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Abstract

This thesis has two main parts. The first part deals with the stage illumination problem.
Given a stage represented by a line segment L and a set of lightsources represented by
a set of points S in the plane, assign powers to the lightsources such that every point
on the stage receives a sufficient amount, e.g. one unit, of light while minimizing
the overall power consumption. By assuming that the amount of light arriving from a
fixed lightsource decreases rapidly with the distance from the lightsource, this becomes
an interesting geometric optimization problem. We present different solutions, based
on convex optimization, discretization and linear programming, as well as a purely
combinatorial approximation algorithm. Some experimental results are also provided.

In the second part of this thesis, we are concerned with two different geometric prob-
lems whose solutions are based on the construction of a data structure that would allow
for efficient queries. The central idea of our data structures is the well-separated pair
decomposition. The first problem we address is the k-hop restricted shortest path un-
der the power-euclidean distance function. Given a set P of n points in the plane and
the distance function |pq|δ +Cp for some constant δ > 1, nonnegative offset cost Cp

and p,q ∈ P, where |pq| denotes the Euclidean distance between p and q, we consider
the problem of finding paths between any pair of points that minimize the lenght of
the path and do not use more than some constant number k of hops. Known exact
algorithms for this problem required Ω(n logn) per query pair (p,q). We relax the ex-
actness requirement and only require approximate (1+ε) solutions which allows us to
derive schemes which guarantee constant query time using linear space and O(n logn)
preprocessing time. The dependence on ε is polynomial in 1/ε. We also develop a tool
that might be of independent interest: For any pair of points p,q ∈ P report in constant
time the cluster pair (A,B) representing (p,q) in a well-separated pair decomposition
of P. The second problem in this part is so-called cone-restricted nearest neighbor.
For a given point set in Euclidean space we consider the problem of finding (approx-
imate) nearest neighbors of a query point but restricting only to points that lie within
a fixed cone with apex at the query point. We investigate the structure of the Voronoi
diagram induced by this notion of proximity and present approximate and exact data
structures for answering cone-restricted nearest neighbor queries. In particular, we de-
velop an approximate Voronoi diagram of size O((n/εd) log(1/ε)) that can be used to
answer cone-restricted nearest neighbor queries in O(log(n/ε)) time.
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Zusammenfassung

Diese Arbeit besteht aus zwei Teilen. Der erste Teil behandelt das Stage Illumina-
tion Problem. Hierbei möchte man eine Bühne, die durch ein Geradenstück repräsen-
tiert ist, durch Lichtquellen, die durch Punkte in der Ebene repräsentiert sind, so
beleuchten, dass jeder Punkt der Bühne genügend Licht erhält und dabei möglichst
wenig Energie verbrauchen. Wenn man annimmt, dass die Lichtintensität stark mit
der Entfernung zur Lichtquelle abnimmt, so stellt dies ein interesanntes geometrisches
Optimierungsproblem dar. Wir geben verschiedene Lösungen an, die sowohl auf kon-
vexer Optimierung, Diskretisierung und Linearer Programmierung basieren, als auch
einen kombinatorischen Approximationsalgorithmus. Es werden auch experimentelle
Resultate angegeben.

Im zweiten Teil dieser Arbeit behandeln wir zwei verschiedene geometrische Prob-
leme, deren Lösungen auf einer Datenstruktur basieren, die effiziente Anfragen beant-
worten kann. Die zentrale Idee unserer Datenstruktur ist die well-separated pair de-
composition WSPD. Das erste Problem, das wir ansprechen ist das k-hop restricted
shortest path under the power-euclidean distance function. Für n Punkte in der Ebene
möchte man den kürzesten Pfad zwischen zwei beliebigen Punkten finden, der nicht
mehr als k Kanten benötigt. Bekannte exakte Algorithmen für dieses Problem benötigen
Ω(n logn) Zeit pro Anfrage (p,q). Wir lockern die Exaktheitsforderung und verlan-
gen nur eine (1+ε)-Approximation. Dies erlaubt uns eine Methode zu entwickeln, die
konstante Zeit pro Anfrage garaniert und nur linearen Platz benötigt bei einer Vorverar-
beitungszeit von O(n logn). Die Abhängigkeit von ε ist polynomiell in 1/ε. Außerdem
entwickeln wir eine Methode, die davon unabhängig von Interesse ist. Für ein Punk-
tepaar p,q ∈ P bestimmen wir in konstanter Zeit das Cluster-paar (A,B), das (p,q)
in einer WSPD von P bestimmt. Das zweite Problem in diesem Teil ist das sogenan-
nte cone-restricted nearest neighbor problem. Für eine gegebene Menge von Punk-
ten im Euklidischen Raum betrachten wir das Problem den nächsten Nachbarpunkt
zu bestimmen, der in einem Kegel liegt, dessen Spitze ein beliebiger Anfragepunkt
ist. Wir untersuchen das dazugehörige Voronoi-Diagramm und entwickeln effiziente
Datenstrukturen sowohl für exakte als auch für approximative cone-restricted near-
est neighbor-Anfragen. Im speziellen entwickeln wir ein approximatives Voronoi-
Diagramm der Größe O((n/εd) log(1/ε)), das dazu benutzt werden kann, Anfragen
in der Zeit O(log(n/ε)) zu beantworten.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit geometrischen Optimierungsproblemen und besteht aus
zwei Teilen. Der erste Teil behandelt das Stage Illumination Problem. Wir geben
verschiedene Lösungen und experimentelle Resultate an.

Im zweiten Teil dieser Arbeit behandeln wir zwei verschiedene geometrische Prob-
leme, deren Lösungen auf einer Datenstruktur basieren, die effiziente Anfragen beant-
worten kann. Das erste Problem, das wir ansprechen ist das k-hop restricted short-
est path under the power-euclidean distance function. Wir entwickeln eine Meth-
ode, die (1+ ε)-approximative Lösungen in konstanter Zeit pro Anfrage garaniert und
nur linearen Platz benötigt. Das zweite Problem in diesem Teil ist das sogenannte
cone-restricted nearest neighbor problem. Wir entwickeln effiziente Datenstruktu-
ren sowohl für exakte als auch für approximative cone-restricted nearest neighbor-
Anfragen.
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Introduction

Concepts of computational geometry can be found in many places of everyday life. For
example, imagine being in a big city and looking for a post office. There are several
post offices in the city, but naturally you would prefer to know which one is closest to
your current position. This problem was mentioned for the first time in [Knu73] and is
known in the literature as Knuth’s Post Office Problem.

A city map which shows the exact position of each post office would be helpful, but
still, there might be several post offices which are similarly close to your current po-
sition. To find exactly the post office which is closest, it would be nice if the map
was subdivided into areas which have one particular post office as closest. Now the
question is, how do these areas look like and how can one compute them?

Even though you probably do not really care if you go to a post office which is not
the closest but almost as close, this problem describes a fundamental geometric con-
cept, which has many applications. The subdivision of the map is so-called Voronoi
diagram. It can be used to model areas of influence of radio transmitters, guide robots,
and even to describe and simulate the growth of crystals. There are many more geo-
metric concepts which can be found in everyday life.

In this thesis we shall present results on three different geometric problems using tech-
niques of geometric optimization and querying.

Geometric Optimization

STAGE ILLUMINATION PROBLEM1. Suppose you are a director of a theatre play,
and you would like that the stage on which your actors perform is well illuminated.
Namely, you would like to assign powers to a fixed set of light sources placed in
the theatre such that there are no dark areas on the stage. However, you don’t want the
electric bill to be too high at the end of the month. Thus, you want to minimize the cost

1This problem was posed in the open-problem session of the 17th Canadian Conference on Compu-
tational Geometry [DO06] by Joseph O’Rourke as ’Illuminating with True Lightbulbs’.
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of electricity under the constraint that the whole stage is adequately illuminated. By
assuming that the amount of light arriving from a fixed light source decreases rapidly
with the distance from the light source2, this becomes an interesting geometric opti-
mization problem. For a 2D variant of the stage illumination problem, see Figure 1.

Figure 1: Given a stage represented by a line segment L and a set of light sources
in the plane, assign powers to the light sources such that every point on the stage
receives a sufficient amount – e.g. one unit – of light while minimizing the overall
power consumption.

The stage illumination problem is just one of many problems that can be formulated
as a geometric optimization problems, which has made this a very attractive area of
research during the last twenty years.

In Part I of the thesis, we deal with the stage-illumination problem informally in-
troduced above and present different solutions, some based on convex/linear program-
ming, as well as a purely combinatorial approximation algorithm. We use a dual-fitting
technique for bounding the quality of solutions of our combinatorial algorithm. We
also provide some experimental results in order to stress the difference in running time
and quality of solutions of approaches relying on linear programming as opposed to
combinatorial solutions. This work has been published in the 21st Annual Symposium
on Computational Geometry (see [EFKM05]).

Geometric Querying

In Part II of the thesis we present efficient query data structures whose construction is
based on Well-Separated Pair Decomposition (WSPD) for the following two geometric
problems:

2In physics, a point light source illuminates according to an inverse-square law.
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k-HOP RESTRICTED SHORTEST PATH IN POWER-EUCLIDEAN NETWORKS. Suppose
you are a manager of an airline company and you would like to minimize the fuel
consumption of your airplanes routed between the airports. Namely, suppose you
want to plan a path of a flight between source and destination airport. The longer the
plane flies without a stop the more fuel needs to be filled in. As a consequence, the
weight of the plane grows which in turn increases the cost of a mile of flight. The cost
per mile in such cases can be mathematically described with a function that increases
superlinearly with the distance of the flight. Thus, you might find it cheaper to stop
at some intermediate airports, even if this increases the total length of the path (see
Figure 2). But in turn, stopping by at too many airports will account for the additional

Figure 2: Economical route planning between source and destination airport with
1,2,4-hops different paths

and undesirable distance independent overhead (e.g. the take-off phase can consume
considerably more fuel). To avoid such unwanted scenarios you can plan the most
economical route between source and destination airport with the constraint that not
more than a certain number of airports, say k, can be used in between.

This motivation was first proposed by [EHP98, CE01] to give more insight into the
k-hop restricted shortest path problem. The positive cost of the flight between airports
p and q is mathematically described via a function ω(p,q) = |pq|δ +Cp for some
constant δ > 1 and nonnegative offset Cp that accounts for distance independent costs.
|pq| denotes the Euclidean distance between p and q.

Our main contribution in this part is a data structure of linear size based on WSPD that
outputs (1+ε) approximate k-hop restricted shortest path solutions extremely quickly
(e.g. query time is completely independent of the input size). This work has appeared
in the 11th Annual European Symposium (see [FMS03]) and in the follow-up and
more experimental paper that has been published in the 1st International Workshop on
Algorithms for Wireless and Mobile Networks (see [FMS04]).

CONIC NEAREST NEIGHBOR (CNN). Suppose we are given a set S of n points in
the plane. A cone C having its apex at the point q is a wedge bounded by two rays
emanating from q that make an angle of at most π. We want to determine the nearest
neighbor sq ∈ S that is contained in the cone C with apex at q. Point sq we shall call a
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conic nearest neighbor of q.

We show how to construct approximate conic Voronoi diagram (cAVD) of near-linear
size for a set S of points in a low-dimensional Euclidean space which allows for poly-
logarithmic query time. The construction of cAVD is based on WSPD. We also exam-
ine the structure of the exact linear size conic Voronoi diagram induced by the notion
of conic proximity in 2 and 3 dimensions and develop a data structure such that exact
cone queries can be answered in sublinear time. This result has been published in the
18th Canadian Conference on Computational Geometry (see [FMMW06]).

In the k-hop restricted shortest path problem as well as in cNN problem, we are inter-
ested in answering many different queries. Thus, we allow some preprocessing on a
given instance of the problem, such that the desired computation of either k-hop short-
est path or cNN can be performed ’quickly’. In general, classes of problems induced
by a collection of geometric objects where we want to preprocess a given instance of
a problem to a query data structure we shall call geometric querying problems. Note
that this is conceptually different to the ’Stage illumination problem’, where we have
been concerned with finding a solution to a particular instance of the problem.



Part I

Geometric Optimization
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Chapter 1
Energy-Aware Stage Illumination

1.1 Introduction

Illumination and guarding problems have been popular in mathematics and computer
science for several decades. One instance in this class of problems is the Art Gallery
Problem posed by Victor Klee : ”How many guards are necessary, and how many
are sufficient to guard the paintings and works of art in an art gallery with n walls?”,
where the art gallery is represented by a simple polygon and every two points x and
y in a simple polygon can see (guard) each other if the open line segment xy lies
entirely within the interior of the polygon. While this particular problem has been
solved shortly after by Chvatal proving a tight b n

3c bound, many other variants in this
problem class have appeared in the literature, e.g. see Ref. [BMKM05], [CEHP04],
[CCRCU98], [CT98], [Eid02], [EHP02], [FT77], [GB01], [KKK83], [LL90], [ST03],
[Tot00]; also see Ref. [Urr00] for a general survey of the topic.

On one hand, people have restriced the allowable ’floor plans’, i.e. special classes of
polygons like orthogonal polygons, or looked at the problem of guarding a set of build-
ings from the outside. Kahn et al. have shown (see Ref. [KKK83]) that any orthogonal
polygon with n vertices can be guarded with d n

4e guards, and d n
4e are sometimes nec-

essary. Fejes Toth (see Ref. [FT77]) has shown that for any family {S1, . . . ,Sn} of n
disjoint compact convex sets in the plane, one can illuminate the boundaries of the sets
by 4n− 7 light sources in the complement of S1 ∪ ·· · ∪ Sn and sometimes that many
light sources are necessary. Common to these results is the fact that they assume that
guards or light sources cover a 360o field of view, and distance does not affect guarding
or illumination abilities.

So other people have come up with models for less powerful guards and light sources,
for example by requiring the guards to be placed at the vertices or edges of the polygon.
Another restriction is to limit the field of view of the guards to an angle of 180o,
or incorporate the used field of view of the guards or illumination angle of the light
sources into the objective to be optimized. For example Lee and Lin (see Ref. [LL90])

7



8 INTRODUCTION

Figure 1.1: Isolines of light intensities induced by 3 light sources (unfortunately with
moiré effects close to the light sources).

have shown that finding the minimum number of vertex guards for a polygon is NP-
hard. Toth (see Ref. [Tot00]) has shown that b n

3c light sources with illumination angle
π suffice to illuminate any polygon with n vertices (light sources need not be placed
on vertices of the polygon). Given a line segment L (the stage) and a set of n points
p1, . . . , pn (light sources), Czyzowicz et al. (see Ref. [CCRCU98]) have proved that it
is possible to find in O(n logn) time a set of floodlights f1, . . . fn with apexes in the set
{p1, . . . , pn} and angles of illumination α1, . . .αn such that the stage L is illuminated
and the sum α1 + · · ·+αn is minimized.

The model we propose in this Chapter is in the spirit of the angle restriction employed
by Czyzowicz et al., since we also aim to allow only less powerful light sources. But
while Czyzowicz et al. disallow omnidirectional light sources (modelling floodlights in
the real world), we take into account that the light emitted from a light source spreads
with increasing distance, so the amount of light arriving at a fixed area patch decreases
with the distance from the light source (see also Figure 1.1, where we have sketched
the isolines of light intensities induced by 3 light sources). The rationale behind our
model is that it seems rather unrealistic for a guard (or a light source) to monitor (or
illuminate) things that are arbitrarily far away, even in the absence of occlusions.

Our contribution

This Chapter proposes to reconsider the large collection of classical illumination prob-
lems under a light attenuation model, where the amount of light arriving from a partic-
ular light source decreases rapidly with the distance. As a first example, we consider
the simple problem of illuminating a stage using a fixed set of light sources, where
the goal is to minimize the total amount of power assigned to the light sources while
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ensuring a sufficient illumination of the stage. Several approaches in decreasing order
of weight of the employed machinery are presented, namely

• a polynomial-time solution based on a convex programming formulation

• a (1+ ε)-approximate solution based on discretization and linear programming

• a purely combinatorial O(1) approximate solution with running time O(n2)

We also present some experimental results suggesting that the performance analysis
of the combinatorial algorithm is overly pessimistic, leaving an improved analysis and
the consideration of other illumination problems in this model as open problems.

1.2 Preliminaries

Consider the following setting: We are given a closed line segment L ⊂ R2 and a
set of points S ⊂ R2, |S| = n. L denotes the stage, S a set of light sources. Our
goal is to assign powers xs to each light source s ∈ S such that any point of the stages
receives a ’sufficient’ amount of light – we will be more precise about that after quickly
introducing the physical light model.

1.2.1 The physical model

For the physical model we consider the setting in three dimensions, treating the light
sources as points that emit their energy isotropically. Thereby, the energy that hits
concentric spheres around the light source is always the same but its density decreases
with growing radius. Since the energy is homogeneously distributed over the surface
of such a sphere we get

F =
Z 2π

0

Z π

0

E
4π

sinθdθdϕ

= 2
Z ∞

−∞

Z ∞

−∞

E
4π
· z
(x2 + y2 + z2)3/2

︸ ︷︷ ︸
F(x,y,z)

dxdy

where the integrand is the flux F through an infinitesimal patch on a plane at dis-
tance z from the light source. This is not a contradiction to the commonly known 1

d2

dependence for the intensity of a point light source since the latter counts for beams
perpendicular to the patch. If we rotate the patch by an angle α orthogonally to the
incident beam, we have to multiply the intensity by cosα = z/

√
x2 + y2 + z2 yielding

the same result as above.

Note that F is an additive quantity, i.e. its value can be expressed by a sum over all
light sources. We will use reduced units such that for a point p on the stage at distances
d(p,s) from each light source s ∈ S we have a requirement of 1 while assuming the
supply is expressed in the form F(p) = ∑s∈S

xs
dδ(p,s) . We may choose δ = 2, if the size
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of the stage is small with respect to the distance of the light sources to the plane in
which the stage is embedded, i.e. if cosα is nearly 1 for all light sources. Otherwise,
we set δ = 3 and implement the distance zs in the variable for the power xs of each
light source. Moreover, we scale all distances such that the minimal value of zs is 1 for
every s in S.

Remark: In case of an illumination problem, it is intuitive to actually add up the arriv-
ing energy from all light sources when considering some point p ∈ L. Unfortunately
this cannot easily be interpreted in the context of a guarding problem. If there are two
guarding cameras watching for example an expensive painting in a museum, but due to
their distance and limited resolution, each of the cameras can only tell with 50% con-
fidence whether there is someone near the painting, this does not mean that by using
both cameras, one can tell with 100% confidence what is happening near the painting.
So, individual ’confidence ratings’ do not simply add up; a reasonable model could in
this concrete example assign a confidence rate of 75%, since some information might
be gained by using both cameras instead of only one. Note though, that the attenua-
tion model introduced does make sense also in this interpretation. If an object doubles
its distance to the camera, it covers only a quarter of a digital camera’s CCD sensor
or film emulsion. So in the above attenuation model, we would have an exponent of
δ = 2.

Very recently, Bilò et. al. in Ref. [BCKK05] have presented an (1 + ε)-approximate
solution for the variant of the problem where individual energies or confidences for a
point do not add up, but rather only the maximum energy or confidence is considered.
Here the goal is to cover all points of a stage subject to the constraint that for each point
the maximum energy arriving from a single light source is above some threshhold. This
variant of the problem probably has more applications than the one considered in this
Chapter, e.g., when designing wireless networks. Our results can be viewed as the
fractional version of the ones presented in Ref. [BCKK05].
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1.3 Algorithms in R2

In this section we propose several ways to solve the problem in R2. The approaches
will employ less and less heavy machinery, starting with a convex programming for-
mulation, going over a combination of discretization and linear programming, to fi-
nally presenting a very simple combinatorial algorithm. In spite of the derivation of an
attenuation exponent of δ = 3 in the previous section, we will assume in the following
any exponent δ ≥ 2, i.e. a point p receives a 1

|ps|δ fraction of the light emitted from
light source s. To allow for a simpler presentation, most calculations and proofs will
be in terms of δ = 2, though generalization for larger (but constant) values of δ are
straightforward.

Before presenting these algorithms we first make a simple observation which allows
us to reduce the number of light sources that have to be considered for the following
steps.

1.3.1 Pruning light sources

In this part we show that under the assumption that light sources can be assigned arbi-
trarily high powers, only certain light sources are of interest for our problem. Namely,
we show that all light sources whose Voronoi cell does not intersect the stage L can
be replaced by light sources whose Voronoi cells do, without incurring a larger cost in
terms of the overall power used (see Figure 1.2). Let us state this claim more formally

L

Figure 1.2: Only lights whose Voronoi cells intersect the stage are useful.

in the following lemma.

Lemma 1.1 Consider the order of the light sources in S induced by the vertical pro-
jection on the line supporting the stage L. Let s∈ S be some light source whose Voronoi
cell does not intersect the stage, sL,sR ∈ S be the first neighbors to the left and right in
this ordering whose Voronoi cells intersect the stage.
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Then there always exists a power assignment xsL and xsR such that for any p ∈ L

xsL

|sL p|2 +
xsR

|sR p|2 ≥
xs

|sp|2 (1.1)

and xsL + xsR ≤ xs.

Proof:

In the following we will exhibit a power assignment xsL ,xsR with xsL + xsR = xs. Thus,
we can express xsL and xsR as xsL = α · xs and xsR = (1−α) · xs for some nonnegative
α≤ 1. So we can rewrite (1.1) as

α
|sL p|2 +

(1−α)

|sR p|2 ≥
1
|sp|2 , α≤ 1. (1.2)

Now the goal is to show that there exists an α ≤ 1 independent of the position of the
point p ∈ L and such that inequality (1.2) holds.

