9, respectively.
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On the basis of this short example, we have seen how different array accesses
are replayed. While this example may appear artificial, it is quite brief and
nevertheless demonstrates important aspects regarding capture/replay of array
accesses. Furthermore, as we will see in the following section, even this simple
example causes fundamental challenges during minimization.

JINSI replays array read and write accesses analogously to capturing. Array
read and write accesses are redirected to JINSI; for read accesses, JINSI
queries its event log and returns the captured value. It is not necessary to
explicitly replay the creation of arrays.

8.5.3 Minimizing Array Accesses

While sequential replay as described above is straightforward, minimizing is
much more problematic and thus requires a more sophisticated handling of
array accesses. As we have seen, we can sequentially replay the interactions
in Listing 8.12 on page 171 without changing the semantic of the program
run. However, when replaying subsets during minimization, several problems
occur. For example, if we replay interactions 1, 3, and 4, replay will still work.
However, if we replay interactions 1, 2, and 4, causality will be broken:

Interaction 1. JINSI creates instance o and o.values refers to null.

Interaction 2. JINSI calls method setValues and passes an empty array of
length 2; o.values refers to this empty array.

Interaction 4. In method t ransform, o accesses the 1ength of the array
instance previously given via setValues. The proper value 2 is ob-
tained. However, this time the redirected read accesses return wrong
values: During capturing, JINSI stored the accessed values 7 and 8 set by
init. Now, init is not called at all and values 1 and 2 should have
been set by setValues instead. Thus, in the for loop wrong values
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7 and 8 are used. Furthermore, the computation leads to wrong values 8
and 9, instead of the expected values 2 and 3.

If we assume that one of these values, 8 and 9, is relevant for causing
a failure in the observed instance, the minimization would classify the call
o.init ((byte) 7, (byte) 8) as irrelevant, while the actually irrel-
evant call o.setValues (new byte[] { 1, 2 }) would be classified
as relevant. Thus, causality would broken. In the following, we will see how
JINSI deals with this fundamental issue.

8.5.3.1 Taking Object IDs into Account

JINSI could detect the above mismatch by comparing the object IDs of the ac-
cessed arrays. Then, JINST would detect that the array access in transform
reads from the wrong array instance: init creates a new array and the ac-
cesses in transform are expected to target this array, but not the one set
by calling setValues.!! However, the same issue would still hold in other
cases. Listing 8.13 on page 173 shows method add as declared by the observed
class used in the array examples. It adds given values to the array starting at
index O until the array is filled up.

private int index = 0;

public int addvValue (byte wval) {
if (this.index < this.values.length) {
this.values|[this.index] = val;
this.index++;
}
return this.index;

}

Delta Debugging would treat this situation as an unresolved outcome.
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Listing 8.13: Method add adds given byte value to the array.

We canreplacethecallo. init ( (byte) 7, (byte) 8) withtwo cor-
responding calls to add as shown in Listing 8.14 on page 174. Because method
add does not create a new array (in contrast to method init) the very same
array as passed by calling setValues is used to write the given values to.
Therefore, comparing object IDs of arrays would not help resolving that issue
at all.

Observed o = new Observed(); // o.values: null
o.setValues (new byte[] { 1, 2 }); // o.values: { 1, 2 }
o.addvalue ( (byte) 7); // o.values: { 7, 2 }
o.addValue ( (byte) 8); // o.values: { 7, 8 }

o ()

.transform(); // o.values: { 8, 9 }

Listing 8.14: Instead of calling init as in Listing 8.12 on page 171, add is
called twice.

Again, the interactions in lines 1, 2, and 5 could reproduce the original fail-
ure, although the calls to add values 7 and 8 would be missing, just as before.
This is caused by the way how JINSI handles array accesses. Because—by
default— it records no information about the actual elements, JINSI in that case
can use only empty arrays while passing them as arguments to incoming calls.
Furthermore, because JINSI passes empty arrays only, read accesses have to be
redirected to JINSI. As mentioned before (see Section 8.5.2), capturing infor-
mation about the individual elements may be very expensive. However, let’s
see whether we can fix causality by capturing array component values.

8.5.3.2 Recording Information About Individual Elements

If JINST would record the individual elements as well (actual values for primi-
tive types and partial object information for complex types, see Section 8.2.),
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it would not be necessary anymore to replace the array accesses with calls
to JINSI. While replaying, the observed objects would access the elements di-
rectly, both for read and write accesses. The minimization of the examples in
Listings 8.12 on page 171 and 8.14 on page 174 would result in proper minimal
sets because the actual and up-to-date elements would be used for computation.

However, capturing array elements still may not be sufficient, as we will
see in the following example. Listing 8.15 on page 175 shows a further ob-
served method that interacts with array this.values (see Listing 8.8 on
page 166): Method readValues uses a FileInputStream to read bytes
from a given file and to store these values into the array referenced by field
values. The array is passed to void method is.read—provided by the
stream used to read from the given file—which reads bytes of data from the
input stream into the given array of bytes. Thus, array this.values is
changed outside of the observed object’s scope.

public void readValues (File file) throws IOException
{
InputStream is = new FileInputStream(file);
is.read(this.values);

}

Listing 8.15: Method readvalues copies byte values from a given file to the
array.

Having method readvalues, we can replace the call to init in List-
ing 8.12 on page 171, as well as the two calls to add in Listing 8.14 on
page 174. Listing 8.16 on page 175 shows the resulting sequence of calls.

Observed o = new Observed(); // o.values: null

o.setValues (new byte[] { 1, 2 }); // o.values: { 1, 2 }

o.readValues (new File("file.txt")); // o.values: { 7, 8
}
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o.transform(); // o.values: { 8, 9 }

Listing 8.16: Instead of calling init as in Listing 8.12 on page 171,
readValues is called.

If wecall 0. setValues (new byte[] { 1, 2 }) followed by a call
to o.readvalues (...), the observed object would at first initialize the
array with {1, 2}; afterwards, it would store the given file’s first two bytes
in the array. If these would be {7, 8} again, a subsequent call to method
o.transform would in turn result in values {8, 9}—as before. If JINSI
would capture these interactions including actual array values, regarding the
array it would record:

e For the call to method setValues the actual array {1, 2} including
the scalar values as argument.

e For the call to readFile, only partial information about the passed
file object and about the outgoing calls. JINSI would record {1, 2} as
argument of the outgoing call to is.read(...). However, the ar-
ray is changed within this unobserved method—outside of the observed
object’s scope.

e In method t ransform, no information about the array accesses would
be recorded at all, because the observed object would directly interact
with the array.

Especially, in method readFile JINSI could not observe the change to the
array’s elements because this change happens in the unobserved part of the
program. If we would replay these interactions sequentially, JINST would trigger
the following interactions:

o JINSI would call setValues with the recorded elements {1, 2}; this
time, o . values would point to the array {1, 2}, instead of an empty
one.

176



8.5 Arrays

e While replaying readvalues, JINSI would receive the outgoing call to
is.read and would do—nothing, as void method is.read changes
the given array as a side effect. Thus, o.values would still refer to
{1, 2} instead of the values {7, 8} as in the original run.

e In transform, the observed object would access the actual array el-
ements: {1, 2}. However, in the original run these were {7, 8}.
Therefore, the computation would be wrong.

In this small example, for arrays accessed directly by the observed object, JINSI
did not intercept accesses to arrays, but the actual array elements were used for
replay. However, then even the basic'? sequential replay does not work any-
more. Thus, we have to extend the approach of capturing whole array structures
by handling of side effects in unobserved methods.

A possible next step to solve this issue would be to include so far unob-
served class FileInputStream into the set of observed classes. Then, the
instance of that class used to fill the array would not be mocked and thus re-
placed by JINSI, but would in fact fill the array. However, this class uses private
native method readBytes (byte b[], ...) todo the actual read from
the file—which cannot be observed in principle. Thus, the same issue holds as
before: JINSI could not properly capture/replay some crucial interactions.

As mentioned above, JINSI does not capture array component values by de-
fault. However, in such cases as described above where capturing only the
array accesses would not be sufficient, JINSI indeed records whole arrays and
their respective values by serializing!? array structures:

121n fact, sequential replay is fundamental. Delta debugging tests both the empty and the complete
sequence of interactions. It expects that the empty sequence results in a passing run, the com-
plete set in a failing run; no circumstance at all must not reproduce the failure, while taking
into account all circumstances has to reproduce the failure.

I3JINSI captures partial information about objects contained in arrays, and serializes the actual
values of arrays of primitive values, as byte arrays used in the examples.
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Arrays passed to observed methods. If an array is passed as argument to
an observed method, like to method setValues (...) in Listing 8.8
on page 166, JINSI will record the array values during capture. During
replay, it will re-create the array and its values, and pass it to the method
as argument. The observed method will access the actual array values.

Arrays returned by outgoing method calls. Analogous to the previous sit-
uation, if an array is returned to an observed object, JINSI will capture
the array values, and return the re-created array with actual values to the
observed object.

Arrays passed to unobserved methods. If an array is passed to an unob-
served method that might change the array outside of the observed ob-
ject’s scope as side effect, like method is.read in Listing 8.15 on
page 175 does, JINSI will capture the whole array right after the unob-
served method returns control to the observed object. Thus, JINSI cap-
tures the array’s state after the outgoing call. During replay, JINSI will
analogously fill the passed array with the recorded values in order to pre-
serve the state as seen during capture. The observed object will access
the—possibly—changed values.

When JINSI records array structures and replays array accesses, it does not re-
place these accesses by method calls, but observed objects actually interact
with the arrays, which in that case indeed contain the actual values. Please
note that field accesses that involve arrays are handled in a similar way.

