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Abstract

The acquired immunodeficiency syndrome (AIDS) is one of the biggest medical challenges
in the world today. Its causative pathogen, the human immunodeficiency virus (HIV), is
responsible for millions of deaths per year. Although about two dozen antiviral drugs are
currently available, progression of the disease can only be delayed but patients cannot be
cured.

In recent years, the new class of coreceptor antagonists has been added to the arsenal of
antiretroviral drugs. These drugs block viral cell-entry by binding to one of the receptors
the virus requires for infection of a cell. However, some HIV variants can also use another
coreceptor so that coreceptor usage has to be tested before administration of the drug.

This thesis analyzes the use of statistical learning methods to infer HIV coreceptor usage
from viral genotype. Improvements over existing methods are achieved by using sequence
information of so far not used genomic regions, next generation sequencing technologies,
and by combining different existing prediction systems.

In addition, HIV coreceptor usage prediction is analyzed with respect to clinical outcome
in patients treated with coreceptor antagonists. The results demonstrate that inferring HIV
coreceptor usage from viral genotype can be reliably used in daily routine.

Kurzfassung

Die Immunschwéchekrankheit AIDS ist eine der grofiten Herausforderungen weltweit. Das
verursachende Humane Immundefizienz-Virus (HIV) ist verantwortlich fiir Millionen Tote
jéhrlich. Obwohl es bereits mehr als zwei Dutzend verschiedene AIDS-Medikamente gibt,
konnen diese den Krankheitsverlauf nur verlangsamen, die Patienten jedoch nicht heilen.

In den letzten Jahren wurde eine weitere Medikamentenklasse den bestehenden Thera-
pieansitzen hinzugefiigt: die Korezeptorantagonisten. Diese Wirkstoffe binden an Rezep-
toren, die das Virus zum Eintritt in die Zelle beno6tigt und blockieren es somit. Allerdings
gibt es auch Virusvarianten, die in der Lage sind Zellen mit Hilfe eines anderen Rezep-
tors zu infizieren. Daher sollte man vor Verschreibung eines Korezeptorantagonisten den
Korezeptorgebrauch des Virus testen.

Diese Arbeit befasst sich mit der Bestimmung des Korezeptorgebrauchs aus dem viralen
Erbgut mit Hilfe von statistischen Lernverfahren. Verbesserungen gegeniiber existierenden
Methoden werden erreicht in dem bisher nicht verwendete Genomregionen analysiert wer-
den, durch den Gebrauch von neuesten Hochdurchsatz-Sequenziertechniken, sowie durch
die Kombination von zwei existierenden Vorhersagesystemen.

Schlieklich wird die Qualitdt der Korezeptorvorhersagen beziiglich klinischem Anspre-
chens bei Patienten untersucht, die mit Korezeptorantagonisten therapiert wurden. Die
Ergebnisse zeigen, dass die Vorhersage des Korezeptorgebrauchs aus dem viralen Erbgut
eine verlafliche Methode fiir den klinischen Alltag darstellt.
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1 Introduction

Motivation

The Human Immunodeficiency Virus (HIV) has changed the lives of millions of people in
the last few decades. As the causative agent of the Aquired Immunodeficiency Syndrome
(AIDS) it is responsible for about 2 million deaths per year and more than 14 millions
children orphaned.

Since its discovery tremendous efforts have been undertaken to understand and fight the
disease and its associated virus. These efforts were and are not only at the research level
but also politically and socially driven and mainly dedicated to prevent new infections. The
development of antiretroviral drugs and their combination into highly active antiretroviral
therapy (HAART) has improved life expectancy and quality of life substantially in the last
years. Whereas 20 years ago, the diagnosis of an HIV infection was regarded as a death
sentence the situation has changed dramatically in recent years.

Nowadays, we live in a world in which a person getting infected with HIV has almost
the same life expectancy as a healthy person. Moreover, it is also possible to get children
with only limited risk that these become infected with the virus, too.

In addition to an arsenal of new powerful drugs fighting the virus, also other develop-
ments have contributed to this improvement in life expectancy. An important cornerstone
of modern anti-HIV therapy is the clinical diagnostic and the selection of appropriate ther-
apies. In the beginning of the pandemic, there was no need to monitor the virus because
only a small number of drugs was available and the patients had only few treatment op-
tions. Today, with more than two dozen antiretroviral drugs marketed, drug combinations
can be selected more precisely for each individual patient.

With respect to this individual selection of therapies, patient-specific treatment of HIV
infections has become one of the first fields of personalized medicine and has laid the
ground for patient-specific treatment of other viral infections such as hepatitis B and C.

The reason for therapy failure is almost always the existence or emergence of drug-
resistant viruses. To account for these one determines the virus’ susceptibility to the drugs
before their administration. In the past viral resistance was measured via phenotypic tests
by assessing the virus ability to replicate under exposure of different concentrations of
a single drug. These assays are time-consuming, difficult to handle and very expensive.
Phenotypic drug resistance tests have therefore been replaced by genotypic approaches
in which parts of the viral genome are sequenced and resistance inferred from genotype.
Commonly, rules-based methods are used for this task but bioinformatics methods have
been shown to be valuable tools, too, especially when optimal drug-combinations should
be found. Their optimal choice is hampered by the high diversity and complexity of
resistance-mutations leading to complicated rules.

With the introduction of coreceptor antagonists into anti-HIV therapy another topic



2 1 Introduction

arose. These drugs block one of the two coreceptors HIV uses for entry into cells. In
addition to the development of resistance mutations, the virus can therefore evade the
drug by switching to the other receptor. Thus, HIV coreceptor usage also termed tropism
is mandatory before administration of coreceptor antagonists. In general, this can be done
as described before: with phenotypic and genotypic approaches. However, in comparison
with drug resistance against traditional drugs, mutations leading to a switch in tropism
seem to be less pronounced and the prediction of HIV coreceptor usage is more difficult.
Therefore, bioinformatics methods are much more important than for the determination

of resistance to other antiretroviral drugs.

Overview

Prediction of HIV coreceptor usage from genotype works relatively well when the dealing
with clonal data, i.e. when viruses are grown in vitro and then sequenced and phenotyped.
Unfortunately, such predictions are generally much worse when tested on samples taken in
clinics. Clinically derived samples differ from clonal data since they contain a population
of often rather diverse viral variants each contributing to the bulk phenotype.

We can ask ourselves several questions to unveil reasons that might explain the poor
performance of prediction methods of HIV coreceptor usage:

e Do we look at the right regions or proteins? Coreceptor usage prediction methods
use the V3 loop of the viral envelope protein gp120 as input. This region is known
to be the major determinant of HIV coreceptor usage but other factors might have
an impact, too.

e Do we see the right variants? Minor populations of HIV variants could remain
undetected with conventional sequencing methods which have a higher detection
limit than phenotypic assays.

e Do our training data differ from the viral strains circulating in the patient? Clonal
data often comes from lab strains that are cultivated over some time. The circulating
viral strains could possibly have evolved differently.

e Are the results derived from phenotypic assays always correct? The quality of these
assays has mainly been assessed using well-defined laboratory strains and not using
clinically derived isolates.

Within this work, we want to address these and other points and try to find possible

solutions for the aforementioned problems.

Outline

This thesis is structured into six chapters followed by the bibliography and the appendix.
In Chapter 2 we will introduce the disease AIDS, its epidemiology and the course of an
infection. We will then give a comprehensive overview of how its causative pathogen HIV
is composed, how it replicates and how it can be grouped into different types and subtypes.



Subsequently, we will first introduce how modern anti-HIV therapy works and then focus
on the main topic of this work namely HIV coreceptor usage and its determination.

Chapter 3 will deal with different regions of the viral genome that are normally not used
for coreceptor usage prediction. We will first analyze data from the second hypervariable
loop of gp120, then focus on the second envelope protein gp41 and end this chapter with
a brief analysis of other envelope regions and other viral proteins.

In Chapter 4 we will address minor populations usually undetected by standard se-
quencing technologies. A brief introduction into the 454-technology will be followed by
a technical section in which we will discuss some methods we have developed or adapted
to work with this new sequencing technology and how to present the results. We will
then present a proof-of-concept study we have performed to show that massively parallel
sequencing can be successfully used for reliable coreceptor usage prediction and finally
describe the webservice we have established to deal with sequences generated with the
454-technology.

Chapter 5 will return to the classical problem: inferring HIV coreceptor usage from
the V3 loop with standard sequencing methods. We will begin this chapter showing how
the two most-widely used websystems can be combined into a new prediction method.
Subsequently, we will discuss the effects of an updated phenotypic assay with better mi-
nority detection and and how our prediction system works on different subtypes. In the
fourth section of this chapter, we will perform a comparison of different clonal and clinical
datasets in order to assess the quality of our training datasets. Last but certainly not
least, we will make the final step to daily diagnostics in which we will analyze coreceptor
usage prediction with respect to treatment outcome under drug combinations containing
coreceptor antagonists.

The thesis is concluded by Chapter 6 in which we will give a summary of the main
achievements and provide an outlook of future advancements.






2 Background

In the following sections we will provide the biological background of this thesis. The first
section (Section 2.1) will give a short overview of the disease AIDS after which we will
subsequently go into more detail. We will introduce the causative agent of AIDS - the
Human Immunodeficiency Virus (Section 2.2) describe how modern therapy targets the
virus (Section 2.3), and finally focus on viral cell entry (Section 2.4), the main topic of this
work. The last section will deal with HIV diagnostics, genotypic and phenotypic assays
used in this realm and end with a brief introduction of different sequencing methods used
herein (Section 2.5).

2.1 Aquired Immunodeficiency Syndrome (AIDS)

2.1.1 The Disease and its Epidemiology

The Aquired Immunodeficiency Syndrome (AIDS) is one of the leading causes of death in
young adults globally. According to the AIDS epidemic update 2009 of the World Health
Organization (WHO), 33.4 million people were estimated to be living with its causative
pathogen the Human Immunodeficiency Virus (HIV), in 2008. This is an increase of more
than 20% with respect to the numbers in 2000 and threefold higher than the prevalence in
1990. The rate of new infections is also very high with approximately 2.7 million in 2008
while about 2.0 million people died on AIDS-related illnesses. It is estimated that up to
now, AIDS has caused the deaths of more than 25 million people worldwide.

AIDS comes by with symptoms that are very similar to the ones of other illnesses like
tuberculosis. Consequently, these symptoms are often attributed to such well-known causes
instead of an infection with HIV. Because the disease is not accompanied by signs or
symptoms salient enough to be noticed, it is not very surprising that the infection has
not been discovered until 1981 in which a number of young gay men in New York and
Los Angeles were diagnosed with symptoms not usually seen in individuals with a healthy
immune status (Hymes et al., 1981; for Disease Control, 1981; Gottlieb, 2006). These
individuals showed a more aggressive form of Kaposi’s sarcoma or a rare lung infection
called Pneumocystis carinii pneumonia. Soon after these first reports, a number of further
cases with similar symptoms were discovered leading to the conclusion that one was dealing
with a new undefined disease associated with the breakdown of the body’s immune system.

In 1983, researchers around Luc Montagnier and Frangoise Barré-Sinoussi at the In-
stitute Pasteur in Paris (France) were the first to isolate HIV (Barré-Sinoussi et al.,
1983), a discovery for which they were awarded with the Nobel Price for Physiology or
Medicine twenty-five years later in 2008. Montagnier and co-workers named the virus
lymphadenopathy-associated virus (LAV) and suggested it might be the cause of AIDS
but did not get much notice at that time. About a year later, in 1984, the United States
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Health and Human Services Secretary Margaret Heckler announced that Robert C. Gallo of
the National Cancer Institute had isolated the virus causing AIDS and called it HTLV-III.
A very controversial debate including accusations about the first discovery of HIV started
but it soon became obvious that both groups had isolated the same virus. The problem
with the different names of HIV was resolved in 1986, when the International Committee
on the Taxonomy of Viruses decided to drop both names and replaced them by a new term,
Human Immunodeficiency Virus (HIV) (Coffin et al., 1986). Although they were not the
first to have isolated the virus, the group of Gallo is recognized to be first to demonstrate
that HIV is causing AIDS (Popovic et al., 1984).

Due to its first occurrences in gay men, the disease was also temporarily named gay
compromise syndrome or gay-related immune deficiency (GRID) (Brennan and Durack,
1981). The common association of AIDS with men who have sex with men is one of the
main reasons why AIDS is heavily stigmatized around the world until now. In March 2009,
there were still 52 countries that had some form of HIV-specific restriction on entry, stay
and residence. Among these, 23 countries deported individuals once their HIV-positive
status is discovered while 5 countries denied visas for even short term stays (UNAIDS,
2009b). That this is a major problem not only in third-world countries is underlined by
the fact that the United States just lifted its entry-ban in January 2010 and China at the
end of April 2010.

The prevalence of HIV varies considerably between different regions over the world. Sub-
Saharan Africa, accounting for two thirds of all people living with HIV and three fourths of
AIDS deaths in 2007 is by far the most heavily affected region. In some of these countries
(e.g. South Africa, Botswana and Swaziland), almost every fifth adult is infected with
HIV. In contrast, most countries in Western and Central Europe have prevalence rates of
about 0.1% (UNAIDS, 2008).

The reasons for the different infection rates in different regions are manifold. A major
reason for the high prevalence in sub-Saharan Africa is certainly that the virus originated
there through multiple infections from non-human primates infected with the simian im-
munodeficiency virus (SIV). Because this is believed to have happened already in 1931
(Korber et al., 2000), the virus had much time to spread until it was recognized about
fifty years later. However, also other educational, social, and religious reasons such as gen-
der equality and circumcision account for imbalances in infection rates between different
regions (UNAIDS, 2008).

Another notable difference between different regions lies in the different primary modes of
transmission. While the epidemic in sub-Saharan Africa is mainly driven by heterosexual
exposure and often still due to mother-to-child transmissions, men who have sex with
men are the most highly affected group in Latin America. Similarly, most countries in
North America and Western and Central Europe show a clear trend towards increased
transmission among men who have sex with men while the rates of new infections in
another high-risk group of injecting drug users decreased in the last years. However,
injecting drug use seems to remain the primary route of transmission in Eastern Europe,
Asia, the Middle East, and North Africa. Such disproportions in the high risk groups also
lead to the fact that in sub-Saharan Africa women account for about 60% of infections
whereas in North America and in Western and Central Europe men outnumber women in
both HIV prevalence and incidence by more than 2:1 (UNAIDS, 2009a).
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In addition to the health of the infected people, AIDS has also a tremendous impact on
societies as a whole in countries most heavily affected, both economically and demograph-
ically. In Swaziland, a high-prevalence country, the average life expectancy decreased by
almost half from 65 years in 1991 to 37.4 years in 2005 (Whiteside et al., 2006). Such an
increased mortality leads to a smaller skilled population and labor force affecting economic
growth (Bell et al., 2003).

Despite the fact that more and better drugs have become available there is still a long
way to go. According to the World Health Report in 2008 (UNAIDS, 2008), for every two
people starting to take antiretroviral therapy, another five become newly infected. It is
simply too expensive and the logistics effort too high to treat that many patients. Thus,
the main focus in low income countries is not to treat patients but to prevent new HIV
infections. While universal access to antiretrovirals is a desirable goal, it will probably not
be possible in the near future without better HIV prevention strategies and a vaccine. Until
then, clinical diagnostic tools to select appropriate antiretroviral therapies will become even
more important and serve as a valuable factor in the fight against HIV.

2.1.2 Course of Infection

HIV is transmitted from one person to another through bodily fluids, mostly via sexual
transmission across a mucosal surface. In addition, it can also be transmitted through
contaminated blood transfusions, contaminated needles shared among intravenous drug
users, and from mothers to their children during pregnancy, childbirth, and breast feeding.

After transmission the virus is transported to local lymph nodes by Langerhans cells or
dendritic cells within the first week of infection. From there it can spread, with exponential
expansion of the infection, to other sites, particularly to gut-associated lymphoid tissue
(GALT) (McMichael, 2006). GALT is known to be the principal site of HIV replication
(Arthos et al., 2008) and a reservoir of HIV which supports its persistence even during
long-term suppression of plasma viremia while receiving antiretroviral therapy (Chun et al.,
2008). At around day 21 after infection, virus appears in the blood with high viral loads
of often more than 10 million copies per milliliter (McMichael, 2006). This is commonly
referred to as the acute phase of HIV infection which is accompanied by a rapid depletion
of about half of the CD4™ T cells (Mattapallil et al., 2005) resulting in flu-like symptoms
(see also Figure 2.1, weeks 3 to 9). It is assumed that this enormous viral replication and
extensive CD4" memory T cell destruction leads to an irreversible damage to the immune
system setting the stage for its eventual failure (Picker, 2006).

Towards the end of the acute phase, viral plasma levels drop 10- to 100-fold to a relatively
stable set point between 2 and 6 months after infection while the number of CD41 T cells
increases again (around week 9 in Figure 2.1). This rapid and spontaneous decline in viral
load is thought to be caused by a limited target cell population (Phillips, 1996) after the
initial exponential expansion and because of the appearance of specific immune responses
(Borrow et al., 1994; Safrit et al., 1994). In general, the viral set point is a good predictor
of how fast a patient will progress to develop AIDS (Mellors et al., 1996; Fauci, 1996; Lyles
et al., 2000), the higher it is the faster a person will progress to disease.

Following the acute phase, there is a phase in which the virus can be controlled in absence
of clinical symptoms over a long time, lasting from months to several years. In this phase,
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called asymptomatic or latent phase, viral load only slowly increases whereas CD4™ T cells
slowly but continuously deplete (indicated in Figure 2.1 by the period between week 9 and
year 7).

When the immune system is too weak and finally collapses, the third phase of the in-
fection is reached: AIDS. It is commonly diagnosed when CD4" T cell counts fall below
200 cells per milliliter (starting at year 7 in Figure 2.1). Viral load increases sharply again
and due to the exhausted immune system, opportunistic infections and malignancies can
occur. These include cancers only rarely found among uninfected people, like Kaposi’s
sarcoma after infection with human herpes virus type-8 to pneumonia induced by Pnreu-
mocystis jirovecy. Most of these opportunistic infections would not bother healthy people
too much. However, the immune system of people living with AIDS is too weak to handle
them appropriately. Hence, if these patients do not get treatment, AIDS is succeeded by
death from such opportunistic infections.

Acute HIV syndrome
) Primary Wide dissemination of virus Death 7
1200\ Infection Seeding of lymphoid organs 10
1100 \ \
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Figure 2.1: The different phases of progression to AIDS. Figure taken from Wikipedia
(http://commons.wikimedia.org/wiki/File:Hiv-timecourse.png),
published in (Pantaleo et al., 1993).

originally

Because the symptoms of AIDS can be very diverse there is still no clear definition
available for the disease. Mostly the diagnosis is referred to the 1993 Revised Classification
System for HIV Infection and Expanded Surveillance Case Definition for AIDS Among
Adolescents and Adults by the US Centers of Disease Control and Prevention. According
to this system, the disease is diagnosed whenever an HIV-positive person has a CD4™ cell
count below 200 cells per microliter blood, or when the percentage of CD4" cell counts
with respect to all lymphocytes is below 14%, or when the patient is diagnosed with one or
more of 25 AIDS-defining illnesses. These include various opportunistic infections, brain
and nerve diseases, certain cancers and the wasting syndrome. The diagnosis still stands
in case that after treatment these requirements do not hold anymore.

Infection with HIV induces different responses in humans. About 10% of infected adults
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are fast progressors showing AIDS-related symptoms within the first 2 to 3 years of in-
fection. In approximately 40% of infected adults, progression is observed within 10 years,
while 10% to 17%, commonly referred to as long-term non-progressors, do not progress
to AIDS for more than 20 years. Some of these, termed elite or natural controllers or
elite surpressors, even show no evidence of progression to disease at all and harbor plasma
viremia below the limit of detection (50 copies per milliliter) (Saksena et al., 2007). These
differences in progression are poorly understood, so far. They might be due to different
stimulations of the immune system by infections with other pathogens as well as to viral
fitness, altered cell tropism (Kupfer et al., 1998) or differences in the immune system it-
self (e.g. different antibody repertoires or different T-cell recognition). Recently, several
studies started recruiting long-term non-progressors and elite controllers for genome-wide
association studies to unveil common factors suppressing the virus naturally (Study, 2006;
Fellay et al., 2007).

2.2 Human Immunodeficiency Virus Type 1

The Human Immunodeficiency Virus is a lentivirus belonging to the family of retroviruses.
Up to now, two species of HIV are known to exist: HIV-1 and HIV-2. They were in-
troduced into the human population by multiple cross-species transmissions from Simian
Immunodeficiency Virus (SIV) infected non-human primates. HIV-1 is believed to have
evolved from SIVepz, a SIV-variant present in chimpanzees while HIV-2 originates from a
variant (SIVsmm) present in sooty mangabeys (de Silva et al., 2008).

Both HIV-1 and HIV-2 are very similar in terms of transmission routes and disease
symptoms (Clavel et al., 1987). However, while HIV-1 is the main driving force of the
pandemic, HIV-2 is largely restricted to a very small region of West Africa (Horsburgh
and Holmberg, 1988). One reason for the disproportion might be that HIV-2 has a lower
transmission efficiency. A good indicator for this phenomenon turn out to be the numbers
of vertical (mother-to-child) transmissions in absence of antiretroviral therapy. These are
less than 4% for HIV-2 infected breast-feeding mothers, compared to up to 24.4% for HIV-1
in the same population (O’Donovan et al., 2000). For a long time, it was also assumed that
immunodeficiency develops more slowly in HIV-2 infected patients (Ancelle et al., 1987).
However this has been refuted by the observation that the median rate of CD4" T-cell
decline per year is the same in both types of infections when matched for baseline plasma
viral load (Gottlieb et al., 2002). On the other hand, most asymptomatic HIV-2 patients
have undetectable baseline plasma RNA (Ariyoshi et al., 2000; Berry et al., 1998) which is
associated with low or no risk of progression as in the case of HIV-1 (Ariyoshi et al., 2000;
Hansmann et al., 2005).

The focus of this work will be on HIV-1. This is not so much due to differences between
prevalences of these viruses but mainly because of other reasons: there is much less data
available to study HIV-2 and additionally, HIV-2 uses a wide range of coreceptors instead
of the more focused pattern seen in HIV-1.
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Figure 2.2: Diagram of an HIV  virion. Figure taken from Wikipedia
(http://commons.wikimedia.org/wiki/File:HIV _Virion-en.png).

2.2.1 Genes and Structure

HIV-1 virions are spherical entities with a diameter of around 100-120nm. Each particle
contains two copies of single stranded RNA as well as the viral enzymes protease, reverse
transcriptase and integrase in its center. Fach single stranded RNA has a length of about
9.7kb and is tightly bound to nucleocapsid protein p6 and p7. The core is protected by
a cone-shaped capsid comprising approximately 250 hexamers and exactly 12 pentamers
of the viral p24 (CA) protein (Pornillos et al., 2009). The viral cone itself is surrounded
by a spherical matrix comprised of p17 (matrix, MA) proteins which are enclosed by the
viral envelope, a phospholipid bilayer. Attached to the envelope are 72 spikes composed
of three copies of the viral envelope protein gpl120 and the viral transmembrane protein
gp4l, respectively (Gelderblom, 1991). A schematic illustration of the viral structure is
shown in Figure 2.2.

The single stranded RNA encodes for 15 viral proteins in total, partly in overlapping
reading frames (Frankel and Young, 1998). They are synthesized from nine genes: three
genes that encode for polyprotein precursors (Gag, Pol, Env) and six accessory genes with
regulatory and auxiliary functions: Vif, Vpr, Vpu, Tat, Rev, and Nef. The Gag (group-
specific antigen) precursor is cleaved by the viral protease into the mature Gag proteins
encapsidating the viral genome: matrix (MA, p17), capsid (CA, p24), nucleocapsid (NC,
p7), and p6 (Freed, 2001). Additionally, the spacer peptides 1 (SP1, p2) and 2 (SP2, p1)
are encoded by the gag-gene. The Pol (polymerase) polyprotein is only expressed together
with Gag as the Gag-Pol protein precursor. However, Pol is encoded in a different reading
frame so that it is only synthesized in case of a -1 frameshifting event. This happens at
a frequency of 5% to 10% due to a mRNA secondary structure downstream of the shift
site (Parkin et al., 1992; Shehu-Xhilaga et al., 2001). The Gag-Pol precursor is cleaved
by the viral protease into the viral enzymes protease (PR), reverse transcriptase (RT),
and integrase (IN). The latter two transcribe the viral single-stranded RNA genome back
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into double-stranded DNA and integrate it into the host genome. The Env (envelope)
gene codes for the glycoprotein precursor gpl60 which is cleaved by a cellular protease
into the two subunits of the viral spike, the mature surface glycoprotein gp120 and the
transmembrane glycoprotein gp41. The accessory genes encode for transactivators (Tat,
Rev, Vpr) and other regulatory proteins (Vif, Nef, Vpu). Most of the regulatory proteins
are not necessarily for viral replication in vitro but are important for efficient production
of viruses and countering defense mechanisms of the host, in vivo.

The genomic structure of HIV-1 is depicted in Figure 2.3.
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Figure 2.3: Organization of the HIV-1 genome. Figure kindly provided by Saleta Sierra
and Elena Knops.

2.2.2 HIV-1 Replication Cycle

The life cycle of HIV-1 is a complex process that can be regarded as an ordered series
of events, although some of them can occur simultaneously (Freed, 2001). The virus has
an estimated turnaround time of about 1.5 days which can vary based on several factors,
including target cell type and activation status. HIV replication can be divided into two
overall phases: early and late. The early phase comprises the steps until the viral genome
is integrated into the host genome while the late phase is characterized by the production
of new virus particles: expression, assembly, and release. In the following, the individual
steps of the viral replication cycle are described.

Viral Entry For replication HIV-1 requires a host cell expressing the CD4-receptor on
its cell surface. Therefore, the virus mainly targets CD4" T lymphocytes, macrophages,
microglia, and dendritic cells. It attaches to the target cell by its surface envelope glyco-
protein gp120 binding to a CD4-receptor on the host-cell (Dalgleish et al., 1984). Through
this process, conformational changes in the gp120 protein are induced facilitating the ex-
posure of a second binding site for a chemokine receptor (termed coreceptor). In vivo, this
coreceptor is either the chemokine CC receptor 5 (CCR5) or the chemokine CXC receptor
4 (CXCRA4) (Berger et al., 1999; Wyatt and Sodroski, 1998). Binding to such a coreceptor
activates the transmembrane glycoprotein gp41 which reorients parallel to viral and cellu-
lar membranes, allowing its N-terminal fusion peptide to insert into the target membrane.
The viral and cellular membranes are then brought into close proximity (Esté and Telenti,
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2007; Wyatt and Sodroski, 1998), so that in the last step of viral entry the membranes are
fused and the viral core is released into the cytoplasm of the cell.
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Figure 2.4: General features of the replication cycle of HIV. Viral entry, reverse transcrip-
tion, nuclear import, and integration occur in the early phase of infection (up-
per portion of the figure). In the late phase of infection, the viral proteins are
expressed, transported to the plasma membrane, assembled to mature virions
and finally released. Figure derived from (D’Souza and Summers, 2005) with
kind permission from Nature Publishing Group.

