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Zusammenfassung

Weil die Komplexität von Systemen und Programmen in der Informatik stetig
zunimmt, ist einerseits das Wissen, inwieweit diese Systeme korrekt sind,
immer wichtiger, und andererseits ist diese Korrektheit immer schwieriger zu
zeigen.

Ein naheliegender Ansatz, mit Komplexität umzugehen, ist das Teile-und-
Herrsche-Prinzip: Hat man effiziente Techniken zur Verifikation von Teilen
des Systems zur Verfügung, so möchte man möglichst viele dieser Techniken
zur Verifikation des gesamten Systems verwenden.

Mathematisch gesehen stellt sich daher die Frage, ob und wie man aus
zwei Entscheidungsverfahren für (Fragmente von) Theorien der Logik erster
Stufe T1 und T2 ein Entscheidungsverfahren für (ein Fragment) ihre(r) Vere-
inigung T1 ∪ T2 bekommt. Selbst im einfachsten Fall, in dem T1 und T2

keinerlei Symbole gemein haben, man sich auf das universelle (quantoren-
freie) Fragment beschränkt und Entscheidungsverfahren für die universellen
Fragmente beider Theorien bekannt sind, ist es im allgemeinen nicht möglich,
ein Entscheidungsverfahren für das universelle Fragment der Vereinigung bei-
der Theorien zu finden, wohl aber, wenn man zusätzliche Anforderungen an
diese Theorien stellt, die in der Praxis oft erfüllt sind ([NO79]).

Es ist jedoch für die Praxis nicht ausreichend, nur Kombinationen von
disjunkten Theorien zu betrachten. Diese Arbeit befaßt sich daher mit der
Kombination von Theorien, die nicht disjunkt sind, d. h. Symbole oder sogar
eine Untertheorie teilen. Dabei unterscheiden wir zwei Fälle: Theorieer-
weiterungen und Theoriekombinationen. Im Fall der Theorieerweiterung ist
eine Hintergrundtheorie gegeben, die um neue Funktionen und deren Ax-
iomen erweitert wird. Theoriekombinationen sind eine Verallgemeinerung
dieses Falles. Hier betrachtet man zwei oder mehr Erweiterungen derselben
Hintergrundtheorie.

Sowohl bei Theorieerweiterung als auch bei Theoriekombinationen, ist
der gewählte Ansatz derjenige der Lokalität. Hierbei ist der Suchraum für
Gegenbeispiele einer Beweisanfrage auf diejenigen Instanzen der Theorieer-
weiterung beschränkt, in denen die Terme so instanziiert werden, daß sie
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nicht nur variablenfrei, sondern auch Terme der Beweisanfrage sind. Ist
eine Theorieerweiterung lokal, so ist eine hierarchische Reduzierung stets
möglich: Für eine Beweisanfrage in der erweiterten Sprache läßt sich eine
gleichwertige Beweisanfrage in der Hintergrundsprache angeben. Diese Re-
duzierung geschieht ohne Verlust der Vollständigkeit – die neue Beweisan-
frage ist unerfüllbar (hinsichtlich der Hintergrundtheorie) genau dann, wenn
die ursprüngliche Beweisanfrage unerfüllbar ist (hinsichtlich der erweiterten
Theorie). Des weiteren läßt sich diese Beweisanfrage der Hintergrundtheorie
konstruktiv angeben, und zwar in polynomieller Zeit. Dies und die Tat-
sache, daß viele der Verifikationsprobleme, die in der Praxis auftreten, als
Beweisanfragen einer lokalen Theorieerweiterung aufgefaßt werden können,
machen den Ansatz der Lokalität höchst relevant für die Praxis.

In dieser Arbeit wird zunächst die Theorie der lokalen Theorieerweiterun-
gen dargelegt; und es werden einige Anwendungsbeispiele gegeben, nämlich
monotone und quasi-monotone Funktionen als lokale Erweiterung. Danach
werden Datenstrukturen betrachtet, die Lokalitätseigenschaften aufweisen.

Es zeigt sich, daß ein großes Teilstück der Theorie der Arrays lokal ist.
Allerdings lokal im erweiterten Sinne: Nur wenn man mehr Instanzen zuläßt,
als bei der Standardlokalität vorgesehen, läßt sich die Reduzierung von Be-
weisanfragen durchführen. Dies führt zum Begriff der minimalen Lokalität,
der diesen erweiterten Anforderungen Rechnung trägt.

In einem Abstraktionsschritt wird daraufhin der Begriff der Ψ-Lokalität
entwickelt, wobei Ψ hier ein Hüllenoperator auf Grundtermen ist. Es wird
gezeigt, daß Ψ-Lokalität den Begriff der minimalen Lokalität verallgemeinert.

Die zweite zentrale Datenstruktur, die ein wichtiges lokales Teilstück
enthält, ist die Theorie der Zeiger, welche die Grundlage aller dynamischen
Datenstrukturen bildet. Auch für die Theorie der Zeiger ist ein etwas an-
derer Begriff der Lokalität vonnöten, derjenige der stabilen Lokalität. Zwar
läßt sich dieser Begriff nicht unter den der Ψ-Lokalität subsumieren, was
daran liegt, daß in diesem Falle auch eine andere Semantik zugrundegelegt
werden muß, aber die Ψ-Lokalität stellt dennoch das Muster bereit, welches
es erlaubt, auch diesen Fall zu handhaben.

Danach wenden wir uns dem Fall der Theoriekombinationen zu. Zunächst
wird die nötige Modelltheorie entwickelt. Es zeigt sich, daß der Begriff der
Modellvollständigkeit und derjenige der Amalgamierung von Modellen von
zentraler Bedeutung sind. Wir betrachten zunächst den Fall der Kombi-
nation zweier Theorien, deren Schnitt eine universelle Theorie ist, die eine
Modellvervollständigung besitzt, mit der Eigenschaft, daß jedes Modell einer
der beiden Theorien sich stets erweitern läßt zu einem Modell dieser Theorie
und der Modellvervollständigung des Schnittes. Schließlich betrachten wir
den Fall der Kombinationen von lokalen und Ψ-lokalen Theorien.
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Zum Schluß dieser Arbeit stellen wir eine Implementierung des hierar-
chischen Schließens für lokale Theorieerweiterungen vor: das Programm
H-PILoT. Die hierarchische Reduzierung von Beweisaufgaben ist in jüngster
Zeit besonders relevant geworden, weil leistungsfähige Beweiser für gängige
Hintergrundtheorien entwickelt worden sind. Diese sogenannten SMT-Be-
weiser erlauben die effiziente Behandlung von Theorien wie z. B. der linearen
Arithmetik der ganzen oder der reellen Zahlen. H-PILoT ist unter anderem
an mehrere dieser SMT-Beweiser gekoppelt, um ein effizientes Werkzeug für
Theorieerweiterungen über einer dieser Hintergrundtheorien zur Verfügung
zu stellen. H-PILoT hat Anwendungen in der Mathematik, bei mehrwertigen
Logiken, bei der Verifikation von Datenstrukturen und in der Verifikation
komplexer Systeme gefunden.



Kurzzusammenfassung

Verifikationsaufgaben kombinieren oft verschiedene Theorien. Eine nahe-
liegende Frage ist, ob man Entscheidungsverfahren für die Einzeltheorien auf
die gesamte Theorie übertragen kann. In den Fällen, wo das möglich ist, hat
man eine mächtige Technik zur Hand, um mit komplexen Theorien effizient
umgehen zu können.

Der Ansatz, der in dieser Arbeit betrachtet wird, ist stets der einer Hin-
tergrundtheorie, die durch eine oder mehrere Theorien erweitert wird. Die
Frage ist dann, ob und wann sich eine gegebene Beweisanfrage bezüglich
der Theorieerweiterung effektiv auf eine äquivalente Beweisanfrage bezüglich
der Hintergrundtheorie reduzieren läßt. Ein Fall, in dem diese Reduzierung
immer möglich ist, ist derjenige der lokalen Theorieerweiterungen.

Die Theorie der lokalen Erweiterungen wird entwickelt, und es werden
einige Anwendungen für monotone Funktionen gegeben. Danach wird die
Theorie der lokalen Erweiterungen verallgemeinert, um mit Datenstrukturen
umgehen zu können, die Lokalitätseigenschaften aufweisen. Es wird gezeigt,
daß sowohl ein geeignetes Fragment der Theorie der Arrays wie auch der
Theorie der Zeiger lokal im erweiterten Sinne sind. Schließlich wird der
Fall mehrerer Theorieerweiterungen betrachtet. Insbesondere wird ein Mod-
ularitätsresultat gezeigt, das besagt, daß unter gewissen Umständen die Lo-
kalität der einzelnen Erweiterungen hinreichend ist, um die Lokalität der
gesamten Erweiterung zu gewährleisten.

Die oben erwähnte Reduzierung von Beweisaufgaben ist in jüngster Zeit
besonders relevant geworden, weil leistungsfähige Beweiser für gängige Hin-
tergrundtheorien entwickelt worden sind. Diese sogenannten SMT-Beweiser
behandeln Theorien wie z. B. lineare Arithmetik der ganzen oder der reellen
Zahlen effektiv. Als Teil der vorgelegten Arbeit wurde ein Programm namens
H-PILoT entwickelt, welches die Reduzierung von Beweisaufgaben für lokale
Theorien durchführt. H-PILoT hat Anwendungen in der Mathematik, bei
mehrwertigen Logiken, bei der Verifikation von Datenstrukturen und in der
Verifikation komplexer Systeme gefunden.
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Abstract

Verification problems are often expressed in a language which mixes several
theories. A natural question to ask is whether one can use decision procedures
for individual theories to construct a decision procedure for the union theory.
In the cases where this is possible one has a powerful method at hand to
handle complex theories effectively.

The setup considered in this thesis is that of one base theory which is
extended by one or more theories. The question is if and when a given ground
satisfiability problem in the extended setting can be effectively reduced to
an equi-satisfiable problem over the base theory. A case where this reductive
approach is always possible is that of so-called local theory extensions.

The theory of local extensions is developed and some applications con-
cerning monotone functions are given. Then the theory of local theory ex-
tensions is generalized in order to deal with data structures that exhibit local
behavior. It will be shown that a suitable fragment of both the theory of
arrays and the theory of pointers is local in this broader sense. Finally, the
case of more than one theory extension is discussed. In particular, a modu-
larity result is given that under certain circumstances the locality of each of
the extensions lifts to locality of the entire extension.

The reductive approach outlined above has become particularly relevant
in recent years due to the rise of powerful solvers for background theories
common in verification tasks. These so-called SMT-solvers effectively handle
theories such as real linear or integer arithmetic. As part of this thesis, a pro-
gram called H-PILoT was implemented which carries out reductive reason-
ing for local theory extensions. H-PILoT found applications in mathematics,
multiple-valued logics, data-structures and reasoning in complex systems.
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Chapter 1

Introduction

As the complexity of systems and programs in computer science steadily
increases, establishing the correctness of these systems becomes ever more
important yet more difficult to show. Verification problems in computer
science often mix several theories. For example, there could be a type of
abstract data structure such as lists, arrays or queues and the type of elements
stored in this data structure; or one could have heterogeneous constraints over
data whose joint consistency needs to be checked.

A natural approach to take here is a building-block or modular one. Pro-
vided one has tools or methods available that allow one to effectively handle
the theories separately, when and how is it possible to use these tools for the
union of these different theories? In the cases where this is possible one has
a powerful method at hand for handling complex theories effectively.

From a logical point of view, the question, then, is if and how one can
get a decision procedure for (a fragment of) a union of first-order theories
T1 ∪ T2 from decision procedures for (fragments of) the theories T1 and T2.
Many real-life verification tasks in computer science can be considered as a
validity problem over such a union of theories, i.e., does T1 ∪ T2 |= ϕ hold,
for some formula ϕ in the combined language? Often we may additionally
assume that the above formula ϕ is universal or, equivalently, quantifier-free
and that T1 and T2 are themselves universal theories.

Hence, it would already be quite useful to obtain a decision procedure for
the universal fragment of the union theory from decision procedures for the
universal fragments of T1 and T2. However, even in the restricted case where
the theories T1 and T2 have no symbols in common, the universal fragment
of the union T1 ∪ T2 is in general not decidable (cf. [BGN+06a]). One has
to impose additional restrictions on T1 and T1 in order to get a decision
procedure for the universal fragment of their union. In practice, one can
often meet these restrictions ([NO79], [Opp80a]).
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CHAPTER 1. INTRODUCTION 2

Even so, it is not enough for real-life verification problems to only consider
theory combinations over disjoint signatures. This thesis will consider the
case where the theories T1 and T2 are not disjoint: they may share symbols or
even have a common subtheory. We distinguish two cases, theory extensions
and theory combinations. In the case of a theory extension we have a base
theory T0 which is extended by some new function symbols together with
their axioms. Theory combinations generalize this setup. There we consider
two or more theory extensions over a common base theory.

The approach taken in this thesis towards theory extensions and theory
combinations is that of locality. In local extensions the reduction of a proof
task to the underlying theory is always possible. This makes the approach
relevant to real life verification problems because off-the-shelf provers can be
used as decision procedures.

The theory of locality was introduced by Givan and McAllester ([GM92],
[McA93]). It was generalized to equational theories and related to a se-
mantical approach towards the uniform word problem going back to Skolem
([Sko20]), Evans ([Eva51]) and Burris ([Bur95]) by Harald Ganzinger in
[Gan01]. The theory of local theory extensions was developed by Viorica
Sofronie-Stokkermans in a series of papers [SS05, SS10, SS06a, SS07].

The main idea in locality is to limit the search space for counterexamples
(hence the name). It is expedient to reformulate the above validity problem
for a universal formula ϕ to an equivalent satisfiability problem. We may
assume that ϕ is in disjunctive normal form. The validity problem T1 ∪
T2 |= ϕ is equivalent to the satisfiability problem T1 ∪ T2,¬ϕ |= ⊥. Using
Skolemization for the existential variables and introducing new constants for
the free ones, we obtain a set of ground clauses G and a satisfiability problem
T1 ∪T2 ∪G |= ⊥, such that T1 ∪T2 ∪G is satisfiable if and only if T1 ∪T2,¬ϕ
is.

Suppose now, in particular, that we have a theory extension T0 ⊆ T0 ∪
K, where K is a set of (universally closed) clauses axiomatizing some new
function symbols and we want to know whether T0 ∪ K ∪G is satisfiable for
a given set G of ground clauses (in the extended signature plus additional
constants). If it is the case that K extends our background theory in a local
manner, we can answer this question by considering only those instances of
K in which each extension term already appeared as ground term of K or G.

1.1 Hierarchical Reasoning

Not only does the locality of a theory extension T0 ⊆ T0 ∪ K allow one
to shed universal quantifiers of the clauses in K, while answering a given
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satisfiability problem1 T0 ∪ K ∪ G, but it also makes hierarchical reasoning
possible: we may carry out a full-fledged reduction to the base theory without
loss of completeness. Provided that an extension T0 ⊆ T0 ∪ K is local, we
may reduce a satisfiability problem of the above form T0 ∪ K ∪G |= ⊥ to a
satisfiability problem T0 ∪ K0 ∪ G′ |= ⊥, where neither K0 nor G′ contains
any new function symbols, G′ is a set of ground clauses (with additional
constants) and it holds that T0 ∪K∪G is satisfiable if and only T0 ∪K0 ∪G

′

is. Further, this reduction can always be carried out in polynomial time.
This gives us decidability results for local theory extensions ([SS05]). If all
variables in the extension clauses appear below new function symbols and the
universal fragment of the underlying theory is decidable, then the universal
fragment of the extension is. (Otherwise the ∀∃-fragment of the underlying
theory must be decidable in order to decide the universal fragment of the
extension.)

Hierarchical reasoning has become particularly relevant in recent years
due to the availability of powerful provers for common background theories.
These so-called SMT-solvers, such as Yices ([DdM06]), CVC3 ([BT07]) and
Z3 ([dMB08]), are able to handle theories prevalent in verification, e.g., real
or integer linear arithmetic, very efficiently. Their power notwithstanding,
it is one-sided: SMT solvers are very efficient for testing the satisfiability of
ground formulas over standard theories, but use heuristics in the presence
of universally quantified formulas, hence cannot detect satisfiability of all
such formulas. Aside from its general usefulness, hierarchical reasoning is
therefore crucial for satisfiable problems ([ISS09]).

1.2 Locality in Data Structures

In two recent papers, locality properties of two ubiquitous data structures
have been discovered and studied. The data structures are lists and arrays.
Necula and McPeak ([MN05]) study local equality axioms for dynamic data
structures such as linked lists in order to gain a decision procedure for some
global properties of these data structures. They consider shape properties
which they call local that have the property that any counterexample will be
local in nature, that is in the neighborhood of the counterexample.

In a similar vein, Bradley, Manna and Sipma ([BMS06]) study a decidable
fragment of the theory of arrays, the so-called array property fragment. They
show how the satisfiability of an array property fragment formula can be
reduced to satisfiability of a quantifier-free formula of the underlying theory

1If all variables appear below a new function symbol we even get ground instances of
K.
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of elements and indices. They do this by finding a sufficient set of instances
for the universally quantified parts of the problem.

These locality results for data structures can be subsumed, and thereby
unified, under the notion of locality.

1.3 Contributions of the Thesis

This thesis contributes to the theory and practice of local reasoning in the
following ways.

1. It relaxes and demarcates more precisely the criteria for showing local-
ity.

2. It gives generalizations of locality, viz. minimal and Ψ-locality.

3. It gives locality results for extensions of theories with monotone or
antitone functions.

4. It shows how to subsume a decidable fragment of the theory of arrays
under this extended notion of locality.

5. It gives a direct proof for an information exchange lemma of Ghilardi
([Ghi03a, Ghi04]): Two theories which are compatible with their mu-
tual intersection have ∃-∀-Interpolation.

6. It gives new criteria for the combination of local theories.

7. It gives a combination result for Ψ-local theories.

8. It gives an implementation for hierarchical reasoning in local theory
extensions.

We describe the contributions in more detail, combining some of them under
a single heading for ease of exposition.

Variants of locality and criteria for showing locality (1–2). The main
technique for showing the locality of a theory extension is the embeddability
of partial models of the extension into total ones ([SS05], extending [Gan01]).
For this criterion to be applicable, technical requirements have to be met: the
extension clauses K must be flat and linear. Flatness of the extension clauses
means that only variables may appear below new function symbols. We were
able to relax this constraint. It is sufficient that the extension clauses are
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quasi-flat : variable and ground terms not containing new function symbols
may now appear below a new function symbol.

The theory extensions we consider as candidates for locality are of a
certain form. Theories are to be extended by (universally closed) clauses
which axiomatize new function symbols. Our initial conjecture was that this
syntactical restriction to universally closed clauses could be relaxed while
embeddability of partial models of the extended theory into total models of
the extended theory would still imply locality. This turned out to be not the
case. Even relaxing the syntactical requirements of the extending formulas
from universally closed clauses to universal formulas in negation normal form
vitiates this implication as we will show. We will give an example of a theory
extension by universal formulas in negation normal form with the property
that its partial models can always be embedded into total ones but which
fails to be local.

Locality for monotone functions (3). An important application of lo-
cal reasoning are monotone functions ([SSI07a, SSI07b]), not least due to its
connection to sortedness in data structures. Here we extend a base theory
containing a partial order ≤ with new functions. These functions all comply
with some monotonicity axiom of the form ∀x, ∀y. x ≤ y → f(x) ≤ f(y). We
consider these axiom types in full generality: A function f can also be anti-
tone as in ∀x, ∀y. x ≥ y → f(x) ≤ f(y) or monotone in some components,
antitone in others and free in yet others as in

∀x, ∀x′, ∀y, ∀z, ∀z′. x ≤ x′ ∧ z ≥ z′ → f(x, y, z) ≤ f(x′, y, z′).

We will show that all extensions of a base theory containing a partially
ordered set with functions that are monotone in this general sense are local.

Generalized locality and locality in data structures (4). For some
applications more instances of the extension clauses K are needed than those
used in standard locality, in order to eliminate universal quantifiers of K. An
example is a fragment of the theory of arrays, the so-called array property
fragment ([BMS06]) mentioned above. To handle this locality phenomenon
in arrays, we developed the notion of minimal locality. It also lead to the
development of a general treatment of this and similar cases, viz. Ψ-locality,
here Ψ is a closure operator on ground terms ([IJSS08]), which generates all
the instances of K needed. We develop the theory of Ψ-locality and show how
this subsumes the notion of minimal locality. The pointer fragment of Necula
and McPeak ([MN05]) referred to above also exhibits a sort of Ψ-locality but
with a different underlying semantics, rendering the use of a term closure
operator inherently more complicated. However Ψ-locality can still be used
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as a template for solving practical verification tasks involving dynamic data
structures as we will illustrate.

Information exchange (5). Another way of viewing the joint unsatisfia-
bility of two theories is as an interpolation problem. Recall our setup. We
have two theories T1 and T2 over respective signatures Σ1 and Σ2, sharing
some signature Σ0 and maybe also a Σ0-theory T0. We wanted to answer
the question whether T1 ∪ T2, ϕ(ā) |= ⊥, where ϕ is a quantifier-free ground
sentence in the combined signature Σ1 ∪ Σ2 with some fresh constants ā.
By using yet more fresh constants, we can split up ϕ into a Σ1-part and a
Σ2-part, giving us an equi-satisfiable problem T1 ∪ T2, ϕ1(ā, b̄), ϕ2(ā, c̄) |= ⊥,
where ϕi(x̄, ȳ) is a Σi-formula for i = 1, 2. By Craig’s Interpolation theo-
rem, we know that there is a Σ0-formula χ(x̄) such that T1, ϕ1(ā, b̄) |= χ(ā)
and T2, ϕ2(ā, b̄) |= ¬χ(ā). For verification purposes this is not quite good
enough, because we want χ to be quantifier-free at the least (cf. [Tin03]),
which in general it will not be. Seen as an interpolation problem, we therefore
want to solve the existential-universal interpolation problem with respect to
T1 ∪ T2 (cf. [Bac75]): finding an open (= quantifier-free) formula to interpo-
late between the existential formula ϕ1 and the universal formula ¬ϕ2 (w.r.t.
T1 ∪ T2). Recently, this problem has gotten fresh impetus from the work of
Ghilardi ([Ghi03a, Ghi04]). We will present a direct proof for one of his the-
orems, viz. that the combined theory has existential-universal interpolation
given that both theories are compatible with their joint subtheory.

Combining local theories (6–7). Considering the setting where we have
two local theory extensions T1 ⊇ T0, T2 ⊇ T0 over a common base theory T0,
we examine criteria which would establish the locality of the union extension
T1∪T2 ⊇ T0. In particular, we would like to lift the above criterion for locality
(embeddability of partial models implies locality) to this setup. This requires
us to extrapolate the embeddability of the separate models Ti (i = 1, 2) to
the embeddability of models of the union T1 ∪ T2.

Pioneering work in this area was done by Viorica Sofronie-Stokkermans
([SS10, SS07]). Assuming that T0 is extended with clauses that are flat and
linear in both cases and that T1 and T2 do not share any more symbols except
those in T0, it was shown there that embeddability of partial models of T1

and of T2 into total ones is enough to ensure the locality of the extension
T0 ⊆ T1 ∪ T2 provided that one of the following conditions holds.

(1) Partial models of T1 and T2 can be embedded into total ones such that
the reducts of the partial and the total model of Ti to the base language
are isomorphic (i = 1, 2).

(2) Partial models of T1 and T2 can be embedded into total ones such that
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the (reducts of the) partial and the total model of T1 are isomorphic
and all variables in T1 appear below extension function symbols.

(3) Partial models of T1 and T2 can be embedded into total ones and all
variables in both T1 and T2 appear below extension function symbols
and T0 is an ∀∃-theory.

We were able to add to this list in the following way (these results are
published in [ISS10a]). Under the same assumptions as above, the extension
T0 ⊆ T1 ∪ T2 is local provided that one of the following conditions holds.

(4) Partial models of T1 and T2 can be embedded into total ones such that
the embeddings restricted to the base language are elementary.

(5) Partial models of T1 and T2 can be embedded into total ones and T0 is
model complete.

(6) Partial models of T1 and T2 can be embedded into total ones such that
the embedding of the partial model of T1 restricted to the base language
is elementary and all variables in T1 appear below extension function
symbols.

A natural generalization is the question when the combination of Ψ-local
theories is Ψ-local again. We were able to establish the following positive
result. Suppose we have Ψi-local theory extensions T0 ⊇ Ti, i = 1, 2 and
we again assume that all the extension clauses are flat and linear. Let Ψ3

be any closure operator on ground terms with Ψ3 ⊇ Ψ1 ∪ Ψ2. Suppose that
partial models (in which certain additional terms are defined) of both T1 and
T2 can be embedded into total ones, all variables in both extension theories
appear below extension function symbols and that T0 is an ∀∃-theory, then
T0 ⊆ T1 ∪ T2 is Ψ3-local.

Implementation (8). We present the program H-PILoT (Hierarchical
Proving by Instantiation in Local theory Extensions)2 which was developed
as part of this thesis ([ISS09]). As the name indicates, H-PILoT implements
the hierarchical reduction described above for local theory extensions. It also
fully incorporates local reasoning for data structures (arrays and pointers).
It automatically checks whether a given problem is in the fragment of those
data structures which are known to be local. By this means, H-PILoT pro-
vides a decision procedure for these fragments (it also detects satisfiability
of a given problem).

2The name was suggested to us by Viorica Sofronie-Stokkermans.
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Recently, H-PILoT has proven its practical usefulness in a large case study
involving a train controller ([FIJSS10]). In the case study, an entire hierarchy
of local extensions was employed together with reasoning about pointers. In
particular, H-PILoT’s ability to provide a model for satisfiable problems was
useful for refining the axiomatization.

1.4 Related Work

Besides the work already cited we would like to indicate other related works
regarding the combination of theories.

Extending Nelson-Oppen. In their seminal papers, Nelson and Oppen
[NO79, Opp80a] showed how decision procedures for the universal fragment
of theories can be lifted to a decision procedure for the universal fragment
of their union provided that a) the signature of the theories are disjoint and
b) both theories are stably infinite, i.e., have an infinite model property for
universal formulas. Considerable effort has been expended to relax either
requirement.

In [Gan02], Ganzinger lifted the requirement of stable infinity for both
theories by allowing arbitrary theories to be combined with the theory of
equality. This result was extended by Tinelli, Ranise and Zarba ([TZ05,
RRZ05]) to the extension of arbitrary theories with so called shiny or polite
theories.

Regarding the other requirement, in [TR03] Tinelli and Ringeissen allow
for the combination of non-disjoint theories sharing so-called constructors.

When using a modular approach towards a satisfiability problem, the
question is of how much information needs to be exchanged between the dif-
ferent modules. This question has been studied by Silvio Ghilardi in his work
on information exchange in [Ghi03a, Ghi04] (cf. Section 1.3.(5)). Informa-
tion exchange between (non-disjoint) theories can be restricted to syntacti-
cally simple formulas provided the shared theory admits a model completion
(cf. Section 5.2).

In [GSSW04, GSSW06] superposition is used as a modular approach to
combinations of theories over a common base theory. Function (symbols)
which are not shared between the theories are considered to be partial. The
superposition calculus presented only requires pure inferences, i.e., inferences
in which only one type of extension functions occur.

This gives rise to an interesting result for the case of theory extensions
where only one extension over a base theory is considered. The variant of
the calculus presented (constraint superposition) is shown to be complete for
shallow theory extensions, such as extensions by tail-recursive functions. This
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is due to the fact that in this case a partial model can always be completed
to a total one.

In [Hil04] the Nelson-Oppen combination procedure is recast into a super-
position framework. This angle could be employed together with a chaining
calculus for transitive relations in order to cope with ordered data types.
In [ARR03] the authors show that superposition-based modular reasoning is
possible in a special case of combinations of theories (lists and arrays), and
amounts to propagating equalities between constants as in the Nelson-Oppen
combination method. More general results are given in [ABRS05] where a
modularity theorem (based also on rewriting) for combinations of theories
with no shared function symbols is proved.

Application to data structures. Decision procedures for data structures
employing a combination framework have been much researched in recent
years. Already in [Opp80b] a decision procedure for the universal fragment
of recursively defined data structures such as lists was given.

In [FRZ04], the validity of universal sentences in the combination of (flat)
lists with an element theory T was shown to be decidable. This extends the
combination method of Nelson and Oppen ([NO79], [Opp80a]) but drops
the requirement of stable infiniteness for the element theory and relaxes the
disjointness requirement in the sense that there might be a length function
for lists in the combined signature of lists and integers, say.

Inspired by the work of Bradley, Manna and Sipma ([BMS06]) which gives
a decision procedure for a fragment of the theory of arrays, Ghilardi, Nicolini,
Ranise and Zucchelli also consider decision procedures for arrays ([GNRZ06]).
Their approach mainly differs form Bradley, Manna and Sipma’s and ours in
that they only consider deciding the satisfiability of quantifier-free formulas
over the combined theory. On the other hand, they were able to solve an
open problem in [BMS06] (injective arrays). Their angle is also different in
that they use more a modular than a reductive approach: their main thrust
is to combine decision procedures for arrays with a decision procedure for
their indices (such as Presburger arithmetic).

In [GNRZ08] the same authors use decision procedures for arrays for the
model checking of properties of array-based systems. Array-based systems
serve there as an abstraction of infinite state systems. States and transi-
tions of those systems are presented as quantified first-order formulas of a
restricted form. The satisfiability of those formulas can be decided by aug-
menting SMT-provers by suitable instantiation strategies. To be able to
handle restricted universal quantification is essential in this context.

In [ZSM05, ZSM06] decision procedures for the quantifier-free and the
first-order theory of recursive data structures with length function and integer
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constraints, such as lists with length function, are presented. From a different
angle - using a rewriting approach - there have also been decidability results
for the satisfiability problem for data structures, such as lists, established
recently ([ARR01, ARR03, ABRS05, BGN+06b, BE07a, BE07b, ABRS09]).

Instantiation strategies. In [GdM09] Ge and de Moura try to overcome
the inherent weakness of SMT-solvers concerning satisfiable proof tasks for a
restricted class of problems. They consider complete instantiation strategies
for universal clauses in the language of arithmetic plus free functions, where
variables may only appear below those free functions. That is, they look at
a set of instances F ∗ for a set of universally closed clauses F such that F
and F ∗ are equi-satisfiable. The motivation here is to enable SMT-solvers
to handle universal quantifiers for this fragment, which is very important
for real-life verification problems. They build the set of instances needed
incrementally until they reach closure. This is similar to our notion of Ψ-
locality where we consider closure operator Ψ that gives us enough instances
to eliminate quantifiers (which we can always do when all variables appear
below extension functions).

Differences to our approach. Our own approach differs from the above
work in several respects. In contrast to the (extended) Nelson-Oppen frame-
work, we consider the case where one or more theories share a common
theory (with non-disjoint) signature from the outset. Local extensions and
combinations impose no a priori restrictions on the shared theory, whereby
circumventing the severe restrictions on the common theory of the Nelson-
Oppen approach. For this reason, local extensions and combinations provide
orthogonal criteria for the transfer of decidability results to the combinations
of theories.

We use the same hierarchical/reductive approach for data structures.
This again allows us to consider the case where the data structure and the un-
derlying element theory share more than one bridging function (e.g. length).

Our framework not only allows us to offer a general, unifying treatment of
locality phenomena in common data structures by developing our notion of Ψ-
locality but also allows us to subsume the instantiation strategies developed
by Ge and de Moura.

1.5 Structure of the Thesis

The thesis is structured as follows. In Chapter 2 we fix our notation and
present some common facts about first-order logic, theories and partial alge-
bras which we will need. In Chapter 3 we develop the theory of locality and
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give some applications. In Chapter 4 we present generalizations of standard
locality, in particular minimal and Ψ-locality, and treat local data structures.
Chapter 5 focuses on combinations of theories sharing a common base the-
ory. First we introduce the necessary model-theoretic machinery which we
then use on information exchange and the combination of local and Ψ-local
theories. Finally, Chapter 6 presents our implementation of local reasoning:
H-PILoT.





Chapter 2

Preliminaries

2.1 First-order Logic

We assume known common notions from first-order logic. We will give a brief
synopsis of the notions that will be needed for the thesis. For background
information we refer the reader to [Dal04, Hod97, CK90]. We write x̄, ā
for sequences (x0, x1, . . .), (a0, a1, . . .). Finite sequences are called tuples. If
x̄ = (x0, x1, . . .) is a sequence and h a map, we write hx̄ for the sequence
(h(x0), h(x1), . . .). We will start with the syntax and semantics of a first-
order language.

Syntax. A first-order language L is characterized by its signature Π =
(Σ,Pred) which contains function symbols Σ and relation symbols Pred to-
gether with their arity. Constants are 0-ary function symbols. We will ex-
clusively consider first-order logic with equality, that is equality is always
built-in and need not be included in the signature. We will write the built-
in, object-language equality as ≈. We will consider a countably infinite sets
of variables X to be fixed. We define terms and formulas (w.r.t. a signature
Π) inductively.

A (Π)-term is a variable, a constant in Π or a string f(t1, . . . , tn) such
that f is a function symbol in Π of arity n and ti are Π-terms, i = 1, . . . , n.
We recursively define the depth of a term t as follows. If t is a variable
or a constant its depth is 0, if t = f(t1, . . . , tn) its depth is defined as 1 +
maxi(depth(ti)).

The root of a term t = f(t1 . . . , tn) is the function symbol f or the term
itself if t is a constant or a variable. We write root(t) for the root of t. We
will sometimes consider the set of Π-terms generated from a set of terms Γ
(possibly from another signature) and denote this set by TermΠ(Γ). This
will also be inductively defined, i.e TermΠ(Γ) is the smallest set S containing

13
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Γ and each string f(t1 . . . , tn) for ti ∈ S, f ∈ Π and the arity of f is n. If Π
is clear from the context we will often drop it and simply write Term(Γ) for
TermΠ(Γ). A subterm t of u is a substring of u which is a term in its own
right. We will write t ≤· u if t is a subterm of u.

A (Π)-atom is an equation between Π-terms t ≈ u or the application
of a predicate symbol to Π-terms P (t1, . . . , tn) where P is n-ary. The set
of Π-formulas is the smallest set S containing the Π-atoms which is closed
under the rules

(1) if ϕ ∈ S then ¬ϕ ∈ S,

(2) if ϕ, ψ ∈ S then ϕ ∧ ψ, ϕ ∨ ψ and ϕ→ ψ are in S and

(3) if ϕ ∈ S, x ∈ X then (∀x). ϕ ∈ S and (∃x). ϕ ∈ S.

We identify a first order language L in the signature Π with the set of
Π-formulas and will from now on also talk of L-formulas, L-atoms etc. We
are also interested in formulas of a certain structure. A (Π)-literal is an atom
or the negation of an atom. A (Π)-clause is a finite disjunction of (Π)-literals
λ1 ∨ . . . ∨ λn. A formula is in conjunctive normal form if it is a conjunction
of clauses. We write t ≤· ϕ if the term t appears in the formula ϕ.

The free variables FV (t) of a term t are the variables occurring in t. The
free variables FV (ϕ) of a formula ϕ are defined by recursion on the structure
of formulas:

(0) FV (t ≈ u) := FV (t) ∪ FV (u)
and FV (P (t1, . . . , tn)) := FV (t1) ∪ . . . ∪ FV (tn) for atoms,

(1) FV (¬ϕ) := FV (ϕ),

(2) FV (ϕ�ψ) := FV (ϕ) ∪ FV (ψ), for � ∈ {∧,∨,→},

(3) FV ((∀x). ϕ) := FV ((∃x). ϕ) := FV (ϕ) \ {x}.

The bound variables of a formula ϕ are those that appear quantified in ϕ
and are defined dually. Note that a variable can appear both bound and free
in a formula. We call a term or formula ground if it does not contain any
variables. We will denote the set of ground terms of signature Π by GTermΠ.

We write ϕ(x1, . . . , xn) if the free variables of a formula ϕ are contained
in the set {x1, . . . , xn}. We will also abbreviate formulas like
(∀x1).(∀x2).(∀x3).(∀y1).(∀y2).ϕ by writing ∀x̄, ∀ȳ.ϕ.

A formula which has no free variables but only bound variables or none
at all is called closed or a sentence. A formula not containing any quantifiers
is called quantifier-free or open. By a universal formula we mean a formula
of the form ∀x̄.ϕ(x̄, ȳ) where ϕ(x̄, ȳ) is open; by the universal closure of a
formula ϕ(x̄) we mean the formula ∀x̄. ϕ(x̄). We will denote the universal
closure of ϕ by ∀ϕ.
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By an existential formula we mean a formula of the form ∃x̄.ϕ(x̄, ȳ)
where ϕ(x̄, ȳ) is open; by an ∀∃-formula we mean a formula of the form
∀x̄∃ȳ.ϕ(x̄, ȳ, z̄) where ϕ(x̄, ȳ, z̄) is an open formula. By a universal clause
we mean a universal formula of the form ∀x̄.ϕ where ϕ is a clause; by
a universally closed clause we mean the universal closure of a clause. A
formula in negation normal form is a universal formula of the form ∀x̄. ϕ
where ϕ is built from literals with the connectives {∧,∨}. We will speak
of universal/existential/∀∃-sentences if the corresponding formula does not
contain any free variables.

Following [Hod97] and [CK90], we define a (Π)-theory simply as a set of
Π-sentences. We write T ⊢ ϕ if the Π-sentence ϕ can be formally deduced
from the Π-theory T in a first-order calculus such as a sequent calculus. We
will also talk of an L-theory, where L is the first-order language determined
by the signature Π. The deductive closure of a Π-theory T is the set of all
Π-sentences that can be deduced from T (Notation: T ⊢).

A substitution σ is a map σ : X → TermΠ(X) from the variables into
the terms of the signature. We will write ϕσ for the formula which results
from ϕ when we replace simultaneously every free variable x by σ(x). There
is one technical complication with substitution, viz. we need to avoid that
a variable in σ(x) becomes bound as a result of the substitution lest we
change the semantics of the formula. In order to avoid this we will always
implicitly assume that bound variables are renamed when necessary.1 We
call a substitution σ ground if σ(x) is always a ground term. By the notation
ϕ(t) we mean the substitution of t for the variable x in ϕ(x).

Semantics. A Π-structure for a signature Π is a tuple A = (A,ΣA,PredA),
consisting of a non-empty set A, called the carrier of A, together with a set
of functions and relations interpreting each symbol of Π. That is for each
function symbol f ∈ Σ of arity n, ΣA contains a function fA : An → A and for
each relation symbol R ∈ Pred of arity k, PredA contains a relation RA ⊆ Ak.
We will denote first-order structures by A,B, . . . and their respective carriers
by A,B, . . .. We will also call a Π-structure A an L-structure, where L is the
first order-language with the signature Π.

A valuation β for a structure A is a map β : X → A from the set of
variables into the carrier A. A structure together with a valuation induces
a truth value for all Π-formulas. A valuation extends canonically to terms.
The value of a term t under β (w.r.t. A) is again an element of A. We write
(A, β)(t) for the value of the term t w.r.t. A and β, or simply β(t) if the
structure is clear from the context. We will write β[x 7→ a] for the valuation
that maps x to a and every other value y to β(y). The value (A, β)(ϕ) of a

1cf. [EFT96], ch. III, §8 and [Dal04], ch. 2.5.
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formula ϕ w.r.t. (A, β) is either 1 (which stands for ’true’) or 0 (’false’). It
is sufficient to define the value for the connectives {¬,∧} and the quantifier
’∃’ because the other connectives and the other quantifier can be thought of
as defined in terms of these.

Definition 2.1.1 (Truth value in a model) (A, β)(ϕ) is defined recursively
on the structure of formulas as follows.

0) (A, β)(t ≈ u) :=

{
1 if (A, β)(t) = (A, β)(u),

0 otherwise.

and

(A, β)(P (t1, . . . , tn)) :=

{
1 if ((A, β)(t1), . . . , (A, β)(tn)) ∈ PA,

0 otherwise.

1) (A, β)(¬ϕ) := 1 − (A, β)(ϕ),
2) (A, β)(ϕ ∧ ψ) := min((A, β)(ϕ), (A, β)(ψ)),
3) (A, β)((∃x). ϕ) := max

a∈A
(A, β[x 7→ a])(ϕ).

Instead of (A, β)(ϕ) = 1 we will commonly write A, β |= ϕ and say that
(A, β) satisfies ϕ or that (A, β) is a model of ϕ. Dually, if (A, β)(ϕ) = 0
we will say that (A, β) does not satisfy ϕ and write A, β�|= ϕ. For a set of
formulas Γ, we say that (A, β) satisfies Γ if (A, β) satisfies each ϕ ∈ Γ.

The value (A, β)(ϕ) of a formula ϕ(x̄) under A depends only on the free
variables x̄ of ϕ: If β and β ′ are two valuations which do not differ on x̄,
then the values (A, β)(ϕ) and (A, β ′)(ϕ) are the same. In particular, if ϕ is
a sentence a valuation is irrelevant. In that case we will simply write A(ϕ)
for the value of ϕ and A |= ϕ if the value is true and call ϕ true in A. For
the same reason, we will also write A |= ϕ[ā] if A, β |= ϕ(x̄), for any β with
βx̄ = ā and tA[ā] for the value of a term t(x̄) under any valuation β with
βx̄ = ā. For ground terms, valuations are as idle as in sentences. We will
write tA for the value of a ground term t in A.

We say that a Π-structure A satisfies an open formula ϕ(x̄) if A |= ∀ϕ.
Equivalently, A |= ϕ(x̄) if it holds for all valuations β, that A, β |= ϕ(x̄). We
call a formula satisfiable in A if there is some valuation β such that (A, β)
satisfies ϕ and unsatisfiable in A otherwise. We call a Π-formula satisfiable
if there is a Π-structure A such that ϕ is satisfiable in A and unsatisfiable
otherwise. Similarly, we say that a set of formulas Γ is satisfiable if there is a
structure A such that Γ is satisfiable in A and unsatisfiable otherwise. Two
formulas are equivalent if they have exactly the same models. We will need
the fact later that every quantifier-free formula is equivalent to a formula in
conjunctive normal form.
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The notion of satisfaction of a formula in a model allows us to define
semantic consequence. Overloading notation as is customary, we write Γ |= ∆
for sets of formulas Γ,∆ to mean that every model (A, β) which satisfies Γ
also satisfies at least one formula in ∆. In particular if Γ and ∆ are both
finite, Γ |= ∆ is equivalent to

∧
Γ |=

∨
∆. If Γ or ∆ is a singleton we will

drop the curly brackets. We should also note the simple but significant fact
that semantic consequence is monotone, that is if it holds that Γ |= ∆ we
also have Γ+ |= ∆+ for any sets Γ+,∆+ with Γ+ ⊇ Γ and ∆+ ⊇ ∆.

The following theorem is one of the most significant in first-order logic.

Theorem 2.1.2 (Compactness) Let L be a first-order language and Γ,∆
sets of L-formulas. Then Γ |= ∆ if and only if there are finite subsets Γ0 ⊆fin

Γ and ∆0 ⊆fin ∆ such that Γ0 |= ∆0.

Many-Sorted logic. On one occasion (Section 4.8) we will consider many-
sorted first-order logic. Many-sorted first-order logic distinguishes different
types or sorts si, i = 1, . . . , n. Syntactically, variables, quantifiers and the
equality symbol must now be relativized to a type. The same holds for a
signature. We must now not only indicate the arity of function or predicate
symbols but also their types. For example, we say that a function symbol
f has arity s1 × s2 → s3. This means that for a term t = f(u1, u2) to be
well-defined, ui must be of type si, for i = 1, 2, while t itself will be of type
s3. Similarly for predicate symbols and atoms.

Semantically, a many-sorted structure A must now assign to each sort
si a set Asi

. These sets can be supposed to be mutually disjoint because
there is no equality symbol “across sorts”. For each function or predicate
symbol, a many-sorted structure must assign a sort-compliant function or
predicate. In our example, the symbol f must be assigned some function
fA : As1

×As2
→ As3

in a many-sorted structure A. The definition of truth
and satisfaction lifts effortlessly to a many-sorted structure.

