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A B S T R A C T

In this thesis we consider the two-dimensional bin packing problem and the strip
packing problem, which are popular geometric generalizations of the classical bin
packing problem.

In both problems, a list of rectangles has to be packed into a designated area such
that no two rectangles overlap and all rectangles are packed axis-parallel. For the
strip packing problem, the given items have to be packed into a strip of unit width
and minimal height, whereas in the two-dimensional bin packing problem a packing
has to be found into a minimal number of unit-sized bins.

We investigate approximation algorithms and online algorithms for these problems
and consider variants where rotations of the rectangles are forbidden and where ro-
tations by 90 degrees are allowed. In particular, we present two approximation algo-
rithms for strip packing with approximation ratios 1.9396 and arbitrarily close to 5/3,
respectively. These results are the first improvements upon the approximation ratio
of 2 that was established 16 years ago. Moreover, we show an improved lower bound
of 2.589 on the competitive ratio of online strip packing along with an upper bound
of 2.618 for restricted input instances. For two-dimensional bin packing we derive
best-possible approximation algorithms for the variants with and without rotations.

Z U S A M M E N FA S S U N G

In dieser Arbeit befassen wir uns mit dem zweidimensionalen Bin Packing Problem
und dem Strip Packing Problem. Beide Probleme sind geometrische Verallgemeine-
rungen des klassischen Bin Packings.

Bei beiden Problemen soll eine gegebene Liste an Rechtecken so in einen vorge-
gebenen Bereich gepackt werden, dass die Rechtecke sich nicht überlappen und alle
Rechtecke achsenparallel gepackt sind. Beim Strip Packing soll die Packungshöhe ei-
ner Packung der Rechtecke in einen Streifen (Strip) der Breite 1 minimiert werden.
Dahingegen erfolgt die Packung beim Bin Packing in eine minimale Anzahl an Qua-
draten (Bins) der Größe 1.

Wir untersuchen Approximationsalgorithmen und Onlinealgorithmen für diese Pro-
bleme und unterscheiden die Varianten, in denen die Rechtecke nicht rotiert werden
dürfen und in denen eine Rotation um 90 Grad erlaubt ist. Für das Strip Packing Pro-
blem zeigen wir Approximationsalgorithmen mit Güten 1, 9396 und beliebig nah an
5/3. Dies sind die ersten Verbesserungen der Approximationsgüte von 2 die vor 16

Jahren gezeigt wurde. Des Weiteren zeigen wir eine verbesserte untere Schranke von
2, 589 für das online Strip Packing Problem und geben einen Onlinealgorithmus mit
Güte 2, 618 für eingeschränkte Instanzen an. Für das Bin Packing Problem präsentie-
ren wir bestmögliche Algorithmen für die Varianten mit und ohne Rotation.
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1
I N T R O D U C T I O N

The classical bin packing problem is one of the most fundamental problems in combi-
natorial optimization. In this thesis we consider popular geometric generalizations of
this problem, namely, the two-dimensional bin packing problem and the strip packing
problem.

1.1 PA C K I N G P R O B L E M S

In the classical (one-dimensional) bin packing problem one is given a list of items
I = {a1, . . . , an} with sizes si ∈ (0, 1] and an unlimited supply of unit-sized bins. The
goal is to find an assignment (packing) of the items to a minimum number of bins
such that the sum of item sizes in each bin does not exceed its unit capacity. The one-
dimensional problem and its applications are subject to a great number of articles, see
Coffman, Garey & Johnson[13] for a survey.

In this thesis we consider the two-dimensional bin packing problem and the strip
packing problem. These geometric generalizations of the bin packing problem have
received substantial research interest in recent years, we refer to Sections 1.3.1 and
1.4.1 in this introduction for further references.

In the two-dimensional bin packing problem, a list I = {r1, . . . , rn} of rectangles
of width wi ≤ 1 and height hi ≤ 1 is given. An unlimited supply of square bins of
unit size is available to pack all items from I such that no two items overlap and all
items are packed axis-parallel into the bins. The goal is to minimize the number of
bins used. For the strip packing problem, the given items have to be packed into a
strip of unit width and minimal height.

For both problems two main variants have been studied, taking into consideration
the rotation of items. Depending on the variant, rotations might be completely forbid-
den or rotation by 90 degrees are allowed. Note that the assumption of unit-sized bins
is a restriction in the case where rotations are permitted.

1.2 A P P L I C AT I O N S

Classical bin packing has a large number of applications, reaching from industry (cut-
ting material such us cables, lumber or paper) to computer systems (memory alloca-
tion in paged computer systems) and networking (packet routing in communication
networks). Effectively, bin packing appears as a sub-problem in various other settings.

Additionally, there are several new applications for the geometric generalizations
of bin packing that we consider here. Most importantly, in manufacturing settings
rectangular pieces need to be cut out of some sheet of raw material, while minimizing
the waste. Obviously, cutting problems and packing problems correspond to each
other. Restrictions to orthogonal packing and packing with restricted or even without

1



2 introduction

rotations make sense in this setting as well if we cut items out of patterned fabric and
have to retain the alignment of the pattern. These cutting stock problems occur as bin
packing and strip packing problems.

Scheduling independent tasks on a group of processors, each requiring a certain
number of contiguous processors or memory allocation during a certain length of
time, can also be modeled as a strip packing problem[37]. In this application the width
of the strip represents the total number of processors or memory available, and the
height represents the maximal completion time. Thinking of (semi-)manually oper-
ated machines instead of processors we might have periodic breaks, as they would
occur when working in shifts, making this a two-dimensional bin packing problem.

Further applications can also be found in VLSI-design (minimum rectangle place-
ment problem[7]) and in the advertisement placement problem[19]. In this problem, we
have to place all given rectangular ads on a minimal number of pages or web-pages.

In this thesis we develop approximation algorithms, that get the complete input
at once and have to compute an approximate solution in polynomial time, and we
consider online algorithms, that receive the input items one after the other and have
to irrevocably place each item before the next item is released. For both types of
algorithms, the solution derived by the algorithm is compared to an optimal solution.

In the following sections we introduce both of these concepts along with the cor-
responding related work on two-dimensional packing and a short description of our
contribution.

1.3 A P P R O X I M AT I O N A L G O R I T H M S

The one-dimensional bin packing problem was one of the first problems to be proven
NP-complete[20] and, according to Garey, Coffman & Johnson[13], one of the first
problems for which the idea of worst-case performance guarantees was investigated.
Of course, also any generalization that contains the original problem is NP-complete.
As we cannot expect to find efficient algorithms for NP-complete problems, research
has concentrated on finding good approximation algorithms. In this thesis we use the
following two notions of the approximation ratio.

Let ALG(I) be the value, i.e., the height of the strip or the number of bins, of a
packing produced by algorithm ALG on input I. Denote an optimal algorithm by
OPT. The (absolute) approximation ratio of packing algorithm ALG is defined to be

ρALG = sup
I

{
ALG(I)
OPT(I)

}
.

A large portion of the previous work on two-dimensional packing problems has
focused on the asymptotic approximation ratio, i.e., the behavior of the algorithm on
instances with large optimal value. The asymptotic approximation ratio of packing
algorithm ALG is defined to be

ρ∞
ALG = lim sup

n→∞
sup

I

{
ALG(I)
OPT(I)

∣∣∣∣ OPT(I) = n
}

.
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A problem admits a polynomial-time approximation scheme (PTAS) if there is a
family of algorithms {Aε | ε > 0} such that for any ε > 0 and any instance I, Aε

produces a (1 + ε)-approximate solution in time polynomial in the size of the input.
A fully polynomial-time approximation scheme (FPTAS) is a PTAS where addi-
tionally Aε has run-time polynomial in 1/ε. Asymptotic (fully) polynomial-time ap-
proximation schemes are similarly defined in terms of the asymptotic approximation
ratio.

1.3.1 known results

Due to its prominence and importance, one-dimensional bin packing received a lot of
research attention. The most important results include an asymptotic PTAS by Fer-
nandez de la Vega & Lueker[18] and an asymptotic FPTAS by Karmarkar & Karp[33].
On the negative side, it is well known that bin packing cannot be approximated within
a factor of 3/2− ε for any ε > 0. We also refer to the survey of Coffman, Garey &
Johnson[13] for more details on this problem. In the following, we present in more
detail the results on the two-dimensional problems that we investigate in this thesis.

strip packing . Coffman, Garey, Johnson & Tarjan[14] studied algorithms based
on methods for one-dimensional bin packing. Their algorithms, which pack the rect-
angles on shelves, are called Next Fit Decreasing Height (NFDH) and First Fit

Decreasing Height (FFDH). They proved that NFDH(I) ≤ 2 OPT(I) + hmax(I) and
FFDH(I) ≤ 1.7 OPT(I) + hmax(I), where hmax(I) is the maximal height among all
rectangles in the instance I. The approximation algorithm presented by Sleator[42]

generates a packing of height 2 OPT(I) + hmax(I)/2.
The asymptotic performance ratio of the above algorithms was further reduced to

4/3 by Golan[21] and then to 5/4 by Baker, Brown & Katseff[1]. These algorithms gen-
erate packings of heights at most 4/3 ·OPT(I) + 127/18 · hmax(I) and 5/4 ·OPT(I) +
53/8 · hmax(I), respectively.

Kenyon & Rémila[34] and Jansen & van Stee[29] gave asymptotic FPTAS ’s for strip
packing without rotations and with rotations, respectively. The additive constant was
recently improved from O(1/ε2) to hmax(I) by Jansen & Solis-Oba[27] at the cost of
a higher running time, i.e., losing the polynomial runtime bound in 1/ε and making
the algorithm an asymptotic PTAS .

In terms of absolute approximability, Baker, Coffman & Rivest[2] showed that the
Bottom Left algorithm has an approximation ratio equal to 3 when the rectangles
are ordered by decreasing widths. Many of the results above also imply an absolute
performance guarantee. The results of Coffman et al.[14] and of Sleator[42] directly
imply absolute approximation ratios of 3, 2.7 and 2.5 for their algorithms, respectively,
since hmax(I) ≤ OPT(I).

This was independently improved by Schiermeyer[39] and Steinberg[43] with algo-
rithms of approximation ratio 2. Especially Steinberg’s algorithm has been used in
many subsequent bin packing and strip packing papers as a subroutine. Jansen &
Solis-Oba[27] showed an absolute PTAS for strip packing with rotations on instances
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with optimal height at least 1. After the work by Steinberg and Schiermeyer in 1994,
there was no improvement on the best known absolute approximation ratio when
rotations are forbidden until very recently. Jansen & Thöle[28] presented an approxi-
mation algorithm with approximation ratio arbitrarily close to 3/2 for restricted in-
stances where the widths are of the form i/m for i ∈ {1, . . . , m} and m is polynomially
bounded in the number of items. Notice that the general version that we consider ap-
pears to be considerably more difficult.

On the negative side, since strip packing includes the one-dimensional bin packing
problem as a special case, there is no algorithm with absolute ratio better than 3/2
unless P = NP .

two-dimensional bin packing . In 1982, Chung, Garey & Johnson[12] proposed
the algorithm Hybrid First Fit for two-dimensional bin packing and proved that its
asymptotic approximation ratio is at most 2.125. Caprara[9] was the first to present
an algorithm with an asymptotic approximation ratio less than 2 for two-dimensional
bin packing. Indeed, he considered 2-stage packing, in which the items must first be
packed into shelves that are then packed into bins, and showed that the asymptotic
worst case ratio between two-dimensional bin packing and 2-stage packing is T∞ =

1.691 . . .. Therefore, the asymptotic FPTAS for 2-stage packing by Caprara, Lodi &
Monaci[10] achieves an asymptotic approximation guarantee arbitrarily close to T∞.

In 2006, Bansal, Caprara & Sviridenko[6] presented a general framework to improve
subset oblivious algorithms and obtained asymptotic approximation guarantees arbi-
trarily close to 1.525 . . . for packing with rotations of 90 degrees or without rotations.
These are the currently best-known asymptotic approximation ratios for general two-
dimensional bin packing problems. For packing squares into square bins, Bansal, Cor-
rea, Kenyon & Sviridenko[7] gave an asymptotic PTAS . On the other hand, the same
paper showed the APX -hardness of two-dimensional bin packing without rotations,
thus no asymptotic PTAS exists unless P = NP . Chlebík & Chlebíková[11] were the
first to give explicit lower bounds of 1 + 1/3792 and 1 + 1/2196 on the asymptotic
approximability of rectangle packing with and without rotations, respectively.

Not much has been done in terms of absolute approximability of the bin packing
problem prior to our work. Zhang[47] presented an absolute 3-approximation algo-
rithm. For the special case of packing squares into bins, van Stee[44] showed that an
absolute 2-approximation is possible. On the negative side, Leung et al.[36] showed
that it is strongly NP-complete to decide whether a set of squares can be packed into
a given square. Thus it is not possible to approximate two-dimensional bin packing
within a factor of less than 2 unless P = NP even if rotations by 90 degrees are
allowed.

It should be noted that in the asymptotic setting, especially for the positive results
for bin packing mentioned above, the approximation ratio only gets close to the stated
value for very large inputs. In particular, the 1.525-approximation by Bansal et al.[6]

has an additive constant which is not made explicit in the paper but which the authors
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admit is extremely large[4]. Thus, for any reasonable input, the actual (absolute) ap-
proximation ratio of their algorithm is much larger than 1.525, and it therefore makes
sense to consider alternative algorithms under the absolute performance measure.
Proving a bound on the absolute approximation gives us a performance guarantee
for all inputs, not just for (very) large ones.

1.3.2 our contribution

In this thesis we focus on the absolute approximation ratio. Attaining a good absolute
approximation ratio is more difficult than attaining a good asymptotic approximation
ratio, because in the second case an algorithm is allowed to “waste” a constant number
of bins, which allows, e.g., the classification of items followed by a packing where each
class is packed separately.

For the strip packing problem, we present two approximation algorithms that break
the bound of 2. Although Schiermeyer[39] already expected in his work in 1994 that
the approximation ratio can be reduced below 2, these algorithms represent the first
improvements on the absolute approximability of strip packing since Schiermeyer’s
work. First, we present an algorithm with an absolute approximation ratio of 1.9396
and second, partially based on this result but involving a much deeper investigation in
different cases of packings, we present an algorithm with an absolute approximation
ratio arbitrarily close to 5/3.

These results significantly reduce the gap between the lower bound of 3/2 and the
upper bound.

For the bin packing problem, we consider the variants without rotations and with
rotations by 90 degrees. For both variants we give approximation algorithms with
an absolute approximation ratio of 2. Due to the result by Leung et al.[36] this is op-
timal provided P 6= NP . Jansen, Prädel & Schwarz[26] independently achieved the
same result for bin packing without rotations. Furthermore, we prove a conjecture by
Zhang[47] on the absolute approximation ratio of the Hybrid First Fit (HFF) algo-
rithm by showing that this ratio is 3.

1.4 O N L I N E A L G O R I T H M S

In the online version the rectangles are given to the online algorithm one by one from
a list, and the next rectangle is given as soon as the current rectangle is irrevocably
placed. To evaluate the performance of an online algorithm we employ competitive
analysis. As for the approximation algorithms, we denote the value, i.e., the height
of the strip or the number of bins, of a packing produced by algorithm ALG on an
input list L by ALG(L). The optimal algorithm OPT is not restricted in any way by
the ordering of the rectangles in the list. Competitive analysis measures the absolute
worst-case performance of online algorithm ALG by its competitive ratio

ρabs = sup
L

{
ALG(L)
OPT(L)

}
.
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As for the approximation algorithms, research has partially concentrated on the as-
ymptotic competitive ratio that is defined as

ρ∞
ALG = lim sup

n→∞
sup

I

{
ALG(I)
OPT(I)

∣∣∣∣ OPT(I) = n
}

.

Note that we use the same letter ρ for the approximation ratio and the competitive
ratio as both ratios are defined similarly and describe the same: How well does a
given algorithm perform relative to the optimal solution on worst-case instances. The
setting, i.e., whether we consider approximation or online algorithms, only restricts
the algorithms (to polynomial running time and applicability to online settings, re-
spectively) but does not affect the optimal solution. Note that although many online
algorithms are time-efficient, they are, in contrast to approximation algorithms, not
constrained in their running time.

1.4.1 known results

The classical online bin packing problem has been studied extensively. The most im-
portant results include the algorithm Harmonic++ by Seiden[40] with an asymptotic
competitive ratio of 1.58889 and a lower bound on the asymptotic competitive ratio of
1.54014 by van Vliet[45].

strip packing . Baker & Schwarz[3] were the first to study so-called shelf algo-
rithms for strip packing that do not rely on the order of the items and thus apply to
the online scenario. One of their algorithms, presented already in 1983, achieves an
asymptotic competitive ratio arbitrarily close to 1.7. In 1997, Csirik & Woeginger[16]

showed that no shelf algorithm can achieve an asymptotic competitive ratio less than
T∞ = 1.691 . . . and at the same time presented an online algorithm whose asymptotic
worst-case ratio comes arbitrarily close to this value.

Han, Iwama, Ye & Zhang[23] gave a general algorithmic framework between one-
dimensional bin packing and strip packing, with which they achieve the same asymp-
totic bounds by applying bin packing algorithms to strip packing. This makes the
modified Harmonic++ algorithm by Seiden[40] to the current champignon in terms
of asymptotic competitiveness with a ratio of 1.58889. The lower bound of 1.54014 by
van Vliet[45] on one-dimensional bin packing of course also holds for strip packing.

The first fit shelf algorithm by Baker & Schwarz[3] was the first algorithm with a
proven absolute competitive ratio of 6.99 under the assumption that the height of the
rectangles is at most 1. Recent advances have been made by Ye, Han & Zhang[46]

and Hurink & Paulus[25]. Independently they showed that a modification of the well-
known shelf algorithm yields an online algorithm with competitive ratio 7/2+

√
10 ≈

6.6623. Both results do not assume a bound on the maximal height of the rectangles.
In the early 80’s, Brown, Baker & Katseff[8] derived a lower bound of 2 on the com-

petitive ratio of any online algorithm by constructing certain adversary sequences.
These sequences were further studied by Johannes[31] and Hurink & Paulus[24], who
derived improved lower bounds of 2.25 and 2.43, respectively. (Both results are com-
puter aided and presented in terms of online parallel machine scheduling.) The paper
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of Hurink & Paulus[24] also presents an upper bound of 2.5 for packing such “Brown-
Baker-Katseff sequences”. Kern & Paulus[35] finally settled the question how well the
Brown-Baker-Katseff sequences can be packed by giving a matching upper and lower
bound of 3/2 +

√
33/6 ≈ 2.457.

two-dimensional bin packing . Regarding online packing problems we focus
on strip packing. Therefore, we only state the most important results on bin packing
for the sake of completeness. Han, Chin, Ting & Zhang[22] gave an algorithm with
the currently best known asymptotic competitive ratio of 2.5545, improving upon
the algorithm with competitive ratio 2.66013 presented by Seiden & van Stee[41]. We
are not aware of any analysis with specific regards to the absolute competitiveness.
Coppersmith & Raghavan[15], however, showed a bound of 3.25 OPT(I) + 8 for their
algorithm, yielding an absolute competitive ratio of at most 11.25.

As for lower bounds, Seiden & van Stee[41] considered multi-dimensional square
(and cube) packing and derived a lower bound of 1.62176 on the asymptotic competi-
tive ratio for the two-dimensional problem. Their bound was improved to 1.64062 by
Epstein & van Stee[17].

1.4.2 our contribution

Using modified Brown-Baker-Katseff sequences we show an improved lower bound
of 2.589 . . . on the absolute competitive ratio of this problem. The modified sequences
that we use consist solely of two types of items, namely, thin items that have negligible
width (and thus can all be packed in parallel) and blocking items that have width 1.

On the positive side, we present an online algorithm for packing any sequence com-
posed of thin and blocking items with competitive ratio (3 +

√
5)/2 = 2.618 . . .. This

upper bound is especially interesting as it not only applies to the concrete adversary
instances that we use to show our lower bound.

1.5 O R G A N I S AT I O N .

This thesis is organized in two parts.
In Part I we present our work on approximation algorithms. In Chapter 2 we in-

troduce the relevant notations and methods that we use. Chapter 3 contains our re-
sults on strip packing with the 1.9396-approximation algorithm in Section 3.1 and the
(5/3 + ε)-approximation algorithm in Section 3.2. In Chapters 4 and 5 we deal with
the bin packing problem with and without rotations, respectively, and present our
2-approximation algorithms in Sections 4.1 and 5.1. In Section 5.2, we analyse the al-
gorithm Hybrid First Fit and prove that it has an absolute approximation guarantee
of 3.

In Part II we present our contribution on online algorithms. This part consists solely
of Chapter 6 in which we present the lower bound of 2.589 . . . for online strip packing
and the upper bound of (3 +

√
5)/2 for packing instances consisting of thin and

blocking items.





Part I

A P P R O X I M AT I O N A L G O R I T H M S
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I M P O RTA N T T O O L S A N D P R E PA R AT I O N S

Let I = {r1, . . . , rn} be the set of given rectangles, where ri = (wi, hi). For a given
packing P we denote the bottom left corner of an item ri by (xi, yi) and its top right
corner by (x′i , y′i), where x′i = xi + wi and y′i = yi + hi. So the interior of rectangle ri
covers the area (xi, x′i)× (yi, y′i) and two rectangles are non-overlapping if their interi-
ors are disjoint. It will be clear from the context to which packing P the coordinates
refer.

Let Wδ = {ri | wi > δ} be the set of so-called δ-wide items and let Hδ = {ri | hi > δ}
be the set of δ-high items. To simplify the presentation, we refer to the 1/2-wide items
as wide items and to the 1/2-high items as high items. Let W = W1/2 and H = H1/2 be
the sets of wide and high items, respectively. The set of small items, i.e., items ri with
wi ≤ 1/2 and hi ≤ 1/2, is denoted by S. Finally, we call items that are wide and high
at the same time big and denote the set of big items by B.

For a set T of items, let A(T) = ∑ri∈T wihi be the total area and let h(T) = ∑ri∈T hi
and w(T) = ∑ri∈T wi be the total height and total width, respectively. Furthermore,
let wmax(T) = maxri∈T wi and hmax(T) = maxri∈T hi. In the following tables we give a
summary of the notations used.

item ri

size (wi, hi)

bottom left corner (xi, yi)

top left corner (x′i , y′i)

interior (xi, x′i)× (yi, y′i)

sets of items

wide W = {ri | wi > 1/2}
δ-wide Wδ = {ri | wi > 1− δ}
high H = {ri | hi > 1/2}
δ-high Hδ = {ri | hi > 1− δ}
small S = {ri | wi, hi ≤ 1/2}
big B = {ri | wi, hi > 1/2}

area, height and width of a set T of items

total area A(T) = ∑ri∈T wihi

total height h(T) = ∑ri∈T hi

total width w(T) = ∑ri∈T wi

maximal height hmax(T) = maxri∈T hi

maximal width wmax(T) = maxri∈T wi

We now present important subroutines of our algorithms, namely Steinberg’s algo-
rithm[43], the Next Fit Decreasing Height algorithm and an algorithm by Bansal,
Caprara, Jansen, Prädel & Sviridenko[5]. Moreover, we prove the existence of a struc-
tured packing of certain sets of wide and high items.

11
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steinberg’s algorithm . Steinberg[43] proved the following theorem for his al-
gorithm that we use as a subroutine multiple times.

Theorem 1 (Steinberg’s algorithm[43]). If the following inequalities hold,

wmax(T) ≤ a, hmax(T) ≤ b, and

2A(T) ≤ ab− (2wmax(T)− a)+(2hmax(T)− b)+

where x+ = max(x, 0), then it is possible to pack all items from T into R = (a, b) in time
O((n log2 n)/ log log n).

In our algorithms, we will repeatedly use the following corollary of this theorem.

Corollary 1 (Jansen & Zhang[30]). If the total area of a set T of items is at most 1/2 and
there are no wide items (except a possible big item) then the items in T can be packed into a
bin of unit size in time O((n log2 n)/ log log n).

Obviously, this corollary also holds for the case that there are no high items (except
a possible big item). This corollary is an improvement upon Theorem 1 if there is a
big item in T as in this case Theorem 1 would give a worse area bound.

next fit decreasing height. The Next Fit Decreasing Height (NFDH) algo-
rithm was introduced for squares by Meir & Moser[38] and generalized to rectangles
by Coffman, Garey, Johnson & Tarjan[14]. It is given as follows. Sort the items by non-
increasing order of height and pack them one by one into layers. The height of a layer
is defined by its first item, further items are added bottom-aligned with the first item
and left-aligned with the previously packed item until an item does not fit. In this case
this item opens a new layer. The algorithm stops if it runs out of items or a new layer
does not fit into the designated area. The running time of the algorithm is O(n log n).
The following lemma is an easy generalization of the result from Meir & Moser.

Lemma 1. If a given set T of items is packed into a rectangle R = (a, b) by NFDH, then
either a total area of at least

(a− wmax(T)) · (b− hmax(T))

is packed or the algorithm runs out of items, i.e., all items are packed.

knapsack packing . Bansal, Caprara, Jansen, Prädel & Sviridenko[5] considered
the two-dimensional knapsack problem in which each item ri ∈ I has an associated
profit pi and the goal is to maximize the total profit that is packed into a unit-sized
bin. Using a very technical Structural Lemma they showed the following theorem.

Theorem 2 (Bansal, Caprara, Jansen, Prädel & Sviridenko[5]). For any fixed r ≥ 1 and
δ > 0, there exists an algorithm that returns a packing of value at least

(1− δ)OPT2−KP(I)

for instances I for which pi/A(ri) ∈ [1, r] for ri ∈ I. The running time of the algorithm is
polynomial in the number of items.
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Here OPT2−KP(I) denotes the maximal profit that can be packed in a bin of unit size.
In the case that pi = wihi for all items ri ∈ I we want to maximize the total packed
area. Let OPT(a,b)(T) denote the maximum area of items from T that can be packed
into the rectangle (a, b), where individual items in T do not necessarily fit in (a, b).
By appropriately scaling the bin, the items and the accuracy we get the following
corollary.

Corollary 2. For any fixed δ > 0, the PTAS from [5] returns a packing of I′ ⊆ I in a
rectangle of width a ≤ 1 and height b ≤ 1 such that

A(I′) ≥ (1− δ)OPT(a,b)(I).

existence of structured packings . We show that for any set of wide and
high items that fits into a strip of height 1, there exists a packing of the high items
and of wide items with at least half of their total height with a nice structure, i.e., such
that the wide and the high items are packed in stacks in different corners of the strip.
We will later see that such a packing can be approximated arbitrarily well.

Lemma 2. For sets H′ ⊆ H and W ′ ⊆W \ H′ of high and wide items with OPT(W ∪ H) ≤
1 there exists a packing of W∗ ∪ H′ with W∗ ⊆ W ′ and h(W∗) ≥ h(W ′)/2 such that the
high items are stacked in the top left and the items from W∗ are stacked in the bottom right
corner of the strip.

Proof. See Figure 1 for an illustration of the following proof. Consider a packing of
high items H′ and wide items W ′ into a strip of height 1. Associate each wide item
with the closer boundary of the packing, i.e., either the top or bottom of the strip
(an item that has the same distance to both sides of the strip can be associated with
an arbitrary side). Assume w.l.o.g. that the total height of the items associated with
the bottom is at least as large as the total height of the items associated with the top
of the strip. Remove the items that are associated with the top and denote the other
wide items by W∗. Push the items of W∗ together into a stack that is aligned with the
bottom of the strip by moving them purely vertically and move the high items such
that they are aligned with the top of the strip and form stacks at the left and right
side of the strip. Order the stacks of the high items by non-increasing order of height
and the stack of the wide items by non-increasing order of width.

Now apply the following process. Take the shortest item with respect to the height
from the right stack of the high items and insert it at the correct position into the left
stack, i.e., such that the stack remains in the order of non-increasing heights. Move
the wide items to the right if this insertion causes an overlap. Obviously this process
moves all high items to the left and retains a feasible packing. In the end, all high
items form a stack in the top left corner of the strip. Move the wide items to the right
such that they form a stack in the bottom right corner of the strip.

We constructively use the previous existence result with the following Corollary.

Corollary 3. For sets H′ ⊆ H and W ′ ⊆ W \ H′ of high and wide items with OPT(W ∪
H) ≤ 1 we can derive a packing of W ′ ∪ H′ into a strip of height at most

1 +
h(W ′)

2
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1

(a) Packing of W ′ and H′

1

W∗

(b) Remove items on top; align
items with the sides of the strip

1

W∗

(c) Insert the shortest item from the
right in the stack on the left;
move W∗ horizontally

1

W∗

(d) Final packing with stacks in the
bottom right and top left

Figure 1: The insertion process of Lemma 2

such that the wide items are stacked in the bottom right of the strip and the high items are
stacked above the wide items at the left side of the strip in time O(n log n).

Proof. Consider a packing of height 1 of W∗∪H′ with W∗ ⊆W ′ and h(W∗) ≥ h(W ′)/2
such that the wide items from W∗ are stacked in the bottom right corner of the strip
and the high items are stacked above W∗ at the top left of the strip. Such a packing
exists by Lemma 2. Now move up W∗ ∪ H′ by h(W ′ \W∗), pack W ′ \W∗ below W∗

and restore the order in the stack of the wide items. This does not cause a conflict as
the original outline of W∗ is not violated. As h(W ′ \W∗) = h(W ′)− h(W∗) ≤ h(W ′)/2
the height bound of the corollary in satisfied. Since the packing only consists of the
ordered stacks of the high and wide items, we can easily derive a packing of at most
the same height in time O(n log n) by building the stacks and moving down the stack
of H′ as far as possible.



3
S T R I P PA C K I N G

In this chapter we present two algorithms for strip packing, namely, a 1.9396-approx-
imation algorithm in Section 3.1 and an algorithm that achieves an approximation
ratio arbitrarily close to 5/3 in Section 3.2. The methods in Section 3.1 are crucial not
only for the following section on strip packing but also for our 2-approximation for
bin packing without rotation in Section 5.1.

An important link between strip packing and two-dimensional bin packing is the
interpretation of a strip of height 1 as a bin of unit size. This link is especially cru-
cial as handling instances that fit into one bin turns out to be a major challenge for
bin packing. Moreover, strip packing can essentially be reduced to the packing of
instances with optimal value at most 1 as the following lemma shows.

Lemma 3. If there exists a polynomial-time algorithm for strip packing that packs any in-
stance I with optimal value at most 1 into a strip of height h ≥ 1, then there also exists a
polynomial-time algorithm for strip packing with absolute approximation ratio at most h + ε.

Proof. Let ALG be the algorithm that packs any instance I with optimal value at most
1 into a strip of height h and assume that h ≤ 2 by otherwise applying Steinberg’s
algorithm. Let ε′ be the maximal value with ε′ ≤ ε/(2h) such that 1/ε′ is integer. We
guess the optimal value approximately and apply ALG on an appropriately scaled
instance. To do this, we first apply Steinberg’s algorithm on I to get a packing into
height h′ ≤ 2 OPT(I). We split the interval J = [h′/2, h′] into 1/ε′ subintervals

Ji =

[
(1 + ε′(i− 1))h′

2
,
(1 + ε′i)h′

2

]

for i = 1, . . . , 1/ε′. Then we iterate over i = 1, . . . , 1/ε′, scale the heights of all items
by 2/((1 + ε′i)h′) and apply the algorithm ALG on the scaled instance I′. Convert
the packing to a packing of the unscaled instance I and finally output the minimal
packing that was derived. We eventually consider i∗ ∈ {1, . . . , 1/ε′} with OPT(I) ∈ Ji∗ .
Then we have

1− ε′ < 1− ε′

1 + ε′i∗
=

(1 + ε′(i∗ − 1)) h′
2

(1 + ε′i∗) h′
2

≤ OPT(I′) ≤ (1 + ε′i∗) h′
2

(1 + ε′i∗) h′
2

= 1

and thus

ALG(I)
OPT(I)

=
ALG(I′)
OPT(I′)

<
h

1− ε′
= h +

ε′h
1− ε′

≤ h + 2ε′h ≤ h + ε.

Thus we concentrate on approximating instances that fit into a strip of height 1 and
therefore assume OPT(I) ≤ 1 for the remainder of this chapter.