Reverse Transcription, Nuclear Import, and Integration Following the release into the
cell, the viral core is uncoated, a process that is not completely understood yet. A large
ribonucleoprotein structure called reverse transcription complex (RTC) is built up. It
consists of the genomic RNA coated with nucleocapsid protein molecules and other com-
ponents such as the matrix, the capsid and Vpr molecules together with the viral enzymes
reverse transcriptase (RT) and integrase (IN) (Mougel et al., 2009). The reverse tran-
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scriptase transcribes two single stranded copies of viral RNA into double stranded DNA
(dsDNA). Since the reverse transcriptase has no proofreading activity and can also "jump"
from one template to another, this process is usually error-prone and the resulting dsDNA
not an exact genetic copy of the original RNA. As a consequence, there is a high frequency
of genetic recombination, together with a high mutation rate (3 - 10~° per replication cy-
cle) leading to a highly heterogeneous population (termed quasispecies) (Freed, 2001; Jung
et al., 2002).

Together with other cellular and viral proteins, the dsDNA forms the preintegration
complex (PIC) which is transported to the nucleus (Freed, 2001). In the nucleus, the inte-
grase being part of the PIC, catalyzes the insertion of the dsDNA into the host chromosome
(Freed, 2001). The integrated dsDNA, also called the provirus, can then be expressed by
the cell as if it was an own gene. Integration is an irreversible process marking an important
point of HIV infection (Simon et al., 2006).

Gene Expression The integrated viral genes are transcribed by the machinery of the cell.
Initially, gene expression of the viral genes is only induced at a relatively low basal level.
However, this soon changes because the produced Tat (trans-activator of transcription)
proteins establish a powerful positive feedback loop that increases their own expression
efficiency by orders of magnitude. This, in turn, leads to very high levels of HIV-1-specific
RNA and protein synthesis (Cullen, 1991; Kim and Sharp, 2001).

While Tat enhances its own expression, the viral protein Rev (regulator of virion) does
quite the opposite. It regulates down its own synthesis and that of other early class mRNAs.
The early class viral mRNAs are multiply spliced mRNAs that encode the viral regulatory
proteins Tat, Nef, and Rev. In contrast, in the late phase of replication unspliced and
partially spliced transcripts are generated encoding the structural proteins. The problem
HIV-1 faces is that most cellular mRNAs are fully spliced before their transport out of the
nucleus. The Rev protein solves this problem together with the Rev responsive element
(RRE), a highly structured RNA element that is located in the env gene and that is present
in all unspliced and partially spliced HIV-1 RNAs. Binding of approximately eight Rev
proteins with one RRE results in a formation that is capable of interacting with the cellular
nuclear export machinery and transporting the unspliced or partially spliced mRNAs to
the cytoplasm. This process however requires a critical threshold level of Rev so that it
prolongs the entry into the late phase in cells as long as they are unable to support efficient
HIV-1 gene expression (Cullen, 1991; Freed, 2001).

Budding and Maturation The envelope polyprotein gpl60 is transported to the plasma
membrane via the endoplasmatic reticulum and the Golgi complex where it is subjected to
extensive N-glycosylation resulting in long mannose chains. It then undergoes trimerization
and is cleaved by a host protease into its gp120 and gp41 subunits (Freed, 2001; Moulard
and Decroly, 2000). Both subunits are then transported to the plasma membrane where
gp4l anchors the Env complex into the membrane and associates non-covalently with
gp120. The precursor proteins Gag and GagPol also associate at the plasma membrane of
the host where the formation of new virus particles begins.

The immature particles bud from the host cell from which they take a part of the plasma
membrane as their envelope. During or shortly after budding from the cell maturation
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starts. The viral protease being part of the GagPol precursor protein gets activated when
the respective domains of two GagPol precursors dimerize. PR then cleaves the Gag and
GagPol polyproteins into their subunits. The structural proteins of the Gag gene form
the matrix, the capsid, and the nucleocapsid which rearrange to form the mature particle.
Finally, only fully mature viruses are able to infect other cells.

In addition to the described steps of the replication cycle, several other actions are taken
by the virus to ensure efficient replication and to defend itself against host-defense. The
Nef protein, for example, is a virulence factor critical for the development of AIDS that in-
teracts with several cellular factors to promote viral replication and immune evasion (Arhel
and Kirchhoff, 2009). Its best-characterized function is the ability to reduce the number of
CD4 surface molecules, promoting virus release and infectivity, and lowering the antiviral
immune response. Another well-known facility of the virus is the downregulation of the
major histocompatibility complex I and II molecules presenting antigens on cell surfaces.
In this way, the virus can impair the recognition of HIV-infected cells by cytotoxic T cells
(CTL) and T helper cells (Quaranta et al., 2009).

Another virus protein Vif (viral infectivity factor) counteracts the antiviral effects of the
APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3) proteins
APOBEC3F and APOBEC3G. APOBEC proteins are involved in host innate immunity.
Their antiviral activity has been shown against a number of viruses, particularly retro-
viruses. They induce deamination of cytidines leading to the occurrence of uridines in
newly synthesized single-stranded DNA during reverse transcription and consequently G-
to-A mutations in the viral genome. In absence of fully active Vif, the viral genomes
are hypermutated to such an extent that they cannot produce infectious viruses anymore
(Romani et al., 2009).

2.2.3 HIV-1 Diversity and Subtypes

One of the trademarks of HIV is its high genetic variability, posing a problem both for
therapy with antiretroviral drugs as well as for the development of a protective vaccine.

As briefly mentioned before, intrapatient variability which typically manifests in the
rapid development of drug resistance mutations under failing drug therapy is mainly due
to the error-prone reverse transcription of the viral genome (see 2.2.1). In addition to
mutations induced by the RT, interpatient variability is also characterized by different
types of HIV (HIV-1 and -2), as well as groups and subtypes described in the following.

HIV-1 and HIV-2 are presumed to have evolved from different Simian Immunodeficiency
Viruses. HIV-1 is closely related to an SIV variant (SIVcpz) present in chimpanzees (par-
ticularly Pan troglodytes troglodytes and Pan troglodytes schweinfurthii), whereas the
origin of HIV-2 is probably SIVsmm which is found in high frequencies in sooty mangabey
monkeys (Cercocebus atys).

Both types are further divided into different groups that are the result of multiple cross-
species transmissions of the respective SIV-variants to humans. In case of HIV-1, these are
the groups M (major), N (non-M, non-O), and O (outlier). Group M is distributed all over
the world and is the main source of the pandemic. The groups N and O are restricted to
individuals of West African origin (Rambaut et al., 2004) and are only rarely seen. Very
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recently, an additional group P virus has been discovered that is closely related to SIVgor
found in wild-living gorillas (Gorilla gorilla gorilla) (Plantier et al., 2009). For HIV-2, the
groups A-H are known but only groups A and B have infected substantial numbers of
people in West Africa (Santiago et al., 2005).

The M group of HIV-1 is further subdivided into phylogenetically associated groups
of HIV-1 sequences, termed clades or subtypes (Robertson et al., 2000, see also Figure
2.5). Sequences within a subtype are more similar to each other than to sequences from
another subtype. The genetic distance between two subtypes is about 25% to 35% (Butler
et al., 2007), depending on the genes compared. So far, subtypes A to K are known.
The different subtypes are very unevenly distributed throughout the world and often occur
predominantly in certain geographic regions. For example, subtype C responsible for about
half of the infections worldwide is the predominant subtype in Southern and East Africa,
and in India. Subtype B on the other hand, was and is one of the driving forces for new
infections in Europe and North America, and is by far the most studied subtype.

If a patient gets infected multiply with viruses from different subtypes, it can occasionally
happen that two viruses recombine to a new viral strain with a mosaic genome composed
of regions from both subtypes. In most cases, these recombinant viruses only occur within
a single patient but in case the patient infects another person they can also spread into the
population. They are then called unique recombinant forms (URFs), and if at least three
representative full-length genomes have been sequenced from individuals whose infections
cannot be epidemiologically linked, they are termed circulating recombinant forms (CRFs).

In fact, two of the previously determined subtypes, namely E and I, are recombinants of
two or more subtypes. This is because in the beginning, subtypes were determined only by
comparing the env region and not the full-length viruses. Later it became apparent that
subtype E is the result of a recombination event involving the subtype A gag region and the
env region of another strain putative from subtype E. However, no "pure", non-recombinant
form, of subtype E has ever been found. The recombinant strain has been renamed to
CRFO01 AE but is sometimes still referred to as subtype E (Butler et al., 2007). Similarly,
subtype I has later been found to have a complex mosaic structure of subtypes A, G, H, K
and unclassified regions and has therefore been renamed to CRF06_ cpx (Paraskevis et al.,
2001).

Last but not least, because there is significant diversity within subtypes, sub-subtypes
have been established. E.g. subtype F consists of the sister-clades F1 and F2 while subtype
A is nowadays split into sub-subtypes A1-A4 (Butler et al., 2007).

Subtypes do not only differ in their sequences but of course also in the effects that
these genomic differences induce. For example, subtype D seems to be more virulent than
subtype A resulting in significantly faster rates of CD4" T-cell losses and more rapid
disease progression (Kiwanuka et al., 2009; Baeten et al., 2007). In another study it has
been shown that survival among individuals in Thailand infected with CRF01 _AFE appears
to be similar to that reported among individuals in Africa infected with HIV-1 subtype
D and significantly less than that reported among persons of similar age in high-income
countries or in eastern or southern Africa (Nelson et al., 2007). An explanation for these
differences might be the different preferences among subtypes for HIV-1 coreceptor usage
which is associated with progression to disease (Kupfer et al., 1998). Some subtypes tend
to use almost exclusively the CCR5-coreceptor while others show a higher prevalence for
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CXCRA4 (Tscherning et al., 1998; Nedellec et al., 2009).

It should also be noted that antiretroviral drugs are developed mainly against subtype
B viruses, the most prevalent subtype in Europe and North America. This can have a
negative impact on the effectiveness of these drugs for other subtypes most prevalent in
the high prevalence countries of Africa and Asia (Descamps et al., 1998; Martinez-Cajas
et al., 2008).

With respect to the development of an HIV vaccine, the high diversity of HIV is one of the
major obstacles because such a vaccine would need to be effective against most subtypes.
Thus, a vaccine would probably rely on a conserved region of the virus. Such regions are
very hard to find even within a single subtype. Within the same subtype, however, HIV-1
can vary up to 20% in sequence. When comparing two subtypes the sequence diversity can
rise to 38%. The challenge of such a high diversity becomes even more apparent when one
compares the variability of HIV-1 within a single infected individual with the one generated
over the course of a global influenza epidemic. Six years after infection, the variation of
HIV-viruses within a patient is roughly the same as the one of the influenza A infections
worldwide in 1996 (Walker and Burton, 2008; Weiss, 2003) (see also Figure 2.6). Since
every year a new vaccine is needed against influenza one can imagine how powerful an HIV
vaccine would need to be to control the global pandemic.

2.3 Anti-HIV Therapy

Except for a single specific patient who seems to have been cleared from HIV by therapy,
there is no case known in which a person could be cured from AIDS. This patient received
an allogenic stem-cell transplantation with stem-cells homozygous for a defect that renders
the gene for the CCR5 coreceptor nonfunctional. Unfortunately, while the approach is
quite clever, it will also remain a very rare exception. This is because only about 1%
of the Caucasian population are homozygous for the CCR5 gene-defect (Novembre et al.,
2005) and finding a suitable donor for a stem-cell transplation is already difficult without
this additional criterion. Moreover, such a therapy is definitively not advisable because of
the severe side effects arising when shutting down the human immune system for a bone
marrow transplantation. Nevertheless, the case of the so-called Berlin-patient will probably
be a valuable resource for the development of future gene therapies (Hiitter et al., 2009).

The best way of fighting HIV would certainly be a vaccine protecting against it. After
discovering that HIV causes AIDS, researchers expected to have a vaccine available in
just a few years (Smith, 2003; Walker and Burton, 2008). The hunt for it, however, has
become an unfortunate saga lasting now for more than 25 years (Smith, 2003, 2005, 2006).
Nowadays, there is still no vaccine in sight and recent results were more frustrating than
encouraging. The STEP-trial testing a promising vaccine candidate in a study containing
more than 3.000 people was more or less a complete disaster. Instead of preventing HIV-1
infection or to reduce early viral level, individuals treated with the vaccine showed higher
rates of infection than patients in the control group (Buchbinder et al., 2008).

Results from another recent study investigating the AIDSVAX vaccine candidate were
a bit more promising but the results should interpreted with care as only a few people got
infected and statistical significance was marginal and only apparent after some individuals
were excluded from analysis (Rerks-Ngarm et al., 2009).
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Figure 2.5: Phylogenetic tree of different human (HIV) and simian (SIV) immunodeficiency
viruses. The newly identified group P and its closely related SIVgor variant as
well as the HIV-2 subtypes C-H are not shown. Figure reprinted from (Arién
et al., 2007) with kind permission from Nature Publishing Group.
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a) Global influenza, 1996 b) HIV, single individual, six years post infection
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Figure 2.6: Intra- and interpatient variation of HIV in comparison with the variation of
the global influenza infection. Sequence diversity is based on the envelope
glycoproteins of HIV and influenza A H3 (HA1). The variation of HIV within
a single patient six years after infection (b) is similar to that of worldwide
influenza A in 1996 (a). For comparison also the diversity of HIV strains in
the Amsterdam cohort (c) and in a set of strains with different subtypes in the
Democratic Republic of Congo is shown (d). Derived and adapted from (Weiss,
2003) with kind permission from Nature Publishing Group.
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Due to these reasons, HIV therapy is currently based on antiretroviral drugs. Growing
understanding of the viral replication cycle has allowed the development of a whole battery
of drugs targeting most steps of HIV-1 life cycle. However, so far, all these drugs can only
delay the disease and prolong life. They cannot clear the virus from the body. This is
because once the virus is integrated in the human genome, it is not possible, at least by
current technologies available, to cut it out again. In addition, eliminating all infected cells
is also not an option because there are too many in too many tissues. Antiviral therapy can
suppress viral replication below the level of detection but even under a successful therapy
the virus continues to replicate and mutate. This has the effect that after some time,
resistant viruses are generated rendering the therapy ineffective.

The first antiretroviral drug to be used in treatment against HIV-1, azidothymidine
(AZT) also known as zidovudine (ZDV), was approved by the FDA in March 1987. AZT
is a nucleoside analog reverse transcriptase inhibitor that was originally designed against
cancer in 1964. Although it failed to prove effective against cancer it later demonstrated
potent activity against HIV (Fischl et al., 1987). The approval of AZT seemed to be a
breakthrough in the fight against AIDS, but unfortunately it soon became clear that the
virus is able to develop resistance against the drug during treatment (Larder and Kemp,
1989; Larder et al., 1989). The same effect has been observed for all drugs given alone
(monotherapy) since then (Johnson et al., 2008).

Following the approval of AZT in 1987, more than twenty antiretroviral drugs have
been approved for treating HIV by the US Food and Drug Administration (FDA) and the
European Medicines Agency (EMEA). These drugs can be classified into several groups
according to the steps in the viral replication cycle with which they aim to interfere: there
are protease inhibitors, reverse transcriptase inhibitors, integrase inhibitors, and entry
inhibitors. In addition to these, further drugs not only from these but also from novel drug
classes are in development. An overview of the different drug classes and their mechanism
of action will be given in the following.

2.3.1 Antiretroviral Drugs
Protease Inhibitors

The protease is important for the virus during maturation when it cleaves the Gag and
GagPol precursor polyproteins into their functional subunits. It is only active as a homod-
imer in which the active site is formed by a cleft between the two monomers.

The cleft has a length of about seven amino acids. Protease inhibitors (PIs) are small
molecules that aim to interfere with this process by blocking the active site of the enzyme.
They mimic the structure of the viral peptides that are naturally recognized thereby out-
competing them. The precursor proteins cannot be processed into the functional enzymes
so that the immature viruses cannot bud from the cell and infect new cells (Wensing et al.,
2010).

Because protease inhibitors interfere with the late phase of the viral replication cycle,
they cannot prevent the virus from integration and consequently from establishing a per-
sistent infection in the cells. Thus, these cells are temporarily replication-incompetent
during a successful therapy but will remain potential viral distributors that can generate
new viral particles in the absence of drug pressure.
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HIV can react against Pls by reducing its susceptibility to the inhibitor with mutations
enlarging the catalytic site of the PR. However, these resistance mutations often lead to
some decrease in binding affinity to the natural substrate, too. Thus, they are usually ac-
companied with accessory protease inhibitor resistance mutations that up-regulate protease
processivity to compensate for the decreased fitness associated with the major PI resis-
tance mutations (Shafer and Schapiro, 2008; Wensing et al., 2010). Because the processing
efficiency of the viral protease depends on the enzyme itself as well as on its substrate,
these accessory mutations do not necessarily have to occur in the enzyme but can also be
modulated by cleavage site mutations in the gag protein (Nijhuis et al., 2008; Verheyen
et al., 2006).

PIs are usually very potent both in first-line therapy as well as in subsequent treatments.
Due to their relatively poor bioavailability, they are mostly "boosted" with a low dose of
ritonavir, the first protease inhibitor approved in the European Union. Ritonavir inhibits
the hepatic and intestinal cytochrome P450 pathway mediating metabolism of most Pls.
Thus, administered in combination with other Pls, it improves their bioavailability and
the half-life of these drugs dramatically (Wensing et al., 2010).

The drawbacks of Pls are high costs and severe side effects. Despite suppressing the
virus successfully PIs sometimes have to be replaced by other drugs.

Reverse Transcriptase Inhibitors

Reverse transcriptase inhibitors form the largest class of drugs against HIV, to date. Two
different types of reverse transcriptase inhibitors exist, inhibiting the reverse transcription
of the viral genome to double-stranded DNA in two ways: Nucleoside reverse transcriptase
inhibitors (NRTIs) are deoxynucleotide-analogues that compete with their corresponding
nucleotides for incorporation into the newly synthesized DNA strand. In contrast to natural
deoxynucleotides, the analogues lack a 3’-hydroxyl group needed for elongation of the DNA
strand. Thus, when incorporated into the strand they act as chain terminators inhibiting
the critical step of reverse transcription prior to integration into the host cell genome
(Cihlar and Ray, 2010; Shafer and Schapiro, 2008).

Viral resistance against NRTIs is usually achieved either by reduced susceptibility to
nucleoside-analoga and enhanced incorporation of the natural nucleotides, or by enhanced
removal of the chain terminating NRTIs at the 3’ end by promoting a phosphorolytic
reaction that leads to primer unblocking (Shafer and Schapiro, 2008).

NRTTs form the backbone of modern HAART in which at least one NRTT is commonly
used. Reasons for this drug selection are the reduced pill burden, increased adherence, and
better control of side effects in comparison to PIs (Cihlar and Ray, 2010).

The second drug group inhibiting the RT is formed by the non-nucleoside reverse tran-
scriptase inhibitors (NNRTIs). They bind to a hydrophobic pocket close to the catalytic
site of the RT. Binding to this part of the enzyme triggers conformational changes reducing
the flexibility of the RT that is needed for viral DNA synthesis (de Béthune, 2010).

Resistance to NNRTIs occurs by mutations that lower susceptibility to the inhibitor.
In general, one or two mutations provoked by therapy with a single NNRTI confer high-
level cross-resistance against all NNRTIs. This is not completely true for the newest
NNRTTI etravirine which has specifically been designed to be susceptible in the presence of
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resistance mutations by other NNRTIs (Shafer and Schapiro, 2008). In general, NNRTIs
are safe and well-tolerated and therefore usually used in first-line therapy. They are also
often prescribed to prevent mother-to-child transmission. The drawback of NNRTIs is the

high-level of cross-resistance between the different drugs in this class often precluding use
of other NNRTIs after one has failed (de Béthune, 2010).

Integrase Inhibitors

Integrase inhibitors (INIs) are a new class of drugs that aim to prevent integration of the
viral DNA into the host genome. Currently, only one approved INI is available: raltegravir
(RAL). RAL preferentially inhibits the strand transfer by binding to the target DNA site
of the viral integrase. Strand transfer is a process during integration in which the viral
DNA 3’-ends are linked covalently to the target DNA. Interfering with this step inhibits
integration and therefore also interrupts the life cycle of HIV (McColl and Chen, 2010).

Resistance to RAL is achieved by primary mutations in the proximity of the IN binding
pocket decreasing the susceptibility to the drug. Secondary mutations compensate for
decreased fitness induced by the primary resistance mutations. A high level of cross-
resistance has been observed between resistance mutations against RAL and elvitegravir,
a second strand transfer inhibitor currently being in clinical trials (Shafer and Schapiro,
2008).

Raltegravir has only recently entered clinical routine and experience with it is still lim-
ited. However it has been shown to be a potent, well tolerated drug that can be combined
with existing antiretroviral drugs to provide highly efficacious treatment to both treat-
ment experienced and treatment naive subjects in the clinical approval studies (McColl
and Chen, 2010).

Entry Inhibitors

Entry inhibitors aim at interfering with the virus at the earliest step of its replication
cycle, preventing viral cell entry. Two different groups of entry inhibitors exist, so far.
Fusion inhibitors prevent fusion of the viral and host cell membranes whereas coreceptor
antagonists block binding of the viral gp120 protein to the coreceptor which the virus
requires for successful infection.

Fusion Inhibitors Enfuvirtide (ENF), formerly known as T-20, is currently the only li-
censed fusion inhibitor. The synthetic peptide of 36 residues is designed to mimic the
amino acids 127-162 of the the heptad repeat (HR) 2 of gp41. In the process of membrane
fusion, this helical region binds to another heptad repeat (HR1) forming the ectodomain
of gp4l. The ectodomain undergoes a conformational rearrangement resulting in a six-
helix bundle structure that is thought to bring the virus and cell membranes into close
proximity. This leads to fusion pore formation and membrane fusion. ENF inhibits the
conformational change by replacing HR2 and blocking the formation of the helical bundle
through binding to HR1 (Esté and Telenti, 2007; Menéndez-Arias, 2010).

Resistance mutations usually occur in the HR1 domain which is in absence of ENF the
most conserved region in the HIV-1 envelope glycoprotein. Only little variation has been
observed even among different subtypes. Nevertheless, mutations in gp41 outside HR1 and
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even in the gp120 protein have been shown to reduce susceptibility against ENF (Derdeyn
et al., 2000, 2001; Menéndez-Arias, 2010; Shafer and Schapiro, 2008).

The main drawbacks of Enfuvirtide are its rather high price and that is has to be admin-
istered by injection twice a day. This often causes severe side effects mainly manifesting
in a number of skin irritations (Esté and Telenti, 2007), sometimes so severe that people
have to stop treatment.

Coreceptor Antagonists Coreceptor antagonists are the newest drug class that has been
added to the arsenal of antiretroviral drugs against HIV. In contrast to all other drug
classes they target host, rather than viral proteins.

Targeting extracellular host proteins has two potential advantages. First, they are more
accessible and drugs interfering with them do not require intracellular processing. This
should minimize non-receptor-linked intracellular toxic effects such as mitochondrial toxic-
ity (Westby and van der Ryst, 2005). Second, because the virus cannot mutate the target
of these drugs, it is thought that achieving resistance to them is more difficult. The dis-
advantage of targeting host proteins is that this inhibits their natural function, too, which
may lead to undesired side effects.

In the case of the cellular CCR5-gene, encoding for one of the two coreceptors HIV-1 uses
for cell entry in vivo, there exists a 32-base-pair deletion allele (CCR5-A32) preventing the
functional expression of the CCR5 coreceptor. The allele is found principally in Europe
and western Asia with an average frequency of approximately 10%. Approximately 1%
of the Caucasian population is homozygous for CCR5-A32 and has no major apparent
deficiencies (Novembre et al., 2005; Esté and Telenti, 2007). However, individuals carrying
the CCR5-A32-deletion on both alleles have been shown to be resistant to HIV-1 infection
except for very few exceptions (Samson et al., 1996b; Dean et al., 1996). These observations
led to the development of CCR5-antagonists. Maraviroc (MVC), the first drug of this class
has been approved for the treatment of therapy-experienced patients in 2007. It selectively
binds to the CCR5-receptor thereby blocking HIV-1 entry into the cell (Westby and van der
Ryst, 2010).

As anticipated, the fact that MVC targets a cellular receptor instead of a viral protein
seems to complicate evolution to resistance. Unfortunately, the virus can escape MVC drug
pressure by switching to an alternate coreceptor CXCR4, a process that has been observed
in about two thirds of treatment failures in the clinical trails (Féitkenheuer et al., 2008).
Because of the possible use of CXCR4, tropism has to be determined before administration
of CCR5-antagonists (Lengauer et al., 2007).

While further CCRb5-antagonists are in development, CXCR4-antagonists are currently
not in clinical trials because the first investigated compounds showed liver histology changes
and animal hepatotoxicity (Esté and Telenti, 2007).

Drugs in Development

Despite of more than two-dozen antiretroviral drugs available, resistance to these com-
pounds, drug toxicity, adverse drug-drug interactions, and poor patient adherence still
require the development of new drugs (Adamson and Freed, 2010). In addition to novel
agents from existing therapeutic classes (e.g. the NRTI apricitabine, the NNRTTI rilpivirine,
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and the INI elvitegravir are in phase 3 testing) (Esté and Cihlar, 2010), also new approaches
targeting other points of the viral replication cycle are in various stages of clinical devel-
opment.

Maturation inhibitors compose one of the new drug classes and have already entered
clinical trials. The most advanced compound of this new class is bevirimat (BVM), which
prevents cleavage of the Gag precursor protein by binding to the Gag protein and thereby
blocking the viral protease. Although BVM has been demonstrated to be potent against
HIV in both phase I and phase II clinical studies (Smith et al., 2007), recent data have
revealed the existence of naturally occurring polymorphisms that confer reduced suscepti-
bility to the drug. Thus, it is unclear at the moment, if the drug will be further investigated
(Adamson et al., 2010; Wainberg and Albert, 2010). Nevertheless, bevirimat has shown
that maturation inhibitors could be a valuable addition to the antiretroviral repertoire and
further compounds of this class are already in early clinical studies.

Other novel targets and agents like Tat-TAR interaction inhibitors, anti-sense oligonu-
cleotides, and RNase H inhibitors have shown their potential in proof-of-concept studies
but are still in early stages of development. They will require a lot of further intensive
research to become future antiretroviral drugs (Bhattacharya and Osman, 2009; Esté and
Cihlar, 2010).

In addition to the search for new targets, research has also focused on pharmaco-
enhancing agents. These aim to improve the effectiveness of existing drugs and to reduce

side effects of current regimens by replacing ritonavir as the only available booster (Esté
and Cihlar, 2010).