Many-sorted logics are convenient in theoretical computer science but
logically they offer nothing new. We can always reduce many-sorted logic to
one-sorted logic by using predicates instead of sorts (cf. [End02], 4.3).

Homomorphisms and embeddings. Given a signature Π = (Σ,Pred)
and map h : A → B between the carriers of two Π-structures A and B we
say that h preserves ϕ(x̄) if for any ā ∈ A it holds that

A |= ϕ[ā] implies B |= ϕ[hā].

Definition 2.1.3 A homomorphism between two Π-structures A and B is a
map h : A→ B such that for all function symbols f ∈ Σ it holds that

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)),
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and for all relation symbols R ∈ Pred it holds that

RA(a1, . . . , an) implies RB(h(a1), . . . , h(an)).

An embedding h : A → B of A into B is an injective homomorphism with
the property that for all relation symbols R ∈ Pred it holds that

RA(a1, . . . , an) if and only if RB(h(a1), . . . , h(an)).

We will write h : A → B if h embeds A into B.

An isomorphism is a surjective embedding. A map is a homomorphism
if and only if it preserves every atom, a map is an embedding if and only if
it preserves every literal (cf. [Hod97], 1.3.1).

An embedding preserves any existential formula ([CK90], 3.2.2; [Hod97],
2.4.1). A substructure A of B (notation: A ⊆ B) is a structure such that the
identity is an embedding from A into B. In particular, any universal sentence
true in a structure will be true in any of its substructures. If A ⊆ B we call
B an extension of A. Given an L-structure A and some subset Y of A we
will call the smallest substructure of A which contains Y the substructure
generated by Y and write <Y>A for that structure.

Definition 2.1.4 A map f : A → B which preserves all formulas is called
an elementary embedding (Notation: f : A 4 B). A structure A is called
an elementary substructure of another structure B (and B an elementary
extension of A) if A ⊆ B and the inclusion is an elementary embedding
(Notation: A 4 B).

Language extensions. We sometimes want to extend a first-order language
L of signature Π by new constant symbols which do not occur in L already.
Let C = {c0, c1, . . .} a set of constant symbols such that ci 6∈ Π, for all i, we
call C = c̄ a set of fresh constants. We will write LC, or more suggestively
L(c̄), for the extended language. Given an L-structure A we write (A, ā) for
the L(c̄)-structure which is exactly like A except that cAi = ai for all i. In
general, if we have two signatures Π ⊆ Π′ and a Π′-structure A′ we call the
corresponding Π-structure A the Π-reduct of A′ (notation A′↾Π). Dually, we
call A′ a Π′-expansion of A.

If A is an L-structure, we often expand the language and the structure
by introducing new constant symbols a for each a ∈ A and interpret these
constants by the respective element. We denote the extended language by
LA, the extended signature by ΠA and the expanded ΠA-structure by (A, A).
It holds that (A, A) |= ϕ(a) ⇔ A |= ϕ[a]. For this reason, we will not distin-
guish between the name for an element and the element itself. This is due to



CHAPTER 2. PRELIMINARIES 19

the following lemma which states that substitutions are the syntactical coun-
terparts of valuations (cf. [Dal04], Theorem 2.5.8 and Corollary; [EFT96],
Lemma 8.3).

Lemma 2.1.5 (Substitution lemma) Let A be a Π-algebra, β : X → A a
valuation for A and σ : X → Term(X) a substitution. Define the valuation
β ◦ σ : X → A by x 7→ (A, β)(σ(x)). It holds that

(1) (A, β ◦ σ)(t) = (A, β)(tσ) for any term t.

(2) (A, β ◦ σ)(ϕ) = (A, β)(ϕσ).

(3) A, β ◦ σ |= ϕ⇔ A, β |= ϕσ.

The set of ground LA-atoms which are true in (A, A) is called the positive
diagram of A. The positive diagram of A is denoted by ∆+

A. The set of ground
LA-literals which are true in (A, A) is called the diagram of A. and denoted
by ∆A. The elementary diagram of A, written as ∆el

A, is the set of LA-
sentences true in (A, A). Additionally, we also allow expansions for subsets
of A. If X ⊆ A and f is a mapping from X into the carrier of an L-structure
B, we get an LX structure (B, fa)a∈X in the obvious way. Diagrams are an
important tool for model constructions due to the following lemma.

Lemma 2.1.6 ([Hod97], 1.4.2) Let A and B be L-structures, c̄ a sequence
of new constants and (A, ā) and (B, b̄) be L(c̄)-structures. Then (1) and (2)
are equivalent.

(1) For every atomic sentence ϕ of L(c̄), if (A, ā) |= ϕ then (B, b̄) |= ϕ.

(2) There is a homomorphism f : <ā>A→ B such that f(ai) = bi, for all
i.

The homomorphism f in (2) is unique if it exists; it is an embedding if and
only if

(3) For every atomic sentence ϕ of L(c̄), (A, ā) |= ϕ⇔ (B, b̄) |= ϕ.

In particular if ā generates A, the implication (1) ⇒ (2) in the above lemma
tells us that A can be mapped homomorphically to a reduct of B whenever
B is a model of the positive diagram of A; and (3) tells us that any model of
the diagram of A has a reduct into which A can be embedded (cf. [CK90],
2.1.8; [Hod97], Ibid.).

Corollary 2.1.7 (Lemma on diagrams) Let A and B be L-structures.
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(1) A can be mapped homomorphically to a reduct of B whenever B |= ∆+
A

(2) If B |= ∆A then A can be embedded into a reduct of B.

Something similar holds for elementary diagrams. Recall that an elemen-
tary embedding is a map f : A → B between L-structures such that for all
formulas ϕ(x1, . . . , xn) and all elements a1, . . . , an we have A |= ϕ[a1, . . . , an]
if and only if B |= ϕ[fa1, . . . , fan]. Note also that every isomorphism is an
elementary embedding.

Lemma 2.1.8 ([Hod97], 2.5.3) Let A and B be L-structures and c̄ a tuple
of new constants not in L. Suppose (A, ā) and (B, b̄) are L(c̄)-structures and
ā generates A. Then the following are equivalent.

(1) For every formula ϕ(x̄) of L, if (A, ā) |= ϕ(c̄) then (B, b̄) |= ϕ(c̄).

(2) There is an elementary embedding f : A → B with f(ai) = f(bi),
for all i.

From this we get the elementary diagram lemma, (cf. [CK90], 3.1.3;
[Hod97], Ibid.).

Corollary 2.1.9 If D is a model of the elementary diagram of an L-structure
A, then there is an elementary embedding of A into the reduct D↾L.

The standard usage of these lemmas on diagrams always goes like this.
We want to extend a model A to a model of some theory T . If we can show
that T ∪∆A is consistent we can use the lemma on diagrams to establish the
claim.

They are two more often-employed techniques we want to mention. Both
techniques are concerned with ’fresh’ terms, i.e terms that occur nowhere
else (cf. [Dal04], Theorem 2.8.3 and Lemma 2.9.1). The first deals with
’fresh’ variables. Its slogan is: Free variable means ’∃’ left of the turnstile
and ’∀’ right of it The second deals with fresh constants. Its slogan is: Fresh
constants behave exactly as ’fresh’ variables. The first two assertions of the
following lemma are also know as ∀-elimination and ∀-introduction.

Lemma 2.1.10 Let Γ be a set of L-formulas and let ϕ, ψ be L-formulas. Let
x be a variable which does not occur freely in either Γ or ψ. Then it holds
that

(1) Γ |= ϕ(x) ⇔ Γ |= ∀x.ϕ(x)

(2) Γ, ϕ(x) |= ψ ⇒ Γ, ∀x.ϕ(x) |= ψ
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(3) Γ, ϕ(x) |= ψ ⇔ Γ, ∃x.ϕ(x) |= ψ

The second technique does the same for constants that do not appear
anywhere else.

Lemma 2.1.11 (Lemma on constants) Let L be a first-order language,
Γ a set of L-formulas and ϕ an L-formula. Let c be an L-constant not
occurring in Γ. Then it holds that Γ |= ϕ(c) ⇔ Γ |= ∀x.ϕ(x)

Here are two more golden classics.

Lemma 2.1.12 (Craig’s Interpolation Theorem, [Cra57]) Let L be a
first-order language, ϕ, ψ be L-sentences such that ϕ |= ψ. Then there is a
L-sentence δ which contains only function and predicate symbols that occur
in both ϕ and ψ with ϕ |= δ |= ψ.

In isomorphic structures the same sentences are valid ([Hod97],2.4.3.(c)). In
general

Definition 2.1.13 (Elementary equivalence) Let Π be a first-order sig-
nature and A, B be two Π-structures. A and B are called elementarily equiv-
alent (Notation: A ≡ B) if it holds for all Π-sentences ϕ that

A |= ϕ⇔ B |= ϕ.

Not all elementarily equivalent structures are isomorphic. In fact, ev-
ery infinite structure will have an elementarily equivalent structure in every
infinite cardinality bigger or equal to the size of the language due to the
Löwenheim-Skolem theorems (cf. [Hod97], 3.1.4 and 5.1.4). For finite struc-
tures, however, the two notions coincide ([CK90], 1.3.19.).

Definition 2.1.14 (Complete theory) Let T be a satisfiable L-theory. T
is called complete if it holds that T |= ϕ or T |= ¬ϕ, for every L-sentence ϕ.

In other words, a theory is complete if it has at least one model and all its
models are elementarily equivalent.

Corollary 2.1.15 (Robinson Consistency Theorem; [CK90], 2.2.23)
Let T1, T2 be satisfiable theories in the language L1,L2 respectively and let
L := L1 ∩L2. If there is a complete L-theory T with T ⊆ T1, T2 then T1 ∪ T2

is satisfiable as well.
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Because it gives us a lot of control, we often want to build up a model
of a theory inductively, i.e., step by step, by repeatedly adding elements and
then considering the limit (cf. [Hod97], 6.1). By a chain of models we mean
an increasing sequence of models

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ Aβ ⊆ . . . , β < α,

whose length is some ordinal α.
The union of the chain is the model A =

⋃
β<α Aβ which is defined as

follows. Its carrier is the union A =
⋃

β<αAβ of the carriers, each relation RA

is the union of the corresponding relations
⋃

β<αR
Aβ . Similarly, each function

fA is the union of the corresponding functions
⋃

β<α f
Aβ . The models Aβ all

agree on constants, so take cA := cA0 .
We say that a formula ϕ(x̄) is preserved in union of chains if whenever

(Aβ | β < α) is a chain of models, ā is a sequence of elements of A0 and
Aβ |= ϕ(ā) for all β < α then

⋃
β<α Aβ |= ϕ(ā).

Theorem 2.1.16 (Chang- Los-Susko; [Hod97], 5.4.9) A formula ϕ is pre-
served in union of chains if and only if ϕ is equivalent to an ∀∃-formula.

Another interesting application of chains is when all inclusions are ele-
mentary, i.e., Aβ 4 Aγ for all β < γ < α.

Theorem 2.1.17 (Elementary chain theorem; [CK90], 3.1.9) Let (Aβ | β <
α) be an elementary chain of models. Then Aγ 4

⋃
β<α Aβ, for all γ < α.

Definition 2.1.18 (Model completeness) Let T be an L-theory. T is
called model complete if every embedding between its models is elementary.

Definition 2.1.19 (Elimination of quantifiers) An L-theory T is said to
admit elimination of quantifiers if for every L-formula ϕ(x1, . . . , xn) there is
an open (i.e., quantifier-free) L-formula ϕ′(x1, . . . , xn) such that

T |= ϕ(x1, . . . , xn) ↔ ϕ′(x1, . . . , xn).

2.2 Partial Algebras and Partial Semantics

Partial algebras and partial semantics play a crucial role in the theory of
locality. This goes back all the way to Skolem ([Sko20]). In order to show
that the uniform word problem for lattices is decidable in polynomial time,
he considered relational encodings of the lattice operations. The operations
were replaced by relations representing their graphs: ∨ and ∧ were replaced
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by ternary relations r∨ and r∧ and lattice axioms x∨y ≈ z were rewritten as
r∨(x, y, z) (similar for ∧-equations). Additionally, r∧ and r∨ are required to
be functional, i.e., axioms of the form r∨(x, y, z) ∧ r∨(x, y, z′) → z = z′ were
added. What gets lost, however, in the translation is the totality of the lattice
operations. The relational encoding resulted in function-free Horn clauses
which were then used to decide the uniform word problem in polynomial
time.

Independently, similar ideas were used by Evans in the study of algebras
with a PTIME decidable word problem ([Eva51]). These approaches were
rediscovered and extended by Burris ([Bur95]). He showed that if a quasi-
variety, i.e., a class of algebras axiomatized by a set of Horn clauses H, has
the property that every finite partial model of H can be extended to a total
one, then the uniform word problem for the quasi-variety is decidable in
polynomial time.

In [Gan01] Ganzinger established a connection between locality (for Horn
clauses) and the embeddability of partial models of Horn clauses into total
ones.

Definition 2.2.1 (Partial function) Let f : A→ B be some function with
arity bigger than 0 and A′ ⊇ A. Then f : A′ → B is called a partial function.
For a ∈ A′ \ A we say that f(a) is undefined and write f(a)↑, for a ∈ A we
say that f(a) is defined and write f(a)↓. We call A the domain of the partial
function f : A′ → B. The image f(U) of a set U ⊆ A′ under f is the set
{f(u) | u ∈ U, f(u) defined.}. Let Π = (Σ,Pred) be a signature. A partial
Π-algebra is a tuple (A, {fA}f∈Σ), {cA}c∈Σ,PredA), where A is a non-empty
set and for every function symbol f ∈ Π with arity n, fA is a partial function
from An to A, every constant symbol c ∈ Σ is defined in A and for every
k-ary predicate symbol P ∈ Pred, PA is a subset of Ak. The structure is a
(total) algebra if all functions fA are total.

Note that we will always consider constants to be defined. There is no
canonical way to define partial semantics. We certainly want partial seman-
tics to be conservative, i.e., if all terms in a formula or term are defined,
partial semantics should give the same value as the total one. This still
leaves us a lot of leeway in the case where we have some undefined terms.

Consider an equation f(s) ≈ t and suppose the term t is defined in some
model while f(s) is not. Should we say that the equation is true in the model
or not? How about when s is also defined? There is no prevailing answer. It
is a matter of expediency2.

2cf. the discussion in [Bur86], particularly Section 0.4.
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For local extensions, two different partial semantics are used: weak and
strong partial semantics. Strong partial semantics is sometimes also called
Evans semantics (cf. [Bur95, Gan01, GSSW04, GSSW06, SS05]). Weak and
strong partial semantics would answer the above question differently. In weak
semantics, any equation is true in some model provided at least one side is
undefined in the model. In strong semantics, the equation f(s) ≈ t would be
false in any model where both s and t are defined but f(s) is undefined.

Following [GSSW04, GSSW06], we will distinguish two ways in which a
term can be undefined in a partial model for which we reserve two special
values ⊥u (“undefined”) and ⊥i (“irrelevant”). In a nutshell, ⊥i means that
a subterm was already undefined, while ⊥u indicates that all subterms are
defined but are not in the domain of the function at the root of the term.

Definition 2.2.2 (Value of a term in a partial model) Let A be a par-
tial Π-algebra and β : X → A a valuation for its variables. The value
(A, β)(t) of a term t is recursively defined as follows.

(1) (A, β)(x) = β(x) for a variable x.

(2) (A, β)(c) = cA for a constant c.

(3) (A, β)(t) = ⊥u if t = f(t1, . . . , tn), (A, β)(ti) 6∈ {⊥u,⊥i}
for all i, 1 ≤ i ≤ n, but fA(β(t1), . . . , β(t1)) is undefined.

(4) (A, β)(t) = ⊥i if t = f(t1, . . . , tn) and there is an i, 1 ≤ i ≤ n with
(A, β)(ti) ∈ {⊥u,⊥i}.

(5) (A, β)(t) = a if t = f(t1, . . . , tn), (A, β)(ti) 6∈ {⊥u,⊥i}
for all i, 1 ≤ i ≤ n and fA(β(t1), . . . , β(t1)) = a.

If (A, β)(t) ∈ {⊥u,⊥i} we call t undefined in A w.r.t. β, otherwise we call
t defined in A w.r.t. β,

For the value of a formula ϕ in (A, β) we will similarly distinguish three
truth values: 1 (“true”), 0 (“false’) and 1

2
(“undefined”), with 0 < 1

2
< 1.

Since the difference between weak and strong partial semantics concerns only
equational atoms, we will define the notions simultaneously.

Definition 2.2.3 (Partial semantics) Let A be a partial Π-algebra and
β : X → A a valuation for its variables. The weak value (A, β)w(α) of a
Π-atom α is defined as follows.

(1) (A, β)w(α) = 1
2

if a) α = t ≈ u and one of the terms t, u is undefined
in (A, β) or b) α = P (t1, . . . , tn) and one ti, 1 ≤ i ≤ n is undefined in
(A, β).
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(2) (A, β)w(α) = 1 if a) α = t ≈ u and both terms t, u are defined and
equal in (A, β) or b) α = P (t1, . . . , tn) and all terms ti, 1 ≤ i ≤ n are
defined in (A, β) and it holds that PA(β(t1), . . . , β(tn)).

(3) (A, β)w(α) = 0 if a) α = t ≈ u and both terms t, u are defined but not
equal in (A, β) or b) α = P (t1, . . . , tn) and all terms ti, 1 ≤ i ≤ n are
defined in (A, β) but it does not hold that PA(β(t1), . . . , β(tn)).

The strong value (A, β)s(α) of a Π-atom α is defined as follows.

(1) (A, β)s(α) = 1
2

if a) α = t ≈ u and (at least) one value β(t) or β(u)
is ⊥i, α = t ≈ u and both values β(t) and β(u) are ⊥u; b) α =
P (t1, . . . , tn) and one ti, 1 ≤ i ≤ n is undefined in (A, β).

(2) (A, β)s(α) = 1 if a) α = t ≈ u and both terms t, u are defined and
equal in (A, β) or b) α = P (t1, . . . , tn) and all terms ti, 1 ≤ i ≤ n are
defined in (A, β) and it holds that PA(β(t1), . . . , β(tn)).

(3) (A, β)s(α) = 0 if a) α = t ≈ u and both terms t, u are defined but not
equal in (A, β), b) α = t ≈ u and one of the terms t, u is defined in
(A, β) while the other is of the form f(s1, . . . , sn) where β(si) is defined
for 1 ≤ i ≤ n but (β(s1), . . . , β(sn)) is not in the domain of fA or
c) α = P (t1, . . . , tn) and all terms ti, 1 ≤ i ≤ n are defined in (A, β)
but it does not hold that PA(β(t1), . . . , β(tn)).

Note that weak and strong partial semantics differ only on how they treat
equality atoms. The definition for composed formulas are also the same for
weak and strong partial semantics. We will write (A, β)p for either.

(1) (A, β)p(¬ϕ) := 1 − (A, β)p.

(2) (A, β)p(ϕ ∧ ψ) := min((A, β)p(ϕ), (A, β)p(ψ)).

(3) (A, β)p(ϕ ∨ ψ) := max((A, β)p(ϕ), (A, β)p(ψ)).

(4) (A, β)p(∀x.ϕ(x)) := min({(A, β[x 7→ a])p(ϕ) | a ∈ A}).

(5) (A, β)p(∃x.ϕ(x)) := max({(A, β[x 7→ a])p(ϕ) | a ∈ A}).

Definition 2.2.4 (Partial model) Let A be a partial Π-algebra and β :
X → A a valuation for its variables. We will write A, β |=w ϕ (A, β |=s ϕ)
if
(A, β)w(ϕ) ≥ 1

2
((A, β)s(ϕ) ≥ 1

2
) and A, β �|=w ϕ (A, β �|=s ϕ) otherwise. We

call (A, β) a weak (strong) partial model of ϕ if A, β |=w ϕ (A, β |=s ϕ).
For a set of formulas Γ, we write A, β |=w Γ (A, β |=s Γ) if it hold that
A, β |=w ϕ (A, β |=s ϕ) for every formula ϕ ∈ Γ. For sets of formulas
Γ,∆ we write Γ |=w ∆ (Γ |=s ∆) if every weak (strong) model of Γ weakly
(strongly) satisfies at least one formula in ∆.
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Example 2.2.5 [GSSW04] Let A be a partial Π-algebra, where Π = {car, nil}.
Assume that nilA is defined and carA(nilA) is not defined. Then A |=w

car(nil) ≈ nil and A |=w car(nil) 6≈ nil (because one term is not defined in
A) but
A 2s car(nil) ≈ nil because the immediate subterm of car(nil) is defined but
not in the domain of carA.

We gather some simple but useful facts about partial semantics.

Observation 2.2.6

(1) A, β �|=w t ≈ s if and only if both terms t, u are defined but different in
(A, β).

(2) A, β |=w t 6≈ s unless both terms t, u are defined and equal in (A, β).

(3) A, β |=p P (t1, . . . , tn) for |=p∈ {|=w, |=s} unless all terms ti are defined
in (A, β) and (β(t1), . . . , β(tn)) 6∈ PA.

(4) A, β |=p ¬P (t1, . . . , tn) for |=p∈ {|=w, |=s} unless all terms ti are de-
fined in (A, β) and (β(t1), . . . , β(tn)) ∈ PA.

(5) A, β �|=s t ≈ s if and only if β(t) and β(s) are both defined but not equal
or if one of β(t) and β(s) is defined while the other is not although all
of its subterms are.

(6) A, β |=s t 6≈ s unless β(t) and β(s) are both defined and equal.

(7) (A, β) weakly (strongly) satisfies a clause C if and only if it weakly
(strongly) satisfies one of its literals.

(8) If there is some term t in a clause C(x̄) which is undefined in a partial
model (A, β), then A, β |=w C(x̄).

(9) Let t = t(x̄) be a term appearing in a universal clause ∀ȳ. C(x̄, ȳ, z̄)
such that x̄ and ȳ are pairwise distinct, i.e., there is no variable that
appears in both x̄ and ȳ. If t is undefined in a partial model (A, β) then
A, β |=w ∀ȳ. C(x̄, ȳ, z̄).

(10) Let t be a non-maximal term of a clause C, i.e., t always appears as
f(. . . , t, . . .) in C for some function f . If t is undefined in a partial
model (A, β) then A, β |=s C.

(11) Let t = t(x̄) be a term and ∀ȳ. C(x̄, ȳ, z̄) a universal clause such that x̄
and ȳ have no variables in common and t always appears as f(. . . , t, . . .)
in C for some function f . If t is undefined in a partial model (A, β)
then A, β |=s ∀ȳ. C(x̄, ȳ, z̄).

Proof. (1) – (7) are immediate from the definitions.
(8) follows from (7) by (1) and (2).
For (9), let ȳ = (y1, . . . , yn) and β ′ be an arbitrary but fixed valuation that is
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exactly like β except (possibly) for the values for the ȳ′s, i.e., β ′(v) = β(v),
for all v 6∈ {y1, . . . , yn}. We need to show that A, β ′ |=w C(x̄, ȳ, z̄). But since
x̄ and ȳ do not have any variables in common, we know in particular that
β ′(t) is undefined and the claim follows from (8).
For (10), note that if t is undefined then the value w.r.t. (A, β) of any term
in which t appears will be ⊥i. It follows from the definition that the strong
truth value of any atom in which t appears will be 1

2
. Hence, the strong truth

value of clause in which t appears will be at least 1
2
.

For (11), let β ′ be an arbitrary but fixed valuation that is exactly like β
except for the values for the ȳ′s, i.e., β ′(v) = β(v), for all v 6∈ {y1, . . . , yn}.
We need to show that A, β ′ |=s C(x̄, ȳ, z̄). Since x̄ and y do not overlap we
have in particular that β ′(t) is undefined as well and the claim now follows
from (10). �

Remark 2.2.7 In partial semantics we no longer have equivalence between
A, β |=p ¬ϕ and A, β �|=p ϕ. As a consequence ϕ ∧ ¬ϕ can be partially
satisfiable; modus ponens, i.e., ϕ, ϕ → ψ |=p ψ, does not hold; nor does the
deduction theorem Γ, ϕ |=p ψ ⇔ Γ |=p ϕ→ ψ.

It follows that for clauses strong partial semantics really is stronger than
weak partial semantics.

Lemma 2.2.8 Let A be a partial Π-structure, C a universal clause. If A |=s

C then A |=w C.

Proof. Let C = ∀x̄. D(x̄, ȳ) and β be arbitrary but fixed. We need to show
that A, β |=w D. If there is a term t occurring in D which is undefined in
(A, β) there is nothing to show by Observation 2.2.6.(8). Otherwise, if all
terms that occur in D are defined then weak and strong partial semantics do
not differ on D. �

The substitution lemma does hold for partial algebras provided all the rele-
vant terms are defined.

Lemma 2.2.9 (Substitution Lemma for partial algebras)
Let t be a Π-term, ϕ a Π-formula, A a partial Π-algebra, β : X → A a
valuation for A and σ : X → Term(X) a substitution. Define the valuation
β ◦ σ : X → A by

(β ◦ σ)(x) :=

{
β(σ(x)) if this is defined,

β(x) otherwise.

It holds that
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(1) (A, β ◦ σ)(t) = (A, β)(tσ) if σ(x) is defined in (A, β),
for all variables x occurring in t.

(2) (A, β ◦ σ)w(ϕ) = (A, β)w(ϕσ) if for all free variables x of ϕ,
σ(x) is defined in (A, β).

(3) (A, β ◦ σ)s(ϕ) = (A, β)s(ϕσ) if for all free variables x of ϕ,
σ(x) is defined in (A, β).

(4) A, β ◦ σ |=w ϕ⇔ A, β |=w ϕσ if for all free variables x of ϕ,
σ(x) is defined in (A, β).

(5) A, β ◦ σ |=s ϕ⇔ A, β |=s ϕσ if for all free variables x of ϕ,
σ(x) is defined in (A, β).

Proof. (1) We use induction on terms. If t is a constant there is nothing to
show. If t is a variable the claim is immediate from the definition of (β ◦ σ).
For the induction step, let t = f(u1, . . . , un). We have

(A, β ◦ σ)(t) = (A, β ◦ σ)(f(u1, . . . , un))

= fA((A, β ◦ σ)(u1), . . . , (A, β ◦ σ)(un))

= fA((A, β)(u1σ), . . . , (A, β)(unσ)) (By hypothesis)

= (A, β)(f(u1σ, . . . , unσ))

= (A, β)(tσ).

(2) We use induction on formulas. The base case is a direct consequence
of (1). Suppose ϕ is an equality atom, say ϕ = t ≈ u. If (A, β ◦ σ)(ϕ) = 1

2

this means that (at least) one of t, u is undefined in (A, β ◦ σ), say t. By
hypothesis, tσ is then undefined in (A, β) too. Hence, (A, β)(tσ ≈ uσ) = 1

2
.

Next suppose that (A, β ◦ σ)(ϕ) = 1. This means that both t, u are defined
and equal in (A, β ◦ σ). By hypothesis, it follows that tσ, uσ are defined and
equal in (A, β). Hence, (A, β)(tσ ≈ uσ) = 1. If (A, β ◦ σ)(ϕ) = 0 then t, u
are defined but not equal in (A, β ◦ σ) and therefore tσ, uσ are defined but
not equal in (A, β). The case where ϕ is a predicate atom is similar. This
covers the base case.

The connectives step is trivial as usual. For the quantifier step, let ϕ(x̄) =
∀y.ψ(x̄, y). Since substitutions are blocked from changing bound variables
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we might assume that σ(y) = y in ϕ(x̄)σ. Thus,

(A, β)(ϕσ) = (A, β)((∀y.ψ(x̄, y))σ)

= (A, β)(∀y.(ψ(x̄, y)σ))

= min{(A, β)[y 7→ a](ψ(x̄, y)σ) | a ∈ A}

= min{(A, β[y 7→ a] ◦ σ)(ψ(x̄, y)) | a ∈ A} (By hypothesis)

= min{(A, (β ◦ σ)[y 7→ a])(ψ(x̄, y)) | a ∈ A} (σ(y) = y)

= (A, β ◦ σ)(∀y.ψ(x̄, y))

= (A, β ◦ σ)(ϕ)

(3) By induction on formulas again. The base case is an immediate conse-
quence of (1) and the induction step is as in (2).
(4) and (5) are a trivial consequence of (2) and (3) respectively. �

Corollary 2.2.10 (∀-Elimination for partial algebras) Let ϕ(x, ȳ) be a
Π-formula, A a partial Π-algebra, β : X → A a valuation for A and t be
a Π-term such that (A, β)(t) is defined. Suppose A, β |=p ∀x.ϕ(x, ȳ), then
A, β |=p ϕ(t, ȳ).

Proof. Let σ the substitution that maps x to t and leaves the other variables
unchanged, let b := (A, β)(t). A, β |=p ∀x.ϕ(x, ȳ) is equivalent to A, β[x 7→
a] |=p ϕ(x, ȳ), for all a ∈ A. In particular, A, β[x 7→ b] |=p ϕ(x, ȳ). Note
that β[x 7→ b] is the same as β ◦ σ. By the Substitution Lemma for partial
algebras it holds that A, β ◦ σ |=p ϕ(x, ȳ) ⇔ A, β |=p ϕ(t, ȳ). �

The lemma on constants does also hold for partial algebras. The only
difference to Lemma 2.1.11 is that we use the substitution lemma in lieu of
∀-elimination.

Corollary 2.2.11 Let Γ be a set of L-formulas and let ϕ be an L-formula.
Let c be an L-constant not occurring in Γ and x be a variable which is not
among the free variables of Γ. Then it holds that Γ |=p ϕ(c) ⇔ Γ |=p ∀x.ϕ(x)
for |=p∈ {|=w, |=s}.

Proof. The direction from right to left is just an instantiation of a universal
quantifier because constants are always defined in partial algebras. For the
direction from left to right, let (A, β) be a partial model of Γ. We want to
show that A, β |=p ∀x.ϕ(x). Let β ′ be a valuation with β ′(y) = β(y), for all
y 6= x. We have to show that A, β ′ |=p ϕ(x). Let a := β ′(x) and let A′ be
exactly as A but with cA

′

:= a. By assumption c did not appear in Γ, thus,
A′, β ′ |=p Γ. It follows that A′, β ′ |=p ϕ(c). Let σ be a substitution with
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σ(x) = c and σ(y) = y, for y 6= x. By Lemma 2.2.9.(4) and Lemma 2.2.9.(5)
respectively, we have A′, β ′ |=p ϕσ ⇔ A, β ′ ◦ σ |=p ϕ(x). Since β ′ ◦ σ = β ′ by
construction, this implies A, β ′ |=p ϕ(x) and this is what we wanted. �

We also want to lift the notion of homomorphisms to partial algebras. If
our partial algebras happen to be total, a homomorphism for partial algebras
should boil down to the usual notion of a homomorphism.

Definition 2.2.12 (Weak embedding) Let A,B be Π-algebras. A (total)
map h : A → B between partial Π-algebras A and B is called a weak Π-
homomorphism if whenever fA(a1, . . . , an) is defined (in A),
then fB(h(a1), . . . , h(an)) is defined (in B) and

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

A weak homomorphism h : A → B is called a weak Π-embedding of A into
B if it is injective and if we have for all predicate symbols P ∈ Π with arity
n and every a1, . . . , an ∈ A,

PA(a1, . . . , an) ⇔ P B(h(a1), . . . , h(an)).

Note that if A and B are total then a weak homomorphism is the same
as a homomorphism between the algebras. If the inclusion map is a weak
embedding from A into B we say that A is a weak substructure of B. Sim-
ilarly as with total algebras, we can identify weak embeddings with weak
substructures.

Lemma 2.2.13 Every weak embedding ϕ : A → C can be factored into a
weak embedding ι, where ι is the inclusion map, and a weak isomorphism ψ
such that ϕ = ι ◦ ψ

A
ϕ - C

B

ι

-

ψ -

Similarly to Lemma 2.1.8, we can lift a partial homomorphism to a lan-
guage extension.

Lemma 2.2.14 Let A and B be partial Π-structures, c̄ a sequence of fresh
constants and ϕ : A → B a weak embedding. Then there is a unique weak
embedding ϕ+ : (A, ā) → (B, ϕā) with ϕ+(a) = ϕ(a), for a ∈ A.
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However, existential sentences are not in general preserved under weak
embeddings. This is due to the partial semantics. As an easy example,
consider the sentence ∃x.f(x) ≈ d and the weak embedding ϕ : A → B and
suppose that the domain of fA is empty and fB(b) is always defined but
never equal to dB.

We have to demand definedness of certain terms to arrive at preservation
results for weak embeddings.

Lemma 2.2.15 Let A and B be partial Π-structures, ϕ : A → B a weak
embedding, β a valuation for A and F a quantifier-free Π-formula. Suppose
that all terms which occur in F are defined in (A, β). Then it holds that
(A, β)w(F ) = (B, ϕ ◦ β)w(F ) and (A, β)s(F ) = (B, ϕ ◦ β)s(F )

Proof. The claim follows from the fact that if all terms under consideration
are defined, then partial semantics behaves just like total semantics and the
fact that embeddings preserve all literals and, therefore, all quantifier-free
formulas. �

Even though existential formulas are not automatically preserved in weak
superstructures, the dual - universal formulas are reflected in weak substruc-
tures - is true for weak partial semantics.

Corollary 2.2.16 Let A and B be partial Π-structures, ϕ : A → B a weak
embedding, β a valuation for A and F a universal Π-formula. Then B, (ϕ ◦
β) |=w F implies A, β |=w F .

Proof. We first show by induction that A, β �|=w F implies B, (ϕ ◦ β) �|=w F
for any quantifier-free formula F . If F is a literal, (A, β)w(F ) = 0 can only
happen if all terms in F are defined and then the above lemma applies.
The induction step is clear. Now consider a universal formula ∀x̄.F and
assume towards a contradiction that A, β �|=w ∀x̄.F . This means that for
some ā ∈ A we have A, β[xi 7→ ai] �|=w F. It follows from the claim that
B, ϕ ◦ β[xi 7→ ai] �|=w F. Contradiction. �

Universal formulas are not reflected in substructures w.r.t. strong partial
semantics. For example, take A ⊆w B, the formula F = ∀x.f(x) ≈ d and
suppose that fB is always defined and equal to dB whereas the domain of fA

is empty, then the formula F is true in B but false in A according to strong
partial semantics.
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2.3 Term Abstraction

We will often want to transform theory clauses and proof tasks over that
theory. Theory clauses and proof tasks (= ground clauses) are treated dif-
ferently as they are thought of as being left respectively right of ’|=’. This
implies that a fresh variable (= fresh constant) is quantified existentially in
the former and universally in the latter case, cf. Lemmas 2.1.10 and 2.1.11.
Accordingly we use two different yet similar notions of term abstraction de-
pending on whether we want to transform a universal or a ground clause.

Definition 2.3.1 (Variable abstraction) Let L be a first-order language.
Let t1, ..., tk be L-terms and ϕ(t1, ..., tk, x1, . . . , xn) an L-formula. Let u1, ..., uk

be variables which do not appear in ϕ(t1, ..., tk, x1, . . . , xn). Then the formula
u1 ≈ t1, ..., uk ≈ tk → ϕ(u1, ..., uk, x1, . . . , xn) is called a variable abstraction
of ϕ(t1, ..., tn).

Lemma 2.3.2 (Abstraction) Let L be a first-order language and ϕ =
ϕ(t̄, x̄) an L-formula. Let ϕv(ȳ, x̄) = y1 ≈ t1, ..., yk ≈ tk → ϕ(y1, ..., yk, x1, . . . , xn)
be a variable abstraction of ϕ(t̄, x̄).Then it holds that ϕ and ∀ȳ. ϕv(ȳ, x̄) are
equivalent.

Proof. Suppose that A, ā |= ϕ(t̄, x̄). Fix some elements b̄ of A as values
of the variables ȳ. If there is an element bi with bi 6= tAi then (A, ā, b̄)
trivially satisfies ϕv. Otherwise, it follows from the substitution lemma that
A, β |= ϕ(t̄, x̄) if and only if A, β |= ϕ(ȳ, x̄). For the other direction, let
A, ā |= ∀ȳ.ϕv(ȳ, x̄). Let bi ∈ A be the element with tAi . Then A, ā, b̄ |= ϕ
and the claim follows from the substitution lemma again. �

The proof of the lemma depended strongly on the substitution lemma.
The corresponding version for partial semantics does depend just as crucially
on the substitution lemma for partial algebras.

Corollary 2.3.3 Let L be a first-order language and ϕ = ϕ(t̄, x̄) an L-
formula. Let ϕv(ȳ, x̄) be a variable term abstraction of ϕ(t̄, x̄). Then it holds
that

(1) ϕ(t̄, x̄) |=w ∀ȳ. ϕv(ȳ, x̄).

(2) If ϕ(t̄) is a universal clause, then ∀ȳ. ϕv(ȳ) |=w ϕ(t̄)

(3) ϕ(t̄, x̄) |=s ∀ȳ. ϕv(ȳ, x̄) but not vice versa.

(4) Let t̄ be ground terms and c̄ new constants not appearing in ϕ(t̄, x̄).
ϕ(t̄, x̄) has a weak (strong) partial model in which all terms t̄ are defined
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if and only if
∧

i (ci = ti)∧ϕ(c̄, x̄) has a weak (strong) partial model in
which all terms t̄ are defined.

(5) Suppose ϕ(x̄) is a clause containing the negative literal xi 6≈ t(ȳ), where
t(ȳ) is a term in which the variable xi does not occur. Let c be a constant
not appearing in ϕ(x̄) and ϕc(x̄) be the clause that results from ϕ(x̄)
by replacing xi 6≈ t(ȳ) with the two literals xi 6≈ c and c 6≈ t(ȳ). Then
the universal clause ∀x̄.ϕ(x̄) has a weak partial model if and only if
∀x̄.ϕc(x̄) does.

Proof. 1) Let (A, ā) be a weak partial model of ϕ(t̄, x̄). We want to show
that (A, ā) |=w ∀ȳ.

∨
i yi 6≈ ti ∨ϕ(ȳ, x̄). To that effect, fix some elements b̄ of

A. If there is some i with (A, ā, b̄) |=w yi 6≈ ti the claim follows immediately.
Otherwise, by Observation 2.2.6.(2), all the terms ti are defined and equal to
bi in (A, ā). The claim follows now from the substitution lemma.
2) Let A be a weak partial model of ∀ȳ. ϕv(ȳ, x̄) and β : X → A a valuation.
If there is an abstraction term which is undefined in (A, β) the claim follows
from Observation 2.2.6.(8). Otherwise we use the substitution lemma again.
3) This is similar to 1). Let (A, ā) be a strong partial model of ϕ(t̄, x̄). We
want to show that (A, ā) |=s ∀ȳ.

∨
i yi 6≈ ti ∨ ϕ(ȳ, x̄). To that effect, fix some

elements b̄ of A. If there is some i with (A, ā, b̄) |=s yi 6≈ ti the claim follows
immediately. Otherwise, by Observation 2.2.6.(6), all the terms ti are defined
and equal to bi in (A, ā). The claim follows now from the substitution lemma.

As an example that strong partial models are not preserved under variable
abstraction take ϕ = f(t) ≈ d where t is a term and d is a constant. Let
A be a partial algebras with one element and A(f(t)) = ⊥u. Trivially,
A |=s ∀ȳ.y ≈ d and, hence, ∀y. y ≈ f(t) → y ≈ d but A�|=s d 6≈ f(t).
4) If (A, β) is a partial model of

∧
i (ci = ti)∧ϕ(c̄, x̄) where all terms t̄ are

defined it follows from the substitution lemma that (A, β) is a partial model
of ϕ(t̄, x̄). For the other direction, let (A, β) be a partial model of ϕ(t̄, x̄)
where all terms t̄ are defined. Expand A to A+ by defining cA

+

i = (A, β)(ti).
By the substitution lemma we have (A+, β) |=p ϕ(c̄, x̄) ⇔ (A+, β) |=p ϕ(t̄, x̄)
and since the c̄’s were fresh the right-hand side is equivalent to A, β |=p ϕ(t̄, x̄).

5) This is similar to 4). Suppose that A is a weak partial model of
∀x̄.ϕc(x̄) and let A− be its reduct to the language without the constant c.
Let β be any valuation for A−. We want to show that A−, β |=w ϕ(x̄). If
β(t(ȳ)) is undefined we are done by Observation 2.2.6.(8). Otherwise the
claim follows from A, β[xi 7→ cA] |=w ϕc(x̄). For the other direction, let
A |=w ∀x̄.ϕ(x̄) and β be any valuation for A. Let A+ be the expansion of A
with cA

+

:= β(xi). It follows that A+, β |=w ϕc(x̄), where β is considered as
valuation for the expanded structure. �
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2.4 Extensions of Theories

In what follows we will consider extensions of signatures by new function
symbols and extensions of theories by clauses in the expanded language. We
will always consider the new functions to be partial and the original ones to
be total.

Let T0 be an arbitrary theory in the signature Π0 = (Σ0,Pred), where the
set of function symbols is Σ0 and the set of predicate symbols is Pred. We
consider extensions T1 of T0 with signature Π1 = (Σ0 ∪ Σ1,Pred), where the
set of function symbols is Σ0 ∪ Σ1. We call Σ0 the base functions and Σ1

the extension functions. Σ1 is not supposed to contain any constants or to
overlap with Σ0. We assume that T1 is obtained from T0 by adding a set K
of universally closed clauses.

Definition 2.4.1 (Weak partial model of a theory) Let Π0 = (Σ0,Pred)
be a signature, Σ1 a set of new function symbols of arity greater than 0, T0

a Π0-theory, K a set of universally closed clauses in the extended signature
Π1 := (Σ0 ∪ Σ1,Pred) and T1 := T0 ∪ K. A partial Π1-algebra A is a weak
partial model of T1 with totally defined Σ0-functions if

(i) A↾Π0
is a total model of T0 and

(ii) A weakly satisfies all clauses in K.

A partial Π1-algebra A is a strong partial model of T1 with totally defined
Σ0-functions if

(i) A↾Π0
is a total model of T0 and

(ii) A strongly satisfies all clauses in K.

We denote the class of all weak partial models of T1 with totally defined
Σ0-functions by PModw(Σ1, T1) and the class of strong partial models of T1

with totally defined Σ0-functions by PMods(Σ1, T1).

Embeddability. For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set
of universally closed clauses and for the classes of partial algebras mentioned
above we consider the following conditions.

(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.
(Embs) Every A ∈ PMods(Σ1, T1) weakly embeds into a total model of T1.

We also define a stronger notion of embeddability, which we call completability:

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B
of T1 such that A↾Π0

and B↾Π0
are isomorphic.

(Comps) Every A ∈ PMods(Σ1, T1) weakly embeds into a total model B
of T1 such that A↾Π0

and B↾Π0
are isomorphic.
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Corresponding weaker conditions, which only refer to embeddability or
completability of finite partial models, will be denoted by (Embf

w), (Embf
s),

respectively (Compf
w), (Compf

s). We will also consider the embeddability of
models with finite extension domains.

(Embfd
w ) Every A ∈ PModw(Σ1, T1) where all domains of extension functions

are finite, weakly embeds into a total model of T1.

As with total models, there is a syntactic characterization of embeddabil-
ity which will prove useful. Recall that, given a partial algebra A, we denote
by (A, A) the expanded algebra which contains a name a for each element
a ∈ A.

Definition 2.4.2 (Partial diagram) Let A be a Π = (Σ,Pred) partial al-
gebra. Then the partial diagram ∆P

A of A is the following set of ΣA-formulas.

