
On the Formal Foundation
of a Verification Approach

for System-Level
Concurrent Programs

U
N I

V E R S IT A
S

S
A

R A V I E N

S I
S

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Matthias Daum

md11@wjpserver.cs.uni-saarland.de

Saarbrücken, 10. August 2010

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 26. Februar 2010

Tag des Kolloquiums: 28. Juni 2010
Dekan: Prof. Dr. Holger Hermanns

Vorsitzender des Prüfungsausschusses: Prof. Dr. Raimund Seidel
1. Berichterstatter: Prof. Dr. Wolfgang J. Paul
2. Berichterstatter: Prof. Dr. Burkhart Wolff
3. Berichterstatter: Prof. Dr. Reinhard Wilhelm

akademischer Mitarbeiter: Dr. Eyad Alkassar

iii

In memoriam

Richard Prasse

1915 – 2008

I wake up every morning, and I still haven’t finished the book.

Donald Knuth about “The Art of Computer Programming”

Acknowledgments

During graduation, many people have supported me, and though I cannot name every-
one, I am grateful to all of them. In particular, I am indebted to Prof. Wolfgang Paul for
the opportunity to work at his chair. Furthermore, I thank my colleagues, who devoted
much time to many lively and fruitful discussions, among them Sebastian Bogan, Jan
Dörrenbächer, Mark Hillebrand, Dirk Leinenbach, Norbert Schirmer, Mareike Schmidt,
and Burkhart Wolff. Last but not least, I am much obliged to my family and friends
who never grew tired in encouraging me.

This work has been partially funded by the German Federal Ministry of Education and
Research (BMBF) in the framework of the Verisoft project under grant 01 IS C38.

v

Abstract

Though program verification is known and used since decades, the verification of a com-
plete computer system still remains a grand challenge. In essence, this challenge stems
from the interaction of various programs. Different techniques have been proposed for
the verification of communicating programs. Common to all, however, is that they
rely on several (usually implicit) assumptions about the underlying system. Typically,
such assumptions include compiler correctness, scheduler fairness, and a certain non-
interference between the local program behavior and its environment. This thesis aims
at discharging these assumptions for the processes of the microkernel Vamos. More
specifically, this work formally justifies the abstraction from a kernel model with ex-
plicit, deterministic scheduling to a concurrent process system with non-deterministic
but temporally fair scheduling. Our formal results form the foundation of a verification
approach for system-level concurrent programs. We outline this approach on example
properties of a user-mode operating system.

Kurze Zusammenfassung

Obwohl es schon jahrzehntelang Programmverifikation gibt, wird die Verifikation eines
kompletten Computersystems auch heute noch als eine große Herausforderung angese-
hen. Im Wesentlichen ergibt sich diese Herausforderung aus der vielfältigen Interaktion
von Programmen. Verschiedene Techniken wurden für die Verifikation kommunizierender
Programme vorgeschlagen. Alle haben jedoch gemein, dass sie sich auf mehrere (meist
implizite) Annahmen über das zugrunde liegende System stützen. In der Regel sind sol-
che Annahmen Compiler-Korrektheit, Scheduler-Fairness und eine gewisse Störfreiheit
des lokalen Programmverhaltens vom Verhalten seiner Umgebung. Die vorliegende Dis-
sertation beschäftigt sich mit der Entlastung dieser Annahmen für die Prozesse des Mi-
krokerns Vamos. Genauer gesagt, rechtfertigt diese Arbeit formal die Abstraktion von
einem Kernmodell mit explizitem, deterministischem Scheduling zu einem nebenläufigen
Prozesssystem mit nicht-deterministischem, aber temporal fairem Scheduling. Die for-
malen Ergebnisse bilden die Grundlage eines Verifikationsansatzes für nebenläufige, sy-
stemnahe Programme. Dieser Ansatz wird am Beispiel von Eigenschaften eines User-
Mode-Betriebssystems erläutert.

vii

Ausführliche Zusammenfassung

Werden Computer in sicherheitskritischen Bereichen eingesetzt, spielt Robustheit – und
insbesondere die Vermeidung menschlicher Irrtümer – eine entscheidende Rolle. Verifika-
tion ist die sicherste Technik zum Ausschluss systematischer Fehler beim Systementwurf.
Dazu wird das korrekte Verhalten des untersuchten Systems durch ein mathematisches
Modell spezifiziert und ein Beweis dafür entwickelt, dass der Systementwurf dieser Spe-
zifikation genügt. Von formaler Verifikation sprechen wir, wenn der Beweis durch einen
Computer überprüft wird.

In der Regel werden Computersysteme in mehreren Ebenen realisiert: Schon die Hard-
ware ist auf den verschiedenen Abstraktionsebenen modelliert; das Betriebssystem stützt
sich auf die abstrakteste Hardware-Schicht, und dieses bietet wiederum eine Abstrakti-
on an, auf deren Basis schließlich die Benutzerprogramme implementiert werden. Will
man alle systematischen Fehler im kompletten Systementwurf sicher ausschließen, muss
man alle Ebenen in die Verifikation mit einbeziehen. Die Verifikation eines Systems über
mehrere Abstraktionsebenen hinweg nennen wir durchgängig.

Obwohl Programmverifikation seit Jahrzehnten bekannt ist und vielfach eingesetzt
wird, bleibt die durchgängige formale Verifikation eines vollständigen Computersystems
– angefangen vom Hardware-Design bis hinauf zu den Benutzerprogrammen – nach wie
vor eine große Herausforderung [Moo02]. Ein ganz wesentlicher Aspekt dieser Heraus-
forderung besteht darin, dass reale Programme vielfältig miteinander kommunizieren.
Selbst einfachste Beispiele wie ein “Hallo Welt”-Programm erzeugt Ausgabedaten; in
der Regel wird das Betriebssystem angewiesen, diese Daten an ein Ausgabegerät zu
übertragen.

Betriebssystemkerne stellen Benutzerprogrammen eine Prozessorabstraktion mit ex-
klusivem Zugang zu Ressourcen wie Registern und Speicher zur Verfügung. Diese Ab-
straktion wird üblicherweise Prozess genannt [Kno74]. Ein wichtiges Merkmal von Pro-
zessen ist ein Mittel zur Kommunikation mit dem Kern zur Anfrage weiterer Dienste.
Da die meisten Programme kompiliert werden, um schließlich als Prozess unter einem
Betriebssystemkern zu laufen, verallgemeinern wir den üblichen Prozessbegriff etwas auf
eine Programmsemantik mit Primitiven zur Kommunikation mit einem Kern.

Zur Verifikation kommunizierender Programme wurden verschiedene Techniken vorge-
schlagen. Allen gemeinsam ist jedoch, dass sie auf mehreren (meist impliziten) Annahmen
über das zugrunde liegende System beruhen. Häufig schließen diese Annahmen Compi-
ler-Korrektheit, Scheduler-Fairness und eine gewisse Störfreiheit des lokalen Programm-
verhaltens vom Verhalten seiner Umgebung ein. Die vorliegende Dissertation beschäftigt
sich mit der Entlastung dieser Annahmen für die Prozesse des Mikrokerns Vamos. Ge-
nauer gesagt, rechtfertigt diese Arbeit formal die Abstraktion von einem Kernmodell
mit explizitem, deterministischem Scheduling zu einem nebenläufigen Prozesssystem mit
nicht-deterministischem, aber temporal fairem Scheduling.

Im Rahmen der vorliegenden Arbeit wurde der Vamos-Kern verbessert, indem sowohl
Beschränkungen der maximalen Laufzeit des Kerns aufgehoben wurden, als auch die
Fairness des Scheduling-Algorithmus hergestellt wurde.

ix

Darüber hinaus wurde ein Compiler-Satz für sequentielle Sprachen auf die Semantik
von Prozessen erweitert. Dieses Ergebnis basiert auf dem von Leinenbach & Petrova
[LP08] formal verifizierten Compiler. Dieser Compiler übersetzt aus dem C-Dialekt C0
in Assembler. Darauf aufbauend wurden (a) die Kommunikationsprimitive des Vamos-
Kerns formalisiert, (b) C0- und Assembler-Prozesse spezifiziert, indem die sequentiellen
Sprachen um die Kommunikationsprimitive erweitert wurden und (c) ein Simulations-
theorem entwickelt, das die Prozessmodelle verbindet und den ursprünglichen, sequen-
tiellen Compiler-Satz erweitert.

Die Prozessmodelle werden in zwei Kernmodellen verwendet: ein deterministisches
Modell, welches das genaue Verhalten von Vamos einschließlich seines Schedulers spezi-
fiziert, und ein nicht-deterministisches, nebenläufiges Modell kommunizierender Prozes-
se, das vom Scheduler abstrahiert. Zur Entwicklung des ersteren haben wir wesentlich
beigetragen, das letztere haben wir allein entwickelt. In einem noch laufenden Verifikati-
onsversuch wird das deterministische Modell benutzt, um die korrekte Implementierung
von Vamos zu zeigen [DDW09, Sect. 6]. Teil der vorliegenden Arbeit war es dagegen, die
Simulation zwischen dem deterministischen und dem nebenläufigen System zu zeigen.

Schließlich wurde ein Begriff temporaler Fairness definiert. Basierend auf der Kern-
spezifikation wurde dann formal gezeigt, dass der Vamos-Scheduler dieser Definition
gerecht wird.

Zusammengefasst umfasst die Arbeit drei formale Hauptergebnisse: (a) einen Ansatz
zum Erweitern von Compiler-Korrektheit von rein sequentiellen Sprachen auf Prozesse,
(b) einen Simulationssatz zwischen einem Vamos-Modell mit explizitem Scheduler und
einem nebenläufigen Kernmodell und (c) einen formalen Beweis für das temporal faire
Scheduling von Prozessen in Vamos. Gemeinsam bilden diese Ergebnisse die Grundlage
eines Verifikationsansatzes für nebenläufige, systemnahe Programme. Dieser Ansatz wird
am Beispiel von Eigenschaften eines User-Mode-Betriebssystems erläutert.

x

Contents

1 Introduction 1
1.1 Notation . 3
1.2 Basic Concepts . 5

1.2.1 Kleene Algebras and the Kleene Star 5
1.2.2 Future-Time Linear Temporal Logic 6

1.3 Related Work . 7
1.3.1 Verification Methods for Concurrent Programs 8
1.3.2 Verification Frameworks for Concurrent Programs 9
1.3.3 Kernel Verification . 10
1.3.4 Operating-System Verification . 11

2 Fundamentals 13
2.1 Implementing the Academic System: The Software Stack 14
2.2 Verifying Sequential Imperative Programs in Verisoft 15
2.3 The Language C0 . 16
2.4 The VAMP Assembly Language . 18
2.5 On a Correct Compiler . 20
2.6 Isabelle/Simpl – a Verification Environment for C0 25
2.7 Extending the Language Stack: a Roadmap to Concurrency 25

3 The VAMOS Microkernel: Design and Implementation 27
3.1 Requirements on a Correct Microkernel’s Design 28
3.2 Functionality . 28

3.2.1 Inter-Process Communication . 30
3.2.2 Process Scheduling . 31

3.3 Overflow-Safe Implementation of the Timeout Management 31
3.4 Conclusion . 34

4 Process Abstraction 35
4.1 Motivation . 36
4.2 Process Models . 37
4.3 The Assembly-Process Model . 43
4.4 The C0-Process Model . 47
4.5 Extended Compiler Correctness . 55
4.6 Conclusion . 62

xi

5 Adding Concurrency: The Kernel Models 63
5.1 Overview of the Model Components . 64
5.2 A Simple Kernel Call: set privileged Revisited 67
5.3 Process Termination . 68
5.4 Inter-Process Communication . 71

5.4.1 IPC Rights Management . 71
5.4.2 Specifying IPC in the VAMOS Model 72
5.4.3 IPC in CoUP . 76

5.5 The Scheduler Specification . 78
5.6 Invariants over Execution Traces . 81
5.7 Conclusion . 85

6 Simulation: Formally Relating the Kernel Models 87
6.1 Kernel-Model Simulation . 87
6.2 Abstracting Concurrent Assembly Processes to C0 Processes 90

6.2.1 On the Commutability of Transitions: From Trace Theory to Kleene Al-
gebra . 91

6.2.2 Process Simulation Meets True Concurrency 92
6.2.3 Commuting Transitions in CoUP 93

6.3 Conclusion . 95

7 A Temporal Property: Scheduler Fairness 97
7.1 An Introductory Scheduling Example . 97
7.2 Common Notions of Fairness . 98
7.3 Developing and Proving Prioritized Fairness 99
7.4 Rephrasing the Temporal Property in LTL 103
7.5 Conclusion . 104

8 Towards Verifying a User-Mode Operating System 107
8.1 Non-Termination . 108
8.2 Fair Scheduling of Applications . 110

8.2.1 Priorities in the SOS . 110
8.2.2 Applying Scheduler Fairness to Applications 110

8.3 Conclusion . 112

9 Conclusion and Future Work 115
9.1 Formal Results . 115
9.2 Measuring the Formal Verification Effort 117
9.3 Outlook . 118

xii

1 Introduction

What is truth?

Pilate, according to John, 18:38

Contents

1.1 Notation . 3
1.2 Basic Concepts . 5

1.2.1 Kleene Algebras and the Kleene Star . 5
1.2.2 Future-Time Linear Temporal Logic . 6

1.3 Related Work . 7
1.3.1 Verification Methods for Concurrent Programs 8
1.3.2 Verification Frameworks for Concurrent Programs 9
1.3.3 Kernel Verification . 10
1.3.4 Operating-System Verification . 11

If computers are used in a highly secure or even safety-critical context, robustness –
and in particular the avoidance of human errors – plays an essential role. Verification is
the most rigorous technique for the exclusion of systematic design errors. This approach
specifies the correct behavior of the examined system by a mathematical model and
develops a proof that the system design meets this specification. We speak of formal
verification if the proof is checked by a computer.

Usually, computer systems are implemented in several layers: Even the hardware is
modeled at different levels of abstraction, the operating system is based on the hardware
layer, and on top of that, the user programs are implemented. In order to safely exclude
all systematic errors in the design of the complete system, all layers must be regarded.
If a verification attempt spans over multiple layers of a system, we call it pervasive.

While program verification has been known and used over decades, the pervasive,
formal verification of a complete computer system from the hardware design up to ap-
plication programs still remains a grand challenge [Moo02]. In essence, the challenge
stems from the interaction of various programs in a real system – even a simplistic
“Hello World”-program produces output data, usually instructing the operating system
to transfer the data to the output peripheral.

Operating-system kernels provide a processor abstraction to user programs with the
exclusive access to resources like registers and memory. This abstraction is commonly
referred to as a process [Kno74]. An important feature of processes is a means to com-
municate with the kernel to request further services. As most programs are eventually

1

1 Introduction

compiled to run as a process under a kernel, we slightly generalize the common process
notion to a program semantics with primitives for the communication with a kernel.

Different techniques have been proposed for the verification of communicating pro-
grams. Common to all, however, is that they rely on several (usually implicit) as-
sumptions about the underlying system. Typically, such assumptions include compiler
correctness, fairness, and a certain non-interference between the local program behavior
and its environment. This thesis aims at discharging these assumptions for the processes
of the microkernel Vamos. More specifically, this work formally justifies the abstrac-
tion from a kernel model with explicit, deterministic scheduling to a concurrent process
system with non-deterministic but temporally fair scheduling.

In the course of our work, we have improved the Vamos kernel by overcoming limita-
tions of the maximal runtime, on the one hand, and by enabling fair scheduling, on the
other hand.

Furthermore, we have extended a compiler theorem for sequential languages to pro-
cesses. In particular, our work is based on Leinenbach & Petrova’s [LP08] formally ver-
ified compiler. Their compiler translates from the C dialect C0 into assembly language.
We have (a) formalized the communication primitives of the Vamos kernel, (b) specified
C0 and assembly processes by enriching the sequential languages with communication
primitives, and (c) formally stated a simulation theorem relating the process models,
which extends the original compiler-correctness theorem that relates the sequential se-
mantics.

The process models are used in two kernel models: a deterministic model specifying
the exact Vamos behavior, and a non-deterministic, concurrent model of communicating
processes, which abstracts from the scheduler. We have contributed to the former and
have developed the latter. While an ongoing verification attempt uses the deterministic
specification to show that Vamos is correctly implemented [DDW09, Sect. 6], we have
shown that the concurrent model indeed simulates the kernel specification.

Finally, we have defined a temporal fairness notion. Based on the kernel specification,
we have formally shown that the Vamos scheduler is fair according to this definition.

Summarizing, this thesis presents three main results: (a) an approach to extend com-
piler correctness from purely sequential languages to processes, (b) a simulation theorem
from a Vamos model with explicit scheduling to a concurrent kernel model, and (c) a
formal proof for the fair scheduling of processes in Vamos. These results form the foun-
dation of a verification approach for system-level concurrent programs. We sketch this
approach on example properties of a user-mode operating system.

Outline. The remainder of this chapter introduces notation, recapitulates general math-
ematical and logical concepts, and presents related work. The next chapter, in contrast,
describes specific background information about the context and prerequisites of this
thesis. It concludes with a detailed overview of the actual thesis work.

The main part of this thesis starts in Chapter 3, which provides an insight into the de-
sign principles of the Vamos kernel and exemplifies an implementation challenge. Chap-
ter 4 details the kernel communication primitives and the semantics of assembly and C0

2

1.1 Notation

processes. Furthermore, compiler correctness is extended to processes with communica-
tion primitives. Chapter 5 then introduces two kernel models describing the interleaved
execution of processes in the kernel. Chapter 6 sketches the proof of independence of
process transitions in an interleaved execution between adjacent communication points
as well as the embedding of C0 processes into a concurrent kernel model. Chapter 7
reports on the verification that the scheduler of our microkernel is indeed fair. Finally,
Chapter 8 exemplifies how the provided models can be used for the verification of a
user-mode operating system. We conclude in Chapter 9 and present future work.

1.1 Notation1

The formalizations presented in this thesis are mechanized and checked within the generic
interactive theorem prover Isabelle [Pau94]. Isabelle is called generic as it provides a
framework to formalize various object logics that are declared via natural-deduction-
style inference rules within Isabelle’s meta-logic Pure. The object logic that we employ
for our formalization is the higher-order logic of Isabelle/HOL [NPW02], which is based
on the typed λ-calculus.

This article is written using Isabelle’s document-generation facilities, which guarantees
that the presented theorems correspond to formally proven ones. We distinguish formal
entities typographically from other text. We use a sans-serif font for types and constants
(including functions and predicates), e. g., replicate, a slanted serif font for free variables,
e. g., x, and a slanted sans-serif font for bound variables, e. g., x . Small capitals are used
for data-type constructors, e. g., Foo. Keywords are set in type-writer font, e. g., let.

As Isabelle’s inference kernel manipulates rules and theorems at the Pure level, the
meta-logic becomes visible to the user and also in this document when we present the-
orems and lemmas. The Pure logic itself is intuitionistic higher-order logic, where uni-
versal quantification is

∧
, implication is =⇒, and equality is ≡. Nested implications like

P1 =⇒ P2 =⇒ P3 =⇒ C are abbreviated with [[P1; P2; P3]] =⇒ C , where we refer to
P1, P2, and P3 as the premises and to C as the conclusion. We may also write:

P1 P2 P3

C

In the object logic HOL, universal quantification is ∀, implication is −→, and equality
is =. We sometimes use the abbreviation P ←→ Q for (P −→ Q) ∧ (Q −→ P). The
other logical and mathematical notions follow the standard notational conventions with
a bias towards functional programming. Isabelle/HOL provides a library of standard
types like Booleans, natural numbers, integers, total functions, pairs, lists, and sets as
well as packages to define new data types and records. We only present them shortly in
the following.

1For taming Isabelle’s powerful document-generation mechanism in general, and in particular for the
major part of this section, I am indebted to Schirmer et al. [Sch06, AHL+09]

3

1 Introduction

Functions. In Isabelle/HOL, all functions are total. An unnamed function can be
specified using the λ-operator, e. g., λx . x is the identity function. In general, we prefer
curried functions over functions taking an n-tuple as argument, e. g., f (a)(b) instead
of f (a, b). As the parentheses for function application soon become distracting, we
omit them and write f a b, instead. Note that function application binds tighter than
any other operator, i. e., f i + g j means (f i) + (g j). We write f ◦ g for functional
composition and recursively define the n-fold function application by f 0 = (λx . x) and
f n + 1 = f ◦ f n. Function update is f (y := v) ≡ λx . if x = y then v else f x .

Partial functions are usually formalized in HOL with the option type. This type is a
data type with two constructors, one to inject values of the base type, e. g., bxc, and the
other one is simply the additional element ⊥. With dye, the original base value x can
be obtained such that y = bxc. Note that there is no base value x iff y = ⊥. As HOL
is a total logic, the term d⊥e is nevertheless a well-defined yet unspecified value. For an
update of a partial function, we write f (y 7→ v).

For data types, we write the structural case distinction over some value v as case v
of ⊥ ⇒ g | bxc ⇒ f x . Some data types might have many constructors, which are all
treated in the same fashion in a certain situation. In this situation, we may write case
v of Foo ⇒ x | ⇒ y , which means value x if v has the value Foo, and otherwise
value y .

Sets, Intervals, and Relations. Sets come along with the standard operations for union,
i. e., A ∪ B, intersection, i. e., A ∩ B and membership, i. e., x ∈ A. We denote the
interval of the numbers a and b excluding the endpoints by {a<..<b}, and including the
endpoints by {a..b}. Furthermore, we write a < c ≤ b to denote that a number c is in
the interval {a<..b}. Relational composition is written as R1 ◦ R2.

Lists. The syntax and the operations for lists are similar to functional programming
languages like ML or Haskell. The empty list is [] and by x � xs the list xs is preceded
with the element x. We write [a, b, c] instead of a � b � c � []. With xs } ys, list ys
is appended to list xs. The function concat takes a list of lists as argument and returns
the concatenation of these lists. The length of a list xs is written |xs|, the n-th element
of a list can be selected with xs ! n and updated via xs[n := v]. With set xs we obtain
the set of elements in list xs. Filtering those elements from a list, for which predicate P
holds, is achieved by [x∈xs . P x]. With replicate n e we denote a list that consists of n
elements e.

Records. A record is constructed by assigning all of its fields: (|fld1 = v1, fld2 = v2|).
Field fld1 of record r is selected by r.fld1 and updated with value x via r(|fld1 := x|).

4

1.2 Basic Concepts

1.2 Basic Concepts

1.2.1 Kleene Algebras and the Kleene Star

In automata theory as well as in the theory of formal languages, Kleene algebras are an
important class of algebraic structures. Various inequivalent definitions can be found in
the literature; we adopt the one by Kozen [Koz90].

Definition 1.1 (Semiring). An algebraic structure (U, +, ·) with the universe U and
the binary operators + (addition) and · (multiplication) is a semiring if it satisfies the
following constraints:

1. (U, +) is a commutative monoid with identity element 0, i. e.,
a) (a + b) + c = a + (b + c)
b) 0 + a = a
c) a + b = b + a

2. (U, ·) is a monoid with identity element 1, i. e.,
a) (a · b) · c = a · (b · c)
b) 1 · a = a
c) a · 1 = a

3. Multiplication distributes over addition:
a) (a + b) · c = a · c + b · c
b) a · (b + c) = a · b + a · c

4. 0 annihilates U with respect to multiplication:
a) 0 · a = 0
b) a · 0 = 0

Definition 1.2 (Idempotent Semiring). We call a semiring (U, +, ·) idempotent if its
addition is idempotent, i. e., a + a = a.

Definition 1.3 (Kleene Algebra). An idempotent semiring (U, +, ·) is called a Kleene
algebra iff

1. the universe U is partially ordered such that a ≤ b ≡ a + b = b, and
2. a unary operation ? is defined satisfying the following axioms:

a) 1 + a · a? ≤ a?

b) 1 + a? · a ≤ a?

c) a · x ≤ x =⇒ a? · x ≤ x
d) x · a ≤ x =⇒ x · a? ≤ x

The operation ? is also called Kleene star. Often, it is defined as the sum over all powers
of the operand, i. e., a? ≡

∑
n≥0 an where a0 ≡ 1 and an+1 ≡ a · an. Depending on the

application field, the Kleene star has different interpretations: In programming-language
theory, it might be used as “iteration” (where multiplication means “sequencing”). In
the context of concurrency, in contrast, the star often symbolizes a varying number of
concurrent treads of control (with multiplication meaning “concurrency”).

5

1 Introduction

1.2.2 Future-Time Linear Temporal Logic

Linear temporal logic (LTL) [Lam80b, EH86] is a modal logic [Pri57], which features
modalities of time like in the statements “property P has been true” and “P will be true”.
In this document, however, we are only interested in the future modality. Furthermore,
we are only concerned with the LTL language but do not define any proof rules. Below,
we introduce the syntax, specify its semantics, and shortly reflect on practical aspects.

Syntax. We define the syntax of LTL recursively. An LTL formula is one of:

1. a propositional variable P,
2. a negated LTL formula ¬f,
3. a conjunct of two LTL formulae f ∧ y,
4. the unary next operation applied to an LTL formula Nf, or
5. the binary until operation of two LTL formulae f U y.

Semantics. Temporal logics are traditionally interpreted in terms of Kripke structures,
a type of non-deterministic finite-state machine proposed by Saul Kripke [Kri63] in 1963.
A Kripke structure is a triple (S, D, L) with a set S of states, a binary relation D ∈ S
× S, and a set L of propositions over S. Temporal logics formulate properties on state
sequences of such finite-state machines.

In Isabelle/HOL, we define the LTL semantics over sets of infinite state sequences, or
traces, and represent a trace as a function t from natural numbers to states. In particular,
the validity of a formula at time j of a trace t is defined by structural induction:

(t,j) |= P ≡ P (t j)
(t,j) |=¬f ≡ ¬ ((t,j) |=f)
(t,j) |=f ∧ y ≡ ((t,j) |=f) ∧ ((t,j) |=y)
(t,j) |=Nf ≡ (t,j + 1) |=f
(t,j) |=f U y ≡ ∃k≥j. ((t,k) |=y) ∧ (∀i∈{j..<k}. (t,i) |=f)

with propositions P over states and LTL formulae f and y. Furthermore, we define the
validity of formula f for a set K of traces (usually specified by a Kripke structure) as
follows:

K |=f ≡ ∀t∈K . (t,0) |=f

Ultimately, we specify the term 〈S0, Sv, d〉A describing an action Kripke structure with
input. This structure specifies the set of all traces that can be produced by the set of
initial states S0, the input alphabet Sv, and the transition function d. Each trace in this
set is a function from natural numbers to triples (i, s, n), where i is the input for the
transition, s is the current state, and n is the next state. Formally, we define:

〈S0, Sv, d〉A ≡
{t. (∃i s n. t 0 = (i , s, n) ∧ s ∈ S0) ∧

(∀j . ∃i s n.
t j = (i , s, n) ∧
i ∈ Sv ∧ d i s = n ∧ (∃i ′ s ′ n ′. t (j + 1) = (i ′, s ′, n ′) ∧ s ′ = n))}

6

1.3 Related Work

Abbreviations. For succinctness, we define the usual logical abbreviations truth >L,
falsehood ⊥L, disjunct f ∨ y, implication f −→ y, as well as the following specifically
temporal-logical abbreviations:

• the unary eventually operation: ♦f ≡ >L U f,
• the unary always operation: �f ≡ ¬♦¬f,
• the binary release operation: f R y ≡ ¬(¬f U ¬y), and
• the binary weak until operation: f W y ≡ f U y ∨ �f.

The first two operations can be perceived as existential and universal quantifier over
traces. Release and weak until are both variations of the until operation.

Common to all formal logics is that they precisely define certain terms of everyday
language. In temporal logic, this is particularly true for the temporal conjunction until:
In everyday language, it is unclear whether the terminating event must occur. A state-
ment f U y, however, is definitely false if y never becomes true. Some authors therefore
call this operator the strong until. For the weaker statement that the formula f remains
valid as long as the formula y is not satisfied, we denote: f W y (weak until). A similar
statement is expressed by the release operator, where, in contrast to weak until, both
substatements must simultaneously hold in the terminating state, i. e.,

(K |=f R y) ←→ (K |=y W y ∧ f)

which easily follows from the definitions of the involved operations.

Terminology. Certainly, the operations might be combined, e. g., �♦f. In the context
of temporal logics, it is custom to state that property f holds always eventually. In
natural language, such a statement might confuse. Note that temporal logics implicitly
refers to a trace, such that always can be understood as on any suffix of a trace. You
may equally refer to �♦f as infinitely often f.

Application Domain. LTL is usually employed to show certain kinds of properties:

Safety properties claim that a certain property holds for all states in a trace: �P
Liveness properties claim that some property is eventually satisfied: ♦P
Fairness properties claim that a property holds infinitely often in a trace: �♦P
Persistence properties claim that a property is established once and for all: ♦�P.

Certainly, hybrid forms are possible like a fairness property relying on some per-
sistence: ♦�P −→ �♦Q. We may view partial correctness of a program as a safety
property: Given that a terminating state is reached, the computational result should
have some form or value: �(λs. terminated s −→ corr res s). Program termination, in
contrast, is a liveness property: ♦terminated.

1.3 Related Work

The work in this thesis is mainly related to two research areas: the verification of
concurrent programs and the pervasive verification of operating systems. Both research

7

1 Introduction

areas can further be subdivided. In the former, we distinguish abstract verification
methods and formal verification frameworks implementing such methods. In the latter,
we regard the verified layer: Most operating systems cope with the vast complexity
of their task by separating their core functionality, which runs in the privileged system
mode of the processor, from additional services, which run in the unprivileged user mode.
Consequently, we divide verification efforts into those targeting the core or kernel and
those aiming for correct user-mode components. Note that this thesis draws upon a
verified operating-system kernel and provides the necessary basis to pervasively verify
the user-mode parts of an operating system. We summarize important advances in all
four research areas.

1.3.1 Verification Methods for Concurrent Programs

Numerous methods have been proposed for reasoning about concurrent programs. Most
notably, the methods vary in the means of communication between different threads of
execution. In practice, we distinguish communication via synchronous message passing
and shared memory with atomic operations. Note, however, that in principle, both
concepts are equivalent, i. e., a message passing system can be transformed into one
with shared memory and vice versa [LS84].

Logics for message-passing systems are Hoare’s Communicating Sequential Processes
[Hoa85] and Milner’s Calculus of Communicating Systems [Mil82]. These logics are
based on the fact that the observable behavior of a communicating thread of execution is
solely determined by the messages it sends and receives. Thus, they describe a thread by
its communication pattern and without an internal state. Certainly, the internal state
is theoretically irrelevant unless reflected by the communication pattern. Practically,
however, programs have state and justifying the transformation of a program into its
stateless communication pattern is a most complex task. Hence, we rather prefer a
process description with an internal state.

There are several verification methods for reasoning about concurrent programs with
shared memory and atomic operations. Owicki & Gries [OG76] have proposed a method,
where the program is annotated with assumptions on the shared variables between each
atomic operation. These assumptions are required to remain stable on every operation
of the other threads. This dependency on the other threads, however, makes the Owicki-
Gries method effectively non-modular because the inference step, i. e., the combination
of proof results for two threads, becomes extremely laborious.

Ashcroft [Ash75] has suggested to formulate a huge, single state invariant to verify
concurrent programs. This method disposes of the inference step, making verification
completely thread-modular. Jones [Jon83], in contrast, has recommended to abstract
the intermediate assumptions of the Owicki-Gries method into global rely-guarantee
conditions, which substantially simplifies the inference step and hence supports thread-
modular reasoning to some extent, as well. Our process model specifies sequences of
atomic transitions and features a quite general global invariant, which constrains the
process inputs and outputs (see the process-validity constraints in Section 4.2 as well as
the validity of process inputs in Section 4.5).

8

1.3 Related Work

Note that though thread-modular, the methods of Ashcroft and Jones are not data-
modular. Recently, Vafeiadis & Parkinson [VP07] have proposed a “marriage” of the
rely-guarantee method with separation logic. Originally, Reynolds & O’Hearn [Rey02,
O’H04] have developed separation logic to improve data modularity when reasoning
about sequential programs with pointers. The key concept are separable assumptions
about disjoint chunks of the heap memory, which can be combined with a separating-
conjunction operator according to a so-called frame rule. The combination of rely-
guarantee and separation logic yields a thread- and data-modular verification method.

Though all these verification methods differ in the basic means of communication from
our process model, they share the notion of an internal state with our approach. It might
be worthwhile to reuse these models with an adapted communication mechanism when
reasoning about complex protocols between processes.

1.3.2 Verification Frameworks for Concurrent Programs

Langenstein et al. [LNRS07a, LNRS07b] report on a verification framework for reac-
tive systems, which is based on an interaction-centered rely-guarantee reasoning and
refinement. The basic building block of their method is the concept of communicat-
ing transition systems, whose behavior is specified by finite interaction sequences. An
interaction sequence is called history, and collects assumptions on the inputs from the
environment, on the one hand, as well as guarantees on the output of a transition system,
on the other hand. In order to distinguish assumptions from guarantees in the history,
the transition system as well as each interaction event in the history bear an identifier. If
both coincide, the event is a guarantee, otherwise an assumption. The verification frame-
work supports the extension of a history along with an inductive reasoning—similar to
our LTL-based approach (see Chapter 8). A transition system can be refined by de-
composition into communicating subsystems. These subsystems then share the same
history specification—each subsystem, however, regards different events in the history
as its guarantees. The verification of these subsystems supports the same kind of modu-
larity as our approach. Langenstein’s verification framework, however, does not support
propositions about states, which is an elementary prerequisite for the integration with
a classic Hoare logic for program verification. Furthermore, the verification method re-
lies on “a kind of simulation theorem . . . established by looking at the C0 execution
mechanism” [LNRS07a, Section 2.2]. Our approach, in contrast, fits into the existing
verification infrastructure for sequential reasoning and facilitates the formal verification
of a simulation theorem as opposed to Langenstein’s educated guess.

A currently active research field is the use of separation logic for concurrent programs.
Hobor et al. [HAN08] have formalized such a system in the theorem prover Coq. They
have extended a sequential operational semantics for a C dialect with shared memory,
spawnable threads and locks. Their approach allows for a so-called modular reasoning,
i. e., arguments about sequential control and data-flow can be separated from arguments
about concurrency. Their research, however, focusses around the specific problems of
optimizing compilation of concurrent programs with shared memory. When they claim
that properties proven in their concurrent separation logic are true for the program that

9

1 Introduction

actually executes on the machine, they most likely assume a correct operating system.2

Prensa Nieto [Pre02] has formalized the Owicki/Gries method for correctness proofs
of concurrent imperative programs with shared variables in the theorem prover Isabelle/
HOL. Syntax, semantics and proof rules are defined in higher-order logic. Furthermore,
the correctness of the proof rules is proven with respect to the semantics. Though this
proof method currently lacks the support for procedures, the general approach can be
applied to the Hoare logic of Schirmer [Sch05], which we use for the verification of C0
programs. Thus, Prensa Nieto’s approach provides a promising technique to construct
a concurrent Hoare logic, whose verification results can be formally transferred down to
our low-level kernel model with the help of our foundational work.

1.3.3 Kernel Verification

We are indebted to Klein for a comprehensive article [Kle09] on past and present
approaches to the verification of operating-system kernels. Summarizing, Klein only
presents a single, fully verified kernel: KIT, a small assembly program, that provides
task isolation, device I/O, and single-word message passing. This verification project
can only be referred to as groundbreaking in the area of pervasive verification. KIT is
very far from any real system and the verification is based on a fairly abstract LISP
execution model. Moreover, the corner-stone theorem of this work is limited to memory
separation of processes.

Several past verification projects concentrated on the specification but fell short on
the actual verification, e. g., UCLA Secure Unix [WKP80] or VFiasco/Robin [Tew07].
Other projects, like Embedded Device [HALM06], were successful in the verification but
did not reach down to the code level. Furthermore, the Flint project [FSDG08] verified
the correctness of certain low-level assembly fragments but did not yet reach full code
coverage.

Since the publication of Klein’s article, two verification projects announced their suc-
cess: First, functional correctness has been shown [DSS09] for the tiny real-time oper-
ating system olos, which fully runs in system mode. The correctness theorem extends
over unbounded execution traces, and the verification comprises boot-up and assembly
code. Second, the L4.verified project [HEK+07, KEH+09] completed the world’s first
refinement proof for a general-purpose microkernel. Their verification target, seL4, is
a third-generation microkernel of L4 provenance comparable to other high-performance
L4 kernels. It comprises 8,700 lines of C and 600 lines of assembly code. Note that
neither boot-up nor any assembly code have been verified; furthermore, the proof relies
on a certain standard behavior of memory.3

Among ongoing verification projects is Verisoft [Pau08, HP07] and its successor,
Verisoft XT.4 The former has not only proven functional correctness of olos but applies
the same techniques to the larger Vamos microkernel [DDW09, Sect. 6]. Though the

2Certainly, it is possible to build a distributed system, where each thread exclusively runs on its own
processor. If, however, several threads share a processor, a thread switch is required.

3For proof assumptions, see also http://ertos.nicta.com.au/research/l4.verified/proof.pml.
4More information about this project is available at http://verisoftxt.de/.

10

http://ertos.nicta.com.au/research/l4.verified/proof.pml
http://verisoftxt.de/

1.3 Related Work

verification is not yet completed, it has reached a mature state. Note that the thesis at
hand hinges on the correctness of Vamos.

The latter project aims, amongst others, at the verification of the PikeOS kernel
[Kai07, BBBB09] and the virtualization environment Hyper-V [Sam08, LS09]. Both
verification targets are part of commercial products. PikeOS is available for Intel’s
x86, PowerPC, and ARM, and has an L4-like kernel with about 6,000 lines of code.
The Hyper-V, in contrast, comprises over 50,000 lines of kernel code and is based
on Intel’s x86. The proofs in Verisoft XT are carried out by the VCC verification
environment [CMST09, CDH+09, DMS+09], which uses a trusted tool chain comprising
the C translator VCC, the verification condition generator Boogie, and the automated
theorem prover Z3.