2.3.2 Viral Resistance and Highly Active Antiretroviral Therapy

Antiretroviral drugs have been shown to reduce viral replication to levels undetectable for
standard technologies. However, HIV-1 develops resistance to all of these drugs sooner or
later, especially when given alone or in combination with drugs with impaired efficacy.
Drug resistance usually originates from genomic variation due to misincorporated nu-
cleotides during reverse transcription. While mutations always occur in the viral popu-
lation, resistance mutations normally only manifest when the respective viruses are still
viable and when they have an selective advantage compared to the other viruses in the viral
quasispecies. In case of antiretroviral drugs this advantage is obvious since non-resistant
viruses are usually not able to replicate anymore. The time for the virus to become resis-
tant and adapt to antiretroviral drugs can differ greatly and depends on several factors:
If the drug has been given before, then drug resistant viruses usually emerge immediately.
The reason for this is that HIV-1 integrates into the human genome and therefore "older
versions" can be easily recovered from proviral depots in diverse host tissues. If there is no
archived resistant variant, the time to become resistant depends primarily on the genetic
barrier, the size of the viral population, and on (bad) luck. Genetic barrier is a term
reflecting the difficulty to develop resistance. A high genetic barrier usually means that
several mutations are needed to develop resistance while in the case of a low genetic barrier
only a few (sometimes just one) mutations are required. Since every mutation occurs more
or less independently by chance, the probability of evolving to resistance is of course lower
with a high genetic barrier and consequently acquiring resistance takes longer on average.
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Abbr. Generic Name Brand Manufacturer Name FDA ap-
Name proval
Nucleoside Reverse Transcriptase Inhibitors
AZT,ZDV zidovudine, azidothymidine Retrovir GlaxoSmithKline 1987
ddI didanosine, dideoxyinosine Videx Bristol Myers-Squibb 1991
ddC zalcitabine Hivid Hoffmann-La Roche 1992
d4T stavudine Zerit Bristol Myers-Squibb 1994
3TC lamivudine Epivir GlaxoSmithKline 1995
ABC abacavir sulfate Ziagen GlaxoSmithKline 1998
ddI EC enteric coated didanosine Videx EC Bristol Myers-Squibb 2000
TDF tenofovir disoproxil fumarate Viread Gilead 2001
FTC emtricitabine Emtriva Gilead Sciences 2003
Nonnucleoside Reverse Transcriptase Inhibitors
NVP nevirapine Viramune Boehringer Ingelheim 1996
DLV delavirdine Rescriptor Pfizer 1997
EFV efavirenz Sustiva Bristol Myers-Squibb 1998
ETV etravirine Intelence Tibotec Therapeutics 2008
Protease Inhibitors
SQV saquinavir mesylate Invirase Hoffmann-La Roche 1995
IDV indinavir Crixivan Merck 1996
RTV ritonavir Norvir Abbott Laboratories 1996
saquinavir Fortovase Hoffmann-La Roche 1997
NFV nelfinavir mesylate Viracept Agouron Pharmaceuti- 1997
cals
APV amprenavir Agenerase GlaxoSmithKline 1999
LPV/RTV lopinavir and ritonavir Kaletra Abbott Laboratories 2000
FOS- Fosamprenavir Calcium Lexiva GlaxoSmithKline 2003
APV
ATV atazanavir sulfate Reyataz Bristol-Myers Squibb 2003
TPV tipranavir Aptivus Boehringer Ingelheim 2005
DRV darunavir Prezista Tibotec, Inc. 2006
Fusion Inhibitors
ENF enfuvirtide, T-20 Fuzeon Hoffmann-La Roche 2003
Entry Inhibitors - CCR5 coreceptor antagonists
MVC maraviroc Selzentry, Pfizer 2007
Celsentri
HIV integrase strand transfer inhibitors
RAL raltegravir Isentress Merck & Co., Inc. 2007
Multi-class Combination Products and Combined NRTIs
3TC + ZDV Combivir GlaxoSmithKline 1997
ABC + ZDV + 3TC Trizivir GlaxoSmithKline 2000
ABC + 3TC Epzicom GlaxoSmithKline 2004
TDF + FTC Truvada Gilead Sciences, Inc. 2004
EFV + FTC + TDF Atripla Bristol-Myers  Squibb 2006
and Gilead Sciences
Table 2.1: Antiretroviral ~ drugs approved by the FDA  (adapted from:

http://www.fda.gov/oashi/aids/virals.html).

All drug names are regis-

tered trademarks and listed in order of FDA approval within each class. Hivid

and Fortovase are no longer marketed.
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The larger the viral population and the higher the viral turnaround, the more possibilities
the viral population has to find a resistant variant.

Chance is a major issue in this context. It might happen that the viral reverse transcrip-
tase generates all required mutations within the first round of replication but it also might
happen that (although unrealistic) all viruses simultaneously acquire a mutation that is
lethal for the virus or that they never find the resistance mutations.

The extraordinary high turnover, with a total daily virion production of more than 10'°
in the initial stages of the infection, coupled with a replication time of only one to three
days and a high mutation rate is the main reason why under monotherapy resistant variants
appear already within the first weeks (Simon and Ho, 2003).

Based on this knowledge, it was suggested to combine several drugs into a combination
therapy. The idea was to use several drugs to increase the genetic barrier which in turn
should make it more difficult to gather resistance mutations (Hirsch, 1990). In 1995,
the hypothesis first proved effective in two clinical trials, Delta and ACTG175. It was
demonstrated that the combination of two drugs, namely AZT with ddI or ddC, is more
effective than medication with AZT alone leading to the fact that dual therapy comprising
two NRTIs became the standard of care, afterwards (Choo, 1995; Torres, 1995; Hammer
et al., 1996).

Another major breakthrough was achieved when the first drugs from the new drug
classes of PIs and NNRTIs were approved in 1995 and 1996. This allowed for targeting the
viral replication cycle and viral genome at different points thereby increasing the genetic
barrier once more. This Highly Active Antiretroviral Therapy (HAART) containing at
least three drugs of at least two classes has been shown to outperform purely NRTI-
based combinations in several trials and decreases HIV-related morbidity and mortality
dramatically (Hogg et al., 1998b,a; Clavel and Hance, 2004). The use of different drug
classes should ensure that the escape mutations of one drug do not provide cross resistance
to the other drugs in the regimen which can easily arise when combining for example two
NNRTIs. As a consequence, HAART has become standard of care since then. However,
despite its success the emergence of resistant viruses is still a major issue. Reasons include
the continuous residual viral replication from cells that do not get into contact with the
drugs in high enough concentrations. Over time, resistance mutations also accumulate
from low-level replication and eventually lead to therapy failure. In addition, adherence of
the patients becomes a much more problematic topic in the era of HAART because more
drugs in the regimen also mean that patients have to take more pills and have to deal with
more side effects (e.g. headache, diarrhea, and lipodystrophy). Thus, it may happen that
the patient stops taking some of the drugs or simply forgets to take them. In effect, this
lowers the pressure on the virus and allows it to escape to resistance more easily. Adherence
problems might also come from different host genetic factors reducing the concentration
of the drug in the cell and therefore imposing not enough selective pressure on the virus
(Harrigan et al., 2005).

HAART has improved the quality of life of HIV infected people substantially, however
HAART is no panacea, and current treatments must be maintained for life (Richman
et al., 2009). The long-term side effects of life-long therapy are poorly understood, so far.
HIV-associated neurocognitive disorders and HIV-associated dementia are known topics
but it is not clear to which extent such effects can be attributed to the virus or the
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drugs. Nevertheless, when considering the high amount of pills an HIV-infected patient
has to take it is obvious that this cannot be good over time (Wright, 2009; Hawkins,
2010). Therefore, low-toxicity compounds are becoming more and more important and
pharmaceutical companies shift their focus more and more towards this field.

2.4 Coreceptor Usage and Tropism

2.4.1 HIV-1 Tropism and its Discovery

Analysis of HIV-1 coreceptors dates back to the early days of HIV-1 research. After the
finding that HIV is the causative agent of AIDS (Gallo and Montagnier, 2003), it soon
became clear that the CD4 molecule is a major receptor mediating viral cell entry. However,
several observations suggested that in addition to the CD4-receptor, other molecules or
receptors must be involved in this process, too (Berger et al., 1998). For example, whereas
HIV infection was possible on human cell types that expressed recombinant human CD4
but which would normally not express it, HIV did not infect murine cells with efficient
human CD4 expression (Maddon et al., 1986; Alkhatib and Berger, 2007). These results
were also found in cell fusion and virus pseudotype assays in which Env was the only HIV
component indicating a missing receptor specific to human cells that is needed for HIV cell
entry (Ashorn et al., 1990; Clapham et al., 1991).

Another observation was that different viral strains, including strains from individuals
at different stages of infection, showed different capabilities to infect either continuous T
cell lines or primary macrophages (Fenyo et al., 1994; Miedema et al., 1994; Connor and
Ho, 1994). Thus, viruses were designated T cell line-tropic (T-tropic) or macrophage-tropic
(M-tropic). Viruses capable of infecting both target cell types were referred to as dual-
tropic (Berger et al., 1999; Alkhatib and Berger, 2007). This classification also matched
very well with another phenotypic difference between viral isolates: the ability to induce
syncytia (giant cells that can be seen in light-microscopes) in cultures of peripheral blood
mononuclear cells (Asjo et al., 1986). M-tropic isolates usually do not induce syncytia and
are therefore also called non-syncytium inducing viruses (NSI) whereas T-tropic viruses
are syncytium-inducing (SI), in general (Schuitemaker et al., 1992). Last but not least, it
was observed that different viral isolates showed different replicative capacities, in vitro.
They could be divided into two major groups, rapid/high and slow/low. While the former
can easily be transmitted to a variety of cell lines of T-lymphoid and monocytoid origin,
the latter replicate transiently, if at all, in these cell lines (Feny6 et al., 1988). Also this
classification seemed to be largely overlapping with the previous phenotypic definitions
because slow/low are mostly NSI while rapid/high isolates are in most cases syncytium-
inducing (Berger et al., 1998).

All these different classifications for different viruses led to the conclusion that there
have to be at least two different cofactors or coreceptors involved in viral cell entry. The
first of these was found in 1996 by a functional cDNA cloning strategy that was used
to screen for cofactors that enable murine cells expressing human CD4 to support HIV-1
Env-mediated cell fusion and HIV-1 infection from T-tropic strains. A putative G protein-
coupled receptor with seven transmembrane segments, termed fusin, was identified. Its
importance was further demonstrated by antibodies against it that also blocked cell fusion
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and infection in normal CD4-positive human target cells (Feng et al., 1996).

The closest homology of fusin was to a receptor of the subfamily of the CXC-chemokine
receptors, a finding which also helped to find the corresponding coreceptor for M-tropic
viruses. This was because in 1995, it was shown that RANTES, MIP-1«, and MIP-17,
all members of the chemokine CC subfamily have inhibitory activity against HIV (Cocchi
et al., 1995). The inhibitory effect was seen at an early stage of the infection cycle,
and mainly against M-tropic but only minimal against T-tropic strains. The conclusion
that probably a CC-chemokine receptor with specificity for these chemokines might be
the missing cofactor/coreceptor for M-tropic viruses proved to be true a year later, when
two independent groups found such a receptor which they termed CC-CKR5 (Combadiere
et al., 1996; Samson et al., 1996a). Shortly afterwards, five groups demonstrated that
CC-CKRS5 is the coreceptor that is needed for cell entry by M-tropic viruses (Deng et al.,
1996; Dragic et al., 1996; Alkhatib et al., 1996; Choe et al., 1996; Doranz et al., 1996).

Later on, there was a revision of the chemokine receptor nomenclature leading to CC-
CKR5 receiving its current name CCR5, and fusin became CXCR4 (Murphy et al., 2000).
The discovery of the chemokine receptors CCR5 and CXCR4 as coreceptors for M-tropic
and T-tropic viruses, respectively, also provided an explanation why the observed similar-
ities in the different phenotypic definitions were found before. CCRS is highly expressed
on macrophages which usually do not express CXCR4, thus rendering them specific for
M-tropic strains, whereas human continuous T cell lines have a high expression of CXCR4
making them permissive for T-tropic strains (Alkhatib, 2009).

Nowadays, it is known that HIV-1 can use more coreceptors (e.g. Bob, Bonzo, and
CCR3) in vitro, however so far, only CCR5 and CXCR4 have been shown to be relevant, in
vivo (Berger et al., 1999; Pastore et al., 2004). Because in the beginning different terms for
the biological phenotype existed, these terms are to some extent still used interchangeably.
However, almost always people are thinking of HIV-1 coreceptor usage rather than their
original meanings when they are using the terms (biological) phenotype or (viral) tropism.

2.4.2 Tropism in the Clinical Context

The classification of HIV-1 into viruses that can use either CCR5 (R5-viruses), CXCR4
(X4-viruses), or both receptors (dual-tropic, sometimes also termed R5X4-viruses) is not
only an effect that can be seen in in vitro experiments but has also several clinical conse-
quences for the patients.

In a newly infected person, usually only R5-viruses can be found, even though the
person who infected him might have had X4- or dual-tropic viruses. It is not clear yet,
if these viruses are not transmitted or if they cannot establish a new infection because of
e.g. the immune system of the newly infected person that recognizes them. Selectivity
for R5-viruses was observed independent of the mode of transmission (sexual, blood, or
mother-to-child), suggesting that this is not due to different expressions of coreceptors on
the target cells (van’t Wout et al., 1994; Alkhatib and Berger, 2007).

In accordance with this was also the discovery of a CCRb-allele harboring a 32 base-pair
deletion (CCR5-A32) within the open reading frame. The allele encodes for a truncated
CCRA5-protein that is not expressed at the cell surface. Homozygosity for CCR5-A32,
which can be observed in about 1% of the Caucasian population (Novembre et al., 2005),
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Figure 2.7: Clinical progression to AIDS in patients harboring R5 or X4 viruses. Solid line:
R5-viruses, dashed line: X4, dual-tropic, or mixed tropic virus. Figure derived
from (Daar et al., 2007).

is associatied with nearly complete resistance to HIV-1 infection whereas heterozygosity is
correlated with slower rates of diease progression (Liu et al., 1996; Samson et al., 1996b;
Dean et al., 1996).

During the course of infection, CXCR4-using variants are observed in about half of the
patients, usually in conjunction with R5-viruses (Melby et al., 2006). The emergence of
these viruses is associated with rapid progression to disease (Fenyo6 et al., 1988; Tersmette
et al., 1989; Koot et al., 1993; Richman and Bozzette, 1994; Daar et al., 2007). However,
it still remains unclear, if the appearance of CXCR4-using viruses is the cause or the
consequence of immune exhaustion (Grivel and Margolis, 1999; Kreisberg et al., 2001). Tt
should also be noted that a switch from CCR5- to CXCR4-usage is predictive but not
required for the development of AIDS (Westby and van der Ryst, 2005).

After the initial hunt for the coreceptors and the subsequent association of tropism with
different clinical stages, interest shifted towards antiretroviral drugs and the resistance to
them. However, the picture changed again in recent years, in which HIV-1 coreceptor
usage came into focus once more. This was due to the development of the new class of
coreceptor-antagonists. Based on the observation that people homozygous for the CCR5-
A32 allele have a more or less natural resistance against HIV-1, CCR5 was thought to be
an attractive target for drug development against HIV. Naturally, CD4 and CXCR4, being
the other (co)receptors used by the virus during cell entry are also interesting targets
for new antiretroviral drugs and drugs against them are under investigation. However,
CCRb5-inhibitors have a major advantage over these: people homozygous for the CCR5-
A32 deletion have no overt side effects. Thus, there is much more confidence in safety
because it seems that in contrast to CD4 and CXCR4, which are crucial for the human,
inactivation of CCR5 might be tolerated much better. Not surprisingly, an inhibitor of
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Figure 2.8: Typical progression of R5 and X4 virus variants over the course of HIV infection
(from Regoes and Bonhoeffer, 2005). Reprinted with kind permission from
Elsevier.

CCR5 (maraviroc) became the first of these to be marketed in 2007 whereas compounds
against CD4 or CXCRA4 are still far from being licensed.

The excitement about the new class of coreceptor antagonists was mainly based on two
reasons. First, coreceptor blocker allow to attack the virus before entering the cell. Coupled
with the fact that R5-viruses dominate the early phases of infection, CCR5-antagonists
were and still are considered as a possible oral pre-exposure prophylaxis (PrEP) or as
vaginal microbicides for women (Dumond et al., 2009; Veazey et al., 2010). The second
reason was that for the first time a host rather than a viral protein was the target of an
antiretroviral drug. It is commonly believed that this property should hamper development
of drug resistance.

In fact, when analyzing data gathered during the drug trials, it became apparent that
the development of resistance is rather complicated for the virus as only a small number
of patients with resistant viruses have been found. Unfortunately, the virus has a second
option to counter CCR5 antagonists: it simply can switch to the CXCR4-receptor. Indeed,
about two-thirds of the patients failing in the clinical trials of maraviroc, showed a switch
to CXCR4-usage at time of failure (Fatkenheuer et al., 2008; Moore and Kuritzkes, 2009;
Cooper et al., 2010).

2.5 Tropism Determination

Before administration of an antiretroviral drug, one commonly performs a resistance test
in order to determine if the virus is susceptible to the drug or not. In case of coreceptor
antagonists resistance plays, as already mentioned before, only a minor role. Instead, since
CXCR4-using viruses appear in about 50% of the patients over time, one determines the
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tropism of the virus.

Although it might be interesting, at least for certain research questions, to know exactly,
if the virus under inspection is R5, X4, or dual-tropic, one usually only differentiates
between pure R5- and partly CXCR4-using isolates (sometimes termed X4-capable). This
is because of several reasons: First of all, the viral population almost always harbors at
least some R5-viruses. From a logical point of view this is not surprising, because in the
beginning of infection R5-viruses dominate and consequently get archived so that they
can appear any time again. Therefore, a CXCR4-antagonist should theoretically also only
work in combination with a CCR5-blocker. Another reason is that most assays cannot
differentiate between a viral population that contains R5- as well as CXCR4-using viruses,
and a population that harbors dual-tropic viruses. Therefore, these populations are also
referred to as dual-mized in some phenotypic assays (Coakley et al., 2005). Last but not
least, for administration of CCR5-antagonists, it does not matter if only a minor population
uses the CXCR4-receptor, and if these viruses are pure X4- or dual-tropic. In any case,
the viruses that can use CXCR4 will still be able to replicate in presence of drug pressure
and take over the viral population. Hence, in the following we will, if not specifically
mentioned, use the term X4 for X4- and dual-tropic viruses as well as for viral isolates in
which at least a part of the population can use CXCRA4.

In general, two main approaches to assess HIV-1 coreceptor usage exist: phenotypic and
genotypic assays. Phenotypic assays measure tropism by growing patient-derived virus in
vitro. Genotypic assays on the other hand, infer viral tropism from sequence information
of the viral envelope protein, usually from the third hypervariable (V3) loop of gp120.
Both approaches have their advantages: phenotypic assays are usually more accurate but
laborious, expensive and have slow turnaround times, whereas genotypic methods are in
general faster, cheaper, and can be performed by many laboratories. The drawback of
genotypic prediction of coreceptor usage is that the envelope protein is highly variable
making the prediction much more complicated than in the case of resistance testing. With
the exception of two well-defined mutations, highly specific for X4-viruses, other mutations
seem to have an synergistic effect so that they occur in R5- as well as in X4-viruses.

Over time, a huge array of assays has been developed to determine HIV-1 coreceptor
usage. In the following we will only give an introduction to the most important ones used
in the clinical context.

2.5.1 Phenotypic Approaches

The MT2-assay dates back to the early 1990s when the coreceptors used by HIV-1 were
still unknown. It is based on the first in vitro coreceptor phenotype assay which classified
viruses with respect to their ability to induce syncytia formation in cultures (SI-viruses) of
peripheral mononuclear cells (PBMCs). The MT-2 cell line used in the MT2-assay allows
for a sensitive, specific and higher-throughput detection of Sl-viruses (Koot et al., 1992)
than the original PBMC cocultivation assay but it is still very laborious, time consuming
and requires highly qualified laboratories (Coakley et al., 2005; Low et al., 2008).
Although the MT-2 assay is a rather old assay compared to the present recombinant
virus assays, this does not mean that it performs worse than the latter. In contrast, it has
recently been shown to be almost as good as the newest version of the Trofile assay, the
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Figure 2.9: Different phenotypic and genotypic approaches to determine HIV-1 coreceptor
usage. Derived from (Rose et al., 2009) with kind permission from Wolters
Kluwer Health.

most widely used phenotypic test, nowadays (Coakley et al., 2009).

Another type of phenotypic tests for the determination of coreceptor usage is presented
by the recombinant phenotypic assays. In these assays, full-length or defined parts of
the envelope proteins from a viral sample are amplified and cloned into a plasmid. This
plasmid, which also encodes for a reporter gene, is then used to co-transfect cells which in
turn then can produce and release pseudoviruses. Dependent on the assays, these viruses
are either replication-competent or replication-defective. The pseudoviruses are given to
cell lines expressing either of the coreceptors CCR5 or CXCR4. Upon infection of these
cells, the reporter gene is expressed and can be measured by light signals or fluorescence
(Coakley et al., 2005).

The most prominent representative of these tests is the Monogram Trofile Tropism Assay
(Trofile) from Monogram Biosciences (South San Francisco, USA) (Whitcomb et al., 2007).
It is a single-cycle recombinant virus assay in which full-length patient-derived env gene is
amplified by RT-PCR and cloned into an envelope expression vector library that is used
to generate luciferase-reporter pseudoviruses. Subsequently these are added to U87 target
cells expressing CD4 and either CCR5 or CXCR4. Coreceptor tropism is measured by
quantification of emitted light by expression of the luciferase-reporter gene and CCR5- or
CXCR4-inhibitors are used as controls (Whitcomb et al., 2007; Coakley et al., 2009).

The Trofile assay has been used in all clinical trials of maraviroc and vicriviroc, and
has therefore become the de facto gold standard. Recently in June 2008, it has been
replaced by a new version, the Enhanced Sensitivity Trofile Assay (ESTA) which is able
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to reliably detect CXCR4-using viruses down to minorities of 0.3% (Coakley et al., 2009).
Disadvantages of the Trofile assay include its long turnaround time of approximately 4
weeks, that it is only available through a central laboratory located in the United States,
and the relatively high costs for the assay itself and the logistics linked to it. Furthermore,
a proportion of tests fail and therefore produce "non reportable" results, i.e. no result.
Last but not least, the viral load of the sample tested must be at least 1000 copies per
milliliter. This limitation makes the assays useless for patients which are currently under
a successful treatment regimen but which may want to switch to coreceptor antagonists
due to e.g. side effects (Swenson et al., 2010b).

In addition to the Trofile assay, a number of other recombinant virus assays have been
developed over time. The Tropism Recombinant Test (TRT) / Phenoscript (Eurofins VI-
Ralliance, France) uses a methodology similar to the two Trofile assays. The main differ-
ences are that a 900bp fragment encompassing the V1-V3 region of gp120 is cloned into the
plasmid and that replication competent viruses are produced in HEK293-T cells. Instead
of using a luciferase-reporter gene, the pseudoviruses infect indicator cells that carry an
HIV-1 LTR-lacZ cassette which allows the single-cycle infectivity by a colorimetric assay
based on HIV-1 Tat-induced expression of 5-galactosidase (Trouplin et al., 2001; Labrosse
et al., 2003). The advantages and disadvantages of the assay are quite similar to the ones
of the Trofile assay.

2.5.2 Genotypic Approaches

Genotypic approaches comprise two steps: the sequencing method and the prediction
method interpreting the sequence data. Sequencing is normally based on standard popu-
lation based ("bulk") Sanger sequencing. In this case, a consensus sequence of the viral
quasispecies is determined. The sequence can contain nucleotide mixtures (positions at
which different nucleotides are present in the quasispecies) complicating the interpreta-
tion. Furthermore, only mutations being present in at least 15-20% of the viral population
can reliably be detected with bulk sequencing methods.

Recently, a new method termed massively parallel sequencing became available. With
this method, one can sequence hundreds of thousands of viruses in parallel. Instead of a
"bulk"-genotype, the output of this method is a set of individual sequences, each repre-
senting one clone in the viral population. Thus, the technology allows for looking "deeply"
into the quasispecies (therefore it is also referred to as (ultra)deep sequencing) and so a
much more fine-granulated picture can be determined. Not only are single clones deter-
mined rather than a consensus sequence but also can viruses prevalent in minor populations
reliably be sequenced with this new technology. We will introduce massively parallel se-
quencing in more detail in Chapter 4.

Interpretation of the genotypes is performed either with simple rules or with more so-
phisticated machine learning methods. All of them are based on sequence information of
the V3 loop which is known to be the major determinant of coreceptor usage (Hwang et al.,
1991).

One of the simplest but still a very popular method of predicting coreceptor usage is the
so-called 11/25-rule. It predicts a virus to be X4, if a positively charged residue is found
at position 11 and/or 25 of the V3 loop (Fouchier et al., 1992). The 11/25-rule is quite
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accurate for R5-viruses but misclassifies many X4-viruses (Jensen et al., 2003).

The charge of the loop was found to be predictive, in general. Briggs et al. generated a
linear regression model based on the number of positively and negatively charged residues,
the overall charge of the loop, and the presence of an isoleucine residue at position 292 of
the envelope protein gp120 (Briggs et al., 2000).

Further progress was made by using several different statistical learning methods. The
first models used decision tree classifiers (Beerenwinkel et al., 2001; Pillai et al., 2003) or
artificial neural networks (Resch et al., 2001), later on Support Vector Machines (SVMs)
(Pillai et al., 2003) and Position Specific Scoring Matrices (PSSMs) were introduced into
the field (Jensen et al., 2003, 2006). More recently, people tried to use Mixtures of Localized
Rules (Sing et al., 2004) and logistic regression models with additional sequence features
(Prosperi et al., 2009).

In principle, all of these models rely on a correct alignment of the viral genotype against
a reference or a consensus sequence. Because the V3 loop is highly variable and shows
insertions and deletions frequently, this can lead to problems. Consequently, one group de-
veloped a prediction model using String Kernels which do not suffer from these deficiencies
(Boisvert et al., 2008).

Last but not least, additional information can be incorporated into these prediction
systems. Sander et al. have shown how to incorporate properties of the three-dimensional
structure of the V3 loop. They improved over prediction methods working on sequence
information alone by encoding structural information into a descriptor that lists distance
distributions between functional groups in the loop (Sander et al., 2007). Another recent
structure based approach has been described by Dybowski et al. (Dybowski et al., 2010).
In another work, clinical markers such as viral load and CD4" T cell counts were added
to the statistical model (Sing et al., 2007).

Despite the larger number of methods developed for predicting HIV-1 coreceptor us-
age, only a small number of web-services exist. The most commonly used are WET-
Cat, WEBPSSM, and GENO2PHENO|CORECEPTOR|. WETCAT implements the charge
rule, three different decision trees, and Support Vector Machines (Pillai et al., 2003).
WEBPSSM offers different Position Specific Scoring Matrices for working with subtype
B and C samples. GENO2PHENO|CORECEPTOR]| also uses SVMs to infer coreceptor usage
but in contrast to the other methods, can deal with sequence ambiguities and with nu-
cleotide as well as amino acid sequences. In addition, the latter method allows for changing
the specificity-level of the prediction method and is the only system that can deal with
clinically derived markers such as CD4™ T cell counts.

2.5.3 Other Approaches

Some methodologies to determine coreceptor usage are neither clearly phenotypic nor en-
tirely genotypic. For example, Virco BVBA is developing a platform combining both
approaches. It consists of four assays in total: population sequencing of the V3 loop,
clonal sequencing of the N HyV4-fragment (the N-terminal fragment of gp120 to V4), and
population and clonal phenotyping using N HyV 4-recombinant viruses (Baelen et al., 2007).