15
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3.1 A 1 . 9 3 9 6 - A P P R O X I M AT I O N
A L G O R I T H M F O R S T R I P PA C K I N G

The overall approach for our 1.9396-approximation algorithm consists of two steps.
First, we use the PTAS from [5] to pack instances where the total height of the
(1− δ)-wide items is small relative to δ into a strip of height 2− x for some positive
value x and some δ ∈ (0, 1/2). Second, we derive an area guarantee for instances that
could not be packed in the previous step and use this guarantee to successfully pack
the instance into a strip of height 2− x.

Finally, we will show that x can be chosen as large as (1− ln 2)/(3 + 3 ln 2)− ε and
with Lemma 3 we get the following theorem for any 0 < ε < 10−5/2.

Theorem 3. There exists a polynomial-time approximation algorithm for strip packing with
absolute approximation ratio

2− x + ε =
5 + 7 ln 2
3 + 3 ln 2

+ 2ε < 1.9396.

In the following assume that we have a fixed x ∈ [0, 1/6 − 5/3 ε) and 0 < ε ≤
10−5/2.

3.1.1 small total height of the (1− δ)-wide items

We now describe an important subroutine that is used by our algorithms for strip and
bin packing. Consider the case that the total height of the (1− δ)-wide items is small
relative to δ, i.e.,

h(W1−δ) ≤
δ(1− x)− 2x− ε

1 + 2δ
=: f (δ)

for some δ ∈ ((2x + ε)/(1− x), 1/2] (the lower bound is required as otherwise f (δ) <
0). We want to derive a packing of I into two bins such that only a height of 1− x is
used in the second bin. For strip packing this directly gives a height of 2− x by putting
the second bin on top of the first. And for bin packing we get a feasible solution for
all x ≥ 0, which we use in Section 5.1.

Let

γ := f (δ) + x =
δ(1 + x)− x− ε

1 + 2δ
<

1
2

.

In the first step, we show that a packing of almost all items into a unit bin and with a
special structure exists. This special structure consists of a part of width w(H1−γ) for
the (1− γ)-high items and a part of width 1− w(H1−γ) for the other items. The fol-
lowing lemma shows that almost all other items can be packed. Recall that OPT(a,b)(T)
denotes the maximum area of items from T that can be packed into the rectangle (a, b)
as introduced for Corollary 2.

Lemma 4. We have OPT(1−w(H1−γ),1)(I \ H1−γ) ≥ A(I \ H1−γ)− 2γ.
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Proof. Consider an optimal packing of I into a bin. Remove all items that are com-
pletely contained in the top or bottom γ-margin. After this step there is no item
directly above or below any item of H1−γ = {ri | hi > 1− γ}. Thus we can cut the
remaining packing at the left and right side of any item from H1−γ. These cuts parti-
tion the packing into parts which can be swapped without losing any further items.
Move all items of H1−γ to the left of the bin and move all other parts of the packing
to the right. The total area of the removed items is at most 2γ and thus a total area
of at least A(I \ H1−γ)− 2γ fits into the rectangle of size (1−w(H1−γ), 1) to the right
of H1−γ.

In the second step, we actually derive a feasible packing that is based on the struc-
ture described above (see Figure 2). First, pack H1−γ into a stack of width w(H1−γ)

at the left side of the first bin. Note that w(H1−γ) ≤ 1 since γ < 1/2. This leaves an
empty space of width 1− w(H1−γ) and height 1 at the right. We therefore apply the
PTAS from [5] on I \H1−γ and a rectangle of size (1−w(H1−γ), 1) using an accuracy
of ε. Lemma 4 and Corollary 2 yield that at least a total area of A(I \ H1−γ)− 2γ− ε

is packed by the algorithm.
Let T be the set of remaining items. We have A(T) ≤ 2γ + ε. Pack the remaining

(1− δ)-wide items, i.e., the items of T ∩W1−δ, in a stack at the bottom of the second
bin. The total area of the remaining items T \W1−δ is

A(T \W1−δ) ≤ A(T)− (1− δ)h(T ∩W1−δ) ≤ 2γ + ε− (1− δ)h(T ∩W1−δ).

We pack these items with Steinberg’s algorithm into the free rectangle of size (a, b)
with a = 1 and b = 1− h(T ∩W1−δ)− x above the stack of T ∩W1−δ in the second bin.
We have wmax(T \W1−δ) ≤ 1− δ ≤ 1 and since γ = f (δ) + x ≥ h(W1−δ) + x we have

hmax(T \W1−δ) ≤ 1− γ ≤ 1− h(W1−δ)− x ≤ 1− h(T ∩W1−δ)− x = b.

Steinberg’s algorithm is applicable as we have δ < 1/2 and γ < 1/2 and thus we get

2A(T \W1−δ) ≤ ab− (2wmax(T \W1−δ)− a)+(2hmax(T \W1−δ)− b)+

⇐ 4γ + 2ε− 2(1− δ)h(T ∩W1−δ)

= 1− h(T ∩W1−δ)− x− (1− 2δ)+(1− 2γ + h(T ∩W1−δ) + x)+
= −2(1− δ)h(T ∩W1−δ)− 2x + 2δx + 2γ + 2δ− 4γδ

⇐ 4γ + 2ε = −2x + 2δx + 2γ + 2δ− 4γδ

⇐ γ + 2γδ = −x + δx + δ− ε

⇐ γ =
δ(1 + x)− x− ε

1 + 2δ
.

So far we assumed the knowledge of δ ∈ ((2x + ε)/(1 − x), 1/2] for which we
have h(W1−δ) ≤ f (δ). It is easy to see that this value can be computed by calculating
h(W1−δ) for δ = 1− wi for all ri = (wi, hi) with wi > 1/2. As h(W1−δ) changes only
for these values of δ, we will necessarily find a suitable δ if one exists. We therefore
showed the following lemma.

Lemma 5. For any fixed ε > 0, there exists a polynomial-time algorithm that, given an
instance I with OPT(I) = 1 and h(W1−δ) ≤ f (δ) for some δ ∈ ((2x + ε)/(1− x), 1/2],
returns a packing of I into two bins such that only a height of 1− x is used in the second bin.
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H1−γ
PTAS Steinberg’s

algorithm

x

T ∩W1−δ

Figure 2: Packing with small total height of (1− δ)-wide items

3.1.2 using an area guarantee for the wide items

In this section we describe how to use a guarantee on the total area of the wide
items for the instances that cannot be packed into a strip of height 2− x by Lemma 5.
Assume that we have an additional non-trivial area guarantee of ξ for the wide items.
Namely,

A(W) ≥ ξ +
h(W)

2
for 0 < ξ ≤ 1/6. (3.1)

We consider two cases in which we use the lower bound from Inequality (3.1) to derive
a packing into a strip of height 2− 2ξ.

case 1 . 2− h(W)− 2ξ ≥ 1.
Stack the wide items in the bottom of the strip and use Steinberg’s algorithm to pack
I \W above this stack into a rectangle of size (a, b) with a = 1 and b = 2− h(W)− 2ξ

(see Figure 3a). Steinberg’s algorithm is applicable since we have hmax(I \W) ≤ 1 ≤ b,
wmax(I \W) ≤ 1/2 = a/2 and

2A(I \W) ≤ 2− 2ξ − h(W)

= ab = ab− (2wmax(I \W)− a)+(2hmax(I \W)− b)+.

The total height of the packing is h(W) + 2− h(W)− 2ξ = 2− 2ξ.

case 2 . 2− h(W)− 2ξ < 1.
In this case we cannot apply Steinberg’s algorithm to pack I \W into the area of
size (1, 2− h(W) − 2ξ) above the stack of W as hmax(I \W) might be greater than
2− h(W)− 2ξ.

We have 1− 2ξ < h(W) ≤ 1 since 1 is a natural upper bound for the total height of
the wide items. Pack the items of W in a stack aligned with the bottom right corner of
the strip as before. Pack the items of H1−2ξ \W in a stack aligned with the left side of
the strip and move this strip downwards as far as possible (see Figure 3b). Corollary 3

shows that H1−2ξ \W can be moved down such that the total height of the packing so
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h(W)
2ξ

Steinberg’s
algorithm

b
=

2
−

h(
W
)
−

2ξ

a = 1

1
h(

W
)

x

(a) Case 1

Steinberg’s
algorithm

b
=

2
−

h(
W
)
−

2ξ

a = 1 − w(H1−2ξ)

H1−2ξ

h(W)
2ξ

1

h(
W
)

x

(b) Case 2

Figure 3: Using the area guarantee

far is at most 1 + h(W)/2 ≤ 3/2. Let T = I \ (W ∪ H1−2ξ) be the set of the remaining
items. We have

A(T) ≤ 1−A(W)−A(H1−2ξ \W) ≤ 1− ξ − h(W)

2
− (1− 2ξ)w(H1−2ξ \W).

Pack T with Steinberg’s algorithm in the rectangle of size (a, b) with a = 1−w(H1−2ξ \
W) and b = 2− h(W)− 2ξ above W and to the right of H1−2ξ \W. We have w(H1−2ξ \
W) ≤ 1/2 as otherwise all wide items are either above or below an item from H1−2ξ \
W in any optimal packing and thus h(W) ≤ 4ξ (which is a contradiction to 2− h(W)−
2ξ < 1 for ξ ≤ 1/6). Thus we have hmax(T) ≤ 1− 2ξ ≤ b and wmax(T) ≤ 1/2 ≤ a and
with

ab− (2wmax(T)− a)+(2hmax(T)− b)+
≥ 2− h(W)− 2ξ − 2w(H1−2ξ \W) + h(W)w(H1−2ξ \W) + 2ξw(H1−2ξ \W)

− (w(H1−2ξ \W))+(h(W)− 2ξ)+

= 2− h(W)− 2ξ − 2w(H1−2ξ \W) + 4ξw(H1−2ξ)

we get 2A(T) ≤ ab− (2wmax − a)+(2hmax − b)+. We have (h(W)− 2ξ)+ = h(W)− 2ξ

in the last step of the calculation since h(W) > 4ξ. The total height of the packing is
dominated by the height of the wide items h(W) plus the height of the target area
for Steinberg’s algorithm b = 2− h(W)− 2ξ. In total we have a height of h(W) + 2−
h(W)− 2ξ = 2− 2ξ.

In total we showed the following lemma.
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Lemma 6. Let 0 < ξ ≤ 1/6 be a constant. If A(W) > ξ + h(W)/2, then we can derive a
packing into a strip of height 2− 2ξ in time O(n log2 n)/ log log n).

In Section 3.2 we use this lemma with a value of ξ close to 1/6 to get a packing into
a strip of height close to 5/3. Here, we show how to derive a bound for ξ for those
instances that cannot be packed into a strip of height 2− x by Lemma 5.

Consider a strip with the lower left corner at the origin of a cartesian coordinate
system and consider the stack of wide items ordered by non-increasing width and
aligned with the lower right corner of the strip. If there exists a δ ∈ ((2x + ε)/(1−
x), 1/2] such that h(W1−δ) ≤ f (δ) then we use the algorithm of Lemma 5 to pack the
instance into a strip of height 2− x (see Figure 2). Otherwise the stack of wide items
exceeds the function f (δ) for all δ ∈ ((2x + ε)/(1− x), 1/2] (see Figure 4). Then we
have

A(W) >
∫ 1/2

2x+ε
1−x

δ(1− x)− 2x− ε

1 + 2δ
dδ +

h(W)

2
.

In the following we show that for ξ(x) := 1
4 (1− ln 2)− 1

4 x(1+ 3 ln 2)− 1
2 ε ln 2 we have

A(W) > ξ(x) +
h(W)

2
. (3.2)

Using

ln(1 + x) ≥ x− x2

2
(3.3)

we have
∫ 1/2

2x+ε
1−x

δ(1− x)− 2x− ε

1 + 2δ
dδ

=
[1

4
(2δ + 1)(1− x)− 1

4
(1 + 3x + 2ε) ln(2δ + 1)

]δ=1/2

δ= 2x+ε
1−x

=
1
2
− x

2
− 1

4
(1 + 3x + 2ε) ln 2− 1

4

(4x + 2ε

1− x
+ 1
)
(1− x)

+
1
4
(1 + 3x + 2ε) ln

(4x + 2ε

1− x
+ 1
)

≥ 1
2
− x

2
− ln 2

4
− x

3 ln 2
4
− ε

ln 2
2
− 4x + 2ε

4
− 1

4
+

x
4

+
1
4
(1 + 3x + 2ε)

(
4x + 2ε− (4x + 2ε)2

2

)

as ln
(4x + 2ε

1− x
+ 1
)
≥ ln(4x + 2ε + 1) and by (3.3)

>
1
2
− x

2
− ln 2

4
− x

3 ln 2
4
− ε

ln 2
2
− 4x + 2ε

4
− 1

4
+

x
4
+

4x + 2ε

4
(3.4)

>
1− ln 2

4
− x
(1 + 3 ln 2

4

)
− ε

ln 2
2

= ξ(x)
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Figure 4: If Lemma 5 is not applicable the stack of wide items exceeds f (δ), giving an addi-
tional area guarantee of ξ(x)

The step to (3.4) follows with

(1 + 3x + 2ε)
(

4x + 2ε− (4x + 2ε)2

2

)
= (1 + 3x + 2ε)(4x + 2ε− 8x2 − 8εx− 2ε2)

= 4x + 2ε + 2ε2 − 4ε3 + εx(6− 22ε)

+ x2(4− 40ε− 24x)

> 4x + 2ε

as 2ε2 − 4ε3 > 0, 6 − 22ε > 0 and 4 − 40ε − 24x > 0 since ε < 10−5/2 and x <

1/6− 5/3 ε.

To finally calculate the approximation ratio that we achieve observe that with the
methods of Lemma 5 we derive a packing into a strip of height 2− x and with the
methods of Lemma 6 we derive a packing into a strip of height 2− 2ξ(x). Thus we
require 2ξ(x) ≥ x to achieve a packing height of 2− x. This is satisfied for

x ≤ 1− ln 2
3 + 3 ln 2

− ε ≤ 1− ln 2− 2ε ln 2
3 + 3 ln 2

.

We can choose x = (1− ln 2)/(3 + 3 ln 2)− ε and together with Lemmas 3, 5 and 6

we proved Theorem 3.

A striking feature of our algorithm is that in many cases it derives a packing where
we can make a horizontal cut at height 1 without intersecting any item (or rather at
about half of the packings height after scaling the packing back). This feature is very
useful for deriving a bin packing algorithm—as we will see in Section 5. On the other
hand, it limits the possible packings and hinders us to achieve a better approximation
ratio. In the following section we will show that a significantly better approximation
ratio can be achieved by lifting this limitation. As the next algorithm also requires
much more effort to achieve, we still consider the 1.9396-approximation algorithm an
interesting result, especially as it was the first approximation ratio to break the bound
of 2.
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3.2 A N A L M O S T 5 / 3 - A P P R O X I M AT I O N
A L G O R I T H M F O R S T R I P PA C K I N G

In this section we describe our second strip packing algorithm that achieves an ap-
proximation ratio arbitrarily close to 5/3. This is the currently best approximation
algorithm for strip packing from the perspective of the absolute approximation ratio.

3.2.1 overview

Let ε < 1/(28 · 151) throughout this section. By Lemma 3 we know that we can
concentrate on approximating instances that fit into a strip of height 1 and therefore
assume OPT(I) ≤ 1 for the remainder of this section. The overall approach for our
algorithm for strip packing is as follows.

First, we use the methods of Section 3.1.2 to solve instances I with h(W1−130ε) ≥ 1/3
and some other direct method to solve instances I with w(H2/3) ≥ 27/28. Having
sufficiently many high or wide items makes it much easier to pack all items without
wasting much space. We can easily check these conditions in time O(n).

For any instance I that does not satisfy these conditions, we first apply the PTAS
from [5] with an accuracy of δ = ε2/2 to pack most of the items into a strip of height 1.
Denote the resulting packing of I′ ⊆ I by P and let R = I \ I′ be the set of remaining
items. By Theorem 2 we have A(R) ≤ ε2/2 ·OPT2−KP(I) = ε2/2 · A(I) ≤ ε2/2. We
are faced with the challenge to combine these remaining rectangles with the packing
generated by the PTAS . Pack R ∩ Hε/2 into a container C1 = (ε, 1) (by forming a
stack of the items of total width at most A(R)/(ε/2) ≤ ε) and pack R \ Hε/2 with
Steinberg’s algorithm into a container C2 = (1, ε) (this is possible by Theorem 1 since
hmax(R \ Hε/2) ≤ ε/2, wmax(R \ Hε/2) ≤ 1 and 2A(R \ Hε/2) ≤ ε2 < ε).

Finally, we modify the packing P to free a gap of width ε and height 1 to insert the
container C1 while retaining a total packing height of at most 5/3. This is the main
part of our work. Afterwards, we pack C2 above the entire packing, achieving a total
height of at most 5/3 + ε.

The running time of the PTAS from [5] is polynomial in the number of items in
the input (it is not explicitly stated in [5]). In the following sections that build upon
packing P we only give the additional running time for modifying the packing.

3.2.2 modifying packings

Our methods involve modifying existing packings in order to insert some additional
items. To describe these modifications or, more specifically, the items involved in these
modifications, we introduce the following notations—see Figure 5. Let PointI(x, y) be
the item that contains the point (x, y) (in its interior). We use the notation of vertical
line items VLI(x; y1, y2) and horizontal line items HLI(x1, x2; y) as the items that contain
any point of the given vertical or horizontal line in their interiors, respectively. Finally,
we introduce two notations for items whose interiors are completely contained in a
designated area, namely AI(x1, x2; y1, y2) for items completely inside the respective
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(a) PointI(x, y)
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(b) HLI(x1, x2; y)
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(c) AI(x1, x2; y1, y2)

y

x
(d) AI(VPCE(x, y))

Figure 5: Notations

rectangle and AI(p) for items completely above a given polygonal line p, where p is
a staircase-function on [0, 1].

To describe such a polygonal line p we define the vertical polygonal chain extension
of a point (x, y) inside a given packing P as follows. Start at position (x, y) and
move leftwards until hitting an item ri. Then move upwards to the top of ri, that
is, up to position y′i. Repeat the previous steps until hitting the left side of the strip.
Then do the same thing to the right starting again at (x, y). We denote the polygonal
chain that results from this process by VPCE(x, y). In addition, let VPCEleft(x, y) and
VPCEright(x, y) be the left and right parts of this polygonal chain, respectively. An-
other way to describe a polygonal line is by giving a sequence of points, which we
denote as PL((x1, y1), (x2, y2), . . .).

We now present the different methods that we apply on the packing P in Sec-
tions 3.2.3–3.2.9. In Section 3.2.10 we finally bring the parts together and give the
overall algorithm.

3.2.3 total area of very wide items is large

In this case we apply the methods of our 1.9396-approximation algorithm from Sec-
tion 3.1.2 as follows.

Lemma 7. If h(W1−130ε) ≥ 1/3, then we can derive a packing into a strip of height 5/3 +

260ε/3 in time O((n log2 n)/ log log n).
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Proof. Let W ′ = W1−130ε. The total height of the items in W ′ gives us a non-trivial
additional area guarantee for the wide items as follows.

A(W) = A(W ′) + A(W \W ′)

> h(W ′) · (1− 130ε) + h(W \W ′) · 1/2

= h(W ′) · (1/2− 130ε) + h(W)/2

≥ 1/3 · (1/2− 130ε) + h(W)/2.

For ξ = 1/3 · (1/2− 130ε) we have A(W) > ξ + h(W)/2 and 0 < ξ ≤ 1/6. Thus
we can apply the methods of Lemma 6 to derive a packing into a strip of height
2− 2ξ = 5/3 + 260ε/3.

3.2.4 large total width of the 2/3-high items

In this section we assume that w(H2/3) ≥ 27/28, i.e., the total width of the 2/3-high
items is very large. As in the previous section we can solve this case directly without
using the PTAS from [5].

For the ease of presentation, let α = w(H2/3) ≥ 27/28. Since the total height of
the items of W1−α/2 \ H2/3 plays an important role in our method, we introduce the
notation y = h(W1−α/2 \ H2/3). Moreover, we use the stronger area guarantee of the
5/6-high items and therefore denote their total width by β = w(H5/6). Finally, let
δ = w(H1/3\H) be the total width of the items of height within 1/3 and 1/2.

bounding y and δ. Let α′ < α such that W1−α/2 = {ri | wi > 1 − α/2} =

{ri | wi ≥ 1− α′/2}, e.g., set α′ such that the shortest item in W1−α/2 has width 1−
α′/2. Note that in any optimal packing, all items from W1−α/2 occupy the x-interval
(α′/2, 1− α′/2) of width 1− α′ completely. On the other hand, there has to be an item
from H2/3 that intersects this interval since w(H2/3) = α > α′. Therefore we have

y = h(W1−α/2 \ H2/3) < 1/3. (3.5)

It follows directly that the sets W1−α/2 \ H2/3 and H1/3 are disjoint.
Similarly, only in a total width of 1− α can items in H1/3 \ H2/3 possibly be packed.

Since at most two such items can fit on top of each other, a total width of at most
2(1− α) of such items can exist, which is less than α/2 by direct calculation for α >

4/5. Hence we get

δ ≤ 2(1− α) < α/2. (3.6)

In the following we distinguish three main cases according to y and β. See Figure 6a
for the first two cases and Figure 6b for the third case.

case 1 . y ≥ 4
3

1−α
1−α/2 .

We use the methods of Corollary 3 for H ∪W1−α/2, and need a height of at most
1 + y/2 which is less than 7/6 by Inequality (3.5). Above it, we define a container
of width δ and height 1/2 at the left side of the strip where we pack all remaining
1/3-high items, i.e., H1/3 \ H. Next to it we have an area (a, b) of width a = 1− δ
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and height b = 2/3− y/2 > 1/2. In it we pack all remaining items, noted by T =

I \ (H1/3 ∪W1−α/2), that have height at most hmax(T) ≤ 1/3 < b, width at most
wmax(T) ≤ 1− α/2 < 1− δ = a by Inequality (3.6), and area at most

A(T) ≤ 1−A(H2/3)−A(W1−α/2 \H2/3)−A(H1/3 \H) ≤ 1− 2
3

α−
(

1− α

2

)
y− δ

3
.

This works according to the Steinberg condition for any y ≥ 4
3

1−α
1−α/2 since

ab− (2wmax(T)− a)+(2hmax(T)− b)+ = (1− δ)
(2

3
− y

2

)
− (1− α + δ)+

(y
2

)
+

=
2
3
− 2δ

3
− y +

αy
2

=
2
3
− 2δ

3
− 2y + αy + y

(
1− α

2
)

≥ 2
3
− 2δ

3
− 2y + αy +

4
3

1− α

1− α/2
(
1− α

2
)

= 2
(

1− 2
3

α−
(
1− α

2
)
y− δ

3

)

≥ 2A(T).

case 2 . β ≥ 4(1− α).
We use the same packing as in Case 1. The total area of the high items is now at least
5
6 β + 2

3 (α− β) = 2
3 α + 1

6 β ≥ 2/3. Therefore, the remaining unpacked items, noted by
T, have area at most

A(T) ≤ 1−A(H2/3)−A(W1−α/2 \ H2/3)−A(H1/3 \ H) ≤ 1
3
−
(

1− α

2

)
y− δ

3
.

Since only the area of T changes compared to Case 1, we only have to verify the third
Steinberg condition to pack T with Steinberg’s algorithm into the area (a, b).

ab− (2wmax(T)− a)+(2hmax(T)− b)+ =
2
3
− 2δ

3
− y +

αy
2

=
2
3
− 2δ

3
− (2− α)y +

(
1− α

2
)
y

≥ 2
(1

3
− δ

3
−
(
1− α

2
)
y
)

≥ 2A(T).

case 3 . y < 4
3

1−α
1−α/2 and β < 4(1− α).

Note that y < 4
3

1−α
1−α/2 ≤ 4

3
1−27/28
1−27/56 = 56

609 < 1
6 in this case. We pack the set H of the high

items aligned with the bottom of the strip, sorted by non-increasing heights (from left
to right). We pack the items of W1−α/2 \H stacked in the area [0, 1]× [5/3− y, 5/3] and
the items of H1/3\H in the area [0, δ]× [1, 3/2] (this is possible because 3/2 ≤ 5/3− y).
We have δ < 4(1− α), since by Inequality (3.6) we have δ < 2(1− α). Furthermore, by
assumption we have β < 4(1− α). It follows that the area [4(1− α), 1]× [5/6, 5/3− y]
of width a = 1− 4(1− α) = 4α− 3 and height b = 5/3− y− 5/6 ≥ 2/3 is still free.
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(b) Case 3. y < 4
3

1−α
1−α/2 and β < 4(1− α)

Figure 6: Packing methods for Lemma 8

We pack all remaining items, noted by T, in this area using Steinberg’s algorithm. We
have hmax(T) ≤ 1/3 ≤ b/2, wmax(T) ≤ 1− α/2 < 4α− 3 = a, since α > 8/9, and area
at most

A(T) ≤ 1−A(H2/3)−A(W1−α/2 \ H2/3) ≤ 1− 2
3

α−
(

1− α

2

)
y.

Hence the Steinberg condition is satisfied for α ≥ 27/28 ≥ (27 − 30y)/(28 − 30y)
since

ab− (2wmax(T)− a)+(2hmax(T)− b)+
= ab

= (4α− 3)
(5

6
− y
)

= −4α

3
+ yα + α

(28− 30y
6

)
− 5

2
+ 3y

≥ −4α

3
+ yα +

27− 30y
28− 30y

· 28− 30y
6

− 5
2
+ 3y

= −4α

3
+ yα + 2− 2y

≥ 2A(T).

Since the running time of our methods is dominated by the application of Stein-
berg’s algorithm we showed the following lemma.



3.2 a (5/3 + ε)-approximation algorithm 27

Lemma 8. If w(H2/3) ≥ 27/28, then we can derive a packing of I into a strip of height 5/3
in time O((n log2 n)/ log log n).

This finishes the presentation of the methods that we directly apply to the input if
h(W1−130ε) ≥ 1/3 (Section 3.2.3) or w(H2/3) ≥ 27/28 (Section 3.2.4). In the following
sections we always assume that we already derived a packing P using the PTAS from
[5] and it remains to free a place for the containers C1 and C2 of size (ε, 1) and (1, ε),
respectively.

3.2.5 item of height greater than 1/3

Lemma 9. If the following conditions hold for P, namely

9.1. there is an item r1 of height h1 > 1/3 with one side at position x∗1 ∈ [ε, 1/2− ε], and

9.2. the total width of 2/3-high items to the left of x∗1 is at most x∗1 − ε, that is

w(AI(0, x∗1 ; 0, 1) ∩ H2/3) ≤ x∗1 − ε,

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n log n).

Note that Condition 9.1 leaves open whether x∗1 refers to the left or right side of
r1 as our method works for both cases. In particular, r1 could be one of the 2/3-high
items from Condition 9.2.

Proof. Assume w.l.o.g. y′1 > 2/3 by otherwise mirroring the packing P over y = 1/2.
We lift up a part of the packing P in order to derive a gap of sufficient height to

insert the container C1. In this case we mirror the part of the packing that we lift up.
Algorithm 1 gives a compressed version of the following detailed description. See
Figure 7 for an illustration.

Consider the contour Clift defined by a horizontal line at height y = y′1 − 1/3 to
the left of x∗1 , a vertical line at width x = x∗1 up to y′1 and a vertical polygonal chain
extension to the right starting at the top of r1. More formally,

Clift = PL
((

0, y′1 −
1
3
)
,
(

x∗1 , y′1 −
1
3
)
,
(
x∗1 , y′1

))
+ VPCEright(x∗1 , y′1),

where the +-operator denotes the concatenation of polygonal lines (see thick line in
Figure 7a). Let T = AI(Clift) be the set of items that are completely above this contour.

Move up T by 2/3 (and hereby move T completely above the previous packing
since y′1 > 2/3 and thus y′1 − 1/3 > 1/3) and mirror T vertically, i.e., over x = 1/2.
Let ybottom be the height of Clift at x = 1/2 (Clift crosses the point (1/2, ybottom)). By
definition, Clift is non-decreasing and no item intersects with Clift to the right of x∗1 .
Therefore, T is completely packed above y = ybottom + 2/3 on the left side of the strip,
i.e., for x ≤ 1/2, and P \ T does not exceed ybottom between x = x∗1 and x = 1/2. Thus
between x = x∗1 and x = 1/2 we have a gap of height at least 2/3.

Let B = HLI(0, x∗1 ; y′1− 1/3) be the set of items that intersect height y = y′1− 1/3 to
the left of x∗1 (see Figure 7a). Note that r1 ∈ B, if x∗1 corresponds to the right side of r1.
Remove B from the packing, order the items by non-increasing order of height and
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build a top-left-aligned stack at height y = ybottom + 2/3 and distance ε from the left
side of the strip. Since we keep a slot of width ε to the left, the stack of B might exceed
beyond x∗1 . This overhang does not cause an overlap of items because Condition 9.1
ensures that x∗1 ≤ 1/2− ε and thus the packing of B does not exceed position x = 1/2
and Condition 9.2 ensures that the excessing items have height at most 2/3 whereas
the gap has height at least 2/3.

Now pack the container C1 top-aligned at height ybottom + 2/3 directly at the left
side of the strip. C1 fits here since ybottom + 2/3− (y′1 − 1/3) = 1 + ybottom − y′1 ≥ 1.
Finally, pack C2 above the entire packing at height y = 5/3, resulting in a total packing
height of 5/3 + ε.

Note that Lemma 9 can symmetrically be applied for a 1/3-high item with one side
at position x∗1 ∈ [1/2+ ε, 1− ε] with w(AI(x∗1 , 1; 0, 1)∩H2/3) ≤ 1− x∗1 − ε by mirroring
P over x = 1/2.

Algorithm 1 Edge of height greater than 1/3

Requirement: Packing P that satisfies Conditions 9.1 and 9.2 and y′1 > 2/3.
1: Move up the items T = AI(Clift) by 2/3 and then mirror the packing of these

items vertically at position x = 1/2.
2: Order the items of B = HLI(0, x∗1 ; y′1− 1/3) by non-increasing order of height and

pack them into a top-aligned stack at position (ε, ybottom + 2/3).
3: Pack C1 top-aligned at position (0, ybottom + 2/3) and pack C2 above the entire

packing.

3.2.6 no 1/3-high items close to the side of the bin

Lemma 10. Let c1 > 0 be a constant. If the following conditions hold for P, namely

10.1. there is no 1/3-high item that intersects [c1ε, (c1 + 1)ε]× [0, 1], and

10.2. we have h(W1−5(c1+1)ε) < 1/3,

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n).

Proof. Let W ′ = W1−5(c1+1)ε ∩ VLI((c1 + 1)ε; 0, 1) be the set of rectangles of width
larger than 1− 5(c1 + 1)ε intersecting the vertical line x = (c1 + 1)ε. By Condition 10.2
we have h(W ′) < 1/3.

Consider the rectangle r1 = PointI((c1 + 1)ε, 1/2) (if no such rectangle exists, we
set r1 as a dummy rectangle of height and width equal to 0). We have to distinguish
two cases depending on this rectangle and the set W ′, or to be more accurate their
amount of heights above and below the horizontal line at height y = 1/2. Therefore,
let a = 1/2− y1 be the height of r1 below y = 1/2 and a′ = y′1− 1/2 the height above
y = 1/2. Furthermore, let h = h(W ′ ∩VLI((c1 + 1)ε; 0, y1)) and h′ = h(W ′ ∩VLI((c1 +

1)ε; y′1, 1)) be the heights of W ′ above and below y = 1/2 excluding r1 (if r1 ∈W ′).
Note, that by Condition 10.1 the height of r1 is h1 ≤ 1/3, hence it intersects at most

one of the horizontal lines at height y = 1/3 or y = 2/3.
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Figure 7: Packing methods for Lemma 9
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We are going to cut a slot of width ε between c1ε and (c1 + 1)ε down to a height
ycut. The value ycut depends on the particular packing. So we distinguish between two
cases:

1. If a + h ≤ 1/6 or a′ + h′ ≤ 1/6, we will assume w.l.o.g that a′ + h′ ≤ 1/6 by
otherwise mirroring the packing horizontally over y = 1/2. In this case we set
ycut = y′1.