1.3.4 Operating-System Verification

Bogan [Bog08] provides a comprehensive overview of advances in operating-system ver-
ification. Thus, we just highlight a few results. Verification has a long tradition for
improving the confidence in very complex operation-systems functionality but seldom
attempts full code coverage. A fruitful target for verification have been, for instance, file
systems [AZKR04] and network protocols [Smi96]. Furthermore, the level of abstrac-
tion and the verified property vary widely. Bevier et al. [BCT95], for instance, have
specified the interface of the Synergy file system on a very abstract level while Yang et
al. [YTEM06] used model checking to systematically check implementations for specific
file-system errors.

Reliable software is particularly important for security-sensitive applications. Secure
system architectures are specifically developed for such applications. These architectures
are usually based on a microkernel that facilitates the separation of legacy operating-
system functionality from security-sensitive services, thus limiting the trusted comput-
ing base for security-sensitive applications while providing the same functionality as
traditional operating systems. This approach has been taken by the Perseus security
framework [PRS+01] as well as the Nizza secure-system architecture [HHF+05].

In spite of the high relevance of reliance, formal verification for these architectures
has to our knowledge yet been limited to the used operating-system kernel. Both ar-
chitectures are based on the Fiasco kernel, whose verification has been attempted in
VFiasco/Robin (see above). Beyond that, the Perseus project aims at an evaluation
“according to the Common Criteria at a later date”.5 The Perseus framework is the
basis for the Turaya security platform [LP06]. In the scope of the Verisoft XT project,
some security-critical functionality of this platform has been verified but unfortunately,
the results have not yet been published.

5The announcement has been found on the project’s homepage, http://www.perseus-os.org/

content/pages/Evaluation.htm.

11

http://www.perseus-os.org/content/pages/Evaluation.htm
http://www.perseus-os.org/content/pages/Evaluation.htm

2 Fundamentals

Jedem Anfang wohnt ein Zauber inne.

Hermann Hesse in: “Stufen”

Contents

2.1 Implementing the Academic System: The Software Stack 14
2.2 Verifying Sequential Imperative Programs in Verisoft 15
2.3 The Language C0 . 16
2.4 The VAMP Assembly Language . 18
2.5 On a Correct Compiler . 20
2.6 Isabelle/Simpl – a Verification Environment for C0 25
2.7 Extending the Language Stack: a Roadmap to Concurrency 25

Our work belongs to the Verisoft project, a large-scale research project with partners
from industry and academia, funded by the German government. The project adheres
to the very idea of pervasive formal verification [BHMY89] of computer systems: Each
abstraction layer is justified by simulation theorems that permit transferring the results
to the low-level models. All theory development is mechanized in the uniform logical
framework of the interactive theorem prover Isabelle/HOL, and hence, it is rigorously
checked that all verification results fit together.

The general focus of the Verisoft project is threefold: First, methods and tools should
be created that permit the pervasive formal verification of computer-system designs.
Second, the project pursues an increase of industrial productivity and quality. Third,
Verisoft aims at a prototypical implementation and verification of four specific computer
systems, three of which are from the industrial sector.

More specifically, this thesis belongs to the so-called Academic System (as opposed
to the industrial systems), which is a computer system for the secure management and
exchange of signed and encrypted e-mails. This computer system is designed as part of an
open network with a number of trusted computers. While the system is open to receive
e-mails from arbitrary computers in the network, each trusted computer uses identical
hardware and the same operating-system software. As application software, an e-mail
client [BHW06, BB04], an e-mail server [LNRS07a, LNRS07b], and a cryptography server
run on top of this operating system. These applications might be arbitrarily distributed
over the trusted computers in the network.

This chapter continues with a short introduction of the implementation layers in the
computer system. Furthermore, we summarize the general verification approach that has

13

2 Fundamentals

been developed for sequential programs within Verisoft. A key feature of this approach
is that it can cope with mixed-language implementations as they frequently occur in
system-level software. More specifically, these languages are C0 [Lei08] and VAMP
assembly [MP00]. We dedicate a subsection to each language. Afterwards, we sketch
the compiler-correctness theorem, and introduce the verification environment Isabelle/
Simpl. Finally, we present an overview of the actual task of the work at hand: the
extension of the existing verification technology to concurrently executed processes.

2.1 Implementing the Academic System: The Software Stack

CVM

kdispatch primitives

Vamos

Sy
st

em
m

od
e

App
OS

kernel calls

App

U
se

r
m

od
e

Figure 2.1: Software stack

Figure 2.1 depicts the software layers of the aca-
demic system. The lowest software layer is called
communicating virtual machines (CVM) [GHLP05,
IT08], a generic programming framework for the
implementation of operating-system kernels on the
VAMP processor [MP00]. This layer encapsulates
the hardware-specific low-level functionality, which
employs inlined assembly. Using this framework,
the microkernel Vamos [DDB08] is implemented
in C0 without extra portions of inlined assembly.
Both layers interact via C0 function calls: The
CVM framework calls the kdispatch function of
Vamos, and Vamos calls CVM primitives to ac-
cess low-level functionality. While these two layers
run in the privileged system mode of the processor,
processes run in the unprivileged user mode. In the figure, we labeled one process “OS”
for the operating system and the others “App” abbreviating application (e. g., e-mail
client or server). All processes communicate with Vamos via so-called kernel calls.

CVM’s major task is process separation and memory virtualization. Hence, CVM
includes a page-fault handler with a simple memory-swapping facility [ASS08]. All re-
maining kernel functionality is to be implemented in the hardware-independent part,
the so-called abstract kernel. Technically, the CVM framework consists of the interrupt-
service routine (ISR), on the one hand, and the primitives, on the other hand. The ISR is
stored at a specific memory address and the processor executes the code at this address
whenever an interrupt occurs. CVM’s ISR saves the old processor context, establishes
a suitable C0 environment and calls the C0 function kdispatch of the abstract kernel.
The CVM primitives are C0 functions employing inlined assembly code to provide low-
level functionality to the abstract kernel, e. g., for the manipulation of process memory
or registers. The return value of kdispatch instructs CVM, which process is to resume
when the kernel execution finishes.

The functionality of Vamos is accessible for processes via kernel calls. Technically,
a kernel call is implemented using the special instruction trap: The sole effect of this
instruction is an exception similar to, e. g., an arithmetic overflow. Exceptions are a

14

2.2 Verifying Sequential Imperative Programs in Verisoft

special class of interrupts that are generated as a direct result of the program execution
(as opposed to the so-called external or device interrupts that are caused by the periph-
erals). Thus, the exception causes – like any interrupt – a jump to CVM’s ISR, which
eventually invokes Vamos. Vamos can examine and alter the state of the process using
CVM primitives. That means, the calling process can store parameters to a kernel call in
registers and memory in order to describe its specific demand from Vamos. Vamos, in
turn, interprets the inquiry by examining the process state and in response, it alters the
process state accordingly. The application binary interface (ABI) precisely defines this
interaction between kernel and processes by assigning a kernel-call semantics to register
values and memory contents.

The OS process constitutes the highest layer of our operating system. This process
is initially started by Vamos, equipped with more permissions than applications, and
in charge to set up any additionally required devices and processes. Sebastian Bogan
[Bog08] has designed, implemented, and formally specified the Simple Operating System
(SOS) for this purpose. The SOS features an advanced rights management with different
users, implements a sophisticated access control to kernel services like process creation,
and provides further services like file-system and network access. Initially, the SOS sets
up virtual terminals with login processes that wait for keyboard input.

2.2 Verifying Sequential Imperative Programs in Verisoft

A typical computer system comprises a stack of hardware and software layers. Each layer
provides a different level of abstraction and potentially employs several implementation
languages. CVM, for example, provides the abstraction of separate processes with virtual
memory, and is implemented in a mixture of C0 and VAMP assembly. The reason for two
implementation languages is apparent: C0 is a C-like high-level programming language
and provides a comfortable abstraction layer for most programming tasks. Specific
low-level functionality, however, like the access to special-purpose registers, cannot be
expressed in C0. The resort for these tasks is the assembly language.

Verisoft takes this mixed-language architecture [AHL+09] into account by using a
two-dimensional verification approach: The first axis, called system stack, traces the
different implementation layers. The behavior of each implementation layer is specified
by a corresponding computational model. The second axis follows the language semantics
and, hence, we name it language stack.

Simpl

C0

asm

Transfer Theorems

Compiler Correctness

Figure 2.2: Language stack

While the full language stack reaches down to
the instruction-set architecture (ISA), we are only
concerned with the languages depicted in Figure
2.2. At the lower end, we find VAMP assembly
(denoted “asm” for short), above it C0, and at the
top, the language Simpl. The latter is a generic
programming model for sequential imperative pro-
gramming languages. This generic model provides
the basis for the versatile verification environment

15

2 Fundamentals

Isabelle/Simpl.
The major challenge of a pervasive verification effort is the integration of the various

verification results into a coherent theory. Thus, an important result of the Verisoft
project is a compiler-correctness theorem [LP08] that links C0 and the VAMP assembly
language. Furthermore, transfer theorems [Sch06] establish an embedding of C0 into
the generic programming model Simpl and facilitate the transfer of properties proven in
Simpl down to the C0 semantics.

In the following sections, we present the languages C0 and VAMP assembly in detail,
we sketch the compiler-correctness theorem, and introduce Isabelle/Simpl.

2.3 The Language C0

ANSI C [Ame99] has a complex and highly underspecified semantics. Low-level programs
such as device drivers, however, explicitly use properties of a particular compiler on a
target hardware, like register bindings or the internal representation of data types. They
can therefore not be verified based only on the vague ANSI C semantics. In Verisoft, we
constrained ourselves to the C-like imperative language C0 [Lei08], which has sufficient
features to implement low-level software but is interpreted by a more concrete semantics.
C0’s most important limitations compared to ANSI C are:

• expressions must be free of side effects and do not contain function calls,
• there are no implicit type conversions, especially not from arrays to pointers,
• pointers are strongly typed and must not point to functions or stack variables (i. e.,

there are neither void pointers nor pointer arithmetic), and
• low-level data types (like unions and bit fields) and control-flow statements (like

switch and goto) are not supported.

Syntax. C0 supports fundamental types, aggregate types and pointers. The first cat-
egory comprises Booleans, 8-bit-wide characters, as well as signed and unsigned 32-bit
integers. Aggregate types in C0 are arrays and structures. Pointers may point to all
types of data but not to functions.

Primitive expressions are variable names and literals. Other expressions can be com-
posed using operators: If e and i are expressions and n is a component name, the follow-
ing operations are expressions as well: array access e[i], access to structure components
e.n, dereferencing *e, and the “address-of” operation &e. Moreover, C0 supports the
usual unary and binary operations. Namely, unary operations are unary minus -, bit-
wise negation ~, logical negation !, and conversion operations between integral values.
Binary operations are arithmetic operations (+, -, *, /, %), bitwise operations (|, &, ^,
<<, >>), and comparisons (>, <, ==, !=, >=, <=) as well as the lazy binary operations
(Boolean conjunction && and disjunction ||). Left expressions are expressions that re-
fer to memory objects, namely variable, array and structure accesses as well as pointer
dereferencing.

16

2.3 The Language C0

Lit v literal values v
VarAcc vn access of variable vn
ArrAcc ea e indexing array ea with index e
StructAcc e cn selecting component cn of structure e
BinOp bop e1 e2 binary operation
LazyBinOp lbop e1 e2 lazy binary operation
UnOp uop e unary operation
AddrOf el address of left-expression el

Deref e dereferencing e

Table 2.1: C0 expressions e

The statements in C0 permit assignments, dynamic memory allocation, sequential
composition, conditional and repeated execution, inlined assembly, function calls, and
returns from functions.

In Isabelle/HOL, C0 expressions e and statements s are represented as data types.
Their constructors are listed in the Tables 2.1 and 2.2. Only a few of them are of special
interest in this thesis:
• Variable accesses VarAcc vn are used to read or write the value of variables vn.
• The dereferencing operator Deref e transforms the pointer expression e into a

left expression.
• Furthermore, the function-call statement SCall vn fn es sid calls a C0 function

named fn with the argument list es. The returned result is stored to a (global
or stack) variable called vn. The statement identifier sid is used in the compiler
correctness theorem.
• Finally, the empty statement Skip does nothing.

Small-Step Semantics. A C0 program is formally defined by a symbol table gst of
global variables, a type-name table tt, and a function table ft. A symbol table is a list
of pairs of variable names and the corresponding data types. The type-name table lists
pairs of type names and the corresponding data types. And finally, the function table

Skip the empty statement
Comp s1 s2 sequential composition
Ass el e sid assignment of expression e to left-expression el

PAlloc el tn sid allocation of an object of type name tn and assignment to el

SCall vn fn es sid call of function fn with arguments es and result variable vn
Return e sid return from a function
Ifte e s1 s2 sid if-then-else with condition e
Loop e s sid while loop with condition e and body s
Asm ls sid inlined assembly with instruction list ls

Table 2.2: C0 statements s

17

2 Fundamentals

lists pairs of function names and the corresponding functions definitions.
A function definition is represented by a record fd consisting of (a) a statement fd.body

that represents the function body, (b) a symbol table fd.params of the function’s param-
eters, (c) the function’s return type fd.rettype, and (d) a symbol table fd.stack vars of
the stack variables.

In contrast to the static program definition, the program state evolves during the
execution of a C0 program. A program state sC0 comprises:
• the statement sC0.prog of the program that remains to be executed, and
• the current state sC0.mem of the program variables and the heap objects.

The memory model of the C0 small-step semantics is quite complex. As C0 is perfectly
type-safe, the memory is typed. Moreover, the model separates the global variables, the
variables in the various stack frames, and the heap objects. Each of these memory parts
has its own symbol table. The symbol table of the global variables can be extracted
from a memory state with the function gm st.

For the work at hand, the memory internals are not relevant. We just use an eval-
uation function mem read for the look-up, and an update function mem write for the
manipulation of memory objects. The function mem read tt m e evaluates the expres-
sion e in the memory state m based on the type-name table tt. Similarly, the function
mem write tt m el v updates the object denoted by the left-expression el in memory m
by the new value v .

Note, however, that the expression evaluation and consequently the memory update
may fail, e. g., because of an uninitialized variable or a dereferenced null pointer. Thus,
the functions are partial. Furthermore, we want to update certain expressions at the
same time, i. e., all left expressions are evaluated before the memory is updated. The
corresponding update function is called mem writes tt m evs and parametrized over a
type-name table tt, a memory state m, and a list evs of pairs of an expression and the
corresponding new value.

The transition relation dC0 of this semantics is deterministic, i. e., a partial function.

2.4 The VAMP Assembly Language

We regard the assembly language developed for the VAMP architecture. The VAMP
architecture is based on the DLX architecture [HP96] and was initially presented by
Mueller & Paul [MP00]. An implementation of the VAMP has been formally verified
in 2003 [BJK+03, BJK+06]. Since then, the VAMP has been extended with address
translation and support for I/O devices [DHP05, AHK+07, TS08].

Three models [AHL+09, TS08] are related to this processor. From the most concrete
to the most abstract one, these are: the gate-level implementation, the instruction set
architecture (ISA) specification, and the assembly-language specification. Simulation
proofs relate the adjacent models such that properties shown at the assembly level can
finally be transferred down to the gate-level.

The VAMP assembly language is the target language of Leinenbach & Petrova’s veri-
fied C0 compiler. At the same time, its specification is intended to be a convenient layer

18

2.4 The VAMP Assembly Language

for the implementation and the verification of hardware-dependent programs. Thus,
the language specification abstracts from certain aspects of the lower layers, which are
irrelevant for these purposes.

Most notably, the VAMP assembly machine employs a linear memory model with
a conventional memory semantics, i. e., it abstracts from memory-mapped device I/O
and the paging mechanism of the processor. This abstraction is useful for assembly code
executed in the untranslated system mode as well as in the user mode with a transparent
handling of address translation and page faults.

Furthermore, interrupts are not modeled in the VAMP assembly machine. This ab-
straction extends the very idea of the previous one: We implicitly assume that interrupts
can either be handled transparently to the running program (like device interrupts and
page faults) or are programming errors (like misaligned memory accesses and undecod-
able instructions), which should not occur at all. The simulation theorem between the
ISA and the assembly-language specification simply holds unless exceptions are gener-
ated during the execution of instructions. As part of compiler correctness, it has been
shown that a compiled C0 program does not generate exceptions if there are sufficient
resources. Note that this separation of matters is equally welcome when verifying inlined
assembly code. Besides, the abstraction from interrupts is a reversible convenience – we
re-introduce an exception semantics tailored for assembly processes in Section 4.3.

Finally, the bit vectors from the ISA specification are superseded in the VAMP as-
sembly machine (a) by integers for data, (b) by naturals for addresses, and (c) by a
tailored abstract data type for instructions. This representation is optimized for as-
sembly programs working with integers; arguments regarding naturals and bit-vector
operations require conversions. The two functions to nat32 and to int32, for example,
convert between 32-bit integers and naturals.

Formal Semantics. An assembly state sasm is a record with the following components:
• two program counters sasm.dpc and sasm.pcp for implementing the delayed-branch

mechanism, which hold the addresses of the current and next instruction,
• the general-purpose and special-purpose register files sasm.gprs and sasm.sprs, which

are both lists of data, and
• the word-addressable main memory sasm.mm, mapping addresses to data.

Note that some well-formedness constraints are not enforced by the record type. We
call an assembly state valid iff the program counters are 32-bit naturals, the register files
contain 32 registers, and all registers and memory cells are 32-bit integers. We subsume
these well-formedness constraints in predicate valid asm:

valid asm sasm ≡
sasm.dpc < 232 ∧ sasm.pcp < 232 ∧ |sasm.gprs| = 32 ∧ |sasm.sprs| = 32 ∧
(∀i∈{0<..<32}. −231 ≤ sasm.gprs ! i < 231) ∧
(∀i∈used sprs. −231 ≤ sasm.sprs ! i < 231) ∧ (∀addr . −231 ≤ sasm.mm addr < 231)

Instructions are represented by an abstract data type and converted on instruction
fetch from memory cells using the conversion function to instr. Thus, the function

19

2 Fundamentals

current instr sasm ≡ to instr (sasm.mm (sasm.dpc div 4)) denotes the instruction that is
executed next in the assembly machine.

The assembly semantics can equally be employed in user- and system mode. The
mode is determined by the special-purpose register MODE:

is system mode sasm ≡ sasm.sprs ! MODE = 0

In the course of this thesis, we do not regard the system mode. In user mode, it is illegal
to access most of the special-purpose registers and solely the page-table length register
PTL is relevant for us: It determines the size of the main memory in pages of 1024 words.
For technical reasons, the register value is a signed integer with an offset of −1, i. e., −1
denotes a size of 0 pages. We encapsulate this fact in the function mm size and define:

mm size sasm ≡ to nat32 (sasm.sprs ! PTL + 1)

A memory access beyond the specified size generates an exception in the real system –
an illegal case in the assembly semantics.

The VAMP-assembly transition function dasm computes for a given assembly state
sasm the next state s ′asm. In illegal cases, the transition function gets stuck.1 Otherwise,
the transition is specified by a simple case distinction on current instr sasm. We use the
notation dnasm sasm to denote the result of executing n steps of the assembly machine
starting in state sasm.

2.5 On a Correct Compiler

Most software in Verisoft has been implemented and verified at the C0 level. The C0
programs are translated to assembly code in order to be executed on the target machine.
Leinenbach & Petrova have developed and verified a non-optimizing compiler from C0
to VAMP assembly [LPP05, Pet07, LP08]. Below, we summarize their results.

Compiler correctness is formulated as a simulation theorem. In essence, the compiler-
simulation theorem states that every step i of the source program executed on the C0
small-step semantics simulates a certain number si of steps of the VAMP assembly ma-
chine executing the compiled code. For the property transfer from the C0 to the VAMP
assembly layer, the simulation theorem has to meet special requirements. In particular,
the simulation theorem is formulated based on the small-step semantics, which permits
the reasoning about non-terminating programs and interleaved executions. Additionally,
the compiler-correctness proof considers resource restrictions at the assembly layer and
allows to discharge them at the C0 layer.

At first, we present the simulation relation:

Definition 2.1 (C0 Simulation Relation). The simulation relation consistent states that
a VAMP assembly state sasm encodes a C0 state sC0. The relation is parametrized over

1Technically, we avoid extra case distinctions for the detection of all possible invalid cases but sort out
those cases before we apply the transition function. Though the transition function might sometimes
not get stuck, it is simply meaningless in illegal cases.

20

2.5 On a Correct Compiler

an allocation function alloc, which maps all variables and heap objects in the C0 state
to their allocated address in the main memory of the assembly state. For a C0 program
with the type-name table tt and the function table ft, the relation consistent tt ft sC0

alloc sasm correlates

• the currently remaining program sC0.prog to the value of the program counters in
the assembly state sasm (called control consistency),

• the code of the C0 program, which is computed from the type-name table tt, the
function table ft, and the global symbol table2 (gm st sC0.mem), to the corre-
sponding memory region in sasm (code consistency), and

• the values of variables and heap objects in the C0 state sC0 to their corresponding
memory values in sasm (data consistency).

The formal specification of the simulation relation is a conjunction of three predicates
for control, code, and data consistency. We present only the code-consistency predicate:

code consistent tt ft sC0 sasm ≡
let code = codegen program tt ft (gm st sC0.mem)
in ∀i<|code|.

decodable (sasm.mm (program base + i)) ∧
to instr (sasm.mm (program base + i)) = code ! i

with the compiled program codegen program tt ft (gm st sC0.mem), the predicate de-
codable determining whether an integer can be interpreted as an instruction, and the
conversion function to instr realizing this interpretation. The constant program base is
a compiler parameter permitting a variable displacement of the program code in the
memory. This displacement is used in the kernel implementation to provide space for
some low-level functionality of CVM. For user programs, the displacement is not needed
and hence set to 0.

Certainly, we need an initial assembly state for a C0 program. For the support of
various use cases, the compiler-correctness theorem does not construct a particular initial
state but rather formulates the necessary requirements on an assembly state to serve as
an initial state for a specific C0 program.

Definition 2.2 (Initial Assembly States for a C0 Program). For a given C0 program
(tt, ft, gst), each corresponding initial assembly state sasm is well-formed, its program
counters point to the beginning of the code, the assembly state is code consistent with
the corresponding initial C0 state (denoted by init C0 ft gst), and the memory containing
the global variables is zero-initialized.

The formal requirements are collected in the predicate is initial asm tt ft gst sasm:

2Note that—though constant during the program execution—the symbol table of the global memory
is extracted from the current C0 state’s memory component sC0.mem.

21

2 Fundamentals

is initial asm tt ft gst sasm ≡
valid asm sasm ∧ sasm.dpc = 4 · program base ∧ sasm.pcp = sasm.dpc + 4 ∧
code consistent tt ft (init C0 ft gst) sasm ∧
(∀i∈gm range tt ft gst. sasm.mm i = 0)

Recall that certain executions in the assembly semantics are not legal, e. g., if an
instruction accesses memory beyond the available size. Compiler correctness is even
more demanding with respect to the accessible memory: It distinguishes read-only code
regions in the memory from writable data regions in order to prevent self-modifying
code. The non-optimizing compiler furthermore maintains that the assembly machine
is not in a delay slot between two compiled C0 statements3, i. e., we require sasm.pcp =
sasm.dpc + 4. Finally, we assume a well-formed assembly state, i. e., valid asm sasm (see
page 19).

A few auxiliary predicates help to formally specify whether a compiled C0 program
is successfully executed on the VAMP assembly level: The predicate mem write inside
range holds iff the current instruction writes into a specified memory range, the predi-
cate is exception holds iff an exception is generated during the execution of the current
instruction, and finally, inside range (l, h) i is defined as l ≤ i ∧ i < h.

Definition 2.3 (Successful Execution of Assembly Code). We call a computation of the
VAMP assembly machine from a state sasm in n steps to s ′asm a successful execution with
respect to a code range crange and an address range arange iff
• the memory contents in crange has not been overwritten,
• all instructions are only fetched from crange,
• all accessed memory addresses are in arange

(encapsulated in mem access inside range),
• no exceptions are generated, and
• all executed instructions are legal (denoted by is legal instr).

Formally, the successful execution of assembly code is defined as

(crange, arange)`asm sasm →n s ′asm ≡
dnasm sasm = s ′asm ∧ valid asm s ′asm ∧ s ′asm.pcp = s ′asm.dpc + 4 ∧
(∀m<n. ¬ mem write inside range (dmasm sasm) crange ∧

inside range crange (dmasm sasm).dpc ∧
mem access inside range (dmasm sasm) arange ∧
¬ is exception (dmasm sasm) ∧
is legal instr (dmasm sasm) (current instr (dmasm sasm)))

Note that the successful execution of assembly code depends on two implicit assump-
tions: The initial assembly configuration sasm needs to be well-formed, and the program
counters must not start in a delay slot. These two conditions are invariant under a
successful execution. For a particular C0 program (tt, ft, gst), the corresponding code

3Recall that the VAMP features a delayed-branch mechanism, i. e., a branch instruction is executed
after the next instruction has been decoded (see [MP00]). When a C0 statement has been completely
executed, the assembly machine should certainly not be about to execute a previously seen branch.

22

2.5 On a Correct Compiler

range is computed with the function code range tt gst ft. The address range, in con-
trast, is not statically fixed. In practice, it is determined by a maximal memory address
max address, which results in the user mode from the value of the page-table length
register (see Section 2.4). The function address range converts this address into the cor-
responding range, which starts with the program-base address. The formal definition of
all auxiliary predicates can be found in earlier publications [AHL+09, Lei08].

Compiler correctness relies on several preconditions.
First, the considered C0 program has to be compilable, which comprises well-formed-

ness constraints on the type-name table tt, the function table ft, and the global symbol
table gst as well as a definition for the function main and static resource restrictions.
The latter require, for instance, that the generated code fits into the memory of the
target machine and that the jump distances for conditionals, loops, and function calls
are not too large (such that they fit into the immediate constants of the VAMP assembly
instructions). We collect all static requirements on a C0 program (tt, ft, gst) including
its well-formedness and the definedness of main in the predicate is compilable tt ft gst.

Second, the required memory of C0 states sC0 change dynamically during the execution
of a C0 program, e. g., with the recursion depth or by the allocation of heap variables.
Predicate sufficient memory max address tt ft sC0 checks for these dynamic resource
restrictions, assuming that max address denotes the maximal memory address and does
not exceed the value 232.

Third, the compiler-correctness theorem does not hold if inlined assembly code is
executed. The predicate is Asm determines, whether a given C0 statement is an assembly
statement. We denote the first statement of the remaining program in a C0 state sC0 by
fst stmt sC0.prog.

Fourth, compiler correctness requires the absence of runtime errors like the access of
an uninitialized variable. In case of a runtime error, the transition function dC0 of the
C0 small-step semantics remains undefined, i. e., it evaluates to ⊥.

Finally, we can state the compiler-correctness theorem:

Theorem 2.1 (Compiler Correctness). We assume that (tt, ft, gst) describes a compi-
lable C0 program, there are no runtime errors during the execution of n steps, there is
sufficient memory in each execution step, the execution does not involve inlined assembly
statements, and sasm denotes an initial assembly state for (tt, ft, gst).

In this case, there exists a step number t, an allocation function alloc ′, and a final
assembly state s ′asm such that
• the assembly machine successfully advances in t steps from sasm to s ′asm,
• the final C0 state s ′C0 simulates s ′asm under the allocation function alloc ′, and
• no special-purpose registers have been changed.

Formally:

[[is compilable tt ft gst;
dnC0 tt ft (init C0 ft gst) = bs ′C0c;
∀i≤n. sufficient memory max address tt ft ddiC0 tt ft (init C0 ft gst)e;
max address ≤ 232;

23

2 Fundamentals

∀i<n. ¬ is Asm (fst stmt ddiC0 tt ft (init C0 ft gst)e.prog);
is initial asm tt ft gst sasm]]

=⇒ ∃t alloc ′ s ′asm.
(code range tt gst ft, address range max address)`asm sasm →t s ′asm ∧
consistent tt ft s ′C0 alloc ′ s ′asm ∧ s ′asm.sprs = sasm.sprs

Proof. Leinenbach [Lei08] has shown this theorem by induction on the step number n.
The induction start establishes the simulation relation between a successor of the initial
assembly state sasm and the initial C0 state init C0 ft gst. Note that simulation does
not hold between the initial states. On the assembly level, some initialization code must
be successfully executed to set up the machine accordingly. Furthermore, the values of
the special-purpose registers have to be preserved by the initialization code.

The induction step claims that under a C0 transition, the code for the current C0
statement is successfully executed, the special-purpose registers remain unchanged, and
the simulation relation is preserved under a C0 transition. The proof for this claim
involves a second induction over C0 statements.

The proof has been formalized in Isabelle/HOL and is available from the public Verisoft
Repository [Ver09].

Note that this correctness theorem explicitly requires to start with the initial state.
Thus, we cannot use the theorem for an execution of C0 statements after an inlined
assembly statement has been executed. For this purpose, we employ the stronger lemma
of the induction step for the proof of the above theorem.

Lemma 2.2 (Compiler-Correctness Induction Step). We assume that sC0 is a well-
formed C0 state and sasm is a well-formed assembly state, where the program counters
do not start in a delay slot. Moreover, the simulation relation holds for sC0 and sasm
under an allocation function alloc. Additionally, a C0 transition is legal (i. e., there is
no runtime error and the remaining program does not start with inlined assembly) and
there is sufficient memory before and after the transition.

In this case, there exists a step number t, an allocation function alloc ′, and an as-
sembly state s ′asm such that
• the assembly machine successfully advances in t steps from sasm to s ′asm,
• the final C0 state s ′C0 simulates s ′asm under the allocation function alloc ′, and
• no special-purpose registers have been changed.

Formally:

[[valid C0 tt ft sC0; valid asm sasm; sasm.pcp = sasm.dpc + 4;
consistent tt ft sC0 alloc sasm; dC0 tt ft sC0 = bs ′C0c;
¬ is Asm (fst stmt sC0.prog); sufficient memory max address tt ft sC0;
sufficient memory max address tt ft s ′C0; max address ≤ 232]]

=⇒ ∃t alloc ′ s ′asm.
(code range tt (gm st sC0.mem) ft,
address range max address)`asm sasm →t s ′asm ∧

consistent tt ft s ′C0 alloc ′ s ′asm ∧ s ′asm.sprs = sasm.sprs

24

2.6 Isabelle/Simpl – a Verification Environment for C0

Simpl

C0seq

asmseq

Simpl

C0proc

asmproc

Simpl?

(C0+asm)?

asm?

(relational)

asm?

(functional)
Fairness

Reordering

Transfer

Compiler Ext. Compiler

Simulation

Figure 2.3: A roadmap to concurrency

2.6 Isabelle/Simpl – a Verification Environment for C0

The verification environment Isabelle/Simpl [Sch05, Sch06] is implemented as a con-
servative extension of the higher-order logic (HOL) instance of the theorem-proving
environment Isabelle [NPW02]. Though the verification environment was motivated by
C0, it is by no means restricted to C0. In fact, it is a self-contained theory develop-
ment for a quite generic model of a sequential imperative programming language called
Simpl. Part of this extensive framework are big- and small-step semantics as well as
Hoare logics for both, partial and total correctness. In order to facilitate the usage
of the Hoare logics within Isabelle/HOL, the application of the rules is automated as
a verification-condition generator. Furthermore, proofs have been developed that the
logics are sound and complete with respect to the operational semantics. Soundness
is crucial for pervasive verification in order to formally link the results from the Hoare
logics to the operational Simpl semantics. Correctness theorems about the embedding
of C0 into Simpl then allow us to map these results to the small-step semantics of C0
[Sch06, AHL+08]. Completeness can be viewed as a sophisticated sanity check for the
Hoare logics, ensuring that verification cannot get stuck because of missing Hoare rules.

2.7 Extending the Language Stack:
a Roadmap to Concurrency

Figure 2.3 illustrates how we extend the existing language stack to support verification
about concurrently executing C0 processes (see also [DDWS08]). On the left-hand side,
we see the stack of the sequential languages (here marked by seq) as we know it from
Figure 2.2 on page 15. These languages are extended with suitable kernel communication
primitives (see Chapter 4) to processes (labeled proc) as shown in the central column of
the figure. Note that Simpl features a very general language model such that we can
directly embed the process semantics without an extension. Certainly, the language

25

2 Fundamentals

extensions require an extended compiler-correctness theorem as developed in Section
4.5. The extension of the transfer theorems remains future work.

The most demanding step, however, is the embedding of these process semantics into
the interleaved execution of the Vamos kernel. The third column in the figure depicts a
language-centered view of the involved kernel models4 (all introduced in Chapter 5): At
the lower end, there is a functional kernel model featuring assembly processes “asm?”:
This model is the Vamos specification AV, which describes the exact behavior of the
kernel and is also used for the code verification of Vamos [DDW09, Sect. 6]. At that
level, we show fair scheduling in Chapter 7.

Above, there is a relational kernel model that features only assembly processes. This
model abstracts from the scheduler and is employed to show that scheduling decisions
may be reordered. A simulation theorem establishes a link between both kernel models.
Combining reordering and extended compiler correctness, we can then abstract some5

assembly processes to C0 processes and obtain a kernel model with both semantics:
“(C0+asm)?”. Formally, we only specify the latter and regard the relational “asm?”
as a special case. This relational model AVC is called Communicating User Processes
(Coup). The described abstraction steps are covered by Chapter 6.

The top-most kernel model “Simpl?” suggests a language extension of Simpl towards
several threads of execution. This extension as well as a corresponding verification
environment with a concurrent Hoare logic and its integration into this framework remain
future work. For the particular purpose of the correctness proof for the simple operating
system employed in the academic system, however, it is sufficient to regard only one
process and its interaction with the kernel. Chapter 8 explains this approach in detail.

4We use the Kleene star to express concurrently executing processes in the figure.
5Note that not all possible assembly processes can be abstracted to C0 processes.

26

3 The VAMOS Microkernel:
Design and Implementation

Ist es Schatten? ist’s Wirklichkeit?
Wie wird mein Pudel lang und breit!

Johann Wolfgang von Goethe, in: “Faust I”

Contents

3.1 Requirements on a Correct Microkernel’s Design 28
3.2 Functionality . 28

3.2.1 Inter-Process Communication . 30
3.2.2 Process Scheduling . 31

3.3 Overflow-Safe Implementation of the Timeout Management 31
3.4 Conclusion . 34

The kernel of an operating system is the code that runs in the privileged system
mode of a processor, i. e., this and only this code has unrestricted access to all hardware
resources. Traditionally, kernels provided an abstraction from the hardware processor
and the peripheral devices. When kernels grew in size over the years because of a rising
variety of hardware, and especially external devices, the traditional systems were called
monolithic and the idea of smaller microkernels was born.

The motivation for microkernels, however, is manifold. Microkernels became a popu-
lar research topic in the late 1980s together with the idea of multi-personality operating
systems, which demanded a more general hardware abstraction than the traditional ap-
proach. This first generation of microkernels like Mach [RATY+88] or IBM’s Workplace
OS [FC98], however, suffered from a poor performance. When Jochen Liedtke analyzed
these systems [Lie96], he pinned the problem down to a feature-overloaded mechanism
for inter-process communication (IPC). Together with a light-weight, flexible IPC mech-
anism [Lie93], he proposed the minimality of hardware abstractions [Lie95] in the kernel
and suggested that servers implement the traditional services of operating systems. En-
gler et al. [EKO95] took the idea of minimality a step further and banned (nearly) all
abstractions from the kernel. Instead of resource management, the kernel was restricted
to resource protection. Abstractions were implemented in operating-system libraries and
directly linked to the user processes.

The design of the Vamos microkernel is substantially inspired by Liedtke but not as
minimal as he or even Engler proposed. The microkernel hosts all functionality that
would be hard to verify if implemented in user processes. Obeying this principle, the

27

3 The VAMOS Microkernel: Design and Implementation

memory management, support for finite IPC timeouts, and the scheduler live in Va-
mos. Device drivers, which constitute the largest part of today’s monolithic kernels, are
not part of the kernel. In the remaining chapter, we first regard the design aspect of
provable correctness. Then, we provide an overview of the functionality of Vamos and
describe two important features of the kernel in more detail: the IPC mechanism and the
scheduling policy. Finally, we consider an implementation issue for provable correctness:
the overflow-safe management of timeouts in Vamos.

Credits and Own Contribution. An initial version of the Vamos microkernel had
been implemented by Stefan Maus and Dominik Rester under the supervision of Mauro
Gargano. Over time, many students and staff improved and extended the kernel – its
design as well as its implementation. My key contributions to the kernel design are the
capability-like concept of process identifiers and the abandonment of an idle process.
My most important improvements of the implementation comprise the overflow-safe
management of timeouts and a generic debug library usable in the kernel as well as in
processes.

3.1 Requirements on a Correct Microkernel’s Design

Modern microkernels are strictly evaluated by their performance. While efficiency is
clearly essential for the applicability of a microkernel, many implementations even accept
a limited runtime in favor of utmost performance and declare, e. g., a finite range of
numbers as “sufficiently large” such that overflows should not occur during the expected
lifetime of the kernel. An old but even interface-visible example is Liedtke’s [Lie93]
generation counter : In order to ensure a thread’s identity, the fixed internal format of
thread identifiers reserves some bits for a counter, which is incremented on reincarnation.
A possible overflow, however, is just neglected. Although such an approach might be
acceptable for non-critical systems, it does certainly not suit a critical, verified system;
moreover, a restriction on the lifetime contradicts the formal notion of liveness.

As a consequence, Vamos has no such “expiration date”. For this to work, a capability-
like management of process identifiers allows for an overflow-free and truly authentic pro-
cess identification beyond reincarnations (see Section 3.2.1). Furthermore, we maintain
a solely relative notion of time within the kernel (see Section 3.3).

