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Zusammenfassung

Diese Dissertation beschéftigt sich mit der Kernelisierbarkeit von generischen Problemen,
definiert durch syntaktische Beschrankungen oder als Problemsystem. Polynomielle Ker-
nelisierung ist eine Formalisierung des Konzepts der Datenreduktion fiir kombinatorisch
schwierige Probleme. Sie erlaubt eine griindliche Untersuchung dieses wichtigen und
fundamentalen Begriffs. Die Dissertation gliedert sich in zwei Hauptteile.

Im ersten Teil beweisen wir, dass alle Probleme aus zwei syntaktischen Teilklassen der
Menge aller konstantfaktor-approximierbaren Probleme polynomielle Kernelisierungen
haben. Die Probleme miissen durch Optimierung iiber Formeln in Pradikatenlogik ers-
ter Stufe mit beschrankter Quantifizierung beschreibbar sein. Eine Relaxierung dieser
Beschrankungen gestattet bereits Probleme, die keine polynomielle Kernelisierung er-
lauben. Im Anschluss betrachten wir Kantenmodifizierungsprobleme und zeigen, dass
diese im Allgemeinen keine polynomielle Kernelisierung haben.

Im zweiten Teil betrachten wir drei Arten von booleschen Constraint-Satisfaction-
Problemen. Wir charakterisieren vollstandig welche dieser Probleme polynomielle Ker-
nelisierungen erlauben. Fiir jedes gegebene Problem zeigen unsere Resultate entweder
eine polynomielle Kernelisierung oder sie zeigen, dass das Problem keine polynomielle
Kernelisierung hat. Die Dichotomien sind durch Eigenschaften der erlaubten Constraints
charakterisiert.

Die Arbeit ist in englischer Sprache verfasst.
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Abstract

This thesis addresses the kernelization properties of generic problems, defined via syntac-
tical restrictions or by a problem framework. Polynomial kernelization is a formalization
of data reduction, aimed at combinatorially hard problems, which allows a rigorous study
of this important and fundamental concept. The thesis is organized into two main parts.

In the first part we prove that all problems from two syntactically defined classes of
constant-factor approximable problems admit polynomial kernelizations. The problems
must be expressible via optimization over first-order formulas with restricted quantifi-
cation; when relaxing these restrictions we find problems that do not admit polynomial
kernelizations. Next, we consider edge modification problems, and we show that they
do not generally admit polynomial kernelizations.

In the second part we consider three types of Boolean constraint satisfaction problems.
We completely characterize whether these problems admit polynomial kernelizations, i.e.,
given such a problem our results either provide a polynomial kernelization, or they show
that the problem does not admit a polynomial kernelization. These dichotomies are
characterized by properties of the permitted constraints.

The thesis is written in English.
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Introduction

Preprocessing and data reduction are ubiquitous in the practical implementation as well
as in the theoretical study of algorithms. While they will not fully solve a given problem,
they are known to give significant speed-ups or to make a computation feasible at all.
The latter task, i.e., reducing instances of hard problems to a computationally hard core,
shall be the main focus of this thesis.

While, at first, we may have the impression that data reduction and preprocessing are
artificial concepts solely related to computers, they are in fact very natural: As human
beings we apply them all the time, for example to reach decisions:

e We often begin by eliminating the impossible.
e We are able to ignore parts of the problem that will not affect our decision.
e We discard a possible decision if we find another one that is at least as good.

We know that these ways of thinking have long since found their way into our algo-
rithms, i.e., into our “recipes” for solving problems and making decisions by means of a
computer. Already in abstracting and modeling a problem we are ignoring most of the
possible input: One may think about the huge difference between actual scenery and
landscape as opposed to a weighted graph, for the purpose of finding a shortest path
or roundtrip in said scenery. Elimination of the impossible is often already implicit in
the solution space that an algorithm explores. A nice example may be found in the
Simplex algorithm for solving linear programs: Only feasible points are visited, in fact,
only those which are extremal points of the polytope of feasible solutions (recall that
extremal points are described by a small number of tight constraints); this avoids the
possibly high number of constraint combinations that do not describe feasible solutions.
The strategy to visit only extremal points is based on the well-known fact that for any
optimal solution there is one of the same value which corresponds to a vertex of the
polytope; this is a good example of the third paradigm.

Many more examples are known for problems that are computationally hard: Vertices
of low degree can often be removed (in many graph problems), and variables that occur
only signed or only unsigned (in satisfiability) can be fixed to true or false accordingly.
Furthermore, there are often ways of solving problems when there are independent com-
ponents, or we may have lower bounds on the solution cost obtained from relaxations
of a problem (which then allow to reject an instance if the lower bound already violates
the budget). However, in many cases the success of such reduction rules is only proven
by experiment and we do not know any performance guarantees. In fact, some of the
mentioned examples serve only to simplify the design or the analysis of algorithms.
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Clearly, as theoreticians, we are interested not only in knowing certain efficient rules
of how to simplify instances of a given problem, but we also desire to measure the
actual impact of such rules. However, upon closer inspection, we quickly come across a
well-known fact: There can be no efficient data reduction that provably shrinks every
instance of a hard problem, unless the problem itself can be efficiently solved. Or,
adopting polynomial-time solvability (i.e., membership in P) as our notion of efficiency
and NP-completeness as our notion of hardness, there cannot be a polynomial-time data
reduction unless P = NP (in this strict sense of reducing the size of every instance). The
simple reason is that by each run of the data reduction we shrink the problem instance,
until we reach an instance of constant size which we can solve by a look-up table.

Based on this discouraging observation about data reduction, which contrasts the fact
that it is so widely applied, there are two perspectives: The first one being that data
reduction is a heuristic approach, not open to theoretical analysis. The second is that
we should take a closer look at the issue, and possibly redefine our concept of data
reduction, in order to make it more robust. Let us follow the second possibility.

We have seen that there cannot be a polynomial-time algorithm that reduces the size
of every instance of some NP-hard problem. Why should we not simply accept the
fact that there may be instances on which we cannot make any significant progress in
polynomial time? Following this train of thought, we would assume that the size of
such instances “matches” their inherent complexity. Thus we require some measure of
difficulty beyond merely considering the size of an instance; we saw that size alone is an
ill-suited complexity measure in the context of data reduction.

Parameterized complexity Parameterized complexity is a multivariate approach to
measuring and understanding the complexity of combinatorially hard problems. In this
paradigm, the complexity of problems is investigated in finer detail than the polynomial-
time solvability versus NP-hardness of classical complexity. With each instance of a
problem an integer value is associated, the so-called parameter, intended to capture
the complexity of the problem. The time complexity of algorithms is then measured
with respect to the size and the parameter. There are different ways of motivating this
approach; let us first consider polynomial-time algorithms.

While we expect that NP-hard problems cannot be solved in polynomial time, we find
many special cases which we can solve efficiently. These special cases are frequently
obtained by restricting some parameter of the instances to bounded (i.e., constant)
values. For example, many graph problems can be solved in polynomial time on graphs of
bounded treewidth or bounded degree, respectively. Let us note, however, that there are
two fundamentally different runtime classes, both of which are polynomial for bounded
values of the parameter, say k: The runtime may be n/*) or it may be f’(k)-n¢, for some
constant ¢ independent of k and functions f, f* (typical runtimes are nP®) and ok - ne).
Thus for the latter type of runtime we even get a uniformly polynomial-time algorithm
for bounded values of k, i.e., the runtime is O(n®) for every fixed value of k. Algorithms
with such a runtime scale much better when we increase k or n, whereas a runtime
of nf(®) quickly becomes impractical. Parameterized complexity, amongst others, is a
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theory about when we can get algorithms of runtime f(k) - n¢, so-called fized-parameter
tractable algorithms, or fpt-algorithms. FPT denotes the class of all fixed-parameter
tractable problems, i.e., parameterized problems that have fpt-algorithms.

Another way of arriving at parameterized complexity starts with exponential-time
algorithms. Assuming P # NP, we expect to need worst-case exponential time with
respect to the input size. Actually, we only know that super-polynomial runtime is
required, but the widely believed Exponential Time Hypothesis (ETH) states that there
is no subexponential-time algorithm for k-SAT for any k& > 2 (see Woeginger’s [112] nice
survey on exact algorithms for NP-hard problems). However, we may be able to confine
the combinatorial explosion to a parameter independent of the input size, and have only
polynomial dependence on the input size. Again, this leads to desired runtimes of the
form f(k)-n°, avoiding O(a™). From this perspective, fixed-parameter tractability is a
relaxation of polynomial-time solvability.

A classic example of f(k)-n¢ versus n/'*®) runtimes is that of VERTEX COVER versus
CLIQUE; the two problems are equivalent in classical complexity. Both problems can
be decided in time n®®) where k is the number of vertices in the cover or the clique,
by simple enumeration of all size-k vertex subsets. However, while VERTEX COVER is
known to be solvable in time O(1.274F - kn) [34], no such algorithm, even for larger
functions f(k), is known for CLIQUE. It is known that CLIQUE is complete for W[1], a
parameterized analogue of NP, and showing W/[1]-hardness is a standard tool of prov-
ing parameterized intractability. Interestingly, a paper by Chen et al. [32] shows that,
assuming FPT # W][1] (a fundamental hypothesis in parameterized complexity, which
is also implied by ETH), there is no f(k) - n°®) time algorithm for CLIQUE for any
function f.

Kernelization Now, using the framework of parameterized complexity, let us return to
the issue of finding a reasonable definition for efficient data reduction. We have seen that
we cannot simplify all instances of NP-hard problems in polynomial time. Furthermore,
we have seen the notion of fixed-parameter tractability, where the super-polynomial part
of the runtime is restricted to some parameter. For such problems, we know that the
chosen parameter is a good measure of the complexity; simply because small parameter
values mean that the runtime will be small as well. Hence, we would assume that the
impact of data reduction should be limited in terms of the parameter. It is only natural
to take this point of view as the basis for our definition.

A kernelization is a polynomial-time mapping K : (I,k) — (I',k") such that the
instances (I,k) and (I’ k') are equivalent and the new parameter value k' as well as
the size of I’ are bounded by some function h of the parameter k. A kernelization is
a polynomial kernelization if h is a polynomial. Note how this definition avoids the
issue of instances which cannot be reduced any further, since we do not aim to shrink
all instances, but try to reach a size depending on the parameter. Thus, multiple
applications of a kernelization do not necessarily solve the problem.

Having defined kernelization in the context of parameterized complexity, we quickly
see that it is also a technique for showing that a problem is fixed-parameter tractable.
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Indeed, by reducing a (decidable) problem to a computationally hard core of size bounded
by the parameter, we can apply any brute force algorithm to decide the core and obtain
an fpt-algorithm. Interestingly, the converse holds as well and we have the following
(folklore) relation: Any parameterized problem is fixed-parameter tractable if and only if
it is decidable and admits some (not necessarily polynomial) kernelization. The proof for
the converse is surprisingly simple (but it is often wrongly assumed that f is computable,
see the discussion in [14]): Assume that we have some fpt-algorithm of runtime f(k)-n¢.
Given some instance, we run the algorithm for n°*! steps. Ifit terminates then, according
to the output, we return a dummy yes- or no-instance. If it does not terminate, then we
must have that n < f(k) and we may return the original instance as the kernel (of size
at most f(k)). Thus every FPT problem has a kernel of size matching the runtime of
any fpt-algorithm for the problem. Let us emphasize, however, that the kernelizations
implied by this relation have fairly bad size guarantees, indeed f(k) must be super-
polynomial for NP-hard problems (assuming meaningful parameter values, e.g., k < n).
In recent literature polynomial kernelizations, i.e., with polynomial size guarantee, have
been adopted as the notion for efficient and effective data reduction; of course smallest
possible kernels are highly sought after. From a practical point of view, kernelizations
are toolboxes of reduction rules and smaller kernelizations mean better reduction rules;
such a data reduction can be an invaluable opening step in any practical solution for a
problem. From a complexity theoretic point of view, a kernelization is a compression
and we want to know when, or for what sizes h(k), this is possible.

Kernelization results: upper bounds Kernelization has received significant interest
over the previous two decades, maturing from a technique to prove fixed-parameter
tractability into its own field of research. In recent years there has been a large number
of kernelization results for a variety of problems. We will highlight a few well-known
results as well as some very recent developments; for further results we refer the reader
to the excellent surveys of Guo and Niedermeier [63] as well as of Bodlaender [14]. All
kernelization results are given with respect to the number of vertices or variables unless
stated otherwise; this is a general habit since these values are strongly related to the
runtimes. There is a linear kernel for VERTEX COVER due to Chen et al. [33] (based on a
theorem by Nemhauser and Trotter [93]), a quadratic kernel for FEEDBACK VERTEX SET
due to Thomassé [110], a linear kernel for FEEDBACK ARC SET in tournament graphs due
to Bessy et al. [11], and a polynomial kernel for MULTICUT in trees due to Bousquet et
al. [22] (the parameterized complexity of MULTICUT on general graphs is a famous open
problem). Let us also mention the O(k9~!) kernel for d-HITTING SET by Abu-Khzam [1]
as well as the (’)(k:‘v(H)‘_l) kernel for the problem of packing k disjoint copies of some
fixed graph H due to Moser [90]; both problems have an inherent notion of arity (i.e., d
respectively |V (H)|), similar to problems considered in this thesis.

Recently Bodlaender et al. [17] presented polynomial kernelizations for a large class
of problems on planar graphs, and also generalized their results to graphs of bounded
genus. The first result of this type, a linear kernelization for DOMINATING SET on planar
graphs, is due to Alber, Fellows, and Niedermeier [2]. Their work was followed by
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linear kernelizations for a large number of problems, and was generalized by Guo and
Niedermeier [64] based on a region decomposition of the planar input graph and problem-
specific reduction rules that shrink the size of the regions. Bodlaender et al. [17] showed
how to obtain general reduction rules using certain properties of the problem. Fomin et
al. [55] gave a similar meta-theorem about quadratic kernelizations for a large number
of problems on graph classes that avoid some fixed minor.

Kernelization results: lower bounds Recently Bodlaender, Downey, Fellows, and Her-
melin [16] presented the first negative results concerning the existence of polynomial
kernelizations for some natural fixed-parameter tractable problems. Using their notion
of a distillation algorithm and results due to Fortnow and Santhanam [56], they were
able to show that the existence of polynomial kernelizations for so-called compositional
parameterized problems implies a collapse of the polynomial hierarchy to the third level.
Thus there are fairly simple FPT problems like the k-PATH problem (recently shown to
be solvable in randomized time 2¥ - n©() [111]) which do not admit a polynomial ker-
nelization unless NP C co-NP /poly (which is known to imply the mentioned collapse of
the polynomial hierarchy [113]). This negative toolkit has been successfully applied to a
number of other problems [18, 46, 53]. A paper by Dell and van Melkebeek [44] refines
the framework and proves concrete polynomial lower bounds for problems that do admit
some polynomial kernelization. In fact, by means of a two-player oracle communication
game, Dell and van Melkebeek exclude any compression of cost below a certain bound,
e.g., to instances of a different problem or in multiple rounds.

Obtaining general results for kernelization Naturally, when studying an interesting
notion like kernelization, we desire to obtain results which are as general as possible.
For kernelization, the results by Bodlaender et al. [17] as well as by Fomin et al. [55]
are two strong positive results that provide general kernelizations for certain classes of
problems. The lower bound framework by Bodlaender et al. [16] provides a general
strategy of excluding polynomial kernelizations for compositional problems, though in
most cases it seems nontrivial to prove compositionality (e.g., see [46]).

In order to obtain general results, we have to focus on certain restricted classes of
problems; clearly some parameterized problems are unlikely to admit polynomial kernel-
izations (e.g., it is easy to come up with problems that are NP-hard even for bounded
values of the parameter). Common complexity classes are either of computational or of
syntactical nature, i.e., they are defined by algorithmic properties (e.g., the class APX of
constant-factor approximable problems) or by requiring the problems to be expressible
in a certain way (e.g., graph problems definable in monadic second order logic). We will
focus on classes of the latter type, since they provide some structural insight into the
problems; in fact most general results are based on structural restrictions of the problems
and/or restrictions on the input instances. It goes without saying that a main purpose
of syntactical classes is that of allowing abstraction and generalization. Concretely, we
consider the classes MAX SNP, MAX NP, and MIN FII; as well as certain types of
Boolean constraint satisfaction problems.
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Approximation ratio Kernel size
VERTEX COVER 2 [66] O(k) [33]
CONNECTED VERTEX COVER 2 [106] | not polynomial (*)  [46]
FEEDBACK VERTEX SET 2 9] O(k?) [110]
BIN PACKING 1.5 [109] | none unless P=NP  [58]
SET SPLITTING 1.38 [4] O(k) [85]
MAX CUT 1.1383 [59] O(k) [86]
MAX SAT 1.2987 8] O(k) [86]
TRIANGLE PACKING 1.5+¢€ [70] O(k?) [90]
MINIMUM FILL-IN O(opt) [91] O(k?) [91]
TREEWIDTH O(v/logopt) [51] | not polynomial (*)  [16]

Table 0.1.: Approximation ratio and size of problem kernels for some optimization prob-
lems. The kernel sizes are with respect to the number of vertices or vari-
ables, respectively. (*) CONNECTED VERTEX COVER does not admit a poly-
nomial kernelization unless NP C co-NP/poly. TREEWIDTH does not admit
a polynomial kernelization unless there is an and-distillation algorithm for
all NP-complete problems [16]. Though unlikely, this is not known to imply
a collapse of the polynomial hierarchy.

Relation of kernelization and approximation Many syntactically defined classes of
problems were introduced with the aim of getting a better understanding of the approxi-
mation properties of optimization problems, e.g., MAX SNP and MAX NP [99]. Similar
to the parameterized complexity, the approximability of two optimization problems may
differ greatly, even if the decision versions of the two problems are both NP-complete.
There are a few proven connections between parameterized complexity and approxima-
bility. The best known one may be the fact that the decision versions of problems which
admit an efficient polynomial-time approximation scheme (EPTAS) are fixed-parameter
tractable (proven by Bazgan [10] and independently by Cesati and Trevisan [29]); an
EPTAS is a family of (1 + €)-approximation algorithms of runtime f(1/¢€) - n¢. Note
that this result requires the target function to be integer valued. The essential idea is
that running an EPTAS with e = i allows to correctly determine whether the optimum
value is < k (or > k, resp.). Using the same trick, it is easy to see that problems with a
fully polynomial-time approximation scheme (FPTAS), i.e., when f is a polynomial, are
FPT with a function f that is polynomial in k. Thus, using the relation between fixed-
parameter tractability and kernelization, we see that such problems admit a polynomial
kernelization. However, this “insight” is neither deep nor particularly helpful, since the
parameter values of NP-hard problems which can be solved in time O(k¢ - n¢) must be
super-polynomial in n (assuming P # NP).

Considering known approximation and kernelization results (e.g., see Table 0.1) it
would be tempting to conjecture a stronger relation, namely one between constant-factor
approximability and the admittance of polynomial kernelizations. While some examples
rule out a general correspondence, e.g., BIN PACKING and CONNECTED VERTEX COVER,
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we may be able to prove a strong correspondence when restricting our attention to
certain syntactical classes or frameworks like constraint satisfaction problems. Some of
the work presented in this thesis was motivated by this and we will see it in many of the
results.

Our work This thesis studies kernelization, in particular polynomial kernelizations, by
considering the kernelizability of whole classes of problems. We show that all problems
from MIN F*II;, MAX SNP, and MAX NP admit polynomial kernelizations (i.e., their
natural decision versions do); note that all these problems were known to be constant-
factor approximable. Then, we consider edge modification problems and show that
(under standard assumptions) these problems do not generally admit polynomial ker-
nelizations, even in the restricted case where they are known to be FPT by a simple
branching algorithm. Finally, we address the polynomial kernelizability of three types of
Boolean constraint satisfaction problems and give a full characterization (a dichotomy)
into admittance or non-admittance of polynomial kernelizations (under standard as-
sumptions) for each of the variants.

Organization The following chapters of the thesis are organized into three parts. In
the first part, we introduce the general methodology of kernelization and present upper
and lower bound results. The second part contains the results for Boolean constraint
satisfaction problems (CSPs) as well as an introduction to that area. In the third part,
we conclude the thesis and discuss some open problems.

The first part begins with an introduction to parameterized complexity and kerneliza-
tion (Chapter 1), in particular we will consider techniques for proving upper and lower
bounds for kernelization. In Chapter 2, we introduce sunflowers, a notion from extremal
set theory playing an important role for our kernelizations, and show their application
on a simple example. Then, in Chapter 3, we show that the natural decision versions
of all problems in MIN F*II;, MAX SNP, and MAX NP admit polynomial kerneliza-
tions, and also extend this result to weighted versions of the problems. In Chapter 4, we
consider the kernelizability of edge modification problems; we exhibit a small graph H
such that H-free EDGE DELETION and H-free EDGE EDITING do not admit polynomial
kernelizations.

The second part starts with an introduction to Boolean constraint satisfaction prob-
lems, i.e., generalized satisfiability problems (Chapter 5). In Chapters 6 and 7, we
consider min ones and max ones CSPs, i.e., the problem of minimizing respectively
maximizing the number of true variables in a satisfying assignment. In Chapter 8, we
address the task of finding satisfying assignments with a specified number of true vari-
ables. In all three cases we are able to fully characterize when the problems admit
polynomial kernelizations, depending on the constraint language.

In the third part, we give a conclusion as well as a discussion of some open problems
that relate to our work (Chapters 9 and 10). We will also revisit the relation of ap-
proximability and kernelization and relate parts of our work to known approximability
results.
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1. Parameterized complexity and
kernelization

1.1. Notation

Graphs We consider undirected, finite, simple graphs G = (V, E) where V is a finite
set and E C (‘2/) The (open) neighborhood of a vertex v € V' is the set N(v) = {u |
{u,v} € E}; the closed neighborhood is the set N[v] = N(v)U{v}. An induced subgraph
of G is a graph G' = (V' E') with V! C V and with E' = {{u,v} € E | u,v € V'}. We
denote this subgraph by G[V’]. We also use the following abbreviations, let G = (V, E):

G — S For aset S CV of vertices, the graph G — S is obtained by deleting
all vertices in S, i.e., G—S =G[V '\ 5].

G — D For a set D C FE of edges, the graph G — D is obtained by deleting
all edges in D, i.e., G—D = (V,E\ D).

G A D Foraset DC (‘2/), the graph G A D is obtained by adding all edges
in D\ E and deleting all edges in DN E, ie., GAD = (V,E A D)
where EAD = (E\D)U(D\E).

A graph G is H-free if it does not contain H as an induced subgraph (i.e., an induced
subgraph G’ which is isomorphic to H). For a set H of graphs, G is H-free if it is H-free
for every graph H € H. We denote by K;, C;, and P; the clique, cycle, and path of i
vertices respectively. The graph 2K, is the disjoint union of two Ks.

Hypergraphs A hypergraph is a tuple H = (V, E) consisting of a finite set V, its vertices,
and a family F of subsets of V, its edges. A hypergraph has dimension d if each edge has
cardinality at most d. A hypergraph is d-uniform if each edge has cardinality exactly d.
We often use hypergraphs in place of families of sets; each set family has a canonical
hypergraph associated to it by letting the set of vertices be the union of all sets that it
contains.

NP optimization problems NP optimization problems (NPO problems) are a restricted
form of optimization problems, with the additional requirement that solutions shall
be efficiently verifiable (cf. [41]). While we do not formally introduce our problems
as NP optimization problems, their definition provides a good basis for defining some
related terms, e.g., approximation algorithms. An NP optimization problem is a 4-
tuple Q = (I, sol, m, goal):

e [ is the set of instances and it can be recognized in polynomial time.

13



1. Parameterized complexity and kernelization

e sol(z) denotes the set of feasible solutions. There is a polynomial p such that
the size of any solution y € sol(z) is bounded by p(|z|), and for any = and y,
with |y| < p(]z|), it can be decided in polynomial time whether y € sol(x).

e m(z,y) denotes the positive integer measure of y with respect to x; it is defined
for each x € I and y € sol(x) and can be computed in polynomial time. It is also
called the objective function.

e goal € {min, max} denotes whether the aim is to find feasible solutions with small-
est or largest possible measure, respectively.

The optimum value of an instance z is defined as

optg(x) = goal{m(x,y) | y € sol(x)}.

An optimum solution for x € I is a feasible solution y € sol(z) with m(z,y) = optg(x).

The problem Q is polynomially bounded if there exists a polynomial g such that
for any instance x and any feasible solution y the measure of y is bounded by ¢(|z|),
i.e., m(z,y) < q(|z|). The class NPO contains all NP optimization problems and NPO-
PB is the class of all polynomially bounded NP optimization problems.

Approximability Let Q = (I, sol, m, goal) be an NPO problem. The performance ratio
of a feasible solution y € sol(x) for an instance x € I is defined as

m(z,y) Optg(fﬂ)}
opto(z)” m(z,y) |

R(z.y) = max |

thus the performance ratio is always at least one.

An algorithm A is p(n)-approximate for Q if, for each instance x, we have A(z) € sol(x)
and

R(z, A(x)) < p(|x]),
where p : N — R>1 is an arbitrary function. Let us also recall some standard complexity
classes defined via approximability in polynomial time:
poly-APX All NPO problems that have polynomial-time p(n)-approximate
algorithms where p is a polynomial.

APX All NPO problems that have polynomial-time O(1)-approximate algo-
rithms.

APX-PB All APX problems that are polynomially bounded.

PTAS All NPO problems that have (1 + €)-approximate algorithms of run-
time (’)(nf(l/e)) for any € > 0, where f is an arbitrary function.

EPTAS All NPO problems that have (14 ¢)-approximate algorithms of run-
time O(f(1/e)n®) for any € > 0, where f is an arbitrary function.

FPTAS All NPO problems that have (14 €)-approximate algorithms of run-
time O(p(1/e)n®) for any € > 0, where p is a polynomial.
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1.2. Parameterized complexity

1.2. Parameterized complexity

The field of parameterized complexity was pioneered by Rod Downey and Michael Fel-
lows, who started its systematic study; see their monograph [47] for an introduction
to the field including a good amount of historical notes. In this section we introduce
the central notions of parameterized tractability and intractability; the definitions fol-
low [47, 54].

Parameterized problems

Instances of parameterized problems come with an additional component, the so-called
parameter. Accordingly, a parameterized problem, say Q, over some finite alphabet X is
defined as a subset of ¥* x N; the second component is the parameter. We introduce
parameterized problems in the following (widely adopted) form:

<Problem name>
Input:
Parameter:

Task:

The intention is that the components input and task constitute the classical version of
the problem, whereas parameter highlights the chosen parameter (even if the chosen
number is already part of the classical problem). Note that multiple parameters can be
incorporated by using the sum or the maximum of the parameter values.

Remark. Some authors prefer to define a parameterized problem as a pair (Q, k), where Q
is a set of strings over ¥ and k is a parameterization of ¥*, i.e., a polynomial-time
computable mapping from >* to the natural numbers (cf. [54]). Intuitively, the param-
eterization assigns a parameter value to each instance of the classical problem Q. This
perspective is nice for studying different parameterizations of the same problem as well
as other complexity related issues. For this thesis we adopt the simpler (and more fre-
quently used) definition as a subset of ¥* x N. Most problems under consideration come
with one or more integer values, e.g., asking whether the solution has cost at most k,
and the considered parameterization would simply map the instance to k.

Before giving the remaining definitions let us recall the well-studied VERTEX COVER
problem which occurs in many of the examples throughout this chapter:

VERTEX COVER
Input: A graph G and an integer k.
Parameter: k.

Task: Decide whether there is a set S of at most k vertices such that each
edge of G has an endpoint in S.
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1. Parameterized complexity and kernelization

Fixed-parameter tractability

A parameterized problem Q is fized-parameter tractable if there is an algorithm that
decides whether (I,k) € Q in time f(k) - |I|¢, where f(k) is a function depending only
on k and c is a constant independent of k. This captures exactly the idea of having an
algorithm that runs in uniformly polynomial time for every fixed value of the parameter,
indeed the f(k) part gives a (possibly exponential in k) constant factor. Such an algo-
rithm is called an fpt-algorithm for Q and FPT is the class of all parameterized problems
which are fixed-parameter tractable. The class XP captures all parameterized problems
which have a (not necessarily uniformly) polynomial-time algorithm for every fixed value
of the parameter, i.e., problems with algorithms of runtime |I|/(*). Clearly FPT C XP.

Remark. This (standard) definition of fixed-parameter tractability is also called uniform
fixed-parameter tractability (here uniform relates to the fact that there is a single algo-
rithm for all k). For strongly uniformly FPT there is the additional requirement of f
being computable (as it is the case for most of the algorithmic results). A relaxed version
called non-uniform FPT, requires that for each fixed k there is an O(n¢) time algorithm
that decides all instances of parameter value k, i.e., there may be a different algorithm
for each k. Results of the latter type come up, for example, when invoking the graph
minors theorem due to Robertson and Seymour [104] (cf. [12]).

Parameterized intractability

There are two common ways to establish that a problem is unlikely to be fixed-parameter
tractable. The first, and simple, way is to prove NP-hardness for some fixed value of the
parameter (e.g., k~-COLORING is NP-hard for k& = 3); this implies that the problem is not
in XP unless P = NP. However, many parameterized problems are trivially contained
in XP (e.g., if it suffices to enumerate all solutions of size k) while still not being known
to be fixed-parameter tractable. To further classify parameterized problems between
FPT and XP a notion of reducibility is used (as it is a common strategy in complexity
theory). Clearly, polynomial-time many-one reductions cannot help to further classify
NP-complete problems. A parameterized reduction or fpt-reduction is permitted to use
fpt-time, i.e., f(k) - ||°, but must guarantee that the new parameter value is bounded
by a function in the original parameter. Formally:

Definition 1.1. Let @ C ¥* x N and Q' € ¥* x N be parameterized problems. A
parameterized reduction from Q to Q' is a mapping

Y x N—=Y*xN: ([,k)— (I'K)
that can be computed in time f(k) - |I]¢ for some function f : N — N such that:
e (I,k) € Qif and only if (I',k") € Q" and

e k' < g(k) for some function g : N — N.
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1.2. Parameterized complexity

It is easy to see that parameterized reductions compose and that a parameterized
reduction from Q to @’ together with an fpt-algorithm for Q' constitute an fpt-algorithm
for Q (i.e., FPT is closed under parameterized reductions). Let us point out that many
of the classic reductions (cf. [58]) are not parameterized reductions, e.g., VERTEX COVER
and INDEPENDENT SET are equivalent under polynomial-time many-one reductions, but
a vertex cover of size at most k being equivalent to an independent set of size at least n—k
does not give a parameterized reduction (n — k cannot be bounded by a function only
in k). The standard way to prove (likely) parameterized intractability of some problem
is to show that it is W[1]-hard; WJ[1] being a parameterized analogue of NP. For the
W([1]-hardness proofs in this thesis it suffices to know that problems complete for W[1]
are those which are equivalent to the INDEPENDENT SET problem under parameterized
reductions:

INDEPENDENT SET
Input: A graph G and an integer k.
Parameter: k.

Task: Decide whether G contains an independent set on at least k vertices.

The W-hierarchy of classes W[i] between FPT and XP is defined based on a satisfia-
bility problem on decision circuits:

Definition 1.2. A decision circuit C is a directed acyclic graph having exactly one
vertex of out-degree zero, called the output (gate); the vertices of in-degree zero are
called the wariables. The remaining vertices are either AND, OR, or NOT vertices,
NOT vertices have in-degree equal to one; all these vertices are called gates.

A (truth) assignment for a decision circuit C' is a mapping of the variables of C' to
values 0 or 1 (false or true, respectively). Given an assignment, the value of any gate
vertex of C' depends in the canonical way on its in-neighbors (e.g., for an AND vertex it
is the product of the values of its in-neighbors); these values are well-defined since the
circuits are acyclic. An assignment for C' is a satisfying assignment for C if the value
of C’s output vertex is 1 (true).

The depth of a decision circuit C' is the maximum number of gates on any directed
path from a variable to the output gate. The weft, the large gate depth, is the maximum
number of gates of fan-in greater than two on any directed path from a variable to the
output gate.

The defining problem for the W-hierarchy is that of WEIGHTED WEFT ¢ DEPTH h
CIRCUIT SATISFIABILITY:

WEIGHTED WEFT ¢t DEPTH h CIRCUIT SATISFIABILITY
Input: A weft ¢ depth h decision circuit C' and an integer k.
Parameter: k.

Task: Decide whether C' has a satisfying assignment with exactly k true
variables.
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1. Parameterized complexity and kernelization

The complexity class W{i] is defined to contain all parameterized problems which
reduce to WEIGHTED WEFT ¢ DEPTH h CIRCUIT SATISFIABILITY for some h € N by an
fpt-reduction. This gives the following hierarchy:

FPTCW[I]CW]2]C...CW[{]C...CXP
We mention the parameterized complexity of a few well-known problems:

FPT: VERTEX COVER, FEEDBACK VERTEX SET, TREEWIDTH
W][1]-complete: INDEPENDENT SET, CLIQUE, VC DIMENSION
W/[2]-complete: DOMINATING SET, SET COVER, HITTING SET

W([t]-hard for all t: BANDWIDTH

Optimization problems

The different classes of parameterized problems introduced so far are defined to contain
only decision problems. To study optimization problems we consider the respective
standard parameterizations. The standard parameterization of some unparameterized
minimization (resp., maximization) problem is the decision version, asking whether the
optimum value is at most k (resp., at least k) for some integer k, parameterized by k.

Further reading

For general introductions to parameterized complexity we refer the reader to the recent
monographs [47, 54, 94]. There are also a number of interesting surveys:

Kernelization We will formally introduce kernelization in the following sec-
tion. Nice surveys of recent trends were given by Guo and Nieder-
meier [63] as well as by Bodlaender [14]. The progress in between these
two articles is fairly impressive.

Parameterized approximation Marx [89] gives a comprehensive survey of
connections between parameterized complexity and approximation as
well as of parameterized approximation algorithms, including many di-
rections for future research.

Ecology of parameters and problem parameterization Finding and choos-
ing a parameter (or multiple parameters) is an important and interest-
ing issue in parameterized complexity, addressed by Fellows et al. [52]
as well as by Niedermeier [95].

1.3. Kernelization

A kernelization of a parameterized problem Q C ¥* x N is a polynomial-time computable

mapping
K:¥*xN—= Y xN: (I,k)— (I'K),

such that there is a function h : N — N such that for all (I, k) € ¥* x N:
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1.3. Kernelization

poly-
(I, k) EE— (I', K"
time
~——
h(k)

Figure 1.1.: A schematic presentation of kernelizations. The instances (I, k) and (I’, k')
are equivalent and £’ is bounded by h(k).

e (I,k) e Qifand only if (I',K) € Q,
e the size of (I', k') is at most h(k), and
e k' is bounded by h(k).

We call h the size of the problem kernel K((I,k)). The kernelization K is polynomial
if h is a polynomial. We say that Q admits a (polynomial) kernelization if there exists
a (polynomial) kernelization of Q (see Figure 1.1).

In most cases, kernelizations are based on reduction rules which simplify the problem
instances by removing or replacing certain (local) structures. Then, when none of the
rules apply, we obtain the problem kernel. The analysis and proof of the kernel size
make use of the non-existence of the structures (e.g., vertices of high degree) which the
reduction rules addressed.

To convey some intuition about reduction rules let us consider three prevalent types
of reduction rules, here we call them mandatory rules, optimality rules, and equivalent
replacement rules. Note that, in contrast to fixed-parameter tractability results, strong
kernelization results are mostly obtained for parameters relating to the solution size.

Mandatory rules

A mandatory reduction rule addresses structures in the problem instance where a certain
decision is forced in order to obtain a solution of the desired maximum or minimum value.
The classic example is that of VERTEX COVER: If a vertex has degree greater than k,
then any vertex cover of size at most k must include it; it cannot include the more
than k neighbors. Note how similar such a rule may be to a heuristic (e.g., “selecting
high-degree vertices is good”), however, the presence of a bound on the solution size
may turn heuristics into reduction rules (e.g., “vertices of degree larger than k must be
selected”).
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1. Parameterized complexity and kernelization

C

Figure 1.2.: Crown reduction for VERTEX COVER with head H and crown C'. The dashed
edges indicate the matching of the head into the crown. The reduction rule
will select all vertices of H, implying that all vertices in H U C' are deleted
and that the parameter is decreased by |H]|.

Optimality rules

An optimality rule makes a decision on certain local structures, based on a proof that the
locally optimal choice is also globally optimal. Such proofs usually work by replacement
arguments: Given any solution to the complete instance, we can modify it at no addi-
tional cost (resp., without losing value) to make the same local choices. Again, there is a
nice example for VERTEX COVER, the so-called crown reduction: Given an independent
set (the “crown”) and its neighborhood (the “head”), if there is a matching of the head
into the crown, then it is optimal to select all vertices of the head (see Figure 1.2). The
key observation is that each matching edge requires one of its vertices to be in the cover,
and the vertices in the head can be chosen by a replacement argument. Note how the
crown reduction generalizes the basic rule that it is optimal to select the neighbor of a
degree-1 vertex.