While this fallback solution may result in performance losses—because po-
tentially large arrays have to be serialized—it is required in some cases to pre-
serve causality both during sequential replay and minimization.

When actual array values are not recorded, causality may be broken while
replaying incoming interactions that involve accesses to arrays. To solve
this issue, JINSI captures whole array structures as fallback solution.
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8.6 Strings

Like values of a primitive type and null, strings are literals in JAVA: strings
can be represented as a fixed value in source code, for example "I am a
string". At the same time, a string is an instance of class St ring, which
represents a sequence of Unicode characters. String literals are references to
instances of class St ring. Thus, strings are objects in JAVA. St ring objects
have a constant value, they always refer to the same instance. More generally,
String objects that are the values of constant expressions, like "I am " +
"a string", are interned so as to share unique instances.'*

It is important to distinguish between literal strings, strings computed by
concatenation at run time, and strings computed at compile time:

Literal Strings. Literal strings within the same class or different classes rep-
resent references to the same St ring object.

Compile time. Strings computed by constant expressions, as in the above ex-
ample, are computed at compile time. These strings are treated as if they
were literals. Thus, they are interned.

Run time. By contrast, strings computed by concatenation at run time'> are

newly created and therefore distinct.

The latter can be explicitly interned by calling method intern () on the
computed St ring instance; after interning a computed string, it is the same
one as any literal string with the same contents.

As other literal values and their wrapper classes, respectively, strings are
immutable. The only way to change a string is to create a new instance and
point to that. For example, methods like toLowerCase () do not change

14Using the native method String. intern (). This method returns a canonical representation
and maintains a pool of strings.
Blike "I am " + aString, whereas aString is a non-constant variable.
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the St ring object the method is called on, but rather return a new instance.
In typical JAVA programs, Strings are omnipresent and their immutability has
some concrete advantages:

Multithreading. If strings would be mutable, they could not be shared be-
tween threads without expensive locking. Different threads can work on
a shared string at the same time without any possibility of conflict.

Security. Itis not possible, in contrast to a mutable Set instance for example,
to pass a string and then to change it unnoticeably afterwards. This is
particularly important in high security applications.

Memory. Because strings are interned automatically, duplicates point to a sin-
gle instance, saving memory.

Performance. Substrings can be created without any copying. For instance,
JAVA’s implementation of substring is very fast because a substring
just points into its source string that is guaranteed to never change.

Strings are immutable. Literal strings and strings computed at compile time
are interned. Only strings computed by concatenation at run time are newly
created.

8.6.1 Capture and Replay of Strings

During capture/replay, JINSI treats instances of class St ring in a special way:
it treats them as literal values, they therefore behave in their natural way.
Methods called on strings, like contains (.. .), are not intercepted, nei-
ther during capture, nor during replay. This approach solves many issues that
would occur otherwise:
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Observing strings. To preserve the actual behavior of strings during replay,
we would have to include class St ring as observed. Otherwise, meth-
ods like contains (...) would return captured return values in all
cases, regardless of the actual string value. However, some computation
involving strings could change due to simplification, resulting in differ-
ent string values. In this case, causality may be broken.

Incoming interactions. If we would have to treat St ring instances as ob-
served, we would have to instrument virtually all call sides of methods
declared in that class. However, as St ring is omnipresent, this would
be practically impossible to implement.

Instrumenting String. We also would have to instrument class String
itself, which is not possible for technical reasons, as the JAVA virtual ma-
chine make assumptions about the class’ internal structure. Furthermore,
crucial method String.intern () is native, and therefore cannot be
instrumented using bytecode manipulation.

As opposed to objects in general, JINSI therefore does not only capture type
and object ID of a string that crosses the border between the unobserved and
the observed part, but its actual content as well. Furthermore, JINSI passes
real strings as arguments of incoming method calls and returns real strings as
return values of outgoing interactions. Because class St ring is a direct child
of Ob ject and itis final, it can be decided at instrumentation time if a call will
target a string at runtime. Calls to methods defined in St ring therefore can
be completely ignored during instrumentation; at runtime, calls to String
instances will target the actual string. Thus, calls on String objects like
contains (...) target the actual string value; the returned boolean value
indicates whether the given substring is in fact contained within that string or
not.
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For instances of class St ring, JINSI uses real values. Thus, JINSI treats
string values as primitive values. Respective method calls are completely
ignored during replay/capture, and target the actual St ring objects.

8.6.2 StringBuffer and StringBuilder

In the context of how to handle instances of class String, it seems natural
to discuss classes StringBuffer and StringBuilder as well. While
String represents an immutable sequence of characters, StringBuffer
and St ringBuilder represent mutable sequences. The JAVA compiler takes
advantage of this fact to optimize string concatenation. '

If JAVA would use instances of String to concatenate n strings via the
+ operator, it would have to create n — 1 intermediate St ring objects during
concatenation, because St ring is immutable. To avoid dispensable strings,
which would have to be removed anyway by the garbage collection afterwards,
JAVA uses mutable instances of StringBuffer and StringBuilder, re-
spectively.!” 1In the following discussion, we go into detail regarding class
StringBuilder only; because class St ringBuffer provides the same
API and functionality except for thread-safety, this discussion applies to this
class just as well.

Listing 8.17 on page 183 shows two example methods that concatenate
strings. While method concatenationPlus () utilizes the + operator,
method concatenationBuilder () uses StringBuilder explicitly.
The call to method toString () at the end returns the concatenated St ring

16See §15.18.1 “String Concatenation Operator + in the JAVA language specification [31].

TPrior to JAVA 5, thread-safe StringBuffer was used. Since JAVA 5, StringBuilder
is used instead. The latter provides a faster drop-in replacement for St ringBuffer that
does not use synchronization. Thus, if a sequence of characters is used by a single thread
(as is the case of this optimization), no synchronization is needed and therefore the faster
StringBuilder can be used without any possibility of risk.
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instance. As mentioned above, if JAVA would use St ring instances for con-
catenation, it would have to create two dispensable, immutable instances in the
first method. However, as you can see in Listings 8.18 on page 183 and 8.19
on page 184, JAVA uses mutable instances of St ringBuilder in both cases.

1 public static void concatenationPlus () {

2 String comma = ", ";

3 String s = "Hello" + comma + "world!";

4 }

5

6 public static void concatenationBuilder () {

7 String comma = ", ";

8 String s = new StringBuilder () .append("Hello™).
append (comma) .append ("world!") .toString();

0 }

Listing 8.17: Methods that concatenate strings by using the + operator and a
mutable instance of St ringBuilder, respectively.

| NEW java/lang/StringBuilder

2 DUP

3 LDC "Hello"

4 INVOKESPECIAL java/lang/StringBuilder.<init> (Ljava/
lang/String; )V

5 ALOAD O

6 INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/

lang/String;)Ljava/lang/StringBuilder;
7 LDC "world!"

8 INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/
lang/String;)Ljava/lang/StringBuilder;

9 INVOKEVIRTUAL java/lang/StringBuilder.toString()
Ljava/lang/String;
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Listing 8.18: Decompiled method concatenationPlus (excerpt). Behind
the scenes, JAVA uses a mutable instance of St ringBuilder to
concatenate the strings.

NEW java/lang/StringBuilder

DUP
INVOKESPECIAL java/lang/StringBuilder.<init>()V
LDC "Hello"

INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/
lang/String;)Ljava/lang/StringBuilder;

ALOAD 0

INVOKEVIRTUAL java/lang/StringBuilder.append(Ljava/
lang/String;)Ljava/lang/StringBuilder;

LDC "world!"

INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/
lang/String;)Ljava/lang/StringBuilder;

INVOKEVIRTUAL java/lang/StringBuilder.toString()
Ljava/lang/String;

Listing 8.19: Decompiled method concatenationBuilder (excerpt).
Except for the constructor call in line 3 (the empty one is called),
a mutable instance of St ringBuilder is used in the same way
as in Listing 8.18 on page 183.

As a direct consequence of this automatic optimization, JINSI has to treat
instances of class StringBuilder in a similar way as instances of class
String. To minimize interactions that involve outgoing calls to instances of
StringBuilder, they would have either to be observed, or to behave in their
natural way—interactions to these instances must not be answered by JINSI
but by the actual instance. Otherwise, JINST would always return the captured
value if an observed object would call toString () ona StringBuilder
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instance. Because JAVA replaces string concatenations with these instances au-
tomatically and thereby makes St ringBuilder omnipresent, it is virtually
certain to encounter this issue—as seen during experimentation.

Similar to class String, it is practically not possible to instrument class
StringBuilder to observe all its interactions. A better and much faster
approach would be to let interactions between observed objects and instances
of StringBuilder simply untouched—as for String instances. Then,
calls from an observed object would target a St ringBuilder instance di-
rectly, and this object could concatenate strings without any troublesome side
effect. However, as shown in Listing 8.20 on page 185, JINSI would have to
analyze which interactions have to stay untouched and which ones have to
be intercepted. It is not sufficient to just let pass all interactions. In method
getAsHeading (), the observed object uses a StringBuilder only in-
ternally, reference b is not passed to any other object. Thus, these interac-
tions must not be intercepted by JINST but target the actual builder. In contrast,
in method append (...) a given builder passed from outside the object is
used. Thus, if this builder would be created and passed from an unobserved
object—it would have to be mocked therefore—the interactions would have
to be intercepted. In sum, whenever a builder is used internally only, the in-
teractions must stay untouched; whenever a (mocked) builder is passed from
the unobserved to the observed part, the interactions must be intercepted by
JINSL!®

public class Observed {

public String getAsHeading() {
// return "<hl>" + this.toString() + "</hl>";
StringBuilder b = new StringBuilder();
b.append ("<hl>");

I8For st ring instances, JINSI does not need to differentiate between the two cases as for
StringBuilder, because actual strings are always used when passed as argument.