∆P
A :={f(a1, . . . , an) ≈ a | f ∈ Σ, fA(a1, . . . , an) is defined and its value is a}

∪ {P (a1, . . . , an) |P ∈ Π, (a1, . . . , an) ∈ PA }

∪ {¬P (a1, . . . , an) |P ∈ Π, (a1, . . . , an) 6∈ PA }

∪ {a 6≈ b | a 6= b}

Lemma 2.4.3 (Partial diagram lemma) Let Π be a signature, A a par-
tial Π-algebra and B a total one. Then it is the case that A is weakly embedded
in B if and only if there is an LA expansion B′ of B such that B′ |= ∆P

A.

Proof. Suppose first that there is a weak embedding ϕ : A →֒ B. We set
aB

′

:= ϕ(a) for the additional constants. It follows directly from the definition
of weak embeddings that B′ |= ∆P

A. For the other direction, let B′ |= ∆P
A.

We construct a (weak) embedding ϕ : A →֒ B by setting ϕ(a) := aB
′

. The
last class of formulas in ∆P

A ensures that ϕ is one-one. We next check the
homomorphism condition: let fA(a1, . . . , an) be defined with value b. This
means B′ |= f(a1, . . . , an) ≈ b. It follows that

ϕ(fA(a1, . . . , an)) = ϕ(b) = bB
′

= fB′

(aB
′

1 , . . . , a
B′

n ) = fB′

(ϕa1, . . . , ϕan).

Finally, from (a1, . . . , an) ∈ PA it follows that P (a1, . . . , an) ∈ ∆P
A Hence,

(aB
′

1 , . . . , a
B′

n ) = (ϕa1, . . . , ϕan) ∈ P B′

. Similarly, if (a1, . . . , an) 6∈ PA then
¬P (a1, . . . , an) ∈ ∆P

A. Thus, (aB
′

1 , . . . , a
B′

n ) = (ϕa1, . . . , ϕan) 6∈ P B′

. �

Sometimes we want to consider extensions of a theory T0 by some exten-
sion formulas which are slightly more general than clauses (this was consid-
ered first in [SS05]).
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Definition 2.4.4 (Augmented clause) Let Π0 = (Σ0,Pred) be a signa-
ture, Σ1 a set of new function symbols of arity greater than 0, T0 a Π0-theory
and Π1 := (Σ0 ∪ Σ1,Pred). A Π1-formula is called an augmented clause if it
is of the form ∀x̄. (Φ(x̄) ∨ C(x̄)) where Φ(x̄) is an arbitrary Π0-formula and
C(x̄) is a Π1-clause, which does contain a Σ1-function symbol; if Φ(x̄) is uni-
versal for every ϕ ∈ K, we speak of an extension with universal augmented
clauses.

In particular every extension clause is also an augmented clause.

2.5 Purification, Reduction and Flattening

Locality is a property of theory extensions. That is, it is a syntactic prop-
erty. The particular axiomatization of a theory is crucial. We might have
to transform the theory in order to show locality or we might have to trans-
form the proof task in order to carry out a full reduction to the base theory.
Henceforth, let ΣC be an infinite set of fresh constants.

Purification. With the above notations, let Γ be a set of augmented Π1-
clauses. Let Γ∗ be a set of instances of Γ with the property that variables
do not occur below extension functions. Purifying Γ∗ to a set Γ0 ∪D means
separating all Σ1-terms into the set D by using constant term abstraction. We
introduce fresh constants df(c1,...,cn) for f(c1, . . . , cn) in a bottom-up manner
and using these new names in Γ to get Γ0. D only contains their definitions
of the form df(c1,...,cn) ≈ f(c1, . . . , cn). Purifying increases the size of Γ only
by a linear factor.

We may purify a set of clauses while maintaining satisfiability ([SS05]).

Lemma 2.5.1 (Reduction) Let Π0 = (Σ0,Pred) be a signature, Σ1 a set
of new function symbols of arity greater than 0, T0 a Π0-theory and Π1 :=
(Σ0 ∪ Σ1,Pred). Let Γ be a set of augmented clauses and let G be a set of
extension ground clauses, which may contain additional constants. Let Γ∗ be
a set of instances of Γ with the property that variables do not occur below
extension functions. Let Γ0 ∪ G0 ∪ D be the purified form of Γ∗ ∪ G, i.e.,
Σ1-functions occur only in D in the form of ground unit clauses. Then the
following are equivalent.

(1) T0 ∪ Γ∗ ∪ G has a weak (strong) partial model with totally defined Σ0-
functions in which all extension ground terms occurring in Γ∗ ∪G are
defined.

(2) T0 ∪ Γ0 ∪G0 ∪D has a weak (strong) partial model with totally defined
Σ0-functions in which all extension ground terms occurring in D are
defined.
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(3) T0 ∪ Γ0 ∪G0 ∪N0 has a total model, where
N0 := { (

∧n
i=1 ci ≈ di) → c ≈ d | f(c1, ..., cn) ≈ c, f(d1, ..., dn) ≈ d ∈ D}.

Remark 2.5.2 The size increase of N0 compared to D in the above lemma is
at most quadratic. This is because an upper bound on the number of pairings
of functions in D is 1

2
n2 where n is the size of D.

Flatness. With the above notations, we call a non-ground clause Σ1-flat
when it contains no nested functions with a Σ1-symbol at root, i.e., all sym-
bols occurring below a function symbol from Σ1 are variables. A non-ground
clause is Σ1-quasiflat when all symbols below a function symbol of Σ1 are
variables or ground terms of the base signature Π0.3

Similarly for ground clauses, except that here constants will have the role
of variables. Thus, we call a ground clause Σ1-flat if all symbols below a Σ1-
function are constants and we call a ground clause Σ1-quasiflat if all symbols
below a Σ1-function are ground terms of the extended base language Π0∪ΣC .

Linearity. We call a non-ground clause Σ1-linear if it is Σ1-flat or Σ1-
quasiflat and whenever a variable occurs in two terms of the clause which
start with the same Σ1-function, the terms are identical, and none of these
Σ1-terms contains two occurrences of a variable. In other words, a flat clause
is linear if each variable which occurs in a Σ1-term does so uniquely in the
sense that it does not occur in any other Σ1-term (that term, however, may
appear multiple times).

We call a Σ1-flat or quasiflat ground clause Σ1-linear if whenever a con-
stant occurs in two terms in the clause whose root symbol is in Σ1, the two
terms are identical, and if no term which starts with a Σ1-function contains
two occurrences of the same constant.

If Σ1 is clear from the context, we will sometimes simply talk of flat or
linear clauses instead of Σ1-flat or Σ1-linear clauses.

Example 2.5.3 In the following examples, let f and g be the extension func-
tions.

(1) f(x, y) ≈ f(y, x) is flat but not linear. We can transform it into an
equi-satisfiable linear one by using variable abstraction: ∀z1, z2. z1 ≈
y, z2 ≈ x→ f(x, y) ≈ f(z1, z2).

3In the case of a set of quasiflat clauses it could happen that one of its clauses is ground.
We still mean the same notion of (non-ground) flatness.
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(2) f(x, g(c)) ≈ g(x) is neither flat nor linear. We can transform it into an
equi-satisfiable quasiflat one: ∀z1. z1 ≈ g(c) → f(x, z1) ≈ g(x). This
clause is still not linear. Use abstraction again to get a linear one
∀z1, z2. z1 ≈ g(c), z2 ≈ x→ f(x, z1) ≈ g(z2).

(3) The ground clause g(f(c, c)) ≈ g(c) can be transformed into the equi-
satisfiable set of linear ground clauses {d1 ≈ c, d2 ≈ f(c, d1), g(d2) ≈
g(c)}.

According to Corollary 2.3.3 we can always flatten and linearize a set
of clauses without affecting satisfiability with regard to weak partial models
and we can always flatten and linearize ground clauses without affecting the
existence of a partial model, be it weak or strong, in which the abstracted
terms are defined.



Chapter 3

Local Theory Extensions

The notion of locality was introduced by Givan and McAllester ([GM92,
McA93]). They considered so-called local inference systems which have the
property that the validity of ground Horn clauses can be checked in polyno-
mial time. This is because for local inference systems only certain instances
need to be considered in discharging a given proof task, viz. those instances
which only contain ground terms already appearing in the inference system
or the given proof task. Later, a more general notion of order locality was
introduced by Basin and Ganzinger ([BG01]).

The notion of locality was generalized to equational theories and re-
lated to a semantical approach towards the uniform word problem by Harald
Ganzinger in [Gan01]. A local theory is a set of Horn clauses K such that,
for any ground Horn clause C, K |= C only if already K[C] |= C (where
K[C] is the set of instances of K in which all terms are subterms of ground
terms in either K or C). In [SS05] the notion of locality was lifted to theory
extensions. Here one considers a base theory as fixed and extends it by a
set of (universally closed) clauses K, which do not need to be Horn, that
specify the properties of new functions. With the notation of Section 2.4,
let T0 be a theory in the signature Π0 = (Σ0,Pred), K a set of universally
closed clauses in the signature Π1 = (Σ0 ∪Σ1,Pred). We want to answer the
clausal word problem for this extension. That is, given some clause ∀x̄. C(x̄)
we want to know if T0 ∪ K |= ∀x̄. C(x̄). As often in model theory, it is more
convenient to introduce new constants than to handle quantifiers. For this
purpose, we introduce a fixed, countably infinite set ΣC of new constants.
No element of ΣC may already occur in the signature Π1. Given this new
signature ΠC

1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred) the above problem is equivalent to
T0 ∪K∪¬C(c̄) |= ⊥, where the constants c̄ are taken from ΣC . The negation
¬C(c̄) of C(c̄) is a set of ground literals. We will relax this a bit by consid-
ering sets of ground clauses in the extended signature with constants. This

39
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gives us the following setup.

Definition 3.0.4 (Local instances) Let T0 be a theory in the signature
Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of clauses or
augmented clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) that are
universally closed. Let G be a set of ground clauses in the signature ΠC

1 =
(Σ0 ∪Σ1 ∪ΣC ,Pred) where ΣC is a set of fresh constants. Let st(K, G) be the
set of ground terms which appear in K or in G.

We denote by K[G] the set of all instances of K in which all terms start-
ing with a Σ1-function symbol are ground terms in the set st(K, G). For
technical reasons, we must first drop the universal quantifiers from a clause
C ∈ K before employing a substitution σ. Then we universally close Cσ
again. Formally,

K[G] := {Cσ | Cσ is universally closed and the universal closure

∀C of C is in K, for all terms t ≤· Cσ with root(t) ∈ Σ1

it holds that t ∈ st(K, G),

and for each variable x which does not occur

below a function symbol in Σ1 : σ(x) = x}.

We call K[G] the set of local instances of K (w.r.t. G).

The following definition of locality is that introduced in [SS05].

Definition 3.0.5 (Local extension) Let T0 be a theory in the signature
Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of universally
closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) and let ΠC

1 =
(Σ0∪Σ1∪ΣC ,Pred) where ΣC is a set of fresh constants. We call the extension
T0 ∪ K of T0 local if it holds for every set G of ground ΠC

1 clauses that
T0 ∪K ∪G |=⊥ if and only if T0 ∪K[G]∪G has no weak partial model (with
total Σ0-functions) in which all terms in st(K, G) are defined. We call the
extension T0 ∪ K ⊇ T0 finitely local if the above property holds for all finite
sets of ground clauses G. We will abbreviate the property of locality and that
of finite locality by (Loc), (Locf) respectively.

Note that one direction in the definition of locality always holds: If there
is no weak partial model for G and some instances K[G] of K there certainly
is none for K ∪G because total models are also partial ones.

In the next sections we will prove the equivalence of locality and weak em-
beddability. We need to impose the syntactic restriction that the extension
clauses be linear in order for this equivalence to hold. The equivalence of lo-
cality and embeddability was first established by Harald Ganzinger ([Gan01])
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for the case of Horn clauses and later lifted to theory extensions by Viorica
Sofronie-Stokkermans ([SS05]). We here present the proof in [SS05] because
it will be the model for the proof in later chapters establishing links between
generalized locality and embeddability.

3.1 Locality Implies Embeddability

Finite locality is enough to ensure embeddability as can be shown with the
help of the diagram Lemma 2.4.3.

Theorem 3.1.1 (Sofronie-Stokkermans, [SS10]) Let T0 be a theory in
the signature Π0 = (Σ0,Pred), Σ1 a set of new function symbols and K a set
of universally closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred).
Suppose that all the clauses in K are Σ1-flat or that K does not contain any
extension ground terms. If the extension T0 ⊆ T0 ∪ K satisfies (Locf) then it
satisfies (Embw).

3.2 Embeddability Implies Locality

For the other direction it is necessary that the extension clauses are not only
flat but also linear. The following theorem was proved by Viorica Sofronie-
Stokkermans in [SS05] for the case of flat and linear extension clauses. The
same proof works also for quasiflat and linear extension clauses and will serve
as a model for similar results below.

Theorem 3.2.1 (cf. [SS05]) Let T0 be a theory in the signature Π0 =
(Σ0,Pred), Σ1 a set of new function symbols and K a set of universally
closed clauses in the extended signature Π1 = (Σ0∪Σ1,Pred). Suppose that all
clauses in K are Σ1-quasiflat and Σ1-linear. Then if the extension T0 ⊆ T0∪K
satisfies (Embw) then it satisfies (Loc).

Proof. Let T1 := T0∪K. Assume towards a contradiction that the extension
were not local. That means that there would be a set of ground clauses G
(with additional constants) such that T0 ∪ K ∪ G |= ⊥ but there is a weak
partial model A of T0 ∪K[G]∪G with total Σ0-functions such that all terms
in st(K, G) are defined.

From A we construct a weak partial model B of T0 ∪ K ∪ G. By the
hypothesis B embeds into a total model T0∪K which leads to a contradiction.
The crucial step is to obtain a model of K from our model of K[G]. We
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construct B from A by keeping the domain, i.e., B := A, and the base
functions while restricting Σ1-functions. For f ∈ Σ1 we set

fB(a1, ..., an) :=






fA(tA1 , ..., t
A
n ) if there is a term f(t1, ..., tn) ∈ st(K, G)

such that ai = tAi , for i = 1, . . . , n;

undefined otherwise.

B and A do not differ on Σ0 ∪ΣC and so B is also a model of T0. Further, A
and B agree on all terms in st(K, G). In particular, all terms of st(K, G) are
defined in B too. Since B is a weak submodel of A it follows from Lemma
2.2.15 that B |=w G.

It remains to show that B |=w K. Let D be a clause in K. Consider first
the case when D is ground. In that case we know that all terms in D are
defined. Trivially, D is a member of K[G]. Hence, A |=w D and because all
terms in D were defined in A it follows that B |=w D and we are done. Now
consider the case where D is not ground. Let β : X → B be an arbitrary
valuation. Again, if there is a term t in D such that tB[β] is undefined, we
immediately have B, β |=w D by Observation 2.2.6.(7). So let us suppose
that all terms in D are defined. K is Σ1-linear. This implies that a variable x
either does not occur below a Σ1-function at all or does so in a unique term
(which may occur more than once). Concerning the latter case, if we have a
Σ1-term t = f(...x...y...) of D we know from the fact that β(t) is defined that
there are ground terms which we will denote by tx, ty such that β(x) = tx,
β(y) = ty, β(t) = fB(...tBx ...t

B
y ...) and f(...tx...ty...) ∈ st(K, G). Using this

notation we may define a substitution σ in the following manner.

σ(x) =

{
tx if x does occur below a Σ1-function in D and β(x) = tAx ,

x if x does not occur below a Σ1-function in D.

The above consideration shows that σ is well-defined and that Dσ ∈ K[G].
In particular, we have that A, β |=w Dσ. By the substitution lemma, this
is equivalent to A, (β ◦ σ) |=w D. By construction we have that (β ◦ σ) = β
and, hence, A, β |=w D. Remember that we are considering the case where
all terms in D are defined in (B, β). We may therefore use Lemma 2.2.15
once again to conclude that B, β |=w D.

Finally, we use the assumption to obtain a total model C of T1 into which
B is embedded. By Lemma 2.2.14 we can expand C to a model of G and we
have arrived at our contradiction. �

This proof technique also works for finite locality. The following general-
izations were shown in [SSI07a] and [SS05] respectively.
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Theorem 3.2.2 (Sofronie-Stokkermans) Let T0 be a theory in the sig-
nature Π0 = (Σ0,Pred), Σ1 a set of new function symbols and K a set of
universally closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred).
Suppose that all clauses in K are Σ1-quasiflat and Σ1-linear. Then

(1) If K is additionally Σ1-flat and the extension T0 ⊆ T0 ∪ K satisfies
(Embfd

w ) then it satisfies (Locf).

(2) If K contains only finitely many extension ground terms, T0 is universal
and locally finite (i.e., each finitely generated model of T0 is finite) and
the extension T0 ⊆ T0 ∪ K satisfies (Embf

w) then it satisfies (Locf).

Proof. (1) the proof is similar to the proof of the above theorem. We assume
that there is a finite G such that T0 ∪K∪G |= ⊥ but there is a weak partial
model A ∈ PModw(Σ1, T1) of T0 ∪ K[G] ∪ G such that all terms in st(K, G)
are defined. From this we construct B as before. Note that for an extension
function f , the domain of fB must be finite even when K is infinite because
K is flat and not just quasiflat. It follows that f(t) ∈ st(K, G) is the same as
f(t) ∈ st(G). The rest of the proof is as before.
(2) is similar except that we use the set {tA | t ∈ TermΣ0

(st(K, G))} as
support for B. The base functions are inherited from A, the Σ1-functions are
defined as before. Because T0 is universal, we have B↾Π0

|= T0. It follows from
the assumptions that B is finite. And as before we obtain B |=w T0 ∪K ∪G.
By assumption, we obtain from this a total model of T0 ∪ K ∪G. �

Remark 3.2.3 The condition that K is in universal clause form is essential
for the above theorem. Even weakening this constraint on K to negation
normal form invalidates the implication from embeddability to locality.

To show the above claim we proceeded by restricting a given partial model
to the extension ground terms already appearing. Then we argue that a clause
either contains an undefined term or it does not.

In the former case the clause is trivially satisfied due to weak semantics.
In the latter case, we use the construction to show that the clause under
the appropriate substitution must be in K[G] and therefore satisfied in both
models. But the first prong does not work for negative normal form. For
instance, if we have a conjunction, one term in some conjunct might be
undefined but that does not mean the whole conjunction has the value 1

2
. As

a counterexample, take the theory of a partial ordered set as our base theory
T0 and let N be the single formula

∀x, y, z. h(z) = e ∧ (x 6≤ y ∨ f(x) ≤ f(y)),
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where h, f are extension functions. We can embed any weak partial model A
of T0 ∪N into a total model B of T0 ∪N in the following manner.

As carrier and order for B we take the Dedekind-MacNeille completion1

(DM(A),⊆) of (A,≤) and set

h′(U) := {e}l and f̄(U) := f(U)ul

where Al := { x | x ≤ a, for all a ∈ A} and Au := { x | x ≥ a, for all a ∈ A}.
Then B := (DM(A),⊆, {e}l, h′, f̄) is a (total) model of T0∪N and the map

ϕ : a 7→ {b | b ≤ a} is a weak embedding from A into B (cf. Corollary 3.6.13).
So we have embeddability of partial models of T0 ⊆ T0 ∪ N into total ones
but the extension T0 ⊆ T0 ∪N is not local. Take G = {c < c′, f(c) > f(c′)}.
Then T0 ∪N ∪G is certainly unsatisfiable. Note that N [G] is empty since h
does not appear in any ground term. Trivially, T0 ∪ G is weakly satisfiable.
Hence, the extension is not local.

3.3 Stable Locality

Instead of considering those instances of an extension clause where every
variable below an extension function must be instantiated in such a way that
the entire resulting term already appears in the problem, we can consider
those instances where those variables are instantiated by extension terms.

This will result in more instances. It turns out that the semantical coun-
terpart for this notion of locality will be strong partial semantics. Another
difference to weak locality is that we do not have to flatten or linearize the
extension clauses in order to show locality (cf. [GSSW04, GSSW06, SS05]).

Definition 3.3.1 (Stably local instances) Let T0 be a theory in the sig-
nature Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of uni-
versally closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) and G
a set of ground clauses in the signature ΠC

1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred), where
ΣC is a set of fresh constants. Let st(K, G) be the set of ground terms which
appear in K or in G. We define the following set K[G] of instances of K

K[G] := {Cσ |Cσ is universally closed, the universal closure

(∀C) of C is in K, for all variables x: if x appears below

an extension function in C it holds that

σ(x) ∈ TermΣ0
(st(K, G)) and otherwise σ(x) = x}.

We call K[G] the set of stably local instances of K (w.r.t. G).

1cf. Section 3.6.
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Definition 3.3.2 (Stably local extension) Let T0 be a theory in the sig-
nature Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of uni-
versally closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) and
let ΠC

1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred) where ΣC is a set of fresh constants. We call
the extension T0 ∪ K ⊇ T0 stably local if it holds for every set G of ground
ΠC

1 clauses that T0 ∪ K ∪ G |=⊥ if and only if T0 ∪ K[G] ∪ G has no strong
partial model (with total Σ0-functions) in which all terms in st(K, G) are de-
fined. We call the extension T0 ∪ K ⊇ T0 finitely stably local if the above
property holds for all finite sets of ground clauses G. We will abbreviate the
property of stable locality and that of finite stable locality by (SLoc), (SLocf)
respectively.

Every local extension is stably local because K[G] ⊆ K[G] and every strong
model of a set of clauses is also a weak one (Lemma 2.2.8).

3.4 Embeddability and Stable Locality

That embeddability of finite strong partial models is sufficient for stable
locality for the case of Horn clauses was established by Harald Ganzinger
([Gan01]) and later generalized to theory extensions by Viorica Sofronie-
Stokkermans ([SS05]). We present the proof here because a similar technique
will be used later for Ψ-stable locality. Note that with Evans semantics no
flattening is necessary.

Theorem 3.4.1 Let T0 be a universal theory in the signature Π0 = (Σ0,Pred),
Σ1 a set of new function symbols and K a set of universally closed clauses
in the extended signature Π1 = (Σ0 ∪Σ1,Pred). If the extension T0 ⊆ T0 ∪K
satisfies (Embs) then it satisfies (SLoc).

Proof. The proof is similar to the proof of Theorem 3.2.1. Assume towards
a contradiction that the extension were not stably local. That means that
there exists a set of ground clauses G (with additional constants) such that
T0 ∪K ∪G |= ⊥ but there is a strong partial model (with total Σ0-functions
and constants) A of T0 ∪K[G] ∪G such that all terms in st(K, G) are defined.
We construct a partial model B of T0 ∪ K ∪ G from A. Embedding this B
into a total model C of T0 ∪ K will yield a contradiction.

As carrier of B we take B := {tA | t ∈ TermΣ0
(st(K, G))} and keep all

Σ0-functions defined as in A. We again want fB to be a restriction of fA for
Σ1-functions f , i.e., if fB(ā) is defined at all it is equal to fA(ā), in order to
have B as a weak submodel of A. For Σ1-functions f we set

fB(tA1 , ..., t
A
n ) is defined :⇔ ∃t ∈ TermΣ0

(st(K, G)). fA(tA1 , ..., t
A
n ) = tA.
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Because T0 is universal and B ↾ Π0
is a substructure of A ↾ Π0

, we have
B |= T0 and we have B |= G because all terms are defined in A. The crucial
step, again, is to show that B is a model of T0 ∪ K. In order to show that
B |=s K, let D be a clause in K and let β : X → A be a valuation. We know
that β(x) = tAx for some tx ∈ TermΣ0

(st(K, G)). We therefore can define a
substitution σ by setting

σ(x) =

{
tx if x does occur below a Σ1-function in D,

x if x does not occur below a Σ1-function in D.

with the property that Dσ ∈ K[G] and β = β ◦σ. By the substitution lemma,
it follows that A, β |=s D. This means that there is a literal L in D with
A, β |=s L. We will show that B, β |=s L.

If L is a negative equation or a predicate literal then (B, β) can only fail
to strongly satisfy L if all the occurring terms are defined in (B, β) but do
not stand in the relation expressed by L, according to Observation 2.2.6.(3)
and 2.2.6.(5). But if all terms of L are defined in (B, β) they are defined
in (A, β) a fortiori. Hence, it would follow that A, β 6|=s L contrary to our
assumption.

Thus, the only case left to consider is when L is a positive equation, say
L = s ≈ t. There are four cases to deal with. First, if both terms are
undefined in (B, β) but all proper subterms are defined, we immediately get
B |=s s ≈ t. The same holds if there is a proper subterm of s or t which
is undefined under (B, β). The third case is when both terms are defined
in (B, β). This implies that both terms are also defined in (A, β). Thus,
sB[β] = sA[β] = tA[β] = tB[β].

Lastly, suppose that one term is defined in B while the other one is not
although its proper subterms are. Let us agree that tB[β] is defined. Then t is
also defined in (A, β). Let s = f(ū). We know that (B, β)(ū) is defined. By
definition of fB, this would imply that s was defined in (B, β), too. Hence,
this case cannot obtain and we may conclude that (B, β) |=s L.

Now we can use the assumption to obtain a total model C of T0 ∪K into
which B is embedded. We may use Lemma 2.2.15 to conclude that C |= G.
Contradiction.

�

If the extension clauses are flat, this gives us the implications

(Loc) ⇒ (Embw) ⇒ (Embs) ⇒ (SLoc).

The first implication is an equivalence for linear extension clauses and
the second holds because a strong model of K is also a weak model of K (cf.
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Lemma 2.2.8). The inclusion of locality into stable locality is proper. To
see this consider the following example which is taken from [Gan01] with a
different argument to show stable locality.

Example 3.4.2 (cf. [Gan01]) We consider the following extension clauses
over the empty theory.

(Int) p(x) ≈ y → s(y) ≈ x

s(x) ≈ y → p(y) ≈ x

(Int) is stably local but not local. Consider G = {s(a) ≈ s(b), a 6≈ b}.
Then we have (Int), G |= ⊥ but (Int)[G] is empty. (Int) is stably local because
every strong partial model embeds into a total one. This is because if we have
a partial model A |=s (Int) we have that if pA(a) is defined and equal to b,
then sA(b) is also defined and equal to a. The same holds dually. This allows
us to complete these functions which are each other’s inverse.

3.5 Decidability and Complexity

In order to address the decidability of a theory extension in terms of the base
theory we need the following definition.

Definition 3.5.1 (Fragments of a theory) Let Π be a signature and T
be a Π-theory. The universal fragment of T (denoted by T ∀) is the set of
universal sentences implied by T . The ∀∃-fragment of T is the set of ∀∃-
sentences implied by T .

Given a theory extension T0 ⊆ T0 ∪ K we will call a variable x occurring
in a clause D of K shielded if x occurs below an extension function in D (it
need not appear exclusively so).

Corollary 3.5.2 ([SS05]) Let T0 be a theory in the signature Π0 = (Σ0,Pred),
Σ1 a set of new function symbols and K a set of universally closed clauses in
the extended signature Π1 = (Σ0 ∪ Σ1,Pred). Assume that the theory exten-
sion T1 := T0 ∪ K ⊇ T0 with finite K either has (Locf) or it has both (SLocf)
and T0 is locally finite. Then

(1) If all variables in K are shielded by Σ1-functions and T ∀
0 is decidable

then T ∀
1 is decidable as well.

(2) If T ∀∃
0 is decidable then T ∀

1 is decidable, too.
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Corollary 3.5.3 ([SS06b]) Let T0 be a theory for which the satisfiability
of a set of ground clauses of size n can be checked in time g(n) and let
T0 ⊆ T0 ∪ K (K finite) be a local extension where all variables in K are
shielded by Σ1-functions. Then the validity of a set of clauses in T1 can be
checked in time g(c ·nk) where c is a constant and k is the maximum number
of extension terms in a clause in K (but no smaller than 2).

3.6 Applications

In this section we consider some concrete examples of local extensions. The-
orem 3.2.1 is used to establish locality: any partial model of some theory
extension (whose reduct is a total model of the underlying theory) embeds
into a total model of said theory. Analogously, Theorem 3.2.2 is used to show
finite locality: any partial model of some theory extension, such that all par-
tial functions are defined on finitely many points only and whose reduct is a
total model of the underlying theory, embeds into a total model of the theory.

The results in this section were published in [SSI07a, SSI07b, IJSS08].

3.6.1 Definitional Extensions

Definitional extensions are extensions where a new function is given by case
distinctions such that in each case the definition is given without citing the
new function. Definitional extensions have many real-life applications in
verification, e.g., function updates used in loop invariants or modeling the
insertion of new elements in a data structure. As we will see, it also has
applications in multiple-valued logic.2

Example 3.6.1 ([IJSS08]) Consider a parametric number m of processes.
The priorities associated with the processes (non-negative real numbers) are
stored in an array p. The states of the processes – enabled (1) or disabled (0)
are stored in an array a. At each step only the process with maximal priority
is enabled, its priority is set to x and the priorities of the waiting processes
are increased by y. This can be expressed with the following set of axioms
which we denote by Update(a, p, a′, p′)

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6= i → p(i) > p(j))) −→ a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6= i → p(i) > p(j))) −→ p′(i) = x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6= i → p(i) > p(j))) −→ a′(i) = 0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6= i → p(i) > p(j))) −→ p′(i) = p(i)+y)

2This application is due to Viorica Sofronie-Stokkermans.
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where x and y are considered to be parameters. We may need to check whether
if at the beginning the priority list is injective, i.e. formula (Inj)(p) holds:

Inj(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i 6= j → p(i) 6= p(j))

then it remains injective after the update, i.e. check the satisfiability of:

(Z∪R∪{0, 1})∧Inj(p)∧Update(a, p, a′, p′)∧1≤c≤m∧1≤d≤m∧c 6=d∧p′(c)=p′(d).

We may need to check satisfiability of the formula under certain assumptions
on the values of x and y (for instance if x = 0 and y = 1), or to determine
constraints on x and y for which the formula is (un)satisfiable.

We will pick up the above examples again in Section 6.9.

Theorem 3.6.2 (Sofronie-Stokkermans) Let T0 be a theory in the sig-
nature Π0 = (Σ0,Pred), Σ1 a set of new function symbols and K a set of
universally closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred).
Suppose K = {Deff | f ∈ Σ1} where Deff is a conjunction of formulas

k∧

i=1

∀x(φi(x1, . . . , xn) → f(x1, . . . , xn) = ti(x1, . . . , tn))

where ti are Σ0-terms and φi are Π0-clauses such that for i 6= j, φi ∧ φj is
unsatisfiable w.r.t. T0. Then the extension T0 ⊆ T0 ∪ K is local.

We show below the usefulness of definitional extensions on the example of
many-valued logics. Applications to array updates are presented later in Sec-
tion 6.4. Definitional extensions provide an easy way to show the decidability
of the universal theory of infinitely valued logics such as multiple-valued log-
ics,  Lukasiewicz logics, Gödel logics and product logics (cf. [SSI07a]).

Methods for automatically testing the validity of formulas in (in)finite-
valued propositional  Lukasiewicz and Gödel logics, and in propositional prod-
uct logic are known (cf., e.g., [Häh03]). Definitional extensions yield a simple
and easy-to-implement alternative decision procedure for the universal theory
of the class MV of MV-algebras.

We use the fact that the class MV, as a quasi-variety, is closed under
products. Therefore, it is sufficient to give a decision procedure for the
universal Horn theory of MV in order to obtain a decision procedure for
the universal fragment. This is because we may assume that the universal
formula to be decided is in clause normal form and since an atom is valid in a
product if and only if it is valid in every factor3, deciding the Horn fragment
is tantamount to deciding the clause fragment (cf. [McK43]).

3In fact, this does not only hold for atoms but for Horn formulas in general, cf. [Hod93],
Theorem 9.1.5.
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The class MV is the quasi-variety4 generated by the real unit interval
[0, 1] with the  Lukasiewicz connectives {∨,∧, ◦,⇒}, i.e., the algebra
[0, 1] L = ([0, 1],∨,∧, ◦,⇒) (cf. [GM05], Corollary 7.2), where the  Lukasiewicz
connectives are defined by the following formulas Def  L

(Def∨) x≤y → x∨y=y x>y → x∨y=x
(Def∧) x≤y → x∧y = x x>y → x∧y = y
(Def◦ L

) x+y<1 → x◦y=0 x+y≥1 → x◦y = min(1, x+y−1)
(Def⇒ L

) x≤y → x⇒y=1 x>y → x⇒y = min(1, 1−x+y)

Hence, the  Lukasiewicz connectives {∨,∧, ◦,⇒} can be regarded as a defi-
nitional extension over the base signature {+,−,≤}. Therefore, the following
are equivalent:

(1) MV |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(2) [0, 1] L |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ Def  L |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(4) T0 ∪ Def  L ∧
∧n

i=1 si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 is the theory of real numbers together with the constraint ∀x.0 ≤
x ≤ 1.

Due to this reduction, we can use a solver for linear real arithmetic to
decide the universal fragment of MV. The program H-PILoT (cf. Chapter
6), which implements reductions in local theory extensions, has the above
reduction as a special feature (cf. 6.6) (and will call a solver for the reals
afterwards) thereby providing the user with an efficient method to handle
multiple-valued logics.

Reasoning in the Gödel logic [0, 1]G = ([0, 1],∧,∨, ◦G,⇒G) where ◦G,⇒G

are the Gödel connectives is similar. In this case, the signature of T0 only
needs to contain ≤; we obtain a reduction to testing the satisfiability of a
set of ground Horn clauses in a restricted fragment of linear arithmetic over
[0, 1], where the atoms have the form c ≤ d or c = d.

For [0, 1]Π = ([0, 1],∧,∨, ◦Π,⇒Π) , where ◦Π,⇒Π are the product logic
operations one can proceed similarly. In this case, the signature of T0 needs to
contain {≤, ∗, /}. Similar methods can be used for extensions with projection
operators ∆,∇, defined by (∆(1) = 1)∧∀x(x < 1 → ∆(x) = 0); respectively.
(∇(0) = 0) ∧ ∀x(x > 0 → ∇(x) = 1) (cf. [SSI07a]).

4Quasi-varieties are modeled after varieties; the difference being that the former are
defined by quasi-equations (Horn formulas with a positive atom) in lieu of equations. As
a consequence, quasi-varieties are closed under isomorphisms, subalgebras and (reduced)
products (and contain the trivial algebra), whereas varieties are closed under homomorphic
images, subalgebras and products (cf. [Hod93], 9.2; [BS81], III.5 §2).
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3.6.2 Monotone Functions

In this section we consider theory extensions with monotone functions. The
corresponding base theory is – most generally – a poset, it could also be a
linear order or a lattice.

A partial order or poset P = (X,≤) is a set together with a binary
relation which is reflexive, transitive and anti-symmetric, i.e., it holds for all
x, y, z ∈ X that

(1) x ≤ x

(2) x ≤ y and y ≤ z implies x ≤ z.

(3) x ≤ y and y ≤ x implies x = y.

If it additionally holds that x ≤ y∨y ≤ x, for all x, y ∈ X, we call P (and
the corresponding relation ≤) linear or total . A prominent partial order is
a family of subsets of some set together with the subset relation, in general
it is not total. Given a poset P = (X,≤), we will say x ∈ P for an element
x ∈ X if this causes no confusion.

We also allow a many-sorted framework for monotone functions. By a
monotone functions we mean the following.

Definition 3.6.3 (Monotone function) Let P = (X,≤, f) be a poset with
a partially defined n-ary function f on X and let I ⊆ {1, ..., n} be a set
of indices. We say that f is I-monotone if (X,≤, f) weakly satisfies the
monotonicity axiom

(MonI
f)

∧

i∈I

xi ≤ yi ∧
∧

i6∈I

xi = yi → f(x1, ..., xn) ≤ f(y1, ..., yn).

Similarly, in a many-sorted framework we call an n-ary function from posets
P1, ...,Pn with respective partial orders ≤j into a poset P0 I-monotone, if it
follows from xi ≤i yi, for all i ∈ I, and xi = yi, for all i 6∈ I, that
f(x1, ..., xn) ≤0 f(y1, ..., yn), if both f(x1, ..., xn) and f(y1, ..., yn) are defined.
For ease of notation, we will also write

∏
i∈I Pi ×

∏
i6∈I Pi for the domain of

an I-monotone function even when I is not an initial sequence of {1, . . . , n}.

We will need some basic notions from order theory. We will give a brief
recap of the facts we will be needing. Most crucial is the notion of a com-
pletion of a poset. We will suitably adopt a given function on a poset to
a corresponding function over its completion and thereby establish locality.
For reference we cite [DP90] whose outline we follow.

Recall that the dual R∂ of a relation R is the set {(y, x) | (x, y) ∈ R}.
In the case of a poset P = (X,≤), its dual P∂ = (X,≤∂) = (X,≥) is best
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remembered as turning the Hasse diagram of P upside down. We want to
use this result to expand the notion of a monotone function to the dual of
a poset. This enables us to capture functions that are monotone in some
components and antitone in others. In order to do this let us introduce the
sign of a poset. For an element x ∈ P, define x↓ := {y ∈ P | y ≤ x} and
x↑ := {y ∈ P | y ≥ x}.

Definition 3.6.4 (Duality in a poset) Let P = (X,≤) be a poset. We
write P+ (≤+) for P (≤) and let P− (≤−) denote the dual P∂ (≥). Similarly,
for an element x ∈ P define x+ to be the set x↑ and x− as the set x↓. If
σ ∈ {+,−} we will write −σ for the opposite sign.

Monotonicity in some arguments and antitonicity in other arguments is
modeled by considering functions f : Pσ1 × ...× Pσn −→ P with σ1, ..., σn ∈
{+,−}. The corresponding monotonicity axiom is denoted by (MonI,σ

f ) with
σ = (σ1, . . . , σn).

We call an element x of a poset P = (X,≤) maximal (minimal), if x ≤ y
(y ≤ x) implies x = y. Given a poset P and a subset A of P, let us write
x ≤ A if it holds that x ≤ a, for every a ∈ A. An element x of a poset
P = (X,≤) is called the greatest element, if it holds that x ≥ X. If a poset
has a greatest element we denote it by 1. We define the smallest element of
a poset dually and denote it by 0. Note that the greatest element is always
maximal in a poset but not vice versa.

For two elements x, y of a poset P, if the supremum of {x, y} exists, we
will denote it by x ∨ y and call it the join of x and y. If the join of two
elements always exists in a poset we will call the poset a join-semilattice.
Dually, the infimum of {x, y}, if it exists, is denoted by x ∧ y and is called
the meet of x and y. If the meet of two elements always exists in a poset
we will call the poset a meet-semilattice; a poset where each join and meet
exists is called a lattice. Similarly, for a subset A of P, we will write

∨
A

for the supremum of A, if it exists, and if the infimum of A exists, we will
denote it by

∧
A.

Given a poset P and a subset A of P, we call A join-dense in P, if for
every x ∈ P there is a subset B of A such that x =

∨
P B. The dual of join-

dense is meet-dense. We call a subset of a poset dense if it is both join-dense
and meet-dense.

We denote the set of upper bounds of A by Au, i.e., Au = {x | x ≥ A}.
Similarly, the set of lower bounds of A is Al = {x | x ≤ A}. A complete
lattice L is a lattice such that for any subset A ⊆ L the infimum

∧
A and

the supremum
∨
A exist (that implies that the lattice has 0 and 1 because∧

∅ = 1 and
∨

∅ = 0). Trivially, every finite lattice is complete.
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Lemma 3.6.5 (cf. [DP90], Lemma 2.32) Let P = (X,≤) be a poset.

(1) For all x ∈ P, we have (x↓)ul = x↓.

(2) If the supremum
∨
A exists for an A ⊆ P, then Aul = (

∨
A)↓.

In order to establish finite locality, it is sufficient according to Theo-
rem 3.2.2.(1) to show the embeddability of models in which the extension
functions are defined on finitely many points only. Suppose we have a par-
tial monotone function f into a join-semilattice P that has a finite defini-
tion domain, then we can transform f into a total function f̄ by setting
f̄(x) :=

∨
f(x↓). The only complication is that f might not be defined on

any points smaller or equal to x. We therefore consider join-semilattices with
0 to cover that eventuality. As always with posets, the same argument works
for the dual, too. This gives us the following lemma (which is joint work
with Viorica Sofronie-Stokkermans).

Lemma 3.6.6 Let P1,P2, . . . ,Pn be posets, P a total structure endowed with
a partial order ≤, such that (P1,P2, . . . ,Pn,P, f) is a weak partial model of
Monσ

f , i.e., such that f :
∏

i∈I Pσi

i ×
∏

j 6∈I Pi → P is a partial function weakly
satisfying Monσ

f . Suppose that the reduct (P,≤) of P is a join-semilattice with
0 or, alternately, a meet-semilattice with 1 and that the definition domain of
f is finite, then f has a total extension, f̄ :

∏
i∈I Pσi

i ×
∏

j 6∈I Pi→P satisfying
Monσ

f .
In particular, if SLat is the theory of join-semilattices with 0 or, dually,

the theory of meet-semilattice with 1, and T0 is any theory such that T0 ⊇
SLat, then the extension T0 ⊆ T0 ∪ Monσ

f is finitely local.

As was pointed out to us by Viorica Sofronie-Stokkermans, the same
argument works for full-fledged lattices without 0 or 1. For example, let f
be a function which is monotone in its first components, antitone in its third
components and fixed in its second. If the domain of f is empty, choose
some arbitrary element xin and set f̄(x, y, z) := xin. If the domain of f is
not empty, set f̄(x, y, z) :=

∨
f(x↓, y, z↑), if the set f(x↓, y, z↑) is not empty

and f̄(x, y, z) :=
∧
f(x↑, y, z↓), otherwise.

Example 3.6.7 In [SS02], Viorica Sofronie-Stokkermans considers numer-
ical information associated with concepts in the context of description logics,
so-called bridging functions. For example, given a bounded lattice of sets
(S,∪,∩, ∅, X), with S ⊆ ℘(X), consider a maxcost function associating each
set A ∈ S with a real value in [0, 1]. If the maxcost-function is monotone,
then the extension of the theory of (bounded) lattices with maxcost is finitely
local.
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In order to be able to handle locality for monotone functions in general,
we need to consider completions of posets. By the completion of a poset
P we mean an embedding ϕ : P → L of P into a complete lattice L. The
canonical completion of a poset P is the Dedekind-MacNeille completion
DM(P), consisting of the subsets of P which are closed under the closure
operator ul, i.e., Aul = A, ordered by inclusion. The map x 7→ x↓ embeds P
into DM(P); it also preserves infima and suprema if they exist.

Given a dense subset P of a complete lattice L, it holds that L ∼= DM(P).
It follows that if the lattice L is already complete, its Dedekind-MacNeille
completion is isomorphic to L. In particular, this means that each finite
lattice is isomorphic to its Dedekind-MacNeille completion.

Lemma 3.6.8 (cf. [DP90], Theorem 2.33 & 2.36) Let P = (X,≤) be a
poset and let ϕ : P → DM(P) be defined by ϕ(x) := x↓, for all x ∈ X.

(1) DM(P) is a completion of P via the map ϕ.

(2) ϕ preserves all infima and suprema that exists in P.

(3) ϕ(P) is dense in DM(P).

(4) Let L be a complete lattice and let P be a dense subset of L. Then
L ∼= DM(P) via an order isomorphism which agrees with ϕ on P.

For later use, we want to establish that the Dedekind-MacNeille comple-
tion of a linear poset is linear again.

Lemma 3.6.9 Let P = (X,≤) be a linear order and let (DM(P),⊆) be its
Dedekind-MacNeille completion. Then (DM(P),⊆) is a linear order.