Equivalent replacement

Equivalent replacement rules are part of many kernelizations, on different levels of dif-
ficulty. A simple but often vital reduction rule is that of deleting parts of the instance
which do not contribute to the solution (i.e., they do not incur any cost or do not increase
the value, respectively). Note that this is not always possible and that lower bounds for
kernelizations use structures that may become important as a solution is constructed;
hence they cannot be so easily reduced. As another example, many graph problems
permit a simple treatment of vertices of degree two:

e For FEEDBACK VERTEX SET one may contract vertices of degree two (i.e., replace
them by an edge between their neighbors). It is easy to see that this does not
change the size of optimal feedback vertex sets.

e For VERTEX COVER there is the so-called folding: Given a vertex v of degree two
with non-adjacent neighbors v and w, we obtain an equivalent instance by creating
a new vertex z adjacent to all neighbors of u and w (except for v), deleting u, v,
and w, and decreasing the parameter by one (see Figure 1.3). The argument is
that there is an optimal solution which selects v or both u and w. This solution
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k+—k—-1
x
M
Figure 1.3.: Folding of a degree-2 vertex as a reduction rule for VERTEX COVER.

v

Figure 1.4.: When the two neighbors of a degree-2 vertex are adjacent then it is optimal
to select them.

corresponds directly to not selecting respectively selecting x in the reduced instance
and vice versa; in both cases the solution for the reduced instance is smaller by
exactly one vertex.

Remark. Folding requires the two neighbors u,w of v to be non-adjacent. If v and w
are adjacent, then it is optimal to select them. The reason is that u, v, and w induce a
triangle, which requires two vertices to be selected; by replacement arguments v and w
are an optimal choice (see Figure 1.4). This can be generalized to the case that the
neighbors of some vertex (of arbitrary degree) form a clique, another example of an
optimality rule.

More involved reduction rules of this style were for example used by Bodlaender et
al. [17]: To obtain small kernels for problems on planar graphs they considered regions of
the graph, i.e., induced subgraphs connected to the remaining graph by a set of boundary
vertices. Then whole regions of the graph are replaced by smaller regions, having the
same boundary vertices, such that the overall behavior does not change.

We conclude the chapter by reviewing the recent framework by Bodlaender et al. [16]
for excluding polynomial kernelizations as well as work by Dell and van Melkebeek [44]
on concrete polynomial lower bounds for kernelization.

1.4. Polynomial lower bounds for kernelization

Recently Bodlaender, Downey, Fellows, and Hermelin [16] provided the first polyno-
mial lower bounds for the kernelizability of some parameterized problems as well as a
framework for obtaining such results. They introduced the notions of or- respectively
and-composition algorithms for parameterized problems and showed that such an algo-
rithm together with a polynomial kernelization yields an or- respectively and-distillation
algorithm for the unparameterized (classic) version of the problem. Based on the hy-
pothesis that NP-complete problems do not admit either variant of distillation algorithm,
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1. Parameterized complexity and kernelization

this proves non-existence of polynomial kernelizations for some problems. Related work
by Fortnow and Santhanam [56] showed that an or-distillation algorithm for any NP-
complete problem would imply NP C co-NP/poly, which is known to cause a collapse
of the polynomial hierarchy to the third level [113]. It is a major open problem whether
a similar consequence can be proven for and-distillation. In this thesis we refer only to
the results for or-compositional problems and hence omit the prefix for readability.

Excluding polynomial kernelizations

Let Q@ C ¥* x N be a parameterized problem. A composition algorithm for Q is an
algorithm that on input of ¢ instances (I, k), ..., (I;,k) € ¥* x N uses time polynomial
in Y2t |I;| + k and outputs an instance (I, k') such that

e k' is bounded by a polynomial in & and
o (I''K') € Qif and only if (I;, k) € Q for at least one i € {1,...,t}.
We then say that Q is compositional.

Example 1.3. As a simple example let us consider the k-PATH problem; given a graph G
and an integer k (the parameter) the task is to decide whether G contains a path on k
vertices as a subgraph. The k-PATH problem is NP-complete and can be solved in
randomized time 2¢ - n®M) [111]. Given t instances (G1,k),..., (G, k) a composed
instance can be obtained by taking the disjoint union of the graphs. Clearly, G1U...UG}
contains a path on k vertices if and only if one of the graphs G; contains such a path.

A composition algorithm constructs an instance with relatively small parameter value,
which is equivalent to at least one of the given instances being a yes-instance. The idea
is that, together with a polynomial kernelization, this allows a similar algorithm for the
classic, unparameterized problem, a so-called distillation algorithm.

A distillation algorithm for a problem L C ¥* is an algorithm that given ¢ in-
stances I1,...,I; € X* each of size n takes time polynomial in ¢t + n and outputs an
instance I’ such that

e the size of I’ is bounded by a polynomial in n and
e I’ ¢ L if and only if I; € L for at least one i € {1,...,t}.

To obtain the kernel lower bound it is mandatory that the unparameterized version
of the considered problem is NP-complete when the parameter is encoded in unary.
Formally, the unparameterized version or derived classical problem Q of a parameterized

problem Q is defined by Q = {I#1% | (I,k) € Q}, where # ¢ ¥ is the blank letter and 1
is any letter from 3.

Theorem 1.4 ([16, 5~6]) Let Q be a compositional parameterized problem whose unpa-
rameterized version Q is NP-complete. Then Q does not admit a polynomial kerneliza-
tion unless NP C co-NP /poly.
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There exist a few results proving lower bounds via Theorem 1.4, e.g., [18, 46, 53, 80]
(the work from [80] is presented in Chapter 4). At the end of this chapter we show an
application of the framework to the so-called MULTIPLE COMPATIBLE PATTERNS problem.
For many other problems, it seems hard to find a composition algorithm, even though
the problems may have resisted attempts at polynomial kernelizations for a long time.
In some of those cases it has turned out that a suitable notion of reduction may help to
show lower bounds.

Transferring kernelization results via reductions

In [18] Bodlaender et al. proposed the use of polynomial-time reductions, where the new
parameter value is polynomially bounded in the old one, as a tool to extend the lower
bounds to further problems. These reductions are restrictions of the usual fpt-reductions,
which allow fpt-time and a less constrained growth of the parameter; fpt-reductions are
unable to distinguish problems inside FPT (observe that every non-trivial problem in
FPT is complete for FPT under fpt-reductions). A similar notion was independently
given by Harnik and Naor [67], so-called W-reductions, but their notion is related to the
witness size of the instances.

A polynomial time and parameter transformation [18] from Q to Q' is a polynomial-
time mapping H : ¥* x N = X™* X N: (z, k) — (2/, k') such that

V(z,k) € ¥* xN: ((z,k) € Q& (', K) € @) and k' < p(k),
for some polynomial p. We use the shorthand polynomial parameter transformation.

Theorem 1.5 ([18]). Let P and Q be parameterized problems, and let P and Q be
their derived classical problems. Suppose that P is NP-complete and Q € NP. If there
is a polynomial parameter transformation from P to Q and Q admits a polynomial
kernelization, then P also admits a polynomial kernelization.

Proof (sketch). The essential idea is that NP-completeness permits us to use the poly-
nomial kernelization for Q also for P: Given an instance (I,k) of P the polynomial
parameter transformation computes an equivalent instance (I’, k') for Q. Using a poly-
nomial kernelization on (I’, k") creates an equivalent instance (I”,k”) of Q, whose size
is polynomial in k" and hence also in k. By NP-completeness of P we can map (I”, k")
to an equivalent instance of P, with size polynomial in the size of (I”,k”) and hence
polynomial in k. This procedure constitutes a polynomial kernelization for P. ]

Thus if P does not admit a polynomial kernelization unless NP C co-NP /poly, then
the same is true for Q if P reduces to Q by a polynomial parameter transformation (and
if P is NP-complete).

Collapse of the polynomial hierarchy

Let us briefly consider the consequence NP C co-NP /poly, respectively, the assumption
that NP ¢ co-NP/poly. The class co-NP/poly contains all languages which can be
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1. Parameterized complexity and kernelization

accepted by a co-NP machine which is provided an advice string of length poly(n) for
each input length n (e.g., for all inputs z of length |x| = n the same advice string is
given). Note that NP ¢ co-NP/poly is a stronger assumption than NP # co-NP which
is stronger than P # NP. If NP C co-NP/poly then, according to a result by Yap [113],
the polynomial hierarchy collapses to the third level.

Concrete lower bounds

Very recently Dell and van Melkebeek [44] refined the approach of Bodlaender et al. [16]
to address also problems which do have polynomial kernelizations, proving that the
known polynomial kernelizations for some problems are best possible with respect to
the total size, e.g., for VERTEX COVER, FEEDBACK VERTEX SET, and d-HITTING SET.
In fact, even stronger, their work excludes oracle communication protocols of cost lower
than some polynomial.

In the used two-player oracle communication protocol the first player is polynomially
bounded (i.e., modeled as a deterministic, polynomial-time Turing machine) and the
second player (the oracle) is computationally unbounded, but only the first player has
access to the input. The cost of the protocol is the number of bits sent from the first
player to the oracle; the answers do not incur any cost. The number of queries is only
bounded by the total number of bits to be used. At the end of the protocol the first player
has to decide whether the given input is in the language. Note that any kernelization
gives an oracle communication protocol of cost matching the total size of the kernel
(simply sending the problem kernel to the oracle).

Theorem 1.6 ([44]). Let d > 3 be an integer and let € be a positive real. If NP & co-
NP /poly, there is no protocol of cost O(n4=€) to decide whether an n-variable d-CNF
formula is satisfiable.

Theorem 1.7 ([44]). Let d > 2 be an integer and let € be a positive real. If NP ¢ co-
NP /poly, there is no protocol of cost O(n?=) to decide whether a d-uniform hypergraph
on n vertices has a vertex cover of at most k vertices.

Dell and van Melkebeek concluded some strong implications for kernelizability: Since
the number & of vertices to be selected is bounded by n, Theorem 1.7 shows that the
known kernelizations for VERTEX COVER and d-HITTING SET are essentially optimal with
respect to the total size, assuming NP ¢ co-NP/poly: O(k) vertices as well as O(k?)
edges for VERTEX COVER [33] and O(k?~1) vertices as well as O(k?) edges for d-HITTING
SET [1]. It is not possible to improve the polynomial degree of the number of edges in
these kernelizations since, for example, O (k%) edges can be encoded in O (k%) bits (a
list of the edges requires only a factor of O(log k) to identify the vertices). The same is
true for FEEDBACK VERTEX SET via a simple reduction from VERTEX COVER, namely by
replacing every edge with a triangle (using a new, unique vertex) and without changing
the parameter value (this fact motivates a more general proof in [44]). Thus a cheaper
kernelization (or protocol) for FEEDBACK VERTEX SET would give a cheaper protocol
for VERTEX COVER. Thus the kernelization with O(k?) vertices and O(k?) edges for
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FEEDBACK VERTEX SET [110] is essentially optimal. For FEEDBACK VERTEX SET and
d-HITTING SET it may, however, be possible to improve the number of vertices.

The Multiple Compatible Patterns problem.

We conclude the section on lower bounds for kernelization by showcasing a lower bound
proof by means of proving compositionality. We introduce the MULTIPLE COMPATIBLE
PATTERNS (MCP) problem and show that it does not admit a polynomial kernelization
unless NP C co-NP/poly; MCP will be a source problem for other lower bounds in
Chapters 7 and 8:

MULTIPLE COMPATIBLE PATTERNS

Input: A set of patterns from {0, 1, %}", where % (the wildcard character)
matches 0 or 1; an integer k.

Parameter: r + k.

Task: Decide whether there is a string in {0,1}" that matches at least k
patterns.

The MCP problem is trivially fixed-parameter tractable (even with respect to parame-
ter r): Simply try all 2" possible strings from {0,1}". To prove that it does not admit a
polynomial kernelization (unless NP C co-NP /poly) we will show that it is NP-complete
and compositional. Theorem 1.4 will then imply the desired lower bound.

Lemma 1.8. MULTIPLE COMPATIBLE PATTERNS admits no polynomial kernelization
unless NP C co-NP /poly.

Proof. First, let us show that the derived classical problem is NP-complete. We will
reduce from CLIQUE. Let (G, k) be an instance of CLIQUE; we will create an instance of
MCP with pattern length n, which contains k compatible patterns if and only if G has
a k-clique. Order the vertices of G from 1 to n. For every vertex v;, create a pattern
where bit 7 is 1, where bit j is 0 for every non-neighbor v; of v;, and where all other bits
(i.e., representing the neighbors of v;) are wildcards. Now two patterns are compatible
if and only if the corresponding vertices are neighbors, and the MCP problem has &
compatible patterns if and only if G has a k-clique. Clearly, encoding the parameter
values r = n and k in unary uses additional space linear in the instance size, not harming
NP-completeness.

We will now show a composition algorithm for MCP. Let (I1,r1 + k1), ..., (L, e + ki)
be t input instances with the same parameter value » + k = r; + k;; assume by padding
that both r and k are identical for all input instances. Clearly the problem can be
solved in 2" - n®M) time, so we assume that logt = O(r), or else solve all input problems
and produce a dummy instance for the output. Now add [logt] bits to the pattern
length, and for every input instance i, let all its patterns contain the binary expansion
of ¢ in the added bits. Clearly this comprises a composition algorithm. Any string
from {0,1}"+M°e!l has a specific binary number in its last [logt] positions, and hence
it cannot match strings from an instance with a different number. Thus a 0/1-string
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matching at least k patterns must match k patterns from the same instance. Thus MCP

is compositional and, by Theorem 1.4, it does not admit a polynomial kernelization
unless NP C co-NP /poly. O
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2. Sunflowers

2.1. Introduction

For most of the polynomial kernelizations presented in this thesis, sunflowers play an
important role as a starting point for the main reduction rules. Sunflowers are a notion
from extremal set theory; they are configurations of sets which intersect in a highly
uniform way. The Sunflower Lemma, discovered by Erdds and Rado [48] in 1960, states
that any sufficiently large family of equally-sized sets must contain large sunflowers; this
is often named one of the most beautiful results of extremal set theory.

Definition 2.1. A sunflower (or A-system) of cardinality k and with core C' is a family
of k sets {f1,..., fr} such that f; N f; = C for all i # j, i.e., the pairwise intersection
of any two of the sets is exactly the core C. The pairwise disjoint sets f1 \ C,..., fr \ C
are called the petals; they are required to be non-empty.

Figure 2.1 shows a schematic representation of a sunflower. It is important to keep in
mind that the core of a sunflower may be empty, i.e., a sunflower may consist of pairwise
disjoint sets. The property of sunflowers which is central for kernelization is the fact
that the petals f; \ C are pairwise disjoint.

We continue by presenting the Sunflower Lemma due to Erdés and Rado [48]. Let us
recall that a hypergraph is d-uniform if all its edges have cardinality exactly d.

Lemma 2.2 (Sunflower Lemma [48]). Let k,d € N and let H be a d-uniform hypergraph
with more than d! - k% edges. Then there is a sunflower of cardinality k + 1 in H. For
every fized d there is an algorithm that computes such a sunflower in time polynomial

in |E(H)|.

Proof. The lemma clearly holds for any H and k when d = 1 since any d + 1 different
singleton sets must be pairwise disjoint.

We assume for contradiction that there are integers d > 1 and k as well as a d-
uniform hypergraph with more than d! - k¢ edges which does not contain a sunflower of
cardinality k£ + 1. We choose such a counter example with minimum value of d. Let z
be any vertex and let H, be the hypergraph with edge set

{e|eU{z} is an edge of H}.

Clearly any sunflower of H, with some core C' gives rise to a sunflower in H with
core C'U{x} since there is an edge eU{x} in H for each edge e of H,. Thus, by selection
of our counter example, H, has at most (d — 1)! - k%~! edges. Hence z occurs in at
most (d — 1)! - k%1 edges of H.
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2. Sunflowers

Figure 2.1.: A sunflower of cardinality six with core C.

Based on this fact, contradicting our assumption, we are able to find a sunflower in H.
This is achieved by greedily selecting a maximal set of pairwise disjoint edges of . Since
each vertex occurs at most (d — 1)! - k%! times, each edge can therefore intersect with
at most d - ((d — 1)! - k%=1 — 1) other edges. Thus no selection of at most k edges can
be maximal, since it intersects at most d! - k% edges. Thus the greedy selection finds at
least k+1 pairwise disjoint edges which constitute a sunflower with empty core in H. [

It is an open problem whether the bound of d!-k? is best possible. It is straightforward
to give a family of k? sets which does not contain a sunflower of cardinality k+1 (see the
following example), but that still leaves a gap of d! between the two bounds. Erdés and
Rado conjectured that the upper bound is at most C¢ for every fixed k where C' depends
only on k. While there are some improvements to the upper bound, the conjecture is
still open (see the nice book of Jukna [72] on extremal combinatorics).

Example 2.3. To illustrate the lower bound of k% let us construct a family of k% sets
which does not contain a sunflower of cardinality k4 1. Let us take d = 4; the construc-
tion will easily generalize to other values. We let

E(H) = {{AilaBi2aci37Di4} ’ i1,12,13,14 € {17 cee 7k}}7

i.e., the family of all sets containing exactly one A, B, C, and D, each with some index
from 1 to k. First, let us observe that there are k? such sets. Second, we observe that
if the core of a sunflower contains an element, say A;, then all sets contain A; and no
further A; with ¢ # j. Since the petals must be non-empty some given petal must at
least contain one element, say D;, implying that the core does not contain any D;. Then
however, each petal contains some D, but there are only k different indices, making k+1
pairwise disjoint petals impossible.

Implicit in the proof of the Sunflower Lemma there is an efficient algorithm to find
a sunflower (see Algorithm 1). The Sunflower Lemma as well as the algorithm can be
adapted to d-dimensional hypergraphs in a straightforward way (recall that a hypergraph
is d-dimensional if each edge has cardinality at most d).
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2.1. Introduction

Algorithm 1 FindSun flower
Input: (H,d,k): A family H of sets of size d and an integer k.
Output: A sunflower in H of cardinality at least k -+ 1, if |H| > d!- k%, or report false.

if |H| < d!- k¢ then
return false
end if
if d =1 then
5. return H
end if
F + a maximal selection of disjoint sets
if || > k+1 then
return F
10: end if
Find an element v of some set in F that occurs most frequently in H
H «—{e|eU{v} e H}
F' < FindSunflower(H',d —1,k)
F'+—{euU{v}|eec F'}
15: return F”

Corollary 2.4. Let k,d € N and let H be a hypergraph of dimension d and with more
than d-d!- k% edges. Then there is a sunflower of cardinality k+1 in H. For every fized d
there is an algorithm that computes such a sunflower in time polynomial in |E(H)|.

Proof. Forsome d' € {1,...,d}, the hypergraph H has more than d!-k% > d'!-k% edges of
cardinality d’. Let Hg be the d’-uniform subgraph induced by the edges of cardinality d'.
We apply the Sunflower Lemma on Hy and obtain a sunflower F of cardinality £+ 1 in
time polynomial in |E(Hg)| < |E(H)|. Clearly F is also a sunflower of H. O

Sunflowers in sets of tuples

Sunflowers can also be defined as configurations of tuples (of the same arity), a variant
that will be required for the kernelization results in Chapters 6 and 8. For tuples the
positions of the elements matter and the same element may occur in several positions.
We define sunflowers of tuples in such a way that the core is a collection of positions and
the tuples must have the same element in each core position; the sets of elements of the
remaining positions shall be disjoint.

Definition 2.5. A collection of k tuples z1,...,x each of arity d € N is a sunflower
(of tuples) with cardinality k and core C C {1,...,d} if

o x1(i) =...=uxx(i) for all i € C (i.e., the tuples agree on the core positions) and

o 2;(j) #xy(j) for all j,5' € {1,...,d}\ C and i # ¢’ (i.e., no element occurs in the
petal positions of more than one tuple).
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2. Sunflowers

The set C' is also called the core positions and the remaining positions P = {1,...,d}\C
are the petal positions.

Example 2.6. As an example, the following sets constitute a sunflower of cardinality ¢
and with core C' = {1,...,c}, if all y;; and y;; are distinct when i # i’

('1:17' "7xcay117"'7y1p)
(xlw ")xCay217"‘7y2p)
(1‘1,- . 'axcaytlw'wytp)

Remark. There are different ways to extend the definition of sunflowers. We define this
variant since it appears to be the least restrictive version, for which the kernelization
will work. A similar but more restricted version was used by Marx [88], demanding
the elements in the petal positions to occur only in one tuple. This variant would
also work for our kernelizations, but the bound in the corresponding sunflower lemma
would be higher. Another possibility would be to interpret tuples, say (x1,...,zq), as
sets {(1,z1),...,(d,zq)} and to use the definition for sets, but then an z; in different
positions would not be the same element.

For sets of tuples H C U%, we give an adaptation of the Sunflower Lemma. The
proof is along the same lines as the original, only requiring an additional factor of d!
for picking the shared core positions. Same as the Sunflower Lemma, this immediately
gives a polynomial-time algorithm for finding a sunflower of tuples.

Lemma 2.7. Let U be a finite set, let d € N, and let H C UL. If the size of H is greater
than k%(d!)?, then it contains a sunflower of cardinality k + 1.

Proof. If d = 1, then a sunflower of size k4 1 can be easily found, since any k+ 1 tuples
of arity d = 1 form a sunflower with empty core. Now for induction, assume the lemma
to be true for all d’ < d — 1.

Let X contain {z1,...,z4} for each tuple (z1,...,z4) € H, ie., let X contain all
subsets of U that correspond to tuples in H. Select a maximal pairwise disjoint sub-
set ¥ C X. If |[F| > k + 1 then its elements correspond to k + 1 tuples that share
no element, i.e., a sunflower with empty core. Otherwise, if |F| < k, then all other
sets of X have a non-empty intersection with some element of F'. Since the sets cor-
respond to the tuples of H there must be an element of some set in F, say z, that
occurs in at least |H|/kd tuples of H, as there are at most kd such elements. There-
fore, there must be a position, p € {1,...,d}, such that = occurs in position p of at
least |H|/kd? > k4=1((d — 1)!)? tuples of H.

Define H' by H' = {(z1,...,Tp—1,Tpt1,--.,2q) | (T1,.. ., Tp—1,%, Tpt1,...,2q) € H}.
Observe that #' C U9"! and |H/| > k% 1((d — 1)!)?, implying that a sunflower of
cardinality k£ 4+ 1 can be found in H’; immediately giving a sunflower in H. O
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2.2. Application in kernelization

Figure 2.2.: Replacing a sunflower of cardinality k+ 1 by its core is a safe reduction rule
for d-HITTING SET, i.e., when searching for a hitting set of size at most k.

2.2. Application in kernelization

The archetypical application of sunflowers in kernelization is probably the polynomial
kernelization for d-HITTING SET (see [54]). The d-HITTING SET problem is defined as
follows:

d-HITTING SET
Input: A hypergraph H = (V, E) of dimension d and an integer k.
Parameter: k.

Task: Decide whether H has a hitting set of size at most k, i.e., a subset of
at most k vertices that has a nonempty intersection with every edge of H.

Let (M, k) be an instance of d-HITTING SET and let us consider a sunflower consisting
of k+ 1 edges Fi,..., Fii1 of H, eg.

Flz{ul,...,uc, Ul,la---avl,p}
Fy ={uy,...,uc, v21,...,02p}
Fipr ={u1, ..., e, Vkg11,-- -5 Ukgip)

By the pigeon-hole-principle we get that in any hitting set of at most k vertices there
must be a vertex that is contained in two of the sets. The pairwise intersection of any
two edges is the core of the sunflower, here {uy,...,u.}. Thus any hitting set intersects
the core of any sunflower of cardinality at least k + 1; we may therefore add the core
as an additional edge without changing the outcome (see Figure 2.2). Now, however,
we may also discard all edges of the sunflower, since intersecting the core is a stricter
requirement. This already constitutes a kernelization that leaves at most d-d!-k? € O(k%)
edges. Given some instance (H, k) of d-HITTING SET, while H contains more than d-d!-k?
edges, apply the following steps:

1. In polynomial time search for a sunflower of at least k+ 1 edges of H according to
Corollary 2.4.

31



2. Sunflowers

2. If the core of the sunflower is empty, then it consists of k+ 1 pairwise disjoint edges
and we may reject the instance (as there cannot be a hitting set with k elements).

3. Otherwise, replace the edges that form the sunflower by the core. Repeat.

The total runtime is polynomial in the size of H since each iteration reduces the number
of edges by at least k. Afterwards there are at most O(k?) edges and at most O(k?)
vertices, since the edges have cardinality at most d.

Remark. There is a slightly stronger kernelization for d-HITTING SET due to Abu-
Khzam [1], which uses crown reductions. It achieves O(k?!) vertices but has the same
bound of O(k%) on the number of edges.
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3. Polynomial kernelizations for MIN FII,
and MAX NP

3.1. Introduction

In this chapter we consider the kernelization properties of the syntactically defined com-
plexity classes MIN F™II;, MAX NP, and MAX SNP. We show that the standard pa-
rameterization of any problem from these classes admits a polynomial kernelization. We
also extend these kernelizations to weighted versions of the respective problems. Recall
that the standard parameterization of some maximization or minimization problem is
the decision version, i.e., deciding whether the optimum value is at least k or at most k,
respectively, with parameter k.

Two decades ago Papadimitriou and Yannakakis [99] initiated the syntactic study of
optimization problems to extend the understanding of approximability. They introduced
the classes MAX NP and MAX SNP as natural maximization variants of NP, based
on Fagin’s [49] syntactic characterization of NP. Essentially problems are in MAX NP
or MAX SNP if their optimum value can be expressed as the maximum number of tuples
for which some existential, respectively quantifier-free, first-order formula holds. They
showed that every problem in these two classes is approximable to within a constant
factor of the optimum. Arora et al. [7] complemented this by proving that no MAX SNP-
hard problem has a polynomial-time approximation scheme (PTAS), unless P = NP.
Contained in MAX SNP there are some well-known maximization problems, such as
MAX CUT, MAX ¢-SAT, and INDEPENDENT SET on graphs of bounded degree. In its
superclass MAX NP we also find, amongst others, the MAX SAT problem (with clauses
of unbounded arity).

In follow-up work to [99], Panconesi and Ranjan [97] further investigated the relation
between syntactic properties and approximability. They introduced classes MAX II;
and a subclass RMAX, motivated by unconditional proofs showing that some important
optimization problems, e.g., CLIQUE and MAXIMUM MATCHING (which is in P), are not
contained in MAX NP. We point out that if MAX NP would contain all problems
from P then the fact that CLIQUE is not in MAX NP would (unconditionally) prove
that P # NP. The class MAX II; contains all problems whose optimum value can be
expressed as the maximum number of tuples for which some universally quantified first-
order formula holds. However, MAX II; (same as RMAX) already contains the CLIQUE
problem, which was later showed to be hard to approximate; the strongest bound, NP-
hardness to approximate within a factor of O(n!~¢), was given by Hastad [68]. Similarly,
since CLIQUE is complete for W[1], there is no hope for obtaining a general (polynomial)
kernelization result for RMAX or MAX II;.
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3. Polynomial kernelizations for MIN FT1II; and MAX NP

Kolaitis and Thakur [76, 77] generalized the approach of examining the logical defin-
ability of optimization problems and defined further classes of minimization and maxi-
mization problems. Amongst others they introduced the class MIN FTII; of problems
whose optimum can be expressed as the minimum weight of an assignment (i.e., number
of ones) that satisfies a certain restricted universal first-order formula. They proved
that every problem in MIN FTII; is approximable to within a constant factor of the
optimum. In MIN F*II; there are problems like VERTEX COVER, d-HITTING SET, and
TRIANGLE EDGE DELETION. (For completeness of the picture, let us add that the class
RMAX is called MAX F~II; in [76, 77], as it is the problem of finding a maximum weight
satisfying assignment to some restricted universal first-order formula.)

Related work It was showed by Cai and Chen [28] that the standard parameterizations
of all problems in MIN F*II; and MAX SNP are fixed-parameter tractable. Mahajan,
Raman, and Sikdar [87] showed a different parameterization of MAX SNP problems to
be fixed-parameter tractable, namely whether one can improve by at least £ upon a guar-
anteed lower bound; for the lower bound they use the one proved by Papadimitriou and
Yannakakis [99] which implied that problems in MAX SNP are constant-factor approx-
imable (for a similar proof see Lemma 3.17). Earlier work of Mahajan and Raman [86]
addressed MAX CUT and MAX SAT parameterized above lower bound.

Khanna et al. [74] proved that APX, the class of constant-factor approximable prob-
lems, is the closure of MAX SNP under PTAS-preserving reductions. The same is showed
to be true for the subclass APX-PB of polynomially-bounded APX problems with re-
spect to so-called E-reductions. Thus for every constant-factor approximable problem
there is a PTAS-preserving reduction to a MAX SNP problem (in fact to MAX 3-SAT).
Arora, Karger, and Karpinski [6] showed that dense instances of MAX SNP problems
admit polynomial-time approximation schemes, later improved to efficient PTAS by
Frieze and Kannan [57]; see also Karpinski’s survey [73]. Furthermore, a large number
of papers adopt the notion of MAX SNP-hardness as a tool to prove non-existence of
polynomial-time approximation schemes.

Our work We prove that the standard parameterizations of problems in MIN FII;
and MAX NP admit polynomial kernelizations. For MAX SNP (a subclass of MAX NP)
we show polynomial kernelizations with a linear base set (usually called linear kernel-
izations even though the total size may be larger). All kernelizations are then extended
to weighted versions of the problems. We improve upon the above mentioned results of
Cai and Chen [28] since fixed-parameter tractability only implies some (possibly expo-
nential) kernelization. Most of the content in this chapter has been published in [78];
the extensions to the weighted problems are unpublished work with Bart Jansen.

Structure of this chapter Section 3.2 introduces formally the considered syntactical
problem classes. In the subsequent Sections 3.3, 3.4, and 3.5 we prove the claimed ker-
nelization results for MIN FTII;, MAX NP, and MAX SNP, respectively. We conclude
in Section 3.6 with a short summary.
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3.2. Syntactical problems

3.2. Syntactical problems

Logic and finite structures

A (relational) vocabulary is a set o of relation symbols, each having some fixed integer as
its arity. Atomic formulas over o are of the form R(z1, ..., z;) where R is a t-ary relation
symbol from ¢ and the z; are variables. A literal is an atomic formula or the negation of
an atomic formula. The set of quantifier-free (relational) formulas over o is the closure of
the set of all atomic formulas under negation, conjunction, and disjunction. A formula
in conjunctive normal form (CNF) is a conjunction of disjunctions of literals, called
clauses. A formula in disjunctive normal form (DNF) is a disjunction of conjunctions of
literals, called disjuncts.

Definition 3.1 (Finite structure). A tuple A = (A4, Ry,...,R;) where A is a finite set
and each R; is an r;-ary relation over A is called a finite structure of type (ri,...,1¢).

MAX SNP

Definition 3.2 (MAX SNP). An optimization problem Q on finite structures A =
(A, Ry,...,Ry) of type (r1,...,7¢) is contained in MAX SNP if its optimum value can
be expressed as

optg(A) = mgx\{x € A% : (A, S) Ev(x,AS)}H,

where § = (S1,...,5,) is a tuple of relation symbols of arities s1,...,s, and (x,.4,S)
is a quantifier-free formula in disjunctive normal form on variables {x1, ..., z., } over the
vocabulary {Ry,...,R¢, S1,...,S4.}.

An optimization problem Q on inputs (A, w), consisting of a finite structure A =
(A, Ry, ..., Ry) of type (r1,...,r) and a weight function w : A% — Q>o, is contained in
WEIGHTED MAX SNP if its optimum value can be expressed as:

optg (A, w) = mgxz {w(x):x € A% A (A,S) E9¥(x,A,S)},

under the same restrictions as for MAX SNP. Here, the optimum value is the sum
of w(x) over all tuples x for which ¥(x,.4,S) holds, maximized over all choices of S.

Example 3.3 (MAX cuT). Let G = (V, E) be a finite structure of type (2) that rep-
resents a graph by a set V of vertices and a symmetric binary relation E over V as its
edges. The optimum of MAX CUT on structures G can be expressed as:

glga‘}/c‘{(u,v) cV%:(G,S) = (E(u,v) A S(u) A=S()}H-

The intention behind this formulation is that S C V represents a partition of the vertices
into S and V' \ S. The expression maximizes the number of edges with one endpoint
in S and the other in V' \ S. Thus MAX CUT can be expressed as a MAX SNP problem.
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3. Polynomial kernelizations for MIN FT1II; and MAX NP

MAX NP

Definition 3.4 (MAX NP). An optimization problem Q on finite structures A =
(A, Ry,...,Ry) of type (r1,...,7r) is contained in MAX NP if its optimum value can
be expressed as

optg(A) = mgx|{x € A% (A,S)E (Jy € AY) 1 ¢¥(x,y, A S)},

where § = (51, ..., 5,) is a tuple of relation symbols of arities s1, ..., s, and ¥(x,y, 4,S)
is a quantifier-free DNF formula on variables {x1,...,2c,,%1,...,¥c,} over the vocabu-
lary {Rl, ey Rt, Sl, ey Su}

An optimization problem Q on inputs (A, w), consisting of a finite structure A =
(A, Ryq,...,Ry) of type (r1,...,7) and a weight function w : A% — Qxo, is contained in
WEIGHTED MAX NP if its optimum value can be expressed as:

optgo(A,w) = mgxz {w(x) :x€ A% AN (A,S) E By € AY) : ¥(x,y,A,S)},

under the same restrictions as for MAX NP. Similarly as for MAX SNP, the optimum
value is the sum of w(x) over all tuples x for which (3y) : ¥(x,y,.4,S) holds, maximized
over all choices of S.

Example 3.5 (MAX SAT). Formulas in conjunctive normal form can be represented by
finite structures F = (F, P, N) of type (2,2): Let F' be the set of all clauses and variables,
and let P and N be binary relations over F. Let P(z,c) be true if and only if x is a
literal of the clause ¢ and let N(x,c) be true if and only if -z is a literal of the clause c.
The optimum of MAX SAT on structures F can be expressed as:

r%lglz;d{c eF: (F,T)E 3z eF): (P(x,e) NT(z)) V (N(z,c) N=T(x))}.

Intuitively, 77 C F' is meant to encode a truth assignment to the variables (P(z,c)
and N(z,c) ensure that z is a variable and ¢ is a clause). The formula simply expresses
that a clause is satisfied if it contains a satisfied literal. Thus MAX SAT can be expressed
as a MAX NP problem.

MIN FTII;

Definition 3.6 (MIN F*II;). An optimization problem Q on finite structures A =
(A, Ry,...,Ry) of type (r1,...,7¢) is contained in MIN FTII; if its optimum value can
be expressed as

opto(A) = min{|S] : (A, 5) = (vx € A%) : 4(x, A, 5)},
where S is a single relation symbol of arity s and ¥ (x, A, S) is a quantifier-free formula in

conjunctive normal form on variables {x1, ...,z } over the vocabulary {Ri,..., R, S}.
Furthermore, 1(x, .4, S) is positive in S, i.e., S does not occur negated in 1(x, A, S).
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An optimization problem Q on inputs (A, w), consisting of a finite structure A =
(A, Ry,...,Ry) of type (r1,...,7¢) and a weight function w : A — Q>¢, is contained in
WEIGHTED MIN F*II; if its optimum value can be expressed as:

optgo (A, w) = mSin {w(S): (A,S) E (Vx e A%) : ¢(x,A,9)},

under the same restrictions as for MIN F™1I;; w(S) is the sum of w(z) over all z € S.

Example 3.7 (VERTEX COVER). Again let G = (V, E) be a finite structure of type (2)
that represents a graph by a set V of vertices and a symmetric binary relation F over V'
as its edges. The optimum of VERTEX COVER on structures G can be expressed as:

min{|S] : (G, 8) = (v(u,) € V?) : (B(u.v) V S(u) v S(2)}.

Here S C V is meant to encode the vertex cover. The universally quantified formula
forces S(u) or S(v) to be true for each edge {u, v}. Thus VERTEX COVER can be expressed
as a MIN FTII; problem.

For a detailed introduction to MIN FT1I; as well as MAX NP and MAX SNP we refer
the reader to [76, 77] and [99], respectively. An introduction to logic and complexity can
be found in [98].

3.3. Polynomial kernelization for MIN FTII;

In this section we show that the standard parameterization of any problem in MIN F*TI;
admits a polynomial kernelization. We will see that such problems can be easily reduced
to d-HITTING SET for which polynomial kernelizations are known. The difficulty lies in
finding a kernelization whose result can then be transferred to our original problem.

Let us fix some optimization problem Q from MIN F'II; on finite structures of
type (r1,...,7¢). Accordingly let Ry,..., R; be relation symbols of arities ri,...,r.
Since Q@ € MIN FTII; there is an s-ary relation symbol S and a quantifier-free for-
mula ¥ (x, A, S) in conjunctive normal form such that:

e the formula 9 (x, A, S) is positive in S, i.e., there are no literals =S(z1,...,z,) and

e the optimum value of Q on input A of type (r1,...,7) can be expressed as

min {IS]: (A.5) | (¥x € A%) 1 h(x, A, )}

We denote by d the maximum number of occurrences of S in any clause of ¥ (x, A, S).
This value plays a crucial role in our kernelization bound. For the polynomial kerneliza-
tion we consider the standard parameterization of Q, denoted by p-O:

Standard parameterization of Q

Input: A finite structure A of type (r1,...,7) and an integer k.
Parameter: k.

Task: Decide whether optg(A) < k.
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3. Polynomial kernelizations for MIN FT1II; and MAX NP

We will see that, given an instance (A, k), deciding whether optg(A) < k is equivalent
to deciding an instance of d-HITTING SET; let us recall its definition:

d-HITTING SET
Input: A hypergraph H = (V, E) of dimension d and an integer k.
Parameter: k.

Task: Decide whether H has a hitting set of size at most k&, i.e., a subset of
at most k vertices that has a nonempty intersection with every edge of H.

Given some instance (A, k) of p-Q, with A = (A, Ry,..., R;), a natural first step is
to consider the impact of the given relations R;. For any fixed tuple x € A% we can
evaluate all occurrences of the relation symbols R; in ¥ (x,.A,S) (recall that each R; is
given as a concrete subset of A™). For each tuple x this will yield a formula containing
only literals S(-). The following definition formalizes this procedure.