185



8 Implementation Details

b.append(this.toString());
b.append ("</h1>");
return b.toString();

public String append(StringBuilder b) {

}

b.append(this.toString());
return b.toString();

Listing 8.20: Observed class that uses St ringBuilder instances both only

internally and visibly to the outside.

To solve this issue, JINSI, treats St ringBuilder in a special way:

e In observed objects, JINSI leaves object instantiations of—thus, construc-

tor calls to—class StringBuilder untouched during instrumenta-
tion. At runtime, actual instances instead of mocked ones will be con-
structed. Furthermore, subsequent calls to these actual instances will not
be intercepted. Consequently, such internally created instances behave
in their natural way, similar to instances of class St ring.

Whenever an instance of class St ringBuilder that was mocked be-
fore is passed as argument to an incoming call, JINSI will detect this case
and will intercept and handle subsequent outgoing calls targeting this
argument in the usual way.

To handle further usages of class StringBuilder, JINSI provides a
custom implementation providing the same API, which can be observed
without causing any (technical) issues. This custom implementation can
be used as drop-in replacement if necessary.
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In this way, JINSI’s instrumentation does not interfere with the optimization
done by the JAVA compiler.

Not only St ring instances have to be handled in a special way, but
instances of StringBuilder as well. Indeed, JINSI ensures that internally
used instances behave in their natural way, while externally constructed
instances will be mocked.

8.7 Managing Objects

ll9

Both during capture and replay, JINSI maintains an object pool'” that associates

numeric unique identifiers (IDs) with objects:

Capture: JINSI uses a pool to look up IDs for given objects, so as to store object
information in the event log.

Replay: JINSI uses a pool to look up objects passed as arguments or objects
that are receivers of incoming interactions, specified by their IDs in the
event log.

While the requirements for both cases appear to be very similar at a first glance,
in each case JINSI uses a different pool implementation with different properties
and features.

8.7.1 Pooling of Recorded Objects

During capture, JINSI uses an object pool implementation that maps objects
to IDs (Object — number). This implementation enables JINSI to look
up IDs for given objects. The pool implementation itself is backed up by a
ReferenceIdentityMap, a java.util.Map implementation that first

19See Section 3.1.2 for a discussion on the conceptual level.
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allows mappings to be removed by the JAVA garbage collector, and second
matches keys and values based on == instead of equals () [18]. This im-
plementation therefore has the following two key advantages:

Garbage collection. The first property ensures that JINSI does not retain ref-
erences to objects that are not used by the program under investigation
anymore; otherwise the garbage collector could not clean up these ob-
jects. For this purpose, the type of reference used for keys (thus, objects)
is weak, the one for values (thus, IDs) is hard. As soon as the garbage
collection determines that an object is weakly reachable, it will clear all
weak references to that object.’’ Thus, these week references used by
the pool do not prevent the garbage collector from reclaiming memory
used by recorded objects. Furthermore, as soon as a key is garbage col-
lected, the map will automatically purge the respective value.

Comparing by ==. The second property ensures that keys in this map are
compared using ==. This violates the detail of various Map and map
view contracts. However, the pool has to guarantee that different objects
get different IDs, even if they are equal according to their equals ()
method.

As soon as an object is about to be recorded (see Section 8.2), JINSI queries
the object pool for the corresponding ID. If the given ID was requested before,
the pool will return the previously assigned ID as stored in its map. Otherwise,
the pool assigns a new unique ID, associates the object and its ID in its map, and
eventually returns the ID. In this way, different objects get different IDs, whereas
the same object gets the same ID. In this way, JINSI is able to unambiguously
assign interactions to their corresponding objects.

20For details, see the API documentation of package java.lang.ref in general, and the one
of java.lang.ref.WeakReference in particular.
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During capture, JINSI uses an object pool that maps objects to their unique
IDs. The pool is backed up by a map that allows mappings to be garbage
collected and compares keys using ==.

8.7.2 Pooling of Objects Involved in Replay

During replay, the requirements for the object pool are different. First, instead
of mapping objects to their IDs, this object pool maps IDs to their corresponding
objects (number — Object). While during capture JINSI has to look up IDs
for given objects, for replay it has to look up objects for given IDs that are listed
in the event log—thus, the mapping works the other way around. Second, JINST
cannot use weak references because otherwise JAVA’s garbage collector would
clean up objects prematurely.

To replay interactions, JINST has to keep references to the objects that are in-
volved in these interactions. For example, when replaying an incoming method
call, JINSI has to have available the object that will receive the call, as well as
the objects passed as arguments, if any. For outgoing interactions that returned
an object, JINST has to have available the proper object, in order to return it in
place of of the unobserved target object as during capture. Obviously, before
JINSI can look up an object, it has to be added to the pool.

Whenever JINSI replays an incoming or outgoing constructor call, it adds
the constructed object to the pool; the corresponding ID can be found in the
event log. In case of an incoming constructor call, JINST uses reflection to
call the object’s constructor and afterwards puts the newly constructed object
into the pool. If it is an outgoing constructor call, JINSI creates a mock object
(see Section 8.8) and associates the ID with the mocked object. The same
will happen if a required argument is not already contained in the pool, or if
an outgoing method call or field access targets an object that is not already
contained in the pool (an outgoing interaction may target an object that was
constructed in the unobserved part, and whose construction was not recorded
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therefore).

In general, whenever an unobserved object is required, JINSI looks it up in
the pool. If it is requested for the first time and thus not contained in the pool,
a proper mock object is created and afterwards put into the pool. Subsequent
lookups will find the associated mock object. For observed objects, there has to
be an incoming constructor call first, otherwise JINSI would have missed such a
call (at least during sequential replay, see below). As already mentioned above,
JINSI adds the observed object to the pool after calling the constructor. For sub-
sequent incoming interactions, JINSI will find the previously pooled observed
object.

8.7.2.1 Missing Objects During Minimization

During minimization, it may happen that the delta debugging algorithm will
test a subset that contains an incoming method call or field write, but that does
not contain the corresponding incoming constructor call. In this case, JINSI
will detect that the interaction that would create the object is missing (simply
by the fact that the requested target object is not contained in the pool) and will
throw a proper exception. The algorithm will consequently classify this test
run as unresolved. The alternative would be to create and pool a mock object.
However, then the incoming constructor call would be classified as irrelevant.
Obviously, as soon as an incoming interaction is relevant for a failure to oc-
cur, the corresponding construction of this very object is relevant as well. In
principle, the same applies to outgoing interactions: whenever JINSI encounters
an outgoing interaction that targets an unobserved object that was not recorded
at all during capture, JINSI throws an exception indicating that this interaction
cannot be replayed by JINSI. For example, this may happen if a tested subset
of interactions takes a different branch in the program. Again, the alternative
would be to create a mock object. However, in this case JINSI could not return
values that behave in a proper way—7JINST would have to serve as an oracle to
replay interactions that are unknown to JINSI.
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Next to handling unknown branches (or, more generally code that was not
executed before), JINST has to handle missing initialization of objects that are
target of an outgoing interaction. An outgoing method call or field access could
target an unobserved object that was not obtained before because the corre-
sponding interaction is not contained in the tested subset. In this case, the
required receiver incorrectly would be null.

For example, observed object o could obtain an unobserved object # within
incoming method call mc; on method m; by reading an unobserved field.
Within the same call, u could be stored in an field of o, like o. f. During a sub-
sequent incoming call mc; on a different method m; of o, an outgoing method
call on u stored in o.f may occur. During sequential replay, both incoming
method calls would be replayed and therefore it would be guaranteed that the
unobserved object u would be obtained (via mc;) before the outgoing method
call would be executed (via mcp). On the other hand, during minimization it
could happen that a tested subset contains the second method call mc; but not
the first one mc;. Then, the unobserved object u would not be obtained and
field o.f would point to a null reference instead. In this case, JINSI would
detect that the actual target reference is null, but the captured return event
would not be a throw event. If this reference would have been null during
capture, the corresponding returning event would have to represent a thrown
NullPointerException. JINSI would react to this mismatch with an un-
resolved test result. Thus, the first incoming method call mc; would have to be
in the minimal subset.

The above scenario can be extended in a way that a wrong unobserved object
would be replayed. If the first method m; would be called twice (calls mcy
and mc;2) and at the second time a different unobserved object u' would be
obtained and stored in field o.f, the last method call mc; on m; would exe-
cute the outgoing method call on the unobserved object obtained at the second
call mcq »; thus, on u' instead of u. However, the minimization could classify
the first call mcy 1 and the last one mc; as relevant, whereas the second one
mcy 2 would be irrelevant instead. If JINSI would not differentiate between the
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two different receivers, the first call mcy 1 to m; that obtains a different object
than accessed in the last one mc, could be classified as relevant, instead of the
actually relevant second one mc >.

To solve this issue, JINST compares the current receiver’s object ID with the
one at capture time. For this purpose, JINSI has to lookup the object’s ID—
although the beforehand mentioned pool maps IDs to objects. Therefore, during
replay, JINSI uses a second mapping that maps the objects to their IDs (Object
— number).