A different approach to assess viral tropism is heteroduplex tracking analysis (HTA)
which is used in the SensiTrop QT assay (Pathway Diagnostics, Malibu, US). In this case,
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X4 viruses are determined by the formation and separation of heteroduplexes to CCR5 V3
molecular probes. Rb5-results by HTA are further investigated by sequence analysis. The
assay has a very short turnaround-time of below 7 days (Rose et al., 2009). Related to
the approach used in the SensiTrop assay is the Xtrack® /PhenX-R assay by the InPheno
AG (Basel, Switzerland). This assay also consists of two methodologies: a probe-based
hybridization assay (Xtrack®) and a phenotyping assay (PhenX-R). The former is used
to rapidly test the sample with R5-specific and X4-specific fluorescence-labeled probes,
with distinct capillary migrations. In the case of ambiguous samples or a suspected mix
of tropism, the phenotypic assay which is similar to the Phenoscript assay, is performed
afterwards. The main advantage of this approach is the ability to screen most samples with
the rapid and inexpensive Xtrack® and relying on the phenotypic test only in complicated
cases (Rose et al., 2009).

2.5.4 Performance Comparison Between Different Methods

It is relatively hard to assess the true quality of the different methods determining core-
ceptor usage. In general, these assays are validated on a set of well-defined viral strains
which do not necessarily reflect the "real world" clinical samples harboring a whole pop-
ulation of different viruses. Also mixing experiments in which two viral strains are mixed
together at defined quantities in order to find the detection limit of the assays should be
considered carefully because often very well-defined strains are used which are much easier
to detect than most viruses that occur in the routine setting. To account for this, one
commonly tries to compare the assays against a gold standard. Because there is no perfect
gold standard, often the Monogram Trofile Tropism Assay is used as reference because it
has been used in all clinical trials to date. Naturally, something people often forget, the
Trofile assay is also not guaranteed to be always correct. Otherwise, the assay would not
have been replaced by a "better" enhanced version which is nowadays considered to be the
gold standard.

Comparisons of different methods have mainly been performed between genotypic pre-
diction methods, on the one hand, and the Trofile assay, on the other. However, also
some comparisons between different phenotypic assays are available. For example in 2007,
the Trofile assay was compared against the TRT and an older version of the current
GENO2PHENO|CORECEPTOR| system. On a set of 74 antiretroviral-naive patients, the
concordance with the two phenotypic assays was 85.1%, without evidence of a difference
in sensitivity. The concordances to the bioinformatics method were 86.5% (Trofile) and
79.7% (TRT), respectively, approaching the degree of agreement between the two pheno-
type assays (Skrabal et al., 2007). A more recently developed assay, the Toulouse Tropism
Test (TTT) achieved a concordance of 91.7% with the Trofile assay on a dataset of around
600 samples (Raymond et al., 2010). The same group also offered an explanation for the
differences observed between different assays: there could be sample bias introduced into
the virus population during PCR amplification that leads to different populations being
genotyped or phenotyped in the respective assays. Using the same bulk env PCR products
to perform genotypic and phenotypic assays in parallel, Raymond et al. found much higher
sensitivities (88%) at high specificities (87%) for GENO2PHENO|CORECEPTOR]| than seen
in other works (Raymond et al., 2008).
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The SensiTrop assay has been shown to detect and quantify X4 viruses down to levels as
low as 1% in mixing experiments. However, in a blinded assessment comparing 100 samples
with the Trofile assay, SensiTrop detected an CXCR4-using virus in less than 50% of the
samples that were phenotyped as CXCR4-capable by the Trofile assay (Low et al., 2008).
An improved version of the assay was recently reported to have an overall concordance of
79% (Swenson et al., 2010a).

Performance comparisons of different genotypic methods have been reported in several
works, lately. These comparisons can be divided into two groups: performance on clonal
and clinical samples. In clonal samples, there should be only a single viral strain in the
isolate so that there can be neither a problem with minority detection by the sequencing
method nor can there be a sampling problem. Instead there should be a single clear
genotype which matches to the phenotype. In case of clinical samples, we refer to a normal
patient sample containing a whole viral population. Coreceptor usage of these samples is
much more complicated to determine both for genotypic as for phenotypic methods because
they can contain CXCR4-using variants at very low numbers and there might be a sampling
bias when comparing different methods. Thus, it can happen that one method still "sees"
the X4-viruses while the other does not. Standard population-sequencing is thought to
detect minorities only as low as 15-20% whereas phenotypic methods can reliably detect
minorities of 5% or even less. Therefore, even a perfect bioinformatic interpretation of the
genotype might produce "wrong" results in clinical samples but should show very good
results on clonal samples in which these problems do not occur.

In fact, when tested on clonal samples, genotypic methods showed much better re-
sults than on clinical samples. When tested on data from the Los Alamos HIV Sequence
Database that contains mainly clonal isolates, the 11/25-rule showed a sensitivity of 59.5%
in detecting X4-viruses at 92.5% specificity. At the same specificity, PSSMs and Support
Vector Machines showed sensitivities of 71.9% and 76.9%, respectively (Sing et al., 2007).
Prediction models incorporating structural information were evaluated on a subset of the
Los Alamos dataset containing only sequences without deletions and insertions. In com-
parison with models using sequence information alone, they increased the sensitivity to
detect X4-viruses by 7 percentage points (Sander et al., 2007).

In contrast to these results, initial results on clinically derived isolates were very dis-
couraging. Low et al. compared different prediction systems of coreceptor usage on 977
antiretroviral naive samples of the British Columbia HAART Observational Medical Evalu-
ation and Research (HOMER) cohort. The sensitivities of different methods in comparison
with the Trofile assay ranged from 30% to 50% at specificities of around 90%. This led to
the conclusion that genotypic methods are inadequate for clinical use (Low et al., 2007).
When testing prediction models utilizing clinical correlates like CD4™ T cell counts, much
better results where achieved on the same dataset. At a specificity of 93.5%, these methods
reached sensitivities of up to 63% corresponding to a 2.4-fold improvement in detecting
X4-viruses relative to the 11/25-rule (Sing et al., 2007).
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The envelope gene of HIV encodes for the glycoproteins gp120 and gp41l. Both proteins
can be further divided into regions (see Figure 3.1). In gp120, these are the five variable
(V1-V5) and five conserved (C1-C5) regions. While HIV-1 is known for its high mutation
rate in general, this is even more the case in the envelope, especially in its variable regions.
These encode for variable loops that allow not only for several substitutions but also for
multiple insertions and deletions. In contrast to them, the conserved regions are relatively
stable but can still mutate substantially. While gp120 is subdivided into regions based on
their variability, gp41 is subdivided into functional regions (see Figure 3.1).
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Figure 3.1: Schematic representation of the HIV-1 envelope gene. The conserved regions
C1-C5 and the variable regions V1-V5 belong to gp120 whereas fusion peptide
(F), heptad repeat 1 (HR1), immunodominant loop with a conserved disulfide
bond (C-C loop), heptad repeat 2 (HR2), transmembrane anchor (TM) and
cytoplasmic tail (CT) are functional regions of the gp41 protein. Figure derived
from (Frey et al., 2008). Copyright (2008) National Academy of Sciences,
U.S.A.

As already mentioned in the previous chapter, the third hypervariable loop (V3 loop)
of the envelope protein gpl120 is known to be the major determinant of coreceptor usage.
The correctness of this principle is reflected by the fact that coreceptor usage prediction
based on the V3 loop works very well when tested on matched genotype-phenotype pairs
derived from clonal isolates (Sing et al., 2007). However, in the course of the years, several
mutations outside V3 have been shown to be correlated with HIV-1 coreceptor tropism,
too. While some of these mutations might arise from covariation with mutations within V3,
e.g. to relieve sterical tensions or to re-establish fitness losses, other mutations may have an
effect on tropism directly. Some cases are known where the same V3 loop was observed in
samples of different phenotypes. This can only be explained by tropism-defining mutations
located outside of the V3 loop.

Within this chapter, we will try to explore the use of different regions within the envelope
proteins gp120 and gp41 and even go further by analyzing also other proteins of HIV-1 and
their impact on coreceptor usage. A major problem for this analysis is that we only have
limited data from regions beyond V3. The main reason for this is that the V3 loop alone
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already explains most of the phenotypes and the effects we see in the patients. Hence,
it is generally regarded as inefficient and too expensive to sequence other regions of the
viral genome as well. As a consequence, we have only a small number of samples (if any)
with genotypic and phenotypic information for other regions. Another point limiting the
size of the datasets is that some regions are very hard to sequence because of the high
variability and in some parts extensive length polymorphism of the envelope protein. For
clonal data this might be a minor problem but clinical isolates containing strains of different
lengths can be very complicated to interpret (see e.g. Figure 3.2). Of course, a prediction
system making use of several parts or the whole envelope protein would be desirable but
unfortunately in most cases only smaller parts rather than the whole protein are sequenced
so that we do not have enough data to generate a reliable model from these.
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Figure 3.2: Typical electropherogram of the V2 loop. Viral strains of different lengths
lead to profiles that are hard to interpret. In this case the minor variant (the
one with the second highest peaks) has a deletion of just a single amino acid
compared to the major strain. Although the two variants differ minimally aside
from this, the overall electropherogram looks very messy.

The order in which we will discuss the different regions does not reflect their importance
nor their order in the envelope gene, but is based on data availability and the time at
which large enough datasets with clinical data became available to us.
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3.1 Improving Predictions with the Second Hypervariable Loop of
gp120

HIV-1 coreceptor usage is mainly determined by the V3 loop and prediction of coreceptor
usage from the V3 loop has been shown to be a valuable and reliable resource. However,
the fact that viral strains with identical V3 loops but different tropism have been observed
suggests that mutations outside V3 affecting coreceptor usage must exist. In one of the first
works showing this to be true, Andeweg et al. transferred fragments of SI viruses to NSI
envelope genes. They found that not only fragments covering the V3 region of SI viruses
but also some fragments not including the V3 loop could transfer syncytium-inducing
capacity to envelope proteins previously not capable of inducing syncytia (Andeweg et al.,
1993).

Several other reports confirmed these results and could determine specific amino acid
substitutions rather than regions influencing HIV-1 coreceptor usage (e.g. Groenink et al.,
1993; Hoffman et al., 2002; Boyd et al., 1993; Huang et al., 2008). Most determinants
affecting viral tropism outside V3 were found in the bridging sheet, a structural region
formed by the variable loops 1 and 2 (V1 and V2) and the fourth conserved region (C4).
This finding is not especially surprisingly because the bridging sheet covers substantial
parts of the coreceptor binding site (Kwong et al., 1998; Biscone et al., 2006). Among
the regions of the bridging sheet, the second hypervariable (V2) loop of gp120 has been
reported most frequently and seems to be the most important.

The V2 loop can modulate coreceptor usage both through an interaction with the V3
loop leading to an alteration in the whole conformation of gp120 (Koito et al., 1994), and
via V3-independent mechanisms (Koito et al., 1995). Some authors also suggested that
mutations within V2 may compensate for loss-of-fitness mutations in the V3 loop that are
necessary but not sufficient for coreceptor switching (Pastore et al., 2006). Altogether, the
V2 loop seems to be a promising region for incorporation in prediction systems of HIV-1
coreceptor usage.

Although mutations in the V2 loop have been shown to influence HIV-1 coreceptor usage
in several experiments, this was to our knowledge neither shown on larger datasets nor used
to improve coreceptor usage prediction. Hoffman et al. developed an elegant approach to
analyze a larger dataset despite having only a limited amount of data. They used data
from the Los Alamos Sequence Database irrespective of available phenotypes. Instead of
an experimentally determined phenotype, they classified the sequences into R5-like and
X4-like, based on an adapted 11/25-rule (an arginine at position 25 in V3 was not used to
discriminate the phenotypes). Using these inferred phenotypes, they could confirm previous
observations and predict specific positions contributing to viral tropism (Hoffman et al.,
2002). For the development of a coreceptor usage prediction method incorporating sequence
data from other regions than V3, however, this approach might not be perfect because of
two reasons. First, the inferred tropisms might be in fact incorrect and drive the prediction
system into the wrong direction. With respect to wrongly classified R5-viruses the risk is
however limited because the 11/25-rule is known to be highly specific and its specificity has
even been increased with the approach of Hoffman et al. due to the removal of the arginine
at position 25. The second, more problematic point is that the identified mutations are not
independent of known V3-mutations but correlated. Because they appear together with
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the 11/25-mutations, we cannot expect any significant impact from them as we already can
infer tropism from these sequences with the simple 11/25-rule. Instead, our interest lies
more in mutation pathways towards CXCR4-usage which evolve in the absence of known
V3-mutations. Based on these considerations, we refrained from the described approach in
this section and based our analysis on datasets of experimentally determined phenotypes.
The aim was to find mutations and additional properties significantly associated with
coreceptor usage, and to use these to improve prediction systems, both for clonal as well
as for clinically derived isolates.

The work described in this section was carried out in collaboration with the Institute of
Virology at the University of Cologne (Cologne, Germany) and the British Columbia Center
for Excellence in HIV (Vancouver, British Columbia, Canada). It has been published in
Journal of Infectious Diseases under the title "Improved prediction of HIV-1 coreceptor

usage with sequence information from the second hypervariable loop of gp120" (Thielen
et al., 2010b).

3.1.1 Material & Methods

Datasets The analyses in this study are based on three distinct datasets of different char-
acteristics. The first dataset, termed clonal included all samples of the Los Alamos HIV Se-
quence Database (http://www.hiv.lanl.gov/content /sequence/HIV /mainpage.html), July
2007) having sequence information from the V2 and the V3 loop as well as an experi-
mentally determined phenotype. The dataset consists of 916 sequences from 312 different
patients. We refer to the dataset as "clonal" since the majority of the data is derived from
clones and contains no associated clinical data. Strictly speaking, not all of the dataset
is purely clonal. Upon checking the annotations as far as possible, more than 85% of the
samples were indeed of clonal origin, while about 10% seem not to be molecular or biolog-
ical clones and for around 5% of the samples we could not find the respective information.
To ensure that this does not induce a bias into our analysis, we compared the results of the
mutation analysis with a similar one based only on the samples we found to be clonal in
their annotations. In this analysis, only marginal differences were observed and correlation
of the frequencies of the significant mutations was 0.9955 between the two datasets.

The second dataset, termed therapy-naive contained 268 therapy-naive samples from a
subset of the well described British Columbia HAART Observational Medical Evaluation
and Research (HOMER) cohort (Hogg et al., 2001). This cohort consists of HIV-positive,
antiretroviral-naive adults who started triple antiretroviral therapy through the B.C. Drug
Treatment Program between August 1996 and September 1999. The samples used in this
study were the latest ones collected in the 180 days prior to therapy initiation (Hogg
et al., 2001). Coreceptor usage was determined by the original Trofile assay. The V2
and V3 loops were "bulk"-sequenced from the same baseline plasma samples as described
previously (Brumme et al., 2005; Low et al., 2007).

The third (therapy-experienced) dataset consisted of 64 therapy-experienced patient iso-
lates collected at the Institute of Virology of the University of Cologne. These samples
were screened for maraviroc administration in routine diagnostics. Genotypes of the V2
and V3 loops were "bulk"-sequenced methods and the phenotype determined with the
original Trofile assay (Whitcomb et al., 2007).
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Determination of envelope sequences of clinically derived isolates Genotypes of the V2
and V3 loops were determined by population sequencing. Isolates from the patients in the
therapy-naive dataset were sequenced as described in (Brumme et al., 2005). Viral RNA
of samples collected for the therapy-experienced dataset was isolated from plasma by using
the MagNA Pure Compact Nucleic Acid Isolation Kit (Roche Applied Science, Mannheim,
Germany) according to manufacturer’s protocol. Reverse transcription and PCR were
performed using the OneStep RT-PCR kit (Qiagen, Hilden, Germany) with the primers
V3F: 5-AGAGCAGAATTCAGTGGCAATGAGAGTGA-3" (nt 6202-6222) and V3R: 5-
AGTGCTTCCTGCTGCTCCYAAGAACCC-3’ (nt 7785-7759), followed by a nested PCR
with HotStartTaq (Qiagen, Hilden, Germany) with primers V3-1: 5- TGGGATCAAAGC-
CTAAAGCCATGTG -3’ (nt 6558-6582) and V3-5: 5- AAAATTCCCCTCCACAATTA
-3’ (nt 7371-7352). PCR-products were purified using QIAquick spin PCR purification kit.
The sequence reaction was performed with the primers V3-1, V3-2: 5- CAGTACAATGY-
ACACATGG -3’ (nt 6955-6973), V3-3: 5- CCATGTGTRCATTGTACTG -3’ (nt 6955-
6937), V3-4: 5- GTACAATGTACACATGGAAT -3’ (nt 6957-6976), V3-5 and the ABI
reaction mix. Extension products were purified using MultiSreen purification plates (Milli-
pore, Bedford, MA, USA) and Sephadex G-50 superfine (Amersham Biosciences, Uppsala,
Sweden) and were run on an ABI 3130 Avant capillary sequencer. The obtained sequences
were assembled and edited using the Seqman software implemented in the DNASTAR
Lasergene suite (DNASTAR Inc., Madison, WI, USA).

Sequence alignment and encoding V2 and V3 loop sequences of the clonal dataset were
aligned with ClustalW (Thompson et al., 1994) using standard parameters following man-
ual inspection. Due to the extensive length polymorphism in V2, we inserted several gap
columns in the V2-alignment before positions 163 and 187 (relative to HXB2, see Figure
3.3). The respective alignments were then used as sequence profiles to which the samples
of all three datasets were sequentially aligned.

A canonical indicator representation was used to encode the aligned sequences. Each
position in the aligned sequence was defined by a binary vector of length 21, in which
each component indicated the presence or absence of a specific amino acid or a gap at this
specific position.

Data analysis, model generation and evaluation We trained Support Vector Machines
(SVMs) for coreceptor usage prediction using the SVM!"_package (Joachims, 1998).
SVMs are supervised learning methods used for classification and regression. They map
the input data into a high-dimensional feature space in which it can be optimally separated
by a hyperplane into two categories, in this case R5- and X4-viruses. The hyperplane is
then used to classify unseen data. The mapping is done with a kernel function that can
be linear and non-linear (e.g. a polynomial or a radial basis function). Because previous
studies showed that non-linear kernels do not improve prediction quality for simple en-
codings (Sing et al., 2004) we used linear kernels in this work, as well. Using an internal
grid-search, we optimized the cost factor ¢ within a range from ¢ = 1076 to 10.

The difference between the number of samples and the number of patients could lead to a
bias due to overrepresented patients with many (similar) sequences. We tried to minimize
these effects by repeating all of our analyses on the clonal dataset ten times. In every
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Figure 3.3: Excerpt of the V2 sequence profile. Because of the extensive length polymor-
phism, gap columns have been inserted after HXB2-position 186.

replicate at most one R5- and one X4-sequence per patient was randomly chosen.

Performances of different prediction models on the clonal dataset were assessed using
10-fold cross validation. Furthermore, models trained on the clonal dataset were evaluated
on the datasets containing clinically derived samples. To afford direct comparisons, models
containing the V2 loop were trained and evaluated on the same set of samples as models
only using V3 in all prediction comparisons.

In addition to the prediction models trained in this section, we also compared them with
the 11/25-rule (Jensen et al., 2003), and the two web-systems GENO2PHENO|CORECEPTOR]
(Lengauer et al., 2007) and WEBPSSM (Jensen et al., 2003). Statistical analysis was per-
formed using the statistical programming language R (Team, 2005) and the R-package
ROCR (Sing et al., 2004). The area under the ROC-curve (AUC), sensitivity, and speci-
ficity were used as performance measurements. Significance of different AUCs was assessed
using the approach described by DeLong et al. (DeLong et al., 1988).

Sequence analysis Mutations significantly associated with HIV-1 coreceptor usage were
determined using sequences from the clonal dataset. We tested every amino acid at every
position within V2 and V3 for correlation with viral tropism. Because of the extensive
length polymorphism in V2, the positions from 31 to 51 (residues between position 185 and
189 in HXB2) in the sequence profile of V2 could not be aligned very well (see Figure 3.3).
We did not find any clear sequence pattern that could serve as a scaffold for the alignment.
Thus, the positions of the aligned residues were quite uncertain and a mutation analysis
based on fixed positions would not have made sense for these. We therefore excluded
this length-polymorphic part of V2 (in contrast we call the remaining positions the V2-
stem) from the mutation analysis. Significance of amino acids at specific positions was
assessed with Fisher’s exact test. Only mutations that were significant (p < 0.05) in all
ten replicates, were taken as predictive in the results.

We also tested further features for their correlation with R5- and X4-viruses. These were
the number of positively (negatively) charged residues, the overall charge of the regions,
the number of N-glycosylation sites, and the length of the respective region. Because these
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features are position-independent they do not rely on a correct alignment. Therefore, in
contrast to our mutation analysis, we could use all residues of the V2 loop in this analysis.
In addition, we did not only assess the predictivness of these features for the complete V2
and V3 loops, but also for the conserved and polymorphic parts of V2 alone. Significance
of position-independent features was determined using Student’s t-test. Features that are
reported to be significant had to be significant (p < 0.05) over all ten runs of the analysis.

3.1.2 Results

Clonal dataset

Impact of specific mutations on coreceptor usage We found several amino acids within
V2 and V3 to be significantly correlated with one of the two phenotypes in the clonal
dataset. The results are shown in Table 3.1 and Appendix Table 1. The displayed residues
were significant in each of the ten replicates containing at most one R5- and one X4-
sequence per patient (see Materials and Methods - Data analysis, model generation and
evaluation). Frequencies, log odds ratios, and the 95% confidence intervals were computed
from the whole dataset.

POS HXB2 MUT fR5 (%) fX4 (%) LOR 95% CI
161 I A 8.05 1.1 2.94 [0.037, 0.074]
164 S % 4.24 10.99 0 [0.704, 1.419]

E E 55.08 30.77 -1.53 0.145,0 .319]
165 I L 40.25 25.27 -1.41 [0.166, 0.353]
166 R I 1.27 7.69 0.84 [1.648, 3.302]
169 Y% T 0.42 13.19 2.48 [8.444, 17.05]
K K 45.34 25.27 -1.53 [0.146, 0.314]
173 Y Y 72.46 54.95 -1.22 [0.184, 0.463]
H H 14.41 27.47 0.3 [0.508, 1.062]
177 Y Y 96.61 89.01 -1.03 0.135, 0.928)]
182 I E 1.27 7.69 0.84 [1.648, 3.302]
184 I L 24.15 13.19 -1.55 [0.147, 0.301]
192 K R 87.29 68.13 1.2 0.171, 0.529]
I I 5.93 15.38 0 [0.701, 1.425]
195 S N 69.07 45.05 -1.38 0.163, 0.388)]
H H 2.54 15.38 0.84 [1.638, 3.323]

Table 3.1: Significant mutations within V2. POS: position in HXB2, HXB2: residue at this
position in HXB2, MUT: residue tested for association with phenotype, fR5 &
fX4: frequencies in R5- and X4-viruses, respectively, LOR: Log odds ratio, 95%
CI: 95% confidence intervals

It is obvious that the frequencies of significant residues within the V2 loop of R5- and
X4-isolates did not differ as much as in the third hypervariable loop of gp120 (see also Sing
et al., 2007). Instead, the respective amino acids within V2 occurred in R5- as well as in
X4-isolates in most cases and only trends between the two groups but not large differences
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could be seen for individual mutations. Nevertheless, there were also mutations which were
relatively specific for one of the two phenotypes. For example, the mutations V169T or
S195H seemed to be highly predictive for viruses using the CXCR4-coreceptor.

Impact of position-independent features on coreceptor usage We found several position-
independent features to be significantly different between the two phenotypes (see Table
3.2). In agreement with our expectations, we found the number of positively and negatively
charged residues, the number of N-glycosylation sites, and the charge of the V3 loop to
be significantly different between R5- and X4-viruses. The number of negatively charged
residues as well as the overall charge also differed significantly when analyzing sequence
data from the second hypervariable loop of gp120. However, despite showing a broad
variation (see Figure 3.4), the length of the V2 loop did not prove to be correlated with
R5- or X4-samples.
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Figure 3.4: Extensive length variation of the V2 loop. The distribution of different V2
loop sizes is shown. About 25% had an average length of 38 residues but also
sequences with up to 56 amino acids were found in the dataset.

When focusing on the subregions of V2, we were surprised to see that these differences
did not appear in the conserved part but that only the number of N-glycosylation sites
differed there significantly. Because we could not find any clear sequence pattern in the
polymorphic subregion, we also did not expect to find any other significant result in this
region. However, in contrast to our expectations, all other tested features were significantly
different between R5- and X4-samples in the polymorphic region: the number of positively
and negatively charged residues, the overall charge and the length of the region.

Comparison of Prediction Methods The differences within V2 observed with respect to
amino acids and position-independent features suggested incorporating the second hyper-
variable loop of gp120 into coreceptor prediction methods. Therefore, we generated three
different prediction methods using sequence information either from the V2 loop alone,
from the V3 loop alone, or from both loops together. Validation was performed with ten



3.1 Improving Predictions with the Second Hypervariable Loop of gp120 45

region feature gin R5 O in X4 p-value
V3 # pos. charged amino acids 6.08 7.86 < 0.0001
# neg. charged amino acids 1.69 1.24 < 0.0001
charge 4.39 6.62 < 0.0001
# N-glycosylation sites 0.98 0.59 < 0.0001
length of region 34.90 35.08 0.1532
V2 # pos. charged amino acids 6.37 6.75 0.0718
# neg. charged amino acids 4.95 4.43 0.0004
charge 1.41 2.31 0.0001
# N-glycosylation sites 1.61 1.65 0.6959
length of region 41.58 42.38 0.0747
V2-stem # pos. charged amino acids 5.73 5.72 0.9381
# neg. charged amino acids 3.10 2.95 0.1201
charge 2.63 2.77 0.3926
# N-glycosylation sites 0.91 0.81 0.0247
length of region 32.95 32.86 0.2301
V2-polymorphic  # pos. charged amino acids 0.63 1.03 0.0037
# neg. charged amino acids 1.85 1.48 0.0006
charge -1.21 -0.45 < 0.0001
# N-glycosylation sites 0.69 0.83 0.1981
length of region 8.63 9.51 0.0495

Table 3.2: Differences in properties among R5- and X4-viruses in different regions of the

gp120 envelope protein.
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replicates of ten-fold cross validation. In each cross-validation run, the pool of training
and test samples was the same for all three predictors.
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Figure 3.5: Comparison of prediction results on the clonal dataset using either sequence
information of the V2, the V3, or both loops together. The blue line charac-
terizes the ROC-curve of the predictor using the V2 and V3 loop, the red line
the one of the predictor using V3 only, and the green line the prediction results
from the predictor using sequence information of the V2 loop alone. The black
cross marks the performance of the 11/25-rule. Variation around the average
curve is visualized with standard error bars. A) shows the overall results while
B) focuses on the sensitivities at high specificities. The curves from the ten
replications were averaged using threshold averaging.

The ROC-curves of the three different prediction methods are depicted in Figure 3.5.
Models that were trained only on sequence information from the V2 loop were clearly
outperformed by the other two models and the 11/25-rule. On average, the V2-models
could only detect 34.6% of the X4-isolates with a specificity of 90% (i.e. when allowing
10% of the R5-samples to be falsely predicted as X4). 90% specificity is usually used for
comparisons of coreceptor usage predictions. In comparison to the 11/25-rule this is very
low since the rule correctly predicted 66.7% of the X4-isolates by having a higher specificity
of 96.1% (see the x in the figure). Nevertheless, the average area under the ROC-curve
of the V2-predictor was with 0.76 well above 0.5 which would correspond to a random
predictor. Thus, a possible positive influence of the V2 loop could be expected when using
it in combination with the V3 loop.

