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Abstract

This thesis presents efficient parallel algorithms for checking temporal logic for-
mulas over finite paths and trees. We show that LTL path checking is in
AC1(logDCFL) and CTL tree checking is in AC2(logDCFL). For LTL with past-
time and bounded modalities, which is an exponentially more succinct logic, we
show that the path checking problem remains in AC1(logDCFL). Our results pro-
vide a foundation for efficient algorithms of various applications in monitoring,
testing, and verification as well as for query processing for tree-datastructures,
e.g. XML documents.

The presented path and tree checking algorithms are based on efficient parallel
evaluation strategies for monotone Boolean circuits. We reduce the evaluation
of product circuits to the problem of evaluating one-input-face monotone planar
Boolean circuits: for a monotone Boolean circuit that is a product of a tree and
a path, we provide an AC1-reduction; for a monotone Boolean circuit that is a
product of two trees, we provide an AC2-reduction.

We develop a classification of Kripke structures with respect to the complexity
of LTL model checking: Kripke structures for which the problem is PSPACE-
complete, Kripke structures for which the problem is coNP-complete, and Kripke
structures for which the problem is in NC.
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Zusammenfassung

Wir präsentieren effiziente parallele Algorithmen zum Überprüfen der Erfülltheit
von temporal logischen Formeln auf Pfaden und Bäumen. Wir zeigen, dass für
die Logik LTL das Überprüfen von Ausführungspfaden in der Komplexitätsklasse
AC1(logDCFL) liegt. Für die Logik CTL ist das Überprüfen von Bäumen in
AC2(logDCFL). Für Erweiterungen von LTL mit Vergangenheit und beschränkten
zeitlichen Modalitäten beweisen wir, dass Pfade ebenfalls in AC1(logDCFL) über-
prüft werden können, obwohl die Logik exponentiell kompakter ist als einfaches
LTL. Unsere Resultate bielden eine Grundlage für effiziente Algorithmen für ver-
schiedene Anwendungen in den Bereichen der Systemüberwachung, des Testens
und der Verifikation sowie für die Anfragebearbeitung für Baumdatenstrukturen,
wie zum Beispiel XML Dokumente.

Die präsentierten Algorithmen zum Überprüfen von Pfaden und Bäumen ba-
sieren auf effizient parallelen Strategien zur Evaluierung von monotonen Bool-
schen Schaltkreisen. Wir reduzieren die Evaluierung von Produkt-Schaltkreisen
auf das Problem der Evaluierung von monoton planaren Boolschen Schaltkrei-
sen, bei denen sich alle Eingaben auf dem äußeren Rand befinden. Für monotone
Boolsche Schaltkreise, die das Produkt von einem Baum und einem Pfad sind,
geben wir eine AC1-Reduktion an. Für monotone Boolsche Schaltkreise, die das
Produkt von zwei Bäumen sind, geben wir eine AC2-Reduktion an.

Wir entwickeln eine Klassifizierung von Kripkestrukturen im Hinblick auf die
Komplexität des Erfülltheitsproblems für LTL: Kripkestrukturen, für die das
Problem PSPACE-vollständig ist, Kripkestrukturen, für die das Problem coNP-
vollständig ist, und Kripkestrukturen, für die das Problem in NC liegt.
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Chapter 1

Introduction

The past decades have brought significant advances in the computer-aided veri-
fication of computer systems. Many hardware systems and communication pro-
tocols can be modelled as small finite-state structures, which can be analyzed
automatically. The fact, however, that the state space of a complex system
grows exponentially with the number of its components, represents a complexity-
theoretic barrier for all algorithmic methods that attempt to analyze the complete
set of all possible system behaviors. This so-called state-space explosion problem
has motivated a great variety of approaches to simplify the problem, for exam-
ple using heuristics, abstraction, and compositional verification. The single most
successful approach, applied in areas such as testing, runtime verification, and
Monte-Carlo verification, has, however, been to limit the attention from a set
of hypothetical behaviors to one particular behavior, as observed for example
during an execution of the system.

The topic of this thesis is the complexity-theoretic and algorithmic benefits
that result from this reduction. We investigate both the linear-time setting,
where we consider paths, i.e., linear sequences of states, and the branching-time
setting, where we consider a tree of states called the computation tree.

The problems of checking paths and trees are among the few fundamental
model checking problems whose complexity is still open [71]: on the one hand,
the standard automata-based algorithms run in polynomial time or worse [28,
71, 41, 18]; on the other hand, the only known lower bound is NC1 [23], the
complexity of evaluating Boolean expressions.

In this thesis, we break the barrier from inherently sequential to efficiently
parallelizable algorithms. We improve the upper bound on the complexity of
checking linear-time temporal logic (LTL) over paths from P to AC2, and the
complexity of of computation tree logic (CTL) over trees from P to SAC3. In
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2 1.1. MODEL CHECKING FINITE PATHS AND TREES

order to obtain these results we depart from the classic automata-based setting
and instead study model checking in the setting of circuit evaluation problems.

1.1 Model Checking Finite Paths and Trees

LTL path checking. Linear-time temporal logic (LTL) is the standard specifi-
cation language to describe properties of reactive computation paths. The prob-
lem of checking whether a given finite path satisfies an LTL formula plays a key
role in monitoring and runtime verification [41, 28, 20, 5, 15], where individual
paths are checked either online, during the execution of the system, or offline, for
example based on an error report. Similarly, path checking occurs in testing [6]
and in several static verification techniques, notably in Monte-Carlo-based prob-
abilistic verification, where large numbers of randomly generated sample paths
are analyzed [92].

Somewhat surprisingly, given the widespread use of LTL, the complexity of
the path checking problem is still open [71]. The established upper bound is P:
The algorithms in the literature traverse the path sequentially (cf. [28, 71, 41]);
by going backwards from the end of the path, one can ensure that, in each
step, the value of each subformula is updated in constant time, which results in
bilinear running time. The only known lower bound is NC1 [23], the complexity
of evaluating Boolean expressions [16]. The large gap between the bounds is
especially unsatisfying in light of the recent trend to implement path checking
algorithms in hardware, which is inherently parallel. For example, the IEEE
standard Property Specification Language (PSL) [45], that subsumes LTL has
become part of the hardware description language VHDL, and several tools [20,
15] are available to synthesize hardware-based monitors from assertions written
in PSL. Can we improve over the sequential approach by evaluating entire blocks
of path positions in parallel? In the thesis we show that LTL path checking can
indeed be parallelized efficiently1.

Modern specification languages like PSL include concepts that stem from dif-
ferent mathematical frameworks. Besides the elements of a classical hardware de-
scription languages it includes concepts borrowed from formal languages, namely

1We say a problem can be decided efficiently in parallel if it is in NC, i.e. if it can be decided
by a uniform family of polynomial size Boolean circuits of poly-logarithmic depth [32]. The
term is sometimes used with the stronger meaning that the total amount of work (the number
of gates in a circuit) is linear in the time complexity (the number of computation steps) of the
best sequential algorithm. In contrast, following [32] we allow a polynomial blow-up.

There are also different intuitive characterizations of the class NC. Papadimitrou e.g. is
less enthusiastic about the relevance of NC by calling it the “problems satisfactorily solved by
parallel computers” [75]. Another common description for NC is to call it the class of problems
with “highly parallel algorithms” [39].



CHAPTER 1. INTRODUCTION 3

extended regular expressions and concepts from temporal logics, namely LTL and
CTL along with different extensions of LTL.

From an expressiveness point of view, LTL–in the field of temporal logics–
corresponds to regular expressions –in the field of formal languages. They both
describe the regular languages or a fragment thereof. What are the trade-offs be-
tween these formalisms? How do they compare from a complexity point of view?
The path checking problem for temporal logics corresponds to the membership
problem for formal languages. For regular expressions and their most prominent
derivatives the complexity of the membership problem is well-understood: it is
in nondeterministic logspace (NL) for (normal) regular expressions [48], it is in
logCFL ⊆ NC for semi-extended regular expressions [77], and it is complete for
polynomial time (P) for star-free regular expressions and semi-extended regular
expressions [76]. Of particular interest is the comparison of LTL to the star-
free regular expressions, since they have the same expressive power as LTL on
finite paths [66]. With AC1(logDCFL) vs. P, our result demonstrates a computa-
tional advantage for LTL. In particular it is interesting that all classes of regular
expressions that involve complementation are complete for P. It is the combina-
tion of concatenation (which is essential for regular expressions) and complement
that causes the P-completeness. LTL trades concatenation for complement and,
in contrast to regular expressions, provides complementation together with an
efficiently parallelizable membership test.

CTL tree checking. Another prominent temporal logic in is Computation Tree
Logic (CTL). Analogously to LTL path checking we ask if CTL tree checking
can be performed efficiently in parallel. The approach for LTL path checking
can indeed be generalized to CTL tree checking. We will prove that CTL tree
checking is in AC2(logDCFL) ⊆ SAC3.

Whereas in the classical domain of model checking, the verification of reactive
systems, the use of CTL tree checking appears to be quite limited, there are many
other fields where labeled trees are an important data structure that is queried
or checked for properties. This includes assertion checking, querying, debugging,
and searching in all kinds of parse trees, class hierarchies, thread or process trees,
abstract data types, file systems, and XML documents and XML databases.
In particular expressiveness and complexity of query languages for XML have
received a lot of attention during the last ten years (cf. [64] for pointers to the
literature) Probably the most relevant language for querying XML documents
is the W3C standard XML Path Language (XPath) [90]. It is essential part of
other XML techniques like XSLT [89] or XQuery [88]. XPath as well as Core
XPath, the navigational fragment of XPath [36], are not complete for FO on
unranked trees [73]. The reason is the inability to select an element under the
condition that a predicate holds for all locations along the path up the selected

3 1

3 3

3 2

3 3



4 1.1. MODEL CHECKING FINITE PATHS AND TREES

element. This kind of property is closely related to the until modality of temporal
logics [73]. In [73] Marx defines conditional XPath (CXPath) by extending XPath
with an correspondent of the temporal until operator and shows that CXPath is
complete for FO on unranked trees. For temporal logics Barceló and Lipkin
prove in [7] that multi-modal CTL* with past is expressively complete for FO
on unranked trees. Both logics exhibit the same complexity for unary queries
as standard XPath and Core XPath, namely polynomial time completeness [38].
On the other hand, Gottlob, Koch, Pichler, and Segoufin investigate the query
complexity of fragments of XPath on unranked trees [38]. In particular they show
that query processing for Core XPath without negation is in logCFL.

How does CTL fit into this picture? On one hand, it is clearly not as expressive
as multi-modal CTL* with past, not even as expressive as CTL*. Similarly,
it is less expressive then CXPath. This is also reflected in the complexity of
query processing in that CTL on trees is not hard for polynomial time. On the
other hand, its expressiveness is incomparable with XPath, Core XPath and Core
XPath without negation. Whereas these languages are similar to multi-modal
CTL* in that they provide modalities to navigate on various dimension of the tree
(child-relation, parent-relation, and sibling relation, together with the respective
transitive closures) and in that they provide means to nest path-expressions and
state-predicates, these languages all lack a binary modality comparable to the
until -operator of CTL and CTL*. From a complexity point of view, our upper
bound is better than the bounds for XPath and Core XPath. In certain scenarios
this might be a beneficial trade-off: buy a binary until-operator for the restriction
to a single modal dimension, namely the child-relation; additionally, gain an
efficiently parallel query processing complexity instead of inherently sequential
complexity. Our upper bound of SAC3 is still worse than logCFL for Core XPath
without negation. However, the low complexity for negation-free Core XPath
comes at a high prize: The lack of negation inhibits any kind of (nested) universal
quantification both over branches as well as along a single path.

LTL model checking of classes of Kripke structures. The results in LTL
path checking and CTL tree checking show that the model checking problem can
be considerably easier for restricted classes of Kripke structures compared to the
general case. This motivates to further investigate the properties of Kripke struc-
tures that influence the complexity of the model checking problem. The study of
the state explosion problem can be seen from this perspective. The state explo-
sion problem occurs in compositional model checking when the Kripke structure
is represented as some kind of product Kripke structure. There are different ap-
proaches to tackle the state explosion by tuning model checking algorithm to the
peculiarities of the product structure. Prominent approaches in this direction
are partial order reduction [52, 86, 33] and symmetry reduction [26, 19, 46]. In
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[22] Demri, Laroussinie, and Schnoebelen study the complexity of model checking
parameterized by the number of components of the product Kripke structures.

However, somewhat surprisingly, there is almost no research that explicitly
considers the frame of the Kripke structure as parameter for the complexity of the
model checking problem for LTL and CTL. Aside of the work of Demri, Markey,
Raskin, and Schnoebelen on the path checking problem for various temporal logics
[23, 71, 72, 70] we are not aware on any further results explicitly considering the
complexity of model checking with respect to the frame of the Kripke structure.
In the thesis we provide a classification of the complexity of the model checking
problem for LTL with respect to the frame of the Kripke structure. For CTL the
gap between NC as an upper bound and L as a lower bound for tree structures
and P for general structures is comparably small. We derive some corollaries
from previously known proofs and point out some open questions.

Path checking for extensions of LTL. The pure logic LTL is rarely used
in practice. Practical versions of LTL, such as the IEEE property specification
language (PSL) [45], extend the logic with additional operators that help the
user to write shorter and simpler specifications. Such extensions often come at a
price: adding extended regular expressions, for example, makes the path checking
problem P-complete [76]. In the thesis we show that this is not always the case:
past-time and bounded operators are two major extensions of LTL, which both
improve the succinctness of the logic exponentially, and whose path checking
problems remain efficiently parallelizable.

Past-time operators are the dual of the standard modalities, referring to past
instead of future events. Past-time operators greatly simplify properties like “b is
always preceded by a”, which, in the core logic, require an unintuitive application
of the Until operator, as in G¬(¬aU b∧¬a). Furthermore, Laroussinie, Markey
and Schnoebelen [63] proved that the property “all future states that agree with
the initial state on propositions p1, p2, . . . pn, also agree on proposition p0,” which
can obviously be expressed as a simple past-time formula, requires an exponen-
tially larger formula if only future-time operators are allowed.

Bounded operators express that a condition holds at least for a given, fixed
number of steps, or must occur within such a number of steps. Bounded speci-
fications are especially useful in monitoring applications [27], where unbounded
modalities are problematic: if only the finite prefix of a computation is visible, it
is impossible to falsify an unbounded liveness property or validate an unbounded
safety property. The succinctness of the bounded operators is due to the fact
that expanding the bounded operators into a formula tree replicates subformu-
las, causing an exponential blow-up in the formula size. Another exponential
blow-up is due to the logarithmic encoding of the bounds compared to an unary
encoding in the form of nested next-operators.
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6 1.1. MODEL CHECKING FINITE PATHS AND TREES

A naive solution for the path checking problem of the extended logic would
be to simply expand the formula to the core fragment and then apply the con-
struction from Section 4.2. Because of the exponential blow-up, however, such
a solution would no longer be in NC. Can we, instead, extend the approach for
pure LTL to also handle past and bounds? As we will see, the answer is positive,
but requires modifications of the algorithm. The complexity of the path check-
ing problem remains AC1(logDCFL) for LTL with past as well as for LTL with
bounds.

Related Work. Modern tense logic was founded by Arthur Prior [79]. By
adding the until - and the since-modality to the logic Kamp could prove that it
is expressively complete for first order logic on linear orders [50]. Amir Pnueli
introduced Linear-Time Temporal Logic (LTL) for the verification of computer
programs [78]. Sistla and Clarke show in a seminal paper [85] that LTL model
checking is PSPACE-complete. However, the data complexity is only linear while
the expression complexity is PSPACE [65]. Computation Tree Logic (CTL) was
introduced by Emerson and Clark in [25]. It has a model checking problem with
bilinear complexity [18].

There is a comprehensive line of research that covers all kinds of variations
(restrictions and extensions) of the input formula [85, 59, 23, 11, 10] for LTL; for
CTL [14, 2] for classical modal logics cf. [44].

LTL path checking was introduced as an open problem by Demri and Sch-
noebelen in [23]. In [71] Markey and Schnoebelen investigate the path checking
problem for various extensions and restrictions of LTL. In [72] Markey and Sch-
noebelen show that the complexity of the (finite) path checking problem for the
µ-calculus is P-hard. In [70] Markey and Raskin study the complexity of the
model checking problem for restricted sets of path for extensions of LTL to con-
tinuous time.

We are not aware of any research results on the complexity of model checking
CTL on trees. However there is a abundant research on query languages and
logics to reason about trees. For a general overview refer to [12]; cf. [36, 73, 64,
37, 38, 12, 83] for some research related to temporal logic and XML. Core XPath
was introduced in [36]. Its complexity is investigated in [36] and [38]. CXPath, a
first order complete extension of XPath, with introduced in [73].

In classical modal logic systems are defined via frame conditions. Starting
with Ladners seminal results in [62] there is a line of research about the complexity
of problems for modal logics systems under certain frame conditions (cf. [43, 42]
for recent results and overview on past work).

The LTL path checking problem is closely related to the membership problems
for the various types of regular expressions: the membership problem is in NL for
regular expressions [48], in logCFL for semi-extended regular expressions [77], and
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P-complete for star-free regular expressions and extended regular expressions [76].

Monitoring LTL is a key problem in runtime verification (cf. [28, 30, 31, 40, 9]).
Prominent tools for the synthesis of monitor circuits from PSL are FoCs [20],
developed at IBM Haifa, and MBAC by Boulé and Zilic [15]. Our tool [57] is
optimized for specification containing bounded subproperties [27]. For temporal
logic, an automata-theoretic construction (based on determinization) is due to
Armoni et al. [5].

There is a lot of research about real-time temporal logics (cf. [47, 3, 56, 4])
that are interpreted over computations paths where each state is stamped with a
value from a real-valued time domain, so called timed state sequences. Here we
interpret the bounds over normal computation paths, i.e. the bounds just count
states. This approach is common in hardware verification [45] where the system
under consideration is assumed to be clocked.

1.2 Boolean Circuit Based Model Checking

Our results on LTL path checking and CTL tree checking for LTL are based on the
reduction of the respective model checking problem to the evaluation of monotone
planar Boolean circuits. The constructions rely on the following properties of the
logics:

Linear positive normal form: It is essential to obtain monotone circuits in
first place. Since circuits in general are DAGs, the transformation of a
circuit into a monotone circuit (that allows negation only on its inputs) is
expensive. For temporal logic formulas (which are trees) however it is pos-
sible to recursively propagate negations to the level of atomic propositions.

Expansion laws: We obtain a Boolean circuit by expanding the formula over
the Kripke structure such that in the resulting structure is the normal
product of the parse tree of the formula and the Kripke structure. Assuming
that the Kripke structure is acyclic, the product is acyclic as well.

As an example, let us consider the LTL formula φ = (aU(bU c)) U(dU e)
and a computation path ρ = ρ0, ρ1, . . . . We build a circuit cir(φ, ρ) by recurring
on the subformulas of φ and the suffices ρ0,..., ρ1,..., . . . of ρ. For an atomic
proposition p we have that cir(p, ρ) is just the value of p in the state ρ0. For an
until formula we apply the expansion laws for LTL which results in cir(χUψ, ρ) =
cir(ψ, ρ) ∨ (cir(χ, ρ) ∧ cir(χUψ, ρ1,... as shown in Figure 1.1 for the top-level U-
operator of φ. Figure 1.2 shows what we get when iterating the expansion on the
suffixes of ρ. Figure 1.3 shows the result of expanding the left-hand operand of
the top-level U-operator of φ along the suffixes of ρ. The expansion tree is folded
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8 1.2. BOOLEAN CIRCUIT BASED MODEL CHECKING

+

cir(dU e, ρ0,...) ∗

cir(aU(bU c), ρ0,...) cir((aU(bU c)) U(dU e), ρ1,...)

Figure 1.1: The circuit cir(φ, ρ) obtained through the expansion of the top-level
U-operator of the LTL formula φ = (aU(bU c)) U(dU e). The symbol ∗ denotes
conjunction and + denotes disjunction.

+ ∗

cir(dU e, ρ0,...)

cir(aU(bU c), ρ0,...)

++ ∗

cir(dU e, ρ1,...)

cir(aU(bU c), ρ1,...)