8.7.2.2 Hard References Instead of Week Ones

As mentioned above, JINSI cannot use weak references for pooled objects dur-
ing replay. This is mainly because of the observed objects. Because we make
alive only the observed part of the program during replay, unobserved objects
that referenced to an observed object in the original run do not exist anymore.
Thus, there are no other references to observed objects than those in the ob-
ject pool and in other observed objects. If there are no observed objects that
reference to a particular observed object, the reference in the pool will be the
only one. Furthermore, if this would be a weak reference as in the case during
capture, it would be very likely that a previously constructed observed object
would be garbage collected before it would be targeted by successive incoming
interactions. In this case, JINSI would not have available the object to execute
the interaction on. Constructing the object de novo is not an option because
this would mix up the order of the interactions, especially if other observed
objects would be involved.

On the other hand, this constitutes a potential disadvantage. Since JINSI cur-
rently holds hard references to all objects in the pool, JAVA’s garbage collector
has no chance to reclaim memory used by pooled objects—even if an object
is not needed anymore in the remaining interactions to be replayed. An option
would be to extend JINSI by a custom garbage collector. However, in contrast
to capture when the whole program and all related instances are alive, during
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replay only the observed objects and mock objects representing the involved
unobserved objects are constructed. Usually, compared to capture, the amount
of constructed objects is small during replay. The maximum number of ob-
jects is equal to the sum of observed objects and mocked unobserved ones; the
mocked objects are just hulls without any state and therefore do not consume
much memory. During minimization, the object pool has to be cleared anyway
after each test run’! and consequently the number of objects will decrease as
soon as the tested sets will get smaller. At the present time, the extension by a
custom garbage collector seems to be disproportionate to the effort necessary
to implement it.

During replay, JINSI uses a pool to manage observed objects and mocked
unobserved ones. The pool is backed up by a map that maps IDs to objects.
This internal map uses hard references, and hence prevents JAVA’s garbage

collector from removing objects that are seemingly not needed anymore. The
pool is also used to detect subsets of interactions that miss essential
interactions like incoming constructor calls. To extend this check to
outgoing interactions, JINSI uses a second pool that maps the observed
objects to their IDs.

8.8 Mock Objects

To replay interactions on unobserved objects, JINST has to create objects that act
like the unobserved instances during capture. Constructing an actual instance
in general is not possible since instantiation may trigger further interactions
or may depend on conditions that are not available during replay. An example
can be found in Listing 8.2 on page 156. Observed class OrderStatistics

21To ensure that objects that are not involved in the tested subset of interactions are not present.
Otherwise, JINSI could not detect that an incoming constructor call is missing in this set, for
example.
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queries an unobserved St atement instance. The latter class is not a concrete
class but an interface used for executing SQL statements and returning the re-
sults. The concrete instance that occurs during capture depends on the used
database server. During replay, this very server may not be available, or you
may not want to run queries against it during minimization. In general, a failure
that is to be debugged by JINSI may depend on non-deterministic results (for
example, sensor input), or be caused by states that are difficult to reproduce
(for example, network errors). Thus, usually it is either not wanted, impracti-
cal, or even just not possible to create instances of unobserved classes as they
occurred during capture.

The very same issue occurs in unit testing. For example, if you want to
run automatic tests on class OrderStatistics autonomously (i.e., with-
out a database), you would again have to create a proper Statement object
that can be queried. In unit tests, so-called mock objects are used for this pur-
pose: a mock object, or in short just mock, is a simulated object that mimics
the behavior of a real object in a controlled way. Usually, the programmer
who writes the unit test creates a mock object programmatically; she explic-
itly defines the expected behavior in the program code. For example, to test
OrderStatistics you could create a mocked Statement that returns
a mocked ResultSet that again returns once t rue and once false when
method next () is called. The call to method getFloat () could be mocked
to return float value 1.3, for instance. Having these mock objects, it is possible
to test class OrderStatistics without having an actual database.

For JAVA, several mock frameworks are available [59]. While these frame-
works provide features to create mock objects, for our purpose it is impractical
to make use of these frameworks. This is mainly due to the fact that the mocked
behavior has to be hard coded. While this may be sufficient for sequential re-
play (JINSI could create the proper code), this would be too inflexible during
minimization when arbitrary subsets are replayed. Therefore, JINSI uses the
concept of mock objects, but provides its own implementation.
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JINSI uses the concept of mock objects to mimic captured object behavior
during replay. While there are frameworks available, these are too inflexible
and therefore JINSI provides its own implementation.

8.8.1 Creating Mocked Unobserved Classes

The first requirement on mock objects is the feasibility to create an instance

1. without triggering any other interaction;

2. and without the necessity to provide further objects that may be required
as arguments at construction time (if any).

If we want to replay an incoming call to method sumAllOrders () in List-
ing 8.2 on page 156, for instance, first we would have to create a mocked ver-
sion of the unobserved St atement object passed as argument to this method.
Thus, the provided mock has to provide the same interface as the concrete
Statement instance occurred during capture, and must not interact with or
manipulate other parts of the program state. Of course, before we can create a
mock object, we have to create the respective concrete class.

If you run, for example, OrderStatistics against a MYSQL database,
the concrete type of the passed java.sgl.Statement instance will be
com.mysql. jdbc.Statement Impl?? (in the following abbreviated to
Statement Impl). This implementation

1. extends class Object,
2. implements interface com.mysgl. jdbc.Statement,

3. interface java.sqgl.Statement and

22This implementation is provided by MYSQL Connector/J, the official IDBC driver for MYSQL.
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4. interface java.sql.Wrapper; further

5. itdeclares Statement Impl (ConnectionImpl, String) assin-
gle constructor;

6. finally, it provides its own interface consisting of its own type and those
methods that are neither declared in Ob ject, nor specified in the three
interfaces listed above.

Constructor Statement Impl (ConnectionImpl, String) expects
an open connection to a MYSQL server and the database name in use. The state-
ment being constructed will instantly use the passed connection to query sev-
eral properties from the database, like the encoding used for communication.
If we want to create an instance of this class, we would have to provide proper
arguments. However, as mentioned above, when we replay, we neither want to
depend on an open connection, nor on a database server.

Furthermore, a mock object has to behave in the same way when used with
the instanceof operator, and it has to be possible to cast the mock to the
original concrete type. In the above example, it has to be possible to cast
the passed Statement instance into an instance of Statement Impl. If
the mocked statement does not provide the identical interface as provided by
concrete class Statement Impl, it would not be possible to use it in the same
way. Therefore, a mocked instance of Statement Impl has to

1. extend Ob ject (see item 1 above),
2. extend Statement Impl itself (see 6),
3. implement all three interfaces (see 2 to 4), and

4. be instantiatable without calling the constructor (see 5).
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In this context, a common technique are so-called dynamic proxy classes: A
dynamic proxy class (simply referred to as a proxy class in the following) is
a class that implements a list of interfaces specified at runtime when the class
is created. Each proxy instance has an associated invocation handler object.
A method invocation on a proxy instance through one of its proxy interfaces
will be dispatched to the instance’s invocation handler. The invocation handler
processes the dispatched method invocation as appropriate, and the result that
it returns will be returned as the result of the method invocation on the proxy
instance.

JAVA itself provides this functionality as part of its Reflection API. Class
java.lang.reflect.Proxy can create the Class object for a proxy
class specified by a given array of interfaces. The dynamically created proxy
class has one constructor that takes one argument, an implementation of the
interface java.lang.reflect.InvocationHandler. This argument
is used to set the invocation handler for the proxy instance to create. Thus, it is
possible to create an instance of a proxy class for the specified interfaces that
dispatches method invocations to the specified invocation handler.

In respect of the example above, we can use JAVA’s Proxy class to create a
statement instance that

1. extends Object (see item 1 above),
2. implements all three interfaces (see 2 to 4), and

3. that can be instantiated without calling the constructor declared in class
StatementImpl (see 5).

However, the last property is achieved only by the automatic omission of
class Statement Impl in the proxy class’ inheritance hierarchy. The proxy
class only implements StatementImpl’s interfaces that are implemented
explicitly, but does not extend Statement Impl itself. Because this imple-
mentation provides further methods that are not defined by any of the three ex-
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plicit interfaces, the proxy class would have to extend it to be fully interchange-
able with the original class. Furthermore, the proxy would behave differently in
instanceof andin casts, because it is not an instance of Statement Impl.
Unfortunately, JAVA’s proxy implementation does not provide the creation of
proxy classes of concrete classes, but only of explicitly defined interfaces.
Thus, JAVA’s proxy functionality does not meet JINSI’s requirements, as it lacks
support for proxies of concrete classes.

Fortunately, JAVASSIST provides dynamic proxy classes that do support prox-
ies of concrete classes. Class ProxyFactory?® provides the same function-
ality as java.lang.reflect.Proxy, and additionally allows to specify
the superclass of a proxy class. Thus, in this way we can create a proxy class
of Statement Impl that

1. extends Object (see item 1 above),
2. extends Statement Impl itself (see 6), and

3. implements all three interfaces (see 2 to 4).

In comparison to JAVA’s Proxy implementation, JAVASSIST’s implementa-
tion has the advantage that it can create proxy classes of concrete classes by
extending it. However, at the same time it has the disadvantage that it extends
the concrete class: we cannot easily instantiate an object of this proxy class. To
do so, we would have to call the constructor provided by Statement Impl
because it is automatically added to the proxy class. As we know from Sec-
tion 7.1.1, a subclass has to call one of its superclass constructors, either im-
plicitly or explicitly. What may, at first glance, appear to be a contradiction is
a fundamental issue: we cannot create a mock object that is an instance of the
concrete class without extending the concrete class. Without this inheritance,
the mock would behave differently in instanceof and in casts. Thus, the

2To be precise: javassist.util.proxy.ProxyFactory.
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mock and the proxy class, respectively, have to extend the concrete original
class. Hence, JAVA’s implementation drops out, and we have to find a way to
instantiate a mock instance without calling a constructor.