Definition 3.8. Let A = (A, Ry,..., R;) be a finite structure of type (r1,...,r:) and
let x € A%. We define 1x(A, S) to be the formula obtained in the following way:

1. Replace all variables x1,...,x., by the chosen elements of A.

2. Replace all literals R;(z) and —R;(z) by 1 (true) or 0 (false) depending on whether z
is contained in R; (note that z is a concrete tuple from A" by Step 1).

3. Delete all clauses that contain a 1 and delete all occurrences of 0.

We observe that the application of Definition 3.8 yields an equivalent formula in the
sense that (A, S) E ¥(x,.4,5) if and only if (A, S) E ¥« (A, S): We only replace literals
according to the input. It is easy to see that ¥« (A, S) is a formula in conjunctive normal
form on literals S(z) for some z € A® and with at most d literals per clause.

A formula ¥« (A, S) can have empty clauses when all literals R;(-), =R;(-) in a clause
are evaluated to 0 and there are no literals S(-). In that case, no assignment to S can
satisfy the formula 1x(A,S), or equivalently 1(x,.4,5). Thus (A, k) is a no-instance
and we may reject it or return a dummy no-instance of constant size. Note that clauses
of ¥x(A, S) cannot contain contradicting literals since ¥ (x, A, S) is positive in S. Hence-
forth we assume all clauses of formulas 1« (A, S) to be nonempty.

We continue by defining a mapping ® from finite structures A to hypergraphs H. Then
we show that (A, k) is a yes-instance for p-Q if and only if (®(A), k) is a yes-instance
for d-HITTING SET.

Definition 3.9. Let A be an instance of Q. We define ®(A) := H with H = (V, E).
We let E be the family of all sets e = {z1,...,2,} such that (S(z1)V---V S(zp)) is a
clause of a ¢ (A, S) for some x € A. We let V' be the union of all sets e € E.

The hypergraphs H obtained from ® have dimension d since each ¥x(.A,S) has at
most d literals per clause. The following lemma establishes the equivalence of (A, k)

and (H,k) = (P(A), k).
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Lemma 3.10. Let A = (A, Ry,...,Ry) be a finite structure of type (r1,...,7r1) and
let k be an integer. Then (A, k) is a yes-instance of p-Q if and only if (P(A),k) is a
yes-instance of d-HITTING SET.

Proof. 1t suffices to show that for all S C A®:
(A,9) E (Vx € A%) : ¢(x,.A,S) if and only if S is a hitting set for ®(A).
Let H = ®(A) = (V,E) and let S C A*:

(A, S) E (Vx € A%) 1 9(x, A, S)
< (A, S) E (Vx € A%) 1 (A, S)
< (Vx € A°) : each clause of ¥k (A, S) has a literal S(z) for which z € S
< S has a nonempty intersection with every set e € F
< S is a hitting set for H = (V, E).

Since the number of ones in the assignment to .S, i.e., the number of tuples z € A?
with S(z) = 1, translates directly to the cardinality of the hitting set and vice versa, the
lemma follows. O

Using the connection to d-HITTING SET, our kernelization for p-Q will consist of the
following three steps:

1. Map the given instance (A, k) for p-Q to an equivalent instance (H, k) = (®(A), k)
for d-HITTING SET according to Definition 3.9 and Lemma 3.10.

2. Use a polynomial kernelization for d-HITTING SET on (#, k) to obtain an equivalent
instance (H', k) with size polynomial in k.

3. Use (H', k) to derive an equivalent instance (A’, k) of p-Q. That way we will be
able to conclude that (A’, k) is equivalent to (H, k) and hence also to (A, k).

There are two kernelizations for d-HITTING SET: one by Flum and Grohe [54] based
on the Sunflower Lemma and a recent one by Abu-Khzam [1] based on crown decom-
positions (see Section 2.2 for a presentation of the former). For our purpose of deriving
an equivalent instance for p-Q, these kernelizations have the drawback of shrinking sets
during the reduction, since we need to find an equivalent instance of p-Q afterwards.
To shrink edges we would need to shrink clauses of the formula ¢ (x,.4, S), but we may
only change the instance (A, k). Fortunately we are able to modify Flum and Grohe’s
kernelization to use only edge deletions.

Recall that the sunflower-based kernelization for d-HITTING SET uses the fact that a
sunflower of cardinality greater than k forces an element of its core to be selected, since
the petals are pairwise disjoint. Thus such a sunflower may be replaced by its core. In
our case the idea is to shrink sunflowers from size at least k4 2 down to size k+ 1. This
way the selection of an element from the core is still forced, but we are able to reduce
the size of our instance without shrinking of edges. Based on this idea we obtain the
following theorem.
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Theorem 3.11. There exists a polynomial kernelization of d-HITTING SET that, given
an instance (H, k), computes an equivalent instance (H*, k) such that E(H*) C E(H)
and the graph H* has O(k?) vertices and O(k?) edges.

Proof. Let (H,k) be an instance of d-HITTING SET, with H = (V, E). If H contains a
sunflower F' = {fi,..., fg+1} of cardinality k + 1 then every hitting set of H of size at
most k must have a nonempty intersection with the core C' of F' or with each of the k+1
disjoint sets f1\ C, ..., fxo1 \ C. Thus every hitting set of at most k elements must have
a nonempty intersection with C.

Now consider a sunflower F' = {f1,..., fx+1, fkr2} of cardinality k + 2 in H and
let H' = (V,E\ {fri2}). We show that the instances (H, k) and (H’, k) are equivalent.
Clearly every hitting set for H is also a hitting set for H since E(H') C E(H). Let S CV
be a hitting set of size at most k for H'. Since F\{fi42} is a sunflower of cardinality k+1
in H’', it follows that S has a nonempty intersection with its core C. Hence S has a
nonempty intersection with fryo 2 C too. Thus S is a hitting set of size at most k
for H, implying that (H, k) and (H', k) are equivalent.

We turn this fact into a kernelization, by starting with H* = H and by repeating the
following step while H* has more than (k+41)%-d!-d edges. By Corollary 2.4 we can find
a sunflower of cardinality k+ 2 in H* in time polynomial in |E(H*)|. We delete an edge
of the detected sunflower from the edge set of H*, thereby reducing the cardinality of
the sunflower to k+ 1. Thus, by the argument from the previous paragraph, we maintain
that (H,k) and (H*, k) are equivalent.

Afterwards E(H*) C E(H) and H* has no more than (k +1)?-d!-d € O(k?) edges.
Since we delete an edge of H* in each step, there are O(| E(#)|) steps, and the total time
is polynomial in |E(H)|. Deleting all isolated vertices from H* yields a total number of
vertices of at most O(d - k%) = O(k?) since each edge contains at most d vertices. O

The following lemma proves that every d-HITTING SET instance that is “sandwiched”
between two equivalent instances must be equivalent to both. This will greatly simplify
the last part of our kernelization for p-Q, namely that of finding an instance (A’, k')
equivalent to the kernelized d-HITTING SET instance.

Lemma 3.12. Let (H,k) be an instance of d-HITTING SET and let (H*, k) be an equiv-
alent instance with E(H*) C E(H). Then for any H' with E(H*) C E(H') C E(H) the
instance (H', k) is equivalent to (H,k) and (H*, k).

Proof. Observe that hitting sets for H can be projected to hitting sets for H' (i.e.,
restricted to the vertex set of H') since E(H') C E(H). Thus if (H, k) is a yes-instance
then (H',k) is a yes-instance too. The same argument holds for (H', k) and (H*, k).
Together with the fact that (H, k) and (H*, k) are equivalent, this proves the lemma. O

Now we are well equipped to prove that p-Q admits a polynomial kernelization.

Theorem 3.13. Let Q € MIN F'II;. The standard parameterization p-Q of Q admits
a polynomial kernelization.
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Proof. Let (A, k) be an instance of p-Q. By Lemma 3.10 we have that (A, k) is a yes-
instance of p-Q if and only if (H, k) = (®(A), k) is a yes-instance of d-HITTING SET. We
apply the kernelization from Theorem 3.11 to (H, k) and obtain an equivalent d-HITTING
SET instance (H*, k) such that F(H*) C E(H) and such that H* has O(k?) edges.

Every edge of H, say {zi,...,2zp}, corresponds to a clause (S(z1) V --- V S(zp))
of x(A, S) for some x € A% by Definition 3.9. Thus for each edge e € E(H*) C E(H)
we can select a tuple x. such that e corresponds to a clause of 1y (A,S). Let X be
the set of the selected tuples x. for all edges e € F(H*). Let A’ C A be the set of all
components of tuples x. € X, ensuring that X C A", Let R} be the restriction of R;
to A" and let A’ = (A", R},..., R}).

Let (H',k) = (®(A'),k). By definition of ® and by construction of H' we know
that E(H*) C E(H') C E(H) since X C A’ C A%. Thus, by Lemma 3.12, we have
that (H', k) is equivalent to (H, k). Furthermore, by Lemma 3.10, (H', k) is a yes-instance
of d-HITTING SET if and only if (A’, k) is a yes-instance of p-Q. Thus (A, k) and (A, k)
are equivalent instances of p-Q.

We conclude the proof by giving an upper bound on the size of (A, k) that is poly-
nomial in k. The set X contains at most |E(H*)| € O(k?) tuples. These tuples have no
more than ¢, - |E(H*)| different components. Hence the size of A" is O(c, - k%) = O(k?).
Thus the size of (A’ k) is O(k%"), where m is the largest arity of a relation R;,
ie.,, m = max{ry,...,r}. Thus (A',k) is an instance equivalent to (A, k) with size
polynomial in k, since c,, d, and m are constants independent of the input. O

We conclude the section by extending the polynomial kernelization to problems from
WEIGHTED MIN F*II;.

Corollary 3.14. The standard parameterization of any WEIGHTED MIN FTII; prob-
lem admits a polynomial kernelization when the weights are from {0} U Q>.

Proof. Let p-Q be the standard parameterization of a WEIGHTED MIN F'II; problem.

Let (A, w, k) be an instance of p-Q, where A = (A, Ry,..., Ry) and w: A° — {0} UQ>;.
It is straightforward to adapt Definition 3.9 to the weighted case. For this we reduce to

a vertex weighted version of d-HITTING SET, where each vertex z is assigned weight w(z).
We observe that Lemma 3.10 still works: We showed that for any relation S C A*

(A, S) E (Vx € A%) : ¢(x, A, S) if and only if S is a hitting set for ®(A).

Clearly, the weight of S is the same for both problems, namely >, ¢ w(z). Thus, the
two instances are equivalent, and we get a version of Lemma 3.10 for the weighted case.

We will argue that the polynomial kernelization of Theorem 3.11 easily generalizes to
the case with weights from {0} UQ>;: As a first step, we select all vertices of weight 0
and discard all sets which contain at least one such vertex. Then, if we have a sunflower
consisting of k£ + 1 sets (while aiming for a hitting set of weight at most k), we observe
that it is still mandatory to select an element from the core. The reason is that each
remaining element has weight at least one. Therefore, also our approach of shrinking
sunflowers from cardinality at least k& + 2 to k + 1 is still feasible.
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Finally, we observe that Lemma 3.12 and Theorem 3.13 still apply since the argument
there is on the level of equivalent instances, as provided by Lemma 3.10 and Theo-
rem 3.11. This completes the proof. O

Remark. We point out that we omit a discussion of how to encode the weights. Values
from {0} UQ>; allow us to reduce the number of elements, of tuples in relations, and of
weight values to a polynomial in k. Restricting the weights to be integer, or to bounded
precision, permits an encoding in O(log k) bits since weights of value greater than k do
not need to be distinguished (e.g., they can be set to k + 1).

Remark. For this corollary we have to exclude negative weights as well as arbitrarily small
positive weights. Both types of weights would permit problems that are NP-hard even
for constant values of the parameter. Concerning negative weights, consider for example
an instance (H,w, k) of weighted d-HITTING SET. If negative weights are allowed we can
introduce a new vertex v of weight —k and an edge {v}. We would obtain an equivalent
instance (H',w’,0), since v must be in any hitting set, but adding it lowers its weight
by k. (Note that we have excluded negative weights in the definitions of the weighted
versions.)

Similarly, when arbitrarily small positive weights are allowed, dividing all weights
by k would yield an equivalent instance (H,w”,1). Thus, unless P = NP, the weighted
variants of NP-hard MIN F*1II; problems are not fixed-parameter tractable when weights
are allowed to be negative, or fractions arbitrarily close to 0. Note that, assuming that
there is a lower bound of € on the positive weights, we may as well normalize the weights
and the parameter by % Clearly linear changes to the parameter do not affect the

admittance of polynomial kernelizations: k(1) = (%k)o(l).

3.4. Polynomial kernelization for MAX NP

In this section we show that the standard parameterization of any MAX NP problem
admits a polynomial kernelization.

Again let us fix some problem Q@ € MAX NP on finite structures of type (r1,...,7¢).
Let Ry,..., R: be matching relation symbols. By definition of MAX NP there is a tuple
of relation symbols & = (51,...,S5,) of arities s1,...,s, and a formula (x,y,4,S)
in disjunctive normal form over the vocabulary {Ri,..., R, S1,...,Sy} such that for
all finite structures A of type (r1,...,7:) the optimum value of Q on input A can be
expressed as

mgx|{x c A= (A,S) E By € AY) : ¢¥(x,y, A, S)}.
Let d be the maximum number of occurrences of relations Si,...,5, in any disjunct
of Y(x,y,A,S). The standard parameterization p-Q of Q is the following problem:
Standard parameterization of Q
Input: A finite structure A of type (r1,...,7) and an integer k.

Parameter: k.
Task: Decide whether optg(A) > .
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We define formulas 9« y (A, S) similarly to Definition 3.8 in Section 3.3.

Definition 3.15. Let A = (A, Ry,...,R;) be a finite structure of type (r1,...,7¢),
let x € A%, and let y € A%. We define 1)x y (A, S) to be the formula obtained by the
following steps:

1. Replace all variables x1,...,Zc,,y1,..-,Yc, by the chosen elements of A.

2. Replace all literals R;(z) and —R;(z), for some z € A™, by 1 (true) or 0 (false)
depending on whether z is contained in R;.

3. Delete all disjuncts that contain a 0 and delete all occurrences of 1; note the
difference to Definition 3.8 through using a different normal form.

4. Delete all disjuncts that contain contradicting literals S;(z) and —5;(z) since they
cannot be satisfied.

We explicitly allow empty disjuncts that are satisfied by definition for the sake of sim-
plicity (they occur when all literals in a disjunct are evaluated to 1).

It is easy to see that ¢(x,y, A, S) and 1k y (A, S) are equivalent for any choice of x, y,
and S, i.e., (A,S) = ¥(x,y, A S) iff (A,S) = ¥xy(A,S). Moreover, we can compute
all formulas 1y y(A,S) for x € A%, y € A% in polynomial time, since ¢;, ¢y, and the
length of ¢ (x,y,.A,S) are constants independent of A.

The following definition introduces sets X 4 and Y 4(x) intended to capture all tuples x
and y, respectively, for which ¢y y(A,S) is satisfiable. We will see afterwards that a
large set X 4 implies that the instance is positive.

Definition 3.16. Let A= (A, Ry,..., R;) be a finite structure of type (r1,...,7¢).
(a) We define X4 C A% as the set of all tuples x such that (Jy) : 9,y (A, S) holds for
some S:

Xa={x:(35): (A, S) = (Fy) : ¥xy(AS)}.

(b) For x € A% we define Y4(x) as the set of all tuples y such that ¢k y(.A,S) holds for
some S:

Ya(x) ={y: (35) : (A, 5) = ¥xy (A S)}-

The sets X 4 and Y4(x) can be computed in polynomial time because the number
of tuples x € A% respectively y € A% is polynomial in the size of A and the for-
mula (x,y, 4,S) is of constant length independent of A.

Lemma 3.17. Let (A, k) be an instance of p-Q. If |Xa| > k- 24 then optg(A) > k,
i.e., (A k) is a yes-instance.

Remark. In the following proof we consider assignments to variables of the formu-
las ¢y (A,S). We point out that assigning true or false to some variable S;(z) cor-
responds to including or excluding, respectively, the tuple z in S;. Note that there
are y ., |A|* variables, one for each possible tuple of a relation S; of arity s;.
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Proof of Lemma 3.17. We follow Papadimitriou and Yannakakis’ [99] proof for the fact
that all problems in MAX NP are constant-factor approximable. For each x € X4 we
fix a tuple y € Y4(x) such that ¢« (A, S) is satisfiable. This yields m = |X 4| formulas,
say ¥1,...,%mn. Now, for each formula v; let f; denote the fraction of all assignments
to S (i.e., inclusion or exclusion of tuples z in the relations S;) that satisfies 1;.

We will create an assignment that satisfies at least > f; formulas v;. Let y be a
variable that has not been assigned yet. We assume that ¢ variables are unassigned at
that point and that _ f/ > 3" f;, where the fractions f] are with respect to assignments
to these ¢ remaining variables. For i € {1,...,m}, let p; and n; denote the fraction of
assignments to the remaining variables that satisfies ; in which y is set to true or false,
respectively. Thus there are 2¢(p; + n;) assignments which satisfy ;. Assign true to y
if Y p; > > ny; else, assign false. We show that the sum of fractions f/ never decreases
(always taking f/ to be with respect to the remaining unassigned variables): If y is set
to true, then 2¢p; assignments to the other £ — 1 variables satisfy v, which corresponds
to a fraction of 2p; /2= = 2p;. Thus if > p; > > n; then

m m m m m
ZQI% > ZPH-Z?% > Zle 2 Zfi-
i=1 i=1 i=1 i=1 i=1

Note that Y ;" | 2p; is the sum of fractions of satisfying assignments taken with respect to
the remaining ¢ — 1 variables. Similarly for the case that > p; < > n; and y is assigned
false. Thus the sum of fractions never decreases.

When all variables are assigned a value, f/ is equal to 1 if ¢; is satisfied and 0 else.
Thus, this assignment satisfies at least > f/ > > f; formulas ¢; (recall that each satisfied
formula contributes a tuple to the solution).

It is easy to see that f; > 27¢ for each formula 1);. Since 1); is satisfiable there exists a
satisfiable disjunct. To satisfy a disjunct of at most d literals, at most d variables need to
be assigned accordingly. Since the assignment to all other variables can be arbitrary this
implies that f; > 27¢. Thus we have that fizm- 2=4. Therefore | XAl =m>k- od
implies that the assignment satisfies at least & formulas, i.e., that optg(A) > k. ]

Henceforth we assume that | X 4| < k - 2%; we have seen that (A, k) is a yes-instance
otherwise. The remaining and more involved part is to bound and reduce the size of the
sets Y4(+). Let us emphasize the crucial difference between X 4 and sets Y4(-): every
tuple x € X 4 can add to the solution value, whereas tuples y € Y4(x) only provide
different ways of satisfying (Jy € A%) : ¢xy(A,S). Hence our goal is to shrink the
sets Y4(x) without harming satisfiability. We consider (Jy € A%) : ¢)x (A, S) on the
level of single disjuncts.

Definition 3.18. Let (A, k) be an instance of p-Q with A = (A, Ry,..., R). Forx € X4
we define D 4(x) as the set of all disjuncts of 1x y(A,S) over all y € Y4(x).

To reduce the size of sets D 4(x), which will lead to a decreased number of tuples
in Y4(x), we use the Sunflower Lemma. We will see that large sunflowers among disjuncts
in D 4(x) represent redundant ways of satisfying (Jy € A%) : ¥y (A, S).
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The following definition of intersections and sunflowers among disjuncts treats dis-
juncts like sets of literals.

Definition 3.19. We define the intersection of two disjuncts as the conjunction of all
literals that occur in both disjuncts. A sunflower of a set of disjuncts is a subset such
that each pair of disjuncts in the subset has the same intersection (modulo permutation
of the literals).

Definition 3.20. A partial assignment is a set L of literals such that no literal is the
negation of another literal in L. A formula is satisfiable under L if there exists an
assignment that satisfies the formula and each literal in L.

The following lemma is the basis of our data reduction. It shows that satisfiability
under small partial assignments can be preserved in a reduced set of disjuncts. The small
partial assignments will later arise in the main theorem, since we ask for solutions of
value at least k. This corresponds to (at least) k satisfied tuples, each requiring only one
satisfied disjunct (of at most d literals); hence it suffices to consider partial assignments
of at most dk literals.

Lemma 3.21. Let (A, k) be an instance of p-Q. For each x € X4 there exists a
set D% (x) C Da(x) of cardinality O(k?) such that:

1. For every partial assignment L of at most dk literals, D% (x) contains a disjunct
satisfiable under L, if and only if D 4(X) contains a disjunct satisfiable under L.

2. D%(x) can be computed in time polynomial in |Al.

Proof. Let A= (A, Ry,...,R;) be a finite structure of type (r1,...,7), let x € X4, and
let D 4(x) be a set of disjuncts according to Definition 3.18. We compute the set D% (x)
starting from D% (x) = D 4(x) and successively shrinking sunflowers while the cardinality
of D% (x) is greater than (dk + 1)¢ - d!- d.

We compute a sunflower of cardinality dk + 2, say F = {f1,..., fak+2}, in time
polynomial in |D%(x)| using Corollary 2.4. We delete a disjunct of F, say fax2,
from D¥%(x). Let O and P be copies of D% before respectively after deleting faro.
Observe that F' := F \ {fak+2} is a sunflower of cardinality dk + 1 in P. Let L be a
partial assignment of at most dk literals and assume that no disjunct in P is satisfiable
under L. This means that for each disjunct of P there is a literal in L that contradicts
it, i.e., a literal that is the negation of a literal in the disjunct. We focus on the sun-
flower I’ in P. There must be a literal in L, say ¢, that contradicts at least two disjuncts
of F', say f and f’, since |F'| = dk + 1 and |L| < dk. Therefore ¢ is the negation of a
literal in the intersection of f and f’, i.e., the core of F’. Thus ¢ contradicts also fgxio
and we conclude that no disjunct in O = P U {fg12} is satisfiable under the partial
assignment L. The reverse argument holds since all disjuncts of P are contained in O.
Thus each step maintains the desired property (1).

At the end D% (z) contains no more than (dk + 1)?-d! - d € O(k?) disjuncts. The
size of D 4(x) is bounded by the size of Y4(x) C A% times the number of disjuncts
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of ¥(x,y,.A,S) which is a constant independent of .A. Thus the size of D 4(x) is bounded
by a polynomial in |A|. Hence,the computation takes time polynomial in the size of A
since a disjunct is deleted in each step. O

As in the previous section we are able to generate a kernelized instance of another
problem that is easier to handle. The sets D% (x) describe a possibly different formula for
each x. However, it is more intuitive to view them as an image of the original instance
on which it is easier to draw conclusions.

We can now show the main result of this section.

Theorem 3.22. Let Q@ € MAX NP. The standard parameterization p-Q of O admits a
polynomial kernelization.

Proof. The proof is organized in three parts. First, given an instance (A, k) of p-Q,
we construct an instance (A’, k) of p-Q in time polynomial in the size of (A, k). In
the second part, we prove that (A, k) and (A’, k) are equivalent. In the third part, we
complete the proof by showing that the size of (A’, k) is bounded by a polynomial in k.

Transformation Let (A, k) be an instance of p-Q. We use the sets D 4(x) and D% (x)
according to Definition 3.18 and Lemma 3.21. Recall that D 4(x) is the set of all disjuncts
of ¥y y(A,S) for y € Y4(x). Thus, for each disjunct 6 € D% (x) C D(x), we can select
ays € Y4(x) such that § is a disjunct of 1xy,(A,S). Let Y;(x) C Ya(x) be the set of
these selected tuples ys.

For each x this takes time O(|D%(x)| - [Ya(x)|) € O(k? - |A|%). Computing Y}(x)
for all x € A% takes time O(|A|% - k9. |A|%), i.e., time polynomial in the size of (A, k)
since k is never larger than |A|* (i.e., (A, k) is a no-instance if & > |A|* since k exceeds
the number of tuples x € A%).

Let A’ C A be the set of all components of x € X4 and y € Yj(x) for all x € X 4.
This ensures that X4 C (A")% and Yj(x) C (A)% for all x € X 4. Let R; be the
restriction of R; to A" and let A" = (4, R},... , R}).

Correctness We will now prove that optg(A) > k if and only if optg(A') > &, ie.,
that (A, k) and (A’, k) are equivalent. Assume that optg(A) > kandlet S = (S1,...,Sy)
such that

H{x: (A, S) FE Ty) :v(x,y,4,S)} > k.

This implies that there must exist tuples x1,...,xr € A% and yi1,...,yx € A% such
that S satisfies ¥y, y,(A,S) for i = 1,..., k. Thus & must satisfy at least one disjunct
in each 1y, y,(A,S) since these formulas are in disjunctive normal form. Accordingly
let d1,...,0; be disjuncts such that S satisfies the disjunct d; in 9y, y,(A,S) for i =
1,...,k. We show that there exists &’ such that

{x: (A, 8) = Fy): v(x,y, A, 8} > k.

For p = 1,...,k we apply the following procedure: If y, € Y(x,) then do nothing.
Otherwise consider the partial assignment L consisting of the at most dk literals of the
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disjuncts d1,...,d;. The set D4(x,) contains a disjunct that is satisfiable under L,
namely J,. By Lemma 3.21, the set D% (x,) also contains a disjunct satisfiable under L,
say d,. Let y,, € Y}(x,) such that &, is a disjunct of Vx,y; (A, S). Change S in the
following way to satisfy the disjunct d;,. For each literal of §;, of the form S;(z) add z to
the relation S;. Similarly for each literal of the form —.S;(z) remove z from S;. This does
not change the fact that S satisfies the disjunct J; in ¥, y,(A,S) for i = 1,...,k since,
by selection, d;, is satisfiable under L. Then we replace y, by y;, and d, by d,. Thus we
maintain that S satisfies §; in ¥y, y,(A,S) for i =1,... k.

Afterwards we obtain S as well as tuples x1,..., Xy, y1,...,yx with y; € Y3(x;), and
disjuncts 61, ..., d; such that S satisfies 9; in 9y, y,(A,S) for i =1,..., k. Let S’ be the
restriction of S to A’. Then we have that (A", ") = vx, y, (A, S’) fori =1,..., k since A’
is defined to contain the components of tuples x € X4 and of all tuples y € Y}(x)
for x € X4. Hence x; € {x : (A,S) E (Fy) : v(xy, A,S)} for i = 1,... k.
Thus optg(A’) > k.

For the reverse direction assume that optg(A’) > k. Since A’ C A it follows that

{x: (A8 E Gy vxy, A S) € {x:(A4S)E @) :vxy AS)}

Thus |{x : (A4, S) = Fy) : ¥(x,y,A,8)}| > k, implying that optg(A) > k. There-
fore optg(A) > k if and only if optg(A’) > k. Hence (A, k) and (A, k) are equivalent
instances of p-Q.

Bounding the size We conclude the proof by providing an upper bound on the size
of (A, k) that is polynomial in k. For the sets Y;(x) we selected one tuple y for each
disjunct in D*(x). Thus [Y};(x)| < |D*(x)| € O(k?) for all x € X 4. The set A’ contains
the components of tuples x € X 4 and of all tuples y € Y}(x) for x € X4. Thus

A < e [ Xal e Y YA

xeX A
< e | Xal ey [Xal- O(K)
< k294, k27O = O,

For each relation R} we have |R}| < |A/|" € O(k@+1r:). Thus the size of (A, k) is
bounded by O(k@1)™) where m is the largest arity of a relation R;. O

Again, we are able to extend the kernelization to the weighted case, provided that the
weights are neither negative nor arbitrarily close to zero.

Corollary 3.23. The standard parameterization of any WEIGHTED MAX NP problem
admits a polynomial kernelization when the weights are from {0} U Q>;.

Proof. Let (A,w, k) be an input instance. We let X 4 denote the tuples x with weight
greater than zero for which (3y) : ¢¥(x,y,.A,S) is satisfiable. Then, by Lemma 3.17,
if | X 4] > k-29 we can efficiently find an assignment which satisfies (3y) : ¥(x,y, A, S)
for at least k tuples x € X 4. Since w(x) > 1 for such tuples, this assignment corresponds
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to a solution with value at least k, and thus (A, k) is a yes-instance. Otherwise we
have | X 4| < k- 24

In Theorem 3.22, it is showed that for the obtained instance (A’, k) the exact same
tuples x can be satisfied as for (A, k) (the converse is trivial). Hence, equivalence holds
for the weighted case as well. Note that since positive weights are of value at least one,
it again suffices to satisfy the formula for & tuples (or less). O

3.5. Linear kernelization for MAX SNP

For MAX SNP there is an implicit stronger kernelization result based on Lemma 3.17.

Corollary 3.24. Let Q € MAX SNP. The standard parameterization p-Q of Q admits
a polynomial kernelization with a linear bound on the size of the base set of the obtained
finite structure.

Proof. Let Q be an optimization problem on finite structures of type (r1,...,7) that
is contained in MAX SNP. Let & = (S1,...,S,) be a tuple of relation symbols of
arities sp,...,s,. Finally let ¥(x,.4,S) be a formula in disjunctive normal form such
that the optimum value of Q on finite structures A of type (r1,...,7) can be expressed
as

max {x 1 (A,8) | v(x, A, S)}.

Now, let (A, k) be an instance of p-Q, with A = (4, Ry,..., R;). Similarly to Defini-
tion 3.16, we consider the set X 4 of all tuples x such that 1x(A,S) holds for some S:

Xa={x:(38): (AS) | A S}

By Lemma 3.17 (easily adapted to MAX SNP), if [X 4| > k- 2¢ then optg(A) > k and
we may accept A as a yes-instance. Otherwise |X 4] € O(k) and by restricting A to those
elements that occur in elements of X 4 we obtain A’ with |A’| € O(k). Also restricting
the relations R; to A’ we obtain an equivalent instance A’ = (A, R},..., R}) of total
size O(k™) where m = max{ry,...,r}. O

When considering the weighted version, restricted to weight zero and positive weights
of at least one, we can get a stronger kernelization result.

Corollary 3.25. Let Q be a WEIGHTED MAX SNP problem. The standard parame-
terization p-Q of @ admits a kernelization with a linear bound on size of the base set,
with a linear number of tuples in each relation, and such that the weight function maps
only a linear number of tuples to a non-zero value.

Proof. Let (A,w, k) be an instance of p-Q. Following the proof of Corollary 3.23, it
suffices to argue the case that |X 4| < k- 2% € O(k). Let A’ be the set of elements of A
that occur in tuples of X 4.
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We make a new weight function w’ : A’> — {0} UQ>1 as

w(x) = w(x) if x € Xy,
0 else.
Now we create relations R, by deleting all tuples from the relations R; which do not
occur in ¥ (x, A, S) for any x € X4, i.e.,

R, ={z € R; : (Ri(z)) or (=R;(z)) is a literal of ¢(x,.4,S) for some x € X 4} .

Let (A’,w’ k) denote the kernelized instance, with A" = (A, R},..., R}). We argue
that (A’,w', k) is a yes-instance if and only if (A, w, k) is a yes-instance.

Let S be a tuple of relations such that (A,S) = ¥(x,.4,S) for tuples x with a total
weight of at least k. Let S’ denote the restriction of S to A’. Let x be a tuple of non-
zero weight (i.e., of weight at least one) for which (A, S) = ¥(x,.4,S). Hence we have
that x € X 4. We observe that by definition of the relations R}, we have z € R; if and only
if z € R}, for all literals (R;(z)) or (=R;(z)) of ¥(x,A,S). Thus (A, 8 E ¢(x, A, §).
Hence S’ satisfies ¢ (x, A’,S’) for tuples x with a total weight of at least k too.

For the converse we may restrict our attention to those tuples with positive weight.
For these tuples and the corresponding formulas we have preserved the relations R;, thus
if they are satisfied by (A’,S’) then the same is true for (A,S’). O

Remark. The basic idea is that we only need to keep those tuples of relations R; that
occur in ¥ (x, A, S) for x € X 4, since the other tuples x € A% \ X 4 cannot contribute to
the solution: Their weight is zero, or ¥(x,.A,S) cannot be satisfied. However, changing
the relations R; (other than by projection) may make ¥(x,.4,S) satisfiable. This side-
effect is handled by setting the weight of all tuples from A% \ X 4 to zero.

3.6. Summary

We showed that the standard parameterizations of MIN FTII; and MAX NP problems
admit polynomial kernelizations, also extending to the weighted versions. For the sub-
class MAX SNP of MAX NP we even obtained kernelizations with a linear-sized base
set for both the weighted and the unweighted case. Thus for a syntactically defined part
of the class APX of constant-factor approximable problems we have established a strong
connection to polynomial kernelization.

Possible extensions to larger subclasses of APX may be based on approximability
preserving reductions; recall that APX and APX-PB are the closures of MAX SNP under
PTAS- and E-reductions, respectively. However, APX-PB C APX already contains
CONNECTED VERTEX COVER and BIN PACKING; the former does not admit a polynomial
kernelization unless NP C co-NP/poly [46], the latter is not in XP unless P = NP
(packing into k = 2 bins is equivalent to the NP-complete PARTITION problem). Thus
more restricted reductions would be necessary for this approach.
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4. Lower bounds for edge modification
problems

4.1. Introduction

In this chapter we consider the kernelizability of edge modification problems. Given a
graph G and an integer k, the Il EDGE COMPLETION/EDITING /DELETION problem asks
whether it is possible to add, edit, or delete at most k edges in GG such that the resulting
graph has the property II:

IT EDGE COMPLETION/EDITING/DELETION
Input: A graph G = (V, E) and an integer k.
Parameter: k.

Task: Decide whether adding, editing, respectively deleting at most k edges
in G yields a graph with property II.

We answer negatively an open problem posed by Cai at IWPEC 2006 (cf. [15]), namely
whether the Il EDGE DELETION problem admits a polynomial kernelization when II can
be characterized by finitely many forbidden induced subgraphs. For this we use the recent
framework for lower bounds for kernelization by Bodlaender et al. [16] (see Section 1.4).
Our result complements the considerable number of polynomial kernelizations for edge
modification problems, e.g., [23, 45, 60, 61, 65] (see Table 4.1).

Edge modification problems have a number of applications, including machine learn-
ing, numerical algebra, and molecular biology [26, 92, 105, 108]. In typical applications
the input graphs arise from experiments and edge modification serves to correct the
(hopefully) few errors. For similarity clustering, for example, the vertices represent en-
tities that are linked by an edge if their similarity exceeds a certain threshold. Given
a perfect similarity measure one would obtain a cluster graph, i.e., a disjoint union of
cliques. In practice though, the obtained graph will at best be close to a cluster graph,
i.e., within few edge modifications. Clearly a large number of modifications would yield
a clustering of the entities that deviates strongly from the similarity measure, allowing
the conclusion that the measure is probably faulty. Thus fpt-algorithms that solve the
problem efficiently when the number of modifications is not too large are a good way of
solving this and similar problems.

Characterization by finitely many forbidden induced subgraphs A graph property (or
class of graphs) II is hereditary, if it is closed under taking induced subgraphs. Thus any
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4. Lower bounds for edge modification problems

Property/Class Modification | Kernel size Characterization
Chain Deletion O(k?) [60] | (2Ka, K3,Cs)-free
Split Deletion O(k*) [60] | (2Kz2,Cy,Cs)-free
Threshold Deletion O(k3) [60] | (2K3,Cy, Py)-free
Co-Trivially Perfect | Deletion O(k3) [60] (2K3, Py)-free
Triangle-Free Deletion 6k [23] K3-free
Cluster Editing 4k [61] Ps-free
Chordal Completion | O(k?) [91] Ci-free, i > 4

Table 4.1.: Kernelization bounds for some edge modification problems for hereditary
properties. The kernel size refers to the number of vertices.

such property is characterized by the (possibly infinite) set of minimal graphs which do
not have the property, e.g., chordal graphs are exactly the graphs without induced cycles
of length at least four. Some properties admit a characterization by a finite number of
forbidden induced subgraphs, e.g.:

Cluster graphs: Cluster graphs are disjoint unions of cliques. They are also
exactly the graphs which do not contain an induced path Ps (on three
vertices), i.e., cluster = Ps-free.

Split graphs: A graph is split if its vertices can be partitioned into an inde-
pendent set and a clique. Equivalently a graph is split if and only if it
does not contain 2Ks, Cy, or Cys. Thus split = (2K53, Cy, Cs)-free.

Related work There exists rich literature on the complexity of edge modification prob-
lems; recent surveys were given by Natanzon et al. [92] and Burzyn et al. [26]. In
1996 Cai [27] showed that a very general version of this problem, also allowing vertex
deletions, is fixed-parameter tractable when II can be characterized by a finite set of
forbidden induced subgraphs. In Table 4.1 we give an overview of kernelization results
for a number of edge modification problems, along with their H-free characterizations.
Six of the properties listed in the table can be characterized by a finite set of forbid-
den induced subgraphs, leading to the question whether a finite characterization implies
the existence of a polynomial kernelization. It is easy to see that the answer is yes for
the vertex deletion setting since this translates directly to d-HITTING SET: Given an
instance (G, k) we collect all vertex subsets that induce a forbidden subgraph, and ask
for a hitting set of size at most k; the constant d is the largest number of vertices among
forbidden induced subgraphs (see Section 2.2 for a d-HITTING SET kernelization). It is
crucial that vertex deletion cannot create new copies of forbidden induced subgraphs.