Prediction models trained on V3 sequence data alone showed much better results than
the V2-models and the 11/25 rule. On average, sensitivity of detecting X4-viruses was
85.3% at a specificity of 90%. The average area under the ROC curve increased to 0.914.

When we used the sequences of both loops for training and evaluation, the average AUC
increased further to 0.933, significantly higher than that of predictors using either V2-
(p < 0.0001) or V3-sequences (p = 0.0022) alone. The differences were even more obvious
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when comparing the sensitivities at high specificities (see Figure 3.5). At a specificity of
90%, the predictor using sequence data from both loops improved by 4.5 percentage points
in comparison to the predictions based on the V3 loop alone. At the specificity of the
11/25-rule (96.1%) the difference was 5 percentage points.

Validation on data derived from clinical isolates

In general, results on the clonal dataset had high quality, not only for predictions derived
from sequences of both loops but also for prediction methods trained only on the V3
loop. Similarly accurate V3-prediction methods were also found in previous reports in
which prediction methods performed quite well on datasets collected from the Los Alamos
Sequence Database. On the other hand, the performance of coreceptor usage prediction
from V3-genotype is known to be much worse when tested on clinically derived samples

For example, Low et al. evaluated different publicly available prediction methods on
the HOMER cohort of therapy-naive patients (Low et al., 2007). In this analysis, even
the best methods only achieved sensitivities of 50% at a fixed specificity of 90%. An
explanation for this decrease in sensitivity might be the fact that the viral population in
vivo is a swarm of genetically and phenotypically heterogeneous variants, often termed the
quasispecies (Sing et al., 2007), a problem that is not solved by simply using sequence data
from another region of the envelope protein. Therefore, it was not clear if the observed
improvements in prediction performance on clonal data can be transferred to datasets
containing clinically derived samples. We therefore validated our results on two datasets
containing such data. The first was a subset of the aforementioned HOMER, cohort for
which also V2 sequence data was available, while the second was collected at the Virology
Institute of Cologne University. This dataset contained therapy-experienced isolates that
were screened for administration of maraviroc. With these two datasets we should be able
to see possible differences between therapy-naive and therapy-experienced patients and,
furthermore, facilitate direct comparison with previous reports as (a subset of) the same
samples as used in the publication by Low et al. could be analyzed here.

Prediction results on therapy-naive and therapy-experienced data We trained the dif-
ferent prediction models used in this analysis with data from the complete clonal dataset.
Both evaluations on the two clinical datasets are based on exactly the same prediction
models. Due to the inferiority of models using only sequence data from V2 observed in the
cross-validation study, we did not use them here. The inputs for the two models, one using
sequence information of the V3 loop alone and one using additional information from the
V2 loop, comprised the raw sequence information and the position independent features
found to be significant (see above). All models were optimized with an internal grid-search
on their own. The optimal cost-factors were ¢ = 0.1 for the V3-model, and ¢ = 0.05 for
the combined model (V2/V3).

The Monogram Trofile Tropism Assay (Whitcomb et al., 2007) determined 233 (86.9%)
of the 268 antiretroviral naive samples as being R5 and 35 (13.1%) as CXCR4-capable,
respectively. ROC curves displaying the prediction performances in comparison with the
Trofile results are depicted in Figure 3.6. The red line indicates the ROC-curve for the
method trained solely on V3 data while results of the prediction method trained with
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Figure 3.6: Prediction results on the therapy-naive dataset models. Prediction models were
trained on the complete clonal dataset using either sequence information of the
V3 loop alone (red line), or using sequence information from the V2 and the
V3 loop together (blue line). The x marks the results of the 11/25-rule.

V2- and V3-sequence data are shown in blue. The performance of the 11/25-rule on this
dataset is shown by the x in the left part of the figure. It has a very high specificity with
98.3% but the sensitivity only reaches 31.4%. Low et al. found comparable values (30.5%
sensitivity and 93.4% specificity) in their analysis of the HOMER cohort (Low et al.,
2007). In addition, the results of GENO2PHENO|CORECEPTOR/ in this analysis, which was
trained on a similar clonal dataset of V3-sequences and also used Support Vector Machines,
achieved comparable performances as the V3-model used in our analysis.

As can be seen by the ROC-curves, using sequence information from both loops together
yielded better results than models trained on the V3 loop alone. Although these results
were still not as good as the results observed on clonal data, sensitivities of the predictor
using both loops were higher than for the V3-predictor at all specificities. At a fixed
specificity of 90%, there was an increase in sensitivity in 8.6 percentage points (62.8% vs.
54.2%). When comparing the area under the ROC curves, we observed an increase from
0.779 to 0.841.

In the last part of our analysis, we evaluated the same prediction models with the
same parameter settings on the dataset of therapy-experienced patients. The fraction of
samples capable of using the CXCR4-coreceptor was much higher than on the therapy-
naive dataset. In fact, the Trofile assay determined equal numbers of R5- and X4-samples,
reflecting individuals with a higher degree of disease progression. Predictions were better,
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in general, than the ones achieved on the HOMER cohort (see Figure 3.7). The 11/25-
rule had a sensitivity of detecting X4-viruses of 43.7% while having a specificity of 93.7%.
Support Vector Machine models relying entirely on the V3 loop reached a sensitivity of
59.4% at 90% specificity. The incorporation of the V2 loop further increased the sensitivity
to 71.8% at the same specificity level. An increase in AUC was also observed from 0.815 of
the V3-models to 0.871 for the models using sequence information of both variable loops.
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Figure 3.7: Prediction results on the therapy-experienced dataset. Prediction models were
trained on the complete clonal dataset and validated on the therapy-naive
dataset were evaluated on a second dataset of 64 therapy-experienced patients.
The red line shows the results for the predictor using the V3 loop alone, the
blue line describes the ROC-curve of the prediction method using sequence
information from the V2 and the V3 loop together. The 11/25-rule is marked
by the x.

Last but not least, we compared our results with the two most widely used web-
servers for HIV-1 coreceptor usage prediction, both using only V3-sequences as input:
GENO2PHENO|CORECEPTOR| (Lengauer et al., 2007) and WEBPSSM (Jensen et al., 2003).
GENO2PHENO|CORECEPTOR| predicted 48.9% of the X4-samples in the HOMER cohort
correctly by having a specificity of 90.0%. On the same dataset, WEBPSSM displayed
38.3% sensitivity and 94.3% specificity. When analyzing the therapy-experienced samples,
both methods performed much better similarly to our results discussed here. Sensitivi-
tiy was 56.2% for both prediction methods, while GENO2PHENO[CORECEPTOR| achieved
93.7% and WEBPSSM 87.5% specificity. Thus, on both datasets the two methods were
clearly outperformed by our model using sequence information from both the V2 and the
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e g area under the
sensitivity  specificity

ROC-curve
Los Alamos dataset
V2 model 34.6% 90.0% 0.730
V3 model 85.3% 90.0% 0.914
V2 & V3 model 89.8% 90.0% 0.933
11/25-rule 66.7% 96.1% N/A
Therapy-naive dataset
V3 model 54.2% 90.0% 0.779
V2 & V3 model 62.8% 90.0% 0.841
11/25-rule 31.4% 98.3% N/A
GENO2PHENO|CORECEPTOR] 48.9% 90.0% N/A
WEBPSSM 38.3% 94.3% N/A
Therapy-experienced dataset
V3 model 59.4% 90.0% 0.815
V2 & V3 model 71.8% 90.0% 0.871
11/25-rule 43.7% 93.7% N/A
GENO2PHENO|CORECEPTOR| 56.2% 93.7% N/A
WEBPSSM 56.2% 87.5% N/A

Table 3.3: Overview of performances of different prediction methods on the three datasets
analyzed.

V3 loop. All prediction results are summarized in Table 3.3.

3.1.3 Discussion

We have shown that several sequence positions in the second hypervariable loop of gp120
are associated with coreceptor usage. In comparison to mutations within V3, the ob-
served mutations in V2 showed lower absolute correlation. However, some mutations (e.g.
V169T or the S195H) showed strong correlation with CXCR4-usage, suggesting their use
in prediction models.

The question whether these mutations are responsible for a switch in phenotype remains
unclear. Some authors proposed that such mutations could compensate for fitness losses
caused by mutations in the V3 loop that directly affect viral tropism (see e.g. Pastore et al.,
2006).

Incorporation of V2 into prediction models confirmed our assumptions. Models making
use of sequence data from both variable loops improved the performance on all tested
datasets. On clonal data, on which standard models using V3 loop data only performed
already quite well, the incorporation of additional V2 loop mutations significantly out-
performed them, both with respect to the overall performance measured in AUC as well
as for sensitivities at high specificities. The enhanced models improved there by 4.5 to 5
percentage points.

Furthermore, we found several position-independent features significantly different be-
tween R5- and X4-samples. Most differences were found in a region of the loop that allows
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for multiple insertions. We found a broad distribution of loop lengths but could not rec-
ognize any pattern behind these insertions. It seemed to be quite random, however, the
fact that we found features correlated with coreceptor usage indicates that there was a
higher-level pattern not necessarily relying on easily identifiable mutations. In previous
reports, the ability of increasing the length of the loop has been assumed to be a defense
mechanism against detection by the immune system. Together with extensive glycosyla-
tion it might serve to protect viruses from neutralizing antibodies (Derdeyn et al., 2004).
Several results found that the variable loops are significantly shorter and less glycosylated
in early infection of HIV-1 and suggested that this protection shield is not initially required
upon transmission into an immunologically-naive host. Instead, the viruses are outgrown
by strains with more compact variable loops (Derdeyn et al., 2004; Chohan et al., 2005;
Liu et al., 2008). One could assume that because X4-viruses predominantly appear in later
stages of disease, we should see the length of the loop and the number of N-glycosylation
sites also to be correlated with X4-viruses. However, we could not confirm this since neither
a higher number of N-glycosylation sites, nor the length of the V2 loop were significantly
correlated with X4-viruses.

Predictions were generally quite accurate on the clonal dataset, however similar to previ-
ous reports by Low et al. (Low et al., 2007) we observed much worse prediction results when
we tested on clinically derived isolates. On these, all tested methods showed substantial
losses in performance. Nevertheless, we could show that models using both hypervariable
loops, V2 and V3, performed best in terms of area under the ROC curve and sensitivity.
For a defined specificity of 90%, they increased in sensitivity by about 8 percentage points
on therapy-naive data and about 12 percentage points on therapy-experienced isolates in
comparison to V3-models. On both datasets, but especially for the therapy-naive samples,
our results were still not satisfactory, however the impact of mutations in the V2 loop could
clearly be demonstrated.

Several reasons might explain the performance losses on clinically derived data. Among
them is certainly the inability of standard bulk-sequencers to detect minority variants.
Some X4-phenotypes detected by the Trofile assay could arise from minor variants that are
below the threshold of detection of standard sequencers. New sequencing technologies such
as pyrosequencing that are able to detect minority populations at very low sensitivity levels
should therefore further improve prediction outcome. Another advantage of these methods
is that they generate clones rather than "bulk" sequences that reflect the consensus of the
viral population. Thus, interpretation problems arising from nucleotide mixtures should
be minimized with next generation sequencing technologies. This is especially true for the
V2 loop and its extensive length variation. If two viral strains have different lengths it
becomes very hard to interpret the electropherograms generated by standard sequencing
machines.

In the course of this work, a new Trofile assay has become available. While the clin-
ical datasets we analyzed here were phenotyped with the original Trofile assay, the new
enhanced Trofile (ESTA) should have a better sensitivity to detect minority populations.
On the other side, the specificity of the new assays seems to have become worse so that
similar results to the original Trofile assay can be achieved using a lower specificity cutoff
(see Section 5.2). However, if this holds true for predictions based on V2 and V3 remains
unclear and should be addressed in future.
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A shortcoming of this study is that we had only a limited number of genotype-phenotype
pairs from the Los Alamos HIV Sequence Database. Although the dataset consisted of more
than 900 genotype-phenotype pairs, the number of pairs to be analyzed was much lower
due to some patients contributing several sequences. Instead of the 900 pairs, we had
only about 350 to train and evaluate our models. Another point is that the large number
of possible insertions in the V2 loop makes it very difficult if not impossible to obtain a
perfect alignment. We have tried to optimize the alignment by constructing and aligning
against a sequence profile that allowed for insertions, however this approach is far from
being perfect and different approaches might improve this in future. Last but not least,
the quality of genotypes as well as phenotypes varies extensively in the different datasets
since a lot of different assays have been used over time. Hence, low-quality genotypes or
phenotypes are possible. All these points may impair our analysis but on the other hand
they also prove the stability of the results. Using high quality datasets, our results should
become even more pronounced in future.

In order to further improve the prediction models we suggest to incorporate clinical
features such as CD41 T cell counts as described in (Sing et al., 2007) and structural
properties into the prediction system in future. Structural information of the V3 loop has
been shown to improve predictions (Sander et al., 2007), but unfortunately no structural
information of the V2 loop is available, so far.
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3.2 Gp41 - The Wrong Part of the Envelope?

In the previous section we have seen how mutations in the second hypervariable loop of
gpl120 are correlated with viral tropism and how these mutations can be incorporated to
improve HIV-1 coreceptor usage prediction. Of course, the V2 loop is not the only region
of the envelope affecting coreceptor phenotype. Mutations in the first hypervariable (V1)
loop (Boyd et al., 1993) and the conserved region 4 (C4) (Carrillo and Ratner, 1996) have
been shown to be associated with R5- or X4-viruses. Here, however, we want to focus on
another region that recently came into focus: the gp41 protein which forms the envelope
together with gp120. Huang et al. mapped determinants modulating coreceptor specificity
to the gp41 transmembrane (TM) subunit. With site-directed mutagenesis they could show
that a single amino-acid substitution in the gp41 is able to confer a dual-tropic phenotype
(Huang et al., 2008). Previously, also alterations in the Lentivirus Lytic Peptide Domain
2 (LLP-2) of gp41 have been shown to modulate the syncytium-inducing ability of Env
(Kalia et al., 2003).

Intuitively, the gp4l protein seems to be the wrong place to search for determinants
affecting HIV-1 coreceptor usage because it binds neither to CD4 nor to the coreceptor
itself. Instead, the main task of gp4l is to anchor the glycoprotein complex within the
host-derived membrane and to promote fusion of the viral envelope and the target cell
membrane (Derdeyn et al., 2000). On the other hand, engagement of the coreceptor is
thought to promote additional conformational changes in gp4l (Pancera et al., 2010).
Thus, if binding to a different coreceptor influences these changes, the virus has to adapt
to it and mutations within gp41 might be a result of the switch in phenotype.

The other direction, that mutations within the V3 loop influence susceptibility to enfu-
virtide (T-20), a drug targeting the gp41 protein, has been demonstrated in several works
(e.g. Derdeyn et al., 2000, 2001; Reeves et al., 2002). Most mutations were reported in
the bridging sheet or the V3 loop reducing affinity for CCR5 and increasing sensitivity to
T-20 (Reeves et al., 2002). However, while such an analogy (gp120 mutations affect sus-
ceptibility of a drug against gp41, and gp41 mutations change susceptibility of coreceptor
antagonists) sounds very attractive, the provided explanations in these publications do not
make sense with respect to the direction we are looking at. The authors hypothesized that
not structural alterations are the reason for increased susceptibility but suggested kinetic
reasons. In order to pursue this line of thought, one has to understand how T-20 works.
This drug is a peptide based on the HR2 domain of gp41 and competes with this domain
for binding to HR1. Binding of HR1 to HR2 leads to a six-helix bundle whose formation
is prevented by T-20. However, the binding domains are only exposed to each other in a
short time window that appears to be opened by CD4 binding and closed by coreceptor
engagement (Reeves et al., 2002). The more time the virus needs to bind to the coreceptor,
the more time has the drug to bind and block the receptor, too. Since a higher affinity
to a receptor usually coincides with faster binding it is not surprising that determinants
of coreceptor usage have an effect on viral susceptibility to T-20. Thus, direct interaction
between gpl120 and gp41 does not seem to be necessarily there.

What does this tell us about our issue: can mutations within gp41 alter a virus from
R5 to X4 and can we use this information for improving predictions of coreceptor usage?
In principle it tells us nothing, but in our opinion it is important to have in mind that
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mutations can indirectly modulate the phenotype or, in this case, resistance to a drug, not
just by altering the drug target itself but also by mechanisms of which we are not directly
thinking and which have no effect on the target region. Therefore, although it does not
seem to make sense to search for mutations in regions or proteins that are not in contact
with the coreceptors, we should not shy away from analyzing such data.

In this section we have analyzed two large well-defined HIV-1 patient cohorts containing
more than 2000 genotype-phenotype pairs for correlations of gp41l-sequences with HIV-1
coreceptor usage determined by the Monogram Trofile Tropism Assay (Whitcomb et al.,
2007). The aim was to find mutations associated with tropism and to assess the possible
additional improvement gained from including gp41 sequence variation into coreceptor
usage prediction methods.

The work described in this section was carried out in collaboration with the British
Columbia Center for Excellence in HIV (Vancouver, British Columbia, Canada), Pfizer
Inc. (New York, USA), and Pfizer Research & Development (Sandwich, UK). It has
been presented at the 8th European HIV Drug Resistance Workshop 2010, Sorrento, Italy
(Thielen et al., 2010a) and has been accepted for publication in Antiviral Therapy under
the title "Mutations in gp4l are correlated with coreceptor tropism but do not improve
prediction methods substantially".

3.2.1 Material & Methods
Datasets

We used data from two large datasets that were independent from each other and that
contained samples from patients at different stages of disease. One dataset consisted of
therapy-naive isolates while the other dataset was composed of samples from heavily pre-
treated patients.

Therapy-naive samples were derived from the British Columbia HAART Observational
Medical Evaluation and Research cohort (HOMER). This cohort includes all HIV-positive,
antiretroviral-naive adults who started HAART though the British Columbia Drug Treat-
ment Program between August 1996 and September 1999 (Hogg et al., 2001). Overall,
1188 patients were enrolled in the cohort but gp41 sequences and a corresponding pheno-
type were only available for 435 subjects (369 R5 and 66 D/M or X4). Coreceptor usage
was determined using the prototype Monogram Trofile Assay.

The second dataset comprised the screening samples from the Maraviroc versus Opti-
mized Therapy in Viremic Antiretroviral Treatment-Experienced Patients (MOTIVATE) 1
and 2 studies (studies A4001027 and A4001028, respectively) (Gulick et al., 2008; Fétken-
heuer et al., 2008). These were conducted to characterize the efficacy and safety of mar-
aviroc in treatment-experienced patients. Similar to the HOMER cohort, these samples
were screened for coreceptor usage with the original Monogram Trofile Assay. Patients
screened to have an R5-phenotype were enrolled into the MOTIVATE studies, while a
subset screened as having CXCR4-using viruses entered the A4001029 (1029) study. We
refer to the entire dataset of those screened for MOTIVATE 1 and 2, including those
entering A4001029, as the MOTIVATE dataset in this section. Before starting therapy,
the gp41 protein of all samples was sequenced for resistance to enfuvirtide (T-20, Fuzeon).
Retrospectively, also the V3 loop of gp120 was sequenced for tropism analyses. Altogether,
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1915 samples were available with sequence information for both the V3 loop and the gp41
region as well as a Trofile result (1212 R5, 703 D/M or X4 by Trofile, from now on referred
to as X4). In addition, for a subset of 859 patients who entered the studies, we have also
information on therapy outcome with maraviroc.

Sequencing

V3 loop Viral RNA was extracted from frozen plasma samples using the standard oper-
ating procedures for the NucliSENS easyMAG (bioMérieux). The V3 loop of the envelope
protein gp120 was amplified from the RNA extracts with nested RT-PCR methods. Em-
ploying SuperScriptTM III One-Step RT-PCR system with Platinum® Taq High Fidelity
enzyme (Invitrogen) the reverse transcriptase (RT) and first-round PCR reactions were
combined into one step using forward primer SQV3F1 (5" GAG CCA ATT CCC ATA
CAT TAT TGT 3’) and reverse primer CO602 (5 GCC CAT AGT GCT TCC TGC TGC
TCC CAA GAA CC 3’). The second-round PCR was then performed using the ExpandTM
High Fidelity enzyme (Roche Diagnostics) with forward primer SQV3F2 (5> TGT GCC
CCA GCT GGT TTT GCG AT 3’) and reverse primer CD4R (5> TAT AAT TCA CTT
CTC CAA TTG TCC 3’). Amplicons taken from the second-round PCR reaction were
sequenced in both the 5" and 3’ directions using population-based sequencing on an ABI
3730 automated sequencer (Applied Biosystems). The sequencing reaction required the
use of BigDye® Terminator (Applied Biosystems) with forward primer V30O2F (5" AAT
GTC AGY ACA GTA CAA TGT ACA C 3’) and reverse primer SQV3R1 (5" GAA AAA
TTC CCT TCC ACA ATT AAA 3).

gp41 For sequencing of the gp4l protein, viral RNA was extracted from frozen plasma
sample using a Guanidine Thiocyanate based lysis buffer followed by precipitation using
ispropanol. A single nested RT-PCR amplification was performed for each sample. The
RT step was performed from the extracted RNA using Expand RT enzyme (Roche Diag-
nostics) and the reverse primer GP41RO (5" CTT TTT GAC CAC TTG CCA CCC AT
3’). Subsequently, a first-round PCR amplification was performed using ExpandTM High
Fidelity enzyme and the forward primer GP41FO (5 TTC AGA CCT GGA GGA GGA
GAT AT 3’). Second-round PCR was performed using ExpandTM High Fidelity enzyme
with forward primer GP41Fi (5 GGA CAA TTG GAG AAG TGA ATT AT 3’) and re-
verse primer GP41Ri (5° CTG TCT TAT TCT TCT AGG TAT GT 3’). Second-round
PCR amplicons were subsequently sequenced using an ABI 3700 or 3730x] automated se-
quencer (Applied Biosystems) using BigDye® Terminator V3.1 (Applied Biosystems) with
11 sequencing primers - 6 forward primers: GP41.1A (5> CCA TTA GGA GTA GCA CCC
ACC 3’), GP41.2A ( 5" ATC AAG CAG CTC CAG GCA AGA 3), SQGP41F (5 TTT
GTG GAA TTG GTT TRA CAT AA 3’), ENV8340F ( 5 AAT AGA GTT AGG CAG
GGA TAC TCA CC 3’ ), ENV8435F ( 5 TGG AGA GAG AGA CAG AGA CAG ATC
C 3), ENV8522F ( 5 CAG CTA CCA CCG CTT GAG AGA CTT A 3’); and 5 reverse
primers: ENVR ( 5" TGC CTG GAG CTG CTT GAT GCC CCA GAC 3’), GP41.1B (
5 TTG TTC ATT CTT TTC TTG CTG 3’), SQGP41R ( 5° GCC TCC TAC TAT CAT
TAT GAA TA 3’), SC90R ( 5> GGA TCT GTC TCT GTC TCT CTC TCC A 3’), SC52R
(5 TAA GTC TCT CAA GCG GTG GTA 3’). The two second-round PCR primers also
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served as back-up sequencing primers.

Sequence alignment, encoding and coreceptor usage prediction

Multiple sequence alignments of the V3 loops and the gp41-sequences were generated using
ClustalW (Thompson et al., 1994) with standard parameters following manual inspection.
The aligned sequences were then encoded for input in prediction methods using a canonical
indicator representation. Each position is represented by a 21-bit vector indicating the
presence or absence of a specific amino acid. The last bit in this vector represents a gap at
the respective position in the aligned sequence. For ambiguous nucleotides, the respective
codon was translated into all amino acids possible by this sequence mixture. The bits of
the respective amino acids were then all set in the encoded vector.

Coreceptor usage was predicted from genotype using Support Vector Machines (SVMs).
Because non-linear kernels did not outcompete linear kernels in previous studies using
simple encodings for coreceptor usage prediction (Sing et al., 2007) and because linear
kernels are easier to interpret, we employed linear kernels in this work, too. Support Vector
Machine models were generated with LIBSVM (Chang and Lin, 2001) implemented in
the R-package e1071. The cost-parameter ¢, controlling for the trade off between allowing
training errors and forcing rigid margins, was optimized with an internal grid-search within
a range from ¢ = 1076 to 10.

Statistical analysis

Correlations of specific mutations with tropism were assessed using Fisher’s exact test.
Association of pairwise interactions among mutations associated with CXCR4-usage was
computed with the Matthews correlation coefficient and statistical significance determined
using Fisher’s exact test, too. In both cases, significance was corrected for multiple testing
with the Benjamini-Hochberg method at a false discovery rate of 5%. Models predicting
coreceptor usage were evaluated using Receiver Operating Curves (ROC) analysis in ten-
fold cross validation and by testing models from one dataset against the other. As measures,
we used the sensitivity to detect X4-viruses, specificity, and the area under the ROC curve
(AUC). The statistical programming language R (Team, 2005) with the packages ROCR,
covaRius (Sing et al., 2004, 2005), and e1071 (Chang and Lin, 2001) was used for all
calculations.

3.2.2 Results
Gp41-mutations associated with HIV-1 coreceptor usage

We assessed every amino acid at every position in the V3 loop and the gp4l protein for
correlation with HIV-1 coreceptor usage. The analysis was carried out independently for
both the HOMER, and the MOTIVATE dataset. Amino acids predictive for either R5-
or X4-viruses in the respective datasets are shown in Table 3.4. The table only depicts
substitutions that were predictive for one of the two phenotypes in the MOTIVATE dataset,
and only these amino acids that remained significant after correction for multiple testing.
In the HOMER dataset, we could not find any additional residues significant for R5- or
X4-viruses after correction for multiple testing. The prediction model on the HOMER
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dataset showed generally less statistical power than that on the MOTIVATE dataset and
only a few amino acids in the V3 loop or gp41 remained significant there after correction
for multiple testing. This is probably due to the smaller size of the former dataset and
because of the fact that the patients in MOTIVATE were heavily treatment-experienced
whilst the HOMER cohort is compiled from therapy-naive patients. Thus, viral evolution
has probably not gone as far in the HOMER cohort than in MOTIVATE.

Several amino acids showed strong specificity for X4-viruses in gp41. The most notable
difference between R5- and X4-viruses was seen for an insertion after the third amino
acid of HXB2-gp41. An insertion of a hydrophobic residue there was highly predictive for
CXCR4-using variants in both the MOTIVATE and the HOMER cohort. Not only the
displayed insertions of an isoleucine, leucine, methionine, or valine proved to be significant
for X4-viruses but also the insertion of an alanine (p=0.0011). However, the alanine failed
to meet significance after correction for multiple testing. We also compared R5- and X4-
viruses in the two datasets for the presence of any hydrophobic insertion after position 3.
In the MOTIVATE dataset, we found 5.7% of the R5-samples and 25.2% of the X4 samples
to have such an insertion. Even more pronounced differences were found in the HOMER
cohort, in which we observed the insertion in 7.7% of the R5- and 46.3% of X4-samples.
For comparison, a positively charged residue at position 11 or 25 of the V3 loop was in
this dataset only present in 5.1% of the R5-samples and 36.3% of the X4-samples, i.e. the
single insertion of a hydrophobic residue after position 3 in gp41 was more predictive for
X4-viruses than the 11/25-rule. However, in MOTIVATE the 11/25-rule performed much
better by determining 10.4% of the R5- and 60.1% of the X4-viruses to be X4.