Extending the class to be mocked has another minor downside: JAVASSIST
cannot create proxy classes of final classes. A final class cannot be subclasses,
or extended, in any way. To bypass this disadvantage, JINSI automatically re-
moves the final modifier of all classes.

JINSI uses JAVASSIST to create dynamic proxy classes. This proxy extends a
given concrete class. Therefore, it provides the same interface as the
original class and behaves in the same way in instanceof operations
and can be properly casted. Calls to a proxy object are dispatched to its
invocation handler. Because the proxy class extends the original class, it has
to call a super constructor. Thus, you would have to provide proper
arguments and unwanted interactions may occur during instantiation. To
create proxy classes of final ones, JINSI just removes their final modifier.

8.8.2 Instantiation of Mock Objects

A possibility to create an instance of a class without triggering further un-
wanted interactions would be to enclose all constructors—including static ini-
tialization blocks—with an on/off switch. This switch would consist of an
if-then statement where the i f clause would test if the constructor would
be disabled and the then clause would contain the actual constructor state-
ments. However, this would have similar disadvantages as described in Sec-
tion 7.1, first of all the issues when instrumenting classes vital to the operation
of the JAVA interpreter.

Fortunately, class sun.reflect .ReflectionFactory?* provides—
although undocumented and therefore not officially supported—functionality

24This is the master factory for all reflective objects, including those in package
java.lang.reflect.
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to instantiate a class without the necessity to call one of its constructor. Its
method newConstructorForSerialization () returns a special so-
called munged constructor.>> Using this special constructor, it is possible to
instantiate a new object by bypassing the actual constructors. Thus, code in the
constructors will never be executed and parameters do not have to be known.
Furthermore, it is guaranteed that there will be no side effects and that no ex-
ception will be thrown.

The disadvantage here, however, is that this mechanism relies on internal
ORACLE code that may not be present on all JvMs. While JINSI only uses this
ORACLE-dependant mechanism, there is a JAVA library named “Objenesis” that
provides the same functionality for other JVMs as well [65]. Using this library,
JINSI could accordingly bypass the actual constructors in other JVMs; thus, JINSI
could be independent from a specific JVM vendor as ORACLE in this case. How-
ever, for our experiments this dependency on ORACLE’s JVM is currently ac-
ceptable.

While it is possible to instantiate JAVASSIST’s proxy classes by bypassing
their actual constructors, this is, of course, possible for the original class as
well. JINSI nevertheless uses these proxy classes to ensure that outgoing inter-
actions are intercepted and do not target the actual object by mistake, as we
will see in Section 8.8.3.

JINSI uses munged constructors to instantiate proxies by bypassing their
declared constructors. Thus, code in the constructors will never be executed
and arguments do not have to be known. There will be no side effects; no
interaction will occur while instantiating a proxy object via a munged
constructor.

2 Normally, this special constructor is used by ORACLE’s serialization classes—as the method’s
name indicates.
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8.8.3 Mocking Unobserved Object Behavior

In addition to the feasibility to create mock objects of unobserved classes
(i.e., their sheer existence), JINSI has to mock the original object’s behavior—
JINST has to replay outgoing interactions by intercepting them and returning
proper values if necessary. Thus, JINSI has to handle outgoing method calls,
field accesses, and constructor calls that target mock objects. Listing 8.21 on
page 201 shows an example of observed class Observed that interacts with
three other unobserved classes Unobserved, Rational and Result. Its
method divide (.. .) exemplifies all three types of outgoing interactions.

public class Observed {

public Result divide (Unobserved u) {
Rational rat = u.rational;
float f = rat.getNumerator () / rat.getDenominator ()
7
Result r = new Result (f);
return r;

}

Listing 8.21: Observed class Observed that uses field accesses, method
and constructor calls to interact with unobserved classes
Unobserved, Rational and Result.

After calling observed method divide (.. .), the first interaction is an
outgoing field access to the passed unobserved object u. It reads the value of
field u. rational and assigns it to local variable rat of type Rational.
Next, there are two outgoing method calls to get the numerator and the de-
nominator from rationale rat. After dividing the obtained values, there is an
outgoing constructor call to create an instance of Result named r to store
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the computed value. Finally, result r is returned to the caller.

During replay, JINSI has to intercept these very interactions and to provide
proper return values. As briefly mentioned above, JINSI does not use the proxy
and mock objects, respectively, to handle the outgoing interactions, but manip-
ulates the bytecode to redirect the interactions to itself as needed. Listing 8.22
on page 202 shows the instrumented version of class Observed as processed

by JINSI for replay.

public Result divide (Unobserved u) {

Rational rat;
if (JINSI.isOutgoingFieldAccess(this, u, "rational"
)) A
rat = JINSI.getFieldvValue(this, u, "rational",
cea)
} else {
rat = u.rational;

int numerator;
if (JINSI.isOutgoingMethodCall (this, u, "

getNumerator")) {
numerator = ((Integer) JINSI.getReturnValue (this,
u, "getNumerator", ...)).intValue();
} else {
numerator = rat.getNumerator();

int denominator;
if (JINSI.isOutgoingMethodCall (this, u, "

getDenominator™)) {
denominator = ((Integer) JINSI.getReturnValue (
this, u, "getDenominator", ...)).intValue();
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} else {

denominator = rat.getDenominator();
}
float f = numerator / denominator;
Result r = (Result)

JINSI.getNewObject (this, u, "Result", new Class {
float.class }, new Object[] { new Float (f) },
2)

return r;

}

Listing 8.22: JINSI has instrumented class Observed for replay. All
outgoing interactions will either be redirected to JINSI (outgoing
interaction), or furthermore target the original object.

Given that we have an observed object o of type Observed, and that
furthermore all other objects are unobserved, replaying an incoming call to
observed method divide (...) proceeds as follows. As previously de-
scribed in Sections 8.8.1 and 8.8.2, JINSI at first creates a mock object of class
Unobserved. Afterwards, JINSI calls the method on o and passes the mock
as parameter u.

8.8.3.1 Field Accesses

Next, o reads field rational from the given argument u. This outgoing
interaction is replayed as described in Section 8.4.2 and shown exemplarily
in Listing 8.7 on page 163. If it is an outgoing access, it will be redirected
to JINSI. If it would be an access from the object to itself (this), it would
target the actual object unchangedly. Note that it would be difficult to replay
field accesses by using the mock itself. Redirecting the access to one of JINSI’s
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methods allows us to run arbitrary code, while a field access cannot contain
other code than the access itself. While it would be possible to set a field to
a particular value when constructing the mock, and this value could be read
once from the mock directly, it would be hard to set the value for successive
accesses. Using a method instead is much more flexible. In this way, JINSI can
query its log file and can do further runtime checks, like to check if replay is
still synchronous. Because objects of type Rational are unobserved, JINSI
returns a mocked version of Rat ional. The returned mock is stored in local
variable rat. In summary, the outgoing field read is replaced by a method call
to JINSI that returns a mocked Rat ional object.

8.8.3.2 Method Calls

The next two interactions, the outgoing method calls to getNumerator ()
and getDenominator (), are both handled in the same way. In the follow-
ing, we will explain it in more detail based on method getNumerator ().
One possibility to replay the outgoing call would be to use the invocation han-
dler that is associated with mock rat. However, as you can see in Listing 8.22
on page 202, JINSI manipulates the bytecode analogously to the field access.
In fact, JINSI replays outgoing method calls analogously to field accesses. If it
is an outgoing call, the call will be redirected to JINSI (and will not target the
mock and its invocation handler, respectively); otherwise, the call will target
the original object (a call on this). You may wonder why JINSI does not use
the invocation handler; all calls to the mock would be dispatched to this han-
dler anyway. There are several reasons. The main one is that we can pass more
information in this way, mostly caller this. As mentioned in Section 7.2.1, to
know the caller we either have to register it at the call side (see Listing 7.12 on
page 146), or we have to pass it like done via method getReturnvalue ()
in Listing 8.22 on page 202. By using the latter option, we can guarantee that
we pass the actual caller and that we do not access one that is possibly out
of date. Furthermore, due to historic reasons. An early version of JINSI used
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EASYMOCK, a mock framework, instead of its own implementation. Because
we would had had to provide the mock’s behavior programmatically, JINST used
it only to instantiate proper mock objects, but not to mock the observed behav-
ior. Thus, it was required to redirect the call to JINSI instead to let it pass to
the mock.2® While it would be possible to replace getReturnvValue ()
by registering the caller similar to capturing incoming method calls (see Sec-
tion 7.2.1) and by using the invocation handler, there is no real benefit and this
transition would be fraught with risk.

Still, you may wonder why JINSI uses mocks at all. As already mentioned
briefly in Section 8.8.2, we could instantiate the original classes in the same
way as the mocks. However, using mocks has several advantages: JINSI can use
the invocation handler to check that all outgoing calls are intercepted properly.
Further, JINSI can internally put the mocks into collections that use methods
hashCode () and equals () ; furthermore, method toString () returns
a readable string representation of the mock:

e If method toString () is called, the invocation handler returns a cus-
tom string that describes the mock object (its unique object id, for exam-
ple). This comes in handy while debugging JINSI itself.

e Methods hashCode () and equals () are implemented properly by
JINST’s invocation handler so that the mocks can be put into collections.

e If any other method is called, the invocation handler will throw an ex-
ception to signal that the instrumentation missed an outgoing call. This
double check helped several times while implementing the instrumenta-
tion for outgoing calls and ensures that bugs related to them are detected
early.

26This is another (historic) reason why JINSI does not replay field accesses via mocks. EASYMOCK
cannot mock field accesses but only method calls.