2. If a + h > 1/6 and a′ + h′ > 1/6, we will assume w.l.o.g that y1 ≥ 1/3 by
otherwise mirroring the packing horizontally over y = 1/2. Here we set ycut =

y1.

Note, if r1 ∈W ′ it follows that we are in the first case, since h + a + a′ + h′ = h(W ′) <
1/3 and so h + a < 1/6 or h′ + a′ < 1/6. In both cases we have ycut ∈ [1/3, 2/3].

algorithm . We are going to cut a slot of width ε between c1ε and (c1 + 1)ε
down to height ycut, which is either y′1 or y1 (hence PointI((c1 + 1)ε, ycut) = ∅). Let
X = [c1ε, (c1 + 1)ε]× [ycut, 1] be the designated slot that we want to free. To do this
we differentiate four sets of items intersecting X. The entire algorithm is given in
Algorithm 2—see Figure 8 for an illustration.

• Let RW ′ = VLI((c1 + 1)ε; ycut, 1) ∩W ′ be the set of items in W ′ which intersect
X by crossing the vertical line at width x = (c1 + 1)ε. Notice, that if r1 ∈ W ′,
then ycut = y′1. Therefore, RW ′ has total height h′. Place the items of RW ′ into a
container CRW′ of height h′ < 1/3 and width 1 and pack it at position (0, 5/3−
h′).

• Let RR = VLI((c1 + 1)ε; ycut, 1) \W ′ be the set of remaining items intersecting X
by crossing the vertical line at width x = (c1 + 1)ε. Pack these items left-aligned
into a container CRR of width 1 − 5(c1 + 1)ε and height at most 1 − ycut − h′.
This container is placed at position (5(c1 + 1)ε, 1). This does not cause a conflict,
since ycut is always greater than 1/3 and h(RR) + h(RW ′) ≤ 1− ycut ≤ 2/3.

• Let B = HLI(c1ε, (c1 + 1)ε; ycut) be the rectangles which intersect X from the
bottom. Note, that there is no rectangle at position ((c1 + 1)ε, ycut). By Condi-
tion 10.1, these rectangles have height at most 1/3 and fit bottom-aligned into a
container CB of width (c1 + 1)ε and height 1/3. Place CB at position ((c1 + 1)ε, 1).

• Let I = AI(c1ε, (c1 + 1)ε; ycut, 1) ∪VLI(c1ε; ycut, 1) \ (RW ′ ∪ RR ∪ B) be the set of
remaining rectangles which are completely inside X or intersect X only from
the left. This packing has total height 1− ycut ∈ [1/3, 2/3].

We want to place I between height 1 and 5/3− h′ ≥ 4/3. Therefore, packing
I into a container CI of height 1/3 is sufficient. To do this we partition I into
three sets. Let I1 ⊆ I be the subset of items that intersect height y = 2/3 (these
items fit bottom-aligned into a container of size ((c1 + 1)ε, 1/3)) and let I2 ⊆ I
and I3 ⊆ I be the subsets of I that lie completely above and below y = 2/3,
respectively. By preserving the packing of I2 and I3 we can pack each into a
container ((c1 + 1)ε, 1/3). In total we pack I into CI = (3(c1 + 1)ε, 1/3). This
container is placed at position (2(c1 + 1)ε, 1).
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(b) Modified packing where C1 is packed in the
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Figure 8: Packing methods for Lemma 10 (the x-direction is distorted, i.e., ε is chosen very
large, to illustrate the different sets that intersect with X)
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Finally, we insert C1 into the free slot X and pack C2 above the entire packing. We
have to prove that the slot has sufficient depth for C1. The slot starts at height ycut and
goes up to 5/3− h′. Therefore, we have to check whether 5/3− h′ − ycut ≥ 1.

In the first case, we have h′ + a′ ≤ 1/6 and ycut = y′1 = a′ + 1/2. Hence,

5/3− h′ − ycut = 5/3− h′ − a′ − 1/2 ≥ 5/3− 1/6− 1/2 = 1.

In the second case, we have h+ a > 1/6 and ycut = y1 = 1/2− a. From our discussion
above we know that h + h′ < 1/3. Hence,

5/3− h′ − ycut = 5/3− h′ + a− 1/2

> 5/3− 1/3 + h + a− 1/2

≥ 5/3− 1/3 + 1/6− 1/2 = 1.

Obviously, the methods of Lemma 10 can similarly be applied if there is no 1/3-
high item that intersects [1− (c1 + 1)ε, 1− c1ε]× [0, 1] at the right side of P.

Algorithm 2 No 1/3-high items close to the side of the strip

Requirement: Packing P that satisfies Conditions 10.1 and 10.2.
1: Pack RW ′ = VLI((c1 + 1)ε; ycut, 1) ∩W ′ into a container CRW′ = (1, h′) at position

(5/3− h′, 0).
2: Pack RR = VLI((c1 + 1)ε; ycut, 1) \W ′ into a container CRR = (1− 5(c1 + 1)ε, 2/3−

h′) at position (5(c1 + 1)ε, 1).
3: Pack B = HLI(c1ε, (c1 + 1)ε; y1) \ (RW ′ ∪ RR) into a container CB = ((c1 + 1)ε, 1/3)

at position ((c1 + 1)ε, 1).
4: Pack I = (AI(c1ε, (c1 + 1)ε; ycut, 1) ∪ VLI(c1ε; ycut, 1)) \ (RW ′ ∪ RR ∪ B) into a con-

tainer CI = (3(c1 + 1)ε, 1/3) at position (2(c1 + 1)ε, 1).
5: Pack C1 into the slot X at position (c1ε, ycut) and pack C2 above the entire packing.

3.2.7 one special big item in p

Lemma 11. If the following condition holds for P, namely

11.1. there is an item r1 of height h1 ∈ [1/3, 2/3] and width w1 ∈ [ε, 1− 2ε], and y1 ≥ 1/3
or y′1 ≤ 2/3,

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n).

Proof. See Figure 9 for an illustration of the following proof. W.l.o.g. we assume that
y1 ≥ 1/3, by otherwise mirroring the packing horizontally. Furthermore, we assume
that x′1 ≤ 1− ε since w1 ≤ 1− 2ε and otherwise mirror the packing vertically, i.e., over
x = 1/2.

Define a vertical polygonal chain extension Clift = VPCE(x1, y′1) starting on top of
r1 and let T = AI(Clift). Move up the rectangles in T and the rectangle r1 by 2/3 and
hereby move r1 completely out of the previous packing, since y1 ≥ 1/3. Then move r1

to the right by ε, this is possible, since x′1 ≤ 1− ε.
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Figure 9: Packing methods for Lemma 11

In the hole vacated by r1 we have on the left side a free slot of width ε (since w1 ≥ ε

and since we moved r1 to the right by ε) and height 2/3 + h1 ≥ 1 (since we moved up
T by 2/3 and since h1 ≥ 1/3). Place C1 in this slot and pack C2 on top of the packing
at height 5/3.

Algorithm 3 Rectangle of height 1/3

Requirement: Packing P that satisfies Condition 11.1.
1: Define Clift := VPCE(x1, y′1) and move up T = AI(Clift) by 2/3.
2: Move up r1 by 2/3 and then by ε to the right, i.e., pack r1 at position (x1 + ε, y1 +

2/3).
3: Pack C1 into the slot vacated by r1 and pack C2 above the entire packing.

Lemma 12. Let c2 > 0 be a constant. If the following conditions hold for P, namely

12.1. there is an item r1 of height h1 ∈ [1/3, 2/3] and width w1 ∈ [(4c2 + 1)ε, 1] with
y1 < 1/3 and with y′1 > 2/3, and

12.2. we have w(H2/3) ≥ 1− w1 − c2ε,

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n).

Proof. Since the height of r1 is h1 ≤ 2/3 we can assume w.l.o.g. that r1 does not
intersect y = 1/6, i.e., y1 ≥ 1/6 (by otherwise mirroring over y = 1/2).
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We want to line up all rectangles in the instance I of height greater than h =

max(1/2, 1− h1) and the rectangle r1 on the bottom of the strip. These rectangles fit
there, since in any optimal solution they have to be placed next to each other (all
rectangles of Hh = {ri | hi > h} have to intersect the horizontal line at height y = 1/2
and no rectangle of Hh fits above r1). Since 1− h1 ≥ 1/3, H2/3 is included in the set Hh.
See Figure 10 for an illustration of the following algorithm and refer to Algorithm 4

for a compressed description.
Let T = AI(0, 1; 2/3, 1) be the rectangles which lie completely above the horizontal

line at height y = 2/3. We move up the rectangles in T by 1/3 into the area [0, 1]×
[1, 4/3]. Now there is a free space of height at least 1/3 above r1.

Let B = AI(0, 1; 0, 1/3) be the rectangles which lie completely below the horizontal
line at height y = 1/3. We pack these items into a container CB = (1, 1/3) by preserv-
ing the packing of B and pack CB at position (0, 4/3), i.e., directly above T. Since by
assumption r1 does not intersect the horizontal line at height y = 1/6, there is a free
space of height at least 1/6 below r1.

The remaining items of height smaller than h except r1 have to intersect one of the
horizontal lines at height 1/3 or 2/3 or lie completely between them. We denote these
rectangles by M1 = HLI(0, 1; 1/3) \ (Hh ∪ {r1}), M2 = HLI(0, 1; 2/3) \ (Hh ∪ {r1} ∪
M1) and M3 = AI(0, 1; 1/3, 2/3). Since each rectangle in H2/3 and r1 intersects both
of these lines, the rectangles in M = M1 ∪M2 ∪M3 lie between them in slots of total
width c2ε. Therefore, we can pack M1 and M2 each bottom-aligned into a container
(c2ε, h). Furthermore, the rectangles in M3 fit into a container (c2ε, 1/3) by pushing
the packing of the slots together. In total we pack M into a container CM = (3c2ε, h)
and pack it aside for the moment.

After these steps we removed all rectangles of height at most h except r1 out of the
previous packing. All remaining items intersect the horizontal line at height y = 1/2.
We line up the rectangles in L = HLI(0, x1; 1/2), i.e., the remaining rectangles on the
left of r1, bottom-aligned from left to right starting at position (0, 0). The rectangles
in R = HLI(0, x′1; 1/2) (the remaining rectangles on the right of r1) are placed bottom-
aligned from right to left starting at position (1, 0). Now move r1 down to the ground,
i.e., pack r1 at position (x1, 0). Above r1 is a free space of height at least 1/2, since
we moved T up by 1/3 and r1 down by at least 1/6. The free space has also height
at least 1− h1, since there is no item left above r1 up to height 1. Hence, in total, this
leaves us a free space of width w1 ≥ (4c2 + 1)ε and height h. Denote this area by
X = [x, x′]× [h1, h1 + h] with x = x1 and x′ = x1 + w1.

Move r1 to the right by at most c2ε until it touches the first rectangle in R, i.e., place
r1 at position (1− w(R)− w1, 0). This reduces the width of the free area on top of r1

to X′ = [x + c2ε, x′]× [h1, h1 + h]. Note, the width of X′ is still at least (3c2 + 1)ε.
In the next step we reorganize the packing of C1. Recall, that the rectangles in C1

are placed bottom-aligned in that container. Let C′1 be the rectangles in C1 of height
larger than h. By removing C′1, we can resize the height of C1 down to h. The resized
container C1 and the container CM have both height h and total width at most (3c2 +

1)ε. Place them on top of r1 in the area X′.
Then place the rectangles in C′1 into the free slot on the left side of r1. They fit there,

since in any optimal packing all rectangles of height greater than h in the instance and
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Figure 10: Packing methods for Lemma 12

r1 have to be placed next to each other (all rectangles of height greater than h have to
intersect the horizontal line at height y = 1/2 and none of them fits above r1). Finally,
pack C2 above the entire packing at height 5/3.

3.2.8 two rectangles of height between 1/3 and 2/3

Lemma 13. If the following conditions hold for P, namely

13.1. there are rectangles r1, r2 with heights h1, h2 ∈ [1/3, 2/3] and widths w1, w2 ≥ ε, and

13.2. we have y1 < y′2 and y2 < y′1.

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n).

Proof. See Figure 11 for an illustration of the following algorithm which is given in
Algorithm 5. W.l.o.g. let r1 be the wider rectangle (w1 ≥ w2). Let Clift

1 = VPCE(x′1, y′1)
and Clift

2 = VPCE(x′2, y′2) be the vertical polygonal chain extensions of the top of r1 and
r2, respectively. Furthermore, let T1 = AI(Clift

1 ) and T2 = AI(Clift
2 ) be the rectangles

above these polygons.
Note that r1 /∈ T2 by Condition 13.2, since otherwise we have y1 ≥ y′2. The same

argument holds for the statement r2 /∈ T1.
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Algorithm 4 Single big item of height 1/3

Requirement: Packing P that satisfies Conditions 12.1 and 12.2.
1: Move up T = AI(0, 1; 2/3, 1) by 1/3
2: Pack the rectangles in B = AI(0, 1; 0, 1/3) into a container CB = (1, 1/3) at posi-

tion (0, 4/3).
3: Pack the rectangles in M = (AI(0, 1; 1/3, 2/3) ∪HLI(0, 1; 1/3) ∪HLI(0, 1; 2/3)) \

(Hh ∪ {r1}) into a container CM = (3c2, h).
4: Line up the rectangles in L = HLI(0, x1; 1/2) on the left of r1 starting at position

(0, 0).
5: Line up the rectangles in R = HLI(0, x′1; 1/2) on the right of r1 starting at position

(1, 0) from right to left.
6: Pack r1 at position (1−w(R)−w1, 0), by moving r1 to the bottom of the strip and

at most c2ε to the right.
7: Pack CM and the resized container C1 on top of r1 into the area X′.
8: Pack the rectangles C′1 ⊆ C1 of height greater than h into the slot vacated by r1

and pack C2 above the entire packing.

Let T3 = T1 ∪ T2 be the rectangles above r1 and r2. We move up the rectangles in
T3 by 2/3. This leaves a free area of height 2/3 above r1 and r2. We place r2 directly
above r1 into that free area. This is possible because w1 ≥ w2 and h2 ≤ 2/3. The hole
vacated by r2 has width w2 ≥ ε and height at least 1, since h2 ≥ 1/3 and T3 was
moved up by 2/3. Finally, we place C1 into that hole and C2 on top of the packing at
height 5/3.

Algorithm 5 Two rectangles of height between 1/3 and 2/3

Requirement: Packing P that satisfies Conditions 13.1 and 13.2.
1: Define Clift

1 = VPCE(x1, y′1), Clift
2 = VPCE(x2, y′2), T1 = AI(Clift

1 ) and T2 = AI(Clift
2 ).

2: Move up T3 = T1 ∪ T2 by 2/3.
3: Pack r2 at postion (x1, y′1).
4: Pack C1 into the slot vacated by r2 and pack C2 above the entire packing.

3.2.9 gap between innermost 2/3-high edges

The pre-conditions for this section are quite technical. We first state them formally
and present a motivation afterwards. Thus assume that the following conditions on
P are satisfied throughout this section for some small constant c3 (think of c3 = 2 for
most cases).

14.1. There are rectangles r`, rr ∈ H2/3 with x-coordinates x′` ∈ [4c3ε, 1− 4c3ε] and
xr ∈ [x′` + 4c3ε, 1− 4c3ε] (note that x′` refers to the right side of r` whereas xr

refers to the left side of rr).

14.2. There is no 1/3-high item that intersects with [x′`+(c3− 1)ε, x′`+ c3ε]× [0, 1] and
there is no 1/3-high item that intersects with [xr − c3ε, xr − (c3 − 1)ε]× [0, 1].
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Figure 11: Packing methods for Lemma 13

To understand the motivation for these conditions assume that Lemma 9 is not
applicable, which reads as follows. If there is a 1/3-high edge on the left side of the bin
then the space to the left of this edge is almost completely occupied by 2/3-high items. Now
we consider r` and rr as the innermost such 2/3-high items. By Lemma 9 we know that
there are no further 1/3-high items between x′` and xr other than in a very thin slot
next to these edges and close to the x-coordinate 1/2 (exceptions are wide 1/3-high
items that span across these areas—these cases are handled separately). This property
is captured in Condition 14.2. For technical reasons we require xr ≥ x′` + 4c3ε. If this
is not the case (and Lemma 9 is not applicable), we have w(H2/3) ≥ 1− 6c3ε and can
apply Lemma 8.

basic algorithm . We are going to cut out a certain slot of width c3ε next to x′`.
The depth of this slot depends on the particular packing P. In a first step we describe
our basic algorithm and assume that we cut down to height ycut ∈ [1/3, 2/3]. In a
second step we show how this basic algorithm is used depending on P and prove that
it actually returns a valid packing.

Let X = [x′`, x′` + c3ε]× [ycut, 1] be the designated slot that we want to free. To do
this we differentiate five sets of items that intersect X. The definition of these sets
depends on the item rcorner = PointI(x′` + c3ε, ycut) and on the item rsplit = PointI(x′` +
c3ε, ycut + 1/3), which are the items that reach into X from the right at height ycut

and ycut + 1/3, respectively. If no item contains (x′` + c3ε, ycut) or no item contains
(x′` + c3ε, ycut + 1/3) in its interior, we introduce dummy items of size (0, 0) for rcorner

and rsplit, respectively.
One further important ingredient of the basic algorithm (or rather its correctness) is

the following blocking property. No item that intersects the designated slot X, i.e., that
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in R reach into X from the right.

Figure 12: Blocking property and definition of sets that intersect X.

intersects [x′`, x′` + c3ε] × [ycut, ycut + 1/3], reaches to the left of x′` or to the right of
xr + c3ε, i.e., VLI(x′`; ycut, ycut + 1/3) = ∅ and VLI(x′` + c3ε; ycut, ycut + 1/3)∩VLI(xr +

c3ε; ycut, ycut + 1/3) = ∅.
Intuitively, we think of r` and rr as the blocking items, i.e., y`, yr ≤ ycut and y′`, y′r ≥

ycut + 1/3. Hence no item intersecting X can reach beyond r` and rr. In one special
case, we cannot ensure that rr is such a blocking item, i.e., ycut + 1/3 > y′r. In this
case we need the additional area of width c3ε to the right of xr. See Figure 12a for an
illustration of this property, Figure 12b for an illustration of the different sets of items
that intersect X and Figure 13 for an illustration of the following basic algorithm.

For the moment we assume that the blocking property is satisfied for ycut and thus
no item reaches into X from the left below ycut + 1/3.

• Let X1/3 = AI(x′`, x′` + c3ε; 0, 1) ∩ H1/3 be the set of 1/3-high items that lie com-
pletely within c3ε distance to the right of x′`. By Condition 14.2, the total width
that the items of X1/3 occupy in the packing is bounded by (c3 − 1)ε. Therefore,
we can remove these items and pack them into a container CX1/3 = ((c3 − 1)ε, 1)
by preserving the packing of the rectangles in X1/3. We put CX1/3 aside for later
insertion into the free slot X together with C1.

• Let B = HLI(x′`, xcorner; ycut) \ (X1/3 ∪ {rcorner}) be the set of remaining items
that intersect the bottom of X excluding rcorner. Pack B bottom-aligned into a
container CB = (c3ε, 1/3). This is possible since xcorner − x′` < c3ε and the 1/3-
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high items have been removed before. Place this container at the left side of the
strip above the current packing at position (0, 1).

• Let I = AI(X) \ X1/3 be the set of remaining items that lie completely inside of
X. There are no 1/3-high items in I due to the removal of X1/3 but the packing
has a total height of 1− ycut ∈ [1/3, 2/3]. We use a standard method to repack
I into a container of height 1/3 as follows. Let I1 ⊆ I be the subset of items that
intersect height y = 2/3 (these items can be bottom-aligned to fit into (c3ε, 1/3))
and let I2 ⊆ I and I3 ⊆ I be the subsets of I that lie completely above or below
y = 2/3, respectively. By preserving the packing of I2 and I3 we can pack I
into CI = (3c3ε, 1/3). Place this container next to CB at position (c3ε, 1). The
container does not intersect with the space above the designated slot X since the
combined width of CB and CI is 4c3ε and x′` ≥ 4c3ε by Condition 14.1.

• Consider the contour Clift defined by height y = ycut + 1/3 to the left of rsplit
and by the top of rsplit to the right. More formally, let

Clift = PL
(
(0, ycut + 1/3), (xsplit, ycut + 1/3), (xsplit, y′split), (1, y′split)

)
.

Let T = AI(Clift) \ I be the set of items that lie completely above this contour but
not in I. Move T up by 2/3. This does not cause an overlap with the containers
CB and CI since Clift lies completely above 2/3 (as ycut ≥ 1/3) and thus the
lowest item in T reaches a final position above 4/3.

• Let R = VLI(x′` + c3ε; ycut, ycut + 1/3) be the set of items that intersect with the
right side of X up to the crucial height of ycut + 1/3. Move R up by 2/3 and
then left-align all items at x-coordinate x′` + c3ε. This is the sole operation in the
basic algorithm that might cause a conflict. This potential conflict only affects
rcorner and we will later see how to overcome this difficulty. All other items were
entirely above ycut in the original packing and are thus moved above height
1. Therefore, they cannot overlap with any item inside the original packing P.
Since the blocking property ensures that no item of R has width greater than
xr + c3ε− x′` and xr ≤ 1− 4c3ε (by Condition 14.1) we can left-align all items at
x-coordinate x′` + c3ε without any item intersecting the right side of the strip.

Finally, after resolving the potential conflict from the last step, we insert C1 and
CX1/3 into the slot X at position (x′`, ycut) (they fit since w(C1) + w(CX1/3) ≤ c3ε and all
items in T lie above ycut + 1/3+ 2/3 = ycut + 1) and pack C2 above the entire packing
as always. See Algorithm 6 for the complete basic algorithm.

We described the basic algorithm in a way that it always cuts down from the top
of the packing next to r`. But there are four potential cuts since we can also cut next
to rr or from below. To ease the presentation we will stick to cutting next to r` from
above by otherwise mirroring the packing horizontally and/or vertically.

Now let us see how to invoke the basic algorithm such that the blocking property
is satisfied for ycut and how to resolve the potential conflict.
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Figure 13: The basic algorithm

Algorithm 6 Basic algorithm

Requirement: Packing P that satisfies Conditions 14.1 and 14.2; ycut ∈ [1/3, 2/3] that
satisfies the blocking property

1: Remove the items X1/3 = AI(x′`, x′` + c3ε; 0, 1) ∩ H1/3 and pack them into a con-
tainer CX1/3 = ((c3 − 1)ε, 1).

2: Pack B = HLI(x′`, xcorner; ycut) \ (X1/3 ∪ {rcorner}) into a container CB = (c3ε, 1/3)
at position (0, 1).

3: Pack I = AI(X) \ X1/3 into a container CI = (3c3ε, 1/3) at position (c3ε, 1).
4: Move up the items T = AI(Clift) \ I by 2/3.
5: Move up the items R = VLI(x′` + c3ε; ycut, ycut + 1/3) by 2/3 and left-align them

with x′` + c3ε.
6: Resolve potential conflicts.
7: Pack C1 and CX1/3 into the slot X at position (x′`, ycut) and pack C2 above the entire

packing.
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Figure 14: Definition of ytop, ybottom, r1, r2, r3 and r4 and accentuation of the designated slot
X next to r`. Here r1 intersects with 1/3 and w1 + w2 ≤ 1 − x′` − c3ε and thus
ycut = 1/3.

Let ytop = min(y′`, y′r) > 2/3 and let ybottom = max(y`, yr) < 1/3. We get the items

r1 = PointI(x′` + c3ε, ytop − 1/3),

r2 = PointI(x′` + c3ε, ybottom + 1/3),

r3 = PointI(xr − c3ε, ytop − 1/3), and

r4 = PointI(xr − c3ε, ybottom + 1/3)

as some potential corner pieces of the cut (see Figure 14), corresponding to item rcorner

in the basic algorithm. Note that the items r1, r2, r3 and r4 do not necessarily have to
differ or to exist (while in the latter case we again introduce a dummy item of size
(0, 0)) . By Condition 14.2 we know that h1, h2, h3, h4 ≤ 1/3.

In the following cases we set ycut ∈ [1/3, ytop − 1/3]. For this value of ycut the
blocking property is satisfied since y`, yr ≤ 1/3 ≤ ycut and y′`, y′r ≥ ytop ≥ ycut +

1/3. Thus VLI(x′`; ycut, ycut + 1/3) ⊆ VLI(x′`; y`, y′`) = ∅ and VLI(x′` + c3ε; ycut, ycut +

1/3)∩VLI(xr + c3ε; ycut, ycut + 1/3) ⊆ VLI(x′` + c3ε; ycut, ycut + 1/3)∩VLI(xr; yr, y′r) ⊆
VLI(xr; yr, y′r) = ∅ (no item from [x′`, x′` + c3ε] × [ycut, ycut + 1/3] reaches beyond x′`
and xr).

We now describe the different cases in which we invoke the basic algorithm.

case 1 . y1 ≥ 1/3, i.e., r1 lies above height 1/3.
In this case we invoke the basic algorithm with ycut = y1 ∈ [1/3, ytop − 1/3] (hence
the blocking property is satisfied). We have rcorner = (0, 0) and r1 is the lowest item in
R. The item r1 is moved above height 1 since y1 ≥ 1/3. Thus no conflict occurs.

In the following assume conversely that y1, y3 < 1/3 and y′2, y′4 > 2/3 (using mir-
roring). This implies that r1, r3 intersect the horizontal line at height y = 1/3 and r2, r4

intersect the horizontal line at height y = 2/3 (by definition of the potential corner
pieces and as ytop − 1/3 > 1/3 and ybottom + 1/3 < 2/3). Hence, we have r1 6= r2 and
r3 6= r4 since h1, h2, h3, h4 ≤ 1/3.
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case 2 . w1 + w2 ≤ 1− x′` − c3ε (and r1 intersect y = 1/3, r2 intersects y = 2/3).
In this case we potentially mirror the packing horizontally, i.e., over y = 1/2, to ensure
that h1 ≤ h2. We invoke the basic algorithm with ycut = 1/3 (hence the blocking
property is satisfied) and thus we have rcorner = r1 and rsplit = r2 (as we can assume
from the previous case that r1 intersects y = 1/3 and r2 intersects y = 2/3). Since
r1 intersects the horizontal line y = 1/3 it is not moved out of the original packing
P (and could therefore cause a conflict with the original packing). Since w1 + w2 ≤
1 − x′` − c3ε and h1 ≤ h2 we can pack r1 to the right of r2 which is left-aligned at
x-coordinate x′` + c3ε, i.e., pack r1 at position (x′` + c3ε + w2, y2 + 2/3). This handles
the potential conflict of the basic algorithm.

In the following we assume that w1 + w2 > 1− x′` − c3ε and accordingly w3 + w4 >

xr− c3ε. Thus ∑4
i=1 wi > 1+ xr− x′`− 2c3ε > 2(xr− x′`). This is obviously only possible

if r1 = r3 or r2 = r4. Let us thus assume r2 = r4 (by otherwise mirroring the packing
over y = 1/2).

case 3 . w1 ≤ xr − x′` − 2c3ε (and r2 = r4 and r1 intersects y = 1/3 and r2 intersects
y = 2/3).
Again we invoke the basic algorithm with ycut = 1/3 (hence the blocking property
is satisfied) and accordingly we have rcorner = r1 and rsplit = r2. All items above r2

are in T, hence by moving up T by 2/3 no item intersects the area above r2, that is,
in particular, the area [x′` + c3ε, xr − c3ε]× [y′2, 1]. Furthermore, since r2 intersects the
horizontal line y = 2/3, except r1 no item is placed in [x′` + c3ε, xr − c3ε] × [2/3, 1]
after moving up R by 2/3. The rectangle r1 has height at most 1/3 and width at
most xr − x′`− 2c3ε. Hence by moving up r1 by 2/3 and left-aligning it at x-coordinate
x′` + c3ε it intersects only with the free area [x′` + c3ε, xr − c3ε] × [2/3, 1] inside the
original packing P. Thus no conflict occurs.

On the other hand, if conversely w1 > xr − x′` − 2c3ε and accordingly w3 > xr −
x′` − 2c3ε we have r1 = r3 since xr ≥ x′` + 4c3ε by Condition 14.1.

Thus for the last case we have r1 = r3 and r2 = r4 and r1 intersects height y = 1/3
and r2 intersects height y = 2/3. The challenge in this remaining case is that we
cannot move r1 out of the original packing (since it intersects y = 1/3) and thus there
might occur a conflict close to rr. We now show how to resolve this potential conflict
close to rr.

two wide corner pieces . Let y′top-left be the height of the bottom of the lowest
item above r` that intersects x′` − c3ε and x′` + c3ε, i.e.,

y′top-left = min
{

yi | ri ∈ VLI(x′` − c3ε; y′`, 1) ∩VLI(x′` + c3ε; y′`, 1)
}

.

If there is no such item let y′top-left = 1. Let y′top-right, y′bottom-left and y′bottom-right be de-
fined accordingly as shown in Figure 15. Now we define y′top = min(y′top-left, y′top-right)

and y′bottom = max(y′bottom-left, y′bottom-right). Let us assume that y′top = y′top-right (by oth-
erwise mirroring over x = 1/2).

case 4 . y1 ≥ y′top − 2/3 (and r1 = r3 and r2 = r4 and r1 intersects y = 1/3 and r2

intersects y = 2/3).
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Figure 15: Definition of y′top and y′bottom. No item from X below y′top reaches beyond xr + c3ε.

In this case we invoke the basic algorithm with ycut = 1/3 as usual (hence the blocking
property is satisfied) and again we have rcorner = r1 and rsplit = r2. Let r5 be the item
that defined y′top = y′top-right = y5. Then the items r2 and r5 intersect the vertical line
x = xr − c3ε. Since y′top ≥ min(y′`, y′r) > 2/3 and r2 intersects the horizontal line y =

2/3 and since r2 and r5 intersect the same vertical line, it follows that y5 = y′top ≥ y′2.
So r5 and all rectangles above r5 are in T and moved up by 2/3. Therefore, no item
intersects with the area [x′` + c3ε, xr + c3ε]× [y′top, 1]. Since y1 ≥ y′top − 2/3, we move
up r1 above y′top and into this area. Thus no conflict occurs. So in the following assume
conversely that y1 < y′top − 2/3 and accordingly y′2 > y′bottom + 2/3.

case 5 . y1 < y′top − 2/3 and y′2 > y′bottom + 2/3.
Now assume that ybottom = y` (by otherwise mirroring vertically—so y′top = y′top-right
does not necessarily hold any more). Note that we refer to the original definition of
ybottom instead of y′bottom here. We invoke the basic algorithm using ycut = y′1. So r1

is left in the original position (and we have rcorner = (0, 0)) and since y′1 > 1/3 all
items from R are moved out of the original packing. It remains to verify the blocking
property for ycut = y′1, since y′1 is not necessarily in [1/3, ytop − 1/3].

We have y′` > y` + 2/3 = ybottom + 2/3 ≥ y′1 + 1/3 = ycut + 1/3 (since y′1 ≤ ybottom +

1/3 as by definition r2 intersects with ybottom + 1/3 and r1 6= r2). So the blocking
property is enforced by r` to the left, i.e., VLI(x′`; ycut, ycut + 1/3) = ∅. Moreover, we
have ycut + 1/3 < y′top since ycut + 1/3 = y′1 + 1/3 = y1 + h1 + 1/3 ≤ y1 + 2/3 < y′top.
Thus by definition of y′top no item that intersects xr − c3ε between y′r and y′top reaches
beyond xr + c3ε, i.e., VLI(x′` + c3ε; ycut, ycut + 1/3)∩VLI(xr + c3ε; ycut, ycut + 1/3) = ∅.
So the blocking property is also satisfied for the right side.

In total we get the following lemma.

Lemma 14. Let c3 > 0 be a constant. If the following conditions hold for P, namely

14.1. there are rectangles r`, rr ∈ H2/3 with x-coordinates x′` ∈ [4c3ε, 1− 4c3ε] and xr ∈
[x′` + 4c3ε, 1− 4c3ε], and
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14.2. there is no 1/3-high item that intersects with [x′` + (c3 − 1)ε, x′` + c3ε] × [0, 1] and
there is no 1/3-high item that intersects with [xr − c3ε, xr − (c3 − 1)ε]× [0, 1],

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n log n).