As far as we know, this insertion has never been described before. We therefore checked
the Los Alamos HIV Sequence Database for the presence of this specific insertion (February
2010). When considering only at most one R5 and one X4 sequence per patient we found
339 R5- and 267 X4-viruses in total. From these, 2.6% of the R5- and 10.5% of the
X4-viruses harbored the insertion (data not shown).

Several other amino acids were also significant for one of the two coreceptors, however,
only the mutations A30T and L34M, showed an odds ratio of X4 of more than three in
both datasets. Primary resistance mutations for T-20, i.e. mutations at positions 36 to
45, were not correlated with HIV-1 coreceptor usage.

The two datasets showed a high degree of concordance in the N-terminal region of gp41
comprising the N-terminal heptad repeat 1 (HR1). Downstream of HR1, however, major
differences were found. For example, while K172K was the second most significant mutation
in the MOTIVATE dataset, no significant difference was seen in R5- and X4-samples in
the HOMER cohort (p = 0.54).

Interactions between sites in gp41 and V3 predictive for X4-viruses

In the next part of our analysis, we wanted to check if amino acids in the gp41 protein found
to be significantly associated with CXCR4-using viruses are correlated with determinants
in the V3 loop predictive for X4-viruses. Such interactions might occur due to viral fitness
reasons or as a consequence of steric interference introduced by mutations in the V3 loop
which has to be resolved by other mutations within the envelope protein. A covariate
analysis was therefore carried out with the most significant amino acids within gp41 and the
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MOTIVATE HOMER

aa fR5 X4 OR pval fR5 X4 OR  pval
Al1A 92.74% 97.44%  1.05 -5.19 | 94.04% 96.97% 1.03  -0.25
3T 16.01% 7.54%  0.47 -7.38 8.13% 3.03% 0.37  -0.70
-3al 0.41% 4.98% 12.07  -10.57 | 0.00% 7.58% Inf -4.15
-3aL. 0.08% 2.42%  29.31  -6.38 0.00% 0.00% N/A 0.00
-3aM 0.91% 512%  5.64 -7.53 2.44% 21.21% 8.70  -6.59
-3aV 2.06% 11.95%  5.79 -17.96 | 2.44% 19.70% 8.08 -5.91
-3a- 78.14% 63.73%  0.82 -10.81 | 73.711% 46.97% 0.64  -4.47
141 35.56% 44.38%  1.25 -3.83 | 51.76% 62.12% 1.20 -0.85
S23A 5.03% 10.10%  2.01 -4.31 1.90% 7.58% 399 -1.63
A30T 1.73% 10.10%  5.83 -15.09 | 0.81% 12.12% 1491  -4.67
Q32L 21.37% 10.95%  0.51 -8.43 | 22.76% 15.15% 0.67  -0.71
Q32Q 78.38% 88.90%  1.13 -8.52 78.59% 86.36% 1.10  -0.74
L34L 99.67% 95.73%  0.96 -9.30 | 98.10% 95.45% 097 -0.74
L34M 0.91% 7T11%  7.84 -12.65 | 2.17% 7.58% 349  -1.48
N42N 78.80% 85.92%  1.09 -4.02 | 91.60% 96.97% 1.06  -0.69
1691 5.94% 14.22%  2.39 -8.62 5.69% 7.58% 1.33 -0.24
A96A 63.61% 50.64%  0.80 -7.53 78.05% 66.67% 0.85  -1.23
A96T 27.15% 35.99%  1.33 -4.24 17.07% 34.85% 2.04 -2.67
N160N  74.17% 84.35%  1.14 -6.74 | 85.37% 89.39% 1.05  -0.35
N160S 30.03% 21.05%  0.70 -4.75 16.53% 15.15% 0.92  -0.07
T165S 44.47% 33.29%  0.75 -5.78 | 22.22% 21.21% 0.95 0.00
T165T 59.90% 70.13%  1.17 -5.15 | 80.76% 81.82% 1.01 0.00
K172K  80.36% 93.74%  1.17 -16.22 | 86.99% 90.91% 1.06  -0.27
K172R 27.97% 10.81%  0.39 -18.98 | 23.58% 18.18% 0.77  -0.37
V1821 77.64% 85.49%  1.10 -4.58 | 57.18% 56.06% 0.98  -0.05
V182V 31.27% 2091%  0.67 -6.12 | 52.30% 51.52% 0.98 0.00
V278V 3.05% 0.57%  0.19 -3.92 0.54% 1.52% 2.80 -0.41
S293S 72.52% 80.51% 1.11 -4.05 | 82.66% 87.88% 1.06  -0.43
Table 3.4: Amino acids in gp41 significantly associated with HIV-1 coreceptor usage in the

MOTIVATE dataset after correction for multiple testing. Numbering is relative

to HXB2. "3a" describes an insertion after the third position of gp41. Residues

predictive for X4-viruses are shown in bold. Note that HXB2 is an X4-virus,

therefore also the amino acid of the "wild-type" can be predictive for X4-usage

(e.g. K172K). aa: amino acid; fR5: frequency in R5-viruses; fX4: frequency in
X4-viruses; OR: odds ratio (of X4); pval: p-value (logl0)
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20 most significant residues within V3. Both sets of amino acids were based on results from
the MOTIVATE dataset. If several amino acids were found to be significantly associated
with X4-viruses at the same position, we combined them. An exception was position 24
(note that HXB2 has two insertions and one deletion, hence position 25 in HXB2 is 24 in
the consensus) which we separated into positively and negatively charged residues.

The results of this analysis are visualized in Figure 3.8. The numbers in the boxes display
the Matthews correlation coefficient and the logl0 p-value of the significance. Significant
interactions are illustrated by framed boxes. It is apparent that only moderate covariance
between the residues of the gp41 protein and the V3 loop exist.

The interactions observed between different regions (V3 loop and gp4l) were between
A30T in gp4l and a negatively charged residue at position 24 (r = 0.2047, HXB2-position
25) or a positively charged residue at position 25 (r = 0.1975, HXB2-position 26) of the
V3 loop. Associations between the insertion of a hydrophobic residue at position three in
gp4l and amino acids in the V3 loop were much lower and no clear covariation pattern
between residues in V3 and gp41 could be found.

HIV-1 coreceptor usage prediction with gp41-mutations

We next tried to assess to which extent gp4l-sequence information can help to predict
HIV-1 coreceptor usage. Because of the observed differences between the HOMER, and
the MOTIVATE dataset (see above), we restricted the input for our prediction models to
positions at the N-terminal end of gp41 up to the last position of the heptad repeat region
1 for which we found high concordance.

Three different kinds of prediction models were generated in this section: a model trained
with sequence information from the V3 loop alone, one with data from gp4l alone, and
a third model incorporating sequence information of both regions. First, these prediction
models were trained and evaluated on each dataset individually by performing ten-fold cross
validation. Figures 3.9 A) and B) show the results for the HOMER and the MOTIVATE
datasets, respectively.

On both datasets, predictions based solely on sequence information of the gp41 protein
achieved relatively high AUCs, confirming the impact of amino acids found to be associated
with phenotype. For the HOMER, dataset these models reached an AUC of 0.713 while for
MOTIVATE data it was slightly better with 0.736. The value of these predictions based
on gpdl-data becomes clear when we compare the results on the HOMER dataset with
predictions based on the V3 loop. These were not much better with an AUC of 0.773.

When using sequence information of both envelope regions for training and evaluation,
the AUC significantly increased (AUC of 0.814, p < 0.0001) on the HOMER cohort in
comparison with prediction results when using sequence data from one region alone. The
comparison of sensitivities to detect CXCR4-using variants at a specificity of 90% did not
show major differences between the three models on the HOMER cohort. Considering the
prevalence of an insertion of a hydrophobic residue at the N-terminal end of gp4l, it was
not very surprising that prediction methods trained on gp4l-sequences only achieved a
sensitivity of 46.9%. Sensitivity of V3-models reached 54.5% which is in line with previous
reports analyzing a larger subset of the original HOMER cohort (see Low et al., 2007, and
Section 3.1). However, we would have expected better results from predictions using both
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Figure 3.8: Covariance between amino acids predictive for X4-viruses in V3 and gp4l.
Each box indicates the Matthews correlation coefficient (first number) and the
logarithmic (logl0) significance (second number) between two positions given
by the row and the column.
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Figure 3.9: ROC-curves of prediction methods trained on sequence information of gp4l
(green line), V3 (red line), or both regions together (blue line). A) results
from cross validation on MOTIVATE data, B) results from cross validation on
HOMER data.

regions as input. In this case, the sensitivity only increased marginally to 57.5%. When
analyzing the sensitivities at another specificity-level of 80%, we found more pronounced
differences between the different prediction models. There, sensitivity of gp4l-models
reached 57.5%, the corresponding V3-models 63.6%, while the combined predictor achieved
a sensitivity of 71.2% for predicting X4-viruses.

As already mentioned, gp41-models also showed very good results on data derived from
the MOTIVATE screening population. However, V3-models were much better than on
the HOMER cohort and clearly outperformed the corresponding gp41-models by achieving
an area under the ROC curve of 0.884. There was also no substantial improvement over
these models when we used sequence information of both regions. AUC increased only
marginally to 0.902 which was nevertheless significantly better than predictions based on
the V3 loop alone (p = 0.0002). The comparison of sensitivities at different specificities
yielded similar results. For a defined specificity of 90%, the sensitivity to detect X4-
viruses was 42.8% for predictions based solely on gp41, 73.3% for V3-models, and 73.8%
for predictions incorporating both the V3 loop and gp41. The corresponding sensitivities
at 80% specificity were 54.3% (gp41), 82% (V3), and 82.7% (V3 & gp4l).

We next wanted to assess the generalization of our prediction results by training the
prediction models on one dataset and validating on samples from the other (and vice
versa). Figure 3.10 shows the results when the MOTIVATE dataset was used for training
and the HOMER, cohort for validation. Concordant with the results obtained by cross
validation, predictions based on either gp4l-sequence information or the V3 loop alone
were comparable to each other with AUCs of 0.774 and 0.811, respectively. However,
prediction models trained on data from both regions had significantly higher AUCs (0.881,
p < 0.0001). The sensitivity at 90% specificity also increased greatly when the two regions
were combined, from 51.5% of gp41-models, and 62.1% of models based on the V3 loop,
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to 71.2% when predictions were derived from sequence data of both regions. On the other
side, just like already seen in the cross-validation analysis, gp41 had only little impact
when models were trained on the HOMER cohort and evaluated on the samples of the
MOTIVATE screening population. There, predictions based on gp4l alone achieved an
AUC of 0.690 which was significantly lower than predictions based on the V3 loop (AUC
of 0.842). When gp41 was incorporated into these models, there was only a slight increase
in AUC to 0.859. There was also no significant effect seen in terms of sensitivity at 90%
specificity. Gp41l-models reached a relatively high sensitivity of 37%, but V3-models clearly
outperformed them by having a sensitivity of 63.3% and only a minimal improvement to
63.6% was seen when both regions were used as input for prediction methods.

1.0

True positive rate

T T T T T T
00 02 04 0.8 08 1.0
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Figure 3.10: ROC-curves of prediction methods trained on sequence information of gp41l
(green line), V3 (red line), or both regions together (blue line). Prediction
methods trained on MOTIVATE data and validated on HOMER results.

Prediction of therapy outcome

In the last part of this section, we wanted to assess whether gp41 can help in predicting
therapy-outcome of maraviroc based regimens. Therefore, we trained models for HIV-1
coreceptor usage prediction with all samples from the two datasets as described previously.
Based on previous works, we selected a cutoff of 95% specificity to predict viruses as R5
or X4.

When comparing the numbers of predicted X4-viruses, we only found small differences
between the three prediction models and the results by the Monogram Trofile Tropism



3.2 Gp41 - The Wrong Part of the Envelope? 63

Assay. The phenotypic assay determined 105 of the 852 samples with available treatment
outcome to be CXCR4-using. The corresponding numbers for the prediction models were
68 (gp4l), 96 (V3), and 99 (V3 & gp4l).

Clinical outcome was measured in terms of logl0 viral load decrease (virologic outcome)
and increase in CD4% cell counts (immunologic outcome). Overall, only small differences
were seen for the different methods when virological outcome was analyzed. Figure 3.11
depicts the median log viral load decreases of patients carrying R5- (solid lines) or X4-
viruses (dotted lines) determined by the different methods within the first 24 weeks of
treatment with maraviroc. It is apparent that no major differences between the different
methods exist and that predictions based on one region alone seem to perform even slightly
better than the Trofile assay and the predictor generated with sequence information from
both the V3 loop and gp41. The difference in median log viral load between the two patient
groups at week 24 was 1.59 for assignments by the gp41-models (decrease in median log
viral load of 2.42 for patients with R5-viruses and 0.83 for patients with X4-viruses),
1.65 (2.45 vs. 0.79) for models trained on the V3 loop alone, and 1.58 for coreceptor
usage determined by predictions incorporating both envelope regions (2.44 vs. 0.86). The
corresponding values for samples determined to be R5 or D/M by Trofile were quite similar
with 2.46 and 0.81.
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Figure 3.11: Virologic outcomes to week 24. Median log viral load changes in patients
determined to be R5 or X4 by different methods. Predictions were done with
methods trained for coreceptor usage prediction with a false-positive rate of
5%. Upper lines: X4-predictions, lower lines: R5-predictions, black: Trofile,
red: V3-prediction, green: gpdl-predictions, blue: predictions derived from
models trained on both regions.

The analysis of immunologic outcome yielded comparable results. The increase in CD4™
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cell counts was very similar for patients determined to have Rb5-viruses by the different
methods (Trofile +88.5, gp4l-predictions +87, V3-models +88.5, predictions using both
V3 and gp4l +88.5), however, the immunological outcome of patients predicted to have
CXCRA4-using viruses was worse when predictions originated by the models trained on the
V3 loop only. There, only an increase of 33 CD4™ cells was seen, whereas patients predicted
to have an X4-virus by gp41-models showed a median increase of 51 cells, X4-predictions
by the combined model 45 cells, and Trofile-D /M patients 47.5 cells.

120

100

R5

a0

median increase in C04 cells
&0

X4

40

20

wEek

Figure 3.12: Immunologic outcomes to week 24. Median increases in CD4™ cell counts in
patients determined to be R5 or X4 by different methods. Predictions were
done with methods trained for coreceptor usage prediction with a false-positive
rate of 5%. Upper lines: R5-predictions, lower lines: X4-predictions, black:
Trofile, red: V3-prediction, green: gp41-predictions, blue: predictions derived
from models trained on both regions.

3.2.3 Discussion

In this section, we have analyzed the influence of the gp41-glycoprotein for HIV-1 core-
ceptor usage. We found several mutations to be significantly correlated with CCR5- or
CXCRA4-using viruses in two independent well-defined cohorts containing more than 2000
samples. An insertion of a hydrophobic residue at the N-terminal end of gp41 was strongly
predictive for X4-viruses and even more accurate than the 11/25-rule on the therapy-naive
dataset of the British Columbia HOMER cohort. To our surprise, we could not find any
publication describing this insertion. However, at a recent workshop (the XVIII Inter-
national HIV Drug Resistance Workshop in Fort Myers, Florida, June 2009), Monogram
Biosciences presented a list of changes in gp4l to have an impact on coreceptor tropism.



3.2 Gp41 - The Wrong Part of the Envelope? 65

This list of mutations was based on a dataset of 6453 commercially screened subtype B
samples that had been run with the original Trofile assay and which had gp41l sequence
information. While the aforementioned insertion was surprisingly lacking on this list, the
two other mutations we found to be highly significant for X4-viruses, A30T and L34M,
were associated with higher infectivity in CXCRA4 cells and lower infectivity in CCR5 cells
in this work, too.

The basis of the effects of these mutations still remains unclear. It might be that they
just compensate for structural rearrangements due to mutations in the gp120 protein. On
the other side, Blish et al. have identified two mutations in gp41 that expose conserved
Env regions which are desired targets for protective antibodies to HIV-1 (Blish et al.,
2008). Of course, the ability to induce these structural changes might not only affect
regions targeted by the immune system but could also alter the coreceptor binding site
and the preference for a different coreceptor. Interesting in this context is that one of
these mutations 1675V is adjacent to amino acids we found here predictive for R5- and
X4-viruses: T1165S and T165T (HXB2-position 676). Another report also pointed to
this position where 1675M and N668S were found to enhance sensitivity to soluble CD4
(sCD4), and more interestingly anti-V3 antibodies (Back et al., 1993). Thus, although
these residues were not as significantly correlated as others presented here, a link between
them and coreceptor usage determinants seems to be possible, too.

Although the discovery of residues in gp4l specific for the two phenotypes is potentially
useful for predicting HIV-1 coreceptor usage, we could not demonstrate this consistently in
our analyses. For the HOMER cohort, major improvements were obvious. The sensitivity
to detect CXCR4-using variants reached more than 70% for a specificity of 90%. In com-
parison to predictions based on the V3 loop alone and previous works (Low et al., 2007)
on this dataset which both reported only a sensitivity of about 50%, this is a dramatic
increase in prediction performance. However, we could not observe such an impact on data
derived from the MOTIVATE screening population, neither when analyzing sensitivity to
detect X4-viruses, nor when the area under the ROC curve or virological outcome was used
as measure. In contrast, for reasons that remain unclear, prediction models using only the
V3 loop, seemed to be better when analyzing clinical outcome, especially when predicting
the increase in CD4™ cell counts.

A reason for the missing effect on the MOTIVATE dataset might be the smaller training
set of HOMER samples. It could be argued that using more samples for training, the per-
formance of predictions based on both regions would also increase significantly. However,
in our opinion this would not happen because in the cross-validation analysis on the MOTI-
VATE dataset, the training set in each fold was based on about 1700 samples, either. And
in this analysis we also did not encounter substantial improvements of prediction quality.
Another explanation might be that the HOMER cohort consists of therapy-naive patients
whereas the MOTIVATE screening population contained heavily pretreated patients. Al-
though it is possible that previous exposure to antiretroviral drugs has an influence on
HIV-1 coreceptor usage and that the appearance of specific residues is associated with
one of the two phenotypes, we would have expected that these mutations should be more
helpful in late stage of disease and not on therapy-naive data.

Limitations of this analysis certainly include the use of conventional "bulk"-sequencers
to determine genotypes and the original Trofile assay for phenotyping. In both cases,
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minority populations in the viral quasispecies might have been overseen. A solution could
be the use of deep-sequencing technologies and the new improved enhanced sensitivity
Trofile assays (ESTA) which are both reported to be able to detect variants at very low
minorities.

In summary we conclude that because we could not demonstrate substantial improve-
ments of prediction methods by integrating gp41-sequence information on the MOTIVATE
dataset, we believe that, at present, sequencing this part of the envelope protein is not
necessary in daily routine when patients are screened for administration of coreceptor an-
tagonists. The additional effort of sequencing the approximately 1035 base pairs of gp4l
compared to 105 bp for the V3 loop is not justified by the marginal improvements observed.
However, the high correlation of the insertion we found to be predictive for X4-viruses as
well as other amino acids highly correlated with phenotype suggests further investigation
of gp41 in the realm of HIV-1 coreceptor usage.
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3.3 Other Parts in the Envelope and Other Genes

In the previous sections we have analyzed two parts of the viral envelope protein for
associations with HIV-1 coreceptor usage. Here, we want to discuss the remaining regions
as well. Only a handful of mutations in regions other than V2, V3, and gp41, have been
found to be correlated with tropism in previous works. The probably best known is a
mutation in the conserved region 4 of the gp120 glycoprotein (Carrillo and Ratner, 1996;
Rosen et al., 2008).

However, in contrast to the V2 and the V3 loop, as well as the gp4l protein, we do
not have sufficient clinical data for validation. Thus, we will mainly restrict ourselves to a
descriptive analysis. Our goal will be to find positions that could play a role for tropism
which should later on be validated on clinical datasets or with in vitro experiments.

Viral cell entry is mediated mainly by the envelope proteins gp120 and gp41, the extra-
cellular determinants of the virus interacting with the CD4-receptor and the chemokine
coreceptors. Thus, one might think that it does not make sense to analyze intracellular
proteins of HIV with respect to coreceptor usage. On the other hand, as already mentioned
in the previous section, sometimes we see effects we cannot understand at first sight and
which have an indirect influence on coreceptor usage.

With respect to intracellular proteins, such explanations might be more complicated to
find but some hints of a potential impact already exist. For example, it is known that
the viral enzyme vpu promotes virus release by counteracting tetherin, a restriction factor
that can be induced by interferon-alpha (Neil et al., 2007). This factor "tethers" nascent
virions to cell membranes so that they cannot be released efficiently.

Tetherin is highly expressed on the surface of macrophages and dendritic cells which both
become HIV-1 infected via the CCR5 coreceptor. In a recent study Schindler et al. could
show that a mutation in vpu impaired the replicative capacity of HIV-1 in macrophages
as severely as the complete lack of vpu function. Thus, the authors speculated that the
ability of vpu to counteract tetherin is an important determinant for HIV-1 cell tropism
(Schindler et al., 2010). As a consequence of this scenario viruses with such mutations
might be found predominantly in CXCR4-using isolates and less in R5-viruses although
there is not a direct link to cell entry.

One could think about other reasons for an effect of intracellular enzymes on tropism.
However, irrespective of an explanation of how mutations within these enzymes might affect
coreceptor usage, amino acids in specific genes of the viral genome like the polymerase
enzymes PR, RT, and INT might be very valuable because these are sequenced regularly
and could help in predicting tropism without implying any additional testing costs. So,
already for practical reasons it makes sense to analyze this kind of data.

3.3.1 Material & Methods

Datasets

Genotype-phenotype pairs were downloaded from the Los Alamos HIV Sequence Database
(April 2010). Sequence data was derived from the following regions: the variable loops 1, 4,
and 5 (V1, V4, V5) and the conserved regions 1-5 (C1-C5) of the envelope protein gp120,
the gene encoding for the structural proteins group-specific antigen (gag), and the viral
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enzymes protease (PR), reverse transcriptase (RT), integrase (INT'), and last but not least
the regulatory proteins negative regulatory factor (nef), regulator of virion (rev, two splice
variants rev-1 and rev-2), Rnase H (RnaseH), rev response element (rre), trans-activating
responsive (TAR) element, trans-activator of transcription (tat, two splice variants tat-1
and tat-2), viral infectivity factor (vif), viral protein R (vpr), and viral protein U (vpu)

(see Table 3.5).

Los Alamos HOMER
region pairs #R5 #X4 pairs #R5 #X4
C1 1614 368 105 0 0 0
C2 2075 426 132 0 0 0
C3 2859 567 163 0 0 0
C4 2207 500 160 0 0 0
Ch 1811 461 124 0 0 0
Cla 0 0 0 263 215 38
Vla 0 0 0 115 96 19
C2a 0 0 0 315 269 46
C2b 0 0 0 314 269 45
C2c 0 0 0 512 428 84
C3a 0 0 0 456 389 67
C3b 0 0 0 336 281 55
V1 2136 432 137 0 0 0
V4 2255 542 161 0 0 0
V5 2164 496 155 0 0 0
PR 406 143 37 701 584 117
RT 180 128 35 525 443 82
INT 163 113 35 710 598 112
gag 131 78 26 695 586 109

nef 406 121 42 916 759 157
rev-1 176 119 35 0 0 0
rev-2 1669 388 114 0 0 0

RnaseH 180 128 35 680 570 110

rre 1734 400 116 0 0 0
TAR 67 42 19 0 0 0
tat-1 173 117 35 518 421 97
tat-2 1736 400 116 0 0 0

vif 161 112 35 558 451 107

vpr 161 112 35 556 451 105

vpu 211 151 35 518 421 97

Table 3.5: Genotype-phenotype pairs of different regions available from the Los Alamos
HIV Sequence Database and the HOMER cohort. Rev-1 and -2 and Tat-1 and
2 denote different splice variants. The numbers of R5- and X4-sequences are
based on using one sequence per patient.
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For the genes PR, RT, INT, gag, nef, RnaseH, tat-1, vif, vpr, and vpu also clinically
derived samples with coreceptor usage information were available. These isolates were de-
rived from the British Columbia HAART Observational Medical Evaluation and Research
(HOMER) cohort (Hogg et al., 2001). Genotypes were determined as described in Section
3.1 and coreceptor usage determined with the original Monogram Trofile Tropism Assay
(Whitcomb et al., 2007).

In addition, sequence information from different parts of the envelope protein of HOMER-
patients was available. In general, the region from position 85 of HXB2-C1 to position 51
of HXB2-C3 was sequenced. However, this was done using a set of amplicons starting at
different points. Due to difficulties inherent in performing population sequencing on the
envelope the final sequences are fragmented and contain chunks of data interspersed with
missing parts. Thus, for different positions we have different numbers of samples avail-
able. Therefore, instead of the conventional classification into the variable and conserved
regions, we use here a different notation: Cla refers to positions 85 to 120 in HXB2-C1
while V1a encompasses the last 10 positions of HXB2-C1 and the V1-loop. C2a are the
last 4 positions of the V2 loop and the first 32 of the conserved region 2, C2b the next 36
positions of this region, and C2c the last 31 positions of C2. Finally, C3a covers just the
first 5 positions of C3 and C3b denotes positions 6 to 40 of HXb2-C3. The numbers of
available genotype-phenotype pairs are also shown in Table 3.5.

Sequence Analysis

All regions were aligned using ClustalW (Thompson et al., 1994) with standard parameters.
Sequences of the envelope regions were aligned with sequence to profile alignments while
the sequences of the other regions were aligned to each other with normal multiple sequence
alignments.

In case of positions with nucleotide ambiguities in the clinical isolates, the respective
codons were translated into all combinations of possible amino acids. Each amino acid was
then analyzed independently. For example, in a codon ARM (IUPAC notation), the letter
"R" and "M" stand for the possible nucleotides A or G, and A or C respectively. Thus,
the codons AAA, AAC, AGA, and AGC are possible which encode for the amino acids
lysine (K), asparagine (N), arginine (R), and serine (S).

In addition to the association of specific residues with phenotype, we also tested for
differences in other properties: the number of potential N-glycosylation sites, the length
of the sequences, the number of hydrophobic, polar, small, tiny, aliphatic, aromatic, pos-
itively charged, negatively charged, and charged residues, and the number of prolines (all
according to Livingstone and Barton, 1993, except for gaps which were removed before).

Statistical analysis

The association between specific amino acids and HIV-1 coreceptor usage was assessed
using Fisher’s exact test. Only residues appearing in at least 5% of either R5- or X4-
sequences were analyzed.

Differences in medians of numerical quantities of specific properties were assessed using
Wilcoxon’s rank sum test. In both cases, correction for multiple testing was performed
using the Holm-Bonferroni method. We did not use the Benjamini-Hochberg method in
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this context because it is highly dependent on the number of tests performed. Some of
the sequences analyzed here are very long (e.g. gag-sequences have a length of about 500
residues) implying that the p-value for a mutation in these would have to be much lower to
be accepted by multiple testing than the p-value for a corresponding mutation in another
smaller region (e.g. the conserved region 4 has a length of 41 amino acids).

3.3.2 Results
Amino acids associated with viral tropism

In total we found 669 amino acids significantly associated with one of the two phenotypes
in the samples from the Los Alamos HIV Sequence Database. 468 of these were corre-
lated with phenotypes in non-envelope proteins whereas 201 mutations belonged to gp120.
However, after correction for multiple testing with the Holm-Bonferroni method, only 14
amino acids remained significant. Of these, eight were located within gp120, two in the
gag-protein, two in the reverse transcriptase, and one in vif and the rev response element,
respectively.