205



8 Implementation Details

In summary, the outgoing method call is replaced by a method call to JINSI.
In the example, JINSI returns a proper primitive value of type int. If the
method’s return type would be a complex type, JINST would return a mock as
for the outgoing field read.

8.8.3.3 Constructor Calls

The final interaction in Listing 8.22 on page 202 is an outgoing constructor
call to unobserved class Result. In comparison to field accesses and method
calls, no runtime check is needed this time. Because we execute code in ob-
served objects only (the unobserved ones are mocked), all constructor calls are
outgoing, regardless of whether the object to be initialized is observed or un-
observed. If the outgoing constructor call goes to an unobserved class as in
our example, JINSI will create a new mock object and will add it to the object
pool. If the call would target an observed class, JINSI would call the actual
constructor and add the observed object to the pool (see Section 8.7.2).

8.8.3.4 Comparing References

Finally, mocks are used when comparing references. Because JINST assigns all
objects to unique object ids, JINSI can lookup objects during replay in its object
pool (see Section 8.7.2). If an object occurs more than once in a program
run (as it is usually the case), JINSI will use the same mock object for these
multiple occurrences during replay. This ensures that comparing references
(==) evaluates to the same result as during capture. An example can be found
in Listing 8.23 on page 207 in the following section.

JINSI redirects all outgoing interactions to itself; it does not use the mock’s

invocation handler. Instead, the handler is used for internal purposes. The

mocks themselves are used as arguments for method and constructor calls,
in instanceof statements, and when comparing references.
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8.8.4 Class Loading

When replaying outgoing interactions using mock objects, there is one final
issue that has to be taken into account: class loading. In contrast to languages
such as C and C++, JAVA does not use a linker to combine compiled artifacts
into a single executable program. Instead, JAVA uses a class loader that dynam-
ically loads JAVA classes into the JAVA Virtual Machine at runtime. Given the
name of a class, a class loader usually locates or generates data that constitutes
a definition for the class. Next to obtaining a class object from a class loader,
class Ob ject defines method getClass () that returns the runtime class of
an object (the object’s corresponding class definition).

Listing 8.23 on page 207 shows observed class CheckClassObjects.
Its single method check () obtains two class objects and checks if they are
the same by comparing their references. Firstly, in line 4, it calls method
getClass () onitself (this). This call returns the class object that repre-
sents the class definition that was used by the JAVA virtual machine to construct
this very object. Secondly, in line 8, it calls method 1loadClass () on the
current thread’s class loader to load its own class definition. For this purpose,
method check () obtains the currently executing thread at first (line 6). Next,
it obtains the context class loader from this thread (line 7). This loader is used
by code running in the thread when loading classes. Finally, it loads its own
class definition by passing its class name to the 1oadClass () method.

public class CheckClassObjects {

public void check () throws ClassNotFoundException {
Class runtimeClass = this.getClass();

Thread currentThread = Thread.currentThread();

ClassLoader classLoader = currentThread.
getContextClassLoader () ;

Class loadedClass = classLoader.loadClass (
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runtimeClass.getName ());
if (runtimeClass == loadedClass) {
System.out.println("Class_objects are identical."
)i
} else {
System.err.println("Class_objects are different."
)i
}
}
}
Listing 8.23: Observed class CheckClassObjects

uses methods getClass () and 1oadClass () to obtain the
same class object in different ways. Both calls return the object’s
own class definition.

If we assume that method check () is called within the same thread that
initially loaded class CheckClassObjects (as it is the case usually), we
will expect that both class objects are the same. Thus, the test in the i f-then
statement usually evaluates to true. However, when replaying the call to
check (), the test evaluates to false: While the call to getClass ()
is a call to this and therefore is not intercepted by JINSI, the other call to
loadClass () is an outgoing call and therefore is redirected to and answered
by JINSI. In the first case, the original class object is returned, in the second case
JINSI returns a mocked class object. Thus, these are different objects and con-
sequently the test evaluates to false during replay.

For this reason, JINSI must intercept calls to getClass (), even though it is
not an outgoing call in all cases. JINSI returns a mocked class object and assigns
the mock to its corresponding object ID. When intercepting the call to method
loadClass () afterwards, JINSI lookups the class object on the basis if its ID
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and eventually returns the same mock. Thus, the test evaluates to t rue, as in
the original run or during capture. Because class loaders are vital to the virtual
machine, this approach is preferable to instrumenting class loaders as observed
classes.

JINSI treats calls to getClass () as outgoing in any event. In this way,
class objects are always mocked and their object references are always the
same, regardless of whether getClass () or loadClass () was used to
obtain the class object. If different class objects were returned, JINSI will
return different mocks. This ensures that comparing the references during
replay evaluates to the same result as during capture.

In the following experimental evaluation, we will see how JINSI performs in
practice when applied to a range of different JAVA programs—from small stan-
dard subjects to industrial-size subjects containing up to nearly 100,000 lines
of code.
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In this chapter, we investigate how well our approach works in practice. Our
measure for success is the search space for the defect, as expressed by lines
of source code to examine. The benchmark we compare against is dynamic
slicing, since it is the one other technique which requires only one single failing
run like JINSL.! The dynamic slice contains all lines that possibly could have
contributed to the failure; it is this set of possibly failure-relevant source code
lines that we want to minimize and compare against, respectively.

9.1 Subjects

To evaluate the effectiveness of JINSI, we have applied it to six different JAVA
subjects summarized in Table 9.1 on page 212. The subjects are divided into
three groups according to their context:

1. Standard subjects: This set consists of two subjects other researchers
had used before, and may be considered as standard toolkits in evaluating
debugging techniques. We have chosen these subjects to show how JINSI
works on accepted subjects.

(1) BST provides an implementation of binary search trees and was used
by Artzi et al. in evaluating RECRASH [2], as well as by Csallner

UIf additional runs are available, statistical debugging can be used on the statements isolated by
JINSI, thus providing an additional ranking of the few remaining statements and increasing
precision further. This straight-forward extension is part of our future work.
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Table 9.1:

Subjects used in the case studies. The subjects are divided into
three groups: (1) subjects commonly used by other research groups,
(2) subjects used in earlier work, and (3) further industrial-size sub-
jects with large code base and large number of users.

Subject Description

BST Subject used by Artzi et al. [2] and Csallner et al. [19].

NANOXML XML parser; part of SIR [24]; used by [20, 22, 27]

COLUMBA Feature-rich email client with GUI as used before in [11].

VENDING Used in proof of concept that demonstrated JINSI’s feasibil-

MACHINE ity in [51].

JAXEN Universal JAVA XPATH engine. Used by ORACLE in several
products [49].

JODA TIME Replacement for the JAVA date and time classes. More than

165,000 downloads [17].

@

and Smaragdakis in evaluating Check ’n’ Crash [19]. This subject
was also chosen because it had been specifically used to evaluate
RECRASH, which generates unit tests that reproduce a given program
failure, as JINSI does.

NANOXML is an XML parser for JAVA and a common subject as part of
the Software-artifact Infrastructure Repository [24] (SIR). It is used
by many research groups for evaluation purposes [20, 22, 27]. This
subject shows how JINSI performs on a subject that is frequently used
to evaluate debugging aids.

2. Earlier work: We use two examples from work on prototype versions
of JINSI that had been published earlier.
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(3) VENDING MACHINE, an artificial proof-of-concept program. It was
straightforward enough to explain our approach, yet not entirely triv-
ial. Moreover, it is a pre-existent example that was not created by
any of the authors and had been used in a number of papers [51].

(4) COLUMBA [11] is a complex email client consisting of several com-
ponents using a graphical user interface—in contrast to the other
subjects. It also shows how JINSI scales on large programs as it con-
sists of almost 100,000 lines of code.

3. Industrial-size subjects: We applied JINSI to two further industrial-size
subjects that show how JINSI performs on realistic, real-life programs
with actual bugs. These subjects do not contain seeded bugs, but bugs
like they occur in reality.

(5) Both JAXEN, an XPath library written in JAVA, and

(6) JODA TIME, a replacement for the date and time library provided
by the JAVA runtime environment, are large JAVA libraries actively
maintained and used by a large number of users.’

All subjects are object-oriented programs implemented in JAVA. While the
JINSI approach is applicable to all object-oriented languages, its basic premise
of minimizing object interaction consequently requires an object-oriented ex-
ecution model. These circumstances constrain the available subjects. For in-
stance, JINSI is not applicable to subjects like the non-object-oriented Siemens
test suite [36].

Based on the above subjects, we applied JINSI to a total of 17 individual
issues (Table 9.2 on page 214 gives a detailed description), consisting of 14
crashing and three non-crashing bugs, which we selected as follows: BST con-
tains three individual crashing bugs used by both Artzi et al. and Csallner and

2JODA TIME had been downloaded 165,095 times as of 2011-04-04 [17]; JAXEN is used by ORA-
CLE in several products [49].
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Table 9.2: Issues used in the case studies. We applied JINSI to a total of 17 individual issues,

consisting of 14 crashing (C) and three non-crashing bugs (N).