Let v denote the intersection of the Voronoi edge between sL and sR and the stage L.
Note that we can always move the light-source s perpendicularly toward the stage until
|sLv|= |sv|= |sRv| (see Figure 1.3) since this is the worst case scenario for the claim of

dstage

s

sR

v

sL

p
φ1

φ3

φ2

Figure 1.3: Light source moved towards the stage until |sv|= |sLv|= |sRv|.

the lemma. In the case when p lies to the left of v, |sL p|< |sp|< |sR p| and analogously
when p lies to the right of v, |sL p| > |sp| > |sR p|. For the sake of simplicity suppose
|sLv|= |sv|= |sRv|= 1 and let d = |vp|, φ1 = ∠pvsR, φ2 =∠pvs and φ3 =∠pvsL. We
can express the distances |sL p|, |sp| and |sR p| in (1.2) with help of the law of cosines
and obtain:

α
1+d2±2d cosφ3

+
(1−α)

1+d2±2d cosφ1

≥ 1
1+d2±2d cosφ2

and hence

α ·
(±(cosφ1− cosφ3)

|sL p|2
)
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≥ ±(cosφ1− cosφ2)

|sp|2 (1.3)

were ’+’ holds if p lies to the left of v and ’-’ if p lies to the right of v. Choosing
α = cosφ1−cosφ2

cosφ1−cosφ3
≤ 1 for 0≤ φ1 < φ2 < φ3 ≤ π and keeping in mind that |sL p|> |sp| if

p lies to the right of v and |sL p| < |sp| if p lies to the left of v, one can easily verify
inequality (1.3) and therefore conclude the proof of the lemma. ¤

1.3.2 A convex programming formulation

The following convex program clearly solves our problem:

min ∑
s∈S

xs

s.t. ∀p ∈ l : ∑
s∈S

xs/dδ(p,s) ≥ 1

xs ≥ 0

(1.4)

Here the second line exactly expresses the constraint that for every point p on the stage,
when summed over all light sources, ’enough’ light should arrive at p. If light source
s is powered up with xs, the fraction of light arriving at p is proportional to 1/dδ(p,s).
Here δ is the attenuation exponent as derived to be δ = 3 in the previous section or
δ = 2 as commonly used. Note, that in this formulation one could also incorporate
upper bounds on the light intensity. Later we will refer to this convex program when
considering only a finite number of constraints (and hence being a linear program) as
lighting LP.

This formulation is not a linear program since the number of constraints is (uncount-
ably) infinite, so in fact our setting is an optimization problem over a convex body
rather than a simple linear program. There are numerous algorithms for optimizing
over a convex body, most of which rely on an efficient method of determining whether
a point x ∈ Rn is contained in the convex body, which in our case basically reduces
to determining whether some degree n polynomial has a root. In the following we
describe the method in detail for δ = 2. The following notions can be found in Ref.
[GLSv88]. Let K ⊆ Rn be a convex body, ε > 0. The set S(K,ε) is the set of points
which have at most distance ε from K, S(K,ε) = {x∈Rn | ‖x−y‖≤ ε for some y∈K}.
The set S(K,−ε) is the set of points in K whose ε-environment is completely contained
in K, S(K,−ε) = {x ∈ K | ‖x− y‖ ≤ ε implies that y ∈ K for all y ∈ Rn}.

We now recall the definitions of the weak membership and optimization problem over
convex bodies, see Ref. [GLSv88].

Definition 1.1 The weak membership problem for K is the following:

Given a vector x ∈Qn and a rational number δ > 0, either

1. assert that x ∈ S(K,δ), or
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2. assert that x /∈ S(K,−δ).

Definition 1.2 The weak optimization problem for K is the following: Given a vector
c ∈Qn and a rational number ε > 0, either

1. find a vector x∗ ∈ Qn such that x∗ ∈ S(K,ε) and cT x ≤ cT x∗ + ε for all x ∈
S(K,−ε), or

2. assert that S(K,−ε) is empty.

Grötschel, Lovász and Schrijver (Corollary (4.3.12) in Ref. [GLSv88]) prove the fol-
lowing theorem.

Theorem 1.1 There exists an oracle polynomial time algorithm that solves the weak
optimization problem for every convex body K, given by a weak membership oracle,
where the convex body contains a ball of radius r around a point a0 and is contained
in a ball or radius R around 0.

Polynomial time here means, polynomial in the dimension n and the binary encoding
lengths of c,ε,a0,r and R.

Observe that the feasible region of the system (1.4) is not bounded. However, we can
easily compute a bounding parameter M, such that an optimal solution is contained
in 0 ≤ x ≤M. We simply let M be the largest power value, which has to be assigned
to a single light source in order to lighten the stage by itself. If we then impose the
additional constraint 0 ≤ x ≤ 2M to the system (1.4), the convex set is bounded and
contained in the ball around 0 with radius 2M n and contains the ball around M 1 with
radius M. In the following we denote the set of feasible solutions by K.

Next we show that the weak membership problem for a power assignment x′ can be
solved in polynomial time. For this we assume that the light sources are located on
the Euclidean plane with nonnegative component in the y-axis and that the stage is the
interval [−L,L] on the x-axis. Suppose we are given a power assignment x′. The exact
membership problem is to decide whether there exists a point (p,0) on the stage such
that ∑s∈S xs/

(
(p−Xs)

2 +Y 2
s
)

< 1 holds.

We solve the weak membership problem for any ε > 0 in the following way. We decide
whether there exists a p ∈ [−L,L] such that ∑s∈S xs/

(
(p−Xs)

2 +Y 2
s
)

= 1 holds. If
yes, we can assert that x′ /∈ S(K,−δ) for each δ > 0. Otherwise, we determine whether
∑s∈S xs/

(
(L−Xs)

2 +Y 2
s
)

> 1 holds. If yes, we can assert that x′ ∈ K. If not, we can
assert that x′ /∈ K.

Thus we can solve the weak membership problem for K if we can determine in poly-
nomial time, whether there exists a p ∈ [−L,L], such that the following holds:

∑
s∈S

xs/
(
(p−Xs)

2 +Y 2
s
)

= 1 (1.5)



ALGORITHMS IN R2 15

Eq. (1.5) can be written as f (p) = 0, where f (p) is a rational polynomial, whose
binary encoding length is polynomial in the encoding length of the positions of the
light sources. The problem now reads as follows. Given a polynomial f (p) ∈ Q(p)
and an integer L, determine, whether f (p) has a root in [−L,L]. This can be done in
polynomial time, after f (p) is decomposed into squarefree factors, with the method
of Sturm, see Ref. [vG99], p. 87. So the weak optimization problem (1.4) can be
solved in polynomial time in the encoding length of the light source placements and
the encoding length of the error parameter ε.

Theorem 1.2 Given a set S of light sources in the Euclidean plane and an ε > 0, one
can compute a feasible point x∗ for the optimization problem (1.4) in polynomial time
such that ∑s∈S x∗s ≤ ∑s∈S x̄s + ε for any feasible x̄.

Thus the most energy efficient illumination can be approximated with an additive error
ε > 0 in polynomial time.

1.3.3 A (1+ ε)-approximation scheme

One obvious approach to obtain an approximation to our problem is to discretize the
stage using a finite number of guards1, solve the linear program with constraints only
for the guards and then power up all light sources sufficiently such that all points on
the stage which were not ’guarded’ by a constraint for sure also get enough light. The
efficiency of this approach depends on the choice of a suitable discretization which
allows for few guards but still requires only a moderate ’power up’ of the light sources
to guarantee sufficient overall coverage.

Definition 1.3 For every point p∈ L, we define the function ens(p) – the empty neigh-
borhood size – to be the distance to the closest light source, i.e. ens(p) = mins∈S d(p,s).

The following observation is not hard to see since the function ens(.) is defined to be
the minimum over some distance functions.

Observation 1.1 Function ens(.) is 1-Lipschitz, that is ens(p)≤ ens(q)+1 · |pq|.

Our discretization will now be based upon the empty neighborhood size, in particular
we will have more guards in areas where ens(.) is small and fewer guards in areas
where ens(.) is large. Similar discretization approaches occur in several other places
in literature: For example, Amenta et al. (see Ref. [ABE98]) use the so-called local
feature size to classify discrete samples from a continuous surface. Papadimitriou and

1Note that in the following we use the term guard as a point on the stage that ensures sufficient lighting
at that point. That notion differs from the use of guard in other work in that area, where the guard is a
point which covers or watches the scene.
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Aleksandrov et al. also use a related discretization for the purpose of shortest path
computations, see Ref. [Pap85] and Ref. [AMS00] for more details.

The crucial property for our set G of chosen guards is the following:

Definition 1.4 A set G⊂ L of points satisfying

∀p ∈ L ∃g ∈ G : d(p,g)≤ ε · ens(p)

is called a ε-good set of guards.

Note that assuming a minimum distance of 1 of each light source to the stage, it is
trivial to obtain an ε-good set of guards of size D/ε by placing guards at equal distance
ε all along the stage. Here D denotes the length of the stage L. In the following we
will show that one can do considerably better.

Before we show that using an ε-good set G we can obtain a (1 + ε)-approximation to
our original problem, let us first convince ourselves that a reasonably small set G of
guards exists. For that consider one light source s. Assuming that we have pruned the
set of light sources as in the previous section, there is a point p0 ∈ L for which s is the
closest light source. We start constructing a set Gs by first adding p0 to Gs. We then
extend Gs by adding guards p−1 ∈ L (for first guard left of p0) and p1 ∈ L (first guard
right of po) at distance 2εens(p0) from p0. Iteratively we place the next guard pi+1 at
distance 2εens(pi) to the right of pi (and accordingly p−(i+1) to the left of p−i). We
now claim the following:

Lemma 1.2 The set Gs constructed above is a ε-good set of guards for the single light
source s and furthermore |Gs|= O( logD

ε ) where D denotes the length of the stage.

Proof: Assume the contrary, i.e. there exists a point p∈ L s.t. @pi ∈Gs with d(pi, p)≤
εens(p). W.l.o.g. assume p lies between pi and pi+1 (the same argumentation holds
when it lies between p−i and p−i−1). We have ∀p′ between pi and pi+1: ens(p′) ≥
ens(pi), since we are moving away from the light source. Furthermore we have clearly
min{d(p, pi),d(p, pi+1)}≤ |pi pi+1|/2. But since |pi pi+1| ≤ 2εens(pi) by construction
we get min{d(p, pi),d(p, pi+1)} ≤ εens(pi)≤ εens(p) which contradicts our assump-
tion.

Let us now turn to the size of Gs. Look at the situation in Figure 1.4. Clearly for all
p∈ PlPr we have ens(p)≥ d, hence the distance between two adjacent guards between
Pl and Pr is at least 2εd, hence there are O(1/ε) guards placed at PlPr.

We are now interested in the guards outside PlPr. We claim that for consecutive guards
pi, pi+1 we have ens(pi+1)≥ ens(pi) · (1+ ε). This follows easily from the law of co-
sine since we have ens(pi+1)

2 = ens(pi)
2+(2εens(pi))

2−2ens(pi)·2εens(pi)cos(α)≥
ens(pi)

2[1 + 4ε2 + 2ε] ≥ ens(pi)
2(1 + ε)2 where the last two inequalities follow from

the fact that α ≥ 3
4 π. Hence the distance between adjacent guards outside PlPr grows



ALGORITHMS IN R2 17

α

Pl Pr

S

pi pi+1

ensi

ensi+1

d

d

d

Figure 1.4: Bounding the number of guards for S.

at least by a factor of a = (1 + ε) in each iteration. We now establish an upper bound
on the number of guards in terms of this factor a.

D ≥ 2ε
|Gs|

∑
i=1

ai = 2εa
a|Gs|−1

a−1

⇒ a|Gs| ≤ D
2ε
· a−1

a
+1

⇒ |Gs| ≤
log( D

2ε · a−1
a +1)

loga

Since the number of guards contained in PlPr is also O(1/ε) we can conclude that the
total number of guards generated by our procedure is O( logD

ε ) ¤

For a fixed length D of the stage, this estimation is tight as can be seen from Definition
1.4. It establishes an upper bound on the distance of two guards. Having a stage of
length D and a light source at distance 1 from the stage, ens(·) is at most

√
1+D2.

Therefore, we have to partition the stage into at least Ω( 1
ε ) parts.

Obtaining a set of ε-good guards G could be easily achieved by computing Gs for all
light sources s and taking the union of those sets. It is clear that the resulting set is ε-
good for the set of all light sources, since for any p∈ L there is a guard within distance
ε · ens(p) in the set Gs where s is the light sources closest to p. The resulting union
then contains O( n

ε logD) guards. We can do better though:

Lemma 1.3 There exists a ε-good set of guards G of size O( n
ε log[1+ D

n ]).

Proof: We may consider each Voronoi cell of the light sources on its own since the
ens(·) of its points on the stage are determined by their distance to this particular
light source. The stage is partitioned into n pieces D1, . . . ,Dn corresponding to the
respective Voronoi regions of the light sources. Let di denote the length of piece Di,
i.e. ∑n

i=1 di = D. For each piece Di we construct the sample set as before and get
overall O((∑n

i=1 log[1 + di])/ε) many guards. This sum is maximized when all parts
have equal length, i.e. di = D

n . ¤
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Note that this bound tends to O(D
ε ) if n goes to infinity, since n log[1 + D

n ] = log[1 +
D
n ]n −→ logeD, i.e. in the limit the number of guards does not depend on n anymore,
but only on D (but linearly, not in the logarithm).

The last lemma in this section shows that given a ε-good set of guards, we can obtain
a (1 + ε)-approximate solution to the lighting problem. But before proving that, we
show a small auxiliary Lemma which gives an upper bound on the distance between
two consecutive guards in a ε-good set of guards.

Lemma 1.4 Let G be an ε-good set of guards, p and q two guards in G that appear
consecutively on the stage. Then |pq| ≤ 2ε

1−ε ens(p).

Proof: Let z ∈ L such that |pz| = |zq|. By the definition 1.4 we know that |zq| ≤
ε · ens(z). Using the 1-Lipschitz property of the local feature size ens(z) we can
write down |pq| = 2|zq| ≤ 2ε · (ens(q) + |pq|/2) which in turn implies the claim of
the lemma. ¤

Lemma 1.5 Let {xs} be an optimal solution of the lighting LP (1.4) with respect to
an ε-good set of guards G. Then powering up every light source by a factor (1 + 6ε)
ensures that every point on the stage receives enough light.

Proof: For the power assignment {xs} we know that for all p′ ∈ G, the lighting con-
straints are fulfilled, i.e. they receive enough light. Consider some point p ∈ L, p 6∈ G.
Let p′ ∈ G be the closest guard to p, hence |pp′| ≤ ε

1−ε ens(p′) according to Lemma
1.4. We want to show that after powering up all light sources by a sufficiently large
factor ψ = 1+O(ε), p also receives enough light. Namely, we are looking for ψ such
that

∑
s∈S

ψ · xs

(|sp′|+ ens(p′) · ε/(1− ε))2 ≥ 1 (1.6)

Observe that all light sources have distance at least ens(p′) to p′ just by definition of
ens(·) and keeping in mind that p′ receives enough light, inequality (1.6) holds if ψ is
chosen such that:

∑
s∈S

ψ · xs

|sp′|2(1+ ε/(1− ε) · ens(p′)/|sp′|︸ ︷︷ ︸
≤1

)2 ≥
ψ

(1+ ε/(1− ε))2 ≥ 1

Therefore, for ε < 1/2, powering up all light sources by a factor of ψ = (1 + 2ε)2 <
1+6ε makes sure that p receives at least as much light as p′ received before powering
up all light sources. ¤

We summarize by stating the main theorem of this part:

Theorem 1.3 Given a stage of length D and a set of light sources S where each light
source has at least unit distance from the stage, one can compute a power assignment
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{xs}s∈S such that each point on the stage receives at least one unit of light and ∑xs ≤
(1 + ε)∑xopt

s where xopt
s denotes an optimal power assignment. {xs}s∈S can be found

in polynomial time by solving a linear program with O( n
ε log D

n ) constraints and n
variables.

1.3.4 Pruning guards – a simple O(1)-approximation algorithm

Even though the previous section provided a rather simple (1 + ε)-approximation al-
gorithm for our problem, it relied on solving a linear program which – in spite of being
polynomial-time – is still quite time-consuming. Furthermore there was still a – even
though only logarithmic – dependence on the length D of the stage. In the follow-
ing we will propose a very simple O(1)-approximation algorithm that can be easily
implemented to run in O(n2) time.

Similarly to the previous section we will first relax our problem by restricting to a
small – here O(n) size – set of guards. This set is chosen such that any solution for
this reduced set transfers to a solution for the original problem incurring only a O(1)
overhead in terms of the quality of the solution.

Consider the function ens(.) on the stage L (see Figure 1.5). This continuous function

L

S

p

ens(p)

Figure 1.5: For every p ∈ L, empty neighborhood size of p is Euclidean distance to its
closest lightsource.

consists of several arcs, each corresponding to one light source and their respective
Voronoi cell. ens(.) is differentiable except for the positions where two adjacent arcs
are joined, that is at the boundary between two Voronoi cells. ens(.) has local maxima
at all the intersection points between Voronoi edges of V (S) and L, and potentially at
the endpoints of L – depending on the location of the left-most and right-most light
source.

Lemma 1.6 Let GV be the set of guards consisting of all points p of the stage L where
ens(.) has a local maximum. Furthermore let x∗V be a feasible power assignment to the
light sources S w.r.t. the set GV of guards.

Then x∗ = 4 · x∗V is a valid power assignment w.r.t. to all points on the stage.
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Proof: Consider any point p ∈ L, p 6∈ GV . Let pV ∈ GV be a guard such that p is
contained in the circle centered at pV with radius ens(pV ). Such a guard pV always
exists since each point on the stage is contained at least in one of the Voronoi circles
around its left and right neighbors in the set GV . Obviously all light sources have
distance at least ens(pV ) to pV . But on the other hand we have |ppV | ≤ ens(pV ) by
choice of pV . Therefore all light sources satisfying pV ’s demand are at most a factor 2
further away from p, hence powering up all light sources by a factor of 4 ensures that
p receives a sufficient amount of light. ¤

An immediate consequence is the following corollary:

Corollary 1.1 A 4-approximation to the lighting problem can be obtained by solving
the lighting LP consisting of n+1 constraints.

In other words, if we are only aiming for a O(1)-approximation, we can obtain a
solution in time independent of the length of our stage D (remember in case of the
(1+ ε)-approximation we had a logD dependence on the length of the stage).

In the following we will work on this set of guards GV as defined above. Essentially
we order them according to decreasing ens(.) and one-by-one increase the power of
their respective nearest light source such that they all get satisfied. By a dual fitting
argument we then show that the used amount of power does not exceed a constant
times the optimum.

Our analysis relies on a special property of the set of guards, namely we want that the
density of the guards is proportional to the local value of ens(.), in particular we want
the distance between two adjacent guards gi,g j on the stage L to be lower bounded by
|gig j| ≥C ·max{ens(gi),ens(g j)} for some constant C > 0. This need not be the case
in general, e.g. consider a set of light sources on a line parallel to but far away from
the stage. Hence we need to prune the set of guards beforehand to ensure this property.

Pruning Guards

Let α > 0 be some constant. Then the following algorithm prunes a set of guards GV

to a set GP:

1. Compute for each guards pi its empty neighborhood size ens(pi)

2. Sort the guards in decreasing order of ens(pi), i.e. ens(p1)≥ ens(p2)≥ . . .ens(pn)

3. for i = 1 . . .n

• if pi has not been removed yet, remove all guards p j at distance ≤ α ·
ens(pi) (but not pi itself)

4. return the set of guards that have not been removed as GP
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In the following we will show that for constant α, even after this pruning step, we can
obtain a O(1)-approximation using the pruned set of guards.

Lemma 1.7 Let x∗P be a feasible assignment of powers to the light sources such that
all guards in GP are satisfied. Then x∗V = (1+α)2 · x∗P is a valid power assignment for
the set of guards GV ⊇ GP.

Proof: Let pi ∈ GV , 6∈ GP be a guard that has been removed during the pruning step,
p j ∈ GP the guard responsible for the removal. Then we have |pi p j| ≤ αens(p j), and
hence powering up all light sources by a factor of (1 + α)2 ensures that pi receives
enough light due to the same reasoning as in Lemma 1.6. ¤

Furthermore, our desired property is obviously fulfilled:

Lemma 1.8 For any two guards in the pruned set pi, p j ∈ GP, we have |pi p j| ≥
αmax{ens(pi),ens(p j)}.

Proof: Assume otherwise, then either pi or p j would have been pruned away when
considering the other guard. ¤

An immediate corollary of Lemma 1.7 is the following:

Corollary 1.2 A 4(1+α)2-approximation to the lighting problem can be obtained by
solving the lighting LP w.r.t. to the pruned set of guards GP.

It is now time to describe the algorithm which we will use to derive a power assignment
to the light sources. For that let us denote by si the light source that is closest to guard
pi, xi its assigned power for all guards pi ∈ GP. Without loss of generality we assume
that no light source is the closest for more than one guard (our derived bounds only get
better if we remove this assumption). The algorithm works as follows:

1. Compute the set of guards GV (via the Voronoi diagram of S)

2. Prune the set of guards GV with pruning constant α to obtain GP, |GP|= m.

3. Let GP be ordered such that ens(p1)≥ ens(p2)≥ ·· · ≥ ens(pm)

4. for all i = 1 . . .m

• xi = max{0, |pisi|2 ·
(
1−∑i−1

j=1
x j
|s j pi|2

)
}

Informally speaking this algorithm takes the guards one-by-one in decreasing order of
their ens(.) value and increases the power of their closest light source just sufficiently
such that they receive enough light. It can be trivially implemented to run in O(n2)
time.
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The crux of the analysis will be to show that no guard receives more than a constant
amount of excessive light. This property will then allow us to use a dual fitting argu-
ment bounding the quality of our solution.