Proof. In this proof all infima, suprema and upper bounds are taken in
DM(P). Assume towards a contradiction, that there were two elements ã, b̃
of DM(P) that are incomparable, i.e., neither ã ⊆ b̃ nor b̃ ⊆ ã. From Lemma
3.6.8.(3), we know that the set {x↓ | x ∈ P} is dense in DM(P). In particular,
there are set Qã, Qb̃ ⊆ P such that ã =

∨
{x↓ | x ∈ Qã} and b̃ =

∨
{x↓ | x ∈

Qb̃}. Set A := {x↓ | x ∈ Qã} and B := {x↓ | x ∈ Qb̃}.
Note first, that there cannot be a bm ∈ B that is strictly bigger (w.r.t. to

the order ⊆) than every element in A, i.e., bm ⊃ a, for all a ∈ A. For if there
were, it would follow that

∨
B ⊇ bm ⊃ A which implies b̃ =

∨
B ⊇

∨
A = ã,

contradicting our assumption. We therefore know that for each b ∈ B, there
is some ab ∈ A such that b ⊆ ab or b and ab are incomparable. The latter
cannot occur, however, because b = r↓, for some r ∈ Qb̃, and ab = q↓, for
some q ∈ Qã, and since the underlying order was linear, r and q must have
been comparable: it holds that r ≤ q if and only if r↓ ⊆ q↓. Hence, for every
b ∈ B there is some ab ∈ A such that b ⊆ ab.
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Our next claim is that Au ⊆ Bu. Let a ⊇ A. Suppose there were a
b ∈ B such that a 6⊇ b. From the above considerations, we know that
there is an ab ∈ A such that b ⊆ ab. It follows that b ⊆ ab ⊆ a. This
contradiction establishes our claim. From Au ⊆ Bu it follows at once that
ã =

∨
A ⊇

∨
B = b̃. Contradiction. �

Regarding monotone functions, we note first that duality and Dedekind-
MacNeille completions work smoothly together and that monotonicity is pre-
served under completions.

Lemma 3.6.10 The Dedekind-MacNeille completion of the dual P∂ of a
poset P consists of the subsets of P which are closed w.r.t. to the hull oper-
ator lu (ordered by inclusion). Furthermore, it is isomorphic to the dual of
the Dedekind-MacNeille completion of P. The map l : DM(P∂) −→ DM(P)∂,
sending a set to the set of its lower bounds, is an isomorphism (its inverse
is the map u).

Lemma 3.6.11 Let P1, ...,Pn,P be posets, I ⊆ {1, . . . , n} and f : P1 × ...×
Pn −→ P be a (partial) I-monotone function. Then the map

f̂ :
∏

i∈I DM(Pi) ×
∏

i6∈I Pi −→ DM(P) defined by

f̂(C1, . . . , Cn) := {f(x1, ..., xn) | x1 ∈ C1, ..., xn ∈ Cn, f(x1, ..., xn) defined }ul

= f(C1, ..., Cn)ul

is also I-monotone. Further, if f(. . . xi . . . xj . . . xk . . .) is defined (i, k ∈ I)

it holds that f̂(. . . x↓i . . . xj . . . x
↓
k . . . ) = f(. . . xi . . . xj . . . xk . . . )

↓.

Proof. Let Ci ⊆ Di, ..., Ck ⊆ Dk, i, k ∈ I. Then we trivially have
f(. . . Ci . . . {x} . . . Ck . . .) ⊆ f(. . .Di . . . {x} . . .Dk . . .) and since ul is a hull
operator it follows that

f(. . . Ci . . . {x} . . . Ck . . .)
ul ⊆ f(. . .Di . . . {x} . . .Dk . . .)

ul.

For the additional claim note that it follows from monotonicity that the
supremum of the set f(. . . x↓i . . . {xj} . . . x

↓
k . . . ) is f(. . . xi . . . xj . . . xk . . . ) be-

cause the latter was supposed to be defined.
By definition we have f̂(. . . x↓i . . . xj . . . x

↓
k . . . ) = f(. . . x↓i . . . {xj} . . . x

↓
k . . . )

ul.
It follows from Lemma 3.6.5.(2) that

f̂(. . . x↓i . . . xj . . . x
↓
k . . . ) = f(. . . xi . . . xj . . . xk . . . )

↓.

�
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Lemma 3.6.12 Let P,P1, . . . ,Pn be posets, f : Pσ1

1 × ... × Pσn
n −→ P, with

σ1, ..., σn ∈ {+,−}, be a partial (I, σ)-monotone function. Let max : ℘(P) →
P be a function which returns a maximal element of a subset of a partial order
P if it has one and a fixed element ain ∈ P otherwise. Let f̂ be as in Lemma
3.6.11. Let f : DM(P1)σ1 × ...× DM(Pn)σn −→ DM(P ) be defined by

f(C1, . . . , Cn) := f̂(u1(C1), . . . , un(Cn))

with ui =






u if i ∈ I and σi is negative,

id if i ∈ I and σi is positive,

max if i 6∈ I.

Then f is (I, σ)-monotone. This gives us the following diagram.

∏

i∈I

DM(Pσi

i ) ×
∏

i6∈I

Pi

f̂ - DM(P )

∏

i∈I

DM(Pi)
σi ×

∏

i6∈I

DM(Pi)

(u1, ..., un)
6

f - DM(P )

id

↓↓

?

Proof. Consider sets Ai ⊆σi A′
i for i ∈ I and Ai = A′

i for i 6∈ I. Note
again that u is antitone, i.e., Au ⊇ Bu if A ⊆ B. Hence, we always have
f ◦ (u1, ..., un) (A1, ..., An) ⊆ f ◦ (u1, ..., un)(A′

1, ..., A
′
n). It holds that

f(A1, ..., An) := ( f̂ ◦ (u1, ..., un) ) (A1, ..., An)

= [( f ◦ (u1, ..., un) ) (A1, ..., An)]ul

⊆ [( f ◦ (u1, ..., un) ) (A′
1, ..., A

′
n)]ul (ul is monotone)

= ( f̂ ◦ (u1, ..., un) ) (A′
1, ..., A

′
n)

= f(A′
1, ..., A

′
n).

�

Corollary 3.6.13 Let P1,P2, . . . ,Pn,P be posets, I a subset of {1, . . . , n}.
Let (P1,P2, . . . ,Pn,P, f) be a weak partial model of an (I, σ)-monotone par-
tial function f : Pσ1

1 × . . .×Pσn
n −→ P. Let f be defined as in Lemma 3.6.12.
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Then the map (x1, . . . , xn) 7→ (x↓1, . . . , x
↓) induces a many-sorted weak em-

bedding

ι : (P1,P2, . . . ,Pn,P, f) - (DM(P1),DM(P2), . . . ,DM(Pn),DM(P), f).

Proof. Suppose that f(x1, ..., xn) is defined. We have to show that
f(x1, ..., xn)↓ = f(x↓1, ..., x

↓
n). Observe that ui(x

↓
i ) = x−σ1

i if i ∈ I and
ui(x

↓
i ) = xi if i 6∈ I, by definition of ui.

By definition we have f(x↓1, ..., x
↓
n) = [( f ◦ (u1, ..., un) ) (x↓1, ..., x

↓
n)]ul. We

use Lemma 3.6.5.(2) again which says that (
∨

A)↓ = Aul if the supremum
exists. By construction, the supremum of the set ( f ◦(u1, ..., un) ) (x↓1, ..., x

↓
n)

is simply f(x1, ..., xn) because of f ’s I-monotonicity.
Therefore, [( f ◦ (u1, ..., un) ) (x↓1, ..., x

↓
n)]ul = [ f(x1, ..., xn) ]↓. �

The following result generalizes [SS05] to the case of general monotone
functions and appears also in [SSI07a, SSI07b].

Corollary 3.6.14 Let T0 be one of the following theories:

(1) P, the theory of posets,

(2) T , the theory of totally-ordered sets,

(3) DO, the theory of dense totally-ordered sets,

(4) S, the theory of semi-lattices,

(5) Lat, the theory of lattices,

and let Monf be a monotonicity axiom for an n-ary function f :

n∧

i=1

xi ≤
σi yi → f(x1, ..., xn) ≤ f(y1, ..., yn) with σi ∈ {+,−}.

Then any partial model of T1 = T0 ∪ Monf ⊇ T0 weakly embeds into a total
model of T1. In particular, T0 ∪ Monf ⊇ T0 is a local extension.

Proof. (1) is just Corollary 3.6.13, (2) follows from (1) and Lemma 3.6.9.
For (3) we need to show that the Dedekind-MacNeille completion of a linear,
dense ordering is linear and dense again. The former was settled by Lemma
3.6.9. So suppose we have two ul-closed sets A and B with A ⊂ B. We need
to find a third (closed) set C such that A ⊂ C ⊂ B. To do this, we offer the
observation that A and B cannot differ by just one element, i.e., there are
two elements x, y ∈ B \ A, say x < y. Note further that any ul-closed set is
downward closed in particular. This means z > A for all z ∈ B \ A. From
this the claim follows since we have A = Aul ⊂ x↓ ⊂ Bul = B. To establish
the observation, assume the contrary, say B = A ∪ {b} with b /∈ A.
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It follows from the density of the order that (b↓ \ {b})u = b↑. For the
non-trivial direction, suppose a ≥ b↓ \ {b}. If it held that a < b, it followed
from density that there were some c such that a < c < b. In particular,
c ∈ b↓ \ {b} and, hence, a ≥ c. By linearity we conclude that a ≥ b.

Thus, B = Bul = (A∪{b})ul = b↑l = b↓ (the third equation holds because
of b > A). It follows that A = Aul = (b↓ \ {b})ul = b↑l = b↓ = B. Contradic-
tion.
(4) and (5) follow from the fact that a Dedekind-MacNeille completion is a
complete lattice and the embedding preserves all existing infima and suprema.

�

3.6.3 Bounded Functions

We now consider extensions with functions satisfying boundedness conditions
and possibly also monotonicity.

Theorem 3.6.15 (Sofronie-Stokkermans, [SSI07a]) Let T0 be a theory
in the signature Π0 = (Σ0,Pred), Σ1 a set of new function symbols and K
a set of universally closed clauses in the extended signature Π1 = (Σ0 ∪
Σ1,Pred). Let Pred contain a reflexive binary predicate symbol ≤. Then
the extension T0 ⊆ T0 ∪ {GBound(f) | f ∈ Σ1} is local, where (GBound(f))
specifies piecewise boundedness of f :

(GBound(f))

k∧

i=1

∀x̄(φi(x̄) → ti(x̄) ≤ f(x̄) ≤ t′i(x̄)),

where ti, t
′
i are Π0-terms and φi are Π0-clauses such that for every i, if i 6= j

then φi ∧ φj is unsatisfiable w.r.t. T0 and T0 |= ∀x.(φi(x̄) → si(x̄) ≤ ti(x̄)).

Theorem 3.6.16 (Sofronie-Stokkermans, [SSI07a]) Let T0 be a Σ0-theory
consisting of a class of ∨-semilattice-ordered (possibly many-sorted) struc-
tures, and let Σ1 be a set of new function symbols. Then the extension
T0 ⊆ T0 ∪ Monσ

f ∪ Boundσ
f is finitely local.

(Boundt
f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

where t(x1, . . . , xn) is a term in the base signature Π0 with the same mono-
tonicity as f , i.e. satisfying

∀x̄.(
n∧

i=1

xi ≤
σi yi → t(x1, . . . , xn) ≤ t(y1, . . . , yn)).
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Example 3.6.17 ([SSI07a]) Let T1 = MV be the theory of MV-algebras,
and T2 be the extension of T1 with a binary function f , decreasing in the first
and increasing in the second argument, and bounded by ⇒, i.e., satisfying

(Mon−+
f ) x1 ≥ x2 ∧ y1 ≤ y2 →f(x1, y1) ≤ f(x2, y2)

(Bound⇒
f ) f(x, y) ≤ (x⇒ y).

We want to prove that

T2 |= ∀x, x′, y, y′, z. (z ≤ f(x, y) ∧ x′ ≤ x ∧ y ≤ y′ → x′ ◦ z ≤ y′),

or equivalently, that the (skolemized, i.e. ground) negation of the formula
above is unsatisfiable w.r.t. T2:

G : c ≤ f(a, b) ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′.

As f and ⇒ satisfy the same type of monotonicity, the extension T1 = MV ⊆
MV∪ (Mon−+

f )∪ (Bound⇒f ) = T2 is local. Therefore we only need to consider

those instances of (Mon−+
f )∪ (Bound⇒

f ) which only contain the ground terms
occurring in G. These are trivial instances of monotonicity of f and the
following instance of (Bound⇒

f ):

(Bound⇒f )[G] f(a, b) ≤ a⇒ b.

It is sufficient to check the satisfiability of T1 ∧ G ∧ (Bound⇒f )[G]. We
flatten G ∧ (Bound⇒f )[G] by introducing a new constant e for the extension
term f(a, b), together with its definition e = f(a, b). We thus obtain a con-
junction of a formula in the base theory G0 ∧ (Bound⇒

f )[G]0 and a formula
D, containing the definitions of extension terms

D G0 ∧ (Bound⇒f )[G]0
e = f(a, b) c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ a′ ◦ c 6≤ b′

e ≤ (a⇒ b)

D is now replaced by the set Con[D] of functionality axioms corresponding
to the instances f(c1, . . . , cn) = c in D. As only one extension term occurs
in D, Con[D] contains only redundant clauses. It is sufficient to check that
G0 ∧ (Bound⇒

f )[G]0 is satisfiable in the theory of MV -algebras.
Note that checking the satisfiability of G0∧(Bound⇒

f )[G]0 w.r.t. the theory
of MV -algebras is equivalent to checking whether

MV |= z≤u ∧ x′≤x ∧ y≤y′ ∧ u ≤ (x⇒ y) → x′◦z≤y′.
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We can check this by checking whether

T0 ∪ Def  L ∧G0 ∧ (Bound⇒
f )[G]0 |=⊥,

where T0 is the theory of the unit interval [0, 1] with the operation + and the
predicate ≤ inherited from the real numbers, and Def  L is the set of definitions
for the  Lukasiewicz connectives. We introduce new constants denoting the
terms starting with the  Lukasiewicz connectives, and add the appropriate
(flattened and purified) instances Def  L0 of Def  L and functionality axioms:

D L (G0 ∧ (Bound⇒
f )[G]0)0 ∧ Def  L0

p = a′ ◦ c e ≤ q ∧ c ≤ e ∧ a′ ≤ a ∧ b ≤ b′ ∧ p 6≤ b′

q = (a⇒ b) (a′ + c < 1 → p = 0)
(a′ + c ≥ 1 → p = a′ + c− 1)
(a ≤ b→ q = 1)
(a > b→ q = 1 − a+ b)

The satisfiability of (G0 ∧ (Bound⇒
f )[G]0)0 ∧ Def  L0 w.r.t. T0 can be checked,

e.g., with a DPLL(T ) method for SAT-solving modulo the theory of reals.



Chapter 4

Generalized Locality

In a local extension we may replace the universally quantified extension
clauses by a set of their instances without losing completeness: An extension
clause is instantiated using all the ground terms appearing in the extension
clauses or in the given proof task. This set of instances then replaces the
original clause. If the theory extension is local, we may prove or disprove the
given task using these instances alone (modulo the background theory).

For some applications more instances of the extension clauses are needed
in order to discharge arbitrary proof tasks. This chapter considers such cases.
A pertinent example, where more ground terms are needed as instances of
universal clauses, is that of arrays. For the theory of arrays the notion of
minimal locality is introduced. With minimal locality the idea is to consider
those instances Cσ of an extension clause C where each extension term f(x)
appearing in C is instantiated to f(t) where t is a ground term appearing
below an extension function g in this or another extension clause.

This important example of verification by using the ground terms occur-
ring in the problem as a basis for, instead of the whole set of, the instances
required inspired the notion of Ψ-locality, which will be developed in Sec-
tion 4.6 and which generalizes minimal locality. The approach taken is to
employ a closure operator Ψ on ground terms for generating all the instances
needed.

In the case of stable locality the approach of using a closure operator on
ground terms is inherently more complicated. This is due to the required
closure properties of such an operator. However, it can still guide the way
of how practical verification tasks can be solved that require stable locality.
An example of this will be given in Section 4.8: the theory of pointers.

61
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4.1 Minimal Locality

Careful inspection of the proof of Theorem 3.2.1 – that embeddability implies
locality – reveals that the embeddability of all partial models is more than was
needed. What was actually needed was the embeddability of the restricted
“term model”, where an extension function f is defined on a point a if and
only if a is named by some constant c, such that f(c) is a ground term of
the extension clauses or a ground term occurring in the proof task under
consideration. We capture this “forgetting of values” in the following notion.

Definition 4.1.1 (Minimal model) Let T0 be a theory in the signature
Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of universally
closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) and G a set of
ground clauses in the signature ΠC

1 = (Σ0 ∪Σ1 ∪ΣC ,Pred), where ΣC is a set
of fresh constants. Let T1 := T0 ∪ K and let Θ be a set of ground terms in
the signature Σ0 ∪ ΣC such that Θ contains all the base ground terms, i.e.,
ground terms in the signature Π0, of K. A partial model A ∈ PModw(Σ1, T1)
is called Θ-minimal if we have, for all extension functions f ∈ Σ1, that

fA(a1, ..., an) is defined ⇔ ∃t1, ..., tn.∀i. ti ∈ Θ ∧ tAi = ai.

We will adapt our chief properties accordingly. The terminology borrows
from [BMS06].

Definition 4.1.2 (Minimal instances) Let T0 be a theory in the signature
Π0 = (Σ0,Pred), Σ1 a set of new function symbols, K a set of universally
closed clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred) and G a set of
ground clauses in the signature ΠC

1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred), where ΣC is a
set of fresh constants. The read set R(G) of G is the set of ground terms
appearing below some Σ1-function in G. Let st(K,R(G)) be the set of ground
(Σ0∪ΣC)-terms in K or R(G). Also, for any set Θ of (Σ0∪ΣC)-ground terms
we will write Θ(1) for the set {f(t1, ..., tn) | ti ∈ Θ, f ∈ Σ1} (the “one-step
closure” under Σ1). In general for a set of ground terms Θ let

K<Θ> := {ϕσ | ϕσ is universally closed, the universal closure

(∀ϕ) of ϕ is in K, for all terms t ≤· ϕσ :

if t has a Σ1-function as root then t ∈ Θ(1),

and for each variable x which does not occur

below a function symbol in Σ1 : σ(x) = x}.

We will write K[G] for K<st(K,R(G))> .
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We now introduce the corresponding notions of minimal locality and em-
beddability (with the same notation as in the definitions above).

(MEmb) For every non-empty set Θ of ground (Σ0 ∪ ΣC)-terms containing
the ground Σ0-terms of K it holds that every Θ-minimal
A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.

(MLoc) For every set G of ground clauses in Σ1 ∪ ΣC containing
at least one Σ1-term, it holds that T1 ∪G |= ⊥ if and only if
T0 ∪ K[G] ∪G has no weak partial model in which all terms
in st(K,R(G))(1) are defined.

Theorem 4.1.3 Let T0 be a theory in the signature Π0 = (Σ0,Pred), Σ1 a
set of new function symbols and K a set of universally closed clauses in the
extended signature Π1 = (Σ0 ∪ Σ1,Pred). Suppose that K is Σ1-quasiflat and
Σ1-linear. Then (MEmb) implies (MLoc).

Proof. The proof is similar to the proof of Theorem 3.2.1. Assume towards
a contradiction that there were a set G of ground (Σ1 ∪ ΣC)-clauses (with
R(G) 6= ∅) such that T1∪G was inconsistent but such that there was a partial
model A of T0 ∪ K[G] ∪ G with defined st(K,R(G))(1) terms and whose Σ0-
functions are total. For brevity, let us write Θ for the set st(K,R(G)) in the
following. Let B be a Θ-minimal submodel of A which inherits the carrier
and the interpretation of base functions from A. Because Θ(1) is defined in
A there is such a submodel.

By construction we have B |= T0. Because the extension ground terms
of G are contained in Θ(1) we also obtain B |= G. We want to show that B
is also a partial model of K. Let D be a clause in K. In case D is ground,
we trivially have D ∈ K<Θ>= K[G] and therefore B |=w D. If D is not
ground, let β be a valuation for B. If there is a term t in D such that β(t)
is undefined then (B, β) trivially satisfies D. Otherwise, because K is linear,
we know that every variable x which appears under a Σ1-function does so in
a unique term ux = f(...x...) (which may occur repeatedly). Since β(ux) was
defined, there must be a ground term tx in Θ with β(x) = tAx . This allows
us to define a substitution

σ(x) =

{
x if x does not occur below a Σ1-function in D,

tx if x does occur below a Σ1-function.

It is easy to check that Dσ ∈ K[G]. Hence, we have A, β |=w Dσ. This is
equivalent to A, (β ◦ σ) |=w D. By construction we have that (β ◦ σ) = β.
Thus, by Lemma 2.2.9, A, β |=w D and, because all terms in D are defined
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in (B, β), we may conclude that B, β |=w D. Now that we have shown that
B is a partial model of T0 ∪K, we may use the assumption to obtain a total
model C of T0 ∪ K into which B embeds. Since all terms in G are defined
in B by construction (and G is quantifier-free) it follows from Lemma 2.2.15
that C |= G. Contradiction.

�

4.2 The Array Property Fragment

The array property fragment (APF) was introduced as a decidable fragment
of the theory of arrays by Bradley, Manna and Sipma ([BMS06]). In this
section we will present their result in a locality setting. This allows us to
integrate the array property fragment into a unifying framework, enabling
us, among other things, to use arrays as a link in a chain of theory extensions.

The theory of arrays is considered in a many-sorted setting. There are
three sorts: elements, arrays and indices (integers). We have two func-
tions ’read’ and ’write’ of sort Array × Index → Element and Array × Index ×
Element → Array, respectively. The theory TA has two axioms (’read-over-
write’): the universal closure of

read(write(a, i, e), i) = e,

j 6= i→ read(write(a, i, e), j) = read(a, j).

The index theory will always be fixed to be linear integer arithmetic,
known as Presburger arithmetic (cf. [BMS06]), i.e., the theory of integers Z

in the signature ΠAr := {+,−, 0, 1,≤}. The reason for this is that Presburger
arithmetic is known to be complete and decidable (cf. [Pre29] and [End02],
§3.2, for a modern account). In contrast, the type Element will not be fixed
but will be regarded as a parameter. In this section, our base theory T0 will
be fixed as the combination of Presburger arithmetic, the parametric element
theory and the read-over-write axioms. Accordingly, our base signature will
be the combination of the signatures of said theories. A set of fresh constants
will again be denoted by ΣC . We consider arrays as extension functions Σ1

from the integers into the element theory. Array reads like read(a, j) become
simply a(j).

As in [BMS06], array writes are eliminated from a given proof task by
introducing new array names before the decision procedure is employed. That
is, we replace a term write(a, i, e) by a fresh array symbol a′ everywhere it
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occurs and add the new formulas a′(i) = e and ∀j.j ≤ i − 1 ∨ i + 1 ≤ j →
b(j) = a(j). (In this way the second formula will conform to the syntactic
restrictions given below.) This transformation clearly preserves satisfiability.
The array property fragment is defined as follows.

Definition 4.2.1 (Array property, [BMS06]) With the notations just in-
troduced, consider the following.

(1) An index guard is a positive Boolean combination (only ′∧′ and ′∨′ are
used) of atoms of the form t ≤ u or t = u where t and u are either a
variable or a ground term of ΠAr ∪ ΣC .

(2) A universal formula of the form (∀x̄)(ϕI(x̄) → ϕV (x̄)) is an array
property if it is Σ1-quasiflat, i.e., there are no nestings of array reads
such as a(b(x)), if ϕI is an index guard, ϕV (x̄) is quantifier-free and if
variables x only occur as direct array reads a(x) in ϕV .

The array property fragment consists of all existentially-closed Boolean com-
binations of array property formulas and quantifier-free formulas.

Because we are concerned with satisfiability problems, we could equiv-
alently treat the free variables as constants in the definition of the array
property fragment, instead of employing the existential closure.

Remark 4.2.2 Our definition of the array property fragment is slightly more
restrictive than the one given in [BMS06]. There, the array property frag-
ment is defined as (the existential closure) of Boolean combinations of array
properties and quantifier free array formulas. In a locality setting, however,
it is more natural to consider the array property formulas separately from
the quantifier-free formulas in a problem from the array property fragment.
The former will be considered as extension clauses and the latter as the proof
task.

Note that to a large extent we can rewrite formulas ϕ of the more general
definition of the array property fragment to fit our format. We may assume
that ϕ is in negation normal form. The negation of an array property can be
skolemized, while a disjunction can be resolved by fusing the disjuncts. We
can always fuse two array properties into one. Say we have (∀x̄)(ϕ1

I(x̄) →
ϕ1

V (x̄)) ∨ (∀x̄)(ϕ2
I(x̄) → ϕ2

V (x̄)). We may change the bound variables so that
they do not overlap: (∀x̄)(ϕ1

I(x̄) → ϕ1
V (x̄))∨ (∀ȳ)(ϕ2

I(ȳ) → ϕ2
V (ȳ)). Now this

is equivalent to (∀x̄)(∀ȳ)(¬ϕ1
I(x̄) ∨ ϕ1

V (x̄) ∨ ¬ϕ2
I(ȳ) ∨ ϕ2

V (ȳ)). This we may
rewrite as (∀x̄)(∀ȳ)(ϕ1

I(x̄)∧ϕ2
I(ȳ) → ϕ1

V (x̄)∨ϕ2
V (ȳ)). This is again an array

property because index guard are closed under conjunctions.
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We can also fuse the disjunction of an array property with a ground for-
mula provided the ground formula is flat, which can always be achieved with-
out affecting satisfiability.

All the actual examples of a problem in the array property fragment given
in [BMS06, BM07] fit our format.

Recall that we called a partial model A Θ-minimal, if we have for all
extension functions f , that fA(a1, ..., an) is defined if and only if there are
terms ti ∈ Θ, such that tAi = ai. We can use minimal locality to handle the
array property fragment (and therefore subsume it).

Definition 4.2.3 (Projection) With the above notations, let Θ be a non-
empty set of ground integer terms and let A be a (total) model of Presburger
arithmetic. A map π : Z → ΘA is called a (Θ,A)-projection if it has the
properties

(1) π(tA) = tA, for all t ∈ Θ, and

(2) i ≤ j → π(i) ≤ π(j), for all i, j ∈ Z.

We will usually drop the qualification for (Θ,A)-projections if that is
unambiguous. As an example of a projection, we could always choose the
nearest neighbor in ΘA with a preference for smaller. That is set

π(i) :=

{
max({ tA| t ∈ Θ, tA ≤ i}) if the set is non-empty,

min({ tA| t ∈ Θ, tA > i}) otherwise.

In general, suppose ΘA consists of the integers x1 < x2 < . . . < xk.
Then it must hold, for any projection π, that π(y) = x1, for all y ≤ x1; and
π(y) = xk, for all y ≥ xk. Projections may differ on the value they assign
to an integer between xi and xi+1 (1 < i < k), or rather, they may differ
on whether and if so on what point in the interval (xi, xi+1) the value of π
changes from xi to xi+1. The value might never change and be constantly xi

(as in the example above), it might be constantly xi+1 or it might change at
a integer j ∈ (xi, xi+1). See Figure 4.1 for an illustration. (In case ΘA has
no minimal element x1, or no maximal element xk, or both, we do not have
to treat the case y ≤ x1 or y ≥ xk differently.)

In this section we will commonly write a, b, c, . . . for extension functions
because the extension functions are considered to be arrays.

Definition 4.2.4 ((Θ, π)-Completion) With the above notations, let Θ be
a non-empty set of ground integer terms. Let T0 ⊆ T0 ∪ K be an extension
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Figure 4.1: Projections. Clockwise from top left: ΘA, a projection with
preference for the right neighbor, a projection with preference for the left
neighbor and an example of a projection function without a simple preference.
The (discrete) projections are drawn continuously.

by a set of array properties, let A ∈ PModw(Σ1, T1) be Θ-minimal and let π :
Z → ΘA be a (Θ,A)-projection. We call an algebra Â the (Θ, π)-completion
of A if it is exactly like A except that

aÂ(i1, ..., in) := aA(π(i1), ..., π(in)), for all a ∈ Σ1 and i1, . . . , in ∈ Z.

Remark 4.2.5 In a similar fashion, Ge and de Moura ([GdM09]) extract a
monotone projection function in order to decide the array property fragment.
In an abstraction step, they then use a non-monotonic projection function
for a fragment lacking index guards, the so-called essentially uninterpreted
formulas. In essence, this is the fragment where variables only appear below
extension functions.

The aim of this section is to prove the following theorem.

Theorem 4.2.6 With the above notations, let T0 ⊆ T0 ∪ K be an extension
by a set of array properties. Let Θ be a non-empty set of ground integer
terms containing the ground Σ0-terms of K and let A ∈ PModw(Σ1, T1) be
Θ-minimal. Let π be any projection. For the (Θ, π)-completion Â of A it
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holds that A is a weak submodel of Â, i.e., the identity is a weak embedding,
and Â is a total model of T0 ∪ K.

From this and Theorem 4.1.3 we immediately get:

Corollary 4.2.7 Let K be a set of Σ1-quasiflat and Σ1-linear array proper-
ties. Then the extension T0 ⊆ T0 ∪ K is minimally local.

We will need the following lemma. Recall that by the notation tA[ā] we mean
the value of the term t(x̄) in an algebra A under any valuation β with βx̄ = ā
(see page 16).

Lemma 4.2.8 Let π, A be as above and let Â be the (Θ, π)-completion of
A. Let t be any Σ1-quasiflat term whose ΠAr ∪ΣC-subterms are contained in
Θ. It holds that

(1) π(π(i)) = π(i).

(2) tÂ[π(̄i)] = tA[π(̄i)].

(3) If additionally t has variables only below Σ1-functions, we have tÂ [̄i] =

tÂ[π(̄i)].

Proof. (1) is a trivial consequence of 4.2.3.1.
We show the other two claims simultaneously. Note first, that if t contains
no Σ1-functions then (2) is trivial and for (3) we have that t is a ground

term of (Σ0 ∪ ΣC) and therefore tÂ[π(̄i)] = tÂ = tA = tA[π(̄i)]. In general,
if t is ground, (3) is trivial and (2) follows from 4.2.3.1 and the fact that t
is Σ1-quasiflat. Let us therefore assume that t is not ground and contains a
Σ1-function. We may further assume that t has a Σ1-function at root, say a.
With the above observation we get

tÂ[π(̄i)] = aÂ(π(̄i)) := aA(π(π(̄i))) = aA(π(̄i)) = tA[π(̄i)].

for (2) and

tÂ [̄i] = aÂ(̄i) := aA(π(̄i)) = aA(π(π(̄i))) = aÂ(π(̄i)) = tÂ[π(̄i)].

for (3). �

We are now in a position to prove Theorem 4.2.6.

Proof of theorem. We first check that the identity is a weak embedding
from A into Â. Let aA(a1, ..., an) be defined. Since A was Θ-minimal it
follows that there are terms t1, .., tn ∈ Θ such that ai = tAi and we have

aÂ(tÂ1 , ..., t
Â
n ) := aA(π(tÂ1 ), ..., π(tÂn )) = aA(tA1 , ..., t

A
n ) = aA(a1, ..., an).
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We trivially have Â |= T0. So what is left to check is that Â |= K. Let
(∀x̄)(ϕI(x̄) → ϕV (x̄)) be an array property from K. We fix some ī ∈ Z∗. We
assume that Â |= ϕI [̄i] and need to show that Â |= ϕV [̄i]. It follows that
Â |= ϕI [π(̄i)] by induction on the structure of ϕ. To see this, consider the
base case. The atoms allowed in ϕI are either t = u or t ≤ u where t, u are
either ground terms of LAr or simple variables. If t, u are both variables the
claim follows from the monotonicity of π. If they are both ground terms there
is nothing to show. That leaves the remaining case. Say t is ground and u is
the variable x. If we have that tÂ = i we get π(i) = π(tÂ) = tÂ by definition;

and, similarly, if we have that tÂ ≤ i it follows that π(i) ≥ π(tÂ) = tÂ. This
covers the base case. Since ϕI is a positive combination of these atoms, the
induction step is easy.

From Â |= ϕI [π(̄i)] we trivially get A |= ϕI [π(̄i)]. It follows by assumption
that A |= ϕV [π(̄i)]. We now show by induction that the last fact is equivalent
to Â |= ϕV [π(̄i)]. The base case is immediate from Lemma 4.2.8.(2) and the
induction step is straightforward because ϕV is quantifier-free. The last claim
is that Â |= ϕV [π(̄i)] is equivalent to Â |= ϕV [̄i] and the main claim then
follows. We again proceed by induction on ϕV . The base case is covered by
Lemma 4.2.8.(3) and the induction step is again clear. �

Theorem 4.2.6 establishes the array property fragment as an instance
of (generalized) local reasoning. Aside from offering a unified framework,
regarding the array property fragment as a local extension allows one to
consider the array property fragment as a link in a chain of local extensions
and thereby to extend it (cf. [IJSS08]).

4.3 Example

We demonstrate how to use locality for arrays on an example from Bradley,
Manna and Sipma [BMS06]. We slightly modify the proof task for our pur-
poses. As base theory T0 we take Presburger arithmetic, in the same signa-
ture ΠAr = {+,−, 0, 1,≤} as above.

We want to show the unsatisfiability of the following proof task w.r.t. our
base theory T0: An array a is sorted after being updated twice in two different
ways.

w < x < y < z ∧ 0 < k < l < n ∧ 3 < l − k

∧ sorted(0, n− 1,write(write(a, k, w), l, x))

∧ sorted(0, n− 1,write(write(a, k, y), l, z))
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where sorted(0, n − 1, a) is shorthand for (∀i, j)(0 ≤ i ≤ j ≤ n − 1 →
a[i] ≤ a[j]), a is a constant of type array; and w, x, y, z, k, l and n are integer
constants. Equivalently, since we are concerned with a satisfiability problem,
we can regard a, w, x, y, z, k, l and n as existentially quantified.

A formula x < y is seen as an abbreviation for the formula x + 1 ≤ y
which is equivalent w.r.t. Presburger arithmetic. The extension of the base
language consists of some functions Σ1 = {a, b, c, d, e} which will serve as
arrays (and array updates). Our set K of extension clauses looks as follows.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i 6= l → b[i] = c[i]), (3)

(∀i)(i 6= k → a[i] = b[i]), (4)

(∀i)(i 6= l → d[i] = e[i]), (5)

(∀i)(i 6= k → a[i] = d[i]). (6)






K

These clauses express that the arrays c and e are sorted where e is just
like d, except maybe at position d, and d is just like a, but for position k,
and similarly for c, b and a.

Our proof task (set of ground clauses) G looks like this.

w < x < y < z,

0 < k < l < n,

k + 3 < l,

c[l] = x,

b[k] = w,

e[l] = z,

d[k] = y.






G

We have to rewrite the clauses a bit in order to fulfill the syntactic re-
quirements laid out in the last section. First, index guards must be positive.
We change an expression i 6= l where i is the (universally quantified) variable
to i ≤ l−1∨ l+ 1 ≤ i. We have to rewrite it like this because the universally
quantified variable i must not appear below a function in the index guard.
This gives us the following set of clauses.
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(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i ≤ l − 1 → b[i] = c[i]), (3)

(∀i)(l + 1 ≤ i→ b[i] = c[i]), (4)

(∀i)(i ≤ k − 1 → a[i] = b[i]), (5)

(∀i)(k + 1 ≤ i→ a[i] = b[i]), (6)

(∀i)(i ≤ l − 1 → d[i] = e[i]), (7)

(∀i)(l + 1 ≤ i→ d[i] = e[i]), (8)

(∀i)(i ≤ k − 1 → a[i] = d[i]), (9)

(∀i)(k + 1 ≤ i→ a[i] = d[i]). (10)






K′

K′ is flat but not Σ1-linear. We therefore need to make it so.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 →e[i] ≤ e[j]), (2)

(∀i, j)(i = j ∧ i ≤ l − 1 → b[i] = c[j]), (3)

(∀i, j)(i = j ∧ l + 1 ≤ i→ b[i] = c[j]), (4)

(∀i, j)(i = j ∧ i ≤ k − 1 → a[i] = b[j]), (5)

(∀i, j)(i = j ∧ k + 1 ≤ i→ a[i] = b[j]), (6)

(∀i, j)(i = j ∧ i ≤ l − 1 → d[i] = e[j]), (7)

(∀i, j)(i = j ∧ l + 1 ≤ i→ d[i] = e[j]), (8)

(∀i, j)(i = j ∧ i ≤ k − 1 → a[i] = d[j]), (9)

(∀i, j)(i = j ∧ k + 1 ≤ i→ a[i] = d[j]). (10)






K′′

Here we finally can express that b resulted from a after w was written at
position k and c is the update of b where x was written at position l and
analogously for a, d and e.

K′′ contains the ΣAr-ground terms {0, n− 1, k− 1, k+ 1, l− 1, l+ 1} and
the read set of G is {k, l}. Let us abbreviate the set st(K,R(G)) as Θ, then
we get

Θ(1) = {a[0], a[n− 1], a[k − 1], a[k + 1], a[l − 1], a[l + 1], a[k], a[l],

b[0], b[n − 1], b[k − 1], b[k + 1], b[l − 1], b[l + 1], b[k], b[l],

c[0], c[n− 1], c[k − 1], c[k + 1], c[l − 1], c[l + 1], c[k], c[l],

d[0], d[n− 1], d[k − 1], d[k + 1], d[l − 1], d[l + 1], d[k], d[l],

e[0], e[n− 1], e[k − 1], e[k + 1], e[l − 1], e[l + 1], e[k], e[l]}.
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By Corollary 4.2.7, we know that the extension T0 ⊆ T0∪K′′ is minimally
Θ-local. This means for the aboveG that T1∪G |= ⊥ if and only if T0∪K

′′
[G]∪G

has no weak partial model in which all terms in Θ(1) are defined.
The program H-PILoT presented in Section 6 will perform the neces-

sary transformations of the clauses shown here automatically, calculate the
required instances of said clauses and delegate the arithmetic part to a ded-
icated prover. For the array property fragment we thus have a full decision
procedures implemented in a general purpose local reasoning tool.

For now, let us check manually that the instances of K′′
[G] do indeed suffice

to prove inconsistency of T0 ∪ K′′ ∪G. Consider

0 ≤ k ≤ k + 1 ≤ n− 1 → c[k] ≤ c[k + 1], (1)

k ≤ l − 1 → b[k] = c[k], (2)

0 ≤ k + 1 ≤ l ≤ n− 1 → c[k + 1] ≤ c[l], (3)

0 ≤ k + 1 ≤ l ≤ n− 1 → e[k] ≤ e[k + 1], (4)

k ≤ l − 1 → e[k] = d[k], (5)

0 ≤ k + 1 ≤ l ≤ n− 1 → e[k + 1] ≤ e[l], (6)

k + 1 ≤ l − 1 → b[k + 1] = c[k + 1], (7)

k + 1 ≤ l − 1 → b[k + 1] = a[k + 1], (8)

k + 1 ≤ l − 1 → e[k + 1] = d[k + 1], (9)

k + 1 ≤ l − 1 → d[k + 1] = a[k + 1], (10)

By arithmetic we get G |=T0
k + 1 ≤ l ≤ n− 1 and

G |=T0
k + 3 ≤ l − 1 |=T0

k ≤ k + 1 ≤ l − 1.
Putting thing together we get:

w =G b[k] =(2) c[k] ≤(1) c[k + 1] ≤(3) c[l] =G x < y =G d[k] =(5) e[k]

≤(4) e[k + 1] =(9) d[k + 1] =(10) a[k + 1] =(8) b[k + 1] =(7) c[k + 1].

Therefore, c[k + 1] < c[k + 1]. Contradiction. This shows the classical
inconsistency of T0 ∪ K′′ ∪G.

4.4 The Λ-Array Property Fragment

Looking at the array property fragment, the most severe restriction is cer-
tainly that no arithmetic whatsoever is allowed on variables. Even expres-
sions like i + 1 are not allowed - neither in the guard nor in the value. In
fact, Bradley, Manna and Sipma have shown that this would result in an
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undecidable fragment of the theory of arrays (cf. [BMS06]). In this section
we will loosen this restraint, if in a somewhat piecemeal fashion.

Definition 4.4.1 (Λ-array property fragment) Let ΣC be a set of con-
stant symbols, LAr+C the language of arithmetic with signature {+,−, 0, 1,≤
} ∪ ΣC . Let Λ be a set of non-empty ground terms of LAr+C and let Σ1 be a
set of fresh function symbols.

(1) An Λ-index guard is a positive Boolean combination of atoms of the
form t ≤ u or t = u where t and u are either a variable or a ground
term of LAr+C, or one of them is a ground term and the other is in the
form x+ λ, for a variable x and a λ ∈ Λ.

(2) A universal formula of the form (∀x̄)(ϕI(x̄) → ϕV (x̄)) is a Λ-array
property if it is Σ1-quasiflat, ϕI is a Λ-index guard, ϕV is quantifier-
free and if all variables x only occur as direct array reads a(x) in ϕV ,
a ∈ Σ1.

The Λ-array property fragment consists of all existentially-closed (equiva-
lently, ground) Boolean combinations of Λ-array property formulas and
quantifier-free formulas.

We use our recently gained insights into projection functions to modify
our Definition 4.2.3 in order to cope with this new fragment. For this new
fragment we have to consider projections whose range is infinite.

Definition 4.4.2 ((Θ,Λ,A)-projection) With the above notations, let Θ
be a non-empty set of ground integer terms that is closed under subtractions
of terms in Λ, i.e., if t ∈ Θ, λ ∈ Λ then t− λ ∈ Θ, and let A be a structure
with total ΣAr-functions. A map π : Z → ΘA is called a (Θ,Λ,A)-projection
if it has the properties

(1) π(tA) = tA, for all t ∈ Θ;

(2) i ≤ j ⇒ π(i) ≤ π(j), for all i, j ∈ Z;

(3) i + λA ≤ tA ⇒ π(i) + λA ≤ tA, for all i ∈ Z, λ ∈ Λ, t ∈ Θ;

(4) tA ≤ i+ λA ⇒ tA ≤ π(i) + λA, for all i ∈ Z, λ ∈ Λ, t ∈ Θ.

It is perhaps not as obvious as in Section 4.2 that there exists a projection
function with the above properties. We inquire.

Lemma 4.4.3 With the above notations, let Θ be a non-empty set of ground
integer terms that is closed under subtractions of terms in Λ and let A be
a structure with total ΣAr-functions where all terms of Θ are defined. Then
there exists a (Θ,Λ,A)-projection π : Z → ΘA.
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Proof. If Λ is empty or Λ = {λ} and λA = 0 the claim reduces to the
existence of a (Θ,A)-projection as defined in Section 4.2.

Consider next the case where there is a λ ∈ Λ such that λA > 0. Then
we set π(i) := max({ tA| t ∈ Θ, tA ≤ i}), that is, we always choose the left
neighbor. This is well-defined because Θ is not empty and contains for each
term u also the term u − λ. Because Z is Archimedean, for every i ∈ Z, we
can find an element u ∈ Θ such that uA < i.

In particular, we have π(i) ≤ i for all i ∈ Z. This implies π(i) + λA ≤
i+λA. This settles 3). It is easy to see that π satisfies 1) and 2). Concerning
4), observe that tA ≤ i + λA implies π(tA − λA) ≤ π(i) by 2). Since both t
and t− λ are in Θ we further have π(tA − λA) = tA − λA, establishing 4).

The reasoning for the remaining case where λA < 0, for all λ ∈ Λ, is
similar but take π(i) := min({ tA| t ∈ Θ, tA ≥ i}) instead. �

We now define the completion Â of a partial algebra A just as in Definition
4.2.4 by setting aÂ(i1, ..., in) := aA(π(i1), ..., π(in)), for arrays a. Note also
that a (Θ,Λ,A)-projection function is also a projection function in the sense
of Section 4.2. This means in particular that we can reuse Lemma 4.2.8.

Theorem 4.4.4 Let T0 ⊆ T0∪K be an extension by a set of Λ-array proper-
ties, Θ a non-empty set of ground integer terms containing the base ground
terms of K, with the property that if t ∈ Θ then t − λ ∈ Θ, for all λ ∈ Λ,
and let A ∈ PModw(Σ1, T1) be Θ-minimal. Let π be any (Θ,Λ,A)-projection.
For the (Θ, π)-completion Â of A it holds that A is a weak submodel of Â,
i.e., the identity is a weak embedding, and Â is a total model of T0 ∪ K.