++ ∗

cir(dU e, ρ2,...)

cir(aU(bU c), ρ2,...)

+

Figure 1.2: Iteration of the expansion from Figure 1.1 along the suffixes of ρ.

into a compact circuit by using dynamic programming. Figure 1.4 unfolds the
constants e and d along the suffixes of ρ.

Thus, the problem of checking paths and trees for LTL and CTL, respectively,
reduces to the problem of evaluating monotone Boolean circuits. Ladner showed
in [61] that the evaluation of Boolean circuit is complete for polynomial time and
Goldschlager strengthened this in [34] by proving that the problem is complete for
polynomial time even for monotone Boolean circuits. The key is to observe that
the resulting circuits exhibit a certain topology that allows for a more efficient
evaluation. Again, let us focus on the case of LTL. We saw that expanding the
example formula φ over ρ results in a circuit that is the normal product of φ and
ρ. Figure 1.5 provides a more global (and schematic) view on the construction:
The formula is copied along the path positions and at the same time the path is
copied along all subformulas. The important thing to note about this structure
is that each directed path in the formula tree corresponds to a planar circuit, i.e.
can be projected onto a plane without crossing edges.

This is illustrated in Figure 1.6 that shows the planar circuits for some arbi-
trary decomposition of the formula tree into directed paths. From this observation
it is only a small step to an efficient evaluation of the overall circuit: Although



CHAPTER 1. INTRODUCTION 9

+ ∗

cir(e, ρ0,...)

cir(d, ρ0,...)

++ ∗

cir(e, ρ1,...)

cir(d, ρ1,...)

++ ∗

cir(e, ρ2,...)

cir(d, ρ2,...)

+

+ ∗

cir(aU(bU c), ρ0,...)

++ ∗

cir(aU(bU c), ρ1,...)

++ ∗

cir(aU(bU c), ρ2,...)

+

Figure 1.3: Expansion of the left hand operand from the formula in Figure 1.1
along the suffixes of the ρ.

+ ∗

ρ0(e)

ρ0(d)

++ ∗

ρ1(e)

ρ1(d)

++ ∗

ρ2(e)

ρ2(d)

+

+ ∗

cir(aU(bU c), ρ0,...)

++ ∗

cir(aU(bU c), ρ1,...)

++ ∗

cir(aU(bU c), ρ2,...)

+

Figure 1.4: Expansion of the constant e and d in the example from Figure 1.1.
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(aU(bU c)) U(dU e) a6

b6 c6

d6 e6

a5

b5 c5

d5 e5a5

b5 c5

d5 e5

a4

b4 c4

d4 e4a4

b4 c4

d4 e4

a3

b3 c3

d3 e3a3

b3 c3

d3 e3

a2

b2 c2

d2 e2a2

b2 c2

d2 e2

a1

b1 c1

d1 e1a1

b1 c1

d1 e1

a0

b0 c0

d0 e0a0

b0 c0

d0 e0

Figure 1.5: Schematic view of the circuit obtained by expanding φ =
(aU(bU c)) U(dU e) over ρ. The graph of the circuit is the normal product of the
formula tree of φ and the path ρ.
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(aU(bUc))U(dUe) a6

b6 c6

d6 e6

a5

b5 c5

d5 e5a5

b5 c5

d5 e5

a4

b4 c4

d4 e4a4

b4 c4

d4 e4

a3

b3 c3

d3 e3a3

b3 c3

d3 e3

a2

b2 c2

d2 e2a2

b2 c2

d2 e2

a1

b1 c1

d1 e1a1

b1 c1

d1 e1

a0

b0 c0

d0 e0a0

b0 c0

d0 e0

Figure 1.6: Decomposition of the circuit from Figure 1.5 into subcircuits corre-
sponding to directed paths in the formula tree. Observe that each subcircuit of
the decomposition is planar.
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Goldschalger proved in [34] that the monotone as well as the planar circuit value
problems are complete for polynomial time, two years later in [35] he showed
that circuits that are both monotone and planar can be evaluated in NC under
a certain topological restriction. This restriction was dropped independently by
Yang in [91] and Delcher and Kosaraju in [21]. Using this result in our example
we can evaluate a subcircuit that corresponds to a directed path in the formula
tree in NC. If we can decompose the formula tree into directed paths in such a
way that the evaluation of the corresponding circuits can be parallelized up to an
logarithmic factor then we would get an algorithm that performs the evaluation
of the overall circuit in NC. Fortunately, it is well known that for trees such a
decomposition always exists for sufficiently cheap and associative evaluation op-
erators [51]. We will use a standard parallel tree contraction algorithm (that is
very common e.g. for the evaluation of arithmetic terms) that we piggyback with
an appropriate operation for the evaluation and composition of subcircuits. The
parallel tree contraction works by partially evaluating a node in a tree as soon as
one of it children is a leaf (i.e. is fully evaluated). The corresponding leaf is then
removed from the tree and simple path are collapsed into a single edge. This is
done in parallel for all nodes. Figure 2.1 shows a contraction sequence for the
circuit the results from the example formula φ.

In the thesis we will formalize this approach and show how it can be extended
to circuits that occur in the case of CTL and circuits the result from extensions
of LTL with past operators and bounded future operators.

Related Work. The problem of evaluating Boolean circuits has been studied
extensively in the literature since Ladner proved the general problem to be com-
plete for polynomial time under logspace reductions [61]. Goldschlager extended
this result to monotone Boolean circuits as well as planar Boolean circuits [34].
Two years later he showed that the intersection of both classes, namely, Boolean
circuits that are both monotone and planar, can be evaluated in NC2 under a
certain topological restriction: the circuits must be upward-stratified [35]. The
upper bound for this class of circuits was improved to logCFL by Dymond and
Cook [24] and later by Barrington, Lu, Miltersen, and Skyum to logDCFL [8]. In
the meantime Kosaraju relaxed the restriction to upward-stratified circuits to so
called focused circuits within a complexity of NC. Finally, Yang [91] and inde-
pendently Delcher and Kosarja [21] presented NC algorithms for the unrestricted
problem of evaluating monotone planar Boolean circuits. Ramachandran and
Yang presented algorithms for the restricted version that optimizes the overall
size of the circuits [81, 82]. A comprehensive overview about the research on
the topic can be found in [67]. The restriction to upward-stratified circuits was
recently relaxed by Chakraborty and Datta. They reduce the more general case
of monotone planar circuits with all constant gates on a single face to the case of
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upward-stratified circuits which makes logDCFL algorithm from [8] applicable for
the more general case. Recently, there has been some on sub-polynomial com-
plexities for circuits that are not planar but can be embedded onto the cylindrical
and toroidal surfaces [67].

Parallel tree contraction algorithms are well known and used for long time as
a algorithmic tool for parallel evaluation algorithms. An overview can be found
in [51]. In the thesis we follow their presentation of an approach that goes back
to [1] and [55].

1.3 Contributions of the Thesis

• As main result of the thesis we present an efficient parallel algorithm for
LTL path checking. The algorithm improves the previously best know upper
bound from P to AC1(logDCFL). The has been published in L. Kuhtz and
B. Finkbeiner. LTL path checking is efficiently parallelizable. ICALP’09
[58].

• The thesis offers an efficient parallel algorithm for CTL tree checking. The
algorithm is in AC2(logDCFL) and it establishes the first upper bound that
separates the complexity of CTL tree checking from general CTL model
checking, which is P-complete.

• LTL with Past-time modalities (LTL+Past) is exponentially more succinct
than pure future LTL. The thesis shows that the efficient parallel path
checking algorithm for LTL can be extended to LTL+Past. Albeit the com-
pactness of LTL+Past, path checking for LTL+Past is in AC1(logDCFL).

• LTL with bounded modalities (BLTL) is another exponentially more suc-
cinct extension of LTL. It is of particular relevance for applications of the
path checking problem in monitoring and runtime verification. The the-
sis offers an extension of the efficient parallel path checking algorithm for
LTL+Past to BLTL. As for LTL+Past, albeit the compactness of BLTL,
the path checking problem is still in AC1(logDCFL). In fact, we prove
the stronger result that path checking for the combined extension of LTL
with bounded modalities and past-time modalities (BLTL + Past) is in
AC(logDCFL).

• The path and tree checking algorithms are based on efficient parallel evalu-
ation strategies for monotone Boolean circuits. In the thesis the evaluation
of product circuits is reduced to the problem of evaluating one-input-face
monotone planar Boolean circuits: for a monotone Boolean circuit that is a
product of a tree and a path, an AC1-reduction is provided; for a monotone
Boolean circuit that is a product of two trees, an AC2-reduction is provided.
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• The thesis develops a classification of Kripke structures with respect to the
complexity of LTL model checking. By identifying relevant properties of
the frame, three main classes of Kripke structures are characterized: Kripke
structures for which the problem is PSPACE-complete, Kripke structures for
which the problem is coNP-complete, and Kripke structures for which the
problem is in NC.

1.4 Organization of the Thesis

The second chapter contains preliminaries. It offers some common notations
about graphs and trees; it introduces semantic notions for the logics that we will
work with, namely computations and Kripke structures; it presents some basic
facts about complexity classes within P and AC-reductions; finally, the parallel
tree contraction algorithm is presented. The algorithm an important ingredient
in the path and tree checking constructions that are developed in the thesis.

The third chapter of the thesis is devoted to monotone Boolean circuits, as
they are the central data structure in most results of the thesis. We will define
monotone Boolean circuits in a way that is tailored to our needs. We introduce
concepts and notation to conveniently talk about subcircuits, decomposition,
and composition of circuits. A particular focus lies on monotone planar Boolean
circuits and their evaluation, because this provides us with our most powerful
algorithmic tool. We use the results on monotone planar Boolean circuits to
derive evaluation strategies for monotone Boolean circuits with a more complex
topology.

The fourth chapter is about LTL. It features the main result of the thesis, the
efficient parallel path checking algorithm for LTL. Additionally, it investigates the
complexity of model checking for classes of Kripke structures with a restricted
frame.

The fifth chapter is about CTL. Using the algorithmic techniques that where
used already in the fourth chapter about LTL, in this chapter, we apply them to
the more complex problem of CTL tree checking.

The sixth chapter deals with extensions of LTL that are of particular relevance
for applications of path checking in monitoring in testing. Namely, we provide
efficient parallel path checking algorithms for LTL with past-modalities and for
LTL with past- and bounded modalities.

The eighth chapter concludes the thesis. It recalls the results and lists some
open questions and directions for future work.



Chapter 2

Preliminaries

2.1 Directed Graphs and Trees

We introduce some common notation and some convenient abbreviations for di-
rected graphs and trees. The reader is encouraged to skip this part and only refer
to it when needed.

A directed graph is represented as a tuple G = 〈V,E〉 where V is the set of
vertices and E ⊆ V × V is the edge set of the graph. If not stated otherwise,
we assume V to be finite. For an arbitrary graph G we write V (G) to denote
its vertex set and E(G) to denote its edge set. Often we identify a graph with
its set of vertices and write V for G. Sometimes, particularly when the edge set
is implicit, for v, w ∈ V (G) we write 〈v, w〉 ∈ G instead of 〈v, w〉 ∈ E(G) and
say the edge 〈v, w〉 is in the graph G. The in-degree of a vertex v ∈ V (G) is
| {〈w, v〉 ∈ E(G) | w ∈ V } |. The out-degree of v is {〈v, w〉 ∈ E(G) | w ∈ V }. The
degree of v is the sum of its in-degree and out-degree.

A graph G is connected if the symmetric transitive hull of E(G) is V (G) ×
V (G). A graph G is strongly connected if the transitive hull of E(G) is V (G) ×
V (G). A (directed) path of length n is a connected graph with n vertices, with
n − 1 edges and each vertex has in-degree and out-degree at most one. For a
path the unique vertex with in-degree of zero (out-degree of zero) is called the
start-vertex (end-vertex) of the path. A (directed) cycle is a connected graph
with in-degree and out-degree of exactly one for each vertex. The cycle-graph of
a graph G is the graph that is obtained from G by collapsing each cycle in G into
a single vertex.

A graph G is a subgraph of a graph H, denoted as G ⊆ H if V (G) ⊆ V (H) and
E(G) ⊆ E(H). We call G a spanning subgraph of H if G ⊆ H and V (G) = V (H).
We say that G is an induced subgraph of H if G ⊆ H and E(G) = E(H)∩(V (G)×

15

2 2

3

3

1

3

2 2

3 2

2 2 2 2
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V (G)). For G ⊆ H we say that G is a path (cycle, tree, etc.) in H if the induced
subgraph on V (G) is a path (cycle, tree, etc.). Usually, we consider ⊆ modulo
graph-isomorphism, i.e. under adequate renaming of vertices. A subgraph H ⊆ G
is called convex in G if for each pair of vertices 〈v, w〉 ∈ H any path in G that
starts in v and ends in w is also a path in H. For a graph G and two vertices
v, w ∈ G we say that w is reachable from w if there is a path in G that starts
with v and ends with w.

A (rooted) tree is a connected graph T = 〈V,E〉 where for each node v there
is a unique node w with 〈w, v〉 ∈ E except for a single node, the root node of T ,
that has no predecessor in E and is denoted as root(T ). We also call the vertices
of a tree nodes. For any two nodes v, w ∈ V there is at most one path P ⊆ V
that starts in v and ends in w. We say that a node v is a child node of a node
w if 〈w, v〉 ∈ E; w is called the parent node of v. A node v is called a sibling
node of a node w if they have the same parent node. A node without children
is called a leaf node. The subgraph that is induced by a node v along with all
nodes that are reachable from v is called the subtree rooted at v. The subtree
rooted at a node v itself is a tree. For a node v we call the subtree rooted at
child node of v a child-tree of the subtree rooted at v. The degree of a tree is the
maximum number of children of a node in the tree. We call a tree regular if for
each non-leaf node the number of children equals the degree of the tree.

Given two graphs G and H, the normal product G � H of G and H is the
graph I with V (I) = V (G)× V (H) and 〈〈g0, h0〉 , 〈g1, h1〉〉 ∈ E(I) if and only if

〈g0, g1〉 ∈ E(G) ∧ h0 = h1, or

g0 = g1 ∧ 〈h0, h1〉 ∈ E(H), or

〈g0, g1〉 ∈ E(G) ∧ 〈h0, h1〉 ∈ E(H).

2.2 Computation Paths, Computation Trees, and
Kripke Structures

Temporal logics come in two flavors: linear-time temporal logics and branching-
time temporal logics. Linear-time logics reason about linear ordered sequences of
states, which we call computation paths in this thesis. Branching-time logics rea-
son about (rooted) trees of states, which we call computation trees, respectively.
In the course of the thesis we consider two prominent temporal logics. Linear
time temporal logic (LTL) and computation tree logic (CTL), a branching-time
logic.

In this section we define the semantic framework for these logics: propositions,
states, computation paths, computation trees, and Kripke structures. Kripke
structures are a unified framework for symbolically representing both computa-
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tion paths and computation trees in a single structure. We will conclude this
section by defining the model checking problem on Kripke structures in general
and classes of Kripke structures in particular.

Given a set of atomic propositions AP. A state s ∈ 2AP is an evaluation of
the atomic propositions in AP. For p ∈ AP we say that p holds in s if and only
if p ∈ s. We write s(p) to denote the value of p in s with s(p) = 1, if p holds in
s, and s(p) = 0 otherwise. An ordered sequence ρ = ρ0, ρ1, . . . of states is called
a computation path over AP. The length of ρ is denoted by |ρ|. If ρ is infinite,
we set |ρ| = ∞; i < ∞ for all i ∈ N. For a computation path ρ and 0 ≤ i < |ρ|
we write ρi for the state at position i; ρi,j , where 0 ≤ i ≤ j < |ρ|, denotes the
computation path ρi, ρi+1, . . . , ρj of length |ρi,j | = j − i + 1; ρi,... denotes the
suffix of ρ at position i. The empty sequence is denoted ε with |ε| = 0. We
denote concatenation of computation paths as a product and write either σρ or
σ · ρ for the concatenation of the computation paths σ and ρ, where σ is finite.

For a finite computation path σ we set σn =
∏n−1

0 σ, σ∗ =
{∏n−1

0 σ | n ∈ N
}

,

and σω =
∏∞

0 σ. In the context of automata we will treat computation paths
over AP as words over the alphabet Σ = 2AP, where a letter is a state. The set
of all finite words over Σ is denoted as Σ∗. The set of infinite words is denoted
as Σω. A language over Σ is a subset of Σ∗ ∪ Σω. A computation path (or a
word) ρ = ρ0, ρ1, . . . , ρn, n ∈ N canonically defines a path. In the following we
view ρ as a path whenever adequate. Similarly to computation paths, we define
computation trees. A computation tree over a set of atomic propositions AP is a
finite or infinite tree where the nodes are labeled with subsets of 2AP. The empty
computation tree is denoted as ε.

A Kripke structure K is a four-tuple 〈K, ki, R, λ〉 where K is a set of ver-
tices, ki ⊆ K are the initial vertices, R ⊆ K × K is a transition relation, and
λ : K → 2AP is a labeling function on the vertices of K. By abuse of notation
we sometimes identify a state k ∈ K with its labeling λ(k), where we assume
that λ−1(k) is determined from the context. The language of a Kripke structure
K = 〈K, ki, R, λ〉, denoted as lang(K), is the set of (finite and infinite) compu-
tation paths {λ(s0), λ(s1), · · · | s0 ∈ ki, 〈si, si+1〉 ∈ R} for i ∈ N with 0 ≤ i or
0 ≤ i < n for some n ∈ N. Let T be a finite or infinite tree. Let µ : V (T ) → K
be a labeling of T such that µ(root(T )) ∈ ki and for each 〈s, t〉 ∈ E(T ) it holds
that 〈µ(s), µ(t)〉 ∈ R. Then the tree τ with

V (τ) = {µ(v) | v ∈ T} and

E(τ) = {〈µ(v)), µ(w)〉 | 〈v, w〉 ∈ E(T )}

is called a computation tree of K with labeling λ. The tree language of a Kripke
structure K, denoted as langτ (K) is the set of finite and infinite computation
trees of K. A finite computation path, respectively a finite computation tree, can
be interpreted as a Kripke structure itself.
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Given a linear-time temporal logic L with a satisfaction relation |= for compu-
tation paths. For formula φ ∈ L and a Kripke structure K we say that K satisfies
φ, denoted as K |= φ if and only if for each computation path ρ in lang(K) it
holds that ρ |= φ. Similarly, for a branching-time temporal logic L with satisfac-
tion relation |= for computation trees we say that a Kripke structure satisfies a
formula φ ∈ L if and only if for all computation trees τ in langτ (K) it holds that
τ |= φ.

Given a class of Kripke structures K and a temporal logic L. The model
checking problem of L over K (MC[L, K]) is the defined by

MC[L, K] =
{
K |=? φ | K ∈ K, φ ∈ L

}
.

2.3 Complexity Classes in P

This section provides some preliminaries about computational models and com-
plexity classes for problems that are contained in P, i.e. problems that can be
solved by using at most a polynomial number of sequential atomic computation
steps. The presented content is and can be found in any standard textbook on
complexity theory (see e.g. [75]). Nevertheless, we recall some basic notions here,
as complexities below P are rare in the context of temporal logic model checking.

A Boolean circuit is a directed acyclic graph where the vertices (called gates)
are labeled with Boolean connectives and the edges (called dependencies) bind
an operand of a gate to the output of another gate. The input degree of a gate
is called fan-in. The fan-out of a gate is its output degree. A monotone Boolean
circuit is a Boolean circuit where negations are allowed to occur only at the input
level and all remaining gates are and-gates or or-gates. For a problem P and a
complexity class C we say that P is decided by a C-uniform family of circuits
if there is an algorithm in C that computes for each i ∈ N a circuit with input
length i that decides all instances of P of length i. Throughout the thesis we
only consider logspace-uniform families of circuits and only uniform complexity
classes.

We do not explicitly distinguish between decision problems and functional
problems. Since in our case the output size of functions is always polynomially
bounded we can use a polynomial number of circuits for the corresponding class
of decision problems, each for computing a single bit of the output [49].