Let Pi be the amount of light experienced by some guard pi after the execution of
the algorithm. Let us write this as Pi = P<

i + P=
i + P>

i where P<
i denotes the power

received from light sources s j, j < i, P=
i the power received from light source si and

P>
i the power received from light sources s j, j > i. Clearly P=

i > 0⇔ P<
i < 1, that is

si will only be used if pi did not already receive enough light from light sources which
were switched on before in the course of the algorithm. In the following we will bound
P>

i and P<
i and show that they are at most some constant (P=

i ≤ 1 is obvious).

Lemma 1.9 P>
i ≤ 4

Proof: Assume w.l.o.g. that all guards p j, j > i lie to the right of pi (at the end we
simply multiply the obtained bound by 2 to obtain a bound for all p j). We have

P>
i =

m

∑
j=i+1

x j

|pis j|2
≤

m

∑
j=i+1

ens(p j)
2

((∑ j
l=i+1 α · ens(pl−1))− ens(p j))2

following from Lemma 1.8 and since each light source s j is at most powered up to
ens(p j)

2. Assuming α≥ 2 we can continue with

≤
m

∑
j=i+1

ens(p j−1)
2

(∑ j−1
l=i ens(pl))2

But this sum is of the form ∑n
i=1

δ2
i

(∑i
j=1 δ j)2 with δi ≥ δi+1 (new indices here !). We then

get
n

∑
i=1

δ2
i

(∑i
j=1 δ j)2

≤
n

∑
i=1

δ2
i

(iδi)2 ≤
π2

6
≤ 2

by our decreasing ordering of the δi.

¤

Furthermore we have for the energy collected from the light sources assigned previ-
ously in the course of the algorithm:

Lemma 1.10 P<
i ≤ 6.

Proof: Consider the first guard p j, j < i to the left of pi whose light source is switched
on, i.e. x j > 0. Clearly we have P=

j + P<
j = 1 by definition of the algorithm. Fur-

thermore due to the previous Lemma we know that p j receives at most 2 units of light
from the left from light sources k > j. Hence at most 3 units of light can arrive at pi

from the left, which makes 6 units of light overall considering both the contributions
from the left and the right. ¤

From these two Lemmas and the observation that P=
i ≤ 1 we can derive the following
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Figure 1.6: Scaling the dual by a suitable (constant) factor gives the approximation
guarantee for the combinatorial algorithm.

Corollary 1.3 If powers are assigned to the light sources according to our algorithm,
we have for every guard pi ∈ Gp: 1≤ Pi = P<

i +P=
i +P>

i ≤ 4+1+6 = 11.

which says that any guard receives between 1 and 11 units of light.

Bounding the Quality of the Solution

In the following we will argue with the help of dual fitting that the solution x∗ obtained
with respect to the pruned set of guards GP is almost optimal, i.e. only a constant fac-
tor away from the optimal solution (w.r.t. GP). Recall that x∗ can be easily extended
to a feasible solution for the whole stage incurring an additional cost factor of at most
4 · (1+α)2 according to Corollary 1.2. The method of dual fitting, assuming the min-
imization problem as in our case, relies on the linear programming and its dual. The
basic idea is to interpret the combinatorial algorithm as an algorithm that iteratively
makes primal and dual updates such that the primal feasible solution computed at the
end by the algorithm is upper bounded by that of the constructed dual2. Since the dual
assignment is not feasible, the main step in the analysis consists of scaling the dual
by a suitable (constant) factor and showing that the scaled dual is feasible. The scaled
dual is then a lower bound on OPT, and the scaling factor gives the approximation
guarantee for the algorithm (see Fig. 1.6).

Let us rewrite the linear program w.r.t. the pruned set of guards GP and light sources
SP:

min ∑
s∈SP

xs

s.t. ∀p ∈ GP : ∑
s∈SP

xs/d2(p,s) ≥ 1

xs ≥ 0

(1.7)

The dual of this program looks as follows:

2In our case the objective values will be the same
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max ∑
p∈GP

yp

s.t. ∀s ∈ SP : ∑
p∈GP

yp/d2(p,s) ≤ 1

yp ≥ 0

(1.8)

The interpretation of the dual is the following: assign weights yp to each guard p ∈Gp

such that for each light source, the ’influence’ of the guards does not exceed 1.

To show that the power assignment constructed by our algorithm is not too far off
the optimum, it suffices to exhibit a feasible solution to the dual program which has
about the same objective function value. Weak duality then tells us that the optimum
solution to the primal program is sandwiched between the solution of our algorithm
and the feasible dual solution. Making use of the fact that the distance between a light
source si and a guard p j is essentially the same as the distance between light source s j

and pi (after the α-pruning), we can use the amount of light arriving at each guard pi

as value for yi and after scaling by a constant factor obtain a feasible solution to the
dual program.

Lemma 1.11 For any light source si and guard p j in the pruned set of guards and
light sources GP and SP we have:

|s j pi| · (1−
2

α−1
)≤ |si p j| ≤ |s j pi| · (1+

2
α−1

)

Proof: We show the right inequality, the left works analogously. We have by triangle
inequality |si p j| ≤ |pi p j|+ ens(pi)≤ |s j pi|+ ens(pi)+ ens(p j)≤ |s j pi|+2E for E =

max{ens(pi)ens(p j)}. But since E ≤ |s j pi|+E
α we get after rearranging E ≤ |s j pi|

α−1 which
yields the desired bound. ¤

In other words, for α ≥ 3 the distances |si p j| and |s j pi| can differ by at most a factor
of two.

Lemma 1.12 Let x∗ be the solution to the primal LP (1.7) as computed by our algo-
rithm, c∗p its objective function value. Then there exists a feasible solution y∗ to the
dual LP (1.8) with objective value c∗d ≥ c∗p/44.

Proof: Let us set for every pi ∈ GP: y∗i = x∗i /44. We need to verify that ∀s ∈ SP :
∑p∈GP y∗p/|ps|2 ≤ 1. But according to Corollary 1.3 and together with Lemma 1.11 we
have for α≥ 3:

m

∑
i=1

y∗i
|s j pi|2

≤ 22

44

( m

∑
i=1

x∗i
|si p j|2

)
≤ 1

¤
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So we have established a dual feasible solution with function value at least c∗p/44,
i.e. the optimum value copt must lie between c∗p/44 and c∗p which implies that x∗p is
no worse than a 44-approximation for the LP w.r.t. the pruned set of guards. And
because an optimum solution w.r.t. the pruned set of guards can be extended to a
feasible solution for the original problem at a cost of an additional 4 · (1 + α)2 factor,
we conclude with the following main theorem of this section:

Theorem 1.4 Given a stage L and n light sources, one can compute in O(n2) time
a power assignment to the light sources such that any point on the stage receives at
least one unit of light. The solution produced requires at most O(1) times the optimal
amount of energy.

Questions

It is not clear whether the pruning is indeed necessary for the analysis of the algorithm.
As the experiments later on show, even without pruning the algorithm achieves a rather
good approximation ratio, so it might be possible that the pruning was only necessary
due to our inability to give a more precise analysis.
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1.4 Generalizations and Open Problems

In the following we will list some extensions and other open illumination problems
that are worth analysing within our light attenuation model.

1.4.1 Generalization to higher dimensions (R3)

There is a straightforward way of extending the described model to a 3-dimensional
setting by assuming the stage L to be some bounded two-dimensional surface patch in
R3. The definition of ε-good sampling (Def. 1.4) can still be used, and ε-good sample
sets can be derived in a similar manner as described for the 2-dimensional case. Their
sizes then depend on the area of the two-dimensional surface to be sampled (again, a
logarithmic instead of linear dependence is achievable). The LP-based solution strat-
egy can still be applied, whereas the constant approximation probably requires some
more work.

1.4.2 Open Problems

There is a vast number of variations of the basic illumination and guarding problems
that have been considered in the past. Many of them can also be considered in our light
attenuation model, for example:

Art Gallery Illumination with k light sources

Given some fixed number k, determine position and power assignments of k light
sources such that any point on the boundary (or also in the interior) of a polygon with
n vertices receives at least one unit of light. Minimize the sum of assigned powers.

Floodlight Illumination

Given a stage L and a set F = { f1, . . . , fn} of floodlights of angle sizes α1, . . . ,αn such
that their apexes are located at some fixed points on the plane, all on the same side of
L. Decide if it possible to rotate them such that every point on L is illuminated, and if
yes, determine the rotations and power assignments, such that the stage is sufficiently
illuminated at every point and the overall power assigned is minimized.

Stage Illumination with Obstacles

The same problem as considered in this Chapter can be examined also in the presence
of obstacles. In this case, neither the pruning of light sources nor the discretization can
be applied immediately, though some similar approach seems doable.
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1.5 Experimental Results

In this experimental section we want to investigate the actual behavior of the proposed
algorithms, since we believe that our analysis of the approximation ratios is overly pes-
simistic. We have implemented the LP-based approximation algorithms using a ε-good
set of guards and the local maxima of the ens(.) function, as well as the combinato-
rial O(1)-approximation algorithm based on the pruned set of Voronoi vertices. We
have run the algorithms for different lengths D of the stage also varying the number of
relevant (in the sense of Section 1.3.1) light sources (which were randomly generated
around the stage 3).

Performance according to the Analysis

In Table 1.1 we have listed the sum of the power assignments made by our algorithms
for varying values of D and |GV | (the number of light sources whose Voronoi cells
actually intersect the stage). Columns LP1+ε (ε = 0.01), LP∗V , and C∗0 contain the results
for the (1+ ε)-, 4-, and O(1)-approximation algorithms, including the power-up of all
light sources to satisfy all points on the stage as proved in the previous sections.

LP1+ε LP∗V C∗0
D = 70, |GV |= 6 390.97 1547.96 39776
D = 70, |GV |= 15 106.03 416.04 11671.44
D = 70, |GV |= 22 82.28 324.12 8883.60
D = 140, |GV |= 8 690.88 2507 66584.32
D = 140, |GV |= 19 314.59 1227.44 33846.56
D = 140, |GV |= 41 172.40 675.96 20138.80

Table 1.1: Energy costs for different stage lengths (D), number of guards (|GV |), and
algorithms (LP-based (1+ ε)-approximation, LP-based 4-approximation, combinato-
rial O(1)-approximation).

Not surprisingly, the differences in the approximation ratios of the latter two algo-
rithms are dominated by the ’power-up’ factor. Note though, that this completely
disregards to which degree some point on the stage gets insufficient light. This will be
taken into account in our next experiment.

Actual Performance

To assess the real amount of ’power-up’ required to satisfy all points on the stage,
we evaluated the power assignments on a ε-good set of guards with ε = 0.01 and
determined the ’worst’ guard, i.e. the guard that received the least amount of light. We

3We have not investigated how to generate worst-case instances, so our results are not meant to be a
rigorous experimental analysis.
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D, |GV | LP1+ε LP′V C′0 APXV APXCOMB

70, 6 414.43 561.13 1071.24 1.43 2.73
70, 15 112.40 139.37 167.11 1.31 1.57
70, 22 87.22 102.10 162.52 1.24 1.97
140, 8 732.34 814.775 1112.26 1.11 1.51
140, 19 333.47 527.79 615.39 1.58 1.95
140, 41 182.75 239.96 299.79 1.39 1.74

Table 1.2: Energy costs for different stage lengths, number of guards, and algorithms,
but with adaptive power-up.

D, |GV | α = 0 α = 1 α = 3 α = 5
70, 14 3.39 3.31 3.19 3.16
70, 20 2.75 2.76 1.54 1.51
70, 31 5.09 5.09 4.98 3.92
140, 21 6.81 7.03 1.75 1.74
140, 30 10.15 10.06 9.98 9.88
140, 65 5.45 5.40 2.64 2.54

Table 1.3: Maximum excess of light for different stage lengths, number of guards, and
values of α.

use this to compute an appropriate power-up factor (for all light sources; one could
improve here by powering up light sources locally only). The results can be found
in Table 1.2; here LP′V and C′0 denote the power assignments resulting from this more
careful power-up strategy for the 4- and the O(1)-approximation scheme.

We have also included in the last two columns the resulting approximation factor of
the solutions (taking the (1+ ε) solution with ε = 0.01 as a lower bound). It turns out
that in fact, by using this more refined power-up strategy, the combinatorial O(1) as
well as the 4-approximation get much closer to the optimum solution than guaranteed
by the pessimistic theoretical analysis.

Further Observations

In the proof of the approximation ratio of the O(1) algorithm, we employed a pruning
procedure with some parameter α to actually be able to bound the amount of excess
light at any guard. But we suspected that this was only necessary because of our
inability to come up with a better analysis. In Table 1.3, the worst amount of excess
light at any guard is stated for different values of α. It seems that even without pruning
(i.e. α = 0) the amount of excessive light is bounded by a small constant; in our proof
we were only able to bound it for α≥ 3.

In a last experiment we have run the simple combinatorial algorithm on a ε-good set
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D, |GV | LP1+ε C∗0 C1+ε
SIMPLE APX1+ε

SIMPLE

70, 6 565.28 54175.6 613.63 1.08
70, 16 130.94 14386.3 180.66 1.38
70, 32 55.77 6106.18 72.90 1.31
140, 15 581.27 63846.1 684.78 1.18
140, 38 235.43 37361.8 322.78 1.37
140, 54 117.95 13528 154.83 1.31

Table 1.4: Energy costs of the LP-based (1 + ε)-approximation, the combinatorial
algorithm as described, and the combinatorial algorithm using a ε-good set of guards.
The last column shows resulting approximation factor of C1+ε

SIMPLE outcome.

of sample points. Even though we cannot prove any better approximation ratio than
for the original algorithm, the results look quite promising as can be seen in Table 1.4.
Here we denote by C1+ε

SIMPLE the outcome of running the O(1) algorithm on an ε-good
set of guards, including the required power-up.
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1.6 Conclusions

In this Chapter we have introduced a light attenuation model under which the large
class of illumination problems can be considered. Our model also takes into account
the decrease of light intensity with distance – something that had not been regarded in
classical models for illumination problems. As a concrete example we have examined
the problem of illuminating a stage using a fixed set of light sources minimizing the
overall energy.

Although we showed that the problem can be approximated up to the arbitrary small
additive error (see Section 1.3.2), the exact version of the problem is not known to be
in NP.

Looking at our solutions, we believe this new model creates quite a number of new
and interesting open questions in the context of illumination problems for which only
a combination of geometric reasoning and techniques from combinatorial optimization
will lead to provable results.
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Chapter 2
Preliminaries

In this chapter we will introduce the so-called well-separated pair decomposition
(WSPD) due to Callahan and Kosaraju ([CK92], [CK95a], [CK95b]).

The overall picture of the decomposition is as follows: given a set of n points in d-
dimensional Euclidean space, if the dimension d is fixed one can cluster points in
linearly many cluster-pairs such that

i) for every two points, there exists a (unique) cluster-pair separating them,

ii) the distance between two points from different sets/clusters can be ’approxi-
mated’ by the distance between the two clusters,

iii) points belonging to the same cluster are ’close’, as compared to points in the
opposite clusters.

In other words, a WSPD can be seen as a compressed representation to approximate
n2 pairwise distances of n points.

Above properties make the WSPD a powerful geometric concept that has been shown
to be of use in many practical and theoretical problems. In fact, later on in Chapter 3
and Chapter 4 we present query data structures based on the WSPD that would allow
for fast and efficient queries for two different geometric problems, the k-hop restricted
shortest path problem and the cone restricted nearest neighbor problem.

33
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2.1 The Well-Separated Pair Decomposition

Let P be a set of n points in Rd . For two sets A,B⊆ P, let d(A,B) denotes the distance
between the centers of their minimum enclosing boxes R(A) and R(B), respectively.
By r(A),r(B) we denote the radii of the minimum enclosing balls CA,CB of R(A),R(B),
respectively.

Definition 2.1 A pair of point sets A and B are said to be well-separated if and only
if d(A,B) > s · r, for an arbitrary positive constant s and where r denotes the radius of
the larger of the two minimum enclosing balls CA,CB of R(A),R(B) (see Fig. 2.1).

Minimum enclosing box

Minimum enclosing box

B

r

r

A d � s � r

Figure 2.1: Clusters A and B are ’well-separated’ if d > s · r.

s is called a separation constant and, in order to keep the minimum enclosing balls
CA,CB disjoint, s will never be less than 2. Furthermore, the definition of two sets
being well-separated captures some very nice properties. More precisely, for a,a′ ∈ A
and b,b′ ∈ B we make the following two observations:

Observation 1 Points belonging to the same cluster are ’close’, as compared to
points in the opposite clusters.

|aa′|< 2r ≤ 2
s
·d(A,B)≤ 2

s
· (|ab|+2r)≤ 4

s
· |ab|, for s≥ 4

Observation 2 All distances between points in opposite clusters are ’almost equal’.

|a′b′| ≤ |a′a|+ |ab|+ |bb′|< (1+
8
s
) · |ab|

Definition 2.2 (WSPD) A well-separated pair decomposition of P for a given param-
eter s≥ 2 is a sequence (A1,B1), . . . ,(Am,Bm), where Ai,Bi ⊆ P such that
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Figure 2.2: Example of split tree with additional blue edges.

1. Ai,Bi are well-separated with respect to separation constant s, for all 1≤ i≤m,

2. for all p 6= q in P there exists a unique pair (Ai,Bi) such that p ∈ Ai,q ∈ Bi or
q ∈ Ai, p ∈ Bi.

The first question we could ask ourself is whether such a decomposition exists at all.
The answer is ’yes’, since we could simply use all singleton pairs ({a},{b}). This
would yield a sequence of m = Θ(n2) length. The big question is whether we could
do better than that. Namely, can we construct a WSPD of P that will have e.g. linearly
many pairs? The answer to this question is given by the following theorem due to
Callahan and Kosaraju ([CK92],[CK95a]):

Theorem 2.1 Given a set P of n points in Rd and a separation constant s > 2, a WSPD
of P with O(sddd/2n) many pairs can be computed in O(dn logn+ sddd/2n) time.

Corollary 2.1 For a fixed separation constant s and dimension d, a WSPD in d-
dimensional Euclidean space of size O(n) can be computed in O(n logn) time.

The rest of the section will be devoted to the proof of the Theorem 2.1 that follows the
main ideas from Callahan and Kosaraju ([CK92]) paper.

Construction of WSPD: Let Li(R(A)) denote the ith side of the minimum bound-
ing box of A ⊆ P (in the rest of the section we will simplify notation and instead of
Li(R(A)) usually just write Li(A)). Furthermore, Lmax(A) (Lmin(A)) will denote the
largest (smallest) dimension of the minimum bounding box R(A). The split-tree of a
set P of points in Rd is the tree constructed by the following recursive algorithm:

SplitTree(P)

1. if size(P)=1 then return leaf(P),
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2. partition P into sets P1 and P2 by halving its minimum enclosing box R(P) with
hyperplane along Lmax(P) side,

3. return a node with children (SplitTree(P1), SplitTree(P2)).

Although such a tree might have linear depth and therefore a naive construction as
above takes quadratic time, Callahan and Kosaraju in [CK92] have shown how to con-
struct such a binary tree in O(n logn) time.

With every node u of that tree we can conceptually associate the set Pu of all points
contained in its subtree as well as their minimum enclosing box R(Pu). In order to
obtain the WSPD of P with respect to the separation constant s, for each internal node
u of the split tree with children v,w (and vl ,vr and wl ,wr denoting left and right child
of v,w) invoke the following procedure:

FINDPAIRS(v,w)

if Pv and Pw are well-separated with respect to s
then add additional blue edge (v,w) to the tree.
else if Lmax(Pv) > Lmax(Pw)

then FINDPAIRS(vl,w), FINDPAIRS(vr,w)
else FINDPAIRS(v,wl), FINDPAIRS(v,wr)

Note that the additional blue edges for the split tree are added such that

• the point sets associated with the endpoints of a blue edge are well-separated
with respect to separation constant s,

• for any pair of leaves (a,b), there exists exactly one blue edge that connects two
nodes on the paths from a and b to their lowest common ancestor lca(a,b) in
the split tree.

Thus, for a given split tree, the FINDPAIRS procedure terminates (e.g. in the worst
case, the blue edges will always connect the pairs of leaves of the tree) and computes
the WSPD represented as an additional set of edges, called blue edges, of the split tree.

Analysis: What is left to argue about is the size of the WSPD (number of blue edges).
The main idea is to argue that every node in the tree can be incident to only constant
number of blue edges. Since the size of the split tree is O(n) this will immediately
imply that the WSPD is of O(n) size.

Let a and b are two nodes in the split tree. Suppose that (a,b) is the blue edge since Pa

and Pb are well-separated after FINDPAIRS(u,v) call (see Figure 2.3). But then either
Pπ(a),Pb or Pa,Pπ(b) are by construction not well-separated, where π(·) denotes parent
node. Without loss of generality, suppose Pπ(a),Pb are not well-separated. Then the
following Lemma should be easy to see:
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u

v w

a

b

Figure 2.3: Since Pa and Pb are well-separated, blue edge (a,b) is reported.

Lemma 2.1 Tests made by FINDPAIRS(u,v) imply

Lmax(b)≤ Lmax(π(a))≤ Lmax(π(b)).