Proof. The proof is similar to the proof of Theorem 4.2.6. The projection
function once again ensures that A is a weak submodel of Â and Â |= T0 is
clear. What we need to show is Â |= (∀x̄)(ϕI(x̄) → ϕV (x̄)), for a Λ-array
property from K. To this end, let us fix some ī ∈ Z∗. We assume that
Â |= ϕI [̄i] and need to show that Â |= ϕV [̄i].

It follows again by induction that Â |= ϕI [π(̄i)]. We have two additional
cases to cover: atoms of the form x+ λ ≤ t or t ≤ x+ λ (the case x+ λ = t
is reducible to these two). However, this is immediate from the definition of
(Θ,Λ,A)-projections.

From Â |= ϕI [π(̄i)] we trivially get A |= ϕI [π(̄i)]. It follows by assumption
that A |= ϕV [π(̄i)]. With the help of Lemma 4.2.8.(2) we see that this is
equivalent to Â |= ϕV [π(̄i)], which in turn, according to Lemma 4.2.8.(3)
and a trivial induction, is equivalent to Â |= ϕV [̄i]. This is what we wanted.
�

Although we can embed partial models of the Λ-array property fragment
into total ones, Theorem 4.1.3 is not sufficient to establish minimal locality.
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That is because we imposed restrictions on our set Θ: the closure under
subtraction of terms in Λ. We therefore need a yet more general notion of
locality. This led to the development of the notion of Ψ-locality which will
employ a full-fledged closure operator on ground terms instead of a fixed set
thereof. This notion will be flexible enough to accommodate the Λ-array
fragment of this section. We postpone the proof of the locality of the Λ-
array property fragment until then and give an example of the usage of this
fragment first.

4.5 Example

In this section we give an example when and how to use the Λ-array property
fragment. We present a simple case where Λ = {1} but which does already
lie outside the standard array property fragment and which might occur in
a real-life verification task.

Consider inserting a new element x into a sorted array a. We naturally
want to do so in such a fashion that resulting array a′ will still be sorted.
This time we will take a more algorithmical viewpoint: We scan the sorted
array until we encounter the appropriate position p for inserting the new
element x. We then insert x at position p of a and shift the elements at
position bigger than p to the right. A case like this may come up when we
want to prove an insertion algorithm correct.

We define a predicate ′insert′ expressing that the array a′ resulted from
array a by inserting an element x at position p and shifting the elements
right of p one position to the right.

insert(a, l, u, x, p, a′) ↔ l ≤ p ≤ u+ 1 ∧ a′[p] = x

∧ ∀i.(l ≤ i < p→ a′[i] = a[i]) ∧ ∀i.(u ≥ i ≥ p→ a′[i + 1] = a[i])

If the array a is sorted, the insertion should take place in such a manner
that the resulting array is sorted again. This is achieved if p is the first
position such that a[p] ≥ x. The verification condition now looks like this.

sorted(a, l, u) ∧ insert(a, l, u, x, p, a′)

∧ ∀i.(l ≤ i < p → a[i] < x) ∧ x ≤ a[p] → sorted(a′, l, u+ 1).

Expressed as a satisfiability problem this gives us:

sorted(a, l, u) ∧ insert(a, l, u, x, p, a′) ∧ ∀i.(l ≤ i < p→ a[i] < x)

∧ x ≤ a[p] ∧ ∃m,n.(l ≤ m ≤ n ≤ u+ 1 ∧ a′(m) 6≤ a′(n)) |= ⊥.
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Spelt out, this gives us the following clauses:

(∀i, j)(l ≤ i ≤ j ≤ u→ a[i] ≤ a[j]), (1)

(∀i)(l ≤ i < p→ a′[i] = a[i]), (2)

(∀i)(p ≤ i ≤ u→ a′[i + 1] = a[i]), (3)

(∀i)(l ≤ i < p→ a[i] < x). (4)





K

And the following proof task.

l ≤ p ≤ u+ 1,

a′[p] = x,

x ≤ a[p],

l ≤ m ≤ n ≤ u+ 1,

a′[m] 6≤ a′[n].






G

In order to meet the syntactic requirements of the Λ-array property frag-
ment, we replace < with ≤ and flatten the third clause.

(∀i, j)(l ≤ i ≤ j ≤ u→ a[i] ≤ a[j]), (1)

(∀i)(l ≤ i ≤ p− 1 → a′[i] = a[i]), (2)

(∀i, j)(p ≤ i ≤ u, j = i+ 1 → a′[j] = a[i]), (3)

(∀i)(l ≤ i ≤ p− 1 → a[i] ≤ x− 1), (4)





K′

Note that the antecedent of the third clause does not fulfill the require-
ments for an index guard (Λ or otherwise), because j = i+1 is not permitted
for variables i and j. We therefore rewrite it by introducing a fresh constant c.
This we may do without affecting (weak) satisfiability by Corollary 2.3.3.(5).
We also linearize the second clause.

(∀i, j)(l ≤ i ≤ j ≤ u→ a[i] ≤ a[j]), (1)

(∀i, j)(l ≤ i ≤ p− 1, j = i→ a′[i] = a[j]), (2)

(∀i, j)(p ≤ i ≤ u, j = c, c = i + 1 → a′[j] = a[i]), (3)

(∀i)(l ≤ i ≤ p− 1 → a[i] ≤ x− 1), (4)





K′′

Now the third clause (and therefore K′′) lies in the Λ-array property
fragment for Λ = {1}. It does not lie, however, in the standard array property
fragment since c = i + 1 is only permissible for a Λ-index guard.
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K′′ contains the (maximal) ΣAr-ground terms {p, p − 1, c, l, u} and the
read set of G is {p,m, n}. So our set Θ is

Θ = { p,p− 1, c, l, u,m, n,

p− 2, c− 1, l − 1, u− 1, m− 1, n− 1,

p− 3, c− 2, l − 2, u− 2, m− 2, n− 2,

p− 4, c− 3, l − 3, u− 3, m− 3, n− 3,

...

... }

We quickly make sure that these instances do indeed suffice to derive a
contradiction. First note, that it follows from G that m < n. There are three
cases to consider: p is strictly bigger than both m and n, p is strictly smaller
than both m and n or m ≤ p ≤ n. In the first case we get

m < n < p |=(2) a
′[m] = a[m] ∧ a′[n] = a[n] |=(1) a

′[m] = a[m] ≤ a[n] = a′[n].

In the second case we get

p < m < n |=(3) a
′[m] = a[m− 1] ∧ a′[n] = a[n− 1]

|=(1) a
′[m] = a[m− 1] ≤ a[n− 1] = a′[n].

Notice that here we had to use additional ground terms of st(K,R(G)) − 1.
The third case subdivides into another three cases. First, suppose that

m = p. It follows that

a′[m] = a′[p] = x ≤ a[p] ≤(1) a[n− 1] =(3) a
′[n].

Next suppose that n = p. It follows that

a′[m] =(2) a[m] <(4) x = a′[p] = a′[n].

Finally, suppose that m < p < n. Then

a′[n] =(3) a[n− 1] ≥(1) a[p] ≥ x >(3) a[m] =(2) a
′[m].

Thus, in all cases do we get a′[m] ≤ a′[n] which contradicts G.
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4.6 Ψ-Locality

Regarding the above sections about arrays, we see that in some real-life
examples it might be necessary to consider a bit more instances than in
standard locality. We need a general framework for these eventualities.

We generalize locality by considering closure operator on ground terms.
In this way we are more flexible in case more instances are needed for com-
pleteness than in locality simpliciter. Throughout this section, let T0 be an
arbitrary theory with signature Π0 = (Σ0,Pred), where the set of function
symbols is Σ0. Let Π1 = (Σ0 ∪ Σ1,Pred) be an extension by a nonempty
set of function symbols and K be a set of universally closed clauses in the
extended signature. Let ΣC be a fixed nonempty set of fresh constants,
ΠC

0 = (Σ0 ∪ ΣC ,Pred) and ΠC
1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred).

Recall from Definition 2.4.4 that if T0 is extended by a set K of formulas
of the form ϕ := ∀x̄.(Φ(x̄)∨C(x̄)), where Φ(x̄) is an arbitrary formula of Π0

and C(x̄) is a Π1-clause where a Σ1-function symbol does occur, we speak of
an extension with augmented clauses; if Φ(x̄) is universal for every ϕ ∈ K,
we speak of an extension with universal augmented clauses.

The material in this section is joint work with Viorica Sofronie-Stokkermans.

Definition 4.6.1 (Term closure operator) With the above notations, let
Ψ be a map associating a set of extension clauses or augmented clauses K
and a set of ΣC

1 -ground terms Γ with a set ΨK(Γ) of ΣC
1 -ground terms. Let

est(K,Γ) be the set of extension ground terms in K or Γ in which a Σ1-
function symbol appears at root. We call ΨK a term closure operator if the
following holds for all sets of ground terms Γ,∆

(1) est(K,Γ) ⊆ ΨK(Γ),

(2) Γ ⊆ ∆ ⇒ ΨK(Γ) ⊆ ΨK(∆),

(3) ΨK(ΨK(Γ)) ⊆ ΨK(Γ).

(4) ΨK is taut, i.e., if K is Σ1-quasiflat and Γ is Σ1-flat, then all terms in
ΨK(Γ) are Σ1-quasiflat and all terms in ΨK(Γ) have a Σ1-function at
root.

(5) ΨK is invariant under renaming of ground base terms, i.e., for any map
h : GTermΠC

0
→ GTermΠC

0
, it holds that h̄(ΨK(Γ)) = Ψh̄K(h̄(Γ)), where

h̄ is the canonical extension of h to extension ground terms and h̄K is
the result of applying the renaming of ground terms to K.

We will write ΨK(G) for ΨK(est(G)).

We generalize our definition of local instances (Definition 3.0.5) in the
following way.
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Definition 4.6.2 (Θ-instances) Let Π0 = (Σ0,Pred) be a signature, Σ1 a
set of new function symbols, K a set of universally closed clauses or aug-
mented clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred), ΣC a set of
fresh constants and let Θ be an arbitrary set of ground terms in the extended
signature ΠC

1 = (Σ0 ∪ Σ1 ∪ ΣC ,Pred). Define

K[Θ] := {ϕσ | ϕσ is universally closed, the universal closure

∀ϕ of ϕ is in K, for all terms t ≤· ϕσ whose root is in Σ1,

it holds that t ∈ Θ;

and for all variables x which do not appear below

some Σ1-function in ϕ, it holds that σ(x) = x}.

If A is a partial Σ1-algebra with total Σ0-functions in which all terms in Θ
are defined, we define AΘ to be the partial algebra such that AΘ↾Π0

= A↾Π0

and such that for functions f ∈ Σ1 it holds that

fAΘ(a1, ..., an) is defined ⇔ ∃t1, ..., tn. ai = tAi ∧ f(t1, ..., tn) ∈ Θ.

If ΨK is term closure operator we write K[Ψ] for K[ΨK(G)].

As in the proof that embeddability implies locality (Theorem 3.2.1), the
restricted model AΘ is a model of T0 ∪ K if A is a model of T0 ∪ K[Θ].

Lemma 4.6.3 Let T0 be a theory in the signature Π0 = (Σ0,Pred). Let
Π1 = (Σ1,Pred) ⊇ Π0 be an extension by function symbols and let K be a set
of Σ1-quasiflat and Σ1-linear clauses or augmented clauses in the signature
Π1 that are universally closed. Let G be a set of ground extension clauses
(with additional constants), Θ a set of ground terms such that est(K, G) ⊆ Θ
and A a weak partial model of T0,K[Θ], G with total Σ0-functions in which
all terms of Θ are defined. Then AΘ is a weak partial model of T0 ∪ K ∪ G
in which all Σ0-functions are total and in which all terms of Θ are defined.
In particular, all terms appearing in G are defined in AΘ.

Proof. By definition of AΘ we immediately get AΘ |=w T0. Because of
est(G) ⊆ est(K, G) ⊆ Θ, A and AΘ agree on all terms in G and this implies
AΘ |= G. So the part requiring work is to show that AΘ |=w K. We
show this for the case of an extension with augmented clauses to which the
case of extension with clauses can be reduced. Take an augmented clause
Φ ∨ D ∈ K, where Φ is a formula of the base language, and let β be a
valuation β : X → A.

If there is a term u in D such that uAΘ [β] is undefined, we trivially have
AΘ, β |=w Φ ∨D. So let us suppose that all terms in D are defined. K was
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Σ1-linear. This implies that a variable x either does not occur in D below a
Σ1-function at all or it does so in a unique term (that may occur more than
once). Concerning the latter case, if we have a Σ1-term u = f(s1, ..., sn) of D,
where the terms si are either variables or ground terms of the base signature,
we know from the fact that β(t) is defined and by the definition of AΘ that
there are ground terms ti with β(si) = tAi such that β(t) = fAΘ(tA1 , .., t

A
n )

and f(t1, ..., tn) ∈ Θ. As before in the proof of Theorem 3.2.1, this allows us
to define a substitution σ in the following manner.

σ(x) =

{
x if x does not occur below a Σ1-function in D,

t if x does occur below a Σ1-function in D and β(x) = tA.

The above consideration shows that σ is well-defined. If a term u of D is
ground, it follows that u ∈ est(K) and uσ = u, otherwise, if u is not ground,
it follows that uσ ∈ Θ. In sum, we may conclude that (Φ ∨D)σ ∈ K[Θ].

In particular, we have that A, β |=w (Φ ∨ D)σ. By the substitution
lemma, this is equivalent to A, (β ◦ σ) |=w Φ ∨ D. By construction we also
have that (β ◦ σ) = β and, hence, A, β |=w Φ ∨D.

Remember that we are considering the case where all terms in D are
defined in (AΘ, β). Hence, A and AΘ coincide on D (under β) as they do on
Φ and we therefore have AΘ, β |=w Φ ∨D. �

By the table of a partial algebra A we mean the set of all extension ground
terms which are defined in A. We assume w.l.o.g. that our fixed set of fresh
variables ΣC is chosen large enough to contain a constant a for each element
a of a given algebra A.

Definition 4.6.4 (Table of a partial algebra) With the above notations,
Let A be a partial ΠC

1 -model with total Σ0-functions. The table of A is the
following set of ground LA-terms

D(A) := {f(a1, ..., an) | f ∈ Σ1, ai ∈ A, i = 1, . . . , n, fA(a1, ..., an) is defined }.

We are now able to state the definition of Ψ-locality formally. With the
above notations, let ΨK be a term closure operator and T1 := T0 ∪ K.

PModΨ
w PModΨ

w(Σ1, T1) denotes the class of all weak partial models A
of T1 in which the Σ1-functions are partial and all other
functions are total and where all terms in ΨK(D(A)) are defined.

(EmbΨ
w) Every A ∈ PModΨ

w(Σ1, T1) weakly embeds into a total model of T1.
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(EEmbΨ
w) For every A ∈ PModΨ

w(Σ1, T1) there is a total model B of T1

and a weak embedding ϕ : A → B
such that (A↾Π0

, ā)ā∈A ≡ (B↾Π0
, ϕā)ā∈A.

In other words, the embedding ϕ : A↾Π0
→ B↾Π0

is elementary.

(CompΨ
w) Every A ∈ PModΨ

w(Σ1, T1) weakly embeds into a total model B
of T1 such that A↾Π0

and B↾Π0
are isomorphic.

The definitions for finite algebras: (Embf,Ψ
w ), (EEmbf,Ψ

w ), (Compf,Ψ
w ) and for

algebras where the domain of each extension function is finite: (Embfd,Ψ
w ),

(EEmbfd,Ψ
w ), (Compfd,Ψ

w ), are analogous.
Since every isomorphism is an elementary embedding we have the implica-

tions (CompΨ
w) → (EEmbΨ

w) → (EmbΨ
w) and (Compw) → (EEmbw) → (Embw)

(and similar for finite algebras or algebras with finite extension domains).

Remark 4.6.5 (Flatness of goals) When considering locality modulo a term
closure operator ΨK we have to restrict ourselves to flat proof tasks G. This is
no major restriction because we can always flatten a given proof task without
affecting satisfiability (cf. 2.3.3.(5)).

In standard locality we may assume w.l.o.g. that a given proof task G is
flat or even flat and linear. This is because it suffices to show locality for
flat proof tasks, then locality for all proof tasks follows, provided K is flat (cf.
[Gan01, SS05]).

This is easy to see as follows. Let K be our extension clauses, T0 our base
theory, G our proof task and G′ derived from G by a process of term abstrac-
tion, e.g., flattening or flattening and linearization. Suppose T0,K, G |= ⊥.
Then T0,K, G

′ |= ⊥, because term abstraction does not affect satisfiability.
It follows, by our assumption, that T0,K[G′], G′ has no weak partial mod-
els where all subterms of K and G′ are defined. This implies in turn that
T0,K[G], G has no weak partial models where all subterms of K and G are
defined, either, because we can roll back the abstraction operations and rein-
sert the original terms.

However, if we use Ψ-locality instead, we cannot argue in this fashion.
Here is an example of a term closure operator where T0,K[ΨK(G′)], G′ does
not imply T0,K[ΨK(G)], G. Consider

ΨK(Γ) := est(K,Γ) ∪ {f(t)| f ∈ Σ1, g(t) ∈ Γ

for some g ∈ Σ1 and some base ground term t}

It is easy to check that this does indeed define a term closure operator.
As our (flat) extension clauses K take the universal closure of the follow-

ing clauses (f, g are both extension functions).
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(1) y = f(x) → g(y) = x,

(2) y = g(x), z = f(x) → f(y) = g(z).

Our proof task G is the following set of ground clauses.

(1) f(g(c)) = d

(2) f(f(c)) 6= c

(3) c 6= d

We flatten G to the set G′:

(1) d1 = g(c)

(2) d2 = f(c)

(3) f(d1) = d

(4) f(d2) 6= c

(5) c 6= d

We have

ΨK(G′) = {g(c), f(c), f(d1), f(d2), g(d1), g(d2)} and
ΨK(G) = {f(g(c)), f(f(c)), g(c), f(c)} = est(K, G).

In particular, the following clauses are members of K[ΨK(G′)].

(1) d2 = f(c) → g(d2) = c,

(2) d1 = g(c), d2 = f(c) → f(d1) = g(d2).

From this and G′ it follows that

d = f(d1) = g(d2) = c,

showing the unsatisfiability of K[ΨK(G′)] ∪G′.

On the other hand, K[ΨK(G)] consists of the following clauses.

(1) c = f(c) → g(c) = c,

(2) c = f(g(c)) → g(c) = g(c),

(3) c = f(f(c)) → g(c) = f(c),

(4) c = g(c), c = f(c) → f(c) = g(c).

(5) f(c) = g(c), c = f(c) → f(f(c)) = g(c).

(6) g(c) = g(c), c = f(c) → f(g(c)) = g(c).

It follows that K[ΨK(G)] ∪G is satisfiable.
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We define Ψ-locality w.r.t. flat proof tasks.

(LocΨ) Let T0 ∪ K ⊇ T0 be an extension by clauses.
For every set G of flat ground clauses in Π1 ∪ ΣC it holds that
T0 ∪ K ∪G |= ⊥ if and only if T0 ∪ K[Ψ] ∪G has no weak partial
model in which all terms in ΨK(G) are defined.

(ELocΨ) Let T0 ∪ K ⊇ T0 be an extension by augmented clauses.
For every set of formulas Γ = Γ0 ∪G, where Γ0 is a Π0-sentence
and G is a set of flat ground clauses in ΠC

1 , it holds that
T0 ∪ K ∪ Γ |= ⊥ if and only if T0 ∪ K[Ψ] ∪ Γ has no weak partial
model in which all terms in ΨK(G) are defined.

The notions (Locf,Ψ) and (ELocf,Ψ) for finite proof tasks G are defined
similarly. We want to establish relationships between Ψ-locality and embed-
dability.

Corollary 4.6.6 Let T0 be a theory in the signature Π0 = (Σ0,Pred), Σ1

a set of new function symbols and K a set of universally closed clauses or
augmented clauses in the extended signature Π1 = (Σ0∪Σ1,Pred) that are Σ1-
quasiflat. Let G be a set of Σ1-flat ground extension clauses with additional
constants, ΨK a term closure operator, Θ := ΨK(G), A a weak partial model
of T0 ∪K[Ψ]∪G with total Σ0-functions in which all terms of ΨK(G) are de-
fined and let AΘ be as in Definition 4.6.2. Then all the terms in ΨK(D(AΘ))
are defined in AΘ.

Proof. We first claim that D(AΘ) = h̄(Θ), where h : GTermΠC
0
→ GTermΠC

0

is the map that sends a base ground term t to the constant a such that
tAΘ = a (recall that we chose our set of constants big enough to incorporate
all constants a for elements a ∈ A). Now suppose f(a1, . . . , an) ∈ D(AΘ).
This means that there are some terms t1, . . . , tn (with tAΘ

i = ai) such that
f(t1, . . . , tn) ∈ Θ = ΨK(G). Because K is quasiflat, G is flat and ΨK is
taut, it follows that the terms t̄ must be base ground terms. It follows that
f(ā) = h̄(f(t̄)).

For the other inclusion, let f(t̄) ∈ Θ. According to Lemma 4.6.3, all
terms in Θ are defined in AΘ. Let ai := tAΘ

i . Then we have f(ā) ∈ D(AΘ)
and f(ā) = h̄(f(t̄)). This establishes the claim.

Note also that we have h̄h̄ = h̄ by definition of h̄. Next, it follows from
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the definition of a term closure operator that

h̄(ΨK(D(AΘ))) = h̄(ΨK(h̄Θ)) (Claim)

= Ψh̄K(h̄h̄Θ) (Definition 4.6.1.(5))

= Ψh̄K(h̄Θ)

= h̄(ΨK(Θ)) (Definition 4.6.1.(5))

= h̄(ΨK(ΨK(G))) (Definition of Θ)

= h̄(ΨK(G)) (Definition 4.6.1.(3))

= D(AΘ). (Claim)

Now, let f(t̄) ∈ ΨK(D(AΘ)). It follows that f(h̄t̄) ∈ D(AΘ) which implies
that f(t̄) is defined in AΘ. �

Theorem 4.6.7 Let T0 be a theory in the signature Π0 = (Σ0,Pred). Let
Π1 = (Σ1,Pred) ⊇ Π0 be an extension by function symbols and let K be a set
of universally closed Σ1-quasiflat and Σ1-linear clauses in the signature Π1

and let ΨK be a term closure operator. If the extension T0 ⊆ T0 ∪K satisfies
(EmbΨ

w) then it satisfies (LocΨ).

Proof. We proceed again by contradiction. Suppose that the extension were
not local, i.e., that there is a set of flat ground clauses G (with additional
constants) such that T0∪K∪G is inconsistent although there is a weak partial
model A of T0 ∪ K[ΨK(G)] ∪ G (with total Σ0-functions) in which all terms
in ΨK(G) are defined. Let Θ := ΨK(G). We know from Corollary 4.6.6 that
all terms in the set ΨK(D(AΘ)) are defined in AΘ. By Lemma 4.6.3, AΘ is
a weak partial model of T0 ∪K. Thus, by (EmbΨ

w) we obtain a total model B
of T0 ∪K into which AΘ weakly embeds. Since AΘ is a model of G where all
terms of G are defined and embeddings preserve literals, we conclude that B
is also a model of G, which contradicts our assumption. �

Theorem 4.6.8 Let T0 be a theory in the signature Π0 = (Σ0,Pred). Let
Π1 = (Σ1,Pred) ⊇ Π0 be an extension by function symbols and let K be
a set of universally closed Σ1-quasiflat and Σ1-linear augmented clauses in
the signature Π1 and let ΨK be a term closure operator. If the extension
T0 ⊆ T0 ∪ K satisfies (EEmbΨ

w) then it satisfies (ELocΨ).

Proof. The proof is similar to the one above. Assume again towards a
contradiction that there were an extended proof task Γ = Γ0 ∪ G, where
Γ0 is a Π0-sentence and G is a set of flat ground clauses in ΠC

1 , such that
T0,K,Γ |= ⊥, but there is a partial algebra A with total Π0-functions and
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A |=w T0,K[Ψ],Γ in which all terms of ΨK(G) are defined. Set Θ := ΨK(G).
By Lemma 4.6.3, AΘ is a weak partial model of T0 ∪ K ∪G.

This enables us to use elementary embeddability to arrive at a model B of
T0∪K such that AΘ weakly embeds into B, and AΘ↾Π0

� B↾Π0
. In particular,

AΘ↾Π0
≡ B↾Π0

. By the last item: B |= Γ0. Because all subterms of G were
defined in AΘ we also have B |= G. Contradiction. �

If we choose ΨK(G) := est(K, G) we obtain the

Corollary 4.6.9 Let T0 be a theory in the signature Π0 = (Σ0,Pred). Let
Π1 = (Σ1,Pred) ⊇ Π0 be an extension by function symbols and let K be a
set of universally closed Σ1-quasiflat and Σ1-linear augmented clauses in the
signature Π1, Then (EEmbw) implies (ELoc).

Similarly, we obtain the analogue for finite locality (cf. [SS10, ISS10a]).

Corollary 4.6.10 Let T0 be a theory in the signature Π0 = (Σ0,Pred), Σ1 a
set of new function symbols and K a set of universally closed clauses in the
extended signature Π1 = (Σ0 ∪ Σ1,Pred). Suppose that all clauses in K are
Σ1-quasiflat and Σ1-linear. Then

(1) If K is additionally Σ1-flat and the extension T0 ⊆ T0 ∪ K satisfies
(EEmbfd

w ) then it satisfies (ELocf).

(2) If K contains only finitely many extension ground terms, T0 is universal
and locally finite (i.e., each finitely generated model of T0 is finite) and
the extension T0 ⊆ T0 ∪ K satisfies (EEmbf

w) then it satisfies (ELocf).

It is also the case that Ψ-locality implies the embeddability of partial
models into total ones.

Theorem 4.6.11 Let T0 be a theory in the signature Π0 = (Σ0,Pred), Σ1

a set of new function symbols and K a set of universally closed clauses or
augmented clauses in the extended signature Π1 = (Σ0 ∪ Σ1,Pred). Let ΨK

be a term closure operator. Then

(1) If K is a set of clauses and T0 ⊆ T0 ∪ K satisfies (LocΨ) then the
extension satisfies (EmbΨ

w).

(2) If T0 ⊆ T0 ∪ K satisfies (ELocΨ) then it satisfies (EEmbΨ
w).

Proof. (1) Let A ∈ PModΨ
w(Σ1, T1). We want to embed A into a total model

of T0 ∪ K. By the partial diagram lemma (Lemma 2.4.3), it suffices to show
that the set of formulas T0 ∪ K ∪ ∆P

A is satisfiable. Assume it were not. It
follows from compactness of first-order logic that there is a finite subset G of
∆P

A such that T0 ∪K∪G is unsatisfiable. ∆P
A consists of literals. Hence, G is
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(EmbΨ
w) -� (LocΨ) � (Loc) -� (Embw)
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Figure 4.2: Relations between the properties.

a set of flat clauses. Therefore, by Ψ-locality, T0∪K[ΨK(G)]∪G cannot have
a weak partial model in which all terms in ΨK(G) are defined. But (A, A)
is just such a model. We know from est(G) ⊆ D(A) and monotonicity of Ψ
that ΨK(est(G)) ⊆ ΨK(D(A)) and all terms of ΨK(D(A)) were defined in A
by assumption. Since all terms of ΨK(G) are defined in A it also follows that
A |=w K[ΨK(G)] by ∀-elimination (Corollary 2.2.10). Thus we have arrived
at a contradiction.

(2) is analogous to (1). The only difference is that we allow augmented
clauses K now and that we consider the set T0 ∪ K ∪ ∆P

A ∪ ∆el to be un-
satisfiable, where ∆el is the elementary diagram of A↾Π0

. By compactness
we obtain T0 ∪ K ∪ G ∪ ϕ0 |= ⊥, with G as above and ϕ0 a sentence in the
signature ΠA

0 . It follows from extended Ψ-locality that T0 ∪ K[Ψ] ∪ G ∪ ϕ0

cannot have a weak partial model where all terms in ΨK(G) are defined. But,
again, (A, A) is just such a model. Therefore, T0 ∪K∪∆P

A ∪∆el has a model
B. The additional claim that A↾Π0

4 B↾Π0
follows from Lemma 2.1.8. �

In sum, we have the relations among the properties studied as depicted
in Figure 4.2, for quasiflat and linear extensions, where Ψ is an arbitrary but
fixed term closure operator.

4.7 Arrays Revisited

We have used the array property fragment and the Λ-array property frag-
ment, together with the associated notion of minimal locality, as a motivation
for arriving at a more general notion of locality, namely Ψ-locality. There
is a difference, however, between the two notions. In minimal locality, we
demand that the definition domain of all extension functions is equal to some
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set of ground terms, whereas in Ψ-locality, as in locality simpliciter, we only
demand that the partial model be defined on the ground terms occurring in
the extending clauses K or the proof task G - it may be defined elsewhere too.
This difference turns out to be inessential due to the model AΘ developed in
the last section.

For the array property fragment consider the following closure operator

ΨK(G) := {f(t) | f ∈ Σ1, g(t) ≤· G for some g ∈ Σ1 or t ∈ st(K)}

or with the more succinct notation of Section 4.2

ΨK(G) := st(K,R(G))(1).

It is easy to check that this does indeed define a term closure operator.

Similarly for the Λ-array property fragment. For a set of ground terms Θ,
let us write Λ(Θ) for the closure of Θ under subtraction of Λ, i.e., if t ∈ Λ(Θ)
then t − λ ∈ Λ(Θ), for all λ ∈ Λ, as well. Then the term closure operator
needed is

ΨK(G) := [Λ(st(K,R(G)))](1).

Corollary 4.7.1 Let T0 ⊆ T0∪K be an extension by a set of array properties
or Λ-array properties as in Sections 4.2 and 4.4, respectively. Let ΨK(G) be
the appropriate term closure operator as defined above. Then the extension
T0 ⊆ T0 ∪ K is Ψ-local.

Proof. We show both claims simultaneously. Suppose the extension were
not Ψ-local. This means that there were a set of ground clauses G such
T0 ∪ K ∪ G is unsatisfiable and a weak partial model A of T0 ∪ K[Ψ] ∪G in
which all terms in ΨK(G) were defined. Let us write Θ for ΨK(G). Consider
the model AΘ of Definition 4.6.2. It follows from Lemma 4.6.3 that AΘ is
a weak partial model of T0 ∪ K ∪ G. Hence, by Theorems 4.2.6 and 4.4.4
respectively, we may conclude that the π-completion ÂΘ of AΘ is a total
model of T0 ∪ K ∪G, for a projection π. Contradiction. �

4.8 Pointers Directly

In [MN05] McPeak and Necula investigate reasoning in pointer data struc-
tures. The language used has sorts p (pointer) and s (scalar). In contrast to
their account, we will allow more than one pointer type and allow functions
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with domains of pointer sort to have arity bigger than one. We will also
loosen their syntactic constraints (see below).1

We will denote the different (disjoint) pointer types by P = {p1, . . . , pn},
n ≥ 1. Accordingly, we will have a constant nulli, for every pointer sort pi,
denoting the null pointer. Having different pointer types might make mod-
eling of systems easier by allowing different unconnected lists to be specified
with different types, see Section 6.8. For simplicity, we will consider only one
scalar sort s.

We distinguish two types of extension functions both of which will only
allow pointer types as input sorts. Functions Σp of arity pi1 , . . . , pim → pk

with pk, pij ∈ P, for 1 ≤ j ≤ m, which have a pointer type as output sort
and functions Σs of arity pi1 , . . . , pim → s with pij ∈ P, for 1 ≤ j ≤ m, which
have the scalar type as output sort. The only predicate of sort pi, 1 ≤ i ≤ n,
is equality. We write Π1 for the signature Πs ∪Σp ∪Σs ∪ {nulli | pi ∈ P}. Let
ΣC be a fixed set of (fresh) constants as before.

The axioms considered in [MN05] are of the form

∀p̄. E ∨ C(4.1)

where p̄ is a set of pointer variables containing all the pointer variables oc-
curring in E ∨ C, E contains disjunctions of pointer equalities and C is a
disjunction of scalar constraints (i.e., literals of type s). E ∨ C may also
contain free variables of scalar type or, equivalently, free scalar constants.

In order to rule out null pointer errors, Necula and McPeak demand that
pointer terms appearing below a function should not be null. In our setting
this means that for all terms t = f(t1, . . . , tn), f ∈ Σp ∪ Σs, occurring in
an axiom, the axiom also contains the disjunction t′ = nullj , for any proper
subterm t′ of t with type pj . We will call pointer/scalar formulas complying
with this restriction nullable.

As an examples of nullable axioms (for doubly linked data structures with
priorities) considered by Necula and McPeak take

∀p p 6= null ∧ next(p) 6= null → prev(next(p)) = p(4.2)
∀p p 6= null ∧ prev(p) 6= null → next(prev(p)) = p(4.3)
∀p p 6= null ∧ next(p) 6= null → priority(p) ≥ priority(next(p))(4.4)

(the first two axioms state that prev is a left inverse for next, the third axiom
is a monotonicity condition on the function priority).

1The material in this section consists of continuing joint work with Viorica Sofronie-
Stokkermans.
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We now give our less restrictive definition of a pointer fragment, where
we allow not only more than one pointer type but also general formulas -
instead of disjunctions - combined with pointer equalities.

Definition 4.8.1 (Pointer fragment) With the above notations, given pointer
types P = p1, . . . , pn, n ≥ 1 and a scalar type s, we call formulas of the form

∀p̄. (E ∨ ϕ)(p̄)

an extended pointer clause if the following holds.

(1) p̄ are variables of pointer type which contain all the free variables of
both E and ϕ,

(2) E consists of disjunctions of pointer equalities,

(3) (E ∨ ϕ) is nullable, i.e., for all terms t = f(t1, . . . , tn), f ∈ Σp ∪ Σs,
occurring in it, E contains the disjunction t′ = nullj, for any proper
subterm t′ (of type pj) of t,

(4) ϕ is an arbitrary formula in the signature Π1, such that functions of
type Σp appear only below functions of type Σs.

The presence of types helps to reduce the complexity of the pointer fragment.
As a result, even though we can not use a general notion of Ψ-stable local
extensions due to the inherent complexity of closure operators on ground
term for strong partial semantics, we are able to give a direct proof of stable
locality for extensions with extended pointer clauses.

In particular, the fact that we allow only universal variables of pointer
sort in the fragment allows us to constrain the instances needed. Given a set
Φ of extended pointer clauses and a set of ground clauses G in the signature
Π1 ∪ ΣC , let st[Φ, G]p be the set of all pointer ground terms, i.e., ground
terms whose type is among p1, . . . , pn, appearing in Φ or G. Similarly, let
st[Φ, G]pi

be the set of all pointer ground terms of type pi appearing in Φ or
G. Due to nullability we may always assume that nulli ∈ st[Φ, G]p, otherwise
the extension would be trivial. We now consider a set of complete instances
for a set of extended pointer clauses Φ w.r.t. a set G ground clauses in the
signature Π1 ∪ ΣC .

Φ[P] := {ϕσ | ϕσ is closed, (∀p̄.ϕ) ∈ Φ,
for all variables p of ϕ it holds that σ(p) ∈ st[Φ, G]p}

Also, define

ΘΦ(G) := st[Φ, G]∪{fs(t1, . . . , tn) | fs ∈ Σs, ti ∈ st[Φ, G]\{nullj}, 1 ≤ j ≤ n }.

A similar result to the one below was published in [IJSS08].
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Theorem 4.8.2 With the notations of this section, let T0 be a theory in the
signature Πs, Φ a set of extended pointer clauses of the form ∀p̄. (E ∨ ϕ)
and G a set of ground clauses in the signature Π1 ∪ ΣC . Then it holds that
T0 ∪ Φ ∪ G is unsatisfiable if and only if T0 ∪ Φ[P] ∪G has no strong partial
model with total Σs-functions in which all terms of ΘΦ(G) are defined.

Proof. The direction from right to left is clear. For the other direction,
assume towards a contradiction that there were a set of ground clauses G
such that T0 ∪ Φ ∪ G had no model, but there were a strong partial model
A of T0 ∪ Φ[P] ∪G with total Σs-functions in which all terms of ΘΦ(G) were
defined. Our goal is to construct a total model B of T0 ∪ Φ ∪G from A. Let
As, Ap1

, . . . , Apn
be the scalar and pointer sorts of A respectively. As carrier

for B we keep As for the scalar elements and for the pointer elements we take
Bpi

:= {tA | t ∈ st[Φ, G]pi
}. We also keep the scalar functions and predicates

from Πs of A. It follows that B |= T0. We define the functions of Σp ∪Σs for
B in the following manner.

For fp of arity pi1, . . . , pim → pj define

fB
p (tA1 , . . . , t

A
m) :=






uA if there is a u ∈ st[Φ, G]pj
such that

fA
p (tA1 , . . . , t

A
m) is defined and equal to uA,

nullAj otherwise.

and for fs of type pi1 , . . . , pim → s define

fB
s (tA1 , . . . , t

A
m) := fA

s (tA1 , . . . , t
A
m).

Note that functions of this type are total by definition of ΘΦ(G).
It is immediate from the construction that tA = tB for any t ∈ st[Φ, G].

Hence, B |= G. It remains to be shown that B |= Φ. For that purpose, fix a
valuation β and let D ∈ Φ. D is of the form ∀x̄. E ∨ ϕ, where all variables
x̄ are of pointer type. We know that β(x) = tAx for some tx ∈ st[Φ, G]pi

and
some pointer type pi. We therefore can define a substitution σ : x 7→ tx such
that (E ∨ ϕ)σ ∈ Φ[P] and β = β ◦ σ. By the substitution lemma it follows
that A, β |=s E ∨ ϕ.

We therefore know that (A, β) either (strongly) satisfies one of the literals
in E or it satisfies ϕ. Suppose (A, β) satisfies a pointer equality in E , say
t ≈ u. We have to consider the three cases of how an equality comes out true
in strong partial semantics. First, if both sides are defined in (A, β) they
must be equal. If both (B, β)(u) and (B, β)(t) are equal to nullAi we are done.
Suppose now that (B, β)(t) is equal to some t̃A, t̃ ∈ ΘΦ(G) with t̃A = tA. By
assumption we have tA = uA and therefore uA = t̃A. Hence, uB = t̃A = tB.
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Second, the equation could be satisfied because a proper subterm on
either side is undefined under (A, β), say t = f(t′1, . . . , t

′
m) and (A, β)(t′j)

is undefined. By nullability, E then contains the equation t′j = nulli (note
that t′ must be of some pointer type pi). By construction it then follows
that B, β |= t′j ≈ nulli. The remaining case is when all proper subterms
are defined in (A, β) but both t and u are not. In that case we obtain
(B, β)(t) = nullAi = (B, β)(u).

Now suppose that (A, β) strongly satisfies ϕ. We distinguish two cases.
First, if there is a term t = f(t′1, . . . , t

′
m) in ϕ which is undefined in (A, β),

then the t′j must be of some pointer type pi. By nullability, E contains the
equations t′j ≈ nulli. In particular, if t′j is undefined in (A, β) it follows that
(B, β) |= t′j ≈ nulli. On the other hand, if all terms t′j were defined but
f(t′1, . . . , t

′
m) was not, then not all t′j could be equal in (A, β) to a term in

st[Φ, G] other than nulli. For if it were it would follow from the definition of
ΘΦ(G) that f(t′1, . . . , t

′
m) would be defined too. Thus, there must be a term

t′j that is equal to nulli w.r.t. (A, β). It follows that B, β |= t′j ≈ nulli and,
hence, B, β |= (E ∨ ϕ).

The second case is that all the terms appearing in ϕ are defined. But
since B and A agree on scalar terms we immediately obtain B, β |= ϕ. In
conclusion, we have shown that B, β |= (E ∨ ϕ) and this establishes B |=
T0 ∪ Φ ∪G. Contradiction! �





Chapter 5

Combinations of Theories

Up to this point we have addressed the question of how to handle the com-
plexity of proof tasks by using hierarchical reasoning. Local extensions, in
one flavor or another, allow the replacement of universally quantified (exten-
sion) clauses by a set of their instances which, then, leads to the reduction
to an underlying theory. In case that tools, preferably decision procedures,
for that underlying theory are available, local/hierarchical reasoning thus al-
lows the extension of said tools to new verification tasks. In this chapter we
will consider the related question of when and how different theories can be
combined.

Obviously such a modular approach, if it can be made to work, is of
great practical value. Real-life verification tasks often mix several theories
or types each of which might well be tractable individually and there might
be off-the-shelf solvers for each of them. Nevertheless, obtaining a decision
procedures for their combination is a non-trivial task even in quite simple
cases.

Pioneering work in this area was done by Nelson and Oppen ([NO79])
who considered the combination of theories with disjoint signatures. Since
that time the search was on to extend that result to non-disjoint theories.
This proved to be rather difficult. Only recently has some headway been
made (cf. [BT02, Ghi03a, Ghi03b, Ghi04, BGT04, BG05, GNZ05, SS07]).

In this chapter we will look at two of these approaches. After laying some
necessary groundwork in Section 5.1, we will first consider Silvio Ghilardi’s
work on information exchange in Section 5.2. We offer a new, and – we
believe – much simpler proof of Theorem 3.2 in [Ghi04].

After some model-theoretic background in Section 5.3 we will offer some
new results on the combination of local theories in Section 5.4. Finally, we
will consider the case of combining Ψ-local theories in Section 5.5.
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5.1 Model Completeness and

Quantifier Elimination

An important element of this section is the notion of model-completeness.
This warrants to reiterate the definition (cf. Definition 2.1.18).

Definition 5.1.1 (Model complete theory) An L-theory T is called model
complete or m.c. for short, if every embedding between its models is elemen-
tary (Definition 2.1.4). With our notation, whenever we have two models
A,B |= T and an embedding ϕ : A → B it already holds that ϕ : A 4 B.

We also give a standard characterization of model completeness, following
[CK90], 3.5.1 and [Hod97], 7.3.1.

Theorem 5.1.2 Let T be a consistent L-theory. Then the following are
equivalent.

(1) T is model complete.

(2) If A |= T then T ∪ ∆A is a complete theory (in LA), where ∆A is the
diagram of A.

(3) (Robinson’s Test). If A,B |= T with A ⊆ B then every existential
sentence which holds in (B, A) also holds in (A, A).

(4) For every existential formula ϕ(x1, ..., xn) there is a universal formula
ψ(x1, ..., xn) with T |= ϕ↔ ψ.

(5) For every formula ϕ(x1, ..., xn) there is a universal formula ψ(x1, ..., xn)
with T |= ϕ↔ ψ.

Recall form Definition 2.1.19 that a theory T is said to admit the elimina-
tion of quantifiers if every formula is equivalent modulo T to a quantifier-free
formula with (at most) the same free variables. The above characterization
therefore immediately gives us that every theory which admits elimination
of quantifiers is model complete. The reverse does not hold, however.

Example 5.1.3 Consider the theory T of real closed fields where we have
no symbol for < in the signature. The theory is model complete but, without
order as a primitive notion, the theory does not enjoy quantifier elimination
([ES71]), e.g., ∃x. x · x ≈ y (= y is non-negative) is not expressible by an
open formula ([CK90], 3.5.19; Remark).

A further useful fact is the following (cf. [CK90], 3.5.10 and [Hod97],
7.3.3), which is an immediate consequence of the Chang- Los-Suszko theorem
and the elementary chain theorem (Theorems 2.1.16 and 2.1.17).
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Corollary 5.1.4 Let T be a model complete theory. Then T has a set of ∀∃
axioms.

Example 5.1.5 Here are some examples of model complete theories from
algebra.

(1) The theory of the model (Z,+,−, 0, 1,≤) ([CK90], Example 3.5.2).

(2) The theory of divisible torsion-free Abelian groups (Ibid.).