In the following we provide a brief overview about the most prominent com-
plexity classes within P. NL is the class of problems that can be decided by a
logspace restricted (non-deterministic) Turing machine. L is the class of problems
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that can be decided by a logspace restricted deterministic Turing machine. logCFL
is the class of problems that can be decided by a logspace and polynomial time
restricted nondeterministic Turing machine that is additionally equipped with a
push-down stack. It is equivalent to the class of problems that are L-reducible to
a context-free language. Moreover, it is equivalent to the class SAC1 of problems
decidable by a uniform family of polynomial size monotone Boolean circuits of
logarithmic depth with constantly bounded fan-in either for all and-gates or for
all or-gates. logDCFL is the class of problems that can be decided by a logspace
and polynomial time restricted deterministic Turing machine that is additionally
equipped with a push-down stack. It is equivalent to the class of problems L-
reducible to a deterministic context-free language. ACi, i ∈ N, denotes the class
of problems decidable by polynomial size unbounded fan-in Boolean circuits of
depth logi. NCi, i ∈ N, denotes the class of problems decidable by polynomial
size bounded fan-in Boolean circuits of depth logi. NC is the set of decision prob-
lems decidable in poly-logarithmic time on a parallel computer (PRAM) with a
polynomial number of processors. It holds that NC =

⋃
i∈N NCi =

⋃
i∈N ACi. The

following inclusions are known:

AC0 ( NC1 ⊆ L
⊆
⊆

NL

logDCFL

⊆

⊆
logCFL ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ · · · ⊆ NC ⊆ P .

Further details can, for example, be found in the survey paper by Johnson [49].
Given a problem P and a complexity class C, P is C-many-one reducible to

a problem Q if there is an algorithm in C that maps each P -instance p to a Q-
instance q such that p ∈ P iff q ∈ Q. Given a problem P and complexity classes C
and D, P is D-Turing reducible to C if P can be decided with an algorithm in C
that has access to a D oracle where the algorithm can make an oracle call in each
computation step. Particularly, given a problem P and a complexity class C, for
n ∈ N the problem P is ACn-Turing reducible to C (denoted as P ∈ ACn(C)) if
there is a family of ACn circuits with additional unbounded fan-in C-oracle gates
that decides P . It holds that

AC1 ⊆ AC1(logDCFL) ⊆ SAC2 ⊆ AC2 .

For further details on AC reductions, we refer to [87].

2.4 Parallel Tree Contraction

The parallel model checking algorithms that are presented in this thesis rely
on efficient parallel tree contraction. The approach is based on Abrahamson,
Dadoun, Kirkpatrick, and Przytycka [1] and Kosaraju and Delcher [55]. In the
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presentation we follow [51]. Let T0 = 〈V0, E0〉 be a binary regular tree. A
contraction step on Ti = 〈Vi, Ei〉 takes a leaf l of Ti, its sibling s, and its parent
p and contracts these nodes into a single node s in the tree Ti+1 = 〈Vi+1, Ei+1〉
with

Vi+1 = (Vi \ {l, p}) , and

Ei+1 =

{
Ei \ {〈p, l〉, 〈p, s〉} if p = root(Ti),
(Ei \ {〈p, l〉, 〈p, s〉, 〈pp, p〉}) ∪ {〈pp, s〉} otherwise

where 〈pp, p〉 ∈ Ei. Using the fact that a contraction step is a local operation it
is possible to perform contraction steps in parallel on non-overlapping subtrees.
A tree contraction on a regular binary tree T is a process that iteratively ap-
plies contraction steps on the tree T until it is contracted into a singleton tree.
Algorithm 1 from [51] performs a tree contraction in dlog ne stages of parallel
contraction steps.

Algorithm 1 Parallel Tree Contraction

Input: a regular binary tree T with n leaves.
Effect: contracts T into a singleton tree.

Number the leaves in order from left to right as 1, . . . , n.
for dlog ne iterations do

Apply the contraction step to all odd numbered leaves that are the left child
of their parent.
Apply the contraction step to all odd numbered leaves that are the right
child of their parent.
Shift out the rightmost bit in the numbers of the remaining leaves.

end for

The algorithm can be implemented on an parallel computer (EREW PRAM)
such that it runs in time O(log n) with a total work of O(n) [51]. It is well
known that problems that can be solved on an EREW PRAM in time O(log n)
with polynomial total work are contained in AC1 [87]. Figure 2.1 shows a tree
contraction process for an example tree.

In order to use the parallel tree contraction algorithm to compute some func-
tion on a labeled tree, the contraction step is piggybacked with a local operation
on the labels of the node involved in the contraction step. The complexity of
AC1 for the contraction process assumes that a contraction step is performed in
O(1). For our constructions this is not the case. However, by piggybacking the
contraction step with C-oracle gates, the tree contraction problem is AC1-reduced
to C. Hence, by showing that the complexity of the contraction step is C, the
overall complexity of the contraction algorithm is proved to be AC1(C).
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Figure 2.1: A parallel contraction process as produced by Algorithm 1.

Remark: It is straightforward to extend the parallel tree contraction to trees
of constantly bounded degree or even arbitrary (rooted and finite) trees. In order
keep the presentation simple we restrict ourself to binary regular trees.
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Chapter 3

Monotone Boolean Circuits

The model checking techniques that we present in this thesis make use of mono-
tone Boolean circuits as a central data structure. In this chapter we refine the
notion of a Boolean circuit as introduced in the previous chapter. The definition
in Section 2.3 was sufficient for the definition of the complexity classes and com-
plexity theoretic reductions. When used as an algorithmic tool for solving model
checking problems we need a more elaborate notion of circuits.

An n-ary Boolean function f : Bn → B is called monotone if for two input
vectors a and b with a ≤ b (point-wise less or equal) it holds that f(a) ≤ f(b). A
monotone Boolean circuit 〈Γ, γ〉 consists of a set Γ of gates and a gate labeling
γ. The gate labeling labels each gate with a tuple

〈
f, 〈gi〉i∈I

〉
, gi ∈ Γ, containing

a monotone Boolean function f of arity n and list of n gates naming the input
parameters of f for some index set I. Beside the constant Boolean functions 1
and 0 we introduce an uninterpreted function symbol “?”, which we use to model
circuits with (variable) input, i.e. circuits that compute a function. Usually, for
constant functions we simply write the constant as a label. Moreover, we assume
that the list of parameters contains only those parameters that are relevant for
the outcome of the function. In particular we require the constant gates to have
fan-in 0 and identity gates to have fan-in 1. A gate that is labeled with a Boolean
value is called a constant gate. A gate that is labeled with ? is called a variable
gate. For a gate g labeled with

〈
f, 〈gi〉i∈I

〉
we say that g directly depends on gi,

denoted by g ·� gi. The dependence relation (�) is the transitive closure of ·�. A
gate on which no other gate depends is called a sink gate. A circuit must not
contain any cyclic dependencies.

Let C = 〈Γ, γ〉 be a monotone Boolean circuit. The graph of C is defined
as graph(C) = 〈Γ, ·�〉. Clearly, graph(C) (together with γ) is a (node labeled)
acyclic directed graph. For sets of gates G,G′ ⊆ Γ, a gate a ∈ Γ, and ∗ ∈ {·�,�}

23

2 2

3

2 2 2 2

1

3

2 2

3 3

2

2 2 2 2



24 3.1. CIRCUIT EVALUATION

we define

• G ∗ a iff there is a gate g′ ∈ G such that g′ ∗ a,

• a ∗G iff there is a gate g′ ∈ G such that a ∗ g′,

• G�G′ iff there is a gate g ∈ G such that g�G′ and there is no gate in
g′ ∈ G′ such that g′�G.

• G ·�G′ iff G�G′ and the subgraph induced on graph(C) by G ∪ G′ is
convex.

For a circuit C = 〈Γ, γ〉, const(C) denotes the set of all constant gates in Γ. If
Γ = const(C), we call C constant. By var(C) we denote the set of all variable
gates of Γ. Finally we define src(C) to be the set of all variable gates and all
constant gates that are not sink gates in Γ.

In the following, we assume that all circuits are monotone Boolean circuits.
We omit the labeling whenever it is clear from the context and identify the circuit
with its set of gates and write Γ for 〈Γ, γ〉. Similarly, we often identify the circuit
〈Γ, γ〉 and its graph graph(Γ) and write Γ for both.

3.1 Circuit Evaluation

A circuit is evaluated by propagating all constants “upwards” (against the direc-
tion of the edges) through the circuit. In a first step we define what it means to
evaluate a single gate where possibly some of its dependencies are constants. Intu-
itively, the function of the gate is partially evaluated by binding it to all constant
inputs and removing the corresponding dependencies from the parameter list.
Given a circuit 〈Γ, γ〉 and a gate g ∈ Γ with γ(g) =

〈
f, 〈pi〉i∈I

〉
, f : B|I| → B,

〈pi〉i∈I ∈ ΓI for some index set I. The local evaluation of g in Γ, denoted as
evalg(Γ), is the circuit 〈Γ, γ′〉 with

γ′(x) =

{〈
f ′, 〈pj〉j∈J

〉
if x = g,

γ(x) otherwise,

where

J = {i ∈ I | γ(pi) /∈ {0, 1}} ⊆ I, and

f ′ : B|J| → B,

f ′ = λ(xj)j∈J .f(yi)i∈I , with yi =


0 if γ(pi) = 0,

1 if γ(pi) = 1, and

xi otherwise.
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We treat equality between functions as semantic equality. For |J | bounded by
a constant c, the number of monotone Boolean functions is constantly bounded
by the cth Dedekind number. Given γ′(pi)i∈I , γ

′(g) can thus be computed from
γ(g) in O(1).

For a set of gates G ⊆ Γ, let > be a linear order on Γ that is consistent with �,
i.e. � ⊆>. We define evalG = evalg0 ◦ · · · ◦ evalg|G|−1

with gi, gj ∈ G and gj > gi
for i < j. The evaluation of Γ is defined by eval(Γ) = evalΓ(Γ). Propagation of
constants is defined similarly, however, the order of the single propagation steps
is reversed with respect to the dependency between gates. Let H = {h | h ·�G}
be the set of all gates that depend on G. In contrast to evaluation we define
propagateG = evalh0 ◦ · · · ◦ evalh|H|−1

with hi, hj ∈ H and hi > hj for i < j.
The reverse ordering of the evaluation steps guarantees that no step depends on
the result of a previous step. Hence, we can compute propagateG in AC0 by
updating the labeling for all gates (independently) in parallel. For evaluation
this is generally not true. We say that a circuit is evaluated if all constant gates
are sink gates.

Lemma 1. Given a circuit Γ. In graph(eval(Γ)) all constant gates are isolated
vertices.

In an evaluated circuit, all gates that do not depend on variable gates are
constant. Hence, a circuit without any variable gates evaluates to a constant
circuit; for a circuit that contains variable gates, a subset of the gates is relabeled
such that the arity of the functions on the labels decreases. In particular during
evaluation edges are never added to the graph of the circuit but only removed
from it.

Lemma 2. Given a circuit Γ. It holds that graph(eval(Γ)) is a spanning subgraph
of graph(Γ).

In the following we define circuit equivalence based on circuit evaluation. We
start by stating that evaluation is idempotent.

Lemma 3. For a circuit Γ it holds that eval(Γ) = eval(eval(Γ)).

We say that two circuits Γ and ∆ are equivalent, denoted as Γ ≡ ∆, if
eval(Γ) = eval(∆).

Lemma 4. For a circuit Γ and any set of gates G ⊆ Γ it holds that

evalG(Γ) ≡ propagateG(Γ) ≡ Γ
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3.2 Subcircuits, Decomposition, and Composi-
tion of Circuits

Given a circuit 〈Γ, γ〉, a circuit 〈Γ′, γ′〉 is subcircuit of Γ, denoted by Γ′ v Γ if
and only if Γ′ = P ∪ {g | P ·� g} such that P is a convex subset of Γ and

γ′(g) =

{
γ(g) if g ∈ P ,

? otherwise.

By abuse of notation, we often write P for Γ′ and P v Γ where we mean Γ′ v Γ.
We are careful to do so only if it eases the presentation and does not lead to
confusion.

Let ≡ be an equivalence relation on Γ. We call the partitioning Γ/ ≡ of Γ
a circuit decomposition of Γ if each equivalence class [g]≡ is a subcircuit of Γ
([g]≡ v Γ)1. The dependency � on subcircuits induces a partial order on Γ/≡.

Given two circuits 〈Γ, γ〉 and 〈∆, δ〉. A binding is a mapping β : ∆′ → Γ,
with ∆′ ⊆ var(∆). The composition of Γ and ∆ under the binding β, denoted as
Γ ◦β ∆, is a circuit 〈E, ε〉 with E = Γ ∪ (∆ \∆′) and

ε(g) =

{
γ(g) if g ∈ Γ,

δ(g)[d 7→ β(d), d ∈ ∆′] if g ∈ ∆ \∆′.

We define ◦ = ◦id and assume adequate renaming of the gates in the resulting cir-
cuit in order to guarantee uniqueness of identifiers. From the definition it follows
that circuit composition is the (left) inverse operation of circuit decomposition.

Lemma 5. Given a circuit 〈Γ, γ〉. For a decomposition Γ/R it holds that ◦r∈Γ/R r =
Γ.

Circuit composition does not commute. Therefore the notation ◦r∈Γ/R as-
sumes a linear ordering on the elements of Γ/R that has to be consistent with
the partial order induced by the subcircuit dependency. In the following we
always assume that ◦ is applied according to this order.

In the next sections we develop techniques for the evaluation of circuits using
a divide and conquer approach: We decompose a circuit into simpler circuits and
stepwise evaluate the circuit while recomposing it from its parts. This is justified
by the following lemma:

Lemma 6. Given a circuit 〈Γ, γ〉. For a decomposition Γ/R it holds that

◦r∈Γ/R eval(r) ≡ Γ.

1By abuse of notation, instead of [g]≡ v Γ we actually mean [g]≡ ∪
{
g′ | [g]≡ ·� g′

}
v Γ, as

already mentioned.
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Circuit composition is associative. This is essential for being able to parallelize
the process of evaluation and recomposition.

Lemma 7 (Associativity of ◦). Given circuits P , Q, and R. It holds that

(P ◦Q) ◦R = P ◦ (Q ◦R) .

3.3 Monotone Planar Circuit Value Problem

The problem of evaluating Boolean circuits is P-complete [61]. This also holds
for monotone Boolean circuits as well as for planar Boolean circuits [34]. The
situation changes if a Boolean circuit is both monotone and planar. In this case
evaluation is possible in NC. A first NC2 upper bound was shown for a special
case of the problem in [35]. For general monotone planar Boolean circuits upper
bounds in NC were first established independently in [91] and [21].

The model checking algorithms that we present in this thesis are based on
the evaluation of monotone one-input-face planar circuits. Remember that we
generally assume all circuits to be monotone. The results cited in this section
were originally stated for circuits of fan-in two. It is easy to see that the results
on planar circuits generalize to the case of unbounded fan-in.

A circuit is planar if there exists a planar embedding of its graph. A planar
circuit Γ is one-input-face if there is a planar embedding such that all gates
in src(Γ) are located on the outer face. In the following, we abbreviate one-
input-face planar as OIF, using the term OIF for the circuits as well as for the
corresponding property of a circuit. An evaluated circuit with all variable gates on
the outer face is OIF. The evaluation of OIF circuits can be parallelized efficiently.
The best currently known algorithm is based on an algorithm from Barrington,
Lu, Miltersen, and Skyum [8]. However, their algorithm works only for a specific
class (or encoding) of OIF circuits, namely so called upward-stratified circuits. In
these circuits the gate set is “layered” such that all dependencies go from a layer
to the next lower layer and all input gates are on the bottom layer.

Theorem 1 (Barrington, Lu, Miltersen, and Skyum). The problem of evaluating
OIF upward-stratified circuits without variable gates is in logDCFL.

The basic idea behind the algorithm goes back to a logCFL upper bound from
Dymond and Cook [24]. Dymond and Cook observe that in a upward stratified
monotone planar circuit the intervals of 1-gates in the bottom (input-) layer
are propagated from the lower layers to the upper layers until possibly reaching
the top level (output) gate. On a propagation step from one layer to the next
upper layer two intervals can merge but due to the monotonicity intervals can
never split. This way the propagation of the intervals of 1-gates on the input

3
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layer upward through the circuit yields a tree (or a forest, if we also count trees
that do not reach the top level gate) of intervals of 1-gates that certifies the
value of the top level gate. The algorithm from Dymond and Cook guesses
and checks this tree in a depth-first-search manner which can be done with a
logarithmic space restricted and polynomial time restricted Turing machine with
an additional pushdown store (logCFL). (The fact that the intervals form a proof
tree is essential for the polynomial time restriction.) Barrington et al. observe in
[8] that this algorithm can be made deterministic by building the proof tree in a
bottom-up manner. It selectively propagates adjacent pairs of intervals of 1-gates
from the bottom layer upwards through the circuit. If the intervals merge then
the algorithm treats them in the following steps as one single interval by flipping
the separating 0-gates to 1-gates. Thus the new interval actually represents a
whole subtree of the final proof tree. The algorithm uses a pushdown stack to
keep track of this intermediate results. We omit the details here and just remark
that the fact that intervals can not split guarantees that the algorithm terminates
in polynomial time. Since the algorithm is deterministic it is in logDCFL.

Each planar circuit can be turned into an upward stratified circuit. Although
layering the nodes might involve the introduction of new identity gates the overall
blow-up is polynomial. Chakraborty and Datta show in [17] that this transfor-
mation can be done in logDCFL. Although it is overkill – since all circuits that
appear in the thesis can easily be made upward stratified in L– we just use the
general reduction here:

Theorem 2 (Chakraborty and Datta 2006). The problem of evaluating OIF
circuits without variable gates is in logDCFL.

Using standard techniques [54], the algorithm from [8] generalizes to circuits
that contain variable gates (on the outer face):

Corollary 1. The problem of evaluating OIF circuits is in logDCFL.

Proof. We first assign the Boolean constant 1 to all variable gates. Each gate
that evaluates to 0 is turned into a 0 constant gate. Next, we assign 0 to all
variable gates. Each gate that evaluates to 1 is turned into a constant gate with
value 1. Since the values of the remaining gates depend on the variables, they
are simply copied. If one of the latter gates depends on a constant gate, the
dependency is removed by changing such a gate into an id -gate.

3.4 Evaluation of Tree Product Circuits

In this section we develop a reduction from the evaluation of circuits with a certain
topology to the problem of evaluating one-input-face planar circuits. The main
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idea is to decompose a circuit into a tree of subcircuits and then evaluate and
recompose the subcircuits bottom up using the parallel tree contraction algorithm
Algorithm 1 from Section 2.4. If needed, this reduction has to be repeated until
we get one-input-face planar circuits as base case.

Given a circuit 〈Γ, γ〉 without variable gates such that the graph of Γ is a
spanning subgraph of the normal product G �H of two directed acyclic graphs
G and H. The projection on the G-component induces an equivalence relation
≡G on Γ. The edges of G induce a partial ordering on the equivalence classes
that is a superset of the subcircuit dependency � on the partitions of ≡G. We
thus get a circuit decomposition Γ/≡G.

We will show that, if G is a tree, we can use Algorithm 1 on the tree Γ/≡G in
order to AC1-reduce the evaluation of Γ to the evaluation of variable free circuits
that are subgraphs of the normal product of a path in G with H. As a special
case, if H is a path, then the evaluation of Γ is reduced the problem of evaluating
OIF monotone Boolean circuits with variables gates.

We keep the presentation simple and restrict ourself to the case of binary trees
as we did already in Section 2.4.

Theorem 3. Given a variable-free circuit Γ such that graph(Γ) ⊆ (G�H) where
G is a (rooted) tree and H a directed acyclic graph. The evaluation problem for
Γ can be AC1-reduced to the evaluation problem for a variable-free circuit ∆ such
that graph(∆) ⊆ (P �H) where P is a (directed) path with P ⊆ G.

Proof. The initial contraction tree is Γ/≡G together with the partial order that
G induces on Γ/≡G. Algorithm 1 requires the contraction tree to be regular. In
general Γ/≡G is not regular, but we can use a trick to make it regular. We add
to each node n of out-degree one a second child node m that has only constant
gates such that n ·�m. Thus, the newly added node has no influence at all on
the value of the original circuit. Its only function is to make the contraction tree
regular and thus guiding the order in which the contraction algorithm contracts
the nodes of simple paths in the original tree.