A similar pattern was seen for samples derived from the HOMER, cohort. 795 amino acids
were found to be correlated with either of the two phenotypes in non-envelope proteins.
Only 48 were significantly associated with R5- or X4-strains in the subregions of gp120.
However, while only 2 gag-mutations remained significant after correction for multiple
testing, this was found for 5 of the 48 mutations located in the envelope.

We could not identify a clear trend towards mutations in a certain region of gp120 or a
certain protein. Instead, the length of the different regions was fairly highly correlated with
the number of residues significantly associated with phenotype (r = 0.656 for mutations
significant for R5- or X4-viruses before correction for multiple testing and r» = 0.542 for
positions significant after Holm-Bonferroni).

Among the amino acids being significantly associated with R5- or X4-viruses after cor-
rection for multiple testing (see Table 3.7) were some which have been described before.
E.g. it is known that a negatively charged residue at gp120-position 440 (position 22 in
Table 3.7) is correlated with positively charged residues at position 25 of the V3 loop
and thus also with X4-viruses (Rosen et al., 2008). Consequently, it was not especially
surprising to see that a positively charged residue at position 440 (22R) was associated
with R5-viruses. Again, this result has also been described before (Hoffman et al., 2002),
however aside from these two mutations we could not find any other in the literature. The
four mutations found in the gag gene showed very remarkable predictivness for X4-viruses.
58R and 62G were found in more than 50% of the X4-viruses in the Los Alamos dataset but
only in about 18% and 8% of the respective R5-sequences. Especially, the mutation 62G
showed a predictive power which is usually only achieved by the 11/25 mutations of the V3
loop. Considering that the 11/25 rule does not work very well for samples of the HOMER
cohort (see also Sections 3.1 and 3.2) the two gag-mutations in the HOMER dataset also
demonstrated comparable performances. A "46/751"-rule would achieve a sensitivity of
28.4% at a specificity of 90.5% on HOMER-samples. We therefore checked if these 31
X4-sequences had known X4-mutations in the V3 loop but could identify these in only 12
isolates (data not shown).

Within the reverse transcriptase, we found in the Los Alamos dataset lysine and arginine
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Los Alamos HOMER
region # sign. # after H.-B. # sign. # after H.-B.
C1 52 3 N/A N/A
C2 23 0 N/A N/A
C3 42 2 N/A N/A
C4 17 2 N/A N/A
Ch 17 1 N/A N/A
V1 25 0 N/A N/A
V4 21 0 N/A N/A
V5 4 0 N/A N/A
Cla N/A N/A 11 0
Vla N/A N/A 7 0
C2a N/A N/A 8 0
C2b N/A N/A 0 0
C2c N/A N/A 7 2
C3a N/A N/A 0 0
C3b N/A N/A 15 3
PR 11 0 8 0
RT 34 2 15 0
INT 17 0 22 0
gag 140 2 350 2
nef 32 0 310 0
rev-1 6 0 N/A N/A
rev-2 23 0 N/A N/A
RnaseH 11 0 7 0
rre 55 1 N/A N/A
TAR 14 0 N/A N/A
tat-1 9 0 16 0
tat-2 11 0 N/A N/A
vif 39 1 24 0
vpr 7 0 14 0
vpu 59 0 29 0
total 669 (201) 14 (8) 843 (48) 7 (5)

Table 3.6: Numbers of amino acids found to be significantly associated with R5- or X4-
viruses. The numbers in the brackets in the last row depict the numbers of
significant residues in the gp120 regions. Abbreviations: sign.: significant with
p < 0.05; H.-B.: significant after correction for multiple testing with Holm-

Bonferroni.

at position 356 to be correlated with R5- and X4-viruses, respectively. Because we did not
get a similar result in the HOMER cohort (see also Figure 3.13) collected from antiretroviral
naive patients, we first assumed an impact of HAART therapy. However, we could not
find any NRTI or NNRTI resistance associated with these amino acids.
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region aa fRS5 X4 p-value
Los Alamos HIV Sequence Database
C1 23b-nolns. 0.27% 7.61% 3.49-107°
C1 28del 0.81% 9.52% 3.16-107°
C1 29c-nolns. 99.18% 89.52% 8.26- 1076
C3 27nolns. 89.77% 78.52% 0.0002
C3 20K 13.58% 27.60% 6.83-107°
C4 22F 10.40% 26.87% 1.05-1076
C4 22R 26.80% 8.75% 6.57 - 1077
C5 25L 7.15% 18.54% 0.0004
gag 58R 17.94% 65.38% 1.27-107°
gag 62G 7.69% 57.69% 4.11-107"
RT 356K 71.87% 28.57% 1.27-107°
RT 356R 27.34% 71.42% 4.11-1077
vif 22K 19.64% 54.28% 0.0001
Ire 95V 0.00% 5.17% 0.0001
HOMER

C2c 75M 0.23% 7.14% 0.0001
C2c 75V 91.82% 77.38% 0.0003
C3b 26K 16.37% 41.81% 7.69-107°
C3b 26N 79.71% 49.09% 6.54 - 1076
C3b 27Q 60.49% 30.90% 8.78-107°
gag 461 6.48% 21.10% 8.60-106
gag 751 4.26% 15.59% 5.45-107°

Table 3.7: Genotype-phenotype pairs of different regions significantly associated with core-
ceptor usage after correction for multiple testing. Numbering according to
HXB2. Position numbers of C2¢ and C3b are with respect to the usual re-
gions C2, and C3. Abbreviations: aa = amino acid with position, fR5 / fX/
= frequency of occurring in R5- and X4-viruses, respectively, a/b/c = mutual
insertions after the displayed HXB2-position, nolns. = no insertion, del =
deletion

Comparison between clonal and clinically derived samples What sticks out is that both
on clonal as well as on clinically derived data many mutations with an uncorrected p-
value of less than 5% were found in the gag gene. Furthermore, after adjusting for multiple
testing, in both cases two amino acids remained signficant. However, upon closer inspection
of these residues we had to see that, first, they differed, and second, substitutions significant
in one dataset did not show a substantial trend toward the same coreceptor in the other
dataset (see Table 3.7).

Figure 3.13 shows the frequencies of the significant amino acids in the two datasets.
Green points mark the frequencies within R5-samples whereas the frequencies in X4-viruses
are shown in red. The x-axis depicts the frequency of a substitution in the Los Alamos
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Figure 3.13: Frequencies of significant mutations within the two datasets Los Alamos and
HOMER. Red points depict the frequencies in X4-viruses, green points the
ones in R5-viruses. Different symbols were used to discriminate individual
regions.

dataset while the frequency of this amino acid in the HOMER, dataset is described by
the y-axis. Only proteins for which data in both datasets was available are shown. One
can see that the frequencies within X4-viruses are in good agreement between the two

datasets (r? = 0.914), however the frequencies in the corresponding R5-isolates differed
substantially (72 = 0.019).

Differences in individual parameters

In total, 64 features were significantly different between phenotypes before correction for
multiple testing. 16 of these remained significant after correcting with the Holm-Bonferroni
method. Among these were 6 derived from the Los Alamos dataset and 10 from the clinical
dataset (see Table 3.8). A bit surprisingly, only eight of the sixteen properties were located
in the envelope protein.

As already seen when analyzing specific amino acids, the most pronounced differences
were found in the gag-protein of samples derived from the Los Alamos HIV Sequence
Database. There, the number of polar residues differed by four, on average. However, as
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region feature mean in R5 mean in X4 p-value
gag polar 263.85 267.96 4.49-107°
C2c (HOMER) # glyc.sites 1.71 1.91 1.00- 1074
C3 negative 5.53 5.15 0.0003
Cla (HOMER) tiny 241 2.95 0.0006
rre tiny 26.94 26.25 0.0008
TAR small 11.92 12.89 0.0008
C3b (HOMER) positive 5.92 6.49 0.0017
vpr (HOMER) length 95.55 95.82 0.0019
C2a (HOMER) charged 4.19 4.56 0.0024
C3a (HOMER) proline 0.02 0.00 0.0025
vpu (HOMER) charged 24.94 25.43 0.0026
C3b (HOMER) # glyc.sites 2.11 1.78 0.0027
C3b (HOMER) charged 9.67 10.34 0.0029
INT tiny 61.60 60.68 0.0033
V1 hydrophobic 12.30 13.38 0.0037
vpu (HOMER) negative 14.04 14.48 0.0042

Table 3.8: Features significantly different between R5- and X4-samples after correction with
Holm-Bonferroni.

already encountered before, results from one dataset could not be reproduced on the other
dataset. No feature tested for difference in the HOMER, cohort proved to be significantly
different in the gag protein. Similarly, of the 16 properties found to significantly different
after correction for multiple testing were 5 associated with the conserved region 3. However,
while in the clonal dataset, the number of negatively charged residues was correlated with
phenotype, this result could not be replicated on the clinical dataset.

3.3.3 Discussion

In this brief analysis, we have shown that there are amino acids associated with HIV-1
coreceptor usage in other regions than V2, V3, and gp4l. We not only found residues in
the envelope protein gpl20 to be correlated with R5- and X4-viruses but also mutations
in the polymerase, the gag gene, and the regulatory proteins. However, due to the lack of
data one should not overemphasize our results but consider them with care. They may be
valuable resources for more focused experiments or when more data becomes available.

The Holm-Bonferroni method used for correction for multiple testing discarded around
99% of the residues found to be significant for a phenotype. This might be a bit too
conservative so that one should think about using a better method in the future. On the
other hand, when testing data from the V3 loop and gp41 we found several mutations that
remained significant after correction for multiple testing despite the fact that we used the
even more conservative Benjamini-Hochberg method. Thus, we can assume that correction
for multiple testing is not a substantial problem in this analysis.

For the V3 loop, 54 residues were associated with tropism after using Holm-Bonferroni
indicating that multiple testing has not discarded too many features.
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What was apparent was the high correlation of amino acids or other properties of the
gag protein with tropism. Although neither of these mutations could be confirmed when
using data from the other the dataset, one should not neglect them completely. Instead,
because gag encodes for the structural proteins being in contact with the envelope proteins
gpl20 and gp4l a link between tropism defining mutations in proteins binding to each
other would not be completely surprising. Therefore, more detailed analysis of this gene
should be done in the future when more data becomes available.

Unfortunately, when comparing our results on the two datasets used for analysis, we
could not find good agreements. Instead, while the frequencies of amino acids significantly
associated with coreceptor usage were highly correlated in X4-viruses, there were major
differences between the Rb5-isolates of the Los Alamos dataset and the HOMER cohort.
This is especially regrettable because about 85% of the patients in the HOMER, cohort
harbored R5-viruses indicating that there is a major difference between the sequences
in these two datasets (see also Section 5.4). If these differences are due to exposure to
antiretroviral drugs of the isolates in the Los Alamos HIV Sequence Database or because
of other reasons remained unclear. Another possible bias between the two datasets might
be the different prevalences of subtypes they contain. While the Los Alamos dataset
omprises a diverse set of subtypes, almost all samples from the HOMER, cohort are from
subtype B viruses.

The obvious differences between the two datasets refrained us from incorporating any
mutation found to be significantly associated with coreceptor usage in this analysis into
a prediction system. Nevertheless, we still think that it makes sense to monitor all HIV-
proteins for associations with phenotype in the future because they might indicate an
evolution of the viruses towards X4. With more data becoming available one might also
understand and resolve the differences between the two datasets used here (see also Section
5.4). Understanding the differences might lead to a better confidence in the amino acids
found to be significant in this analysis and eventually lead to their final incorporation into
coreceptor usage prediction tools.






4 Massively Parallel Sequencing in the Realm
of HIV-1 Coreceptor Usage

Massively parallel sequencing, sometimes also referred to as ultra-deep sequencing, is a
method in which as its name already says lots of molecules can be sequenced in parallel. It
facilitates sequencing millions of viruses from a single plasma sample affording to a more
detailed picture of the viral quasispecies and its minor variants. When the technology
became available, many people thought that it would solve most questions regarding evo-
lution of HIV-1 and prediction of resistance or coreceptor tropism. Patients failing under
HAART were often thought to have minor resistance mutations at the start of therapy
that were previously undiscovered with standard Sanger sequencing technologies. These
should be demasked with this new powerful technology such that a more effective drug
regimen could be selected for these patients. In the realm of coreceptor usage prediction,
the hope and expectations were even higher. This was mainly because prediction systems
inferring tropism from genotype worked very well with clonal samples, but relatively poorly
when tested on real clinical isolates. It was assumed that the reason for this were mainly
minor populations being much more important than for HIV drug resistance. Why minor
variants should be more important here than in the case of drugs targeting protease or
reverse transcriptase, is of course a good question. One logical answer is that the envelope
protein is much more variable both between different patients and within a single patient
than the traditional drug targets derived from the pol gene.

While virologists had high hopes they had soon to encounter a major problem with this
new sequencing approach: they simply generate too much data to analyze it easily. Just
to give an impression about how things changed in recent years: At the beginning of this
thesis we had a database of 1,100 genotype-phenotype pairs. Nowadays, with the help of
ultra-deep sequencing we can generate up to 1.2 million sequences in one sequencing run
from a single patient sample. It is therefore obvious that bioinformatics has become much
more important and is currently one of the main bottlenecks in this field.

Within this chapter, we will first give a short introduction into the 454-technology (Sec-
tion 4.1). There are two reasons for concentrating on this technology: first of all, because
it is the only one we got data from, so far, and second because the 454-machine is capable
of sequencing longer reads which span all of the V3 loop thus do not have to be assembled.
This is more easily to handle and allows for inspecting on haplotide data directly. Following
this introduction, some technological issues when dealing with ultra deep sequencing data
will be discussed (Section 4.2). Thereafter, we will present how we can improve prediction
of coreceptor tropism with this new technology (Section 4.3). And last but not least, we
will describe the web-server we have set up to predict HIV-1 tropism from 454 sequence
data (Section 4.4).

7
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4.1 The Genome Sequencer FLX from 454 Life Sciences

The Genome Sequencer FLX is a next generation sequencing platform commercialized by
454 Life Sciences (Branford, CT, USA). High-throughput DNA sequencing is achieved
using a novel massively parallel sequencing-by-synthesis approach.

The original GS FLX system has a throughput of 100 million base pairs and an average
read length of more than 240 bases. In October 2008 , 454 released the Genome Sequencer
FLX Titanium Series reagents featuring 1 million reads with an average length of 400 base
pairs.

In total, 400-600 million bases can be sequenced in a 10-hour run. However, in order to
reduce the high costs of an individual run, one can use molecular barcodes termed multi-
plex identifiers (MIDs). These are used to specifically tag samples with a unique sequence
(barcode) at the start of each read. After the run, the reads can be sorted to the different
samples by searching for the respective barcodes.

A 454-run is composed of four steps:

1. the generation of a single-stranded template DNA library (not applicable in amplicon
sequencing)

2. the emulsion PCR
3. the sequencing-by-synthesis step, and
4. the data analysis

In the following these will be described in more detail.

DNA library preparation Genomic DNA is fractionated into smaller fragments of about
300- to 800-base pairs. Short adapters (A and B, fusion primers in case of amplicon se-
quencing) of 44 bases are then ligated onto the ends of these fragments. These adapters,
specific for both the 3’ and 5 ends, are composed of a 20-base PCR primer, a 20-base
sequencing primer, and a 4-base key sequence which is used for read identification, signal
normalization, and quality assessment. Adaptor B contains a 5’-biotin tag for immobiliza-
tion onto streptavidin-coated beads.

Emulsion-based clonal amplification In the first step of the emulsion PCR (emPCR),
the library material is mixed at limited dilution with beads carrying one of the adapter
primers on its surface in a water-in-oil emulsion. Because of the limited dilution of the
library material, only single DNA molecules will bind to a single bead. The DNA molecules
bound to the streptavidin beads are emulsified with the amplification reagents in a water-
in-oil mixture.

Each bead is then encapsulated together with PCR primers, nucleotides, and polymerase
into individual droplets forming their own microreactor in which parallel DNA amplifica-
tions are performed with normal thermal cycling. Because PCR, amplification of a specific
fragment occurs only in its specific oil droplet, the DNA fragments are clonally amplified
so that in the end several million identical copies of the single-molecule DNA template are
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Figure 4.1: Different steps of DNA library preparation and emulsion PCR. Genomic DNA is
first isolated, fragmented and ligated to adapters. Fragments are then bound to
beads under conditions that favor one fragment per bead. The beads are encap-
sulated in the droplets of a PCR~reaction-mixture-in-oil emulsion and amplified
so that each bead is carrying millions of copies of a unique DNA template. Fig-
ure derived from http://454.com /products-solutions /how-it-works/index.asp.

bound to each bead. Finally, the emulsion is broken and the template-carrying beads are
enriched using magnetic streptavidin beads that select for biotin-containing beads.

Sequencing-by-synthesis The enriched template-carrying beads are layered onto a pi-
cotiter plate and centrifuged to deposit the beads into the wells. The wells are then
overlaid with a mixture of smaller beads that carry immobilized ATP sulphurylase and
luciferase necessary to generate light from free pyrophosphate. These create the individual
sequencing reactors.

ACGTGGGCCTATAGCTACTCGGACACCTACGCATATCGCCCG

CTATAGCGGGC
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Oxyluciferin Iuci?erin
+
light

Figure 4.2: Principle of sequencing-by-synthesis. Upon incorporation of one or more nu-
cleotides, pyrophosphate is generated (PF;) and converted to ATP by sulphury-
lase. ATP drives the oxidation of luciferin by luciferase so that light is emitted
which can then be measured with a CCD camera. Figure from (Rothberg and
Leamon, 2008) with kind permission from Nature Publishing Group.

For sequencing, nucleotides are flown across the picotiter plate sequentially in a fixed
order. DNA synthesis is carried out in real time in each well and positive incorporation of
one or more nucleotides at a given flow of a particular nucleotide generates pyrophosphate.
This is converted to ATP by sulphurylase and subsequently drives the oxidation of luciferin
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by luciferase (see also Figure 4.2). As a consequence, light is emitted and captured by a
charge-coupled device (CCD) sensor. The light intensity is proportional to the number
of bases incorporated into the strand. After a flow of each nucleotide, a washing step is
done to ensure that nucleotides do not remain in any well before the next nucleotide is
introduced.

Data analysis After the sequencing run, the raw signals are background-subtracted, nor-
malized and corrected. Normalization is performed using the 4-base key sequence at the
start of each read. For a particular well, the normalized signal intensities indicate the
number of nucleotides, if any, that were incorporated at each nucleotide flow. These can
be displayed in a flowgram (see Figure 4.3).

4-mer

3-mer

2-mer

[t et m st o s s 0 s e e S S S e S S e S e S e S e 0 S e 7 e e e e s R e % e e e
1010010100211202100 10100100 11 1001 1040010 L00L0L 110020 100 10032100 10010100 20202 220101020101 1002210 100L0Z 010100 1001102010010 111102
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Figure 4.3: Flowgram of one read in a 454-sequencing run. Each column represents
the signal intensities from a nucleotide flowed over the picotiter plate.
The first four bases depict the key sequence (TCAG here), used to iden-
tify wells containing a DNA-carrying bead and for normalization. De-
rived from http://www.454.com /products-solutions /how-it-works /sequencing-

chemistry.asp.

The light intensity is usually proportional to the number of bases incorporated into
the strand. However, due to leftover nucleotides in a well or to incomplete extension,
synchronism can get lost among the templates of a bead. This leads to sequencing errors
predominantly appearing in homopolymer nucleotide stretches. Data is stored in standard
flowgram format (SFF) files for further downstream analysis.


http://www.454.com/products-solutions/how-it-works/sequencing-chemistry.asp
http://www.454.com/products-solutions/how-it-works/sequencing-chemistry.asp

4.2 Technological Aspects when Dealing with Massively Parallel Sequencing Data
81

4.2 Technological Aspects when Dealing with Massively Parallel
Sequencing Data

4.2.1 Dealing with the Amount of Data

The amount of data generated by the next generation sequencers raises several problems.
First of all, storage can become an issue over time. While raw-graphic files containing
gigabytes of data per run are usually not stored, this is not necessarily true for the standard-
flowgram-files (sff-files) that have around 300Mb per run. To save space, these files should
be further split into fasta-like (fna) files and quality (qual) files. In some cases (e.g.
assemblies), the quality values are needed, however, for most analyses in the realm of this
work they can simply be deleted. One can use the quality scores to better detect sequencing
errors, but the bioinformatics task is usually tough enough already so that we focus on
other aspects of the analysis. Although the resulting fna-files can still be around 50Mb per
run, this should be a minor issue in times of cheap hard-disc space. If not, one can use
compression algorithms like zip to reduce the required disc space.

The real problems begin when processing the data locally and with web-tools. There are
several computational bottlenecks and problems when sending the data over the internet.
The computational costs can become very impressive: suppose we have a titanium run with
an average read-length of 500 base pairs and 1.2 million reads generated. We want to align
all reads against a reference sequence of length 300. Using standard pairwise alignment
methods, we would compute 500 times 300 matrix-entries per alignment. That would be
(just for the loops) 1.2mio - 1.2mio computations - even in times of dual-core processors a
very large number.

It is relatively easy to reduce this amount of computation and probably most people will
immediately find the same or similar solutions as we will describe here. There are also
more and more implementations becoming available which can deal with next generation
sequencing data. Unfortunately, these do not necessarily fit always to the problem at
hand and at the time we started working with this kind of data only a few of them were
available. Therefore, for the sake of completeness, several approaches we are working with
are mentioned here. These ideas are surely not the perfect solutions and they will not be
effective for every task. However we think that they are a good starting point when dealing
with this kind of data.

Combining similar variants The simplest idea but certainly also the most often used and
most effective is to combine sequences that are similar. If one has a sample in which 100%
of the reads are the same, one only has to align them once to a reference sequence.

Suppose we have 12 sequences in a sample as shown in the example given in Figure 4.4.
These can be collapsed to four different variants which have to be aligned and processed.
Thus, the computational costs for aligning and processing the 12 sequences would be
reduced by a factor of 3.

However, often we have small deviations between the different viruses even in a highly
conserved population. These can be synonymous nucleotide mutations that will not have
an impact for most analyses and alignments. Hence, a further step is to translate the
sequences and work on the protein instead of the nucleotide level. In our example, the
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AGTACGAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGGTCAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGTAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGGTCAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGTAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGTACGAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGTACGAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGTACGAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGTAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA
AGACGAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA

Figure 4.4: Example for how to reduce the amount of data to be processed.

number of variants can be reduced by combining the last two nucleotide sequences to a
single amino acid variant.

AGTACGAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA 4 times
AGGTCAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA 2 times
AGACGTAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA 3 times
AGACGAAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTA 3 times

Figure 4.5: The 12 sequences given in the example of Figure 4.4 collapsed to four different
variants.

STSLAEEEVVIRS 4 times
RSSLAEEEVVIRS 2 times
RRSLAEEEVVIRS 6 times

Figure 4.6: After translation of the four different variants in Figure 4.5 one can combine
them to three amino acid variants.

Finally, if one knows of highly conserved regions within the reads one is aligning, one
can speed up things once more and sometimes quite drastically. The idea here is to split
the sequences into fragments. E.g. in our example described above, instead of aligning the
whole sequences we could split the sequences into two fragments, one comprising the first
three amino acids, and the other comprising the remaining residues. The latter fragment
is identical in all reads and therefore has to be aligned just once. While we cannot collapse
more variants in the first region, we still saved much computational cost. This is because
we now have a much smaller matrix to fill in the alignment step: 3 times the length of the
reference to be aligned against.

In our example, without pre-processing we would align 12 sequences to a reference. Each
alignment matrix would consist of 39 (the length of our reads) times 39 = 1521 entries (just
for simplicity we suppose the same length for the reference). Thus, 12 times 1529 matrix
= 18348 entries would have to be computed in total. When applying the aforementioned
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STS 4 times
RSS 2 times
RRS 6 times

LAEEEVVIRS 12 times

Figure 4.7: Splitting the amino acid sequences into conserved and variable parts can reduce
the computational costs once more. In the example of Figure 4.6, all variants
only different in the first three residues. The remaining residues only have to
be aligned once.

approaches, we could first translate the sequences and combine them to similar variants
resulting in three different amino acid sequences. We would then split these into three
different variants (STS, RSS, and RRS) of three amino acids and one variant comprising
10 residues (LAEEEVVIRS). Finally, we would align these four variants to the respective
reference sequences, i.e. three times compute the scores in a matrix of 3 -3 = 9 entries
and once with a matrix containing 10 - 10 = 100 entries. In total, we have to compute just
3-9+1-100 = 127 matrix entries which is more than a factor of 100 won in comparison
to computing 18348 when performing no pre-processing.

Unfortunately, while this approach can be very effective, it is not always easy to imple-
ment. This is mainly due to the fact that we have to know the conserved regions and have
to find them before computing the alignment. Although this sounds easy it is unfortu-
nately often not so. However, the longer the reads are and the longer the conserved region
is, the more time can be saved and the more interesting this approach becomes.

Last but not least, we might not be interested in the full sequences but only in parts
of them. We then can further trim the sequences to 1) increase the probability of finding
unique variants, and 2) reduce the alignment matrix.

Of note, these approaches work very well when analyzing amplicon data but they are
rather inefficient when performing shotgun sequencing where the individual reads are very
diverse.

Improving alignment efficiency The alignment used for GENO2PHENO|CORECEPTOR| is
based on a sequence-to-profile alignment taking amino acid sequences as input. The reason
for using amino acid instead of nucleotide sequences as well as using a sequence-to-profile
alignment instead of a pairwise alignment against a reference strain is the high variability
of almost all positions in the V3 loop. A good example for this problem is the V3 loop of
HXB2, a strain that usually is taken as reference. In comparison to the consensus sequence
of subtype B, this strain has a double insertion after position 14 and a deletion at position
26 of the loop. CLUSTALW (Thompson et al., 1994) aligns these two sequences as follows:

CONSENSUS B CTRPNNNTRKSIHI--GPGRAFYTTGEIIGDIRQAHC
HXB2 CTRPNNNTRKRIRIQRGPGRAFVTIGK-IGNMRQAHC

Obviously, the alignment makes sense. The insertion is correct and the lysine is aligned
to position 25 of the consensus sequence whereas the first isoleucine is deleted. One could
also think about aligning the lysine against the first isoleucine and shifting the deletion to
position 25, but this does not make sense in the realm of HIV-1 V3 loops in which position
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25 is very crucial. While this position almost always displays a charged residue, position
26 is very hydrophobic. Moreover, a positively charged residue is a clear indicator of an
X4-virus.

Unfortunately, if we replace consensus B with the overall consensus sequence of the V3
loops stored in the Los Alamos HIV Sequence Database, CLUSTALW aligns the lysine
to position 26. The two references differ only marginally and substituting the glutamate
at position 25 by aspartate (the predominant residue at position 25 occurring almost as
often as glutamate at this position in subtype B viruses) would have yielded the same
result. Based on this observation, we know that we have to be very careful when choosing
a reference strain and using a pairwise sequence alignment. On the other hand, if we use
a sequence profile, we can provide lots of information to the alignment procedure which
then easily recognizes that a positively charged residue always (at least for V3 loops with
a length of 35 residues) occurs at position 25 and not at position 26.