(3) The theory of divisible ordered Abelian groups (Ibid.).

(4) The theory of infinite Abelian groups with all elements of order p ([CK90],
Example 3.5.9).

Example 5.1.6 The following theories have quantifier-elimination and are
therefore model complete by the above remark.

(1) Presburger arithmetic with congruence modulo n (≡n), n = 2, 3, ... ([End02],
page 197).

(2) Rational linear arithmetic in the signature {+, 0,≤} ([Wei88]).

(3) Real closed ordered fields ([Hod97], 7.4.4). Examples are
(a) the real algebraic numbers,

(b) the computable numbers,

(c) the definable numbers (i.e., definable in set theory),

(d) the real numbers.

(4) Dense linear orders without endpoints ([CK90], chapter 1.5).

(5) Algebraically closed fields ([CK90], Example 3.5.2, [Hod97], chapter
7.4).

(6) Finite fields ([Hod97], chapter 7.4).

(7) Infinite (left) vector spaces over a field (Ibid.).

(8) Atomless Boolean algebras (cf. [CK90] 3.5.19 and Remark).

(9) Th(ω, 0, s), the theory of the natural number with successor ([End02],
page 191).

(10) The theory of acyclic lists in the signature {car, cdr, cons} ([Mal71,
Ghi03b, Ghi04]).

Remark 5.1.7 (Complete v Model complete) Neither one of model com-
pleteness and completeness implies the other. For example, we saw in Ex-
ample 5.1.6.(5) that the theory of algebraically closed field is model complete.
That theory is certainly not complete, however, because fields of different
characteristic are not elementarily equivalent (cf. [CK90], page 188). On
the other hand, the theory of dense linear orders with endpoints is complete
but not model complete (cf. [CK90], page 187).
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Of particular interest to us are theories that share the same universal frag-
ment.

Definition 5.1.8 (Cotheories) Let T, U be L-theories. T , U are called
cotheories if T∀ = U∀. Also, we say about two theories T and U that T
embeds into U (Notation: T →֒ U) if every model of T embeds into a model
of U .

We collect some straightforward yet useful facts about cotheories.

Observation 5.1.9 (cf. [CK90], Remark 3.5.6)

(1) A is a model of T∀ if and only if A is a submodel of some model of T .

(2) T →֒ U if and only if U∀ ⊆ T∀.

(3) T and U are cotheories if and only if any model of T can be extended
to a model of U , and vice versa.

(4) T∀ is a cotheory of T, and it is the unique cotheory which has a set of
universal axioms.

We now turn to the important question when two models of a theory can be
fused.

Definition 5.1.10 (Joint embedding/Amalgamation property) A the-
ory T has the joint embedding property (JEP) if for any two models A,B of
T there is a third model C of T such that A and B are both embeddable in C.

A

C

f

-

B
g

-

T has the amalgamation property (AP) if for any three models, A,B and
C of T and embeddings f : C → A, g : C → B there is a model C′ and
embeddings f ′ : A → C′, g′ : B → C′ such that the diagram commutes. C′ is
said to amalgamate A and B over C.
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A

C

f -

C′

f ′

-

B
g
′

-

g -

Although the two properties look similar neither one implies the other.
For instance, fields have the amalgamation property but not the joint em-
bedding property. Embeddings preserve the characteristic of a field and so it
is impossible two embed two fields of different characteristic into a third one
([CK90], page 196). An example of a theory which has (JEP) but not (AP)
is the theory of equivalence relations with at most one equivalence relation
having more than one element (Ibid.).

Using Robinson’s diagram lemma we can observe connections between
these two properties.

Observation 5.1.11

(1) T has the amalgamation property if and only if for all models A of T ,
it holds that T ∪ ∆A has the joint embedding property where ∆A is the
diagram of A ([CK90], page 196).

(2) If T is complete, then the analogues of the joint embedding property
and the amalgamation property hold for elementary embeddings. In
particular, T has the joint embedding property (Ibid.).

(3) If T is model complete it has the amalgamation property (Ibid.).

(4) Let T be a model complete theory. Then T is complete if and only if T
has the joint embedding property ([CK90], Proposition 3.5.11.(ii)).

The next definition brings together model complete theories with cotheories.

Definition 5.1.12 (Model completion) An L-theory T ∗ is called a model
companion of T if T and T ∗ are cotheories and T ∗ is model complete. T ∗ is
a model completion of T if it additionally holds that for every model A of T
we already have that T ∗ ∪ ∆A is complete, where ∆A is the diagram of A.

A theory has at most one model companion up to logical equivalence and
the condition of model completeness adds uniqueness in the sense that if A
is a model of T and B, C are two extensions of A satisfying T ∗ then they
satisfy the same LA-sentences.
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Example 5.1.13

(1) The theory of algebraically closed fields is the model completion of the
theory of fields. This was the motivating example for developing the
theory of model completions ([CK90], Example 3.5.2, Example 3.5.12
and following Remark 3.5.6; [Hod97], 7.3).

(2) The theory of dense total orders without endpoints is the model com-
pletion of the theory of total orders ([Ghi03a, Ghi04], without proof).
According to [CK90], Example 3.5.12, the theory of dense linear orders
without endpoints T ∗ is a model companion of the theory T of linear or-
ders. We can see that it is also its model completion as follows. Assume
towards a contradiction that A were a linear order such that T ∗ ∪ ∆A

were not a complete theory. This means that there would be a sentence
ϕ(ā) of LA such that neither T ∗ ∪ ∆A ⊢ ϕ(ā) nor T ∗ ∪ ∆A ⊢ ¬ϕ(ā).
From the diagram lemma it follows that there are two models B, C of
T ∗ such that A ⊆ B, A ⊆ C, B |= ϕ(ā) and C |= ¬ϕ(ā). From Example
5.1.6.(4) we know that there is a quantifier-free formula ϕ0 such that
T ∗ ⊢ ∀x̄.(ϕ(x̄) ↔ ϕ0(x̄)). In particular, B |= ϕ0(ā) and C |= ¬ϕ0(ā).
But since quantifier-free formulas are reflected in substructures this im-
plies A |= ϕ0(ā) and A |= ¬ϕ0(ā). A distinct impossibility.

(3) The theory of atomless Boolean algebras is the model-completion of
Boolean algebras ([CK90], Example 3.5.9; [Mac77], §3, Example 4).

(4) Universal Horn theories in finite signatures have a model completion if
they are locally finite and have the amalgamation property (e.g., graphs,
posets) ([Whe76]).

Here is another characterization of the difference between model compan-
ions and model completions.

Proposition 5.1.14 ([CK90], 3.5.18) Let T ∗ be a model companion of T .
Then the following are equivalent:

(1) T ∗ is a model completion of T .

(2) T has the amalgamation property.

A theory T is always a cotheory of T∀ and, hence, a model complete
theory T is automatically a model companion of T∀. Thus we get

Corollary 5.1.15 Let T be a model complete theory. Then T is a model
completion of T∀ if and only if T∀ has the amalgamation property.

We already saw that quantifier elimination is a property strictly stronger
than model completeness. We are interested in the exact relation between
these two properties, particularly for the case of universal theories.
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Proposition 5.1.16 ([CK90], 3.5.19) Let T be a model complete theory
in L. Then the following are equivalent.

(1) T is the model completion of its universal fragment T∀.

(2) T∀ has (AP).

(3) T admits elimination of quantifiers.

(4) If A is a submodel of a model B of T then T ∪∆A is a complete theory
in LA. (This is sometimes called submodel completeness, cf. [CK90],
page 203.)

It will be convenient for the next section to formulate the case for universal
theories explicitly. Note that if T is universal we have A |= T ⇔ A |= T∀.

Corollary 5.1.17 Let T be a universal theory. Then the following are equiv-
alent.

(1) T ∗ is the model completion of T .

(2) It holds that T∀ = (T ∗)∀ and T ∗ eliminates quantifiers.

Proof. Assume (1). Since T ∗ is the model completion of T it holds in
particular that T∀ = (T ∗)∀. We need to show that T ∗ eliminates quantifiers.
By Proposition 5.1.16 this is the same as establishing that T ∗ is the model
completion of its universal fragment. It is clear that T ∗ is a model companion
of T ∗

∀ . To show the rest, consider A |= T ∗
∀ . We have to show that T ∗ ∪ ∆A

is complete. Because T ∗
∀ = T∀ and Observation 5.1.9.(3) we have that A

extends to a model B of T . Since T is universal, A is itself a model of T and
the claim follows from the fact that T ∗ was a model completion of T .

Assume (2). We immediately get that T ∗ is a model companion of T .
The only thing left to show is that A |= T implies that T ∗∪∆A is a complete
theory. In particular we have A |= T∀. By assumption, this is the same
as A |= (T ∗)∀. As T ∗ admits the elimination of quantifiers, we know from
Proposition 5.1.16 that T ∗ is the model completion of its universal fragment.
This implies the claim. �

5.2 Combinations of Theories

In an important paper [Ghi03a, Ghi04], Silvio Ghilardi used model comple-
tions of universal theories as an essential tool for the combination of theories
over non-disjoint signatures. The approach taken there towards detecting
the inconsistency of two (non-disjoint) theories T1, T2 is to ask how much in-
formation needs to be shared between them. More concretely, assuming that
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a given proof task ϕ is already purified into the languages of the theories
T1, T2 as well, we know from Craig’s interpolation lemma (Lemma 2.1.12),
that the joint unsatisfiability of T1, ϕ1 with T2, ϕ2 implies the existence of a
formula ψ in the shared language of the two theories which separates T1, ϕ1

from T2, ϕ2, i.e, T1, ϕ1 |= ψ but T2, ϕ2 |= ¬ψ. Isolating the source of the joint
unsatisfiability like this is helpful, but from a verificational standpoint it is
still not enough.1At the very least, we would like the separating formula ψ
to be quantifier-free or, better still, positive.

Silvio Ghilardi showed that the repeated exchange of positive ground
clauses between T1, ϕ1 and T2, ϕ2 is enough to establish their joint unsatisfi-
ability. As a corollary, it follows that the exchange of a single quantifier-free
formula is enough. In this section we will give a direct proof of that corollary,
circumventing more complicated techniques. The key notion is the following.

Definition 5.2.1 (Compatibility, [Ghi03a, Ghi04]) Let T be a Σ-theory,
Σ0 ⊆ Σ and let T0 be a Σ0-theory. T is T0-compatible if

(1) T0 is a universal theory.

(2) T ⊢
0 ⊆ T ⊢.

(3) T0 has a model completion T ∗
0 .

(4) T ⊂ - T ∪ T ∗
0 . (Equivalently, (T ∪ T ∗

0 )∀ ⊆ T∀.)

Here is the main result of this section.

Lemma 5.2.2 Let Ti be Li-theories, i = 1, 2, which are T0-compatible for
an L0-theory T0 where L0 = L1 ∩ L2. Let ā, b̄, c̄ be mutually disjoint sets
of fresh constants and let ϕ(ā, b̄), ψ(ā, c̄) be quantifier-free ground L1(ā, b̄)-
or L2(ā, c̄)-sentences, respectively. Suppose that T1, ϕ(ā, b̄), T2, ψ(ā, c̄) ⊢ ⊥.
Then there is a quantifier-free L0(ā)-sentence χ such that T1, ϕ(ā, b̄) ⊢ χ(ā)
and T2, ψ(ā, c̄) ⊢ ¬χ(ā).

Proof. Using Craig’s interpolation theorem and compactness, it follows from
T1, ϕ(ā, b̄), T2, ψ(ā, c̄) ⊢ ⊥ that there is a L0(ā)-sentence χ(ā) with T1, ϕ(ā, b̄) ⊢
χ(ā) and T2, ψ(ā, c̄) ⊢ ¬χ(ā). However, χ will normally contain quantifiers.
By Corollary 5.1.17, we can use T ∗

0 to obtain a quantifier-free L0-sentence χ′

such that T ∗
0 ⊢ ∀x̄.(χ(x̄) ↔ χ′(x̄)). In particular T1∪T

∗
0 ⊢ ∀x̄.(χ(x̄) ↔ χ′(x̄))

and therefore T1∪T
∗
0 , ϕ(ā, b̄) ⊢ χ′(ā). This is logically equivalent to T1∪T

∗
0 ⊢

∀x̄, ȳ.ϕ(x̄, ȳ) → χ′(x̄). Because ϕ was quantifier-free, ∀x̄, ȳ.ϕ(x̄, ȳ) → χ′(x̄) is
universal. It follows from T ∗

0 -compatibility that T1 ⊢ ∀x̄, ȳ.ϕ(x̄, ȳ) → χ′(x̄).
Hence, T1, ϕ(ā, b̄) ⊢ χ′(ā). By the same token we get T2, ψ(ā, c̄) ⊢ ¬χ′(ā).
Thus χ′(ā) is as desired. �

1We thank Cesare Tinelli for his clear exposition of the problem (cf. [Tin07]).
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Remark 5.2.3 As mentioned in the introduction to this section, Ghilardi
obtained this lemma as a corollary of a different result. There is also a direct
proof of the lemma given in [GNRZ07] which uses elementary amalgamation
instead of quantifier elimination (cf. Theorem 5.3.2 and Remark 5.3.4).

5.3 Elementary Amalgamation

Before turning our attention to the combination of local and Ψ-local theo-
ries, we need to introduce another important technique: elementary amal-
gamation. The following two theorems (and their proofs) will be the cor-
nerstone of the remainder of the chapter. We demonstrate the proof tech-
nique of elementary amalgamation (which we will need later) on the following
lemma. The main results of this and the following sections are published in
[ISS10a, ISS10b].

Lemma 5.3.1 (Simple elementary amalgamation; [Hod97], 5.3.1) Let
L be a first-order language, B and C L-structures, ā some elements of B
and suppose there are some elements c̄ of C such that (B, ā) ≡ (C, c̄). Let
f : 〈ā〉 → C be the unique embedding taking ā to c̄ then there exists an
elementary extension D of B and an elementary embedding g : C → D such
that gfā = ā.

D

B

4
-

C

� g
:<

if (B, ā) ≡ (C, c̄)

ā
f

-
�

⊇

Proof. Replacing B and C with isomorphic copies if necessary, we might as
well assume that f is the identity and that ā is the intersection of B and C.
It suffices to show that ∆el

B ∪ ∆el
C is consistent according to the elementary

diagram lemma (Corollary 2.1.9). Assume it were not. By compactness, there
then would be a ϕ(ā, b̄) ∈ LB and a ψ(ā, c̄) ∈ LC such that ϕ(ā, b̄), ψ(ā, c̄) ⊢
⊥. By the lemma on constants (Lemma 2.1.11), this is logically equivalent
to ∃x̄.ψ(ā, x̄) ⊢ ∀ȳ.¬ϕ(ā, ȳ). Now, ∃x̄.ψ(ā, x̄) is a sentence of LA which
C satisfies and, hence, which is also satisfied by B. But this would imply
B |= ∀ȳ.¬ϕ(ā, ȳ). Contradiction. �

By using this theorem repeatedly we arrive at a slight abstraction of
Robinson’s joint consistency theorem. We give the proof in full because we
want to reemploy the same technique later.
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Theorem 5.3.2 ([Hod97], 5.5.1) Let Π1,Π2 be signatures, Π0 = Π1 ∩Π2,
B a Π1-structure, C a Π2-structure and ā some elements in both B and C
such that (B↾Π0

, ā) ≡ (C↾Π0
, ā). Then there is a (Π1 ∪ Π2)-structure D such

that B 4 D↾Π1
and an elementary embedding g : C → D↾Π2

with gā = ā.

D

B

4
-

C

� g
:<

if (B↾Π0
, ā) ≡ (C↾Π0

, ā)

ā
⊆

-
�

⊇

Proof. Set C0 := C and B0 := B. We may assume that B and C have no
elements other than ā in common. First, we get an elementary extension
B1 of B0 and an elementary embedding f0 : C0 ↾Π0

→ B1 ↾Π0
by showing

that ∆el
B ∪ ∆el

C↾L is consistent. Suppose ∆el
B ∪ ∆el

C↾L were inconsistent. By

compactness, there then would be a ϕ(ā, b̄) ∈ LB and a ψ(ā, c̄) ∈ LA such
that ϕ(ā, b̄), ψ(ā, c̄) ⊢ ⊥. This is equivalent to ψ(ā, x̄) ⊢ ¬ϕ(ā, ȳ). By logic
(cf. Lemmas 2.1.10 and 2.1.11), this in turn is equivalent to ∃x̄.ψ(ā, x̄) ⊢
∀ȳ.¬ϕ(ā, ȳ). Now, ∃x̄.ψ(ā, x̄) is a sentence of LA which C↾Π0

satisfies and,
hence, which is also satisfied by B. But this would imply B |= ∀ȳ.¬ϕ(ā, ȳ).
Contradiction.

We employ the same argument to get an elementary extension C1 of C0 and
an elementary embedding g1 : (B1↾Π0

, (f0c | c ∈ C0)) 4 (C1↾Π0
, (c | c ∈ C0)).

We may do so because it holds that (B1↾Π0
, (f0c | c ∈ C0)) ≡ (C1↾Π0

, (c | c ∈ C0)).
Symmetrically, we get an elementary extension B2 of B1 and an elementary
embedding f1 : (C1↾Π0

, (g1b | b ∈ B1)) 4 (B2↾Π0
, (b | b ∈ B1)), because of

(B1↾Π0
, (b | b ∈ B1)) ≡ (C1↾Π0

, (g1b | b ∈ B1)). Continuing in this fashion, we
get a tower

B0

4 - B1

4 - B2
......

4
.....-

ā

-

C0
4

-

f 0

-

-
C1

4
-

f 1

-

g
1

-

C2
.......

4

.....-

g
2

-

such that for each i we have fi ◦ gi+1 = idCi
, gi ◦ fi = idBi

and fi ⊆ fi+1.

Define B̂ :=
⋃

i<ω Bi, Ĉ :=
⋃

i<ω Ci and f̂ :=
⋃

i<ω fi. Then f̂ is an

isomorphism Ĉ↾Π0
→ B̂↾Π0

. Hence, there is a structure C′ isomorphic to Ĉ
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such that C′↾Π0
= B̂↾Π0

. Using the interpretations of C′ for the symbols in
Π2 \Π0 and those of B̂ for the symbols in Π1 \Π0 we thus obtain a Π1 ∪ Π2-
structure D with D↾Π1

= B̂ and D↾Π2
= C′. Finally, by the elementary chain

theorem we get B 4 B̂ and C 4 Ĉ ∼= C′. �

Choosing ā to be empty gives us Robinson’s theorem back saying that
two structures that are elementarily equivalent w.r.t. some shared language
can be elementarily embedded together into some structure.

Corollary 5.3.3 Let Π1,Π2 be signatures, Π0 = Π1 ∩ Π2, B a Π1-structure,
C a Π2-structure with B↾Π0

≡ C↾Π0
. Then there is a (Π1 ∪ Π2)-structure D

such that B 4 D↾Π1
and an elementary embedding g : C → D↾Π2

.

Remark 5.3.4 Theorem 5.3.2 gives us a direct proof of the modularity of T0-
compatibility (Ghilardi’s Proposition 3.3 [Ghi03b]): If we have two theories
T1 and T2 which are compatible with a theory T0 in the shared signature,
then T1 ∪T2 is T0-compatible too. For this, we need to embed a model of A of
T1∪T2 into a model of T1∪T2∪T

∗
0 . We can extend the respective reducts of A

into models Bi of Ti∪T
∗
0 . In particular, the Bi’s are models of T0 and because

its model completion was T ∗
0 , they are elementarily equivalent as LA

0 -models.
Hence, they can be elementarily embedded into a model of T1 ∪T2 ∪T

∗
0 which

is also an extension of A.
As already pointed out by Ghilardi2, this is also the same argument as in

his Lemma 5.2 which he uses to prove the above theorem. It states, assuming
that we have two theories T1, T2 which are compatible with T ∗

0 , and two models
Mi of the theories Ti, i = 1, 2 which share a substructure A in the common
signature, that those two models can then be embedded into a model M of
T1 ∪ T2. This is a direct consequence of Theorem 5.3.2. By compatibility,
T ∗

0 ∪ ∆A is a complete theory because T ∗
0 is the model completion of T0. In

particular (M1↾Π0
, ā) ≡ (M2↾Π0

, ā) and Theorem 5.3.2 applies.

The amalgamation result also gives us an easy proof of Craig’s interpo-
lation theorem, demonstrating further the power of this technique.

Corollary 5.3.5 ([Hod97], 5.5.3) Let T1 be an Π1-theory, T2 an Π2-theory
such that T1 ∪ T2 is inconsistent. Then there’s a sentence ϕ in the common
signature Π0 := Π1 ∩ Π2 such that T1 ⊢ ϕ and T2 ⊢ ¬ϕ.

Proof. Let us write (T2)Π0
for the Π0-sentences which are deducible from

T2. It suffices to show that T1 ∪ (T2)Π0
is inconsistent. Assume towards a

contradiction that it had a model A. Now consider the set Γ of Π0-sentences

2cf. [Ghi03b], p. 14.
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true in A. We claim that T2,Γ is consistent. Suppose it were not. By
the compactness theorem, there then would be an Π0-sentence ϕ ∈ Γ with
T2 ⊢ ¬ϕ, contradicting A |= (T2)Π0

.
Let B be a model of T2,Γ. By construction it holds that A↾Π0

≡ B↾Π0
.

But this means that we can jointly embed A and B into a model C of T1∪T2.
Contradiction. �

The following two corollaries are joint work with Viorica Sofronie-Stokkermans.

Corollary 5.3.6 ((EEmb) transfer) Let Π0 be a signature, T0 a theory in
Π0, Σ1 and Σ2 two disjoint sets of fresh function symbols, Πi := Π0 ∪ Σi,
i = 1, 2, T2 ⊇ T0 an Π2-theory and K a set of universally closed clauses in
Π1.

(1) If the extension T0 ⊆ T0 ∪K enjoys (EEmbw) then so does T2 ⊆ T2 ∪K.

(2) If the extension T0 ⊆ T0 ∪K enjoys (EEmbf
w) then so does T2 ⊆ T2 ∪K.

(3) If the extension T0 ⊆ T0 ∪K enjoys (EEmbfd
w ) then so does T2 ⊆ T2 ∪K.

In particular, if all the Σ2-terms are linear then extension T2 ⊆ T2 ∪ K is
local in case (1) or finitely local in case (3).

Proof. The argument is the same for all three cases. Suppose that A ∈
PModw(Σ1, T2 ∪ K) with possibly (2) A is finite or (3) all functions f ∈ Σ1

have a finite definition domain. We need to show that A embeds into a total
model D of T2 ∪ K such that A↾Π2

is elementarily embedded into D↾Π2
.

By assumption, A is a total model of T2 and therefore of T0. It follows by
(1) (EEmbw), (2) (EEmbf

w) or (3) (EEmbfd
w ) respectively, that there is a (total)

model B of T0 ∪K such that A is a weak substructure of B and A↾Π0
4 B↾Π0

.
Let ā list all the elements of A, then it holds that (A↾Π0

, ā) ≡ (B↾Π0
, ā). We

use Theorem 5.3.2 to get an L1 ∪ L2-structure D such that A↾Π2
4 D↾Π2

(in particular D |= T2) and an elementary embedding g : B → D↾Π1
with

g(a) = a for all elements a ∈ A.

D

A↾Π2

4
-

B

� g
:<

with (A↾Π0
, A) ≡ (B↾Π0

, A)

A
⊆

-�

⊇

The only thing left to show is that A is a weak substructure of D. Let
f ∈ Σ1 be an extension function such that fA(ā) is defined and equal to
b ∈ A, say. It follows that fA(ā) = fB(ā) = b because A ↾ Π1

is a weak
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substructure of B. Because the diagram commutes and g(a) = a, for all
a ∈ A, we have

fD(ā) = fD(gā) = g(fB(ā)) = g(b) = b = fA(ā).
�

Corollary 5.3.7 Let Π0 be a signature, T0 a model complete theory in Π0,
Σ1 and Σ2 two disjoint sets of fresh function symbols, Πi := Π0∪Σi, i = 1, 2,
K a set of linear, universally closed clauses in Σ1 and T2 an arbitrary Π2-
theory with T0 ⊆ T2. Suppose the extension T0 ⊆ T0 ∪ K is local. Then the
extension T2 ⊆ T2 ∪ K is local as well.

Example 5.3.8 (Sofronie-Stokkermans) According to Lemma 3.6.6 and
consequent remark, extensions of lattices, join-semilattices with 0 and meet-
semilattices with 1 by a monotone functions enjoy (Compfd

w ). They therefore
enjoy (EEmbfd

w ) in particular, which implies (ELocf) according to 4.6.10.(1).
Hence, for any extension Lat∗ of the theory of lattices or semi-lattices of the
above variety, e.g., distributive lattices or Boolean algebras, it holds that the
extension Lat∗ ⊆ Lat∗∪Monσ

g enjoys (ELocf), where Monσ
g is a monotonicity

axiom for an extension function g.

There is also a connection between the techniques of this section and the
notion of compatibility of Section 5.2.

Corollary 5.3.9 (Sofronie-Stokkermans) Let T0 be a theory. Assume
that T0 has a model completion T ∗

0 such that T0 ⊆ T ∗
0 . Let T = T0 ∪ K

be an extension of T0 with new function symbols Σ1 whose properties are
axiomatized by a set of flat and linear clauses K (all of which contain symbols
in Σ1).

(1) Assume that:
(a) Every model of T0 ∪ K embeds into a model of T ∗

0 ∪ K.3

(b) T0 ∪ K is a local extension of T0.

Then T ∗
0 ∪K satisfies condition (EEmbw), hence, if K is a set of quasi-

flat and linear augmented clauses, then the extension T ∗
0 ⊆ T ∗

0 ∪ K is
local.

(2) If all variables in K occur below an extension function and T ∗
0 ∪K is a

local extension of T ∗
0 , then T0 ∪ K is a local extension of T0.

3If T0 is universal, this is the notion of compatibility from Definition 5.2.1.
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5.4 Combinations of Local Theories

In this section we consider two theory extensions over a common base theory.
A natural question to ask is whether the union of the theories is local given
that each extension was local on its own. This question was first studied by
Viorica Sofronie-Stokkermans in [SS10] and [SS07].

Recall the following definition for a theory extension T0 ⊆ T0 ∪ K =: T1.

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B
of T1 such that A↾Π0

and B↾Π0
are isomorphic.

where PModw(Σ1, T1) denoted the class of all weak partial models of T0 ∪ K
with total Σ0-functions.

(EEmbw) For every A ∈ PModw(Σ1, T1) there is a total model B of T1

and a weak embedding ϕ : A → B
such that (A↾Π0

, (ā | ā ∈ A)) ≡ (B↾Π0
, (ϕā | ā ∈ A)).

In other words, the embedding ϕ : A↾Π0
→ B↾Π0

is elementary.

Since every isomorphism is an elementary embedding we have the impli-
cations (Compw) → (EEmbw) → (Embw).

Lemma 5.4.1 Let Π0 be a signature, T0 a theory in Π0, Σ1 and Σ2 two dis-
joint sets of fresh function symbols and Ki a set of universally closed clauses
in Πi := Π0∪Σi, for i = 1, 2. If both extensions T0 ⊆ T0∪Ki, i = 1, 2, satisfy
(EEmbw) then so does the extension T0 ⊆ T0 ∪ K1 ∪ K2. In particular, if all
the extension terms are linear then the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local.

Proof. Let A ∈ PModw(Σ1, T0 ∪ K1 ∪ K2). By assumption there are (total)
models B, C of T0∪K1 and T0∪K2 respectively into which A weakly embeds.
We lose nothing in assuming that A is a weak substructure of both B and C.
By assumption we have (A↾Π0

, ā) ≡ (B↾Π0
, ā) ≡ (C↾Π0

, ā).
We use Theorem 5.3.2 to get an Π1 ∪Π2-structure D such that B 4 D↾Π1

and an elementary embedding ψ : C → D↾Π2
with ψ(a) = a for all elements

a ∈ A. Now A is a weak substructure of D: Let f be an extension function
such that fA(ā) is defined. If f is in Σ1 we have fA(ā) = fB(ā) = fD(ā). If f
is an Σ2-function it follows that fA(ā) = ψ(fA(ā)) = ψ(fC(ā)) = fD(ψā) =
fD(ā). Obviously, D is a model of T1 ∪ T2 and (A↾Π0

, ā) ≡ (D↾Π0
, ā). So D is

as desired. �

The defining feature of model completeness for a theory is that every em-
bedding between its models is elementary. So if we choose a model complete
base theory (EEmbw) and (Embw) coincide.
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Corollary 5.4.2 Let T0 be a model complete theory in Σ0, Σ1 and Σ2 two dis-
joint sets of fresh function symbols and Ki a set of universally closed clauses
in Σ0 ∪ Σi, for i = 1, 2. If both extensions T0 ⊆ T0 ∪ Ki, i = 1, 2, satisfy
(Embw) then so does the extension T0 ⊆ T0 ∪ K1 ∪ K2. In particular, if all
the extension terms are linear then the above extension is local.

Recall that every theory which allows quantifier elimination is model com-
plete. We gave some examples of this in Example 5.1.6. Consider these
examples again.

Example 5.4.3

(1) Presburger arithmetic with ≡2,≡3, ....

(2) Real closed fields (e.g., real numbers).

(3) Linear arithmetic in (+,−, 0, 1,≤) (= divisible, torsion-free ordered
abelian groups with 1).

A theory is called κ-categorical for some cardinal κ if all its models of size
κ are isomorphic. The above theories are not categorical in any cardinality.
Thus, to consider elementary equivalence was expedient in order to deal with
them. Consider 3). Since models are torsion-free the theory is not locally
finite. This rules out ℵ0-categoricity [Hod97], 6.3.2. To rule out categoricity
for uncountable cardinals it suffices to rule it out for one. Take the cardinality
of R. It is easy to check that R and R × R with a lexicographical order are
both models of the theory. However, the former is Archimedean, i.e., for
all y > x > 0 there is some n with nx > y, while the latter is not ( Take
(0, 1) < (1, 0). Then, still, (0, n) < (1, 0)).4

Next we generalize Theorem 19 of [SS07] to elementary embeddability.

Theorem 5.4.4 Let T0 be a theory in the signature Π0, Σ1 and Σ2 two dis-
joint sets of fresh function symbols and Ki a set of universally closed clauses
in Π0 ∪ Σi for i = 1, 2. Let Ti := T0 ∪ Ki, i = 1, 2. Suppose that

(1) T0 ⊆ T1 satisfies (EEmbw),

(2) T0 ⊆ T2 satisfies (Embw) and

(3) K1 is Σ1-flat in which all variables are shielded, i.e., all variables occur
below some Σ1-function.

Then the extension T0 ⊆ T0 ∪ K1 ∪ K2 satisfies (Embw). In particular, if all
the extension terms are linear then the above extension is local.

4This counterexample is due to Uwe Waldmann.
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Crucial for the proof is Viorica Sofronie-Stokkermans’ insight that a model
of the base theory can be extended to a partial model of the extended theory
provided it has a weak substructure which is a partial model of the extension
and the extension clauses are flat and shield all variables.

Recall that given two signatures Π ⊆ Π′ and a Π-structure A we call a
corresponding Π′-structure A′ with A′↾Π = A↾Π a Π′-expansion of A.

Lemma 5.4.5 ([SS10], Lemma 5) Let T0 be a theory in Σ0, Σ1 a set of
fresh function symbols and K a (Σ1)-flat set of clauses in Π0 := Σ0 ∪ Σ1.
Let T1 := T0 ∪ K and assume that for each clause C of K it holds that each
variable appears below a Σ1-function. Let A ∈ PModw(Σ1, T1) and let B be
a (total) model of T0 such that χ : A↾Π0

→ B is a (Π0)-embedding. Then
χ and B can be expanded such that χ̂ : A → B̂ is a weak Π1-embedding and
B̂ ∈ PModw(Σ1, T1). Schematically:

T w
1

B̂

B T0

�

A
T w
1

χ̂
6

χ
Π0

-

where Tw
1 indicates that we have a weak partial model of T1.

Proof of Theorem 5.4.4. We start in exactly the same way as in the proof
of the lemma in [SS10]. Let A be a weak partial model of T0 ∪K1 ∪K2 with
total Π0-functions. Then A↾Π2

is a partial model of T2. By assumption A↾Π2

weakly embeds into a total model B of T2. By Lemma 5.4.5, we can extend
B↾Π0

to a weak partial model C− of T1. Since Σ1 and Σ2 are disjoint and
B and C− have the same carrier, we may reattach B’s (total) Σ2-functions
to C−, yielding a (total) model C of T2, which is also a partial model of
T1, and some weak embedding ϕ : A → C. Now we use (EEmbw) to get an
(Π0)-elementary extension D of C which is a total model of T1. In a picture:

T w
1

,T2

C
ψ
Π1

-
T1

D

A
T w
1

,T w
2

Π2

-

ϕ

-

B
T2

6
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where (C↾Π0
, c̄)c̄∈C ≡ (D↾Π0

, ψc̄)c̄∈C . We may further assume that ψ is the
identity. Now we use Theorem 5.3.2 on C↾Π2

and D (choose some listing c̄ of
C’s elements) to obtain a (Π1 ∪ Π2)-structure E such that C↾Π2

4 E↾Π2
and

some elementary embedding χ : D → E↾Π1
.

E

C↾Π2

4
-

D

�
χ

Π
1

because (C↾Π0
, c̄) ≡ (D↾Π0

, c̄)

c̄
⊆

-�

⊇

In particular, C↾Π2
≡ E↾Π2

and E↾Π1
≡ D. Hence, E is a model of T1 ∪ T2

and ϕ can be extended to a weak embedding from A into E : Suppose fA(ā)
is defined. We need to show that ϕ(fA(ā)) = fE(ϕā). If f ∈ Σ2 we have
ϕ(fA(ā)) = fC(ϕā) = fE(ϕā). If f ∈ Σ1 we have

ϕ(fA(ā)) = fC(ϕā) = fD(ϕā)

because C was a weak substructure of D as an Π1-structure. On the other
hand, χ is the identity on C, thus,

fC(ϕā) = χ(fC(ϕā)) = χ(fD(ϕā)) = fE(χϕā) = fE(ϕā).

This establishes the claim. �

5.5 Combinations of Ψ-Local Theories

We also want to address the question of how combinations of different Ψ-local
extensions over a common base theory fare. For a partial algebra A and a
term operator Ψ let us write ΨK(A) for the set ΨK(D(A)) where D(A) is the
table of A (cf. Definition 4.6.4). The following lemma lifts the argument in
[SS07] to Ψ-locality.

Lemma 5.5.1 Let T0 be a theory in Π0, Σ1 and Σ2 two disjoint sets of
fresh function symbols and Ki a set of universally closed clauses in Πi :=
(Σ0 ∪ Σi,Pred), for i = 1, 2. Let Ti := T0 ∪ Ki, i = 1, 2. Let Ψ be a term
closure operator w.r.t. (ΣC

1)- ground terms, A be a partial (Π1∪Π2)-structure
such that A↾Π1

∈ PModw(Σ1, T1) and let B be a (total) model of T2 such that
χ : A↾Π2

→ B is a weak Π2-embedding. Suppose that
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(1) K1 is a set of universally closed Σ1-flat clauses,

(2) all variables of K1 appear below an extension function,

(3) all terms in ΨK1
(A↾Π1

) are defined in A.

Then B can be expanded to a partial (Π1 ∪ Π2)-structure and χ can be ex-
panded such that χ̂ : A → B̂ is a weak (Π1 ∪ Π2)-embedding with B̂↾Π1

∈
PModw(Σ1, T1), B̂↾Π2

is a total model of T2 and all terms of ΨK1
(B↾Π1

) are
defined in B. Schematically:

T w
1

,T2

B̂

B T2

�

A
T w
1

χ̂
6

χ
Π2

-

where Tw
1 indicates that we have a weak partial model of T1 and T2 indicates

that we have a total model of T2

Proof. We need to add the Σ1-functions to B. For f ∈ Σ1 set

f B̂(b1, ..., bn) :=






χ(fA(a1, ..., an)) ∃ai ∈ A s. t. χ(ai) = bi

and fA(a1, ..., an) is defined.

undefined otherwise.

Since χ is 1–1 this is well-defined and χ̂ is a weak embedding by construction.
Also, because the Σ1-functions of B̂ are defined in terms of the Σ1-functions
of A, we have D(B̂↾Π1

) = h̄(D(A↾Π1
)), where h maps a name a of an element

a ∈ A to the name b with χ(a) = b and leaves all other base terms unchanged.
In particular, ΨK1

(B↾Π1
) = h̄ΨK1

(A↾Π1
) by 4.6.1.(5). It follows that all terms

in ΨK1
(B↾Π1

) are defined in B̂.
Since B̂ and B are the same as Π2-structures we trivially have B̂ |= T2, so

the only thing left to show is B̂ |=w T1. To do this, fix on a clause D ∈ K1

and a valuation β : X → B. We may assume that all terms t of D are defined
in (B̂, β) (otherwise there is nothing to show). We will construct a valuation
for A from this. Consider an extension term t in D. By assumption, K1

was flat. This means that t has the form f(x1, ..., xn) for some variables xi.
Because t was defined it follows that there are elements ax1

, ..., axn
of A such

that χ(axi
) = β(xi) and

β(t) = f B̂(β(x1), ..., β(xn)) = χ(fA(ax1
, ..., axn

)).
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Note that since χ was 1 − 1 the choice of the element ax for a variable x is
unique. Hence, we may define a map α : x 7→ ax. As all terms in D were
defined in (B̂, β) so they are in (A, α) and we have A, α |= D as well as
χ(α(t)) = β(t) for all terms t in D. The claim now follows from the fact
that weak embeddings preserve quantifier-free formulas in which all terms
are defined. �

Union of chain of partial models. As we saw in Section 2.1, the technique
of building up a model step-by-step, is always admissible provided the theory
is ∀∃. Then the limit will also be a model of T (Chang- Los-Suszko theorem).

We want to employ this powerful tool on partial structures as well. Let
Bi be partial Σ1-models such that Bi ⊆w Bi+1, i = 0, 1, 2, . . . . We want to
construct the union Bω of this chain. As carrier, we simply take the union of
the carriers Bi just as we would for the union of a chain of total models. Now
we have to say what the functions of Bω should be. Note that if a partial
function fBi is defined on a tuple b̄ it will remained defined on b̄ and will have
the same value in any model Bj with j ≥ i. This is because we are dealing
with weak inclusions. Thus we may define

fBω(b̄) :=

{
fBi(b̄) if there is an i such that fBi(b̄) is defined.

undefined otherwise.

and we now get our structure Bω :=
⋃

i<ω Bi.

The following theorem lifts a theorem of [SS10] from locality to Ψ-locality.

Theorem 5.5.2 Let T0 be a theory in the signature Π0, Σ1 and Σ2 two dis-
joint sets of fresh function symbols and Ki a set of universally closed clauses
in Πi := Π0 ∪ Σi, for i = 1, 2. Let Ti := T0 ∪ Ki, i = 1, 2. Let Ψi be term
closure operators w.r.t. ground (ΣC

i )-terms, i = 1, 2. Suppose that

(1) T0 is ∀∃,

(2) Ki is Σi-flat and T0 ⊆ Ti has (EmbΨi

w ), for i = 1, 2,

(3) all variables are shielded in Ki, i.e., all variables occur below an exten-
sion function, i = 1, 2.

Then T0 ⊆ T0∪K1∪K2 has (EmbΨ1∪Ψ2

w ) where (Ψ1∪Ψ2)(Γ) := Ψ1(Γ)∪Ψ2(Γ).

Proof. To reduce clutter, let us drop the subscript K for the term operators
Ψi in this proof and say ’Ψi(A) is defined’ to mean ’Ψi(A↾Πi

) is defined in
A↾Πi

’.
Let A be a partial model of T0 ∪ K1 ∪ K2 with total Σ0-functions such

that the terms in (Ψ1 ∪ Ψ2)(A) are all defined. We need to embed A into a
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total model of T0 ∪ K1 ∪ K2. We will build up this total model inductively
by repeatingly using the above lemma and embeddability to get a diagram

T1,Tw
2

B1

T1,Tw
2

B3

...

A
Tw
1

,Tw
2

-

B2
Tw
1

,T2

-

-

B4
Tw
1

,T2

-

-

where all the arrows are weak (Π1 ∪ Π2)-inclusions, B2k |= T2, B2k |=w T1,
and all terms in Ψ1(B2k) are defined; and B2k+1 |= T1, B2k+1 |=w T2, and all
terms in Ψ2(B2k+1) are defined.

We begin by using (EmbΨ1

w ) to get a total model C1 of T1 into which A↾Π1

weakly embeds (Ψ1(A) is defined). Here and hereafter we may assume that
the (weak) embedding is the identity. We then use Lemma 5.5.1 to extend C1

to a partial model B1 of T2. We may do so because Ψ2(A) was also defined,
hence it follows from Lemma 5.5.1 that Ψ2(B1) is defined as well. Hence, we
may (weakly) embed B1 into a total model C2 of T2. Trivially, all terms of
Ψ1(B1) are defined. We may therefore extend C2 to a partial model B2 of T1

(which is still a model of T2) in which all terms of Ψ1(B2) are defined.
Continuing in this manner we obtain a chain of partial models. Now

consider its union Bω. Bω is a model of T0 because T0 was ∀∃. Now note that
Bω is in fact a total structure. Suppose fBω(b̄) was undefined for f ∈ Σ1,
say. Then we could choose i big enough such that b̄ ∈ Bi. Now, i cannot
be odd because B2k+1 has total Σ1-functions. Hence, i is even. For the same
reason, fBi+1(b̄) will be defined. But then it will stay defined thereafter.
Contradiction.

We claim that Bω is also a (total) model of T1 ∪ T2. Let’s do this for
K1, the other case is similar. Fix a valuation β : X → Bω and a clause
D ∈ K1 in the variables x̄. Let b̄ := β(x̄). Now, choose k big enough such
that b̄ ∈ B2k+1. We have B2k+1 |= D[̄b]. And because B2k+1 is a substructure
of Bω (considered as Π1-models) and quantifier-free formulas are preserved
under embeddings we get Bω |= D[̄b] as desired. �

Corollary 5.5.3 With the above notations, suppose that the Ki are addi-
tionally Σi-linear for i = 1, 2. Then for any closure operator such that
Ψ3 ⊇ (Ψ1 ∪ Ψ2) it holds that T0 ⊆ T0 ∪ K1 ∪ K2 is a Ψ3-local extension.



Chapter 6

Implementation: H-PILoT

We developed and implemented the software system H-PILoT (Hierarchical
Proving by Instantiation in Local Theory extensions) for hierarchical reason-
ing in local theory extensions: A given proof task (set of ground clauses),
over the extension of a theory with functions axiomatized by a set of clauses,
is reduced to an equi-satisfiable ground problem over the base theory (cf.
Lemma 2.5.1).

After H-PILoT has carried out this reduction, it hands over the trans-
formed problem to a dedicated prover for the base theory. This reduction is
always sound. For local theory extensions the hierarchical reduction is sound
and complete. If the formulas obtained in this way belong to a fragment
decidable in the base theory, H-PILoT thus provides a decision procedure
for testing satisfiability of ground formulas. In case the reduced formulas
are satisfiable (modulo the base theory), H-PILoT can be used for model
generation, which is of great help in detecting and localizing errors.

H-PILoT is implemented in Ocaml1. The system, together with a manual
and examples, can be downloaded from www.mpi-inf.mpg.de/~ihlemann/

software/. There is both a 32-bit and a 64-bit Linux version available, the
current version is 1.92.