During the contraction process we maintain the following invariant of the
contraction tree:

1. The contraction tree is (modulo equivalence) a decomposition Γ/≡F of Γ
for some graph minor F of G, i.e. ≡F is coarser than ≡G.

2. For each node N ∈ Γ/≡F there is a path P ⊆ Γ/≡G in the initial tree
such that all non-constant gates g ∈ N are in ◦p∈P p. Moreover, any node
p ∈ P is a grand-parent of any node q ∈ Γ/≡G with q ⊆M for M ∈ Γ/≡F
being a child of N .

3. A leaf does not contain variable gates.

3 3
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The first sentence of the invariant simply states that the contraction is sound.
Given the soundness, the second sentence implies that all non-constant gates of a
node in the contraction tree belong to a subcircuit of eval(Γ) that is a subgraph
of normal product of H and a path in G. Actually, the statement is slightly
stronger by requiring that the path can be extended to all child nodes in the
contraction tree. This is needed in order for the assertion to become inductive.
The third sentence guarantees that we can fully evaluate a leaf independently of
the rest of the circuit and thus prevent that the parallel contraction gets stuck
in a subtree.

It is easy to see that the initial contraction tree fulfills the invariant. As-
sume we are given an oracle for the evaluation of variable-free circuits that are
subgraphs of the normal product of H with a path in G. The contraction step
is as follows: Given a node r with child nodes s and t where s is a leaf. As a
consequence of the invariant the graph of s is a subgraph of the normal product
of a path with H. Since s does not contain variable gates we can use the oracle
to evaluate s. The result is a constant circuit. Next we propagate this constants
into r in AC0. Finally we compose r with t. Formally, the contraction step is

t ◦ (propagates(eval(s) ◦ r)).

The evaluation is done using the oracle. The remaining steps can be performed
in L. Figure 3.1 illustrates the contraction step and provides an intuition on the
role of the invariant.

It remains to show that the contraction step preserves the invariant. The first
sentence follows from Lemma 7 and Lemma 6. We know that for r and t all non-
constant gates are on a path Pr and Pt, respectively, in the initial tree Γ/≡G. We
further know that all initial-nodes in Pr are grand-parents from all initial nodes
in Pt. Hence, we can extend Pr to include Pt in the newly contracted node r′.
Since s is a leaf it does not contain any variable gates. After it got evaluated it is
constant. Therefore all non-constant nodes in r′ are part of Pt or Pr and thus on
a path in Γ/≡G. Moreover, all nodes in the extension of Pr are grand-parents of
all grand-children of Pt. We thus established the second sentence of the invariant.

The new node r′ is a leaf only if t is a leaf. If t is a leaf it does not contain
variable gates. We know that s is a leaf and contains no variables. r does only
depend on t and s. Hence r′ does not depend on any gate outside of r′ and does
thus not contain variable gates if it is a leaf. This finishes the proof.

In the special case that H is a path we prove a stronger reduction.

Theorem 4. Given a circuit Γ with graph(Γ) ⊆ (G�H) for some (rooted) tree
G and some (directed) path H. The evaluation problem for Γ can be AC1-reduced
to the evaluation problem for OIF circuits with variable gates.
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r

s t

r

s t

t ◦ (propagates(eval(s) ◦ r))

Figure 3.1: Illustration of the contraction step. The figure on the right shows the
result of the contraction of the nodes in the figure on the left.
A diamond at an arrow root indicates variable gates. The circles denote sub-
circuits that are initial nodes (nodes of the initial contraction tree Γ/≡ G). A
filled circle indicates a constant circuit. A dotted path denotes the path of initial
nodes that contains all unevaluated gates.
The node s does not contain variable gates and is constant after evaluation. The
constants from s are then propagated into r and the nodes are contracted into a
single node.
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Proof. The stronger result is obtained from the proof of Theorem 3 through the
additional invariant that each node is an evaluated OIF circuit.

Initially, each node is a path. Hence, it is OIF and can be evaluated in
parallel using the oracle for OIF circuits. As result we obtain a contraction tree
that satisfies the invariant. In order to maintain the stronger invariant we modify
the contraction step as follows:

evalr(t ◦ s ◦ r)

which is the same as

(t \ const(t)) ◦ eval(const(t) ◦ s ◦ r)

First of all observe that the invariant from the proof of Theorem 3 also holds
for the new contraction step. The only difference is that we evaluate a contracted
node earlier. We do not wait until it becomes a leaf but (partially) evaluate it
already when it is created. Figure 3.2 provides an illustration of the modified
contraction step.

We have to prove that the contraction step maintains the invariant the all
nodes are evaluated and OIF. From the invariant from the proof of Theorem 3 we
know that a node of the contraction tree is a subgraph of the normal product of
two paths. Hence, all nodes are planar circuits. Initially, all nodes in Γ/≡G are
OIF. We call the nodes of the initial tree Γ/≡G initial nodes and we initialize the
contraction tree by evaluating each initial node. Using the oracle of the reduction
we can do this in parallel in logDCFL. After that the invariant holds for the initial
tree.

Assume, we are given a node r with child nodes s and t where s is a leaf such
that the invariant holds for r, s, and t. Let r′ = evalr(t ◦ (s ◦ r) be the resulting
node of the contraction step. Variable gates are always on the outer face of a node,
because variables are introduced exclusively by the decomposition and disappear
on recomposition. Since s is constant all variable gates of r are the variable gates
of t. The nodes s and t are evaluated by assumption. Hence, all constants in s
and t are sinks and thus in r′ all constants in t\ const(t) are sinks (actually there
are no constants at all in t\ const(t)). The circuit const(t)◦ s◦ r is OIF because r
is OIF, all edges of r′ are edges in r as well. Hence, we can evaluate const(t)◦s◦r
using the oracle. As a result all constants in eval(const(t) ◦ s ◦ r) are sink gates.
Summing up, we get that all constants in (t \ const(t) ◦ eval(const(t) ◦ s ◦ r) are
sink gates.

We already know that r′ is planar and that all variable gates are the variable
gates from t. The induction hypothesis ensures that are on the outer face of t.
Since subcircuits are convex and Γ is variable-free (i.e. all variables are introduced
by decomposition) it holds that all variable gates of t are on the outer face of r′.
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r

s t

r

s t

evalr(t ◦ s ◦ r)

Figure 3.2: Illustration of the contraction step for the reduction to OIF circuits.
The figure on the right shows the result of the contraction of the nodes in the
figure on the left.
For an explanation of the symbols see Figure 3.1. If the initial node at the root
of a contraction node N is filled then N is constant. If it is semi-filled then N is
evaluated.
The leaf node s is constant already before the contraction step. The variables
gates of r are instantiated with the constant gates from s and t. Then r is
evaluated. Since s and t where evaluated already in the beginning the resulting
contracted node is evaluated.

We thus can conclude that all nodes are always OIF, which proves the invariant.
In the contraction step the evaluation of OIF circuits is done using the reduction
oracle. The remaining work in the contraction step can be performed in L.

3 1 3 3
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Chapter 4

LTL Model Checking of
Restricted Structures

LTL model checking is PSPACE-complete [85]. However, the data complexity
is only linear [65] while the expression complexity is PSPACE. The expression
complexity of PSPACE for LTL model checking is due the fact that one can
encode the computations of a PSPACE Turing machine within an LTL formula
[85]. Thus, satisfiability is PSPACE hard. It is easy to see that this holds even
for encodings where a superset of all computations of the Turing machine can
be represented in a relatively small (polynomial) Kripke structure. Hence, the
satisfiability problem can be reduced to the co-model checking problem on this
Kripke structure. Therefore, when searching for tractable subproblems of LTL
model checking, most research has focused on restrictions of the logic.

Although the high complexity of model checking generally is due to the for-
mula, this does not necessarily imply that this is true also for restricted classes of
Kripke structures. The PSPACE hardness results both for the combined as well
as for the expression complexity of the problem are worst-case scenarios with
respect to the Kripke structure. Thus, it is not obvious if the problem is PSPACE
hard except for a rather pathological or degenerated class of structures. E.g. the
problem becomes trivial (in fact NC1-complete [16]) on structures with a singleton
state and it is easy to see that the problem is in P on deterministic structures, i.e.
on computation paths [71]; actually, it is in NC, as we will prove in this chapter.
It thus is reasonable to investigate the complexity of the model checking problem
for restricted classes of structures. In this chapter we investigate the complexity
of the LTL model checking problem with respect to the Kripke structure. This
means that in our results we quantify over all formulas. Moreover, we consider
only the frame, i.e. the structure of the underlying graph, of a Kripke structure
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and quantify over all possible labelings.
As we will see, the problem is PSPACE hard for a vast class of even very simple

Kripke structures. A Kripke structure is called weak , if there are no two distinct
cycles within a single strongly connected component; in other words: all cycles
are pairwise disjoint. This implies that there is a partial ordering with respect
to reachability on the cycles of a weak Kripke structure. We will show that the
model checking problem is PSPACE hard for any non-weak Kripke structure and
that the problem is in coNP for weak Kripke structures. Additionally, we identify
some classes of Kripke structures for which the model checking problem can be
reduced to checking a polynomial number of finite computation paths. For these
classes the model checking problem is in NC. As mentioned before, for all these
results we restrict our attention to the frame of a Kripke structure and quantify
over all possible labelings.

4.1 Linear-Time Temporal Logic – LTL

We consider linear-time temporal logic (LTL) with the usual finite-path seman-
tics, which includes a weak and a strong version of the Next operator [66]. Let
AP be a set of atomic propositions. The LTL formulas are defined inductively as
follows: every atomic proposition p ∈ AP is a formula. If φ and ψ are formulas,
then so are

¬φ, φ ∧ ψ, φ ∨ ψ, X∃ φ, X∀ φ, φ U ψ, and φRψ .

Let p ∈ AP. We use true to abbreviate p ∨ ¬p and false as an abbreviation for
p ∧ ¬p. For a formula φ we write Gφ to abbreviate falseRφ and Fφ as an
abbreviation for trueUφ. The size of a formula φ is denoted by |φ|.

LTL formulas are evaluated over computation paths over the set of states 2AP.
Given an LTL formula φ, a nonempty computation path ρ satisfies φ at position
i (0 ≤ i < |ρ|), denoted by (ρ, i) |= φ, if one of the following holds:

• φ ∈ AP and φ ∈ ρi,

• φ = ¬ψ and (ρ, i) 6|= ψ,

• φ = φl ∧ φr and (ρ, i) |= φl and (ρ, i) |= φr,

• φ = φl ∨ φr and (ρ, i) |= φl or (ρ, i) |= φr,

• φ = X∃ ψ and i+ 1 < |ρ| and (ρ, i+ 1) |= ψ,

• φ = X∀ψ and i+ 1 = |ρ| or (ρ, i+ 1) |= ψ,

• φ = φl Uφr and ∃i ≤ j < |ρ| s.t. (ρ, j) |= φr and ∀i ≤ k < j, (ρ, k) |= φl, or
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• φ = φl Rφr and ∀i ≤ j < |ρ|.(ρ, j) |= φr or ∃i ≤ k < j s.t. (ρ, k) |= φl.

For |ρ| =∞ for any i ∈ N it holds that (ρ, i) |= X∃ ψ if and only if (ρ, i) |= X∀ψ.
An LTL formula φ is satisfied by a nonempty path ρ (denoted by ρ |= φ) iff
(ρ, 0) |= φ.

An LTL formula φ is said to be in positive normal form if in φ only atomic
propositions appear in the scope of the symbol ¬. The following dualities ensure
that each LTL formula φ can be rewritten into a formula φ′ in positive normal
form with |φ′| = O(|φ|).

¬¬φ ≡ φ ;

¬X∀φ ≡ X∃ ¬φ ;

¬(φl ∧ φr) ≡ (¬φl) ∨ (¬φr) ;

¬(φl Uφr) ≡ (¬φl) R(¬φr) .

The semantics of LTL implies the expansion laws, which relate the satisfaction of
a temporal formula in some position of the path to the satisfaction of the formula
in the next position and the satisfaction of its subformulas in the present position:

φl Uφr ≡ φr ∨ (φl ∧X∃ (φl Uφr)) ;

φl Rφr ≡ φr ∧ (φl ∨X∀ (φl Rφr)) .

Finally, we provide some notation for speaking conveniently about the syntax
of formulas. A formula ψ is a direct subformula of a formula φ, denoted as ψ≺·φ,
if

• φ = ∗ψ with ∗ ∈
{
¬,X∃,X∀

}
, or

• φ = φl ∗ φr with ∗ ∈ {∧,∨,U,R}.

The relation � is the reflexive and transitive hull of ≺·. We say that a formula ψ
is a subformula of φ if ψ�φ. The set of subformulas subf(φ) of φ is {ψ | ψ�φ}.
We often identify φ with subf(φ) and write ψ ∈ φ instead of φ ∈ subf(φ) or φ�ψ.
The formula tree of a formula φ is the rooted tree 〈subf(φ),≺·〉.

Kučera and Strejček prove in [60] a generalized stuttering theorem for LTL
that we will use later:

Definition 1 (Generalized Stutter Equivialence). Given a computation path ρ.
A subsequence ρi,j of ρ is (m,n)-redundant if ρ(j+1),(j+1)+m·(j−i)−m+1+n is a
prefix of ρωi,j.

We say that two computation paths ρ and σ are (m,n)-stutter equivalent if ρ
is obtained from σ by removing non-overlapping (m,n)-redundant subsequences,
or vice versa.
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Theorem 5 (Kučera and Strejček (2005)). Given an LTL formula φ with maxi-
mal nesting depth of U and R modalities of m and with maximal nesting depth of
X∃ and X∀ modalities of n. The set of {ρ | ρ |= φ} is closed under (m,n)-stutter
equivalence.

4.2 Efficient Parallel LTL Path Checking

We now come to the main result of this thesis, namely, that the path checking
problem for LTL is in NC, the class of problems that can be solved efficiently in
parallel.

Theorem 6. MC[LTL, path] is in AC1(logDCFL).

The proof proceeds as follows: First the problem is translated into the problem
of evaluating a monotone Boolean circuit. Next we use Theorem 4 from Section
3.4 to reduce the problem the problem of evaluating an OIF circuit. Finally we
apply Corollary 1 from Section 3.4. Figure 4.1 provides an outline of the proof.

Given an LTL formula φ in positive normal from and a finite computation
path ρ, the problem of checking φ on ρ is translated into the problem of evaluating
a circuit. We use the expansion laws of LTL to unfold φ over ρ such that each
gate of the resulting circuit represents the value of some subformula of φ at some
position of ρ.

Let ρ = ρ0, . . . , ρn−1. We construct the circuit cir(φ, ρ) = 〈Γ, γ〉 with Γ =
{gψ,ρr | ψ ∈ φ, 0 ≤ r < n} and γ(gψ,ρr ) defined by

• ρr(ψ) for ψ ∈ AP,

• ¬ρr(a) for ψ = ¬a, a ∈ AP,

• 〈∧, 〈gχ,ρr , gω,ρr 〉〉 for ψ = χ ∧ ω,

• 〈∨, 〈gχ,ρr , gω,ρr 〉〉 for ψ = χ ∨ ω,

•
〈
id, gχ,ρr+1

〉
for ψ = X∃χ and r < n− 1,

• 0 for ψ = X∃χ and r = n− 1,

•
〈
id, gχ,ρr+1

〉
for ψ = X∀χ and r < n− 1,

• 1 for ψ = X∀χ and r = n− 1,

•
〈
λx, y, z.x ∨ (y ∧ z),

〈
gω,ρr , gχ,ρr , gψ,ρr+1

〉〉
for ψ = χUω and r < n− 1,

• 〈id, gω,ρr 〉 for ψ = χUω and r = n− 1,
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MC[LTL, Paths]

MC[positive normal form LTL, Paths]

Section 4.1

evaluate Tree � Path

Lemma 8, Lemma 9

evaluate OIF circuit

Theorem 4

yes / no

Corollary 1

L

AC0

AC1

logDCFL

Figure 4.1: Overview over the algorithm for efficient parallel path checking for
LTL.
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•
〈
λx, y, z.x ∧ (y ∨ z),

〈
gω,ρr , gχ,ρr , gψ,ρr+1

〉〉
for ψ = χRω and r < n − 1,

and

• 〈id, gω,ρr 〉 for ψ = χRω and r = n− 1,

where 0 ≤ r < n and ψ, χ, ω ∈ φ. Since the construction of cir(φ, ρ) is in AC0 the
following lemma provides us with an AC0-reduction from the problem of deciding
ρ |= φ to the problem of evaluating cir(φ, ρ).

Lemma 8. Given an LTL formula φ in positive normal form and a finite com-
putation path ρ, for the circuit 〈Γ, γ′〉 = eval(cir(φ, ρ)) it holds that

γ′(gψ,ρr ) =

{
1 if ρ, r |= ψ,

0 otherwise,

for ψ ∈ φ and 0 ≤ r < n.

Proof. We prove the lemma by induction over the structure of φ. Initially, for
the ψ ∈ φ being an atomic proposition the statement follows directly from the
definition of γ′ and the semantics of LTL. Given that the statement holds for
each subformula χ ∈ ψ. If ψ is a disjunction, a conjunction, a X∃-formula, or a
X∀-formula the statement follows directly from the semantics of the LTL and the
definition of γ′. For ψ being an U- or a R-formula the statement follows from the
definition of γ′ and the expansion laws of LTL.

In order to evaluate the circuit cir(φ, ρ) we claim that it is a subgraph of the
normal product φ� ρ of the formula tree of φ and the path ρ:

Lemma 9. Given an LTL formula φ in positive normal form and a finite com-
putation path ρ, the circuit cir(φ, ρ) is a subgraph of φ� ρ.

Proof. Let e = 〈〈φ, ρr〉 , 〈ψ, ρs〉〉 an edge in cir(φ, ρ). From the definition of
cir(φ, ρ) it follows that either φ = ψ∧s = r+1 or φ ·�ψ∧r = s or φ ·�ψ∧s = r+1.
Hence, e is an edge of φ� ρ.

We are now ready to complete the proof of Theorem 6:

Proof of Theorem 6. Given an LTL formula φ and a finite computation path
ρ. In L convert φ into positive normal form. Use Lemma 8 to AC0-reduce the
problem of deciding ρ |= φ to the evaluation of 〈Γ, γ〉 = cir(φ, ρ). By Lemma 9
Γ is a subgraph of the normal product φ � ρ. Hence, we can use Theorem 4 to
AC1-reduce the evaluation of Γ to the evaluation OIF circuits with variable gates.
Thus, we can use the algorithm from Corollary 1 which runs in logDCFL. The
overall complexity is AC1(logDCFL).
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4.3 LTL Model Checking Problems in NC

In this section we derive some corollaries from Theorem 6. In general any class of
Kripke structures for which the model checking problem can be deterministically
reduced to a polynomial number of parallel path checking problems can be model
checked in NC. In particular, trees can be decomposed into a linear number of
paths:

Corollary 2. MC[LTL, tree] is in AC1(logDCFL).

DAGs of constantly bounded depth can be unfolded in trees with only linear
blowup:

Corollary 3. MC[LTL, DAG of depth O(1)] is in AC1(logDCFL).

Markey and Schnoebelen present in [71] a reduction from the problem of
checking ultimately periodic paths. We provide a more general reduction. We
start with an observation about weak Kripke structures:

Lemma 10. Let K be a weak Kripke structure. Any (finite or infinite) compu-

tation path ρ ∈ lang(K) is of the form
(∏n−1

i=0 ui · v
αi
i

)
with

• n ≤ |K|,

• αi ∈ N for i < n− 1 and αn−1 ∈ N ∪ {∞}, and

• ui, vi are finite paths in K

for 0 ≤ i < n.

Proof. The statement of the lemma follows from the fact that for a weak Kripke
structure all cycles are disjoint and the cycle-graph is a directed acyclic graph.

The lemma implies that we can represent a computation path ρ in a weak
Kripke structure K as a path R in the cycle-graph of K together with the coeffi-
cient αi for each cycle vi that occurs in ρ. We denote this representation of ρ by
Rα0,...,αn−1

.