Proof: Note that left-hand side of the inequality holds trivially. For the right-hand
side of the inequality observe that either Lmax(π(a)) or some of the predecessors on
the path from v to π(a) have to be less or equal than Lmax(π(b)). ¤

Imagine balls of radius
√

d
2 Lmax(π(a)) := r around centers x and y of R(π(a)) and R(b),

respectively. Note that R(b) fits in ball of radius r because of left-hand side inequality
in Lemma 2.1. Furthermore, since Pπ(a) and Pb are not well-separated we have that

d(Pπ(a),Pb) = |xy|< s · r,

which in turn directly implies the following Lemma:

Lemma 2.2 For a given node a in the split tree, let (a,b1), . . . ,(a,bk) denote the
sequence of blue edges computed by FINDPAIRS routine and yi center of R(π(yi)),
1 ≤ i ≤ k. Then each yi has to be contained in hypercube of size 2s · r centered at x.
Furthermore, each R(Bi) is completely contained in hypercube of size 4s · r.

Note that each R(bi),R(b j) are disjoint, for i 6= j, since separated by hyperplanes.
Thus, in order to bound k (number of blue edges incident to a) we will use a packing
argument. For this, we need a lower bound of the volume of R(bi). Since that doesn’t
really seem possible, we define an outer box (container) R0(u) of R(u) and lower bound
its volume. Namely, for each node u of the split tree the splitting hyperplane along the
Lmax(u) defines two outer boxes R0(v),R0(w) corresponding to its leaves u and v such
that R0(v)∪R0(w) = R(u) (see Figure 2.4). Furthermore, we assume that the outer box
of the root is a minimal hypercube enclosing all the points in P.
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u

v w

R(u)
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R(w)

R (v)0 R (w)0

Figure 2.4: Example of the containers R0(v) and R0(w) of R(v) and R(w).

Lemma 2.3 For every node b 6= root of the split tree, we have that

Lmin(R0(b))≥ 1
2

Lmax(π(b)).

Proof: Proof goes by induction on the level of the tree.

Suppose π(b) = root. Since the outer box of the root is a minimal hypercube enclosing
P, Lmin(R0(b)) = 1

2 Li(R0(root)) for 1≤ i≤ d. Since Li(R0(root)) = Lmax(R(root)) the
claim follows.

If π(b) 6= root, we distinguish between two cases:

CASE 1: Lmin(R0(b)) = Lmin(R0(π(b))). But then, by induction, we have that

Lmin(R0(π(b)))≥ 1
2

Lmax(π(π(b)))≥ 1
2

Lmax(π(b))

.

CASE 2: Lmin(R0(b)) < Lmin(R0(π(b))). But then the splitting of R(π(b)) must have
happened along the minimum dimension – say ith dimension – of the R0(b). But then,

Lmin(R0(b)) = Li(R0(b)) =
1
2

Li(π(b)).

Since the ith dimension was the splitting one, Li(π(b)) = Lmax(π(b)) which completes
the proof. ¤

Since, R0(bi),R0(b j) are also disjoint for the same reason (separated by a hyperplane),
we will try to pack as many as possible of them in the hypercube of size 4s · r.

Note that the volume of the hypercube, call it U , of size 4s · r is (4s · r)d = (4s ·√
d

2 Lmax(π(a)))d := Vol(U). Furthermore, by Lemma 2.1 we have that Vol(U) ≤
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(4s ·
√

d
2 Lmax(π(b)))d . Number of R0(bi), for 1 ≤ i ≤ k, lying completely inside the

hypercube U is then at most

(
4s ·

√
d

2 Lmax(π(b))
)d

( 1
2 Lmax(π(b))

)d = O(sddd/2). (2.1)

We can conclude that the number of blue edges incident to any node in the split tree is
bounded by O(sddd/2) which concludes the proof of the Theorem 2.1.

The split tree together with its additional blue edges is what we will usually refer to as
well-separated pair decomposition.
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Chapter 3
Approximate k-hop Restricted
Shortest Paths in Power-Euclidean
Networks

The shortest-path problem in networks is a well studied fundamental problem for
which an efficient solution is well-known. The best-known and most commonly used
shortest path algorithm is that of Dijkstra [Dij59], which solves the single-source short-
est paths problem for directed graph with n nodes and m edges and non-negative edge
weights in O(m+n logn) time. However, better solutions exist if we allow precompu-
tation and construction of a data structure that would allow for approximate shortest
paths queries instead. For a constant t > 1, we say that a path π(p,q) from p to q is
a t-approximate shortest path if and only if ω(π(p,q)) ≤ ω(π′(p,q)) · t, for any other
path π′(p,q) from p to q and function ω(·) outputs the length/distance of the path.
Not insisting on the exact shortest path/distance computation has allowed for drastic
improvement in the running time. For general undirected graphs and for any inte-
ger r ≥ 1, Thorup and Zwick [TZ01] show how to construct a distance oracle which
answers (2r− 1)-approximate queries in O(r) time using a data structure that takes
O(rmn1/r) (expected) time and essentially optimal O(rn1+1/r) space. They also show
that the (2r−1)-approximate paths can be produced in constant time per edge. Since
the query time is essentially bounded by a constant (if r is constant), Thorup and Zwick
also refer to their queries as approximate distance oracles. Their algorithms are also
simple and easy to implement efficiently.

In this work, we consider a following variant of the shortest path problem: Given a
set P of n points in R2 we define the Power-Euclidean network as the complete graph
G = (P,P×P) with edge weight

ω(p,q) = |pq|δ +Cp (3.1)

for some constant δ > 1, nonnegative offset cost Cp and p,q ∈ P, where |pq| denotes
the Euclidean distance between p and q. We define the k-hop restricted shortest path,
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Figure 3.1: Example of very common and compact wireless units.

for some positive integer k, to be a shortest path between two given points in the
Power-Euclidean network subject to the constraint that at most k edges are used in the
path.

This work focuses on constructing a linear-size data structure from a given instance P
based on a well-separated pair decomposition (see Theorem 2.1) such that the (1+ε)-
approximate k-hop restricted shortest path in Power-Euclidean network can be re-
trieved in constant time, for arbitrary small values of ε > 0 and a constant k.

Motivation

The main motivation for our problem comes from an application in wireless networks.
If a user, application or company wishes to make data pervasive and accessible then
wireless networking is probably what they are looking for. Wireless communication
links between computing devices have become standard. For example, using a mobile
phone, receiving a message on a pager or checking an email from a PDA is a very
common scenario in everyday life of most people. New extremely compact wireless
units allow for small and cheap stations that can be deployed almost everywhere (see
Figure 3.1). However, such wireless gadgets can be found in a variety of different
places and their geometric location strongly determines the quality of wireless com-
munication. Thus, the geometric aspect turns to be much more important for wireless
communication than for the wired world.

A particularly interesting scenarios in wireless networking is to deploy a wireless net-
work completely independent of any wired infrastructure. For example, suppose that
any kind of fixed wired infrastructure, such as the Internet or LAN, is not available
either because it may not be economically practical or physically possible to provide
the necessary infrastructure. In such situations a collection of hosts with wireless
network interfaces may form a temporal network without the aid of any established
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q
R

Communication Radius:             R

Required transmission energy:  E ~ R*R

p

Figure 3.2: Station p is able to send a message to other stations within its communi-
cation range R. The energy required is proportional to the communication area.

infrastructure. Radio Networks are an attractive way to quickly build a communication
infrastructure without slow and expensive deployment of a cable backbone. In such
a network the finite set of radio stations are distributed over some geographical area.
Every station consists of the radio transmitter/receiver pairs and a limited power sup-
ply. Communication takes place by a station broadcasting an omnidirectional signal
over a fixed range, the size of which is proportional to the power expanded by the sta-
tion’s transmitter. Any other station within this range can directly (e.g. by one hop)
receive messages from the sending station (e.g. in Figure 3.2, station q is within the
communication range of p).

The energy needed by the station p in order to send a message to some other station q
is mathematically modelled with the weight function (3.1). Exponent values of δ are
typically between 2 and 6. Namely, for δ = 2 the edge weights reflect the exact energy
requirement for free space communication. For larger values of δ we get a popular
heuristic model for absorption effects [Rap95, Pat00]. The offset cost Cp accounts for
the distance independent energy consumption of the wireless stations (e.g. the energy
consumption of the signal processing during sending and receiving).

Communication between two stations that are not within their respective ranges can
be achieved by multi-hop transmission, namely a station in the range of the sending
station receives the message and forwards it to the next station and so on until the desti-
nation station is reached. However, even when two stations are within communication
range, they still might prefer to use a multi-hop transmission in order to minimize the
overall energy needed (see Figure 3.3). In fact, in our idealistic model we are going to
assume that every station is within communication range of others and will be mainly
concerned with using the least possible energy needed to transmit messages between
two different stations. However, a drawback of wireless communications is that the
QoS (Quality of Service) is not guaranteed. For example, multi-hop transmission with
too many hops/stations will increase the probability of link failure as well as increase
the latency of the communication (e.g. time needed for encoding and decoding sig-
nals). One possible solution to that is to limit the number of hops in the transmission
to some small integer k. And, as we will see, limiting the number of hops to k helps to
speed up the calculation of paths.
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Figure 3.3: A Radio Network example with 9,4,2,1-hop paths from P to Q with costs
9, 36, 50, 100

Hence, following the discussion above, computing the geometric shortest path from p
to q under the weight function ω(p,q) = |pq|δ +Cp with bounded number of hops can
be interpreted in radio networks as finding the energy optimal route between stations
p and q.

Another application of k-hop shortest path computation comes from the area of eco-
nomical airplane route planning. Chan, Efrat, and Har-Peled [EHP98, CE01] use sim-
ilar concepts to model the fuel consumption of airplanes routed between a set P of
airports as already discussed in the introduction of the thesis. The positive cost of the
flight is usually mathematically described via a superlinear function, e.g. δ > 1. The
offset cost Cp in this case will also account for distance independent costs (e.g. take
off phase will consume significantly more fuel compared to maintaining the constant
altitude of the plane).

Related Work

The first attempt, by our knowledge, to cope with Dijkstra’s quadratic complexity of
the exact shortest path problem in a complete geometric graph with ω(p,q) = f (|pq|δ)
distance function is by Chan, Efrat, and Har-Peled [EHP98, CE01]. They observe that
for ω(p,q) and δ≥ 2, exact geometric shortest paths are equivalent to shortest paths in
the Delaunay triangulation of P, i.e., optimal paths can be computed in time O(n logn).
This is rather easy to see since a non-Delaunay edge e on a shortest path contains points
inside the smallest circle enclosing the edge (replacing e by two edges going via such a
point will yield a smaller cost for δ≥ 2). Note that this approach completely collapses
for k-hop paths because most Delaunay edges are very short. The main contribution of
Chan et al. is a sophisticated O(n4/3+γ) time algorithm for computing exact geometric
shortest paths for monotone cost functions ω(p,q) = f (|pq|) where γ is any positive
constant.
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Beier, Sanders and Sivadasan [BSS02] give an algorithm which for the special case
δ = 2 computes the optimal k-hop path in time O(kn logn) by dynamic programming
and applies geometric nearest neighbor search structures to speed up the update of the
dynamic programming table. They also construct an O(n(1+ε)) time algorithm for the
case of an unrestricted number of hops. For two hop paths they furthermore reduce the
query time to O(logn) using only linear space and O(n logn) preprocessing time. Their
algorithms are based on geometric data structures ranging from simple 2-dimensional
Delaunay triangulation to more sophisticated proximity data structures that exploit the
special structure of the problem.

Our results

We start studying the k-hop restricted shortest path problem by presenting a very
generic algorithm in Section 3.1 for computing an optimal solution for the problem.

In Section 3.2 and Section 3.3 we present our main result. Namely, we present a data
structure that uses linear space and can be built in time O(n logn) for any constants
k, δ > 1, and ε > 0. In constant time it allows us to compute k-hop paths between
arbitrary query points that are within a factor (1+ ε) far from optimal. When k, δ, and
ε are considered variables, the query time remains constant and the preprocessing time
is bounded by a polynomial in k, δ, and 1/ε.

The algorithm has two main ingredients that are of independent interest. The first part,
discussed in Section 3.2, is based on the observation that for approximately optimal
paths it suffices to compute a shortest path for a constant size subset of the points —
one point for each square cell in some grid that depends on the query points. This
subset can be computed in time O(logn) using well known data structures supporting
(approximate) quadratic range queries [dBvKOS97, AM00]. These data structures
and in particular their space requirement are independent of k, δ, and ε. Some variants
even allow insertion and deletion of points in O(logn) time. Section 3.3 discusses
the second ingredient. Well separated pair decompositions [CK92] allow us to answer
arbitrary approximate path queries by precomputing a linear number of queries. We
develop a way to access these precomputed paths in constant time using hashing. This
technique is independent of path queries and can be used for retrieving any kind of
information stored in well separated pair decompositions. Since the query time is
bounded by a constant, our result can be seen as an approximate path oracle for Power-
Euclidean networks.

In Section 3.4 we experimentally study our algorithms and compare them to some
simple heuristics. Section 3.5 discusses further generalizations and open problems.

REMARK For reasons of simplicity and clearness in the rest of the chapter we will
consider the offset cost Cp to be zero. Note that our results stay applicable under more
general weight function with a strictly positive offset cost Cp, though.
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3.1 Computing Optimal k-hop Paths

We consider the following problem: Given a set P of n points in Z2 and some con-
stant k, report for a given query pair of points p,q ∈ P, a polygonal path π = π(p,q) =
v0v1v2 . . .vl , with vertices vi ∈ P and v0 = p,vl = q which consists of at most k seg-
ments, i.e. l ≤ k, such that its weight ω(π) = ∑0≤i<l ω(vi,vi + 1) is minimized. By
πopt = πopt(p,q) we denote an optimal path from p to q under this criterion.

Lemma 3.1 For the optimal path πopt connecting p and q we have |pq|δ
kδ−1 ≤ |πopt| ≤

|pq|δ.

Proof: As we can connect p and q directly using one hop, the upper bound follows
immediately. For the lower bound observe that the cheapest way to connect p and q is
to divide the segment pq into k subsegments of equal length, which yields the lower
bound. ¤

Definition 3.1 We define the axis-aligned square of side-length l centered at the mid-
point of a segment pq as the frame of p and q, F(pq, l).

Lemma 3.2 The optimal path πopt connecting p and q has to be contained within the
frame F(pq,k(δ−1)/δ|pq|) of p and q.

Proof: Assume that the optimal path visits some point r outside the frame F . Note
that such a path has Euclidean length at least |pr|+ |rq| > k(δ−1)/δ|pq| and therefore

the cost is lower bounded by (|pr|+|rq|)δ

kδ−1 > (k(δ−1)/δ|pq|)δ

kδ−1 = |pq|δ which in turn implies
that doing one direct hop from p to q is even better. ¤

Layered Graph Construction

In the following we will present first a very generic algorithm for computing an exact
k-hop shortest paths. Namely, the algorithm works for arbitrary connected graphs (not
necessary geometric ones) and an arbitrary weight function.

We consider the complete graph with all edge weights explicitly stored and then use
the following construction:

Lemma 3.3 Given a connected graph G(V,E) with |V |= n, |E|= m with weights on
the edges and one distinguished node p ∈V , one can compute for all q ∈V −{p} the
path of minimum weight between p and q using at most k edges in time O(km).
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Figure 3.4: Layered Graph example

Proof: We assume that the graph G has self-loop edges (v,v) with assigned weight 0.
Construct k +1 copies V (0),V (1), . . . ,V (k) of the vertex set V and draw a directed edge
(v(i),w(i+1)) iff (v,w) ∈ E with the same weight (Figure 3.4). Compute the distances
from p(0) to all other nodes in this layered, acyclic graph. This takes time O(km) as
each edge is relaxed only once. ¤

Note that the above approach performs well in practice only if the set of points is very
small. However, in practice we could speed up the above naive, essentially ’brute
force’, approach by figuring out edges that are too long to be part of the optimal so-
lution for a given p and q (e.g. edges outside of the frame F(pq,k(δ−1)/δ|pq|)). This
simple heuristic will be discussed in more detail in experimental Section 3.4.

Recall that for the special case of δ = 2 there is an algorithm that computes the optimal
k-hop shortest path in Power-Euclidean networks in time O(kn logn) (see [BSS02]).
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3.2 Approximate k-hop Path Queries

In this section we will be concerned with computation of k-hop shortest path that is
’almost’ optimal. Namely, for a given pair of query points p,q and an arbitrarily small
constant ε > 0 our primal objective will be to output a polygonal path π(p,q) such that
its weight is at most (1+ ε) ·ω(πopt).

In the following we assume that the weight function ω is of the form ω(a,b) = |ab|δ
with δ > 1 (the case δ≤ 1 is trivial as we just need to connect p and q directly by one
hop).

Preliminaries

Before we introduce our procedure for reporting approximate k-hop paths, we need
to refer to some standard data structures from Computational Geometry which will be
used in our algorithm.

Theorem 3.1 (Exact Range Query) Given a set P of n points in Z2 one can build a
data structure of size O(n logn) in time O(n logn) which for a given axis aligned query
rectangle R = [xl,xu]× [yl,yu] reports in O(logn) time either that R contains no point
or outputs a point p ∈ P∩R.

The data structure can be maintained dynamically such that points can be inserted and
deleted in O(logn log logn) amortized time. The preprocessing time then increases to
O(n logn log logn) and the query time to O(logn log logn). All the log logn factors can
be removed if only either insertions or deletions are allowed.

Proof: We use the standard 2-level range-tree construction. From the resulting O(log2 n)
query time we can get rid of one logn by fractional cascading, see [dBvKOS97]. The
whole construction can be maintained dynamically allowing insertions and deletions
using the results in [MN90]. ¤

In fact, the algorithm we will present will also work with an approximate range report-
ing data structure such as the one presented in [AM00, AMN+98]. The part of their
result relevant for us can be stated in the following theorem:

Theorem 3.2 (Approximate Range Query) Given a set P of n points in Z2 one can
build a data structure of size O(n) in time O(n logn) which for a given axis aligned
query rectangle R = [xl,xu]× [yl,yu] with diameter ω reports in O(logn+ 1

α ) time either
that the rectangle R′ = [xl + αω,xu + αω]× [yl + αω,yu + αω] contains no point or
outputs a point p ∈ P∩R′.

The data structure can be maintained dynamically such that points can be inserted and
deleted in O(logn) time.
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Basically this approximate range searching data structure works well if the query rect-
angle is fat; and since our algorithm we present in the next section will only query
square rectangular regions, all the results in [AM00] and [AMN+98] apply. In fact we
do not even need α to be very small, α = 1 turns out to be good enough. So the use
of an approximate range searching data structure helps us to get rid of the logn factor
in space and some loglogn factors for the dynamic version. But to keep presentation
simple we will assume for the rest of this chapter that we have an exact range searching
data structure at hand. Furthermore, let us briefly cite two well known inequalities that
turn out to be of use in the following analysis.

Minkowski’s inequality For some δ > 1 and ai, bi > 0, Minkowski’s sum inequality
states that ( k

∑
i=1

(ai +bi)
δ
) 1

δ

≤
( k

∑
i=1

aδ
i

) 1
δ

+

( k

∑
i=1

bδ
i

) 1
δ

.

Equality holds iff the sequences a1,a2, . . . and b1,b2, . . . are proportional.

Hölder’s inequality Let
1
p

+
1
q

= 1

with p, q > 1. Then, for some ai, bi > 0 Hölder’s inequality for sums states that

k

∑
i=1

aibi ≤
( k

∑
i=1

ap
i

) 1
p
( k

∑
i=1

bq
i

) 1
q

.

Equality holds when bi = cap−1
i , for some c > 0.

Computing Approximate k-hop Paths

We will now focus on how to process a k-hop path query for a pair of points p and
q assuming that we have already constructed the data structure for orthogonal range
queries (which can be done in time O(n logn)).

We are now armed to state our algorithm to compute a k-hop path which, as we will
later show, is a (1+ ε) approximation to the optimal k-hop path from p to q.

K-HOP-QUERY(p,q,ε)

1. Put a grid of cell-width α · |pq|/k on the frame F(pq,k(δ−1)/δ|pq|) with α =
ln(2)

2
√

2
· ε

δ .

2. For each grid cell C perform an orthogonal range query to either certify that the
cell is empty or report one point inside which will serve as a representative for
C.

3. Compute the optimal k-hop path π(p,q) with respect to all representatives and
{p,q}.
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QP

α|P Q|/k
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Figure 3.5: 3-hop-query for P and Q: representatives for each cell are denoted as solid
points, the optimal path is drawn dotted, the path computed by the algorithm is drawn
solid

4. Return π(p,q)

Please look at Figure 3.5 for a schematic drawing of how the algorithm computes the
approximate k-hop path. It remains to argue about correctness and running time of our
algorithm. Let us first consider its running time.

Lemma 3.4 K-HOP-QUERY(p, q, ε) can be implemented to return a result in time
O( δ2·k(4δ−2)/δ

ε2 ·TR(n)+Tk,δ(
δ2·k(4δ−2)/δ

ε2 )), where TR(n) denotes the time for one 2-dimensional
range query on the original set of n points and Tk,δ(x) denotes the time for the exact
computation of a minimal k-hop path for one pair amongst x points under the weight
function ω(pq) = |pq|δ.

Proof: By the choice of frame and cell width, it is easy to see that in the first step of our
algorithm we generate a grid of size O(( δ·k(2δ−1)/δ

ε )2) which is O( δ2·k(4δ−2)/δ

ε2 ). For each
of the cells we perform an orthogonal range query each of which takes TR(n) time.
For all the representatives which we have found, we run an exact minimum k-hop path
algorithm which takes Tk,δ(

δ2·k(4δ−2)/δ

ε2 ). ¤

Let us now turn to the correctness of our algorithm, i.e. for any given positive ε, we
want to show that our algorithm returns a k-hop path of weight at most (1+ε) times the
weight of the optimal path. We will show that only using the representatives of all the



APPROXIMATE k-HOP PATH QUERIES 51

grid cells there exists a path of at most this weight. In the following we assume that the
optimal path πopt consists of a sequence of points p0 p1 . . . p j, j ≤ k and li = |pi−1 pi|.