Another design decision is related to provable correctness as well: the absence of a
so-called idle process. In some microkernels, this distinguished process is scheduled with
the lowest priority and should implement a busy wait. We circumvent assumptions on
user-level processes if possible and have thus implemented the idle loop (which solely
waits for incoming interrupts) directly in the kernel.

3.2 Functionality

The Vamos kernel performs the following tasks: (a) enforcement of a minimal access con-
trol, (b) process management, (c) memory management, (d) priority-based round-robin

28

3.2 Functionality

scheduling, (e) support for user-mode device drivers, and (f) inter-process communica-
tion (IPC). Processes can control these tasks via the kernel’s application binary interface
(ABI). Table 3.1 lists the kernel calls that constitute the ABI.

The minimal access-control mechanism reserves most kernel calls for so-called privi-
leged processes. Thus, only a privileged process can bring up new processes or kill existing
ones, alter the memory consumption of processes, change their scheduling parameters,
or control the registration of device drivers. Any process, however, might use the IPC
mechanism. Note that though this notion of privileging draws upon an analogy to the
system mode of the processor, both concepts should not be confused. All processes run
in user mode; process privileging is just a concept of the access-control mechanism of the
Vamos kernel and fully realized in software. We presume that the privileged processes
constitute the user-mode parts of the operating system and implement a more sophisti-
cated access-control mechanism. Non-privileged processes may then communicate with
the privileged processes in order to inquire kernel services on their behalf.

When Vamos boots, it launches one single process, the init process. This process
is privileged and has to set up the required servers of the operating system, start and
register the device drivers, and possibly spawn initial applications.

Kernel Call Description
Access Control
set privileged p add a process to the set of privileged processes
Process Management
process create p create a new process from a memory image
process clone p copy an already existing process
process kill p kill a process
Memory Management
memory add p increase the amount of virtual memory for a process
memory free p decrease the amount of virtual memory for a process
Scheduling Mechanism
chg sched params p change scheduling parameters
Device Driver Support
change driver p (un)register a process as a driver for a set of devices
enable interrupts d re-enable a set of interrupts after their successful handling
dev read d / dev write d communicate with a certain device
Inter-Process Communication
ipc send / ipc receive unidirectionally communicate with another process
ipc request send a message and immediately wait for a reply
change rights manipulate IPC rights
read kernel info receive information from the kernel

p call is reserved for privileged processes d call is reserved for device drivers

Table 3.1: Application binary interface of the Vamos kernel

29

3 The VAMOS Microkernel: Design and Implementation

A device driver is a user process, which is designated for the communication with
certain devices. Only if a process is registered as a driver for a particular device, it may
place read or write inquiries from or to that device, respectively. Moreover, the device
driver is notified of interrupts from that device.

Inside the kernel, time measurements are based on a timer device, which periodically
raises its interrupt line. In particular, we measure the runtime of processes and the
waiting time for IPC in numbers of interrupt occurrences.

3.2.1 Inter-Process Communication

Vamos supports exclusively synchronous IPC. This nowadays common restriction in mi-
crokernel designs has been introduced by Liedtke [Lie93] because it circumvents message
queuing in the kernel and asynchronous IPC can as well be implemented at user level. In
Table 3.1 on the previous page, we see the three different kinds of IPC calls for sending,
receiving, and the combined send and receive from the same partner (request). The
latter call guarantees that the invoking process cannot be scheduled between sending
and receiving but immediately waits for its communication partner—typically a server.
Together with the access-control mechanism for IPC, servers can ensure that their clients
definitely wait for a reply.

Synchronization generally requires waiting. In Vamos, processes may limit the maxi-
mal waiting time for an IPC operation by a finite number. If a process is not willing to
wait at all, it specifies 0, which we also call immediate timeout. A positive timeout value
indicates the number of timer interrupts until the IPC operation should be canceled. An
unlimited waiting time is specified by a so-called infinite timeout.

We have implemented a capability-like [Lev84] access-control mechanism for IPC.
While the kernel identifies processes by unique identifiers (PIDs), processes refer to each
other via process-local alias names, so-called handles. The mapping from handles to
PIDs is maintained by the kernel, which invalidates all handles to a process when it
vanishes and sends an obituary to the handles’ owners. That means, we have improved
the authentic process identification in comparison to Liedtke’s generation counter, which
might overflow. Moreover, we circumvent guessing of PIDs through this additional layer
of indirection. The only drawback of the indirection is the extra maintenance effort in
Vamos. A sparse handle database, however, permits a relatively small runtime overhead
for the maintenance.

Additionally, IPC rights are associated with each handle. These rights are organized
as a four-bit vector. The request bit permits solely combined send and receive calls while
the send right grants permission to send in either way. The combined call furthermore
requires an infinite receive timeout, unless the finite modifier bit is set. By this means,
a server can constrain a client to wait infinitely long for a reply to its request. Moreover,
the rights expire after the first successful send or request call unless the modifier bit
multiple is set. Receiving from a known handle is always permitted.

Finally, the IPC mechanism is employed to convey kernel notifications. There are
two conditions that Vamos notifies processes about: An obituary bit informs whether
formerly known processes have vanished, and occurred device interrupts are delivered

30

3.3 Overflow-Safe Implementation of the Timeout Management

via interrupt bits to the corresponding drivers. Several notifications might be sent at
the same time – possibly even together with a conventional IPC message – because all
notification bits fit into a single register.

3.2.2 Process Scheduling

The basic policy underlying the scheduler in Vamos is round-robin process selection.
This basic policy, however, can be adjusted by two regulators: priorities and timeslices.

Our scheduler supports three different priority levels. Only processes in the highest,
non-empty priority class will be scheduled. Processes in a lower class wait until no
processes are ready to compute in any higher priority class. This policy is also known as
static-priority scheduling though technically, priorities might be adjusted through kernel
calls at any time during runtime.

Within one priority class, the timeslice determines how long a certain process may
compute until it is preempted in favor of another process of the same priority class.
Thus, timeslices determine the relative weight of process runtimes while priorities lead
to the preemption of lower process classes.

3.3 Overflow-Safe Implementation
of the Timeout Management

Recall that Vamos supports finite IPC timeouts. From the design perspective, these
timeouts must certainly be relative because specifying an absolute point in time for a
timeout by a fixed-precision value would certainly limit the maximal runtime of the
system. In the implementation, however, this relative notion of time requires some
maintenance. Previously, Vamos just neglected the maintenance (cumulating all timer
interrupts since system start) and thus, became incorrect after some time because of
arithmetic overflows. The näıve solution, to decrease the timeout values of all waiting
processes whenever a timer interrupt occurs, is definitely most inefficient. Hence, we have
evaluated two different approaches: an occasional timeout adjustment and an overflow-
aware timeout comparison. Below, we explain the implementation problem in more detail
and discuss our solutions. Jan Dörrenbächer [DDW09, Sect. 6] has formally verified that
the occasional timeout adjustment does indeed not overflow. Note that our formal proof
work (see Chapters 5 to 8) relies on implementation correctness.

Occasional Timeout Adjustment. This approach cumulates occurring timer interrupts
and just occasionally, decreases the timeouts for waiting processes by the number of
the accumulated timer interrupts. Here, we exploit the fact that processes specify their
timeouts by signed 32-bit integers, where any negative value encodes the infinite timeout.
Within the kernel, however, we use unsigned 32-bit integers to represent points in time
and encode “never” by the maximum value (232− 1). Hence, we may defer the decrease
of the timeouts for waiting processes for up to 231 − 1 timer interrupts.

31

3 The VAMOS Microkernel: Design and Implementation

More specifically, we maintain two global time variables: current time accumulates
occurred timer interrupts and next timeout retains the expected next timeout. Ad-
ditionally, there is a so-called scheduling timeout sched timeout[p] for each waiting
process p. Initially, the current time is set to zero, and the next timeout is set to
“never”.

Whenever a process p issues an IPC call with a positive timeout argument t and is
enqueued in the wait queue, its scheduling timeout is computed by adding the current
time to the call’s timeout argument, i. e.,

sched timeout[p] = current time + UNSIGNED(t);

Note that the value of t is less than 231 because it is a signed 32-bit integer. Hence,
the unsigned 32-bit integer current time + t does not overflow unless current time
exceeds 231. Furthermore, the variable next timeout is set to sched timeout[p] if the
latter is smaller than the former:

if (sched timeout[p] < next timeout) {
next timeout = sched timeout[p];

}

If a process issues an IPC call with a negative timeout argument (meaning “infinite
timeout”) and is enqueued in the wait queue, its scheduling timeout is simply set to
232 − 1 (“never”).

Upon each timer interrupt, the kernel checks whether there is a next timeout, i. e.,
the value of next timeout is not “never”. In this case, the kernel increases the current
time and checks whether it has reached the next timeout, i. e., current time == next
timeout. If so, next timeout is set to “never” and the wait queue is traversed: For
each process p in the wait queue, the kernel checks whether the scheduling timeout has
expired, i. e., sched timeout[p] == current time. Processes with expired scheduling
timeouts are woken up; for the remaining processes p, the current time is subtracted
from the scheduling timeout, i. e.,

sched timeout[p] = sched timeout[p] - current time;

and the variable next timeout is set to the new value of sched timeout[p] if the latter
is smaller than the former. Finally, the current time is set to zero.

This implementation maintains several invariants. First, current time is always the
minimum value of all times (next timeout and sched timeout[p] for all waiting pro-
cesses p). Second, sched timeout[p]−current time is always less than 231 for all wait-
ing processes p. Third, current time is zero unless there is a next timeout. Hence, next
timeout is either “never” or less than 231: when the first process is scheduled to wait,
its scheduling timeout is less than 231 because current time is zero; and after a time-
out expired, the next timeout is set to the smallest sched timeout[p]− current time.
Thus, current time is less than 231.

32

3.3 Overflow-Safe Implementation of the Timeout Management

Overflow-Aware Timeout Comparison. This approach maintains the same variables
but never adjusts the scheduling timeouts. Instead, the check for elapsed timeouts relies
on the modulo-arithmetical semantics of overflows in C0. While the occasional timeout
adjustment maintains the invariant that current time is always a minimum of all time
variables, the overflow-aware comparison uses this value as a divide: values smaller than
the current time are generally interpreted as larger than any value greater than or equal
to the current time.

This interpretation follows the observation that the current time does not overtake
timeouts but increases step by step until the timeouts elapse. If a scheduling timeout is
nevertheless smaller than the current time, there must have been an overflow when the
timeout was computed. Given that any timeout argument t is less than 231, the computed
scheduling timeout is always less than the current time in case of an overflow.

Conceptually, we define an overflow-aware order x <∗ y of timeouts when we tech-
nically replace comparisons of the form x < y between two timeouts x and y by the
following expression:

(x >= current time && (y < current time || x < y)
|| y < current time && x < y)

Nevertheless, there remains a small problem: When a (finite) scheduling timeout is
computed, it might now incidentally coincide with the value 232 − 1, decoding “never”.
Hence, we refine our approach and use only even numbers for finite times, i. e., upon
timer interrupts, the variable current time is increased by two, and when a process p
calls for IPC with the positive timeout argument t and is enqueued in the wait queue,
the finite scheduling timeout is computed by

sched timeout[p] = current time + UNSIGNED(t)<<1;

Recall that t is less than 231 such that there cannot be more than one wrap around.
Consequently, the variable current time has always an even value; the other time

variables (next timeout and sched timeout[p] for all waiting processes p) are either
even or have the “never” value.

Evaluation. When comparing the compiled code, the overflow-aware solution is 128
instructions longer than the timeout adjustment. This static overhead is mainly caused
by the more involved expression for the comparison of timeout values. As these expres-
sions comprise lazy operators, the respective runtime overhead depends on the test case.
Our regression-test suite contains two tests where we counted less instructions for the
overflow-aware solution but when counting all tests, the timeout adjustment requires less
instructions. Though we do not have a cycle-precise testing environment, we suspect
that the overflow-aware solution would perform even worse because the branches for the
lazy operators might stall the processor pipeline.

Note that the traversal of the wait queue is necessary in both solutions because the wait
queue is not ordered by timeouts. Thus, a timeout-ordered wait tree could theoretically
improve the approach of an overflow-aware comparison. Considering the relatively small

33

3 The VAMOS Microkernel: Design and Implementation

number of maximally running processes, however, we did not further investigate this
approach.

3.4 Conclusion

We implemented a microkernel suitable for formal verification. An important prereq-
uisite for the verification of liveness properties is a potentially unbounded runtime of
the kernel. Most typically, a bounded runtime arises from the use of fixed-width data
types for conceptually unbounded values. We discussed the problem based on two exam-
ples: process identifiers and time. For both examples, we realized sustainable solutions,
namely the concept of handles, which guarantees the unique process identification even
beyond termination, and a solely relative management of timeouts.

Though the solutions to both problems cause a performance overhead, we maintain
that the costs are within reasonable bounds. The additional indirection for handles
comes with the benefit of non-guessable PIDs; similar solutions are custom for reasons
of security in high-performance kernels [SDN+04, Boy09]. Moreover, we kept the runtime
overhead small by using a sparse handle database. Thus, the additional costs result in
just four operations per look-up: a pointer dereference, an array access, a bitwise AND,
and a comparison. Note that a kernel call may refer to up to two processes.

A similar low cost can be observed for the adjustment of timeout values: Whenever
a timeout occurs, Vamos decreases the scheduling timeout of each process remaining
in the wait queue by the current time, and at last, it resets the global time. Thus, the
total cost grows linearly with the length of the wait queue with an upper bound of 126
decrements and one plain assignment. Dequeuing a single process from the wait queue,
on the contrary, involves calling a CVM primitive, two or three list manipulations and
three updates of bookkeeping information.

Concluding, the design and implementation of a live microkernel is possible without
giving up on performance.

34

4 Process Abstraction

I still believe in abstraction, but now I know that one ends with
abstraction, not starts with it.

Alexander Stepanov, cited from B. Stroustrup: “Evolving C++”

Contents

4.1 Motivation . 36
4.2 Process Models . 37
4.3 The Assembly-Process Model . 43
4.4 The C0-Process Model . 47
4.5 Extended Compiler Correctness . 55
4.6 Conclusion . 62

The last chapter has presented the functionality of Vamos on a comparatively abstract
level. Most notably, the kernel calls have been described similar to function calls of a
high-level programming language. Recall, however, the low-level perspective of the kernel
programmer from Section 2.1: Some user-mode computation might be interrupted at an
arbitrary time, the kernel saves the user context and handles the interrupt. If the
interrupt has been caused by a trap exception, the kernel might access registers and
memory from the user’s context and manipulate it to deliver results.

When formalizing the effects of a kernel call, we can either draw near the implementa-
tion level or introduce an abstraction level for processes, which separates the actual func-
tionality from the implementation details. The first section contrasts both approaches
and motivates our decision for the latter. The following sections describe the process
model in general as well as its instantiation for VAMP assembly and C0. Finally, we
extend the sequential compiler-correctness theorem to the process semantics.

Credits and Own Contribution. The first section illustrates Jan Dörrenbächer’s initial
approach to specify the Vamos kernel together with the problems that I encountered
when trying to introduce a kernel model with C0 processes. As a solution to these prob-
lems, I developed the generic definition of a process model as input-output automaton.
While Jan Dörrenbächer instantiated the generic model for assembly processes, I verified
its validity (see Theorem 4.1 on page 47). Furthermore, the C0-process model and the
extended compiler-correctness theorem stem from me. Sebastian Bogan [Bog08] speci-
fied the application interface of the SOS model based on the generic process interface.
Hence, the SOS specification also benefits from the generic process model. Additionally,
the general idea of this process modeling has been reused in a similar proof development

35

4 Process Abstraction

for the real-time kernel olos [DSS09, DSS10]. From this parallel proof development,
I benefitted when I proved the correctness of the kernel library (part of the extended
compiler-correctness theorem). Here, I could draw on previous experience of Mareike
Schmidt.

4.1 Motivation

We consider the implementation of the set privileges call. The currently running
process pcup might execute the instruction trap 6 (meaning set privileges). The
kernel implementation then perceives the trap exception and examines register 11 of
process pcup in order to identify the process ptarget that should gain privileges. If the
register value is not a valid handle or the inquiry is not permitted, pcup is informed about
the specific problem by an update of its register 22 to the corresponding negative value.
Otherwise, Vamos adds process ptarget to the set of privileged processes and sets register
22 of process pcup to 0 (meaning success).

At first, we formalize the effects of the call directly at the implementation level. For
a better readability, we encapsulate the update of a register value and the insertion of a
process into the set of privileged processes into functions:

• Function set gpr takes an assembly state, a register number, as well as the new
value of this register, and then returns an assembly state with the updated register.

• Function add privilege takes a component of the kernel state and a process number
and then returns the updated component.

With these prerequisites in place, we can specify the call set privileges as follows:

set privileges specV sV hn ≡
let pcup = dcupV sV.scheddse; ptarget = dsV.rightsdb pcupe.hdb hn
in if ¬ privileged sV.rightsdb pcup

then sV(|procs := sV.procs(pcup 7→ set gpr (sV.procs pcup) 22 −4)|)
else if ¬ valid handle sV.rightsdb pcup hn

then sV(|procs := sV.procs(pcup 7→ set gpr (sV.procs pcup) 22 −1)|)
else sV(|procs := sV.procs(pcup 7→ set gpr (sV.procs pcup) 22 0),

rightsdb := add privilege sV.rightsdb ptarget|)

This specification function takes the current Vamos state sV and hn, the (previously
read) value of register 11. It extracts the process identifiers pcup and ptarget from the
current state (whose components are detailed in Section 5.1 but should not concern us
at the moment) and distinguishes three cases:
• If the inquiry is not permitted, register 22 of pcup is set to -4.
• If the specified handle is not valid, register 22 of pcup is set to -1.
• Otherwise, register 22 of pcup is set to 0, and the process ptarget is added to the set

of privileged processes.

36

4.2 Process Models

This specification is certainly correct,1 quite close to the implementation, and thus,
code correctness is easy to show. It veils, however, the ABI and obstructs the concept of
process privileging with details of register bindings and error codes. The call specification
is intrinsically tied to assembly processes. The problem with this approach becomes
apparent as soon as we try to abstract C0 processes: It is simply infeasible to take out a
single assembly process and abstract it to a C0 process. We would always have to regard
the complete Vamos specification as a whole.

The remedy for this problem is the explicit specification of the interface between the
kernel and the processes: We encapsulate the processes as self-contained automata and
define the function set privileges specV using a generic process automaton. The exact
interface of the process automaton is specified in the following section. For this example,
we just assume that the generic process automaton fulfills the following requirements:
• It has a state space Sproc,
• its output alphabet Wproc contains the values set privileged hn (for all process

handles hn),
• its input alphabet Svproc contains err unprivileged, err invalid handle,

and success,
• the transition function dproc is defined over Sproc under the inputs from Svproc, and
• the output function wproc computes an output for any process state.

Now, we specify the call set privileges as:

set privileges specV sV hn ≡
let pcup = dcupV sV.scheddse; ptarget = dsV.rightsdb pcupe.hdb hn
in if ¬ privileged sV.rightsdb pcup

then sV(|procs := sV.procs(pcup 7→ dproc err unprivileged dsV.procs pcupe)|)
else if ¬ valid handle sV.rightsdb pcup hn

then sV(|procs := sV.procs(pcup 7→ dproc err invalid handle dsV.procs pcupe)|)
else sV(|procs := sV.procs(pcup 7→ dproc success dsV.procs pcupe),

rightsdb := add privilege sV.rightsdb ptarget|)

This definition cleanly separates the concepts of the interface between processes and
kernel (i. e., the ABI) and the actual specification of the process-privileging call (i. e.,
the kernel functionality). The separation permits to regard a process as a self-contained
entity. Thus, we are able to abstract a C0 process from an assembly process and prove
a simulation theorem that relates both process models independently from the kernel.

4.2 Process Models

The last section has emphasized the advantages of a self-containing input-output au-
tomaton for the process semantics, which allows us to hide the internal state and to just

1We have formally shown that the given specification is equivalent to the one actually used for im-
plementation correctness. Technically, the explanation is slightly imprecise because we have hidden
an additional side-effect in set gpr. More precisely, we can state: set gpr sasm 22 (to int i) = dproc i
dsasme. As we see later on, dproc additionally increments the program counters.

37

4 Process Abstraction

expose the generic interface. This section defines the class of automata that formally
specify the semantics of Vamos processes, thus characterizing an abstract kernel ABI.
These automata can extend the semantics of sequential languages by primitives for the
communication with the kernel. We define:

Definition 4.1 (Process Model). A process model is an input-output automaton spec-
ified by a tuple

(Sproc, is validproc, is initproc,Svproc,Wproc, dproc,wproc, sizeproc) with

• a state space Sproc,
• a validity predicate is validproc,
• an initialization predicate is initproc,
• the alphabet Svproc of inputs from the kernel to the process,
• the alphabet Wproc of outputs from the process to the kernel,
• a transition function dproc, as well as
• output functions wproc and sizeproc.

While the state space Sproc depends on the individual process model, the interface
between kernel and processes is naturally shared by all process models. This interface
is entirely defined by Svproc and Wproc.

Among other things, the output alphabet Wproc enumerates all possible kernel calls.
Each kernel call has an identifier and a number of arguments, e. g., set privileged
hn for setting privileges. In the implementation, the kernel-call parameters are usually
stored in registers. The C0 semantics, however, completely abstracts from registers. A
translation from C0 expressions into register values would be quite artificial. Hence,
the process semantics generally interpret the parameter values using a more abstract
representation, which we explain below.

In many cases, not all possible register values have a meaningful interpretation. There
are, for instance, only three priorities, eight devices, 1024 ports, and four IPC-right bits.
If a process specifies a different value, the parameter is interpreted as ⊥, meaning “out
of range”.2 Otherwise, the argument value is of the form bxc.

In two situations, however, a single value for “out of range” is not sufficient: The
implementation of kernel calls like dev read stores a word sequence into the memory
of the process. In this case, one register specifies a pointer into the memory, and another
one the length. Though the register values refer to bytes, only word-aligned values are
valid. The kernel distinguishes such misaligned values (represented by an argument value
BufUndefined) from well-specified memory regions that are situated beyond the available
process memory (represented by BufUnavailable). A valid buffer is solely described by
its length: BufLength len. Thus, the output dev read dev id port (BufLength len)
describes the inquiry to read at most len words from a device.

Respectively the same holds for calls like dev write, where the implementation reads
a sequence of words out of the process memory. We call such a word sequence a memory
object, and distinguish undefined memory objects MObjUndefined, unavailable objects

2Note that we reuse the same technique as for partial functions, see Section 1.1.

38

4.2 Process Models

Access Control
set privileged hn — inquiry to privilege the process identified by handle hn

Process Management
process create tsl prio img pages — inquiry to create a new process with the time-

slice tsl and the scheduling priority prio from the memory object img . The new
process should occupy pages memory pages.

process clone hn — inquiry to copy the process (identified by handle) hn
process kill hn — inquiry to kill the process (identified by) hn

Memory Management
memory add hn pages / memory free hn pages — inquiry to change the amount of

virtual memory for the process hn by pages memory pages

Scheduling Mechanism
chg sched params hn tsl prio — inquiry to change the timeslice and the scheduling

priority of the process hn to tsl and prio, respectively.

Device Driver Support
change driver hn devs register — inquiry to either register (if register = True) or

unregister the process hn as a device driver for the set devs of devices.
enable interrupts devs — inquiry to re-enable the interrupts for the devices devs
dev read dev id port buffer — inquiry to read from device with the ID dev id at

port port into the buffer buffer.
dev write dev id port data — inquiry to write the memory object data to port port

of device dev id.

Inter-Process Communication
ipc send hnrcv rightssnd msg hnadd rightsadd timeoutsnd — inquiry to send the memory

object msg to process hnrcv and grant rightssnd to the receiver. Additionally,
process handle hnadd should be transferred, and rightsadd should be granted for
that process. The operation should run out of time after timeoutsnd timer ticks.

ipc receive hnsnd buffer timeoutrcv — inquiry to receive a message from process hnsnd

into the buffer buffer. The operation should run out of time after timeoutrcv ticks.
ipc request hnrcv rightssnd msg hnadd rightsadd timeoutsnd buffer timeoutrcv — inqui-

ry to send msg to hnrcv and immediately wait for a reply from hnrcv.
change rights hnsubj hnobj grant rights — inquiry to either grant (if grant = True)

or revoke the rights rights for process hnsubj to send IPC to the process hnobj.
read kernel info type — gain information of type type from the kernel

No Kernel Call
undefined trap — a trap instruction has occurred with an unused trap number
runtime error — a runtime error like an illegal page fault has occurred
eW — there has been no exception; the process intends to do a local computation

Table 4.1: Output alphabet Wproc of processes

39

4 Process Abstraction

MObjUnavailable, and valid objects MObjSeq xs comprising a word sequence xs. The
output dev write dev id port MObjUnavailable, for example, describes the inquiry
to write a memory object to a device, though the concerned memory region does not
entirely belong to the process memory (and hence, the kernel rejects this inquiry).

In addition to the kernel calls, processes may signal internal error conditions with
Wproc. As the kernel calls are internally identified by a number, a process might specify
a number, which is not associated with any call. This condition is signaled by the output
value undefined trap. Moreover, a process might generate exceptions like an overflow
or an illegal page fault. These exceptions are collectively represented by value runtime
error. Finally, the output eW denotes the intention to perform a local computation as
the next step. The complete output alphabet is shown in Table 4.1 on the previous page.

The input alphabet Svproc reflects all kernel-initiated changes of a process. These
comprise all possible responses to kernel calls, on the one hand, and kernel commands
to change the amount of virtual memory, on the other hand. Furthermore, the kernel
passes the input eSv to the transition function dproc in order to request a local transition.
Table 4.2 on the facing page shows the complete alphabet for illustration.

The validity predicate is validproc is a concession to the missing predicate subtypes
in Isabelle/HOL: The set Sproc is represented as a type in Isabelle. In order to further
constrain this type, we use the validity predicate.

The initialization predicate is initproc is required for the call process create. This
call is intended to start a program. The common scenario is that a C0 program is
compiled by the verified C0 compiler and saved in a binary executable file. This file
stores the initial memory content (code and data) of the assembly program. In this
scenario, the operating system reads the file into memory and then calls the kernel
in order to create a new process from the read file content. The kernel initializes the
registers of the new process with fixed values and sets the memory content to the specified
memory image. While the image uniquely describes the initial assembly configuration,
the original C0 program cannot be reconstructed because the variable names are not
preserved in the compiled code. Thus, the generic definition of process models uses a
predicate relating memory images and initial process configurations.

For the sake of memory management, Vamos needs to know the amount of virtual
memory that is currently occupied by a process. Function sizeproc computes the necessary
information from a given state.

Valid Process Models. So far, we have illustrated the intuition of our process au-
tomata. Our kernel models, however, rely on certain assumptions on the process mod-
els. Hence, we constrain the class of valid process models by a set of rules.3 As an
intuitive example, we regard the rules that specify the intended semantics of sizeproc and
its interaction with add memory and free memory.

3The above definition of process models is implemented as an axiomatic class [Wen02] in Isabelle. An
axiomatic class specifies a subclass of types by a number of rules (or axioms) on operations defined
over a class of types. Axiomatic classes are traditionally used to formalize algebraic structures.

40

4.2 Process Models

Successful Responses to Kernel Calls
success — a kernel call has been successfully carried out
succ new process hnnew — the kernel has launched a new process (in response to a

process create or process clone call) and handle hnnew points to it
succ dev read data — responding to a dev read call, the kernel has read the word

list data from a device
succ receive hnsnd reusedsnd rightssnd msg hnadd reusedadd rightsadd stale ito devs

— a kernel call ipc receive or ipc request has been successful. Handle hnsnd

points to the IPC partner, this handle has been reused for a new process iff
reusedsnd = True, and the receiver has currently associated the IPC rights rightssnd

with hnsnd. The partner has sent the word list msg and additionally hnadd, which
has been reused iff reusedadd = True, and the receiver has currently rightsadd on
handle hnadd. The parameters stale, ito, and devs represent kernel notification
bits: Iff stale is set, there are stale handles, value ito signals that the sender waits
with an infinite timeout, and the set devs notifies about raised device interrupts.

succ kinfo staleh hns — the kernel returns the set hns of stale handles in response
to read kernel info bStolenHandlesc

Kernel Responses in Error Cases
err out of mem — there is not enough memory to perform the inquired action
err out of pids — currently, no new processes can be launched because the upper

bound of active processes has already been reached
err process not ready — the specified process is not ready for a memory change
err unprivileged — the inquiry failed because the caller is not privileged or has

insufficient IPC rights
err invalid args — the arguments specified together with the inquiry are invalid
err int already handled — there was an attempt to register a process as a driver

for a device, which is already driven by another process
err invalid handle — the specified handle is invalid. Some kernel calls take more

than one handle. In these situations, we distinguish the invalid handle by a more
specific error code: err invalid subj handle / err invalid obj handle,
err snd invalid handle / err rcv invalid handle.

err snd timeout / err rcv timeout — a timeout has occurred during the send/
receive phase of the inquired IPC operation

err msg oversized — the sending of a message failed because the message is to large
to be accommodated in the buffer of the receiver

err snd segv / err rcv segv — the specified message or buffer, respectively, lives
not completely in the accessible part of the memory.

Commands from the Kernel
add memory pages — increase the amount of available memory by pages
free memory pages — decrease the amount of available memory by pages
eSv — perform a local step

Table 4.2: Input alphabet Svproc of processes

41

4 Process Abstraction

The memory size of a valid process state s is bounded, i. e.,

is validproc s

sizeproc s ≤ TVM MAXPAGES
(size bounded)

where TVM MAXPAGES is an implementation-defined constant.
As long as the resulting size is below this bound, an input add memory pages should

increase the size by pages, formally:

sizeproc s + pages ≤ TVM MAXPAGES is validproc s

sizeproc (dproc (add memory pages) s) = sizeproc s + pages
(add memory)

Respectively the same holds for free memory:

pages < sizeproc s is validproc s

sizeproc (dproc (free memory pages) s) = sizeproc s − pages
(free memory)

For all other inputs sv, the amount of available memory should remain constant, i. e.,

∀x . sv 6= add memory x ∀x . sv 6= free memory x is validproc s

sizeproc (dproc sv s) = sizeproc s
(size const)

Furthermore, the output of a process should remain constant under memory changes.
The only exception to that rule, however, are memory-related errors, e. g., the values
MObjUnavailable or BufUnavailable in a process output: If a specified memory object or
buffer has been completely inside the available memory, it might not be after free
memory. Respectively, a memory object or buffer might have exceeded the available
memory before add memory but does not afterwards. We express this relation between
process outputs by the definition of a weak partial order such that, e. g.,

dev read dev id port BufUnavailable ≤ dev read dev id port buffer
dev write dev id port MObjUnavailable ≤ dev write dev id port data
ipc receive hnsnd BufUnavailable timeoutrcv ≤ ipc receive hnsnd buffer timeoutrcv

Based on this order, we formalize the relation of process outputs under memory changes
as follows:

sizeproc s + pages ≤ TVM MAXPAGES is validproc s

wproc s ≤ wproc (dproc (add memory pages) s)
(add output)

pages < sizeproc s is validproc s

wproc (dproc (free memory pages) s) ≤ wproc s
(free output)

There are far more constraints on valid process models. An extensive part of the
specification concerns the invariance of is validproc. The canon of the according rules is

42

4.3 The Assembly-Process Model

that (a) the predicate is validproc holds for any initial state s if the initial memory content
img and its size pages are in range, as well as (b) under valid inputs, the predicate is
validproc is preserved by transitions. The rules are shown in Table 4.3 on the next page.
Furthermore, there are constraints on the process output. An important premise for the
fairness proof in Chapter 7 is that timeslices in Vamos are bounded. This property can
only be established if the timeslices specified with the calls process create and chg
sched params are bounded. We list all output-related rules in Table 4.4 on page 45.

In the following two sections, we define two particular automata specifying assembly
and C0 processes, which both satisfy the above constraints for a valid process model.

4.3 The Assembly-Process Model

The model of assembly processes extends the semantics of the sequential VAMP assembly
language. For the communication with the kernel, we use the trap instruction, which
is simply illegal in the sequential fragment of the assembly language.

The state space of assembly processes is identical to the one of the assembly semantics.
In this section, we define the according predicates is validproc and is initproc for this state
space, its transition function dproc, as well as the according output functions wproc and
sizeproc.

Predicates. Recall that the validity predicate is validproc further constrains the state-
space type of a process model to the well-formed states. For the sequential assembly
semantics, the necessary well-formedness constraints are collected in predicate valid asm.
We add two more constraints for assembly processes: The system mode is forbidden and
the main-memory size is bounded by zero and the total size (TVM MAXPAGES) of
virtual memory in the system. Formally, we define:

is validproc sasm ≡
valid asm sasm ∧ 0 ≤ sasm.sprs ! PTL < int TVM MAXPAGES ∧ sasm.sprs ! MODE 6= 0

As mentioned in Section 4.2, we use the initialization predicate for the call process
create tsl prio img pages. If an assembly process is created, the initial state is uniquely
determined by the parameters img and pages, the memory image and the process size
in pages, respectively. We define a function that computes the initial state from both
parameters:

initasm img pages ≡
(|dpc = 0, pcp = 4, gprs = replicate 32 0,
sprs = replicate 32 0[PTL := to int32 pages − 1, MODE := 1],
mm = λad . if ad < |img | then img ! ad else 0|)

The program counters point to the first two addresses in the main memory. The register
files are initialized with 32 registers, each; the register values are set to zero with the
exception of MODE and PTL.4 The mode register is set to 1 indicating that the process

4The value of most special-purpose registers is irrelevant. The assembly semantics does not permit the
access in the user mode, anyways.

43

4 Process Abstraction

0 < pages ≤ TVM MAXPAGES |img | ≤ pages · PAGE SIZE

∀d∈set img . −231 ≤ d < 231 is initproc img pages s

is validproc s
(is init proc valid)

wproc s 6= eW is validproc s

is validproc (dproc success s)
(success valid)

wproc s = dev read dev id port (BufLength len)
|data| = len ∀d∈set data. −231 ≤ d < 231 is validproc s

is validproc (dproc (succ dev read data) s)
(succ dev read valid)

is request (wproc s) ∨ is receive (wproc s)
−231 ≤ hnsnd < 231 −231 ≤ hnadd < 231

∀d∈set msg . −231 ≤ d < 231 |msg | · 4 < 232 is validproc s

is validproc (dproc (succ receive hnsnd us gs msg hnadd ua ga stl ito devs) s)
(succ receive valid)

wproc s 6= eW −231 ≤ hn < 231 is validproc s

is validproc (dproc (succ new process hn) s)
(succ new process valid)

wproc s = read kernel info kinfo is validproc s

is validproc (dproc (succ kinfo staleh hns) s)
(succ kinfo staleh valid)

sizeproc s + pages ≤ TVM MAXPAGES is validproc s

is validproc (dproc (add memory pages) s)
(add memory valid)

pages < sizeproc s is validproc s

is validproc (dproc (free memory pages) s)
(free memory valid)

wproc s 6= eW is error sv is validproc s

is validproc (dproc sv s)
(is error valid)

wproc s = eW is validproc s

is validproc (dproc eSv s)
(no input valid)

Table 4.3: Rules on valid process models concerning the invariance of is validproc

44

4.3 The Assembly-Process Model

wproc s = process create tsl prio img pages is validproc s

tsl ≤ MAXTSL
(maxtsl create)

wproc s = chg sched params hn tsl prio is validproc s

tsl ≤ MAXTSL
(maxtsl sched)

wproc s = process create tsl prio (MObjSeq img) pages is validproc s

∀d∈set img . −231 ≤ d < 231

(img create)

wproc s = ipc send hnrcv rightssnd (MObjSeq msg) hnadd rightsadd tosnd

is validproc s

(∀d∈set msg . −231 ≤ d < 231) ∧ |msg | · 4 < 232
(msg send)

wproc s = ipc request hnrcv rghsnd (MObjSeq msg) hnadd rghadd tosnd buff torcv

is validproc s

(∀d∈set msg . −231 ≤ d < 231) ∧ |msg | · 4 < 232

(msg request)

Table 4.4: Rules on valid process models constraining the output function wproc

runs in user mode, and the PTL register reflects the intended size pages of the process,
such that mm size (initasm img pages) = pages.

Finally, we define the initialization predicate for assembly processes simply as an
equality test:

is initproc img pages sasm ≡ sasm = initasm img pages

Transitions. The transition function dproc is specified by a case distinction on the pro-
cess inputs. For all error inputs sv, the transition function updates the result register
22 with the corresponding error code and increases the program counters. Formally, we
define:

dproc sv sasm =
sasm(|gprs := sasm.gprs[22 := to int sv], dpc := sasm.pcp, pcp := (sasm.pcp + 4) mod 232|)

where to int converts the symbolic error inputs into the corresponding plain integer
number, e. g., to int err unprivileged = −4. Respectively the same holds for suc-
cess and succ new process hnnew, with a numerical result value of 0 and hnnew,
respectively. For the other successful kernel replies, dproc is defined in a similar fashion
but other general-purpose registers or the main memory are changed in addition to the
register 22. Iff the input is add memory pages, we increase the PTL register and zero-
initialize the additional memory. Most notably, the program counters are left unchanged
because they do not complete a pending kernel call. We specify

45

4 Process Abstraction

dproc (add memory pages) sasm =
sasm(|sprs := sasm.sprs[PTL := sasm.sprs ! PTL + to int32 pages],

mm := λi . if mm size sasm · 1024 ≤ i < (mm size sasm + pages) · 1024 then 0
else sasm.mm i |)

and respectively for free memory pages:

dproc (free memory pages) sasm =
sasm(|sprs := sasm.sprs[PTL := sasm.sprs ! PTL − to int32 pages]|)

Finally, we inherit the transition from the sequential assembly semantics for the empty
input:

dproc eSv sasm = dasm sasm

Output Functions. The output function wproc takes a process state sasm and computes
the corresponding output w. In short, the function determines whether a process gener-
ates an exception during the next step and classifies the various exceptions. A runtime
error subsumes all programming errors, namely illegal instructions, misaligned or out-
ranged memory accesses, or unintended arithmetic overflows.5 If the process is about to
execute a trap instruction, we further differentiate the various kernel calls (see Table
4.1 on page 39) and an undefined trap, which signals that a trap instruction occurs
with an unused trap number. Finally, if no exception is generated in the real system,
the function returns eW. We specify:

wproc sasm ≡
if is illegal instr sasm ∨ is misaligned pc sasm ∨ is misaligned data sasm ∨

is outranged pc sasm ∨ is outranged data sasm ∨ is overflow sasm
then runtime error
else if ∃imm. current instr sasm = trap imm then trap sel sasm else eW

The auxiliary function trap sel is essentially an elaborate case distinction on the imme-
diate constant of current instr sasm, i. e.,

current instr sasm = trap 1 =⇒
trap sel sasm =
process create (to nat32 (sasm.gprs ! 11)) (to prio (sasm.gprs ! 12))
(to memobj sasm (sasm.gprs ! 13) (sasm.gprs ! 14)) (to nat32 (sasm.gprs ! 15))

current instr sasm = trap 2 =⇒ trap sel sasm = process clone (sasm.gprs ! 11)
current instr sasm = trap 3 =⇒ trap sel sasm = process kill (sasm.gprs ! 11)

etc. and ultimately:

[[current instr sasm = trap imm; imm /∈ used trapnrs]]
=⇒ trap sel sasm = undefined trap

5The arithmetic operations of the VAMP come in two flavors: one set ignores overflows and the other
one generates an exception. We call an overflow unintended iff it occurs on an exception-generating
operation.