We use the same methods, namely the basic algorithm invoked with ycut = 1/3 and
c3 = 2 for another case where we do not have a blocking edge of height 2/3 on both
sides. More specifically, we get the following corollary where the right-hand blocking
item rr is 1/3-high.

Corollary 4. If the following conditions hold for P, namely

14.3. there is an item r` ∈ H2/3 with x-coordinate x′` ∈ [8ε, 1/2− 9ε], and

14.4. there is an item rr ∈ H1/3 that intersects y = 1/3 and y = 2/3 with x-coordinate
xr ∈ [1/2− ε, 1/2 + ε], and

14.5. there is no 1/3-high item that intersects with [x′` + ε, x′` + 2ε]× [0, 1],

then we can derive a packing of I into a strip of height 5/3 + ε in additional time O(n log n).

Proof. As stated above, we invoke the basic algorithm with ycut = 1/3 and c3 = 2.
Note that xr ≥ x′` + 8ε = x′` + 4c3ε. The blocking property is satisfied, since r` and rr

intersects with the horizontal lines at height y = 1/3 and y = 2/3. If rcorner = (0, 0) or
rsplit = (0, 0) we can use the same methods as in Case 1. Otherwise rcorner intersects
y = 1/3 and rsplit intersects y = 2/3. Since rr also intersects y = 1/3 and y = 2/3
we have wcorner ≤ xr − x′` and wsplit ≤ xr − x′`. Thus wcorner + wsplit ≤ 2xr − 2x′` ≤
1 + 2ε− 2x′` < 1− x′` − 4ε = 1− x′` − 2c3ε. Hence we can use the same methods as in
Case 2.

3.2.10 the overall algorithm

In this section we finally bring together the methods described in the previous sections
to give the overall algorithm.

Recall that ε < 1/(28 · 151). We start by applying the methods of Lemma 3 in order
to reduce the problem to pack an instance I with OPT(I) ≤ 1. In a first step we
attempt to apply Lemma 7 or Lemma 8. If we are successful, this gives a packing into
a strip of height at most 5/3 + 260ε/3 which we return. Otherwise we have

h(W1−130ε) < 1/3 and (3.7)

w(H2/3) < 27/28. (3.8)

Now we apply the PTAS from [5] with an accuracy of δ := ε2/2 and denote the
resulting packing by P. We pack the remaining items into C1 = (ε, 1) and C2 = (1, ε)

as described in Section 3.2.1. According to P we decide which of the other Lemmas to
apply in order to insert C1 into a free slot in P.

The 2/3-high items play a crucial role in this decision. Let r` be the rightmost 2/3-
high item in AI(0, 1/2− ε; 0, 1) and let rr be the leftmost 2/3-high item in AI(1/2 +
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ε, 1; 0, 1) (we consider the sides of the strip as items of height 1 and width 0 to ensure
that r` and rr exist).

Iterate over all 1/3-high items in P and check the applicability of Lemma 9 for both
sides of each item (also under mirroring over x = 1/2). If possible, use the methods
of Lemma 9 to derive a packing into a strip of height 5/3 + ε. Otherwise P has the
following properties.

• The areas to the left of r` and to the right of rr are almost completely covered
by 2/3-high items, i.e., w(AI(0, x′`; 0, 1) ∩ H2/3) > x′` − ε and w(AI(xr, 1; 0, 1) ∩
H2/3) > 1− xr − ε, since Lemma 9 could not be applied on r` and rr.

• The x-coordinates of the sides of all 1/3-high items are in I` = [0, x′` + ε], IM =

[1/2 − ε, 1/2 + ε] or Ir = [xr − ε, 1]. To put it in another way the rectangles
in H1/3 are either completely inside one of these intervals or span across one
interval to another.

• We have xr − x′` > 143ε as otherwise

w(H2/3) ≥ w(AI(0, x′`; 0, 1) ∩ H2/3) + w(AI(xr, 1; 0, 1) ∩ H2/3)

≥ x′` − ε + 1− xr − ε

≥ 1− 145ε

> 27/28

for an ε < 1/(28 · 145) in contradiction to Inequality (3.8).

The specific method that we apply in the next step depends on the existence of 1/3-
high items that span across the intervals I`, IM and Ir. It is not possible that a 2/3-high
item r1 spans from I` to Ir, as otherwise we have w(H2/3) ≥ w(AI(0, x′`; 0, 1)∩ H2/3) +

w(AI(xr, 1; 0, 1) ∩ H2/3) + w1 ≥ x′` − ε + 1− xr − ε + xr − x′` − 2ε ≥ 1− 4ε > 27/28
for ε < 1/112. The same holds if there were two 2/3-high rectangles r1, r2, that
span from I` to IM and IM to Ir, respectively (w(H2/3) ≥ w(AI(0, x′`; 0, 1) ∩ H2/3) +

w(AI(xr, 1; 0, 1)∩H2/3)+w1 +w2 ≥ x′`− ε+ 1− xr− ε+ xr− x′`− 4ε ≥ 1− 6ε > 27/28
for ε < 1/168).

In order to have a consistent description of the following cases, we assume that
there are no 2/3-high items that span across the intervals by otherwise redefining
r` and x′` or rr and xr as follows. If there is a 2/3-high item r that intersects with
x = x′` + ε, i.e., r spans from I` and IM, then we redefine r` as the rightmost 2/3-high
item in IM, or r` = r if there is no 2/3-high item completely in IM. On the other hand,
if there is a rectangle r that intersects with x = xr − ε, i.e., r spans from IM to Ir, then
we redefine rr as the leftmost 2/3-high item in IM, or rr = r if no 2/3-high item is
completely in IM.

After this step we have to update the first properties above as follows.

• The areas to the left of r` and to the right of rr are almost completely covered
by 2/3-high items, i.e., w(AI(0, x′`; 0, 1) ∩ H2/3) > x′` − 4ε and w(AI(xr, 1; 0, 1) ∩
H2/3) > 1− xr − 4ε.
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This property follows again from the inapplicability of Lemma 9 and the observation
that only uncovered area of total width 3ε in [x′`, x′` + ε] (for the now outdated value
of x′`) and [1/2− ε, 1/2 + ε] can be added.

We still can assume xr − x′` > 143ε, since otherwise w(H2/3) ≥ w(AI(0, x′`; 0, 1) ∩
H2/3) + w(AI(xr, 1; 0, 1) ∩ H2/3) ≥ x′` − 4ε + 1− xr − 4ε ≥ 1− 151ε ≥ 27/28 for an
ε < 1/(28 · 151).

Let c3 = 2 if x′` < 1/2− 3ε and xr > 1/2 + 3ε and c3 = 5 otherwise. The intention
of this definition is that [x′` + (c3 − 1)ε, x′` + c3ε] does not intersect with I` ∪ IM and
[xr − c3ε, xr − (c3 − 1)ε] does not intersect with IM ∪ Ir (here we use xr − x′` > 143ε

as thus if I` lies close to IM we have a bigger gap between IM and Ir and vice versa).
Since the x-coordinates of the sides of all 1/3-high items are in I`, IM and Ir we thus
get the following property for P.

• If one 1/3-high item intersects with [x′` + (c3 − 1)ε, x′` + c3ε]× [0, 1], then it has
to cross the vertical line at x = x′` + c3ε.

• If one 1/3-high item intersects with [xr − c3ε, xr − (c3 − 1)ε]× [0, 1], then it has
to cross the vertical line at x = xr − c3ε.

Now assume that x′` ≤ 4c3ε and no 1/3-high item intersects with x = x′` + c3ε. Thus
no 1/3-high item spans across I` and IM and the precondition of Lemma 10 with
c1 = 5c3 is satisfied (we have h(W1−5(c1+1)ε) = h(W1−5(5c3+1)ε) ≤ h(W1−130ε) < 1/3 by
Condition 3.7). We use the methods of Lemma 10 to derive a packing into a strip of
height 5/3 + ε which we return. For a packing P that is still not processed we get the
following property.

• If no 1/3-high item intersects with x = x′` + c3ε, then x′` ≥ 4c3ε and analogously
if no 1/3-high item intersects with x = xr − c3ε, then xr ≤ 1− 4c3ε.

See Figure 16 for a schematic illustration of the following cases (by the considerations
above, all 1/3-high items that span across the intervals have height at most 2/3).

• A 1/3-high item reaches close to r` and rr—see Figure 16a.

In this case we assume that there is a 1/3-high item r1 that intersects with
x = x′` + ε and with x = xr − ε, i.e., that spans from I` to Ir. By Inequality (3.7)
we have w1 ≤ 1− 130ε as h1 > 1/3. Moreover, we have w1 ≥ xr − ε− x′` − ε ≥
141ε (since xr − x′` > 143ε). Thus if y1 ≥ 1/3 or y′1 ≤ 2/3 we can apply the
methods of Lemma 11. Otherwise, we can apply Algorithm 4 with c2 = 10
since w1 ≥ xr − ε − x′` − ε ≥ 141ε > (4c2 + 1)ε (since xr − x′` > 143ε) and
w(H2/3) ≥ w(AI(0, x′`; 0, 1) ∩ H2/3) + w(AI(xr, 1; 0, 1) ∩ H2/3) ≥ x′` − 4ε + 1 −
xr − 4ε ≥ 1− w1 − 10ε = 1− w1 − c2ε.

In the following we also need to handle the case where r1 reaches only close to
the blocking items r` and rr, i.e., r1 intersects with x′` + 11ε and xr − 11ε. Here
we can also apply the methods of Lemma 11 or Algorithm 4 with c2 = 30 (w1 ≥
xr− 11ε− x′`− 11ε ≥ 121ε = (4c2 + 1)ε and w(H2/3) ≥ w(AI(0, x′`; 0, 1)∩H2/3) +

w(AI(xr, 1; 0, 1) ∩ H2/3) ≥ x′` − 4ε + 1− xr − 4ε ≥ 1− w1 − 30ε = 1− w1 − c2ε).
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Figure 16: Schematic illustration of the remaining cases if Lemma 9 is not applicable. The
area to the left of r` and the area to the right of rr is almost completely covered by
2/3-high items (and shown in darker shade).
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• Two 1/3-high items lie between r` and rr—see Figure 16b.

Assume that there is a 1/3-high item r1 that intersects with x = x′` + ε and with
x = 1/2− ε and there is a 1/3-high item r2 that intersects with x = 1/2 + ε

and with x = xr − ε. Note, that if r1 or r2 spans from I` to Ir, then we are in
the previous case. Hence we assume that r1 spans across I` to IM and r2 spans
across IM to Ir. If x′` ≥ 1/2− 3ε or xr ≤ 1/2 + 3ε we apply also the method
of the previous case, since then r2 intersects with x = x′` + 5ε and x = xr − ε,
or r1 intersects with x = x′` + ε and x = xr − 5ε. Otherwise we have w1, w2 ∈
[ε, 1/2 + ε]. Thus if r1 or r2 does not intersect with y = 1/3 or with y = 2/3,
we can apply the methods of Lemma 11. Otherwise, we have y1, y2 < 1/3 and
y′1, y′2 > 2/3 and thus we can apply the methods of Lemma 13.

The following two cases use Lemma 14 and Corollary 4. Recall that we have x′` ≥
4c3ε if no 1/3-high item intersects with x = x′` + c3ε and xr ≤ 1− 4c3ε if no 1/3-high
item intersects with x = xr − c3ε.

• A 1/3-high item reaches from the middle close to rr but no 1/3-high item reaches from
r` to the middle—see Figure 16c.

In this case we assume that there is a 1/3-high item r1 that intersects with
x = 1/2 + ε and with x = xr − c3ε but there is no 1/3-high item that intersects
with x = x′` + c3ε. We assume that x′` ≤ 1/2− 3ε as otherwise we could apply
the methods of the first case (as r1 intersects with x = x′` + 4ε ≤ x′` + 11ε and
x = xr − ε in this case). Note that we have xr > 1/2+ 3ε as otherwise c3 = 5 and
r1 would intersect with x = 1/2− ε, i.e., span from I` to Ir, and the assumption
that no 1/3-high intersects with x = x′` + c3ε would be violated. Thus we have
c3 = 2 (by the definition above) and x′` ≥ 8ε .

Obviously, we have w1 ∈ [ε, 1− 2ε] and can thus use the methods of Lemma 11

if y1 ≥ 1/3 or y′1 ≤ 2/3. Otherwise, the item r1 intersects y = 1/3 and y = 2/3.
Moreover, we have x1 ∈ [1/2− ε, 1/2 + ε] and thus can apply the methods of
Corollary 4 to derive a packing into a strip of height 5/3 + ε. Here we use
that no 1/3-high item intersects with [x′` + (c3 − 1)ε, x′` + c3ε] × [0, 1] and that
x′` ≤ 1/2− 9ε since we are otherwise in the first case again (r1 intersects with
x = x′` + 11ε and x = xr − 11ε).

The same methods can be applied if the item r1 reaches from r` to the middle
instead.

• No 1/3-high items span across the intervals—see Figure 16d.

In this case we assume that no 1/3-high item intersects with x = x′` + c3ε and no
1/3-high item intersects with x = xr − c3ε. Thus we have x′`, xr ∈ [4c3ε, 1− 4c3ε]

and no 1/3-high item intersects with [x′` + (c3− 1)ε, x′` + c3ε]× [0, 1] and no 1/3-
high item intersects with [xr − c3ε, xr − (c3 − 1)ε]× [0, 1]. As we have xr − x′` >
143ε > 4c3ε we can apply the methods of Lemma 14.

This finalizes our overall algorithm which is given in Algorithm 7. These four cases
cover all possibilities and therefore our algorithm always outputs a packing into a
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strip of height at most 5/3 + 260ε/3. Thus with Lemma 3 we get an approximation
ratio for the overall algorithm of 5/3 + 263ε/3. By scaling ε appropriately we proved
our main theorem.

Theorem 4. For any ε > 0, there is an approximation algorithm A which produces a packing
of a list I of n rectangles in a strip of width 1 and height A(I) such that

A(I) ≤
(5

3
+ ε
)

OPT(I).

The running time of A is O(TPTAS + (n log2 n)/ log log n), where TPTAS is the running
time of the PTAS from [5].

Algorithm 7 The overall algorithm

Requirement: ε < 1/(28 · 151).
1: for any scaled instance I′ according to Lemma 3 do
2: if Lemma 7 or Lemma 8 is applicable then
3: store the packing derived by the according method.
4: else
5: Apply the PTAS from [5] with an accuracy of δ := ε2/2 and denote the

resulting packing by P.
6: Pack the remaining items into C1 = (ε, 1) and C2 = (1, ε).
7: Iterate over all 1/3-high items in P, apply the methods of Lemma 9 if possible

and store the derived packing.
8: Apply the methods of Lemma 10 if x′` ≤ 4c3ε and no 1/3-high item intersects

with x = x′` + c3ε (or xr ≥ 1 − 4c3ε and no 1/3-high item intersects with
x = xr − c3ε) and store the derived packing.

9: Decide which of the four cases applies according to the 1/3-high items be-
tween r` and rr, apply the methods of Lemmas 11, 12, 13, and 14 or of Corol-
lary 4 and store the derived packing.

10: return the best packing that was stored





4
B I N PA C K I N G W I T H R O TAT I O N S

In this section we consider the two-dimensional bin packing problem where the items
can be rotated by 90 degrees. We present a 2-approximation algorithm for this prob-
lem. This is optimal provided P 6= NP .

No previous work has been published on the absolute approximability of this prob-
lem. On the other hand, it is common knowledge that Steinberg’s algorithm yields a
4-approximation algorithm for bin packing with rotations:

The following theorem was already mentioned by Jansen & Solis-Oba[27].

Theorem 5. Steinberg’s algorithm gives an absolute 2-approximation for strip packing with
rotations.

Proof. Rotate all items ri ∈ I such that wi ≥ hi and let b := max(2hmax(I), 2A(I)).
Use Steinberg’s algorithm to pack I into the rectangle (1, b). This is possible since
2A(I) ≤ b and (2hmax(I) − b)+ = 0. The claim on the approximation ratio follows
from OPT(I) ≥ max(hmax(I),A(I)) = b/2.

It is well-known that a strip packing algorithm with an approximation ratio of δ

directly yields a bin packing algorithm with an approximation ratio of 2δ. To see
this, cut the strip packing of height h into slices of height 1 so as to get dhe bins of
the required size. The rectangles that are split between two bins can be packed into
bhc additional bins. The strip packing gives a lower bound for bin packing. Thus if
h ≤ δOPTstrip(I), then dhe + bhc ≤ 2δOPTbin(I). Accordingly, we get the following
theorem.

Theorem 6. Steinberg’s algorithm yields an absolute 4-approximation algorithm for bin pack-
ing with rotations.

4.1 A 2 - A P P R O X I M AT I O N A L G O R I T H M
F O R B I N PA C K I N G W I T H R O TAT I O N S

We start our presentation by showing in Section 4.1.1 that a first approach based on
an algorithm from Jansen & Solis-Oba[27] does not lead to the desired approximation
ratio. Our main result is presented in Section 4.1.2. The algorithm is based on our
main lemma that we prove in Section 4.1.3.

Throughout this section we assume that all items are rotated such that wi ≥ hi.
Therefore, Corollary 1 reads as follows here.

Corollary 5 (Jansen & Zhang[30]). If the total area of a set T of items is at most 1/2 and
there is at most one item of height hi > 1/2, then the items of T can be packed into a bin of
unit size in time O((n log2 n)/ log log n).
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y = 1

y = δ

AbottomAtop

1 + δ

R

Figure 17: Packing of Jansen & Solis-Oba’s algorithm where it is not immediately clear how
to derive a packing into 2 unit bins. The blocks in the packing might consist of
several items and might contain small free spaces or items that are not in Atop or
Abottom. Furthermore, there might be items (printed in dark grey) that are in Atop
and in Abottom.

4.1.1 first approach

We started our investigation on the bin packing problem with rotations with an al-
gorithm from Jansen & Solis-Oba[27] that finds a packing of profit (1− δ)OPT2−KP(I)
into a bin of size (1, 1 + δ), where OPT2−KP(I) denotes the maximal profit that can be
packed into a unit bin and δ is an arbitrarily small positive constant. Using the area of
the items as their profit gives an algorithm that packs almost the whole instance into
an δ-augmented bin. The algorithm can easily be generalized to a constant number of
bins.

An immediate idea to transform such a packing to a packing into 2 OPT(I) bins is
to remove all items that intersect a slice of height δ at the top or bottom of each bin.
These items and the items that were not packed by the algorithm would have to be
packed separately. In Figure 17 we present an instance where it is not immediately
clear how the removed items can be packed separately. Let Atop be the set of items
that intersect y = 1, Abottom be the set of items that intersect y = δ, and R be the set
of remaining items. As shown in Figure 17, the sets Atop and Abottom can both have
total area arbitrary close to or even larger than 1/2 (as both sets are not necessarily
disjoint). Thus adding the additional items R and packing everything with Steinberg’s
algorithm is not necessarily possible. Furthermore, it is not obvious how to rearrange
Atop or Abottom such that there is suitable free space to pack R and the items that are
above Atop or below Abottom.

We therefore chose to pursue a different approach to solve this problem.

4.1.2 our algorithm : overview

As the asymptotic approximation ratio of the algorithm from Bansal et al.[6] is 1.525 . . .
and thus less than 2, there exists a constant k such that for any instance with opti-
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mal value larger than k, the asymptotic algorithm gives a solution of value at most
2 OPT(I). This constant k is not explicitly known as we already mentioned in the intro-
duction. We address the problem of approximating bin packing with rotations within
an absolute factor of 2, provided that the optimal value of the given instance is less
than k. Combined with the algorithm from [6] we get an overall algorithm with an
absolute approximation ratio of 2.

We begin by applying the asymptotic algorithm from [6]. Since we do not know
whether OPT(I) > k we apply a second algorithm that is described in the remain-
der of this section. If OPT(I) > k, then this algorithm might fail as the asymptotic
algorithm outputs a solution of value k′ ≤ 2 OPT(I).

Let ε := 1/68. We separate the given input according to the area of the items,
so we get a set of large items L = {ri ∈ I | wihi ≥ ε} and a set of small items
S = {ri ∈ I | wihi < ε}. If A(L) > k then OPT(I) > k and the algorithm halts.
Otherwise, we can enumerate all possible packings of the large items since the number
of large items in each bin is bounded by 1/ε and their total area is at most k. Take an
arbitrary packing of the large items into a minimum number ` ≤ k of bins. If no such
packing exists then the asymptotic algorithm from [6] finds a suitable solution and
our algorithm halts.

If there are bins that contain items with total area less than 1/2− ε, we greedily
add small items such that the total area of items assigned to each of these bins is in
(1/2− ε, 1/2]. We use the method of Jansen & Zhang[30] to repack these bins including
the newly assigned small items. This is possible by Corollary 5. There is at most one
item of height hi > 1/2 since otherwise the total area exceeds 1/2, because wi ≥ hi.
If we run out of items in this step, we found an optimal solution. Assume that there
are still small items left and each bin used so far contains items of total area at least
1/2− ε. The following crucial lemma shows that we can pack the remaining small
items well enough to achieve an absolute approximation ratio of 2.

Lemma 15. Let 0 < ε ≤ 1/68 and let T be a set of items that all have area at most ε such
that for all r ∈ T the total area of T \ {r} is less than 1/2 + ε. We can find a packing of T
into a unit bin in time O((n log2 n)/ log log n).

The lemma is proven in the next section. To apply Lemma 15 we consider the
following partition of the remaining items.

Let r1, . . . , rm be the list of remaining small items, sorted by non-increasing order of
size. Partition these items into sets S1 = {rt1 , . . . , rt2−1}, S2 = {rt2 , . . . , rt3−1}, . . . , Ss =

{rts , . . . , rts+1−1} with t1 = 1 and ts+1 = m + 1 such that

A(Sj \ {rtj+1−1}) <
1
2
+ ε and A(Sj) ≥

1
2
+ ε

for j = 1, . . . , s− 1. Obviously, each set Si satisfies the precondition of Lemma 15 and
can therefore be packed into a single bin. Only Ss might have total area less than
1/2 + ε. The overall algorithm is given in Algorithm 8.

Note that if no packing of L into at most k bins exists, then OPT(I) > k and thus
k′ ≤ 2 OPT(I) by definition of k.
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Algorithm 8 Approximate bin packing with rotations

1: Apply the asymptotic algorithm from [6] to derive a packing P′ into k′ bins
2: Let ε = 1/68
3: Partition I into L = {ri ∈ I | wihi ≥ ε} and S = {ri ∈ I | wihi < ε}
4: if A(L) > k or L cannot be packed in k or less bins then
5: return P′

6: else
7: Find a packing of L into ` ≤ k bins, where ` is minimal
8: while there exists a bin containing items of total area < 1/2− ε do
9: Assign small items to this bin until the total area exceeds 1/2− ε

10: Use Steinberg’s algorithm (Corollary 5) to repack the bin
11: Order the remaining small items by non-increasing size
12: Greedily partition the remaining items into sets S1, . . . , Ss such that

A(Sj \ {rtj+1−1}) <
1
2
+ ε and A(Sj) ≥

1
2
+ ε for j = 1, . . . , s− 1

13: Use the method described in the proof of Lemma 15 to pack each set Si into
a bin

14: Let P be the resulting packing into `+ s bins
15: return the packing from P, P′ that uses the least amount of bins

4.1.3 packing sets of small items

In this section we prove Lemma 15. We will use the following partition of a set T of
items of area at most ε in the remainder of this section. Let

T1 := {ri ∈ T | 2/3 < wi} T2 := {ri ∈ T | 1/2 < wi ≤ 2/3}
T3 := {ri ∈ T | 1/3 < wi ≤ 1/2} T4 := {ri ∈ T | wi ≤ 1/3}.

Since wihi ≤ ε and wi ≥ hi, the heights of the items in each set are bounded as follows.

hi ≤ 3/2 · ε for ri ∈ T1, hi ≤ 2 · ε for ri ∈ T2,

hi ≤ 3 · ε for ri ∈ T3 and hi ≤
√

ε for ri ∈ T4.

It turns out that packing the items in T2 involves the most difficulties. We will there-
fore consider different cases for packing items in T2, according to the total height of
these items. For all cases we need to pack T1 ∪ T3 ∪ T4 afterwards, using the follow-
ing lemma. We denote packing heights with the letter g to distinguish them from the
height hi of item ri.

Lemma 16. Let R be a rectangle of size (1, g) and let T be a set of items that all have area
at most ε such that T2 = ∅. We can find a packing of a selection T′ ⊆ T into R in time
O(n log n) such that T′ = T or

A(T′) ≥ 2
3
(g−

√
ε)− ε.
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Figure 18: Packing the sets T1, T3 and T4 into a rectangle of width 1 and height g. The differ-
ence in height between the stacks of T3 is denoted by d.

Proof. See Figure 18 for an illustration of the following packing. Stack the items of
T1 left-justified into the lower left corner of R. Stop if there is not sufficient space to
accomodate the next item. In this case a total area of at least A(T′1) ≥ 2/3 (g− 3/2 · ε)
is packed since wi > 2/3 and hi ≤ 3/2 · ε for items in T1.

Thus assume all items from T1 are packed. Denote the height of the stack by g1.
Obviously, A(T1) ≥ 2/3 · g1.

Create two stacks of items from T3 next to each other directly above the stack for T1

by repeatedly assigning each item to the lower stack. Stop if an item does not fit into
the rectangle. In this case both stacks have height at least g− g1 − 3ε as otherwise a
further item could be packed. Therefore A(T1 ∪ T′3) ≥ 2/3(g− 3ε) ≥ 2/3 · (g−√ε)

since 3ε ≤ √ε.
Otherwise denote the height of the higher stack by g3 and the height difference by

d. The total area of T3 is at least A(T3) ≥ 2/3(g3 − d) + 1/3 · d ≥ 2/3 · g3 − 1/3 · d ≥
2/3 · g3 − ε since wi ≥ 1/3 and hi ≤ 3ε for ri ∈ T3.

Finally, let g4 := g− g1 − g3 and add the items of T4 by NFDH into the remaining
rectangle of size (1, g4). Lemma 1 yields that either all items are packed, i.e., T′ = T,
or items T′4 ⊆ T4 of total area at least A(T′4) ≥ 2/3(g4 −

√
ε) are packed. Thus the

total area of the packed items T′ is A(T′) ≥ 2/3 · g1 + 2/3 · g3 − ε + 2/3(g4 −
√

ε) ≥
2/3

(
g−√ε

)
− ε.

The running time is dominated by the application of NFDH.

If T4 = ∅ then the last packing step is obsolete and the analysis above yields the
following corollary.

Corollary 6. Let R be a rectangle of size (1, g) and let T be a set of items that all have area
at most ε such that T2 ∪ T4 = ∅. We can find a packing of a selection T′ ⊆ T into R in time
O(n) such that T′ = T or

A(T′) ≥ 2
3

g− 2ε.

The above packings are very efficient if there are no items of width within 1/2 and
2/3 as they essentially yield a width guarantee of 2/3 for the whole height, except
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for some wasted height that is suitably bounded. In order to pack items of T2, we
have to consider both possible orientations to achieve a total area of more than 1/2
in a packing. We are now ready to prove Lemma 15 that we already presented in the
previous section. It shows how sets of items including items of width within 1/2 and
2/3 are processed.

Proof of Lemma 15. Let g2 be the total height of items in T2. We present three methods
for packing T depending on g2. For each method we give a lower bound on the total
area of items that are packed. Afterwards we show that there cannot be any item
that remains unpacked. Throughout the proof, we assume that we do not run out of
items while packing the items in T. This will eventually lead to a contradiction in all
three cases. Let A be the area of the packed items for which we want to derive lower
bounds.

case 1 . g2 ≤ 1/3
Stack the items of T2 left-justified into the lower left corner of the bin. Use Lemma 16

to pack T1 ∪ T3 ∪ T4 into the rectangle (1, 1− g2) above the stack—see Figure 19. We
get an overall packed area of

A ≥ g2

2
+

2
3
(
1− g2 −

√
ε
)
− ε =

2
3
− g2

6
− ε− 2

3
√

ε

≥ 11
18
− ε− 2

3
√

ε as g2 ≤
1
3

.

case 2 . g2 ∈ (1/3, 2/3]
Stack the items of T2 left-justified into the lower left corner of the bin. Let B = (1/3, g2)

be the free space to the right of the stack. We are going to pack items from X = {ri ∈
T3 ∪ T4 | wi ≤ g2} into B. Take an item from X and add it to an initially empty set
X′ as long as X is nonempty and A(X′) ≤ g2/6− ε. Rotate the items in X′ and use
Steinberg’s algorithm to pack them into B. This is possible by Corollary 5 since the
area of B is g2/3, A(X′) ≤ g2/6, and hi ≤ g2 and wi ≤

√
ε ≤ 1/6 for ri ∈ X′ (wi

and hi are the rotated lengths of ri). Use Lemma 16 to pack (T1 ∪ T3 ∪ T4) \ X′ into
the rectangle (1, 1− g2) above the stack—see Figure 19. We distinguish two cases. If
A(X′) ≥ g2/6− ε, then

A ≥

T2︷︸︸︷
g2

2
+

X′︷ ︸︸ ︷
g2

6
− ε+

(T1∪T3∪T4)\X′︷ ︸︸ ︷
2
3
(
1− g2 −

√
ε
)
− ε =

2
3
− 2ε− 2

3
√

ε.

Otherwise, A(X′) < g2/6− ε and since no further item was added to X′ we have
X′ = X. As g2 > 1/3 we have T4 ⊆ X and we can apply Corollary 6 to get a total area
of

A ≥ g2

2
+

2
3
(1− g2)− 2ε =

2
3
− g2

6
− 2ε

≥ 5
9
− 2ε as g2 ≤

2
3

.
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Figure 19: Packing in Case 1 (g2 ≤ 1/3) and Case 2 (1/3 < g2 ≤ 2/3)

case 3 . g2 ∈ (2/3, 1 + 4ε]

See Figure 20 for an illustration of the following packing and the notations. Order
the items of T2 by non-increasing order of width. Stack the items left-justified into the
lower left corner of the bin while the current height g is less or equal to the width of
the last item that was packed. In other words, the top right corner of the last item of
this stack is above the line from (1/2, 1/2) to (2/3, 2/3), whereas the top right corners
of all other items in the stack are below this line. Denote the height of the stack by g
and the set of items that is packed into this stack by X1. Let r′ = (w′, h′) be the last
item on the stack. Clearly, wi ≤ g for all items ri ∈ T2 \ X1.

Consider the free space B = (1/3, g) to the right of the stack. Rotate the items in
T2 \ X1 and stack them horizontally, bottom-aligned into B. Stop if an item does not
fit. We denote the items that are packed into B by X2. Rotate the remaining items
T2 \ (X1 ∪ X2) back into their original orientation and stack them on top of the first
stack X1. Let this set of items be X3 and let the total height of the stack X1 ∪ X3 be
ĝ. Use Lemma 16 to pack T1 ∪ T3 ∪ T4 into the rectangle (1, 1 − ĝ) above the stack
X1 ∪ X3.

Since wi ≥ g − h′ for ri ∈ X1 \ {r′} we have A(X1) ≥ (g − h′)2 + h′/2. Again
we distinguish two cases for the analysis. If X3 = ∅ (or equivalently ĝ = g), then
A(X2) ≥ (g2 − g)/2 and therefore

A ≥

X1︷ ︸︸ ︷
(g− h′)2 +

h′

2
+

X2︷ ︸︸ ︷
g2 − g

2
+

T1∪T3∪T4︷ ︸︸ ︷
2
3
(
1− g−

√
ε
)
− ε

> (g− h′)2 +
h′

2
+

1
3
− g

2
+

2
3
(
1− g−

√
ε
)
− ε =: A1 as g2 >

2
3

.