Issue Project- Type  Version  Description

Specific

Issue ID
BST-1 n/a C n/a BSTNode.setData (...) crashes on given char array.
BST-2 n/a C n/a BSTNode.setData (...) crashes on given Ob ject instance.
BST-3 n/a C n/a StringCoding.encode (.. .) fails on given charset name.
NAN-1 SP_HD_1 C 1 Parsing XML document fails.
NAN-2  XE_HD:2 C 2 Parsing XML document fails.
NAN-3 XELHD2 N 3 Obtaining named children from XML tree fails.
NAN-4 XEL.HD6 C 3 Removing child from XML tree fails.
NAN-5 CR.HD:2 N 5 XML entities are not handled correctly.
NAN-6 XER.HD_.1 N 5 Output contains unexpected artifact.
COL-1 n/a C 1.4 Importing an address book fails with nondescript error dialog.
VME-1 n/a C n/a Vending machine erroneously stays in enabled state.
JAX-1 29 C 1375 XPATH function normalize-space on empty argument ’ ’ fails.
JAX-2 111 C r1170 Selecting node on empty document crashes.
JAX-3 156 C r1216 Changing a node-set does not update the position or node size.
Job-1 1788282 C r1256 Parsing valid French date using French locale fails.
JOD-2 2487417 C r1377 Converting date in Brazilian time zone fails.
JOD-3 2889499 C r1493 Building complex time zone does not work on Western hemisphere.

BST = BST, NAN = NANOXML, cOL = COLUMBA, VME = VENDING MACHINE, JaX = JAXEN, JoD = JODA TIME.
C = crashing, N = non-crashing bug.
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Smaragdakis. COLUMBA and VENDING MACHINE were used to demonstrate JINSI
on one crashing bug in each subject. These bugs therefore predefine five issues
for our evaluation. For the remaining nine crashing issues, we chose three bugs
from each JAXEN, JODA TIME, and NANOXML that all met the following criteria:

1. The issue had to be caused by a defect in JAVA code (and not in the build
system, for instance);

2. the bug’s symptom had to be a crash, i.e. a thrown exception;

3. the issue had to be reported by a user (because we wanted real, post-
release failures);

4. we had to be able to reproduce the error (which is not the case for many
JAXEN and JODA TIME bug reports, which do not include version infor-
mation).

Given these constraints, we sequentially checked the issue trackers of JAXEN
and JODA TIME and applied JINSI to the first available three issues that met
the above criteria; for NANOXML, we have selected issues randomly from four
different versions as stored in SIR. All this ensures a selection independent from
expected results.

Finally, we added three non-crashing bugs we found (issues NAN-3, NAN-5,
and NAN-6) to explore JINSI’s performance on non-crashing bugs. In Table 9.2
on page 214, crashing-bugs are marked by the letter C, non-crashing ones by
the letter N.

9.2 Experiment Setup

To measure the effectiveness of our approach, we applied JINSI to each of the
above 17 issues. The basic idea is that the less code is executed, the smaller
the search space and the easier it is for the developer to understand and fix
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the problem. To measure the total size of each corresponding program, we
first counted the physical source lines of code [66], shortened SLOC. To count
the number of lines executed by the original failing run, we applied COBER-
TURA [25], an open-source coverage tool. Hammacher’s dynamic slicer for
JAVA [34] provided the lines in the dynamic slice. In the case of crashing bugs,
we chose the location where the exception had been thrown as slicing criterion.
For non-crashing bugs, we chose the location where the faulty output had been
issued; as in a non-crashing bug, a failure comes to be as some incorrect output
(see Section 6.2 for details). For the minimized run, we again applied COBER-
TURA to get the number of executed lines. Finally, we intersected the dynamic
slice with the line coverage of the minimized run to get the suspicious lines
the programmer would be interested in most.> These numbers can be found in
Table 9.3 on page 217.

For two issues, we can not provide a complete set of numbers. Firstly, we
could not apply JINSI to issue BST-3 because of current limitations of our
approach (see Section 9.6 for details on limitations of the current implementa-
tion). Secondly, for issue COL—-1, we were not able to obtain a dynamic slice
due to technical limitations in the dynamic slicer that cause a crash of the pro-
gram being sliced. Therefore, we can neither compare the dynamic slice to the
minimized run, nor intersect the two of them.

3Technically, due to implementation details Hammacher’s slicer can not be applied to the mini-
mized program run directly, because both extensively instrument the JAVA program’s byte code.
Unfortunately, in many cases the two tools would interfere with each other. Thus, we instead
intersect the dynamic slice of the original program run and the set of statements executed by
the minimized run. Note that this workaround does not improve our results artificially. On
the contrary, that intersection may be less precise than applying dynamic backward slicing
to the minimized run directly. Although that procedure is to our disadvantage, it still yields
conclusive results showing our approach’s capacity.
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Table 9.3: Results of the experimental evaluation: reduction in search space.

Original Run Minimized Run

Issue SLOC Line Dynamic Line Inter-
Coverage Slice Coverage section

BST-1 38 5 3 2 1
BST-2 38 14 3 11 1
BST-3 38 1 1 n/a 1
NAN-1 1,891 130 43 42 42
NAN-2 2,540 98 15 13 2
NAN-3 3,118 498 199 18 8
NAN-4 3,101 501 252 31 18
NAN-5 3,278 584 304 218 79
NAN-6 3,295 594 313 154 75
COL-1 94,863 6,318 crash 5 5
VME-1 185 121 63 23 10
JAX-1 13,226 2,533 1,224 37 19
JAX-2 12,983 861 255 7 3
JAX-3 12,957 16 4 12 4
JOD-1 25,748 1,613 150 946 48
JOD-2 25,810 1,455 373 248 145
JOD-3 26,534 1,528 512 193 54
Total 229,643 16,870 3,714 1,960 515

SLOC = physical source lines of code [66]. In totals, missing values (“crash” or “n/a”) are
counted as zero.
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9.3 Search Space Reduction

For our motivating JODA TIME example (JOD-3), the total number of source
code lines is 26,534* (100 %), whereof 1,528 lines (5.76 %) are executed during
the failing run; the dynamic slice contains 512 lines (1.93 %), already produc-
ing a remarkable reduction of the search space. However, the minimized run as
computed by JINSI accesses only 193 lines (0.73 %)—moreover, the intersec-
tion between the minimized run and the dynamic slice only contains 54 lines
(0.20%). The numbers for the other issues are similar; in all but one case
(JAX-3), the final intersection is smaller than the dynamic slice alone. In 12
cases, the minimized run executes less lines than contained in the dynamic
slice; in these cases, JINSI outperforms dynamic slicing even without being in-
tersected with the slice itself.

To quantify the overall search space reduction, let us take a look at the fo-
tals shown in the last row in Table 9.3 on page 217. Simple line coverage
narrows down the number of relevant lines to 16,870/229,643 = 7.3 % of the
source code. A dynamic slice reduces these covered lines to 3,714/(16,870 —
6,318) = 35.2%, or 3,714/(229,643 —94,863) = 2.8% of the source code.’
Intersecting the dynamic slice with the minimized run produced by JINSI re-
duces the set of relevant lines to (515 —5)/3,714 = 13.7% of the dynamic
slice alone—in total, 3.1 % of the executed lines, or 0.22 % of the source code.
JINSI thus reduces the search space to a handful of code lines.

In all but one cases, the minimized run contains the location where the de-
veloper had fixed the bug (see Section 9.6 for details). Thus, JINSI in fact helps
finding the defect.

In our evaluation, JINSI reduces the search space to 3.1 % of the executed
lines, or 0.22 % of the source code.

4The SLOC varies between the individual issues of the very same project as each issue is related
to a different version.
5We omit COL-1 from the total as the slicer crashed; hence the subtrahends.
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9.4 Size of Resulting Unit Tests

Further results concern the number of levels of abstraction to be examined by
the developerﬁ, the total number of interactions and the number of the relevant
ones per level, as well as the runtime behavior of the whole debugging process.
These numbers can be found in Table 9.4 on page 220. For the motivating
example (JOD-3), the total number of abstraction levels is 6, whereof 3 have
to be examined by the developer until the bug is found. The number of inter-
actions denotes the number of incoming interactions on the individual levels
and therefore the size of the generated minimized test driver. For instance, in
JOD-3 on the last level, 14,628 incoming interactions are captured and repro-
duce the original failure—but only two are actually relevant to reproduce the
failure (see Listing 5.1 on page 106). In contrast to the captured but not mini-
mized test drivers that contain up to 14,628 interactions, none of the 39 levels
in total to be examined produces a test driver containing more than twelve in-
teractions (and frequently much less). Paired with its faithful reproduction of
failures, this reduction of search space makes JINSI highly effective in reducing
the debugging effort.

In our evaluation, test drivers produced by JINSI contained at most twelve
interactions that faithfully reproduce the failure; for crashing bugs, the
maximum number is eight interactions.

9.5 Performance

The last two columns in Table 9.4 on page 220 show the runtime behavior of
JINSI. The second last column shows the total runtime of the debugging process.

SFor crashing bugs, an abstraction level is to be equatable with a frame in the stack trace of the
thrown exception; successive frames having the same current object are subsumed under one
level (see Chapter 5 for an example). For non-crashing bugs, an abstraction level is given by the
distance in the dependency graph yielded by the dynamic slicer (see Section 6.2.1 for details).
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Table 9.4: Results of the experimental evaluation: size of resulting unit tests
and runtime behavior.

Levels Interactions Runtime
Issue Total To ex- Total Relevant Time Tests
amine [min:s]
BST-1 2 1 2 2 0:10 4
BST-2 2 1 2 2 0:10 4
BST-3 3 n/a n/a n/a n/a n/a
NAN-1 3 2 5-6 4-5 0:50 38
NAN-2 2 1 5 2 0:26 14
NAN-3 9 3 1-98 14 0:57 217
NAN-4 3 1 90 8 0:29 151
NAN-5 11 4 2-99 2-12 2:21 508
NAN-6 11 7 2-566 2-12  37:16 2707
COL-1 29 1 14,008 2 1:08 4
VME-1 2 1 32 7 0:15 68
JAX-1 6 3 6-1,919 2-3 3:40 416
JAX-2 7 2 34 2-3 0:53 20
JAX-3 2 2 5-6 34 0:26 39
JOD-1 3 3 4-8 3-5 1:15 60
JOD-2 4 4 80-123 2-3 4:29 190
JOD-3 6 3 45-14,628 1-2 4:58 243
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This includes capture and minimization, as well as the upstream instrumenta-
tion.” In the last column, the total number of tests run by delta debugging is
shown. For the motivating example, JINSI reduces the 26,534 lines in total to
only 54, and requires only 4 minutes and 58 seconds for the whole process. In
all cases but one, JINSI needs only a few minutes to compute the minimal test
driver. For NAN-6, the process takes long because at one minimization stage,
the number of unresolved test outcomes is high, triggering the delta debugging
worst case complexity of O(n?) [72].