Before we get to the actual proof of this claim, we need to state a small technical
lemma.

Lemma 3.5 For any δ > 1 and li,ξ > 0 the following inequality holds

∑k
i=1(li +ξ)δ

∑k
i=1 lδ

i
≤
(

∑k
i=1(li +ξ)

∑k
i=1 li

)δ

Proof: Note that Minkowski’s inequality directly implies

( k

∑
i=1

(li +ξ)δ
) 1

δ

≤
( k

∑
i=1

lδ
i

) 1
δ

+

( k

∑
i=1

ξδ
) 1

δ

=

( k

∑
i=1

lδ
i

) 1
δ

+ k
1
δ ·ξ

which in turn gives (
∑k

i=1(li +ξ)δ

∑k
i=1 lδ

i

) 1
δ

≤ 1+
k

1
δ ·ξ

(∑k
i=1 lδ

i )
1
δ
.

Moreover, note that Hölder’s inequality implies

(
∑k

i=1 lδ
i

k

) 1
δ

≥ ∑k
i=1 li
k

for bi = 1, i = 1, . . . ,k, p = δ and q = δ
δ−1 , which completes the proof. ¤

Lemma 3.6 K-HOP-QUERY(p, q, ε) computes a k-hop path from p to q of weight at
most (1+ ε)ω(πopt(p,q)) for 0 < ε≤ 1.

Proof: Using Lemma 3.5, with ξ denoting the possible error incurred by taking the
respective representative edge, it is sufficient to show that

(
∑k

i=1(li +ξ)

∑k
i=1 li

)δ

≤ 1+ ε.

Knowing that the absolute ’detour’1 incurred by replacing its endpoints by the respec-
tive representatives in their grid cell is bounded by ξ≤ 2

√
2α d

k we have

(
1+

k ·2
√

2α d
k

∑k
i=1 li

)δ
≤ 1+ ε.

1Here the analysis has to be changed slightly when using approximate range reporting data structures:
for α = 1 we might get twice the ’detour’ assumed here.
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Thus, observing that (∑k
i=1 li)/d is at least 1, we get following bound on α

α≤ (1+ ε)1/δ−1
2
√

2
.

For any positive α less then the above upper bound claim of the lemma holds. However,
we would like to have α as larger as possible in a given bound but also a little bit more
nicely formulated. Hence, using the well known fact that (1+1/x)x ≤ e for any x > 0,
we get

(1+ ε) = eln(1+ε) ≥
((

1+
ln(1+ ε)

δ

) δ
ln(1+ε)

)ln(1+ε)

which easily reduces to

δ ·
(
(1+ ε)1/δ−1

)
≥ ln(1+ ε).

Furthermore, ln(1+ ε)≥ ln(2) · ε for any 0 < ε≤ 1 and therefore it suffice to choose

α =
ln(2)

2
√

2
· ε

δ
.

¤

REMARK Note that in the case of the strictly positive offset cost Cp, the size of
the frame containing the optimal path computed by Lemma 3.2 will stay the same.
However, in the K-HOP-QUERY algorithm, one would have to be a little bit more
careful and in step 2 of the algorithm report a point with smallest offset cost (this can
be easily incorporated into the standard geometric range query data structures) rather
then an arbitrary point inside the cell.

Summary

In our approximation algorithm we reduced the problem of computing an approximate
k-hop path from p to q to one exact k-hop path computation of a small, i.e. constant
number of points (only depending on k,δ and ε). Since with the help of Lemma 3.3 we
know how to compute the k-hop optimal path, we can summarize our general result in
the following Theorem (we give the bound for the case where an approximate range
query data structure as mentioned in Theorem 3.2 is used).

Theorem 3.3 We can construct a dynamic data structure allowing insertions and dele-
tions with O(n) space and O(n logn) preprocessing time such that (1+ε) approximate
minimum k-hop path queries under the weight function ω(p,q) = |pq|δ can be an-
swered in time O( δ2·k(4δ−2)/δ

ε2 · logn+ δ4·k(7δ−2)/δ

ε4 ).
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The query time does not change when using exact range query data structures, only
space, preprocessing and update times get slightly worse (see Theorem 3.1).

In [BSS02] the authors presented an algorithm which for the special case δ = 2 com-
putes the optimal k-hop path in time O(kn logn) by dynamic programming and an ap-
plication of geometric nearest neighbor search structures to speed up the update of the
dynamic programming table. Applied to our problem we get the following corollary:

Corollary 3.1 The subroutine of our algorithm to solve the exact k-hop problem on
O( k3

ε2 ) points can be solved in time O( k5

ε2 · log k
ε ) if δ = 2.
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3.3 Approximate Path Oracle

In the previous section we have seen how to answer a (p,q) query in O(logn) time
(considering k,δ,ε as constants). Standard range query data structures were the only
precomputed data structures used. Now we explain how additional precomputation
can further reduce the query time. We show how to precompute a linear number of k-
hop paths, such that for every (p,q), a slight modification of one of these precomputed
paths is a (1+ε)(1+2ψ)2 approximate k-hop path and such a path can be accessed in
constant time. Here ψ > 0 is the error incurred by the use of these precomputed paths
and can be chosen arbitrarily small (the size of the well-separated pair decomposition
then grows, though).

3.3.1 Using the WSPD for Precomputing Path Templates

In fact the WSPD is exactly what we need to efficiently precompute k-hop paths for all
possible Θ(n2) path queries. So we will use the following preprocessing algorithm:

1. compute a well-separated pair decomposition of the point set with s = k(δ−1)/δ ·
8δ · 1

ψ

2. for each blue edge compute a (1 + ε)-approximation to the lightest k-hop path
between the centers of the associated bounding boxes

At query time, for a given query pair (p,q), it remains to find the unique blue edge
(A,B) which links a node of the path from p to lca(p,q) to a node of the path from q to
lca(p,q). We take the precomputed k-hop path associated with this blue edge, replace
its first and last node by p and q respectively and return this modified path (see Figure
3.6).

A
B

Figure 3.6: Example of the blue-edge connecting well-separated sets A and B and the
template path (red dashed line) saved with it.

In the following we will show that the returned path is indeed a (1 + ε)(1 + 2ψ)2

approximation of the lightest k-hop path from p to q. Later we will also show that
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this path can be found in constant time. For the remainder of this section let πP
opt(x,y)

denote the optimal k-hop path between two points x,y not necessarily in P such that all
hops have starting and end point in P (except for the first and last hop). We first start
with a lemma which formalizes the intuition that the length of an optimal k-hop path
does not change much when perturbing the query points slightly.

Lemma 3.7 Given a set of points P and two pairs of points (a,b) and (a′,b′) with
d(a,b) = d and d(a,a′)≤ c, d(b,b′)≤ c with c≤ ψd

k(δ−1)/δ·4δ , then we have ω(πP
opt(a

′,b′))≤
(1+2ψ)ω(πP

opt(a,b).

Proof: Consider the path πP
opt(a,b) = v0v1 . . .vk with v0 = a, vk = b and consider

its modification π′ = a′v1 . . .vk−1b′. For the analysis we will distinguish between the
cases where the edge (a,v1) ((vk−1,b) respectively) is ’long’ or ’short’. If (c+ |av1|)δ≤
(1+ψ)|av1|δ, we are safe and this is the case when |av1| is long edge, namely |av1| ≥

c
(1+ψ)1/δ−1 . So let us now consider the case that (a,v1) is short. Clearly an upper bound

on the cost of πP
opt(a

′,b′) is given by:

ω(πP
opt(a

′,b′))≤ ω(π′) = ω(πP
opt(a,b))−|av1|δ + |a′v1|δ−|bvk−1|δ + |b′vk−1|δ

≤ ω(πP
opt(a,b))−|av1|δ +(|av1|+ c)δ−|bvk−1|δ +(|bvk−1|+ c)δ

And since for 0≤ x < y,δ≥ 1 we have (c+x)δ−xδ ≤ (c+y)δ−yδ and the respective
edges are short, we can continue with

≤ ω(πP
opt(a,b))+2 · (( c

(1+ψ)1/δ−1
+ c)δ− (

c
(1+ψ)1/δ−1

)δ)

= ω(πP
opt(a,b))+2cδ · (( (1+ψ)1/δ

(1+ψ)1/δ−1
)δ− (

1
(1+ψ)1/δ−1

)δ)

= ω(πP
opt(a,b))+2cδ · ψ

((1+ψ)1/δ−1)δ

≤ ω(πP
opt(a,b))+2cδψ · (2δ

ψ
)δ

≤ ω(πP
opt(a,b))(1+2cδψ · (2δ

ψ
)δ · k

δ−1

dδ )

So finally it just remains to choose c such that 2 · ( 2δc
d )δ · kδ−1

ψδ−1 ≤ ψ which is certainly

true for c≤ ψd
k(δ−1)/δ·4δ ¤

The following corollary of the above Lemma will be used later in the proof:

Corollary 3.2 Given a set of points P and two pairs of points (a,b) and (a′,b′) with
d(a,b) = d and d(a,a′)≤ c, d(b,b′)≤ c with c≤ ψd

k(δ−1)/δ·8δ , then we have ω(πP
opt(a

′,b′))≤
(1+2ψ)ω(πP

opt(a,b)) as well as ω(πP
opt(a,b))≤ (1+2ψ)ω(πP

opt(a
′,b′).
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Proof: Clearly the first claim holds according to Lemma 3.7. For the second one
observe that d′ = |a′b′| ≥ d−2 · c and then apply the Lemma again. ¤

Applying this Corollary, it is now straightforward to see that the approximation ratio
of the modified template path is (1+2ψ)2(1+ ε).

Lemma 3.8 Given a well separated pair decomposition of a point set P ⊂ Z2 with
separation constant s = k(δ−1)/δ·8δ

ψ , the path π(p,q) returned for a query pair (p,q) is a
(1+2ψ)2(1+ ε) approximate k-hop path from p to q.

Proof: Let (A,B) be the unique cluster pair connected by a blue edge with p ∈ A,
q ∈ B, cA,cB their respective cluster centers. By the choice of the separation parameter
and Lemma 3.7, we know that |pcA|, |qcB| ≤ ψ|cAcB|

k(δ−1)/δ·8δ and therefore ω(π(p,q))≤ (1+

2ψ)(1+ ε)ω(πopt(cA,cB))≤ (1+2ψ)2(1+ ε)ω(π(p,q)). ¤

Adequate Choice for ψ and ε

For a given φ > 0, what is the right choice for ψ and ε to obtain an arbitrary approx-
imation quality of (1 + φ)? In order to answer on that, note that in the preprocessing
phase for O(s2n) many different pairs of points we have to compute approximated
path in O( logn

ε2 ) time. Having in mind that separation constant s = O( 1
ψ), we have

that preprocessing running time depend on ε and ψ as O( 1
ψ2ε2 · n logn). Hence, we

would like to choose ψ and ε such that 1
ψ2ε2 is minimized subject to the constraint

(1 + 2ψ)2(1 + ε) = (1 + φ). This is the classical problem of finding constrained ex-
treme values of the function with two real variables which can be solved using La-
grange multiplier.

Consider the functions f (x,y) := 1
x2y2 and g(x,y) := (1 + 2x)2(1 + y)− (1 + φ). The

Lagrangian function of f (x,y) subject to the constraint g(x,y) = 0 is the function of
three variables

L(x,y,λ) = f (x,y)−λ ·g(x,y) =
1

x2y2 −λ
(
(1+2x)2(1+ y)− (1+φ)

)
, φ > 0

where λ is known as the Lagrange multiplier. Next thing is to find values of x, y and λ
such that ∇L(x,y,λ) = 0 which is equivalent to the equations

0 = ∂L(x,y,λ)
∂x =− 2

x3y2 −4λ(1+2x)(1+ y)

0 = ∂L(x,y,λ)
∂y =− 2

x2y3 −λ(1+2x)2

0 = ∂L(x,y,λ)
∂λ = (1+2x)2(1+ y)− (1+φ).

The above system of nonlinear equations reduces to

0 = 4x− y+2xy
0 = (1+2x)2(1+ y)− (1+φ)

(3.2)
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which solution formulates x and y as functions of the parameter φ. Returning to our
initial problem and replacing x and y with ψ and ε in system (3.2), respectively, we can
get exact values for ψ and ε. As those expressions are fairly complicated, we would
rather observe approximate values of ψ and ε. We would like to locally approximate
values for ψ and ε on some small interval with linear functions ψ′ = C1 · φ and ε′ =
C2 ·φ, respectively, such that

(1+2ψ′)2(1+ ε′)≤ (1+2ψ)2(1+ ε) = (1+φ). (3.3)

Lemma 3.9 For φ ∈ (0,1], inequality (3.3) holds for C1 = 1
12 and C2 = 2

5 .

Proof: In the system (3.2), y can be easily expressed in terms of x. Concerning sub-
stitutions mentioned above we can easily obtain a new inequality following from the
inequality (3.3)

(1+2C1 ·φ)3

1−2C1 ·φ
≤ (1+φ). (3.4)

Note that for φ = 0 equality holds. The left hand side of the inequality is a mono-
tonically increasing function while the right hand side is a linear function. Therefore
inequality will hold if and only if it holds for the largest possible value of φ we admit.
As φ ∈ (0,1], for φ = 1 we get

(1+2C1)
3

1−2C1
≤ 2

which is true for sufficiently small C1, e.g. C1 ≤ 1
12 . To compute the value for C2 we

will use the inequality (3.3) again:

(1+2
φ
12

)2(1+C2 ·φ)≤ (1+φ).

Using the same reasoning as for inequality (3.4), setting φ = 1 we easily get that in-
equality holds for C2 ≤ 2

5 . ¤

3.3.2 Retrieving Cluster Pairs for query points in O(1) time

In the previous paragraphs we have shown that using properties of the well-separated
pair decomposition, it is possible to compute O(n) ’template paths’ such that for any
query pair (p,q) out of the Ω(n2) possible query pairs, there exists a good template
path which we can modify to obtain a good approximation to the lightest k-hop path
from p to q. Still, we have not shown yet how to determine this good template path for
a given query pair (p,q) in constant time. We note that the following description does
not use any special property of our original problem setting, so it may apply to other
problems, where the well-separated pair decomposition can be used to encode in O(n)
space sufficient information to cover a query space of Ω(n2) size.
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c̃A

c̃B

2dlog(d/s)e

d = |cAcB |

Figure 3.7: Cluster centers cA and cB are snapped to closest grid points c̃A and c̃B

Gridding the Cluster Pairs

The idea of our approach is to round the centers cA,cB of a cluster pair (A,B) which
is part of the WSPD to canonical grid points c̃A, c̃B such that for any query pair (p,q)
we can determine c̃A, c̃B in constant time. Furthermore we will show that there is only
a constant number of cluster pairs (A′,B′) which have their cluster centers rounded to
the same grid positions c̃A, c̃B, so well-known hashing techniques can be used to store
and retrieve the respective blue edge and also some additional information I(A,B) (in
our case: the precomputed k-hop path) associated with that edge.

In the following we assume that we have already constructed a WSPD of the point
set P with a separation constant s > 4. For any point p ∈ Z2, let snap(p,w) denote
the closest grid-point of the grid with cell-width w originated at (0,0) and let H :
Z2×Z2 → (I×E)∗ denote a hash table data structure which maps pairs of integer
points in the plane to a list of pairs consisting of some information type and a (blue)
edge in the WSPD. Let u denote the size of the universe Z2×Z2 and note that u = O(n).
Using universal hashing [CW77] this data structure has constant expected access time.
The idea of universal hashing is to choose (at run time) the hash function randomly
from a given family of hash functions in a way that is independent of the keys which
are going to be used. A collection of hash functions M is said to be universal if for
every two different keys x and y we have

Prh∈M [h(x) = h(y)] =
1
m

where m denote the size of the table (I×E)∗. If we pick h at random from M , then
the average number of keys yi such that h(x) = h(yi) is at most u/m. So, if we choose
m = Θ(u), each operation has O(1) average running time.

Preprocessing

• For every blue edge connecting clusters (A,B) in the split tree

– cA← center(R(A)), cB← center(R(B))

– w← |cAcB|/s

– w̃← 2dlogwe

– c̃A← snap(cA, w̃)
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– c̃B← snap(cB, w̃)

– Append ((I(A,B),(A,B))) to H [(c̃A, c̃B)]

Look at Figure 3.7 for a sketch of the preprocessing routine for one cluster pair (A,B).
Clearly this preprocessing step takes linear time in the size of the WSPD. So given a
query pair (s, t), how to retrieve the information I(A,B) stored with the unique cluster
pair (A,B) with s ∈ A and t ∈ B?

Query(p,q)

• w′← |pq|/s

• w̃1← 2dlogw′e−1

• w̃2← 2dlogw′e

• w̃3← 2dlogw′e+1

• for grid-widths wi, i = 1,2,3 and adjacent grid-points c̃p, c̃q of p and q respec-
tively

– Inspect all items (I(A,B),(A,B)) in H [(c̃p, c̃q)]

∗ if p ∈ A and q ∈ B return I(A,B)

In this description we call a grid-point g̃ adjacent to a point p if |g̃p|x, |g̃p|y < 3
2 w̃,

where | · |x/y denotes the horizontal/vertical distance. Clearly there are at most 9 adja-
cent points for any point p in a grid of width w̃. In the remainder of this section we
will show that this query procedure outputs the correct result (the unique I(A,B) with
p ∈ A and q ∈ B such that (A,B) is blue edge in the WSPD) and requires only constant
time. In the following we stick to the notation that w̃ = 2dlog |cAcB|/se, where cA,cB are
the cluster centers of the cluster pair (A,B) we are looking for.

Lemma 3.10 For s > 4, we have w̃i = w̃ for some i ∈ {1,2,3}.

Proof: As A and B are well-separated and p∈ A and q∈ B, we know that |cA p|, |cBq|<
|cAcB|/s. Therefore |cAcB|(1−2/s) < |pq|< |cAcB|(1+2/s) and hence

dlog
|cAcB|(1−2/s)

s
e< dlog

|pq|
s
e< dlog

|cAcB|(1+2/s)
s

e

Using the fact that s > 4 we obtain

dlog
|cAcB|

s
−1e< dlog

|pq|
s
e< dlog

|cAcB|
s

+1e

and therefore

dlog
|cAcB|

s
e−1 < dlog

|pq|
s
e< dlog

|cAcB|
s
e+1
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which proves the Lemma. ¤

This Lemma says that at some point the query procedure uses the correct grid-width
as determined by cA and cB. Furthermore for any given grid-width and a pair of query
points p and q, there are at most 9 ·9 = 81 pairs of adjacent grid points to inspect. We
still need to argue that given the correct grid-width w̃, the correct pair of grid points
(c̃A, c̃B) is amongst these ≤ 81 possible pairs of grid points that are inspected.

Lemma 3.11 For w̃i = w̃, c̃A and c̃B are amongst the inspected grid-points.

Proof: In the following we will restrict on the part to show that cA is adjacent to p.
Clearly we have |cA p| < |cAcB|

s ≤ w̃, so in particular |cA p|x, |cA p|y < w̃. Furthermore
|cAc̃A|x, |cAc̃A|y,≤ w̃/2 and hence |c̃A p|x/y < 3

2 w̃, i.e. cA is adjacent to p. ¤

The last thing to show is that only a constant number of cluster pairs (A,B) can be
rounded during the preprocessing phase to a specific pair of grid positions (g̃1, g̃2) and
therefore we only have to scan a list of constant size that is associated with (g̃1, g̃2).
Before we can prove this, we have to cite a Lemma from the original work of Callahan
and Kosaraju on the WSPD [CK92].

Lemma 3.12 (CK92) Let C be a d-cube and let S = {A1, . . . ,Al} be a set of nodes in
the split tree such that Ai∩A j = /0 and lmax(p(Ai))≥ l(C)/c and R(Ai) overlaps C for
all i. Then we have l ≤ (3c+2)d .

Here p(A) denotes the parent of a node A in the split tree, lmax(A) the longest side of
the minimum enclosing box of R(A).

Lemma 3.13 Consider a WSPD of a point set P with separation constant s > 4, grid
width w̃ and a pair of grid points (g̃1, g̃2). The number of cluster pairs (A,B) such that
cA and cB are rounded to (g̃1, g̃2) is O(1).

Proof: In the following we will establish a lower bound on r(p(A)) such that we can
apply Lemma 3.12, since r(p(A)) ≤ lmax(p(A)). As (p(A),B) is not a blue edge in
the WSPD we have r(p(A)) >

|cp(A)cB|
s . Furthermore |cp(A)cB| ≥ |cAcB|− r(p(A)) and

hence using the fact that sw̃
2 < |cAcB| ≤ sw̃ we obtain the following lower bound

r(p(A)) >
sw̃

2+2s
=

w̃
2+2/s

So for s > 4 we obtain lmax(p(A)) > 2
5 w̃ Before we can apply Lemma 3.12, observe

that if the clusters around g̃1 which are paired with some clusters around g̃2 are not
disjoint (i.e. one is the parent of another), we can just refine those clusters until no
cluster is the parent of another, this will only increase the number of links to ’the other
side’. But applying Lemma 3.12 for the cube centered at g̃1 with side-length w̃ and
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c = 5/2 bounds even this larger number of clusters by (3 · 5/2 + 2)2 < 91. As the
same bound holds for the clusters around g̃2, the number of cluster pairs that might be
assigned to (g̃1, g̃2) is less than 91 ·91 < 9000 and therefore O(1). ¤

Putting everything together we get the main theorem of this section:

Theorem 3.4 Given a well-separated pair decomposition of a point set P with sepa-
ration constant s > 4. Then we can construct a data structure in space O(n · s2) and
construction time O(n ·s2) such that for any pair of points (p,q) in P we can determine
the unique pair of clusters (A,B) that is part the well-separated pair decomposition
with p ∈ A, q ∈ B in constant time.