To find a lower bound for the total packed area we consider the partial derivative of
A1 with respect to h′, which is ∂

∂h′ (A1) = 2h′ − 2g + 1/2. Since 2h′ − 2g + 1/2 < 0 for
h′ ≤ 2ε and g ≥ 1/2, the total packed area is minimized for the maximal value h′ = 2ε

for any g in the domain. After inserting this value for h′ we get A1 = (g− 2ε)2 + ε +
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2
3

2
3

X1

T1 ∪ T3 ∪ T4

X2

X3

h′ r′
`

1
3

ĝ
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Figure 20: Packing in Case 3 (2/3 < g2 ≤ 1 + 4ε). Item r′ of height h′ is depicted larger than
ε ≤ 1/68 for the sake of visibility. The diagonal line ` shows the threshold at which
the stack X1 is discontinued

1/3− g/2 + 2/3 · (1− g−√ε)− ε and ∂
∂g (A1) = 2g− 7/6− 4ε. Thus the minimum is

acquired for g = 7/12 + 2ε. We get

A1 ≥
(

7
12

)2

+ ε +
1
3
− 7

24
− ε +

2
3

(
5
12
− 2ε−

√
ε

)
− ε

=
95
144
− 7

3
ε− 2

3
√

ε.

Otherwise X3 6= ∅ (or equivalently ĝ > g) and thus A(X2) ≥ 1/2 · (1/3− 2ε) as the
stack X2 leaves at most a width of 2ε of B unpacked. Furthermore, ĝ ≤ 2/3 + 6ε since
g2 ≤ 1+ 4ε and a width of at least 1/3− 2ε is packed into B. Since A(X3) ≥ (ĝ− g)/2
and ĝ ≤ 2/3 + 6ε we get

A ≥

X1︷ ︸︸ ︷
(g− h′)2 +

h′

2
+

X2︷ ︸︸ ︷
1
2

(
1
3
− 2ε

)
+

X3︷ ︸︸ ︷
ĝ− g

2
+

T1∪T3∪T4︷ ︸︸ ︷
2
3
(
1− ĝ−

√
ε
)
− ε

≥ (g− h′)2 +
h′

2
+

1
2

(
1
3
− 2ε

)
− 1

9
− ε− g

2
+

2
3
(
1−
√

ε
)
− ε := A2.

With an analysis similar to before we see that A2 is minimal for h′ = 2ε (as ∂
∂h′ (A2) =

2h′ − 2g + 1/2 < 0) and g = 1/2 (as ∂
∂g (A2) = 2g − 1/2− 4ε > 0 for h = 2ε and

g > 1/2). We get

A2 ≥
(

1
2
− 2ε

)2

+ ε +
1
6
− ε− 1

9
− ε− 1

4
+

2
3
(
1−
√

ε
)
− ε

≥ 13
18

+ 4ε2 − 4ε− 2
3
√

ε.
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If g2 > 1 + 4ε then A(T2) ≥ 1/2 · g2 > 1/2 + 2ε, which is a contradiction to the
assumption of the lemma. Therefore the three cases cover all possibilities.

It is easy to verify that for 0 < ε ≤ 1/68 the following inequalities hold.

11
18
− ε− 2

3
√

ε ≥ 1
2
+ ε

2
3
− 2ε− 2

3
√

ε ≥ 1
2
+ ε

5
9
− 2ε ≥ 1

2
+ ε

95
144
− 7

3
ε− 2

3
√

ε ≥ 1
2
+ ε

13
18

+ 4ε2 − 4ε− 2
3
√

ε ≥ 1
2
+ ε

Now let us assume that we do not run out of items while packing a set T with the
appropriate method above. Then the packed area is at least 1/2+ ε as the inequalities
above show. The contradiction follows from the precondition that removing an arbi-
trary item from T yields a remaining total area of less than 1/2+ ε. Thus all items are
packed.

The running time is dominated by the application of Steinberg’s algorithm[43].

4.1.4 the approximation ratio

Theorem 7. Our algorithm is an approximation algorithm for two-dimensional bin packing
with rotations with an absolute worst case ratio of 2.

Proof. Recall that we denote the number of bins used for an optimal packing of the
large items by `. Obviously ` ≤ OPT(I). Let s be the number of bins used for packing
only small items. If s ≤ `, then the total number of bins is `+ s ≤ 2` ≤ 2 OPT(I). If
s > `, then at least one bin is used for small items and thus all bins for large items
contain items with a total area of at least 1/2− ε. According to the partition of the
remaining small items, all but the last bin for the small items contain items with a
total area of at least 1/2 + ε. Let f > 0 be the area of the items contained in the last
bin. Then

OPT(I) ≥ A(I) ≥ ` ·
(

1
2
− ε

)
+ (s− 1) ·

(
1
2
+ ε

)
+ f > (s + `− 1) · 1

2
.

Thus s+ ` < 2 OPT(I)+ 1 and we get s+ ` ≤ 2 OPT(I) which proves the theorem.





5
B I N PA C K I N G W I T H O U T R O TAT I O N S

In this chapter we present our results on two-dimensional bin packing without rota-
tions. First, we give a 2-approximation algorithm which is optimal unless P = NP .
Note that this result was independently achieved by Jansen, Prädel & Schwarz[26]. Af-
terwards, in Section 5.2.1 we affirmatively answer a conjecture by Zhang[47] on the
absolute approximation ratio of the Hybrid First Fit (HFF) algorithm by showing
that this ratio is 3.

5.1 A 2 - A P P R O X I M AT I O N A L G O R I T H M
F O R B I N PA C K I N G W I T H O U T R O TAT I O N S

Similarly to the approach of our algorithm for bin packing with rotations in Sec-
tion 4.1, we use the bin packing algorithm by Bansal, Caprara & Sviridenko[6] (here
in the variant where rotations are forbidden) to solve instances I with large optimal
value. As the asymptotic approximation ratio of their algorithm is arbitrarily close
to 1.525 . . ., there exists a constant k such that for any instance I with optimal value
larger than k, their algorithm gives a solution of value at most 2 OPT(I). We show how
to approximate the problem within an absolute factor of 2, provided that the optimal
value of the given instance is less than k. Combined with the algorithm by Bansal et
al., this proves the existence of an algorithm with an absolute approximation ratio
of 2.

Our approach for packing instances I with OPT(I) < k consists of two parts. First,
we give an algorithm that is able to pack instances I with OPT(I) = 1 in two bins in
Section 5.1.1 and second, we show how to approximate instances with 1 < OPT(I) < k
within a factor of 2 in Section 5.1.2. This at first glance surprising distinction is due to
the inherent difficulty of packing wide and high items together into a single bin. In
the case OPT(I) = 1 we cannot ensure a separation of the wide and high items into
easily feasible sets whereas for OPT(I) > 1 this is possible in many cases.

The approach to solve instances with optimal value greater than some constant k
with an asymptotic algorithm is similar to the 2-approximation for two-dimensional
bin packing with rotations that we present in Section 4.1, but the methods we use
here to handle the instances with smaller optimal value are much more involved. The
reason for this is that we cannot use rotations to avoid the necessity to combine wide
and high items in a bin. Our approach for solving instances I with 1 < OPT(I) < k is
comparable to the main algorithm in Section 4.1 as it is also based on an enumeration
of the large items. However, a new ingredient here is a separation of the wide and
high items after this enumeration. Another crucial novelty in our algorithm is the use
of the PTAS from [5] to ensure a good area guarantee for at least one bin. In total we
show the following theorem.

61
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Theorem 8. There exists a polynomial-time approximation algorithm for two-dimensional bin
packing with absolute approximation ratio 2.

5.1.1 packing instances that fit into one bin

Throughout this section we assume that the given instance I can be packed into a
single bin, i.e., OPT(I) = 1. At first glance it seems surprising that packing such an
instance into two bins is difficult. However, we need to carefully analyze different
cases to be able to give a polynomial-time algorithm that solves this problem. In this
section we also use the methods that we already introduced in Section 3.1 for strip
packing.

Let ε := 1/52. In a first step we consider instances I that satisfy the requirements
of Lemma 5 for x = 0, i.e., we have h(W1−δ) ≤ f (δ) = (δ − ε)/(1 + 2δ) for some
δ ∈ (ε, 1/2]. As we are interested in packing into two bins and not into a strip in a
certain direction, we can apply Lemma 5 to the high items instead of the wide items
as well. We get the following lemma from Inequality (3.2) for

ξ := 0.075 <
1
4
(1− ln 2)− 1

2
ε ln 2 = ξ(0)

(here we need ε = 1/52).

Lemma 17. For any input which cannot be packed in two bins by the methods of Lemma 5,
we have

A(W ∪ H) ≥ 2ξ +
w(H) + h(W)

2
.

It is crucial for our work that we get this additional area guarantee of 2ξ = 0.15 on
top of the trivial guarantee of w(H)/2 + h(W)/2 here. We use this area guarantee to
give different methods to pack the input, depending on the total height of the wide
items. To do this, we assume that we have h(W) ≥ w(H) by otherwise rotating the
whole instance and apply different methods for w(H) > 1/2 and w(H) ≤ 1/2. In all
cases we are able to pack the input into at most two bins. Before we show how to
solve both cases above we need the following lemma that allows us to pack all wide
items and high items of almost half of their total width, i.e., that shows that we can
approximate a packing of Lemma 2 arbitrarily well.

Lemma 18. For any fixed δ > 0, there exists a polynomial-time algorithm that, given sets W
and H of wide and high items with OPT(W ∪ H) = 1, returns a packing of W ∪ H′ into a
bin with H′ ⊆ H and w(H′) > w(H)/2− δ.

Proof. By interchanging the roles of the wide and the high items in Lemma 2, we get
that a packing of W ∪ H∗ exists with H∗ ⊆ H and w(H∗) ≥ w(H)/2. Let H∗≥δ = {ri ∈
H∗ | wi ≥ δ} and H∗<δ = {ri ∈ H∗ | wi < δ}. We approximate H∗ = H∗≥δ ∪ H∗<δ as
follows.

First, pack the items of W in a stack by non-increasing order of width and align this
stack with the bottom right corner of the bin. Second, guess the set H∗≥δ. By guessing
we mean that we enumerate all subsets of {ri ∈ H | wi ≥ δ} (which is possible as
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|{ri ∈ H | wi ≥ δ}| ≤ 1/δ) and apply the remainder of this algorithm on all these
sets. As we eventually consider H∗≥δ, we assume that we can guess this set. Pack
H∗≥δ into a stack by non-increasing order of height and align this stack with the top
left corner of the bin. Third, we approximate H∗<δ by greedily inserting items from
H<δ = {ri ∈ H | wi < δ} into this stack. To do this, start with H′ = H∗≥δ. Now sort
the items of H<δ by non-increasing order of height and for each item try to insert it
into the stack (at the correct position to preserve the order inside the stack). If this is
possible, the item is added to H′.

Assume that H<δ = {r1, . . . , rm} with h1 ≤ · · · ≤ hm. Let vi = w({rj ∈ H′ | hj ≥ hi})
and v∗i = w({rj ∈ H∗ | hj ≥ hi}). Whenever an item ri is not inserted in the stack we
have vi > v∗i − wi. To see this, assume that v∗i ≥ vi + wi. This means that the substack
from H∗ of items of height at least hi has width larger than the substack of items of
height at least hi from the stack of H′ plus the width of ri. As all further items in H∗

and H′ correspond to each other, ri does not cause a conflict. Now it is easy to see by
induction that w(H′) > w(H∗)− δ at the end.

With these preparations, the following lemma is easy to show.

Lemma 19. Let ε > 0 and let I be an instance with OPT(I) = 1, h(W) ≥ w(H) > 1/2, and
h(W1−δ) > f (δ) and w(H1−δ) > f (δ) for all δ ∈ (ε, 1/2]. There exists a polynomial-time
algorithm that returns a packing of I into two bins.

Proof. See Figure 21 for an illustration of this case. We use Lemma 18 to pack W ∪ H′

with H′ ⊆ H and w(H′) > w(H)/2− ε in the first bin. Build a stack of the remaining
high items H \ H′ and align it with the left side of the second bin. The width of
this stack is w(H \ H′) < w(H)/2 + ε. Note that w(H \ H′) ≤ 1/2, as otherwise
h(W) ≥ w(H) ≥ 1− 2ε and A(W ∪ H) ≥ 2ξ + (w(H) + h(W))/2 ≥ 2ξ + 1− 2ε > 1
(by Lemma 17) which is a contradiction to OPT(I) = 1. Pack the remaining items T
with Steinberg’s algorithm in the free rectangle of size (a, b) with a = 1− w(H \ H′)
and b = 1 next to the stack of H \ H′. This is possible since wmax(T) ≤ 1/2 ≤
1− w(H \ H′), hmax(T) ≤ 1/2 and with Lemma 17 we have

2A(T) ≤ 2
(

1− 2ξ − w(H) + h(W)

2

)

≤ 2− 4ξ − w(H)

2
− w(H)

2
− 1

2
as h(W) ≥ 1

2

<
3
2
− 4ξ − w(H \ H′) + ε− 1

4
as

w(H)

2
≥ w(H \ H′)− ε

and
w(H)

2
>

1
4

< 1− w(H \ H′) as 4ξ >
1
4
+ ε

= ab− (2wmax(T)− a)+(2hmax(T)− b)+ as 2hmax(T)− b ≤ 0.

In the following we assume that w(H) ≤ 1/2 as otherwise we could pack the
instance into two bins with the algorithms of Lemma 5 or Lemma 19. Furthermore,
we still have our initial assumption h(W) ≥ w(H). The following lemma shows that
certain sets of small items can be packed together with the set of wide items.
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H′ Steinberg’s
algorithmH \ H′

W
a = 1− w(H \ H′)

Figure 21: Packing if h(W) ≥ w(H) > 1/2 and h(W1−δ) > f (δ) and w(H1−δ) > f (δ) for all
δ ∈ (ε, 1/2]

Lemma 20. Any set T = {r1, . . . , rm} where ri = (wi, hi) with wi ≤ 1/2, hi ≤ 1− h(W)

for i = 1, . . . , m and total area A(T) ≤ 1/2− h(W)/2 can be packed together with W into
a bin.

Proof. Pack W into a stack of height h(W) and align this stack with the bottom of
the bin. Use Steinberg’s algorithm to pack T into the free rectangle of size (a, b) with
a = 1 and b = 1− h(W) above W. This is possible since wmax(T) ≤ 1/2, hmax(T) ≤
1− h(W) and 2A(T) ≤ 1− h(W) = ab = ab − (2wmax(T) − a)+(2hmax(T) − b)+ as
2wmax(T)− a ≤ 0.

Obviously, Lemma 20 can also be formulated such that we pack the high items
together with a set of small items of total area at most 1/2− w(H)/2 (in this case we
do not need a condition like hi ≤ 1− h(W), as w(H) ≤ 1/2 and thus all remaining
items fit into the free rectangle next to the stack of H). This suggests partitioning the
small items into sets with these area bounds in order to pack them with the wide
and high items. Before we can show how a partition of the small items into sets that
satisfy the requirement of Lemma 20 can be generated, we consider two cases where
we have to apply a different packing. In all cases, we pack W in a stack of height h(W)

in the bottom right corner of the first bin and pack H in a stack of width w(H) in the
top left corner of the second bin.

Let ω be the greatest width in the stack of W that is packed above height 1/2
in this packing (let ω = 1/2 if h(W) ≤ 1/2) (see Figure 22). We consider the set
H̃ = {ri | hi ∈ (1− h(W), 1/2]}, i.e., the set of remaining items that do not fit above
the stack of the wide items (and thus violate the condition of Lemma 20). Since H̃ = ∅
for h(W) ≤ 1/2, the following case can only occur if h(W) > 1/2.

case 1 . w(H̃) ≥ (1−ω)/2.
If there is an item ri = (wi, hi) ∈ H̃ with wi > (1−ω)/2 then we pack this item in the
top left corner of the first bin. It is easy to see that this is possible since OPT(I) = 1.
Otherwise greedily pack items from H̃ into a horizontal stack in the top left corner of
the first bin as long as they fit. Since all items in H̃ have width at most (1−ω)/2 we
can pack a total width of at least (1−ω)/2 before a conflict occurs.
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Figure 22: The greatest width in the stack of W that is packed above height 1/2 is denoted by
ω. The additional area guarantees for Case 1 of A(R1) = (1− h(W))(1−ω)/2 and
A(R2) = (ω− 1/2)/4 are drawn with lighter shading. The original area guarantee
of Lemma 17 is drawn with darker shading.

In both cases we packed a total area of at least (1− h(W))(1− ω)/2 from H̃ into
the first bin (see rectangle R1 in Figure 22). Furthermore, we can use the definition of
ω to improve the estimate of Lemma 17. In Lemma 17 all wide items that are packed
above height 1/4 only contribute with their trivial area guarantee of half their height.
Now we know that the items that are packed between height 1/4 and 1/2 have width
at least ω and this gives an additional area of at least (ω − 1/2) · 1/4 (see rectangle
R2 in Figure 22). Thus we packed an overall area of

A ≥ 2ξ +
w(H) + h(W)

2
+

(1− h(W))(1−ω)

2
+

ω− 1/2
4

=
3
8
+ 2ξ +

w(H)

2
+ ω

(h(W)

2
− 1

4

)

≥ 3
8
+ 2ξ +

w(H)

2
as h(W) ≥ 1/2 and ω > 0.

Therefore, the remaining items have total area at most 5/8− 2ξ − w(H)/2 < 1/2−
w(H)/2. Thus Lemma 20 allows us to pack these items together with the high items
in the second bin.

Let r′, r′′ be the two largest items in S \ H̃, i.e., among the remaining small items S
with hi ≤ 1− h(W).

case 2 . A({r′, r′′}) ≥ 1/2− 2ξ − h(W)/2.
Pack r′ in the top left and r′′ in the top right corner of the first bin. This is possible
as the width of both items is at most 1/2 and their height is at most 1− h(W). By
Lemma 17 and the condition for this case the total area of the packed items is

A ≥ 2ξ +
w(H) + h(W)

2
+

1
2
− 2ξ − h(W)

2
=

1
2
+

w(H)

2
.

Again we can use the method of Lemma 20 to pack the remaining items together with
H in the second bin.
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case 3 . Otherwise we have w(H̃) < (1 − ω)/2 and A({r′, r′′}) < 1/2 − 2ξ −
h(W)/2. This yields thatA(H̃) < (1−ω)/4 andA({r′′}) < 1/4− ξ− h(W)/4 (where
we assume that A({r′}) ≥ A({r′′}). Use the following greedy algorithm to partition
the remaining items into two sets that will be packed together with W and H using
Lemma 20.

1. Create sets S1 and S2 with capacities c1 = 1/2 − h(W)/2 and c2 = 1/2 −
w(H)/2, respectively,

2. add r′ to S1 and add all items of H̃ to S2,

3. take the remaining items by non-increasing order of size and greedily add them
to the set of greater remaining free capacity, i.e., to a set with maximal ci−A(Si).

In the following we show that A(S1) ≤ c1 and A(S2) ≤ c2. First note that this holds
after Step 2 since

A({r′}) < 1
2
− 2ξ − h(W)

2
<

1
2
− h(W)

2
= c1 and

A(H̃) <
1−ω

4
<

1−ω

2
≤ 1

2
− w(H)

2
= c2 as ω ≥ 1/2 ≥ w(H).

Assume that after Step 3 one of the sets has total area greater than its corresponding
capacity. Then there is an item r∗ that has been added in Step 3 and that violates the
capacity for the first time. Since h(W) ≥ f (1/2) = 1/4− ε/2 and ε < 1/4 we have
A({r∗}) ≤ A({r′′}) ≤ 1/4− ξ − h(W)/4 ≤ 3/16− ξ + ε/8 < 0.15. Assume w.l.o.g.
that r∗ was added to S1. Then we have A(S1) > c1 and A(S2) ≥ c2 − A(r∗) as
otherwise r∗ would have been added to S2. Thus we have

A(S1) +A(S2) > c1 + c2 −A({r∗}) ≥ c1 + c2 − 0.15.

With Lemma 17 we get the contradiction

A(S1) +A(S2) ≤ 1−A(W ∪ H) ≤ 1− 2ξ − w(H) + h(W)

2
= c1 + c2 − 2ξ

= c1 + c2 − 0.15.

Thus both sets do not violate their capacity constraints and we can use the methods
of Lemma 20 to pack S1 together with W in the first bin and S2 together with H in the
second bin. Thus we showed the following lemma.

Lemma 21. Let ε > 0 and let I be an instance with OPT(I) = 1, w(H) ≤ 1/2, and
h(W1−δ) > f (δ) and w(H1−δ) > f (δ) for all δ ∈ (ε, 1/2]. There exists a polynomial-time
algorithm that returns a packing of I into two bins.

This concludes our algorithm for instances I with OPT(I) = 1 as the Lemmas 5, 19

and 21 cover all the cases.
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5.1.2 packing instances that fit into a constant number of bins

In the following we give a brief description of our algorithm that packs the instances
I with 2 ≤ OPT(I) < k into 2 OPT(I) bins. Let ε := 1/(20k3 + 2).

Let L = {ri | wihi > ε} be the set of large items and let T = {ri | wihi ≤ ε} be the set
of tiny items. As defined in Section 2 we refer to items as wide (W), high (H), small (S)
and big, according to their side lengths. Note that the terms large and tiny refer to the
area of the items whereas big, wide, high and small refer to their widths and heights.
Also note that, e.g., an item can be tiny and high, or wide and big at the same time.

We guess ` = OPT(I) < k and open 2` bins that we denote by B1, . . . , B` and
C1, . . . , C`. By guessing we mean that we iterate over all possible values for ` and
apply the remainder of this algorithm on every value. As there are only a constant
number of values, this is possible in polynomial time. We assume that we know the
correct value of ` as we eventually consider this value in an iteration. For the ease
of presentation, we also denote the sets of items that are associated with the bins by
B1, . . . , B` and C1, . . . , C`. We will ensure that the set of items that is associated with a
bin is feasible and a packing is known or can be computed in polynomial time. To do
this we use Corollary 1.

Let I∗i be the set of items in the i-th bin in an optimal solution. We assume w.l.o.g.
that A(I∗i ) ≥ A(I∗j ) for i < j. Then we have

A(I) = A(I∗1 ) + · · ·+A(I∗` ) ≤ ` · A(I∗1 ). (5.1)

In a first step, we guess the assignment of the large items to bins. Using this assign-
ment and the PTAS from [5] we pack a total area of at least A(I∗1 )− ε into B1 and
keep C1 empty. This step has the purpose of providing a good area bound for the
first bin and leaving a free bin for later use. We ensure that the large items that are
assigned to B1 are actually packed. For all other bins we reserve Bi for the wide and
small items (except the big items) and Ci for the high and big items for i = 2, . . . , `.
This separation enables us to use Steinberg’s algorithm (Corollary 1) to pack up to
half of the bins’ area. In detail, the first part of the algorithm works as follows.

1. Guess Li = I∗i ∩ L for i = 1, . . . , `.

2. Apply the PTAS from [5] on L1 ∪ T with pi = A(ri) · (1/ε + 1) for ri ∈ L1,
pi = A(ri) for ri ∈ T and an accuracy of ε2/(1 + ε). Assign the output to bin B1

and keep an empty bin C1.

3. For i = 2, . . . , `, assign the wide and small items of Li to Bi (omitting big items)
and assign the high and big items of Li to Ci. That is, Bi = Li \H and Ci = Li ∩H.

4. For i = 2, . . . , `, greedily add tiny wide items from T ∩W by non-increasing
order of width to Bi as long as A(Bi) ≤ 1/2 and greedily add tiny high items
from T ∩ H by non-increasing order of height to Ci as long as w(Ci) ≤ 1.

Corollary 1 shows that using Steinberg’s algorithm the bins B2, . . . , B` can be packed
as there are no wide items and the total area is at most 1/2. The bins C2, . . . , C` can be
packed with a simple stack as they contain only high items of total width at most 1.
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Observe that in Step 4 we only add to a new bin Bi if the previous bins contain items
of total area at least 1/2− ε and we only add to a new bin Ci if the previous bins
contain items of total width at least 1− 2ε (as the width of the tiny high items is at
most 2ε) and thus of total area at least 1/2 · (1− 2ε) = 1/2− ε. After the application of
this first part of the algorithm, some tiny items T′ ⊆ T might remain unpacked. Note
that if A(B`) < 1/2− ε, then there are no wide items in T′ and if A(C`) < 1/2− ε

then there are no high items in T′ (as these items would have been packed in Step 4).
We distinguish different cases to continue the packing according to the filling of the
last bins B` and C`.

In the following we show that we actually ensure that the large items that are
assigned to B1 are packed into this bin. First note that Theorem 2 can be applied for
r = 1/ε+ 1 as pi/A(ri) ∈ {1, 1/ε+ 1} for all items in L1 ∪ T. Now it is easy to see that
L1 is packed since pi > 1 + ε for ri ∈ L1, whereas p(T̃) = A(T̃) ≤ 1 for any feasible
set T̃ ⊆ T. Thus L1 = I∗1 ∩ L = B1 ∩ L. Furthermore, for the set of packed tiny items
B1 ∩ T we have

A(B1 ∩ T) ≥ A(I∗1 ∩ T)− ε

since (1/ε + 1)A(B1 ∩ L) +A(B1 ∩ T) = p(B1) and

p(B1) ≥
(

1− ε2

1 + ε

)
OPT(L1 ∪ T) by Theorem 2

=
(

1− ε2

1 + ε

)[(1
ε
+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T)

]

≥
(1

ε
+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T)− ε2

1 + ε

(1
ε
+ 1
)

as
(1

ε
+ 1
)
A(I∗1 ∩ L) +A(I∗1 ∩ T) ≤ 1

ε
+ 1

=
(1

ε
+ 1
)
A(B1 ∩ L) +A(I∗1 ∩ T)− ε.

Thus we have

A(B1) ≥ A(I∗1 )− ε. (5.2)

Now we are ready to start with the case analysis.

case 1 . A(B`) < 1/2− ε and A(C`) < 1/2− ε.
In this case T′ does not contain any wide or high items as these items would have
been packed to B` or C`. Greedily add items from T′ into all bins except B1 as long as
the bins contain items of total area at most 1/2. After adding the items from T′, either
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all items are assigned to a bin (and can thus be packed) or each bin contains items of
total area at least 1/2− ε and we packed a total area of at least

A ≥ A(B1) + (2`− 1)
(1

2
− ε
)

≥ A(I∗1 ) + `− 1
2
− 2`ε by Inequality (5.2)

≥ A(I∗1 ) + `A(I∗1 ) + `(1−A(I∗1 ))−
1
2
− 2`ε

≥ `A(I∗1 ) +
1
2
− 2`ε as ` ≥ 1 and 1−A(I∗1 ) ≥ 0

> `A(I∗1 ) as ε <
1
4`

.

Since this contradicts Inequality (5.1), all items are packed.

case 2 . A(B`) ≥ 1/2− ε and A(C`) ≥ 1/2− ε.
In this case T′ might contain wide and high items. On the other hand the bin C1 is still
available for packing. We use the area of the items in bin C` to bound the total area of
the packed items and (with a similar calculation as in Case 1) we get a packed area of
at least A ≥ A(B1) +A(C`) + (2`− 3)(1/2− ε) ≥ `A(I∗1 ) +A(C`)− 1/2− (2`− 2)ε.
As A(I) ≤ `A(I∗1 ) (Inequality (5.1)) we get

A(T′) ≤ A(I)− A ≤ 1
2
+ (2`− 2)ε−A(C`) and hence (5.3)

A(T′) ≤ (2`− 1)ε as A(C`) ≥ 1/2− ε (5.4)

Assume that A(C`) < 1/2 + (2`− 2)ε as otherwise T′ = ∅ by Inequality (5.3)
We consider the set Ĥ = {ri ∈ C` | hi ≤ 3/4}. If w(Ĥ) ≥ (4`− 3)ε then remove Ĥ

from C` and pack it in a stack in C1 instead. As we now have A(C`) < 1/2− (2`− 1)ε
and A(T′ \W) ≤ A(T′) ≤ (2`− 1)ε by Inequality (5.4), we can pack T′ \W together
with C`. The remaining items T′ ∩W have total height at most 2(2`− 1)ε and thus fit
above Ĥ into C1.

Otherwise, there is no item r′ = (w′, h′) in C` with h′ ≤ 3/4 and w′ ≥ (4`− 3)ε. Let
H̃ = {ri ∈ C` ∪ T′ | hi > 3/4}. Observe that we have

w(H̃) ≤ A(C` ∪ T′)
3/4

≤ 4
3

(1
2
+ (2`− 2)ε + (2`− 1)ε

)
=

2
3
+
(16

3
`− 4

)
ε < 1.

(5.5)

We take all high items from C` ∪ T′ and order them by non-increasing height. Now
pack the items greedily into a stack of width up to 1 and pack this stack into C`.
We have w(C`) ≥ 1 − (4` − 3)ε as we bounded the total width of the items from
H̃ in Inequality (5.5) and thus all further items have width at most (4` − 3)ε (as
otherwise Ĥ ≥ (4`− 3)ε and we had solved the problem in the previous step). For the
remaining items T′ we have hmax(T′) ≤ 3/4 and A(T′) ≤ 1/2− (2`− 2)ε−A(C`) ≤
(4`− 7/2)ε ≤ 1/4 (by Inequality (5.3) and as A(C`) ≥ w(C`)/2 ≥ 1/2− (2`− 3/2)ε
and ε < 1/(16`)). Thus T′ can be packed into bin C1 using Steinberg’s algorithm.
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case 3 . A(B`) < 1/2− ε and A(C`) ≥ 1/2− ε.
If w(T′ ∩ H) ≤ 1 then pack T′ ∩ H in C1 and proceed as in Case 1.

The subcase where w(T′ ∩ H) > 1 is the most difficult of all four cases. The chal-
lenge that we face is that w(H) can be close to ` (which is a natural upper bound) but
we can only ensure a packed total width of at least `(1− 2ε) in the bins C1, . . . , C`.
So we have to pack high items into the bins B2, . . . , B`. We distinguish two further
subcases.

1. Assume that there exists j ∈ {2, . . . , `} with w(Lj ∩ H) > 10`ε, i.e., the total
width of the items that are large and high and associated with the j-th bin in
an optimal packing is large enough such that moving these items away gives
sufficient space for the still unpacked high items.

Go back to Step 3 in the first part of the algorithm and omit separating the
items from Lj. Instead we assign the items from Lj to bin Bj and keep Cj free at
the moment. Note that Lj admits a packing into a bin as Lj corresponds to the
large items in a bin of an optimal solution. Since |Lj| ≤ 1/ε we can find such a
packing in constant time.

While greedily adding tiny items in Step 4, we skip Bj for the wide items and we
continue packing high items in C1 after we have filled C2, . . . , C`. As we moved
high items of total width at least 10`ε to Bj and we can pack high items of total
width at least 1− 2ε into each bin, no high items remains after this step. Finally,
greedily add remaining tiny items to bins B2, . . . , B` except Bj, using the area
bound 1/2.

Now consider the bins C1 and Cj. Both contain only tiny items, as we moved
the large items from Cj to Bj. We packed the tiny items greedily by height and
thus all items in Cj have height greater or equal to any item in C1. Let h′ be
greatest height in C1. Then we have A(Cj) ≥ h′(1− 2ε). Furthermore, we know
that w(H) > `(1− 2ε). Thus we have

A(H) > (`− 1)(1/2− ε) + h′(1− 2ε).

If after the modified Step 4 tiny items remain unpacked, then all bins Bi for
i ∈ {2, . . . , `} \ {j} have area A(Bi) ≥ 1/2− ε. By summing up the area of the
high items separately we get a total packed area of at least

A ≥ A(B1) +

Bi for i∈{2,...,`}\{j}︷ ︸︸ ︷
(`− 2)

(1
2
− ε
)
+A(H)

> A(B1) + (`− 2)
(1

2
− ε
)
+ (`− 1)

(1
2
− ε
)
+ h′(1− 2ε)

≥ A(I∗1 ) + `− 3
2
+ h′ − (2`− 2 + 2h′)ε by Inequality (5.2)

≥ A(I∗1 ) + `A(I∗1 ) + `(1−A(I∗1 ))−
3
2
+ h′ − 2`ε as h′ ≤ 1

≥ `A(I∗1 )−
1
2
+ h′ − 2`ε

as ` ≥ 1 and 1−A(I∗1 ) ≥ 0.
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h′

C1 ∩ H

R1

R2R3

Figure 23: The three rectangles R1, R2 and R3 for packing T′ together with C1 ∩ H in C1.