46

4.4 The C0-Process Model

The output function sizeproc is much easier to specify: It is simply defined to be mm
size.

Validity. With the above definitions, we have specified a model of assembly processes.
Now, we show that this model is indeed a valid process model such that we can later
use it in our kernel models.

Theorem 4.1 (Validity of the Assembly-Process Model). Our assembly-process model
is valid.

Proof. A process model is called valid if all 21 validity rules introduced in Section 4.2
hold for this model. From the definitions of is validproc sasm and sizeproc sasm, we can
easily conclude (size bounded). The proof of (add memory) mainly involves a careful
inspection of the definitions for dproc (add memory pages) sasm, sizeproc sasm, and mm
size sasm. Furthermore, we can conclude (add output), i. e., that the output after dproc

(add memory pages) sasm is greater or equal, because the program counters are not
altered and a possibly vanished memory-related error still satisfies our order relation.
Respectively the same can be said about (free memory) and (free output). In order to
prove (size const), we observe that sizeproc sasm is equal to mm size sasm and the latter
only accesses the special-purpose register PTL, which is only changed by dproc sv sasm if
the input sv is add memory pages or free memory pages. Similarly, we prove that
the remaining 15 rules hold. We save us the tedious walk through all those rules in
this document. In the work for this thesis, the validity of assembly processes has been
formally shown in Isabelle/HOL.

4.4 The C0-Process Model

C0 processes extend the sequential C0 language. There is, however, no built-in language
construct in C0 that permits the communication with the kernel. A common practice
in C programming is the implementation of language extensions by specialized libraries,
which internally use assembly code. We have used this technique for the desired kernel-
communication facilities: A special kernel library provides the kernel-call semantics to
C0 programs via functions, which are implemented in inlined assembly code. Using this
library, user programs can be written in C0 without extra portions of assembly. A kernel
call in the user program simply becomes a function call to one of the library functions.

As an example, Figure 4.1 on the following page shows the implementation of the
function vc process clone, which provides the kernel call process clone hn to C0
user programs. The implementation loads the parameter hn, which identifies the process
to clone, into register 11, performs a trap instruction passing constant 2, and returns
with the value of register 22, which contains the response from the kernel.

The implementation of some kernel calls, however, is more involved than the above
example suggests because our kernel library supports generic types. Typically, generic
types are used for data containers like doubly-linked lists. We use this concept primarily
to permit sending and receiving of arbitrarily typed C0 values between processes. Un-
fortunately, C0 does not support a generic programming concept like C++ templates

47

4 Process Abstraction

int vc_process_clone(unsigned int hn) {
int result;
asm { lw(r11, r30, asm_offset(hn));

trap(2);
sw(r22, r30, asm_offset(result));

};
return result;

}

Figure 4.1: Implementation of the function vc process clone from the kernel library

[Int98, § 14]. Hence, we use C preprocessing macros [Ame99, § 6.10.3] to specify generic
patterns for individually typed library functions.

More specifically, the actual C0 program code and the library implementation of a C0
process are linked together on the source-code level. Thus, the programmer can specify
via macros within the C0 program code, for which concrete types the C0 program requires
which of the generic library functionality. The C preprocessor then expands the macros
from the pattern specified in the library to a particular function implementation. The
following macro, for instance, expands to the definition of the function vc ipc send
int, which is used to send a single integer to another process:

DEFINE_VAMOS_IPC_SEND(int)

This general approach has first been used within Verisoft for the C0 library of doubly-
linked lists [Ngu05].

Furthermore, our library supports the exchange of arbitrarily typed data via IPC. On
the kernel level, there are no means to control that the corresponding data types match.
Thus, a C0 process might expect to receive a longer message from another process than
the latter actually sends.6

Even worse, a process might receive a value that is out of range for the concerned type:
All C0 values of a fundamental type are represented by 32-bit integers on the assembly
layer but a Boolean value is represented by either 0 or 1; the value 2 should just never
occur (and might confuse the C0 semantics). Hence, the kernel library features special
assembly code that sanitizes the received data by converting possibly illegal data into a
valid value. For a Boolean value, its representation is set to 1 unless it had been zero,
for a character value, all bits above the eighth are set to zero, and for a pointer value,
the representation is simply turned into 0 (meaning Null).

We now turn our attention towards the definition of the actual process model.

6Note that the kernel rejects to send a message if it exceeds the buffer of the intended receiver. The
possibility to receive a shorter message, on the contrary, we regard as a distinctive feature. The SOS,
for instance, supports a wide range of various requests, some requiring more, others less parameters.
Hence, the SOS library features a short and a long message type for sending and always calls receive
with the long message type.

48

4.4 The C0-Process Model

State Space. Unlike assembly processes, we cannot simply reuse the state space of the
sequential C0 semantics for C0 processes.

First, the sequential transition function is partial, i. e., dC0 returns ⊥ in case of a
programming error like null-pointer dereferencing. In order to keep track of such an error,
we extend the state space of the sequential semantics by the value ⊥. The sequential
program state is kept in the record component sC0.pstate of the C0-process state sC0.
Thus, sC0.pstate is either ⊥, or dsC0.pstatee.prog stores the remaining statements and
dsC0.pstatee.mem the current state of the program variables and the heap objects.

Second, we need to retain the static program definition within the process state be-
cause though the program definition is static during the lifetime of a C0 program in
execution, a process might be replaced by another one during the lifetime of the com-
puter system. Hence, a C0-process state sC0 features the record components sC0.typetab
and sC0.funtab, which represent the type-name table and the function table. Note that
the symbol table of the global variables can be reconstructed from the memory config-
uration dsC0.pstatee.mem and does not need to be stored additionally (for sC0.pstate =
⊥, the program definition is irrelevant).

Finally, the sequential C0 semantics implicitly assumes sufficient memory, which is
inappropriate for C0 processes. Hence, we store the main-memory size of the process in
the record component sC0.mmsize.

Summarizing, a state sC0 of a C0 process comprises the following four components:
• sC0.pstate holds the current program state of the C0 program in execution,
• sC0.typetab retains the type-name table,
• sC0.funtab stores the function table, and
• sC0.mmsize contains the current main-memory size of the process.

In the remainder of the section, we define the according predicates is validproc and is
initproc for C0-process states, their transition function dproc, as well as the corresponding
output functions wproc and sizeproc.

Predicates. The validity predicate is validproc formulates well-formedness constraints
on the states of a process model. For C0, we inherit those from the sequential semantics.
These are collected in the predicate valid C0 tt ft c, which takes three parameters: the
type-name table tt, the function table ft, and the state c of the program in execution.
Additionally, we require two conditions for well-formed C0 processes.

First, the main-memory size is bounded by the total size (TVM MAXPAGES) of virtual
memory in the system.

Second, the program has to comply with the kernel library. More specifically, if items
of the kernel library are declared in the program definition, the items have to match
with the library’s one.

We illustrate the latter condition by an example: If there is a function called vc
process clone then it has exactly one parameter, which has the name hn and the type
unsigned 32-bit integer, and the return type of the function is signed 32-bit integer. It
does not suffice, however, to constrain the function’s calling interface, i. e., the parameters
and the return type. In order to figure out whether an assembly memory image can be

49

4 Process Abstraction

abstracted to a C0 process, we have to know in the process model how the library
functions are implemented.

From Figure 4.1 on page 48, we learn that function vc process clone has exactly one
stack variable, which is called result and its type is signed 32-bit integer. Furthermore,
we constrain the function body with a predicate is clone body. Note that for a generic
function pattern, we cannot define a constant with its function body in the C0 semantics,
even if the implementations of the function body (as expanded by the C preprocessor)
are identical: Recall that a statement in the C0 semantics features an identifier, which is
unique in the whole program code. Thus, two functions generated from the same pattern,
like vc ipc send int and vc ipc send bool, feature distinct statement identifiers. For
the same reason, we refrain from defining constants for the body of fixed functions like
vc process clone.

We specify our requirements on vc process clone as follows:

(“vc process clone”, fdef) ∈ set ft =⇒
is clone body fdef .body ∧
fdef .stack vars = [(“result”, Integer)] ∧
fdef .params = [(“hn”, UnsgndT)] ∧ fdef .rettype = Integer

Similarly, we proceed for all functions of the kernel library. Finally, we collect all these
requirements on the program definition in the predicate libvamos compatible tt ft gst.

Note the slight difference of our approach compared to the one that In der Rieden &
Tsyban [IT08, In 09] pursue when linking a library with the C0 code of a kernel: They
assume two distinct programs, which are then linked together, while we only regard the
linked C0 program. Where they require certain preconditions on the two programs to
link, we simply specify the class of C0 programs that is compatible with our library.
This different perspective might be influenced by the different nature of the libraries:
While In der Rieden & Tsyban just regard a library with fixed functions, we deal with
generic function patterns for generic types.

Now, we formally specify the validity of C0-process states:

is validproc sC0 ≡
sC0.mmsize ≤ TVM MAXPAGES ∧
(case sC0.pstate of ⊥ ⇒ True
| bcc ⇒ valid C0 sC0.typetab sC0.funtab c ∧

libvamos compatible sC0.typetab sC0.funtab (gm st c .mem))

The initialization predicate is initproc img pages sC0 is used for the call process
create tsl prio img pages. It determines whether the C0 state sC0 is a valid initial
state of size pages with a C0 program that can be compiled into the memory image
img . At first, the process should have the correct size. Furthermore, the C0 program
has to be compilable and compatible with the kernel library. The program state should
be the initial state of this program. Finally, the code of the compiled program should
be stored in img and the address range for the global variables should be zero-initialized
(we summarize both conditions in the auxiliary predicate is compilation tt ft gst img).
Formally:

50

4.4 The C0-Process Model

is initproc img pages sC0 ≡
sC0.mmsize = pages ∧
(∃gst. is compilable sC0.typetab sC0.funtab gst ∧

libvamos compatible sC0.typetab sC0.funtab gst ∧
sC0.pstate = binit C0 sC0.funtab gstc ∧
is compilation sC0.typetab sC0.funtab gst img)

Transitions. The transition function of C0 processes is defined as a case distinction on
the process input sv. Three such inputs are kernel responses that do not fit into a single
result value: succ dev read data, succ receive hnsnd reusedsnd rightssnd msg hnadd

reusedadd rightsadd stale ito devs, and succ kinfo staleh hns. As the corresponding
updates are quite involved, we encapsulate them in the functions c0 updt succ read,
c0 updt succ receive, and c0 updt succ kinfo, respectively. These functions compute
the next program state from the type-name table, the program state, and (some of) the
input parameters.

The update for the inputs add memory pages and free memory pages, in contrast,
is straightforward: We just add or subtract the specified number of pages from the
component sC0.mmsize.

If the input is eSv, we use the sequential transition function dC0 in order to compute
the program state of the next step. For all other inputs, namely success, succ new
process hnnew, and the error inputs, we simply update the result variable by to int sv.
This update is encapsulated in the function set result tt c i.

Formally, we specify the transitions of C0 processes as follows:

dproc sv sC0 ≡
case sv of
succ dev read data ⇒

sC0(|pstate := let⊥ c = sC0.pstate in c0 updt succ read sC0.typetab c data|)
| succ receive hnsnd reusedsnd rightssnd msg hnadd reusedadd rightsadd stale ito

devs ⇒
sC0(|pstate := let⊥ c = sC0.pstate

in c0 updt succ receive sC0.typetab c hnsnd rightssnd msg hnadd

rightsadd (to int sv)|)
| succ kinfo staleh hns ⇒

sC0(|pstate := let⊥ c = sC0.pstate in c0 updt succ kinfo sC0.typetab c hns|)
| add memory pages ⇒ sC0(|mmsize := sC0.mmsize + pages|)
| free memory pages ⇒ sC0(|mmsize := sC0.mmsize − pages|)
| eSv ⇒ sC0(|pstate := let⊥ c = sC0.pstate in dC0 sC0.typetab sC0.funtab c |)
| ⇒ sC0(|pstate := let⊥ c = sC0.pstate in set result sC0.typetab c (to int sv)|)

where we write let⊥ x = a in e as shorthand for case a of ⊥ ⇒ ⊥ | bxc ⇒ e.

If we use the function set result tt c i, we implicitly assume that the process has
signaled a kernel call via wproc. We may do so because of the constraints on valid process

51

4 Process Abstraction

models (see Table 4.3 on page 44): If the process output is empty, i. e., wproc sC0 = eW, a
process transition is only known to yield a valid successor state with one of the following
inputs: eSv, add memory pages, or free memory pages. In neither case, we use the
function set result. As we will see below, the other outputs are either kernel calls, in
which case the C0 process calls one of the kernel-library functions, or a runtime error.

In case of a runtime error, we explicitly set the program state to ⊥; otherwise, we
update the result variable lv of the current function-call statement fst stmt c.prog =
SCall lv fn ps sid by the specified new value i. Moreover, we remove the call statement
from the program using function rm scall, which replaces the first statement by Skip if
it is a function call:

fst stmt c.prog = SCall lv fn ps sid =⇒ fst stmt (rm scall c.prog) = Skip

We specify function set result as follows:

set result tt c i ≡
case fst stmt c.prog of
SCall lv fn ps sid ⇒
let⊥ m ′ = mem write tt c.mem (VarAcc lv) i
in b(|mem = m ′, prog = rm scall c.prog|)c
| ⇒ ⊥

Using this function, we can now specify the remaining update functions c0 updt succ
read, c0 updt succ receive, and c0 updt succ kinfo. All three functions are defined in
a very similar fashion, hence, we only present the specification of c0 updt succ receive
as a representative:

c0 updt succ receive tt c hnsnd rightssnd msg hnadd rightsadd i ≡
case fst stmt c.prog of
SCall lv fn ps sid ⇒
if ∃ys. fn = “vc ipc receive ” } ys
then if hnadd = HN NONE

then let⊥ m ′ = mem writes tt c.mem
[(Deref (ps ! 0), [hnsnd]),
(Deref (ps ! 1), [rights2num rightssnd]),
(Deref (ps ! 2), msg), (Deref (ps ! 3), [HN NONE])]

in set result tt (c(|mem := m ′|)) i
else let⊥ m ′ = mem writes tt c.mem

[(Deref (ps ! 0), [hnsnd]),
(Deref (ps ! 1), [rights2num rightssnd]),
(Deref (ps ! 2), msg), (Deref (ps ! 3), [hnadd]),
(Deref (ps ! 4), [rights2num rightsadd])]

in set result tt (c(|mem := m ′|)) i
else if hnadd = HN NONE

then let⊥ m ′ = mem writes tt c.mem
[(Deref (ps ! 6), [rights2num rightssnd]),

52

4.4 The C0-Process Model

(Deref (ps ! 7), msg), (Deref (ps ! 8), [HN NONE])]
in set result tt (c(|mem := m ′|)) i

else let⊥ m ′ = mem writes tt c.mem
[(Deref (ps ! 6), [rights2num rightssnd]),
(Deref (ps ! 7), msg), (Deref (ps ! 8), [hnadd]),
(Deref (ps ! 9), [rights2num rightsadd])]

in set result tt (c(|mem := m ′|)) i
| ⇒ ⊥

This function specification is the most elaborate one of our update functions. We distin-
guish, whether the kernel responds to an ipc receive or an ipc request call. In the
former case, we update the first parameters, in the latter, we skip the first seven param-
eters that belong to the send part and update the subsequent parameters. Moreover, a
ipc request call receives from the same communication partner that it did send to,
and hence, there is no need to store a handle to the sender, which is necessary for ipc
receive. In both cases, we update the parameter for the additional rights only if the
sender has provided an additional handle (i. e., the additional handle is not HN NONE).

Output Functions. The output function wproc takes a process state sC0 and computes
the corresponding output w. Mainly, we distinguish three cases:

1. A runtime error is indicated, e. g., by an undefined state,
2. the program is about to call one of the kernel-library functions, or
3. the program intends a local step without kernel communication.
Note that runtime errors might show at different stages of the inspection of sC0: If

during previous program execution, an uninitialized variable has been read or the Null-
pointer dereferenced, the function dC0 is undefined, i. e., sC0.pstate has been set to ⊥.
This value directly encodes a previous runtime error. Another runtime error is insufficient
memory, i. e., if predicate sufficient memory does not hold.

Furthermore, there must be sufficient stack memory to invoke the function, i. e., pred-
icate sufficient stack holds, if a kernel-library function has been called. In addition, a
runtime error may be revealed during the expression evaluation of kernel-call arguments.

Technically, we first exclude an undefined program state and insufficient memory.
Both conditions immediately lead to a runtime error. Otherwise, we distinguish the
first statement of the remaining program. If it is a function call, we check for sufficient
stack memory. Insufficient stack memory leads to a runtime error. Otherwise, the
corresponding output depends on the function name and the specified arguments – we
hide the further case distinction on the function’s name and arguments in the constant
get output. If the first remaining statement is not a function call, we always return eSv.

Thus, we specify:

wproc sC0 ≡
if sC0.pstate = ⊥ ∨
¬ sufficient memory (sC0.mmsize · PAGE SIZE) sC0.typetab sC0.funtab dsC0.pstatee

then runtime error

53

4 Process Abstraction

else case fst stmt dsC0.pstatee.prog of
SCall lv fn ps sid ⇒
if ¬ sufficient stack sC0.typetab sC0.funtab dsC0.pstatee fn then runtime error
else get output sC0.typetab dsC0.pstatee fn ps
| ⇒ eW

The auxiliary function get output is essentially an elaborate case distinction on the
function name fn, e. g.,

fn = “vc process clone” =⇒
get output tt c fn es =

(case mem read tt c.mem (es ! 0) of ⊥ ⇒ runtime error
| bvc ⇒ process clone v)

fn = “vc process kill” =⇒
get output tt c fn es =

(case mem read tt c.mem (es ! 0) of ⊥ ⇒ runtime error
| bvc ⇒ process kill v)

fn = “vc process change scheduling” =⇒
get output tt c fn es =

(let hn = mem read tt c.mem (es ! 0); tsl = mem read tt c.mem (es ! 1);
prio = mem read tt c.mem (es ! 2)

in if |es| 6= 3 ∨ hn = ⊥ ∨ tsl = ⊥ ∨ prio = ⊥ then runtime error
else chg sched params dhne dtsle (nat2prio dprioe))

etc. and ultimately:

¬ is kcall fn =⇒ get output tt c fn es = eW

The output function sizeproc is much easier to define: It simply returns the current
value of component sC0.mmsize, i. e., sizeproc sC0 ≡ sC0.mmsize.

Validity. With the above definitions, we have specified a model of C0 processes. As for
assembly processes, we can show that this model is valid.

Theorem 4.2 (Validity of the C0-Process Model). Our C0-process model is valid.

Proof. A process model is called valid if all 21 validity rules introduced in Section 4.2
hold for this model. In principle, we prove these rules for C0 processes in the same
manner as for the assembly processes. As an example, the equations (size bounded),
(add memory), and (free memory) easily follow from the definitions of is validproc sC0,
sizeproc sC0, dproc (add memory pages) sC0, and dproc (free memory pages) sC0.

Despite these simple examples, the overall proof effort for the validity of the C0-process
model is considerably higher than the one for the assembly-process model. One reason
for the increased effort is the more abstract (and highly redundant) memory model. The
explicitly typed memory leads to a much more complex, nested invariant on C0 states.
This invariant needs to be maintained for all changes induced by kernel calls.

54

4.5 Extended Compiler Correctness

Usually, the kernel calls change the process state similarly to normal program behavior.
IPC, however, is an exception to that rule: A process might receive a message, which is
shorter than the size of the corresponding buffer variable. In the sequential C0 semantics,
on the contrary, there is no means to partially update a variable. Such special cases in
the process semantics add to the effort of showing that the invariant is maintained.

Another difficulty results from the evaluation of expressions: In assembly, the values
for a computation are directly read from a register or a single memory cell. In C0, on
the contrary, such values can be expressed by complex expressions. Consequently, there
is a considerably longer chain of reasoning involving the complex invariant to conclude,
for instance, that a particular argument is in a specified range.

The validity of the C0-process model has been formally shown in Isabelle/HOL.

4.5 Extended Compiler Correctness

Recall that Leinenbach & Petrova [LP08] have shown compiler correctness for the se-
quential C0 semantics with respect to the sequential part of assembly (cf. Theorem 2.1
on page 23). In this section, we extend their result to the two corresponding process
semantics, which have been defined in the last two sections. In particular, we extend the
existing simulation relation for processes, define predicates for the successful execution
of processes, and formally state that C0 processes simulate assembly processes.

At first, we extend the existing C0 simulation relation. While assembly processes
share their state space with the sequential assembly semantics, C0 processes additionally
hold information on occurred runtime errors, the program definition, and the available
memory size. In essence, our extension is a merely syntactic adaptation, relating the
program state sC0.pstate of a C0-process state sC0 and an assembly state sasm with the
sequential C0 simulation relation consistent. Certainly, this relation is only meaningful if
there has been no runtime error. In this case, there is simply no corresponding assembly
process. Furthermore, the memory size in C0 and in assembly should coincide. We
define:

Definition 4.2 (Process-Simulation Relation). The simulation relation consistentproc

states that an assembly-process state sasm encodes a C0-process state sC0.
Formally, we specify:

consistentproc sC0 alloc sasm ≡
(sC0.pstate 6= ⊥ ∧ consistent sC0.typetab sC0.funtab dsC0.pstatee alloc sasm) ∧
sC0.mmsize = mm size sasm

Now, we define the successful execution of C0 and assembly processes in analogy
to the successful execution of sequential assembly code (see Definition 2.3 on page 22).
Intuitively, a successful execution is characterized by the absence of runtime errors (wproc

s 6= runtime error).
Recall, however, that the compiler-correctness theorem does not hold if statements

with inlined assembly are executed in the C0 semantics, i. e.,

55

4 Process Abstraction

∀i<n. ¬ is Asm (fst stmt ddiC0 tt ft (init C0 ft gst)e.prog)

Though there are different techniques [GHLP05, ST08] to overcome this restriction, we
exclude inlined assembly in C0 processes because it is simply dispensable: The kernel
library has especially been implemented to spare additional assembly code.

Note that in contrast to the sequential semantics, process transitions take inputs from
the kernel. We require that the inputs are valid with respect to the current process
state. The rules presented in Table 4.3 on page 44 specify that process validity should
be preserved under transitions with certain inputs. Indirectly, these rules formulate
requirements on the valid inputs. We gather the valid process inputs for a certain
process state s in the set valid proc inputs s.

Finally, we define the successful execution of C0 processes as follows:

Definition 4.3 (Successful Execution of a C0 Process). We call a computation of a C0
process a successful execution iff
• all process inputs are valid with respect to the current process state,
• there is no runtime error in any state of the computation, and
• no inlined assembly statement is to be executed during the computation.

Formally, we specify the successful C0-process execution inductively over input se-
quences:

`proc
C0 sC0

[]−→ s ′C0 ≡ sC0 = s ′C0 ∧ wproc sC0 6= runtime error

`proc
C0 sC0

(i � is)−−−−−→ s ′C0 ≡ `proc
C0 dproc i sC0

is−→ s ′C0 ∧ i ∈ valid proc inputs sC0 ∧
wproc sC0 6= runtime error ∧ ¬ is Asm (fst stmt dsC0.pstatee.prog)

Conceptually, the successful execution of assembly processes is defined analogously.
The sequential compiler correctness, however, additionally guarantees that the assembly
code generated by the compilation of C0 programs does not modify itself. More formally,
assembly code should neither write into the code range crange of the memory (¬ mem
write inside range sasm crange), nor should the program counters point outside this range
(inside range crange sasm.dpc).

Furthermore, there is a slight difference between C0 and assembly executions regarding
runtime errors: A C0 computation is not a successful execution if the state s ′C0 reached
at the end features a runtime error while for successful assembly computations, the last
state s ′asm is unconstrained. This difference stems from a different recognition of runtime
errors. In C0, we recognize it after a transition by the invalid program state ⊥, while
in assembly, we employ predicates specifying whether an exception occurs during the
next step. Thus, a runtime error diagnosed in the current assembly state occurs in the
subsequent step of the C0 semantics. For the same reason, we do not check in assembly
for runtime errors, illegal write accesses, and the range of the program counter iff the
input is add memory pages or free memory pages.

Finally, we define the successful execution of assembly processes:

Definition 4.4 (Successful Execution of an Assembly Process). We call a computation
of an assembly process a successful execution with respect to a code range crange iff

56

4.5 Extended Compiler Correctness

• all process inputs are valid with respect to the current process state and
• unless prior to an input add memory pages or free memory pages:

– no runtime errors occur during a transition for the computation,
– the memory in crange is not written, and
– all instructions are only fetched from crange.

Formally, we specify the successful assembly-process execution inductively over input
sequences:

crange `proc
asm sasm

[]−→ s ′asm ≡ sasm = s ′asm

crange `proc
asm sasm

(i � is)−−−−−→ s ′asm ≡ crange `proc
asm dproc i sasm

is−→ s ′asm ∧
i ∈ valid proc inputs sasm ∧
((∀pages. i 6= add memory pages ∧ i 6= free memory pages) −→
wproc sasm 6= runtime error ∧ ¬ mem write inside range sasm crange ∧
inside range crange sasm.dpc)

In principle, we can formally state the process-simulation theorem based on these
definitions. For convenience, however, we additionally define an abbreviation: Recall
that the sequential simulation theorem might require several transitions in the assembly
semantics for a single transition in the C0 semantics. With our notions of successful
process execution, we reflect this circumstance by input sequences of different length.
Although an assembly process might perform more transitions than a C0 process, we
should certainly require that the actual kernel interaction, i. e., all inputs except for
eSv, remain equal. For this purpose, we define a normalization function �is� over input
sequences is that simply removes all empty input. Formally: �is� ≡ [i∈is . i 6= eSv]

Theorem 4.3 (Process Simulation). We assume that the parameters img and pages
are well-formed wrt. (is init proc valid) on page 44, there is an initial C0-process state
sC0 satisfying these parameters, and a successful execution leads from sC0 using the input
sequence is into the state s ′C0.

If the above assumptions hold, there exists an input sequence is ′, an allocation function
alloc, and a final assembly state s ′asm such that
• the normalized input sequences �is� and �is ′� are equal,
• starting in the initial assembly state that is uniquely identified by img and pages,

the assembly process successfully advances under is ′ to s ′asm, and
• the final C0 state s ′C0 simulates s ′asm under the allocation function alloc.

Formally:7

[[∀d∈set img . −231 ≤ d < 231; 0 < pages ≤ TVM MAXPAGES;
is initproc img pages sC0; `proc

C0 sC0
is−→ s ′C0]]

=⇒ ∃is ′ alloc s ′asm. �is� = �is ′� ∧
code range sC0 `proc

asm initasm img pages
is ′−→ s ′asm ∧

consistentproc s ′C0 alloc s ′asm

7Note that for succinctness, we overload the function code range for C0 processes:
code range sC0 ≡ code range sC0.typetab (gm st dsC0.pstatee.mem) sC0.funtab

57

4 Process Abstraction

sn
asm s1

asm s2
asm s3

asm s4
asm sm

asm

si
C0 s′C0 s′′C0 si+1

C0

dproc eSv dproc eSv

dproc i

dproc eSv dproc eSv

dC0

SCall

dC0

Return

dproc i

consistentproc consistentproc

ω

ω

Figure 4.2: Verification scheme for the vc process clone function

Proof. The proof scheme for extended compiler correctness largely follows its sequential
counterpart. We verify the theorem in two steps:

Using Theorem 2.1 on page 23 (sequential compiler correctness), we can establish
the sequential consistency relation for a successor of the initial assembly state, which
is well-formed and its special-purpose registers have remained constant. Hence, the
process-simulation relation can be established as well.

In a second step, we show inductively, that (a) the well-formedness and (b) the process-
simulation relation are preserved under input sequences. In the induction step of this
proof, we distinguish the possible process inputs. Well-formedness means the invariance
of is validproc under a transition with any valid input. Using Theorem 4.1 on page 47
and Theorem 4.2 on page 54, we can easily establish this claim for each valid input.

The second claim, that the process-simulation relation is preserved, is much more
involved. For an empty input eSv, we employ Lemma 2.2 on page 24 (the sequential in-
duction step). For the other inputs, we examine the implementation of the corresponding
kernel-library functions.

Figure 4.2 shows the case that the library function vc process clone is called in a
C0-process state si

C0. From the induction hypothesis, we know that there exists a corre-
sponding assembly state sn

asm that satisfies the simulation relation consistentproc. Using
the sequential C0 semantics, we execute the function-call statement. From the sequential
compiler theorem, we know that the execution8 (dproc eSv) of the corresponding, compiled
code yields an assembly state s1

asm satisfying the simulation relation consistentproc.
Starting in this state, we execute the inlined assembly code (cf. Figure 4.1 on page 48)

of the function body. After a transition, the code reaches the trap instruction in state
s2
asm. At this stage, the transition function dproc uses an input i from Vamos to proceed

to s3
asm. After a further step, we arrive at the end of the inlined assembly code. From

the final assembly state s4
asm and the C0 state s′C0 immediately before the execution of

8Recall that a transition dasm is equal to dproc eSv.

58

4.5 Extended Compiler Correctness

the inlined assembly statement, we construct the corresponding s′′C0 immediately after
the assembly statement. For this to work, we have to show that the assembly code did
not disrupt the C0 execution environment (code, stack pointer, etc.). If the assembly
code preserves the integrity of the execution environment, we can again establish the
consistentproc relation.

In state s′′C0, we employ the sequential C0 semantics to execute the return statement
and arrive in the state si+1

C0 . From the compiler theorem, we know that there exists a
corresponding assembly process such that the simulation relation holds. If the primitive
implementation is correct, the state si+1

C0 is equal to the state computed from state si
C0

by dproc with the input i.
The proof for the other primitives proceeds similarly. Recall that our library is poly-

morphic. We have formalized the proof in Isabelle/HOL for 10 of the 12 fixed library
functions and for 2 of the 5 function patterns that constitute the kernel library.

Proof Experiences and Challenges. When we applied Lemma 2.2 on page 24 (the
sequential induction step) for the case of an empty input eSv, we identified a problem
with arithmetic-overflow exceptions. Previously, compiler correctness had only been
used for programs running in system mode. While overflow exceptions are turned off
in system mode, they might occur in user mode. Upon our request, Dirk Leinenbach
has strengthened his theorems accordingly. Furthermore, we could improve an earlier
version of this lemma during our formal proof work and abandon or weaken some not
strictly necessary preconditions (this thesis presents the improved version).

For reasoning about inlined VAMP assembly, we have been able to partially reuse
previous work [ST08]. Note, however, that some generally helpful lemmata of this work,
like the absence of exceptions during the execution of an inlined assembly statement,
assume that only sequential assembly transitions are executed and formally break when
we introduce our process-specific trap semantics.

Furthermore, the verification of inlined assembly within C0 processes is more com-
plicated than within sequential C0 programs. One complication originates from the
additional input of transitions and the necessity to show that this input is valid. Most
notably, the empty input eSv is only valid if the process output is eW, cf. (no input
valid) on page 44. In this context, we deal with additional interrupt sources9 as well
as with the memory consumption. The latter might be statically over-estimated to an
upper bound (cf. [Alk09, Section 3.3.8]) in the verification of sequential C0 functions
with inlined assembly code.

Another obstacle is the often redundant error-checking in the sequential C0 transitions.
In the C0 process semantics, we evaluate the expressions involved in a kernel call already
when we compute the output for the current state. Hence it is often clear from the
context that a memory update cannot fail. The sequential C0 transitions, however,
check every time for failure and thus, we repeatedly provide evidence for its absence. A
related problem is not process-specific: C0 transitions frequently check type correctness,

9Namely, arithmetic-overflow exceptions may occur in user mode while they are disabled in the system
mode—the same reason why the original compiler-correctness theorem had been too weak.

59

4 Process Abstraction

which is always redundant because valid C0 programs are generally type-safe.
Fortunately, we could draw on synergies with a parallel proof development: Mareike

Schmidt [DSS10] pioneered in verifying correctness for a similar library of the real-
time kernel olos. Nevertheless, the verification effort for the correctness proof of our
library is considerable because our library is much more extensive. The Vamos library
supports 16 kernel calls, which are implemented in 12 fixed functions and 5 function
patterns, compared to 3 calls implemented in 3 fixed functions for olos. In addition,
there remain some technical issues.

First, our kernel library supports generic types. Though this feature has previously
been implemented with the C0 library of doubly-linked lists [Ngu05], we are the first
to aim at the verification of generic C0 functions with inlined assembly. Additionally,
the correctness proof of the list-manipulation functions formally depends (for historic
reasons) on the particular type instance. Just recently, Schirmer & Wenzel [SW09]
presented an improved representation for state spaces in Simpl to overcome this problem.
For inlined assembly code, we unfortunately cannot use the Simpl framework. Still, we
certainly rely on a generic proof for all possible type instances of the generic function
patterns in the library.

Second, our library supports – in contrast to the olos library – the exchange of
arbitrarily typed data. Hence, our library features special assembly code that sanitizes
possibly invalid, received data. This assembly code comprises 32 instructions containing
jumps and branches, and is thus comparatively complicated.

Third, a particularly complex problem concerns changes of larger memory chunks
during inlined assembly computations. This problem has previously appeared in several
case studies. Alkassar [Alk09, Section 3.3.9], for instance, complains about the memory
representation in the C0 semantics, which scatters C0 values of an aggregate type into
different values of a fundamental type. For the construction of the C0 state immediately
after the assembly statement (denoted by s′′C0 in Figure 4.2 on page 58), the changed
memory addresses have to be related to C0 left-expressions. Due to the scattered memory
representation, the current formalization requires that these left-expressions have to be
of fundamental types. With aggregate types, we can deal by decomposition into its
fundamental types. This approach, however, induced a considerable overhead during
the verification of the olos library.10 Schmidt naturally focussed on the particular
aggregate type, which is exchanged in olos, rather than developing a general, reusable
technology that might systematically deal with aggregate types. Certainly, we cannot
repeat the verification of IPC-receive and -request kernel calls for each type. We should
rather generalize the existing formalization to support arbitrary types.

Existence of an Initial State. Recall that both, the sequential compiler-correctness
theorem as well as the process-simulation theorem, rely on the existence of an initial
assembly state representing the compiled C0 program. Below, we substantiate the va-
lidity of this assumption for processes. More precisely, the process-simulation theorem

10Unfortunately, the proof details do not fit into a conference paper. The interested reader might soon
find them in Mareike Schmidt’s PhD thesis.

60

4.5 Extended Compiler Correctness

assumes the predicate is initproc img pages sC0 to hold, where the parameters img and
pages uniquely identify the initial assembly state.

In essence, is initproc conjoins the predicates is compilable, libvamos compatible, and
is compilation (see Section 4.4). We inherit is compilable from sequential compiler cor-
rectness. The predicate libvamos compatible constrains the definition of functions with
particular names only if they are present in the function table. Thus, any C0 program
can be made compatible with the kernel library by renaming its functions.

It just remains to show that a suitable memory image img can be constructed for
each compilable program. Besides the predicate is compilation, there are two indirect
requirements on a suitable image: When an existing process issues a kernel call process
create tsl prio img pages, the parameter img must be well-formed, see (img create)
on page 45. Furthermore, the kernel rejects the process creation if an image exceeds the
memory size of the new process. The latter, however, is bounded by the constant TVM
MAXPAGES, see (is init proc valid) on page 44. We state:

Lemma 4.4. For each compilable program, there is a suitable memory image.

is compilable tt ft gst =⇒
∃img . is compilation tt ft gst img ∧ (∀d∈set img . −231 ≤ d < 231) ∧
|img | ≤ TVM MAXPAGES · PAGE SIZE

Proof. Using the conversion function to int32, we construct a witness img for the exis-
tential quantifier by converting the compiled program codegen program tt ft gst – a list
of assembly instructions – instruction-wise into an integer list. From this construction
method, we can easily conclude that img stores the compiled program code, i. e., is
compilation tt ft gst img holds. Furthermore, the range of the conversion function is a
subset of the desired interval {−231..<231}. Finally, is compilable comprises static re-
source restrictions, which especially limit the overall program size. Hence, the program
code always fits into TVM MAXPAGES memory pages.