H-PILoT has been used in large case studies and the system has been
presented at CADE 2009 ([ISS09]). For complex case studies H-PILoT’s
ability to handle chains of extensions has been crucial. H-PILoT has ad-
vanced abilities to handle the common data structures of arrays (Section 6.5)
and pointers (Section 6.8): H-PILoT automatically detects whether a given
specification falls within the local fragment of these theories. To improve
user-friendliness, a clausifier has also been integrated into H-PILoT (Section
6.10). On request, H-PILoT provides an extensive step-by-step trace of the

1http://caml.inria.fr/ocaml/index.en.html
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reduction process, making its results verifiable (Section 6.15).
The provers integrated with H-PILoT are the general-purpose prover

SPASS ([WDF+09]); the SMT-solvers Yices ([DdM06]), CVC3 ([BT07]) and
Z3 ([dMB08]); and the prover Redlog ([DS97]), for non-linear real problems.

State-of-the-art SMT provers, such as the ones above, are very efficient for
testing the satisfiability of ground formulas over standard theories, such as
linear arithmetic (real, rational or integer), but use heuristics in the presence
of universally quantified formulas, hence, cannot reliably detect satisfiability
of such formulas. However, if SMT solvers are used for finding software bugs,
their being able to detect the actual satisfiability of satisfiable sets of formulas
is crucial (cf. [dM09, dMB08, GdM09, BdM09]).

H-PILoT recognizes a class of local axiomatizations, performs the instan-
tiation and hands in a ground problem to the SMT provers or other special-
ized provers, for which they are known to terminate with a yes/no answer,
so it can be used as a tool for steering standard SMT provers, in order to
provide decision procedures in the case of local theory extensions.
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6.1 Structure of the Program

The main algorithm which hierarchically reduces a decision problem in a
theory extension to a decision problem in the base theory can be divided
into a preprocessing part, the main loop and a post-processing part; see
Figure 6.1.
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not local
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noyes

yes

Figure 6.1: H-PILoT Struc-
ture

The input is read and parsed. If it is de-
tected to be in SMT format, we set the op-
tions to “use arithmetic” (e.g., +, −,... are
predefined). If the input is not in clause nor-
mal form (CNF), it is translated to CNF,
then the input is flattened and linearized.
The program then checks if the clauses in
the axiomatization given are local exten-
sions and sets the flag -local to true/false.
This ends the preprocessing phase.

Main Algorithm

The main loop proceeds as follows: We con-
sider chains of extensions T0 ⊆ T1 ⊆ · · · ⊆
Tn, where Ti = T0 ∪

⋃i
j=1 Kj of T0 with

function symbols in a set Σi (extension func-
tions) whose properties are axiomatized by
a set Ki of (Π0 ∪

⋃i

j=1 Σj)-clauses.
Let i = n. As long as the extension level

i is greater than 0, we compute Ki[G] (Ki[Ψ]
for arrays). If no separation of the exten-
sion symbols is required, we stop here (the
result will be passed to an external prover
that can reason about the extension of the
theory T0 with free function symbols in Σn).
Otherwise, we perform the hierarchical re-
duction by purifying Ki and G (to K0

i , G0

respectively) and by adding corresponding
instances of the congruence axioms Coni.
To prepare for the next iteration, we transform the clauses into the form
∀x̄.Φ ∨Ki (compute prenex form, skolemize). If Ki[G] (i > 1) is not ground,
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we quit with a corresponding message. Otherwise we set G′ := K0
i ∧G

0∧Coni

and T ′ := T \ {Ki}. We flatten and linearize K′ and decrease i. If level i = 0
is reached G′ is handed to an external prover.

Post-processing

If the answer is “unsatisfiable” then G |=Tn
⊥. If the answer is “satisfiable”

and all extensions were local, then G is satisfiable w.r.t. Tn and we know
how to build a model. If the answer is satisfiable but we do not know that
all extensions are local, or if the instantiated clauses (of level > 1) were not
ground, we answer “unknown”.

6.2 Modules of H-PILoT

We present the different parts of H-PILoT in more detail.

Preprocessing

H-PILoT receives as input a many-sorted specification of the signature; a
specification of the hierarchy of local extensions to be considered; an axiom-
atization K of the theory extension(s); a set G of ground clauses containing
possibly additional constants. H-PILoT allows the following preprocessing
functionality.

Translation to Clause Form. H-PILoT provides a translator to clause
normal form (CNF) for ease of use. First-order formulas can be given as
input; H-PILoT translates them into CNF. In the present implementation,
the CNF translator does not provide the full functionality of FLOTTER
([NW01]) – it has only restricted subformula renaming – but is powerful
enough for most applications.

Flattening/Linearization. Methods for recognizing local theory exten-
sions usually require that the clauses in the set K extending the base theory
are flat and linear, which does nothing to improve readability. If the flags
-linearize and/or -flatten are used then the input is flattened and/or linearized
(the general purpose flag -preprocess may also be used). H-PILoT allows the
user to enter a more intelligible non-flattened version and will perform the
flattening and linearization of K.

Recognizing Syntactic Criteria which Imply Locality. Examples of
local extensions include (the fragments of) the theories of data structures
discussed in Section 4.2 and Section 4.8, respectively (and also iterations
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and combinations thereof). In the preprocessing phase H-PILoT analyzes
the input clauses to check whether they are in one of these fragments.

• If the flag -array is on, H-PILoT checks if the input is in the array
property fragment (cf. Definition 4.2.1).

• If the keyword “pointer” is detected, H-PILoT checks if the input is
in the pointer fragment (cf. Definition 4.8.1) and adds missing “nulla-
bility” terms, i.e., it adds premises of the form “t 6= null”, in order to
relieve the user of this clerical labor.

If the answer to either of these questions is “yes”, we know that the extensions
we consider are local, i.e., that H-PILoT can be used as a decision procedure.

Main Algorithm

The main algorithm hierarchically reduces a decision problem in a theory
extension to a decision problem in the base theory.
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Base theory:

Extension 1: 
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Base theory:

Extension 1: 

Extension n: 

0T

1

nT

T
...

T

...
G

Base theory:
0T

Yices CVC Z3 SPASS RedLog

G

Gn−1

n

Given a set of clauses K and a set of
ground clauses G, the algorithm we use car-
ries out a hierarchical reduction of G to a set
of formulas in the base theory. It then hands
over the new problem to a dedicated prover
such as Yices, CVC3 or Z3. H-PILoT is
also coupled with Redlog (for handling non-
linear real arithmetic) and with SPASS2.

Loop. For a chain of local extensions:

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪ K2

⊆ ... ⊆ Tn = T0 ∪ K1 ∪ ... ∪ Kn.

a satisfiability check w.r.t. the last extension
can be reduced (in n steps) to a satisfiability
check w.r.t. T0. The only caveat is that at
each step the reduced clauses K0

i ∪G
0∪Con0

need to be ground. Groundness is assured
if each variable in a clause appears at least
once under an extension function. In that
case, we know that at each reduction step

2H-PILoT only calls one of these solvers once.
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the total clause size only grows polynomially in the size of G ([SS05]). H-
PILoT allows the user to specify a chain of extensions by tagging the exten-
sion functions with their place in the chain (e.g., if f belongs to K3 but not
to K1 ∪ K2 it is declared as level 3).

Let i = n. As long as the extension level i is bigger than 0, we compute
Ki[G] (Ki[Ψ(G)] in case of arrays). If no separation of the extension symbols
is required, we stop here (the result will be passed to an external prover).
Otherwise, we perform the hierarchical reduction in Lemma 2.5.1 by purifying
Ki and G (to K0

i , G
0 respectively) and by adding corresponding instances of

the congruence axioms Coni. To prepare for the next iteration, we transform
the clauses into the form ∀x.Φ ∨ Ki (compute prenex form, skolemize). If
Ki[G]/K0

i is not ground, we quit with a corresponding message. Otherwise
our new proof task G′ becomes G′ := K0

i ∧ G0 ∧ Coni, our new extension
clauses are K′ := Ki−1 and our new base theory becomes T ′ := Ti−1 \{Ki−1}.
We flatten and linearize K′ and decrease i. If level i = 0 is reached, we
exit the main loop and G′ is handed to an external prover. Completeness is
guaranteed if all extensions are known to be local and if each reduction step
produces a set of ground clauses for the next step.

Post-processing

Depending on the answer of the external provers to the satisfiability problem
Gn, we can infer whether the initial set G of clauses was satisfiable or not.

• If Gn is unsatisfiable w.r.t. T0 then we know that G is unsatisfiable.

• If Gn is satisfiable, but H-PILoT failed to detect this, and the user did
not assert the locality of the sets of clauses used in the axiomatization,
its answer is “unknown”.

• If Gn is satisfiable and H-PILoT detected the locality of the axioma-
tization, then the answer is “satisfiable”. In this case, H-PILoT takes
advantage of the ability of SMT-solvers to provide counterexamples for
the satisfiable set Gn of ground clauses and specifies a counterexample
of G by translating the basic SMT-model of the reduced query to a
model of the original query. This improves readability greatly, espe-
cially when we have a chain of extensions. The counterexamples can
be graphically displayed using Mathematica (cf. Section 6.16). This is
currently done separately; an integration with Mathematica is planned
for the future.
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6.3 Application Areas

H-PILoT has applications in mathematics, multiple-valued logics, data- struc-
tures and reasoning in complex systems.

Mathematics. In Section 3.6.2 we have discussed the locality of theory
extensions of monotone functions over partially ordered sets. We will give
an example of how to use H-PILoT on problems involving monotonicity in
Section 6.4 below. Another example from mathematics is an extension with
free functions, i.e., we have an empty set of extension clauses K but the
proof task G contains new function symbols. Even in this simple case, local
and hierarchical reasoning is useful, because expanding the signature might
already derail a back-end prover. For instance, consider real arithmetic.
Linear arithmetic is tractable and can be handled quite efficiently by state-
of-the-art SMT-solvers. Non-linear arithmetic is another matter, however (cf.
[FHT+07, BPT07]). Here the options are more limited. To handle non-linear
real arithmetic, H-PILoT is integrated with the prover Redlog ([DS97]). Since
Redlog uses quantifier elimination for real closed fields, it relies on a fixed
signature. In a case like this, H-PILoT can be employed as a preprocessor
that eliminates the new function symbols in the proof task, allowing the user
to employ free function symbols together with (non-linear) real arithmetic.
Another example from mathematics, taken from [SS05], is that of a Lipschitz
function (roughly, smooth continuity at a given point). There it was shown
that any extension of the real numbers with a Lipschitz function is local.

Multiple-valued logics. Another important application area of local rea-
soning and, by the same token, H-PILoT is reasoning in multiple-valued
logics. This was discussed in Section 3.6.1. These logics have more than two
truth values, in fact they allow as truth values the whole real interval of [0, 1].
The semantics are often given algebraically. For example, the class MV of
all MV-algebras is the quasi-variety generated by the real unit interval [0, 1]
with connectives {∨,∧, ◦,⇒}, defined as explained in Section 3.6.1.3 The
connectives for these algebras can be defined in terms of real functions and
relations. Hence, these connectives can be seen as the extension functions of
a definitional extension over the reals, which is local (cf. Theorem 3.6.2 on
page 49). One may, therefore, reduce universal validity problems over the
class of MV-algebras, say, to a constraint satisfiability problem over the unit
interval [0, 1] (cf. [SSI07a, SSI07b]). This allows one to use solvers for the
real numbers to discharge proof tasks over multiple-valued logics. We will
give an example of this in Section 6.6.

3Other examples are Gödel or product algebras.
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Data structures. The ubiquitous data structures of arrays and lists satisfy
locality conditions as we saw in Sections 4.2 and 4.8, respectively, if we
confine ourselves to appropriate fragments of these theories. This matters
in particular if we have satisfiable problems. In order to have a full decision
procedure - one that is also able to give the correct answer for satisfiable
problems - one has to stay inside of these fragments. H-PILoT automates
this task: it will check whether a given problem lies inside the appropriate
fragment of the theory of arrays or pointers, respectively, and give the answer
“satisfiable” only if this is the case. Otherwise, H-PILoT will give the answer
“unknown” and warn the user that the problem did not fall inside the local
fragment. (For unsatisfiable problems this never matters. If we can derive
a contradiction from the local instances alone, we can derive one from the
universal extension axioms a fortiori.)

Reasoning in complex systems. In order to be able to handle complex
real life systems which mix many theories, a stratified approach is expedient:
we consider chains of local extensions (cf. [JSS07]). This feature is supported
in H-PILoT. The user simply has to tag extension functions with their re-
spective level in the chain. A reduction is then carried out iteratively by the
program. A full-fledged reduction is possible provided the reduced theory
clauses are ground at each level of the extension chain. H-PILoT has been
part of a vertically integrated tool chain, checking invariants of a transition
system modeling a European train controller system (see Section 6.12). The
correctness of the model was shown automatically ([FIJSS10]). The under-
lying track topology was complex and dynamic, making H-PILoT’s ability
to decide the pointer fragment essential. It was also a great help in practice,
due to its ability to provide (readable) counterexamples in the cases where
the problem together with the axiomatization was satisfiable. This aided the
modeler in finding gaps in the specification.

6.4 Examples

We illustrate the way H-PILoT is implemented and can be used on some ex-
amples. First, let us consider monotone functions over some partially ordered
set.

Monotone functions. We consider two monotone functions f and g as
extension over the base theory of a partial order. That is, our base theory
consists of the axioms for reflexivity, transitivity and anti-symmetry.

(1) ∀x. x ≤ x.

(2) ∀x, y. x ≤ y ∧ y ≤ x→ x = y.
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(3) ∀x, y, z. x ≤ y ∧ y ≤ z → x ≤ z.

Our extension consists of the two new function symbols together with the
clauses expressing monotonicity.

(1) ∀x, y. x ≤ y → f(x) ≤ f(y).

(2) ∀x, y. x ≤ y → g(x) ≤ g(y).

Let us call our base theory T0, the extension clauses K and our proof task
G as before. That is, we want to know whether T0 ∪ K ∪G |= ⊥.

In this case, we want to show that c0 ≤ c1 ≤ d1 ∧ c2 ≤ d1 ∧ d2 ≤ c3 ∧ d2 ≤
c4∧f(d1) ≤ g(d2) implies f(c0) ≤ g(c4). Expressed as a satisfiability problem,
this gives us the following problem G:

c0 ≤ c1 ≤ d1 ∧ c2 ≤ d1 ∧ d2 ≤ c3 ∧ d2 ≤ c4 ∧ f(d1) ≤ g(d2) ∧ ¬f(c0) ≤ g(c4).

As an input file for H-PILoT this looks as follows (we use “R” as order
relation because ≤ is reserved).

% Two monotone functions over a poset.

% Status: unsatisfiable

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

Relations:={(R, 2)}

% R is partial order

Base := (FORALL x). R[x, x];

(FORALL x,y,z). R[x, y], R[y, z] --> R[x, z];

(FORALL x,y). R[x, y], R[y, x] --> x = y;

Clauses := (FORALL x,y). R[x, y] --> R[f(x), f(y)];

(FORALL x,y). R[x, y] --> R[g(x), g(y)];

Query := R[c0, c1];

R[c1, d1];

R[c2, d1];

R[d2, c3];

R[d2, c4];

R[f(d1), g(d2)];

NOT(R[f(c0), g(c4)]);
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In this case we have no function symbols at all in our base theory and
two functions symbols f and g of arity 1 in our extension clauses. This is
expressed by:

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

We have only one relation in our (base) clauses, viz. ’R’. It has arity 2 of
course. This we express by

Relations:={(R, 2)}.

For technical reasons, relations require square brackets for their argu-
ments in H-PILoT as seen above. The symbols <=, <, >= and > are reserved
for arithmetic over the integers or over the reals. They may be written infix
and there are provers (e.g., Yices, CVC) that “understand” arithmetic and
orderings. We wouldn’t have needed to axiomatize ’≤’ at all.

However, the above problem is more general. It concerns every partial
order not only orderings of numbers. By default, H-PILoT calls SPASS.
SPASS has no in-built understanding of orderings and, thus, <= would be
just an arbitrary symbol. For clarity we used the letter ’R’.

As for the syntax of clauses, one should note that the syntax of H-PILoT
requires that each clause must end with a semicolon, be in prenex normal
form and all names meant to be (universal) variables must be explicitly
quantified.

Every name which is not explicitly quantified will be considered a constant!

As we can see in our query.

Query := R[c0, c1];

R[c1, d1];

R[c2, d1];

R[d2, c3];

R[d2, c4];

R[f(d1), g(d2)];

NOT(R[f(c0), g(c4)]);

Note further that because the background theory, extension theory and
the query must all be clauses4, we need to break up the conjunction in our
original query into a set of unit clauses. A non-unit clause may be written

4In fact, the extension clauses might be more general as we will see later.
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as above in a “sorted” manner ϕ1, ..., ϕn → ψ1, ..., ψk for ϕ1 ∧ ... ∧ ϕn →
ψ1 ∨ ... ∨ ψk, i.e., as an implication with the negated atoms of the clause in
the antecedent and the (positive) atoms in the consequent (the operator -->
is reserved for sorted clauses) or as an arbitrary disjunctions of literals.

The name of the input files for H-PILoT can be freely chosen, although
it is customary to have them have the suffix “.loc”. Suppose we have put
the above problem in a file named mono_for_poset.loc, then we can run
H-PILoT by calling

hpilot.opt mono_for_poset.loc

H-PILoT will parse the input file, carry out the reduction and then will
hand over the reduced problem to SPASS (using the same name but with the
suffix “.dfg”). SPASS terminates quickly with the result that a proof exists

SPASS beiseite: Proof found.

Problem: mono_for_poset.dfg

SPASS derived 35 clauses, backtracked 0 clauses and kept 41 clauses.

SPASS allocated 496 KBytes.

SPASS spent 0:00:02.32 on the problem.

0:00:00.00 for the input.

0:00:00.00 for the FLOTTER CNF translation.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.10 for the reduction.

meaning that the set of clauses is inconsistent. Just what we wanted to show.

One can see the full reduction process by using the option -prClauses. The
reduction performed is that of Lemma 2.5.1.

Arrays. For a more complicated example, let us consider an algorithm for
inserting an element x into a sorted array a with the bounds l and u. We
want to check that the algorithm is correct, i.e., that the updated array a′

remains sorted. This could be an invariant being checked in a verification
task. There are three different cases. First, x could be smaller than any
element in a (equivalently, x < a[l]), x could be greater than any element of
a (x > a[u]) or, thirdly, there is a position p (l < p ≤ u) such that a[p−1] < x
and x ≤ a[p]. In the first two cases we put x at the first respectively last
position of the array. In the third case, we insert x at position p and shift
the other elements to the right, i.e., a′[i+1] = a[i] for i > p. We have to take
care to cover aberrant cases where the array contains only 1 or 2 elements.
As input it will look as follows.
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Clauses :=

% case 1

(FORALL i). i = l, x <= a(i) --> a’(i) = x;

(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

(FORALL i). a(u) <= x, l - _1 <= i, i < u

--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3

(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;

(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),

x <= a(i + _1) --> a’(i + _1) = a(i);

(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);

(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x

--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

with the last clause saying that a was sorted at the beginning.
There are several things to note. Most importantly, we now have a two-

step extension. First, an array can be simply seen as a partial function. This
gives us the first extension T0 ⊆ T1. T0 here is the theory of indices (integers,
say) which we extend by the function a and the axiom for monotonicity of a.
Now we update a, giving us a second extension T2 ⊇ T1 where our extension
clauses K2 are given by the three cases above.

Of course, we need to make sure that the last extension is also local.
This is easy to establish, however, because K2 is a definitional extension or
case distinction, (cf. Definition 3.6.2). A definitional extension is one where
extension functions f only appear in the form ϕi(x̄) → f(x̄) = ti(x̄) with
ti being a base theory term and the ϕi are mutually exclusive base theory
clauses. This is the reason that we have written ∀i.i = l, x ≤ a(i) → a′(i) = x
instead of the shorter x ≤ a(l) → a′(l) = x: to ensure that the antecedents of
the clauses are all mutually exclusive. Now we know that we are dealing with
a definitional and therefore local extension. (Remember that for assessing
if T2 ⊇ T1 is a local extension, T1 is our base theory, that T1 is itself an
extension is of no moment.)

We need to tell the program that we are dealing with a chain of ex-
tensions instead of a single one. We do this by the simple expedient of
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declaring to which level of the chain an extension function belongs, like thus
(f, arity, level).

In our example that would be

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

The program will now automatically determine the level of each extension
clause. In our example, an extension clause will have level 2 if and only if a′

occurs in it and level 1 otherwise (level 0 means base clause).
Also note that numerals (names for integers) must be preceded by an

underscore such as _1 and that + and − may be written infix for readability;
(=,+,−, ∗, /) are the only functions for which this is allowed5.

Our declarations, therefore should look like this.

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

All that is left to do now is add our query – the negation of

∀i, j. l ≤ i ≤ j ≤ u→ a′(i) ≤ a′(j)

– to the mix and hand it over. The entire file looks like this.

% ai.loc

% Arrays for definitional extensions;

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2), (a, 1, 1)}

Relations:={(<=, 2), (<, 2)}

% K

Clauses :=

% case 1

(FORALL i). i = l, x <= a(i) --> a’(i) = x;

(FORALL i). x <= a(l), l < i, i <= u + _1 --> a’(i) = a(i - _1);

% case 2

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

(FORALL i). a(u) <= x, l - _1 <= i, i < u

5When using SPASS, they may also be written infix but nevertheless they are just free
functions for SPASS.
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--> x <= a(l), a’(i + _1) = a(i + _1);

% case 3

(FORALL i). x < a(u), l <= i, i < u, a(i) < x, x <= a(i + _1)

--> a’(i + _1) = x;

(FORALL i). a(l) < x, x < a(u), l <= i, i < u, x <= a(i),

x <= a(i + _1) --> a’(i + _1) = a(i);

(FORALL i). a(l) < x, x < a(u), i = u + _1 --> a’(i) = a(i - _1);

(FORALL i). a(l) < x, x < a(u), l - _1 <= i, i < u, a(i + _1) < x

--> a’(i + _1) = a(i + _1);

(FORALL i,j). l <= i, i <= j, j <= u --> a(i) <= a(j);

Query := l <= m;

m <= n;

n <= u + _1;

NOT( a’(m) <= a’(n) );

We do not need to declare a base theory here because we will be using
Yices and Yices already “knows” integer arithmetic. We call H-PILoT thus.

hpilot.opt -yices -preprocess ai.loc

H-PILoT will produce a reduction, put it in a file name ai.ys and pass it
over to Yices which will say unsat or sat. A note on the flag -preprocess:
Establishing that some extension is local, presupposes that the extension
clauses K be flat and linear. Recall that flatness simply means that we
have no nesting of extension functions and linearity means first, that we
have no variable occurring twice in any extension term and, further, that if
any variable occurs in two extension terms, the terms are the same. In this
example, we have non-flat clauses such as

(FORALL i). i = u, a(i) <= x --> x <= a(l), a’(i + _1) = x;

We rectify matters by a flattening operation - rewriting the above clause to

(FORALL i,j). j = i + _1, i = u, a(i) <= x -->

x <= a(l), a’(j) = x;

This will not affect consistency of any query w.r.t. K (Corollary 2.3.3). It
hardly improves readability however. Therefore the program will do it for
you if you tell it to -preprocess the input.
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6.5 Arrays

We pick up the example from Section 4.3 to show how it can be dealt with
by H-PILoT. Recall that for the array property fragment the following syn-
tactical restrictions were imposed.

(1) An index guard is a positive Boolean combination of atoms of the form
t ≤ u or t = u where t and u are either a variable or a ground term of
linear arithmetic.

(2) A universal formula of the form (∀x̄)(ϕI(x̄) → ϕV (x̄)) is an array prop-
erty if it is flat, if ϕI is an index guard and if all occurrences of the
variables are shielded by extension functions in ϕV , i.e., variables x
only occur as direct array reads a[x] in ϕV .

In this section we will only consider extensions by clauses of the above
form. Our base theory will always be linear integer arithmetic (Presburger).
We will have to use minimal local in order to be able to handle this fragment.
In H-PILoT minimal locality is also implemented. Call

hpilot.opt -arrays k.loc

to use this feature.

Let us again consider the example of inserting into a sorted array a from
Section 4.3. Arrays are modeled as free functions and array updates are dealt
with by introducing new array names. In this fashion, Let d be just like a
but for position k which is w and let e be just like d except maybe at position
l where we have written x and similarly for c,b and a. Our set K of extension
clauses looks as follows.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i 6= l → b[i] = c[i]), (3)

(∀i)(i 6= k → a[i] = b[i]), (4)

(∀i)(i 6= l → d[i] = e[i]), (5)

(∀i)(i 6= k → a[i] = d[i]). (6)






K

Our query (with additional constraints) is
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w < x < y < z,

0 < k < l < n,

k + 3 < l,

c[l] = x,

b[k] = w,

e[l] = z,

d[k] = y.






G

The input file looks just like this. (The operators are written prefix here
which requires the names plus and minus, because + and - are reserved for
infix.)

% Arrays for minimal locality

Base_functions:={(plus,2), (minus, 2)}

Extension_functions:={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)}

Relations:={(<=, 2)}

% K

Clauses := (FORALL i,j). _0 <= i, i <= j,

j <= minus(n, _1) --> c(i) <= c(j);

(FORALL i,j). _0 <= i, i <= j,

j <= minus(n, _1) --> e(i) <= e(j);

(FORALL i). --> i=l, b(i) = c(i);

(FORALL i). --> i=k, a(i) = b(i);

(FORALL i). --> i=l, d(i) = e(i);

(FORALL i). --> i=k, a(i) = d(i);

Query := plus(w, _1) <= x;

plus(x, _1) <= y;

plus(y, _1) <= z;

plus(_0, _1) <= k;

plus(k, _1) <= l;

plus(l, _1) <= n;

plus(k, _3) <= l;

c(l) = x;

b(k) = w;

e(l) = z;

d(k) = y;
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K does not yet fulfill the syntactic requirements (index guards must be
positive!). We must rewrite K in a suitable fashion. We change an expression
i 6= l where i is the (universally quantified) variable to i ≤ l − 1 ∨ l + 1 ≤ i.
We have to rewrite it like this because the universally quantified variable i
must appear unshielded in the index guard. This gives us the following set
of clauses.

H-PILoT performs this and the following rewrite steps automatically to
spare the user this tedious labor.

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → c[i] ≤ c[j]), (1)

(∀i, j)(0 ≤ i ≤ j ≤ n− 1 → e[i] ≤ e[j]), (2)

(∀i)(i ≤ l − 1 → b[i] = c[i]), (3)

(∀i)(l + 1 ≤ i→ b[i] = c[i]), (4)

(∀i)(i ≤ k − 1 → a[i] = b[i]), (5)

(∀i)(k + 1 ≤ i→ a[i] = b[i]), (6)

(∀i)(i ≤ l − 1 → d[i] = e[i]), (7)

(∀i)(l + 1 ≤ i→ d[i] = e[i]), (8)

(∀i)(i ≤ k − 1 → a[i] = d[i]), (9)

(∀i)(k + 1 ≤ i→ a[i] = d[i]). (10)






K′

Also, K is not linear, this must also be taken care of. H-PILoT will carry
out all these necessary rewrite steps for the user. He can simply input the
above file to deal with this example.

Instead of using a cluster of free functions to specify array updates,
H-PILoT allows the user to model array updates directly by using a “write”
function. For example, use write(a, i, x) to denote a new array which is just
like a except (possibly) at position i where the value of the new array is set
to x. In this way we could have specified our problem above as

% Arrays for minimal locality with ’write’function.

Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(a, 1)}

Relations:={(<=, 2)}

% K

Clauses :=

(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->

write(write(a,k,w), l, x)(i) <= write(write(a,k,w), l, x)(j);
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(FORALL i,j). _0 <= i, i <= j, j <= n - _1 -->

write(write(a,k,y), l, z)(i) <= write(write(a,k,y), l, z)(j);

Query := w + _1 <= x;

x + _1 <= y;

y + _1 <= z;

_0 + _1 <= k;

k + _1 <= l;

l + _1 <= n;

k + _3 <= l;

As above, H-PILoT will also automatically split on disequations in the
antecedent. Note also that since we assume that indices of arrays are integers,
it makes no difference whether we write w + _1 or plus(w, _1) in the input
file. Linear integer arithmetic will be used (Yices is default).

6.6 Global Constraints6

Sometimes we want to restrict the domain of the problem, e.g., we want to
consider natural numbers instead of integers or we are interested in a real
interval [a, b] only. Yices and CVC support the definition of subtypes. When
using one of these it is possible to state a global constraint on the domain of
the models in the preamble like thus.

Interval := 0 <= x <= 1;

This will restrict the domain of the models of the theory to the unit interval
[0, 1]. It is equivalent to adding the antecedent 0 ≤ x ∧ x ≤ 1, for every
variable x, to each formula in the clauses and the query.

The bounds of the interval can also be exclusive or mixed as in

Interval := 0 < x <= 1;

or one-sided as in

Interval := 2 <= x;

6This feature is not supported for Z3.
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Consider again the example from Section 3.6.1, concerning multiple-valued
logic. The class MV of all MV-algebras is the quasi-variety generated by the
real unit interval [0, 1] with the  Lukasiewicz connectives {∨,∧, ◦,⇒}, i.e., the
algebra [0, 1]L = ([0, 1],∨,∧, ◦,⇒). Further the  Lukasiewicz connectives can
be defined in terms of the real functions ’+,−’ and the relation ’≤’, giving
us a local extension over the real unit interval.

Therefore, the following are equivalent:

(1) MV |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(2) [0, 1]L |= ∀x
∧n

i=1 si(x) = ti(x) → s(x) = t(x)

(3) T0 ∪ DefL ∧
∧n

i=1 si(c) = ti(c) ∧ s(c) 6= t(c) |=⊥,

where T0 consists of the real unit interval [0, 1] with the operations +,− and
predicate symbol ≤.

For instance, we might want to establish that linearity x⇒ y.∨.y ⇒ x = 1
follows from the axioms. As an input file for H-PILoT it looks like this.

% file mv1.loc

% Example for MV-algebras

% The Lukasiewicz connectives can be defined

% in terms of the (real) connectives +,-,<=

Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(V, 1), (M, 1), (o, 1), (r, 1)}

Relations:={(<=, 2), (<, 2), (>, 2), (>=, 2)}

Interval := 0 <= x <= 1;

% K

Clauses := % definition of \/

(FORALL x,y). x <= y --> V(x, y) = y;

(FORALL x,y). x > y --> V(x, y) = x;

% definition of /\

(FORALL x,y). x <= y --> M(x, y) = x;

(FORALL x,y). x > y --> M(x, y) = y;

% definition of o

(FORALL x,y). x + y < _1 --> o(x, y) = _0;

(FORALL x,y). x + y >= _1 --> o(x, y) = (x + y) - _1;
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% definition of =>

(FORALL x,y). x <= y --> r(x, y) = _1;

(FORALL x,y). x > y --> r(x, y) = (_1 - x) + y;

Query := % linearity: x => y . \/ . y => x = 1

NOT(V(r(a, b), r(b, a)) = _1);

6.7 Types

In default mode using SPASS, H-PILoT hands over a set of general first-
order formulas without types. However, H-PILoT also provides support for
the standard types int, real, bool and for free types. When using CVC
or Yices the default type is int, for Redlog it is real. The default type does
not need to be specified in the input file. One can also use the -real flag to
set the default type to real for Yices and CVC.

Free types are specified as free#i, i = 1, 2.. or simply as free if there is
only one free type. When using free types the flag -freeType must be set.
Only Yices and CVC are able to handle free types (Yices is default when
the flag is set). When using mixed type in one input file, the types of the
functions and the constants need to be declared. If the domain of a function
is the same as the range it is enough to specify the domain as in

(foo, arity, level, domainType)

if they differ say

(foo, arity, level, domainType, rangeType).

Constants are simply declared as

(name, type).

We offer the following example taken from [SS06b].

% Pointers

% status unsatisfiable

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, free#1), (prev, 1, 1, free#1),

(priority, 1, 1, free#1, real),

(state, 1, 1, free#1, free#2)}

Relations:={(>=, 2)}

Constants:={(null, free#1), (eps, real), (a, free#1), (b, free#1),

(RUN, free#2), (WAIT, free#2), (IDLE, free#2)}
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% K

Clauses :=

(FORALL x). OR(state(x) = RUN, state(x) = WAIT, state(x) = IDLE);

% prev and next are inverse

(FORALL p). OR(p = null, prev(next(p)) = null, prev(next(p)) = p);

(FORALL p). --> p = null, next(prev(p)) = null, next(prev(p)) = p;

(FORALL p, q). next(q) = next(p) --> p = null, q = null, p = q;

(FORALL p, q). prev(q) = prev(p) --> p = null, q = null, p = q;

(FORALL p). --> p = null, next(p) = null, state(p) = IDLE,

state(next(p)) = IDLE, state(p) = state(next(p));

(FORALL p). OR(p = null, next(p) = null, NOT(state(p) = RUN),

priority(p) >= priority(next(p)));

Query := NOT(eps = _5);

NOT(eps = _6);

priority(a) = _5;

priority(b) = _6;

a = prev(b);

state(a) = RUN;

NOT(next(a) = null);

NOT(a = null);

NOT(b = null);

6.8 Pointers

The local fragment of the theory of pointers of Section 4.8 is also implemented
in H-PILoT. We consider pointer problems over a two-typed language. One
of which is the type pointer and the other is some scalar type. The scalar
type can be concrete like real, say, or kept abstract in which case it is written
as scalar. There are two function types involving pointers, viz. pointer →
pointer and pointer → scalar, where scalar is either a concrete scalar type
(e.g., real) or an abstract scalar type. The axioms considered are all of the
form

∀p̄. E ∨ C

where p̄ is a set of pointer variables containing all the pointer variables oc-
curring in E ∨ C, E contains disjunctions of pointer equalities and C is a
disjunction of scalar constraints (i.e., literals of scalar type). E ∨ C may also
contain free variables of scalar type or, equivalently, free scalar constants.
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As in Section 4.8, we demand that pointer terms appearing below a func-
tion should not be null in order to rule out null pointer errors. That is, for
all terms f1(f2(. . . fn(p))), i = 1, .., n, occurring in the axiom, the axiom also
contains the disjunction p = null ∨ fn(p) = null ∨ · · · ∨ f2(. . . fn(p)) = null.

Pointer/scalar formulas complying with this restriction were called nul-
lable. The locality result of Theorem 4.8.2 allows the integration of pointer
reasoning with the above features into H-PILoT. The example given by Nec-
ula and McPeak ([MN05]), quoted in Section 4.8, looks like this as input for
H-PILoT. (We have added an appropriate proof task.)

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, pointer),

(prev, 1, 1, pointer),

(priority, 1, 1, pointer, real)}

Relations:={(>=, 2)}

Constants:={(a, pointer), (b, pointer)}

Clauses :=

(FORALL p). prev(next(p)) = p;

(FORALL p). --> next(prev(p)) = p;

(FORALL p). --> q = null, priority(p) >= priority(next(p));

Query := priority(a) = _5;

priority(b) = _6;

a = prev(b);

NOT(a = null);

NOT(b = null);

H-PILoT can be called without any parameters because the keyword
pointer is present. This will trigger H-PILoT’s pointer mode so that it
will add all the nullable terms to the axioms and use the specific (stable)
locality required.

Because the scalar type is concrete here (real), H-PILoT will use Yices
as the back-end prover (its default for arithmetic). If we want to leave the
scalar type abstract we could write something like

%psiPointers.scalar.loc

Base_functions:={}

Extension_functions:={(next, 1, 1, pointer),

(prev, 1, 1, pointer),
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(priority, 1, 1, pointer, scalar)}

Relations:={}

Constants:={(a, pointer), (b, pointer), (c5, scalar), (c6, scalar)}

Clauses := (FORALL p). prev(next(p)) = p;

(FORALL p). next(prev(p)) = p;

(FORALL p). NOT(priority(p) = priority(next(p)));

Query := priority(a) = c5;

priority(b) = c6;

a = prev(b);

c5 = c6;

NOT(a = null);

NOT(b = null);

We again can simply type

hpilot.opt -preprocess psiPointers.scalar.loc

without any parameters. H-PILoT will recognize this as a pointer problem
and use Yices as default, this time because of the free type scalar. There
can also be more than one pointer type and pointer extensions can be fused
with other types of extensions in a hierarchy. However, due to the different
types of locality that need to be employed, the user must specify which levels
are pointer extensions. He does this by using the keyword Stable.

For example, the header of a more complicated verification task which
mixes different pointer types might look like this.

Base_functions:={(-, 2), (+, 2)}

Extension_functions:=

{ % level 4

(next’,1,4, pointer#2,pointer#2), (pos’,1,4,pointer#2,real)

% level 3

(next,1,3,pointer#2,pointer#2), (pos,1,3,pointer#2,real),

(spd,1,3,pointer#2,real), (segm,1,3,pointer#2,pointer#1),

% level 2

(bd,1,2,real,real),

% level 1

(lmax,1,1,pointer#1,real), (length,1,1,pointer#1,real),

(nexts,1,1,pointer#1,pointer#1), (alloc,1,1,pointer#1,int)}

Relations :={(<=, 2), (>=, 2), (>, 2), (<, 2)}
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Constants:= {(t3,pointer#2), (t2,pointer#2), (t1,pointer#2),

(d,real), (State0,int), (s,pointer#1), (State1,int)}

Stable := 1, 3;

Note that the type pointer#2 must be declared higher than pointer#1

because pointer#2 refers to pointer#1 but not vice versa.

6.9 Extended Locality

H-PILoT is also able to handle extensions with augmented clauses as in Sec-
tion 4.6. For some applications we would like to allow more complicated
extension clauses, say we want them to be inductive (∀∃) instead of univer-
sal. Consider the following example, taken from [IJSS08] and introduced as
Example 3.6.1.

Suppose there is a parametric number m of processes. The priorities
associated with the processes (non-negative real numbers) are stored in an
array p. The states of the process – enabled (1) or disabled (0) – are stored in
an array a. At each step only the process with maximal priority is enabled,
its priority is set to x and the priorities of the waiting processes are increased
by y. This can be expressed by the following set of axioms which we denote
as Update(p, p′, a, a′).

∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i) = 1)
∀i(1 ≤ i ≤ m ∧ (∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=x)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → a′(i)=0)
∀i(1 ≤ i ≤ m ∧ ¬(∀j(1 ≤ j ≤ m ∧ j 6=i → p(i)>p(j))) → p′(i)=p(i)+y),

where x and y are considered to be parameters. We may need to check
whether, given that at the beginning the priority list is injective, i.e., formula
(Inj)(p) holds:

(Inj)(p) ∀i, j(1 ≤ i ≤ m ∧ 1 ≤ j ≤ m ∧ i 6= j → p(i) 6= p(j)),

then it remains injective after the update, i.e., check whether

(Inj)(p) ∧ Update(p, p′, a, a′) ∧ (1 ≤ c ≤ m ∧ 1 ≤ d ≤ m ∧ c 6= d ∧ p′(c) =
p′(d)) |= ⊥.

We need to deal with alternations of quantifiers in the extension. The
extension formulas K are augmented clauses of the form

∀x1, ..., xn. (Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)),
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where Φ(x1, . . . , xn) is an arbitrary first-order formula in the base signature
with free variables x1, . . . , xn and C(x1, . . . , xn) is a clause in the extended
signature. As input for H-PILoT, extended clauses may be either written as
∀x̄. (Φ(x̄) ∨ C(x̄)) or as ∀x̄. (Φ(x̄) → C ′(x̄)). The input file for H-PILoT
looks as follows.

% Updating of priorities of processes

% File update_AE.loc

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(a’, 1, 2, bool), (a, 1, 1, bool),

(p’, 1, 2, real), (p, 1, 1, real)}

Relations:={(<=, 2), (<, 2), (>, 2)}

Constants:={(x, real), (y, real)}

% K

Clauses :=

(FORALL i). _1 <= i, i <= m --> _0 <= p(i);

(FORALL i). { AND(_1 <= i, i <= m,

(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j)))}

--> a’(i) = _1;

(FORALL i). { AND(_1 <= i, i <= m,

(FORALL j). (AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j)))}

--> p’(i) = x;

(FORALL i). { AND(_1 <= i, i <= m,

NOT((FORALL j,i).(AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j))))}

--> a’(i) = _0;

(FORALL i). { AND(_1 <= i, i <= m,

NOT((FORALL j).(AND(_1 <= j, j <= m, NOT(j = i))

--> p(i) > p(j))))}

--> p’(i) = p(i) + y;

(FORALL i,j). _1 <= i, i <= m, _1 <= j, j <= m, p(i) = p(j)

--> i = j;

Query := _1 <= c;

c <= m;

_1 <= d;

d <= m;

x <= _0;
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y > _0;

NOT(c=d);

p’(c) = p’(d);

The curly braces ’{’, ’}’ are required to demarcate the beginning and the end
of the base formula Φ.

6.10 Clausification

H-PILoT also provides a clausifier for ease of use. First-order formulas can
be given as input and H-PILoT will translate them into clausal normal form
(CNF). The CNF-translator does not provide the full functionality of FLOT-
TER. It uses structural formula renaming ([PG86]) and standard Skolemiza-
tion, not the more exotic variants thereof (cf. [NW01]). Nevertheless, it
should be quite powerful enough for most applications. As a simple example
consider the following.

% cnf.fol

Base_functions:={(delta, 2), (abs, 1), (-, 2)}

Extension_functions:={(f, 1)}

Relations:={}

Formulas :=

(FORALL eps, a, x). (_0 < eps -->

AND( _0 < delta(eps, a),

(abs(x - a) < delta(eps, a)

--> abs(f(x) - f(a)) < eps)));

Query :=

H-PILoT will clausify the Formulas for us. To see the output let us use

hpilot.opt -preprocess -prClauses cnf.fol

We will see an output like

!- Adding formula:

(FORALL eps, a, x).

(_0 < eps -->
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AND( _0 < delta(eps, a), (abs(-(x, a)) < delta(eps, a)

--> abs(-(f(x), f(a))) < eps)))

!- add_formulas

!- We have 1 levels.

!- done

!- Our base theory is:

!- empty.

!- Clausifying formulas...

!- (FORALL z_1, z_3). OR( _0 < delta(z_1, z_3), NOT(_0 < z_1))

!- (FORALL z_1, z_2, z_3).

OR( NOT(abs(-(z_2, z_3)) < delta(z_1, z_3)),

abs(-(f(z_2), f(z_3))) < z_1, NOT(_0 < z_1))

!- Yielding 2 new clauses:

!- [z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1

---> abs(-(f(z_2), f(z_3))) < z_1

!- [z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3)

!- After rewriting we have as clauses K:

!- [z_1, z_2, z_3] abs(-(z_2, z_3)) < delta(z_1, z_3), _0 < z_1

---> abs(-(f(z_2), f(z_3))) < z_1

!- [z_1, z_3] _0 < z_1 ---> _0 < delta(z_1, z_3)

telling us that the above formula resulted in two new clauses (in addition to
those given outright under Clauses, viz.

∀z1, z3. 0 < delta(z1, z3) ∨ ¬(0 < z1)

and

∀z1, z2, z3. ¬(abs(z2−z3) < delta(z1, z3))∨abs(f(z2)−f(z3)) < z1∨¬(0 < z1).

In this case no ground clause resulted and H-PILoT stops.

6.11 System Evaluation

We have used H-PILoT on a variety of local extensions and on chains of
local extensions. An overview of the tests we made is given below. For these
tests, we have used Yices as the back-end solver for H-PILoT. We distinguish
between satisfiable and unsatisfiable problems.

Unsatisfiable Problems. For simple unsatisfiable problems, there hardly
is any difference in run-time whether one uses H-PILoT or an SMT-solver
directly. This is due to the fact that a good SMT-solver uses the heuristic of
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trying out all the occurring ground terms as instantiations of universal quan-
tifiers. For local extensions this is always sufficient to derive a contradiction.

When we consider chains of extensions the picture changes dramatically.
On one test example – the array insertion of Section 6.4 which used a chain
of two local extensions – Yices performed considerably slower than H-PILoT:
The original problem took Yices over 5 minutes to solve. The hierarchical
reduction yielded 113 clauses of the background theory (integers) which were
proved to be unsatisfiable by Yices in a mere 0.07s.