On the other hand we have A ≤ A(I) ≤ `A(I∗1 ) by Inequality (5.1). Thus the
total area of the remaining items T′ is at most A(T′) ≤ 1/2 + 2`ε− h′. If h′ ≥
1/2 + 2`ε we packed all items.

Otherwise we have 1/2 < h′ < 1/2 + 2`ε and

A(T′) ≤ 2`ε. (5.6)

We will pack T′ in C1 together with the already packed high items. Observe that

w(C1 ∩ H) ≤ 1− 8`ε (5.7)

as we move high items of total area of at least 10`ε to Bj and all bins C2, . . . , C`

are filled up to a width of at least 1− 2ε.

We pack the remaining items T′ into three rectangles R1 = (1, 4`ε), R2 =

(8`ε, 1− 4`ε) and R3 = (1− 8`ε, 1/2− 6`ε) which can be packed in C1 together
with C1 ∩ H as follows—see Figure 23. Pack the stack of C1 ∩ H in the lower
left corner and pack R3 above this stack. As h′ + h(R3) ≤ 1− h(R1), R1 fits in
the top of C1. Finally, pack R2 in the bottom right corner. This is possible as
h(R2) ≤ 1− h(R1) and w(C1 ∩ H) ≤ 1− 8`ε = 1− w(R3) by Inequality (5.7).

Now pack T′ ∩W in a stack in R1 (which is possible since h(T′ ∩W) ≤ 2A(T′) ≤
4`ε by Inequality (5.6)) and pack all ri = (wi, hi) ∈ T′ with hi > 1/2− 6`ε in a
vertical stack in R2 (this fits as the total width of items with hi > 1/2− 6`ε is at
most A(T′)/(1/2− 6`ε) ≤ 8`ε by Inequality (5.6) and as 6`ε ≤ 1/4). Finally, use
Steinberg’s algorithm to pack the remaining items in R3. This is possible since
wmax ≤ 1/2, hmax ≤ 1/2− 6`ε and

2A(T′) ≤ 4`ε

≤ 1
2
− 14`ε + 96`2ε2

= (1− 8`ε)
(1

2
− 6`ε

)
− (1− 1 + 8`ε)+

(
1− 12`ε− 1

2
+ 6`ε

)
+

.

This finishes the first case where we assumed that there exists j ∈ {2, . . . , `}
with w(Lj ∩ H) > 10`ε.
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2. Now assume that we have w(Lj ∩ H) ≤ 10`ε for all j ∈ {2, . . . , `} and in particu-
lar wi ≤ 10`ε for all items ri = (wi, hi) ∈ (L2 ∪ · · · ∪ L`). Thus all high items that
are not packed in B1 are thin, i.e., have width at most 10`ε. We use this fact by
repacking the high items greedily by non-increasing height in the bins C1, . . . , C`.
Each bin contains high items of total width at least 1− 10`ε afterwards. Thus
high items of total width at most 10`2ε remain unpacked. This is worse than in
the previous case but since we repacked all items we can get a nice bound on
the height of the unpacked items. Let h′ be the smallest height in C`. Then all
items in C1, . . . , C` have height at least h′ and the remaining items T′ have height
at most h′. If there is an i ∈ {2, . . . , `} with A(Bi) ≤ 1− h′ − 10`2ε then we can
add the remaining items T′ to Bi using Steinberg’s algorithm. To see this note
that hmax(T′ ∪ Bi) ≤ h′ and 2A(T′ ∪ Bi) ≤ 2A(Bi) + 2(10`2ε)h′ ≤ 2− 2h′ which
corresponds to the bound of Theorem 1.

Otherwise for all i ∈ {2, . . . , `} we have A(Bi) ≥ 1− h′ − 10`2ε. Then we packed
a total area of at least

A ≥ A(B1) +A(C1 ∪ · · · ∪ C`) +A(B2 ∪ · · · ∪ B`)

≥ A(B1) + h′`(1− 10`ε) + (`− 1)(1− h′ − 10`2ε)

≥ A(I∗1 ) + `− 1 + h′ − (10`3 + 1)ε

> A(I∗1 ) + `A(I∗1 ) + `(1−A(I∗1 ))− 1 +
1
2
− (10`3 + 1)ε as h′ >

1
2

≥ `A(I∗1 ) +
1
2
− (10`3 + 1)ε as ` ≥ 1 and 1−A(I∗1 ) ≥ 0.

And since 1/2− (10`3 + 1)ε ≥ 0 and A ≤ A(I) ≤ `A(I∗1 ) by Inequality (5.1), no
item remains unpacked.

Thus in both subcases we are able to derive a feasible packing.

case 4 . A(B`) ≥ 1/2− ε and A(C`) < 1/2− ε.
In this case T′ contains no high items. If there are also no wide items remaining in T′,
apply the methods of Case 1. Otherwise we use the following process to free some
space in the bins for wide and small items, i.e., B2, . . . , B`. The idea of the process is to
move small items from bins Bi to bins Ci and thereby move the tiny high items T′ ∩ H
further in direction C`. To do this, let Si = Li ∩ S be the set of small items in Bi.

Remove the tiny items from C2, . . . , C`. If there exists an item r ∈ Si ∩ Bi for some
i ∈ {2, . . . , `} then remove r from Bi and add it to Ci, otherwise stop. Adding r to Ci
is possible as Ci is a subset of Li = I∗i and thus feasible. Add wide items from W ∩ T′

to Bi until A(Bi) ≥ 1/2− ε again or W ∩ T′ = ∅. Finally, add the high items from
H ∩ T′ to C2, . . . , C` in a greedy manner analogously to Step 4 of the first part of the
algorithm but using the area bound A(Ci) ≤ 1/2. This ensures that all sets Ci can
be packed with Steinberg’s algorithm (we use Corollary 1 here as there might be big
items in Ci). Repeat this process until Si ∩ Bi = ∅ for all i ∈ {2, . . . , `} or T′ contains
a high item at the end of an iteration.

There are two ways in which this process can stop. First if we moved all items from
Si to Ci, and second if in the next step a high item would remain in T′ after the process.
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In the first case we have reached a situation as in Case 2 or Case 3, i.e., the roles of
the wide and the high items are interchanged and A(B`) ≥ 1/2− ε. Thus by rotating
all items and the packing derived so far, we can solve this case analogously to Case 2

or Case 3, depending on A(C`).
In the second case, let r∗ be the item that stopped the process, i.e., if r∗ is moved

from Bi to Ci for some i ∈ {2, . . . , `}, at least one high item would remain in T′. Then,
instead of moving r∗ to Ci we move r∗ to C1 and add items from T′ to C1 and Ci as long
as A(C1) ≤ 1/2 and A(Ci) ≤ 1/2. The resulting sets can be packed with Steinberg’s
algorithm as no item has width greater than 1/2. If after this step still items remain
unpacked then a calculation similar to Case 1 gives a total packed area of

A ≥ A(B1) +

all bins except B1, Bi︷ ︸︸ ︷
(2`− 2)

(1
2
− ε
)
+

bin Bi︷ ︸︸ ︷
1
2
− ε−A(r∗)

≥ `A(I∗1 ) +
1
2
− 2`ε−A(r∗) > `A(I∗1 ) since A(r∗) ≤ 1/4 and ε < 1/(8`).

As we have a contradiction to A ≤ A(I) ≤ `A(I∗1 ) by Inequality (5.1), all items are
packed.

We showed the following lemma which concludes our presentation of the 2-approx-
imation algorithm for two-dimensional bin packing.

Lemma 22. There exists a polynomial-time algorithm that, given an instances I with 1 <

OPT(I) < k, returns a packing in 2 OPT(I) bins.
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5.2 T H E A P P R O X I M AT I O N R AT I O O F H Y B R I D F I R S T F I T I S 3

In this section we prove Zhang’s conjecture[47] on the absolute approximation ratio of
the Hybrid First Fit (HFF) algorithm by showing that this ratio is 3.

We start our presentation in Section 5.2.1 with a description of the HFF algorithm
which was introduced by Chung, Gary & Johnson[12] in 1982 and whose running time
is slightly better than the running time of Zhang’s previously known 3-approximation
algorithm[47]. A lower bound on the approximation ratio is presented in Section 5.2.2.
Note that the instance that we give in this section also holds as a lower bound for
Zhang’s algorithm[47] and for Hybrid First Fit by Width that we describe in Sec-
tion 5.2.1. Thus it does not suffice to combine all three algorithms in order to derive
a better approximation ratio. Finally, we give the proof of the upper bound in Sec-
tion 5.2.3.

5.2.1 the hybrid first fit algorithm

HFF is based on the one-dimensional First Fit Decreasing (FFD) bin packing al-
gorithm and on the First Fit Decreasing Height (FFDH) strip packing algorithm.
The latter algorithm is a layer-based strip packing algorithm similar to NFDH that
we introduced in Section 2. It was considered for the first time by Chung, Garey, &
Johnson[12] and is given as follows. Sort the items by non-increasing order of height.
Pack the items one by one into layers. The height of a layer is defined by its first
item, further items are added left-aligned into the lowest layer with sufficient space.
If an item does not fit into any layer opened so far this item opens a new layer. HFF
now considers the layers of a FFDH packing one after the other and packs each layer
into the first bin with sufficient space. Since the layers are ordered by non-increasing
height, this corresponds to a one-dimensional FFD packing. See Figure 24 for an illus-
tration of HFF.

A simple variant of HFF, that we denote as Hybrid First Fit by Width packs
the strip in the direction of the width. This means that the items are ordered by
non-increasing width for the strip packing and FFD is later applied on the width of
the resulting layers. This algorithm can also be seen as HFF applied on the instance
J = {(hi, wi) | (wi, hi) ∈ I}, where each item of I is rotated by 90 degrees. Afterwards
the packing is rotated back.

Using a tree data structure from Johnson[32] the running time of HFF is O(n log n).
This is slightly faster than the running time of Zhang’s algorithm[47], which is domi-
nated by the application of Steinbergs’ algorithm[43] that, by Theorem 1, runs in time
O((n log2 n)/ log log n).

We denote the layers from FFDH by L1, . . . , Lm with heights hmax(L1) ≥ hmax(L2) ≥
· · · ≥ hmax(Lm) and total widths w(L1), . . . , w(Lm). Note that there is no particular
order on the widths of the layers. For the sake of simplicity we refer to both the layer
and the set of items in the layer by Li.
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1

2

hmax(L1)

hmax(L2)

hmax(L3)

hmax(L4)

hmax(L5)

hmax(L6)

hmax(L1)

hmax(L2)

hmax(L3)

hmax(L4)

hmax(L5)

hmax(L6)

Figure 24: The Hybrid First Fit algorithm. The layers of a strip packing with FFDH are
packed into bins with FFD. Items that are placed into a layer after a new layer
was opened are shown in light grey

5.2.2 lower bound

Let 0 < δ < 1/34, such that 1/δ is integer, and consider the instance I = A1 ∪ A2 ∪
B1 ∪ B2 ∪ C1 ∪ C2 consisting of the following sets of items

set items

A1 1 item of size (δ, 1− δ)

A2 1 item of size (1− δ, δ)

B1
1
δ − 6 items of size (δ, 1

2 + δ)

B2
1
δ − 6 items of size ( 1

2 + δ, δ)

C1 3 item of size (2δ, 1
6 +

1
3 δ)

C2 3 items of size ( 1
6 +

1
3 δ, 2δ)

In Figure 25 we show that OPT(I) = 1 and we give the FFDH packing of I. We
assume that the item in A2 comes before the items in B2 in the non-increasing order
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1/2

1
2

B1

B1B2

B2

C2

C1

A1
A2

1

2

1/2

B1
C1

C1

B1

B2

B2

C2

A2

A1

Figure 25: A lower bound instance for HFF. The left side shows that OPT(I) = 1 whereas the
right side shows the FFDH packing. FFD packs A2 together with the first layer into
a bin. The remaining layers have total height greater than 1 and thus do not fit into
a second bin.

of height. Then FFD packs the item in A2 together with the first layer into a bin. Since
δ < 1/34, the total height of all remaining layers is

h =

C1︷ ︸︸ ︷
1
6
+

1
3

δ+

B2︷ ︸︸ ︷
(

1
δ
− 6)δ =

7
6
− 17

3
δ > 1.

Thus 3 bins are needed to pack the resulting layers with FFD.
Note that the instance that we describe does not change under rotation by 90 de-

grees. Thus Hybrid First Fit by Width outputs the same packing. We refer the reader
to [47] to verify that Zhang’s algorithm uses 3 bins as well since the total area of all
high and small items is A(A1 ∪ B1 ∪ C1 ∪ C2) > 1/2 for δ > 0.
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hmax(Li)

hmax(Lj)

w(Lj)

w(Li)

hmax(Lj)

hmin

Figure 26: Deriving a bound for the volume in two layers. All items that are packed up to and
including the first item in Lj are dark and have height at least hmax(Lj). The total
width of these items is greater than 1. All other items have height at least hmin.

5.2.3 upper bound

Before we start with the main proof of the upper bound we introduce the following
important lemma.

Lemma 23. Let Li, Lj be two layers with i < j. Then

A(Li ∪ Lj) ≥ hmax(Lj) + (w(Li) + w(Lj)− 1)hmin,

where hmin = hmin(Li ∪ Lj) is the smallest height of the items in Li ∪ Lj.

See Figure 26 for an illustration of the following proof.

Proof. First consider all items that are packed up to and including the first item in
layer Lj (dark items in Figure 26). These items all have height at least hmax(Lj). Let
w′ be the total width of these items. We have w′ > 1 since the first item of layer Lj
did not fit into layer Li. Thus we get a total area of at least w′ · hmax(Lj) for these
items. Since all items in both layers have height at least hmin the remaining width of
w(Li) + w(Lj)− w′ makes up an additional area of at least (w(Li) + w(Lj)− w′)hmin.
Thus the total area is

A(Li ∪ Lj) ≥ w′hmax(Lj) + (w(Li) + w(Lj)− w′)hmin

≥ hmax(Lj) + (w(Li) + w(Lj)− 1)hmin.

Note that w(Li) + w(Lj)− 1 ≥ 0 since otherwise the first item of Lj fits into Li.

With the previous lemma we are able to derive bounds for the total area of the
items that are packed. In addition to the most intuitive lower bound

OPT(I) ≥ A(I) (5.8)
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we use the following two bounds. Let S be the set of layers that contain exactly one
item. Since it is not possible to pack two of these items next to each other (otherwise
it would have been done by the algorithm) the total height of these layers form the
lower bound

OPT(I) ≥ ∑
Li∈S

hmax(Li). (5.9)

Finally, the set T = {ri = (wi, hi) | hi > 1/2} of items of height greater than 1/2
provides the last lower bound

OPT(I) ≥ ∑
ri∈T

wi (5.10)

that we use.

Assume for the sake of contradiction that HFF uses more than 3 OPT(I) bins. Let
Lk be the first layer from FFDH that is packed into bin number 3 OPT(I) + 1 and let
r∗ = (w∗, h∗) be the first item in Lk. Discard all items that are considered after r∗ by
FFDH. Note that the packing that remains is exactly the packing that HFF produces
on the reduced instance I′. Therefore we argue about this reduced instance in the
remainder of this section.

Lemma 24. We have h∗ ≤ 1/3.

Proof. Suppose that h∗ > 1/3. Then all bins contain either one or two layers and are
filled up to a height greater than 1− h∗. Layers that are alone in a bin have height
greater than 1− h∗. Thus if Lemma 23 is applied on two such layers, say Li, Lj (i < j),
we get a combined area of at least hmax(Lj) ≥ 1− h∗. Applied on both layers of a bin
that contains two layers we get a combined area of at least h∗, which is a lower bound
for the height of the smaller layer in the bin.

Let m be the number of bins that contain exactly one layer (except the bin that
contains r∗). These are layers L1, . . . , Lm. Then the other 3 OPT(I′) − m bins contain
two layers each. Note that hmax(L1) ≥ · · · ≥ hmax(Lm) > 1/2 as otherwise a second
layer would fit into the bin. Let w′i be the width of items of height > 1/2 in layer Li.
Thus with the lower bound (5.10) we get

OPT(I′) ≥
m

∑
i=1

w′i ≥
bm/2c
∑
i=1

(w′2i−1 + w′2i) >
⌊m

2

⌋
(5.11)

since any two layers have cumulative width w′i + w′j > 1.
If m is even we get

A(I′) ≥

bins with one layer︷ ︸︸ ︷
m
2
(1− h∗) +

bins with two layers︷ ︸︸ ︷
(3 OPT(I′)−m) h∗

=
m
2
+
(

3 OPT(I′)− 3
2

m
)

h∗

>
m
2
+ OPT(I′)− m

2
using h∗ > 1/3 and (5.11)

= OPT(I′).
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For odd values of m, say m = 2n + 1, we can apply Lemma 23 on the first 2n layers
as before and on layer Lm together with layer Lk consisting of r∗. This given another
area of h∗ and we get

A(I′) ≥
bins with one layer︷ ︸︸ ︷
n (1− h∗) + h∗+

bins with two layers︷ ︸︸ ︷
(3 OPT(I′)− (2n + 1)) h∗

= n + (3 OPT(I′)− 3n) h∗

> n + OPT(I′)− n using h∗ > 1/3 and (5.11)

= OPT(I′).

In both cases we get a the contradiction A(I′) > OPT(I′) and thus h∗ ≤ 1/3.

In the following step we will use Lemma 23 on pairs of consecutive layers in order
to derive a lower bound on the total area of the items.

As r∗ is packed into a new bin, all previous bins contain layers of total height greater
than 1− h∗. Thus we get the following bound for the total height h of the first k− 1
layers:

h =
k−1

∑
i=1

hmax(Li) > 3 OPT(I′) (1− h∗).

We need a slightly different bound, which follows immediately since the first bin
contains at least layer L1 of height hmax(L1) and all other bins contain layers of total
height greater than 1− h∗:

h =
k−1

∑
i=1

hmax(Li) > (3 OPT(I′)− 1)(1− h∗) + hmax(L1). (5.12)

Applying Lemma 23 on pairs of consecutive layers L2i−1, L2i and adding the area of
r∗ we get

A(I′) ≥
b(k−1)/2c

∑
i=1

A(L2i−1 ∪ L2i) + w∗h∗

≥
b(k−1)/2c

∑
i=1

(
hmax(L2i) + (w(L2i−1) + w(L2i)− 1)h∗

)
+ w∗h∗

by Lemma 23

≥
b(k−1)/2c

∑
i=1

hmax(L2i) +
k−1

∑
i=1

(
w(Li)−

1
2
)
h∗ + w∗h∗. (5.13)

We first derive a lower bound for the first part of the previous inequality. With h2i ≥
h2i+1 we get

2
b(k−1)/2c

∑
i=1

hmax(L2i) ≥
k−1

∑
i=2

hmax(Li) = h− h1 (5.14)
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and thus

b(k−1)/2c
∑
i=1

hmax(L2i) ≥
h− hmax(L1)

2
by (5.14)

>
(3 OPT(I′)− 1)(1− h∗)

2
by (5.12)

≥ OPT(I′)(1− h∗) +
OPT(I′)− 1

2
(1− h∗)

≥ OPT(I′)−OPT(I′)h∗ +
OPT(I′)− 1

2
2h∗ as h∗ ≤ 1/3

≥ OPT(I′)− h∗. (5.15)

To simplify the presentation let A = ∑k−1
i=1

(
w(Li) − 1

2

)
h∗ + w∗h∗. Inequalities (5.13)

and (5.15) lead to the lower bound

A(I′) > OPT(I′)− h∗ + A.

We need the following observation before we can derive a contradiction.

Observation 1. There are at least 6 layers and if OPT(I′) = 1 then the three largest layers
are packed into the first two bins.

The observation is obvious for OPT(I′) > 1 as we assume that 3 OPT(I′) + 1 bins
are used. If OPT(I′) = 1 then the height of layer L2 can not be greater than 1/2 as
otherwise in contradiction to (5.10):

∑
ri=(wi ,hi)

hi>1/2

wi > 1 = OPT(I′).

Thus in this case the three largest layers are packed into the first two bins and each
but the first bin contains at least 2 layers. We are now ready to prove the following
theorem.

Theorem 9. The approximation ratio of Hybrid First Fit is 3.

Proof. The lower bound was already given in Section 5.2.2. We consider two different
cases to derive a contradiction on the assumption that r∗ is packed into bin number
3OPT(I′) + 1. In the first case we show that A ≥ h∗ which leads to A(I′) > OPT(I′)
as a contradiction to the lower bound (5.8). The tricky part in this case is to consider
that there might be a layer of width w(Li) < 1/2 which would result in a negative
term in the sum of A. But there can be at most one such layer as otherwise both layers
would fit together. In the second case we use the lower bound (5.9) that is given by
the total height of layers that consist of exactly one item.

case 1 . Assume that there are 3 or more layers with width at least 2/3. Let
Lu, Lv, Lw be the layers with greatest total width and let Lt be the layer with the
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smallest total width. Since there are more than 4 layers we can assume w.l.o.g. that
t 6= {u, v, w}. Then

A =
k−1

∑
i=1

(
w(Li)−

1
2
)
h∗ + w∗h∗

≥ 3
(2

3
− 1

2

)
h∗ +

k−1

∑
i=1

i 6=t,u,v,w

(
w(Li)−

1
2

)
h∗ +

(
w(Lt)−

1
2

)
h∗ + w∗h∗

>
1
2

h∗ +
k−1

∑
i=1

i 6=t,u,v,w

(
w(Li)−

1
2

)
h∗ +

1
2

h∗.

The last step is due to w(Lt) > 1−w∗ as otherwise r∗ fits into layer Lt. Since there is at
most one layer with width w(Lj) < 1/2 (and this would be Lt), the sum in the middle
in non-negative. Thus A > h∗, which gives a contradiction to the lower bound (5.8).

case 2 . Now assume that there are less than 3 layers with width at least 2/3. Let
L` be the first layer (lowest indexed layer) with width w(L`) < 2/3. Consider an item
rj = (wj, hj) in layer Li with i > `. Then wj > 1/3 since otherwise rj fits into layer L`.
Thus wi > 2/3 or Li contains exactly one item. Let S be the set of layers that contain
exactly one item and consider the lower bound (5.9).

OPT(I′) ≥ ∑
Li∈S

hmax(Li)

≥
k

∑
i=1

hmax(Li)−
(
hmax(L1) + hmax(L2) + hmax(L3)

)
,

as there are at most three layers that contain more than one item and these three
layers have total height at most hmax(L1) + hmax(L2) + hmax(L3). For OPT(I′) = 1,
Observation 1 implies the contradiction

OPT(I′) ≥
k

∑
i=1

hmax(Li)− (hmax(L1) + hmax(L2) + hmax(L3)) > 1.

For OPT(I′) ≥ 2, at most 3 bins contain layers with more than one item. Thus we get

OPT(I′) ≥ ∑
Li∈S

hmax(Li)

> (3 OPT(I′)− 3)(1− h∗) + h∗

≥ OPT(I′).

The last step follows from (3 OPT(I′) − 3)(1− h∗) + h∗ ≥ 2 OPT(I′) − 2 since h∗ ≤
1/3.
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6
S T R I P PA C K I N G

As mentioned in the introduction, Brown, Baker & Katseff[8] derived a lower bound
of 2 on the competitive ratio of strip packing by constructing certain adversary se-
quences. Just recently, Kern & Paulus[35] derived a matching upper and lower bound
of 3/2 +

√
33/6 ≈ 2.457 for packing these Brown-Baker-Katseff sequences, that we

call BBK sequences in the sequel.
Using modified BBK sequences we show an improved lower bound of 2.589 . . . on

the absolute competitive ratio of this problem. The modified sequences that we use
consist solely of two types of items, namely, thin items that have negligible width
(and thus can all be packed in parallel) and blocking items that have width 1. The
advantage of these sequences is that the structure of the optimal packing is simple,
i.e., the optimal packing height is the sum of the heights of the blocking items plus
the maximal height of the thin items. Therefore, we call such sequences primitive.

On the positive side, we present an online algorithm for packing primitive se-
quences with competitive ratio (3+

√
5)/2 = 2.618 . . .. This upper bound is especially

interesting as it not only applies to the concrete adversary instances that we use to
show our lower bound. Thus to show a new lower bound for strip packing that is
greater than 2.618 . . . (and thus reduce the gap to the general upper bound of 6.6623),
new techniques are required that take instances with more complex optimal solutions
into consideration.

We start with a description of the BBK sequences and their modification in Sec-
tion 6.1. In Section 6.2 we present our lower bound based on these modifications
and in Section 6.3 we give our algorithm for packing primitive sequences. Finally, in
Section 6.4 we further discuss the competitive ratio for this restricted problem and
present a promising approach to further improve our lower bound.

6.1 S E Q U E N C E C O N S T R U C T I O N

We denote the thin items by pi and the blocking items by qi (adopting the notation
from [35]). As already mentioned in the introduction, we assume that the width of
the thin items is negligible and thus all thin items can be packed next to each other.
Moreover, the width of the blocking items qi is always 1, so that no item can be
packed next to any other item in parallel. Therefore, all items are characterized by
their heights and we refer to their heights by pi and qi as well. By definition, for any
list L = q1, q2, . . . , qk, p1, p1, . . . , p` consisting of thin and blocking items we have

OPT(L) =
k

∑
i=1

qi + max
i=1,...,`

pi.

85
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Figure 27: Online and optimal packings

To prove the desired lower bound we assume the existence of a ρ-competitive algo-
rithm ALG for some ρ < 2.589 . . . (the exact value of this bound is specified later) and
construct an adversary sequence depending on the packing that ALG generates.

To motivate the construction, let us first consider the Greedy algorithm for online
strip packing, which packs every item as low as possible—see Figure 27a. This algo-
rithm is not competitive (i.e., has unbounded competitive ratio): Indeed, consider the
list Ln = p0, q1, p1, q2, p2, . . . , qn, pn of items with

p0 := 1,

qi := ε for 1 ≤ i ≤ n,

pi := pi−1 + ε for 1 ≤ i ≤ n

for some ε > 0. Greedy would pack each item on top of the preceding ones and thus
generate a packing of height Greedy(Ln) = ∑n

i=0 pi + ∑n
i=1 qi = n + 1+O(ε), whereas

the optimum clearly has height 1 +O(ε).
The Greedy algorithm illustrates that any competitive online algorithm needs to cre-

ate gaps in the packing. These gaps work as a buffer to accommodate small blocking
items—or, viewed another way, force the adversary to release larger blocking items.

bbk sequences . The idea of Brown, Baker & Katseff[8] was to try to cheat an arbi-
trary (non-greedy) online packing algorithm ALG in a similar way by constructing an
alternating sequence p0, q1, p1, . . . of thin and blocking items. The heights pi respec-
tively qi are determined so as to force the online algorithm ALG to put each item
above the previous ones—see Figure 27b for an illustration. To describe the heights of
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the items formally, we consider the gaps that ALG creates between the items. We dis-
tinguish two types of gaps, namely gaps below and gaps above a blocking item, and
refer to theses gaps as α- and β-gaps, respectively. These gaps also play an important
role in our analysis of the modified BBK sequences. We describe the height of the gaps
around the blocking item qi relative to the thin item pi. Thus, we denote the height
of the α-gap below qi by αi pi and the height of the β-gap above qi by βi pi. Using this
notation, we are ready to formally describe the BBK sequences L = p0, q1, p1, q2, . . .
with

p0 := 1,

q1 := β0 p0 + ε,

pi := βi−1 pi−1 + pi−1 + αi pi + ε for i ≥ 1,

qi := max
(
αi−1 pi−1, βi−1 pi−1, qi−1

)
+ ε for i ≥ 2.

As mentioned in the introduction, Brown, Baker & Katseff[8] used these sequences
to derive a lower bound of 2 before Kern & Paulus[35] recently showed that the com-
petitive ratio for packing them is ρBBK = 3/2 +

√
33/6 ≈ 2.457.

The optimal online algorithm for BBK sequences that Kern & Paulus[35] describe
generates packings with striking properties: No gaps are created except the first pos-
sible gap β0 = ρBBK − 1 and the second α-gap α2 = 1/(ρBBK − 1), which are chosen
as large as possible while remaining ρBKK-competitive. Observing this behavior of the
optimal algorithm led us to the modification of the BBK sequences.

modified bbk sequences . When packing BBK sequences, a good online algo-
rithm should be eager to enforce blocking items of relatively large size (as each block-
ing item of size q increases the optimal packing by q as well). These blocking items
are enforced by generating corresponding gaps.

Modified BBK sequences are designed to counter this strategy: Each time the online
algorithm places a blocking item qi, the adversary, rather than immediately releasing
a thin item pi+1 that does not fit in between the last two blocking items, generates a
whole sequence of slowly growing thin items, which “continuously” grow from pi to
pi+1. Packing this subsequence causes additional problems for the online algorithm:
If the algorithm fits the whole subsequence into the last interval between qi−1 and qi,
it would fill out the whole interval and create an α-gap of 0. On the other extreme, if
ALG would pack a thin item of height roughly pi above qi, then the (relative) β-gap
it can generate is much less compared to what it could have achieved with a thin
item of larger height pi+1. The next blocking item qi+1 will be released as soon as the
sequence of thin items has grown from pi to pi+1.

This general concept of the modified BBK sequences applies after the first blocking
item q1 is released. Since subsequences of thin items and single blocking items are
released alternately, we refer to this phase as the alternating phase. Before that, we
have a starting phase which ends with the release of the first blocking item q1. This
starting phase needs special attention as we have no preceding interval height as a
reference.

The optimal online algorithm by Kern & Paulus[35] generates an initial gap β0 =

ρBBK− 1 of maximal size to enforce a large first blocking item q1. In the starting phase,
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we seek to prevent the algorithm from creating a large β0-gap in the following way.
Assume that the online algorithm places p0 “too high” (i.e., β0 is “too large”). Then the
adversary, instead of releasing q1, would continue generating higher and higher thin
items and observe how the algorithm places them. As long as the algorithm places
these thin items next to each other (overlapping in their packing height), the size of the
gap below these items decreases monotonically relative to the height where items are
packed. Eventually, β0 has become sufficiently small—in which case the starting phase
comes to an end with the release of q1—or the online algorithm decides to “jump” in
the sense that one of the items in this sequence of increasing height thin items is put
strictly above all previously packed thin items, creating a new gap (distance between
the last two items) and a significantly increased new packing height. Once a jump
has occurred, the adversary continues generating thin items of slowly growing height
until a next jump occurs or until the ratio of the largest current gap to the current
packing height (the modified analogue to the standard β0-gap) is sufficiently small
and the starting phase comes to an end.

Summarizing, a modified BBK sequence consists of simply a sequence of thin items,
continuously growing in height, interleaved with blocking items which (by definition
of their height) must be packed above all preceding items. We later describe in more
detail when exactly the blocking items are released in the corresponding phase.

In the next section we use these modified BBK sequences to show the following
theorem.

Theorem 10. There exists no algorithm for online strip packing with competitive ratio

ρ < ρ̂ =
17
12

+
1
48

3
√

22 976− 768
√

78 +
1
12

3
√

359 + 12
√

78 ≈ 2.589 . . . .

6.2 L O W E R B O U N D

For the sake of contradiction, we assume that ALG is a ρ-competitive algorithm for
online strip packing with ρ < ρ̂. Let δ = ρ̂ − ρ > 0. W.l.o.g. we assume that δ is
sufficiently small.

We distinguish between the thin items pi (whose height matches the height of the
previous interval plus an arbitrarily small excess) and the subsequences of gradually
growing thin items by denoting the whole sequence of thin items by r1, r2, . . . and
designating certain thin items as pi.

Our analysis differentiates two phases. In the first phase, that we call the starting
phase, we consider the following problem that the online algorithm faces. Given an
input that consists only of thin items r1, r2, . . . (in this phase no blocking items are
released), minimize the competitive ratio while retaining a free gap of maximal size
(relative to the current packing height). More specifically, let

h(maxgapALG(ri))

ALG(ri)

be the max-gap-to-height ratio after packing ri where h(maxgapALG(ri)) denotes the
height of the maximal gap that algorithm ALG created up to item ri and ALG(ri)
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denotes the height algorithm ALG consumed up to item ri. We say ALG is (ρ, c)-
competitive in the starting phase if ALG is ρ-competitive (i.e., ALG(ri) ≤ ρOPT(ri))
and retains a max-gap-to-height ratio of c (i.e., h(maxgapALG(ri))/ALG(ri) ≥ c for
i ≥ 1) for all lists L = r1, r2, . . . of thin items.