With this insight, we can easily construct a suitable initial process:

Lemma 4.5 (Existence of an Initial C0-Process State). For each compilable, libvamos-
compatible C0 program, we can find suitable parameters img and pages for the construc-
tion of an initial C0-process state. Formally:

[[is compilable tt pt gst; libvamos compatible tt pt gst]]
=⇒ ∃img pages. (∀d∈set img . −231 ≤ d < 231) ∧ 0 < pages ≤ TVM MAXPAGES ∧

is initproc img pages
(|pstate = binit C0 pt gstc, typetab = tt, funtab = pt, mmsize = pages|)

Proof. Using Lemma 4.4, the statement follows after unfolding the definition of is initproc

on page 51.

Possible Further Extensions. We like to point out a limitation of the present simulation
theorems: When the C0 execution finishes, i. e., the remaining program comprises a

61

4 Process Abstraction

single Skip statement, the program state reaches a fixpoint. In this case, the present
simulation relation consistent is weak, e. g., the program counters of the corresponding
assembly state are unconstrained. Consequently, we can, for example, not conclude from
the successful execution of a C0 process, that a simulated assembly process cannot fail.
The assembly process successfully executes until the remaining C0 program is empty –
but then, it might crash.

It is possible to strengthen the simulation relation and require in this case that the
program counters point to the beginning of a special exit code. Certainly, this exit
code is platform-specific. It can be supplied to the compiler as an additional parameter
similar to, e. g., the program base. With these prerequisites in place, we could extend
the C0-process model and the process-simulation theorem to the correct termination of
processes.

4.6 Conclusion

Our process abstraction is an important witness on how the coordinated effort of perva-
sive system verification differs from a verification approach that considers only a single
layer at a time. Strictly speaking, the encapsulation of processes into a self-contained
entity slightly complicates the code verification [DDW09, Sect. 6]. At the same time, it
is a necessary precondition for the abstraction of processes.

If only the implementation of the kernel is verified, the correctness statement might
focus on the kernel manipulations of the user-visible processor parts. More specifically,
this approach directly identifies the process state by the processor state as far as visible
from the user mode. Transitions of the kernel specification might even completely ab-
stract from the semantics of user-mode instructions and represent an arbitrary execution
sequence of instructions in the user mode as a single, non-deterministic state update.11

For pervasive verification, in contrast, the exact semantics of the user-mode instructions
is crucial because it is the foundation for the verification of application programs.

When processes are specified as self-contained entities, the general process abstraction
should be carefully crafted such that it fits different languages. Recall that a memory
image uniquely defines the initial state of an assembly process but not the one of a C0
process. In fact, our first general process model assumed a uniquely defined inital state
and had to be changed for the introduction of C0 processes.

11In a private conversation, Gerwin Klein reported that in the seL4 project [KEH+09], user-mode
instructions are indeed specified by non-deterministic state updates.

62

5 Adding Concurrency: The Kernel Models

Das also war des Pudels Kern!

Johann Wolfgang von Goethe, in: “Faust I”

Contents

5.1 Overview of the Model Components . 64
5.2 A Simple Kernel Call: set privileged Revisited 67
5.3 Process Termination . 68
5.4 Inter-Process Communication . 71

5.4.1 IPC Rights Management . 71
5.4.2 Specifying IPC in the VAMOS Model . 72
5.4.3 IPC in CoUP . 76

5.5 The Scheduler Specification . 78
5.6 Invariants over Execution Traces . 81
5.7 Conclusion . 85

In the previous chapter, we have described our process abstraction. Now, we embed
the processes into two concurrent kernel models, the Vamos specification, and the Coup
model. The former specifies the exact behavior of our microkernel with a particular
scheduler. In an ongoing refinement proof, this specification is linked to the actual C0
implementation [DDW09, Sect. 6]. When this verification effort succeeds, we know that
the specification indeed simulates the implementation of the kernel on the hardware.

The latter model abstracts the scheduler and focusses on the interaction of the pro-
cesses with the microkernel. We employ this more abstract model in order to describe
the reordering of interleaved sequences and to introduce C0 processes.

Both models are Moore machines. We formally define the kernel specification with
the tuple AV = (SV, S0

V, Σ̂, Ω̂, wV, dV) and the Coup model with AVC = (SVC, S0
VC,

Σ̂, Ω̂, wVC, ∆VC). The state spaces SV and SVC are supersets of the initial-state sets
S0

V and S0
VC, respectively. For the communication with the peripheral devices, we use

the input alphabet Σ̂ and the output alphabet Ω̂. The functions wV and wVC determine
the output in a current state. Finally, dV and ∆VC describe the transitions of the
models. A notable difference between these machines regards the determinism: While
the Vamos specification is fully deterministic, Coup features a non-determinism in its
scheduling decisions. Consequently, the transition relation dV is functional while ∆VC

is not. Besides that, the Vamos specification and the Coup model mainly differ in the
process abstraction.

63

5 Adding Concurrency: The Kernel Models

Certainly, it is desirable to share common concepts, which minimizes the specification
work as well as the need for equivalence proofs. A vital role for reusable specifications has
been our process abstraction: It proved to be beneficial that many definitions for the Va-
mos specification have been generalized for arbitrary process abstractions (as described
in Section 4.1) and thus, can be reused in Coup as well. From this perspective, the
generalization of the whole Coup model to arbitrary process abstractions is just a logical
continuation because it paves the way for the integration of other language semantics.

Below, we describe the different components of the models side by side. A complete
formal definition of both models, however, is beyond the scope of this thesis. Thus, we
content ourselves with exemplary insights that become relevant in proofs of the remaining
document: Our main focus regards the differences in the formalization of both models
with an emphasis on reusable specification functions for similar parts. These differences
concern us in the simulation proof between Vamos and Coup in Chapter 6. Furthermore,
we describe the scheduler specification, which the fairness proof in Chapter 7 relies on.
Finally, we formulate and prove an invariant on the execution traces of the Vamos
specification, which is used in both proofs.

Credits and Own Contribution. Jan Dörrenbächer has developed an initial kernel spec-
ification before the process abstraction had been invented; he has generalized the initial
specification to arbitrary process models and continuously maintained the Vamos spec-
ification. Furthermore, he has formulated an initial Vamos invariant and proved its
invariance for a few exemplary cases.

For the general idea of a computational Vamos model with C0 processes, I am indebted
to Eyad Alkassar [Alk05]. The Coup model as such, however, is my own contribution.
A joint effort of Jan Dörrenbächer and me have been adaptations to many Vamos
specification functions improving its reusability. During my verification work, I have
fixed many flaws and oversights in both models, on the one hand, and considerably
strengthened the Vamos invariant, on the other hand. Furthermore, I showed the actual
invariance of the formulated Vamos invariant.

5.1 Overview of the Model Components

Communication Alphabets. Our kernel uses memory-mapped I/O for device commu-
nication. Hence, the output alphabet Ω̂ comprises read and write accesses to device
addresses. The input alphabet Σ̂ is a set of pairs, consisting of the raised interrupt lines
(a set ints of device identifiers) and incoming data (a list mifo of 32-bit integers that
have been read from a device). Hillebrand et al. [HIP05, AH08] have described the
device interface in detail.

State Spaces. A state sV ∈ SV comprises the following components:

sV.procs is a partial function that maps process identifiers (PIDs) to their assembly
states sasm. For inactive processes, this function is undefined.

64

5.1 Overview of the Model Components

sV.priodb maps the PIDs of the active processes to their priorities.

sV.schedds contains the scheduling data structures like wait and ready queues as well as
process-specific accounting information like the length of the timeslice. In Section
5.5, we discuss the details of the scheduler.

sV.rightsdb comprises the access-control rights. More specifically, this component maps
PIDs to information for the IPC rights management (see Section 5.4), on the
one hand, and a Boolean flag determining whether the corresponding process is
privileged, on the other hand.

sV.sndstatdb stores the so-called send status, a remnant of the process status in the
implementation. Usually, the membership in a ready or wait queue determines the
current process status—except for one case: An ipc request call has a send and
a receive phase, which might both require waiting. In this case, the send status
True specifies that the process has successfully sent and now waits for a reply.

sV.devds contains data for device communication.

At first sight, the separation of priorities from the remaining scheduling data might
surprise. The reason for this partitioning is that Coup abstracts from the particular
scheduling algorithm, but the priorities remain visible. We modularized the states and
the corresponding transition functions in order to share the definition of similar parts
between the Vamos specification, Coup, and the SOS model [Bog08, § 4].

For scheduling, Vamos maintains different process queues, which are represented as
PID lists in the specification. In particular, there is a ready queue sV.schedds.ready prio
of schedulable processes for each priority prio ∈ {low, medium, high}. In Vamos, the
current process is the first process in the highest, non-empty ready queue. If all ready
queues are empty, the current process is undefined. Or more technically, we concatenate
the ready queues from the highest to the lowest and specify the first process in this list
as current:

cupV sV.schedds ≡
case concat (map sV.schedds.ready [high, medium, low]) of [] ⇒ ⊥ | x � xs ⇒ bxc

The corresponding Coup state sVC inherits most components of sV. Only two com-
ponents change: The process abstraction becomes a model parameter, i. e., component
sVC.procs of a Coup state sVC is a partial function from PIDs to the generic state space
Sproc of an arbitrary, valid process model. Moreover, the scheduling data structures are
replaced by a current-process indicator. We retain the current process in the state in
order to compute the output from the current state. The output function wVC signals
the demand for device communication in the next step. To determine this demand, we
employ the output function wproc of the current process. Consequently, we need to fix
the current process in the Coup state.

65

5 Adding Concurrency: The Kernel Models

Transitions. The transition function dV takes two parameters: (a) an input (ints, mifo)
from the device subsystem, and (b) a Vamos state sV. It returns a successor state s ′V.
Within a transition, we distinguish up to three phases:

1. If there is a current process pcup such that cupV sV.schedds = bpcupc, we consult
its output wproc dsV.procs pcupe and compute the response according to the current
Vamos state. For instance, if a process calls dev read, we check for sufficient
privileges and choose the corresponding response res for success or failure. Upon
success, res comprises the device data mifo, and otherwise an error value. With
this response as input, we advance the current process by calling its transition
function: sV(|procs := sV.procs(pcup 7→ dproc res dsV.procs pcupe)|)

2. If the timer-interrupt line is raised, formally determined by the predicate is timer
on (ints, mifo), the scheduler is called. The scheduler charges the currently running
process for its computation and possibly elects another process to compute. Fur-
thermore, it checks whether timeouts of waiting processes have elapsed and wakes
up the corresponding processes. We defer the detailed specification to Section 5.5.

3. Finally, Vamos delivers the occurred interrupts to the attached drivers (assuming
that the latter are waiting; otherwise, the interrupts are saved in sV.devds for a
later delivery).

The Coup transitions behave very similarly. A transition sVC
(ints, mifo)−−−−−−−→VC s ′VC in

∆VC ints mifo, however, obtains pcup directly from sVC.cup. Moreover, the effects of the
second phase become non-deterministic: An arbitrary, active process (or none at all) is
elected to compute in the next cycle, and some of the possibly waiting processes with
finite timeouts are woken up. Both effects are specified independently from the timer
interrupt. Formally, we split the second phase into two and then specify each transition
phase in its own relation:

∆cup
VC mifo advances the current process using the input mifo from the devices,

∆sched
VC elects the next current process,

∆to
VC wakes up waiting processes, and

∆ints
VC ints delivers the interrupts in ints.

The transition relation ∆VC is now simply the composition of these four relations.
Note, however, that when processes are woken up in the second or third phase of dV, a
former empty ready queue might become non-empty such that the next current process
changes again. In the Coup model, there are no ready queues and the current process is
solely changed by ∆sched

VC . Hence, we place this relation at the very end of the composition:

∆VC ints mifo ≡ ∆cup
VC mifo ◦ ∆to

VC ◦ ∆ints
VC ints ◦ ∆sched

VC

where the relational composition R ◦ S of two relations R and S is defined as {(r , s).
∃t. (r , t) ∈ R ∧ (t, s) ∈ S}.

66

5.2 A Simple Kernel Call: set privileged Revisited

Thus, the major specification work is encapsulated in the sub relations. The first phase
is the most elaborate one. We define the relation ∆cup

VC mifo by 33 introduction rules.1

The majority of these rules specify the semantics of kernel calls. These rules mostly
follow a schematic pattern while reusing definitions from the Vamos specification. The
next sections explain this pattern by the examples of the set privileged and the
process kill calls. In Section 5.4, we show the specification of IPC as an interesting
exception to this general pattern. Furthermore, there are three rules not belonging to
kernel calls. The most prominent one is an internal transition if the current process does
not signal any output. Formally:

[[sVC.cup = bpcupc; wproc dsVC.procs pcupe = eW]]
=⇒ (sVC, sVC(|procs := sVC.procs(pcup 7→ dproc eSv dsVC.procs pcupe)|))
∈ ∆cup

VC mifo (internal)

Another rule specifies the lack of any progress, e. g., because there is no current process
or the process issues an IPC call and waits for a suitable communication partner. We
specify:

(s, s) ∈ ∆cup
VC mifo (reflexivity)

Finally, a process might experience an internal runtime error. This case is treated as if
the process would have killed itself (see Section 5.3).

5.2 A Simple Kernel Call: set privileged Revisited

Recall the specification of the set privileged call of Vamos in Section 4.1. In essence,
we distinguish unsuccessful cases, on the one hand, where only the caller is notified about
the reason leading to the failure, and a successful case, on the other hand, where internal
kernel data structures are changed in addition to the caller notification. Hence, we may
slightly rephrase the earlier specification to:

set privileges specV sV hn ≡
let pcup = dcupV sV.scheddse; ptarget = dsV.rightsdb pcupe.hdb hn;

res = set privileged response sV.rightsdb pcup hn
in if is error res then sV(|procs := sV.procs(pcup 7→ dproc res dsV.procs pcupe)|)

else sV(|procs := sV.procs(pcup 7→ dproc success dsV.procs pcupe),
rightsdb := add privilege sV.rightsdb ptarget|)

where the function set privileged response computes the response to the caller from the
current kernel state:

set privileged response rightsdb pcup hn ≡
if ¬ privileged rightsdb pcup then err unprivileged
else if ¬ valid handle rightsdb pcup hn then err invalid handle else success

1The term introduction rule originates from natural deduction [Gen35]. It refers to an inference rule
with a predicate in the conclusion. Thus, the predicate can be “introduced” by forward reasoning.
You may perceive these rules as an inductive definition of the predicate. We regard x ∈ ∆cup

VC mifo as
such a predicate and define ∆cup

VC mifo by rules of the form P x =⇒ x ∈ ∆cup
VC mifo.

67

5 Adding Concurrency: The Kernel Models

The Vamos specification defines similar functions for each kernel call, which are then
reused in the specification of Coup.

Note that the above call specification has an implicit assumption: The current pro-
cess is defined and issues a set privileged call with the function’s argument hn as
parameter, i. e.,

∃pcup. cupV sV.schedds = bpcupc ∧ wproc dsV.procs pcupe = set privileged hn

In the Vamos specification, the central function call dispatcher specV serves as dis-
patcher between the individual kernel-call specifications ensuring this assumption. In
Coup, however, all assumptions are made explicit in the introduction rules. We specify
the unsuccessful cases by

[[sVC.cup = bpcupc; wproc dsVC.procs pcupe = set privileged hn;
res = set privileged response sVC.rightsdb pcup hn; is error res]]

=⇒ (sVC, sVC(|procs := sVC.procs(pcup 7→ dproc res dsVC.procs pcupe)|))
∈ ∆cup

VC mifo (privilege err)

and the successful case by

[[sVC.cup = bpcupc; wproc dsVC.procs pcupe = set privileged hn;
¬ is error (set privileged response sVC.rightsdb pcup hn);
ptarget = dsVC.rightsdb pcupe.hdb hn]]

=⇒ (sVC,
sVC(|procs := sVC.procs(pcup 7→ dproc success dsVC.procs pcupe),

rightsdb := add privilege sVC.rightsdb ptarget|))
∈ ∆cup

VC mifo (privilege succ)

Note that the rules introduce abbreviations like pcup or res in form of free variables as
opposed to the let expressions employed in Vamos functions.

Most kernel calls in Coup are specified following exactly this pattern. For a few calls,
there is just a single rule, because even the successful case only changes processes.

5.3 Process Termination

A process might cease to exist in two situations: Either, it signals an internal runtime
error as output to the kernel, or a process explicitly invokes the process kill call. In
the former case, the kernel immediately terminates the faulty process. In the latter, the
caller specifies the victim by a process handle. Only a privileged caller is permitted to
terminate another active process. Consequently, there are two unsuccessful cases of a
process kill call: missing privileges and an invalid handle. We specify the kernel’s
response to the calling process by:

process kill response rightsdb pcup hn ≡
if hn 6= HN SELF ∧ ¬ privileged rightsdb pcup then err unprivileged
else if ¬ valid handle rightsdb pcup hn then err invalid handle else success

68

5.3 Process Termination

Note that suicide is permitted without privileges because the process could alternatively
provoke a runtime error. In fact, the transition for runtime errors in the Vamos speci-
fication is defined as a special case of process kill:

wproc dsV.procs dcupV sV.scheddsee = runtime error =⇒
call dispatcher specV sV mifo = process kill specV sV HN SELF

where the actual effect of process kill is as usually encapsulated in a function:

process kill specV sV hn ≡
let pcup = dcupV sV.scheddse; pvictim = dsV.rightsdb pcupe.hdb hn;

res = process kill response sV.rightsdb pcup hn
in if is error res then sV(|procs := sV.procs(pcup 7→ dproc res dsV.procs pcupe)|)

else sV(|procs := v kill updt procs sV.procs sV.rightsdb sV.devds
(set sV.schedds.wait) pcup dpvictime,

schedds := v kill updt schedds sV.schedds sV.procs sV.priodb sV.rightsdb
dpvictime,

priodb := sV.priodb(dpvictime := ⊥),
sndstatdb := v kill updt sndstatdb sV.sndstatdb sV.procs sV.rightsdb

dpvictime,
rightsdb := v kill updt rightsdb sV.rightsdb dpvictime,
devds := v kill updt devds sV.devds dpvictime|)

The number of effected components is an indicator for the complexity of this specifica-
tion. The update of component priodb is stated directly because it is sufficiently simple.
The remaining updates are more elaborate and thus, encapsulated in extra functions.

The termination of a process concerns, for instance, processes that await an IPC
operation. Furthermore, processes might have a handle to the victim, which becomes
invalid through the termination. If a process currently accepts kernel notifications, the
death notification is delivered immediately. We only provide the definition of v kill
updt procs as an example:

v kill updt procs procs rightsdb devds waits pcup pvictim ≡
λx . if x = pvictim then ⊥

else if x = pcup then bdproc success dprocs pcupec
else if x ∈ waits ∧ sends to procs rightsdb pvictim x

then bdproc err snd invalid handle dprocs xec
else if x ∈ waits ∧ conveys hn of procs rightsdb pvictim x

then bdproc err invalid handle dprocs xec
else if x ∈ waits ∧ receives from procs rightsdb pvictim x

then bdproc err rcv invalid handle dprocs xec
else if x ∈ waits ∧ accepts knotes procs rightsdb pvictim x

then bdproc

(deliver knotes
(v kill updt rightsdb rightsdb pvictim) devds
devds.saved x)

69

5 Adding Concurrency: The Kernel Models

dprocs xec
else procs x

where the predicate sends to procs rightsdb pvictim psnd holds iff psnd aspires to send a
message to pvictim, the predicate conveys hn of procs rightsdb pvictim psnd holds iff psnd

aspires to send a process handle of pvictim, the predicate receives from procs rightsdb
pvictim prcv holds iff prcv aspires to receive a message from pvictim, and the predicate ac-
cepts knotes procs rightsdb pvictim prcv holds iff prcv currently accepts kernel notifications
and has a handle to pvictim.

Note that v kill updt procs does not take the whole scheduling data as parameter
(like done with all other components) but only the set of waiting processes. Thus, we
can reuse the function in Coup, which does not maintain scheduling data.

For Coup, we specify the process termination in a function vc terminate proc analo-
gously to process kill specV for the Vamos specification. More specifically, the function
vc terminate proc waits pvictim pcup sVC specifies the termination of process pvictim in-
duced by pcup with a set waits of waiting processes in state sVC as follows:

vc terminate proc waits pvictim pcup sVC ≡
sVC(|procs := v kill updt procs sVC.procs sVC.rightsdb sVC.devds waits pcup pvictim,

priodb := sVC.priodb(pvictim := ⊥),
sndstatdb := v kill updt sndstatdb sVC.sndstatdb sVC.procs sVC.rightsdb pvictim,
rightsdb := v kill updt rightsdb sVC.rightsdb pvictim,
devds := v kill updt devds sVC.devds pvictim|)

In contrast to process kill specV, the function vc terminate proc does not treat any error
cases but implicitly assumes a successful process kill call. Note the variable waits,
which is the remnant of Vamos’ wait queue. As we have abandoned this queue in
Coup, we choose non-deterministically whether the kernel should regard a process to be
waiting.

We constrain waits from both sides: On the one hand, we are certain that all processes
p wait, which have completed only the send phase of a request, i. e., sVC.sndstatdb p =
bTruec. On the other hand, a process might only wait for IPC, i. e., its output should
be one of ipc send, ipc receive, or ipc request. Furthermore, error conditions like
valid handles are checked before the process is enqueued in the wait queue—a process
cannot be waiting in case of such errors. The predicate vc pending ipc over-estimates
the set of waiting processes.

Within these boundaries, all values of waits are possible. If a process is in waits,
function vc terminate proc notifies the process about a possibly vanished handle. Oth-
erwise, the process learns about the vanished handle as soon as it is elected as the current
process.

We specify the two possibilities of process termination, a successful process kill
call and a runtime error, by the following rules:

[[sVC.cup = bpcupc; wproc dsVC.procs pcupe = process kill hn;
{p. sVC.sndstatdb p = bTruec} ⊆ waits;

70

5.4 Inter-Process Communication

waits ⊆ {p. vc pending ipc sVC.procs sVC.sndstatdb sVC.rightsdb sVC.devds p};
¬ is error (process kill response sVC.rightsdb pcup hn);
pvictim = ddsVC.rightsdb pcupe.hdb hne]]

=⇒ (sVC, vc terminate proc waits pvictim pcup sVC) ∈ ∆cup
VC mifo (pkill succ)

[[sVC.cup = bpcupc; wproc dsVC.procs pcupe = runtime error;
{p. sVC.sndstatdb p = bTruec} ⊆ waits;
waits ⊆ {p. vc pending ipc sVC.procs sVC.sndstatdb sVC.rightsdb sVC.devds p}]]

=⇒ (sVC, vc terminate proc waits pcup pcup sVC) ∈ ∆cup
VC mifo (exception)

5.4 Inter-Process Communication

This section describes the specification of the kernel’s mechanism for synchronous mes-
sage passing between processes. It is divided into three parts. The first one presents data
structures especially introduced for IPC, namely, the component rightsdb containing the
access-control rights. This component is part of the Coup states as well as of the Vamos
specification’s states. The second part explains in detail how the IPC calls are specified
in Vamos. The last part elaborates on how the specification of the same calls in Coup
benefits from the abandoned scheduling data structures.

5.4.1 IPC Rights Management

The largest part of the access-control rights belongs to the IPC rights management.
Section 3.2.1 briefly introduced the capability-like access control for IPC. The basic
concept are handles with assigned IPC rights. In short, a handle is a process-local
name for a particular process. For each active process, the kernel stores a mapping
from handles to the kernel-global process identifiers together with a set of rights that
constrain the ability to send to the identified process.

In particular, the component s.rightsdb stores for each active process pid a record with
the following components:

hdb is the handle database, a partial function mapping handles to process identifiers.
Basically, handles are positive numbers. A few distinguished handles have special
semantics. First, HN SELF is a self-reference, i. e., ds.rightsdb pide.hdb HN SELF
= bpidc. Second, HN KERNEL refers to the kernel, e. g., for limiting an ipc
receive call to kernel notifications. Third, HN NONE refers to no process. This
handle is used for a so-called open receive, i. e., an ipc receive call not limited
to a particular process. Last, a newly created process does not yet know other
processes but may refer to its creator using HN CREATOR.

creator if pid has been launched by a process create call, this field stores the PID of
the caller. A cloned process inherits the creator of its original. The creator of the
initial process is undefined.

irdb is the IPC-rights database, assigning a set of rights to process identifiers. The pos-
sible rights are requestRight, sendRight, finiteRight, and multipleRight.

71

5 Adding Concurrency: The Kernel Models

stales is a set of stale handles, i. e., handles that have once pointed to meanwhile termi-
nated processes. Note that stale handles can no longer be used even if a process
later inherits the same identifier. The kernel notifies processes of their non-empty
stale set whenever they accept kernel notifications.

5.4.2 Specifying IPC in the VAMOS Model

The distinctive feature of IPC is synchronization. While all other kernel calls are neces-
sarily handled immediately when issued, a process might choose to wait until an appro-
priate IPC partner becomes available. More precisely, a message transfer is only possible
if one of the communication partners has waited. For the actual message transfer, how-
ever, it is not relevant whether the sender or the receiver has been waiting. Hence, we
specify message transfers independently from process states (current or waiting).

We encapsulate the specification in the per-component update functions. Most of
these functions are technically quite involved and their formal definition is irrelevant
for the simulation proof between the kernel models in Chapter 6, simply because we use
these functions in both models. Hence, we content ourselves with an informal description
of these functions.

Function v ipc trans updt procs computes the new state of component procs. More
specifically, it determines the according kernel response for the receiver (including process
handles, IPC-right sets, the conveyed message, and the kernel notification bits), advances
the receiving process with this response, and unless the sending process has called for
an ipc request, it advances the latter with success.

Function v wkp updt schedds updates the scheduling data structures schedds. More
specifically, all processes that have completed their IPC operation, are removed from the
wait queue and re-added to the according ready queue. Note that for a completed send
phase of an ipc request call, there are additional actions to be taken: If the sender
has been the current process, it should be scheduled to wait for a reply, otherwise, its
scheduling timeout should be adjusted according to the specified receive timeout.

Furthermore, function v ipc trans updt sndstatdb computes the new state of the com-
ponent sndstatdb. Its formal definition is quite simple:

v ipc trans updt sndstatdb sndstatdb psnd prcv is request ≡
sndstatdb(psnd 7→ is request, prcv 7→ False)

The send status of the sender psnd is set to the value of variable is request, which
determines whether the sender has initiated an ipc request call. Additionally, the
receiver’s send status is set to False because its IPC operation completes.

Analogously, we define the functions v ipc trans updt rightsdb, which updates rightsdb
with respect to the IPC rights that the sender might have granted to the receiver, and v
ipc trans updt devds, which updates devds if the kernel has notified the receiver about
pending interrupts.

Note that we exclude several faults in the call specification before a message transfer
can actually take place. First, we guard against faults that are independent from a possi-
bly available communication partner—a missing IPC right, for instance, or a misaligned

72

5.4 Inter-Process Communication

buffer. We call such faults invocation errors. Second, we distinguish whether a suitable
communication partner is already waiting. We refer to this situation as a rendezvous.

If there is no rendezvous, we regard the timeout of the considered IPC call. A timeout
of zero means that the process is not willing to wait. In this case, the kernel cancels the
IPC call immediately with a timeout error (err snd timeout or err rcv timeout).
Otherwise, the calling process is moved to the wait queue aspiring a later message
transfer. The latter operation is encapsulated in function v ipc wait updt schedds.

Furthermore, there might be a suitable communication partner but the designated
sender intends to transfer a message that exceeds the receiver’s provided buffer. In this
case, the sender is informed about this problem (err msg oversized). Otherwise, the
message transfer takes place.

For the ipc send call, we define function ipc send err that guards against all faults,
including invocation errors, immediate timeouts, and oversized messages. In contrast
to previous call specifications, we distinguish three cases, here: An error response, the
movement of the process to the wait queue, and immediate message transfer. As a
special convention, the function returns eSv for the second and success for the third
case. Formally, we define:

ipc send err procs schedds sndstatdb rightsdb hnrcv rightssnd msg hnadd rightsadd

timeoutsnd ≡
let psnd = dcupV scheddse;

res = ipc send invoc err rightsdb psnd hnrcv rightssnd msg hnadd rightsadd

in if is error res then res
else if ipc send rendez vous procs schedds sndstatdb rightsdb psnd hnrcv

then if ipc send buffer ovfl procs rightsdb psnd hnrcv msg
then err msg oversized else success

else if timeoutsnd = 0 then err snd timeout else eSv

where the function ipc send invoc err guards against invocation errors, the predicate
ipc send rendez vous procs schedds sndstatdb rightsdb psnd hnrcv holds iff the process
indicated by hnrcv is already waiting and willing to receive from psnd, and the predi-
cate ipc send buffer ovfl procs rightsdb psnd hnrcv msg checks whether the message msg
exceeds the receiver’s buffer.

With these prerequisites in place, we formally specify ipc send in the Vamos model:

ipc send specV sV hnrcv rightssnd msg hnadd rightsadd timeoutsnd ≡
let res = ipc send err sV.procs sV.schedds sV.sndstatdb sV.rightsdb hnrcv rightssnd

msg hnadd rightsadd timeoutsnd;
psnd = dcupV sV.scheddse; prcv = ddsV.rightsdb psnde.hdb hnrcve

in if is error res then sV(|procs := sV.procs(psnd 7→ dproc res dsV.procs psnde)|)
else if res = eSv

then sV(|schedds := v ipc wait updt schedds sV.schedds psnd dsV.priodb psnde
timeoutsnd|)

else sV(|procs := v ipc trans updt procs sV.procs sV.rightsdb sV.devds psnd False
hnrcv rightssnd msg hnadd rightsadd,

73

5 Adding Concurrency: The Kernel Models

schedds := v wkp updt schedds sV.schedds [prcv] sV.priodb,
sndstatdb := v ipc trans updt sndstatdb sV.sndstatdb psnd prcv False,
rightsdb := v ipc trans updt rightsdb sV.rightsdb psnd hnrcv hnadd

rightssnd rightsadd,
devds := v ipc trans updt devds sV.devds prcv|)

Similarly, we specify the ipc request call. The only difference regards the effects of
a message transfer: While the message transfer completes an ipc send call, the caller
of ipc request immediately awaits its partner’s reply after a successful send. Thus,
the caller of ipc request is appended to the wait queue, its send status is changed to
True, and—in contrast to an ipc send call—the process is not yet informed about the
successful send phase because the receive phase might still fail. For this reason, most
update functions for the message transfer have a parameter is request as we have seen
it for v ipc trans updt sndstatdb.

The specification of ipc receive, however, is considerably more complex. While
messages are always sent to a particular process, receiving is possible without specify-
ing the communication partner in advance. In consequence, a single ipc receive call
might cause several waiting senders to fail because they tried to transfer an oversized
message. Furthermore, the kernel may deliver notifications about pending interrupts or
stale handles without an actual message.

Despite the call’s complexity, we employ the common schematic pattern for the overall
specification of ipc receive as we usually do for calls in the Vamos model:

ipc receive specV sV hnsnd buffer timeoutrcv ≡
let pcup = dcupV sV.scheddse;

sendQ =
[p∈sV.schedds.wait .
v is sending to sV.procs sV.sndstatdb sV.rightsdb p pcup];

res = ipc rcv invoc err sV.rightsdb pcup hnsnd buffer
in if is error res then sV(|procs := sV.procs(pcup 7→ dproc res dsV.procs pcupe)|)

else sV(|procs := v ipc rcv updt procs sV.procs sV.rightsdb sV.devds sendQ pcup

hnsnd buffer timeoutrcv,
schedds := v ipc rcv updt schedds sV.schedds sV.procs sV.rightsdb

sV.priodb sV.sndstatdb sV.devds sendQ pcup hnsnd buffer
timeoutrcv,

sndstatdb := v ipc rcv updt sndstatdb sV.sndstatdb sV.procs sV.rightsdb
sendQ pcup hnsnd buffer,

rightsdb := v ipc rcv updt rightsdb sV.rightsdb sV.procs sendQ pcup hnsnd

buffer,
devds := v ipc rcv updt devds sV.devds sV.rightsdb sV.procs sendQ pcup

hnsnd buffer|)

The function definition starts introducing some abbreviations, namely the current pro-
cess pcup, the queue sendQ of processes waiting to send to pcup (filtered out from the
wait queue), and finally the indicator res for invocation errors. The essential insight,

74

5.4 Inter-Process Communication

however, is that we only guard against invocation errors and encapsulate the effects of
a successful call in per-component update functions. Certainly, the actual functionality
is only revealed by the definition of these functions.

We explain the effect of an ipc receive call at the example of the function v ipc
rcv updt procs:

v ipc rcv updt procs procs rightsdb devds sendQ prcv hnsnd buffer timeoutrcv ≡
let (sendQbovfl, sendQ ′) =

ipc rcv split sq procs drightsdb prcve sendQ hnsnd buffer;
procs updt bovfl =

λp. if p ∈ set sendQbovfl then bdproc err msg oversized dprocs pec
else procs p

in case sendQ ′ of
[] ⇒ if accepts knotes rightsdb devds hnsnd prcv

then procs updt bovfl(prcv 7→
dproc (deliver knotes rightsdb devds devds.saved prcv) dprocs prcve)

else if timeoutrcv = 0
then procs updt bovfl(prcv 7→ dproc err rcv timeout dprocs prcve)
else procs updt bovfl

| p � ps ⇒
case wproc dprocs pe of
ipc send hnrcv rightssnd msg hnadd rightsadd timeoutsnd ⇒

v ipc trans updt procs procs updt bovfl rightsdb devds p False hnrcv

rightssnd msg hnadd rightsadd

| ipc request hnrcv rightssnd msg hnadd rightsadd timeoutsnd buffer
timeoutrcv ⇒
v ipc trans updt procs procs updt bovfl rightsdb devds p True hnrcv

rightssnd msg hnadd rightsadd

| ⇒ default

At first, this function defines three abbreviations. The pair (sendQbovfl, sendQ ′) is set
to the result of function ipc rcv split sq, which partitions the send queue sendQ, i. e.,
the list of all processes willing to send a message to prcv, into two lists. The former,
sendQbovfl, is the longest prefix of the send queue exclusively containing processes that
try to send oversized messages, the latter, sendQ ′, is the remaining list after stripping
that prefix. In the abbreviation procs updt bovfl , the error err msg oversized is
signaled to all processes in the prefix sendQbovfl. With these abbreviations in place,
there is a case distinction on the remaining send queue sendQ ′: If empty, we check for
kernel notifications. If there are no pending notifications or the process does not accept
them, there is no suitable communication partner. If the process is not willing to wait,
we send a timeout error, or otherwise append it to the wait queue (i. e., the process state
remains unchanged). If processes remain in the new send queue sendQ ′, the message
of the first process p in sendQ ′ is transferred to the receiver. The case distinction on
wproc dprocs pe is merely used to identify the call parameters. Note that the function
definition implicitly assumes that all processes in sendQ are calling for ipc send or

75

5 Adding Concurrency: The Kernel Models

ipc request.

5.4.3 IPC in CoUP

In Coup, we can simplify the IPC specification. As a consequence of the abandoned
scheduling data structures, there is no notion of waiting. We say that a process is
pending in send or receive, iff the process might possibly be in the wait queue. More
specifically, a pending process issues an IPC call and there are no invocation errors.
Furthermore, we distinguish the phase, in which a process is pending. Accordingly, we
specify:

is pending send procs sndstatdb rightsdb pcup hnrcv rightssnd msg hnadd rightsadd

timeoutsnd ≡
wproc dprocs pcupe = ipc send hnrcv rightssnd msg hnadd rightsadd timeoutsnd ∧
¬ is error (ipc send invoc err rightsdb pcup hnrcv rightssnd msg hnadd rightsadd) ∨
(∃buffer timeoutrcv.
wproc dprocs pcupe =
ipc request hnrcv rightssnd msg hnadd rightsadd timeoutsnd buffer timeoutrcv ∧
sndstatdb pcup = bFalsec ∧
¬ is error

(ipc request invoc err rightsdb pcup hnrcv rightssnd msg hnadd rightsadd

buffer timeoutrcv))

expressing that process pcup is pending in the send phase, and:

is pending recv procs sndstatdb rightsdb pcup hnsnd buffer timeoutrcv ≡
wproc dprocs pcupe = ipc receive hnsnd buffer timeoutrcv ∧
¬ is error (ipc rcv invoc err rightsdb pcup hnsnd buffer) ∨
(∃rightssnd msg hnadd rightsadd timeoutsnd.
wproc dprocs pcupe =
ipc request hnsnd rightssnd msg hnadd rightsadd timeoutsnd buffer timeoutrcv) ∧

sndstatdb pcup = bTruec

for process pcup pending in the receive phase.
With this new notion, we gain more symmetry in the Coup model. Recall that in

the Vamos specification, two situations lead to a rendezvous: (a) There is a receiver
in the wait queue, which aspires a message from the current process, and the current
process issues ipc send or ipc request addressing this process. (b) A process in the
wait queue aspires to send to the current process, and the current process issues ipc
receive, accepting a message from the sender. In Coup, both situations fall together:
There is a process pending in the receive phase, accepting messages from another process,
and the latter is pending in the send phase aspiring to send to the former.