Lemma 11. Given an LTL formula φ and a weak Kripke structure K. If there
is a computation path ρ = Rα0,...,αn−1

∈ lang(K) with ρ |= φ then there is a
computation path ρ′ = Rβ0,...,βn−1

with βi ≤ |φ|+1 such that ρ′ |= φ. In particular
it holds that |ρ′| = O(|φ| · |K|).

Proof. Represent the computation path ρ according to Lemma 10 and apply the
generalized stuttering theorem (Theorem 5) from Kučera and Strejček.
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First of all Lemma 11 subsumes the reduction from [71]. By reducing the
problem of checking an ultimately periodic path to the finite path checking prob-
lem we get the following corollary:

Corollary 4. MC[LTL, ultimately periodic path] is in ACO(logDCFL).

Proof. The computation path ρ can be represented as R∞. Due to Lemma 11
it is sufficient enumerate and check all computation paths Rα for α ≤ |φ| + 1.
By Theorem 6 each check can be done in AC1(logDCFL). Since all checks are
independent we can do them all in parallel.

Remark: A more careful interpretation of Theorem 5 would reveal that a
single check for α = |φ|+ 1 is actually sufficient.

We can use Lemma 11 to generalize the result to Kripke structures with cycle-
graphs of constantly bounded depth.

Corollary 5. MC[LTL, weak, cycle-graph of depth O(1)] is in AC1(logDCFL).

Proof. Unfold the Kripke structure into a tree of linear size and constant depth.
Each computation path in the unfolded structure can be represented as Rα0,...αn

where n ∈ N is a constant. Due to Theorem 5 it sufficient to enumerate and check
all computation path for αi ≤ |φ|+ 1 (0 ≤ i ≤ n). In total there is a polynomial
number of computation paths to be checked. Using Theorem 6 all checks can be
done in parallel in AC1(logDCFL).

Let G be the cycle-graph of a Kripke structure K. For a vertex v ∈ V (G) let

ζ(v) = α(v) +
∑

〈w,v〉∈E(K)

β(v) · ζ(w)

where

α(v) =

{
1 if v is initial in K and

0 otherwise,

β(v) =

{
2 if v represents a cycle of K and

1 otherwise, and

the empty sum equals zero. Intuitively, the function ζ(v) counts the number of
paths that lead from an initial state to v, where each cycle occurs either zero or
one times in a path. Let ζ(K) = maxv∈V (G) ζ(v).

Corollary 6. For any class C of weak Kripke structures such that ζ is polynomial
in the size of the structure it holds that MC[LTL, C] is in AC1(logDCFL).
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p

¬p

p

¬p

. . .

p

¬p

p

¬p

Figure 4.2: Kripke structure used to reduce SAT to LTL model checking

4.4 coNP-Complete LTL Model Checking Prob-
lems

In favor of a more concise presentation we exclusively consider LTL over infinite
paths throughout the remainder of this chapter.

Theorem 7. LTL model checking of weak Kripke structures is coNP-complete.

Proof. The proof of the upper bound guesses a possibly infinite path and uses
Lemma 11 to reduce the problem to the finite path checking problem. In concrete,
given a weak Kripke structure K. In order to decide if K 6|= φ guess a path R in
the cycle-graph of K such that there is a path ρ = Rα0,...,αn−1

∈ lang(K) with
ρ |= ¬φ. Use Lemma 11 to reduce this to checking ρ′ |= ¬φ for a finite path ρ′

of polynomial length. Do this check by use of Theorem 6 in AC1(logDCFL) ⊆ P.
Hence the model checking problem for weak Kripke structures is in coNP.

The proof of the lower bound reduces the satisfiability problem of propo-
sitional logic to the model checking problem of weak Kripke structures. The
reduction is very similar to the reduction used by [85] to show that the co-model
checking problem for the fragment of LTL that has F as the only modality is
NP-hard.

Given a propositional logic formula f over the set of variables {v0, . . . , vn},
n ∈ N. We obtain the LTL formula φ from f by substituting for all 0 ≤ i ≤ n

each occurrence of the variable vi by the LTL formula X∃
2i+1

p, where p ∈ AP.
It is easy to see that f is satisfiable if and only if φ holds on the Kripke structure
K shown in Figure 4.2.

The above proof actually provides a slightly stronger result:

Corollary 7. The problem of model checking LTL on planar acyclic graphs is
coNP-hard.
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p0 p1 p2 pn−2 pn−1

Figure 4.3: Kripke structure used to reduce SAT to LTL model checking of Kripke
structures for which the cycle-graph is a path.

There are more classes of Kripke structures with a coNP lower bound. In
order to prepare the proof of the next theorem we show here the construction for
Kripke structures with a cycle-graph that is a path. In fact self loops, i.e. state-
stuttering is sufficient. The idea is similar to the lower bound from the previous
theorem but the diamond shaped substructures are replaced by self loops. For a
propositional formula f with variables v0, . . . , vn−1 we build a Kripke structure
K that is a sequence of n self loops as shown in Figure 4.3 where each vertex is
labeled with a unique state (represented as a propositional formula) pi. The LTL
formula φ is obtained by substituting in f each variable vi with the LTL formula
F(pi ∧X∃ pi). It is easy to check that f is satisfiable if and only if K 6|= ¬φ.

The next theorem is a refined (though more technical) version of Theorem 7.
Recall that the function ζ from Section 4.3 counts the number of paths in a weak
Kripke structure where each cycle occurs at most once.

Theorem 8. For any class C of weak Kripke structures for which ζ is exponential
in the size of the structure it holds that MC[LTL, C] is complete for coNP.

The upper bound remains the same since for each weak Kripke structure ζ is
exponentially bounded. The lower bound is refined through a stronger constraint
on the classes of structures.

Proof. The proof for the lower bound combines the proof for the lower bound
for planar DAGs and the lower bound for paths Kripke structures with a cycle-
graph that is a path. Again, we reduce SAT to the co-model checking problem on
C. Let f a propositional formula with variables v0, . . . , vn−1. There is a Kripke
structure K in C such that the cycle-graph of K contains sequence of vertices
v0, . . . , vn−1, where vi is reachable from vi−1 and ζ(vi) = O(2 · vi+1) (the only
possibility to reach an exponential growth is via duplicating the value from a
vertex). Moreover, we know that either there are two distinct paths from vi−1

to vi with two distinguishing vertices v0
i and v1

i , or vi represents a cycle. In the
former case we label v0

i with a unique label pi (represented by a propositional
formula) and substitute vi in with the LTL formula F pi. In the latter case
we label vi with a unique label pi (represented as a propositional formula) and
substitute any occurrence of vi with the LTL formula F(pi ∧X∃(trueU pi)). We
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call the resulting LTL formula φ. Again, it is easy to check that K 6|= ¬φ if and
only if f is satisfiable.

The classification of Kripke structures between NC and coNP-hardness is not
a complete dichotomy but there is a gap concerning the structures with nO(1) �
ζ(k)� O(2n). This is illustrated via the following corollary.

Corollary 8. For any class C of weak Kripke structures with ζ = O(nlogO(1) n),
where n is the size of a Kripke structure, it holds that MC[LTL, C] is in polyL.

Proof. We can enumerate all computation paths of polynomial length that are
relevant according to Lemma 11 in polyL. Each computation path can be checked
in AC1(logDCFL) ⊆ polyL.

4.5 PSPACE-Complete LTL Model Checking Prob-
lems

We conclude this chapter by investigating how complex a Kripke structure has
to be in order for the model checking problem to become PSPACE-hard. As it
turns out the LTL model checking is PSPACE-complete for any non-weak Kripke
structure. In contrast to the previous results, we get a lower bound that does
not depend on the asymptotic behavior of a class of Kripke structures but holds
for each structure that is non-weak. Moreover, together with Theorem 7 we get
a dichotomic classification.

Theorem 9. The LTL model checking problem is PSPACE-complete for any non-
weak Kripke structure.

Proof. Given a non-weak Kripke structure K. We reduce the validity problem
for LTL to the co-model checking problem on K.

We start by choosing an adequate labeling for K. Let s, t, u ∈ 2AP be pairwise
disjoint states represented as Boolean formulas. Because K is non-weak we know
that there are two distinct cycles that share a common vertex x. Label x with
state s. There is a vertex y that is present in only one of the two cycles. Label
y with state t. Label all remaining vertices of K with u. Figure 4.4 provides a
schematic view of K.

Given some formula ζ with only a single variable. Deciding validity for a
LTL formulas with only a single variable is PSPACE-hard [23]. ζ is valid if and
only if ¬ζ is not satisfiable. To decide if φ = ¬ζ is satisfiable is the co-model
checking problem on a universal Kripke structure. We will reduce the latter for
φ to the co-model checking problem on the Kripke structure K with the labeling
given above for a formula φ∗ that can be constructed from φ in L. Since PSPACE
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s t

u

Figure 4.4: Non-weak Kripke structure with the labeling used in the proof of
Theorem 9

¬p p

Figure 4.5: The Kripke structure that represents the universal language {p,¬p}ω.

is closed under complement, the model checking problem for K is thus PSPACE
hard.

We assume that the unique atomic proposition that occurs in φ is p. A
Kripke structure with two states, namely p and ¬p, that represents the universal
language {p,¬p}ω is shown in Figure 4.5.

In the following we call a suffix of a computation path an a-suffix if the first
state of the suffix is a. We call a cycle in a Kripke structure an a-cycle if it starts
in an a-state. We identify the cycle with the corresponding state sequence.

The construction of φ∗ is as follows: First, transform φ into positive normal
form in L. Next, we define inductively a formula φ′. For the cases that φ is either
an atomic proposition or a negated atomic proposition let

• p′ = s ∧X∃ (uU s) and

• (¬p′) = s ∧X∃
(
uU

(
t ∧X∃ (uU s)

))
.

The idea is that the formula p′ holds exclusively on an s-cycle that does not
include the t state, whereas (¬p)′ holds on any s-cycle that visits the t state.
This way, each s-cycle encodes a state of the original Kripke structure. The
formula will translate each single step in the original Kripke structure into an
s-cycle in K. The remaining cases for φ′ are defined inductively as follows:

• ψ′ ∧ χ′ for φ = ψ ∧ χ,

• ψ′ ∨ χ′ for φ = ψ ∨ χ,

• s ∧X∃ (¬sUψ′) for φ = X∃ ψ,
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• s ∧ ((s→ ψ′) Uχ′) for φ = ψUχ, and

• s ∧ (ψ′R (s→ χ′)) for φ = ψRχ.

For any formula φ we want that a computation path that models φ′ is “meaning-
ful” in the sense that it can be mapped to a computation path having only p and
¬p states. Therefore we defined ′ such that a formula φ′ holds on a computation
path ρ only if ρ starts in the s state.

Finally, we set φ∗ = (G F s) ∧ (¬sUφ′). By requiring that any computation
path ρ with ρ |= φ∗ returns to s infinitely often, we prevent that ρ “gets stalled”
in some “meaningless” loop. The formula allows the computation to reach s
initially, and then it forces the remaining computation path to satisfy φ′ which
encodes on K the original meaning of φ.

We claim that for each computation path ρ it holds that ρ |= φ if and only if
there is a computation path ρ∗ ∈ lang(K) such that ρ∗ |= φ∗. Let c be a s-cycle
in K that does not visit t and let d an s-cycle in K that visits t. For proving the
“only if” part of the claim assume that ρ |= φ. Let ρ′ be defined as follows:

ρ′ =

{
c · ρ′1,... if ρ0(p), and

d · ρ′1,... otherwise.

It holds that ρ′ ∈ lang(K), every suffix of ρ′ contains an s-state, and ρ′ starts
with s. Further ′ induces a surjective mapping from the suffixes of ρ to s-suffixes
of ρ′. This mapping is monotonic with respect to the order of start position of
the suffixes.

Let e be the (possibly empty) sequence of states on a shortest path in K that
leads from an initial state to s. Let ρ∗ = e · ρ′. Every suffix of ρ∗ contains an
s state and therefore it holds that ρ∗ |= G F s. Since all states in e contradict s
from the definition of ρ∗ it follows directly that ρ∗ |= (¬s) Uφ′ if ρ′ |= φ′. We
prove this by induction over φ:

• For φ = p it holds that if ρ starts with p then ρ′ starts with c followed by
an s state. Hence ρ′ |= s ∧X∃ (uU s).

• For φ = ¬p it holds that if ρ starts with ¬p then ρ′ starts with d followed
by an s state. Hence ρ′ |= s ∧X∃

(
uU

(
t ∧X∃ (uU s)

))
.

• For φ ∈ {ψ ∧ χ, ψ ∨ χ} the claim follows directly from the induction hy-
pothesis and the semantics of LTL.

• For φ = X∃ ψ it holds that ρ1,... |= ψ. By induction hypothesis (ρ1,...)
′ |= ψ′

and by definition of ρ′ it holds that ρ′ |= s ∧X∃ (¬sUψ′).
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• For φ = ψUχ there is a position i such that ρi,... |= χ and ρj,... |= φ
for all j < i. By induction hypothesis there is an l such that ρ′l,... |= χ′.
Since ′ is surjective and monotonic on the s-suffixes of ρ′ from the induction
hypothesis it follows that ρ′j,... |= ψ′ for all s-suffixes with j < l. Further
recall that ψ′ holds only on computation paths that start with s. Hence, for
all non-s-suffix ρ′j,... with j < l the formula (s→ ψ′) holds trivially. Thus,
for all j < l it holds that ρ′j,... |= (s→ ψ′) and we get ρ′ |= s∧(s→ ψ′) Uχ′.

• The case for φ = ψRχ is analogous to the previous case.

We now prove the “if” part of the claim. Given a computation path in σ ∈
lang(K) such that σ |= φ∗. There is a position i0 such that for all j < i0 it holds
that σj,... |= ¬s and σi0,... |= φ′. Let σ0 = σi0,.... We show that σ0 |= φ′ implies
that there is a computation path σ′ with σ′ |= φ. We know that σ0 contains only
s, t, and u states. Moreover, we know from the definition of φ∗ that any suffix of
σ0 contains an s state. The computation path σ′ is defined as follows:

σ′ =

{
p · σ′s0,... if σ0

0,s0 contains no t state, and

¬p · σ′s0,... otherwise,

where s0 is the position of the first s-state in σ1,.... Note that ′ induces a mono-
tonic and surjective mapping from the s-suffixes of σ0 to the suffixes of σ. We
show by induction over φ that σ′ |= φ:

• For φ = p we have σ0 |= s ∧ X∃ (uU s). This implies that σ0
0,s0 does not

contain any t state and therefore σ′0(p).

• For φ = ¬p we have σ0 |= s ∧ X∃
(
uU

(
t ∧X∃ (uU s)

))
. Therefore σ0

0,s0
contains a t state and hence σ′0(¬p).

• For φ ∈ {ψ ∧ χ, ψ ∨ χ} the claim follows directly from the induction hy-
pothesis and the semantics of LTL.

• For φ = X∃ ψ we have σ0 |= s∧X∃ (¬sUψ′). This implies that σ0
s0,... |= ψ′.

From the induction hypothesis it follows that σ′1,... |= ψ and thus σ′ |= X∃ ψ.

• For φ = ψUχ we have that σ0 |= s∧ ((s→ ψ′) Uχ′). Therefore there is an
i ∈ N such that σ0

i,... |= χ′ and for all j < i it holds that σ0
j,... |= (s → ψ′).

By induction hypothesis there is an l ∈ N such that σ′l,... |= χ. For all

s-suffixes σ0
j,... with j < i it holds that σ0j, . . . |= ψ′. Recall that ′ induces

a monotonic and surjective function from the s-suffixes of σ0 to the suffixes
of σ′.

Together with the induction hypothesis we deduce that for all j < l it holds
that σ′j,... |= ψ. We conclude that σ′ |= ψUχ.
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• The case for φ = ψRχ is analogous to the previous case. Note, however,
that there are infinitely many s-states in σ0.

3 3

1

3

2 2

3 2

2 2 2 2



50 4.5. PSPACE-COMPLETE LTL MODEL CHECKING PROBLEMS



Chapter 5

Computation Tree Logic
Tree Checking

The model checking problem for CTL is tractable, namely it is P-complete. In
[18] Clarke, Emerson, and Sistla provide an algorithm with bilinear running time.
In [13] Bernholtz, Vardi, and Wolper improve over this and show that CTL model
checking is in space linear in the formula and poly-logarithmic in the size of the
Kripke structure. Although in the community this bound was considered folklore,
the first published proof of the P lower bound that we know of is by Schnoebelen
in [84]. It reduces the monotone circuit value problem to MC[CTL, DAGs]. The
proof uses EX∃ and AX∃ as only temporal operators. The argument can be
easily adapted to use only EF and AF or EU or AU, respectively. There is
a long line of research about the complexity of model checking for all kinds
of extensions and restriction of CTL (cf. [14] for further references). In [14]
the authors comprehensively investigate the complexity of the model checking
problem for fragments of the logic.

We are not aware of any systematic study of the complexity of the model
checking problem for CTL on restricted classes of structures. In the following we
summarize some obvious facts. CTL and LTL coincide on computation paths.
Hence we get the following corollary.

Corollary 9. MC[CTL, path] is in AC1(logDCFL).

The next corollary is an immediate consequence from the proof of the P upper
bound of CTL model checking from [84].

Corollary 10. MC[CTL, DAG] is P-complete.

For the last corollary we use the same reduction from [84] as for the previous
result. However, this time we start the reduction from the monotone and planar
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circuit value problem. In [17] the authors notice that the monotone planar circuit
value problem is L hard. As a result we conclude that

Corollary 11. MC[CTL, planar DAG] is L-hard.

However, the hardness depends on the encoding of the input. Here we as-
sume that the input structure is given as an unsorted set of gates. It is an open
problem if this lower bound still holds if input DAG is given along with a topo-
logical sorting? To the best of our knowledge the best known upper bound for
MC[CTL, planar DAGs] is P. Hence, the exact complexity of model checking of
CTL over planar DAGs is open.

The remainder of this chapter is dedicated to our main result on CTL model
checking, namely that CTL tree checking is in NC. We start in the next section
with the formal definition of the logic CTL.

5.1 Computation Tree Logic – CTL

Analogously to LTL also for CTL we define a weak and a strong version of
the Next-Operators. Again, let AP be a set of atomic propositions. CTL dis-
tinguishes between path formulas and state formulas. Each atomic proposition
p ∈ AP p is state formula. If φ and χ are state formulas and ψ is a path formula
then the following are state formulas:

¬φ, φ ∧ χ, φ ∨ χ, Eψ, and Aψ .

If φ and χ are state formula then the following are path formulas:

X∃ φ, X∀φ, φUχ, and φRχ .

The CTL formulas are the set of all state formulas. Usually we write φEUχ,
φAUχ, φERχ, and φARχ instead of E (φUχ), A (φUχ), E (φRχ), and
A (φRχ), respectively.

CTL formulas are evaluated over computation trees. Given a CTL formula
φ, a nonempty computation tree τ 6= ε satisfies φ, denoted by τ |= φ, if one of
the following holds:

• φ ∈ AP and φ ∈ root(τ),

• φ = ¬ψ and τ 6|= ψ,

• φ = χ ∧ ψ and τ |= χ and τ |= ψ,

• φ = χ ∨ ψ and τ |= χ or τ |= ψ,
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• φ = E ξ and there is a rooted computation path ρ in τ such that ρ |= ξ, or

• φ = A ξ and for each rooted computation path ρ in τ it holds that ρ |= ξ,

where ψ and χ are state formulas and ξ is a path formula and for a path ρ it
holds that ρ |= ξ if one of the following holds:

• φ = X∃ ψ and |ρ| > 1 and ρ1,... |= ψ,

• φ = X∀ψ and either |ρ| = 1 or ρ |= X∃ ψ,

• φ = χUψ and ∃0 ≤ i < |ρ|.ρi,... |= ψ ∧ (∀0 ≤ j < i.ρj,... |= χ), or

• φ = χRψ and ∀0 ≤ i < |ρ|.ρi,... |= ψ ∨ (∃0 ≤ k < j.ρj,... |= χ).