Cai posed the question whether the same is true for the Il EDGE DELETION problem,
i.e., whether it admits a polynomial kernelization when II can be characterized by finitely
many forbidden induced subgraphs. The kernelizability of the H-free EDGE EDITING
problem is open as well. We point out that H-free EDGE COMPLETION is equivalent
to H-free EDGE DELETION, where H contains the complements of the graphs in H.
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4.2. Hardness of Not-1-In-3 SAT

Figure 4.1.: A graph H such that H-free EDGE DELETION and H-free EDGE EDITING do
not admit polynomial kernelizations (assuming NP ¢ co-NP/poly).

Our work Following joint work with Magnus Wahlstrom [80], we consider a simple
parameterized satisfiability problem, called Not-1-in-3 SAT and show that it does not
admit a polynomial kernelization, by proving compositionality. Then we reduce this
problem to H-free EDGE DELETION and H-free EDGE EDITING for a graph H on seven
vertices (see Figure 4.1). Thus IT EDGE DELETION and IT EDGE EDITING do not generally
admit polynomial kernelizations, even when II can be characterized by a single forbidden
induced subgraph (assuming NP ¢ co-NP/poly). Our result builds upon the lower bound
framework by Bodlaender et al. [16] (Section 1.4).

Structure of this chapter In Section 4.2 we introduce the Not-1-in-3 SAT problem and
show that it is NP-complete as well as compositional. Thus, Not-1-in-3 SAT does not
admit a polynomial kernelization (unless NP C co-NP/poly), and we then extend this
lower bound also to the case without repeated variables to simplify the later reduction.
In Section 4.3 we give polynomial parameter transformations to H-free EDGE DELETION
and H-free EDGE EDITING, proving the claimed lower bounds. We conclude with a short
summary and open problems in Section 4.4.

4.2. Hardness of Not-1-In-3 SAT

In this section, we show that the Not-1-in-3 SAT problem does not admit a polynomial
kernelization, unless NP C co-NP/poly. A polynomial parameter transformation to an
H-free EDGE DELETION problem and an H-free EDGE EDITING problem in Section 4.3
will then yield the desired lower bounds.

Not-1-In-3 SAT We define Not-1-in-3 SAT as a satisfiability problem asking for a
satisfying assignment with at most k& true variables to a conjunction of not-1-in-3-
constraints (r + y + z # 1), and constraints (z # 0). Inputs to the problem consist
of such a conjunction F and an integer k. An assignment ¢ to the variables of F is
satisfying if ¢(z) = 1 for every variable x with a constraint (x # 0) and

(0(x), 6(y), ¢(2)) € {(0,0,0),(0,1,1),(1,0,1), (1,1,0), (1,1, 1)}
for every not-1-in-3-constraint (x +y + 2z # 1) in F.

Not-1-In-3 SAT
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4. Lower bounds for edge modification problems

Input: A formula F on Boolean variables that is a conjunction of not-1-in-
3-constraints as well as constraints (r # 0); an integer k.

Parameter: k.

Task: Decide whether there exists a satisfying assignment of weight at
most k, i.e., with at most k& true variables.

Remark. In the context of the constraint satisfaction problems studied in the subsequent
chapters Not-1-in-3 SAT would be called Min Ones SAT({(z +y + z # 1), (x)}).

To apply Theorem 1.4 we need to show that Not-1-in-3 SAT is compositional and that
the unparameterized version is NP-hard. For the compositionality proof we need to be
able to force any two variables to be equal; the following lemma addresses this issue.

Lemma 4.1. Let (F,k) be an instance of Not-1-in-3 SAT and let x and y be two
specified variables. Adding only not-1-in-3-constraints, we can create an instance (F', k)
such that there is a satisfying assignment for F' of weight at most k if and only if there is
a satisfying assignment ¢ for F of weight at most k such that ¢p(x) = ¢(y). Furthermore,
every satisfying assignment ¢’ of weight at most k for F' has ¢'(z) = ¢'(y).

Proof. Let (F, k) be an instance of Not-1-in-3 SAT and let x and y be two variables of F.
Starting from F' = F, we add k+ 1 new variables z1, ..., 2;1. Then we add k+1 not-1-
in-3-constraints (z+y+z; # 1), i.e., one not-1-in-3-constraint for each i € {1,...,k+1}.

Now, to argue correctness, let ¢ be a satisfying assignment for F with at most k true
variables and such that ¢(x) = ¢(y). We extend ¢ to a satisfying assignment ¢’ for F’
by assigning false to all new variables z;. It suffices to check that the added constraints
are satisfied: We have ¢/(z) = ¢'(y) and ¢'(z;) = 0 for all i € {1,...,k + 1}. Therefore
all not-1-in-3-constraints (x + y + z; # 1) are satisfied.

For the converse, let ¢’ be a satisfying assignment for 7’ with at most k true variables.
We show that ¢'(z) = ¢'(y); then restricting ¢’ to the variables of F gives the claimed
assignment ¢. We observe that there must be a j € {1,...,k + 1} such that ¢ assigns
false to z;. Therefore, the constraint (x 4+ y + z; # 1) enforces equality of z and y. [

Now we will prove that Not-1-in-3 SAT is NP-complete and compositional. NP-
completeness follows immediately from the classification of approximability of Boolean
constraint satisfaction problems due to Khanna et al. [75]. Compositionality requires
more work; observe that simply making disjoint copies of the given instances does not
work, since the number of true variables will be counted over all parts of the joined
instance. Our strategy is to “switch off” the instances by making them zero-valid,
conditioned on one activity variable s; per instance: We replace all (x # 0) constraints
by (x = s;). Thus if s; is false then the corresponding instance is zero-valid. Otherwise,
if s; is true, then the (z # 0) constraints are enforced by (x = s;) and the assignment
(for the joined instance) must satisfy the corresponding instance. The additional and
crucial component is a tree-like formula that forces at least one activity variable to be
true, i.e., forcing at least one of the original instances to be active.

Lemma 4.2. Not-1-in-3 SAT is NP-complete and compositional.
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(x11 #0)

/ \ (1,1 + 221+ 222 #1)

x2,2

(22,1 + 231 + 232 # 1) / \ / \ (x22+x33+ 234 #1)

r31 I32 X33 T34

=131V T32VT33V T34

Figure 4.2.: The first three levels of a composition tree. Every parent-node is in a not-
1-in-3-constraint with its two soms, e.g., (xg1 + 231 + 232 # 1). If 21,
is true, then on every level i some variable x; ; must be true, which leads
to (w31 V x32 V 233V x34) being satisfied.

Proof. NP-completeness follows from Khanna et al.’s [75] characterization of the approx-
imability of min ones constraint satisfaction problems (the two constraints (x+y+2z # 1)
and (z # 0) are not both zero-valid, Horn, or width-2 affine; cf. Section 5).

The NP-completeness extends also to the variant where k is encoded in unary: If k
is greater than the number of variables then we may reduce it to match that number
without changing the outcome; adding the unary encoding of k can at most double the
instance size. We will now show that Not-1-in-3 SAT is compositional.

Let (F1,k), ..., (Ft, k) be t instances of Not-1-in-3 SAT. In time polynomial in their
total size we will create a new instance (F', k') with &' = O(k) that is a yes-instance if
and only if (F;, k) is a yes-instance for some 1 <4 <¢. If ¢t > 3]“, then we have time to
solve every instance exactly by branching, and output some dummy yes- or no-instance.
We assume for the rest of the proof that t < 3*¥. We also assume that t is a power of
two (or else duplicate some instance (F;, k)): say t = 2¢.

We start building F’ by creating variable-disjoint copies of all formulas F;. For every
formula F;, we additionally create an activity variable s;. Now for every variable x
in F; such that F; contains a constraint (z # 0), we replace this constraint by (z = s;)
(according to Lemma 4.1). The variable s; now decides whether F; is active: if s; = 0
then every variable of F; can be set to zero, and if s; = 1, then all constraints of the
formula F; are active. We will complete the construction by creating a formula that
forces some s; to be true, in a form of composition tree.

Figure 4.2 illustrates the construction used for this part. We use variables x; ; where ¢
is the level of the variable, i € {1,...,¢+1},and 1 < j < 2¢~1. The first-level variable 1 1
is forced to be true by a constraint (z1,; # 0), and for every internal variable in the
composition tree, we use a not-1-in-3-constraint (z; j + i41,2j—1 + Tit1,2; # 1). Finally,
for every variable x4 ; on the last level, we add a constraint (s; = @41 ;).

Observe that a not-1-in-3-constraint (x + y + z # 1) implies (z — (y V 2)). Thus,
if some variable on level ¢ is assigned true then one of its two sons on level ¢ + 1 must
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be assigned true. Thus, we see inductively that at least one variable per level must be
true. Furthermore, for every variable xy,1 ; on the last level, there exists an assignment
where zy1; = 1 and exactly one variable per level is true: To construct it assign true
to all variables on the path from zy.q; to x1; and false to the remaining variables.
Thus, assuming a minimal assignment to the composed instance F’, we can treat the
composition tree as adding weight exactly £ + 1 and encoding a disjunction over the
activity variables s;. We obtain the composed instance (F', k + ¢ + 2).

Now if 7’ has an assignment ¢’ of weight at most k + ¢ + 2 then ¢/(s;) = 1 for
some j € {1,...,t}. Thus the constraints of F; are active and ¢’ can be restricted
to a satisfying assignment for F; (excluding s;) of weight at most k. If some input
formula F; has an assignment of weight at most £ then this can be extended to an
assignment for 7’ of weight at most k+ ¢+ 2 by assigning 1 to s; and to each variable on
the path from x4 ; to 1, in the composition tree, and 0 to all other variables of F.
Finally, the parameter &' = k + ¢ + 2 is O(k) since ¢t < 3 and ¢ = logt, and the work
performed is polynomial in the length of all input instances. O

Now by Theorem 1.4 we obtain the following result.

Theorem 4.3. The Not-1-in-3 SAT problem does not admit a polynomial kernelization
unless NP C co-NP /poly.

To simplify the reduction to H-free EDGE DELETION in the following section, we
consider a variant of Not-1-in-3 SAT that does not allow repeated variables in the not-1-
in-3-constraints, e.g., (x +z +y # 1). The following lemma implicitly extends our lower
bound to that variant.

Lemma 4.4. Not-1-in-3 SAT reduces to Not-1-in-3 SAT without repeated variables by
a polynomial parameter transformation.

Proof. Observe that the construction of Lemma 4.1 to enforce an equality constraint
works without repeating variables. Therefore, from an instance (F,k) of Not-1-in-3
SAT, we can create an instance (F', k') of Not-1-in-3 SAT without repeated variables
where k&’ = 2k in the following manner:

1. For every variable x in F, create two variables z, 2’ in F'. Force (z = ') according
to Lemma 4.1.

2. For every not-1-in-3-constraint (x + = +y # 1) in F, with z # y, place (z + 2’ +
y # 1) in F' (ditto for the other orderings of x, 2/, and y). Copy not-1-in-3-
constraints (x + y + z # 1) for distinct variables x,y, z and constraints (z # 0)
into ', and ignore any not-1-in-3-constraints (z + = + x # 1).

The formula F' has a solution with at most 2k true variables iff F has a solution with
at most k true variables. ]
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Figure 4.3.: The graph H for which we show that H-free EDGE DELETION and H-free
EDGE EDITING do not admit polynomial kernelizations.

4.3. Lower bounds for two H-free modification problems

Throughout this section let H = (Vy, Ey) with vertex set Vg = {a,b,c,d,e, f,g} and
edge set Fy = {{a,b},{a,c},{a,d},{a,e},{a, f},{a,g},{b,c}, {d,e}}, as depicted in
Figure 4.3. We will show that Not-1-in-3 SAT without repeated variables reduces to H-
free EDGE DELETION by a polynomial parameter transformation, thereby proving that
the latter problem does not admit a polynomial kernelization unless NP C co-NP /poly,
according to Theorem 1.5. Consecutively we use a slightly more involved polynomial
parameter transformation from Not-1-in-3 SAT without repeated variables to H-free
EDGE EDITING.

Lemma 4.5. Not-1-in-3 SAT without repeated variables reduces to H-free EDGE DELE-
TION by a polynomial parameter transformation.

Proof. Let (F, k) be an instance of Not-1-in-3 SAT without repeated variables. We will
construct an equivalent instance (G, k") of H-free EDGE DELETION.

Transformation Let a be the number of variables = of F that have a constraint (z # 0).
Clearly, if £ < « then (F, k) is a no-instance and we map it to a dummy no-instance of H-
free EDGE DELETION, e.g., (H,0). Henceforth we assume that £ > «a and we let k' = k—a.
Starting from the empty graph we use the following two steps to construct G:

1. For each variable z of F we add two vertices p, and ¢, to G. We add the
edge {ps, ¢z} to G if there is no constraint (z # 0) in the formula F.

2. For each not-1-in-3-constraint (z +y + 2z # 1) add k¥’ + 1 new vertices 71,..., k41
to G. Connect each r; to ps, ¢z, Dy, Gy, P2, and q.. Recall that x, y, and 2 are
different by our restriction on the source problem.

See Figure 4.4 for an example of a formula F and the resulting graph. Observe that
this construction can be accomplished in polynomial time and that k¥ € O(k).

Correctness We will now show that (F, k) is a yes-instance of Not-1-in-3 SAT without
repeated variables if and only if (G, k) is a yes-instance of H-free EDGE DELETION.
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4. Lower bounds for edge modification problems

Figure 4.4.: The graph obtained by applying the reduction from Lemma 4.5 on the for-
mula F=(v+w+z#)A(x+y+2z#1)A(w#0)A (2 #0).

We begin with two simple observations; let X denote the set of vertices created in
Step 1 and let C' denote the set of vertices created in Step 2:

(1) Each vertex of X has at most one neighbor in X.
(2) C is an independent set in G.

Suppose that (F, k) is a yes-instance of Not-1-in-3 SAT without repeated variables
and let ¢ be a satisfying assignment for F with at most k£ true variables. We define a
subset D C E as those edges {ps,q.} of G with ¢(x) = 1. Recall that {ps,q,} € E if
and only if F contains no constraint (x # 0). Therefore |D| < k—« = k since at most k
variables x have ¢(x) = 1 but « of those variables have a constraint (x # 0).

We assume for contradiction that G — D is not H-free. Let a,..., g be vertices of G
that induce a subgraph H. For simplicity let the adjacencies be the same as in Figure 4.3.

It is easy to see that a € C: Otherwise, if a € X, then by Observation (1) at most one
of its neighbors can be in X. This would imply that b,c € C or d,e € C contradicting
Observation (2), namely, that C' is an independent set.

Since a € C the other vertices b, ..., g must be in X by Observation (2). Recall that
in G[X], i.e., among vertices of X, there are only edges of the form {p,, ¢, } where z is a
variable of F. Since {b,c} and {d, e} are edges of G[X] there must be variables z and y
of F such that w.l.o.g. b = p,, ¢ = ¢, d = py, and e = g,. By Step 2 of the construction
there must be a third variable z of F such that w.l.o.g. f = p, and g = ¢q,. Thus the
vertex a corresponds to the constraint (z +y + 2z # 1) of F.

From {ps, ¢z}, {py, @y} € E\ D (the edge set of G— D) it follows that ¢(z) = ¢(y) = 0.
Since {p.,q.} ¢ E \ D it follows that {p,,q.} € D or {p.,q;} ¢ E. In the former case
we have that ¢(z) = 1. In the latter case there must be a constraint (z # 0) in F,
which also implies that ¢(z) = 1 since ¢ is satisfying for F. However, ¢(z) = ¢(y) =0
and ¢(z) = 1 contradict the feasibility of ¢ since (x+y+ 2z # 1) is a not-1-in-3-constraint
of F. Hence G — D is an H-free graph, implying that (G, k') is a yes-instance of H-free
EDGE DELETION, since |D| < k.

Now, suppose that (G, k') is a yes-instance of H-free EDGE DELETION. We will con-
struct a satisfying assignment ¢ with at most k true variables for 7. Let D C FE
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with |D| < k" such that G — D is H-free. We define ¢ by

1 if {ps,q.} € D,
¢(x) =<1 if (x #0) is a constraint of F,

0 otherwise.

Thus the number of true variables that ¢ assigns is at most the cardinality of D plus
the number of variables « of F with an (z # 0)-constraint, i.e., at most |D| 4+ o < k.

We assume for contradiction that ¢ is not satisfying for F. This implies that there is
a not-1-in-3-constraint, say (z +vy + z # 1), in F that is not satisfied by ¢. The reason
is that, by definition, ¢ satisfies all (x # 0)-constraints. Not satisfying (x +y + z # 1)
implies that ¢ sets exactly one of the three variables to 1. Recall that z, y, and z
must be pairwise different by problem definition. W..o0.g. we assume that ¢(z) = 1
and ¢(y) = ¢(z) = 0. This immediately implies that there are no constraints (y # 0)
or (z #0) in F and that {p,,q,} and {p., ¢.} are not contained in D, by definition of ¢.
Hence {py, ¢y} and {p.,q.} are contained in the edge set £\ D of G — D.

Since ¢(z) = 1 we conclude that {p;, ¢} € D or that (z # 0) is a constraint of F.
In the latter case, by Step 1 in the construction of G, the edge {p.,q,} does not occur
in G. Thus, in both cases, {p;, ¢, } is not an edge of G — D, i.e., {ps,q.} ¢ E\ D.

We will now consider the vertices that were added for (z +y + z # 1) in Step 2 of
the construction, say r1,...,rpy1. Since |D| < K’ at least one r; is adjacent to all six
vertices pz, qz, Py, qy, Pz, and g.. Together with r; those vertices induce a subgraph H.
This contradicts the choice of D, implying that ¢ is satisfying for F.

Thus (F, k) is a yes-instance of Not-1-in-3 SAT without repeated variables if and only
if (G, k') is a yes-instance of H-free EDGE DELETION. O

By Theorem 1.5 we obtain the desired result.

Theorem 4.6. For the graph H = (Vi, Er) with vertices Vi = {a,b,c,d,e, f,g} and

edges Eg = {{a,b},{a,c},{a,d},{a,e},{a, f},{a,g},{b,c},{d,e}}) the H-free EDGE
DELETION problem does not admit a polynomial kernelization unless NP C co-NP /poly.

The following corollary proves that the H-free EDGE EDITING problem does not admit
a polynomial kernelization either.

Corollary 4.7. For the same graph H as in Theorem 4.6, the H-free EDGE EDITING
problem does not admit a polynomial kernelization unless NP C co-NP /poly.

Proof. We extend the construction used in Lemma 4.5 to obtain a polynomial parameter
transformation from Not-1-in-3 SAT without repeated variables to H-free EDGE EDITING.

Transformation Let (F, k) be an instance of Not-1-in-3 SAT without repeated vari-
ables. We create an instance (G, k') according to the construction in Lemma 4.5, except
for using 3k" + 1 vertices r; per not-1-in-3-constraint in Step 2.

Essentially we only need one additional gadget to ensure that no edges are added
between vertices of X in G (recall that X contains vertices p, and g, for every variable
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of F). Adding this gadget for every non-edge of G[X] will yield a graph G’ and we will
show that (G', k') and (F, k) are equivalent.

Let us recall that the only edges in G[X] are of the form {p,, ¢, } for some variable x
of F that has no constraint (z # 0). For every other pair of vertices, say (ps,py)
with « # y, we add k' + 1 vertices s;, t;, u;, v;, and w;, and for each 7 connect s;
to pe, Dy, ti, ui, v;, and w;, and connect ¢; to u;. That is, create constructions which will
induce k' +1 subgraphs H if the edge {ps,py} is added. Note that these subgraphs have
only one pair of vertices in common. The same construction applies also for pairs (p,, gy)
and (¢, qy) as well as for pairs (ps, gy) where = has a constraint (z # 0) in F. Let G’
denote the graph that is obtained by adding these vertices and edges to G.

Correctness Now, for proving equivalence of (G',k') and (F, k), let us first assume
that (G, k') is a yes-instance of H-free EDGE EDITING and let D be a set of edges,
with |D| < k' such that G’ A D := (V(G'), E(G") A D) is H-free.

We claim that D adds no edges between vertices of X. Otherwise, if for exam-
ple {pz,py} € D then, referring to the new gadget, there would be k" + 1 induced
subgraphs H that share only p, and p,. Since removal of these k¥’ + 1 subgraphs would
demand at least &'+ 1 modifications, this would imply that G’ A D is not H-free. Thus D
restricted to G'[X] contains only deletions; let D’ be these deletions. Clearly |D’| < k.

Let us consider the r-vertices that are added in Step 2. Clearly, since |D| < &/, for
every not-1-in-3-constraint of F at least &’ + 1 of its corresponding vertices r; are not
incident with edges of D (recall that we started with 3k" + 1 vertices r; per constraint).
We select a set R of vertices, picking, for every not-1-in-3-constraint of F, k' + 1 of its
corresponding r-vertices which are not incident with edges of D. Let G” be the graph
induced by RU X.

Now let (Gp, k") be the H-free EDGE DELETION-instance created from (F, k) according
to Lemma 4.5. It is easy to see that Gy and G” are isomorphic, and that the only
modifications made to G” by D are the deletions D’. Since G’ A D is H-free, so is the
graph G" A D' = (G' A D)[RU X]. Thus D’ constitutes a solution to the H-free EDGE
DELETION instance (G”, k), which by Lemma 4.5 maps to a solution for (F, k).

Let us now assume that (F, k) is a yes-instance and let ¢ be a satisfying assignment
of weight at most k. Let D be obtained as in Lemma 4.5, i.e., D will only delete
some {py, ¢, }-edges from G’. We show that G' A D is H-free.

Consider the vertex which would form the vertex a of H, i.e., the vertex of degree
six in H. It cannot be a p-vertex, since the neighborhood of a p-vertex contains only
edges incident to the corresponding g-vertex (all - and s-vertices are independent of
one another, and a p-vertex has only such neighbors, in addition to its g-vertex). By
symmetry, this excludes g-vertices as well. The r-vertices have only six neighbors, so any
induced H would correspond to a contradicted constraint R which by assumption does
not exist (same argument as in Lemma 4.5). Furthermore, in the solution constructed,
the neighborhood of any s-vertex contains only one edge, as D only deletes edges. The
remaining types of vertices, i.e., the ¢, u, v, and w vertices of the gadget, have degree
less than six. O
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4.4. Summary

We showed that the H-free EDGE DELETION problem and the H-free EDGE EDITING prob-
lem do not generally admit polynomial kernelizations (assuming NP ¢ co-NP/poly).
This answers an open question by Cai, namely, whether the H-free EDGE DELETION
problem admits a polynomial kernelization for every finite set H of graphs. We point
out that any H-free EDGE DELETION problem can be expressed as a min ones constraint
satisfaction problem (introduced in Chapter 5 and studied in Chapter 6), but the prob-
lems obtained in this way are overly general. The reason is that constraints may be
freely placed but globally forbidding a subgraph leads to constraints emerging from the
edges of the graph (including possible new copies of forbidden subgraphs, created by
edge modifications).

It is an interesting open problem to further characterize kernelizability of H-free edge
modification problems. Considering the structure of the known positive examples (see
introduction), one might first ask whether the H-free EDGE DELETION problem always
admits a polynomial kernelization when H consists only of paths, cycles, and cliques (or
sums thereof, such as 2K3). On the other hand, the graph H used for the two lower
bound proofs suggests a wide range of similar graphs such that H-free EDGE DELETION
or H-free EDGE EDITING do not admit polynomial kernelizations.

61






Part IIl.

Kernelizability of Boolean constraint
satisfaction problems
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5. Boolean constraint satisfaction problems

5.1. Introduction

This chapter serves the purpose of providing an introduction to the Boolean constraint
satisfaction problem (Boolean CSP). Constraint satisfaction problems are a framework
that allows us to express, in a natural way, many combinatorial problems.

Let us begin by recalling the d-HITTING SET problem. There, given a hypergraph,
i.e., hyperedges over a set of vertices, the task is to find a smallest set of vertices that
intersects every edge. Let us abstract a little: We choose to consider Boolean variables,
instead of vertices, and our task will be to set few variables to true (i.e., to 1), instead
of selecting few vertices. If the assignment to the variables shall satisfy some set of
positive clauses, then clearly, we have obtained an equivalent formulation of d-HITTING
SET. Generalizing from d-HITTING SET we will now say that the positive clauses are one
possible choice of constraints; each constraint restricts the possible assignments to its
variables (i.e., those that occur in the constraint). If we allow other constraints, then we
obtain a wide range of problems, called Min Ones SAT(I") problems (where I" denotes
the allowed constraints); we will later formally introduce and study these and similar
problems. Note that already deciding satisfiability becomes an interesting task once the
constraints are more complicated than positive clauses. Further, there are many other
goals to optimize for, all of them encompass well-known and much-studied problems.

A CSP instance is represented by a set of variables, a domain of values for each
variable, and a set of constraints on the values that certain collections of variables can
simultaneously take. The basic aim is then to find an assignment of values to the variables
that satisfies the constraints. Boolean CSP (when all variables have domain {0,1})
generalizes satisfiability problems such as 2-SAT and 3-SAT by allowing that constraints
are given by arbitrary relations, not necessarily by clauses. Clearly, each relation can be
expressed as a certain number of clauses, but focusing on the relations we can make more
careful distinctions than restricting the length or the number of negations of clauses.

As Boolean CSP problems are NP-hard in general, there have been intensive efforts at
finding efficiently solvable special cases. One approach is to consider the complexity of
the graph (or hypergraph) underlying the formula, e.g., giving a fast algorithm for when
the graph has bounded treewidth (i.e., if the graph is rather tree-like). Another well-
studied type of special cases is obtained by restricting the allowed constraint relations to
a fixed set I'; we denote by SAT(T") the resulting problem. We expect that if the relations
in I" are simple, then SAT(T") is easy to solve. For example, if I' contains only binary
relations, then SAT(T") is polynomial-time solvable, as it can be expressed by 2-SAT. On
the other hand, if I" contains all the ternary relations, then SAT(I") is more general than
3-SAT, and hence it is NP-hard. In this thesis, we take the second approach.
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A celebrated classical result of T.J. Schaefer [107] from 1978 characterizes the complex-
ity of SAT(T") for every finite set I': it shows that if I' has certain simple combinatorial
properties, then SAT(T") is polynomial-time solvable, and if I does not have these prop-
erties, then SAT(I") is NP-hard. This result is surprising for two reasons. First, Ladner’s
Theorem [82] states that if P # NP, then there are problems in NP that are neither in P
nor NP-complete. Therefore, it is surprising that none of the SAT(I") problems are in-
termediate. Second, it is surprising that the borderline between the P and NP-complete
cases of SAT(T") can be conveniently characterized by simple combinatorial properties.

Schaefer’s result has been generalized in various directions. Bulatov [24] generalized
it from Boolean CSP to CSP over a 3-element domain and it is a major open question
if it can be generalized to arbitrary finite domains (see [25, 50]). Feder and Vardi [50]
conjectured that CSP(T") is either in P or NP-hard for any I over finite domain; this is
known as the CSP Dichotomy Conjecture. They arrived at this conjecture while pursuing
the task of finding a large syntactic subclass of NP that exhibits a dichotomy, i.e., such
that the problems are either in P or NP-hard, contrasting Ladner’s Theorem [82].

Furthermore, there are numerous results for Boolean CSPs: Creignou et al. [39] clas-
sified the polynomial-time solvable cases of the problem Exact Ones SAT(T"), where the
task is to find a satisfying assignment with exactly k true variables, for some integer k
given in the input. Marx [88] classified the parameterized complexity of Exact Ones
SAT(T") problems into fixed-parameter tractable and WJ1]-complete cases. Natural op-
timization variants of SAT(I") were considered in [36, 42, 75], one of the goals being to
classify the approximability of the different problems: In Max SAT(T") we have to find
an assignment maximizing the number of satisfied constraints (generalizing MAX CUT),
while in Min UnSAT(I") we have to find an assignment minimizing the number of dis-
satisfied constraints (generalizing EDGE BIPARTIZATION). Min Ones SAT(I') and Max
Ones SAT(T") ask for a satisfying assignment minimizing and maximizing, respectively,
the number of variables having value 1 (generalizing VERTEX COVER and CLIQUE).

We have seen that (Boolean) constraint satisfaction problems generalize many nat-
ural and well-studied problems. Thus they are a good framework for obtaining more
general results, e.g., to what constraint types can we generalize the polynomial kernel-
ization for d-HITTING SET? Additionally, there are many dichotomy results for SAT(T")
and variants thereof. Such complete classifications into tractable and (likely) intractable
cases provide a more profound insight into the nature of problems, e.g., compare Schae-
fer’s [107] dichotomy for the SAT(I") problem (see Theorem 5.3) to the folklore result
that 2-SAT is in P whereas 3-SAT is NP-complete. The latter hides many positive cases
of essentially unbounded arity, e.g., Horn clauses or affine clauses (see the following
section for definitions); uncovering such examples is one of the virtues of dichotomies.

Structure of this part In Chapters 6, 7, and 8 we will classify Min Ones SAT(T),
Max Ones SAT(I"), and Exact Ones SAT(I") problems according to when they admit
a polynomial kernelization (depending on I'). In the remaining part of this chapter we
will introduce the necessary definitions as well as some background knowledge about
constraint satisfaction problems and Boolean relations.
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5.2. Definitions

In this section we present basic definitions as well as some background knowledge on
Boolean constraint satisfaction problems. We emphasize that parts of this section are
intended to provide an overview and a high-level concept of the more involved connec-
tions between the notions. A brief summary of the most frequently used connections
can be found at the end of this section.

Notation

A literal is a (Boolean) variable or the negation thereof, we also call it a positive or
negative literal, respectively. Positive clauses and negative clauses are disjunctions of
positive and negative literals, respectively. We use 1 and 0 to denote true and false
values, respectively.

For two tuples a = (a1, ..., 0.), 8= (P1,..-,0r), welet aAB = (a1 AB1, ..., qrABy),
and likewise for other Boolean functions. We write a <  meaning that o; < §; for
every 1 <i¢ <r;and a < § stands for « < 8 and o # f.

Boolean constraint satisfaction problems

A Boolean relation R of arity r is a subset of {0,1}". A constraint R(z1,...,x,) is an
application of the relation R to a tuple (x1,...,x,) of not necessarily distinct (Boolean)
variables, we also call it an R-constraint. A constraint language I' is a set of rela-
tions; here all constraint languages are finite and contain only Boolean relations. A
formula F over I is a conjunction of constraint applications of relations from I". We
use V' (F) to denote the set of variables of a formula F. A (truth) assignment is a map-
ping ¢ : V — {0,1} where V is a set of Boolean variables. An assignment ¢ satisfies a
constraint R(z1,...,z,) if (¢(x1),...,¢(x,)) € R. An assignment ¢ to the variables of a
formula F satisfies the formula if it satisfies each constraint of F. A formula is satisfiable
if it has at least one satisfying assignment. The weight of an assignment is the number
of true variables, i.e., the number of variables that are assigned 1.

Remark. Formulas over I' can be defined as pairs (V,C) consisting of a set V' of vari-
ables and a set C' of constraints. Fach constraint ¢; € C' is a pair (3;, R;), where 5; =
(i1, ..., %;y,) is an ri-tuple of variables from V' (the constraint scope) and R; C {0,1}"
is the constraint relation (R; € I'). A minor difference with our chosen definition is that
this one implicitly allows free variables that do not occur in any constraint. All our
results work also with free variables, but we do not require them.

The classic constraint satisfaction problem SAT(T") is that of deciding satisfiability of
formulas over the constraint language I':

SAT(T)
Input: A formula F over I'.
Task: Decide whether F is satisfiable.
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Apart from SAT(T) a number of optimization variants are studied, most commonly

Max SAT(I') maximizing the number of satisfied constraints,
Min UnSAT(I') minimizing the number of dissatisfied constraints, and
Max Ones SAT(I') maximizing the number of true variables, or

Min Ones SAT(I') minimizing the number of true variables in a satisfying
assignment.

The approximation properties of these four types of problems have been classified by
Khanna et al. [75]; we will present results from [75] in Chapters 6 and 7, when considering

Min Ones SAT(I') and Max Ones SAT(I"), respectively.

Examples 5.1. Max SAT({(x # y)}) expresses MAX cuT, Min UnSAT({(z # y)})
expresses EDGE BIPARTIZATION (i.e., deleting edges to make a graph bipartite), Max
Ones SAT({(—-x V —y)}) expresses INDEPENDENT SET, and Min Ones SAT({(xz V y)})

expresses VERTEX COVER.

In 1978 Schaefer gave a complexity dichotomy into polynomial and NP-complete cases
of SAT(T") problems over all finite constraint languages I'. Before stating the dichotomy

result, let us recall various standard properties of Boolean relations (cf. [36]):

Definition 5.2. Let R be a Boolean relation.
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Zero-valid R is zero-valid if (0,...,0) € R.
One-valid R is one-valid if (1,...,1) € R.

Strongly zero-valid R is strongly zero-valid if it contains all tuples (of match-
ing arity) that have at most one 1.

Horn R is Horn (or weakly negative) if it can be expressed as a conjunction
of clauses each containing at most one positive literal.

Anti-Horn R is anti-Horn (or weakly positive) if it can be expressed as a
conjunction of clauses each containing at most one negated literal.

Bijunctive R is bijunctive if it can be expressed as a conjunction of con-
straints each being the disjunction of at most two literals.

Affine R is affine if it can be expressed as a conjunction of constraints of
the form (z1 @ ... ®a; =b), where b € {0, 1} and addition is modulo 2.
The number of tuples in any affine relation is an integer power of 2.

Width-2 affine R is width-2 affine if it can be expressed as a conjunction of
equality (z = y) and disequality (x # y) constraints as well as positive
and negative assignments, i.e., (x) respectively (—x).

IHS-B- R is IHS-B- (implicative hitting set bounded-) if it can be expressed
as a conjunction of positive assignments (x), implications (z — y), and
negative clauses (—x1 V...V —x,), for n > 1.
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IHS-B+ R is IHS-B+ (implicative hitting set bounded+) if it can be ex-
pressed by negative assignments (—x), implications (z — y), and posi-
tive clauses (z1 V...V xy), for n > 1.

IHS-B R is IHS-B if it is either IHS-B+ or THS-B-.

These and other properties are extended to properties of constraint languages I', by
saying that I' is zero-valid (one-valid, Horn, ...) if this holds for every R € T'; one
exception: A constraint language I' is IHS-B if all relations in I' are IHS-B+ or all
relations in I" are IHS-B—, i.e., if I" is IHS-B+ or IHS-B—.

Remark. Note that the properties defined above only require that the relation can be
implemented in the described way, not that they are given in this form. E.g., bijunctive
relations are not necessarily binary, but their expressive power is limited to that of 2-SAT
formulas: (w A x) V (y A z) is bijunctive but (w A z) V (y = z) is not bijunctive.

Schaefer’s dichotomy theorem

Now we can state Schaefer’s dichotomy theorem.

Theorem 5.3 (Schaefer [107]). Let I' be a set of Boolean relations. Then SAT(T) is
i P if T' is zero-valid, one-valid, Horn, anti-Horn, bijunctive, or affine. Otherwise,
SAT(T') is NP-complete.

The polynomial cases for SAT(I") are well-known and mostly straightforward, it is
the proof for the NP-completeness of the remaining cases which is interesting. It is
shown that relations which are Horn, anti-Horn, bijunctive, or affine have certain so-
called closure properties. As an example, each relation R is Horn if and only if it is
closed under conjunction (AND), i.e., for any two tuples «, 3 € R the relation must
also contain a A 8. Thus, if the constraint language I' is not Horn, it must contain a
relation R which is not Horn and therefore not closed under conjunction. Hence, R must
contain tuples a and f such that a A § ¢ R, we call them witness tuples or witnesses.
Using witnesses against all six known polynomial cases (including two relations which
are not zero-valid and not one-valid, respectively) permits a reduction from 3-SAT by
giving implementations of the four different 3-SAT clauses, proving NP-completeness
(membership in NP is trivial).

The following example shows how to implement relations from witness tuples. After-
wards we will introduce the concepts of closure properties and witnesses in more detail.

Example 5.4. We consider the constraint language I' = {(x), (-z), R} where R is an 8-
ary relation that is not Horn. Let us first pick any two tuples «, 8 € R witnessing that R
is not closed under conjunction, e.g., « = (1,0,0,0,1,1,0,1) and 5 = (1,1,0,1,0,1,0,0)
with a A ¢ R. Thus we have

o 1000110 1 €R
3 1 1010100 €R
aAB 1 0 0 00 1 00 ¢R
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We implement a new relation R’ on two variables, by
R(z,y) = Fw,2) : (~w) A (2) A R(z, 2, w, 2, y, 2,w,y).

Thus we get that (0,1),(1,0) € R’ whereas (0,0) ¢ R’; these tuples correspond to «, 3,
and «a A [, respectively. Hence, depending on whether (1,1,0,1,1,1,0,1) is contained
in R, the relation R’ includes or excludes (1,1); we implemented (x V y) or (z # y),
respectively, depending on R.

The underlying strategy is to place variables according to the entries in the witness
tuples, e.g., we have placed x where « is 0 and S is 1. In that way, we transfer the
knowledge about the witness tuples to inclusion or exclusion of tuples in the new relation.
Note that this approach does not require to actually know the relation or the tuples,
however, some case distinctions may be required: For example, when we place x in all
positions where « is zero and ( is one without knowing « and 3, we have to argue that
such positions exist or discuss also the case when there are no such positions.

Closure properties

A Boolean function of arity r is a mapping f : {0,1}" — {0,1}. A clone is a class C
of functions which is closed under superposition (also called composition) and which
contains all projections; here clones are classes of Boolean functions:

Projections The class C' contains all projections 7' : {0,1}" — {0, 1}, which
are defined by n/*(z1,...,z,) = ;.