Thus, we summarize all possible effects of a rendezvous, including errors of oversized
messages, kernel notifications, and message transfers, by a single rule:

[[s.cup = bpcupc;

76

5.4 Inter-Process Communication

is pending recv s.procs s.sndstatdb s.rightsdb prcv hnsnd buffer timeoutrcv;
∀psnd∈set sendQ.

s.procs psnd 6= ⊥ ∧
vc is sending to s.procs s.sndstatdb s.rightsdb psnd prcv;

pcup = prcv ∨ pcup ∈ set sendQ]]
=⇒ (s, s(|procs := v ipc rcv updt procs s.procs s.rightsdb s.devds sendQ prcv hnsnd

buffer timeoutrcv,
sndstatdb := v ipc rcv updt sndstatdb s.sndstatdb s.procs s.rightsdb sendQ prcv

hnsnd buffer,
rightsdb := v ipc rcv updt rightsdb s.rightsdb s.procs sendQ prcv hnsnd

buffer,
devds := v ipc rcv updt devds s.devds s.rightsdb s.procs sendQ prcv hnsnd

buffer|))
∈ ∆cup

VC mifo (rendez vous)

where the free variable sendQ determines the assumed send queue of the receiver. It is
constrained by the fact that all processes in this queue have to be active and furthermore,
the predicate vc is sending to has to hold, i. e., each process psnd in sendQ is pending
in the send phase and aspires sending to prcv. Formally, we define:

vc is sending to procs sndstatdb rightsdb psnd prcv ≡
∃hnrcv rightssnd msg hnadd rightsadd timeoutsnd.

is pending send procs sndstatdb rightsdb psnd hnrcv rightssnd msg hnadd rightsadd

timeoutsnd ∧
drightsdb psnde.hdb hnrcv = bprcvc

Note that as a side-effect of reusing the definitions from the Vamos specification for ipc
receive, the rule (rendez vous) also specifies the behavior of Coup for an immediate
timeout error of a process pending in the receive phase. For all other non-rendezvous
situations, we define additional rules. Namely, these situations are invocation errors
for all three IPC calls and an immediate timeout during a pending send. Formally, we
specify:

[[s.cup = bpcupc;
wproc ds.procs pcupe = ipc send hnrcv rightssnd msg hnadd rightsadd timeoutsnd;
res = ipc send invoc err s.rightsdb pcup hnrcv rightssnd msg hnadd rightsadd;
is error res]]

=⇒ (s, s(|procs := s.procs(pcup 7→ dproc res ds.procs pcupe)|)) ∈ ∆cup
VC mifo

(send invoc err)

for invocation errors upon send (accordingly, there are rules for ipc request and ipc
receive) as well as

[[s.cup = bpcupc;
is pending send s.procs s.sndstatdb s.rightsdb pcup hnrcv rightssnd msg
hnadd rightsadd 0]]

77

5 Adding Concurrency: The Kernel Models

=⇒ (s, s(|procs := s.procs(pcup 7→ dproc err snd timeout ds.procs pcupe)|))
∈ ∆cup

VC mifo (send imm timeout)

for an immediate timeout upon send. Unsurprisingly, these definitions just resemble
the corresponding error cases that we already know from the Vamos specification and
simply advance the current process with the according error response.

In conclusion, the auxiliary functions that we have defined and presented for the Va-
mos specification permit a relatively succinct and simple specification of IPC in Coup.

5.5 The Scheduler Specification

The scheduler deals with two tasks, both related to time: The accounting of process
runtime, which is informally described in Section 3.2, and the management of timeouts,
which Section 3.3 reports on. The scheduling data structures sV.schedds of the Vamos
state space comprise several sub components to support these tasks.

First, there are different process queues (lists of process identifiers), in particular:
• one ready queue sV.schedds.ready prio of schedulable processes per priority prio ∈
{low, medium, high},
• a queue sV.schedds.wait of currently not schedulable but active processes, which

have issued an IPC call and are waiting for a suitable communication partner, and
• a list of currently unused PIDs sV.schedds.inactive.

Second, process-specific scheduling information for active processes is collected in the
partial function sV.schedds.procdb that maps PIDs to a record of (a) the timeslice tsl,
(b) the amount of consumed runtime ctsl, and (c) the scheduling timeout timeout.

Third, there is a current-time variable sV.schedds.time. Recall that the kernel measures
time based on the periodic timer interrupts. Variable sV.schedds.time counts the overall
number of timer interrupts in the system. Note that in contrast to the implementation,
this variable is never decreased in the specification. Thus, there is a monotonically
increasing offset between the variables in the implementation and the specification.2

As we have seen in Section 5.1, the ready queues determine the process to compute.
If the current process pcup computes when a timer interrupt is raised, the component
ctsl for pcup is increased until the process has finally run for tsl timer interrupts. In the
latter case, ctsl is reset and the corresponding ready queue is rotated by one place such
that the next process in this queue is scheduled.

Formally, we describe this task by the following function:

v charge process sV pcup ≡
let procdb = dsV.schedds.procdb dpcupee;

ready = sV.schedds.ready dsV.priodb dpcupee
in if pcup = ⊥ ∨ dpcupe /∈ set ready then sV

else sV(|schedds := if procdb.tsl ≤ procdb.ctsl

2More information on the abstraction relation coupling implementation and specification can be found
in [DDW09, Sect. 6.1].

78

5.5 The Scheduler Specification

then sV.schedds
(|ready := sV.schedds.ready

(dsV.priodb dpcupee :=
[x∈ready . x 6= dpcupe] } [dpcupe]),

procdb := sV.schedds.procdb(dpcupe 7→ procdb(|ctsl := 0|))|)
else sV.schedds

(|procdb := sV.schedds.procdb(dpcupe 7→
procdb(|ctsl := procdb.ctsl + 1|))|)|)

Note that the current process pcup is provided as a parameter because in the first phase of
a Vamos transition, the queues might change. Hence, we may not assume that cupV sV
has been computing in the last step. The function specification defines two abbreviations
procdb and ready for the process-specific information and the ready queue of the process
pcup, respectively. If no process has been computing in the last cycle or this process is
no longer ready, the state remains untouched. Otherwise, we compare the timeslice with
the consumed time. If the consumed time procdb.ctsl exceeds the timeslice procdb.tsl,
process pcup is filtered out from the current ready queue ready and appended at the end.
Furthermore, the ctsl for pcup is reset. If the timeslice is not exceeded, the ctsl for pcup

is just increased.
If a process issues an IPC call and no partner is ready for communication, it is removed

from its ready queue and enqueued in sV.schedds.wait, the scheduling timeout timeout is
computed from the current time sV.schedds.time and the relative timeout that has been
specified with the call.

With every timer interrupt, the current time is increased. Afterwards, the scheduler
checks whether the scheduling timeout of any waiting process p has thereby expired, i. e.,
dsV.schedds.procdb pe.timeout = sV.schedds.time. If so, the scheduler sends the according
error message to the process and sets it back to the ready state.

Formally, we describe this task by the following function:

v manage timeouts sV ≡
sV(|procs := λp. if timeout elapsed sV.schedds p

then if is sending sV.procs sV.sndstatdb p
then bdproc err snd timeout dsV.procs pec
else bdproc err rcv timeout dsV.procs pec

else sV.procs p,
schedds := sV.schedds

(|time := sV.schedds.time + 1,
ready := λprio.

sV.schedds.ready prio }
[p∈sV.schedds.wait .
timeout elapsed sV.schedds p ∧ dsV.priodb pe = prio],

wait := [p∈sV.schedds.wait . ¬ timeout elapsed sV.schedds p],
procdb := λp. if timeout elapsed sV.schedds p

then bdsV.schedds.procdb pe(|ctsl := 0|)c
else sV.schedds.procdb p|),

79

5 Adding Concurrency: The Kernel Models

sndstatdb := λp. if timeout elapsed sV.schedds p then bFalsec else sV.sndstatdb p|)

where in component procs, an error message is signaled to all processes p with an elapsed
timeout, i. e., when predicate timeout elapsed holds. For the appropriate error message,
it is distinguished whether the process has been waiting in the send or in the receive
phase. Furthermore, these processes are set back to ready: To the ready queue of each
priority prio, we append the wait queue filtered for processes with an elapsed timeout
and the according priority. Moreover, we remove all processes with an elapsed timeout
from the wait queue. For these processes, we reset the consumed time. Finally, the send
status for processes with an elapsed timeout is set to False because they do not longer
wait for a reply.

Summarizing, two different tasks are carried out in Vamos when the timer interrupt is
raised: The scheduler checks whether scheduling timeouts of waiting processes have ex-
pired, on the one hand, and it accounts for the runtime of the process that has computed
in the last step, on the other hand. Hence, the specification function of the scheduler is
the composition of the according two specifications:

scheduler specV sV pcup ≡ v charge process (v manage timeouts sV) pcup

In Coup, there is no scheduling information. Thus, we can only specify the scheduler
effects non-deterministically. At first, some of the processes that are pending with a
finite timeout are woken up. We define:

∆to
VC ≡ {(s, s ′).

∃up ′ sdb ′. s ′ = s(|procs := up ′, sndstatdb := sdb ′|) ∧
(∀p. up ′ p = s.procs p ∧ sdb ′ p = s.sndstatdb p ∨

does finite ipc s.procs s.sndstatdb s.rightsdb p ∧
up ′ p =
(if is sending s.procs s.sndstatdb p
then bdproc err snd timeout ds.procs pec
else bdproc err rcv timeout ds.procs pec) ∧

sdb ′ p = bFalsec)}

meaning that all pairs (s, s ′) in the relation only differ in procs and sndstatdb. Addi-
tionally, for each process p, the value of the components must either be equal, or in s,
the process has issued an IPC call with a finite timeout (we encapsulate this property in
does finite ipc) and in s ′, the process has received a timeout-error message (correspond-
ing to the current IPC phase of the process) and its send status is reset.

In a second step, either no, or an arbitrary, active process is elected to compute next:

∆sched
VC ≡ {(s, s ′). ∃cup ′. s ′ = s(|cup := cup ′|) ∧ (∀p. cup ′ = bpc −→ s.procs p 6= ⊥)}

Note that we specify the scheduler effects in Coup independently from the timer interrupt
because the correctness of the processes should not rely on a particular timing.

80

5.6 Invariants over Execution Traces

5.6 Invariants over Execution Traces

Not all states are reachable in the execution traces of the kernel models. During our
survey through the kernel models, we have learned about several assumptions on states,
like that the priority of every active process is defined. So far, these assumptions have
just been informal statements but when reasoning about execution traces, we like to
employ this implicit knowledge. In this section, we formally define the notion execution
trace for the Vamos specification, gather properties on states into a predicate invV, and
show that this predicate holds for all reachable states.

We represent Vamos execution traces as two functions states and inputs that map
the step number to the current state sV ∈ SV and to the input i ∈ Σ̂ for the next step,
respectively.

Definition 5.1 (Vamos Execution Trace). Two functions states and inputs describe an
execution trace of the Vamos specification iff they meet the following two conditions:
• states 0 ∈ S0

V

• ∀n. states (n + 1) = dV (inputs n) (states n)

When reasoning on the behavior of Vamos, we rely on several properties that are
invariant over all execution traces. We collect these facts in the predicate invV. This
invariant, however, is quite elaborate. Hence, we introduce various predicates on sev-
eral Vamos state components and finally define the invariant as the conjunct of these
subpredicates.

First of all, we know from Section 5.1 that Vamos maintains various data for active
processes. We call the process pid active iff the function sV.procs is defined for pid, i. e.,
sV.procs pid 6= ⊥. In this case, the process-accounting information, the priority, the send
status, and the access-control rights for pid should be defined. Furthermore, we assume
that these functions are undefined for inactive processes. Formally:

is proc infoV sV ≡
∀p. (sV.schedds.procdb p = ⊥ ←→ sV.procs p = ⊥) ∧

(sV.priodb p = ⊥ ←→ sV.procs p = ⊥) ∧
(sV.sndstatdb p = ⊥ ←→ sV.procs p = ⊥) ∧
(sV.rightsdb p = ⊥ ←→ sV.procs p = ⊥)

Additionally, Section 5.1 states that the send status keeps track of the phase of an
ipc request call. Consequently, the status bit of a process pid should only be set if
pid issues an ipc request call. We state:

sndstat imp request s.procs s.sndstatdb ≡
∀p. s.sndstatdb p = bTruec −→

(∃hnrcv rightssnd msg hnadd rightsadd timeoutsnd buffer timeoutrcv.
wproc ds.procs pe =
ipc request hnrcv rightssnd msg hnadd rightsadd timeoutsnd buffer timeoutrcv)

Similarly, a send status of True implies that the process is waiting, formally:

81

5 Adding Concurrency: The Kernel Models

sndstat imp wait sV.schedds sV.sndstatdb ≡
∀p. sV.sndstatdb p = bTruec −→ p ∈ set sV.schedds.wait

In fact, most of our assumptions on the states of execution traces are concerned with
the scheduling data structures (see Section 5.5). For instance, inactive processes should
reside in the inactive queue and neither in the wait nor any ready queue. Accordingly,
active processes may not be in the inactive queue but in either the wait queue or a ready
queue. Formally:

valid queue members sV.procs sV.schedds ≡
∀p. case sV.procs p of
⊥ ⇒ p ∈ set sV.schedds.inactive ∧

p /∈ set sV.schedds.wait ∧ (∀i . p /∈ set (sV.schedds.ready i))
| bac ⇒ p /∈ set sV.schedds.inactive ∧

(p ∈ set sV.schedds.wait) 6= (∃i . p ∈ set (sV.schedds.ready i))

Moreover, all processes in a ready queue should have the queue’s associated priority:

prio of readyQ sV.schedds sV.priodb ≡
∀i . ∀p∈set (sV.schedds.ready i). dsV.priodb pe = i

Furthermore, the entries in each queue should be pairwise distinct:

distinct queues sV.schedds ≡
(∀m<|sV.schedds.inactive|.
∀n<m. sV.schedds.inactive ! m 6= sV.schedds.inactive ! n) ∧

(∀m<|sV.schedds.wait|. ∀n<m. sV.schedds.wait ! m 6= sV.schedds.wait ! n) ∧
(∀i . ∀m<|sV.schedds.ready i |.

∀n<m. sV.schedds.ready i ! m 6= sV.schedds.ready i ! n)

Section 4.2 mentions another scheduling-related invariant: For the fairness proof, it is
important that timeslices are bounded:

bounded timeslices sV.schedds ≡
∀p procdata. sV.schedds.procdb p = bprocdatac −→ procdata.tsl ≤ MAXTSL

When carefully examining the definition of v charge process on page 79, we recognize
that ctsl should be zero if a ready process is not the first in its queue. This subtlety,
however, is irrelevant for temporal fairness. If we would nevertheless specify it, we had
to prove the invariance. Hence, we are content with the weaker formulation.

A further scheduler invariant has already been suggested by Section 3.3: All scheduling
timeouts should be greater than or equal to the global time. Certainly, the scheduling
timeout should be infinite if the process has issued an IPC call with an infinite timeout.
Formally:

valid timeouts sV.procs sV.schedds sV.sndstatdb sV.rightsdb ≡
∀p∈set sV.schedds.wait.

sV.schedds.time ≤ dsV.schedds.procdb pe.timeout ∧
(dsV.schedds.procdb pe.timeout = ∞ ←→
current timeout dsV.procs pe dsV.sndstatdb pe = ∞)

82

5.6 Invariants over Execution Traces

where current timeout sproc sndstat examines the call issued by the process in state sproc

and selects the send or receive timeout depending on the send status sndstat in case of
ipc request.

Section 5.4 states that processes may only wait for IPC. Besides that, the process must
agree to wait by specifying a positive timeout value with the call. Certainly, a process
should not wait in a rendezvous situation. Additionally, it is not desirable that a process
waits though some error impedes a rendezvous: We know that the kernel checks for
invocation errors of IPC calls immediately when the call is issued. If changes of the kernel
state induce such an error while the process waits, the process is immediately notified of
the error, as we have seen with terminating processes in Section 5.3. Consequently, we
may assume that there are no invocation errors for waiting processes. We collect all this
knowledge in the predicate wait imp IPC. Similarly, the predicate valid handles s.procs
s.rightsdb is concerned with IPC. It summarizes properties on valid handles like those
specified in Section 5.4.

There are two more predicates, which are independent from the scheduling data struc-
tures. First, all active processes should certainly be well-formed according to our process
abstraction (see Section 4.2):

valid procs s.procs ≡ ∀pid . s.procs pid = ⊥ ∨ is validproc ds.procs pide

Second, the predicate valid devds s.procs s.devds summarizes constraints on device data
structures.

Finally, we define the overall invariant as a conjunct of all previous predicates:

Definition 5.2 (Vamos Trace Invariant). The predicate invV is defined as follows:

invV sV ≡ is proc infoV sV ∧ valid procs sV.procs ∧
valid queue members sV.procs sV.schedds ∧ distinct queues sV.schedds ∧
prio of readyQ sV.schedds sV.priodb ∧
wait imp IPC sV.procs sV.schedds sV.sndstatdb sV.rightsdb sV.devds ∧
valid timeouts sV.procs sV.schedds sV.sndstatdb sV.rightsdb ∧
bounded timeslices sV.schedds ∧ sndstat imp wait sV.schedds sV.sndstatdb ∧
sndstat imp request sV.procs sV.sndstatdb ∧ valid handles sV.procs sV.rightsdb ∧
valid devds sV.procs sV.devds

Ultimately, we show that this predicate is indeed invariant over execution traces:

Theorem 5.1 (Vamos Trace Invariant). The predicate invV holds on all states of an
arbitrary execution trace, formally:
invV (states m) holds for arbitrary m in any Vamos execution trace (states, inputs).

Proof. We prove this statement by induction. At first, we establish invV for the initial
states: sV ∈ S0

V =⇒ invV sV. This proof is comparatively simple because the set of initial
states is small: From Section 3.2, we now that Vamos launches a single, privileged
process at the beginning; the initial states hence only vary in the size and the image of
this init process.

83

5 Adding Concurrency: The Kernel Models

Then, we show that invV is maintained by the transition function, i. e., invV sV =⇒
invV (dV i sV). This proof, in contrast, is very elaborate because of the complexity of the
kernel transitions and the invariant. Note that the invariant holds after each transition
phase. Thus, we have verified the overall statement for each transition phase separately.
The first transition phase, which advances the current process, is the most complex one.
Just for this phase, we have proven the invariant predicate by predicate, and each time
by a case distinction over the 18 possible process outputs. Within this proof, we have
used Theorem 4.1 on page 47. The formal proof has taken more than two person months.

Finally, we derive our claim invV (states m) by the definition of traces.

In the same fashion, we can define an invariant over the Coup states. First, we define
the validity constraints for the process-specific information without the scheduling data:

is proc infoVC sVC ≡
∀p. (sVC.priodb p = ⊥ ←→ sVC.procs p = ⊥) ∧

(sVC.sndstatdb p = ⊥ ←→ sVC.procs p = ⊥) ∧
(sVC.rightsdb p = ⊥ ←→ sVC.procs p = ⊥)

Second, we specify the validity of the current process—the only remains from the schedul-
ing data structures in Coup. In Section 5.5, the transition ∆sched

VC explicitly requires that
if the current process is defined, it refers to an active process. Formally:

valid cupVC sVC.procs sVC.cup ≡ ∀p. sVC.cup = bpc −→ sVC.procs p 6= ⊥

Third, we reuse all predicates from Vamos that do not involve the scheduling data.
Fourth, we can conclude from the combination of the predicates sndstat imp wait and
wait imp IPC that if the send status of a process is True, the timeout value specified with
the IPC call is positive and there are no errors impeding a rendezvous. We encapsulate
this fact in the predicate vc sndstat imp no error.

Finally, we specify:

invVC sVC ≡ is proc infoVC sVC ∧ valid procs sVC.procs ∧ valid cupVC sVC.procs sVC.cup ∧
sndstat imp request sVC.procs sVC.sndstatdb ∧
vc sndstat imp no error sVC.procs sVC.sndstatdb sVC.rightsdb ∧
valid handles sVC.procs sVC.rightsdb ∧ valid devds sVC.procs sVC.devds

and prove the according invariance theorem:

Theorem 5.2 (Coup Trace Invariant). We assume that two functions states and inputs
describe an execution trace of the Coup model, i. e., states 0 ∈ S0

VC and for all steps n,

there is a transition states n
inputs n−−−−−→VC states (n + 1). Then, the predicate invVC holds

for every state states n in the trace.

Proof. Just as with invV, we prove this statement by induction. This proof is substan-
tially simpler because the of the abandoned scheduling data structures. Note, however,
that the invariant does not hold after each transition phase of ∆VC: If the current pro-
cess terminates, the current-process indicator is dangling. Fortunately, only ∆cup

VC is

84

5.7 Conclusion

concerned with the current process. Hence, we introduce a slightly weakened invariant
inv ′VC that omits valid cupVC. Assuming invVC, the predicate inv ′VC holds after ∆cup

VC and
is preserved by ∆to

VC and ∆ints
VC . Finally, the transition ∆sched

VC re-establishes valid cupVC

and thus invVC.
Note that for the proof about ∆cup

VC , we rely on the rules of process-model validity.
Thus, the Coup invariant only holds if the underlying process model is valid (cf. the
according constraint on the Coup state space in Section 5.1).

We have formally proven the theorem in about two person weeks.

Note that the actually required invariant heavily depends on the verification task.
As our proofs about the Vamos specification center around the scheduling mechanism,
most assumptions are concerned with the scheduling data structures.

5.7 Conclusion

This chapter defined two automata, the Vamos specification AV and the Coup model
AVC, which both formally describe the behavior of Vamos. While the former constitutes
a low-level kernel specification for code verification with the exact scheduling behavior,
the latter abstracts from scheduling details and focusses on the interaction of processes.

An important but sometimes challenging task [DDB08] was the adjustment of the
models to their respective purposes: While a kernel model specified close to the im-
plementation facilitates the code verification, the verification of kernel properties like
scheduler fairness (see Chapter 7) benefit from a fairly abstract kernel model. Both
models share many common concepts, which we specified once and for all. For reusable
specifications, we generalized many definitions for the Vamos specification to use an
arbitrary process model. Thus, we could easily reuse them in Coup as well. This fore-
sight was the key to succinct and manageable simulation proofs. Constant adjustments
of such definitions during the development of the models show that a high degree of
reusability can best be achieved if the models are developed in parallel.

It turned out that a major obstacle for our proofs was the lack of an early, systematic
validation for specifications. During the formal proof development for the invariance of
invV and for scheduler fairness, we found many trivial oversights like misinterpretations
of the code or failures to update all relevant specification parts after changes. We experi-
enced that especially trivial flaws are hard to locate during interactive theorem proving:
While the human way of thinking abstracts from trivialities, the proof automation in
Isabelle only works for correct statements.

85

6 Simulation:
Formally Relating the Kernel Models

Contents

6.1 Kernel-Model Simulation . 87
6.2 Abstracting Concurrent Assembly Processes to C0 Processes 90

6.2.1 On the Commutability of Transitions: From Trace Theory to Kleene Al-
gebra . 91

6.2.2 Process Simulation Meets True Concurrency 92
6.2.3 Commuting Transitions in CoUP . 93

6.3 Conclusion . 95

In this chapter, we formally establish a simulation between the Vamos specification
and a Coup model with C0 processes. Note that not every assembly process can be
abstracted to a C0 process. The compiled C0 programs are a strict subset of the as-
sembly programs: For a given assembly program, there might not exist any C0 program
that compiles to this assembly program. Though the operating system and its applica-
tions are usually implemented in C0, our verification framework should not rely on this
assumption. Quite on the contrary, it should be possible to verify that the operating
system works correctly even in the presence of malicious assembly processes.

Hence, assembly processes coexist with C0 processes in our Coup model. We formally
express this coexistence by a combined process model: Its process states are the disjoint
union of the assembly and the C0 state spaces while the corresponding predicates is
validproc and is initproc as well as the transition and output functions dproc, wproc, and
sizeproc are simply defined as mediators, selecting the corresponding function depending
on the kind of state.

We establish the simulation in two steps: In Section 6.1, we narrow our consideration
to Coup states with solely assembly processes. We define a function abstracting Vamos
states to those Coup states, and show that the Coup transitions simulate all possible
Vamos transitions. In Section 6.2, we abstract assembly processes within Coup to C0
processes. Note that the latter abstraction is not strictly necessary for the verification
of the SOS in Verisoft (see Section 8.3).

6.1 Kernel-Model Simulation

We start with the definition of the abstraction function:

87

6 Simulation: Formally Relating the Kernel Models

Definition 6.1 (Kernel-State Abstraction). The function absVC constructs a Coup state
from a Vamos state by reducing the scheduling information to the current-process indi-
cator. Formally:

absVC sV ≡
(|procs = sV.procs, cup = cupV sV.schedds, priodb = sV.priodb,
sndstatdb = sV.sndstatdb, rightsdb = sV.rightsdb, devds = sV.devds|)

Note that in the resulting Coup state, all processes are necessarily assembly processes.
With the abstraction function in place, we can directly formulate the required simulation
theorem:

Theorem 6.1 (Kernel-Model Simulation). Provided that the Vamos invariant holds,
Coup transitions simulate Vamos transitions wrt. absVC. Formally:

invV sV =⇒ absVC sV
i−→VC absVC (dV i sV)

Proof. Similar to the verification of the Vamos invariant (see Theorem 5.1 on page 83),
we separately regard the four transition relations (see the definition of ∆VC on page 66).

Within the proof for the first transition relation, we distinguish whether there is a
current process. If there is none, the first phase is not present in Vamos, i. e., the call
dispatcher is not invoked at all. We model this behavior by the rule (reflexivity) of ∆cup

VC
mifo on page 67.

For an existing current process, we state that the transitions of ∆cup
VC mifo simulate

the transitions of the call dispatcher. Note, however, that the component cup remains
unchanged under ∆cup

VC mifo while the call dispatcher might cause a change of the current
process by altering the scheduling data structures. Thus, we explicitly reinforce the old
current process for simulation:

[[invV sV; cupV sV.schedds = bpcupc]]
=⇒ (absVC sV, (absVC (call dispatcher specV sV mifo))(|cup := bpcupc|)) ∈ ∆cup

VC mifo

The proof of this fact is quite elaborate; hence, we defer its discussion to Lemma 6.2 on
the next page.

In the same fashion, we encapsulate the simulation of scheduler specV by ∆to
VC (cf.

Section 5.5). This simulation follows easily from the definition of scheduler specV and
the corresponding relation ∆to

VC: The outer function v charge process of scheduler specV

solely alters the scheduling data structures. Hence, the changes are no longer visible
when the state is abstracted to Coup and the current process is reset.

The inner function v manage timeouts additionally updates processes and send sta-
tuses for processes with an elapsed timeout. In ∆to

VC, a process and its send status is
either unchanged, or the process issues a finite IPC call and the updates are exactly
the same as for processes with an elapsed timeout in v manage timeouts. Note that an
elapsed timeout requires that the concerned process has issued a finite IPC call. Thus,
∆to

VC simulates the transitions of v manage timeouts and hence those of scheduler specV.
Similarly, we show the simulation of the third Vamos phase by ∆ints

VC . In a last step,
we combine our results. Each Vamos transition phase is simulated by the relations

88

6.1 Kernel-Model Simulation

∆cup
VC , ∆to

VC, and ∆ints
VC , under a constant current process. Note that the current process

is irrelevant in ∆to
VC and ∆ints

VC because they focus on waking up waiting processes.
Finally, we establish the overall simulation relation using ∆sched

VC to simulate any
changes of the current process during the individual transition phases. Recall that
the definition of ∆sched

VC on page 80 requires that only an active process might become
the current one. We employ the Vamos invariant to show that this requirement is not
violated by the new current process.

The formalization of this proof in Isabelle/HOL took about two person months, mostly
for the verification of Lemma 6.2.

Lemma 6.2. The transitions of ∆cup
VC simulate those of the call dispatcher:

[[invV sV; cupV sV.schedds = bpcupc]]
=⇒ (absVC sV, (absVC (call dispatcher specV sV mifo))(|cup := bpcupc|)) ∈ ∆cup

VC mifo

Proof. In essence, we prove this lemma by unfolding call dispatcher specV and employing
the introduction rules that define ∆cup

VC (cf. Section 5.2). The definition of call dispatcher
specV, however, is a case distinction on the output wproc dsV.procs pcupe of the current
process. Consequently, our proof structure follows this case distinction, regarding the
different kernel calls one by one.

For most kernel calls, it is sufficient to distinguish between the error cases, on the
one hand, and the successful case on the other hand. Just recall the specification of the
set privileged call in Section 5.2: In the Vamos specification, the call is specified
by the function set privileges specV, which merely differentiates whether is error (set
privileged response sV.rightsdb pcup hn) holds. For each case, we have a corresponding
rule of ∆cup

VC : (privilege err) and (privilege succ), respectively.
The only exception to that rule is IPC, or more specifically: the ipc send and ipc

request calls. About seventy percent of the formal proof script (including auxiliary
lemmata) are concerned with these two calls. This verification effort is the prize for the
gained symmetry in the Coup model (see Section 5.4): In contrast to all other calls,
we have spared extra rules for successful ipc send and ipc request calls because we
claimed that the effects are already covered by a successful ipc receive. The simulation
proof formally legitimates this claim.

Thus, for the ipc send and ipc request calls, we first sort out the cases with
invocation errors or immediate timeouts, which ∆cup

VC has extra rules for. Then, we show
that the rule (rendez vous) covers all remaining cases. In the course of the latter proof,
we verify propositions like:

• If predicate ipc send rendez vous holds for the current process pcup, we can con-
clude is pending recv for another process prcv and vc is sending to for pcup and
prcv. This fact follows from the definitions of the predicates and the Vamos invari-
ant. The latter is required, e. g., for the definedness of the rights data base (see
predicate is proc infoV) or that there are no invocation errors for waiting processes
(predicate wait imp IPC).

89

6 Simulation: Formally Relating the Kernel Models

• If both predicates ipc send buffer ovfl and ipc send rendez vous hold for pcup,
the function ipc rcv split sq sorts pcup into the first list. Again, we unfold the
definitions and employ the invariant.

• Assuming prcv is waiting, neither predicate accepts knotes holds, nor can the spec-
ified timeout be zero. This fact follows directly from the Vamos invariant.

6.2 Abstracting Concurrent Assembly Processes to
C0 Processes

Our original motive for the introduction of Coup has been the verification of C0 programs
in the concurrent environment of our microkernel. Yet, our consideration in the previous
section has been limited to a Coup model with solely assembly processes. In Section 4.5,
however, we have established the simulation between C0 and assembly processes. This
section presents the capstone that combines both results and finally establishes a Coup
model with C0 processes.

The difficulty in combining the previous results stems from the fact that a transition
of a C0 process may span multiple transitions of an assembly process while Vamos
might schedule another process in each transition. Thus, we have to rearrange transition
sequences before we can combine adjacent assembly transitions to a C0 transition. Figure
6.1 illustrates the situation:

Vamos

Coup (asm)

Coup (asm)

Coup (asm+C0)

absVC

=

consistentproc

∆p
asm

∆p
asm

∆p
asm

∆p
C0

∆p̄

∆p̄

∆p
asm

∆p
asm

∆p
asm

∆p̄

∆p̄

Figure 6.1: Abstracting assembly processes in a concurrent setting to C0 processes

We see exemplary extracts from kernel traces, stacked on top of each other. At the
top, there are two transitions of the Coup model with assembly and C0 processes. The
first one is labeled ∆p

C0, denoting that a C0 process p performs a transition. The second
transition is labeled ∆p̄ for a transition that does not involve p. Below that, we see the

90

6.2 Abstracting Concurrent Assembly Processes to C0 Processes

execution trace of the Coup model with solely assembly processes. From the process-
simulation theorem (Theorem 4.3 on page 57), we know that ∆p

C0 abstracts a number of
assembly transitions – in the illustration, this number is two.

At the bottom of the figure, we see an extract from a Vamos trace. In the first
transition, the assembly process p advances, the second transition does not involve p,
and the third one advances p again. From Theorem 6.1 on page 88, we know that
the Coup model with solely assembly processes simulates these Vamos transitions, as
shown above. The yet missing link is a rearrangement of transitions in Coup such that
the transitions ∆p

asm are adjacent. Below, we work out the technical details that allow
us to establish this link.

6.2.1 On the Commutability of Transitions:
From Trace Theory to Kleene Algebra

Usually, trace theory [Maz87] is employed to describe the commutability of transitions
in the execution sequences of concurrent state transition systems. In short, trace theory
defines equivalence classes over transition sequences based on an independency relation.
This binary relation I contains commutable transition pairs, i. e., ∀(D1, D2)∈I . D1 ◦
D2 = D2 ◦ D1. Non-commutable or dependent transitions typically include locking
operations or synchronization points. Trace theory simply states equivalence for all
traces that result from permutations of commutable transitions.

The immediately arising question is whether the transitions ∆p
asm and ∆p̄ in Figure 6.1

on the preceding page are commutable. Unfortunately, this is not necessarily the case.
In general, the process and kernel transitions are dependent because the input value
for a process transition resembles information about the kernel state, on the one hand,
and the kernel transitions use the output functions of the processes to gain information
about the process states, on the other hand.

For a process transition, we can determine from the process output whether the tran-
sition requires information on the current kernel state. An internal transition dproc eSv is
independent from the kernel state and requires an output of eW (see the process-validity
rule (no input valid) on page 44). All other process transitions require some information
about the kernel state.

Respectively, the kernel gains information about a process solely via its output func-
tions wproc and sizeproc. From (size const) on page 42, we know that the size remains
constant under all inputs except for add memory pages and free memory pages.
The output wproc, on the contrary, might change under any process transition.

Consequently, the suggested rearrangement in the illustration cannot be substantiated
with trace theory. A closer look, however, reveals a resort: The key observation is
that the process output eW inhibits kernel interaction while other outputs open up the
possibility for interaction – but cannot enforce it. In other words, bringing an internal
process transition forward, may extend but never restricts the set of possible traces.

Trace theory establishes an equivalence or bisimilarity relation though in our context,
a plain simulation is sufficient. Recall that we have shown that Coup simulates Va-
mos while we know that Vamos does not simulate Coup. Hence, it is sufficient to

91

6 Simulation: Formally Relating the Kernel Models

show that permutations preserve Coup’s simulation of Vamos while it does not harm
if additional Coup transitions become possible after permutation. Conceptually, we
define an independency relation I such that ∀(D1, D2)∈I . D1 ◦ D2 ⊆ D2 ◦ D1.1 If we
swap a transition D1 and a consecutive transition D2 in a Coup trace, we preserve the
simulation of Vamos. Note that the commutations are not reversible, i. e., without loss
of generality, we may not swap D2 and D1 if D2 precedes D1.

6.2.2 Process Simulation Meets True Concurrency

After we have clarified the theoretical background for the permutation of transitions, we
take a closer look on the transitions to be commuted for process simulation.

From a process-isolated perspective, the situation has been depicted in Figure 4.2 on
page 58. As we have seen at the beginning of this section, the situation becomes more
involved when we regard the transitions of a process in the context of the true-concurrent
kernel execution. The kernel-centered perspective of this situation has been visualized
by the upper two transition sequences of Figure 6.1 on page 90. Figure 6.2 connects
both illustrations, extending the former to complete kernel states and transitions, and
refining the latter with details on the involved process transitions:

t0 t1 t2 t3 t4 t5 t6

s0 s1 s2 s3

∆p
asm eSv ∆p

asm eSv ∆p
asm eSv

∆p̄ ∆p̄

∆p̄ ∆p̄
∆p

asm i

∆p
C0 i

ω
consistentproc consistentproc

Figure 6.2: Process simulation in a concurrent Coup trace

The illustration shows two Coup traces. The states si contain an active C0 process
with PID p while the states ti contain a corresponding assembly process at p. The state
of process p in s0 simulates the one of p in t0. We assume that p yields some output ω in
s0. The process state remains constant under all subsequent Coup transitions ∆p̄ that
do not involve p. From Figure 4.2 on page 58, we know that the assembly process p in
t0 might require several internal transitions (here labeled ∆p

asm eSv) until it reaches in t3
a state yielding the same output. In a Coup trace, transitions ∆p̄ might interleave with
the internal process transitions. From the states s1 and t3, respectively, the process p
advances under an input i suitable to the output ω. Note that without loss of generality,
the depicted transitions ∆p

C0 i and ∆p
asm i might alter the whole kernel state, not just

1Our approach draws upon Kleene algebras (see Section 1.2.1). We define the according algebra over
the universe SVC × SVC where addition is set union, multiplication is the relational composition, 0 is
the empty set and 1 is the identity relation. We adopt the subset relation as partial ordering and
define the Kleene star as the reflexive transitive closure.

92

6.2 Abstracting Concurrent Assembly Processes to C0 Processes

the process-local state. Further internal assembly transitions might again interleave with
transitions ∆p̄ until simulation of process p is established between s3 and t6.

Concluding, we identify two situations where an interleaving of process and kernel
transitions might occur: Between internal transitions of an assembly process between
consistentproc in t0 and the state yielding the appropriate output ω in t3 as well as after
the process-kernel interaction and before consistentproc is established again, i. e., between
the states t4 and t6. Below, we show that internal process transitions can safely be
commuted with subsequent kernel transitions not involving p.

6.2.3 Commuting Transitions in CoUP

So far, we have been quite unspecific about the kernel transitions ∆p̄ that do not involve
the considered process p. Now, we draw our attention to this neglect and examine the
Coup transitions more closely to identify commutable transitions. A first observation is
that a process might advance several times during one ∆VC transition, for instance in
∆cup

VC and in ∆to
VC. Hence, we inspect the individual transition phases ∆cup

VC , ∆to
VC, ∆ints

VC

and ∆sched
VC . Furthermore, we implicitly assume in the remaining subsection that the

invariant invVC holds.
An internal process transition might only take place as part of ∆cup

VC if (a) the process
is active and (b) its output is eW. In the remainder, we implicitly assume that these
preconditions hold for process p. Additionally, ∆cup

VC requires that the process is the
current one. We simplify matters and define a transition relation D

p
e that extends an

internal process transition to the whole kernel state independently from the current
process. This relation resembles the transitions labeled ∆p

asm eSv from Figure 6.2 on the
facing page:

D
p
e ≡ {(s, s ′).

∃sproc. s.procs p = bsprocc ∧ wproc sproc = eW ∧
s ′ = s(|procs := s.procs(p 7→ dproc eSv sproc)|)}

This relation refines ∆cup
VC if the process p is the current one:

s.cup = bpc =⇒ (s, s ′) ∈ ∆cup
VC mifo ←→ (s, s ′) ∈ (Dp

e)
=

where R= denotes the reflexive closure of relation R. For the equality of ∆cup
VC and D

p
e,

we cannot neglect the reflexivity of ∆cup
VC but when considering permutations below, we

ignore it because the identity relation is trivially commutable. Note that ∆cup
VC uses the

parameter mifo only for device communication, hence we omit it for internal steps Dp
e.