Together with the results of the previous Section we obtain the following main result
of our work:

Theorem 3.5 Given a set of points P ⊂ Z2, a distance function ω : Z×Z→ R+ of
the form ω(p,q) = |pq|δ, where δ ≥ 1 and k ≥ 2 are constants, we can construct a
data structure of size O( 1

ε2 ·n) in preprocessing time O( 1
ε4 ·n logn+ 1

ε6 ·n) such that for
any query (p,q) from P, a (1+ ε)-approximate lightest k-hop path from p to q can be
obtained in constant O(1) time which does not depend on δ,ε,k.
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3.4 Implementation and Experiments

All our algorithms introduced in Sections 3.1, 3.2 and 3.3 are computing either optimal
or approximated solution to the k-hop path problem. One interesting thing to see is how
do simple heuristic solutions without any theoretic guarantee behave and to compare
those results to our algorithm solutions. For that purposes, we will use the following
heuristic:

The Milestone Heuristic For very dense point sets, there is a very simple heuristic,
which uses the observation that in the ”ideal” case, the segment pq is divided into k
subsegments of equal length. Clearly, if such a k-hop path can be obtained, it is the
optimum path. So the Milestone Heuristic tries to approximate this ”ideal” path by
virtually placing the k− 1 ”ideal” points v1, . . .vk−1 on pq segment. As these vi are
typically not in P, we perform for each of them a nearest neighbor query on the point
set P and use the outcome as the replacement for vi (each of these queries can be per-
formed in O(logn) time). Nearest neighbor query data structures from computational
geometry are by now standard in many software libraries and very space- and time-
efficient implementations are available, e.g. in [MN95]. So the algorithm looks as
follows:

1. determine ”ideal” hop positions v1, . . . ,vk−1

2. for each vi perform a nearest neighbor query on P to obtain v′i ∈ P

3. output pv′1 . . .v′k−1q as the k-hop path

Unfortunately this approach can be fooled quite badly if the point set P is not equally
distributed and there are large areas without any points in the area between p and q.

Heuristics for Optimal k-hop Path Computation

In Section 3.1 we introduced a naive O(km) algorithm for computing an optimal k-hop
path. In Lemma 3.3, we used a layered graph construction to describe how the method
works. Note that we don’t really have to make k copies of our starting instance but
instead we could use a dynamic programming approach that fills a table of dimension
n× k as follows:

• ∀v ∈ P: π(p,v)(1)
opt← pv

• for i = 2 to k do

– ∀v ∈ P:

∗ compute π(p,v)(i)
opt by looking at all possible w, the concatenations

π(p,w)
(i−1)
opt v and their weights ω(π(p,w)

(i−1)
opt )+ω(w,v)
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Clearly this algorithm has running time O(k ·n2) as we have to fill in a table of size k ·n
and determining the value of one cell costs O(n) since we look at all possible w ∈ P.
It is not hard to figure out that this approach only works for extremely small problem
instances and even for those, it is rather slow as we get a quadratic behavior in n per
query. One obvious improvement to the above algorithm is due to the observation that
if we are interested in the optimal k-hop path from p to q, points which are ”far” away
from the segment pq cannot be of any use for the solution (see Definition 3.1 of the
frame and Lemma 3.2).

Neighborhood Pruning However, for the purposes of our experiments, we will use
a slightly different definition of the neighborhood around segment pq. Namely, let
D denote the distance between the query points, i.e. D = |pq|. If we restrict our
dynamic programming approach to all points in P which have distance at most λ ·D
to the segment |pq| – we call this the λ-neighborhood of pq –, what is the smallest
value of λ such that we can still compute the optimal solution? See Figure 3.8 for an
example of λ-neighborhoods. It is not hard to see that if the optimal path πopt leaves
the region which has distance at most λ ·D to pq, the sum of the Euclidean lengths
of the segments of this path must be at least 2 ·D ·

√
λ2 +1/4. And as the ”optimal”

strategy to chop a path of any given length into k pieces such that the overall energy is
minimized, is to chop it into pieces of equal length, we get the following inequality

(2 ·D ·
√

λ2 +1/4)δ

kδ−1 ≤ Dδ (3.5)

which bounds λ in terms of the cost Dδ that are incurred when taking just one direct
hop from p to q. So we get

λmax =

√
k

2δ−2
δ −1
2

Therefore, if there are only few points in the neighborhood of the query points p and
q (more precisely if there are only few points within distance λmax|pq|), we first use
a standard range query data structure from computational geometry to report all those
points and run the naive approach only for those and can expect a reasonably fast query
time, which is now only quadratic in the number of points in the neighborhood of p
and q.

Cascaded Neighborhood Pruning In the neighborhood pruning approach we have
used the one-hop cost as an upper bound to limit the size of the neighborhood that
still needs to be explored (see Eq. 3.5). Clearly, if we had a better upper bound (i.e.
tentative solution) for the cost of getting from p to q within k hops, we could restrict
the size of the neighborhood even further. How could such a better tentative solution
be obtained? Well, we could start with a very small value for λ, even λ = 0 is viable,
it just restricts the neighborhood to all points which lie on the segment pq. We run our
dynamic programming approach on that set of points and use the outcome to bound
the maximal value of λ that we have to consider to guarantee the optimal solution is
found. So this cascaded strategy could be implemented as follows:
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p q

λ = 1/11

λ = 5/22

λ = 5/11

Figure 3.8: λ-neighborhoods of a segment pq

1. λ← 0.1

2. UPPER = |pq|δ

3. while (2·D·
√

λ2+1/4)δ

kδ−1 ≤ UPPER

• compute using dynamic programming the optimal k-hop path with respect
to the λ-neighborhood of pq, update UPPER if necessary

• λ← λ ·2

The procedure terminates as soon as it can prove that no larger neighborhood has to
be inspected, which of course happens no later than after O(logλmax) rounds. For
dense point sets, this will turn out to be a lot more effective than the naive or simple
neighborhood pruning strategy without cascading.

Experimental Settings

All the algorithms were implemented with the help of the LEDA library of data struc-
tures and algorithms ([MN95]). We used the floating-point geometry kernel which
represents points in the plane by two double coordinates. As range query structure
we employed the LEDA datatype point dictionary which allows range queries in
time O(log2 n) and nearest neighbor queries in O(n) worst-case time. But as these
subroutines never dominated the running time in the respective algorithms where they
were used, we did not put more effort into O(logn) worst-case query time implemen-
tations.

A very critical issue was the use of an appropriate hashing datastructure for accessing
the precomputed template paths. We are using the LEDA type h array which hashes
32-bit integer values to some information domain. But our implementation requires to
hash 4-tuples of 32-bit integer values. So we had to reduce the number of bits by a
factor of 4. In our experiments the best choice for a hash function was to choose the
3rd to 10th least significant bits of each of these 4 integers and concatenate them to
obtain the hash value for the 4-tuple. For other hash functions we tried, the number of
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Figure 3.9: Examples for test data: random (left), MST-based (middle) and Delaunay-
based (right)

collisions increased considerably and therefore accesses to the hashing table required
going through a long list.

All algorithms were tested within an embedded simulation environment where data can
be either read in or generated and then processed by our algorithms. Using a graphical
user-interface, the different parameters and alternative algorithms can be selected and
evaluated for running-time and quality of their produced solution.

Benchmarks

We conducted experiments on different test data and using different parameters for our
algorithms. All running times were measured on a low-end 700 MHz Pentium III with
256 MB of RAM. We used g++ 2.95.4 with the -O option under a Linux 2.4.19 system.

Different test data sets were used to evaluate the quality of our algorithms. See Figure
3.9 for examples of the generated data.

As we had no real-world data available that could be put into a freely-available publica-
tion, we simulated the placement of radio stations along a road-network between cities
to simulate a real world scenarios in Radio Networks. We had two simple algorithms
to generate such data:

MST-based generation We first generated a random set of points (the cities) and
computed a Euclidean minimum spanning tree. For all the leaves of the tree inside
the Convex Hull of the random set we added a new edge. Furthermore, we generated
a cluster of points around every city and also put randomly some points along every
edge (roads). At the end, we pruned sharp angles.

Delaunay-based generation We first generated a random set of points (the cities)
and computed the Delaunay triangulation. As we did not want to keep this ”triangular”
road network, we removed some of the edges under the constraint that the remaining
graph is still strongly connected. Then we assigned random weights to the cities and



66 IMPLEMENTATION AND EXPERIMENTS

Table 3.1: 1000 points randomly generated; k = 5, δ = 2, S = 5, ε = 5; Query time
and quality

WSPD BF BFp Grid Milestone
Av. Time 8.0 ·10−4 0.91 0.24 0.038 0.002
Max Time 2.0 ·10−3 1.45 1.24 0.080 0.01
Av. Rel. Err 15% 0 0 2.7 % 2.7 %
Max Rel. Err 49% 0 0 6.5 % 20 %
σrel.err 0.12 0 0 0.018 0.039

Table 3.2: 4000 points randomly generated; k = 5, δ = 2, S = 5, ε = 5; Query time
and quality

WSPD BF BFp Grid Milest.
Av. Time 5.66 ·10−4 14.59 4.75 0.07 0.01
Max Time 0.003 24.63 14.46 0.099 0.01
Av. Rel. Err 16 % 0 % 0 % 2.6 % 0.5 %
Max Rel. Err 32.6 % 0 % 0 % 4.8 % 2.5 %
σrel.err 0.088 0 0 0.016 0.007

generated radio stations accordingly. Finally we generated some random stations along
the remaining edges.

Timings and Quality

In the following we are going to report timings and quality of the computed solutions
for our different test data and varying problem sizes. For the precomputation of the
template paths we chose a separation constant of S = 5 for the WSPD and ε = 5 for
the grid pruning subroutine. Even though in theory, this guarantees only a solution
within a factor of 216 (!) of the optimal solution, in practice, the returned solutions
were rather close to the optimum. For the used parameters of k = 5, δ = 2, S = 5,
ε = 5, in fact the returned solutions were not more than 20 % off the optimum on the
average. See tables 3.1, 3.2, 3.3, 3.4, 3.5 for the timing and quality results. Note that
the ’WSPD’ column in our tables stands for the ”path template” approach from Sec-
tion 3.3. Furthermore, ’Brute Force’ and ’Brute Force pruned’ (BF and BFp) columns
stand for naive algorithm from Section 3.1 with neighborhood pruning and cascaded
neighborhood pruning, respectively. ’Grid’ column reports results for O(logn) ap-
proximation algorithm from Section 3.2 while ’Milestone’ column reports results for
Milestone heuristic.

From the results you can see that the query time using the WSPD approach remains
basically constant, independent of the problem size, which is not true for all other



IMPLEMENTATION AND EXPERIMENTS 67

Table 3.3: 1000 points from the MST model; k = 5, δ = 2, S = 5, ε = 5; Query time
and quality

WSPD BF BFp Grid Milestone
Av. Time 1 ·10−4 1.193 0.937 0.009 0.0006
Max Time 1 ·10−3 1.63 4.03 0.01 0.01
Av. Rel. Err 14 % 0 % 0 % 3.6% 10.2 %
Max Rel. Err 38.7 % 0 % 0 % 14.4 % 35.9 %
σrel.err 0.123 0 0 0.047 0.114

Table 3.4: 4000 points from the MST model; k = 5, δ = 2, S = 5, ε = 5; Query time
and quality

WSPD BF BFp Grid Milestone
Av. Time 1 ·10−4 18.6 10.1 0.024 0.011
Max Time 0.001 27.19 21.09 0.039 0.02
Av. Rel. Err 10.1 % 0 % 0 % 3.3 % 14.3 %
Max Rel. Err 20.5 % 0 % 0 % 8.1 % 33.7 %
σrel.err 0.048 0 0 0.026 0.109

Table 3.5: 1000 points from the Delaunay model; k = 5, δ = 2, S = 5, ε = 5; Query
time and quality

WSPD BF BFp Grid Milestone
Av. Time 4 ·10−4 0.772 0.303 0.014 5 ·10−4

Max Time 0.002 1.13 1.28 0.03 0.01
Av. Rel. Err 17.2 % 0 % 0 % 5.7 % 10.7 %
Max Rel. Err 35 % 0 % 0 % 56 % 57 %
σrel.err 0.101 0 0 0.12 0.134
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Table 3.6: Time/Space for preprocessing on 1000 random points, k = 5, σ = 2 and
varying ε and S

# templ. time (s) avg.err max err
ε = 10,S = 4 7813 57.7 23% 58 %
ε = 10,S = 5 12042 98.0 22% 47 %
ε = 10,S = 7 21200 187.3 14% 36 %
ε = 10,S = 11 46148 458.8 12% 29 %
ε = 5,S = 4 8287 145.7 17% 37 %
ε = 5,S = 5 12004 230.6 15% 27 %
ε = 5,S = 7 21924 559.8 12% 34 %
ε = 5,S = 11 46236 1446.5 6 % 13 %
ε = 2,S = 4 7925 433.91 22 % 47 %
ε = 2,S = 5 11724 712.31 9 % 28 %
ε = 2,S = 7 22126 1606 9 % 31 %
ε = 2,S = 11 43347 3875 5 % 24 %

algorithms. In particular the brute-force variants suffer severely when increasing the
problem size, but also the Milestone approach gets slower. The Grid approach also
deteriorates a bit, but will saturate at some point (at least in theory). With regards to
the quality, the brute force approaches are clearly the best since optimal, but also the
Milestone Approach is not too bad. The results produced by the WSPD approach are
mostly comparable to the Milestone and Grid approach but can be tuned by choosing
different parameters as we will see later.

Of course, these very fast query times have their cost, both in terms of time for the
precomputation as well as in terms of the space required to store the template paths.
For this purpose we look again at the example of 1000 random points but now vary
both ε (the parameter used for the grid approach when computing the template paths)
as well as S (the separation constant for the WSPD). See table 3.6 for the results.
Apart from the size of the precomputed structure and the preprocessing time we show
the average and maximal relative error that was incurred by the precomputed paths for
30 random k-hop queries. Clearly, the more time and space one is willing to invest into
computing good path templates, the better results one gets for the queries.

The choice of k – the number of allowed hops – also affects the running time of the
grid pruning approach and therefore of the preprocessing step. See table 3.7.

As larger values for k require a finer grid, the running time of the precomputation
grows rapidly. To keep the quality of the solution, we would have had to increase the
value for S as well to accommodate for the finer granularity of the solution.

As mentioned in the introduction, even though setting δ = 2 models the exact, free-
space energy consumption, in practice people use larger values δ∈ [2,4] to account for
absorption effects etc. As δ also affects the running time of the grid pruning approach,
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Table 3.7: Time for preprocessing on 1000 random points, σ = 2, S = 5, ε = 5,
varying k

WSPD
pre. time(s) avg. err max err

k = 2 14.6 6.1 % 13.8 %
k = 4 74.8 15.9 % 41.6 %
k = 8 530 25 % 41.1 %
k = 16 3471 29.2 % 55.8 %

Table 3.8: Time for preprocessing on 1000 random points, k = 5, S = 5, ε = 5,
varying δ

pre. time (s) avg. err max err
δ = 2 232 14 % 30 %
δ = 3 524 30 % 60 %
δ = 4 817 41 % 75 %

we give experimental data for varying δ in Table 3.8.

It turns out that higher values for δ induce a considerably higher precomputation since
the grid size chosen by the grid pruning algorithm is smaller. But still, the quality
deteriorates, as with the larger exponent in the cost function, even small perturbations
might increase the cost considerably. So to keep the same error bounds, a smaller value
for ε and/or a larger value for S would have to be used.
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3.5 Discussion and Conclusion

We have developed a data structure for constant approximate shortest path queries in
a simple model for geometric graphs. We have also demonstrated through our experi-
ments that near optimal k-hop paths can be queried very efficiently.

Although this model is motivated by communication in radio networks, it is sufficiently
simple to be of independent theoretical interest and possibly for other applications. For
example, Chan, Efrat, and Har-Peled [EHP98, CE01] use similar concepts to model
the fuel consumption of airplanes routed between a set P of airports. For more details
about real-world application scenarios of k-hop shortest path problem see Introduction
chapter of the thesis.

However, looking through the eyes of real-world application, there are few weaknesses
of our model. Let’s discuss some of them in more details and show how possibly one
could cope with such problems.

Fairness In Radio Networks scenario, minimal total energy consumption does not
guarantee fairness, i.e., it might happen that one station is used so often that its bat-
teries are quickly drained. This effect can be mitigated in several ways. For example,
rather than storing fixed routes, we can simple store areas (e.g. squares) where relay
stations should be located. Any combination of points in these relay areas will yield an
energy efficient path. At least in densely populated areas one can then balance energy
consumption by picking random stations in each relay area. One can even explicitly
take energy reserves or other priorizations into account.

Lazy Precomputation In the path template approach as presented before, the idea
was first to identify a collection of O(n) source–target pairs (namely the centers of
the clusters that are connected by a blue edge in the WSPD) and then precompute a
good k-hop path for each of these pairs. In practice, it will turn out that identifying
the blue edges can be done very quickly, and the really time-dominating step is the
computation of the template paths (even when done using our O(logn) grid pruning
approach). But our data structure can easily be modified into a ”lazy precomputation”
scheme. So at precomputation time, only the blue edges are determind. At query time
for a pair (p,q), we first identify the corresponding blue edge. If a template path has
been stored for that edge already, we use it (and have spent O(1) time only to answer
the query). Only if no template path has been stored already, we compute one using the
grid approach (making this query expensive, i.e. O(logn)). Observe that if a similar
query, i.e. a query (p′,q′) with p′ near p and q′ near q, arrives later, it will find the
precomputed template path and can therefore be answered in O(1).

Fault-tolerance In many real-world applications reliability and quality of service
(QoS) plays an important role. In particular, availability of the system has a very high
priority. For our application this means that connections between two sites p and q
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should not be prohibited or become very expensive if some stations inbetween col-
lapse. Therefore, it is very reasonable to provide for backup paths between the sites,
i.e. if one or more stations of an energy efficient path between p and q become un-
available, there are other equally efficient paths already precomputed at hand. But this
is easy to incorporate into our approach. For each blue edge of the WSPD we precom-
pute instead of one template path several template paths which are all node-disjoint.
These node-disjoint paths can be obtained as follows: First use the grid approach to
compute the first energy-efficient k-hop path. Then remove all the used representative
nodes from the grid cells that have been used in this path. If there are still other nodes
left in the respective grid cells, use them to get another path, which looks very similar
to the first one, but is node-disjoint from the latter. If some of the used grid-cells are
empty, just run the brute-force algorithm on the remaining grid cell representatives. In
this way, one can easily compute several path templates for each blue edge all of which
are node-disjoint.

Dynamization The good news, however, is that all the data-structures that we have
used in our algorithms are also – at least in theory – available in a dynamic version,
where updates can be performed in O(logn) time. Hence our whole construction could
also be applied for moving and/or changing points. Whether these dynamic versions
of the algorithms are also of practical value, has to be shown or proven wrong by an
experimental study. For more information on dynamic versions of the required data
structures, we refer to [AMN+98], [AM00], [CK95b].
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Chapter 4
(Approximate) Conic Nearest
Neighbors and the induced Voronoi
Diagram

Answering nearest neighbor queries for a given point set S in a (low-dimensional)
Euclidean space is a classical problem in computational geometry and many algo-
rithms have been proposed to solve that problem. This problem was mentioned in
Knuth [Knu73] as ”The post-office problem”: Given a set S of n points in Rd , store it
in a data structure such that for any query point q ∈ Rd , we can efficiently find point
s∈ S that is closest to q, e.g. d(q,s) = min{d(q,s′) : s′ ∈ S}where d : Rd×Rd→R de-
notes the standard Euclidean metric. The natural datastructure to solve the post-office
problem is the so-called Voronoi diagram V D(S). V D(S) is a decomposition of Rd

into Voronoi cells such that for the cell V (s,S) of point s ∈ S we have V (s,S) := {p ∈
Rd |d(p,s) ≤ d(p,s′)∀s′ ∈ S}. Unfortunately it is easy to come up with point sets for
which the Voronoi diagram has size Ω(ndd/2e), so its use to answer nearest neighbor
queries in dimensions d > 2 is rather unattractive. Moreover, in the higher-dimensional
case it seems impossible to give a data structure of size O(n polylog n) that answers
queries in poly-logarithmic times. The lack of other methods that guarantee efficient
query times has led to the introduction of the notion of approximate nearest neigh-
bors. For a query point q and an arbitrary small constant ε > 0, a point s ∈ S is a
(1+ ε) approximate nearest neighbor for q if d(q,s)≤ d(q,s′) · (1+ ε)∀s′ ∈ S. Not in-
sisting on the exact nearest neighbor has allowed for datastructures of near-linear size
and logarithmic query time, e.g. [AMN+98], [DGK99]. Similarly, the notion of an
approximate Voronoi diagram (AVD) has allowed for space decompositions of near-
linear size, e.g. by Har-Peled [Har01] and Arya and Malamatos [AM02]. Here each
cell C of this decomposition has a point N(C ) ∈ S assigned such that ∀q ∈ C , N(C ) is
an approximate nearest neighbor for q. In all these papers as well as in our work the
dimension d is treated as a constant.