Superposition For any functions f,¢g1,...,9m € C, where f is m-ary and
the g; are n-ary, C' contains also the n-ary function h given by

h(z1,...,xn) = flgi(z1, ..oy 2n), ooy gm (X1, .oy Tp))-

The clones of Boolean functions form a lattice under set inclusion; a complete description
of this lattice was given by Emil Post in 1941 [101], it is therefore named Post’s lattice.

A function f preserves a relation R (or R is invariant or closed under f) if coordinate-
wise application of f to any tuples of R gives a tuple in R: For any t tuples a1,...,a4 € R
we have

(flar(1),. . au(1)),..., flaa(r),...,cu(r))) € R.
We also say that f is a polymorphism of R. Consider the following example:

Example 5.5. Let f(a,b,¢c) = (aAb)V(aAc)V (bAc)and let a relation R be defined
by R(w,z,y,z) = (wAz)V (y = z). Applying f to the tuples (0,0,0,0), (0,1,1,1),
and (1,1,1,0) € R creates the tuple (0,1,1,0) ¢ R:

a 000011 1 1 00 0 0 €R

001100 11 01 11 €R
c 01010 1 0 1 1 1 1 0 €R
flabe) 0 0 0 1 0 1 1 1 0 1 1 0 ¢R
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Intuitively, the application of f to the tuples is done by writing the tuples as a matrix
and applying f on each column. Observe that since (0,1,1,0) ¢ R we know that R is
not invariant under f.

For any set of relations I', the set Pol(I') contains all functions that preserve all
relations in I, i.e., all polymorphisms of I'. For each I, its set of polymorphisms Pol(T")
is a clone and each clone can be defined as Pol(I") for some I' (see [84, 100]).

Let us mention the defining closure properties for some of the Boolean relations. A
relation R is Horn if and only if it is invariant under conjunction (AND), e.g., for any
two tuples o, 5 € R also a A § is contained in R. A relation is anti-Horn if and only
if it is invariant under disjunction. A relation R is affine if and only if it is invariant
under ternary XOR, i.e., a & 8@ v € R for any tuples «, 3,7 € R. A relation R is
bijunctive if and only if it is invariant under majority, i.e., for any tuples «, 3,7 € R the
tuple ((aAB)V (aAvy)V(BA7)) is contained in R (see [21] or [38] for a characterization
of Boolean co-clones).

Given a relation R which is not invariant under the function f : {0,1}" — {0,1}
there must be tuples ay,...,a, € R such that f applied to these tuples creates a tuple
which is not in R; we call such tuples witness tuples. Consider again Example 5.5,
it shows that the relation given by (w A z) V (y = z) is not closed under majority
(i.e., f(a,b,c) = (aAbD)V (aNc)V (bAc)) and therefore that it is not bijunctive.
Similarly, a constraint language which does not have a certain closure property must
contain a relation for which we find the corresponding witness tuples. Given such tuples,
one may aim to implement relations which permit a reduction from some hard problem.

Implementation of relations

A constraint language I' (existentially) implements a relation R if

R(:cl,...,a:r) =dX: /\Ri(xﬂ,...,xit),

where each R; € I" and using variables X U {z1,...,x,}. Sets of relations closed under
existential implementation are called co-clones. The smallest co-clone containing I' is
denoted by (I'); we also say that I' generates (I'). The types of Boolean relations,
introduced in Definition 5.2, are such co-clones.

The set Inv(F') contains all relations that are invariant under each function in F.
For each set of Boolean functions F', the set Inv(F') is a co-clone and each co-clone can
be defined as Inv(F') for some set F' of Boolean functions. Like the clones of Boolean
functions, co-clones form a lattice under set inclusion; infimum and supremum of two
co-clones A and B are given by AN B and (A U B), respectively (see [84, 100]).

We will later introduce restricted forms of implementations more suitable for the study
of problems addressing the number of true variables, which we will use in this thesis. For
now, let us mention the strong correspondence between co-clones of Boolean relations
and the clones of Boolean functions (their polymorphisms).
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The Galois connection

There is a well investigated Galois connection between clones and co-clones (cf. [84, 100]).
In particular it is known that for any sets of relations I'y and I'y we have

<F1> - <F2> <~ POI(FQ) - POl(Fl)

and that (I') = Inv(Pol(T")) for any set of relations I', i.e., (-) = Inv(Pol(-)). It implies
that the lattices of clones and co-clones are dually isomorphic, with Inv and Pol being the
dual isomorphisms. Let us briefly mention its impact on the polynomial-time reducibility
between SAT(I") problems, starting with a theorem due to Jeavons [71].

Theorem 5.6 ([71]). Let I'1 and I'y be finite sets of relations such that (I't) C (I's).
Then SAT(T'1) is polynomial-time reducible to SAT(T'y).

Using the Galois connection one obtains the statement that Pol(I'y) C Pol(I';) implies
SAT(I'1) being polynomial-time reducible to SAT(I'y) (thus Pol(I's) = Pol(I';) implies
that SAT(I';) and SAT(I'2) are polynomial-time equivalent). Using Post’s classification
of Boolean clones [101] (Post’s lattice) this already implies Schaefer’s dichotomy (cf. [40]).

The Galois connection is an invaluable tool for proving properties and dichotomies
of Boolean relations. We will mainly use it for the one-to-one correspondence between
co-clones and the matching clones of polymorphisms. Characterizations of the Boolean
co-clones were given by Creignou et al. [38] as well as by Bohler et al. [21].

To prove upper bounds we may use the implementation and closure properties, e.g., to
design a polynomial kernelization. We will frequently use results of Creignou et al. [38],
namely so-called plain bases for some of the co-clones, generating the co-clone without
requiring extra (i.e., existentially quantified) variables.

For the lower bounds we will use witness tuples against the closure properties, e.g., to
construct gadgets for reductions. Another frequent use is to first consider special cases,
e.g., that all relations are closed under conjunction (Horn) or disjunction (anti-Horn).
The remaining (and possibly most involved) case may then be made easier by using
witness tuples, e.g., of relations that are not closed under conjunction or disjunction,
respectively.

Many of the results that are presented in Chapters 6, 7, and 8 of this thesis do not
follow the lattice of Boolean co-clones, i.e., there are constraint languages which generate
the same co-clone (under existential implementation) but which have different kernel-
ization properties. The reason is that the considered problems address the number of
true variables in satisfying assignments, but existential implementation of relations does
not preserve this. Thus we use restricted notions of polymorphisms and implementa-
tions, which are more fine-grained than the co-clone lattice. We conclude the chapter
on Boolean CSPs by introducing so-called partial polymorphisms and frozen implemen-
tations.

Partial polymorphisms

Let R be a Boolean relation of arity r. A t-ary partial polymorphism of R is a partially
defined function f : {0,1}* — {0,1} such that for any ¢ tuples a1,...,a; € R, such
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that f(aq(i),...,a (7)) is defined for every i € [r], we have

(flan(1)y. ., a4 (1)y ..., flaa(r),...,a4(r))) € R.

Note the crucial difference compared to the regular polymorphisms: The partial poly-
morphism must be defined on all tuples (aq(i),...,a (7)), obtained by taking (in order)
the ith entry of each tuple «q,...,a; we then say that f applies to aq,...,a:. Let us
stress again that for R to be invariant under f, it must contain all tuples created from
application of f to tuples from R to which f applies. Thus a relation may be invariant
under some partial polymorphism by not having a choice of tuples to which the partial
polymorphism applies.

Where convenient we present partial polymorphisms in a matrix form, where the
columns represent the tuples for which f is defined, and the value below the horizontal
line is the corresponding value of f. (Similar to the complete list of function values for
a Boolean function of the same arity.)

Example 5.7. Let f and f’ be ternary partial polymorphisms given by the following
matrices:

a 000 1 1 a 0000 1 1
b 001 0 1 b 001 1 0 1
c 010 0 1 c 01 01 0 1
fla,b,e) 0 0 0 0 1 Fflabe) 0 0 0 1 0 1

Let a relation R be defined by R(w,z,y,z) = (w A x)V (y = z) and consider the
tuples (0,0,0,0), (0,1,1,1), and (1,1,1,0) € R. The partial polymorphism f does not
apply to these tuples, but f’ applies and creates the tuple (0,1,1,0) ¢ R:

0 0 0 0 €R

01 11 €R
1 110 €R
0 1 1 0 ¢R

Thus R is not invariant under f’. Note that the three considered tuples to which f
does not apply do not imply that R is invariant or not invariant under f. To check
whether R is preserved by f one needs to check for all possible choices of three tuples
from R whether f applies and whether it generates a tuple that is not in R.

Restricted implementations

Another way to obtain and describe more fine-grained results is to consider weaker
notions of implementations. One example are the partial co-clones generated by imple-
mentations without allowing existential quantification, i.e., R(x1,...,z,) = F where F
is a formula over I' on variables {z1,...,z,}. Partial co-clones give a refinement of the
co-clone lattice. There is a Galois connection between partial co-clones and the clones
of partial polymorphisms; however, there are uncountably many partial-clones and their
structure is very complicated (see [84]).
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An intermediate concept of implementation was introduced by Nordh and Zanut-
tini [96]. So-called frozen (Boolean) co-clones are generated by permitting existential
quantification only for constants: Let F be a formula and x a variable of 7. Then z is
said to be frozen in F if x takes the same value in every satisfying assignment of F. Fur-
ther, let I' be a set of relations, and R an r-ary relation. Then I freezingly implements R
if there is a formula F over I'U{=} such that R(x1,...,z,) = 3XF, where F uses vari-
ables X U {z1,...,2,} only, and all variables in X are frozen in F. Sets of relations
closed under frozen implementation are called frozen co-clones and (I') s, denotes the
smallest frozen co-clone containing I'. Frozen co-clones refine co-clones and are refined
by partial co-clones. Nordh and Zanuttini [96] also introduce a corresponding notion of
polymorphisms, so-called frozen partial polymorphisms, and prove a Galois connection
between frozen co-clones and clones of frozen partial polymorphisms.

If only relations of I' are used, then we have a frozen implementation without equality.
This will be our standard notion of implementation, and as such is shortened to simply
“implements”. Such an implementation is used in Example 5.4; it uses existentially
quantified variables, but their assignments are frozen to true or false.

Summary

Let us repeat some of the crucial aspects of this introduction, which will appear fre-
quently in the following chapters, and add some remarks on their usage:

e Sets of Boolean relations can be characterized by polymorphisms and partial poly-
morphisms (functions and partial functions). There is a one-to-one correspondence
between closed sets of Boolean functions (clones) and closed sets of Boolean rela-
tions (co-clones), which are invariant under these functions.

e If a relation is invariant under some (partial) polymorphism, then this may be
used to prove other positive properties. For example, zero-valid relations that are
invariant under a certain partial polymorphism may be invariant under some other
polymorphism, e.g., invariant under conjunction. Thus such relations would also
be Horn and we would conclude that they can be implemented in a simple way and
construct an algorithm (e.g., a kernelization) using this simpler implementation.

e If a constraint language does not have a certain closure property, then it must
contain a relation and corresponding witness tuples that prove this fact. Based on
the witness tuples we may then implement other relations in order to construct
gadgets for a reduction from some hard problem.

Further reading

For an indepth introduction to Boolean constraint satisfaction problems see the mono-
graph of Creignou, Khanna, and Sudan [36]. An introduction to Post’s Lattice and its
implications for Constraint Satisfaction Problems was given by Bdéhler et al. [19, 20].
A current and extensive overview on the field of CSPs can be found in [37]. See also
Chen’s [30] recent presentation of Schaefer’s theorem and of the necessary tools.
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6. Min ones constraint satisfaction
problems

6.1. Introduction

In this chapter, we classify all Min Ones SAT(T") problems into admitting or not admit-
ting a polynomial kernelization depending on the constraint language I'. Given a formula
over I', the Min Ones SAT(I") problem asks whether there exists a satisfying assignment
with at most k true variables. Thus Min Ones SAT(I") generalizes well-studied problems
such as VERTEX COVER, d-HITTING SET, and graph modification problems.

Min Ones SAT(T)
Input: A formula F over I' and an integer k.
Parameter: k.

Task: Decide whether F has a satisfying assignment with at most k true
variables.

Depending on the constraint language I', Khanna et al. [75] gave a characterization
into polynomial cases as well as five further degrees of approximability; we require only
the classification into polynomial-time solvable and APX-hard (and NP-complete) cases.

Theorem 6.1 ([75]). Let I' be a finite set of Boolean relations. If I' is zero-valid, Horn,
or width-2 affine, then Min Ones SAT(T") is in P; otherwise Min Ones SAT(T") is APX-
hard.

It is furthermore known that the problem is fixed-parameter tractable for every finite
constraint language I', by means of a simple branching algorithm (see Algorithm 2).
The algorithm starts with the zero assignment and checks whether this assignment sat-
isfies the formula. If not then any satisfying assignment must set an extra variable to
true, in order to satisfy some dissatisfied constraint (possibly implying further necessary
changes). Picking any dissatisfied constraint the algorithm branches on all choices of
setting an additional variable to true. Clearly one of the branches in the search tree sets
the same variables to true as some optimal assignment (if one exists). Otherwise the
search will never set more than k variables to true and the number of recursive calls is
bounded by the maximum arity of relations in T, say d; thus the runtime is d* - n@®).

Our work Following joint work with Magnus Wahlstrom [81], we give a complete classi-
fication of Min Ones SAT(I") problems with respect to admittance of polynomial kernel-
izations. Apart from the hardness dichotomy due to Khanna et al. [75], we distinguish
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Algorithm 2 MinOnesSAT(T')-Solver
Input: A formula F over I', an integer k, and an assignment ¢ : V(F) — {0,1}.
Output: A satisfying assignment with at most k true variables if one exists or false.

if F is satisfied by ¢ then
return ¢
end if
if |¢| > k then
5.  return false
end if
Pick any constraint of F that is not satisfied by ¢, say R(z1,...,xq).
for all z; with ¢(z;) =0 do
Let ¢/ = ¢ except for ¢'(x;) = 1.
10:  MinOnesSAT(T)-Solver(F, k, ¢')
if the recursive call returned an assignment ¢” then
return ¢”
end if
end for
15: return false

constraint languages I" based on mergeability, i.e., a closure property (or partial poly-
morphism) which we introduce. If T' is mergeable then we provide a sunflower-based
polynomial kernelization; if I' contains at least one relation which is not mergeable we
show that Min Ones SAT(T') is either polynomial-time solvable or it does not admit a
polynomial kernelization, unless NP C co-NP /poly.

Structure of this chapter We continue by introducing mergeability in Section 6.2. In
Section 6.3 we present the polynomial kernelization for the case that I' is mergeable. In
Section 6.4 we prove the matching lower bound for all constraint languages that contain
at least one relation that is not mergeable. We give a summary in Section 6.5.

6.2. Mergeability

The characterization of the dichotomy of the polynomial kernelizability of Min Ones
SAT(T') given in this chapter centers around a newly introduced property we refer to
as mergeability. Specifically, we will see that for any finite set I' of Boolean relations,
Min Ones SAT(I") admits a polynomial kernelization if either Min Ones SAT(T') is in
P or every relation R € I' is mergeable; in every other case, Min Ones SAT(I") admits
no polynomial kernelization unless NP C co-NP/poly. In this section, we define this
property and give some basic results about it.

Definition 6.2. Let R be a Boolean relation. Given four (not necessarily distinct)
tuples a, 3,7,0 € R, we say that the merge operation applies if (¢ AJ) < 8 < «
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and (B A7) <0 <~. If so, then applying the merge operation to «, 3,7, produces the
tuple a A (B V ). We say that R is mergeable if for any four tuples «a, 8,7,0 € R for
which the merge operation applies, we have a A (5 V 7y) € R.

We show some basic results about mergeability.

Proposition 6.3. Let R be a relation of arity v on the Boolean domain. Partition
the positions of R into two sets, called the core and the petals; w.l.o.g. assume that
positions 1 through c are the core, and the rest the petals. Let (o, ap), where ac is a c-
ary tuple and ap an (r — c)-ary tuple, denote the tuple whose first ¢ positions are given
by ac, and whose subsequent positions are given by ap. Consider then the following
four tuples:

(ac, ap)
(ac,0)
(ve,vp)
(7¢,0)

If a through & are in R, then the merge operation applies, giving us

o, 2 @ R
Il

(ac,ap Ayp) € R.

Furthermore, for any four tuples to which the merge operation applies, there is a par-
titioning of the positions into core and petals such that the tuples can be written in the
above form.

Proof. 1t is easy to see that the merge operation applies to tuples «, 5, v, and § as given
in the proposition, and that it creates (ac,ap A vp).

For the converse, let us consider tuples «, 3, 7, and § to which the merge operation
applies. Using (¢ AJ) < f < a and (BA7vy) < <~ it can be checked that only the
following types of positions can occur:

(07

1

B 1
0% 1
1

1

— -0 O
OO O =
o~ O O
O O OO

5
ah(BVy)

Taking positions of the first three types for the core C' and the remaining positions for
the petals P completes the proof. O

—lo O =
O = O =

0 0 0 O

As a conclusion of Proposition 6.3 we may equivalently express mergeability as the
following partial polymorphism (in matrix form):

110 1 1 0 O
1 1.0 0 0 0 O
1 011 0 1 O
101 0 0 0 O
110 1 0 0 O
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The following proposition follows immediately from standard properties of partial
polymorphisms.

Proposition 6.4. Mergeability is preserved by assignment and identification of vari-
ables, i.e., if R is mergeable, then so is any relation produced from R by these operations.
Further, any relation implementable by mergeable relations is mergeable.

Next, we show what mergeability implies for a zero-valid relation.

Lemma 6.5. Any zero-valid relation R which is mergeable is also THS-B—, and can
therefore be implemented using negative clauses and implications.

Proof. We show that a A (B V ) € R for all tuples a, 8,7 € R. First, for any two
tuples o, 8 € R, we can apply the merge operation to the tuples «a, 0, 5, 0, to show
that a« A 8 € R (as R is zero-valid). It can then be checked that the operation applies
to the tuples «, (@ A B), (¢ A7), and (a A B A7), and that this implies a A (BV ) € R.
Thus R is IHS-B— and zero-valid, which implies that it can be implemented by negative
clauses and implications, according to [38]. O

Note that by Proposition 6.4, this shows that the only zero-valid relations that can
be produced from a mergeable relation by assigning or identifying variables are IHS-B—.
However, this still leaves room for other positive examples.

Examples 6.6. As basic examples, positive and negative clauses, as well as implications
are mergeable. Thus, the same holds for anything implementable by such relations,
such as monotone or antimonotone relations (i.e., « € R implies 5 € R for all § > «
resp. 8 < «). A further positive example is the ternary ODD relation (z ®y ® z = 1),
but not the ternary EVEN or 4-ary ODD relations.

6.3. Characterization I: Polynomial kernelization

In this section we present a polynomial kernelization for the Min Ones SAT(T") problem
when all relations in I' are mergeable. At the core of our kernelization we will apply the
sunflower lemma for tuples to find sunflowers among the constraints of a given formula.
Mergeability of the relations in I will then ensure that we can simplify the constraints
of the sunflower. The according replacements will gradually permit us to set some of the
variables to zero (false), until only relatively few variables remain. For some intuition it
may be helpful to remember the sunflower-based kernelization for d-HITTING SET from
Section 2.2; note however, that general mergeable relations are much harder to handle
than positive clauses.

Before using these more involved reductions, however, we are interested in identifying
variables that we can set to false without restricting the assignments to other variables.
Note that, since the task is to find an assignment with at most k& true variables, this is
a safe reduction rule.
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Zero-safe variables A relation R (or an R-constraint) is zero-closed on position i, if
for each (aq,...,q;—1,04, Qiy1,...,00) € R we have (aq,...,q;-1,0,®+1,...,0,) € R.
This exactly captures the fact that setting the variable in position ¢ to false does not
make the constraint unsatisfied (if it was satisfied before). A variable is said to be zero-
safe, if it only occurs in zero-closed positions of constraints; these variables can be set
to false without harm.

Non-zero-closed cores A relation R (or an R-constraint) is non-zero-closed if it has
no zero-closed positions. Similarly, the non-zero-closed core is the projection of R onto
all its non-zero-closed positions. Equivalently it can be obtained by forcing z; = 0 for
all zero-closed positions 1.

Non-zero-closed cores are the central concept for making many variables zero-safe:
Any variable is zero-safe if and only if it does not occur in a non-zero-closed core. In
general, relations do not contain zero-closed positions. However, our later sunflower-
based reductions will be aimed at replacing constraints by ones that have smaller non-
zero-closed cores. This will increase the number of zero-safe variables. In order to do so
we define the zero-closure and the sunflower restriction of a constraint or relation.

Definition 6.7. Let R be an r-ary relation. We define two functions A and V:

Ap(R): the zero-closure of R on positions P C {1,...,r} is the smallest superset of R
that is zero-closed on all positions i € P.

Vc(R): the sunflower restriction of R with core C C {1,...,r} is the relation given
by R(z1,...,2,) A R(z,...,x]) where

;)T ifieC,
Ylo o ifié¢C.

Remark. The zero-closure Ap(R) of a relation R can be easily obtained: For each tu-
ple (aq,...,a,) and any subset P’ C P add the tuple (o, ...,a}) to Ap(R), where

;o (673 ifi¢P/,
*lo ifie P,

This can be easily seen to satisfy the definition for the tuples that are in R, and we
observe that no further tuples need to be added.

Remark. A sunflower restriction with core C forces all variables in the core positions to
take values such that all variables in the other (the petal) positions can be set to false.
This restriction will occur when we find sunflowers among the constraints of a formula.

Note that when we are able to replace some R-constraint by its zero-closure Ap(R)
and P contains at least one non-zero-closed position of R, then Ap(R) has a smaller
non-zero-closed core (i.e., less non-zero-closed positions). In fact, we will be able to
replace (carefully chosen) sets of R-constraints by the corresponding zero-closures, such
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that the introduced constraints will have identical non-zero-closed cores (i.e., they have
the same variables in their non-zero-closed positions). Before showing how to arrive at
such replacements we first introduce a measure that will capture our progress.

Definition 6.8. Let F be a formula and let R be a relation of arity r that is zero-
closed on positions P. We define C(F, R) as the set of all tuples (z;,,...,2;,) such
that R'(z;,,...,x;) is the non-zero-closed core of an R-constraint in F; the relation R’
is R projected to its non-zero-closed positions.

Equivalently, let {i1,...,i:} = {1,...,r} \ P and i; < ... < ¢ then C(F, R) contains
the tuple (x;,,...,z;,) for each R-constraint R(x1,...,z,) in F.

As a last preliminary step towards our kernelization we require two technical lemmas
that address the issue of how to simplify constraints which form a sunflower. Notice
that when k£ + 1 R-constraints of a formula F form a sunflower with core C' and petal
positions P then any satisfying assignment for F, that has at most &k true variables, must
assign false to all variables in the petal positions of at least one constraint. Thus any
such assignment satisfies the sunflower restrictions of the constraints (this will be made
more formal in the proof of Theorem 6.12). Hence the constraints of the sunflower may
be replaced by the corresponding sunflower restrictions with core C. The following two
lemmas permit us to use a better implementation (in the sense of possibly smaller non-
zero-closed cores) when the relation is mergeable and ensure as well that the introduced
constraints are mergeable.

Lemma 6.9. Let R be a mergeable relation and let C' U P be a partition of its positions
into core and petals. There is an implementation of the corresponding sunflower restric-
tion Vo (R) using its zero-closure Ap(Vo(R)) (on the petal positions) and implications.

Proof. By Proposition 6.4, Vo (R) must be mergeable. The same is true for the zero-
valid constraint on the variables in the petal positions induced by assigning any set of
values to the variables in the core positions. Thus by Lemma 6.5, such petal constraints
each have an implementation using negative clauses and implications. For any tuple o
in Vo(R) or Ap(Ve(R)), let its core assignment be the values it assigns to the positions
in C. By definition, we have Vo (R) C Ap(Ve(R)).

Consider now a tuple 0 € Ap(V¢(R)) \ Vo(R). Assume that o makes core assign-
ment a¢ and petal assignment op; thus there is a matching o € V¢ (R), a > o, with
an identical core assignment, by definition of the zero-closure. As in Proposition 6.3,
write @ = (a¢,ap), and consider the constraint on the petals that is induced by the
core assignment a¢. This constraint, say on relation R’, contains ap but not op and
we have ap > op. The relation R’ has an implementation through negative clauses and
implications, as discussed above. Note that any negative clause which excludes op also
excludes ap (if the corresponding positions of op are all true then so are the positions
of ap). Thus there is an implication (y; — y;) which is consistent with R’ and which
excludes op. Hence 0; = 1 and o; = 0 implying a; = 1 and o = 1.

Let us assume for contradiction that (y; — y;) does not hold in V¢ (R) in general. Ac-
cordingly let v = (y¢,vp) € Vo (R) be a tuple which assigns y; = 1, y; = 0. Since V¢ (R)
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is a sunflower restriction, we have that § = (a¢,0) and 6 = (y¢,0) are contained
in Vo(R). By Proposition 6.3, we can now apply the merge operation to tuples «
through ¢, showing that (a¢,ap A yp) is contained in Vo (R). However, this is a tuple
with core assignment ac which assigns y; = 1, y; = 0. This contradicts our choice
of (y; — y;) as an implication consistent with the relation R’ induced by core assign-
ment ac. Thus by contradiction, the implication (y; — y;) holds in Vo (R) regardless of
the core assignment, and the constraint (y; — y;) can be added to our implementation
of V¢(R), removing the tuple o.

Adding all implications between petal positions which hold in V¢ (R) removes from
our implementation all tuples which are in Ap(V¢(R)) but not in Vo (R). Thus the
conjunction of Ap(V¢(R)) with all valid implications implements Vo (R). O

Lemma 6.10. Let R be a mergeable relation and let CU P be a partition of its positions
into core and petals. Then Ap(Vc(R)) is mergeable.

Proof. Recall that Ap(V¢(R)) is the zero-closure on the petal positions of the sunflower
restriction of R with core C. We assume for contradiction that Ap(Va(R)) is not
mergeable. Then there are four tuples in Ap(V¢(R)) such that applying the merge
operation on the tuples creates a tuple not in Ap(Ve(R)). Let C'U P’ be the partition
of the positions of Ap(V¢(R)) into core and petals that is used in this counterexample.
Grouping the positions of Ap(V(R)) in four groups, written in the order (C'NC,C"'N
P,P'NC, P'NP), naming the groups W through Z, the counterexample can be written
as follows.

(W1, X1,Y1,Z1) € Ap(Ve(R)) (6.1)

(W1, X1,0,0) € Ap(Ve(R)) (6.2)

(Wa, X2,Y2,Z2) € Ap(Ve(R)) (6.3)

(W2, X2,0,0) € Ap(Vc(R)) (6.4)

(Wi, X1, Y1 ANYe, Z1 NZy) ¢ Ap(Ve(R)) (6.5)

We will derive a contradiction. First, we note that for each equation (6.1)-(6.4), there
is a corresponding tuple in Vo (R).

(W1, X14,Y1,Z14) € Ve(R) (6.6)
(W1, X15,0,2")y € Ve(R) (6.7)
(W2, Xaq,Y2, Z24) € Ve(R) (6.8)
(W2, X9,,0,2") € Ve(R) (6.9)

Here, X1 < X1, and X7 < Xy3, and likewise for Xo, Z1, and Z5. The tuples Z’' and Z” are
arbitrary. Using that Vo (R) is a sunflower restriction and mergeable, we can conclude
the following.

(W1,0,0,0) € Ve(R) (6.10)
(175,0,0,0) € Ver(R) (6.11)
(Wi, X1a AN Xoa, Y1 NY2, Z1a AN Zaq) € Ve(R) (6.12)
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The first two come from (6.7) and (6.9); the third is produced by a merge operation
on (6.6) and (6.8) using these two. Now, the tuples which match W on the W-variables
form a zero-valid relation. By Lemma 6.5, this relation is closed under an operation (oA
(B V7)). Applying this on the tuples of equations (6.6), (6.7), and (6.12) gives us the
following conclusion:

(Wl, Xia A (le V Xga),Yl ANYo, Zig N (Zl V ZQa)) S VC(R)

In particular, this tuple matches (W1, X1,Y1 A Ya, Z1 A Z) on the W and Y positions,
and is greater or equal on each X and Z position. Since R’ is the zero-closure of Vo (R)
on the X- and Z-variables, we have that R’ contains (W7, X1,Y1 A Y2, Z1 A Z3), a con-
tradiction. O

Lemmas 6.9 and 6.10 are the foundation for a sunflower-based kernelization for Min
Ones SAT(I"). They show that the sunflower restriction V¢(R) of some mergeable R-
constraint can be implemented using its mergeable zero-closure on the petal positions as
well as implications. There are, however, still some obstacles that need to be overcome:
Firstly the needed relations Ap(V(R)) are not necessarily contained in I and, secondly,
we still need to show that such a replacement does lead to a simplification of the formula.
As to the latter point, consider the following example.

Example 6.11. Consider the following mergeable relation:
R ={(0,0,1,0),(0,1,0,0),(0,1,0,1),(1,0,0,0),(1,0,0,1),(1,1,1,0),(1,1,1,1) }.

Observe that its sunflower restriction with core {1,2,3} and its matching zero-closure
on position 4 are the same relation, i.e., R = V1 231(R) = Aygy(Vi1 231 (R)) (in fact
whenever there is only one petal position then the zero-closure adds no tuples to the
sunflower restriction). Thus even in terms of |C(F, R)|, i.e., the number of non-zero-
closed cores of R-constraints, there would be no improvement when replacing a sunflower
of R-constraints with core C' = {1,2, 3}.

We have seen that there are mergeable relations for which certain sunflower constel-
lations do not lead to an improvement, even in terms of the number of non-zero-closed
cores of R-constraints in F, i.e., |C(F, R)|; indeed we would not even change the formula
at all. However, when we ensure that the petal positions contain at least one non-zero-
closed position of R, then we will see that we do get fewer and smaller non-zero-closed
cores through each replacement. This is facilitated by searching for sunflowers among
the tuples of C(F, R). Those are then leveraged into a replacement of the R-constraints
that contributed these tuples. The following theorem shows this approach in detail.

We point out that for the purpose of this theorem we will avoid the fact that the
relations needed for our sunflower replacements are not necessarily contained in I', by
using a larger constraint language I''. We will handle this syntactical problem later,
focusing first on obtaining a shorter equivalent formula over I".

Theorem 6.12. Let I' be a mergeable constraint language with maximum arity d. Let TV
be the constraint language consisting of all mergeable relations of arity at most d.
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Let F be a formula over I" and let k be an integer. In polynomial time one can compute
a formula F' over I such that every assignment with at most k true variables satisfies F
if and only if it satisfies F' and, furthermore, such that |C(F', R)| < (d!)?k% € O(k?),

for every non-zero-valid relation R € T".

Proof. We begin with constructing F’, starting from 7/ = F. While |C(F’, R)| > k%(d!)?
for any non-zero-valid relation R in I, search for a sunflower of cardinality k + 1
in C(F',R), according to Lemma 2.7. Let C denote the core of the sunflower and
apply the following replacement. Remove each R-constraint whose non-zero-closed core
matches a tuple of the sunflower and add its sunflower restriction with core C' using an
implementation according to Lemma 6.9. Repeating this step until |C(F’, R)| < k(d!)?
for all non-zero-valid relations R in F’ completes the construction.

Correctness Now, to prove correctness, let us consider a single replacement. We denote
the tuples of the sunflower by (z1, ..., Z¢, yi1, - .., Yip), withi € {1,...,k+1},i.e, wlo.g.
with core C' = {1,...,c¢} and petals P = {¢+1,...,c+ p}. Let ¢ be any satisfying
assignment with at most k true variables.

We consider an arbitrary tuple (z1, ..., 2, ¥i1, - . ., ¥ip) of the sunflower. There must be
a constraint R(z1,...,%¢, Yils - - -, Yips 21, - - - » 2t) Whose non-zero-closed core matches the
tuple, w.l.o.g. we take the last positions of R to be zero-closed, let Z be those positions.
Thus ¢ must satisfy R(x1,...,%¢ Yit,- -, Yip,0,...,0), since the z; are in zero-closed
positions. Observe that, by having at most &k true variables, ¢ assigns false to all vari-
ables y;1, ...,y for some i € {1,...,k+1}. Thus ¢ satisfies also R(z1,...,z.,0,...,0).

Hence for any constraint R(z1, ..., Zc, Y1, - - -, Yip, 21, - - - , 2), the assignment ¢ satisfies

VC(R(Jfla---aSCa?/ilw'-7?/ip7217~-72t)) —
R(x1,...,%c,Yity - Yips 21, - - -, 2t) N R(x1, ..., 2,0,...,0)

too. This permits us to replace each R-constraint, whose non-zero-closed core matches a
tuple of the sunflower, by an implementation of its sunflower restriction with core C. The
implementation uses Apuz(Vo(R(z1,. .., %, Yits - -, Yips 21, - - - %)) and implications,
according to Lemma 6.9. By Lemma 6.10 the added Apyz(Vc(R))-constraints are
mergeable, maintaining the invariant that all constraints in F’ are mergeable.

Efficiency To establish that the construction can be performed efficiently, i.e., in time
polynomial in the size of F, we use as a measure of F' the sum of |C(F', R)| over
all relations R occurring in F'. First, let us observe that, initially, this measure is
bounded by the size of F since each R-constraint of F’ contributes at most one tuple
to the corresponding set C(F’, R) (recall that we start with 7' = F). Consider again
the replacement made in each step: All R-constraints matching one of the tuples of the
sunflower are replaced by an implementation using R = Apyz(Ve(R)) and implications.
It is crucial to observe that all added constraints contribute the same tuple to C(F”, R),
consisting only of variables with positions in C. This is caused by the application of the
zero closure A on all positions but those in C'. Hence the k+1 tuples of the sunflower are
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removed, as all matching R-constraints are replaced, and only one new tuple is added
to the set C(F, R) This decreases the measure, implying that the modification step is
applied at most a number of times which is polynomial in the size of F.

Finally let us express the fact that each iteration of the replacement can be done
efficiently. The set C(F’, R) can be generated in one pass over the formula and since the
arity is bounded by d there are only a constant number of relations. The applications of
Lemma 2.7 to find a sunflower among the tuples of the sets C(F’, R) take time polynomial
in |F|, since the size of C(F', R) is bounded by O(|F|). Observe that the size of F’ is
bounded by a polynomial in |F| at all times, since there are only a polynomial number
of possible constraints of arity at most d on the variables of F. O

Now we are able to derive a polynomial kernelization for Min Ones SAT(I"). For a given
instance (F, k), it will first generate an equivalent formula F’ according to Theorem 6.12.
However, F' will not replace F, rather, it allows us to remove variables from F based
on conclusions drawn from F’. This approach avoids the obstacle of a possible lack of
expressibility from using only the language I', and requires no additional assumptions
or annotations to be made.

Theorem 6.13. Let T' be a mergeable constraint language. Then Min Ones SAT(T)
admits a polynomial kernelization.

Proof. Let (F, k) be an instance of Min Ones SAT(I") and let d be the maximum arity
of relations in I'. According to Theorem 6.12, we generate a formula F’, such that
assignments with at most k true variables are satisfying for F if and only if they are
satisfying for F'. Moreover, for each non-zero-valid relation R, we have that |C(F’, R)|
is bounded by O(k?). Note that constraints of 7/ have maximum arity d. We allow the
constant 0 (false) to be used for replacing variables; an implementation for this follows
at the end of the proof.

First, according to Lemma 6.5, we replace each zero-valid constraint of F' by an
implementation through negative clauses and implications. Next, we address variables
that occur only in zero-closed positions of constraints in F’. By definition of zero-
closed positions it is immediate that setting such a variable to 0, does not affect the
possible assignments for the other variables. By equivalence of F and F’ with respect to
assignments of weight at most k, the same is true for . We replace all such variables
by the constant 0 in F and F’, maintaining the equivalence with respect to assignments
with at most k true variables.

Now, let X be the set of variables that occur in a non-zero-closed position of some
non-zero-valid constraint of 7. For each variable x € X count the number of variables y
that are implied by z, i.e., that have to take value 1 if z = 1, by implication constraints
in . If the number of those variables is at least k, then there is no satisfying assignment
with at most k true variables for F’ that assigns 1 to z. By equivalence of F and F’
with respect to such assignments, we replace all occurrences of such a variable x by the
constant 0, again maintaining the equivalence property.

Finally we replace all variables y € V(F’) \ X, which are not implied by a variable
from X in F’, by the constant 0 in F and F’. Note that such variables y occur only
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in zero-closed positions and in implications. It can be easily verified that this does not
affect satisfiability with respect to assignments of weight at most k. For efficiency of this
modification consider the fact that the number of implications in F’ is polynomial in
the initial size of F, since there are at most two implications per pair of variables of F.
This completes the kernelization.

Bounding the kernel size Now we prove a bound of O(k%*!) on the number of variables
in F. First, we observe that all remaining variables of F must occur in a non-zero-closed
position of some constraint of 7. We begin by bounding the number of variables that
occur in a non-zero-closed position of some non-zero-valid R-constraint, i.e., the remain-
ing variables of the set X. Observe that such a variable must occur in the corresponding
tuple of C(F', R). Since there is only a constant number of relations of arity at most d
and since |C(F, R)| € O(k?), this limits the number of such variables to O(k%). For all
other variables, their non-zero-closed occurrences must be in implications, since nega-
tive clauses are zero-closed on all positions. Thus, these variables must be implied by
a variable of X. Since each variable implies at most k — 1 other variables, we get an
overall bound of O(k%*1). Finally, the total size of F is polynomial for fixed d, since the
number of variables is polynomial and the arity of the constraints is bounded by d.