In the analysis of the starting phase in Section 6.2.1 we show that our modified BBK
sequences force any ρ-competitive algorithm to reach a state with max-gap-to-height
ratio less than

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
.

Thus no (ρ, ĉ)-competitive algorithm exists for ρ < ρ̂. In the moment ALG packs an
item ri and hereby reaches a max-gap-to-height ratio of less than ĉ, the starting phase
ends with the release of the first blocking item q1 of height ĉ ·ALG(ri).

In the analysis of the alternating phase in Section 6.2.2 we show that no ρ-competitive
algorithm can exist if the first blocking item after the starting phase has height ĉ times
the current packing height for

ĉ =
1−

√
4ρ̂2 − 12ρ̂ + 5
2(ρ̂− 1)

.

Thus our two phases fit together for

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
=

1−
√

4ρ̂2 − 12ρ̂ + 5
2(ρ̂− 1)

,

which is satisfied for

ρ̂ =
17
12

+
1
48

3
√

22 976− 768
√

78 +
1
12

3
√

359 + 12
√

78 ≈ 2.589 . . . .

We get a resulting value of ĉ ≈ 0.04275 . . ..

6.2.1 the starting phase

In this section we describe the lower bound for the starting phase. As we explained
before, the key parameter of this phase is the max-gap-to-height ratio. We will show
that for ρ < ρ̂, any ρ-competitive algorithm can be forced into a state with max-gap-
to-height ratio less than ĉ. In this section we use the definition

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
.

The starting phase is over in the moment a state is reached with a max-gap-to-height
ratio of less than ĉ. To show a contradiction, we assume that the ρ-competitive algo-
rithm ALG is (ρ, ĉ)-competitive, i.e., retains a max-gap-to-height ratio of ĉ.

Let η > 0 be some very small constant and consider the adversary list Lstart =

r1, r2, . . . consisting of thin items

r1 = 1 and

ri = ri−1 + η for i ≥ 2.
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µi+1si+1

λi+1si+1

s′i

s′i+1si+1
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s′i−1
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gi+1 λ′i+1si+1
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(a) Notations in the starting phase

µi+1si+1

λi+1si+1

s′i

si+1

λisi

si−1

si

λ′isi
gi

gi+1

µisi

s′i−1

(b) Situation when ALG packs s′i below si

Figure 28: Starting phase. Lemma 25 shows that the gap sizes are increasing with each jump
and Lemma 26 shows that ALG needs to pack s′i next to si

Recall that we denote the thin items by ri instead of pi here to be able to designate cer-
tain items that correspond to the thin items pi from the BBK sequence in the analysis
of the alternating phase

The sole function of the positive term η is to gradually increase the height of items
(we substituted ε from the BBK sequences by η because we use ε later in our analy-
sis). To simplify the calculations, however, we assume that η is chosen small enough
such that single instances of η can be omitted from the analysis. (The careful reader
might want to check that the bounds we derive for the competitive ratio are actually
continuous functions of η and therefore we are well allowed to take the limit (η → 0)).

In the following analysis we consider the phases between the creation of new gaps.
See Figure 28a for an illustration of the following notations. We refer to the first items
in each phase as the jump items s1, s2, . . . and we denote the last item in each phase
by s′1, s′2, . . .. As we argued above, we assume si+1 = s′i. Furthermore, we denote the
gaps that ALG creates by g1, g2, . . . and refer to the maximal gap after ALG packs
an item ri by maxgapALG(ri). Note that the height of the gaps might change when
further items are packed (in case ALG packs them such that they reach into the gap
from above or below). We denote the initial height of gap gi by λisi and the gap
height directly before the next jump, i.e., in the moment s′i is packed, by λ′isi. Note
that the height of gap gi is always given relative to the corresponding jump item si.
Finally, we denote the packing height up to gap gi by µisi, again relative to si. We have
ALG(si) = µisi + λisi + si and µisi ≥ ALG(s′i−1) as s′i−1 is packed below gi but other
items might even reach higher than s′i−1.
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Since OPT(si) = si and ALG(si) = (µi + λi + 1)si we directly have

(µi + λi + 1)si ≤ ρ si for all i ≥ 1

and thus µi + λi ≤ ρ− 1 for all i ≥ 1. (6.1)

Before we are ready to prove that ALG is forced to reach a state with max-gap-to-
height ratio less than ĉ, we have to show some assumptions that we can make on the
algorithm ALG. First, we show that we can assume that ALG generates a packing
where the gap preceding si is the maximal gap until si+1 is packed for all i ≥ 1. Or, in
other words, ALG generates a packing with increasing gap sizes.

Lemma 25. We can assume that ALG generates a packing that satisfies

maxgapALG(rj) = gi for rj ∈ {si, . . . , s′i}.
Proof. The intuition of this proof is simple: A new gap gi that is not maximal (as long
as it is the current gap) is unnecessary and can therefore be omitted. We do this by
bottom-aligning all items from si to rj with the top of the previous gap.

More formally, let maxgapALG(rj) = gk 6= gi be the first violation of the condition
for rj ∈ {si, . . . , s′i}. The modified algorithm ALG′ simulates ALG with the exception
that it bottom-aligns those items from {si, . . . , rj} that were previously packed above
gk with the top of gk.

As items have only been moved downwards, ALG′ remains ρ-competitive. More-
over, for the altered algorithm we have

maxgapALG′(r`) = maxgapALG(rj) = gk for r` ∈ {si, . . . , rj}
and hr`(gk) ≥ hrj(gk) ≥ ĉ ALG(rj) ≥ ĉ ALG′(r`) for r` ∈ {si, . . . , rj}.

where hr`(gk) denotes the height of gap gk in the moment r` is packed. The last
inequality shows that the altered algorithm retains a max-gap-to-height ratio of ĉ.
So (ρ, ĉ)-competitiveness is not violated.

In total, the altered algorithm ALG′ potentially even saves packing height in com-
parison with the original algorithm ALG. By induction we can apply this method to
all violations of maxgapALG(rj) = gi.

Now we show that the space below a jump item si is not large enough to accommo-
date s′i before ALG makes the next jump. The implication of this statement is that any
(ρ, ĉ)-competitive algorithm needs to place new items next to the current jump item.

Lemma 26. ALG cannot generate a gap with an item si+1 when the last item s′i is packed
completely below the previous jump item si.

Proof. For the sake of contradiction assume that ALG generates such a gap with item
si+1 while the last item s′i was packed completely below the previous jump item si—
see Figure 28b. As we will see, the proof of this lemma does not require to consider
that ALG retains a max-gap-to-height ratio of ĉ.

By Inequality (6.1) we have s′i ≤ (µi + λi)si ≤ (ρ− 1)si as s′i is packed below si. Thus
si ≥ s′i/(ρ− 1). With our assumption s′i = si+1 we have

ALG(si+1) ≥ s′i + si + si+1 ≥
(
2 +

1
ρ− 1

)
si+1.
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The contradiction follows with ρ < 2.618 . . . as

1 > (ρ− 2)(ρ− 1)

⇔
(
2 +

1
ρ− 1

)
si+1 > ρ si+1

⇒ ALG(si+1) > ρ OPT(si+1).

Lemmas 25 and 26 state that each jump is bigger than the previous jump and that
ALG needs to “grow” the items next to the current jump item. This gives us sufficient
information about the structure of the online packing to derive a contradiction. More
specifically, the next two lemmas show that the relative gap height λi is decreasing by
a constant in every step, which contradicts the trivial lower bound of λi ≥ ĉ/(1− ĉ) ·
(µi + 1) ≥ ĉ/(1− ĉ) as λisi ≥ ĉ(µisi + λisi + si).

Lemma 27. We have λ1 ≤ ρ− 1 and for any i ≥ 1

λi+1 ≤ ρ− 2− ĉ(ρ− 1)
λi − ĉ(ρ− 1)

.

Proof. The first part, λ1 ≤ ρ− 1, follows directly from the ρ-competitiveness.
By Lemma 25 we know that maxgapALG(s

′
i) = gi. Since ALG preserves a max-gap-

to-height ratio of at least ĉ, we have λ′isi ≥ ĉ ALG(s′i). Moreover, by Lemma 26 we
have ALG(s′i) ≥ µisi + λ′isi + s′i and thus

λ′isi ≥ ĉ ALG(s′i) ≥ ĉ((µi + λ′i)si + s′i)

⇒ si+1 = s′i ≤
λ′isi − ĉ(µi + λ′i)si

ĉ
. (6.2)

Now we consider the packing height µi+1si+1. We have µi+1si+1 ≥ ALG(s′i) ≥ (µi +

λ′i)si + s′i and thus

µi+1 ≥ (µi + λ′i)
si

si+1
+

s′i
si+1

≥ ĉ(µi + λ′i)
λ′i − ĉ(µi + λ′i)

+ 1 by Inequality (6.2)

≥ ĉ(ρ− 1)
λi − ĉ(ρ− 1)

+ 1.

The last step holds since

∂

∂λ′i

( ĉ(µi + λ′i)
λ′i − ĉ(µi + λ′i)

)
=

ĉ(λ′i − ĉ(µi + λ′i))− ĉ(µi + λ′i)(1− ĉ)
(λ′i − ĉ(µi + λ′i))

2

=
−ĉ µi

(λ′i − ĉ(µi + λ′i))
2 < 0 as µi > 0

and thus ĉ(µi+λ′i)
λ′i−ĉ(µi+λ′i)

is minimal for λ′i maximal, which is λ′i = λi = ρ − 1 − µi by
Inequality (6.1).

Using this lower bound for µi+1 we get

λi+1 ≤ ρ− 1− µi+1 by Inequality (6.1) for i + 1

≤ ρ− 2− ĉ(ρ− 1)
λi − ĉ(ρ− 1)

.
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2.0 2.5 3.0

ρ− 2− ĉ(ρ−1)
λi−ĉ(ρ−1) ≤ λi − ε

ρ̂ ≈ 2.589 . . .

ρ

λi

Figure 29: In the shaded area we have λi+1 ≤ λi − ε, i.e., the relative gap heights gradually
decrease over time

Using this upper bound for the relative gap height λi+1 we will show that no (ρ, ĉ)-
competitive algorithm exists. We already gave the lower bound of λi ≥ ĉ/(1− ĉ). On
the other hand, the following lemma shows that the relative gap heights are gradually
decreasing over time. This gives a contradiction to the assumption that ALG can retain
a max-gap-to-height ratio of ĉ. Thus ALG is either not ρ-competitive or we reach a
state with a max-gap-to-height ratio of less than ĉ, which ends the starting phase.

See Figure 29 for an illustration of the condition in which the relative gap heights
λi are decreasing by a constant in every step.

Lemma 28. For some fixed ε > 0 we have

λi+1 ≤ λi − ε.

Proof. Let ε = ε(ρ) = 2
√

ĉ(ρ− 1)− ρ + 2 + ĉ(ρ− 1). By Lemma 27 we have λi+1 ≤
λi − ε since

ρ− 2− ĉ(ρ− 1)
λi − ĉ(ρ− 1)

≤ λi − 2
√

ĉ(ρ− 1) + ρ− 2− ĉ(ρ− 1)

⇔ λ2
i −

(
2
√

ĉ(ρ− 1) + 2ĉ(ρ− 1)
)
λi ≥ −ĉ(ρ− 1)− 2

√
ĉ(ρ− 1)ĉ(ρ− 1)

− ĉ2(ρ− 1)2

⇔
(

λi −
(√

ĉ(ρ− 1) + ĉ(ρ− 1)
))2
≥
(√

ĉ(ρ− 1) + ĉ(ρ− 1)
)2 − ĉ(ρ− 1)

− 2
√

ĉ(ρ− 1)ĉ(ρ− 1)− ĉ2(ρ− 1)2 = 0.

Thus it only remains to show that ε(ρ) > 0.
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With ĉ =
ρ̂−2
√

ρ̂−1
ρ̂−1 we have ε(ρ̂) = 0 since

ε(ρ̂) = 2
√

ĉ(ρ̂− 1)− ρ̂ + 2 + ĉ(ρ̂− 1) = 2
√

ρ̂− 2
√

ρ̂− 1− ρ̂ + 2 + ρ̂− 2
√

ρ̂− 1

and

2
√

ρ̂− 2
√

ρ̂− 1− ρ̂ + 2 + ρ̂− 2
√

ρ̂− 1 = 0

⇔ 2
√

ρ̂− 2
√

ρ̂− 1 = 2
√

ρ̂− 1− 2

⇐ 4
(
ρ̂− 2

√
ρ̂− 1

)
= 4(ρ̂− 1)− 8

√
ρ̂− 1 + 4.

Note that this calculation actually defines the lower bound of
ρ̂−2
√

ρ̂−1
ρ̂−1 for ĉ. Now

observe that ĉ =
ρ̂−2
√

ρ̂−1
ρ̂−1 does not depend on ρ and thus we have

∂

∂ρ

(
2
√

ĉ(ρ− 1)− ρ + 2 + ĉ(ρ− 1)
)
=

ĉ√
ĉ(ρ− 1)

− 1 + ĉ.

This derivative is negative as

ĉ√
ĉ(ρ− 1)

< 1− ĉ

⇐ ĉ
ρ− 1

< (1− ĉ)2

⇔ ρ̂− 2
√

ρ̂− 1
(ρ− 1)(ρ̂− 1)

<

(
ρ̂− 1− ρ̂ + 2

√
ρ̂− 1

)2

(ρ̂− 1)2 by definition of ĉ

⇔ ρ̂− 2
√

ρ̂− 1 <
(
2
√

ρ̂− 1− 1
)2 · ρ− 1

ρ̂− 1

⇐ ρ̂− 2
√

ρ̂− 1 <
4(ρ̂− 1)− 4

√
ρ̂− 1 + 1

2
as

ρ− 1
ρ̂− 1

>
1
2

for ρ ≥ 2

⇔ 3
2
< ρ̂.

Thus ε(ρ) is strictly decreasing with respect to ρ and ε(ρ̂) = 0. Hence ε(ρ) > 0 for
ρ < ρ̂ and the lemma follows.

The previous lemma and the lower bound of λi ≥ ĉ/(1− ĉ) for any i ≥ 1 together
establish the contradiction. We proved the following lemma.

Lemma 29. Any ρ-competitive algorithm ALG can be forced to reach a state where the max-
gap-to-height ratio is less than

ĉ =
ρ̂− 2

√
ρ̂− 1

ρ̂− 1
.
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6.2.2 the alternating phase

In this section we describe the lower bound in the alternating phase. In this phase we
use that by Lemma 29, any ρ-competitive algorithm ALG is forced to reach a state

where the max-gap-to-height ratio is less than ĉ =
ρ̂−2
√

ρ̂−1
ρ̂−1 . Now we use the second

part of the definition of ĉ, namely

ĉ =
1−

√
4ρ̂2 − 12ρ̂ + 5
2(ρ̂− 1)

.

Together, these definitions give us the actual values ρ̂ ≈ 2.589 . . . and ĉ ≈ 0.04275 . . ..
Our adversary sequence in this phase starts with a first blocking item q1 and then

continues with the list of thin items of gradually increasing height from the starting
phase interleaved with further blocking items. Let η > 0 be some very small constant
and let rk be the last item that was released in the starting phase. Then we continue
with the list Lalternating = q1, rk+1, rk+2, . . . where

q1 = ĉ ·ALG(rk) and

ri = ri−1 + η for i ≥ k + 1.

We cannot a priori describe when the further blocking items are inserted into this
list as this depends on the packing of the online algorithm. To understand when the
blocking items are inserted, let us first introduce the notations in this phase—see
Figure 30a.

Similar to the starting phase, we consider the jump items, i.e., the thin items that are
the first to be packed above a blocking item qi, and denote them by pi. The thin item
directly before the jump item is denoted by p′i−1 (we will later see that we can actually
assume that p′i−1 is the last item that is packed below qi). We denote the interval
between the blocking items qi−1 and qi by Ii. As in the standard BBK sequences, the
thin item whose height exceeds the height of the previous interval plays an important
role. We denote the first item that exceeds the height of Ii−1 by p∗i and give all further
heights relative to these designated items.

As described in the introduction, we distinguish α-gaps (directly below blocking
items) and β-gaps (directly above blocking items). As the gap heights can change
during the packing (as further thin items are packed into the same interval) we have
to be specific about the moment in which we consider these heights. Let α∗i p∗i be the
height of the α-gap below qi in the moment qi is packed and let α′i p

∗
i be the final height

of the α-gap below qi, i.e., the height in the moment p∗i is packed (as afterwards no
further item can be packed into Ii−1). The notation is due to our assumption that p′i−1
is the last item that is packed into Ii−1 (which we show later). Regarding the β-gap
we get along with a single definition: Let β∗i p∗i be the height of the β-gap above qi in
the moment p∗i is packed.

The blocking item qi+1 is released directly after p∗i . This ensures that the online
algorithm jumps before a new blocking item is released (as the height of p∗i exceeds
the height of the previous interval). We set the height of the blocking items to

q1 := ĉ ·ALG(rk) as already mentioned above and

qi := max
(
α′i−1 p∗i−1, β∗i−1 p∗i−1, qi−1

)
+ η for i ≥ 2.
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(a) Notations. α-gaps below blocking items
with height α∗i p∗i in the moment qi is packed
and final height α′i p∗i . β-gaps above blocking
items with height β∗i p∗i

α∗i+1p∗i+1

qi α′i = 0

p′i−1

p′i

qi+1

α′i+1p∗i+1

p∗i = pi

β∗i p∗i
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(b) Structured packing according to the as-
sumptions by Lemmas 30, 31. Here we illus-
trate the case β∗i > 0 and thus α′i = 0 and
p∗i = pi

Figure 30: Order of the released items. 1) thin items up to p∗i−1; 2) blocking item qi; 3) and
4) thin items up to p∗i (including the jump item pi); 5) blocking item qi+1 and 6)
further thin items up to p′i

Note that we use the final height α′i p
∗
i of the α-gap in this definition. This definition

ensures that the blocking items are always packed above all previous items.
Again the function of the positive term η is to gradually increase the height of

thin items and to ensure that the blocking items are always packed above all previous
items. As before, we make the assumption that η is chosen small enough to be omitted
from the analysis. Thus we assume that qi = max(α′i−1 p∗i−1, β∗i−1 p∗i−1, qi−1) and that
the height of p∗i equals the height of the previous interval Ii−1 throughout this section.
(Again, this is justified by taking the limit (η → 0)).

We use succ(ri) and prec(ri) to denote the thin item that succeeds and that pre-
cedes ri, respectively. Using this notations we can rephrase the input list including the
blocking items to

Lalternating = q1, rk+1, . . . , p∗1 , q1, succ(p∗1), . . . , p∗2 , q2, succ(p∗2), . . . .

We also refer to Figure 30 for an illustration of the order in which the items are
released.

overview We prove by contradiction that no ρ-competitive algorithm exists for
ρ < ρ̂. Thus we assume to the contrary that a ρ-competitive algorithm ALG exists. By
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the analysis of the starting phase we already know that we can force ALG to reach a
state with a max-gap-to-height ratio less than ĉ. In accordance with the notation given
above we introduce the parameter γ∗i to measure how much ALG improves upon the
ρ-competitiveness. Let γ∗i be defined through

ALG(p∗i ) + γ∗i p∗i = ρ OPT(p∗i ).

Using this value, we introduce the potential function

Φi = γ∗i + β∗i .

Obviously, any ρ-competitive algorithm needs to keep Φi non-negative over time. We
show the contradiction that Φi decreases by a constant in every step. Unfortunately,
there is one possible exception to this rule, making the proof substantially more in-
volved: Φi might increase exactly once. We will show that even in this case, Φi is
properly bounded from above and cannot increase a second time.

In a first step we show some valid assumptions on the structure of a packing gen-
erated by ALG. Using these assumptions, we enter into the involved induction.

preliminaries With the next lemmas we investigate some assumptions on the
structure of the packing that ALG generates in this phase—see Figure 30b for an illus-
tration. The underlying idea is that if a ρ-competitive algorithm exists, then there also
exists a ρ-competitive algorithm that generates packings with the assumed structure.

If the algorithm ALG does not generate such a packing, we can alter the packing
(or rather the algorithm) such that the conditions are satisfied and ρ-competitiveness
is not violated at any point.

Lemma 30. We can assume that ALG generates a packing such that

30.1. the items pi, . . . , p∗i , . . . , p′i lie in interval Ii,

30.2. the items pi, . . . , p∗i are bottom-aligned,

30.3. the items succ(p∗i ), . . . , p′i are bottom-aligned at the top of qi.

Proof. By definition the items p∗i , . . . , p′i are taller than the previous interval Ii−1 and
thus all lie in interval Ii. Assume that an item from pi, . . . , prec(p∗i ) does not lie in
interval Ii and let rj be the tallest such item. Then we can move down the items
pi, . . . , prec(rj) and bottom-align them with rj. This redefines pi to succ(rj) and hereby
satisfies Condition 30.1. Observe that moving down the items pi, . . . , proc(rj) does
not violate ρ-competitiveness and as α′i and β∗i are not changed, the further packing
remains unchanged.

If the items pi, . . . , p∗i are not packed bottom-aligned, we move them downwards
until they are aligned with the lowest item of this list in order to satisfy Condition 30.2.
And to satisfy Condition 30.3 we move the items succ(p∗i ), . . . , p′i down until they are
aligned with the top of qi if these items are not bottom-aligned at the top of qi. In
both cases the alteration is possible as the height of the interval Ii and thus the height
of p∗i+1 remains unchanged. Moreover, the height of qi does not change (as β∗i is not
changed). The values of α∗i+1 and α′i+1 can actually change, but only become larger.
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But as the heights of Ii and p∗i+1 remain unchanged, the parameter α′i+1 only affects
qi+1 and the value of qi+1 attributes to the packing height of OPT and ALG to the
same extent. Thus increased values of α∗i+1 and α′i+1 cannot cause a violation of the
ρ-competitiveness.

Recall that qi+1 = max(α′i p
∗
i , β∗i p∗i , qi). Depending on the way that qi+1 is actually

defined, we can assume that the other value(s) are zero as the following lemma shows.

Lemma 31. We can assume that ALG generates a packing such that

31.1. if qi+1 = max(β∗i p∗i , qi), then we have α′i = 0,

31.2. if qi+1 = max(α′i p
∗
i , qi), then we have β∗i = 0.

Proof. First, assume that qi+1 = max(β∗i p∗i , qi) and α′i > 0. By construction of the
adversary sequence, the height of p∗i does not depend on α′i and is predetermined
at the moment qi is packed. Thus a reduction of α′i, which corresponds to packing
further thin items into the previous interval, does not change qi+1 and p∗i . So we can
alter ALG such that all items from succ(p′i−1), . . . , pre(p∗i ), are packed into Ii−1. This
reduces α′i to 0 and thus satisfies Condition 31.1 without implying any change to the
packing after p∗i .

Now assume that qi+1 = max(α′i p
∗
i , qi) and β∗i > 0. In this case a reduction of β∗i

does not change qi+1 and p∗i . So we can alter ALG to set β∗i to 0, i.e., bottom-align the
items pi, . . . , p∗i with the top of qi, without implying any change to the packing after
p∗i and hereby satisfy Condition 31.2. This alteration increases α∗i+1 and might increase
α′i+1 as well—as we saw in Lemma 30, this does not violate ρ-competitiveness.

Observe that with Lemma 30 we have p∗i+1 = β∗i p∗i + p∗i + α∗i+1 p∗i+1 and thus

p∗i+1 =
1 + β∗i

1− α∗i+1
p∗i . (6.3)

Using this equation, we are ready to show the following assumption.

Lemma 32. We can assume that ALG generates a packing such that if α′i > 0, then we have

α∗i+1 >
(ρ− 1)α′i

1 + (ρ− 1)α′i
.

Proof. We assume that α′i > 0 and α∗i+1 ≤ (ρ − 1)α′i/(1 + (ρ + 1)α′i). By Lemma 31

Condition 31.2 we have β∗i = 0 and thus p∗i+1 = p∗i /(1− α∗i+1). We can alter ALG to
save a packing height of α′i p

∗
i without violating ρ-competitiveness by changing the α-

gap to a β-gap. To do that, we move down qi and all items that are released after p′i−1
with the exception of pi by α′i p

∗
i . In other words, we close the α′i p

∗
i gap between p′i−1

and qi by moving down qi and all items above qi. The only exception is the item pi that
we keep at its position to retain a β-gap at the moment this item is packed. Hereby,
we keep a gap of the original size α′i p

∗
i above qi. See Figure 31 for an illustration of the

altered packing.
Note that this alteration changes the adversary sequence: As there does not remain

any α′i-gap, the item qi+1 is released directly after pi is packed—also redefining p∗i to pi.
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α∗i+1p∗i+1

qi
α′i p
∗
i

p′i−1

p′ip∗ipi

α∗i+1p∗i+1

qi

α′i p
∗
i

p′i−1

p′ip∗i

α′i p
∗
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qi+1

α′i p
∗
i

qi+1

Figure 31: If α∗i+1 ≤ (ρ− 1)α′i/(1 + (ρ− 1)α′i), then we can move down qi and all items that
are released after p′i−1 with the exception of pi by α′i p

∗
i . Hereby the α-gap becomes

a β-gap and pi becomes the new p∗i as the interval Ii−1 shrinks

This is the only change in the adversary sequence since the size of qi+1 is not changed
and also the height of interval Ii stays constant. Since the optimal value changed as
qi+1 is released earlier than before, we have to check whether the altered packing is
actually feasible.

We denote the optimal algorithm for the altered instance by OPT′ and the altered
algorithm by ALG′. With α′i p

∗
i we refer to the height before the alteration. The height

α∗i+1 p∗i+1 remains unchanged. We have OPT′(qi+1) = OPT(pi)+ qi+1 = OPT(pi)+ α′i p
∗
i

and ALG′(qi+1) = ALG(pi) + α∗i+1 p∗i+1 + qi+1 = ALG(pi) + α∗i+1 p∗i+1 + α′i p
∗
i . Thus

ALG′(qi+1) ≤ ρ OPT′(qi+1)

⇔ α∗i+1 p∗i+1 ≤ ρ OPT(pi)−ALG(pi)︸ ︷︷ ︸
≥0

+(ρ− 1)α′i p
∗
i

⇐ α∗i+1 ≤
(ρ− 1)α′i

1 + (ρ− 1)α′i
by Equation (6.3).

Thus qi+1 can actually be packed by the altered algorithm. The feasibility for all other
items in the altered packing is obvious.

On the other hand, it is not possible for ALG to create an arbitrarily large gap when
packing a blocking item qi+1. We capture this fact in the following lemma.

Lemma 33. We have

α∗i+1 ≤
γ∗i + (ρ− 1) qi+1

p∗i

1 + β∗i + γ∗i + (ρ− 1) qi+1
p∗i

.
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Proof. The value of α∗i+1 can be bounded by observing the moment that qi+1 is packed.
We have

OPT(qi+1) = OPT(p∗i ) + qi+1

ALG(qi+1) = ALG(p∗i ) + α∗i+1 p∗i+1 + qi+1.

And since qi+1 needs to be packed ρ-competitively by ALG we get

ALG(qi+1) ≤ ρ OPT(qi+1)

⇔ α∗i+1 p∗i+1 ≤ γ∗i p∗i + (ρ− 1)qi+1

⇔ α∗i+1

1− α∗i+1
≤

γ∗i + (ρ− 1) qi+1
p∗i

1 + β∗i
by Equation (6.3)

⇔ α∗i+1 ≤
γ∗i + (ρ− 1) qi+1

p∗i

1 + β∗i + γ∗i + (ρ− 1) qi+1
p∗i

.

The parameter α′i plays an important role in the analysis as the height of the pre-
ceding blocking item depends on it. With the next lemma we get an upper bound for
this parameter.

Lemma 34. We have (ρ− 1)α′i ≤ γ∗i .

Proof. The idea of the bound is that if ALG jumps early, i.e., with an α′i > 0, then it
generates a packing where p∗i = p′i + α′i p

∗
i . This additional height directly contributes

to the value of γ∗i with a factor of ρ − 1 (as ALG and OPT increase by the same
amount).

Formally, we have ALG(p∗i ) = ALG(pi) + α′i p
∗
i , OPT(p∗i ) = OPT(pi) + α′i p

∗
i and

ALG(p∗i )+γ∗i p∗i = ρ OPT(p∗i ). And since pi was feasible we have ALG(pi) ≤ ρ OPT(pi)

and get (ρ− 1)αi p∗i ≤ γ∗i p∗i .

Similar to Kern & Paulus[35] we get the following lemma that bounds the potential
function in terms of the parameters of the previous interval.

Lemma 35. We have

Φi+1 = γ∗i+1 + β∗i+1 =
γ∗i + (ρ− 1) qi+1

p∗i
+ (ρ− 1)β∗i − 1

1 + β∗i
(1− α∗i+1) + (ρ− 2)α∗i+1.

Proof. See Figure 32a for an illustration of the packing. We consider the change be-
tween p∗i and p∗i+1 and with p∗i+1 = β∗i p∗i + p∗i + α∗i+1 p∗i+1 from Equation (6.3) we have

OPT(p∗i+1) = OPT(p∗i ) + qi+1 + p∗i+1 − p∗i
= OPT(p∗i ) + qi+1 + β∗i p∗i + α∗i+1 p∗i+1

ALG(p∗i+1) = ALG(p∗i ) + α∗i+1 p∗i+1 + qi+1 + β∗i+1 p∗i+1 + p∗i+1

= ALG(p∗i ) + α∗i+1 p∗i+1 + qi+1 + β∗i+1 p∗i+1 + β∗i p∗i + p∗i + α∗i+1 p∗i+1.

Thus with γ∗i p∗i = ρ OPT(p∗i )−ALG(p∗i ) we get

ALG(p∗i+1) + γ∗i+1 p∗i+1 = ρ OPT(p∗i+1)

⇔ γ∗i+1 p∗i+1 + β∗i+1 p∗i+1 − (ρ− 2)α∗i+1 p∗i+1 =

γ∗i p∗i + (ρ− 1)qi+1 + (ρ− 1)β∗i p∗i − p∗i .
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(a) In this illustration we disregard
Lemma 31 (which would give α′i = 0
or β∗i = 0) to show the general case

ALG(rk)

α′1p∗1

p∗1
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(b) Here we show that ALG can pack
further items aligned with the bot-
tom of the strip before generating
the gap β∗1 p∗1

Figure 32: Illustrations for Lemmas 35 and 36

By Equation (6.3) we have (1− α∗i )p∗i+1 = (β∗i + 1)p∗i and finally get

γ∗i+1 + β∗i+1 − (ρ− 2)α∗i+1

1− α∗i+1
=

γ∗i + (ρ− 1) qi+1
p∗i

+ (ρ− 1)β∗i − 1

1 + β∗i
.

This completes our preparations for the induction that we show next.

the induction Now we give the intended contradiction. On the one hand, any
ρ-competitive algorithm needs to satisfy Φi ≥ 0. We show, in the contrary, that the
potential Φi indefinitely decreases.

We start the induction with the next lemma, giving a maximal initial value of ρ−
2 + (ρ− 1)ĉ for the potential. Afterwards, we distinguish three cases according to the
definition of qi+1. If qi+1 = β∗i p∗i or qi+1 = α′i p

∗
i we show Φi+1 ≤ Φi − ε for some ε > 0.