An CTL formula φ is said to be in positive normal form if in φ only atomic
propositions appear in the scope of the symbol ¬. The following dualities ensure
that each CTL formula can be rewritten into positive normal form with only
linear size:

¬¬φ ≡ φ ;

¬AX∀ φ ≡ EX∃ ¬φ ;

¬EX∀ φ ≡ AX∃ ¬φ ;

¬(φl ∧ φr) ≡ (¬φl) ∨ (¬φr) ;

¬(φl EUφr) ≡ (¬φl) AR(¬φr) ;

¬(φl AUφr) ≡ (¬φl) ER(¬φr) .

The semantics of CTL implies the expansion laws, which relate the satisfaction
of a temporal formula in some position of the path to the satisfaction of the
formula in the next position and the satisfaction of its subformulas in the present
position:

φl EUφr ≡ φr ∨ (φl ∧ EX∃ (φl EUφr)) ;

φl AUφr ≡ φr ∨ (φl ∧AX∃ (φl AUφr)) ;

φl ERφr ≡ φr ∧ (φl ∨ EX∀ (φl ERφr)) ;

φl ARφr ≡ φr ∧ (φl ∨AX∀ (φl ARφr)) .

For a CTL formula φ the set of subformulas subf(φ) includes only state for-
mulas, i.e. proper CTL formulas. Otherwise the definition is analogous to the
definition of subformulas of an LTL formula in Section 4.1.
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5.2 Efficient Parallel CTL Tree Checking

In this section we prove that tree checking for CTL is efficiently parallelizable.

Theorem 10. Let T be the class of Kripke structures that are (finite) trees.

MC[CTL, T ] is in AC2(logDCFL).

The idea of the proof is analogous to the result on LTL path checking. There
we used parallel tree contraction to evaluate the formula tree over the finite
computation path. In the case of CTL tree checking also the Kripke structure
over which the formula is evaluated is a tree. Fortunately, these two trees are
combined orthogonally by the expansion laws for CTL. The expansion laws allow
us to unroll the formula over the finite computation tree such that the resulting
combinatorial circuit is a subgraph of the normal product of the formula tree and
the computation tree. Thus, we can use the reduction techniques from Section
3.4. In a first step the computation tree is contracted which results in an AC1-
reduction to the evaluation of a circuit that is a subgraph of the normal product of
a path and the formula tree. In a second step the formula tree is contracted which
results in a reduction to the evaluation of a circuit that is a subgraph of the normal
product of two paths; in fact the circuit is OIF. There is one sole problem with this
approach: The structure tree is in general not binary. We solve this by providing a
L-reduction from general tree structures to binary tree structures. This reduction
is applied before the model checking problem is translated into a circuit evaluation
problem. An overview of the construction is shown on Figure 5.1. All together we
thus get an algorithm that consists of two initial many-one reductions followed
by a simple transformation and two nested parallel tree contractions with OIF
circuit evaluation as the base case of the reduction chain. The overall complexity
therefore is AC0(AC1(AC1(logDCFL))) = AC2(logDCFL) ⊆ SAC3.

In concrete we start by L-reducing the problem MC[CTL, T ] for general finite
trees to the problem MC[CTL, T2], where T2 is the class of Kripke structures
that are finite binary trees. Given a CTL formula φ and a finite computation
tree τ ∈ T , replace each node n in τ of degree d(n) > 2 with a regular binary
tree ν(n) such that the leaves of ν(n) are the children of n and root(ν(n)) = n.
Call the resulting tree ν(τ). Note that the size of ν(τ) is at most twice the size
of τ . Label the new nodes V (ν(τ)) \ V (τ) with a fresh (non-empty) state s such
that s ∩ s′ = ∅ for all labels s′ occurring in τ . We define the CTL formula φ′

inductively as follows:

• p for φ = p ∈ AP,

• ¬χ′ for φ = ¬χ,

• χ′ ∧ ψ′ for φ = χ ∧ ψ,
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MC[CTL, T ]

MC[CTL, T2]

Lemma 12

MC[positive normal form CTL, T2]

Section 5.1

evaluate Tree � Tree

Lemma 13, Lemma 14

evaluate Path � Tree

Theorem 3

evaluate OIF circuit

Theorem 4

yes / no

Corollary 1

L

L

AC0

AC1

AC1

logDCFL

Figure 5.1: Overview over the algorithm for efficient tree checking for CTL.
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• χ′ ∨ ψ′ for φ = χ ∨ ψ,

• EX∃ (sEU(¬s ∧ χ′)) for φ = EX∃ χ,

• AX∃ (sAU(¬s ∧ χ′)) for φ = AX∃ χ,

• EX∀ (sEU(¬s ∧ χ′)) for φ = EX∀ χ,

• AX∀ (sAU(¬s ∧ χ′)) for φ = AX∀ χ,

• (s ∨ χ′) EU (¬s ∧ ψ′) for φ = χEUψ,

• (s ∨ χ′) AU (¬s ∧ ψ′) for φ = χAUψ,

• (¬s ∧ χ′) ER (s ∨ ψ′) for φ = χERψ, and

• (¬s ∧ χ′) AR (s ∨ ψ′) for φ = χARψ.

Lemma 12. Given a CTL formula φ and a tree τ ∈ T .

τ |= φ iff ν(τ) |= φ′.

ν(τ) and φ′ can be constructed in L.

Proof. By induction over φ.

Given a CTL formula φ in positive normal from and a finite computation tree
τ , using Lemma 12 we can assume that τ is binary. The problem of checking φ on
τ is translated into the problem of evaluating a circuit. We use the expansion laws
of CTL to unfold φ over τ such that each gate of the resulting circuit represents
the value of some subformula of φ at some node in τ . We construct the circuit
cir(φ, τ) = 〈Γ, γ〉 with Γ = {gψ,t | ψ ∈ subf(φ), t ∈ τ} and γ(gψ,t) defined by

• r(ψ) for ψ ∈ AP,

• ¬r(a) for φ = ¬a, a ∈ AP,

• 〈∧, 〈gχ,r, gω,r〉〉 for ψ = χ ∧ ω,

• 〈∨, 〈gχ,r, gω,r〉〉 for ψ = χ ∨ ω,

• 〈∧, 〈gχ,s, gχ,t〉〉 for ψ = AX∃ χ or ψ = AX∀ χ and r not a leaf,

• 〈∨, 〈gχ,s, gχ,t〉〉 for ψ = EX∃ χ or ψ = EX∀ χ and r not a leaf,

• 0 for ψ = EX∃ χ or ψ = AX∃ χ and r a leaf,

• 1 for ψ = EX∀ χ or ψ = AX∀ χ and r a leaf,
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• 〈λw, x, y, z.w ∨ (x ∧ (y ∨ z)), 〈gω,r, gχ,r, gψ,s, gψ,t〉〉 for ψ = χEUω and r
not a leaf,

• 〈λw, x, y, z.w ∨ (x ∧ (y ∧ z)), 〈gω,r, gχ,r, gψ,s, gψ,t〉〉 for ψ = χAUω and r
not a leaf,

• 〈id, gω,r〉 for ψ = χEUω or ψ = AUω and r leaf,

• 〈λw, x, y, z.w ∧ (x ∨ (y ∨ z)), 〈gω,r, gχ,r, gψ,s, gψ,t〉〉 for ψ = χERω and r
not a leaf,

• 〈λw, x, y, z.w ∧ (x ∨ (y ∧ z)), 〈gω,r, gχ,r, gψ,s, gψ,t〉〉 for ψ = χARω and r
not a leaf,

• 〈id, gω,r〉 for ψ = χERω or ψ = χARω and r a leaf,

where r, s, t ∈ τ , s and t are children of r, and ψ, χ, ω ∈ φ. If r has only one child
we set s = t (and merge the dependencies in the resulting circuit into a single
dependency) otherwise we require s 6= t. Since the construction of cir(φ, τ) is in
AC0 the following lemma provides us with an AC0-reduction from the problem of
deciding τ |= φ to the problem of evaluating cir(φ, τ).

Lemma 13. Given a CTL formula φ in positive normal form and a finite com-
putation tree τ . For the circuit 〈Γ, γ′〉 = eval(cir(φ, τ)) it holds that

γ′(gψ,r) =

{
1 if ρ, r |= ψ,

0 otherwise,

for ψ ∈ subf(φ) and r ∈ τ .

Proof. We prove the lemma by induction over the structure of φ. For ψ ∈ subf(φ)
being an atomic proposition the statement follows directly from the definition of
γ′ and the semantics of CTL. Given that the statement holds for each subformula
χ ∈ subf(ψ). If ψ is a disjunction, a conjunction, a AX∃-, EX∃-, AX∀-,or a EX∀-
formula the statement follows from the semantics of the CTL and the definition
of γ′. For ψ being an AU-, EU-, AR- or a ER-formula the statement follows from
the definition of γ′ and the expansion laws of CTL.

In order to evaluate the circuit cir(φ, τ) we claim that it is a subgraph of φ� τ :

Lemma 14. Given a formula φ in positive normal form and a finite computation
tree τ the circuit 〈Γ, γ〉 = cir(φ, τ) is a subgraph of φ� τ .

Proof. Let 〈V,E〉 = φ � τ . Let e = 〈〈φ, τr〉 , 〈ψ, τs〉〉 an edge in Γ. From the
definition of Γ it follows that either φ = ψ ∧ s = r + 1 or φ ·�ψ ∧ r = s or
φ ·�ψ ∧ s = r + 1. Hence e is an edge of φ� τ .
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We are now ready to complete the proof of Theorem 10:

Proof of Theorem 10. Given a CTL formula φ and a finite computation tree τ .
In L we apply Lemma 12 and then convert φ into positive normal form. Use
Lemma 8 to AC0-reduce the problem of deciding τ |= φ to the evaluation of
〈Γ, γ〉 = cir(φ, τ). By Lemma 14 it holds that graph(Γ) ⊆ φ � τ . Hence we can
use Theorem 3 to AC1-reduce the evaluation of Γ to the evaluation of a circuit
that is a subgraph of the normal product of a path and a tree. Using Theorem
4 we get another AC1 reduction to the evaluation of OIF circuits. Finally, we
apply Corollary 1 to evaluate OIF circuits in logDCFL. The overall complexity is
AC0(AC1(AC1(logDCFL))) = AC2(logDCFL).



Chapter 6

Path Checking for
Extensions of LTL

In this chapter we investigate extensions of LTL that are important for practical
applications. First, we add past-time modalities to LTL. Second, we extend LTL
with bounded modalities that restrict the scope of a subformula to a bounded
prefix of the computation path. Both extension are particularly interesting in
runtime verification and monitoring, which are the main application domains of
finite path checking.

We aim to apply the techniques that we developed for proving that LTL
path checking is efficiently parallelizable. As it turns out we can not use these
techniques in straightforward way, but we need to extend the approach in different
ways. In the end we establish the same upper bound for path checking of the
extensions as for pure LTL, namely AC1(logDCFL).

6.1 Efficient Path Checking of LTL+Past

Prior’s original temporal logic included past-time modalities [80]. On well ordered
time domains, as they occur in program verification, the past-time modalities do
not add expressive power to the logic [29]. Therefore LTL has been defined as pure
future logic. On the other hand the past-time modalities do not add complexity
to the model checking problem [85] but allow for more natural expression of
properties as formulas [66]. Moreover, there are cases where past-time modalities
can even reduce the complexity of model checking, since LTL with past-time
modalities can be exponentially more succinct compared to pure future LTL [69].
Therefore Markey concludes that “past is for free”[68]. The benefit of including
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past-time modalities into the logic is even more obvious in the context of runtime
verification. While the complexity of online monitoring of future formulas is
exponential, the complexity drops to only linear for past-time formulas the due
to the fact that backward determinization of alternating automata is linear.

Given the practical relevance of LTL with past-time modalities, in this section
we extend the path checking techniques that we developed for LTL to LTL with
past-time modalities (LTL+Past). We will find that also in path checking past is
for free.

Theorem 11. MC[LTL+Past, paths] is in AC1(logDCFL).

Syntax and semantics. We now extend LTL with the past-time modalities
Y∃ (strong yesterday), Y∀ (weak yesterday), S (since), and T (trigger) with the
following semantics:

• (ρ, i) |= Y∃ψ iff i− 1 ≥ 0 ∧ (ρ, i− 1) |= ψ,

• (ρ, i) |= Y∀ψ iff i− 1 < 0 ∨ (ρ, i− 1) |= ψ,

• (ρ, i) |= φl Sφr iff ∃i ≥ j ≥ 0 s.t. (ρ, j) |= φr ∧ ∀i ≥ k > j . (ρ, k) |= φl, and

• (ρ, i) |= φl Tφr iff ∀i ≥ j ≥ 0 . (ρ, j) |= φr ∨ ∃i ≥ k > j s.t. (ρ, k) |= φl.

The resulting logic is called linear-time temporal logic with past (LTL+Past). We
use Pφ (once) to abbreviate true Sφ and Hφ (always in the past) to abbreviate
false Tφ.

The following dualities ensure that each LTL+Past formula φ can be rewritten
into a formula φ′ in positive normal form with |φ′| = O(|φ|).

¬Y∀φ ≡ Y∃¬φ;

¬(φl Sφr) ≡ (¬φl) T(¬φr).

The expansion laws for the past-time modalities are

φl Sφr ≡ φr ∨ (φl ∧Y∃ (φl Sφr));

φl Tφr ≡ φr ∧ (φl ∨Y∀ (φl Tφr)).

Extended normal product. We would like to prove Theorem 11 in the same
way as we proved Theorem 6 for pure future LTL. Consider the formula φ =
G X∃Y∃ P p. Figure 6.1 shows the circuit that result from expanding φ over
some finite computation path ρ. The problem is that the graph of the circuit is
not a subgraph of the normal product of the finite computation path ρ and the
formula tree φ. For the subcircuits that correspond to past-time modalities the
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Figure 6.1: The circuit that results from expanding G X∃Y∃ P p over a compu-
tation path ρ with |ρ| = 6. Gates labeled with ∗ are and-gates and gates labeled
with + are or-gates. Observe that it is not a subgraph of the normal product of
the path ρ and the formula tree.

edges have the “wrong” direction. As a consequence for the yesterday-modality
the “diagonal” edges use the “wrong” diagonal. Intuitively, the product is built
using the � operator instead of the � operator.

We solve this problem by extending the product construction: We define the
extended normal product on vertex labeled graphs. The labels indicate how to
interpret the direction of the edges in the product. We introduce a Boolean
flag “rev” that, if set for a vertex v, indicates that in the product for each
product-vertex 〈v, w〉 all outgoing edges of w are reversed. For a graph G let
G−1 =

〈
V (G), E(G)−1

〉
. Given rev-labeled graphs G,H, the extended normal

product ofG andH, denoted asG�H, is the graph with V (G�H) = V (G)×V (H)
and e = 〈〈g, h〉 , 〈g′, h′〉〉 ∈ E(G�H) if and only if

• e ∈ E(G�H) for neither rev(g) nor rev(h),

• e ∈ E(G−1 �H) for rev(g) and not rev(h),

• e ∈ E(G�H−1) for rev(h) and not rev(h), and

• e ∈ E(G−1 �H−1) for rev(g) and rev(h),

where g, g′ ∈ V (G) and h, h′ ∈ V (H).
Remark: the symbol � might suggest that the product of two edges results

in a K4. This would for imply that the product of two paths is in general not
planar (a path of length two and another path of length three would suffice have
get a K5 as a subgraph). This is not true. From the definition of � it follows
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that there is always only one diagonal present. Intuitively, one must not think of
� as � and � but think of � as � or �.

In order to adapt the efficient evaluation of circuits to the new product we
state two observations:

1. For two directed acyclic graphs G and H the extended normal product
G � H is a directed acyclic graph if for either G or H all vertices v are
labeled in the same way, and

2. for two paths G and H the extended normal product is planar.

From these observations it is straightforward to conclude that the efficient parallel
evaluation algorithm from Theorem 4 can be extended to circuits that are a
subgraphs of the extended normal product of a path and a tree where no node
of the tree is labeled with rev.

Theorem 12. Given a circuit Γ with graph(Γ) ⊆ (G � H) for some (rooted)
tree G and some (directed) path H where no node of H is labeled with rev. The
evaluation problem for Γ can be AC1-reduced to the evaluation problem for OIF
circuits with variable gates.

Efficient parallel path checking algorithm for LTL+Past. Having es-
tablished Theorem 12 the proof of Theorem 11 is a straightforward extension of
the proof of Theorem 6. As usual, we start with many-one reducing the path
checking problem to a circuit evaluation problem.

Given a LTL+Past formula φ in positive normal form and a finite compu-
tation path ρ = ρ0, . . . , ρn−1, we construct the circuit cir(φ, ρ) = 〈Γ, γ〉 with
Γ = {gψ,ρr | ψ ∈ φ, 0 ≤ r < n} and γ(gψ,ρr ) defined by

•
〈
id, gχ,ρr−1

〉
for ψ = Y∃χ and r > 0,

• 0 for ψ = Y∃χ and r = 0,

•
〈
id, gχ,ρr−1

〉
for ψ = Y∀χ and r > 0,

• 1 for ψ = Y∀χ and r = 0,

•
〈
λx, y, z.x ∨ (y ∧ z),

〈
gω,ρr , gχ,ρr , gψ,ρr−1

〉〉
for ψ = χSω and r > 0,

• 〈id, gω,ρ0〉 for ψ = χSω and r = 0,

•
〈
λx, y, z.x ∧ (y ∨ z),

〈
gω,ρr , gχ,ρr , gψ,ρr−1

〉〉
for ψ = χTω and r > 0, and

• 〈id, gω,ρ0〉 for ψ = χTω and r = 0,
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where 0 ≤ r < n and ψ, χ, ω ∈ φ. For the connectives already present in future
LTL the construction is described in Section 4.2. The construction of cir(φ, ρ)
is in AC0 and the following lemma provides us with an AC0-reduction from the
problem of deciding ρ |= φ to the problem of evaluating cir(φ, ρ). The proof is
analogous to the proof of Lemma 8.

Lemma 15. Given a LTL+Past formula φ in positive normal form and a finite
computation path ρ. For the circuit 〈Γ, γ′〉 = eval(cir(φ, ρ)) it holds that

γ′(gψ,ρr ) =

{
1 if ρ, r |= ψ,

0 otherwise,

for ψ ∈ φ and 0 ≤ r < n.

The following lemma about the circuit cir(φ, ρ) allows us to apply Theorem
12 in order to evaluate it.

Lemma 16. Given an LTL+Past formula φ in positive normal form and a finite
computation path ρ, the circuit cir(φ, ρ) is a subgraph of φ� ρ where a node in φ
is labeled with rev if and only if it is a past-time modality.

Proof. Let e = 〈〈φ, ρr〉 , 〈ψ, ρs〉〉 an edge in cir(φ, ρ). From the definition of
cir(φ, ρ) it follows that either φ = ψ∧s = r±1 or φ ·�ψ∧r = s or φ ·�ψ∧s = r±1.
Hence, e is an edge of φ� ρ.

We are now ready to complete the proof of Theorem 11. It is a straightforward
adaption of the proof of Theorem 6 from Section 4.2 about path checking for LTL.

Proof of Theorem 6. Given an LTL+Past formula φ and a finite computation
path ρ. In L convert φ into positive normal form. Use Lemma 15 to AC0-reduce
the problem of deciding ρ |= φ to the evaluation of 〈Γ, γ〉 = cir(φ, ρ). By Lemma
16 Γ is a subgraph of the extended normal product φ � ρ where no node of ρ is
labeled with rev. Hence, we can use Theorem 12 to AC1-reduce the evaluation
of Γ to the evaluation OIF circuits with variable gates. Thus, we can use the
algorithm from Corollary 1 which runs in logDCFL. The overall complexity is
AC1(logDCFL).

Remark: For CTL tree checking Theorem 3 can not be extended in the same
way, because the parallel tree contraction would fail if some child node in the tree
depends on its parent. This would violate the condition that each branch of the
tree can be evaluated independently of all other branches, thus preventing the
possibility to evaluate branches in parallel. This is one reason we cannot tackle
tree checking for multi-modal CTL with our approach. Multi-modal CTL would
subsume Core XPath which is known to be complete for P. For CTL with past it
is an open problem whether tree checking is hard for P or the problem is in NC.