If, in contrast, the current process is not p, an internal transition of p may be swapped
with a subsequent ∆cup

VC :

[[s.cup 6= bpc; (s, s ′) ∈ ∆cup
VC mifo ◦ Dp

e]] =⇒ (s, s ′) ∈ Dp
e ◦ ∆cup

VC mifo

Informally, this claim follows from a simple observation: The Vamos specification con-
siders the output of a process in two situations: The output of the current process
determines the kind of its computation, and in case of an IPC call, Vamos additionally

93

6 Simulation: Formally Relating the Kernel Models

checks the output of the waiting processes for a possible rendezvous. Immediately after
an internal transition, however, a process does not wait. From Lemma 6.2 on page 89,
we know that ∆cup

VC simulates this behavior of the Vamos call dispatcher. Hence, ∆cup
VC

includes the possibility to disregard a potentially changed output of p. For the formal
proof of this claim, however, we have regarded the 33 rules introducing ∆cup

VC one by one.
Additionally, we have formalized similar facts about swapping internal process tran-

sitions with subsequent other transition relations. We claim

(s, s ′) ∈ ∆sched
VC ◦ Dp

e =⇒ (s, s ′) ∈ Dp
e ◦ ∆sched

VC

because ∆sched
VC is solely concerned with the current process while Dp

e completely neglects
it. The transitions ∆to

VC and ∆ints
VC only affect processes pending in an IPC operation.

Though after an internal transition, a process might potentially be pending in IPC, the
definitions of ∆to

VC and ∆ints
VC include the possibility of an unchanged process. Hence:

(s, s ′) ∈ ∆ints
VC ints ◦ Dp

e =⇒ (s, s ′) ∈ Dp
e ◦ ∆ints

VC ints
(s, s ′) ∈ ∆to

VC ◦ D
p
e =⇒ (s, s ′) ∈ Dp

e ◦ ∆to
VC

Consequently, we may rearrange the internal process transitions in an interleaved
sequence of kernel transitions such that the internal transitions precede all remaining
transitions. Recall, however, that this conclusion relies on our implicit assumption that
the process p remains active and its output eW. Fortunately, most transitions completely
disregard processes with an output of eW:

(s, s ′) ∈ ∆ints
VC ints =⇒ s ′.procs p = s.procs p

(s, s ′) ∈ ∆to
VC =⇒ s ′.procs p = s.procs p

(s, s ′) ∈ ∆sched
VC =⇒ s ′.procs p = s.procs p

We know these facts because ∆ints
VC and ∆to

VC only modify processes calling for IPC while
∆sched

VC is solely concerned with cup. In spite of that, process p might certainly be killed
by another process (see Section 5.3). Otherwise, however, ∆cup

VC does not alter the process
state with an output of eW. Formally:

[[s.cup 6= bpc; (s, s ′) ∈ ∆cup
VC mifo]] =⇒ s ′.procs p = ⊥ ∨ s ′.procs p = s.procs p

We prove this claim by a case distinction over the output of the current process and
expect the changed process states in each case. Recall that there are only two situations,
where a process state might change: when being the current process or while issuing an
IPC call.

The possibility of process termination gives rise to another consideration: When a C0
process is compiled, the resulting assembly process might be terminated while executing
the instructions of a single C0 statement. In Figure 6.2 on page 92, p features the output
ω already in state s0 while the compiled process at the bottom could be terminated in t2,
thus never featuring that output. Thus, we investigate the insertion of internal process
transitions. Formally, we state:

(s, s ′) ∈ ∆cup
VC mifo ∩ {(x , y). y .procs p = ⊥} =⇒

(s, s ′) ∈ Dp
e ◦ ∆cup

VC mifo ∩ {(x , y). y .procs p = ⊥}

94

6.3 Conclusion

i. e., we constrain ∆cup
VC such that it terminates p. If so, we may insert an internal process

transition because process termination is generally independent from the process output
(see Section 5.3).

6.3 Conclusion

Summarizing, this chapter presented two results: first, a simulation between the kernel
models with assembly processes, and second, the necessary lemmata about possible
reorderings of internal process transitions that allow us to finally embed C0 processes
into the kernel models.

The simulation proof between the kernel models (Theorem 6.1 on page 88) substan-
tially benefitted from the prior harmonization of the involved models (cf. Chapter 5).
The remaining proof effort was mainly caused by the gained symmetry for IPC in Coup.
In the retrospective, we suspect further improvement opportunities in both, the proof
development and the specification of the kernel models.

Our proof development suffered from repeated set-backs when the Vamos invariant
invV proved to be too weak. Instead of starting with a minimal invariant, which is
strengthened by need, one could start with a stronger formulation and withdraw un-
needed propositions after the simulation proof (and before the proof of invariance). Orig-
inally, we assumed that in the latter approach, the risk of overestimating the invariant
would be too high. Our experience, however, is contrary: The risk of under-estimating
the minimally required invariant is much higher than overestimating the maximal in-
variant. A recently appeared case study [CKS08] in kernel verification suffered from the
same problem and came to the same conclusion.

Additionally, we suspect that further optimization of the IPC specification in both
Vamos models might have reduced the proof effort. An important, first step in this
direction has been the specification of the message transfer independently from the
current process (see Section 5.4.2). This optimization has greatly simplified the proof.
Unfortunately, there is no case study that could evaluate the gained verification speed.

Ultimately, we can take the idea of harmonizing the two kernel models even a step
further and ask whether a single kernel model could have sufficed for both purposes. In
the hindsight, we acknowledge that this approach would have been generally possible.
Mainly project-pragmatic reasons led to two different kernel models. At the same time,
we like to point out that specifying a single model serving different purposes requires
utmost care. From the amount of adjustments at both models during our work, we can
imagine that the same effort as for the simulation proof could have easily been spent in
the specification work for a single model serving both purposes.

Though initially motivated by the embedding of C0 processes, the lemmata about
reorderings of process transitions ultimately allow us to prove properties over all possible
kernel traces while confining our consideration to a substantially smaller, representative
subset, where rescheduling only takes place at kernel calls. The general course of action
has been described by Alkassar et al. [ABP09, Alk09] for a similar setting though in our

95

6 Simulation: Formally Relating the Kernel Models

case, the reorderings are not reversible, i. e., we cannot establish equivalence classes of
permutations.

96

7 A Temporal Property: Scheduler Fairness

Contents

7.1 An Introductory Scheduling Example . 97
7.2 Common Notions of Fairness . 98
7.3 Developing and Proving Prioritized Fairness . 99
7.4 Rephrasing the Temporal Property in LTL . 103
7.5 Conclusion . 104

We start this chapter by an introductory example illustrating the operation of the
scheduler in a Vamos trace. We continue with a comparison of different fairness notions
found in the literature. In the major part of this chapter, we develop our notion of
prioritized fairness, which precisely reflects the policy of the Vamos scheduler, and
prove that our scheduler conforms with this definition. Concluding, we lift our result to
a thin layer of temporal logic that provides the succinct notation usually employed for
temporal properties.

7.1 An Introductory Scheduling Example

Before we descend down into the formal details, we illustrate the operation of our sched-
uler. Figure 7.1 on the following page shows an example trace. The matrices at the top
represent the ready queues and the wait queue of Vamos. Our scheduler always elects
the first process in the highest, non-empty ready queue for computation. In the first
shown step, two processes are in the highest priority class, and process 1 is computing
(as shown at the bottom) because it is the first in the highest ready queue. The elected
process runs (at least) until it generates an exception or an external interrupt occurs.
In the example, we assume that process 1 issues an IPC call and then has to wait for a
suitable partner such that process 2 is computing in the second step.

A timer interrupt occurs (indicated by) and process 2 is charged for its computation
in step 2, i. e., the counter ds.schedds.procdb (process 2)e.ctsl is increased. Process 2,
however, is the only one in its ready queue and continues to compute in step 3. Now, we
assume that process 2 issues an open IPC receive and is found waiting in step 4 while
process 3 computes. In step 5, a timer interrupt occurs, which charges process 3. For
this example, we assume that all processes have a single timeslice—hence, process 3 will
be preempted as its timeslice ran out. Moreover, we assume that the scheduler wakes

97

7 A Temporal Property: Scheduler Fairness

readyhigh

readymed
readylow
wait

0BB@
1 2
3 4
5
−

1CCA
0BB@

2
3 4
5
1

1CCA
0BB@

2
3 4
5
1

1CCA
0BB@

−
3 4
5
1 2

1CCA
0BB@

−
3 4
5
1 2

1CCA
0BB@

2
4 3
5
1

1CCA
0BB@

2
4 3
5
1

1CCA
0BB@

2
4 3
5
1

1CCA
0BB@

−
4 3
5
1 2

1CCA
0BB@

−
4 3
5
1 2

1CCA
0BB@

2
4 3
5
1

1CCA
step 1 2 3 4 5 6 7 8 9 10 11

1 2 2
3 3

2 2 2
4 4

2 2high

med
low

Figure 7.1: An exemplary execution trace of Vamos together with the scheduling queues

up process 2 because of an elapsed timeout. Now, process 2 continues to compute until
step 8, where it again issues an IPC call and starts waiting. Later on, we return to this
example.

7.2 Common Notions of Fairness

There are various notions of fairness. In the operating-system community, fairness of
static-priority scheduling is typically measured by the ratio of the CPU usage among
equally prioritized processes. Fagin & Williams [FW83] illustrate quantitative fairness
by the carpool problem: A number of persons form a carpool. Each day, some of them
arrive to share in the ride. A fair scheduling algorithm is required that determines for
any given day, which one of the arrived persons should drive the car.

Fagin & Williams propose that each person sharing in a ride should owe the driver
the reciprocal of the number of sharers. They call this debt the degree of unfairness
and claim that it is fair to always schedule the poorest sharer as the driver. Applied to
process scheduling, the degree of unfairness is computed as follows: If a process is chosen
from a ready queue with length n, we subtract 1 − 1/n from its debt and add 1/n to
the debt of each unchosen process in the queue. Alternatively, Naor [Nao05] suggests a
shuttle-bus fare, i. e., a fixed price is assigned to the CPU usage, regardless of the current
demand. The Vamos scheduler adopts this notion and measures unfairness by the time
that a process has resided in the ready queue since it were most recently chosen.

In temporal logics, fairness refers to a liveness property. In his taxonomy, Francez
[Fra86] differentiates three forms of temporal fairness: Unconditional fairness requires
that each process is infinitely often scheduled. Formally: �♦scheduled. Strong fairness,
in contrast, formulates the same requirement only for processes that are infinitely often
ready to compute, i. e., �♦enabled −→ �♦scheduled. Finally, weak fairness only claims
that processes are infinitely often scheduled if eventually, they forever remain ready, i. e.,
♦�enabled −→ �♦scheduled. As we show below, the Vamos scheduler features a strong
fairness property.

Certainly, it is desirable to predict at least the waiting time of a certain process until
it finally computes but this task is hard to achieve. In principle, the waiting time of the

98

7.3 Developing and Proving Prioritized Fairness

processes in the highest priority class is linear in the number of processes and an upper
bound for the waiting time could be given. For real-time operating systems [KP07]
with a fixed process schedule, static program analysis [HF04] can reliably predict an
upper bound for the worst-case execution time of programs. Recollect, however, that
we use Vamos in a computer system for e-mail exchange, where keyboard inputs and
network packages arrive non-deterministically. Depending on the pressed key, even a
new process might be launched. In this scenario, static program analysis cannot show
its advantages. Measurements [SP07, PZH07] can better cope with non-determinism and
produce considerably lower time bounds but are not exhaustive and might thus miss an
unlikely worst case.

Besides the difficulty to prove a quantitative fairness property, the temporal property
simply suffices for our original motivation: We can lift statements about the termination
of user programs into the concurrent environment of kernel executions. Thus, even total
correctness of a process in the concurrent environment can be established without a
detailed timing analysis.

7.3 Developing and Proving Prioritized Fairness

Liveness properties are defined over traces. Thus, based on the definition of Vamos
traces on page 81, an unconditional fairness property is:

∃l≥k. progress d(states l).procs pide d(states (l + 1)).procs pide

where k is an arbitrary, fixed step number, pid is an arbitrary, fixed process ID, and
the predicate progress p q holds iff q can be produced by a single transition1 from p,
i. e., ∃i . q = dproc i p. Note that the requirement of a single transition for progress is
significant: An arbitrary transition sequence might pass twice through the same state.
If progress were defined as the transitive closure over transitions, the progress relation
would become reflexive for all such states.

This statement, however, is too strong for the Vamos scheduler because it neglects
several aspects of our system:

• Processes are dynamic entities and PIDs may be reused. Thus, the process pid in
step l might not be the same as the one in step k (see Section 5.3).

• A process pid might start an IPC operation with an infinite timeout (see Section
3.3). If there is never another process willing to communicate with process pid,
the latter starves.

• Prioritization leads to the preemption of less prioritized process classes – without
any time bound (according to our scheduling policy as described in Section 3.2.2).

• The implementation relies on a live timer device because the scheduler is activated
only by the timer interrupt (see Section 5.1).

1Technically, the matter is complicated by the fact that the amount of process memory is held with
the processes. Transitions changing only this amount, are certainly not considered as progress.

99

7 A Temporal Property: Scheduler Fairness

Consequently, we have to weaken our notion of fairness in this context. First, we
recall that liveness conditions are formulated over infinite transition sequences. Hence,
we exclude all terminating processes, i. e., we assume ∀n≥k. (states n).procs pid 6= ⊥.

Second, we define a predicate pending infinite ipc s pid, which examines a state s and
holds iff the process pid is pending in an IPC operation with an infinite timeout. If a
process remains forever in this state, it is certainly not the fault of the scheduler but a
programming or protocol error. Thus, we do not consider such starving processes, i. e.,
we require ∀n≥k. ∃m≥n. ¬ pending infinite ipc (states m) pid.

Third, the priority of a process is runtime-configurable by the kernel call chg sched
params. Upon a priority change, the process will be removed from its old priority’s
ready queue and appended to the new one. As long as the priority is only configured
at the beginning (or more precisely: changed only a finite number of times), we can
find an infinite subtrace without a priority change. If, however, there are infinitely many
changes, the process may starve. We exclude this case because it contradicts the concept
of static-priority scheduling, i. e., we require: ∀n≥k. (states (n + 1)).priodb pid = (states
n).priodb pid.

Fourth, we assume that the timer device produces infinitely often timer interrupts as
part of the inputs, i. e., ∀n≥k. ∃m≥n. is timer on (inputs m) where predicate is timer
on indicates a raised timer interrupt.

So far, our restrictions have been evident adjustments to the considered system. The
remaining problem, which regards priorities, is somewhat more involved. Let us consider
a process pid in the highest priority class, i. e., (states k).priodb pid = bhighc. With
the assumptions above, we can show that this process pid will eventually make progress,
formally:

∃l≥k. progress d(states l).procs pide d(states (l + 1)).procs pide

This formulation of fairness, however, states nothing about the processes residing in
lower priority classes. A statement over fairness for the latter necessarily depends on
the (intermittent) absence of a process in a higher priority class, which is ready to
compute. All processes, which are willing to compute, are enqueued in the ready queue
of its priority. Thus, we can determine the absence of a prioritized, ready process by
examining the corresponding ready queues, i. e., process pid has the maximal priority in
state s if

∀prio>ds.priodb pide. s.schedds.ready prio = []

We encapsulate this property in a predicate has maxprio s pid.
In order to extend our fairness statement to all processes, we examine our exact

scheduling mechanism more carefully: The currently computing process pcup is charged
(by increasing its consumed time ds.schedds.procdb pcupe.ctsl) and eventually preempted
if and only if the timer interrupt occurs. In other words, a process must have the
maximal priority infinitely often while the timer interrupt occurs, i. e.,

∀n≥k. ∃m≥n. has maxprio (states m) pid ∧ is timer on (inputs m)

Note that this assumption implies timer liveness.

100

7.3 Developing and Proving Prioritized Fairness

readyhigh

readymed
readylow
wait

0BB@
2
4 3
5
1

1CCA
0BB@

−
4 3
5
1 2

1CCA
0BB@

−
4 3
5
1 2

1CCA
0BB@

2
4 3
5
1

1CCA
step 8 9 10 11

2
4 4

2 2high

med
low

Figure 7.2: A Vamos trace with a race
condition

The execution trace shown in Figure 7.2 il-
lustrates this problem: In step 8, process 2
computes and issues an IPC receive. When
the timer interrupt occurs, the scheduler rec-
ognizes that process 2 has been computing at
the last step. Process 4 starts to compute in
step 9 and sends a message to process 2 in
step 10, which causes the latter to wake up.
Thus, process 2 is found computing when the
timer arrives in step 11. If the sequence of
events between step 8 and 11 continues, pro-
cess 4 will never get charged and process 3
starves although it has frequently the maximal
priority.

Of course, it is possible to change the scheduling mechanism such that all processes
found running in between two timer interrupts are charged. This code change, however,
would require extra bookkeeping during the IPC path, which is the most critical one for
system performance. Most L4 kernels even completely skip the scheduler for performance
reasons after some IPC operations [Ruo06, EGR07]. Hence, we favored the shorter path
over an optimized scheduling.

It is crucial to understand the implications of this design choice, in particular, the
possible exploits by malicious processes and the mechanisms to its prevention by priori-
tized processes. For a working exploit, the user process needs a clock of higher precision
than the timer tick, which can only be achieved by another external timer device. If we
exclude this unlikely setting, the process cannot predict the time when the tick arrives
and the consistent recurrence of the race condition becomes exponentially unlikely.

An informal statement of likeliness, however, is not satisfactory to an assumption of
a formal proof. Hence, we examine the necessary preconditions for the race condition.
There are three possibilities for a switch to higher priority between timer ticks: (a) A
process of higher priority might be created, (b) the scheduling priority of an existing
process might be raised, or (c) an IPC call might resume a prioritized, waiting process.
The former two are caused by kernel calls reserved for privileged processes. These
processes are typically most prioritized and have to be trusted anyways. The latter
requires the collaboration of the prioritized process. We regard this situation as a special
form of priority inheritance [Ruo06].

Concluding, we state:

Lemma 7.1 (Prioritized Fairness). The Vamos scheduler is fair with respect to prior-
ity classes, i. e., for all suffixes of an infinite trace, all processes will eventually make
progress, iff they (a) never terminate, (b) remain forever in the same priority class,
(c) do not starve in an IPC operation with an infinite timeout, and (d) have infinitely
often the maximal priority while the timer interrupt is raised.

We formalize this claim as:

[[(trace)states 0 ∈ S0
V; ∀n. states (n + 1) = dV (inputs n) (states n);

101

7 A Temporal Property: Scheduler Fairness

(a)∀n≥k. (states n).procs pid 6= ⊥;
(b)∀n≥k. (states (n + 1)).priodb pid = (states n).priodb pid;
(c)∀n≥k. ∃m≥n. ¬ pending infinite ipc (states m) pid;
(d)∀n≥k. ∃m≥n. has maxprio (states m) pid ∧ is timer on (inputs m)]]

=⇒ ∃l≥k. progress d(states l).procs pide d(states (l + 1)).procs pide

Proof. We prove the theorem by case distinction. From the invariant invV (cf. Section
5.6) we know that a process pid can either be inactive, waiting, or ready. The first case
immediately contradicts Assumption (a).

If a process is waiting, we can infer from the invariant invV that the process is aspiring
an IPC operation and that there is no suitable partner ready for communication (cf.
predicate wait imp IPC).

Let us assume that the process forever remains in the wait queue. If the process has
issued an infinite IPC call, we have a contradiction with Assumption (c). If, however,
a finite timeout has been specified with the call, the timeout will eventually elapse.
We know this because of timer liveness and the fact that dV invokes the scheduler (see
Section 5.5) whenever the timer interrupt occurs. Upon each invocation, the scheduler
increases the variable time and checks for elapsed timeouts. Once, the timeout is elapsed,
the process is dequeued from the wait queue (see v manage timeouts on page 80).

Thus, we know that the process cannot remain forever in the wait queue. The transi-
tion function dV specifies exactly two cases, where a process is dequeued from the wait
queue: (a) there is a partner issuing a kernel call for IPC or (b) the operation times out.
In both cases, Vamos responds to the process with a result value that indicates success
or failure. Formally: The transition function dV involves an update of the process s.procs
pid by dasm res ds.procs pide with the result value res—our definition of progress.

The remaining case is that process pid is ready at step k. We know from invV that
ready processes reside in the ready queue corresponding to their priority. When examin-
ing dV, we can observe that a process will be dequeued from a ready queue only if (a) it
becomes inactive, (b) its priority changes, or (c) it has been computing. The first two
cases lead to a contradiction with our Assumptions (a) and (b)).

Computing usually means that the process immediately makes progress. Most notably,
our implementation guarantees liveness, i. e., a started user process performs at least one
step between two subsequent kernel entries (first phase in dV). Still, there might be no
immediate progress if a computing process calls the kernel for an IPC operation. In this
case, however, the kernel will enqueue the process in the wait queue, and we have shown
fairness for all processes in this queue.

Finally, we regard the case that a process is never dequeued from the ready queue.
Together with Assumption (d), we can infer that the process will move forward in the
ready queue until it is the first one: The assumption ensures that the process has the
current maximum priority infinitely often while the timer interrupt is active. When the
timer interrupt occurs, the scheduler is invoked, and it charges the current process pcup,
i. e., the first process in pid’s ready queue (as specified by v charge process on page 79).

Charging a process means increasing the consumed time ds.schedds.procdb pcupe.ctsl
unless it exceeds the timeslice, and moving the process to the end of its ready queue

102

7.4 Rephrasing the Temporal Property in LTL

if the timeslice is exceeded. Thus, the consumed time value of pcup increases strictly
monotonic as long as the current process remains the first in its ready queue. Moreover,
timeslices are bounded by a fixed value because they are stored in a 32-bit number in
the implementation (cf. predicate bounded timeslices on page 82). Hence, the consumed
time eventually exceeds the timeslice, and pcup is moved to the end of its ready queue.
That means, pcup appears after pid in the ready queue.

By induction, we can infer that process pid will eventually be the first in its ready
queue and thus, when it eventually has the maximum priority, it is the current pro-
cess. The current process computes in the next step and we have already shown that a
computing process eventually makes progress.

7.4 Rephrasing the Temporal Property in LTL

So far, the formal statement requires explicit quantification on step numbers over the
states and inputs functions. We have proven the theorem on this layer for methodical
reasons: Recall that the larger context of this work is pervasive systems verification with
the long-term goal of a coherent theory in a single theorem prover. Consequently, a spe-
cialized theorem prover for temporal logic is insufficient in this context. Nevertheless,
temporal properties like our prioritized fairness are usually described in temporal log-
ics. The advantage of such a logic is succinctness while the Isabelle/HOL formalization
(Lemma 7.1 on page 101) is crucial for the property transfer. We have combined the
best of both worlds by an embedding of future-time linear temporal logic (LTL) with
action Kripke structures into Isabelle/HOL (see Section 1.2.2). Thus, we can integrate
our main theorem into the overall context while presenting it in LTL:

Theorem 7.2 (Prioritized Fairness). The Vamos scheduler is fair with respect to prior-
ity classes, i. e., if a process pid (a) finally never terminates, (b) finally remains forever
in the same priority class, (c) is infinitely often not pending in an IPC operation with
an infinite timeout, and (d) has infinitely often the maximal priority while the timer
interrupt is raised, it will always eventually progress.

Formally:

〈S0
V, Σ̂, dV〉A |= (a)♦�(λ(i , s, n). s.procs pid 6= ⊥) −→

(b)♦�(λ(i , s, n). n.priodb pid = s.priodb pid) −→
(c)�♦(λ(i , s, n). ¬ pending infinite ipc s pid) −→
(d)�♦(λ(i , s, n). has maxprio s pid ∧ is timer on i) −→

�♦(λ(i , s, n). progress ds.procs pide dn.procs pide)
Proof. We deduce the theorem from Lemma 7.1 on page 101 mainly by the expansion of
the LTL definitions. Note, however, that Lemma 7.1 on page 101 universally quantifies
over a single suffix while in LTL, Assumption (a), Assumption (b), and the conclusion
might hold for different suffixes. We instantiate the position k in the lemma with the
maximal position of the three suffixes and derive our claim.

According to Francez [Fra86], strong fairness is formalized in LTL as: �♦enabled −→
�♦scheduled, i. e., if a certain process is infinitely often ready to compute (LTL-predicate

103

7 A Temporal Property: Scheduler Fairness

enabled), it will always eventually compute (scheduled). Technically, our theorem has a
different structure.

If we examine the Assumptions (a) and (b), however, we observe that these assump-
tions are of a very basic kind: It is certainly impossible to prove temporal fairness for
a terminating process, and a changed priority contradicts the notion of static-priority
scheduling. We maintain that any real system has similar basic assumptions and do not
consider these conditions as part of the enabledness.

We may confine our consideration to a system with a static number of processes and
without priority changes, i. e., after a time of system set up, the kernel calls process
kill and chg sched params are no longer used. In this scenario, the Assumptions (a)
and (b) become set-up conditions and we just consider the state after set up as the initial
state. In this system, we have only two enabledness assumptions of the kind �♦enabled.
This artifact is important because the conjunction of both enabledness assumptions
would be considerably stronger—resulting in a significantly weaker theorem.

Though temporal properties are naturally based on infinite traces, the complete ex-
clusion of terminating processes might irritate – most notably, because a process might
terminate itself. In this case, termination should certainly be considered as some sort of
progress. Fortunately, we can rephrase Theorem 7.2 on the previous page as follows:

〈S0
V, Σ̂, dV〉A |= (b)♦�(λ(i , s, n). n.priodb pid = s.priodb pid) −→

(c)�♦(λ(i , s, n). ¬ pending infinite ipc s pid) −→
(d)�♦(λ(i , s, n). has maxprio s pid ∧ is timer on i) −→

�♦(λ(i , s, n). s.procs pid = ⊥ ∨ progress ds.procs pide dn.procs pide)

Note that this formulation is logically equivalent to the former: The inequality in As-
sumption (a) can be written as negated equality. By definition, ♦�¬f is semantically
equivalent to ¬�♦f, an implication with a negated premise is equivalent to a disjunct,
and �♦f ∨ �♦y is equivalent to �♦(f ∨ y).

7.5 Conclusion

During verification, we found (and fixed) a bug in the temporal behavior of Vamos,
which can easily be overlooked in a step-wise refinement proof: Previously, CVM handled
page faults and device interrupts at the same time. In that case, a frequently arriving
timer interrupt might inhibit any progress of processes.

The reason for this problem is found in the system’s architecture: Recall that CVM
handles page faults transparently, i. e., not even the C0 layer of the kernel notices a page
fault. Device interrupts, on the contrary, are passed on to the C0 layer. Furthermore,
note that a page fault is a so-called repeat interrupt, i. e., the last instruction could
not successfully be executed and should be repeated when the necessary page has been
swapped in. Device interrupts, in contrast, are so-called continue interrupts, i. e., they
do not interfere with the execution of instructions. If a device interrupt and a page
fault occur simultaneously and are handled at the same time, the processor might not

104

7.5 Conclusion

have successfully executed any user-mode instruction since the last device interrupt was
handled.

Recall that the Vamos scheduler uses the timer interrupt to measure process run-
times. Thus, if the timer interrupt occurs too frequently, a process might be charged
for the computation of zero steps. The exact meaning of “too frequent” occurrences,
however, depends on a detailed timing analysis. Handling a page fault, for instance,
takes about 14,000 system-mode instructions and up to two page faults might occur
during the execution of a single user-mode instruction. Furthermore, a scheduler invo-
cation might involve almost 75,000 instructions (depending on the length of the wait
queue). Certainly, the individual execution time of an instruction heavily depends on
other hardware properties like the current cache status.

We have decided to solve this problem by a much simpler solution: We require that
CVM is live, i. e., between two calls into the C0 layer, the processor must execute at
least one step in user mode. This requirement is realized by ignoring device interrupts
if they occur simultaneously with a page fault.

In conclusion, this finding demonstrates that bugs are not necessarily revealed during
the refinement proof of a single layer.

Furthermore, our proof can be integrated with a refinement proof of Jan Dörrenbächer
[DDW09, Sect. 6], which links the Vamos specification to the C0 implementation. To
our knowledge, this is the first verification result that establishes a temporal property
on a fairly realistic microkernel implementation.

105

8 Towards Verifying a User-Mode
Operating System

I know that I do not know.

Socrates, according to Platon: “The Apology of Socrates”

Contents

8.1 Non-Termination . 108
8.2 Fair Scheduling of Applications . 110

8.2.1 Priorities in the SOS . 110
8.2.2 Applying Scheduler Fairness to Applications 110

8.3 Conclusion . 112

Microkernel-based software systems source out significant parts of the usual operating-
system functionality into user mode. Pervasive verification of an operating system (OS)
naturally extends to the user processes providing this functionality to applications. The
system software employs the client-server design pattern: Clients are the application pro-
grams that request services via inter-process communication (IPC) from the OS servers.
Depending on whether the OS functionality is spread over several servers, we call this
system a multi- or a single-server operating system.

From the verification point of view, multi-server systems are the more demanding
ones. Usually, an operating system provides a set of interrelating services: Access con-
trol, for instance, is involved in any interaction with the applications. The underlying
access policies, in turn, should survive a system restart, which raises a dependency on
permanent storage facilities. In general, invariants typically span the states of several
processes in a multi-server OS, expressing dependencies in the behavior of different OS
processes. A single-server OS, in contrast, cannot rely on the specific behavior of any
other process—they are all applications and certainly, the OS should be able to cope
with malicious application programs.

The most natural approach for the verification of a multi-server system is a concurrent
Hoare logic that regards the states of all dependent processes at once and formalizes the
possible transitions of this process system. Suitable logics have long been proposed in
the literature, for example Lamport’s Generalized Hoare Logic [Lam80a, LS84]. A more
recent approach is the employment of separation logic for concurrent programs as, for
instance, Hobor et al. [HAN08] have formalized in Coq. In Isabelle/HOL, Prensa Nieto
[Pre02] has formalized a Hoare logic for a concurrent while language, which could be
extended to a concurrent Simpl. In analogy to the embedding of C0 into Simpl, we could

107

8 Towards Verifying a User-Mode Operating System

develop theorems about the embedding of the Coup model into this concurrent Simpl
language. Certainly, the effort for this approach is considerable.

For a single-server OS, in contrast, we may narrow our consideration to the behavior
of a single process and its interaction with the concurrent environment. In this scenario,
we can reuse most of the original Isabelle/Simpl framework with only slight extensions
for processes. Note, however, that any reasoning about a process in Isabelle/Simpl relies
on at least one implicit premise about the concurrent environment: The process must
remain active during the whole computation that is reasoned about.

Depending on the property to prove, there might be further assumptions about the
environment. Thus, we initiate a duality in arguments: Relying on basic invariants of
the kernel, we are able to show certain process properties, and as long as the kernel can
rely on these properties, it preserves certain system invariants.

Below, we exemplify this general idea by a specific single-server OS, namely the Simple
Operating System (SOS) of Bogan [Bog08]. More specifically, we sketch the proof for two
SOS properties: first, that the SOS never terminates, and second, that the prioritized
SOS process cooperates with the Vamos scheduler, thereby facilitating a fair scheduling
among applications. Concluding, we relate these properties to the overall goal of a
refinement proof linking the implementation with the specification of the SOS.

8.1 Non-Termination

The SOS provides essential services like access to keyboard, screen, and permanent
storage to the application programs. Thus, the existence of the SOS process is vital
for the application processes. In this section, we argue why the SOS process does not
terminate in our system. For this purpose, we first identify the conditions that lead to
the termination of a process. Second, we argue why these conditions can never apply
to the SOS process. We conclude the section with a sketch of the necessary steps to
formalize our arguments.

From Section 5.3, we know that process termination can either be self-induced by an
internal runtime error, or caused by a process kill call. In the second case, further
restrictions apply: First, the calling process must be privileged (unless committing sui-
cide) or the call fails and no process is terminated. Second, the call argument hn has to
be a valid handle – referring to the SOS process, in our case.

Assuming that applications are not privileged, we can easily show that no application
can terminate the SOS process. We state:

Corollary. An unprivileged process cannot terminate another process. Formally:

[[invVC sVC; sVC.cup = bpcupc; ¬ privileged sVC.rightsdb pcup; pvictim 6= pcup;

sVC.procs pvictim 6= ⊥; sVC
i−→VC s ′VC]]

=⇒ s ′VC.procs pvictim 6= ⊥

Proof. We unfold ∆VC and prove the statement for each transition phase. The phases
∆to

VC, ∆ints
VC , and ∆sched

VC do neither spawn new processes nor terminate existing ones.

108

8.1 Non-Termination

Only in ∆cup
VC , an active process might become inactive. When distinguishing the 33

introduction rules, we recognize that only the successful process kill call is relevant
(rule (pkill succ) on page 71). Together with the definitions of process kill response on
page 69 and and invVC on page 84, we can finally conclude that a non-privileged process
can only kill itself.

Certainly, it remains to show that indeed only the SOS process is privileged. We may
infer this fact from the behavior of the SOS. Directly after boot-up, the only existing
process is the SOS. Any spawned process is initially unprivileged, and this situation only
changes if a privileged process – namely, the SOS – issues a set privileged call. A
static check of the SOS implementation excludes this possibility.

Consequently, the SOS is not killed by another process. It could, however, still ter-
minate itself – either directly with a call process kill HN SELF, or indirectly by a
runtime error. A static check is insufficient this time because the SOS calls process
kill at one place; but we can deploy Isabelle/Simpl for the SOS process to ensure that
the argument’s value does not evaluate to HN SELF. Similarly, we can exclude runtime
errors resulting, e. g., from a buffer overflow, by program verification.

Note that the necessary adaptation of Isabelle/Simpl for this program verification is
straightforward: It amounts to specify the involved library functions similar to normal
C0 functions. For vc process kill, however, there are two peculiarities: First, an
argument evaluating to HN SELF is illegal and formally treated as a runtime error.
Second, the function’s return value naturally depends on the kernel state. We assume
that the process has no information about the kernel state and should thus be able to
deal with any valid input value (see Table 4.3 on page 44). Hence, we would specify the
return value non-deterministically. In the same manner, we can specify the other library
functions. With these prerequisites in place, the program verification proceeds as usual:
An automatic syntax translator reads the SOS program and generates Simpl code from
it, and function specifications are written and verified in the Hoare logics.

Summarizing the insights from this example, we identify three kinds of properties:
(a) the target property T, in our example the existence of the SOS process, (b) safety
properties PV about the kernel, like that the only privileged process is the SOS, and
(c) safety properties PS about the SOS process, e. g., that the process does not feature
an output of runtime error, set privileged hn, or process kill HN SELF.

We organize the proof of our ultimate goal into smaller subgoals, which establish or
preserve these properties over Vamos states: First, we examine S0

V to ensure that T and
PV hold initially.1 Second, we employ Isabelle/Simpl for the verification of PS assuming
that the SOS process exists. Third, we show that T and PV are preserved under a
transition assuming that PS holds in the first place. We can succinctly express these
facts using LTL:

1. 〈S0
V, Σ̂, dV〉A |= T ∧ PV

2. 〈S0
V, Σ̂, dV〉A |= PS W ¬T

1For the remaining section, we assume that S0
V contains only states, where the SOS is the init process.

109

8 Towards Verifying a User-Mode Operating System

3. 〈S0
V, Σ̂, dV〉A |= �(T ∧ PV ∧ PS −→ N (T ∧ PV))

From these facts, we ultimately show by a simple induction proof that the SOS process
never terminates, i. e., 〈S0

V, Σ̂, dV〉A |= �T.

8.2 Fair Scheduling of Applications

In this section, we apply the fairness theorem about the Vamos scheduler to the appli-
cation processes that compete for computation time with the SOS process and against
each other. More specifically, we simplify the assumptions of Theorem 7.2 on page 103.
The simplifications are possible because the SOS ensures that all applications are mem-
bers of the same scheduling-priority class, and the SOS process itself possesses a higher
priority than the applications. Below, we first formalize the priority assignment within
the SOS, and then examine the implications for fair application scheduling.

8.2.1 Priorities in the SOS

Initially, the SOS process OS PID has the priority OS PRIO ≡ high, which Vamos as-
signs to the init process. Moreover, the SOS process is the only active process. Formally,
we infer from the definition of S0

V:

sV ∈ S0
V =⇒ sV.priodb OS PID = bOS PRIOc ∧ (∀papp 6=OS PID. sV.priodb papp = ⊥)

When the SOS creates an application process with the call process create tsl prio
img pages, the second parameter is always bAPP PRIOc (with APP PRIO ≡ medium).
Moreover, the SOS never issues a chg sched params call. These conditions are nec-
essary safety properties about the SOS process.

Together with safety properties about the kernel state, e. g., that the SOS process is
active and the only privileged process, we might infer that the SOS process forever has
priority OS PRIO, and all application processes are in the same priority class of APP
PRIO. Formally, we aim at the following statement:

sV.priodb OS PID = bOS PRIOc ∧ (∀papp 6=OS PID. sV.priodb papp ∈ {⊥, bAPP PRIOc})

as an invariant over kernel traces with the SOS as init process.

8.2.2 Applying Scheduler Fairness to Applications

As an immediate consequence from static priorities, we can omit the corresponding
assumption of the fairness theorem:

〈S0
V, Σ̂, dV〉A |= ♦�(λ(i , s, n). n.priodb pid = s.priodb pid)

Furthermore, recollect from Section 7.3 that Vamos requires

〈S0
V, Σ̂, dV〉A |= �♦(λ(i , s, n). has maxprio s pid ∧ is timer on i)

110

8.2 Fair Scheduling of Applications

for the fair scheduling of process pid. We certainly continue to rely on timer liveness, but
we can eliminate the predicate has maxprio. This predicate holds iff the ready queues
of all higher priority classes are empty. Naturally, this condition is always met for the
SOS process and for applications, iff the SOS is not ready.

Given that the SOS does not terminate, a fair application scheduling requires that
any SOS computation eventually results in an IPC operation, which is (besides process
termination) the only way to yield for other processes. As suggested by Bogan [Bog08,
§ 6.2], we should be able to infer this property from the SOS implementation.