The case qi+1 = qi is more involved. Either we also get a decreasing potential or the
potential might actually rise, but is still lower than the initial value. Therefore, this
rise can only happen once, as we finally show when we bring together all parts.
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ρ̂ ≈ 2.589 . . .2.0 2.5 3.0 ρ

Φi

Φi ≤ ρ− 2 + (ρ− 1)ĉ

(Φi+(ρ−1)ĉ−1)(ρ−1)
ρ(ρ−2+(ρ−1)ĉ) + ρ− 2 = Φ

ρ(ρ−1)Φi+ρ2−3ρ+1
ρΦi+2ρ−1 = Φi

2(ρ−1)Φi−1
1+2Φi

= Φi

2(ρ−1)Φi−1
1+Φi

= Φi

ρ(ρ−1)Φi−1
1+ρΦi

= Φi

Figure 33: The initial upper bound for the potential (forcing the potential into the shaded area)
along with the conditions. In particular, Φi ≤ ρ− 2 + (ρ− 1)ĉ implies that for any
ρ < ρ̂ we can find an ε > 0 such that Φi+1 ≤ Φi − ε

In the following calculations (which are partially very technical) we basically derive
a series of upper bounds on the potential Φi+1. In detail, we get

Φi+1 ≤
2(ρ− 1)Φi − 1

1 + Φi
in case qi+1 = β∗i p∗i (6.4)

and Φi+1 ≤
ρ(ρ− 1)Φi − 1

1 + ρΦi
in case qi+1 = β∗i p∗i

and Φi+1 ≤
2(ρ− 1)Φi − 1

1 + 2Φi
in case qi+1 = α′i p

∗
i

and Φi+1 <
ρ(ρ− 1)Φi + ρ2 − 3ρ + 1

ρΦi + 2ρ− 1
in case qi+1 = qi

and Φi+1 ≤
(Φi + (ρ− 1)ĉ− 1)(ρ− 1)

ρ(ρ− 2 + (ρ− 1)ĉ)
+ ρ− 2 in case qi+1 = qi.

All these conditions eventually imply Φi+1 ≤ Φi− ε for some ε > 0 and ρ < ρ̂. Just for
Condition (6.4) we additionally require the induction hypothesis Φi ≤ ρ− 2+(ρ− 1)ĉ.

This is actually exactly the condition that gives us the value of ĉ =
1−
√

4ρ̂2−12ρ̂+5
2(ρ̂−1) . See

Figure 33 for an illustration of the conditions above.
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We now start with the induction hypothesis. Not only do we give an upper bound
for the initial potential Φ1, but also for the ratio q1/p∗1 . This is needed later when we
bring the different parts together.

Lemma 36. We have

Φ1 ≤ ρ− 2 + (ρ− 1)ĉ

and
q1

p∗1
<

1
ρ

.

Proof. Consider the packing of ALG and the optimal packing after p∗1 is released—see
Figure 32b. Recall that ALG(rk) is the packing height at the end of the starting phase
and that q1 = ĉ ALG(rk). As p∗1 equals the height of the interval below q1 we have

OPT(p∗1) = p∗1 + q1 = p∗1 + ĉ ALG(rk) and

ALG(p∗1) = p∗1 + q1 + β∗1 p∗1 + p∗1 = 2p∗1 + ĉ ALG(rk) + β∗1 p∗1 .

Moreover, we have p∗1 = ALG(rk) + α∗1 p∗1 and thus p∗1 = ALG(rk)
1−α∗1

. We get

γ∗1 p∗1 = ρ OPT(p∗1)−ALG(p∗1)

= (ρ− 2)p∗1 + (ρ− 1) ĉ ALG(rk)− β∗1 p∗1

⇒ Φi = γ∗1 + β∗1 = ρ− 2 + (ρ− 1)ĉ(1− α∗1) since p∗1 =
ALG(rk)

1− α∗1
≤ ρ− 2 + (ρ− 1)ĉ.

Finally, observe that

q1

p∗1
≤ ĉ ALG(rk)

ALG(rk)
= ĉ <

1
ρ

.

With the next two lemmas we show that the potential decreases if qi+1 = β∗i p∗i or
qi+1 = α′i p

∗
i . At the same time we show that qi+1/p∗i+1 is bounded, which we need in

the last case qi+1 = qi.

Lemma 37. If Φi ≤ ρ− 2 + (ρ− 1)ĉ and qi+1 = β∗i p∗i , then

Φi+1 ≤ Φi − ε for some ε > 0

and
qi+1

p∗i+1
≤ Φi+1

ρ− 1
or

qi+1

p∗i+1
<

1
ρ

.

Proof. By Lemma 31 Condition 31.1 we can assume α′i = 0. Thus Lemma 35 yields

Φi+1 =
γ∗i + 2(ρ− 1)β∗i − 1

1 + β∗i
(1− α∗i+1) + (ρ− 2)α∗i+1.

Note that this function is linear in α∗i+1. Thus Φi+1 attains its maximum for maximal
or minimal α∗i+1. We show for both cases that Φi+1 ≤ Φi − ε for some ε > 0.
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If Φi+1 is non-increasing in α∗i+1 we have

Φi+1 ≤
γ∗i + 2(ρ− 1)β∗i − 1

1 + β∗i
as α∗i+1 ≥ 0

=
Φi + (2ρ− 3)β∗i − 1

1 + β∗i
as γ∗i + β∗i = Φi

≤ 2(ρ− 1)Φi − 1
1 + Φi

.

The last step holds as β∗i ≤ Φi and the function is increasing with respect to β∗i . With

ε = ε(ρ) = ĉ2(ρ−1)2−ĉ(ρ−1)−(ρ−1)(ρ−2)+1
(ρ−1)(1+ĉ) we have Φi+1 ≤ Φi − ε since

2(ρ− 1)Φi − 1
1 + Φi

≤ Φi − ε

⇔ Φ2
i − (2ρ− 3 + ε)Φi ≥ ε− 1

⇐
(
ρ− 2 + (ρ− 1)ĉ

)2 − (2ρ− 3 + ε)(ρ− 2 + (ρ− 1)ĉ) ≥ ε− 1

as Φi ≤ ρ− 2 + (ρ− 1)ĉ and 2Φi − 2ρ + 3− ε ≤ 2(ρ− 1)ĉ− 1 < 0

⇔
(
ρ− 2 + (ρ− 1)ĉ

)2 − (2ρ− 3)(ρ− 2 + (ρ− 1)ĉ) + 1
1 + ρ− 2 + (ρ− 1)ĉ

≥ ε

⇐ ĉ2(ρ− 1)2 − ĉ(ρ− 1)− (ρ− 1)(ρ− 2) + 1
(ρ− 1)(1 + ĉ)

= ε

It remains to show ε = ε(ρ) > 0. We have ε(ρ̂) = 0 since

ĉ2(ρ̂− 1)2 − ĉ(ρ̂− 1)− (ρ̂− 1)(ρ̂− 2) + 1 = 0

for ĉ = 1−
√

4ρ̂2−12ρ̂+5
2(ρ̂−1) . Now observe that ε is strictly decreasing with ρ since

∂

∂ρ

(
ε(ρ)

)
=

(ĉ2 − 1)(ρ− 1)2 − (ρ2 − 2ρ + 2)
(ρ− 1)2(1 + ĉ)

< 0

as ĉ2 − 1 < 0 and ρ2 − 2ρ + 2 > 0. Thus we have ε = ε(ρ) > ε(ρ̂) = 0 in this case.

Now, if Φi+1 is increasing in α∗i+1, we use Lemma 33 to get

Φi+1 ≤
γ∗i + 2(ρ− 1)β∗i − 1

1 + β∗i
·
(

1− γ∗i + (ρ− 1)β∗i
1 + γ∗i + ρβ∗i

)
+ (ρ− 2) · γ∗i + (ρ− 1)β∗i

1 + γ∗i + ρβ∗i

≤ γ∗i + 2(ρ− 1)β∗i − 1
1 + β∗i

· 1 + β∗i
1 + γ∗i + ρβ∗i

+ (ρ− 2) · γ∗i + (ρ− 1)β∗i
1 + γ∗i + ρβ∗i

=
(ρ− 1)γ∗i + ρ(ρ− 1)β∗i − 1

1 + γ∗i + ρβ∗i

=
(ρ− 1)Φi + (ρ− 1)2β∗i − 1

1 + Φi + (ρ− 1)β∗i
as γ∗i + β∗i = Φi

≤ ρ(ρ− 1)Φi − 1
1 + ρΦi

.
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Again, the last step holds as β∗i ≤ Φi and the function is increasing with respect to β∗i .
With ε = 3− ρ− 1/ρ > 0 (for ρ < ρ̂) we have Φi+1 ≤ Φi − ε since

ρ(ρ− 1)Φi − 1
1 + ρΦi

≤ Φi − 3 + ρ +
1
ρ

⇔ ρ(ρ− 1)Φi − 1 ≤ Φi − 3 + ρ +
1
ρ
+ ρΦ2

i − 3ρΦi + ρ2Φi + Φi

⇔ Φ2
i +

(2− 2ρ

ρ

)
Φi ≥

2− ρ− 1
ρ

ρ

⇔
(

Φ2
i +

1− ρ

ρ

)2
≥
(1− ρ

ρ

)2
+

2− ρ− 1
ρ

ρ
= 0

Thus in both cases we have Φi+1 ≤ Φi − ε for some ε > 0.

It remains to show

qi+1

p∗i+1
≤ Φi+1

ρ− 1
or

qi+1

p∗i+1
<

1
ρ

.

We have qi+1
p∗i+1

=
β∗i

1+β∗i
(1− α∗i+1) by Equation (6.3). If β∗i < 1

ρ−1 we have

qi+1

p∗i+1
=

β∗i
1 + β∗i

(1− α∗i+1) ≤
β∗i

1 + β∗i
<

1
ρ− 1

· 1
1 + 1

ρ−1

=
1

ρ− 1
· 1

ρ
ρ−1

=
1
ρ

.

Otherwise, we have β∗i ≥ 1
ρ−1 and thus

qi+1

p∗i+1
=

β∗i
1 + β∗i

(1− α∗i+1) ≤
Φi+1

ρ− 1

⇔ (ρ− 1)β∗i ≤ γ∗i + 2(ρ− 1)β∗i − 1 + (ρ− 2)(1 + β∗i )
α∗i+1

1− α∗i+1︸ ︷︷ ︸
≥0

⇐ 1 ≤ γ∗i + (ρ− 1)β∗i

⇐ β∗i ≥
1

ρ− 1
.

Lemma 38. If Φi ≤ ρ− 2 + (ρ− 1)ĉ and qi+1 = α′i p
∗
i then

Φi+1 ≤ Φi − ε for some ε > 0

and
qi+1

p∗i+1
<

1
ρ

.

Proof. In this case we can assume β∗i = 0 (by Lemma 31 Condition 31.2) and hereby
have Φi = γ∗i . Thus by Lemma 35 and with (ρ− 1)α′i ≤ γ∗i = Φi by Lemma 34 we
have

Φi+1 = (Φi + (ρ− 1)α′i − 1)(1− α∗i+1) + (ρ− 2)α∗i+1

≤ (2Φi − 1)(1− α∗i+1) + (ρ− 2)α∗i+1.
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We consider the derivative with respect to α∗i+1 and with Φi ≤ ρ− 2 + (ρ− 1)ĉ we get

∂

∂α∗i+1

(
(2Φi − 1)(1− α∗i+1) + (ρ− 2)α∗i+1

)
= ρ− 1− 2Φi ≥ 3− ρ− 2(ρ− 1)ĉ > 0.

Thus Φi+1 increases with α∗i+1 and since by Lemma 33

α∗i+1 ≤
γ∗i + (ρ− 1)α′i

1 + γ∗i + (ρ− 1)α′i
≤ 2γ∗i

1 + 2γ∗i
=

2Φi

1 + 2Φi

we get

Φi+1 ≤ (2Φi − 1)
(

1− 2Φi

1 + 2Φi

)
+ (ρ− 2)

2Φi

1 + 2Φi

=
2(ρ− 1)Φi − 1

1 + 2Φi
.

With ε =
√

2ρ− ρ + 1/2 > 0 (for ρ < ρ̂) we have Φi+1 ≤ Φi − ε since

2(ρ− 1)Φi − 1
1 + 2Φi

≤ Φi −
√

2ρ + ρ− 1
2

⇔ 2Φ2
i + (2− 2

√
2ρ)Φi ≥

√
2ρ− ρ− 1

2

⇔
(

Φi +
1−

√
2ρ

2

)2

≥
(

1−
√

2ρ

2

)2

+

√
2ρ− ρ− 1

2
2

= 0.

Thus we proved the first part of the lemma.

It remains to show

qi+1

p∗i+1
<

1
ρ

.

With β∗i = 0 we have p∗i+1 = p∗i /(1− α∗i+1) by Equation (6.3). Using α∗i+1 ≥
(ρ−1)α′i

1+(ρ−1)α′i
by Lemma 32 and α′i ≤ α∗i < 1 (by definition of α∗i as a fraction of p∗i ) we get

qi+1

p∗i+1
=

α′i p
∗
i

p∗i+1
= α′i(1− α∗i+1) ≤

α′i
1 + (ρ− 1)α′i

<
1
ρ

.

This finishes the proof of this lemma.

Finally, we consider the case qi+1 = qi. First, we show that the potential definitely
decreases if qi/p∗i < 1/ρ.

Lemma 39. If Φi ≤ ρ− 2 + (ρ− 1)ĉ and qi
p∗i

< 1
ρ and qi+1 = qi then

Φi+1 ≤ Φi − ε for some ε > 0

and
qi+1

p∗i+1
<

1
ρ

.
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Proof. The second part is trivial since qi+1 = qi, p∗i+1 ≥ p∗i and qi/p∗i < 1/ρ.
To show the first part we assume α′i = 0 and β∗i = 0 according to Conditions 31.1

and 31.2 of Lemma 31. Thus we have Φi = γ∗i and with Lemma 35 we get

Φi+1 =
(
Φi + (ρ− 1)

qi

p∗i
− 1
)
(1− α∗i+1) + (ρ− 2)α∗i+1

We consider the derivative with respect to α∗i+1 and get

∂

∂α∗i+1

(
Φi+1

)
= ρ− 1−Φi − (ρ− 1)

qi

p∗i
> 1− (ρ− 1)ĉ− ρ− 1

ρ
> 0.

Thus Φi+1 increases with α∗i+1 and since by Lemma 33

α∗i+1 ≤
Φi + (ρ− 1) qi

p∗i

1 + Φi + (ρ− 1) qi
p∗i

we get

Φi+1 ≤
(ρ− 1)Φi + (ρ− 1)2 qi

p∗i
− 1

1 + Φi + (ρ− 1) qi
p∗i

<
(ρ− 1)Φi +

(ρ−1)2

ρ − 1

Φi +
2ρ−1

ρ

as
qi

p∗i
<

1
ρ

=
ρ(ρ− 1)Φi + ρ2 − 3ρ + 1

ρΦi + 2ρ− 1
.

With

ε =
3ρ− ρ2 − 1

ρΦi + 2ρ− 1
≥ 3ρ− ρ2 − 1

ρ(ρ + (ρ− 1)ĉ)− 1
> 0,

as Φi ≤ ρ− 2 + (ρ− 1)ĉ and 3ρ− ρ2 − 1 > 0 for ρ < ρ̂, we have Φi+1 ≤ Φi − ε since

ρ(ρ− 1)Φi + ρ2 − 3ρ + 1
ρΦi + 2ρ− 1

≤ Φi −
3ρ− ρ2 − 1

ρΦi + 2ρ− 1

⇔ ρ(ρ− 1)Φi + ρ2 − 3ρ + 1 ≤ ρ Φ2
i + (2ρ− 1)Φi − 3ρ + ρ2 + 1

⇔ 0 ≤ ρΦ2
i + (3ρ− ρ2 − 1)Φi

which is satisfied as 3ρ− ρ2 − 1 > 0 for ρ < ρ̂.

If we do not have qi/p∗i < 1/ρ we can still assume qi/p∗i ≤ (ρ− 2+(ρ− 1)ĉ)/(ρ− 1)
by Lemmas 37 and 38 (as Φi ≤ ρ − 2 + (ρ − 1)ĉ and this ratio does not increase in
case qi+1 = qi).

We use this bound to show that either the potential still decreases or we can bound
the potential by ρ− 2 and the qi+1/p∗i+1 ratio is less than 1/ρ. So from this point on
we remain in the case of the previous lemma and the potential decreases by a constant
in every step.
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Lemma 40. If Φi ≤ ρ− 2 + (ρ− 1)ĉ and qi
p∗i
≤ ρ−2+(ρ−1)ĉ

ρ−1 and qi+1 = qi then either

Φi+1 < ρ− 2 and
qi+1

p∗i+1
<

1
ρ

,

or

Φi+1 ≤ Φi − ε for some ε > 0, and
qi+1

p∗i+1
≤ ρ− 2 + (ρ− 1)ĉ

ρ− 1
.

Proof. As in Lemma 39 we have α′i = 0, β∗i = 0, Φi = γ∗i and

Φi+1 =
(
Φi + (ρ− 1)

qi

p∗i
− 1
)
(1− α∗i+1) + (ρ− 2)α∗i+1

Again, Φi+1 increases with α∗i+1. We distinguish two cases according to the value of
α∗i+1.

If α∗i+1 > 1− ρ−1
ρ(ρ−2+(ρ−1)ĉ) then

qi+1

p∗i+1
=

qi

p∗i
(1− α∗i+1) <

ρ− 2 + (ρ− 1)ĉ
ρ− 1

· ρ− 1
ρ(ρ− 2 + (ρ− 1)ĉ)

=
1
ρ

.

As Φi+1 is increasing with α∗i+1 we use Lemma 33 to get

Φi+1 ≤
(ρ− 1)Φi + (ρ− 1)2 qi

p∗i
− 1

1 + Φi + (ρ− 1) qi
p∗i

≤ 2(ρ− 1)(ρ− 2 + (ρ− 1)ĉ)− 1
1 + 2(ρ− 2 + (ρ− 1)ĉ)

as Φi ≤ ρ− 2 + (ρ− 1)ĉ and qi
p∗i
≤ ρ−2+(ρ−1)ĉ

ρ−1 . We have

2(ρ− 1)(ρ− 2 + (ρ− 1)ĉ)− 1
1 + 2(ρ− 2 + (ρ− 1)ĉ)

< ρ− 2

⇔ 2(ρ− 1)(ρ− 2 + (ρ− 1)ĉ)− 1 < ρ− 2 + 2(ρ− 2)(ρ− 2 + (ρ− 1)ĉ)

⇔ 2(ρ− 2 + (ρ− 1)ĉ) < ρ− 1

⇔ 2(ρ− 1)ĉ < 3− ρ,

which holds for ρ < ρ̂. We showed that if α∗i+1 > 1 − ρ−1
ρ(ρ−2+(ρ−1)ĉ) , then we have

Φi+1 < ρ− 2 and qi+1/p∗i+1 < 1/ρ.

Otherwise, we have α∗i+1 ≤ 1− ρ−1
ρ(ρ−2+(ρ−1)ĉ) and get

Φi+1 ≤
(Φi + (ρ− 1) qi

p∗i
− 1)(ρ− 1)

ρ(ρ− 2 + (ρ− 1)ĉ)
+ ρ− 2− (ρ− 2)(ρ− 1)

ρ(ρ− 2 + (ρ− 1)ĉ)

≤ (Φi + (ρ− 1)ĉ− 1)(ρ− 1)
ρ(ρ− 2 + (ρ− 1)ĉ)

+ ρ− 2
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as qi
p∗i
≤ ρ−2+(ρ−1)ĉ

ρ−1 . With ε = Φi +
(1−(ρ−1)ĉ−Φi)(ρ−1)

ρ(ρ−2+(ρ−1)ĉ) − ρ + 2 we have Φi+1 ≤ Φi − ε

since

(Φi + (ρ− 1)ĉ− 1)(ρ− 1)
ρ(ρ− 2 + (ρ− 1)ĉ)

+ ρ− 2 ≤

Φi −Φi −
(1− (ρ− 1)ĉ−Φi)(ρ− 1)

ρ(ρ− 2 + (ρ− 1)ĉ)
+ ρ− 2.

It remains to show ε > 0 . To see this, observe that ε is increasing with respect to Φi
as

∂

∂Φi

(
Φi +

(1− (ρ− 1)ĉ−Φi)(ρ− 1)
ρ(ρ− 2 + (ρ− 1)ĉ)

− ρ + 2
)
= 1− ρ− 1

ρ(ρ− 2 + (ρ− 1)ĉ)
> 0

for 2.55 ≤ ρ < ρ̂ (here we use that we assume δ = ρ̂ − ρ is sufficiently small). As
Φi ≥ 0 we have

ε ≥ (1− (ρ− 1)ĉ)(ρ− 1)
ρ(ρ− 2 + (ρ− 1)ĉ)

− ρ + 2 > 0.

Of course,

qi+1

p∗i+1
≤ qi

p∗i
≤ ρ− 2 + (ρ− 1)ĉ

ρ− 1

holds trivially. We showed that if α∗i+1 ≤ 1− ρ−1
ρ(ρ−2+(ρ−1)ĉ) , then we have Φi+1 ≤ Φi − ε

for ε > 0 and qi+1/p∗i+1 ≤ (ρ− 2 + (ρ− 1)ĉ)/(ρ− 1). This finishes the proof of this
lemma.

This ends this extensive induction. Let us summarize the complete induction and
show that it actually gives the desired contradiction.

Recall that our induction hypothesis in Lemma 36 states that Φ1 ≤ ρ− 2 + (ρ− 1)ĉ
and q1/p∗1 < 1/ρ.

First assume that whenever we need to apply Lemma 40, then the second outcome
is valid, i.e., Φi+1 ≤ Φi− ε and qi+1/p∗i+1 ≤ (ρ− 2+(ρ− 1)ĉ)/(ρ− 1). Then Lemma 37

(for qi+1 = β∗i p∗i ), Lemma 38 (for qi+1 = α′i p
∗
i ) and Lemmas 39 and 40 (for qi+1 = qi)

show that the potential decreases by a constant in every step.
Now if Lemma 40 is applied and the second outcome is invalid, then we afterwards

have Φi+1 < ρ− 2 and qi+1/p∗i+1 < 1/ρ. Thus Lemma 37 (for qi+1 = β∗i p∗i ), Lemma 38

(for qi+1 = α′i p
∗
i ) and Lemmas 39 (for qi+1 = qi) show that the qi/p∗i ratio remains

less than 1/ρ. So the precondition for Lemma 39 is always satisfied if qi+1 = qi and
we do not need to apply Lemma 40 anymore. Thus from this point on, the potential
decreases by a constant in every further step.

In total we showed a contradiction to Φi ≥ 0 for all i ≥ 1 and thus proved Theo-
rem 10.

6.3 U P P E R B O U N D

In this section we present the online algorithm ONL for packing primitive sequences
that consist solely of thin and blocking items. We prove that the competitive ratio of
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Algorithm 9 Online algorithm for packing primitive sequences

1: Initially the packing is considered to be blocked
2: whenever a rectangle rj is released do
3: if rj is a blocking item then
4: Pack rj at the lowest possible height
5: else if rj is a thin item then
6: if the packing is open then
7: Pack rj bottom-aligned with the top thin item
8: else if the packing is blocked then
9: Try to pack rj below the top item

10: If this is not possible, pack rj at distance (ρ− 2)rj above the packing

ONL is ρ = (3 +
√

5)/2. As we will see, our algorithm neglects the starting phase. In
the final discussion in Section 6.4 we will see why this is the case.

We differentiate two kinds of packings according to the item on top: If the item on
top of the packing is a blocking item, we have a blocked packing, otherwise we have
an open packing. Initially, we have a blocked packing by considering the bottom of the
strip as a blocking item of height 0.

The general idea of the algorithm ONL is pretty straight-forward: Generate a β-gap
of relative height ρ− 2 whenever a jump is unavoidable and pack arriving blocking
items as low as possible. Since we neglect the starting phase, β = ρ− 2 is the maximal
β-gap that we can ensure. This leads to the following algorithm—see also Algorithm 9.

• If a blocking item rj arrives, we pack rj at the lowest possible height. This can
be inside the packing, if a sufficiently large gap is available, or directly on top
of the packing. In the latter case, the packing is blocked afterwards.

• If a thin item rj arrives at an open packing, we bottom-align rj with the top item.

• If, finally, a thin item rj arrives at a blocked packing, we try to pack rj below
the blocking item on top. If this is not possible, i.e., rj exceeds the height of all
intervals for thin items, we pack rj at distance β rj = (ρ− 2)rj above the top of
the packing. This changes the packing to an open packing again.

We show that ONL is ρ-competitive for ρ = (3 +
√

5)/2. Actually, this is only
questionable in one case, namely, when we pack a thin item rj with distance (ρ− 2)rj
above the packing. All other cases are trivial since if the packing height increases, then
the optimal height increases by the same value (for thin items the packing height only
increases if rj is the new maximal item).

We denote the thin items that are packed when generating a new gap by si for the
i-th jump. Let s′i−1 be the highest thin item that is bottom-aligned with si−1. Note that
the blocking item that blocks the packing after the i-th jump is packed directly above
s′i−1. See Figure 34 for an illustration.

It is obvious that the first jump item s1, that is actually the first thin item that arrives,
can be packed.
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s′i−1

s′i

si

βsi

si+1

βsi+1

h′′

h′

Figure 34: Packing after the (i + 1)-th jump. The blocking items that arrived after si are shown
in darker shade. By definition, si is the first item that does not fit into the previous
interval. Thus we have si+1 > s′i + β si − h′

For the induction step we assume ONL(si) ≤ ρ OPT(si). Before a jump can become
unavoidable, new blocking items of total height greater than β si need to arrive as
otherwise the gap below si could accommodate all of them. Let h′ be the height of the
blocking items that are packed into the β-gap below si and let h′′ be the total height
of blocking items that arrive between si and si+1 and are packed above si. We have
h′ ≤ (ρ− 2)si and h′ + h′′ > (ρ− 2)si as otherwise no blocking item would be packed
on top. As further blocking items could be packed even below s′i−1 we get

OPT(si+1) ≥ OPT(si) + h′ + h′′ + si+1 − si

ONL(si+1) = ONL(si) + s′i − si + h′′ + βsi+1 + si+1.

And thus we have

ONL(si+1) ≤ ρ OPT(si+1)

⇐ ONL(si) + s′i − si + h′′ + βsi+1 + si+1 ≤ ρ
(
OPT(si) + h′ + h′′ + si+1 − si

)

⇐ (ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ (ρ− 1− β)si+1.

As ρ− 1− β = 1 and si+1 > s′i + (ρ− 2)si − h′ this is satisfied if

(ρ− 1)si + s′i − ρh′ − (ρ− 1)h′′ ≤ s′i + (ρ− 2)si − h′

⇔ si ≤ (ρ− 1)(h′ + h′′)

⇐ si ≤ (ρ− 1)(ρ− 2)si = si.

The last equality holds since ρ = (3 +
√

5)/2 and thus (ρ− 1)(ρ− 2) = 1. Summariz-
ing we showed the following theorem.
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Theorem 11. ONL is a ρ-competitive algorithm for packing primitive sequences with

ρ =
3 +
√

5
2

≈ 2.618.

6.4 F I N A L D I S C U S S I O N

In the previous sections we gave a lower bound of ρ ≥ 2.589 . . . and an upper bound
of ρ ≤ 2.618 . . . for the competitive ratio ρ of the strip packing problem restricted
to primitive sequences consisting solely of thin and blocking items. In this section
we recapitulate the significance of the starting phase for the lower bound. Moreover,
we present an approach to improve the lower bound and describe the challenges to
improve our upper bound.

We analyzed the starting phase to derive Lemma 36, the starting point of our induc-
tion, where we showed Φ1 ≤ ρ− 2 + (ρ− 1)ĉ. Observe that from all the conditions
we derived in Section 6.2.2, only Condition (6.4), which was

2(ρ− 1)Φi − 1
1 + Φi

≤ Φi − ε,

actually required Φi ≤ ρ− 2 + (ρ− 1)ĉ. It is easy to see (c.f. Figure 33) that all other
conditions hold for ρ < (3+

√
5)/2 regardless of the initial potential. Thus by improv-

ing the bound for Φ1 in Lemma 36 we would directly get a better overall lower bound
on the competitive ratio. Straightforward calculation yields that for Φi ≤ ρ − 2 + x
(for x ≥ 0) we get a lower bound on the competitive ratio of

ρ̂ =
3 +
√

5 + 4x2 − 4x
2

.

To see this, observe that for ε(x) = x2−x−(ρ−1)(ρ−2)+1
ρ−1+x , Condition (6.4) is satisfied. And

for ρ < ρ̂ = 3+
√

5+4x2−4x
2 we have ε(x) > 0. Thus for x = 0 we even get the best

possible lower bound of (3 +
√

5)/2.
Therefore, the most promising approach for improving the lower bound is to con-

sider the starting phase and derive a better bound for Φ1. In Lemma 36 we use
p∗1 = ALG(rk)/(1 − α∗1) to show Condition (6.4). This holds since we do not force
the algorithm to pack blocking items into the gaps that were kept open.

In the following we present a new objective for the starting phase that exploits this
approach and that should eventually lead to an improved lower bound. Let λi−1si−1

and λisi be the heights of the two last gaps. Now assume that no ρ-competitive algo-
rithm can retain

λi−1si−1

ALG(rk)
≥ d̂

for some constant d̂ > 0 throughout the starting phase. In contrast to the starting
phase that we analyzed in Section 6.2.1, we do not consider the current (maximal) gap
λisi here but rather the last gap before, i.e., λi−1si−1. As soon as the above “second-
largest-gap-to-height” ratio drops below d̂, we release a blocking item q1 = d̂ ALG(rk).
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This blocking item can either be packed on top, leading to Φ1 ≤ ρ− 2 + (ρ− 1)d̂ as
by the analyses in Lemma 36, or it can be packed into the gap of size λisi. In the
latter case, we release a further blocking item q′1 larger than λisi − q1 which has to be
packed on top. We have OPT(p∗1) = p∗1 + q1 + q′1 and ALG(p∗1) = ALG(s′i−1) + q1 +

p∗1 + q′1 + β∗1 p∗1 + p∗1 . And thus

Φ1 = β∗1 + γ∗1 = (ρ− 2) +
(ρ− 1)(q1 + q′1)−ALG(s′i−1)

p∗1
≤ ρ− 2

in this case. The last step holds since ALG(s′i−1) ≥ si ≥ (ρ− 1)(q1 + q′1) (as ALG(si) =

si + λisi + ALG(s′i−1) and thus q1 + q2 = λisi ≤ ρsi − si −ALG(s′i−1) ≤ (ρ− 2)si).
It is apparent that for the new objective we get d̂ < ĉ (as we consider the “second-

largest-gap-to-height” ratio instead of the max-gap-to-height ratio) and thus an im-
proved lower bound on the competitive ratio. We believe that this idea can be further
exploited by considering the whole series of gaps and releasing appropriate short
blocking items. Unfortunately, analyzing these improved lower bounds requires pa-
rameters different from the well understood max-gap-to-height ratio and seems to be
very involved.

One of the challenges to improve the upper bound relates to the approach described
above. It is possible to retain a max-gap-to-height ratio of ĉ with an ρ̂-competitive algo-
rithm when only thin items are released (generate gaps of maximal height whenever
the max-gap-to-height ratio would otherwise be violated). But this does not lead to
Φ1 ≥ ρ̂ − 2 + (ρ̂ − 1)ĉ as we cannot ensure p∗1 = ALG(rk)/(1− α∗1). The reason for
this is that arriving blocking items need to be packed into the gaps to avoid blocking
the packing with a short blocking item. But this leads to a potentially reduced interval
height for the thin items and thus to a worse initial potential. An approach to over-
come this difficulty might be to pack arriving blocking items into the second largest
gap instead of the current gap. This would still give a lower bound on the overall
height of blocking items received before blocking the packing is unavoidable. And
still, p∗1 can be large. Again, an analysis of this approach seems to be complicated.

Finally, the equation of Lemma 35, namely

Φi+1 =
γ∗i + (ρ− 1) qi+1

p∗i
+ (ρ− 1)β∗i − 1

1 + β∗i
(1− α∗i+1) + (ρ− 2)α∗i+1.

reveals another challenge to improve the upper bound. An adversary could, instead
of releasing a blocking item qi+1 directly after the height of the thin item p∗i exceeds
the height of the previous interval, postpone the blocking item and release further
thin items. This would increase the value of α∗i+1 if the thin items are packed bottom-
aligned with p∗i (as α∗i+1 p∗i+1 increases and this makes up an increasingly large fraction
of p∗i+1). As Lemma 35 shows, Φi+1 tends to ρ− 2 as α∗i+1 approaches 1. Thus to sustain
a potential larger than ρ− 2, the online algorithm would have to generate a new gap
when receiving indefinitely growing thin items.
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