Implementing the constant zero To express the O-constant, we add k + 1 new vari-
ables z1,...,zx+1. Every constraint with at least one 0 is replaced by k£ + 1 copies, each
time replacing 0 with a different z;. Clearly one of the z; takes value 0 in any assign-
ment with at most k£ true variables. Hence the original constraints with constant 0 are
enforced. Conversely, given a satisfying assignment of weight at most &k for the formula
before making this replacement, we can easily extend it by assigning 0 to each z;. This
construction does not affect our upper bound on the number of variables. ]

We have showed that Min Ones SAT(I") admits a polynomial kernelization for any
mergeable constraint language I'. In the following section we will see that, if Min Ones
SAT(T") is NP-hard, then any non-mergeable relation in I suffices to exclude the existence
of a polynomial kernelization (assuming NP ¢ co-NP/poly).

6.4. Characterization Il: Lower bound

In this section we complete the dichotomy by showing that if I' is not mergeable, then Min
Ones SAT(T') is either in P or it is NP-complete and does not admit a polynomial
kernelization unless NP C co-NP/poly. Let us recall Khanna et al.’s [75] classification
of the polynomial-cases: Min Ones SAT(I") is polynomial when I' is zero-valid, weakly
negative (Horn), or width-2 affine; otherwise it is NP-hard.

Our strategy for proving the lower bound is to give a polynomial parameter transfor-
mation from a problem that is shown not to admit a polynomial kernelization to Min
Ones SAT(T"). As a source problem we will use a parameterized version of EXACT HIT-
TING SET; the (possibly unusual) parameter is the number m of sets. EXACT HITTING
SET has relatively simple constraints but they have unbounded arity.
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The first part of this section will establish a kernel lower bound for this problem,
following an approach by Dom et al. [46]. Then we will introduce so-called log-cost
selection formulas, which are the central tool for our lower bound and whose construction
requires a non-mergeable relation. These formulas will cope with the fact that we need
to reduce constraints of arbitrary arity to constant-arity constraints. Then we show that
any non-mergeable I' (such that Min Ones SAT(I") is NP-complete) can implement such
selection formulas. We complete the lower bound proof with a polynomial parameter
transformation from EXACT HITTING SET to Min Ones SAT(I).

Lower bound for Exact Hitting Set

We will now show that EXACT HITTING SET parameterized by the number of edges does
not admit a polynomial kernelization unless NP C co-NP/poly. Given a hypergraph
over some universe U the problem asks for a subset S of U that contains exactly one
element of each edge:

EXACT HITTING SET(m)
Input: A hypergraph H consisting of m subsets of a universe U of size n.
Parameter: m.

Task: Decide whether there is a set S C U such that |[EN S| = 1 for
every F € H.

We follow an approach of Dom et al. [46] who showed that UNIQUE COVERAGE does not
admit a polynomial kernel by using a colored version of the problem. In a similar way
we introduce a problem called Exact CSP(m + n):

Exact CSP(m + n)

Input: A CSP instance with n variables of arbitrary finite domain, and m
constraints Exactly-One(v;, =b;,, ..., v;.=b;.) of arbitrary arity, where each v;
is a variable and b; a value from the respective variable domain.

Parameter: m + n.

Task: Decide whether there is an assignment of a value to every variable that
satisfies each constraint (i.e., for each constraint, exactly one statement v = b
is true).

We show that Exact CSP(m + n) admits no polynomial kernelization and give a
straightforward reduction to EXACT HITTING SET(m). The proof follows the same lines
as the lower bound for UNIQUE COVERAGE in [46, Sec. 4.2], but the construction is some-
what simplified, and the lower bound somewhat stronger (as EXACT HITTING SET(m) is
equivalent to a special case of UNIQUE COVERAGE).

Lemma 6.14. Exact CSP(m+n) and EXACT HITTING SET(m) do not admit polynomial
kernelizations unless NP C co-NP /poly.
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Proof. First, Exact CSP(m + n) is NP-complete (even if all domains have cardinality 2,
in which case it is the EXACT SATISFIABILITY problem). Also, the problem can be solved
in time n™ - m@W: Decide for each constraint the identity of the variable which will
satisfy it (but not yet its value). Assuming that a variable v is chosen for a particular
constraint, for every statement (v; = b;) in the constraint with v # v;, remove the
value b; from the domain of the variable v;, and restrict the domain of v to those values
which would satisfy the constraint. Repeat for all constraints, backtracking if necessary;
the size of the search tree is at most n™. Thus, we may assume in our composition
algorithm that the number of input instances is bounded by n" (or else we solve all
instances in time polynomial in the total input size).

Assume, then, that there are ¢t input instances. Let n be the maximum number of
variables and m the maximum number of constraints; for simplicity of the argument,
assume that all input instances have the same numbers of variables and constraints (or
else do trivial padding with unary-domain variables or trivially true constraints, such as
“variable 1 has exactly one value”). Number the variables from 1 to n and the constraints
from 1 to m in each input instance.

Now create the composed instance. First collect all the values of variables numbered ¢
into the domain of a single variable v}, say with values (j1,j2) signifying “value j5 in the
domain of input instance j;”. Similarly concatenate all constraints numbered ¢ into a
single constraint, over these new domain values. Note that values stemming from differ-
ent instances are different, so that a constraint is hit only once in an intended solution
(where all values come from the same instance). We finally need to add constraints to
ensure that all variables take values stemming from the same input instance.

For this, assign to each input instance a number from 1 to ¢ as its ID, and write
this in binary form. Let ¢ = [logyt] = O(mlogn) be the number of bit levels needed.
For each pair of values (i, + 1), 1 < i < n, and each bit level j, 1 < j < ¢, add a
testing constraint consisting of all values of v; for which the jth digit of the ID of the
originating instance is 1, and all values of v;11 for which the jth digit of the ID is 0.
This makes O(mnlogn) extra edges. If variables v; and v; take values from different
input instances, then their IDs will differ in some position, which will lead to one of these
testing edges being hit twice or not at all. Otherwise, each testing edge is hit exactly
once. By transitivity, this forces all variables in the composed instance to take values
from the same input instance. This completes the compositionality proof, showing that
Exact CSP with parameter m + n admits no polynomial kernelization.

The result for Exact Hitting Set with parameter m follows by a simple reduction. Let
the vertices of the hitting set be the individual variable values, create for each variable an
edge containing all its values, and retain all constraints as edges. We get an equivalent
instance with m + n edges. O

Log-cost selection formulas

Now we need to find a reduction from EXACT HITTING SET(m) to Min Ones SAT(I"). A
central issue here is that EXACT HITTING SET(m) permits constraints of arbitrary arity
(i.e., size of the underlying universe) while our constraint languages are finite. Let us
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briefly recall the classic reduction from SATISFIABILITY to 3-SAT:

Example 6.15 (Reduction from SATISFIABILITY to 3-SAT). The central idea of the
reduction is that clauses of arbitrary length, say on n literals: (¢1 V€2 V...V £y,), can be
reduced to a conjunction of 3-CNF clauses by using auxiliary variables:

(51\/£2V...\/€n) = (€1V€2V81)/\(—|81\/€3\/82)/\.../\
A (—|Sn_4 Vil oV Sn_3> VAN (—|Sn_3 Vb1V fn)

The reduction increases the input size, i.e., the length of the formula, by a linear factor
and introduces n — 3 auxiliary variables.

Using a similar technique for our desired reduction from EXACT HITTING SET(m)
to Min Ones SAT(I") would introduce two problems: First, when introducing auxiliary
variables in this fashion, we have to control the total number of true variables in satisfying
assignments. Note that, in the above example, the assignment to the s;-variables varies
greatly depending on the assignment to the literals (e.g., if only ¢; is true, then all s;
must be set to false; if only ¢, is true then all s; must be set to true).

Remark. We could fix the first problem by introducing further auxiliary variables §; and
constraints (s;V 8;) A (—s; V—5;) for all i (or directly (s; # §;)). In this way any satisfying
assignment would assign true to exactly n — 3 of the auxiliary variables.

The second problem is more severe: For EXACT HITTING SET(m) we will have to
encode, for each of the m edges, the constraint of selecting (exactly) one of its at most n =
|U| vertices. However, with the above reduction satisfying assignments may require ©(n)
true variables. The desired polynomial parameter transformation must make the new
parameter have value at most m@®) | whereas n may be super-polynomial in m. Thus
we have to find a more involved way of encoding the edges.

Let us recall the tree-like construction used in Lemma 4.2. There we used auxiliary
variables, for intuition arranged like a binary tree, to create a selection of one of the
variables in the leaf positions to be set to true. We repeat a similar construction to
express a disjunction on n literals:

Example 6.16 (Alternate reduction from SATISFIABILITY to 3-SAT). Consider again
a disjunction of n literals: (¢1 V...V £,). Using a tree-like arrangement of auxiliary
variables, with variables s;1,...,s; 9 on the i-th level, we can replace the clause in the
following way:

(fl ViV ...V fn) = (8071 = 1) A (8071 — (81,1 V 81,2)) VAN
A (s10 = (521 V s2.2)) A (s1,2 = (52,3 V $2,4)) A
VANPIVAN
A(se1— (V) Nooo A (Spu = (U1 V Ey)).
In this way we again use O(n) auxiliary variables, however, every satisfying assignment

for (41 V...V {,) can be extended to the auxiliary variables by setting exactly one s; ;
to true for each i € {0,...,t}, where t € O(logn).
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We distill this example into a definition, namely that of a log-cost selection formula.
We need to abstract from the example since we are not guaranteed that (z — (y V 2))
is contained in I'. The definition captures the selection process in such a way, that we
will be able to reproduce it using any non-mergeable relation R from any constraint
language I' such that Min Ones SAT(I") is NP-complete.

Definition 6.17. A log-cost selection formula of arity n is a formula on variable sets X
and Y, with |Y| = n and |X| = n®®, such that there is no solution where Y = 0,
but for any y; € Y there is a solution where y; = 1, y; = 0 for j # ¢, and where a fix
number wy, = O(logn) variables among X are true. Furthermore, there is no solution
where fewer than w, variables among X are true.

Implementing log-cost selection formulas

Over the course of the following three lemmas we will establish that any constraint
language I', such that Min Ones SAT(T") is NP-complete and that contains at least one
relation that is not mergeable, can implement a log-cost selection formula. We will use
NP-completeness to argue that we may assume that I' contains (z) and (—x), i.e., simple
assignment constraints that force a variable to take value one or zero (true or false) as
well as the equality constraint. Any non-mergeable relation from I' can then be used to
implement log-cost selection formulas. We begin by showing two fundamental ways of
constructing log-cost selection formulas.

Lemma 6.18. The following types of relations can implement log-cost selection formulas
of any arity:

1. A ternary relation Rs such that

(0,0,0) € Ry
(1,1,0) € R3
(1,0,1) € R3
(17070) g'é R3

together with relations (z) and (—x).

2. A 5-ary relation Rs such that

1,0,1,1,0
1,0,0,0,0
0,1,1,0,1
0,1,0,0,0
1,0,1,0,0
0,1,1,0,0

€ R
€ Rs
€ R
€ Rs
¢ Rs
¢ Rs

A~~~ I~ /N /N~
P N

together with relations (x # y), (z), and (—x).
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Proof. Let Y = {y1,...,yn} be the variables over which a log-cost selection formula is
requested. We will create “branching trees” over variables x;; for 0 < ¢ < logymn, 1 <
j < 2¢, as variants of the composition trees used in Chapter 4. Assume that n = 2"
for some integer h; otherwise pad Y with variables forced to be false, as assumed to be
possible in both constructions. There are two different constructions:

(1) The first construction is straightforward. Create the variables z; ; and add a con-
straint (xo,1) forcing xo1 to be assigned true. Further, for all 4,5 with 0 < i < h
and 1 < j < 2¢, add a constraint R3 (@i, Tit1,2j—1, Tit1,25). Finally, replace variables x}, ;
by y;. By the requirements on Rg, for every internal variable x; ;, if x; ; is true then one
of its children ;1121 and x;412; must be true. Thus by transitivity, some variable on
each level of the branching tree must be true, making ¥ = 0 impossible. Conversely, for
any variable y; on the leaf level, there is a solution where exactly the variables along the
path from the root node to y; are true. Thus w,, = h = logy n, i.e., in each solution there
are at least logy n true variables, and for each leaf variable there is a solution with logy n
true variables that sets it to true (recall Definition 6.17).

(2) The second construction uses the same principle, but the construction is somewhat
more involved. Create variables z;; and a constraint (x1) as before. In addition,
introduce for every 0 < ¢ < h — 1 two variables [;, r; and a constraint (I; # r;). Now
the intuition is that (I;,r;) decides whether the path of true variables from the root to
a leaf should take a left or a right turn after level ¢ (i.e., the choice made by I; and r;
is always possible, and the path can only stop in a leaf). Concretely, add for every i, j
with0<i<h—-—land1<j< 2! a constraint Rs(li, i, i 5, Tig1,2j—1, xi+172j). Now for
every true variable x; ;, it is not allowed that x;112;-1 = 2;412; = 0, while depending
on li and T (and R5), (l’i_:,_LQj_l = 17$i+1,2j = 0) or (a:i+1,2j_1 = 0,.%'2'4_1,2]' = 1) is
allowed. This rules out the case Y = 0, while for each set of values of I;, r; it is allowed
to set among variables x; ; exactly the variables along a path from the root to a leaf y;
to true, and other variables to false. In total, exactly two variables not among Y are
true per level in such an assignment, making w, = 2h = 2log, n. O

We will now show that any relation which is not mergeable can be used to construct
a relation as in Lemma 6.18. The constructions are based on the concept of a witness
that some relation R lacks a certain closure property. Recall that a witness is a set of
tuples to which a certain closure property would apply but such that the resulting tuple
is not contained in the relation, e.g., if some relation R is not closed under conjunction
then there are tuples «, 8 € R such that a A f ¢ R. Using the knowledge that such
witnesses exist, we use the approach of Schaefer [107], identifying variables according to
their occurrence in the tuples of the witness, to build relations with the properties we
need. We begin by showing that we may assume to have assignments (x) and (—z) as
well as equality available in I'.

Lemma 6.19. Let T be a set of relations such that Min Ones SAT(I") is NP-complete
and some R € T is not mergeable. Then Min Ones SAT(I'U{(x), (—z), (x = y)}) reduces
to Min Ones SAT(T") by a polynomial parameter transformation.
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Proof. Let (F, k) be an instance of Min Ones SAT(I' U {(z), (—x), (z = y)}). It suffices
to implement the constraints (z), (—z), and (z = y) using only constraints of I':

(x) Since Min Ones SAT(I") is NP-complete, it contains some relation that is not zero-
valid; let R € T be such a relation. If R is one-valid, then R(z,...,x) is equivalent
to (z) and we are done. Else, let r be the arity of R and let I be a maximal set such
that R(x1,...,x,) holds for x; = 1 for ¢ € I, z; = 0 else. Identify all z;, i € I, to a single
variable x, and all x;, i ¢ I, to a single variable y. This forms a new constraint R'(x,y),
where (1,0) € R'(x,y) and (0,0), (1,1) ¢ R'(x,y). Thus R’ is either (z A —y) or (z # y).
In the former case we are done; in the latter case, constraints (x # y;) for 1 <i <k+1
force x = 1 and all y; = 0 in any solution with at most k true variables and thus
implement (z).

(—z) and (z = y) Let a through 0 be tuples that witness that R is not mergeable,
i.e., a,...,0 € R such that the merge operation applies and o := a A (SV~y) ¢ R. Notice
that 8 < ¢ < «a, meaning that the positions of R are of four types: those where 8 < o,
those where o < «, and optionally positions which are constant among these tuples, i.e.,
true in 3 or false in . Call these positions C,, Cy, C1, and Cp, in the order they were
introduced. Note that positions C, and Cy must exist to distinguish o from 8 and «,
respectively.

Add a variable ¢; and a constraint (c1) forcing ¢; to always be assigned true. Place ¢;
in all positions C1, if any, and variables  and y in all positions C; respectively C. Now
there are two cases:

(a) If there are no positions Cp, then this creates a constraint R'(x,y) with (1,0) ¢ R’
and (0,0),(1,1) € R'. Thus R'(z,y) A R'(y,z) implements (z = y). This can be
used to implement (—x): create k variables y; and add (z = y;) for every i. In any
solution with at most k true variables, all these variables are false.

(b) Otherwise, if there are positions Cp, then place the variable y in these positions as
well, and apply R'(x,y)AR'(y, x) again; the result is either (z = y) or (x =y = 0). In
the latter case we place a variable ¢, forced to zero by (¢ = ¢o = 0), in positions Cy
and implement (z = y) as above. In both cases we then implement (—z) as before.

Using these implementations we can create an equivalent formula F’ over I' on vari-
ables V(F) U {co,c1}. Any satisfying assignment for F with at most k true variables
gives a satisfying assignment for ' with at most k£ + 1 true variables by assigning zero
(false) to ¢p and one (true) to c;. The reverse holds also by simply restricting any satis-
fying assignment for 7’ to the variables of F, reducing the number of true variables by
one (since ¢; is always assigned true). O

Thus, for the purpose of proving that Min Ones SAT(T") does not admit a polynomial
kernel, we may assume I' to contain (x), (-x), and equality. Lower bounds for this case
can then be transferred to languages without these constraints. We will now prove the
central piece of our lower bound, namely how to construct log-cost selection formulas
from any suitable constraint language I.
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Lemma 6.20. Let I be a non-mergeable constraint language that contains (x) and (—x).
Then I' can express a log-cost selection formula of any arity.

Proof. Let R € I be a relation that is not mergeable, and let a through § be a witness
of this, i.e., a through § are contained in R, the merge operation applies to them,
and 0 := a A (BV~y) ¢ R. By Proposition 6.3, partition the positions of R into core and
petals in a way that agrees with the witness tuples. Group the variables with respect
to their values in these four tuples into constant variables Zi, Zy, non-constant core
variables C1o and Cp1, and non-constant petal variables Py, P, Py1 (where the indices
indicate membership in « and ~, as § and 0 are now determined by this). Identify
variables according to type, and order them in the order of the previous sentence. We
now have a relation whose arity depends on which variable types are represented in
the witness. In the case that all seven types are present, we have implemented a 7-ary
relation R7 about which we know the following (the final tuple is produced on the witness
tuples by the merge operation); the positions are in order Z, Zy, Cio, Co1, Pi1, Pio,
and P011

(1,0, 1,0, 1,1,0) € Ry
(1,0, 1,0, 0,0,0) € Ry
(1,0, 0,1, 1,0,1)€ Ry
(1,0, 0,1, 0,0,0) € Ry
(1,0, 1,0, 1,0,0)¢ Ry

To distinguish the final tuple from the witness tuples, we can observe that variable
types P11, Pig, and one further non-constant variable type must be represented by the
witness; else 0 € {a,...,0}. The constant positions can be ignored by putting the
constant variables z; and zj in these positions; we create them through constraints (—zg)
and (z1). Thus we implement a relation of arity between three and five. There are two
main cases:

R is anti-Horn In this case R is closed under disjunction and the tuple SV v is in R,
implying (1,0,1,1,1,0,1) € R;. Thus the variable type Cp; or Py; must occur; else o =
B V v, a contradiction. Identify Cp; and Py if both occur, and set C'jgp = 1 if this
type occurs, implementing a ternary relation R’ which matches R3 of Lemma 6.18, with
the variable types being Pi1, Pig, and (Py; = Cp1) in the order used in Lemma 6.18.
Indeed, {a, 8V 7,5} C R, representing the positive requirement, while there can be no
tuple (1,0,0) € R, whether Cyg occurs or not. This fulfills the conditions of Lemma 6.18,
part 1.

R is not anti-Horn In this case R is not closed under disjunction. Using a witness for
this, we can implement a binary relation Ry which is either (z # y) or (—zV—y). Likewise,
by NP-completeness we have a relation which is not Horn, which can implement (x # y)
or (x Vy). Combining them, we find that we can always implement (z # y), and thus
are free to use R5 of Lemma 6.18. We implement a relation R’ as before, again letting
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the variable types appear in the order (Cio, Co1, P11, Pio, Po1). We go through the cases
of non-empty non-constant variable types, and show that our relation R’ can implement
a relation matching R3 or Rs of Lemma 6.18.

(a) If R’ has arity three, with the third variable type being Py; or Cp1, then we implement
a relation matching R3 with {(1,1,0),(1,0,1),(0,0,0)} € R" and (1,0,0) ¢ R'.

(b) If R’ has arity three, and the third type is Cjg, then we implement a relation R’
with {(1,1,1),(1,0,0),(0,1,0),(0,0,0)} € R and (1,1,0) ¢ R'. Use R'(v,z,y) A
R'(w,z, z) to implement a relation matching Rs.

(c) If the core type Cjp is not present, then identify Cp; with Pp;. This implements a
relation R’ matching Rj.

(d) If the core type Cp; is not present, we need two cases. If (0,1,0,0) ¢ R, then
identify Cig with Pjp to produce a ternary relation matching Rs. Otherwise, we
force Py; = 0 to produce a ternary relation as in case b.

(e) If the petal type Py is not present, then R'(v,w,z,y) A R (w,v,z, z) implements a
relation matching Rs.

(f) If all five types are present, then R'(v,w,x,y,z) A R(w,v,z,z,y) implements a
relation matching Rs.

Thus in every case, we meet the conditions of part 1 or 2 of Lemma 6.18. O

Lower bound for Min Ones SAT

We can now show the main result of this section by giving a polynomial parameter
transformation from EXACT HITTING SET(m) to Min Ones SAT(T"), for suitable T'.

Theorem 6.21. Let I' be a constraint language which is not mergeable. Then Min Ones
SAT(T") is either polynomial-time solvable, or it does not admit a polynomial kerneliza-
tion unless NP C co-NP /poly.

Proof. By Theorem 6.1, Min Ones SAT(T") is either polynomial-time solvable or NP-
complete; assume that it is NP-complete. By Lemma 6.19 we may then assume that I"
contains the assignment constraints (z) and (—z) as well as equality. Furthermore, by
Lemma 6.20, we can implement log-cost selection formulas. It remains only to describe

the polynomial parameter transformation from EXACT HITTING SET(m) to Min Ones
SAT(T):

Transformation Let (7, m) be an instance of EXACT HITTING SET(m). If H contains
more than 2™ vertices, then it can be solved in time polynomial in the input length [13];
otherwise, we create a formula F and fix a weight k so that (F, k) is positive if and only
if H has an exact hitting set: Create one variable y; ; in F for every occurrence of a
vertex v; in an edge E; in H. For each edge E' € H, create a log-cost selection formula
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over the variables representing the occurrences in . Then, for all pairs of occurrences
of each vertex v; in any two edges E; and Ej, add constraints (y;; = v;j/). Finally
fix k = m+ ) pey wip, where w; is the weight of a log-cost selection formula of arity i.
We have an upper bound on the value of k of O(mlogn) = O(m?).

Correctness Now solutions with weight exactly k correspond to exact hitting sets of H.
Note that k is the minimum possible weight of the selection formulas, which is taken
if exactly one occurrence in each edge is picked. By the definition of log-cost selection
formulas, any solution where more than one occurrence has been picked (if such a solution
is possible at all) will have a total weight which is larger than this, if the weight of the y-
variables is counted as well, and thus such a solution to F of weight at most k is not
possible.

As Exact Hitting Set(m) is NP-complete, it follows from [18] that a polynomial ker-
nelization for Min Ones SAT(I") would imply the same for Exact Hitting Set(m), giving
our result. O

Remark. Lemma 6.19 can be adjusted to provide (z), (—x), and (z = y) without the use
of repeated variables and, using standard techniques (as in Chapter 4), we can show that
the lower bound still applies under the restriction that constraints contain no repeated
variables. Such a restriction can be useful in showing hardness of other problems, e.g.,
as for H-free EDGE DELETION (presented in Chapter 4).

6.5. Summary

We presented a dichotomy for Min Ones SAT(T") for finite sets of relations I' into ad-
mittance or non-admittance of polynomial kernelizations, assuming that the polynomial
hierarchy does not collapse. The characterization of the dichotomy is a closure property
we call mergeability. We obtained the following result, with the polynomial cases due to
Khanna et al. [75]:

Corollary 6.22. Let ' be a finite set of Boolean relations. Then Min Ones SAT(T)
falls into one of the following cases.

1. If T is O-valid, Horn, or width-2 affine, then Min Ones SAT(I") is in P.
2. If T is mergeable then Min Ones SAT(T') admits a polynomial kernelization.

3. Otherwise Min Ones SAT(I") is FPT but does not admit a polynomial kernelization
unless NP C co-NP/poly.

It might be interesting to compare our kernelization dichotomy to the approximation
properties of Min Ones SAT(T"), as characterized by Khanna et al. [75]. The mergeabil-
ity property cuts through the classification of Khanna et al. as follows (we use the terms
from B.4 of [75]). For every I' such that Min Ones SAT(I") is known to be in APX, Min
Ones SAT(I") admits a polynomial kernelization, while no problem identified as being
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MIN HORN DELETION-complete is mergeable (every mergeable problem closed under dis-
junction is THS-B+, i.e., APX-complete). The remaining classes are cut through (e.g.,
among the affine relations, the relation (z®y @z = 1) is mergeable, while (x®@y® z = 0)
is not). We also get kernelizations for some problems where the corresponding SATISFI-
ABILITY problem is NP-complete, e.g., Min Ones Exact Hitting Set for sets of bounded
arity, where no approximation is possible unless P = NP.
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7. Max ones constraint satisfaction
problems

7.1. Introduction

This chapter addresses the Max Ones SAT(I") problem, i.e., the problem of finding
satisfying assignments with at least k true variables for formulas over I'. Max Ones
SAT(T") generalizes packing problems such as INDEPENDENT SET.

Max Ones SAT(T)
Input: A formula F over I' and an integer k.
Parameter: k.

Task: Decide whether there is a satisfying assignment for F with at least k
true variables.

We study the parameterized complexity of this problem, in particular, for which con-
straint languages I' the problem becomes fixed-parameter tractable or (stronger) admits
a polynomial kernelization. Khanna et al. [75] gave a characterization of Max Ones
SAT(T') problems into polynomial cases as well as different degrees of approximability.

Theorem 7.1 ([75]). Let I" be a finite set of Boolean relations.
o [fT is one-valid, anti-Horn, or width-2 affine, then Max Ones SAT(T") is in P.
e Flse, if T' is affine, then Max Ones SAT(T") is APX-complete.

e Else, if ' is strongly zero-valid, Horn, or bijunctive, then Max Ones SAT(T) is
poly-APX-complete.

e Klse, if " is zero-valid, then Max Ones SAT(I") is not approzimable.
o [Llse, feasibility is NP-hard (i.e., SAT(T') is NP-complete).

For our purpose of characterizing the parameterized complexity and admittance of
polynomial kernelizations, we will use the polynomial cases as a starting point. How-
ever, it is also crucial to observe that Max Ones SAT(I") is not in XP, when deciding
satisfiability of formulas over I' is NP-complete (assuming P # NP). To see this, consider
the task of finding an assignment with at least zero true variables, which is equivalent to
deciding feasibility; thus there cannot be an n/*) time algorithm for Max Ones SAT(I),
unless P = NP. Hence, we will focus on the six maximal constraint languages for which
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SAT(T) is polynomial. Note also that, unlike Min Ones SAT(I"), Max Ones SAT(T) is
W[1]-hard already in the bijunctive, i.e., 2-CNF, case. The reason is that Max Ones
SAT({(—z V —y)}) is equivalent to the W][1]-complete INDEPENDENT SET problem.

Our work Depending on the constraint language I' we characterize Max Ones SAT(T")
problems as having a polynomial kernelization; being FPT but admitting no polynomial
kernelization unless NP C co-NP/poly; being W[1]-hard and in XP; and not being in
XP unless P = NP. We follow joint work with Daniel Marx and Magnus Wahlstrém [79].

Structure of this chapter We arrive at our characterization (Section 7.2) by consid-
ering the six maximal constraint languages for which satisfiability is known to be in
P, namely zero-valid, one-valid, Horn, anti-Horn, affine, and bijunctive constraint lan-
guages. We will start from the known polynomial cases for Max Ones SAT(I") (i.e.,
one-valid, anti-Horn, and width-2 affine) and then address affine, Horn, and zero-valid
constraint languages. Finally, using Nordh and Zanuttini’s [96] notion of frozen co-clones,
we classify the bijunctive cases, which do not follow the co-clone lattice (e.g., there are
constraint languages which generate the co-clone of bijunctive relations but with different
kernelizability of Max Ones SAT(I")). We give a short summary in Section 7.3.

7.2. Characterization

In this section we present our characterization of the parameterized complexity properties
of Max Ones SAT(I") problems. As a very first distinction, we repeat the observation
that if SAT(T") is NP-complete, then Max Ones SAT(I') is NP-complete even for a
parameter kK = 0. Clearly for any formula F there is a satisfying assignment with at
least zero true variables if and only if F is satisfiable. By Schaefer (Theorem 5.3),
SAT(T') is in P if T" is zero-valid, one-valid, affine, Horn, anti-Horn, or bijunctive, and
NP-complete otherwise. In the latter case Max Ones SAT(I") is not contained in XP,
i.e., there is no nf®) time algorithm, unless P = NP. In the following we will consider
Max Ones SAT(I") for the six maximal constraint languages for which SAT(T") is in P.

Polynomial cases

We start with those cases for which Max Ones SAT(I") can be solved in polynomial time,
as characterized by Khanna et al. [75] (Theorem 7.1): Max Ones SAT(T") is in P if T is
one-valid, anti-Horn, or width-2 affine, and APX-hard otherwise.

It remains to consider affine, Horn, zero-valid, and bijunctive constraint languages.

Affine cases

We show that for every affine constraint language I' the Max Ones SAT(I") problem
admits a polynomial kernelization with a linear number of variables.

Lemma 7.2. Let I' be an affine constraint language. Then Max Ones SAT(I") admits
a kernelization with O(k) variables (and polynomial total size).
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Proof. Let (F,k) be an instance of Max Ones SAT(I'); if F is infeasible, we return a
dummy negative instance. We call a variable fized if it has the same value in every
satisfying assignment. It can be checked in polynomial time if a variable is fixed to true
(resp. false) by testing satisfiability with the variable set to false (resp. true).

If two variables x and y are fixed to the same value d € {0, 1}, then we can obtain
an equivalent instance with one fewer variable: we replace all occurrences of y by = and
decrease the parameter by 1 if d = 1. Clearly, this does not permit x to take a value
different from d (i.e., 1 — d), else both x and y would not have been fixed.

Let (F', k') be the instance obtained after replacing all but at most two fixed variables
(one fixed to true and one fixed to false). If F’ contains less than 2k’ 4+ 2 € O(k)
variables, then we return (F’, k') as a kernel. Otherwise, we show that (F’,k’) has
a satisfying assignment having weight at least k', thus the kernelization algorithm can
return a dummy positive instance. We begin by replacing the at most two fixed variables
by the corresponding value, i.e., 0 or 1. We retain at least 2k’ variables and apply the
following procedure.

We pick an arbitrary variable z of F’. Substituting x with 0 (resp., 1) makes a set Sy
(resp., Sp) of variables fixed. We claim that Sy = S; (and hence we will denote Sy = 53
by S). If, say, y € Sy \ S1, then the projection of F’ to {z,y} would be a binary relation
having exactly 3 tuples. The projection of an affine instance is an affine relation, which
cannot have exactly 3 tuples (as the size of an affine subspace over the 2-element field
is always a power of 2). Furthermore, since y is not fixed, substituting  with 0 and 1
cannot force y to the same value. Therefore, one of the two substitutions forces at least
half of the variables in S U {z} to 1. Let us perform this substitution and remove the
variables in S U {z} by substituting them with the forced values. Observe that the
resulting formula is still feasible and has no fixed variables (it may contain constants).

Let us repeat the procedure described in the previous paragraph until at least 2k’
variables are removed. This means that at least k' variables are substituted with the
value 1. Therefore, any solution of the remaining (feasible) instance, extended with the
substituted values of the removed variables, gives a satisfying assignment of weight at
least k' for (F', k). O

Horn cases

For constraint languages that are Horn but neither anti-Horn nor one-valid we show that
Max Ones SAT(I") is W[1]-hard by a parameterized reduction from the W[1]-complete
problem INDEPENDENT SET. Recall that Max Ones SAT(T') is in P if ' is anti-Horn or
one-valid.

Lemma 7.3. IfT" is Horn, but neither anti-Horn nor one-valid, then Max Ones SAT(T)
is W[1]-hard.

Proof. We first show that a constant zero variable ¢y can be created (which takes value
zero (false) in any satisfying assignment). Let R be a relation which is not one-valid. If R
is zero-valid, then putting variable ¢y into all positions makes cy a constant zero variable.
If R is not zero-valid, then let « = (aq,...,a,) € R be a minimal tuple of R (w.r.t.

99



7. Max ones constraint satisfaction problems

number of ones). Put a variable ¢; in all positions that are true in «, and ¢ in all other
positions. This forces ¢g = 0 and ¢; = 1: First, it is not possible that ¢y = c1, since R
is neither zero-valid nor one-valid. Second, it is not possible that ¢g = 1 and ¢; = 0,
since R is Horn (i.e., invariant under conjunction) and ¢y = 0, ¢; = 1 satisfies R, this
would imply that ¢g = ¢; = 0 also satisfies R. Thus, if R is not zero-valid, we can get
the constants zero ¢y and one ¢; (in both cases we have constant zero).

Now we select a relation R € I' that is not anti-Horn. Let «, 8 € R be tuples such
that a V § ¢ R, and group the positions of R according to their values in o and £ into
positions A through D. Note that a A 8 € R since R is Horn:

A B C D
o 0 0 1 1 €R
B 0 1 0 1 €R
aAB 0 0 0 1 €R
avB 0 1 1 1 €¢R

Observe that both positions B and C' must occur to distinguish the excluded tuple a Vv 3
from a and S, respectively. If there are no positions of type D then we implement the
independent set constraint (—x V —y) by putting ¢y into positions A (if they exist), x
into positions B, and y into positions C'. Thus we have a reduction from INDEPENDENT
SET to Max Ones SAT(T").

If positions of type D do exist, then we create a ternary relation R’ by putting vari-
ables z, y, and z into all positions B, C, and D, respectively, as well as putting cg into
positions A:

r Yy =z

0 1 1 eRrR
1 01 eR
0 01 eR
1 1 1 ¢R

If R is not zero-valid, then as above we create a variable ¢; = 1 and put it in place of z,
implementing (-2 V —y) and we have a reduction from INDEPENDENT SET.

Thus assume for the rest of the proof that R’ is zero-valid, i.e., (0,0,0) € R'. We
observe that if (1,0,0) € R’ then R'(z,y,y) = (—x V —y). Similarly, if (1,1,0) € R’
then R'(z,z,y) = (-2 V —y). In both cases we again have an immediate reduction from
INDEPENDENT SET. Finally, if (1,0,0),(1,1,0) ¢ R’ then we have

T Yy =z

0 0 0 erR
0 1 1 eRrR
1 0 1 eR
0 01 eR
1 0 0 ¢R
1 1 0 ¢R
1 11 ¢R
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We implement R”(x,y,2) = R'(x,y,2) A R'(y,x, 2) and observe that
R'(z,y,2) ={(0,0,0),(0,0,1),(0,1,1),(1,0,1)}.

This relation permits us to give a reduction from INDEPENDENT SET. We create a global
variable 2. For each (—zV—y) that we need to implement, we add a constraint R”(z,y, 2).
Now every non-zero satisfying assignment assigns true to 2. Thus an independent set of
size k corresponds to a satisfying assignment with k£ 4+ 1 true variables and vice versa.
In each case we were able to reduce the W[1]-complete INDEPENDENT SET problem to
Max Ones SAT(I"), which proves the lemma. O

Zero-valid cases

For zero-valid constraint languages I' which are not covered by the previously considered
cases we show that Max Ones SAT(I") is not in XP unless P = NP.

Lemma 7.4. If T is zero-valid, but neither anti-Horn, one-valid, affine, nor Horn, then
Max Ones SAT(T") is not in XP unless P = NP.

Proof. The proof is organized in two parts. First we show that we can implement
the relation R = {(0,0,0),(0,1,1),(1,0,1)}. Second we will reduce the NP-complete
SAT({R, (z # y)}) problem to Max Ones SAT(T") instances with parameter k = 1,
proving the lemma. We will need a constant zero variable ¢y which can be imple-
mented by taking a (zero-valid) relation Ry that is not one-valid, and making a con-
straint Ro(co, ..., o).

Implementing R Note that a zero-valid relation is affine if and only if it is invariant
under exclusive disjunction (XOR); this can be easily seen since affine relations are
invariant under ternary XOR. Let Ry, Ra, R3 be relations that are not Horn, not anti-
Horn, and not XOR-closed, respectively. Let us choose a pair «q, £ of tuples witnessing
that R is not invariant under conjunction, i.e., a1, 81 € Ry but a1 A by € Ry. Similarly
choose a pair ao, B2 violating invariance under disjunction on Ry, and a pair ag, O3
violating XOR-invariance on Rs.

We introduce three variables x, y, z, and apply constraints R;, R, R3 on these
variables by putting = (resp., y or z) at a position of constraint R, if at this position
tuple ay has value 0 and tuple 3, has value 1 (resp., 1 and 0 or 1 and 1); see Table 7.1.
Further, we put ¢¢ in Ry where ay and (5, are both 0. Note that a constraint might not
contain all three variables x, y, z, but this will not cause any problems in the arguments
to follow. Let us point out, however, that each variable occurs in at least one of the
constraints: The variables x and y are placed at least into Ry since their positions
distinguish as and (s from o V B2. The variable z is at least placed in R; since those
positions distinguish 0 € Ry from a3 A 1 ¢ Ry. Thus the conjunction of the three
constraints contains all three variables z, y, and z.