Initial Set-Up

Open IPC Receive

Handle Interrupts & Requests

Figure 8.1: SOS control-flow (simplified)

The implementation is organized as
shown in Figure 8.1: In the main function,
there is some set-up code followed by an
infinite loop. The loop body starts with an
open IPC receive and subsequently han-
dles the incoming interrupts and a possi-
bly arrived application request. If all the
handlers for interrupts and application re-
quests terminate, the SOS will infinitely
often issue the open receive.

Despite that, we cannot immediately conclude that application processes are sched-
uled. The current maximal priority only declines if the SOS process indeed waits, which
is not the case in two situations: There might be a rendezvous with an already waiting
process, on the one hand, or a pending kernel notification, on the other hand.

Fortunately, there can only be a bounded number of immediate rendezvous because
the length of the wait queue is naturally finite. Thus, the SOS complies with the requests
until there is no one left. Note that because of the prioritized SOS, no application can
interfere with the SOS. This circumstance dependably prevents that new requests arrive
while the SOS proceeds with the previous ones.

There are two sources for kernel notifications: Either, there is an external device inter-
rupt or a known process has ceased to exist. Bogan describes how the SOS just disables
too fast arriving device interrupts. Furthermore, as the number of active processes is
naturally bounded, the number of terminating processes is consequently bounded. If
the SOS only acknowledges the incoming obituaries, this source of kernel notifications
eventually runs dry. A newly created process, however, would always be appended to
the ready queue, and thus, scheduled after the already existing ones.

Our argument hitherto substantiates that applications are scheduled at all; but unfor-
tunately, fair scheduling requires that the applications have the current maximal priority
while the timer interrupt occurs. The current implementation of the SOS does not guar-
antee this requirement. The simplest remedy is a change of the SOS implementation,
which explicitly enforces a waiting time before the handling of each application request.
For this purpose, we could insert a blocking IPC call with a finite, positive timeout.
Unfortunately, an explicit wait decreases the response time of the SOS.

The current implementation, in contrast, ensures fairness by enforcing the applications
to wait for a reply to their requests. From Section 7.3, we know that for an unprivileged
process, the only means to provoke a race condition with the timer is an IPC call to

111

8 Towards Verifying a User-Mode Operating System

a prioritized process. Thus, if an application continuously sends messages to the SOS
process, the SOS process might always comply with the query while the timer interrupt
arrives. Note however, that applications may not send messages to the SOS unless
they also wait for a reply. Whenever the SOS finally sends its reply, the requesting
application will be appended to the ready queue upon the completion of the IPC request.
Consequently, any other application in the ready queue will be scheduled before this
application is scheduled again.

In order to enforce that applications wait for a reply, the SOS employs Vamos’ access-
control mechanism for IPC (see Section 3.2.1). More specifically, the SOS forbids ipc
send calls by unsetting the send bit and only permits ipc request calls through the
request bit. Thus, if an application were trying to send a message via ipc send, Vamos
would immediately turn this query down because of lacking permissions. Furthermore,
the SOS does never set the finite modifier, which prohibits that an application sets a
finite receive timeout. Consequently, an application has to wait until the SOS services
its request.

When proving that the SOS indeed sets the IPC rights as discussed, we can split our
goal as usual into properties about the SOS process and about the kernel. The kernel
property is that IPC rights are granted in the following situations: When a new process
is created, Vamos solely grants the request right to its creator. When an active process
is cloned, the new process inherits the IPC rights from the original. Furthermore, a
process can grant IPC rights with the calls ipc send, ipc request, and change
rights. In particular, only a privileged process may grant rights to communicate with
another process.

Consequently, it suffices to constrain the SOS process: We require that this process
never issues any of the above calls accompanied with the send bit or the finite modifier
for its own PID. Then, the applications can never gain these bits for the SOS process.

Ultimately, we can state that Vamos fairly schedules applications, i. e.,

〈S0
V, Σ̂, dV〉A |= �♦(λ(i , s, n). ¬ pending infinite ipc s pid) −→

�♦(λ(i , s, n). is timer on i) −→
�♦(λ(i , s, n). s.procs pid = ⊥ ∨ progress ds.procs pide dn.procs pide)

The formal proof for this statement remains future work.

8.3 Conclusion

This chapter gave a prospect on the verification of user-mode operating systems. After an
introductory, general discussion, we focussed on the SOS, the operating system actually
used for the academic computer system in the Verisoft project. A key observation has
been that the SOS is a single-server OS, and hence, we may regard just the SOS process
in isolation and its interaction with the kernel but neglecting the other processes. This
approach is not only simpler; with just a slight extension, we can largely reuse existing
Verisoft technology that has been developed and multiply approved for sequential C0
programs. At the example of two particular SOS properties, we outlined the general

112

8.3 Conclusion

Simpl

C0proc

asmproc

Transfer

Ext. Compiler

Coup(asm)

Vamos
spec

Fairness

Simulation

VamosSimpl

Code Correctness

SOSSimpl

SOS
procC0

SOS
procasm

Properties PS
is instance of

Coup & SOS

SOSspec

Properties PV

Simulation

Figure 8.2: Proof plan for the pervasive verification of the SOS

verification procedure, on the one hand, and clarified the combination of the existing
technology with our models, on the other hand.

Summarizing the previous discussion, Figure 8.2 sketches a verification plan for a
refinement proof that links the implementation with the specification of the SOS, and
relates this effort to the overall goal of pervasive system verification. The modeling layers
and proofs adjacent to this thesis are depicted in gray with dashed lines, and future work
in gray with dotted lines. The figure is vertically split: The left-hand side shows the
general model stack while the right-hand side depicts models with the particular SOS
process.

On the bottom left of Figure 8.2, VamosSimpl denotes the implementation of the Va-
mos microkernel represented in the Simpl language. In an ongoing verification attempt,
Jan Dörrenbächer establishes code correctness, thus linking the implementation with the
specification Vamosspec above. This specification uses our process abstraction, which is
marked by the arrow from the assembly process model procasm to Vamosspec. At the
specification level, we have shown fair process scheduling. From this scheduling property,
we can infer that the SOS process advances, on the one hand, and that applications are
fairly scheduled,2 on the other hand. A simulation theorem relates the specification with
our Coup model. This model is parametrized over a process model, and is here used
with assembly processes.

2We assume here that the SOS implementation has been changed as suggested in Section 8.2.

113

8 Towards Verifying a User-Mode Operating System

If an assembly process has been compiled from a C0 program, we can use our extended
compiler-correctness theorem to establish a simulation with the corresponding C0 process
procC0. Furthermore, we can conveniently verify properties about a C0 process in the
Hoare logics of the Isabelle/Simpl framework [Sch05, Sch06]. These properties can then
be transferred down to the C0-process semantics using the transfer theorems [Sch06] for
the embedding of C0 into Simpl. Alkassar et al. [ASS08] applied this approach for the
pervasive verification of a paging mechanism. Note that in our context, we additionally
need the fairness theorem (Theorem 7.2 on page 103) to transfer termination.

On the right-hand side of Figure 8.2 on the previous page, this general approach is
exemplified with the SOS process. The C0 implementation of Bogan et al. [Bog08]
can automatically be translated to Simpl (denoted as SOSSimpl) just like Dörrenbächer
[DDW09] did it with the Vamos implementation. On this layer, safety properties PS

about the SOS process can be proven and transferred down via the C0 process SOS
procC0

(using the transfer theorems from Simpl to C0) to the assembly process SOS
procasm (em-

ploying the extended compiler correctness). Based on the proven properties about the
SOS process, Vamos properties PV like that it never terminates the SOS process can be
verified in the Coup model when the init process is instantiated with SOS

procasm (denoted
as Coup & SOSproc). Note that compared to a verification directly on the Vamos model,
this approach benefits from the simpler Coup model with respect to scheduling. Even-
tually, such a verified kernel property could even be the simulation between the SOS
specification SOSspec [Bog08] and the instantiated kernel. Following our terminology,
simulation is then our target property PT.

114

9 Conclusion and Future Work

I am very optimistic.

Wolfgang J. Paul on the chances to complete a proof

Contents

9.1 Formal Results . 115
9.2 Measuring the Formal Verification Effort . 117
9.3 Outlook . 118

The key result of this thesis is the formal justification of an abstraction from a ker-
nel model with explicit, deterministic scheduling to a concurrent process system with
non-deterministic but temporally fair scheduling. An important ingredient of our model
architecture is a process abstraction that is independent from a particular programming
language. We instantiated the process abstraction for two process models extending
sequential programming-language semantics. This extension forms the basis of an ap-
proach to reason about processes, which can draw to a large extent on previous results
of the Verisoft project. In the sections below, we summarize our formal results, quantify
the verification effort, and give an outlook for future work.

9.1 Formal Results

Figure 9.1 on the following page illustrates our formal results in detail. All theorem
names surrounded by a double line are formally proven; for those framed with a single
line, the proof is not yet completed. Previous, related results are drawn in gray with
dashed lines while gray color, dotted lines and a slanted font depict future work.

We defined a generic process abstraction (Section 4.2) and instantiated it for VAMP
assembly and C0 (Sections 4.3 and 4.4) as depicted by procasm and procC0 on the left side.
We formulated a number of well-formedness constraints for process models specifying
process-model validity (Section 4.2) and showed that these rules are fulfilled by both
instances (Theorem 4.1 on page 47 and Theorem 4.2 on page 54). The validity of the
process models is the premise for embedding them into kernel models.

At the bottom left of Figure 9.1 on the next page, Vamosspec denotes the specifica-
tion of the Vamos kernel. Though Jan Dörrenbächer [DDB08] always maintained the
specification, we substantially influenced its overall design and corrected many over-
sights. In particular, the specification now uses our process abstraction, which cleanly
separates the concepts of the application binary interface (i. e., the interface between
processes and the kernel) and the actual kernel functionality (e. g., the global effect of

115

9 Conclusion and Future Work

C0proc

asmproc

Simpl

Validity
(Theorem 4.1)

Validity
(Theorem 4.2)

Ext. Compiler
(Theorem 4.3)

Transfer

Coup(C0+asm)

Coup(asm)

Vamos
spec

Simpl?

Invariance of invVC

(Theorem 5.2)
Reordering

(Section 6.2.3)

Invariance of invV

(Theorem 5.1)
Fairness

(Theorem 7.2)

Transfer
(tool specific)

Simulation
(Section 6.2)

Simulation
(Theorem 6.1)

Figure 9.1: Overview of the formal results

kernel calls). For the states of Vamosspec, we defined the predicate invV and showed
that it is invariant over a Vamos execution trace (Theorem 5.1 on page 83). With the
help of this invariance, we proved prioritized fairness for the Vamos scheduler (Theorem
7.2 on page 103).

Furthermore, we abstracted from the explicit scheduler in Vamosspec and developed
the Coup model with non-deterministic scheduling. This kernel model is parametrized
over a process model. In Figure 9.1, two instances are shown: Coup(asm) features only
assembly processes (procasm) while Coup(C0+asm) additionally features C0 processes
(procC0). Using the invariance of invV over Vamos traces, we formally proved that the
model Coup(asm) simulates Vamosspec (Theorem 6.1 on page 88). In addition, we
defined the predicate invVC and formally proved its invariance over execution traces of
the Coup model (Theorem 5.2 on page 84). This proof relies on a valid, underlying
process model. Based on the invariance of invVC, we have shown that some transitions
may be reordered (as described in Section 6.2.3).

For the verification of C0 processes, we extended the compiler-correctness theorem
of Dirk Leinenbach [Lei08] to processes (Theorem 4.3 on page 57). Though the formal
proof of this theorem is not yet completed, we have developed it to a large extent
(cf. Section 4.5). Combining our extended compiler theorem with Norbert Schirmer’s
transfer theorems [Sch06] from Simpl to C0, we can eventually transfer properties proven
in Isabelle/Simpl down to the C0 semantics.

While Isabelle/Simpl can only deal with a single process, our results can also be
used to justify the abstractions of a verification tool that allows for the concurrent
execution of multiple processes. In Figure 9.1, we use Simpl? as a placeholder for such
a tool. Most notably, our model Coup(C0+asm) becomes relevant in this context. It

116

9.2 Measuring the Formal Verification Effort

constitutes a concurrent computation model for C0 processes and assembly processes
on top of the Vamos microkernel. While the transfer of proven properties from Simpl?

to Coup(C0+asm) certainly depends on the intrinsics of the verification tool, we made
inroads into the formal foundation for Coup(C0+asm). In essence, this foundation is
established by a simulation between Coup(C0+asm) and Coup(asm), as we described
it in Section 6.2. This simulation just combines our corollaries about the reordering
of transitions in Section 6.2.3 with the extended compiler theorem (Theorem 4.3 on
page 57).

9.2 Measuring the Formal Verification Effort

When quantifying the formal specification effort, we can only roughly estimate our share
in the development time for the various models with about a year. There are four
theorems, where the formal proof effort exceeded a person month: Establishing the
invariance of invV for Vamosspec (Theorem 5.1 on page 83) as well as the simulation
between Vamosspec and Coup(asm) (Theorem 6.1 on page 88) required about two person
months, each. The fairness proof (Theorem 7.2 on page 103), on the contrary, took about
eight person months. Furthermore, we worked for over a person month on the extended
compiler theorem (Theorem 4.3 on page 57) although it is not yet completed.

Note that the actual verification effort does not correlate with the lines of the final
proof script: The invariance proof takes over 7.000 lines, the simulation proof counts less
than 1.000 lines, fairness has been proven in about 4.000 lines, and the yet incomplete
proof for extended compiler correctness already exceeds 22.000 lines.

Partially, this surprising effect may result from the order, in which we verified: at
first the simulation, then the fairness, the invariance, and finally the extended compiler-
correctness proof. A major verification obstacle was the lack of an early, systematic
validation of specifications. Thus, especially at the beginning, we experienced frequent
set-backs because of many trivial oversights and flaws in the kernel models. While these
set-backs slowed down the productivity, they increased the number of reviews of the
proof script. As a side-effect of these numerous reviews, the proof quality increased,
which eventually resulted in shorter proof scripts. Furthermore, we proved especially at
the beginning many general, auxiliary facts about the kernel models. As these facts are
not specific to the actual verification problem, we stored them together with the kernel
model and did thus not count them as part of the final proof script. Besides that, the
increasing experience with the Isabelle proof assistant might have induced some proof
acceleration over time.

In addition, the nature of the verification goals varied greatly. At the one end, there
is the extended compiler theorem, where the largest part concerns library correctness.
Here, we proved many times correctness for often very similar code. Likewise, the proof
of invariance has essentially been proven by a huge case distinction with many similar
cases: We just guided the proof assistant to unfold the right definitions. At the other
end, there is a temporal property, which requires much more creativity, e. g., to find
applicable instances for existential quantifiers. Additionally, a more challenging proof

117

9 Conclusion and Future Work

goal requires a cleaner proof style. In particular, we worked much harder for a clean,
understandable (and hence, substantially shorter) proof script of the fairness proof than
we did for library correctness or the invariance proof. After all, our primary aim was
to complete the formal proofs in due time rather than to optimize them for best human
readability.

9.3 Outlook

Our work has been motivated by the verification of the simple operating system (SOS),
which has been developed and specified by Sebastian Bogan [Bog08]. A formal proof is
certainly far beyond the scope of this thesis and remains future work. In spite of that, we
developed our formal work with this use case in mind and substantiated its applicability
by fairly detailed and partially formalized proof sketches. Particularly for this purpose,
we invented the process abstraction.

In general, the process abstraction opens up two directions for the development of
verification techniques for process systems: Either, we may regard only one process
at a time and its interaction with the kernel (as in Simpl), or we might consider the
concurrent execution of multiple processes at the same time (assuming a concurrent
verification environment).

In Chapter 8, we discussed the first approach, which suffices to verify the correctness
of a single-server user-mode operating system like the SOS. Summarizing, process prop-
erties can conveniently be verified in the Isabelle/Simpl framework and then transferred
down to the C0 process semantics. The extended compiler theorem furthermore ensures
that corresponding properties hold on the assembly semantics. We can combine such
process properties with those proven about the Coup(asm) model. Finally, we know
because of the corresponding simulation theorem that these properties indeed hold on
the Vamosspec level.

For a multi-server operating system, however, you might prefer a concurrent verifica-
tion tool. Our formal work may also be used to formally justify the abstraction of such
a tool. Given that a concurrent verification tool has neither been developed nor used in
the Verisoft project, this formal justification remains future work.

118

Bibliography

[ABP09] Eyad Alkassar, Sebastian Bogan, and Wolfang Paul. Proving the correctness
of client/server software. Sādhanā: Academy Proceedings in Engineering
Sciences, 34(1):145–191, February 2009.

[AH08] Eyad Alkassar and Mark A. Hillebrand. Formal functional verification of
device drivers. In Jim Woodcock and Natarajan Shankar, editors, Verified
Software: Theories, Tools, and Experiments, volume 5295 of LNCS, pages
225–239. Springer, October 2008.

[AHK+07] Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev, and
Sergey Tverdyshev. Formal device and programming model for a serial
interface. In Bernhard Beckert, editor, VERIFY, volume 259 of CEUR
Workshop Proceedings, pages 4–20. CEUR-WS.org, 2007.

[AHL+08] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer,
and Artem Starostin. The Verisoft approach to systems verification. In
Natarajan Shankar and Jim Woodcock, editors, Verified Software: The-
ories, Tools, and Experiments, volume 5295 of LNCS, pages 209–224.
Springer, 2008.

[AHL+09] Eyad Alkassar, Mark A. Hillebrand, Dirk C. Leinenbach, Norbert W.
Schirmer, Artem Starostin, and Alexandra Tsyban. Balancing the load:
Leveraging a semantics stack for systems verification. J. Autom. Reason-
ing: Operating System Verification, 42(2–4):389–454, 2009.

[Alk05] Eyad Alkassar. Constructing a formal framework for modeling and verifying
a real operating system. Master’s thesis, Saarland University, 2005.

[Alk09] Eyad Alkassar. OS Verification Extended – On the Formal Verication of
Device Drivers and the Correctness of Client/Server Software. PhD thesis,
Saarland University, 2009.

[Ame99] American National Standards Institute. ANSI/ISO/IEC 9899-1999: Pro-
gramming Languages — C. American National Standards Institute, New
York, USA, December 1999.

[Ash75] Edward A. Ashcroft. Proving assertions about parallel programs. J. Com-
put. Syst. Sci., 10(1):110–135, 1975.

119

Bibliography

[ASS08] Eyad Alkassar, Norbert Schirmer, and Artem Starostin. Formal pervasive
verification of a paging mechanism. In TACAS, volume 4963 of LNCS,
pages 109–123. Springer, 2008.

[AZKR04] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin C. Rinard.
Verifying a file system implementation. In Jim Davies, Wolfram Schulte,
and Michael Barnett, editors, ICFEM, volume 3308 of LNCS, pages 373–
390. Springer, 2004.

[BB04] Bernhard Beckert and Gerd Beuster. Formal specification of security-
relevant properties of user interfaces. In Workshop on Critical Systems
Development with UML, pages 139–146, Lisbon, Portugal, 2004. TU Mu-
nich Tech. Rep. TUM-I0415.

[BBBB09] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer. Formal verification of a microkernel used in dependable software
systems. In Bettina Buth, Gerd Rabe, and Till Seyfarth, editors, SAFE-
COMP, volume 5775 of LNCS, pages 187–200. Springer, 2009.

[BCT95] William R. Bevier, Richard Cohen, and Jeff Turner. A specification for the
synergy file system. Technical Report 120, Computational Logic Inc., 1995.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J. Strother Moore, and William D.
Young. An approach to systems verification. J. Autom. Reasoning,
5(4):411–428, 1989.

[BHW06] Gerd Beuster, Niklas Henrich, and Markus Wagner. Real world verification
– experiences from the Verisoft email client. In Geoff Sutcliffe, Renate
Schmidt, and Stephan Schulz, editors, Empirically Successful Computerized
Reasoning, volume 192 of CEUR Workshop Proceedings, page 112. CEUR-
WS.org, 2006.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolf-
gang Paul. Instantiating uninterpreted functional units and memory system:
Functional verification of the VAMP. In Daniel Geist and Enrico Tronci,
editors, CHARME, volume 2860 of LNCS, pages 51–65. Springer, 2003.

[BJK+06] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolf-
gang J. Paul. Putting it all together: Formal verification of the VAMP.
STTT, 8(4–5):411–430, 2006.

[Bog08] Sebastian Bogan. Formal Specification of a Simple Operating System. PhD
thesis, Saarland University, 2008.

[Boy09] Andrew Boyton. A verified shared capability model. In Gerwin Klein, Ralf
Huuck, and Bastian Schlich, editors, Systems Software Verification, volume
254 of ENTCS, pages 25–44. Elsevier Science B.V., 2009.

120

Bibliography

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A
practical system for verifying concurrent C. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Markus Wenzel, editors, TPHOLs, volume
5674 of LNCS, pages 23–42. Springer, 2009. Invited paper.

[CKS08] David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state
monads and scalable refinement. In Otmane Aı̈t Mohamed, César Muñoz,
and Sofiène Tahar, editors, TPHOLs, volume 5170 of LNCS, pages 167–182.
Springer, 2008.

[CMST09] Ernie Cohen, Micha l Moskal, Wolfram Schulte, and Stephan Tobies. A
precise yet efficient memory model for C. In Systems Software Verification,
volume 254 of ENTCS, pages 85–103. Elsevier Science B.V., 2009.

[DDB08] Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan. Model stack for
the pervasive verification of a microkernel-based operating system. In Bern-
hard Beckert and Gerwin Klein, editors, VERIFY, volume 372 of CEUR
Workshop Proceedings, pages 56–70. CEUR-WS.org, August 2008.

[DDW09] Matthias Daum, Jan Dörrenbächer, and Burkhart Wolff. Proving fairness
and implementation correctness of a microkernel scheduler. J. Autom. Rea-
soning: Operating System Verification, 42(2–4):349–388, 2009.

[DDWS08] Matthias Daum, Jan Dörrenbächer, Burkhart Wolff, and Mareike Schmidt.
A verification approach for system-level concurrent programs. In Jim Wood-
cock and Natarajan Shankar, editors, Verified Software: Theories, Tools,
and Experiments, volume 5295 of LNCS, pages 161–176, Toronto, Canada,
October 2008. Springer.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the verification of
memory management mechanisms. In Dominique Borrione and Wolfgang
Paul, editors, CHARME, volume 3725 of LNCS, pages 301–316. Springer,
2005.

[DMS+09] Markus Dahlweid, Micha l Moskal, Thomas Santen, Stephan Tobies, and
Wolfram Schulte. VCC: Contract-based modular verification of concurrent
C. In ICSE, pages 429–430. IEEE Computer Society, 2009.

[DSS09] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. Implemen-
tation correctness of a real-time operating system. In SEFM, pages 23–32.
IEEE Computer Society, 2009.

[DSS10] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. From
operating-system correctness to pervasively verified applications. In IFM,
LNCS. Springer, 2010. To appear.

121

Bibliography

[EGR07] Kevin Elphinstone, David Greenaway, and Sergio Ruocco. Lazy scheduling
and direct process switch – merit or myths? In Workshop on Operat-
ing System Platforms for Embedded Real-Time Applications, Pisa, Italy,
July 2007. Availabe at http://www.ertos.nicta.com.au/publications/
papers/Elphinstone GR 07.pdf.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” re-
visited: On branching versus linear time temporal logic. J. ACM, 33(1):151–
178, 1986.

[EKO95] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Exokernel: An
operating system architecture for application-level resource management.
In SOSP, pages 251–266. ACM, 1995.

[FC98] Brett D. Fleisch and Mark Allan A. Co. Workplace microkernel and OS: a
case study. Softw. Pract. Exper., 28(6):569–591, 1998.

[Fra86] Nissim Francez. Fairness. Springer, September 1986.

[FSDG08] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying low-level
programs with hardware interrupts and preemptive threads. In PLDI, pages
170–182. ACM, 2008.

[FW83] Ronald Fagin and John H. Williams. A fair carpool scheduling algorithm.
IBM Journal of Research and Development, 27(2):133–139, 1983.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathe-
matische Zeitschrift, 39:176–210, 1935.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On
the correctness of operating system kernels. In J. Hurd and T. F. Melham,
editors, TPHOLs 2005, volume 3603 of LNCS, pages 1–16. Springer, 2005.

[HALM06] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John D.
McLean. Formal specification and verification of data separation in a sep-
aration kernel for an embedded system. In ACM Conference on Computer
and Communications Security, pages 346–355. ACM, 2006.

[HAN08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle
semantics for concurrent separation logic. In Sophia Drossopoulou, editor,
ESOP, volume 4960 of LNCS, pages 353–367. Springer, 2008.

[HEK+07] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M.
Petters. Towards trustworthy computing systems: taking microkernels to
the next level. Operating Systems Review, 41(4):3–11, July 2007.

[HF04] Reinhold Heckmann and Christian Ferdinand. Worst-case execution time
prediction by static program analysis. White paper, AbsInt Angewandte
Informatik GmbH, 2004. Availabe via http://www.absint.com/wcet.htm.

122

http://www.ertos.nicta.com.au/publications/papers/Elphinstone_GR_07.pdf
http://www.ertos.nicta.com.au/publications/papers/Elphinstone_GR_07.pdf
http://www.absint.com/wcet.htm

Bibliography

[HHF+05] Hermann Härtig, Michael Hohmuth, Norman Feske, Christian Helmuth,
Adam Lackorzynski, Frank Mehnert, and Michael Peter. The Nizza secure-
system architecture. In CollaborateCom. IEEE Computer Society, 2005.

[HIP05] Mark A. Hillebrand, Thomas In der Rieden, and Wolfgang J. Paul. Dealing
with I/O devices in the context of pervasive system verification. In ICCD,
pages 309–316. IEEE Computer Society, 2005.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Mateo, CA, second edition,
1996.

[HP07] Mark A. Hillebrand and Wolfgang J. Paul. On the architecture of system
verification environments. In Haifa Verification Conference, pages 153–168.
Springer, 2007.

[In 09] Thomas In der Rieden. Verified Linking for Modular Kernel Verification.
PhD thesis, Saarland University, November 2009.

[Int98] International Organization for Standardization. ISO/IEC 14882-1998: Pro-
gramming Languages — C++. International Organization for Standardiza-
tion, Geneva, Switzerland, September 1998.

[IT08] Tom In der Rieden and Alexandra Tsyban. CVM – a verified framework for
microkernel programmers. In Systems Software Verification, volume 217 of
ENTCS, pages 151–168. Elsevier Science B.V., 2008.

[Jon83] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[Kai07] Robert Kaiser. Combining partitioning and virtualization for safety-critical
systems. White Paper WP CPV 10 A4 R10, SYSGO AG, 2007. Availabe
via http://www.sysgo.com/news-events/whitepapers/.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In SOSP, pages 207–220. ACM, 2009.

[Kle09] Gerwin Klein. Operating system verification — an overview. Sādhanā:
Academy Proceedings in Engineering Sciences, 34(1):27–69, February 2009.

[Kno74] Gary D. Knott. A proposal for certain process management and intercom-
munication primitives. Operating Systems Review, 8(4):7–44, 1974.

[Koz90] Dexter Kozen. On Kleene algebras and closed semirings. In MFCS, volume
452 of LNCS, pages 26–47. Springer, 1990.

123

http://www.sysgo.com/news-events/whitepapers/

Bibliography

[KP07] Steffen Knapp and Wolfgang Paul. Realistic worst case execution time anal-
ysis in the context of pervasive system verification. In Thomas Reps, Mooly
Sagiv, and Jörg Bauer, editors, Program Analysis and Compilation, Theory
and Practice: Essays Dedicated to Reinhard Wilhelm on the Occasion of
His 60th Birthday, volume 4444 of LNCS, pages 53–81. Springer, 2007.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosoph-
ica Fennica, 16:83–94, 1963.

[Lam80a] Leslie Lamport. The “Hoare logic” of concurrent programs. Acta Inf.,
14:21–37, 1980.

[Lam80b] Leslie Lamport. “sometime” is sometimes “not never” - on the temporal
logic of programs. In POPL, pages 174–185, 1980.

[Lei08] Dirk Carsten Leinenbach. Compiler Verification in the Context of Pervasive
System Verification. PhD thesis, Saarland University, 2008.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[Lie93] Jochen Liedtke. Improving IPC by kernel design. In SOSP, pages 175–188.
ACM, 1993.

[Lie95] Jochen Liedtke. On µ-kernel construction. In SOSP, pages 237–250. ACM,
1995.

[Lie96] Jochen Liedtke. Towards real microkernels. Commun. ACM, 39(9):70–77,
1996.

[LNRS07a] Bruno Langenstein, Andreas Nonnengart, Georg Rock, and Werner
Stephan. A history-based verification of distributed applications. In Bern-
hard Beckert, editor, VERIFY, volume 259 of CEUR Workshop Proceedings,
pages 70–84. CEUR-WS.org, 2007.

[LNRS07b] Bruno Langenstein, Andreas Nonnengart, Georg Rock, and Werner
Stephan. Verification of distributed applications. In Francesca Saglietti
and Norbert Oster, editors, SAFECOMP, volume 4680 of LNCS, pages
315–328. Springer, 2007.

[LP06] Markus Linnemann and Norbert Pohlmann. Schöne neue Welt?! – Die
vertrauenswürdige Sicherheitsplattform Turaya. IT-Sicherheit, 3-4, 2006.

[LP08] Dirk Leinenbach and Elena Petrova. Pervasive compiler verification: From
verified programs to verified systems. In Systems Software Verification,
volume 217 of ENTCS, pages 23–40. Elsevier Science B.V., 2008.

124

Bibliography

[LPP05] Dirk Leinenbach, Wolfgang J. Paul, and Elena Petrova. Towards the for-
mal verification of a C0 compiler: Code generation and implementation
correctness. In SEFM, pages 2–12. IEEE Computer Society, 2005. Invited
paper.

[LS84] Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP, and all
that. ACM Trans. Program. Lang. Syst., 6(2):281–296, 1984.

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V Hy-
pervisor with VCC. In FM, volume 5850 of LNCS, pages 806–809. Springer,
2009. Invited paper.

[Maz87] Antoni W. Mazurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, 1986,
volume 255 of LNCS, pages 279–324. Springer, 1987.

[Mil82] Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

[Moo02] J. Strother Moore. A grand challenge proposal for formal methods: A
verified stack. In 10th Anniversary Colloquium of UNU/IIST, pages 161–
172. Springer, 2002.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture: Complex-
ity and Correctness. Springer, 2000.

[Nao05] Moni Naor. On fairness in the carpool problem. J. Algorithms, 55(1):93–98,
2005.

[Ngu05] Veronique Gonsu Nguiekom. Verifikation von doppelt verketteten Listen
auf Pointerebene. Diploma thesis, Saarland University, 2005. Available at
http://www-wjp.cs.uni-sb.de/publikationen/Ng05.pdf.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[OG76] Susan S. Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[O’H04] Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa
Gardner and Nobuko Yoshida, editors, CONCUR, volume 3170 of LNCS,
pages 49–67. Springer, 2004.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer, 1994.

[Pau08] Wolfgang Paul. Towards a worldwide verification technology. In Verified
Software: Theories, Tools, and Experiments, October 2005, Revised Se-
lected Papers and Discussions, volume 4171 of LNCS, pages 19–25, Zürich,
Switzerland, June 2008. Springer.

125

http://www-wjp.cs.uni-sb.de/publikationen/Ng05.pdf

Bibliography

[Pet07] Elena Petrova. Verification of the C0 Compiler Implementation on the
Source Code Level. PhD thesis, Saarland University, 2007.

[Pre02] Leonor Prensa Nieto. Verification of Parallel Programs with the Owicki-
Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, TU Mu-
nich, 2002.

[Pri57] Arthur N. Prior. Time and Modality. Oxford Univ. Press, 1957.

[PRS+01] Birgit Pfitzmann, James Riordan, Christian Stüble, Michael Waidner, and
Arnd Weber. The PERSEUS system architecture. Technical Report RZ
3335 (#93381), IBM Research Division, 2001.

[PZH07] Stefan M. Petters, Patryk Zadarnowski, and Gernot Heiser. Measurements
or static analysis or both? In Christine Rochange, editor, WCET, volume
07002 of Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany, 2007.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI).

[RATY+88] Richard Rashid, Jr. Avadis Tevanin, Michael Young, David Golub, and
Robert Baron. Machine-independent virtual memory management for
paged uniprocessor and multiprocessor architectures. IEEE Trans. Com-
put., 37(8):896–908, 1988.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[Ruo06] Sergio Ruocco. Real-time programming and L4 microkernels. In Work-
shop on Operating System Platforms for Embedded Real-Time Applications,
Dresden, Germany, July 2006. Availabe at http://www.ertos.nicta.com.
au/publications/papers/Ruocco 06.pdf.

[Sam08] Thaima Samman. Verifying 50,000 lines of C code. Futures, Microsoft’s
European Innovation Magazine, 21, June 2008.

[Sch05] Norbert Schirmer. A verification environment for sequential imperative
programs in Isabelle/HOL. In LPAR 04, LNCS, pages 398–414. Springer,
2005.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, TU Munich, 2006.

[SDN+04] J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M. Miller. Towards a
verified, general-purpose operating system kernel. In FM Workshop on OS
Verification, Tech. Rep. 0401005T-1, pages 1–19. National ICT Australia,
2004.

[Smi96] Mark A. Smith. Formal Verification of TCP and T/TCP. PhD thesis,
Massachusetts Institute of Technology, 1996.

126

http://www.ertos.nicta.com.au/publications/papers/Ruocco_06.pdf
http://www.ertos.nicta.com.au/publications/papers/Ruocco_06.pdf

Bibliography

[SP07] Mohit Singal and Stefan M. Petters. Issues in analysing L4 for its WCET. In
Workshop on Microkernels for Embedded Systems, Sydney, Australia, Jan-
uary 2007. Availabe at http://www.ertos.nicta.com.au/publications/
papers/Singal Petters 07.pdf.

[ST08] Artem Starostin and Alexandra Tsyban. Correct microkernel primitives.
In Systems Software Verification, volume 217 of ENTCS, pages 169–185.
Elsevier Science B.V., 2008.

[SW09] Norbert Schirmer and Makarius Wenzel. State spaces – The locale way.
In Systems Software Verification, volume 254 of ENTCS, pages 161–179.
Elsevier Science B.V., 2009.

[Tew07] Hendrik Tews. Formal methods in the Robin project: Specification and
verification of the Nova microhypervisor. In C/C++ Verification Workshop,
Tech. Rep. ICIS–R07015, pages 59–68. Radboud University Nijmegen, June
2007.

[TS08] Sergey Tverdyshev and Andrey Shadrin. Formal verification of gate-level
computer systems. In Kristin Yvonne Rozier, editor, LFM 2008: Sixth
NASA Langley Formal Methods Workshop, NASA Scientific and Technical
Information (STI), pages 56–58. NASA, 2008.

[Ver09] Verisoft Project. Verisoft repository. Available at http://www.verisoft.
de/VerisoftRepository.html, 2009.

[VP07] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee
and separation logic. In Lúıs Caires and Vasco Thudichum Vasconcelos,
editors, CONCUR, volume 4703 of LNCS, pages 256–271. Springer, 2007.

[Wen02] Markus Wenzel. Using Axiomatic Type Classes in Isabelle. TU Munich,
2002.

[WKP80] B. Walker, R. Kemmerer, and G. Popek. Specification and verification of
the UCLA Unix security kernel. Commun. ACM, 23(2):118–131, 1980.

[YTEM06] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. ACM Trans. Com-
put. Syst., 24(4):393–423, 2006.

127

http://www.ertos.nicta.com.au/publications/papers/Singal_Petters_07.pdf
http://www.ertos.nicta.com.au/publications/papers/Singal_Petters_07.pdf
http://www.verisoft.de/VerisoftRepository.html
http://www.verisoft.de/VerisoftRepository.html

	Introduction
	Notation
	Basic Concepts
	Kleene Algebras and the Kleene Star
	Future-Time Linear Temporal Logic

	Related Work
	Verification Methods for Concurrent Programs
	Verification Frameworks for Concurrent Programs
	Kernel Verification
	Operating-System Verification

	Fundamentals
	Implementing the Academic System: The Software Stack
	Verifying Sequential Imperative Programs in Verisoft
	The Language C0
	The VAMP Assembly Language
	On a Correct Compiler
	Isabelle/Simpl -- a Verification Environment for C0
	Extending the Language Stack: a Roadmap to Concurrency

	The VAMOS Microkernel: Design and Implementation
	Requirements on a Correct Microkernel's Design
	Functionality
	Inter-Process Communication
	Process Scheduling

	Overflow-Safe Implementation of the Timeout Management
	Conclusion

	Process Abstraction
	Motivation
	Process Models
	The Assembly-Process Model
	The C0-Process Model
	Extended Compiler Correctness
	Conclusion

	Adding Concurrency: The Kernel Models
	Overview of the Model Components
	A Simple Kernel Call: set__privileged Revisited
	Process Termination
	Inter-Process Communication
	IPC Rights Management
	Specifying IPC in the VAMOS Model
	IPC in CoUP

	The Scheduler Specification
	Invariants over Execution Traces
	Conclusion

	Simulation: Formally Relating the Kernel Models
	Kernel-Model Simulation
	Abstracting Concurrent Assembly Processes to C0 Processes
	On the Commutability of Transitions: From Trace Theory to Kleene Algebra
	Process Simulation Meets True Concurrency
	Commuting Transitions in CoUP

	Conclusion

	A Temporal Property: Scheduler Fairness
	An Introductory Scheduling Example
	Common Notions of Fairness
	Developing and Proving Prioritized Fairness
	Rephrasing the Temporal Property in LTL
	Conclusion

	Towards Verifying a User-Mode Operating System
	Non-Termination
	Fair Scheduling of Applications
	Priorities in the SOS
	Applying Scheduler Fairness to Applications

	Conclusion

	Conclusion and Future Work
	Formal Results
	Measuring the Formal Verification Effort
	Outlook