2 2

3

2 2 2 2

1

3

2 2 2 2

3

2

2 2 2 2



64 6.2. EFFICIENT PATH CHECKING OF BLTL

6.2 Efficient Path Checking of BLTL

In practical applications unbounded future modalities are problematic: for the
response property G(request → F response), when may we expect the reponse
after a request has been issued? Immediately, in some seconds, some minutes,
hours, days, or years? Particularly, in online monitoring this poses a problem:
if only a finite prefix of a computation is visible, it is impossible to falsify an
unbounded liveness property or validate an unbounded safety property. Bounded
modalities, that allow quantitative statements over time, offer a solution in such
a situation. This observation has led to the introduction of real-time temporal
logics [47, 3, 56, 4] that are interpreted over computations paths where each
state is stamped with a value from a real-valued time domain, so called timed
state sequences. In this thesis we interpret the bounds over normal computation
paths, i.e. the bounds just count states. This semantics are common in hardware
verification [45] where the system under consideration is assumed to be clocked.

In this section we will extend the path checking techniques for LTL+Past to
LTL with bounded modalities (BLTL+Past). We will find that in path checking
bounds are for free.

Theorem 13. MC[BLTL+Past, paths] is in AC1(logDCFL)

Syntax and semantics. To obtain linear-time temporal logic with past and
bounds (BLTL) we further add the bounded temporal operators Ub , Rb , Sb ,
and Tb , where b ∈ N is any natural number. For technical reasons we define for
the remainder of the section the size of a formula using unary encoding for the
bounds. Note, however, that Theorem 13 also holds for the usual O(1)-encoding
of the bounds. The semantics of the bounded operators is defined as follows:

• (ρ, i) |= φl Ub φr iff ∃i ≤ j ≤ min(i+ b, |ρ| − 1) s.t (ρ, j) |= φr ∧ ∀i ≤ k < j,
(ρ, k) |= φl,

• (ρ, i) |= φl Rb φr iff ∀i ≤ j ≤ min(i+ b, |ρ| − 1), (ρ, j) |= φr ∨ ∃i ≤ k < j s.t
(ρ, k) |= φl,

• (ρ, i) |= φl Sb φr iff ∃i ≥ j ≥ max(i − b, 0) s.t (ρ, j) |= φr ∧ ∀i ≥ k > j,
(ρ, k) |= φl, and

• (ρ, i) |= φl Tb φr iff ∀i ≥ j ≥ max(i − b, 0), (ρ, j) |= φr ∨ ∃i ≥ k > j s.t
(ρ, k) |= φl.

The following dualities apply for the BLTL operators:

¬(φl Ub φr) ≡ (¬φl) Rb (¬φr) ;

¬(φl Sb φr) ≡ (¬φl) Tb (¬φr) .
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The expansion laws for the bounded operators are for b ∈ N

φl Ub φr ≡

{
φr ∨ (φl ∧X∃ (φl Ub−1 φr)) for b > 0,

φr for b = 0,

φl Rb φr ≡

{
φr ∧ (φl ∨X∀ (φl Rb−1 φr)) for b > 0,

φr for b = 0,

φl Sb φr ≡

{
φr ∨ (φl ∧Y∃ (φl Sb−1 φr)) for b > 0,

φr for b = 0, and

φl Tb φr ≡

{
φr ∧ (φl ∨Y∀ (φl Tb−1 φr)) for b > 0,

φr, for b = 0.

In the remainder of this section we will present a path checking algorithm for
BLTL. The algorithm constructs a circuit that is of polynomial size in the size of
the input formula, the length of the input computation path, and the sum of the
bounds that occur in the input formula. However, we do not want the complexity
of the algorithm to depend on the encoding of the bounds. The following theorem
allows us to prune the size of the bounds that occur in a BLTL formula to the
length of the computation path.

Theorem 14. Given a BLTL formula φ and a finite computation path ρ. The
BLTL formula φ′ is obtained from φ by setting each bound n in φ to min(n, |ρ|).
It holds that ρ |= φ if and only if ρ |= φ′.

Proof. By induction over φ.

In the following we always assume that any bound occurring in a BLTL for-
mula of a path checking problem has most the size of the computation path. The
sum of the bounds is thus polynomial in the size of the input formula and the
input computation path. Therefore we do not need to consider the bounds in the
complexity analysis.

Boolean circuits for BLTL path checking. As usual we prove this theorem
by first constructing a circuit from the input formula and the computation path.
We then show that we can evaluate the circuit in AC1(logDCFL). However, the
expansion laws for the bounded modalities yield a circuit that is not a subgraph of
the extended normal product of the formula tree and path. During the recursive
expansion gives rise to “new” subformulas that where not present in the original
formula: An Un -operator gives rise to “additional” Ui -operators for 0 < i < n.
Let φ a BLTL formula and ρ a computation path. Let Φ the set of all subformulas
that occur in the expansion while construction the circuit cir(φ, ρ). Then the

3
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decomposition cir(φ, ρ)/≡Φ is not a tree but a generally a directed acyclic graph
as shown in Figure 6.2. This prevents us from using Theorem 12 for evaluating
cir(φ, ρ). The reason for cir(φ, ρ)/≡Φ not being planar are the “new” subformulas
in Φ that are not present in φ.

Let χ ∈ subf(φ) be bounded by n, i.e. the top-level modality is a bounded
modality with bounded n. Let Ψ be the set of all subformulas in Φ \ �(φ) that
originated from the expansion of χ. For each ψ ∈ Ψ and each position ρi of ρ we
will merge the the gates 〈ψ, ρi〉 into the gate 〈χ, ρi〉. Since Φ(\(Φ \ subf(φ))) =
subf(φ) we have eliminated all gates from the circuit that correspond to “new”
subformulas. As result we get that cir(φ, ρ)/≡subf(φ) is a tree.

What is the labeling of the merged gates 〈χ, ρi〉? We can use standard β-
reduction from the λ-calculus to fold the functions of all involved gates into a
single function. However, in the original circuit a gate the ψ gates depend on
each other on different path positions. E.g. a gate 〈ψ, ρi〉 might depend on a
gate 〈ψ, ρi+1〉. Therefore we need some means to access the intermediate values
that would be hidden by the β-reduction. The solution is to extend the type of
the gates to represent the values of all subsumed gates: for a path position ρi
the merged gate 〈χ, ρi〉 does compute the value of the original gate 〈χ, ρi〉 along
with the values of all gates 〈ψ, ρi〉 for all ψ ∈ Ψ. Hence, the merged gate 〈χ, ρi〉
does not compute a Boolean value but vector of Boolean values. Thus, at each
position of ρ we merge all ψ-gates into the corresponding χ-gate pass the vector
of the values of the original gates along a single dependency to the merged gate
at the previous position of ρ. Figure 6.3 illustrates the result of merging the gates
the resulted from expanding a bounded modality. By this construction we get
circuit that is a subgraph of the extended normal product of the formula tree and
the computation path.

In the following we call a gate that represents a Boolean vector an extended
gate. For convenience we define that a non-extended gate that depends on an
extended gate reads just the first bit of the Boolean vector of the extended gate.
For a vector ~z ∈ Bn the right 0-shift (0 � ~z) is defined as ~z · (δi+1,j)0≤i,j<n,

where δ is the Kroneker-δ. Analogously the right 1-shift (1� ~z) is defined as 1−(
(1− ~z) · (δi+1,j)0≤i,j<n

)
. We will use the following functions on Boolean vectors

in the definition of our circuits: constant ~1, constant ~0, scalar multiplication with
~1 (n-identity), right 0-shift (0�), and right 1-shift (1�).

Given a BLTL formula φ in positive normal form and a finite computa-
tion path ρ = ρ0, . . . , ρn−1, we construct the circuit cir(φ, ρ) = 〈Γ, γ〉 with
Γ = {gχ,ρr | χ ∈ φ, 0 ≤ r < n} and γ(gχ,ρr ). Definition of γ(gχ,ρ) is exactly the
same as in the constructions for LTL and LTL+Past except for the cases where
the top-level operator of χ is a bounded operator. For χ = ψUn ω, n ∈ N we
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Un

Un−1

U1

φ ψ

Figure 6.2: Expanding a formula χUn ψ over a finite computation path and then
projecting onto the formula component reveals that the resulting combinatorial
circuit is not a normal product of a path and a tree, but it is the product of a
path and a directed acyclic path.

define

γ(gχ,ρr ) =
〈
f,
〈
gω,ρr , gψ,ρr , gχ,ρr+1

〉〉
,

where f : B× B× Bn → Bn with

f(x, y, ~z) =


~1 if x = 1,
~0 if x = 0 and y = 0, and

0� ~z otherwise,

(6.1a)

for 0 ≤ r < |ρ| − 1 and

γ(gχ,ρr ) =
〈
λx.x ·~1, gω,ρr

〉
, (6.1b)

for r = |ρ| − 1.
Intuitively, the output vector of the gate gχ,ρr counts in a backward direc-

tion how many steps (into the past) the formula ω has held given that ψ held
throughout all these steps. The gate resets the vector to ~1 if ω evaluates to 1 at
the current position (r). It resets the vector to ~0 if ω and ψ both evaluated to 0 at
the current position. Otherwise, if ψ holds and ω does not hold it decreases the
count by right-shifting the vector. Figure 6.3 illustrates how the Un -operator is
translated into a circuit.

3 3
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Figure 6.3: Circuit that results from expanding the formula χU7 ψ over a com-
putation path ρ with |ρ| = 6.

The construction for Rn , Sn , and Tn are analogous: For ψ = χRn ω the
function f is dual to the Un case:

f(x, y, ~z) =


~0 if x = 0,
~1 if x = 1 and y = 1, and

1� ~z otherwise,

for 0 ≤ r < |ρ| − 1 and

γ(gψ,ρr ) =
〈
λx.x ·~1, gω,ρr

〉
,

for r = |ρ|−1. The past operators are defined analogously to the future operators
with the order of the dependencies in the ρ-component reversed: For χ = ψ Sn ω
let

γ(gχ,ρr ) =
〈
f,
〈
gω,ρr , gψ,ρr , gχ,ρr−1

〉〉
,

where f : B× B× Bn → Bn with

f(x, y, ~z) =


~1 if x = 1,
~0 if x = 0 and y = 0, and

0� ~z otherwise,

for 0 < r < |ρ| and

γ(gχ,ρr ) =
〈
λx.x ·~1, gω,ρr

〉
,

for r = 0. Finally, for χ = ψTn ω the function f is dual to the Sn case:

f(x, y, ~z) =


~0 if x = 0,
~1 if x = 1 and y = 1, and

1� ~z otherwise,
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for 0 < r < |ρ| and

γ(gχ,ρr ) =
〈
λx.x ·~1, gω,ρr

〉
,

for r = 0. The circuit cir(φ, ρ) can be constructed in L.

Lemma 17. Given a BLTL formula φ in positive normal form and a finite
computation path ρ. For the circuit 〈Γ, γ′〉 = eval(cir(φ, ρ)) it holds that

γ′(gχ,ρr ) =

{
1 if ρ, r |= χ,

0 otherwise,

for χ ∈ φ and 0 ≤ r < n.

Proof. Proof by induction over φ. For all but the bounded connectives the cor-
rectness follows from the proof of Lemma 8. For the bounded operators it is a
consequence of the definition of γ (in particular f) and the semantics of BLTL.

In order to evaluate the circuit cir(φ, ρ) we show that it is a subgraph of the
extended normal product φ � ρ. The following lemma can be proved straight-
forward by checking all dependencies between gates in the construction of the
circuit.

Lemma 18. Given a BLTL formula φ in positive normal form and a finite
computation path ρ the circuit 〈Γ, γ〉 = cir(φ, ρ) is a subgraph of φ� ρ.

An efficient parallel path checking algorithm for BLTL. We would like
to use Theorem 12 to evaluate Γ. However, that theorem talks about circuits that
do not contain extended gates. There are two principle problems in extending the
evaluation techniques from the previous chapters to extended circuits: First, we
can not expect to perform the evaluation with constant resources if the vectors
are of non-constant size and second, it is not clear how to lift the notion of
monotonicity to Boolean vectors such that we can profit from the low complexity
of the evaluation of monotone planar circuits. In the following we will solve
this problems and provide a version of the path checking algorithm for LTL/
LTL+Past that works for BLTL as well.

Except for the evaluation algorithm that used for the base case, namely for
the evaluation of monotone planar circuits, the proof of Theorem 12 is agnostic of
the distinction between normal and extended gates . In order to apply Theorem
12 we translate all extended gates back into normal gates just before we call the
oracle for the evaluation of monotone planar circuits. Unfortunately, there is no
local translation from extended gates into normal gates such that the resulting
circuit is still the extended normal product of two paths. Our translation from

3 1
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extended into normal gates will therefore use global knowledge about the circuit
and the evaluation algorithm. Namely, we will use that fact that all extended
gates corresponding to the same bounded connective in the formula tree are
translated back into normal gates simultaneously. We now proceed with the
proof of Theorem 13.

Proof of Theorem 13. Given an BLTL formula φ and a finite computation path ρ,
in L convert φ into positive normal form, use Lemma 8 to L-reduce the problem
of deciding ρ |= φ to the evaluation of 〈Γ, γ〉 = cir(φ, ρ). By Lemma 9 Γ is a
subgraph φ� ρ.

We now show how we can adapt Theorem 12 in order to evaluate Γ in
AC1(logDCFL). To simplify the following explanations assume that there are
no past-time modalities in φ. As mentioned before the proof of Theorem 4 does
not depend on the distinction between normal and extended gates except for the
step where the oracle for the evaluation of OIF circuits is called. Therefore it suf-
fices to show that always when the algorithm calls the oracle for the evaluation
of an OIF subcircuit we can translate this extended subcircuit into an equivalent
normal circuit.

The algorithm in the proof of Theorem 4 calls the oracle only on a circuit
〈B, β〉 that is a subgraph of the extended normal product of ρ and some path P
in the formula tree. Consider some extended gate g in B. Let ϕ ∈ subf(φ) be
the bounded subformula with ϕ ∈ P such that g is of the form gϕ,ρr for some
0 ≤ r < |ρ|. For each 0 ≤ r < |ρ| it holds that gϕ,ρr is an extended gate and
gϕ,ρr ∈ B. B ⊆ ρ � P implies that there is a fixed subformula ψ≺·ϕ such that
for all 0 ≤ r < |ρ| the only possible dependencies are gψ,ρr or gϕ,ρr+1 . In other
words, if in the original circuit Γ we have

γ(gϕ,ρr ) =

{〈
λxy~z.f(x, y, ~z),

〈
gψ,ρr , gχ,ρr , gϕ,ρr+1

〉〉
for 0 < r < |ρ− 1| and

〈λx.g(x), gψ,ρr 〉 for r = |ρ| − 1

then in the subcircuit B that is presented to the oracle we have either

β(gϕ,ρr ) =

{〈
λy~z.f(C, y, ~z),

〈
gχ,ρr , gϕ,ρr+1

〉〉
for 0 < r < |ρ− 1| and

C for r = |ρ| − 1
(6.2)

or

β(gϕ,ρr ) =

{〈
λx~z.f(x,C, ~z),

〈
gψ,ρr , gϕ,ρr+1

〉〉
for 0 < r < |ρ− 1| and

〈λx.g(x), gψ,ρr 〉 for r = |ρ| − 1
(6.3)

where C ∈ B depends on r. Moreover, the proof of Theorem 4 decomposes the
circuit Γ only in such a way that for ϕ always all the gates gϕ,ρr , 0 ≤ r < |ρ| (in
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the following called ϕ-gates) are in the same subcircuit. Therefore the ϕ-gates
are always evaluated all together and in particular are evaluated for the first time
in the same oracle call. Hence, the ϕ-gates are translated back into normal gates
simultaneously. This justifies that the above two cases for B are complete and
that we can in the following provide a single global circuit construction for all
ϕ-gates.

The proof will proceed as follows: In a first step we will, for a bounded formula
ϕ and each of the cases (6.2) and (6.3), translate the extended gates individually
into a series of normal gates. In a second step we will argue that the circuit
obtained by substituting the extended gates with its implementations can be
transformed into an equivalent circuit that is a subgraph of the extended normal
product of ρ and a path obtained from the formula path by splitting the node of
the subformula ϕ into subpaths of nodes corresponding to the newly introduced
normal gates.

Consider the BLTL formula ϕ = χUn ψ. Recall that the function f in the
labeling of gϕ,ρr is defined by

f(x, y, ~z) =


~1 if x = 1,
~0 if x = 0 and y = 0, and

0� ~z otherwise,

for 0 ≤ r < |ρ| − 1, where the variable x corresponds to the ψ-gates and y
corresponds to the χ-gates. For r = |ρ| − 1 gϕ,ρr only depends on ψ. We define

g by g(x) = x ·~1.
We begin with the construction for the case (6.2): From (6.1) and (6.2) we

deduce for f and g the functions fx=C and gx=C by binding parameter x with
C ∈ B:

fx=0(y, ~z) =

{
~0 if y = 0 and

0� ~z if y = 1,

for x = 0 and

fx=1(y, ~z) = ~1

for x = 1, and gx=0 = ~0 and gx=1 = ~1.
We implement the functions fx=0, fx=1, gx=0, and gx=1 as follows. In place

of gϕ,ρr we introduce the gates gϕi,ρr for 0 ≤ i < n into B. The gates for the
functions fx=0 and gx=0 are labeled

β(gϕi,ρr ) =

{
0 for r = |ρ| − 1 or i = 0 and〈
∧,
〈
gχ,ρr , gϕi−1,ρr+1

〉〉
for r < |ρ| − 1 and 0 < i < n.

3 1 3 3
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〈gϕ1,ρr 〉

〈gϕ2,ρr 〉

〈gϕ3,ρr 〉

〈gϕ4,ρr 〉

〈gϕ5,ρr 〉

{gψ0,ρn} gϕ0,ρr+1

gϕ1,ρr+1

gϕ2,ρr+1

gϕ3,ρr+1

gϕ4,ρr+1

gϕ5,ρr+1

gχ,ρn

{gϕ0,ρr}

{gϕ1,ρr}

{gϕ2,ρr}

{gϕ3,ρr}

{gϕ4,ρr}

{gϕ5,ρr}

〈gϕ0,ρr 〉

〈gϕ1,ρr 〉

〈gϕ2,ρr 〉

〈gϕ3,ρr 〉

〈gϕ4,ρr 〉

〈gϕ5,ρr 〉

Figure 6.4: Circuit with normal gates resulting from a U6 -gate. The case of
fx=0, r < |ρ| − 1 is shown on the left, the case for fx=0, r = |ρ| − 1 in the middle,
and the case of fx=1 on the right side. Gates in angle brackets are and-gates.
And-gates without dependency are 1. Gates in curly brackets are or-gates. Or-
gates without dependency are 0.

For the functions fx=1 and gx=1 the gates are labeled

β(gϕi,ρr ) = 1 for 0 ≤ i < n and 0 ≤ r < |ρ|.

In order to embed the new gates into B we set gϕ,ρr = gϕn−1,ρr for 0 ≤ r < |ρ|.
Figure Figure 6.4 shows for n = 6 the respective circuits for fx=0 and fx=1. The
intuition behind the construction is that gate gϕi,ρr , 0 ≤ i < n is equivalent to
the value of the ith component of the value of the original gate gϕ,ρr . Thus the
circuit B with the new gates is equivalent to the original circuit. In Figure 6.5
the circuit B is shown for n = 6, |ρ| = 8 with fx=1 at position 4 and 7 and
fx=0 at all other positions i. Observe that the circuit is not a subgraph of an
extended normal product of two paths. It is not even planar as illustrated by the
red colored overlay that is a K3,3 in Figure 6.6.

Can we transform the circuit B such that it becomes an extended normal
product of ρ and a path? Many gates in B are equivalent to 0 as shown in Figure
6.7: since all gates are either and-gates or constants all gates that depend on a
0-gate are equivalent to 0. We can use this observation to transform the circuit
into an equivalent circuit where we set all the gates that depend on a 0-gate to
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Figure 6.5: The circuit construction for the formula χU6 ψ over a computation
path ρ with |ρ| = 8 and fx=1 at position 4 and 7 and fx=0 at all other positions
i. A ∗ denotes an and-gate.
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Figure 6.6: The same circuit as in Figure 6.5. The red subgraph is a K3,3 that
illustrates that the graph is not planar.
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Figure 6.7: The same circuit as in Figure 6.5. All gates are either and-gates or
constant gates. Hence all gates that depend on a 0-gate are equivalent to 0.