Satisfiable Problems. For satisfiable problems over local theory exten-
sions, H-PILoT always provides the right answer. In local extensions, H-
PILoT is a decision procedure whereas completeness of other SMT-solvers
is not guaranteed. In the test runs, Yices either ran out of memory or took
more than 6 hours when given any of the unreduced problems. This even was
the case for small problems, e.g., problems over the reals with less than ten
clauses. With H-PILoT as a front end, Yices solved all the satisfiable prob-
lems in less than a second with the single exception of monotone functions
over posets/distributive lattices.

Test runs for H-PILoT

We analyzed the following examples. The satisfiable variant of a problem
carries the suffix “.sat”.

array insert. Insertion of an element into a sorted integer array. This is the
example from Section 6.4. Arrays are definitional extensions here.

array insert (∃). Insertion of an element into a sorted integer array. Arrays
are definitional extensions here. Alternate version with (implicit) exis-
tential quantifier.

array insert (linear). Linear version of array insert.

array insert real. Like array insert but with an array of reals.

array insert real (linear). Linear version of array insert real.

update process priorities (∀∃). Updating of priorities of processes. This is the
example from Section 6.9. We have an ∀∃-clause.

list1. Made-up example of integer lists. Some arithmetic is required

chain1. Simple test for chains of extensions (plus transitivity).
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chain2. Simple test for chains of extensions (plus transitivity and arithmetic).

double array insert. A sorted array is updated twice. This is our running
example from the Sections 4.3 and 6.5. Inside the array property frag-
ment.

mono. Two monotone functions over integers/reals for SMT solver.

mono for distributive lattices.R. Two monotone functions over a distributive
lattice. The axioms for a distributive lattice are stated together with
the definition of a relation R: R(x, y) :⇔ x ∧ y = x. Monotonicity of
f (respectively of g) is given in terms of R: R(x, y) → R(f(x), f(y)).
Flag -freeType must be used.

mono for distributive lattices. Same as mono for distributive lattices.R except
that no relation R is defined. Monotonicity of the two functions f, g is
directly given: x ∧ y = x → f(x) ∧ f(y) = f(x). (Much harder than
defining R.) Flag -freeType must be used.

mono for poset. Two monotone functions over a poset with poset axioms as
in Section 6.4. Same as mono, except the order is modeled by a relation
R.

mono for total order. Same as mono except linearity is an axiom. This makes
no difference unless SPASS is used.

own. Simple test for monotone function.

mvLogic/mv1. The example for MV-algebras from Section 6.6. The  Lukasiewicz
connectives can be defined in terms of the (real) operations +,−,≤.
Linearity is deducible from axioms.

mvLogic/mv2. Example for MV-algebras. The  Lukasiewicz connectives can
be defined in terms of +,−,≤. The BL axiom is deducible.

mvLogic/bl1. Example for MV-algebras with BL axiom (redundantly) in-
cluded. The  Lukasiewicz connectives can be defined in terms of +,−,≤.

mvLogic/example 6.1. Example for MV-algebras with monotone and bounded
function. The  Lukasiewicz connectives can be defined in terms of
+,−,≤.

RBC simple. Example with train controller.

RBC variable2. Example with train controller.
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Test results

The running times are given in User + sys times (in s). Run on an Intel
Xeon 3 GHz, 512 kB cache; median of 100 runs (entries marked with 1: 10
runs; marked with 2: 3 runs). The third column lists the number of clauses
produced; “unknown” means Yices answer was unknown, “out. mem.” means
out of memory and time out was set at 6h. Yices version 1.0.19 was used.

The answer “unknown∗” for the satisfiable examples with monotone func-
tions over distributive lattices/posets (H-PILoT followed by Yices) is due to
the fact that Yices cannot handle the universal axioms of distributive lat-
tices/posets. A translation of such problems to SAT provides a decision
procedure (cf. [SS05] and also [SS03]).

Name status #cl. H-PILoT H-PILoT yices

+ yices + yices

stop at K[G]
array insert (implicit ∃) Unsat 310 0.29 0.06 0.36
array insert (implicit ∃).sat Sat 196 0.13 0.04 time out
array insert Unsat 113 0.07 0.03 318.221

array insert (linear version) Unsat 113 0.07 0.03 7970.532

array insert.sat Sat 111 0.07 0.03 time out
array insert real Unsat 113 0.07 0.03 360.001

array insert real (linear) Unsat 113 0.07 0.03 7930.002

array insert real.sat Sat 111 0.07 0.03 time out
update process priorities Unsat 45 0.02 0.02 0.03
update process priorities.sat Sat 37 0.02 0.02 unknown
list1 Unsat 18 0.02 0.01 0.02
list1.sat Sat 16 0.02 0.01 unknown
chain1 Unsat 22 0.01 0.01 0.02
chain2 Unsat 46 0.02 0.02 0.02
mono Unsat 20 0.01 0.01 0.01
mono.sat Sat 20 0.01 0.01 unknown
mono for distributive lattices.R Unsat 27 0.22 0.06 0.03
mono for distributive lattices.R.sat Sat 26 unknown∗ unknown∗ unknown
mono for distributive lattices Unsat 17 0.01 0.01 0.02
mono for distributive lattices.sat Sat 17 0.01 0.01 unknown
mono for poset Unsat 20 0.02 0.02 0.02
mono for poset.sat Sat 19 unknown∗ unknown∗ unknown
mono for total order Unsat 20 0.02 0.02 0.02
own Unsat 16 0.01 0.01 0.01
mvLogic/mv1 Unsat 10 0.01 0.01 0.02
mvLogic/mv1.sat Sat 8 0.01 0.01 unknown
mvLogic/mv2 Unsat 8 0.01 0.01 0.06
mvLogic/bl1 Unsat 22 0.02 0.01 0.03
mvLogic/example 6.1 Unsat 10 0.01 0.01 0.03
mvLogic/example 6.1.sat Sat 10 0.01 0.01 unknown
RBC simple Unsat 42 0.03 0.02 0.03
double array insert Unsat 791 1.16 0.20 0.07
double array insert Sat 790 1.10 0.20 unknown
RBC simple.sat Sat 40 0.03 0.02 out. mem.
RBC variable2 Unsat 137 0.08 0.04 0.04
RBC variable2.sat Sat 136 0.08 0.04 out. mem.
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6.12 A Case Study

Recently ([FIJSS10]), H-PILoT’s ability to decide the pointer fragment of
Section 6.8 has been used in the verification of real-time systems which ex-
hibit rich and dynamic data structures. There H-PILoT was part of a tool
chain employed for the verification of a case study from the European Train
Control System standard. The tool chain ranged from high level specifica-
tion to the automatic verification of proof obligations which was done by
H-PILoT (with Yices).

For the verification of real-life examples with complex topologies such as
this one, efficient verification techniques are of the essence. The verification
problem considered is expressed as a satisfiability problems for universally
quantified formulas, hence cannot be solved by SMT-solvers alone. The ex-
perimental results show H-PILoT to be a very efficient tool for the discharging
of all the proof tasks of the case study. The full type system implemented
in H-PILoT increased the efficiency considerably by blocking unnecessary in-
stantiations. The tool chain used in the case study range from a specification
language for real-time systems called COD to the translation of such a spec-
ification via phase-event automata (Syspect/PEA) to transition constraint
systems (TCS) which can then be exported to H-PILoT.

We checked the invariant for every transition in two parts yielding 92
proof obligations. Additional tests were used to ensure that the specifications
are consistent. The overall time to verify all transition updates with Yices
and H-PILoT in the unsatisfiable case (when the invariant is correct) does
not differ much. However, there is one example (the speed update) where
H-PILoT was 5 times faster than Yices on its own. In the case where a
set of conditions was not inductive over all transitions, H-PILoT was able
to provide a model after 8s whereas Yices detected unsatisfiability for 17
problems, returned “unknown” for 28 and timed out once.

During the development of the case study H-PILoT ability to provide
(readable) counterexamples was useful in two ways. First, this helped the
modelers to fine-tune the specification by identifying additional constraints
which were needed but not included at first. Second, this helped us finding
the correct transition invariants by providing models for satisfiable sets of
clauses which allowed us to refine the candidate formula.
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6.13 Parameters of H-PILoT

H-PILoT has several input parameters controlling its behavior. They can be
listed by calling hpilot.opt -help.

-min Use minimal Locality. This is only relevant
for the array property fragment right now.

-prClauses Produce output: print all the clauses calculated and used.
-noProver Do not hand over to prover, just produce output.
-arith Use arithmetic. ’plus’,’+’,’-’ etc. are predefined.

Numerals can be used, e.g., ’ 3’.
-yices Use Yices as background solver: ’plus’, ’+’ etc.

are predefined as are the order relations ≤,≥, <,>.
Numbers can also be given in the input.
Numbers are integers by default
(use ’-real’ for real numbers).

-cvc Use CVC as background solver.
Arithmetic is predefined as with ’-yices’.

-z3 Use Z3 as background solver.
Arithmetic is predefined as with ’-yices’.

-flatten Flatten clauses first.
-linearize Linearize clauses first.
-flattenQuery Flattens the query first.
-preprocess Preprocess input: flatten/linearize clauses, flatten query.

In array-context: split clauses which contain inequalities
like i 6= j into two clauses.

-noSeparation Stop at calculating the instances K[G]. Don’t introduce
names for extension terms and don’t reduce to base theory.

-unPseudofy Eliminate pseudo-quantifiers like ∀i.i = 3...
before handing over to a prover.7

-noProcessing No computation. Just translate into prover syntax and
hand over. Overrides ’-preprocess’.
When using this flag one should provide the domains
of functions too. When used in combination with CVC
there may arise problems with boolean types.8

-clausification Toggle clausification (true/false). Default is ’true’.
’false’ implies ’-noProcessing’.

-real Use reals instead of integers as the default type.
-redlog Call Redlog for base prover. Assumes ’-real’.
-version Print version number.
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-freeType Enables the use of an unspecified type ’free’
in addition to ’real’ and ’int’.
Only CVC, Z3 and Yices accept free types.
Yices is default.

-renameSubformulas Toggles the renaming of subformulas
during clausification (true/false).
Subformula renaming avoids exponential growth.
Default is “true”.

-verbosity Verbosity level (0,1,2).
From taciturn to garrulous.
To be used in conjunction with ’-prClauses’.
Default is 0

-arrays Use settings for array.
This combines ’-preprocess’, ’-min’ and ’-arith’;
It also splits clauses on negative equalities.

-model Gives a counter-model for satisfiable queries.
Needs Yices or CVC (implies Yices by default).

-smt Produce SMT-LIB output
without calling a prover.

-isLocal Use this flag (true/false) to tell the program
whether all the extensions are local or not.
This matters only if H-PILoT
cannot derive a contradiction.
In that case this means that there really is none
only if the extensions are local.
Default is false.

-help Display list of options

6.14 Error Handling

In case there is a parsing error one can use

export OCAMLRUNPARAM=’p’ (in bash syntax).

This will give you a walk-through of the parsing process. This is of great
help in localizing syntax errors. To turn it back off use

export OCAMLRUNPARAM=’’.

6This is automatically carried out if we have a multiple-step extension. This is because
the next step can only be carried out if the current step resulted in ground clauses.

8This is because CVC only provides booleans as bit-vectors of length 1. The type
’BOOLEAN’ is the type of formulas.
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6.15 A Run Example of H-PILoT

We consider an example taken from [BM07] (Example 11.10). The input file
looks as follows.

% arrays_from_book.loc

Base_functions:={(+, 2), (-, 2)}

Extension_functions:={(a, 1, 1, int, int), (b, 1, 1, int, int)}

Relations:={(<=, 2)}

% K

Formulas :=

AND( (FORALL i). (AND(l <= i, i <= u) --> a(i) = b(i)),

NOT((FORALL i). (AND(l <= i, i <= u + _1) -->

write(a, u + _1, b(u +_1))(i) = b(i))));

The arrays a and b are considered to be equal between the constants l and
u. We prove that if we update a at u + 1 to b(u + 1) then a and b should
be equal between l and u + 1. The formula above denies this and should
therefore be inconsistent. We call H-PILoT with

hpilot.opt -preprocess -prClauses arrays_from_book.loc

-preprocess is needed as usual; we use -prClauses to get a trace of the
program. (Because the array keyword write appears in the input we don’t
have to use the flag -arrays: it is implicit.) The trace looks like this (to
improve readability we aligned the level labels and will often leave out the
listing of the extension ground terms due to space constraints).

First, H-PILoT reads the input and clausifies the formula.

********************************************** Starting hpilot**********************************************

arrays_from_book.loc

Adding formula:

AND( (FORALL i). (AND( l <= i, i <= u) --> a(i) = b(i)),

NOT((FORALL i). (AND( l <= i, i <= +(u, _1)) --> read(write(a, +(u, _1),b(+(u, _1))), i) = b(i))))

done.

Clausifying formulas...

(FORALL z_1). OR( NOT(l <= z_1), NOT(z_1 <= u), a(z_1) = b(z_1))

l <= sk_1

sk_1 <= +(u, _1)

NOT(read(write(a, +(u, _1), b(+(u, _1))), sk_1) = b(sk_1))

Yielding 4 new clauses:

read(write(a, +(u, _1), b(+(u, _1))), sk_1) = b(sk_1) ---> L: 0; Extension ground terms: b(sk_1), b(+(u, _1))

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

---> l <= sk_1 L: 0; Extension ground terms:

[z_1] l <= z_1, z_1 <= u ---> a(z_1) = b(z_1) L: 0; Extension ground terms:

H-PILoT then replaces array writes by introducing new arrays:
write(a, u + 1, b(u + 1)) is replaced by: ∀i.i 6= u + 1 → aw1(i) = a(i) and
aw1(u+1) = b(u+1). To remain in the decidable fragment, H-PILoT replaces
∀i.i 6= u + 1 → aw1(i) = a(i) with ∀i.i ≤ u + 1 − 1 → aw1(i) = a(i) and
∀i.u + 1 + 1 ≤ i→ aw1(i) = a(i).
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Replacing writes...

We have 1 levels.

Our base theory is:

empty.

Splitting clause [i] ---> i = +(u, _1), a_w1(i) = a(i) L: 1;

terms: on eq i = +(u, _1)

Checking APF for clause [i] i <= -(+(u, _1), _1) ---> a_w1(i) = a(i) L: 0;

Extension ground terms: ---> true

Checking APF for clause [i] +(+(u, _1), _1) <= i ---> a_w1(i) = a(i) L: 0;

Extension ground terms: ---> true

Checking APF for clause [z_1] l <= z_1, z_1 <= u ---> a(z_1) = b(z_1) L: 1;

Extension ground terms: ---> true

Recalculating all levels.

H-PILoT then flattens and linearizes the result.

After rewriting we have as clauses K:

[i, x_1] x_1 = i, i <= -(+(u, _1), _1) ---> a_w1(i) = a(x_1) L: 1; Extension ground terms:

[i, x_1] x_1 = i, +(+(u, _1), _1) <= i ---> a_w1(i) = a(x_1) L: 1; Extension ground terms:

[z_1, x_1] x_1 = z_1, l <= z_1, z_1 <= u ---> a(z_1) = b(x_1) L: 1; Extension ground terms:

and as query:

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

a_w1(sk_1) = b(sk_1) ---> L: 1; Extension ground terms: a_w1(sk_1), b(sk_1)

---> a_w1(+(u, _1)) = b(+(u, _1)) L: 1; Extension ground terms: a_w1(+(u, _1)),b(+(u, _1))

Our query G is :

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

a_w1(sk_1) = b(sk_1) ---> L: 1; Extension ground terms: a_w1(sk_1), b(sk_1)

---> a_w1(+(u, _1)) = b(+(u, _1)) L: 1; Extension ground terms: a_w1(+(u, _1)),b(+(u, _1))

xxxxxxxxxxx End preprocessing.

H-PILoT then calculates the set of instances K[Ψ(G)] and simplifies the terms
to avoid redundant instances of clauses (e.g. u+1−1 is replaced by u).

We have 5 index terms for minimal locality l, sk_1, u, +(u, _1), +(u, _2)

K has 3 members.

[i, x_1] x_1 = i, i <= -(+(u, _1), _1) ---> a_w1(i) = a(x_1) L: 1;

[i, x_1] x_1 = i, +(+(u, _1), _1) <= i ---> a_w1(i) = a(x_1) L: 1;

[z_1, x_1] x_1 = z_1, l <= z_1, z_1 <= u ---> a(z_1) = b(x_1) L: 1;

Computing K<G>...

K<G> looks as follows:

K_G has 75 members.

[] l = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(l) L: 0;

[] l = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(l) L: 0;

[] l = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(l) L: 0;

[] l = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(l) L: 0;

[] l = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(l) L: 0;

[] sk_1 = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(sk_1) L: 0;

[] sk_1 = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(sk_1) L: 0;

[] sk_1 = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(sk_1) L: 0;

[] sk_1 = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(sk_1) L: 0;

[] sk_1 = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(sk_1) L: 0;

[] u = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(u) L: 0;

[] u = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(u) L: 0;

[] u = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(u) L: 0;

[] u = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(u) L: 0;

[] u = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(u) L: 0;

[] +(u, _1) = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(+(u, _1)) L: 0;

[] +(u, _1) = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(+(u, _1)) L: 0;

[] +(u, _1) = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(+(u, _1)) L: 0;

[] +(u, _1) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(+(u,_1)) L: 0;

[] +(u, _1) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(+(u,_1)) L: 0;

[] +(u, _2) = l, l <= -(+(u, _1), _1) ---> a_w1(l) = a(+(u, _2)) L: 0;

[] +(u, _2) = sk_1, sk_1 <= -(+(u, _1), _1) ---> a_w1(sk_1) = a(+(u, _2)) L: 0;

[] +(u, _2) = u, u <= -(+(u, _1), _1) ---> a_w1(u) = a(+(u, _2)) L: 0;

[] +(u, _2) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> a_w1(+(u, _1)) = a(+(u,_2)) L: 0;

[] +(u, _2) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> a_w1(+(u, _2)) = a(+(u,_2)) L: 0;

[] l = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(l) L: 0;

[] l = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(l) L: 0;

[] l = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(l) L: 0;

[] l = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(l) L: 0;

[] l = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(l) L: 0;

[] sk_1 = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(sk_1) L: 0;

[] sk_1 = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(sk_1) L: 0;

[] sk_1 = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(sk_1) L: 0;

[] sk_1 = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(sk_1) L: 0;
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[] sk_1 = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(sk_1) L: 0;

[] u = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(u) L: 0;

[] u = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(u) L: 0;

[] u = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(u) L: 0;

[] u = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(u) L: 0;

[] u = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(u) L: 0;

[] +(u, _1) = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(+(u, _1)) L: 0;

[] +(u, _1) = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(+(u, _1)) L: 0;

[] +(u, _1) = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(+(u, _1)) L: 0;

[] +(u, _1) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(+(u,_1)) L: 0;

[] +(u, _1) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(+(u,_1)) L: 0;

[] +(u, _2) = l, +(+(u, _1), _1) <= l ---> a_w1(l) = a(+(u, _2)) L: 0;

[] +(u, _2) = sk_1, +(+(u, _1), _1) <= sk_1 ---> a_w1(sk_1) = a(+(u, _2)) L: 0;

[] +(u, _2) = u, +(+(u, _1), _1) <= u ---> a_w1(u) = a(+(u, _2)) L: 0;

[] +(u, _2) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> a_w1(+(u, _1)) = a(+(u,_2)) L: 0;

[] +(u, _2) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> a_w1(+(u, _2)) = a(+(u,_2)) L: 0;

[] l = l, l <= l, l <= u ---> a(l) = b(l) L: 0;

[] sk_1 = l, l <= l, l <= u ---> a(l) = b(sk_1) L: 0;

[] u = l, l <= l, l <= u ---> a(l) = b(u) L: 0;

[] +(u, _1) = l, l <= l, l <= u ---> a(l) = b(+(u, _1)) L: 0;

[] +(u, _2) = l, l <= l, l <= u ---> a(l) = b(+(u, _2)) L: 0;

[] l = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(l) L: 0;

[] sk_1 = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(sk_1) L: 0;

[] u = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(u) L: 0;

[] +(u, _1) = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(+(u, _1)) L: 0;

[] +(u, _2) = sk_1, l <= sk_1, sk_1 <= u ---> a(sk_1) = b(+(u, _2)) L: 0;

[] l = u, l <= u, u <= u ---> a(u) = b(l) L: 0;

[] sk_1 = u, l <= u, u <= u ---> a(u) = b(sk_1) L: 0;

[] u = u, l <= u, u <= u ---> a(u) = b(u) L: 0;

[] +(u, _1) = u, l <= u, u <= u ---> a(u) = b(+(u, _1)) L: 0;

[] +(u, _2) = u, l <= u, u <= u ---> a(u) = b(+(u, _2)) L: 0;

[] l = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(l) L: 0;

[] sk_1 = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(sk_1) L: 0;

[] u = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(u) L: 0;

[] +(u, _1) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(+(u,_1)) L: 0;

[] +(u, _2) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> a(+(u, _1)) = b(+(u,_2)) L: 0;

[] l = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(l) L: 0;

[] sk_1 = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(sk_1) L: 0;

[] u = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(u) L: 0;

[] +(u, _1) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(+(u,_1)) L: 0;

[] +(u, _2) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> a(+(u, _2)) = b(+(u,_2)) L: 0;

The result is then purified:

computing defs ...

We have the following definitions:

---> e_1 = a(l) L: 0; Extension ground terms: a(l)

---> e_2 = a(sk_1) L: 0; Extension ground terms: a(sk_1)

---> e_3 = a(u) L: 0; Extension ground terms: a(u)

---> e_4 = a(+(u, _1)) L: 0; Extension ground terms: a(+(u, _1))

---> e_5 = a(+(u, _2)) L: 0; Extension ground terms: a(+(u, _2))

---> e_6 = a_w1(l) L: 0; Extension ground terms: a_w1(l)

---> e_7 = a_w1(sk_1) L: 0; Extension ground terms: a_w1(sk_1)

---> e_8 = a_w1(u) L: 0; Extension ground terms: a_w1(u)

---> e_9 = a_w1(+(u, _1)) L: 0; Extension ground terms: a_w1(+(u, _1))

---> e_10 = a_w1(+(u, _2)) L: 0; Extension ground terms: a_w1(+(u, _2))

---> e_11 = b(l) L: 0; Extension ground terms: b(l)

---> e_12 = b(sk_1) L: 0; Extension ground terms: b(sk_1)

---> e_13 = b(u) L: 0; Extension ground terms: b(u)

---> e_14 = b(+(u, _1)) L: 0; Extension ground terms: b(+(u, _1))

---> e_15 = b(+(u, _2)) L: 0; Extension ground terms: b(+(u, _2))

Purified:

K_G has 75 members.

[] l = l, l <= -(+(u, _1), _1) ---> e_6 = e_1 L: 0; Extension ground terms:

[] l = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_1 L: 0; Extension ground terms:

[] l = u, u <= -(+(u, _1), _1) ---> e_8 = e_1 L: 0; Extension ground terms:

[] l = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_1 L: 0; Extension ground terms:

[] l = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_1 L: 0; Extension ground terms:

[] sk_1 = l, l <= -(+(u, _1), _1) ---> e_6 = e_2 L: 0; Extension ground terms:

[] sk_1 = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_2 L: 0; Extension ground terms:

[] sk_1 = u, u <= -(+(u, _1), _1) ---> e_8 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_2 L: 0; Extension ground terms:

[] u = l, l <= -(+(u, _1), _1) ---> e_6 = e_3 L: 0; Extension ground terms:

[] u = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_3 L: 0; Extension ground terms:

[] u = u, u <= -(+(u, _1), _1) ---> e_8 = e_3 L: 0; Extension ground terms:

[] u = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_3 L: 0; Extension ground terms:

[] u = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_3 L: 0; Extension ground terms:

[] +(u, _1) = l, l <= -(+(u, _1), _1) ---> e_6 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = u, u <= -(+(u, _1), _1) ---> e_8 = e_4 L: 0; Extension ground terms:
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[] +(u, _1) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_4 L: 0; Extension ground terms:

[] +(u, _2) = l, l <= -(+(u, _1), _1) ---> e_6 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, sk_1 <= -(+(u, _1), _1) ---> e_7 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = u, u <= -(+(u, _1), _1) ---> e_8 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), +(u, _1) <= -(+(u, _1), _1) ---> e_9 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _2), +(u, _2) <= -(+(u, _1), _1) ---> e_10 = e_5 L: 0; Extension ground terms:

[] l = l, +(+(u, _1), _1) <= l ---> e_6 = e_1 L: 0; Extension ground terms:

[] l = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_1 L: 0; Extension ground terms:

[] l = u, +(+(u, _1), _1) <= u ---> e_8 = e_1 L: 0; Extension ground terms:

[] l = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_1 L: 0; Extension ground terms:

[] l = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_1 L: 0; Extension ground terms:

[] sk_1 = l, +(+(u, _1), _1) <= l ---> e_6 = e_2 L: 0; Extension ground terms:

[] sk_1 = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_2 L: 0; Extension ground terms:

[] sk_1 = u, +(+(u, _1), _1) <= u ---> e_8 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_2 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_2 L: 0; Extension ground terms:

[] u = l, +(+(u, _1), _1) <= l ---> e_6 = e_3 L: 0; Extension ground terms:

[] u = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_3 L: 0; Extension ground terms:

[] u = u, +(+(u, _1), _1) <= u ---> e_8 = e_3 L: 0; Extension ground terms:

[] u = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_3 L: 0; Extension ground terms:

[] u = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_3 L: 0; Extension ground terms:

[] +(u, _1) = l, +(+(u, _1), _1) <= l ---> e_6 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = u, +(+(u, _1), _1) <= u ---> e_8 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_4 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_4 L: 0; Extension ground terms:

[] +(u, _2) = l, +(+(u, _1), _1) <= l ---> e_6 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, +(+(u, _1), _1) <= sk_1 ---> e_7 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = u, +(+(u, _1), _1) <= u ---> e_8 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), +(+(u, _1), _1) <= +(u, _1) ---> e_9 = e_5 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _2), +(+(u, _1), _1) <= +(u, _2) ---> e_10 = e_5 L: 0; Extension ground terms:

[] l = l, l <= l, l <= u ---> e_1 = e_11 L: 0; Extension ground terms:

[] sk_1 = l, l <= l, l <= u ---> e_1 = e_12 L: 0; Extension ground terms:

[] u = l, l <= l, l <= u ---> e_1 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = l, l <= l, l <= u ---> e_1 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = l, l <= l, l <= u ---> e_1 = e_15 L: 0; Extension ground terms:

[] l = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_11 L: 0; Extension ground terms:

[] sk_1 = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_12 L: 0; Extension ground terms:

[] u = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = sk_1, l <= sk_1, sk_1 <= u ---> e_2 = e_15 L: 0; Extension ground terms:

[] l = u, l <= u, u <= u ---> e_3 = e_11 L: 0; Extension ground terms:

[] sk_1 = u, l <= u, u <= u ---> e_3 = e_12 L: 0; Extension ground terms:

[] u = u, l <= u, u <= u ---> e_3 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = u, l <= u, u <= u ---> e_3 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = u, l <= u, u <= u ---> e_3 = e_15 L: 0; Extension ground terms:

[] l = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_11 L: 0; Extension ground terms:

[] sk_1 = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_12 L: 0; Extension ground terms:

[] u = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _1), l <= +(u, _1), +(u, _1) <= u ---> e_4 = e_15 L: 0; Extension ground terms:

[] l = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_11 L: 0; Extension ground terms:

[] sk_1 = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_12 L: 0; Extension ground terms:

[] u = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_13 L: 0; Extension ground terms:

[] +(u, _1) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_14 L: 0; Extension ground terms:

[] +(u, _2) = +(u, _2), l <= +(u, _2), +(u, _2) <= u ---> e_5 = e_15 L: 0; Extension ground terms:

---> l <= sk_1 L: 0; Extension ground terms:

---> sk_1 <= +(u, _1) L: 0; Extension ground terms:

e_7 = e_12 ---> L: 0; Extension ground terms:

---> e_9 = e_14 L: 0; Extension ground terms:

The introduced definitions are replaced by the corresponding congruence
axioms.

Replacing D by N0:

This yields 30 clauses.

+(u, _1) = +(u, _2) ---> e_14 = e_15 L: 0; Extension ground terms:

u = +(u, _2) ---> e_13 = e_15 L: 0; Extension ground terms:

u = +(u, _1) ---> e_13 = e_14 L: 0; Extension ground terms:

sk_1 = +(u, _2) ---> e_12 = e_15 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_12 = e_14 L: 0; Extension ground terms:

sk_1 = u ---> e_12 = e_13 L: 0; Extension ground terms:

l = +(u, _2) ---> e_11 = e_15 L: 0; Extension ground terms:

l = +(u, _1) ---> e_11 = e_14 L: 0; Extension ground terms:

l = u ---> e_11 = e_13 L: 0; Extension ground terms:

l = sk_1 ---> e_11 = e_12 L: 0; Extension ground terms:

+(u, _1) = +(u, _2) ---> e_9 = e_10 L: 0; Extension ground terms:

u = +(u, _2) ---> e_8 = e_10 L: 0; Extension ground terms:

u = +(u, _1) ---> e_8 = e_9 L: 0; Extension ground terms:
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sk_1 = +(u, _2) ---> e_7 = e_10 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_7 = e_9 L: 0; Extension ground terms:

sk_1 = u ---> e_7 = e_8 L: 0; Extension ground terms:

l = +(u, _2) ---> e_6 = e_10 L: 0; Extension ground terms:

l = +(u, _1) ---> e_6 = e_9 L: 0; Extension ground terms:

l = u ---> e_6 = e_8 L: 0; Extension ground terms:

l = sk_1 ---> e_6 = e_7 L: 0; Extension ground terms:

+(u, _1) = +(u, _2) ---> e_4 = e_5 L: 0; Extension ground terms:

u = +(u, _2) ---> e_3 = e_5 L: 0; Extension ground terms:

u = +(u, _1) ---> e_3 = e_4 L: 0; Extension ground terms:

sk_1 = +(u, _2) ---> e_2 = e_5 L: 0; Extension ground terms:

sk_1 = +(u, _1) ---> e_2 = e_4 L: 0; Extension ground terms:

sk_1 = u ---> e_2 = e_3 L: 0; Extension ground terms:

l = +(u, _2) ---> e_1 = e_5 L: 0; Extension ground terms:

l = +(u, _1) ---> e_1 = e_4 L: 0; Extension ground terms:

l = u ---> e_1 = e_3 L: 0; Extension ground terms:

l = sk_1 ---> e_1 = e_2 L: 0; Extension ground terms:

Finally we hand over to a prover (Yices is default here). The program checked
earlier that the problem was in a decidable fragment of the theory of arrays
(APF), which is Ψ-local. Hence Yices’ answer can always be trusted irre-
spective of whether the answer is ’satisfiable’ or ’unsatisfiable’.

The problem is in APF

Handing over to Yices:

Total number of clauses: 109.

unsat

unsat

H-PILoT spent 0.161975s on the problem.

Of which clausification took 0.006998s.

The prover needed 0.021996s for the problem.

Total running time: 0.183971s.

6.16 Model Generation and Visualization

We illustrate the method for model generation we use on two examples9

(cf. [ISS10c]).

Example 1: Theory of Pointers

Consider the following problem, specified in H-PILoT input syntax:

Base_functions:={(+,2), (-, 2)}

Extension_functions:={(next, 1, 1, pointer), (prev, 1, 1, pointer),

(priority, 1, 1, pointer, real)}

9The visualization with Mathematica was done by Viorica Sofronie-Stokkermans.
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Relations:={(>=, 2)}

Constants:={(null, pointer), (a, pointer), (b, pointer)}

% K

Clauses := (FORALL p). prev(next(p)) = p;

(FORALL p). --> next(prev(p)) = p;

(FORALL p). priority(p) >= priority(next(p));

Query := priority(a) = _5; priority(b) = _6; a = prev(b);

%NOT(a = null); % pivotal for satisfiability

NOT(b = null);

We used CVC3 to generate a model for the set of clauses obtained after
the hierarchical reduction. A partial model is given below (after preprocess-
ing/deleting repetitions):

null = a

prev(b) = a

prev(a) = d_5

next(prev(prev(b))) = e_5

next(prev(b)) = d_1

next(b) = a

prev(prev(b)) = d_5

prev(next(prev(b))) = d_5

prev(next(b)) = d_5

prev(next(a)) = d_5

next(a) = d_1

priority(next(a)) = 0

priority(next(prev(b))) = 0

priority(prev(b)) = 5

priority(b) = 6

priority(a) = 5

We can make this model total by defining next(x) := null and prev(y) := null
whenever next(x) respectively. prev(y) are undefined (cf. 6.8). The obtained
model can be visualized using Mathematica (this last step is currently per-
formed separately; it is not yet integrated into H-PILoT, but an integration
is planned for the next future.). The result is presented below.
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Example 2: Theory of functions over the real numbers

Consider now the following example: decide whether

Monf∪Mong |=R ∀x, y, z, u, v(x≤y∧z≤y∧f(y)≤g(u)∧u≤v∧u≤w → f(x)≤g(v)).

We formulate a satisfiable version, by replacing the argument x in the con-
clusion with a new variable x0. The problem obtained this way can be for-
mulated as follows in the input format of H-PILoT.

Base_functions:={}

Extension_functions:={(f, 1), (g, 1)}

Relations:={(<=, 2)}

Clauses := (FORALL x,y). x <= y --> f(x) <= f(y);

(FORALL x,y). x <= y --> g(x) <= g(y);

Query := c1 <= d1; c2 <= d1; d2 <= c3; d2 <= c4;

f(d1) <= g(d2); NOT(f(c0) <= g(c4));

CVC3 can be used to generate the following model of the query:

model:

c0 = 1

c1 = 0

d1 = 0

c2 = 0

c3 = 0

c4 = 1

d2 = 0

g(d2) = 0

f(d1) = 0

g(c4) = 1

f(c0) = 2
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From this partial model, a total model can be constructed as explained in
[SS08]. This model can then be visualized as follows in Mathematica:

Note that if we require differentiability of f and g then – with the completion
described in the previous example – monotonicity of the extensions may not
be preserved:

In the example above we can enforce the functions to be linear. A general
study of the properties which can be guaranteed when building the models
is the topic of work in progress.
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6.17 The Input Grammar

〈start〉 ::= 〈base functions〉 〈extension functions〉 〈relations〉 〈constants〉 〈interval〉
〈baseTheory〉 〈formulasOrClauses〉 〈groundformulas〉 〈query〉

〈base functions〉 ::= Base functions := { 〈function list〉 }

〈extension functions〉 ::= Extension functions := { 〈function list〉 }

〈relations〉 ::= Relations := { 〈relation list〉 }

〈constants〉 ::= ǫ | Constants := { constant list }

〈interval〉 ::= ǫ
| Interval := 〈int〉 〈sm〉 〈identifier〉;
| Interval := 〈identifier〉 〈sm〉 〈int〉;
| Interval := 〈int〉 〈sm〉 〈identifier〉 〈sm〉 〈int〉;

〈base theory〉 ::= ǫ | Base := 〈clause list〉

〈formulasOrClauses〉 ::= ǫ | 〈formulas〉 | 〈clauses〉
| 〈formulas〉〈clauses〉 | 〈clauses〉〈formulas〉

〈ground formulas〉 ::= ǫ | Ground Formulas := 〈formula list〉

〈query〉 ::= Query := 〈ground clauses〉

〈formulas〉 ::= Formulas := 〈formula list〉

〈clauses〉 ::= Clauses := 〈clause list〉

〈function list〉 ::= ǫ | 〈function〉 〈additional functions〉

〈additional functions〉 ::= ǫ | , 〈function〉 〈additional functions〉

〈relation list〉 ::= ǫ | 〈relation〉 〈additional relations〉

〈additional relations〉 ::= ǫ | , 〈relation〉 〈additional relations〉

〈relation〉 ::= ( 〈uneqs〉 , 〈int〉 ) | ( 〈identifier〉 , 〈int〉 )

〈function〉 ::= ( 〈identifier〉 , 〈int〉 )
| ( 〈arithop〉 , 〈int〉 )
| ( 〈arithop〉 , 〈int〉 , 〈int〉 , int )

| ( 〈arithop〉 , 〈int〉 , 〈int〉 , real )

| ( 〈identifier〉 , 〈int〉 , 〈int〉 )
| ( 〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉 )
| ( 〈identifier〉 , 〈int〉 , 〈int〉 , 〈domain〉 , 〈domain〉 )
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〈domain〉 ::= bool | int | real | pointer | pointer# 〈int〉
| scalar | free | free# 〈int〉

〈base clause list〉 ::= ǫ | 〈clause〉 ; 〈additional base clauses〉

〈additional base clauses〉 ::= ǫ | 〈base clause〉 ; 〈additional base clauses〉

〈constant list〉 ::= 〈constant〉 〈additional constants〉

〈additional constants〉 ::= ǫ | , 〈constant〉 〈additional constant〉

〈constant〉 ::= ( 〈identifier〉 , bool )

| ( 〈identifier〉 , int )

| ( 〈identifier〉 , real )

| ( 〈identifier〉 , scalar )

| ( 〈identifier〉 , pointer )

| ( 〈identifier〉 , pointer# 〈int〉 )
| ( 〈identifier〉 , free )

| ( 〈identifier〉 , free# 〈int〉 )

〈base clause〉 ::= 〈clausematrix〉 | 〈universalQuantifier〉 〈clausematrix〉

〈formula list〉 ::= 〈formula〉 | 〈formula〉 ; 〈additional formulas〉

〈additional formulas〉 ::= ǫ | 〈formula〉 ; 〈additional formulas〉

〈clause list〉 ::= 〈clause〉 | 〈clause〉 ; 〈additional clauses〉

〈additional clauses〉 ::= ǫ | 〈clause〉 ; 〈additional clauses〉

〈clause〉 ::= 〈clausematrix〉
| 〈universalQuantifier〉 〈clausematrix〉
| { 〈formula〉 } OR 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } OR 〈clausematrix〉
| { 〈formula〉 } --> 〈clausematrix〉
| 〈universalQuantifier〉 { 〈formula〉 } --> 〈clausematrix〉

〈universalQuantifier〉 ::= ( FORALL 〈variables〉 ) .

〈variables〉 ::= 〈name〉 〈additional variable〉

〈additional variables〉 ::= ǫ | , 〈name〉 〈additional variables〉

〈ground clauses〉 ::= ǫ | 〈clausematrix〉 ; 〈ground clauses〉

〈clausematrix〉 ::= 〈literal〉 | 〈disjunctive clause〉 | 〈sorted clause〉
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〈formula〉 ::= 〈atom〉
| NOT ( 〈formula〉 )
| OR ( 〈formula〉 〈formula plus〉 )
| AND ( 〈formula〉 〈formula plus〉 )
| ( 〈formula〉 --> 〈formula〉 )
| ( 〈formula〉 <--> 〈formula〉 )
| ( FORALL 〈variables〉 ) . 〈formula〉
| ( EXISTS 〈variables〉 ) . 〈formula〉

〈formula plus〉 ::= , 〈formula〉 〈formula star〉

〈formula star〉 ::= ǫ | , 〈formula〉 〈formula star〉

〈disjunctive clause〉 ::= OR ( 〈literal〉 〈literal plus〉 )

〈literal plus〉 ::= , 〈literal〉 〈literal star〉

〈literal star〉 ::= ǫ | , 〈literal〉 〈literal star〉

〈sorted clause〉 ::= 〈atom list〉 --> 〈atom list〉

〈atom list〉 ::= ǫ | 〈atom〉 〈atom star〉

〈atom star〉 ::= ǫ | , 〈atom〉 〈atom star〉

〈literal〉 ::= 〈atom〉 | NOT ( 〈atom〉 )

〈atom〉 ::= 〈equality atom〉 | 〈ineq atom〉 | 〈predicate atom〉

〈equality atom〉 ::= 〈term〉 = 〈term〉

〈ineq atom〉 ::= 〈term〉 〈uneqs〉 〈term〉

〈predicate atom〉 ::= 〈identifier〉 [ 〈term〉 〈additional terms〉 ]

〈arguments〉 ::= 〈term〉 〈additional terms〉

〈additional terms〉 ::= ǫ | , 〈term〉 〈additional terms〉

〈term〉 ::= 〈name〉
| 〈operator〉 ( 〈arguments〉 )
| 〈array〉 ( 〈arguments〉 )
| 〈update〉 ( 〈arguments〉 )
| 〈term arith〉 〈arithop〉 〈term arith〉

〈term arith〉 ::= 〈name〉
| 〈operator〉 ( 〈arguments〉 )
| ( 〈term arith〉 〈arithop〉 〈term arith〉 )
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〈sm〉 ::= <= | <

〈arithop〉 ::= + | - | * | /

〈uneqs〉 ::= <= | >= | < | >

〈operator〉 ::= 〈identifier〉

〈array:〉 ::= write ( 〈identifier〉 , 〈term〉 , 〈term〉 )
| write ( 〈array〉 , 〈term〉 , 〈term〉 )

〈update〉 ::= update ( 〈identifier〉 , 〈term〉 , 〈term〉 )
| update ( 〈update〉 , 〈term〉 , 〈term〉 )

〈name〉 ::= 〈identifier〉

〈identifier〉 ::= any string consisting of letters and numbers starting with a letter.
It may end with “’”.

〈int〉 ::= any non-negative number.





Chapter 7

Conclusion

In this thesis we have studied efficient reasoning in combinations of first-
order theories. The basic case is that of a theory extension, where we have a
base theory which gets extended by new functions which are axiomatized by
clauses. Given that this extension is local, efficient hierarchical reasoning is
possible: a ground problem in the extended language can be reduced in poly-
nomial time to an equivalent ground problem in the base language. Because
many real-life verification tasks can be considered to be ground problems over
combinations of theories, locality is a important technique in verification.

The notion of locality was introduced by Givan and McAllester ([GM92],
[McA93]). It was related to a semantical approach by Harald Ganzinger
in a seminal paper [Gan01] for the case of Horn clauses. It was lifted to
theory extensions by Viorica Sofronie-Stokkermans and much developed in a
series of papers ([SS05], [SS06a], [SS07]). We have presented the theory of
locality in chapter 3 and given some applications. In the following chapter,
we have generalized the standard notion of locality to that of Ψ-locality. We
have shown how to subsume locality results for data structures under this
generalized notion, thus giving a unified treatment.

A more complicated case is the union of theories over a common theory
in a shared (non-empty) signature which we studied in chapter 5. A key
notion in this setting is that of model completeness and of amalgamation. We
gave a simpler proof of a result by Ghilardi ([Ghi03a, Ghi04]) that the joint
inconsistency of a ground problem and two theories, which are compatible
with their common intersection, can be established by the exchange of a
quantifier-free sentence in the shared language. In the subsequent section,
we gave new criteria for the locality of the union of local theories. We then
considered the combination of Ψ-local theories over a shared theory and gave
criteria under
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which the combination is Ψ-local again, thereby generalizing a result in
[SS07].

Finally, we gave an efficient implementation of hierarchical reduction in
local theory extensions: the program H-PILoT. It has already proved itself
in real-life verification problems, such as the European Train Control System
standard, by this means adding to the case for locality as a crucial notion in
verification.

In the future, we would like to build on this work by finding new appli-
cation areas for local reasoning in verification. Theoretically, we would like
to research locality in data structures and, practically, provide the necessary
decision procedures in H-PILoT. Regarding the implementation, we would
also like to enrich H-PILoT in the following ways. First, we would like to
enhance H-PILoT’s ability to detect the locality of theory extensions auto-
matically. Second, we would like to implement local theory combinations
over a common theory in H-PILoT. In order to increase user-friendliness,
visualizing models and counterexamples using the computer algebra system
Mathematica is also on our to-do list.

Another area of interest we would like to study further is that of inter-
polation, whose intimate connection with the satisfiability problem in theory
combinations has already been touched upon. This also has an implementa-
tion side, as results on how to compute interpolants for local theory exten-
sions already exist ([SS06a]) and should be integrated into H-PILoT.
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