In this chapter we consider a variant of the nearest neighbor search problem that has

73



74

not been studied as extensively before. Namely, given a set of points S (and a cone C)
we want to preprocess S such that for any query point q ∈ Rd we can determine the
(approximate) nearest neighbor sq ∈ S that is contained in the cone C with apex at q.
We will refer to this problem as conic nearest neighbor (cNN) problem. Note that the
set S can be preprocessed into a data structure independent or dependent of the cone.
Preprocessing S independently of the cone makes the problem more interesting and we
are not aware of any previous results in this direction.

Throughout this chapter, we will restrict cone the C to the simplicial cone. A simpli-
cial cone is the intersection of d halfspaces in Rd . The hyperplanes that bound these
halfspaces are assumed to be in general position, in the sense that their intersection is a
point, called the apex of the cone (e.g. in the plane, a cone having its apex at the point
q is a wedge bounded by two rays emanating from q that make an angle of at most π,
see Figure 4.1).

Related Work

The original motivation for the cNN problem comes from several important applica-
tions. Probably the most famous application comes from the early 1980’s, and the
work on constructing the minimum spanning trees (MST) for a set S of n points in Rd

of Yao [Yao82]. A Euclidean minimum spanning tree of the set S is a spanning tree
of S and whose edges have a minimum total weight among all spanning trees. Yao
[Yao82] who showed that the a minimum spanning tree (MST) connecting n points
from S in a d-dimensional space can be computed in o(n2)1. In his work, Yao showed
that an O(n)-size supergraph of the minimum spanning tree can be found partition-
ing the space using a fan of constant number of cones around every point p ∈ S and
answering a conic nearest neighbors query for each cone. Using a simple geometric
argument, he showed that if the angle of the cones is not ’too big’, connecting every
p to its cNN’s will form a MST supergraph. Lets illustrate this idea with an informal
description in R2. For every point p∈ S, we divide the plane into eight regions (cones)
C1, . . . ,C8 relative to p as shown in right-hand side of the Figure 4.1. The cones are
formed by four lines passing through p and having angles of 0o,45o,90o,135o with the
x-axis. In each cone, compute the conic nearest neighbor of p, and add the correspond-
ing edge to the set of edges E. After repeating the procedure for every point in S, we
will compute the graph G with at most 8n edges for which Yao asserts that it contains
an MST of S. To prove this, he uses a very simple and elementary observation: if q
and r are any two points that belong to the first cone C1 (like in the Figure 4.1), then if
the angle of the cone is not more than 45o, the following property holds

d(q,r) < max{d(p,q),d(p,r)}. (4.1)

It is not difficult to see that connecting point p with the rest of the points in S \ {p}
incurring the smallest cost can only happen via 8 possible conic nearest neighbors of
p.

1An old open problem is whether the Euclidean MST of n points in Rd can be computed in time close
to the lower bound of Ω(n logn).
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Figure 4.1: (left) Example of cone in the plane with the apex in q. (right) Fan of cones
partitioning the space around the point p.

This construction is known today in the wireless literature as Yao-graphs or sometimes
also as Θ-graphs (for the overview of the application of Yao-graphs in the wireless
connectivity algorithms see the chapter ”Applications of the Computational Geometry
in Wireless Ad-Hoc Networks” of the book [CHD04]). Note that answering the cNN
queries plays the crucial rule in the above approach. A natural question that arises
in this regard is whether it is possible to compute the cNN of point p faster than just
inspecting all the points in S? In [Yao82], Yao proposes a data structure such that cNN
queries can be answered in O(n1−a(d)+ψ), where a(d) = 2−(d+1) and for any fixed
constant ψ > 0. We want to note, though, that his construction is dependent on the
cone. However, this does not affect asymptotic running time and space since Yao is
interested in only a constant number of different cones.

A similar idea of eliminating the unnecessary edges with the fan of cones and con-
structing the linear size Yao-graph has been widely used in geometric spanners (see
[KG92], [RS91], [AMS94], [AMS99]). A geometric spanner for a set of points S is a
graph in which each pair of vertices is connected by a ”short” path. More precisely, a
graph is called a t-spanner for S if the shortest path distance of any two points p,q ∈ S
is not more than t times the Euclidean distance between p and q. The intuition why
answering cNN queries helps with construction of geometric spanner can be found in
the following: Let q and r belong to cone C1 (like in Figure 4.1) and assume q is a cNN
of p with respect to the cone C1. Suppose you want to travel from p to r. But instead
of doing so, you move to the cNN point q first. Note, that the distance to r will be
reduced by an amount proportional to the distance between p and q. If for the rest of
the path we can maintain the same condition, the overall length of the path from p to
r will be a small factor of the distance between p and q. In the presence of obstacles,
one would have to be a little bit more careful, but essentially the same intuition works.

Yao graphs were also used for kinetically maintaining nearest neighbors of moving
points (see [BGH97]) and motion planning (see [Che86], [Cla87]).

Czumaj et al. in [CEF+03] and [CEF+05] propose an algorithm that estimates with
high probability the weight of a Euclidean MST to within (1 + ε) in sublinear time.
Their algorithm assumes that the input is supported by approximate cone nearest
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Figure 4.2: (left) Point sample from the surface of a cactus. (right) Zoom-In on one
of the branches of the cactus: Neighborhood of a sample point that does not allow for
reliable normal estimation.

neighbor queries data structure like the ones we present in Section 4.3.

Another important application for cNN queries stems from a problem in surface re-
construction/analysis of point cloud data. Here one is given a set S of sample points
(point cloud) that are taken from an unknown surface Γ. The goal is now to reason
about or in the best case even reconstruct the original surface Γ, e.g. find a faithful
polyhedral approximation which has the sample points in S as vertices. See Figure 4.2
for a sample set taken from a cactus (model).

One important primitive when working with point cloud data is the estimation of sur-
face normals for a given point on the surface (but only using the set S and not the
original surface Γ). A common strategy for estimating the surface normal of a point
p ∈ Γ is to first collect the k-nearest neighbors of p (for some constant k) and then
connect p to two of its k-nearest neighbors to form a ’nice’ triangle using the triangle
normal as an estimation for the surface normal. In fact one can prove that if the sample
set S is a ε-sample (intuitively: it is sampled densely enough), then the triangle ∆pqr
formed by p and two of its k-nearest neighbors p,q yields a faithful approximation (up
to an angle of O(ε)) to the surface normal at p if ∆ is non-skinny, i.e. it is not formed
by three almost collinear points, see [FR02]. Essentially, if p,q,r are almost collinear,
a slight height change of the surface in one of the points changes the triangle normal
by an arbitrarily large amount.

Now, the problem is that even if S is a ε-sample, there is no constant k for which
we can guarantee that amongst the k-nearest neighbors of p are two points q,r which
form a ’nice’ triangle with p. That is due to the fact that the ε-sample condition is
only a lower bound on the sampling density but allows for arbitrary oversampling
in arbitrary patterns. For example, in Figure 4.2 right, as long as k ≤ 8 collecting
k-nearest neighbors from the query point will never yield sample points suitable for
a faithful normal estimation in the query point. Observe, that this threshold k ≤ 8
can be made arbitrarily high by just sampling further points along the already densely
sampled lines. The sample set obviously remains a ε-sample, but normal estimation
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via simple collection of k-nearest neighbors gets increasingly difficult2. The solution
to this problem is to allow for nearest neighbor searches that are restricted to some
direction, see [FR02]. Here, the authors divide the space into a constant number of
cones with a common apex and then determine for a point p nearest neighbors within
each cone. Using this approach it is easy to extract a ’nice’ triangle with nearby points
of p.

Attempts to instrument directly some of the known datastructures for approximate
nearest neighbor queries ([AMN+98], [DGK99]) to solve the case of cone queries
failed so far, since a certain crucial packing property necessary for these approaches
does not seem to hold in case of cones.

The broad applications of cNN were our main motivation to work on this problem.

Our contribution

In this chapter we consider the problem of computing (approximate) nearest neighbors
in a point set S with the additional restriction that returned points have to lie in a cone
with apex at the query point.

We start our study of cNN query problem by examining the structure of the exact
linear size conic Voronoi diagram (cVD) induced by the notion of conic proximity
in 2 and 3 dimensions (Section 4.1.1). We quickly review the sweep-line algorithm
suggested by Clarkson [Cla87] for constructing the cVD in the plane and observe that
the complexity of cVD becomes prohibitive in dimensions 3 and larger.

In Section 4.2 we develop a datastructure such that for an arbitrary simplicial cone
exact cone queries can be answered in sublinear time. Armed with the Partition theo-
rem3, we are able to extend Yao’s cNN result from [Yao82] constructing a datastruc-
ture independent of the cone. Intuitively, Partition theorem tells that we can always
’quickly’ partition points of S into r simplices of approximately the same size such
that every hyperplane cannot interset ’too many’ simplices. The idea of approach is
to preprocess simplices for nearest neighbor (NN) queries such that given any query
point q and the cone C with apex in q:

(i) prune all the simplices outside of C;

(ii) for the simplices completely inside the cone, find the closest point using the NN
queries;

(iii) recur on the simplices intersected by the cone’s hyperplanes.

2If one assumes that S is a tight ε-, (ε,δ)-, or (locally) uniform sample, k can be determined easily.
But if S is neither of those but only an ε-sample, making S tight itself seems to require reliable normal
estimation.

3Note that Yao was not aware of Partition theorem, since it has been introduced in early 1990’s (see
[Mat92]) in context of simplex range-counting query in Rd .
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Since the number of simplices on which we have to recur is not too big by the Partition
theorem, we show that cNN of q in the plane will be computed in O(n1/2+ψ) and if
d > 2 in O(n(1−1/(d+1))+ψ), for any fixed ψ > 0.

Following the ideas of Arya, Mount and Smid in [AMS94] and [AMS99], for a fixed
cone we propose near-linear size datastructures for answering cone queries approxi-
mately in O((1/εd) logd n) time (see Section 4.3.1). Intuitively, given the query point
q = (q1, . . . ,qd) and the cone C with apex in q, the idea there is to tilt the axes of the
coordinate system and obtain a new coordinates. In the new coordinates, the point
pN = (pN

1 , . . . , pN
d ) is inside the cone C with apex in qN = (qN

1 , . . . ,qN
d ) iff pN

i ≥ qN
i ,

1≤ i≤ d. Using the standard range queries data structure, we can report easily points
inside the C. Furthermore, we also show how to extract approximately nearest point
among them without increasing the space of the data structure.

As our main result, in Section 4.3 we show how to construct approximate conic Voronoi
diagram of size O((n/εd) log(1/ε)) which allows for query time O(log(n/ε)). Follow-
ing the ideas of [AM02], we partition the space into cells such that each cell C has a
representative point associated N(C ). For any point q ∈ C and the cone C with apex in
q, representative point N(C ) will have the following properties:

(i) N(C ) is slightly (by a factor of (1+ ε)) further that the true cNN;

(ii) N(C ) lies either in the cone C or slightly outside of C (by an angle of O(ε)).

The construction is based on the well-separated pair decomposition (see Theorem 2.1).
Namely, the idea is to construct the exponential grid of constant size around every
WSPD pair. Since there are only linearly many WSPD pairs, the union of all expo-
nential grids will give us a space decomposition of linear size. In the last and most
difficult step we will associate appropriate N(C ) with each cell C satisfying the above
two properties.

We conclude our work discussing some open problems in Section 4.4.
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break−event

intersection−event

cone−event

Figure 4.3: Left most figure denote the classic VD cells whereas rest of the figures
depict conic VD cells depending on the relative position of two sites and on the fixed
angle α. Observe that the hashed lines denote the standard Voronoi separator between
two sites.

4.1 Preliminaries

We start the study of cNN problem by reviewing the notion of the exact conic Voronoi
diagram introduced by Clarkson [Cla87]. We believe that understanding the structure
of exact cVD will prove to be of use when dealing with cNN queries and in particular
with understanding the approximate cVD in Rd introduced in Section 4.3. We also try
to apprehend why cVD becomes rather unattractive in Rd , for d > 2.

4.1.1 Exact Conic Voronoi diagrams

Let S be a set of n distinct points (sites) in the plane. In the following we fix a
set of linearly independent vectors V = {v1,v2} such that C(q,V ) := {x ∈ R2 : x =
q +(λ1v1 + λ2v2),λ1,λ2 ≥ 0} defines a simplicial cone with apex in q. The reverse
cone of q is defined as C(q,V ) := {x ∈ R2 | x = q− (λ1v1 + λ2v2),λ1,λ2 ≥ 0}. We
assume that the cone angle 0 < α(v1,v2) < π and since V is fixed, let C(q) := C(q,V ).
We want to precompute the set of sites in S such that we can efficiently answer cNN
queries for q with respect to C(q). The precomputation step is based on the idea to
compute a Voronoi-like diagram on the set of sites which we will call Conic Voronoi
diagram (cVD). Answering the cNN for an arbitrary query point q will then reduce to
the classical point location problem in the cVD.

For a fixed set S of sites, fixed angle and fixed direction we define a Conic Voronoi
diagram of S as the subdivision of the plane into n cells, one for each site in S, with the
property that a point q lies in the cell corresponding to a site si ∈ S if and only if si is a
conic nearest neighbor of q. That is, the conic Voronoi cell for si ∈ S is defined to be:

VC (si) = {p ∈ R2 | si ∈C(p) and d(p,si)≤ d(p,s j) for all s j ∈C(p)∩S}.

Note that the cVD is a bit more complicated than the normal Voronoi diagram. W.l.o.g.
we assume from now on that the cones are facing downwards. In Figure 4.3 three
different kinds of cVDs for two points are depicted (the cVD for one point s = (sx,sy)
is just the reversed cone C(s) mirrored at the line y = sx). In the cVD for a set S =
{s1, . . . ,sn} of sites there are two different kind of edges: Edges that lie on the reversed
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cones C(si) (cone-edges) and edges that lie on the standard Voronoi edges (voronoi-
edges) between sites.

The cVD is planar and connected. A cell in the cVD belonging to site si has si as
the unique point with highest y-coordinate. The latter allows us to compute the cVD
with a sweep-line algorithm where we sweep the scene from top to bottom. We always
maintain the invariant that above the sweep-line the cVD is correctly computed. For
the current sweep-line we know in which order it is intersected by the edges (which
may be cone- or voronoi-edges) and by the faces of the cVD. This is stored in an
X-structure. The order changes only at three kind of event points: The sweep-line
encounters a new site (site-event), a cone-edge becomes a voronoi-edge (break-event),
or two neighboring edges along the sweep-line intersect (intersection-event). A Y -
structure stores the event-points discovered so far. It is initialized with the site-events.

At each event-point the X- and Y -structure can be updated in O(logn) time. An event-
point causes only local changes along the sweep-line. Also the Y -structure needs only
constantly many updates. The concrete implementation is straightforward and left to
the reader.

Lemma 4.1 ([Cla87]) Let P be a set of n sites. The conic Voronoi diagram of P is of
size O(n) and can be constructed in O(n logn).

Proof: If we imagine all the unbounded edges of cVD as going to a common point in
infinity, we can prove the lemma with the help of Euler’s formula, which states that
for any connected planar graph with nv nodes, ne edges and n f cells nv− ne + n f =
2. Note that in our case n f = n + 1 since every cell corresponds to a unique site.
Furthermore, let nv = n′v + n′′v + 1 where n′v denotes the number of site- and break-
points and n′′v denotes the number of intersection-points of cVD. Since every site can
produce at most two break-points, we have that n′v ≤ 3n. Also, observe that the rest
of the points in the cVD have degree at least three (including node infinity) which
implies that 3(n′′v + 1) ≤ 2ne. Together with Euler formula this implies the statement
of our lemma. ¤

Next we will show a lower bound for the Conic Voronoi Diagram in 3-dimensional
space:

Lemma 4.2 There exists a set of n points in 3-space which has a Conic Voronoi Dia-
gram of size Ω(n2).

Proof: This proof and the pictures are based on ’true’ cones, but translate directly to
the case of simplicial cones. The main idea of construction is the same as for Voronoi
diagrams. Suppose that the cones are facing downwards. We take two planes parallel
to the (x,y)-plane. On the upper such plane we place n/2 points along a line l1. We
do the same on the lower plane but along a line l2 which is perpendicular to l1. For
illustration have a look at Figure 4.4 a). The cVD of the lower n/2 points is depicted
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Figure 4.4: The construction of a Conic Voronoi diagram of quadratic complexity in
3-space.

in Figure 4.4 b). The separators of this cVD between neighboring cones are planar
patches parallel to the z-axis bounded by parabolas. The cVD of all n points consists
of two of these kind of cVD’s just described: one for the lower and one for the upper
n/2 points. The cells of the upper points are delimited from below by the cVD of the
lower points. If we choose the upper points sufficiently high above the lower points
the separators between neighboring cones are stopped by the lower cVD as shown
in Figure 4.4 c). Each separator causes n/2 parabolic segments of the overall cVD,
resulting in Ω(n2) parabolic segments, Figure 4.4 d). ¤

Like for the regular Euclidean distance, the size of the respective cone Voronoi diagram
in dimensions larger than 2 turns out to be prohibitive for its use in answering cone
queries.
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4.2 Exact cNN Queries for arbitrary Cones

Let S be a set of n distinct points (sites) in Rd . Furthermore, let V be a set of d
linearly independent vectors v1, . . . ,vd ∈ Rd . We define the set C(V ) := {v ∈ Rd |v =

∑i λivi, λi ≥ 0}. For any point q ∈Rd we define the simplicial cone of q as C(q,V ) :=
{x ∈ Rd | x = q+ v, v ∈C(V )}.

Suppose we want to construct a data structure such that for any cone C(q,V ) we can
efficiently report the site sq ∈ S∩C(q,V ) such that d(q,sq) ≤ d(q,s) for any other
s ∈ S∩C(q,V ). We say that sq is a conic nearest neighbor (cNN) of q with respect to
C(q,V ).

The solution to our problem mainly relies on the well known Partition theorem which
has been used in the context of range searching ([Mat92]). We cite the theorem in the
following:

Theorem 4.1 Any set S of n points in Rd can be partitioned into O(r) simplices, such
that every simplex contains between n/r and 2n/r points and every hyperplane crosses
at most O(r1−1/d) simplices (crossing number). Moreover, for any ψ > 0 such a sim-
plicial partition can be constructed in O(n1+ψ) time.

Using this theorem recursively one can construct a tree which is called a partition tree
(e.g. the root of the tree, associated with S, has O(r) children, each associated with a
simplex from the first level, and so on). From now on we assume that r is a constant.
Observe that if r is a constant, the partition tree is of O(n) size and it can be constructed
in time O(n1+ψ) for any ψ > 0. With the help of such tree it is well-known that one
can answer range counting queries in O(n) space and O(n(1−1/d)+ψ) time in Rd , which
is very close to the best possible.

The good news for us is that we can use almost the same data structure to answer cone
queries. We first deal with the 2D case and then show that a similar approach works in
higher dimension as well.

Lemma 4.3 Let S ⊂ R2 be a set of points. For any ψ > 0, there is a data structure
of O(n logn) size and O(n1+ψ) construction time such that for any point q and an
arbitrary cone C(q,V ) one can compute cNN of q in time O(n1/2+ψ).

Proof: Assume we are given a partition tree and suppose that we have some conic
query to answer. Clearly by Theorem 4.1 we have the bound on the number of triangles
that intersect the two semi-lines which is O(

√
r). On those triangles we recur, which

leads to a total of O(
√

n) triangles intersected by the semi-lines. But still there might
be O(r) triangles lying completely inside the cone. To overcome this problem, one can
precompute a normal Voronoi diagram (VD) for the points inside each triangle (the
VD extends outside each triangle as well). This will increase the total space of the
partition tree by a O(logn) factor since every level in the tree now will be of O(n) size.
However, by doing this we avoid recursing on the triangles that lie completely inside
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the cone. Namely, for every triangle that lies inside the cone the point closest to q can
be found by point-location in O(logn) time. ¤

In principle our ideas developed so far for computing cNN of a point q in the plane
work for cNN in arbitrary dimension. The disadvantage is the high space complexity
for storing the Voronoi diagrams associated with each triangle. The space complexity
for a Voronoi diagram of n points is Ω(ndd/2e). However, one can avoid storing the
Voronoi diagrams at the cost of moving to the higher-dimensional space Rd+1 instead
of Rd .

Lemma 4.4 Let S ⊂ Rd be a set of points. For any ψ > 0, there is a data structure
of O(n) size and O(n1+ψ) construction time such that for any point q ∈ Rd and an
arbitrary cone C(q,V ) one can compute cNN of q in time O(n(1−1/(d+1))+ψ).

Proof: The main idea is to build a partition tree for S, additionally storing a represen-
tative point for every simplex. For the query cone C(q,V ) we recurse on all simplices
that are intersected by the faces of the cone. What again remains to do is the handling
of the inner simplices, i.e simplices which are completely inside the cone. Among
these we determine the one with the representative point closest to q. Let si be this
nearest representative point. We draw a sphere Bq,r around q with radius r = |q− si|.
It is easy to see that only the inner simplices intersecting B are candidates to contain
the cNN of q. So we have to recurse also for these.

In order to be able to bound the number of inner simplices intersecting B we build the
partition tree not in d- but in (d +1)-dimensional space. We make use of a well-known
lifting step and project all points of S onto the unit-paraboloid P in Rd+1. This gives
us a new set S̃. We build the partition tree for S̃. This of course also leads to a partition
of S into convex ≤ (d + 2)-gons. By construction and by the fact that a sphere in Rd

is the projected intersection of a hyperplane and the unit paraboloid in Rd+1 we know
that every hyperplane and every sphere in Rd intersects O(r1−1/(d+1)) ≤ (d +2)-gons.