CONSENSUS-ALL CTRPNNNTRKSIRI--GPGQAFYATGDIIGDIRQAHC
HXB2 CTRPNNNTRKRIRIQRGPGRAFVTIG-KIGNMRQAHC

While sequence-to-profile alignments guarantee stability they are quite slow because a
query sequence has to be aligned against each sequence in the profile. Since the alignment
is a bottleneck per se when dealing with data generated by massively parallel sequenc-
ing this can become really problematic. To circumvent this problem, we have adapted
the Needleman-Wunsch algorithm to work with sequence profiles. We wanted to reduce
the time complexity and, at the same time, maintain the advantages of a sequence-to-
profile alignment. The basic idea behind this modification is relatively easy: Instead of
aligning against a specific amino acid in the reference, we compute a combined score out
of all amino acids occurring at this position in the profile. We then weight the individ-
ual substitutions by multiplying them with the frequencies of the respective residues at
this position. E.g. if we have a position where amino acid A occurs in 75% of the se-
quences and amino acid B in 25%, we compute the substitution score for amino acid C
as: 5corepos(C) = Dc,a*0.75 4+ D g * 0.25. Because GENO2PHENO|CORECEPTOR| aligns
sequences with ClustalWW using the Gonnet matrix, we decided to use the Gonnet matrix
in this algorithm, too.

The algorithm works as follows:

Input:
Profile P with aligned reference sequences refSeq;, i € 1..n, refSeq; = aa;...aam,
Query sequence seq = S1...Sk

Initialize:
Initialize substitution matrix Bga; aas:

Buay aas = gonnet (aai,aaz) Yaar,aaz € amino acids

Baa,gap =0

Byap,gap =2
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Precompute match matrix Mp,s (aa) as follows:

fpos(aa) = frequency of residue aa at position pos
Mpos (aar) = 3,4, (fpos(aaz) - B(aay, aaz))
Initialize alignment matrix S [¢] [7]:
Sll[j]=0 V1<i<(m+1),2<j<(k+1)
S[i][1] = —10000 V1<i< (m+1)
Initialize backtrace matrix T [i] []:

TH =1 V1<i<(m+1),1<j<(k+1)

Recursion: V1 <i<m, V1<j53<k, do:

valy = S[i] [j] + M; (s;) — gapOpenPenalty - fi(gap) (4.1)

valy = S[i] [j + 1] + T [i] [j + 1] - gapOpenPenalty - (1 — fi(gap))
+ (1 =T[5+ 1]) - gapExtensionPenalty - (1 — fi(gap))
Sli+1][7 + 1] = maz(vali,vals) (4.3)

1 valy > valsy

Thi+1+1= { 0 otherwise

Backtrace:

i=m+1, j=argmax;(Sim+1][j)]
while i > 0 and j > 0:
{ s T - 1,
ti-1 =

gap otherwise
. ) g1 it T|i|[j] = 1,
7= j otherwise

seti=1—1

The following should be noted:

1. If a position in the query-sequence is ambiguous, i.e. the codon can be translated

to several amino acids (e.g. for AAN) then we compute the average match-score
Mpos(codon) of all possible residues for this codon in equation 4.1. In fact, this is
another advantage of our approach because other alignment algorithms are rarely
able to handle nucleotide mixtures.

. We do not compute a score for introducing a gap into the profile because we want
to keep the length of the alignment fixed. In principle, allowing for gaps would be
possible but is currently not desired in GENO2PHENO|CORECEPTOR| as the prediction
is based on a fixed alignment.

. We do not want to start with a gap neither in the sequence nor in the profile.
Therefore we initialize S[é|[1] with —10000. For other alignment problems, one might
think about changing this boundary condition.
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4.2.2 Detecting Sequencing Errors

The second major issue when working with data generated by next-generation sequencers is
provided by sequencing errors and their detection. This topic is much more essential than
one might assume because unusual sequences originate from replication-defective viruses,
sequencing errors, or uncompromised virus sequences that just look strange.

In the past, it was thought that almost all errors coming from the 454-machine are
due to insertion- or deletion-problems in homopolymer regions. In this case, a measured
homopolymer stretch of a specific nucleotide contained one nucleotide more or less than
in the real sequence. This does not sound very complicated to detect and correct for
but unfortunately during this work we had to encounter that there are also insertions
arising from other sources. The question where these inserted single nucleotides come from
still remains unresolved and one can only speculate. Our experiences show that if they
occur in a sequencing run they seem to always happen at the same sites of the sequences.
This suggests that they are related to specific sequence patterns in the context of the
sample. However, so far we could not find such a motif among different samples. Another
explanation could be that something happened in the environment and interfered with the
sequencing run at a specific time. However, such things should happen only rarely and not
in a substantial fraction of the sequencing runs, as we observed in our measurements.

While this topic itself is very interesting it goes beyond the scope of this thesis and
would necessitate more data to analyze. Thus, we only propose some ideas how to detect
and how to resolve such errors.

When dealing with V3 loop data, we compute a score which aims to reflect the probability
that a sequence is not a V3 loop (we call it percentile-score according to the similar measure
calculated by the WEBPSSM-website). This score is calculated as follows:

1. align the sequence against the reference profile

2. go through the aligned sequence, for each position compute:

dpos = Z fpos (aa) - D (aa, seq [pos]) (4.5)
aacacids
where fpos(aa) is the frequency of amino acid aa at position pos in the reference
profile, and the D(aaj,aaz) is the substitution score of replacing aa; by aaz. We
used the Gonnet matrix for this because it was also used in our alignment algorithm.
We further added the following entries to the matrix:

D(aay, stop — codon) = min (D (aa1,aag)), aas € acids (4.6)

and
D(aar, gap) = 0 (4.7)

The substitution score for a stop-codon was set to the lowest substitution score of
that amino acid because it should not appear in the V3 loop. On the other hand,
we did not set it to a highly negative number because a stop-codon might appear in
an ambigue position (e.g. TAN encoding for either a stop-codon or a tyrosine). In
such a case the stop-codon would affect the V3 score too much. With regards to the
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substitution score of a gap we decided to use a neutral value because insertions and
deletions occur relatively frequently in the V3 loop.

3. compute the V3 score:
V3score = Z dpos (4.8)

pos

4. transform the V3-score to a percentile-score. We have computed the V3-score for a
large number (> 100.000) V3-sequences and used the distribution of these scores to
derive the probability of being V3 or not.

While working with V3-sequence data is an area in which we have a lot of experience
and where we can easily built up such reference datasets, this does not have to apply to
every type of data and group. Especially when dealing with a set of different regions the
described strategy can become very complex. In the PRIUS-1 (Codoner et al., submitted)
study in which we analyzed pol-sequences for resistance mutations, we had to deal with
data generated with 11 forward and reverse primers, respectively. Thus, we would have
had to build up 22 reference datasets and profiles. This is still manageable but one can
see that this way of dealing with the data is certainly not the best. We wanted to reduce
the work for the researcher as much as possible.

Therefore, we aligned the reads against the corresponding fragment of the reference
virus HXB2 rather than a set of different sequences. "Corresponding fragment" means
in this case that the fragment starts at the same position as the respective primer and
has roughly the same length. Subsequently we computed the similarity between the two
fragments and discarded reads with a similarity below a certain threshold (e.g. 90% or
65%). However, dissimilarity to the reference HXB2 can be due to actual mutations as
well as sequencing errors and is highly dependent on the length of the reference. If the
corresponding fragment is too long the aligned read will contain a lot of gaps at the end
and therefore have a lower similarity score. Hence, we did not compute the similarity
against the aligned HXB2 sequence but replaced that sequence with the consensus of the
aligned reads. In addition, we only took positions into account which were covered by at
least 90% of the reads. This led to a normalization of the similarity scores and allowed for
setting up a global similarity threshold of 90%.

The effect of this normalization can be seen in Figure 4.8. Every plot was generated from
a single primer-region. The plots show the ordered similarity scores of all reads in all isolates
in the analysis. Figures 4.8 A and B depict the similarities against HXB2 while Figures 4.8
C and D show the similarities against the consensus of each isolate. By inspecting a specific
plot one can easily think of using the inflection point of the curvature as the threshold to
be used. E.g. for forward primer 1 we would set it to about 0.65 while for forward primer
9 we would choose 0.9. One can also derive these cutoffs automatically, however different
thresholds for different regions are always problematic to defend. Furthermore, we would
like to have the thresholds already before the analysis and not only afterwards. In addition,
there is a clear difference between the shapes of these two "curves". This comes from the
different patient isolates. For primer 1 there seems to be more diversity among the isolates
than for primer 9. The plot of primer 1 suggests that there are isolates where the similarity
of the consensus is already below 0.8 while the consensus of other isolates is more similar
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to HXB2. This implies that viruses of one isolate have to be mutated much more to get
filtered out than others. If we now have a look at Figures 4.8 C and D, we can see that a
universal threshold of 90% is a useful threshold for all primers and directions. To improve
this once more, one can of course use techniques that derive the inflection point of the
curvature automatically.

4.2.3 Dealing with Sequencing Errors

When we have found sequences with mutual sequencing errors, how should we deal with
them? Usually, we discard these reads from further analysis. Unfortunately, there are
sequencing runs in which more than 50% of the reads have frame-shift errors due to single-
base insertions or deletions. In such a case one might think about fizing these errors.
While we cannot be sure that these indels arose from a problem during sequencing, we can
decide safely if they are lying before or after a homopolymer stretch. Hence, if one really
wants to fix and use these reads, we propose the following work flow which we used in a
project dealing with HIV-sequence data covering the polymerase:

Align the nucleotide sequences to a related reference, at best to the bulk sequence of
the isolate. We propose the bulk sequence because it should be very similar to most
of the reads.

Go through the codons of the reference sequence and analyze their alignment. Several
cases can occur, deal with them as follows:

1. There are no gaps, neither in the reference nor in the read: Do nothing and
analyze the next codon

2. The codon covers three positions in the alignment and the query part of the
alignment contains one gap: there might be a deletion due to a homopolymer
stretch. Therefore, if this gap is preceded or succeeded by a homopolymer
stretch, then change the gap to the respective nucleotide of the homopolymer
stretch. Otherwise, change the whole codon to a new state ?¢%.

3. The codon covers three positions in the alignment and the query part of the
alignment contains two gaps: change the whole codon to #7%.

4. The codon covers three positions in the alignment and the query part of the
alignment contains three gaps: This indicates a "normal" codon deletion, leave
it as it is.

5. The reference codon contains one gap: The nucleotide insertion might arise from
a problem with a homopolymer stretch: If the nucleotide in the query sequence
at the position of the gap is succeeded or preceded by a homopolymer stretch of

the same nucleotide, then delete this nucleotide. Otherwise change the codon
to 222

6. The reference codon contains two or more gaps: change the query codon to #7%.

7. If there are gaps between two reference codons: if their number is dividable by
three, then leave it as it is, otherwise change the query part to ¢’s and add
additional ¢ until their number is dividable by three.
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The different correction rules are shown in the example given below:

reference: GCA|GGG|T-TA|-|GGG|-|CCC|---|GA--A|T-GG|GGG|CCC|TGT|TTT
query: GC- |GGG | TCTA|G|GGG|A|CCC|CCC|GAGAG|TGGG|GGG|---|--T|TTT
rules: 2 1 5 7T 1 7 1 7 6 5 1 4 3 1

Figure 4.9: Alignment of a read against the reference sequence before error correction. The
|’s denote the codon-boundaries in the reference sequence. The described rules
to be used are shown, too.

After applying the rules described before, the corrected alignment looks like this:

reference: GCA|GGG|TTA|GGG|---|CCC|---|GAA|TGG|GGG|CCC|TGT|TTT
corrected query:  GCG|GGG|??7|GGG|??7|CCC|ICCC|??7|TGG|GGG|---1??7|TTT

Figure 4.10: The alignment after error correction. ¢?¢ denote codons which are flagged
suspicious and which should not be analyzed further.

Codons with triple question marks can then be either used to filter out reads or translated
to an amino acid ? indicating that this position of the read should not be further analyzed.
While for coreceptor usage prediction this would make no sense because all positions of
the V3 loop are used in the prediction system, in other cases one might be happy with this
approach because one is not interested in all positions and can still use the other positions
of the read.

Of course, this is a problematic solution and should only be used if too many reads
would be discarded otherwise. The approach is error-prone and there might be several
cases where it will fail. The first residues in the described example are actually for a case
which really occurred in one of our works and where our approach failed. The reason is
that if we had aligned the query against the reference without introducing any gaps this
would have led to the same three amino acids AGL at the start of both reference, and
query. By applying our approach on the other side, we would have "corrected" to AG?.

Hence, one should add additional checks to this procedure. We added the following;:

1. if an insertion or deletion is changed then first check if the resulting amino acid occurs
in a reference database with a specific frequency

2. before doing this analysis check if the inserted gaps are really necessary: go through
the alignment, if you find a gap then search for the next position containing a gap
in either the query or the reference. If both gaps are in the same sequence then
take the second gap-position and repeat, otherwise: check if the removal of these two
gaps would yield a query fragment where the translation can be found in a reference
database. If so, then remove both gaps and search for the next gap position.

Last but not least, one has to define what a homopolymer stretch means. We used three
consecutive nucleotides but four or five would also have been possible.
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4.2.4 On the Presentation of 454-results

Massively parallel sequencing generates impressive amounts of data. While the properties
of the technique are remarkable, one also has to think about how to present the results.
On the one hand, we want to sequence as many viral strains as possible and want to give
a detailed picture of the viral quasispecies, on the other hand we do not want to return
thousands of prediction scores that only confuse people. Instead, we want to explain our
results in as few numbers as possible. Obviously, the combination of these two demands
can become a bit problematic. When inferring viral tropism or drug resistance from bulk
genotype, we obtain a single prediction per sample. When we give the prediction methods
thousands of sequences, we will of course also get back thousands of predictions. But how
do we handle this? The easiest way is to look at the worst case: e.g. is any of the viruses
predicted to be an X4-virus, or what is the highest resistance factor? Unfortunately, we
will almost always get back the answer that at least one variant is resistant or an X4-virus
but we do not know if this is clinically relevant. Can we infer from one single sequence
that treatment with a drug will fail? Probably not. Moreover, one should also not forget
that there might be sequencing errors not detected by our quality filters and that such a
resistant strain could arise from an undetected sequencing error. Thus, we propose that
one should at least calculate the percentage of viruses being e.g. resistant. When dealing
with viral tropism predictions a second issue comes to mind: GENO2PHENO|CORECEPTOR|
computes a false-positive rate (FPR) displaying the probability of classifying a virus falsely
as an X4-virus. Instead of giving back a binary prediction result "R5" or "X4", the system
returns the FPR allowing the user to set the confidence level on his own. E.g. if one is
willing to predict every tenth R5-virus falsely to be X4, one uses an FPR-cutoff of 10%. All
sequences with a predicted FPR of less than 10% will then be classified to be X4 whereas
sequences with FPRs above 10% will be regarded to be R5. The problem is that different
groups use different thresholds to separate R5- from X4-viruses. Even within a specific
lab, different cutoffs are used. This is because e.g. if a patient has no other drug options,
the clinician will perhaps take a higher risk than for a patient who is under a successful
drug regimen but who wants to change the drug due to severe side effects. Based on
these thoughts, we compute the percentages of predicted X4-viruses at different cutoffs
(see Figure 4.11).

The drawback of this approach is that very similar isolates can look totally different.
Suppose we have an isolate sequenced for which GENO2PHENO|CORECEPTOR| predicts
almost all strains to be X4 with an FPR of 10.1% and a second sample from a different
patient for which almost all sequences were predicted to be X4 with an FPR of 9.9%. If
we used the default 10%-FPR cutoff of GENO2PHENO|CORECEPTOR/, we would classify all
sequences with a predicted FPR of 10.1% to be R5 and the strains with an FPR of 9.9% to
be X4. Thus, in case of the first patient almost all sequences would be predicted to be R5
whereas in case of the second patient we would have almost only X4 predictions. Based on
these results, we would refrain the second patient from a therapy containing a coreceptor
antagonist, but not the other. This might be right and at a certain point we will have to
make a decision where to set a cutoff, however, we would like to give the virologist a better
feeling of what the viral quasispecies looks like.

As we said before, we want to describe the viral population in as detailed fashion as
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Figure 4.11: Example for a prediction report from a 454-sequencing run. The bars show
the frequencies of viruses predicted to be X4 at different FPR-cutoffs of
GENO2PHENO[CORECEPTOR)].
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Figure 4.12: Example for a prediction report from a 454-sequencing run. Each point in the
chart displays the prediction score for one individual read. The higher the
score, the more probable the sequence encodes for an X4-virus. The patient
samples is the same as in Figure 4.11.

possible. Thus, we computed the amount of predicted X4-viruses for all possible FPR-
cutoffs as follows: we sorted the computed prediction scores and displayed them in a plot
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(see Figure 4.12). One can now easily set his own cutoff and infer how many viruses are
predicted to be X4. Moreover, one gets a feeling how the viral population is built up: e.g.
do we have one major strain or two?

Population Dynamics

While the described results are quite intuitive and helpful for making treatment decisions
on whether to administer a coreceptor antagonist or not, they lack some information one
is sometimes also interested in: do the populations of two isolates (e.g. from different time
points) differ or not (e.g. has the population evolved between two time points). We have
tried to solve this problem by generating a landscape of the viral population.

On the x-axis we show the predicted FPR, while the y-axis shows how similar the
sequence is with regard to a reference dataset. For this purpose we use the alignment score
described above. If two sequences are very different, these scores are usually also very
different, whereas quite similar scores usually arise from similar sequences. The z-axis of
the plot describes how frequent a specific variant appeared in the viral population.

The landscape is smoothed as follows:
1 .
z(x,y) = N zv: N, - efé(mffprScorev) . 67%(y7(zlzgnment5cm~ev) (4.9)

where N, is the number of reads of a given variant v and N = > N, the total number
of reads of this sample, fprScore, refers to as the predicted FPR of variant v, whereas
alignmentScore, is the corresponding alignment-score of this V3 loop.

Figure 4.13 depicts such a representation of a viral quasispecies. One can easily identify
two major strains that are quite similar at the sequence level (V3 alignment score of about
145) but with different FPRs (14.7% vs. 38.1%). Furthermore, two minor strains can be
seen, one in between the two major strains and one with a lower FPR of about 6%.

We can use these plots to get an overview of the viral population. When we want to
compare two isolates we can simply incorporate the two plots into an animation or compute
the difference between them (see Figure 4.14). With the latter we can see the shifts in
the viral population from one isolate to the other quite easily. In the given example, the
different variants of Figure 4.13 have all vanished (deep blue and negative z-values) and
been replaced by a new major strain (red and positive z-values) that is very likely an
X4-virus.

Electropherograms Revisited

In addition to the reports on coreceptor usage prediction, we have also tried to compare the
output of the 454-machine with the electropherograms generated by conventional Sanger
sequencing. There were two main reasons for doing this: First, we wanted to check how
reliable the generated data really is. As mentioned before, the GS FLX system gener-
ates sequencing errors, mainly in the neighborhood of homopolymer stretches. If specific
unusual nucleotide mutations occur in most reads of a sequencing run, one could check
them by comparing with the bulk sequence. Another reason was that we wanted to get
an impression how sensitive Sanger sequencing really is. Often, one refers to it as having
a sensitivity of 15-20% but it is not clear how reliable this assumption is. Furthermore,
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Figure 4.13: Representation of a viral quasispecies. The x-axis displays the alignment score
of a virus, the y-axis the predicted false-positive rate while the z-axis describes
how prevalent these viruses were in the population.

there could be different sensitivity levels dependent on the diversity of the viral population.
E.g. if 4 different viruses have a prevalence of 5% each and carry the same mutation X,
do we see this mutation in an electropherogram or do we only see it if a single strain has
a prevalence of 15-20%7?

The way we transformed the 454-data into an "electropherogram" was straightforward.
For every nucleotide (A,C,G,T) we counted how often it appeared at the different positions
within all reads that were subjected to be of V3.

Npos(nt) Vpos,nt € (A,C,G,T)

We then used a Gaussian function to form

t (z 03)2
f(z,nt) = Z \1728_7; e 2

with ¢ = 0.25. Finally we can plot this and compare it visually with a real electrophero-
gram (see Figures 4.15 and 4.16).
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Figure 4.14: Evolution of the viral quasispecies from one time point to another.

When comparing the two plots one can see the similarities quite easily. E.g. at amino
acid positions 8 and 9, both representations display nucleotide mixtures. The same holds
for the middle part of the loop and amino acid position 34 in which a G and a T occur in
about 50% of the samples, respectively.

The main difference which can be found is that in Figure 4.16, the peaks always sum up
to the same height whereas they vary in Figure 4.15. However, it is known that the absolute
peak heights in electropherograms vary and that they are context-dependent. We therefore
further wanted to compare the relative peak heights with each other in order to see if the
quantities of detected minor variants are similar. At every position we summed up the peak
heights of the four nucleotides and calculated which proportion of the total peak height each
nucleotide reached. Figure 4.17 shows a comparison of the same sample. Unfortunately, we
do not have enough data for a more detailed analysis, yet. However, preliminary analysis
of this sample and 10 others suggest that there is a substantial correlation between relative
peak heights in Sanger sequencing traces and the quantity with which a nucleotide is
detected in a 454 run.

The results of such a more detailed analysis might also be useful for developing more
sophisticated sequence trace read-out approaches for population-based sequencing. Sup-
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Figure 4.15: Electropherogram of the patient sample used also in Figure 4.11. The different
curves denote the different nucleotides: green = A, blue = C, black = G, red
=T.
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Figure 4.16: Generated "electropherogram" from the 454-reads used also in Figure 4.11.
Only the V3 loop is shown, the sequence displayed below is just one possible
variant. The different curves mark the different nucleotides: green = A, blue

= C, black = G, red = T.

pose we have a codon with mixed nucleotides. At each position we have a high peak (e.g.
a G) covering about 80% of the total size and a minor peak (e.g. an A) with about 20%
of the total peak height. Currently, we get only the information that there is a mixture
G/A at each positon in the codon and therefore translate this codon into all combinations
from these nucleotides: AAA, AAG, AGA, AGG, GAA, GAG, GGA, GGG. This yields
the amino acids glycine, lysine, glutamic acid, and arginine. On the other hand, if we
could show that the relative peak heights are really displaying how frequently the different
nucleotides appear in the viral quasispecies, we might argue that we have two viral variants
in our example. One variant displaying a GGG codon at this position which encodes for a
glycine, whereas the other variant would consist of a AAA codon encoding for a lysine. The
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two additional residues (glutamic acid and arginine) we are dealing with at the moment

might affect the prediction of coreceptor usage negatively so that the information of the

relative peak heights would help us with the interpretation of the sequences.
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Figure 4.17: Relative peak heights of individual nucleotides in an electropherogram plotted

against the frequency of these nucleotides in the corresponding 454-reads. The
different colors mark the different nucleotides: green = A, blue = C, black =
G, red = T.
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4.3 Inferring Viral Tropism with Ultra-deep Sequencing

In the previous chapter we have demonstrated how prediction of HIV-1 coreceptor usage
can be improved by extending the region of interest (see Chapter 3). We have shown
that coreceptor defining mutations are not entirely located inside the V3 loop but also
in other parts of the viral envelope gene and perhaps also in other proteins. However,
we still had to encounter that the performances of genotypic prediction methods were
worse on clinically derived isolates when compared to clonal data from the Los Alamos
HIV Sequence Database. To some extent this is certainly due to unknown mutations in
different parts of the viral envelope, however, a major factor is probably also the use of
conventional population sequencing methods.

Standard bulk sequencing methods have two major problems: First, they generate a
consensus sequence of the viral quasispecies. These sequences can contain nucleotide mix-
tures in case of virus variants differing at specific positions. From the sequence one cannot
necessarily infer how the different variants looked. Suppose a sequence contains two posi-
tions with nucleotide mixtures. Each of these can be translated into two possible amino
acids. From this information one cannot differentiate if two, three, or four different viruses
were present in the isolate. As a consequence, the interpretation of this kind of data is
more problematic than that of clonal data lacking nucleotide mixtures.

The second problem is the inability of standard bulk sequencing methods to determine
minor populations. They can only detect minorities down to about 15-20% of the viral
population. In contrast, phenotypic assays can reliably detect minorities of less than 5%
(e.g. the Monogram Trofile Tropism Assay, Whitcomb et al., 2007). Thus, minorities
of X4-viruses detected by the phenotypic approach can remain undetected when using
population sequencing methods.

In comparison to standard bulk sequencing, massively parallel sequencing based on the
454 technology can resolve the viral quasispecies to almost arbitrary detail. In addition
to the high sensitivity of the method, it also generates clones rather than a consensus
genotype. Thus, prediction of coreceptor usage based on 454 data should be significantly
more accurate than on bulk data.

In this section, we therefore performed a proof-of-concept study in which we addressed
the question whether massively parallel sequencing can be successfully combined with bioin-
formatic approaches in order to afford improved qualitative and a quantitative prediction
of coreceptor usage from the V3 loop.

The study described in this section was a joint work with Martin Daumer, Rolf Kaiser,
Rolf Klein, Thomas Lengauer, and Bernhard Thiele and has been presented at the XVII
International HIV Drug Resistance Workshop: Basic Principles and Clinical Implications
2008, Sitges, Spain (Daumer et al., 2008).

4.3.1 Materials & Methods

Patient samples We collected 55 samples from heavily pre-treated patients with limited
therapy options screened for potential administration of maraviroc at the Institute of Virol-
ogy of the University of Cologne and the Institute of Immunology and Genetics in Kaiser-
slautern. 3ml plasma from each patient was shipped on dry ice for phenotypic tropism
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testing (Trofile Tropism Assay, Monogram Biosciences, South San Francisco). Plasma
viral load was determined using the M2000 system (Abbott Molecular). Results were doc-
umented as either CCR5-tropic (R5), CXCR4-tropic (X4) or dual-/mixed-tropic (D/M).

RNA extraction, cDNA synthesis and V3-PCR RNA extraction was performed by us-
ing the Viral RNA mini kit (Qiagen, Hilden, Germany) according to the manufacturers
instructions. cDNA-synthesis was performed using 10ul of RNA, specific primers V3-1
(TACAATGTACACATGGAATT, positions 6958-6977 in HXB2), V3-2 (ATTACAGTA-
GAAAAATTCCCC, positions 7362-7382 in HXB2) (Simmonds et al., 1990) and Super-
script IT (Invitrogen) according to the manufacturer’s instructions in a total volume of
20ul.

Amplification of the V3 region was carried out using the FastStart HiFi PCR sys-
tem, (Roche, Mannheim) and primers V3-for (TGGCAGTCTAGCAGAAGAAG, positions
7010-7029 in HXB2) and V3-rev (CTGGGTCCCCTCCTGAGG, positions 7315-7332 in
HXB2) (Simmonds et al., 1990) in a Primus 96 plus thermal cycler (MWG-Biotech).

Products to be massively parallel sequenced were generated with fusion primers V3FusA:
GCCTCCCTCGCGCCATCAG-V3-for and V3FusB: GCCTTGCCAGCCCGCTCAG-V3-

rev.

Standard DNA sequencing and massively parallel pyrosequencing Clean-up of the PCR
products prior to standard sequencing was performed by incubation with FastAPTM in
conjunction with Exonuclease I (Fermentas, Burlington, Canada) for 10 min at 37°C fol-
lowed by heat inactivation for 5 min at 75°C.

Population-based sequencing of the V3 region was carried out using the Big Dye® Termi-
nator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) with primers
(3pmol) V3-for and V3-rev. Extension products were purified using the Biomek NXp au-
tomated sequencing 