Let us consider the constraint R/(z,y,z) implemented this way. Since every rela-
tion is zero-valid, we have (0,0,0) € R’. The chosen tuples and the way R’ was con-
structed ensure that (0,1,1),(1,0,1) € R'. Since ay A 1 € Ry, the constraint R
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o T Yy =z o T Yy =z
o1 0 01 1 eR; (%) 0 0 1 1 €Ry
51 0 1 0 1 eRr B2 0 1 0 1 €eRy
aprANBr 0 0 0 1 ¢R1 asVpBy 0 1 1 1 ¢R2
co T Y =z

Qs 0 0 1 1 €Rj

53 0 1 0 1 €Rg

ag®pPs 0 1 1 0 §é R3

Table 7.1.: Using witness tuples to implement a ternary relation R'(z,y, z).

ensures that (0,0,1) ¢ R’. Similarly, Ry and R3 ensure that R’ does not contain (1,1, 1)
and (1,1,0), respectively. Thus we know about the following included and excluded
tuples:

0 0 0 erR
01 1 er
1 01 eR
0 0 1 ¢R
1 1 0 ¢R
1 1 1 ¢R

If (0,1,0),(1,0,0) ¢ R, then R’ is the relation R that we wanted to obtain. Suppose
that (0,1,0) € R'. Then R/(co,z,y) implements (y — x) and thus we get an implemen-
tation of the desired relation R as R'(z,y,2) A (x — 2z) A (y — z). Note that (z — 2)
excludes (1,0,0) and (y — z) excludes (0,1,0); both are consistent with R.

If (1,0,0) € R’ then R'(z,cp,y) implements (y — x) and we obtain R with the same
formula (using, e.g., R'(z,co,x) for (x — 2)).

Reduction Let IV = {R,(z # y)}. Clearly R is neither closed under conjunction
nor disjunction; hence it is neither Horn nor anti-Horn. Note also that R is also not
bijunctive or affine, since (0,0,0), (0,1, 1), (1,0, 1) are a witness against invariance under
majority and 3-way XOR. Clearly, disequality, (z # y), is neither zero-valid nor one-valid.
Therefore, I is neither zero-valid, one-valid, Horn, anti-Horn, bijunctive, nor affine,
which implies that SAT(I”) is NP-complete (Theorem 5.3, i.e., Schaefer’s dichotomy
theorem). We will reduce SAT(I”) to Max Ones SAT(T") with parameter k = 1.

Let F’ be a formula over IV. Assume that F’ is false for the all-zero assignment,
otherwise we may reduce to a dummy positive instance. We will create a formula F
using only R, which has a non-zero solution if and only if F’ is satisfiable: Copy all
constraints using R from F’ to F, and add a single global variable 2. For every variable x
in F', create a variable 2’ intended to be its negation, and add a constraint R(z,2’, 2).
Additionally for every constraint (z # y) in F', create a constraint R(z,y, 2) in F. Now
every solution to F where any variable is true must have Z = 1, which “activates” all
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inequalities from F’. Thus F’ is satisfiable if and only if F has a satisfying assignment
with at least one true variable, i.e., if (F,1) € Max Ones SAT(I). O

Bijunctive cases

Concluding the characterization of Max Ones SAT(I") problems, we address the remain-
ing case of bijunctive constraint languages, which (additionally) are not Horn, anti-Horn,
or width-2 affine (or zero-valid, or one-valid, but this follows implicitly using invariance
under majority). This corresponds to the constraint languages I' which, using existen-
tially quantified variables, can implement all 2-SAT clauses; see [96]. We are going
to find that there is no unique answer for these languages (which are properly bijunc-
tive). We will find that there are cases that create problems which admit polynomial
kernelizations, problems which are fixed-parameter tractable but admit no polynomial
kernelization unless NP C co-NP /poly, and problems which are W[1]-hard.

To state and prove our results, we will need the results of Nordh and Zanuttini [96],
who studied co-clones under more limited implementations than existential implementa-
tions, namely frozen implementations. Recall the definition of a frozen implementation
(with equality). The frozen partial co-clone (I') ¢, generated by I' is the set of all relations
that can be freezingly implemented by I". We will use the characterization of [96] of the
frozen partial co-clones that our I' can generate. The free use of equality constraints is
somewhat more general than what we wish to allow, but we will find that it causes no
problems.

We need the following special cases.

L T ={(=Vy),(z£y)}

2. T3 ={Ry}, where R} = (mz V ~y) A (x # 2)

3. IV ={(xVy), (z £y) (= y)}

Finally, we need a technical lemma to show that we can assume that we have access to
the constants.

Lemma 7.5. Let I' be a bijunctive constraint language which is neither zero-valid, one-
valid, nor width-2 affine. Then the constants can be implemented.

Proof. Given such a constraint language I', if every relation is closed under negation
then I' is width-2 affine. Thus we can assume that there is a relation R € I which is not
closed under negation; let « € R such that the negation of « is not in R. Put a variable z
in all positions of R that are true in «, and ¥y in all other positions. This constraint
forbids z = 0 and y = 1, but allows z = 1 and y = 0. Let Ry € I" be a relation that is
not zero-valid, and let 8 be an arbitrary tuple of Ry. Put variable z into every position
where 8 is 1 and variable y into every position where 8 is 0. This forbids z = y = 0,
but allows x = 1 and y = 0. Similarly, let R; be a relation that is not one-valid, and
use a tuple v € R to forbid z = y = 1. Therefore, these three constraints enforce x = 1
and y = 0, obtaining the constants. O
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Let us now proceed with settling the remaining cases of Max Ones SAT(T").

Lemma 7.6. Let I' be a set of Boolean relations that generates the co-clone of bijunctive
relations (i.e., such that T is bijunctive but neither Horn, anti-Horn, nor width-2 affine).

1. IfT" C <F§¢>f,, then Max Ones SAT(T') has a polynomial kernelization (with O(k?)
variables). Otherwise, Max Ones SAT(T") admits no polynomial kernelization, un-
less NP C co-NP/poly.

2. If T C (I‘g#)ﬂ then Max Ones SAT(T) is FPT (with running time 2F - n®M)).
Otherwise, Max Ones SAT(I") is W/[1]-hard.

Remark. In the proof of Lemma 7.6 we will use results for frozen implementations that
allow equality in addition to relations from the constraint language I'. In two places
we will say that equality is not useful for implementing a certain constraint, e.g., for
implementing (—z V —y); the intuition behind that statement is as follows: Assume that
we have some frozen implementation of (—x V —y) that contains at least one equality
and let X be the set of existentially quantified variables. Clearly, the implementation
cannot contain (x = y), since that would exclude for example z = 0 and y = 1. If
the equality constraint contains at least one variable from X, say (z = 2/), with z € X
and 2’ € X U{z,y}, then we may replace all occurrences of z by 2z’ and discard (z = 2/).
Thus equality is not useful for implementing (—z V —y), since it must contain variables
from X, but then we can simplify the implementation and use one less existentially
quantified variable.

Proof of Lemma 7.6. Let (F, k) be a Max Ones SAT(I") instance. Assume throughout
that the instance is feasible (as otherwise, the problem is trivial). By assumption I is not
Horn, anti-Horn, or width-2 affine, else it would not generate the co-clone of bijunctive
relations. Hence it is also not zero-valid or one-valid, since, for example, invariance under
majority applied to a, 5,0 € R would give a A § € R, implying that R would be Horn.
Thus we may apply Lemma 7.5. We split the proof into four parts.

Polynomial kernelization IfT" C (ng)fr, then, by [96], every relation in I', and thus all
of F, has a frozen implementation over F?é U {=}, i.e., using positive clauses, equality,
and disequality. We will refer to this implementation when inferring a kernel, but the
kernelization will apply for the original I' as well. Let a set of at least two variables which
are connected by disequality or equality, with at least one disequality, be referred to as
a class of variables. If there are at least k variable classes, then any solution will contain
at least k true variables, and can be found in polynomial time. If any class contains at
least 2k variables, then either the variables of this class have fixed values, in which case
we make the corresponding assignments, or we can find a solution with at least k true
variables. Finally, if any variable does not occur in a variable class, it can safely be set
to 1. These observations leave a kernel with O(k) variable classes and O(k?) variables
in total. Finally, as the only changes we made to the formula were assignments, we can
apply the kernelization using only relations in I' by replacing all assigned variables by
the constant variables ¢; or c¢g.
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Kernel lower bound 1f T' ¢ (I'5%);,, then, by [96], there is an implementation of RY
over I'U {=}. As the equality constraint will not be useful in such an implementation,
there is also an implementation directly over I', showing that Max Ones SAT(I'}) re-
duces to Max Ones SAT(I") by a polynomial parameter transformation. We will in turn
show that the MULTIPLE COMPATIBLE PATTERNS (MCP) problem reduces to Max Ones
SAT(I'3) by a polynomial parameter transformation.

Observe that Rj can be written as (z # y) A (z — z). Let (I, k) be an instance of
MCP, with string length r. Create variables (z; # y;) for 1 <1 < r, coding the entries
of the solution string; these variables contribute weight exactly r to any solution. The
intuition is that x; = 1 codifies that the solution string has value 0 at position 7, and
that y; = 1 codifies value 1. Now for every pattern ¢, create a variable z;, and for every
position j of pattern ¢ containing 0, add a constraint (x; # y;) A (2; — x;). For positions
containing 1, create the same constraint with an implication instead to y;. Thus if 2; is
set to true, then the positions of the solution string must match pattern . Hence, any
solution with r + k true variables corresponds one-to-one to a string in {0,1}" and k
patterns matching it. Thus, by Theorem 1.5 and Lemma 1.8, Max Ones SAT(T") admits
no polynomial kernelization unless NP C co-NP/poly.

Fixed-parameter tractability If " C (Fg#i> f#r, then, as before, there is an implementa-
tion of F over I g# U{=}. Again consider the variable classes; if they number at least k,
then find a solution in polynomial time. Otherwise, we check all O(2¥) assignments to
variables of the variable classes. For each such assignment, propagate assignments to
the remaining variables. Any formula that remains after this is one-valid, since there
are only implications and positive clauses.

WI[1]-hardness IfI' ¢ <F72’#>fr, then, by [96], there is an implementation of (—z V —y)
over I'U {=}, and again the equality constraint would not be useful. Thus there is an
fpt-reduction from INDEPENDENT SET to Max Ones SAT(T). O

7.3. Summary
Our results for Max Ones SAT(I") can be summed up as follows.

Corollary 7.7. Let T be a finite set of Boolean relations. Then Max Ones SAT(I") falls
into one of the following cases.

1. IfT is one-valid, anti-Horn, or width-2 affine, then Max Ones SAT(T") is in P.

2. If T is affine, or if I' C ((x Vy),(x # y))¢r, then Max Ones SAT(I") admits a
polynomial kernelization.

3. IfT' C((xVy),(x#y)(xr = y)) s, then Max Ones SAT(I") is in FPT, with a
running time of 2% - n®W | put if the previous case does not apply, then there is no
polynomial kernelization unless NP C co-NP /poly.
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4. If none of these cases applies, then Max Ones SAT(T') is W[1]-hard; if T is Horn
or bijunctive, then Max Ones SAT(T") is in XP.

5. Otherwise Max Ones SAT(I") is NP-complete for k = 1.

Remark. Containment of Max Ones SAT(I") in XP, if I" is Horn or bijunctive (or anti-
Horn or affine), can be easily seen. For example, given an instance (F, k) over a bijunctive
constraint language, we may guess k variables (i.e., try all n* choices), set them to true,
and check satisfiability of the remaining formula. It is crucial that setting a variable to
true still leaves a formula that is bijunctive; this can be seen by adding the bijunctive
constraint (x) to the formula for each selected variable z. Note that this does not work
for general zero-valid constraint languages.

For Max Ones SAT(I") the FPT cases almost coincide with the cases that admit
polynomial kernelizations. This contrasts Min Ones SAT(T"), which is FPT for every I'
but which does not always admit a polynomial kernelization. Same as for Min Ones
SAT(T") the constant-factor approximable cases (i.e., for affine constraint languages) are
subsumed by the cases that admit polynomial kernelizations.
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8. Exact ones constraint satisfaction
problems

8.1. Introduction

In this chapter we consider the kernelizability of Exact Ones SAT(T") problems, i.e., the
problem of deciding whether a given formula over I' has a satisfying assignment with a
specified number of true variables:

Exact Ones SAT(T")
Input: A formula F over I and an integer k.
Parameter: k.

Task: Decide whether there is a satisfying assignment for F with exactly k
true variables.

Creignou et al. [39] showed that Exact Ones SAT(T") is in P when T" is width-2 affine and
NP-hard otherwise. Fixed-parameter tractability of Exact Ones SAT(T), i.e., solvability
in time f(k)-n®®, was characterized by Marx [88]; the result is a dichotomy into FPT
and W[l]-complete cases based on two partial polymorphisms (see Theorem 8.2).

In comparison with the min ones and the max ones variants consider the following:
For every constraint language I', Min Ones SAT(I") reduces to Exact Ones SAT(I") by
a polynomial parameter transformation (see Lemma 8.3). Furthermore, some hard max
ones problems like CLIQUE, i.e., Max Ones SAT({(—-zV —y)}), are also hard when asking
for exactly k ones. However, while Max Ones SAT(T") is not contained in XP for some I'
(assuming P # NP), Exact Ones SAT(T') is in W[1] for every choice of T' (as observed
by Marx [88]). Thus, while it does not have an optimization variant, it is interesting as
a refinement of WEIGHTED ¢-SAT, which is complete for W[1] (cf. [47]).

WEIGHTED ¢-SAT

Input: A ¢-CNF formula F, i.e., with clauses of at most ¢ literals, and an
integer k.

Parameter: k.

Task: Decide whether F has a satisfying assignment with exactly k true
variables.
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Our work Following joint work with Déniel Marx and Magnus Wahlstrém [79] we
characterize the kernelizability of Exact Ones SAT(I") problems. The characterization
is by mergeability as well as by semi-separability (i.e., a combination of the two partial
polymorphisms which characterize fixed-parameter tractability): If I" is mergeable as well
as semi-separable then Exact Ones SAT(T") admits a polynomial kernelization, otherwise
it does not admit a polynomial kernelization unless NP C co-NP /poly.

Structure of this chapter In the following section, we recall some definitions and men-
tion some related results. Sections 8.3 and 8.4 present the classification of Exact Ones
SAT(T'); the former covers choices of I" for which Min Ones SAT(T") is polynomial, the
latter addresses those for which Min Ones SAT(I") is NP-complete. We summarize and
conclude in Section 8.5.

8.2. Definitions and related results

In this section we recall some definitions and results from previous chapters as well
as from Marx’s [88] characterization of the parameterized complexity of Exact Ones
SAT(T"). We first define weak separability (introduced in [88]) as well as a stronger,
joined version of the two partial polymorphisms defining it.

Definition 8.1 ([88]). Let FPT(1), FPT(2), and FPT(1 > 2) denote the following
partial polymorphisms:

FPT(1) FPT(2) FPT(1 5 2)
0 0 0 1 0 1 0 1 0 1 0 0 1
00 1 1 01 1 1 01 0 1 1
01 0 1 00 0 1 00 1 01
0 1 1 1 0 0 1 1 0 0 1 1 1

A Boolean relation R is weakly separable if it is invariant under FPT(1) and FPT(2). It
is semi-separable if it is invariant under FPT(1 > 2).

Now we can state Marx’s characterization of the fixed-parameter tractability of Exact
Ones SAT(I"), which is as follows:

Theorem 8.2 ([88]). Let I' be any finite Boolean constraint language. The problem Ex-
act Ones SAT(T) is fized-parameter tractable if every relation R € T' is weakly separable.
In the remaining cases Exact Ones SAT(T') is W[1]-complete.

Since any kernelization for a problem also implies fixed-parameter tractability, we will
only need to further classify the fixed-parameter tractable cases, i.e., weakly separable
constraint languages. Furthermore, by a polynomial parameter transformation from Min
Ones SAT(T") to Exact Ones SAT(T"), we may conclude that lower bounds from the min
ones setting may be transferred to the exact ones setting.

Lemma 8.3. Min Ones SAT(I") reduces to Exact Ones SAT(I") by a polynomial param-
eter transformation.
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Remark. The essential idea in the reduction is that adding ¥ dummy variables to F
would give a formula F’ that has a satisfying assignment with exactly k true variables
if and only if F has a satisfying assignment with at most k£ true variables. The actual
reduction is a bit more complicated to avoid introducing free variables that do not occur
in any constraint.

Proof of Lemma 8.3. Let (F, k) be an instance of Min Ones SAT(T"). If I is zero-valid
then Min Ones SAT(I") is in P and we perform the reduction by solving the instance
and creating an equivalent dummy instance of Exact Ones SAT(I") depending on the
outcome. Otherwise, let R be a relation from I' that is not zero-valid. We show that we
are able to create a formula Fy on new variables whose minimum weight assignment has
weight kmin € O(k), and which has satisfying assignments with i true variables for all 4
from Kpin t0 kmin + k. Then, (F A Fo, k + kmin) is in Exact Ones SAT(T) if and only
if (F,k) is in Min Ones SAT(T).

We assume first that R contains two tuples « and 8 such that o < . Putting
variables z, y, and z into positions of R where a and 8 are both zero, both one, or
zero and one (as a < f3), respectively, creates a relation R’ of arity up to three. In any
case, positions with variable z must exist. Let us first assume that R’ is ternary. Thus
we know that (0,1,0),(0,1,1) € R' and we let Fy consist of k variable-disjoint copies
of R'-constraints. The crucial observation is that each R'-constraint has a satisfying
assignment with one or two true variables, but not with zero true variables since it is
not zero-valid. Thus the formula Fy has satisfying assignments with ¢ true variables for
all values i = k, ..., 2k, since the R’ constraints are variable-disjoint. The cases where R’
has arity less than three are along the same lines, since z is always present.

Now, otherwise, R contains no such tuples, and we let @ and 8 be any two distinct
tuples from R. Putting variables w, x, y, and z into positions of R as follows

w X y z
a 0 0 1 1 €eR

g 0 1 0 1 €R

we implement a relation R”. Note that, by assumption o ¢ 3 and 8 £ «, thus po-
sitions x and y must exist. We discuss the case that all four position types exist
and R” is 4-ary; the other cases are similar since x and y always exist. We imple-
ment a new relation R” by R"(w,z,2',y,z) = R"(w,z,y,2z) AN R"(w,2',y,z). Thus
we have (0,0,0,1,1),(0,1,1,0,1) € R". We let Fy consist of k variable-disjoint copies
of R"-constraints. Again JFy has satisfying assignments with ¢ true variables for all val-
ues ¢ = kmin, - - - » kmin + k where kpin = k or kyin = 2k depending on whether R has a
satisfying assignment with one true variable. O

Thus, using the kernelization dichotomy for Min Ones SAT(T") (see Chapter 6), we
may exclude further choices of I', i.e., show that Exact Ones SAT(I') does not admit a
polynomial kernelization. We recall that the kernelizability of Min Ones SAT(T") was
governed by mergeability, and that a relation is mergeable if it is invariant under the
following partial polymorphism:
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Mergeable
0 1.0 1 1 0 1
01 0 0 0 0 1
0 01 1 0 1 1
0 01 0 0 0 1
01 0 1 0 0 1

Using Corollary 6.22 (about the kernelizability of Min Ones SAT(I")) and Lemma 8.3
we immediately obtain the following corollary:

Corollary 8.4. Let I' be any finite Boolean constraint language. If I' is not mergeable
and Min Ones SAT(I") is NP-hard then Exact Ones SAT(I") does not admit a polynomial
kernelization unless NP C co-NP /poly.

According to Khanna et al. [75] Min Ones SAT(I") is in P when I" is zero-valid, Horn, or
width-2 affine; in all other cases it is NP-hard (APX-hard). The kernelizability of Exact
Ones SAT(T") for the former choices of I' will be considered in the following section. For
the remaining cases we may then assume I' to be mergeable since Min Ones SAT(I") will
be NP-hard; see Section 8.4. Both sections combined constitute a proof for the following
theorem, characterizing Exact Ones SAT(T").

Theorem 8.5. Let I' be a constraint language that is weakly separable.
1. If T is width-2 affine then Exact Ones SAT(T") is in P.

2. If T is anti-Horn, or both mergeable and semi-separable, then Exact Ones SAT(T)
admits a polynomial kernelization.

3. In all other cases Exact Ones SAT(T") does not admit a polynomial kernelization
unless NP C co-NP /poly.

Any weakly separable T that is Horn respectively zero-valid and mergeable is also width-2

affine.

8.3. Characterization I: Zero-valid, Horn, and width-2 affine

We begin by considering constraint languages I such that Min Ones SAT(T") is in P, i.e.,
zero-valid, Horn, and width-2 affine constraint languages.

Width-2 affine cases

If all relations in I" are width-2 affine then, by Creignou et al. [39], Exact Ones SAT(I") is
in P. To see this, consider the fact that width-2 affine constraints can be implemented by
assignments, equality, and disequality. It can be easily checked whether a given formula
is satisfiable. If it is, then the equalities and disequalities partition the variables into
equivalence classes; certain pairs of classes must take different values (i.e., variables of
one class must be assigned true and those of the other class must be assigned false, or
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vice versa). For each such pair of classes, say C; and Co, at least min(|Cy[, |C2|) variables
must be assigned true. Thus, conceptually, we may shrink both classes by min(|C1|, |C2|)
and reduce k by that value; one of the two classes is empty. Hence the only remaining
constraint for finding a satisfying assignment is a partition of the remaining variables
into independent equivalence classes; a satisfying assignment with the right number of
true variables can then be found via dynamic programming (if one exists).

Horn cases

We show that every weakly separable relation which is also Horn can be implemented
by {(—z), (x),(z = y)}. Thus if I" is Horn and weakly separable, then it is also width-2
affine and Exact Ones SAT(T") is polynomial.

Lemma 8.6. Let R be a weakly separable relation. If R is Horn, then R is implementable

by {(=2), (), (x = y)}-

Proof. We show that R is closed under disjunction (a V b) and under the polymor-
phism f(a,b,c) =aN (b®cd1). Let a, 5,7 € R:

o 0 00 01 1 11

B 0 011 0 0 11

v 01 01 01 01

BNy 0 001 0 0 0 1]closedunder conjunction (i)
BV 01 1 1 0 1 1 1|FPT(1)on(),s
aA(BVy) 0O 00O 0 1 1 1]closedunder conjunction (ii)
aA(BAY) 0 00O 0 0 0 1]closedunder conjunction (iii)
aA(B@®y®1) [0 0 0 0 1 0 0 1|FPT(2)on (i), a, (i)

Thus, by [38], R can be implemented by {(z), (—z),(z = y)}. (Note that the first two
lines prove invariance under (a V b).) O

We immediately get the following conclusion:

Lemma 8.7. Let I" be a finite constraint language that is weakly separable. If all relations
in I' are Horn then Exact Ones SAT(T") is in P.

Zero-valid cases

For zero-valid (and weakly separable) constraint languages I' we find that Exact Ones
SAT(T) is either polynomial-time solvable, when I' is width-2 affine, or that it does
not admit a polynomial kernelization unless NP C co-NP /poly. We will see that this
coincides with whether or not I' is mergeable. We begin by showing that for zero-valid "
mergeability implies that I' is width-2 affine (and Exact Ones SAT(T") is in P).

Lemma 8.8. Let R be a mergeable and weakly separable relation. If R is also zero-valid
then it can be implemented using only equality, (x = y), and negative assignments, (—x).
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Proof. Let R be a mergeable and zero-valid relation that is invariant under FPT(1)
and FPT(2). We show that R is invariant under conjunction (a A b) and exclusive
disjunction (a @ b). Let a, 8 € R:

0 0 0 0 O
o 0 01 1
Ié] 0 1 0 1
aANB |0 0 0 1| mergeability on «, 0, 5,0
aA-B|0 0 1 0|FPT(2)onaAf, a,l (i)
—aANB |0 1 0 O0|FPT(2)onaApf, 5,0 (ii)
a®B |0 1 1 0|FPT(1)ono0, (i), (i)
Thus R can be implemented by (—z) and (z = y) according to [38]. O

We will now prove that we may assume to have positive and negative assignments
available in I". To this end, as in the previous chapters, we give a polynomial parameter
transformation from the case with assignments to the case without assignments.

Let us briefly recall the effect of a polynomial parameter transformation in this context:
A lower bound for Exact Ones SAT(T'U{(x), (—x)}) transfers to Exact Ones SAT(T') by
Theorem 1.5. A polynomial kernelization for Exact Ones SAT(I'U{(z), (—z)}) applies to
instances of Exact Ones SAT(I"): We apply the kernelization (which may introduce as-
signments) and use the polynomial parameter transformation to replace any assignments
introduced in the kernelization to make the result an instance of Exact Ones SAT(T').

We first show how to implement assignments when we have equality available.

Lemma 8.9. If I implements equality then Exact Ones SAT(I' U {(x), (—z)}) reduces
to Exact Ones SAT(T") by a polynomial parameter transformation.

Proof. Given an instance (F, k) of Exact Ones SAT(I' U {(z), (—z)}) it clearly suffices
to show how to implement the (x) and (—z) constraints. First, we make a copy =’ of
every variable x of F and add an implementation of the equality constraint (z = z’).
Additionally we add a single new variable ¢; and let the new parameter be k' = 2k + 1.
Thus the only way to have a satisfying assignment with exactly k' true variables is to
set ¢ to true. This permits us to replace all () constraints by an implementation
of (x = ¢1). Second we add &k variables y1, ..., yi as well as a variable ¢y and implement
constraints (co = y;) for all i € {1,...,k'}. Thus the variables y; as well as ¢y take
the same value in any satisfying assignment. Since assigning true to all these variables
would exceed the number of &’ true variables, they will be set to false. Hence, we may
implement all (—z) constraints as (z = ¢p).

The formula F’ obtained in this way has a satisfying assignment with exactly k' true
variables if and only if F has a satisfying assignment with k£ true variables. O

Now, we can show that for constraint languages which are zero-valid and weakly

separable but not Horn we may assume that they contain assignments with respect to
admitting or not admitting a polynomial kernelization.
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Lemma 8.10. Let I' be a constraint language that is zero-valid and weakly separable but
not Horn. Then Exact Ones SAT(I' U {(z), (—z)}) reduces to Exact Ones SAT(T") by a
polynomial parameter transformation.

Proof. Given any instance (F, k) of Exact Ones SAT(I'U {(z), (—z)}) we will show how
to express (z) and (—x) to obtain an equivalent instance (F', k') of Exact Ones SAT(T).
We consider two cases depending on whether I' contains one-valid relations (all relations
in I' are zero-valid):

1) T' contains a relation R that is zero-valid and one-valid. Let o be a tuple that
is not contained in R. We implement a binary constraint R'(z,y) by putting z into all
positions R where « is one and y into all positions where « is zero. Thus (0,0), (1,1) €
R’ and (1,0) ¢ R'. Hence R'(x,y) A R'(y,x) implements equality. We proceed as in
Lemma 8.9 to obtain an equivalent instance (F’, k") of Exact Ones SAT(T").

I1) No relation in T is one-valid. In this case, let us begin by observing that we can
implement (—x) by R(z,...,x) using any R € I'. We add a new variable ¢y and force it
to be zero by (—c¢p).

Now since I' is not Horn it must contain a relation R that is not invariant under
conjunction. Let «,8 € R be tuples witnessing this fact, i.e., tuples a and S such
that v = aAB ¢ R. Observe that v # 0 € R and that v < o € R. We implement a binary
constraint R'(z,y) by putting ¢p in all positions of R where o and ~y are zero, putting x
into all positions where o and  are one, and y into all positions where « is one and ~
is zero. Note that the latter two types of positions must exist to distinguish v from 0
and «, respectively. Thus (0,0),(1,1) € R’ and (1,0) ¢ R'. Again R'(z,y) A R'(y,x)
implements equality and we can proceed as in Lemma 8.9. O

Remark. In the proof of Lemma 8.10 we implement a relation R’ with (0,0),(1,1) € R/
and (1,0) ¢ R’, we then have an implementation of equality as R'(z,y) A R'(y,z).
Note that equivalently, by using that I' must be weakly separable, we may conclude
that R’ is equality. The reason is that it must be invariant under FPT(2); this partial
polymorphism in particular excludes implications (i.e., {(0,0), (0,1),(1,1)}).

Now we show that Exact Ones SAT(I") does not admit a polynomial kernelization if T
is zero-valid and weakly separable but not width-2 affine (and hence also not Horn).

Lemma 8.11. Let I' be a zero-valid and weakly separable constraint language that is
not width-2 affine. Then Exact Ones SAT(I") does not admit a polynomial kernelization
unless NP C co-NP /poly.

Proof. Let ' be a zero-valid constraint language that is not width-2 affine. We first
observe that I' is not Horn, since it would then be width-2 affine by Lemma 8.6. Then
we see that I" is not mergeable, since mergeability applied to «, 0, 3,0 € R (where R € I')
implies a A B € R; thus all relations in I' would be Horn.

Let I' = TU{(z), (—z)}. By Lemma 8.10, Exact Ones SAT(I") reduces to Exact Ones
SAT(T') by a polynomial parameter transformation. Therefore, it suffices to show that
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Exact Ones SAT(I") does not admit a polynomial kernelization. For this observe that I
is neither width-2 affine, Horn, zero-valid, nor mergeable (recall that closure properties
must hold for every relation in I O T"). Thus, by [75], Min Ones SAT(I") is NP-hard,
and by Corollary 8.4, Exact Ones SAT(I") does not admit a polynomial kernelization
unless NP C co-NP/poly. By the polynomial parameter transformation, the same holds
for Exact Ones SAT(T"). O

In conclusion we get the following picture for constraint languages which are zero-
valid, Horn, or width-2 affine (i.e., constraint languages I" such that Min Ones SAT(T")
is in P).

Corollary 8.12. LetT" be a weakly separable constraint language that is zero-valid, Horn,
or width-2 affine. Then Exact Ones SAT(T) is in P if T is width-2 affine, otherwise it
does not admit a polynomial kernelization unless NP C co-NP /poly. Fquivalently Exact

Ones SAT(T') is in P if T is mergeable, and otherwise it does not admit a polynomial
kernelization unless NP C co-NP /poly.

8.4. Characterization Il: Remaining cases

Having handled the cases for which Min Ones SAT(I") is in P, we may now by Corol-
lary 8.4 restrict our attention to sets of relations I" which are mergeable as well as weakly
separable. We begin with a special case (for which we do not require mergeability).

Lemma 8.13. Let R be a weakly separable relation. If R is anti-Horn, then R can be
implemented by equality, positive clauses, and assignment.

Proof. We will show that R is invariant under a V (b A ¢). Let «, 8,7y € R:

o 0 00 0 1 1 1 1

B 001 1 0 0 1 1

v 0101 01 01

aVy 0 1 01 1 1 1 1| closedunder disjunction (i)
aVpvy |0 1 1 1 1 1 1 1] closed under disjunction (ii)
aV(@BA9) [0 0 1 0 1 1 1 1|FPT(2)on(), (i), a

Thus R is invariant under a V (b A ¢) implying by [38] that it can be implemented using
equality, negative assignments, and positive clauses all of which are semi-separable and
mergeable. O

Lemma 8.14. Let I' be a constraint language that is anti-Horn and weakly separable.
Then there is either a polynomial parameter transformation from Exact Ones SAT(I")
to d-HITTING SET, for some constant d, or one from Exact Ones SAT(I' U {(z), (—z)})
to Exact Ones SAT(T').

Proof. By the previous lemma, I' is mergeable; thus by Lemma 8.8 we may assume that I'
contains at least one relation which is not zero-valid (or else Exact Ones SAT(I") is in
P and we produce a trivial reduction). Pick some R € T'; we will attempt to implement
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8.4. Characterization 1I: Remaining cases

either () and (—z) directly, or (z = y) and invoke Lemma 8.9. Since the construction
is similar to our previous constructions, we cover them only briefly.

If R is zero-valid and one-valid, then we implement (x = y) by grouping x and y
according to some tuple o ¢ R (we cannot obtain an implication since R is invariant
under FPT(2)).

If R is neither zero-valid nor one-valid, then grouping = and y according to some o € R
produces (z = 0) A (y = 1) (note that (x # y) is not anti-Horn).

If R is zero-valid and not one-valid, then we get the constraint (—x), and using any
non-zero-valid R’ € T we get ().

Finally, we get to assume that every relation R € I' is one-valid but not zero-valid;
we immediately get the constraint (z) = R(z,...,z). If there are any tuples av < § such
that « € R, 8 ¢ R for any R € T, then using (z) we may proceed as in Lemma 8.10
by placing ¢; in the positions true in «, producing (z = y). Otherwise, we find that
every R € I' is upwards closed, i.e., for each a € R and any 8 > « we also have § € R. In
this case, every relation has an implementation using positive clauses only: To implement
such a relation R, for each maximal (w.r.t. bitwise <) tuple not in R make a positive
clause excluding the tuple. If k is larger than the number of variables, then the instance
is negative and we reduce to a dummy no-instance. Otherwise, since positive clauses
are upwards closed, the instance is a yes-instance if and only if there is a satisfying
assignment with at most k true variables. Thus we may simply replace our instance by an
equivalent instance of d-HITTING SET (where d is the maximum arity of any R € T'). [

Thus when T is anti-Horn, we either have a reduction of Exact Ones SAT(T") to d-
HITTING SET, or we may conclude that we have constants available and that I" is merge-
able as well as semi-separable. The latter case will be treated later by Theorem 8.18. In
the former case, we get a polynomial kernelization for Exact Ones SAT(I") as a conclusion
of Theorem 1.5.

We will now consider the case that I' is mergeable and contains at least one relation
which is not anti-Horn.

Lemma 8.15. Let I' be a weakly separable constraint language which is mergeable but
not anti-Horn. Then Exact Ones SAT(T'U{(x # y)}) reduces to Exact Ones SAT(T") by
a polynomial parameter transformation.

Proof. There must be witness tuples «, 5 € R for some R € I" such that oV 5 ¢ R. For
convenience we collect the positions of R according to the values of  and 3 into four
types A through D. Note that positions of type B and C' must exist to distinguish aV 8
from « and £.

A B C D
« 0 0 1 1 €R
IS 0 1 0 1 €Rr
avB 0 1 1 1 ¢R
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We first observe that a A5 ¢ Ras aAfS,a, € Rand aVf ¢ R would form a witness
against invariance under FPT(1). It follows that the zero-tuple cannot be contained
in R since «,0,3,0 € R and o A ¢ R would form a witness against mergeability.

Let us now consider the case that R is not one-valid. In that case we can define a
binary relation R’ by plugging the first variable into positions A and B and the second
variable into positions C and D (at least B and C exist). Clearly this gives (0,1) € R’
since « € R and (0,0),(1,1) ¢ R since the zero and the one-tuple are not in R. Now
if (1,0) € R then R = {(0,1),(1,0)}, i.e., we have an implementation of disequality.

Otherwise R = {(0,1)} and we can add two new variables ¢y and ¢; to any in-
stance (F,k) of Exact Ones SAT(T") as well as a constraint R'(cp,c1) obtaining F'.
Clearly (F,k) and (F',k + 1) are equivalent and by ¢p and ¢; we have constants zero
and one available. Using the constants allows us to implement disequality by putting cg
into positions A, ¢; into positions D, the first variable into positions B, and the second
variable into positions C.

Let us now address the case that R is one-valid; so far we know the following:

A B CD
a 0 0 1 1 €R
B8 0 1 0 1 €R
1 1 1 1 1 €R
0 0 0 0 0 ¢R
aAB 0 0 0 1 ¢R
avB 0 1 1 1 ¢R

In this case we also know that positions of type A must exist, to distinguish the
included one-tuple from the excluded a VvV 5. We may also assume that we have the
constant one c; available since R(cy,...,c1) forces this.

Now, if there are no positions of type D, then we put x, y, and z into positions A, B,
and C respectively, obtaining a ternary relation R” such that:

T Yy =z
o 0 0 1 eR
B 01 0 R
1 1 1 1 eRr"
dANB0 0 0 ¢R"
Vg 0 1 1 ¢R'

Otherwise, i.e., if positions of type D exist then we can also obtain an R” with these
properties by additionally putting ¢; in positions D. We may conclude that (1,0,1) ¢ R”,
since otherwise (1,0,1),(1,1,1),(0,0,1) € R” but (0,1,1) ¢ R” would violate invariance
under FPT(2). Now putting ¢; in place of z gives a binary relation R” containing (0, 0)
and (1,1) since (0,0,1) and (1,1,1) € R” and not containing (0,1) as well as (1,0)
since (0,1,1),(1,0,1) ¢ R”. Thus R"” is equality. Therefore we can implement the con-
stant zero ¢ by adding k new variables s1, . .., s as well as equality constraints R (¢, s;)
for all 7. Now we can implement disequality on two variables x and y as R"(cg, z,y). O
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We continue by proving that we may assume to have assignments in I, if I" implements
(or contains) disequality.

Lemma 8.16. IfT" implements disequality then Exact Ones SAT(T'U{(x), (—x)}) reduces
to Exact Ones SAT(T) by a polynomial parameter transformation.

Proof. Let (F,k) be an instance of Exact Ones SAT(I' U {(z), (—z)}). We show how
to obtain an equivalent instance (F',k’) of Exact Ones SAT(T") by implementing (x)
and (—z): We start with 7/ = F and let the new parameter be ¥ = k + 1. We add a
new variable ¢; as well as k' + 1 variables y1, ...,y 41 and implementations of (¢ # y;)
for all i € {1,...,k" 4+ 1}. Furthermore we add ¢y and an implementation of (¢; # o).
Observe that every feasible assignment for F’ of weight k' assigns one to ¢; and zero to
all y;; otherwise assigning one to all y; would give a total number of true variables greater
than k. Thus by (¢1 # ¢g) it must assign zero to ¢g. Therefore we can implement (x)
by (x # ¢p) and (—z) by (z # c1).