0. Additionally we can change the dependencies of the remaining and-gates as
shown in Figure 6.8. In a last step we reinsert the “old” 0-gates as identity-gates.
In a strict sense the resulting circuit is not equivalent to the original circuit B,
because we changed the meaning of the 0-gates. However, the top level-gates
remain equivalent and all external depencies are to the top-level gates. This last
step achieves that the result is a subgraph of the extended normal product of ρ
and a path. Figure 6.9 shows the final circuit B.

Summing up, the final circuit B is defined as follows. For gϕ,ρr in Γ labeled
with fx=0 or gx=0 let r0 the minimal r′ such that gϕ,ρr′ is labeled with fx=1 or
r0 =∞ if there is no such r′. We have

β(gϕi,ρr ) =


0 for r = |ρ| − 1,〈
id, gϕi−1,ρr

〉
for r < |ρ| − 1 and 0 < i < r′ − r,〈

∧,
〈
gϕi−1,ρr , gϕi−1,ρr+1

〉〉
for r < |ρ| − 1 and r′ − r ≤ i < n, and

〈id, gχ,ρr 〉 for r < |ρ| − 1 and i = 0

where ∞− r = ∞ for all r ∈ N. It holds that r′ − r > 0. For gϕ,ρr in Γ labeled
with fx=1 or gx=1 we have

β(gϕi,ρr ) = 1 for 0 ≤ i < n and 0 ≤ r < |ρ|.

The new gates are embedded into B by setting gϕ,ρr = gϕn−1,ρr for 0 ≤ r < |ρ|. It
can easily be checked that B is the extended normal product of the computation
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Figure 6.8: A circuit that is obtained from circuit as in Figure 6.7 by propagat-
ing the 0-constants and changing the dependencies of the remaining and-gates.
Observe that the circuit is equivalent to the circuit from Figure 6.7.

path ρ and the path in the formula where the ϕ node is replaced by a path
ϕ0, . . . , ϕn−1.

We have constructed the circuit for the case (6.2). We now consider case (6.3),
i.e. we assume that the y variables are bound to either 0 or 1 in the definition of
f . From (6.1) and (6.3) we deduce for f and g the functions fy=C and gy=C :

fy=0(x, ~z) = x ·~1

for y = 0 and

fy=1(x, ~z) =

{
0� ~z if x = 0 and
~1 if x = 1

for y = 1. Further we have gy=0(x) = gy=1(x) = x ·~1.
We implement the functions fy=0, fy=1, gy=0, and gy=1 as follows. In place

of gϕ,ρr we introduce the gates gϕi,ρr for 0 ≤ i < n into B. The gates for the
functions fy=1 and gy=1 are labeled

β(gϕi,ρr ) =

{
〈∨, gψ,ρr 〉 for r = |ρ| − 1 and〈
∨,
〈
gψ,ρr , gϕi−1,ρr+1

〉〉
for r < |ρ| − 1,

3 1
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Figure 6.9: The final circuit B. In a strict sense it is not equivalent to Figure
6.8 because the meaning of the former 0-gates changes. However, here it is only
important that the top level gates remain equivalent. The circuit clearly is a
subgraph of the extended normal product of ρ and a path. Gates denoted with
a dot are identity-gates.
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Figure 6.10: Circuits with normal gates resulting from a U6 -gate. The case of
fy=1, r < |ρ| − 1 is shown on the left. The right side shows all remaining cases.
Gates in curly brackets are or-gates. Or-gates without dependency are 0.

for 0 ≤ i < n. For the functions fy=0 and gy=0 the gates are labeled

β(gϕi,ρr ) = 〈∨, gψ,ρr 〉 for 0 ≤ i < n and 0 ≤ r < |ρ|.

In order to embed the new gates into B we set gϕ,ρr = gϕn−1,ρr for 0 ≤ r < |ρ|.
Figure Figure 6.10 shows the respective circuits for f0

ψ and f1
ψ for n = 5.

In the current case a local translation of the extended gates is already pos-
sible. From the definition of the labeling as well as from Figure 6.10 one can
easily confirm that the circuits shown in Figure 6.11 are equivalent to the circuits
resulting from the previous definition of β. Formally we redefine the labeling β
as follows: The gates for the functions fy=1 and gy=1 are labeled

β(gϕi,ρr ) =


〈
∨, gϕi−1,ρr

〉
for r = |ρ| − 1 and 1 < i < n,〈

∨,
〈
gϕi−1,ρr , gϕi−1,ρr+1

〉〉
for r < |ρ| − 1 and 1 < i < n, and

〈∨, gψ,ρr 〉 for i = 0.

For the functions fy=0 and gy=0 the gates are labeled

β(gϕi,ρr ) =

{〈
∨, gϕi−1,ρr

〉
1 < i < n and

〈∨, gψ,ρr 〉 for i = 0
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{gϕ0,ρr}

{gϕ1,ρr}

{gϕ2,ρr}

{gϕ3,ρr}

{gϕ4,ρr}

{gϕ5,ρr}

gϕ0,ρr+1

gϕ1,ρr+1

gϕ2,ρr+1

gϕ3,ρr+1

gϕ4,ρr+1

gϕ5,ρr+1

gχ,ρr

{gϕ0,ρr}

{gϕ1,ρr}

{gϕ2,ρr}

{gϕ3,ρr}

{gϕ4,ρr}

{gϕ5,ρr}

gχ,ρr

Figure 6.11: The circuits are equivalent to the circuits from Figure 6.10. More-
over, B remains an extended normal product of two paths after we substitute the
corresponding extended gates in B by these circuits.

for 0 ≤ r < |ρ|. We finish the construction for χUn ψ with the remark that the
labeling β can by computed in L.

We will skip a detailed treatment of the remaining three bounded temporal
connectives. We just mention that the case of Rn is dual to construction for
Un . The cases of Sn and Tn are completely analogous by reverting the order
of the states in ρ.

Now we can use Theorem 12 to AC1-reduce the evaluation of Γ to the eval-
uation of circuits with extended gates. Using the presented construction the
evaluation of circuits with extended gates is reduced to normal OIF circuits with
variable gates. The remaining details are the same as in the proof of Theorem 6
and Theorem 11. The overall complexity is AC1(logDCFL).



Chapter 7

Conclusions

We have presented efficient parallel algorithms for checking LTL and CTL for-
mulas over finite paths and trees. By the adaption of the construction to two
important extensions of LTL the flexibility of our approach has been demon-
strated. This suggests that the algorithmic concepts behind our construction
may show useful in a broader context. The results are a significant step forward
in the research program towards a complete picture of the complexities of the path
checking problems across the spectrum of temporal logics, which was started in
2003 by Markey and Schnoebelen [71]. The main idea of our approach is the use
of planar circuits as a representation of partially evaluated subformulas, which
allows the evaluation of the formula to efficiently stop and resume, as dictated by
the dependencies between the subformulas. We conjecture that the use of planar
circuits as a data structure in parallel or space-efficient verification algorithms,
following the pattern of our construction, will find applications in other model
checking problems as well.

In this chapter we recall the results of the thesis along with some concluding
remarks. We close the thesis by stating interesting open questions and promising
directions of future research.

LTL path checking. We presented an AC1(logDCFL) algorithm for checking
LTL formulas over finite paths. This improves significantly over the previously
best known upper bound of P.

Events characterized by finite languages are studied since Kleene’s definite
events [53] and the locally testable events of McNaughton and Papert [74]. In
the terminology of McNaughton and Papert, a set E of words is called a locally
testable event in the strict sense if there exists a finite language L, such that
all subwords of each word in E have a prefix in L. McNaughton and Papert
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construct an automaton that maintains an input buffer that is large enough to
capture the largest words in L. In each step, a combinatorial circuit checks if the
pipeline content belongs to L. In case that L is given as a temporal logic formula
our results provide bounds on the depth of the combinatorial circuit.

CTL tree checking. We have shown that the tree checking problem for CTL
is in AC2(logDCFL).

As a consequence of our results, the best known upper bound for model check-
ing CTL on trees, namely AC2(logDCFL), is of higher complexity than the best
known upper bound for model checking LTL on trees, namely AC1(logDCFL).
This is in contrast with the general model checking problem, which is PSPACE-
complete for LTL and P-complete for CTL. We conjecture that on trees, CTL
model checking is actually not easier than LTL model checking. The conjecture
is based on the observation that for trees, the number of paths that an LTL
formula has to be checked against is only linear (in contrast to general model
checking where uncountably many paths have to be checked). Therefore, all
paths can be checked individually in parallel without any blow-up. In contrast,
for CTL the path quantors induce a hierarchical dependence between the suffixes
of different paths in the structure. Whereas on general structures this allows for
tractable model checking via a branch-and-bound approach, on trees it prevents
a straightforward parallelization, since those dependencies must be resolved in
a clever way. This comes at an extra price that might even result in a strictly
higher complexity.

The tree checking problem is an important problem in the development of
efficient algorithms for query languages for tree-shaped data-structures. We think
that CTL provides an interesting alternative to the more expressive but expensive
versions of XPath, such as Core XPath or CXPath, on one side, and similarly
cheap but very restrictive fragments like positive Core XPath on the other side.
Compared to the latter CTL may be beneficial for queries that require universal
quantification and the power of “until” but do not relay on the sibling axis.

Complexity of LTL model checking for classes of Kripke structures.
We have developed a classification of Kripke structures with respect to the com-
plexity of the model checking problem for LTL. We showed that the model check-
ing problem for a Kripke structure is PSPACE-complete if and only if the Kripke
structure is not weak. The problem is coNP-complete for the class of all weak
Kripke structures. The problem is in NC for any class of Kripke structures for
which the model checking problem can be reduced to a polynomial number of
path checking problems.

Examples of such classes include finite paths, ultimately periodic path, finite
trees, directed graphs of constant depths, and classes of Kripke structures with
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a cycle graph of constant depth.

Path checking for extensions of LTL. We have shown that our approach
to parallel path checking that is based on the evaluation of monotone Boolean
circuits can be extended to LTL+Past and BLTL+Past.

We have provided an AC1(logDCFL) algorithm for checking BLTL+Past for-
mulas over finite paths. While other extensions of LTL, for example with Chop
or Past+Now, immediately render the path checking problem P-complete and,
hence, inherently sequential [71], LTL with past and bounds can be checked effi-
ciently in parallel.

There is a growing practical demand for efficient parallel algorithms, driven
by the increasing availability of powerful (and inherently parallel) programmable
hardware. For example, several tools are available that translate PSL assertions
to hardware-based monitors [20, 15, 27]. Such implementations can immediately
apply our construction to evaluate subformulas consisting of bounded and past
operators in parallel rather than sequentially.

Unlike in static verification, where the verification algorithm is executed at
design-time and can therefore afford to spend significant time and resources, run-
time verification algorithms must run in synchrony with the monitored system
and usually even share the resources of the implementation platform. Therefore,
an online monitor must have a particularly low complexity foot-print for a single
update-step. In [27] we provide a novel automata-based translation of tempo-
ral specifications to monitor circuits that saves exponential space in the size of
bounded-future subformulas. The construction exploits the local testablility of
bounded subformulas, that occur within general temporal properties, by the in-
troduction of a pipeline into the monitoring circuit. Our result on BLTL+Past
path checking allows to further improve the time complexity of an update-step
by an exponential factor.

LTL+Past with only past-time modalities is a particularly attractive specifi-
cation logic for online monitoring, since the space complexity is only linear in the
formula and constant in the trace length. Because the update-step of the monitor
can be reduced to the evaluation of a Boolean formula it is in NC1. With our
construction the speed of a pure past-time monitor can be further improved by
buffering the input and evaluating chunks of n sequential observations efficiently
in parallel.

Evaluation of monotone boolean circuits. Our algorithms for path check-
ing and tree checking of temporal logic formulas rely on the efficient parallel
evaluation of monotone Boolean circuits. In the thesis we show that for cir-
cuits that have a graph that is the normal graph products of trees and paths
the evaluation problem can be reduced to the evaluation problem for monotone
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planar Boolean circuits. These kinds of products of combinatorial structures are
quite common. We expect that our techniques can be applied directly or can be
extended to be useful in other application as well.

Open questions and future work. There are several open questions that
deserve further attention. Albeit small, there is still a gap between AC1(logDCFL)
and the best known lower bound, NC1 for LTL path checking. Similarly, there is
a gap between AC2(logDCFL) and NC1 for CTL tree checking.

Hence, tight bounds for the complexity of LTL path checking remain a chal-
lenging open problem. There is some hope to further reduce the upper bound
towards NC1, the currently known lower bound, because our construction re-
lies on the algorithms for evaluating monotone planar Boolean circuits with all
constant gates on the outer face. The circuits that appear in our construction
actually exhibit much more structure. However, we are not aware of any algo-
rithm that takes advantage of that and performs better than logDCFL. Another
way to improve the upper bounds of our path and tree checking algorithms would
be to prove a better upper bound for the problem of evaluating one-input-face
monotone planar Boolean circuits.

Beyond finite trees we do know very little about other classes for which the
model checking problem for CTL is in NC. What are the properties of Kripke
structures that allow for efficiently parallel model checking for CTL? What is
the complexity of tree checking for CTL + past and CTL with a sibling axis?
What is the complexity of CTL* tree checking? LTL and CTL both satisfy the
basic properties that we require for our techniques to apply: They both have a
linear positive normal form and expansion laws that correspond to normal graph
products. CTL* does not fulfill the second requirement. For example, the formula
A(Gp ∨ Fq) can not be expanded in the required way.

An intriguing question is whether the path checking complexities of LTL and
BLTL are actually the same: while they are both in NC, the circuits resulting
from BLTL formulas seem to be combinatorially more complex.

The proofs in this thesis make use of different computational models: Boolean
circuits, space-restricted Turing machines, time-restricted Turing machines, Tur-
ing machines with push-down store, and parallel random access memory machines
(PRAM). Can we derive practical parallel implementations from our parallel path
and tree checking algorithms?

Complexity classes that are characterized by efficient parallel algorithms and
complexity classes that are characterized by space-efficient algorithms are tightly
coupled through simulation theorems. In the light that in modern hardware
architectures cache-efficiency and I/O-efficiency are the more important perfor-
mance factors than the actual number of computation steps, the following ques-
tion seems even more important than the previous one: Can we derive prac-
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tical space-efficient implementations from our parallel path and tree checking
algorithms? In particular with the fast growing number of available cores in
modern computing devices, on the one hand, and the tight resource restrictions
on mobile devices, on the other hand, good trade-offs between cache-efficiency,
I/O-efficiency, and CPU-usage become more important.
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[60] A. Kučera and J. Strejček. The stuttering principle revisited. Acta Inf.,
41(7-8):415–434, 2005.

[61] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT
News, 7(1):18–20, 1975.

3 3

3

1

3

2 2

3 2

2 2 2 2



90 BIBLIOGRAPHY

[62] R. E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM J. Comput., 6(3):467–480, 1977.

[63] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forget-
table past. In LICS, pages 383–392. IEEE Computer Society, 2002.

[64] L. Libkin and C. Sirangelo. Reasoning about xml with temporal logics and
automata. J. Applied Logic, 8(2):210–232, 2010.

[65] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In POPL, pages 97–107, 1985.

[66] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proceedings
of the Conference on Logic of Programs, pages 196–218, London, UK, 1985.
Springer.

[67] N. Limaye, M. Mahajan, and J. Sarma. Evaluating monotone circuits on
cylinders, planes and tori. In B. Durand and W. Thomas, editors, STACS,
volume 3884 of LNCS, pages 660–671. Springer, 2006.

[68] N. Markey. Past is for free: on the complexity of verifying linear temporal
properties with past. Electr. Notes Theor. Comput. Sci., 68(2), 2002.

[69] N. Markey. Temporal logic with past is exponentially more succinct, con-
currency column. Bulletin of the EATCS, 79:122–128, 2003.

[70] N. Markey and J.-F. Raskin. Model checking restricted sets of timed paths.
Theoretical Computer Science, 358(2-3):273 – 292, 2006. Concurrency The-
ory (CONCUR 2004).

[71] N. Markey and P. Schnoebelen. Model checking a path (preliminary report).
In CONCUR, volume 2761 of LNCS, pages 251–265. Springer, 2003.

[72] N. Markey and P. Schnoebelen. Mu-calculus path checking. Inf. Process.
Lett., 97(6):225–230, 2006.

[73] M. Marx. Conditional xpath. ACM Trans. Database Syst., 30(4):929–959,
2005.

[74] R. McNaughton and S. Papert. Counter-Free Automata, volume 65 of Re-
search Monograph. MIT Press, 1971.

[75] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[76] H. Petersen. Decision problems for generalized regular expressions. In DCA-
GRS, pages 22–29, 2000.



BIBLIOGRAPHY 91

[77] H. Petersen. The membership problem for regular expressions with inter-
section is complete in LOGCFL. In STACS, volume 2285 of LNCS, pages
513–522. Springer, 2002.

[78] A. Pnueli. The temporal logic of programs. Foundations of Computer Sci-
ence, Annual IEEE Symposium on, 0:46–57, 1977.

[79] A. Prior. Time and Modality. Oxford University Press, 1957.

[80] A. Prior. Past, Present and Future. Oxford University Press, 1967.

[81] V. Ramachandran and H. Yang. An efficient parallel algorithm for the lay-
ered planar monotone circuit value problem. In T. Lengauer, editor, ESA,
volume 726 of Lecture Notes in Computer Science, pages 321–332. Springer,
1993.

[82] V. Ramachandran and H. Yang. An efficient parallel algorithm for the lay-
ered planar monotone circuit value problem. Algorithmica, 18(3):384–404,
1997.

[83] B.-H. Schlingloff. On the expressive power of modal logics on trees. In
A. Nerode and M. A. Taitslin, editors, LFCS, volume 620 of Lecture Notes
in Computer Science, pages 441–451. Springer, 1992.

[84] Ph. Schnoebelen. The complexity of temporal logic model checking. In
Ph. Balbiani, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors,
Selected Papers from the 4th Workshop on Advances in Modal Logics
(AiML’02), pages 393–436, Toulouse, France, 2003. King’s College Publi-
cation. Invited paper.

[85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-
poral logics. J. ACM, 32(3):733–749, 1985.

[86] A. Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1(4):297–322, 1992.

[87] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer, 1999.

[88] World Wide Web Consortium. XQuery 1.0: A query language for XML.
http://www.w3.org/TR/xquery/.

[89] World Wide Web Consortium. XSL transformations language (XSLT): Ver-
sion 2.0. http://www.w3.org/TR/xslt20/.

2 2

3

3

1

3

2 2

3 2

2 2 2 2



92 BIBLIOGRAPHY

[90] World Wide Web Consortium. XML path language (XPath): Version 1.0,
1999. http://www.w3c.org/TR/xpath.

[91] H. Yang. An NC algorithm for the general planar monotone circuit value
problem. In IPDPS, pages 196–203, 1991.

[92] H. Younes and R. Simmons. Probabilistic verification of discrete event sys-
tems using acceptance sampling. In CAV, volume 2404 of LNCS. Springer,
2002.


	Table of Contents
	List of Figures
	Introduction
	Model Checking Finite Paths and Trees
	Boolean Circuit Based Model Checking
	Contributions of the Thesis
	Organization of the Thesis

	Preliminaries
	Directed Graphs and Trees
	Computations and Kripke Structures
	Complexity Classes in P
	Parallel Tree Contraction

	Monotone Boolean Circuits
	Circuit Evaluation
	Subcircuits, Decomposition, Composition
	Monotone Planar Circuit Value Problem
	Evaluation of Tree Product Circuits

	LTL On Restricted Structures
	Linear-Time Temporal Logic – LTL
	Efficient Parallel LTL Path Checking
	LTL Model Checking Problems in NC
	coNP-Complete LTL Model Checking Problems
	PSPACE-Complete LTL Model Checking Problems

	CTL Tree Checking
	Computation Tree Logic – CTL
	Efficient Parallel CTL Tree Checking

	Path Checking for Extensions of LTL
	Efficient Path Checking of LTL+Past
	Efficient Path Checking of BLTL

	Conclusions
	Bibliography