An interesting instance is issue COL—1 where the process without the up-
stream event slicing takes 3 hours and 46 minutes. In this case, the delta de-
bugging algorithm would have to run 4,578 tests instead of only 4 that execute
up to 14,008 incoming interactions to compute the minimal set. However, as
we have seen in Section 4.2.1, JINSI applies event slicing before delta debug-
ging. In this example, the event slice contains only two interactions—the two
relevant ones. The downstream delta debugging can not minimize further and
runs 4 tests, taking 3 seconds. In total, including computing the event slice,
the whole process takes 68 seconds—instead of almost 4 hours. Like Leitner
et al. [45], we found that while delta debugging consistently produces the best
results, a preprocessing with slicing can dramatically improve performance.

In our evaluation, JINSI needs at most 37 minutes to compute the minimal
test drivers, for crashing bugs, it needs at most five minutes.

9.6 Limitations and Threats to Validity

While conducting the experiments, we encountered some limitations of our
approach:

7We assume the availability of the dynamic slice, whose computation takes 30s to 11 min. Com-
puting the intersection is a relatively cheap operation that takes only a few seconds.
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JAVA reflection: NANOXML uses factory methods to create instances of various

(hard coded) classes. Because JINSI currently does not support automatic
instrumentation of reflection, we manually replaced these instances by
direct constructor calls. This can easily be addressed in a future revision
of JINSL

String as primitive: Due to hard-coded assumptions in the JAVA virtual ma-

chine, JINSI can not instrument the class St ring as it would be needed
for capture / replay. As a workaround, JINSI thus treats strings like prim-
itive values. In issue BST-3, a String instance was on the stack
and JINST would have had to include this object as observed. Because
of the restrictions mentioned above, it was not possible to apply JINSI
to this issue. Again, future revisions of JINSI may implement specific
workarounds for St ring classes.

Fixed location not in minimized run: In issue JAX-3, the location where

the actual fix was applied is not executed by the minimized run as com-
puted by JINSI—although it is executed by the original run. While JINSI
provides an alternative way to reproduce the failure in question, the bug
was actually fixed by adding functionality not to the code executed by
the minimized run, but to a method omitted during minimization. Inter-
estingly enough, the dynamic slice does not contain this location either.
Generally speaking, when a fix contains new statements only, the pro-
grammer has a large choice of locations that may or may not be included
in a minimized execution, and it is hard to exactly predict this location.

Object orientation: JINSI leverages the abstraction levels naturally defined by

object-oriented programming. Therefore, JINSI currently can be applied
to object-oriented programs only. However, JINSI may also exploit differ-
ent means of encapsulation. For instance, JINSI could use the abstraction
levels given by the logical boundaries in modular programming. How-
ever, because abstraction when using modules usually is not as fine-
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grained as when using objects, the result of the minimization process
may not be as precise as when applying JINSI to object-oriented pro-
grams.

All these limitations pose threats to the external validity of our results: There
likely are programs or bugs on which JINSI will not perform as well as in our
sample, and any generalization from the results of our experimental evaluation
is to be taken with a grain of salt. Our sample size is small; in total we inves-
tigated seven subjects with 17 different issues—it is time-consuming to find
real bugs by manually analyzing bug reports, to download and to compile old
versions, and finally to reproduce the original failure. Our selection process
creates a bias towards well documented and publicly available issues; also,
it is obviously slanted towards crashes of object-oriented systems. However,
this evaluation documents every single problem we have applied JINSI upon,
with consistent and promising results. Furthermore, by randomly choosing
various issues instead of applying JINSI to many issues of one single subject,
we increased the heterogeneity of our sample set. We concentrated on defects
that cause an exception as error indication. JINSI can also be applied to non-
crashing bugs using other types of predicates as shown for the three issues
NAN-3, NAN-5, and NAN-6; future experiments should include more types
of bugs.

Other possible threats include construct validity, which concerns the appro-
priateness of our measures; here, the size of the program should well correlate
with the effort needed for its examination—we assume the developer is able to
fix a bug the more efficiently the less code remains and the shorter the execu-
tion becomes. Finally, internal validity may be threatened by defects in JINSI or
our evaluation setting; we have addressed this threat through careful testing®.

8For instance, as soon as some changed code is submitted to JINSI’s code repository, a continuous
integration tool [42] re-runs experiments automatically, and compares current with previous
results.
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Debugging a program can be a tedious, long-lasting, and boring work on the
one hand, and a factor that drives costs up significantly on the other hand. It
would be best, of course, if we did not have to debug programs at all, but if we
were able to prevent software errors in the first place. Unfortunately, despite
all efforts and the scientific progress made, modern software still contains bugs
that not only cause pure inconveniences, but also have a negative impact on
economy. Thus, we still need techniques that help us debug software systems.

Debugging consists of two essential steps: the first is reproducing the fail-
ure, the second is finding the defect. Both reproducing and finding can be a
tough and risky challenge. The field of automated debugging in general and
the field of statistical debugging in particular aim to ease the search for fail-
ure causes. However, as of today, most of these techniques can substantially
reduce the search space, but require successful executions to compare against.
By contrast, the alternative of program slicing requires only the failing execu-
tion, and likewise is able to eliminate those parts of the program that could not
have contributed to the failure; however, the remaining slice can still contain
thousands of locations not all of which are relevant.

This work presented JINSI, taking a new twist on automated debugging that
aims to combine ease of use with unprecedented effectiveness. During debug-
ging, JINSI brings lots of benefits at little cost. By reducing the search space
considerably and providing minimal unit tests, which describe exactly how
the failure comes to be, the approach helps reproduce the failure and find the
defect. Applied in the field, JINSI could both relax programmers’ nerves and
reduce development costs caused by software failures as they frequently occur
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in software systems to this day. The contributions of this work in a nutshell are
as follows:

Failure-inducing interactions: We showed how to minimize object interac-
tions and thus executions, using a combination of delta debugging and
slicing. Our approach reduces the set of executed statements until only
the relevant ones remain.

Requirements: Our approach’s requirements are trivial, all it takes is one sin-
gle failing run that is observed by JINSI. Furthermore, the tool is fully au-
tomatic, does not require any selection, annotation, or other interaction
with the programmer.

High diagnostic quality: The resulting minimized unit test is easy to under-
stand, and encompasses all steps that are relevant to reproduce the fail-
ure.

Effectiveness: In terms of precision, JINSI combines best-of-breed techniques
to dramatically improve upon the state of the art. By reducing the search
space to a handful of code lines—0.22 % of the source code, or 1 line
out of 450—1JINSI eases debugging to the point where it ceases to be a
problem.

Scaleability: JINSI scales to JAVA programs with 100,000 lines of code.

Generality: We were able to provide a full diagnosis on 16 out of 17 bugs
examined, ranging from relatively small standard subjects to industrial-
size projects.

10.1 Future Work

Besides general improvements to stability, efficiency, and usability, our future
work will focus on the following topics:
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Universal strategies: Right now, JINSI provides a general strategy along the
dynamic slice for non-crashing bugs and a special (but very common)
strategy along the stack for crashing bugs. At a higher abstraction level,
all bugs are equal; and consequently, we are working into merging the
two strategies into one.

Ranking locations: In the presence of passing runs, one could leverage sta-
tistical debugging in order to identify the most defect-prone locations
even in the set minimized by JINSI. Where runs are missing, they could
be generated automatically [1].

Automatic fixes: Rather than just simplifying interaction, JINSI could also use
delta debugging to isolate the difference between a passing and a failing
run. Such differences would improve diagnostic quality even further; in
fact they could even be turned into candidates for automatic fixes [23].

Inferring Failure Conditions: Another technique to identify failure circum-
stances automatically was recently presented by RoBler et al. While JINSI
isolates failure-inducing object interactions, they isolate failure condi-
tions like “The program fails whenever the credit card number begins
with 6, 5, and a non-zero digit.” [56]. JINSI can help reduce the search
space, as it already computes a minimal run, which precisely describes
how the failure comes to be.

10.2 Outlook

As of today, debugging is a laborious business and, on top of that, poses a
risk: because you never know when you will find the defect, you are not able
to schedule this task properly. By contrast, finding a needle in a haystack is
a walk in the park. The programmer could be able to complete debugging by
the afternoon, or only at the crack of dawn. The product manager does not
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know when she will be able to launch a new, groundbreaking product; either
on schedule to play a leading role in the market, or right after a competitor has
presented a working alternative that satisfies customer needs.

JINSI aims to minimize the search effort required to fix a defect. Moreover,
the results of our study show that JINSI reduces the search space to the point
where debugging ceases to be a problem. Thus, JINSI helps make software de-
velopment in general and debugging in particular predictable. Applied in the
field, JINSI ensures that developers are at home in time for dinner with their
family, and that product managers are able to plan software releases more pre-
dictably and reliably. This is an important contribution not only to the scientific
community, but also to software development in general.
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