It is easy to see that any satisfying assignment with &’ true variables can be restricted
to a feasible assignment for F with k true variables. The converse is straightforward
too. O

For the remaining cases we can now show that Exact Ones SAT(I") does not admit a
polynomial kernelization if I is not semi-separable (i.e., not invariant under FPT(1 < 2)).

Theorem 8.17. Let I' be a weakly separable constraint language. If I' implements dis-
equality and contains a relation that is not invariant under FPT(1 < 2), then Exact
Ones SAT(T") does not admit a polynomial kernelization unless NP C co-NP /poly.

Proof. We give a polynomial parameter transformation from the MULTIPLE COMPATIBLE
PATTERNS (MCP) problem, already used in Lemma 7.6. The definition of MCP can
be found in Section 1.4 and Lemma 1.8 shows that MCP does not admit a polynomial
kernelization unless NP C co-NP/poly. W.l.o.g. I" contains the assignments (x) and (—z).

Let R be any relation from I' that is not invariant under FPT(1 > 2). Let o, 5,7y € R
and 6 ¢ R be a witness for this fact. Again we collect the positions of the tuples into
groups, A through E:

A B CDE
a« 0 1 0 0 1 €R
B 0 1 0 1 1 €R
v 0 0 1 0 1 €R
5§ 0 0 1 1 1 ¢R

If no position in these tuples matches the D column then § = ~. If no position of
type B or C is present, then these tuples would also witness that R is not invariant
under FPT(1) or FPT(2), respectively, contradicting our assumption on I'.

We use R to implement (z — y) A (y # z). Put constant zero into positions A
and constant one into all positions E. Put z, y, and z into positions D, B, and C,
respectively, and add an implementation of (y # z).
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Now we can use the same reduction from MCP as in Lemma 7.6, since the reduction
maps yes-instances to formulas with satisfying assignments having exactly £+ ones and
no-instances to formulas where all satisfying assignments have less than k + r ones. [

It remains to consider the case that all relations in I" are mergeable and semi-separable,
i.e., invariant under FPT(1 xxt 2). Note that this partial polymorphism contains all
columns of the two partial polymorphisms FPT(1) and FPT(2) and is thus stronger
(i.e., it implies the other two).

Theorem 8.18. Let I' be a semi-separable and mergeable constraint language. Then
Exact Ones SAT(I") admits a polynomial kernelization.

Proof. If T is anti-Horn, then according to Lemma 8.14 we either have that Exact Ones
SAT(I'U {(x), (—z)}) reduces to Exact Ones SAT(T"), or Exact Ones SAT(I") reduces to
the d-HITTING SET problem. In the latter case, we have a polynomial kernelization by
Theorem 1.5 (and using the fact that d-HITTING SET admits a polynomial kernelization).

If I is not anti-Horn, then by Lemmas 8.15 and 8.16 we again have a polynomial
parameter transformation from Exact Ones SAT(I'U{(x), (—z)}) to Exact Ones SAT(T").

Thus it suffices to show that Exact Ones SAT(I'U{(x), (—x)}) admits a polynomial ker-
nelization; we remark that Exact Ones SAT(T") trivially reduces to Exact Ones SAT(I")
for any IV D T'. For ease of notation, we assume w.l.o.g. that (x), (—x) € T.

Let (F,k) be an instance of Exact Ones SAT(I'). We begin by adding two new
variables ¢g and ¢; as well as constraints (—¢p) and (¢1), and by increasing the parameter
value by one. Clearly, the obtained instance is equivalent to (F, k) and ¢y and ¢; must
take values false and true, respectively, in any satisfying assignment. Slightly abusing
notation we call this new instance (F, k).

Non zero-valid constraints First we will reduce the number of constraints that are not
zero-valid. We exhaustively apply the following steps for each non zero-valid relation R
in I' (let d denote its arity):

e If the number of R-constraints in F is greater than (d!)?-k¢ we can find a sunflower
consisting of k + 1 R-constraints by applying Lemma 2.7 to the set of all tuples of
variables that occur in R-constraints. If the core of the sunflower is empty, then
no assignment of weight exactly k£ can be feasible, since the petal positions do not
share variables. In this case we reject the instance.

e Otherwise we observe that a sunflower can be simplified: Fix any constraint of the
sunflower and consider any two assignments a and (§ to the core variables, such
that (a,0) and (3,0) are feasible. Note that the assignment to the core variables
must always allow for all petal variables to be set to zero, else such an assignment
cannot be extended to a satisfying assignment with & true variables (each of the k+
1 disjoint petals would require at least one true variable). Furthermore let v be any
assignment to the petal variables, such that («, ) is feasible. By an application of
semi-separability it follows that (53,~) is also feasible:
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Thus assignments to the petals are independent of the assignments to the core
variables.

| FPT(12)
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e We have observed that it is sufficient and necessary for the core variables to take
any values such that the petal variables may take value zero. Therefore we add one
new R-constraint, with only the core variables in their positions and the constant-
zero variable ¢y in the petal positions.

e For each constraint of the sunflower, we replace the core variables by the constant
variables ¢y and ¢; matching some feasible assignment to the core, say «. The
assignment to the petals will then be consistent with any core assignment. Thus we
make the following replacements (w.l.o.g. the core consists of the first ¢ positions):

R(:Bla sy ey Y1150 - 7y1,p) = R(Oé, Y11, .- 7y1,p)

R(z1, . @, y21, -5 Y2,p) = R(a,y2,1,- -+, Y2,p)

R(xlu ey ey ?/k+1,17 ce. )yk‘—i-l,p) = R(Oé, yk-s—l,l, ey yk—‘rl,p)
Let us recall, however, that each constraint R(«,y;1,...,¥ip) induces a zero-valid
constraint on y; 1,...,¥;p. Therefore, we may implement these induced constraints

using only equality and negative assignments, according to Lemma 8.8. Thus in
each replacement step we replace k + 1 R-constraints by 1 R-constraint for the
core variables plus a number of equality and negative assignment constraints on
the petal variables.

e Each replacement decreases the number of R-constraints. Thus the number of
repetitions is bounded by the initial size of F.

Zero-valid constraints Now we simplify zero-valid constraints. We replace each zero-
valid constraint by an implementation using negative assignments and equality con-
straints, according to Lemma 8.8. Then we replace all occurrences of variables x that
have a negative assignment (—z) by c.

Next we consider the equivalence classes given by the equality constraints. Observe
that these classes implicitly assign a weight equal to the size of the class. If any class
contains more than k variables, then all those variables must take value zero in any
satisfying assignment of weight k. Accordingly we replace the variables by c¢g. For
the remaining equivalence classes we choose one representative variable per class, say
variable x for some class C. All occurrences of variables from C'\ {z} (except for those
in the equality relations) are then replaced by x. Essentially we have simplified the class
to one variable of weight |C|. Note that equality constraints are the only remaining
zero-valid constraints.
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Bounding the kernel size After these replacements there are at most (d!)? - k% copies
of any non-zero-valid R-constraint of arity d in I". Thus the total number of variables in
such constraints is bounded by O(d - (d!)? - k%), since T' is finite and independent of the
input. All other variables, i.e., those that only occur in equality constraints, must be in
some equivalence class which have size at most k. The total number of such variables for
which the representative is contained in a non-zero-valid constraint is clearly bounded
by k times the number of representatives, i.e., bounded by O(d - (d!)? - k4*+1).

It remains to bound and reduce the number of variables in classes where the represen-
tative occurs only in equality constraints. Note that, in the min ones setting, we would
simply set those variables to zero. Here they may be needed to reach the exact total
weight of k. However, it clearly suffices to keep |k/t]| classes of size t for this purpose;
additional copies have no impact. The total number of variables in these classes is at
most

k
> lk/t] -t <K
t=1
Thus the reduced instance has O(d- (d!)? - k%*1) variables; where d is the maximum arity
of relations in T', i.e., a constant independent of (F, k). O

8.5. Summary

We sum up the properties of Exact Ones SAT(I") in the following corollary.

Corollary 8.19. Let I" be a Boolean constraint language. Then Exact Ones SAT(T') is
FPT if and only if T' is weakly separable, unless FPT = W][1]; and admits a polynomial
kernel if and only if T is semi-separable and mergeable, unless NP C co-NP /poly.

Similarly to Min Ones SAT(T"), the classification of Exact Ones SAT(T") problems does
not follow the lattice of Boolean co-clones. It is natural to ask how the characterizing
partial polymorphisms relate to one another; we find that they are orthogonal: Semi-
separability does not imply mergeability, e.g., (z @ y @ z = 0) is semi-separable but not
mergeable (thus also weak separability does not imply mergeability). Mergeability does
not imply weak separability (or semi-separability), e.g., implications are mergeable but
not weakly separable. Finally, answering another natural question, mergeability and
weak separability do not imply semi-separability, e.g., ((x — y) A (y # 2)) is weakly
separable and mergeable but not semi-separable.
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9. Conclusion

In this chapter we review some of the results presented in this thesis. In the follow-
ing chapter we will present and discuss some open problems and directions of further
research.

Motivating our work and explaining the general interest in kernelization, we have
argued that data reduction is a natural approach for solving problems and for arriving
at decisions, especially for combinatorially hard problems. We considered two ways of
giving a formal definition for data reduction, in order to allow a rigorous study. On
the one hand, we observed that a straightforward definition of data reduction, i.e.,
as a polynomial-time algorithm that shrinks all instances of a given problem, gives a
concept that can be ruled out for NP-hard problems. On the other hand, we saw that
(polynomial) kernelization is a robust way of formalizing data reduction. Moving the
question of analyzing data reductions to the field of parameterized complexity allows a
rigorous study, and parameterized complexity provides a decent amount of tools.

We presented polynomial kernelizations for the standard parameterizations of all prob-
lems from MIN F*TI; and MAX NP (which includes MAX SNP). These results apply
also to the weighted versions if the weights are non-negative rationals and there are no ar-
bitrary small weights (we have argued that less restricted weights make fixed-parameter
tractability impossible unless P = NP). Thus, by showing that a problem can be ex-
pressed as a MIN F*II; or MAX NP problem, one immediately obtains a polynomial
kernelization from our result.

For edge modification problems we exhibited a small graph H, such that H-free EDGE
DELETION and H-free EDGE EDITING do not admit polynomial kernelizations unless NP
C co-NP/poly. This answered an open question of Cai (posed at IWPEC 2006, see [15]),
namely whether the II EDGE DELETION problem admits a polynomial kernel when II can
be characterized by a finite set of forbidden induced subgraphs. Our results show that
there is no general positive answer, but that giving a characterization of classes of positive
or negative cases, or possibly a complete classification, is an interesting problem.

Finally, we completely characterized the admittance of polynomial kernelizations for
Min Ones SAT(T"), Max Ones SAT(I"), and Exact Ones SAT(T") problems, depending on
the constraint language I'. For Max Ones SAT(I") we also characterized the parameter-
ized complexity into admitting a polynomial kernelization, being FPT but not admitting
a polynomial kernelization unless NP C co-NP /poly, being W[1]-hard but in XP, and
not being contained in XP unless P = NP. Apart from giving complete characterizations
and providing general polynomial kernelizations (including some new cases like maxi-
mizing the number of true variables in an affine formula), we showed that a wide range
of these problems do not admit polynomial kernelizations. As we have seen in Chapter 4
such problems, like the Not-1-in-3 SAT problem, make good source problems to extend
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r Min Ones  Exact Ones Max Ones
width-2 affine P P P
{(@oyez=1)} PK PK P
{(zey®z=0)} P FPT PK
{zdyd2=0),(x)} FPT FPT PK
{wdzdy®z=1)} / affine FPT FPT PK
{(zVvy),(z#y)} PK PK PK
{(x = y) AN (y#2))} PK FPT FPT
{(xVy),(x#y),(xr—y)} PK W(1]-complete FPT
bijunctive PK W([1]-complete W([1]-hard, XP
{z+y+2z=1)} PK PK not in XP
{3 ;zi=p (mod ¢)} FPT FPT not in XP
general FPT WI1] not in XP

Table 9.1.: Examples of constraint languages I' and the properties for Min Ones SAT(T"),
Exact Ones SAT(T"), and Max Ones SAT(I"). Problems marked PK have
polynomial kernels; problems marked FPT are FPT but admit no polynomial
kernelization unless NP C co-NP /poly; problems marked not in XP are not
contained in XP unless P = NP.

the lower bounds via polynomial parameter transformations. See Table 9.1 for a number
of constraint languages as well as the corresponding results for the three CSP variants.

Structure of the chapter In Section 9.1 we discuss possible extensions of the results
for MIN FTII; and MAX NP within the optimization classes defined by Kolaitis and
Thakur [76, 77]. In Section 9.2 we compare the admittance of polynomial kernelizations
to that of having constant-factor approximation algorithms for some of the problems con-
sidered in this thesis (i.e., for those which are the decision version of some optimization
problem).

9.1. Beyond MIN F*II; and MAX NP

In this section we briefly discuss the possibility of extending the polynomial kernelizations
for MIN F*II; and MAX NP to larger classes within the framework of Kolaitis and
Thakur [76, 77]. We will omit formal definitions of the encountered classes and only give
high-level descriptions. Let us begin with the minimization problems, i.e., generalizing
beyond MIN F*II;:

MIN FTII; The next obvious relaxation of MIN FTII; is the class MIN FII;, i.e.,
MIN F*II; without the restriction that the formula v(x, .4, S) be positive in S (the
relation which we minimize over). We remark that the fact that we needed only to
minimize over a single relation instead of a tuple of relations relied heavily on this
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positivity property. However, even with only a single relation, we are able to express
Min Ones SAT({(z +y+ 2z # 1), (z)}) as a MIN FII; problem:

Example 9.1. We express formulas F over {(z+y+z # 1), (z)} as finite structures A =
(A, P,R) where A contains the variables, P is a unary relation, and R is a ternary
relation. We let P(z) = 1 if F contains a constraint (z) and we let R(z,y,z) = 1 if F
contains a constraint (z + y + z # 1). The unary relation S is intended to encode a
truth assignment to the variables in A, i.e., S(z) = 1 if z is assigned true. Thus, given
a correct formulation, |S| will be the number of true variables. We have the following
expression:

gnclzl{|5| (A, S) = (Vx € A%) :(mR(x1, 2, 23) V =S(21) V S(x2) V S(23))
- A (mR(z1,x2,23) V S(z1) V 1S (22) V S(23))
A (mR(z1,z2,23) V S(x1) V S(x2) V =S(23))
A (=P(z1) V 5(21))}

The quantifier-free first-order formula in this expression is equivalent to
(R(l’l,xQ, .%'3) — (S(l’l) + S(.%Q) + S(x;;) 7é 1)) A (P(:):l) — S(xl))

We see that this formulation forces S to correspond immediately to a satisfying assign-
ment for F. Clearly, we will obtain an assignment with a minimum number of true
variables.

Thus MIN FII; already contains problems which do not admit a polynomial kerneliza-
tion unless NP C co-NP/poly. Furthermore, given some instance of a MIN FII; problem,
we may proceed as in Section 3.3 and insert all the given relations (and simplify). Thus
we obtain CNF formulas, i.e., conjunctions of clauses, on literals S(.), and the task is
to find a satisfying assignment that minimizes |S|. This is quite similar to Min Ones
SAT(T") problems, and the study of their kernelizability is a natural conclusion to the
observation about MIN FII;. (In fact, this is what motivated the work on Min Ones
SAT(T") problems presented in Chapter 6.)

Two other generalizations of MIN F*II; are obtained by allowing exists-forall or forall-
erists quantification, namely MIN FT X5 and MIN FTII,, respectively. The latter already
contains the WJ[2]-complete DOMINATING SET problem. The former class appears to
contain compositional problems, e.g.:

OR d-HITTING SET

Input: A set of d-dimensional hypergraphs {#i,...,H;} for some integer ¢
and an integer k.

Parameter: k.

Task: Decide whether at least one of the hypergraphs has a hitting set of
size at most k.
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Clearly, OR d-HITTING SET is NP-complete and it is immediate to give a composition
algorithm for it: Given some number of instances with parameter value k, we make a
union of the sets of hypergraphs. It is easy to see that the new instance (with param-
eter k) is yes if and only if one of the original instances is a yes-instance. Hence, OR
d-HITTING SET does not admit a polynomial kernelization unless NP C co-NP /poly (by
Theorem 1.4).

Without formally introducing MIN FT3, let us sketch the idea of how to express
OR d-HITTING SET: We minimize over a single relation S that is intended to encode
the hitting set. In the existential quantification the number of a hypergraph is chosen.
The remaining formula (universally quantified) expresses that each edge of the chosen
hypergraph has a nonempty intersection with the hitting set encoded by S. To this end
the edges are given as a d+1-ary relation R such that (x1,...,2z4,7) € Riff {z1,...,24} is
an edge of the ith hypergraph (repeating vertices to encode smaller edges). The following
formula then expresses the smallest hitting set size over the given ¢ hypergraphs:

min {ysy . (3i € A)(¥x € AY) : (=R(z1, ..., 24,) V S(1) V ...V S(zq)) A N(z’))}

The base set A contains the disjoint union of the vertex sets of the ¢t hypergraphs as well
as the natural numbers from 1 to ¢. The relation N (7) is true if i € {1,...,t}.

Thus MIN FT™X5 contains problems that do not admit a polynomial kernelization
(unless NP C co-NP/poly). However, the exists-forall quantification seems to allow
disjunctive polynomial kernelizations: One reduces to a possibly large number of small
instances, such that at least one of them is a yes-instance iff the original instance is a
yes-instance (for an example see Fernau et al. [53]). The idea is to make one instance
for each possible assignment to the existentially quantified variables (e.g., Ix C A%);
the kernelization can then focus on the remaining universally quantified formula. Note
that this is trivial for OR d-HITTING SET: The disjunctive polynomial kernelization is
obtained by turning each hypergraph into a single instance (with parameter k) and using
a polynomial kernelization for d-HITTING SET.

MAX NP In the framework of Kolaitis and Thakur [76, 77] MAX NP is called MAX ¥;.
Further, less restricted, classes would be MAX F~II; or its superclass MAX II; = MAX
FII; (note that many of the classes introduced in [76, 77] are also showed to have the same
expressibility). However, both classes contain the W[1]-complete CLIQUE problem, for
which even an fpt-algorithm is unlikely. Again, Boolean CSPs are a possible perspective.
When restricted to maximizing over a single relation S, then MAX FII; problems are
closely related to Max Ones SAT(I") problems (similar as for MIN FII;).

Summary Within the framework of Kolaitis and Thakur our results cannot be extended
to larger classes (i.e., with more quantification power or without the positivity require-
ment). Boolean constraint satisfaction problems provide a way of further analyzing some
of the problems by restricting the formulas which are permitted.
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9.2. Kernelization and approximation revisited

We will now relate some of our kernelization results to the approximability of the cor-
responding optimization problems; this applies for Chapters 3, 6, and 7. We are not
aware of approximability results for the H-free EDGE DELETION and the H-free EDGE
EDITING problem, considered in Chapter 4. The only result for H-free EDGE DELETION
problems is that a few of these problems, i.e., for some choices of H, are contained
in MIN F*1I; (cf. [77]), implying they are constant-factor approximable and that they
admit polynomial kernelizations.

The Exact Ones SAT(T") problem, considered in Chapter 8, does not have an opti-
mization variant.

MIN FTII; and MAX NP

In Chapter 3 we showed that the standard parameterizations of all MIN F*II; and
MAX NP problems admit polynomial kernelizations. It is known that all problems from
these classes can be approximated to within a constant factor of the optimum in polyno-
mial time. Khanna, Motwani, Sudan, and Vazirani [74] showed that APX is the closure
of MAX SNP under PTAS-preserving reductions, and APX-PB is its closure under so-
called E-reductions. Thus, while PTAS-preserving reductions as well as E-reductions do
not appear to preserve kernelizability or even parameterized complexity (both closures
include CONNECTED VERTEX COVER and BIN PACKING), there is a syntactic core of APX
on which the perceived relation holds true.

Min Ones SAT(T')

Let us begin by restating the characterization of approximability due to Khanna et
al. [75].

Theorem 9.2 ([75]). Let I" be a finite set of Boolean relations.
e IfT is zero-valid, Horn, or width-2 affine then Min Ones SAT(T") is in P.
e Llse, if T' is bijunctive or IHS-B then Min Ones SAT(T") is APX-complete.
e FElse, if " is affine then Min Ones SAT(I') is NEAREST CODEWORD-complete.
o FElse, if I" is anti-Horn then Min Ones SAT(I") is MIN HORN DELETION-complete.
e Flse, if T' is one-valid then Min Ones SAT(I") is poly-APX-complete.
o FElse, SAT(T") is NP-hard.

Remark. Arora et al. [5] showed that NEAREST CODEWORD is hard to approximate to
within a factor of Q(Zloglien) for any € > 0. The same bound holds for MIN HORN
DELETION (cf. [75]). For this discussion it suffices that these results rule out constant-
factor approximability (assuming P # NP).
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9. Conclusion

If " is bijunctive or IHS-B, then it can be implemented by positive clauses, negative
clauses, and implications; all of these are mergeable. Thus in the known constant-
factor approximable cases Min Ones SAT(T") does also admit a polynomial kernelization.
Additionally, there are constraint languages that are mergeable, but which are neither
bijunctive nor IHS-B. In fact already IHS-B allows only positive clauses or negative
clauses, whereas any choice of positive and negative clauses gives a mergeable constraint
language. Furthermore, {(x @ y ® z = 1)} is affine but not contained in the APX or P
cases, however Min Ones SAT({(x ®y @ z = 1)}) admits a polynomial kernelization.

Max Ones SAT(T)

Again, let us begin the discussion by recalling the characterization of approximability.
Theorem 9.3 ([75]). Let I' be a finite set of Boolean relations.

e IfT is one-valid, anti-Horn, or width-2 affine then Max Ones SAT(T') is in P.

Else, if T is affine Max Ones SAT(T") is APX-complete.

FElse, if T' is strongly zero-valid, Horn, or bijunctive then Max Ones SAT(I") is
poly-APX-complete.

Else, if T is zero-valid then Max Ones SAT(T") is not approximable.

Else, SAT(I") is NP-hard.

We showed that Max Ones SAT(I') admits a polynomial kernelization when I' is
affine. Additionally, we obtained polynomial kernelizations for some of the frozen co-
clones within the co-clone of bijunctive relations. Thus, again, we have polynomial
kernelizations for all choices of I' such that the optimization version is constant-factor
approximable.

Summary All constant-factor approximable problems considered in this thesis have
been shown to admit polynomial kernelizations. Additionally, for both Min Ones SAT(T")
and Max Ones SAT(T") there are choices of I' such that the respective problem is hard to
approximate to within a constant factor of the optimum, but still admits a polynomial
kernelization.

128



10. Open problems and further research

In this final chapter we discuss some open problems directly related to work presented
in this thesis as well as some general issues from parameterized complexity and kernel-
ization.

Kernelization lower bounds

Currently, lower bounds for the kernelizability of parameterized problems are one of the
most interesting topics in parameterized complexity.

In their lower bound framework Bodlaender et al. [16] introduced the notions of
AND- respectively OR-distillation algorithms and conjectured that NP-complete prob-
lems do not have such algorithms. They showed that a polynomial kernelization for
any OR- or AND-compositional parameterized problem, whose unparameterized ver-
sion is NP-complete, would give such an OR- respectively AND-distillation algorithm
(for the NP-complete unparameterized version). Fortnow and Santhanam [56] proved
the OR-distillation conjecture, assuming NP ¢ co-NP/poly (i.e., if the OR-distillation
conjecture does not hold then NP C co-NP/poly). It is an open problem whether
the AND-distillation conjecture can be proven using a similar assumption in classical
complexity. Such a result would strengthen the consequence of having polynomial ker-
nelizations for some well-studied AND-compositional problems, e.g., TREEWIDTH and
PATHWIDTH. Similarly, it is an interesting problem whether the implication of having
an OR-distillation for some NP-complete problem can be further strengthened.

Dell and van Melkebeek [44] provided concrete lower bounds on the total size of
any kernelization (or stronger on the cost of any oracle communication protocol) for a
number of parameterized problems, e.g., d-HITTING SET has no kernelization with total
size O(k?7¢) for any € > 0 assuming NP ¢ co-NP/poly. Note that this strong result
makes no statement about the number of vertices in the problem kernel. Both the
sunflower-based kernelization (see Chapter 2) as well as Abu-Khzam'’s [1] kernelization
(based on crown-decompositions) achieve a bound of O(k?) on the number of edges; the
degree of this bound cannot be improved by [44]. However, the latter kernelization has
a bound of O(k~!) on the number of vertices whereas the former only has the (then
trivial) bound of O(k?). It is an open problem to provide a kernelization with a smaller
number of vertices, or to exclude such a kernelization. As to the latter, it is an open
problem to derive methods that can prove concrete polynomial lower bounds on the
number of vertices or variables.

It would also be interesting to have such concrete lower bounds for the Boolean CSPs
that we considered. However, the work of Dell and van Melkebeek [44] seems to relate to
a notion of arity in the problems. While fixing a (finite) constraint language I" gives us
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10. Open problems and further research

a maximum arity, there may be an equivalent constraint language I that has a smaller
maximum arity; consider for example I' = {(w V 2) A (y V 2)} and T” = {(z V y)}:
Clearly both constraint languages can implement one another (without existential or
frozen existential variables), but the maximum arities are different.

General upper and lower bounds for kernelization

Recently, we have seen a few general results providing polynomial kernelizations for
certain problems, e.g., consider the nice results of Bodlaender et al. [17] for problems
on planar or bounded-genus graphs as well as the subsequent paper of Fomin et al. [55]
for problems on graph classes excluding some fixed minor. For our understanding of
problems it seems important to obtain further results of this type as well as to strengthen
and simplify the existing ones (if possible), making them more accessible.

The related issue of general lower bounds appears to be quite hard. For example, if we
would focus on graph problems definable in some restriction of second-order logic and
restricted to planar graphs, then certainly this will also contain problems that are (triv-
ially) polynomial-time solvable. In the study of Boolean constraint satisfaction problems
we were able to do a case analysis, which would allow to later consider constraint lan-
guages that are, say, Horn but not anti-Horn, allowing reductions from hard problems
(and similarly when using partial polymorphisms). This also includes that we could use
the known characterization of the polynomial cases, further helping to restrict the con-
straint languages. An easier but less general goal is to exhibit a matching lower bound
for some problem inside a certain class or restricted setting.

Some open problems in kernelization

Apart from the general open problems relating to kernelization, let us mention a few
problems whose kernelizability has received significant attention. We begin with EDGE
BIPARTIZATION and DIRECTED FEEDBACK VERTEX SET:

EDGE BIPARTIZATION

Input: A graph G = (V, E) and an integer k.

Parameter: k.

Task: Decide whether there is a set of edges F' C E of size at most k such
that G — F' is bipartite.

DIRECTED FEEDBACK VERTEX SET

Input: A directed graph G = (V, A) and an integer k.

Parameter: k.

Task: Decide whether there is a set of vertices S C V of size at most k such
that G — .S contains no directed cycles.
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Both problems are known to be FPT by work of Reed, Smith, and Vetta [103] for the
vertex-deletion variant called GRAPH BIPARTIZATION (as observed by Guo et al. [62]) and
Chen et al. [35] respectively. It is open whether they admit polynomial kernelizations.

Moreover, there are a number of graph problems which are known to admit quadratic
kernelizations (i.e., with O(k?) vertices) and it would be interesting to know which of
them can be improved to (vertex) linear, e.g., FEEDBACK VERTEX SET and MINIMUM
FILL-IN:

MINIMUM FILL-IN
Input: A graph G = (V, E) and an integer k.
Parameter: k.

Task: Decide whether there is a set of at most £ additional edges F' C (‘2/) \E
such that G’ = (V, E U F) is chordal, i.e., G’ contains no induced cycle of
length at least 4.

Let us recall that Dell and van Melkebeek [44] showed that FEEDBACK VERTEX SET
does not admit a kernelization with total size O(k%>~¢); this does not rule out a kerneliza-
tion with O(k) vertices, but the bound of O(k?) edges, as achieved by Thomassé’s [110]
kernelization, is essentially optimal.

Kernelizability of edge modification problems

With the results presented in Chapter 4, i.e., an H-free EDGE DELETION and an H-free
EDGE EDITING problem which do not admit polynomial kernelizations, it is clear that
the kernelizability of these problems will not behave as simply as their parameterized
complexity. The latter was characterized by Cai [27], who showed that the following
problem is fixed-parameter tractable when Il can be characterized by finitely many
forbidden induced subgraphs:

II-GRAPH MODIFICATION
Input: A graph G and integers i, j, and k.
Parameter: ¢ + j + k.

Task: Decide whether it is possible to obtain a graph with property II by
deleting at most ¢ vertices of GG, adding at most j edges, and deleting at
most k edges.

A simple fpt-algorithm for this problem will repeatedly search for a forbidden induced
subgraph and branch on one of the finitely many possible modifications, e.g., deleting an
edge, that will “destroy” the induced subgraph; the depth of the search tree is obviously
bounded by i+ j+k. (This easily extends to edge editing problems using Cai’s algorithm
as a black box: As a first step we may guess one of the £ + 1 ways of dividing ¢ edit
operations into additions and deletions.)
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10. Open problems and further research

Concerning the kernelizability let us observe again that, when only vertex deletions
are allowed, there is a straightforward reduction to d-HITTING SET (where d equals the
maximum number of vertices in any forbidden induced subgraph of the characteriza-
tion): We make a family of sets, containing each vertex set that induces a forbidden
subgraph. Then hitting sets for this family correspond directly to the same number of
vertex deletions that would remove all forbidden induced subgraphs. Observe that this
approach does not work for edge modification problems, since the modifications may
create new copies of forbidden induced subgraphs (exceptions include, e.g., triangle-free
EDGE DELETION: edge deletions cannot create new triangles).

The kernelizability of edge modification problems is open, even if we are only interested
in making graphs H-free for some fixed graph H using k edge deletions. Let us recall
that making a graph H-free by deleting k£ edges is equivalent to making the complement
graph H-free by adding k edges. Thus, it suffices to consider H-free EDGE DELETION
and H-free EDGE EDITING problems.

Considering H-free EDGE DELETION (or the more general case of forbidding a set of
graphs, H-free EDGE DELETION) we quickly observe that it is somewhat related to Min
Ones SAT(I"). It is possible to reduce instances of H-free EDGE DELETION to instance
of Min Ones SAT(T") for a suitable I', however, the following example shows that this is
not necessarily helpful for resolving the kernelizability.

Example 10.1. We consider the CLUSTER DELETION problem, where the task is to
delete at most k edges to obtain a cluster graph, i.e., a Ps-free graph (containing no
induced path on three vertices). Let us try to translate a given graph into an equivalent
formula, i.e., iff there are k edge deletions that make the graph Ps-free then the formula
shall have a satisfying assignment with at most k true variables. We make a variable for
each edge with the intention that assigning true is equivalent to deleting the edge:

e For any three vertices which have at most one edge between them we do not require
any constraint since no edge deletions can create a P3 between these vertices.

e For three vertices which induce a P; we know that at least one of the two edges
must be deleted, thus we make disjunction (z V y) on the variables corresponding
to the two edges. If this constraint is satisfied then the three vertices cannot form
a Ps (there will be at most one edge between them).

o [f three vertices of the graph form a triangle, then we want to avoid deleting exactly
one of the three edges. Thus we make a not-1-in-3 constraint (z+y+ z # 1) for its
three edges; it is feasible to make no deletions or to delete at least two of the edges.
Recall that we have already used this constraint when showing a lower bound for
kernelizations of the H-free EDGE DELETION problem in Chapter 4.

Thus Ps-free EDGE DELETION reduces to Min Ones SAT({(z Vy),(x +y + 2z # 1)})
by a polynomial parameter transformation. However, the former problem admits a
polynomial kernelization (in fact one with a linear number of vertices [61]) whereas the
latter does not unless NP C co-NP /poly. This follows from an immediate polynomial
parameter transformation from Min Ones SAT({(x),(z +y + z # 1)}) for which we
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showed a lower bound in Chapter 4. (It is also easy to verify that (x +y + 2z # 1) is not
mergeable, and that Min Ones SAT({(z V y), (z +y + z # 1)}) is NP-complete.)

Thus the lower bounds obtained for Min Ones SAT(I") problems do not easily carry
over to H-free EDGE DELETION problems (even though in the example we used a seem-
ingly minimal selection of constraints). However, as seen in Chapter 4, they can be used
by giving careful reductions from Min Ones SAT(I") to some H-free EDGE DELETION
problem. The work presented in Chapter 6 provides a wide selection of possible source
problems that do not admit polynomial kernelizations (unless NP C co-NP /poly). Still,
one should clearly not expect to prove all lower bounds for H-free EDGE DELETION in
this way, the structure of graphs H obtained by similar reductions would likely be too
restricted. Also, a general upper bound result for these problems, beyond the cases
subsumed by MIN F*II;, seems nowhere in sight.

Concerning the case of more than one forbidden subgraph, let us point out that, while
Min Ones SAT(I”) is always at least as hard as Min Ones SAT(T") for any I' D T, an
edge deletion problem may actually become simpler: Compare the complexity of making
a graph H-free to that of making it {H, Ky}-free (i.e., making it an independent set).
Similarly, using the graph H as in Chapter 4, H-free EDGE DELETION does not admit a
polynomial kernelization, whereas { H, P3}-free admits a polynomial kernelization (triv-
ially since P3 < H). The crucial difference and difficulty is that constraints of a formula
exist independently of one another whereas the edges of a graph and added modifications
to the edge set give rise to forbidden subgraphs. A rigorous study of these problems may
require to first express the forbidden induced subgraphs in a different way, e.g., at hand
of the forbidden adjacency patterns of ¢ vertices, where ¢ equals the number vertices in
the largest forbidden induced subgraph.

Parameterized complexity of Min UnSAT(T’)

In Chapters 6 and 7 we have obtained complete characterizations of the polynomial
kernelizability of Min Ones SAT(I") and Max Ones SAT(I") problems, respectively. Let
us also recall that Max SAT(T") problems admit polynomial kernelizations for any T,
as Max SAT(I") problems can be expressed as MAX SNP problems (cf. [75]). Of the
four basic optimization problems for Boolean constraint satisfaction problems this leaves
the kernelizability of Min UnSAT(T") as an open problem. Note however, that for these
problems even the parameterized complexity (say a classification into FPT and W/[1]-
hard cases) is open. So far we know only a few positive results for certain languages T,
e.g., Min UnSAT({(z # y)}) is EDGE BIPARTIZATION, Min UnSAT({(z = v), (v # y)})
is BALANCED SUBGRAPH:

BALANCED SUBGRAPH
Input: A graph G = (V, E) with edges labeled = or # and an integer k.
Parameter: k.

Task: Decide whether there is a two-coloring of the vertices that respects
all but at most k of the edge labels.
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10. Open problems and further research

EDGE BIPARTIZATION is FPT (Reed et al. [103]) and BALANCED SUBGRAPH easily
reduces to it (Hiiffner et al. [69]). Razgon and O’Sullivan [102] gave a more general
result, by showing that Almost 2SAT, i.e., Min UnSAT({(z V y), (z V =), (-z V —y)}),
is fixed-parameter tractable. As to kernelizability of Min UnSAT(I") problems, let us
recall that even the existence of a polynomial kernelization for EDGE BIPARTIZATION
(Min UnSAT({(x # y)})) is an open problem. It is likely that Min UnSAT(I") is W[1]-
hard already for fairly simple choices of I' and that only few cases admit polynomial
kernelizations (modulo standard complexity assumptions). To add to this intuition let us
state Khanna et al.’s [75] approximability characterization for Min UnSAT(T") problems.

Theorem 10.2 ([75]). Let I" be a finite set of Boolean relations.
o [fT is one-valid, zero-valid, or 2-monotone then Min UnSAT(T) is in P.
o FElse, if I" is IHS-B then Min UnSAT(I") is APX-complete.
e FElse, if I" is width-2 affine then Min UnSAT(T") is MIN UNCUT-complete.
e Llse, if T is bijunctive then Min UnSAT(T') is MIN 2CNF DELETION-complete.
e Llse, if T' is affine then Min UnSAT(I") is NEAREST CODEWORD-complete.
o FElse, if I" is Horn then Min UnSAT(I") is MIN HORN DELETION-complete.
e FElse, Min UnSAT(T") is not approzimable.

Remark. MIN UNCUT is the optimization variant of EDGE BIPARTIZATION and MIN 2CNF
DELETION corresponds to Almost 2SAT.

Already without a full discussion of the different degrees of inapproximability it is quite
apparent that Min UnSAT(T") problems are hard to tackle even for simple constraint
languages I'. On a positive note at least, we may restrict our attention to constraint
languages I" which are zero-valid, one-valid, Horn, anti-Horn, affine, or bijunctive: For
other choices of I' already satisfiability of formulas over I', i.e., SAT(I"), is NP-hard;
asking whether & = 0 deletions suffice is equivalent to SAT(I"), thus Min UnSAT(T") is
not in XP (unless P = NP).

Outlook

In the past few years some deeply influencing results about kernelization were uncovered.
There are meta-theorems, essentially tight lower bounds, and connections to classical
complexity. Nonetheless there are still lots of fascinating open problems, and we should
also expect more general results. Also, in reaction to the recent lower bound develop-
ments, there will likely be more research on relaxations of kernelization, e.g., disjunctive
kernelizations. Similarly, all the new results put wear and tear onto the definitions of
this fairly new area, and it may be time to carefully assess the influence of some details
that are not yet set in stone.
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