¤

The techniques presented in this section only allow for sublinear but not polyloga-
rithmic query times. Since in practice this is rather prohibitive, we will later present
datastructures that guarantee polylogarithmic query times at the cost of only approxi-
mate answers.
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4.3 Approximate cNN Queries

We have seen in previous two sections possible solutions for the exact cNN problem.
However, in Section 4.2 we have constructed a linear size data structure which only
allows cNN queries in sublinear time (note however, that this data structure does not
depend on the cone). Moreover, our approach of constructing an exact conic voronoi
diagram in Section 4.1.1 which would allow logarithmic cNN query time turns out to
be impractical in higher dimensions.

In this section we will relax the problem in a sense that when querying with a point q
we do not insist on receiving the exact nearest neighbor from the datastructure. More
precisely, given a set S of points in Rd and a simplicial cone C(q), preprocess S such
that we can report a point that is slightly (by a factor of (1 + ε)) further than the true
conic nearest neighbor of q and – in the case of an approximate conic voronoi diagram
– slightly outside (by an angle of O(ε)) of the cone C(q). For such a relaxed version
of the problem we will be able to construct the linear size data structure such that
approximate conic nearest neighbor can be reported in logarithmic query time even in
higher dimensions.

Let V be a set of d linear independent vectors v1, . . . ,vd ∈Rd . Let s∈Rd be some point
and bi = vT

i s for i = 1, . . .d. We define the cone of s with respect to V as cone(s) :=
{p ∈ Rd : ∀i : vT

i p ≤ bi}. We also define the reverse cone of s with respect to V as
cone(s) := {p ∈ Rd : ∀i : vT

i p ≥ bi}. Note that we use here a different definition of
cone – it is expressed with respect to the normals of the bounding hyperplanes. We
will call the cone in which answers to a query q should lie the reverse cone.

In the following we fix a set of linear independent vectors V and aim to preprocess a
set S of points in Rd such that for any given query point q we can find an approximate
conic nearest neighbor (cANN) sq with the following properties:

• if dmin = min{d(s,q) : s ∈ S∩ cone(q)}, then d(sq,q)≤ (1+ ε)dmin,

• either sq ∈ S∩ cone(q) or the angle α between sqq and cone(q) is O(ε), where
α := minp∈cone(q)∠sqqp.

Intuitively the former guarantees that the returned point is not too far away compared
to the ’true’ conic nearest neighbor, the latter guarantees that it ’almost’ lies within the
desired reverse cone of the query point.

The first approach we propose is based on a simple construction of nested range trees
and returns points that lie exactly in the cone of query point q, and only approximates
the distance. The second approach is based on a conic approximate Voronoi diagram
(cAVD) – a decomposition of the underlying space – and allows for very fast query
times and rather low space requirements.
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4.3.1 Reduction to ’orthogonal’ Range Queries in a skewed Coordinate
System

Here we briefly sketch a method to solve approximate conic nearest neighbor queries
using nested range trees. For convenience we assume that the respective cone which
we want to query is reasonably small, i.e. ∀vi,v j ∈ V : ∠viv j ≥ 3π/4, which implies
that the angular diameter4 is less than π/4. If this is not the case we could always
subdivide the desired cone into a constant number of smaller cones.

The idea is to derive new coordinates for all s ∈ S based on the set V of normals
of the hyperplanes forming the cone5. We set the new ith coordinate sN

i of a point
s = (s1, . . . ,sd) to be sN

i := vT
i s. Now, if we have a query point q with respective new

coordinates (qN
1 , . . .qN

d ) all points p within its reverse cone have new coordinates pN
i ≥

qN
i . That is we can determine them using a nested range query for points of the form

[qN
1 ,∞], . . . , [qN

d ,∞]. It remains to extract an (approximately) closest amongst them.
The following lemma is due to Arya, Mount and Smid ([AMS94] and [AMS99]):

Lemma 4.5 ([AMS94], [AMS99]) Let S be a set of n points in Rd , let V be a set of
linear independent vectors (normals) and let for every q ∈ S, lq denote a fixed ray
that emanates from q and is contained in cone(q). We can preprocess S in a data
structure of size O(n logd−1 n) such that given any point q ∈ S, we can compute in
O(logd n) time a point p in cone(q)∩S\{q} for which the distance between q and the
orthogonal projection of p onto lq is minimal, or determine that such a point does not
exist.

Proof: We build a 1-dimensional range tree on the first coordinate. Each internal node
stores the points in its respective subtree as a 1-dimensional range tree on the second
coordinate and so on. The overall space requirement is O(n logd−1 n). The result (a set
of points) for the query in the first tree is returned in O(logn) batches, we query each
of these batches according to the 2nd coordinate and so on. Finally, in the last level (d)
we obtain all points within the reverse cone of q in O(logd n) batches. We order the
sets associated with the internal nodes of the last level of our tree hierarchy according
to the direction

−→
lq . Thus, point p with the desired property can be easily found by

inspecting the first element in each batch. ¤

It’s easy to see that for the cones of the angle less than π/4 and a point p in cone(q)∩
S \{q} for which the distance between q and the orthogonal projection of p onto lq is
minimal, d(q, p) ≤ d(q, p′) · 3/2 for all p′ ∈ cone(q). Thus, point p is already a 3/2
approximation of a true cNN of q.

Lemma 4.6 Given a set S of points in Rd and a cone defined by a set of vector normals
V , we can build a datastructure of size O((1/εd−1)n logd−1 n) such that cANN (with
no angle error) can be determined in time O((1/εd−1) logd n).

4The angular diameter of a cone(q) is defined as maxp,r∈cone(q) ∠
−→qp−→qr.

5The idea of using a skewed coordinate system defined by the cone has been already widely used, see
e.g. [Yao82], [AMS94], [AMS99].
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Proof: Let W denote the set of fixed rays that emanates from q with the property that
any arbitrary cone of angular diameter O(ε) with apex in q and contained in cone(q)
has to contain exactly one ray from W . Intuitively, set W defines ε-dense set of rays.
Furthermore, let

−→
W denote the set of corresponding supporting direction vectors. It is

not difficult to verify that the size of W is O(1/εd−1). Furthermore, with each of the
O(logd n) batches save O(1/εd−1) points such that each point is first with respect to the
order defined by some direction vector from

−→
W . Thus, inspecting at most O(1/εd−1)

elements in each of the batches and outputting the one among these that minimizes the
distance to q will return an cANN. ¤

Note that the Lemma 4.6 already provides a cANN solution but it uses a rather naive
idea, though, which increases space requirements of our data structure by the factor
O(1/εd−1). However, in the following Theorem we will show that cANN can be com-
puted even without such an increase in space.

p

q

Figure 4.5: Illustration of the proof of Theorem 4.2.

Theorem 4.2 Given a set S of points in Rd and a cone defined by a set of normal
vectors V , we can preprocess them in a datastructure of size O(n logd−1 n) such that
we can determine an cANN (with no angle error) in time O((1/εd) logd n).

Proof: Let lq, as before, denote a fixed ray that emanates from q and is contained
in cone(q) and let

−→
lq be its supporting vector. We order the sets associated with the

internal nodes of the last level of our tree hierarchy according to the direction
−→
lq such

that the point p amongst the O(logd n) batches that minimizes
−→
lq T p can be determined

easily. As discussed before, the point p is already 3/2 approximation of a true cNN.
That is we have an upper bound of dup = d(q, p) and a lower bound of dlow = 2/3 ·
d(q, p) for the distance of the conic nearest neighbor of q. Now consider the following
part of the reverse cone of q: G := cone(q)∩B(q,dup/(1+ ε))−B(q,dlow). Using a
standard packing argument it is easy to see that we can certify using O(1/εd−1) many
cone queries whether G does not contain any point (in which case the point determining
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the current upper bound is a (1 + ε) cANN) or whether G contains a point (in which
case we improve the upper bound by a factor of at least (1+ε)) (see Figure 4.5). Hence
after at most O(log1+ε(3/2)) = O(1/ε) iterations we arrive at a (1 + ε) cANN. Thus,
the overall query time is O((1/εd) logd n). ¤

We note that using the standard technique of fractional cascading one can improve the
query time in Lemma 4.6 and Theorem 4.2 by an additional logn factor.

4.3.2 An approximate conic Voronoi diagram of near-linear size

In this part, we will discuss the construction of near-linear size data structure called
approximate conic Voronoi diagram (cAVD) which would allow approximate cNN
queries (with respect to distance and angle) in logarithmic time.

Constructing an cAVD can be interpreted as a meshing problem. Namely, for a set S
of n points in Rd , the main idea is captured in following: discretize the cAVD problem
dividing some sufficiently large neighborhood around the point set S into cells such that
all points in some particular cell have the same approximate conic nearest neighbor.
Moreover, the neighborhood around S should be chosen such that for points outside the
neighborhood any point from S is a good cANN, if such exists. We will borrow some
ideas first presented in [AM02] for construction of (’normal’) approximate Voronoi
diagrams but following more the presentation in [HP]. In contrast to the constructions
in [AM02] or [HP] we do not rely on a separate query datastructure to determine points
associated with single cells, but rather determine them directly during the construction
via a WSPD of the point set. This allow us having smaller smaller dependence on the
dimension (ε−d instead of ε−2d) in the construction time.

Preliminaries

Assume that the point set S is contained in a cube of dimensions [0.5−ε,0.5+ε]d , and
this cube is a minimum axis-aligned cube for S. For the rest of the chapter we only
consider a decomposition or conic nearest neighbor relationships for points q ∈ [0,1]d

since for points outside this unit cube, we can determine easily whether they’re con-
tained in an enclosing cone of the point set S, and then any point in S is a conic approx-
imate nearest neighbor. Our algorithm constructs cells that arise in the quadtree (or its
higher dimensional equivalent) when decomposing the unit cube [0,1]d recursively –
we call this the canonical grid and the cells the canonical cells. The canonical grid
Gαi consists of cubes of width/side length αi (for αi = 2−i, i ∈ N).

Hence the constructed cells in the algorithm are either disjoint, identical or one is
contained in the other.

We now briefly review the notion of box-decomposition trees. Intuitively, a box-
decomposition tree is an enhanced form of the well known quadtree structure and
its higher dimensional generalizations. A (multidimensional) quadtree is a hierar-
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chical decomposition of space into hypercubes in Rd . Starting with the unit hyper-
cube U = [0,1]d , a quadtree box is any d-cube that can be obtained by a recursive
splitting process that starts with U and generally splits an existing quadtree box by
d axis-orthogonal hyperplanes passing through its center into 2d identical subcubes.
Such a decomposition naturally defines a 2d-ary tree, such that each node is asso-
ciated with a cube, called its cell. The size of a quadtree box is its side length. A
nice property of quadtree boxes is that any two quadtree boxes either have disjoint
interiors or one is contained inside the other. However, quadtrees suffer from two
shortcomings, which make them inappropriate for worst-case analysis. First, if points
are densely clustered in some very small region of space, it is not possible to bound the
number of quadtree splits needed to decompose the cluster by a function of n alone.
The box-decomposition (BD) tree [AMN+94] overcomes this by introducing an addi-
tional decomposition operation called shrinking. Second, if the point distribution is not
uniform, the tree may not have logarithmic depth. The balanced box-decomposition
(BBD) tree [AMN+98] extends the BD tree and remedies this problem by employing
a balanced shrinking operation. More formally, a box-decomposition (BD) tree of a set
S of n points is a 2d-ary tree that compactly represents a hierarchical decomposition of
space [AMN+94]. A BD-tree cell is either a quadtree box or the set theoretic differ-
ence of two quadtree boxes, an outer box and an inner box. Cells of the former type
are called box cells and cells of the latter type are called doughnut cells. As with the
quadtree, the root node is associated with U . When a cell contains at most one point of
S it is declared a leaf. There are two ways that an internal node can be decomposed. A
splitting operation decomposes space into 2d subcubes in exactly the same way as the
quadtree. A shrinking operation decomposes a quadtree box u into two children. The
inner child cell is the smallest quadtree box u′ that contains S∩u, and outer child cell
is the doughnut cell u−u′, which contains no points and hence is a leaf. The relevant
properties of the BD tree are given below. Property (i) is proved in [AMN+94], and
property (ii) is a simple generalization of (i).

(i) The BD tree has O(n) nodes and can be constructed in time O(n logn).

(ii) A collection C of n quadtree boxes can be stored in a BD tree with O(n) nodes
such that the subdivision induced by its leaves is a refinement of the subdivision
induced by the quadtree boxes in C. This can be constructed in time O(n logn).

The balanced box-decomposition (BBD) tree introduced in [AMN+98] has many of
the properties of a BD tree and it has O(logn) depth. As in the BD tree, a cell of a
BBD tree is a quadtree box or the difference of two quadtree boxes. Let us state the
properties of the BBD tree relevant to our problem:

(i) BBD tree T has O(n) nodes and O(logn) depth and can be constructed in time
O(n logn).

(ii) We can transform any BD tree T of size O(n) into a BBD tree T ′ in time
O(n logn) without the asymptotically increase in space.

(iii) For a given query point q, BBD tree T can be used to find smallest box containing
q in O(logn) time.
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A central component of our construction is the so-called well-separated pair decom-
position (WSPD) of a point set. For a point set S in Rd and a separation constant s,
the WSPD is a collection of O(nsd) cluster pairs (Ai,Bi), with Ai,Bi ⊂ S and centers
ai ∈ Ai,bi ∈ Bi such that ∀p ∈ Ai : d(p,ai) ≤ |ab|/s (and likewise for points in Bi).
Furthermore, for any two points s, t ∈ S, there exists a unique pair (Ai,Bi) with s ∈ Ai

and t ∈ Bi. Intuitively a WSPD approximates the Ω(n2) distance relationships using
only O(n) pairs of clusters (for constant s). For more details about the WSPD, see
section 2.1.

We use the notion of an exponential grid GE(p,r,R,ε) around p introduced in [HP].
Let bi = b(p,ri), i = 0, . . .dlogR/re be the ball of radius ri = r2i. Define G′i to be the set
of cells of the canonical grid Gαi that intersect bi with αi = 2blog(εri/(16d))c. Obviously
|G′i| = O(1/εd). We remove from G′i all cells completely covered by cells of G′i−1.
Cells that are partially covered by cells in G′i−1 are replaced by the cells covering them
in G′i−1. Let Gi be the resulting set of canonical cells. And let GE(p,r,R,ε) = ∪iGi.
We have |GE(p,r,R,ε|= O(ε−d log(R/r)). It can be computed in linear time in its size.

Data Structure and Query Processing

The overall picture of our construction is as follows: based on the well-separated pair
decomposition of the point set S we generate a set C of O((n/εd) log(1/ε)) many grid
cells. Some of the grid cells are marked critical, and some of the cells have a point
from S associated, such that if the smallest of the generated cells containing a query
point q is non-critical and has a point associated, this point is an approximate conic
nearest neighbor for q (where the approximation is both with respect to the angle as
well as the distance). Then in a second step, we treat the critical cells individually and
partition them using a constant number of hyperplanes. The set of all generated (and
possibly split) cells can then be transformed into a space decomposition and/or stored
in a BBD tree of size O(|C|) = O((n/εd) log(1/ε)) and it can be constructed in time
O(|C| log |C|) = O((n/εd) log(n/ε) log(1/ε)).

STAGE I OF THE CONSTRUCTION:

We first construct a WSPD for the point set with separation constant 32 and then con-
sider all pairs of the WSPD. A pair (A,B) with representatives (a,b) ∈ P×P in the
WSPD has the property that ∀p ∈ A we have d(p,a)≤ |ab|/32 (and likewise for B and
b). For each pair (A,B) with representatives a and b, construct the exponential grid
GE(a, |ab|/8,64|ab|/ε,ε)∪GE(b, |ab|/8,64|ab|/ε,ε). The idea is now to associate ei-
ther a or b with some of the cells but maintaining the invariant that if a cell C has a (b
respectively) associated, then any point q ∈ C can see a (b respectively) within its re-
verse cone or the line between q and a makes an angle of at most O(ε) with the reverse
cone of q. Furthermore some cells which might or might not have a or b associated
with it, will be marked as ’critical’. Only cells that are marked as critical or have a
point associated with them are remembered for further processing.

The construction proceeds as follows: Partition the set of grid cells into Ca (cells
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A
a

|ab|/8

C

C

C

1

2

3

|ab|/32

B

b

C4

|ab|/8

Figure 4.6: Only cells C2,C3,C4 are ’close’ to the cone with apex in a. Note that the
cell C4 will be declared as ’critical’.

that intersect the ball of radius |ab|/8 around a), Cb (cells that intersect the ball of
radius |ab|/8 around b) and Cx (the remaining cells). Now determine which cells are
’close’ to the cone for a (likewise to the cone for b) as follows: A cell C is said to
be ’close’ to the cone of a if C ∩ econe(a) 6= ∅ where enlarged cone is defined as
econe(a) := {p|∃p′ ∈ cone(a) such that ∠pap′ ≤ ε}. Now for all cells C ∈Cx:

• if C is only close to the cone of a, store a with C ,

• if C is only close to the cone of b, store b with C ,

• if C is not close to either . . . don’t store anything,

• if C is close to both, store either a or b (whichever is closer to the center of C ).

For all cells C ∈Cb (that is, cells near b)

• if C is close to the cone of a, store a with it,

• furthermore, if C is close to the cone of b, mark C as ’critical’ and remember
the WSPD pair (A,B) with it.

Do the symmetric thing for all C ∈Ca (see Figure 4.6).

We collect all the cells created (i.e. that have a point associated or have been marked
critical) in the above step (some cells might be created several times) and aggregate the
conic neighbor for some cell C as follows: cell C keeps the closest (to its center) point
stored with C or one of its ancestors (i.e. cells that contain C ). This step completely
ignores the fact whether cells are marked ’critical’ or not. ’Criticality’ is also not
inherited, i.e. a cell C is called critical iff all of its instances created were critical (no
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Figure 4.7: Illustration of the proof of Lemma 4.8.

dependence on ancestors or children). By doing so, the distance of the point associated
with a cell can only decrease. This finishes the first stage of the construction.

The following lemma should now be easy to see.

Lemma 4.7 Let C be a cell created during the processing of WSPD pair (A,B), N(C )
the point stored with it. Then for all points q ∈ C , N(C ) either lies in the reverse cone
of q or is at most an angle of 2ε away from it.

Proof: Assume w.l.o.g. N(C ) = a. By construction, there exists a point q′ ∈ C and a
point p ∈ cone(a) (not necessarily from S) such that ∠q′ap≤ ε. Furthermore we also
have |qq′| ≤ ε|aq′| (remember that C is far away from a otherwise we would not have
associated a with it). But then it follows immediately that ∠qap ≤ ∠q′ap +∠q′aq ≤
ε + arctanε ≤ 2ε. So we get that the angle between the reverse cone of q and the ray
−→qa is at most 2ε. ¤

Lemma 4.8 Let q∈ [0,1]d be a query point. If q has an (exact) conic nearest neighbor
T (q), then a cell containing q was created during our construction.

Proof: Let x denote the point closest to T (q) with |T (q)x| ≥ ε|T (q)q|. Such a point
x certainly exists (in the ’worst’ case just take the furthest point from T (q)). Thus,
the cell C containing q will be considered while constructing exponential grid around
the WSPD pair (A,B) with representatives (a,b), which separates T (q) from x (with
T (q) ∈ A, x ∈ B, see Figure 4.7). However, we still need to show that the cell C had
either a point associated or was marked critical (and hence created). Let us denote
by l = |T (q)q| the distance between q and its true cNN. If we have |aT (q)| ≤ εl, C
was ’close’ to the cone of a (as q has a point p′ in the cone of a at distance of at
most |aT (q)| and then ∠qap′ ≤ arctanε ≤ ε) and therefore was created. So assume
|aT (q)|> εl. But since on the other hand |aT (q)| ≤ |ab|/32, x = a would have been a
better (i.e. closer) choice with |T (q)x| ≥ ε|T (q)q| which contradicts our initial choice
of x. ¤

Let q be a query point, and C the smallest cell generated which contains q. We claim
that if C is not marked ’critical’, the point N(C ) stored with C is a (1 + O(ε)) cANN
with angle error of O(ε).
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Figure 4.8: Illustration of the proof of Lemma 4.9.

Lemma 4.9 Let q ∈ [0,1]d be a query point, C be the smallest cell created which
contains q. If C is not critical, the point N(C ) stored with C has distance at most
(1+ ε)dC

min(q) where dC
min(q) denotes the distance of the exact conic nearest neighbor

of q.

Proof: We use the similar construction as in proof of Lemma 4.8; again we consider
point x that is closest to T (q) with |T (q)x| ≥ ε|T (q)q|. We have argued that when
considering the WSPD pair (A,B) separating T (q) from x (with T (q) ∈ A, x ∈ B), we
will create a cell C ′ containing q. We also showed that |aT (q)| ≤ εl where l = |T (q)q|.
Hence if the cell C ′ was not ’too close’ to a, i.e. d(C ′,a)) > |ab|/8, a was stored with
C ′ and |qa| ≤ |T (q)q|+ |aT (q)| ≤ (1 + ε)|T (q)q|, that is a is a (1 + ε) cANN. For
smaller cells contained in C ′ containing q, only better points could have been found,
so the point associated with the smallest cell C containing q is certainly a cANN.

It remains to treat the case that d(C ′,a))≤ |ab|/8, that is, when considering (A,B), C ′

was marked critical (and a was not associated with it). Now assume the smallest non-
critical cell C 6= C ′ containing q was created by WSPD pair (E,F) with representatives
e, f . Without loss of generality, assume C is closer to e than to f (see Figure 4.8). Then,
if |eT (q)| ≤ ε|T (q)q| we’re done since e is an cANN for q.

Thus, suppose that |eT (q)| > ε|T (q)q|. By the choice of x and the fact that C ′ was
marked critical, we know that 6 ∃s∈ S : ε|qT (q)|< |sT (q)|< 15|ab|/16 (otherwise x = s
would have been chosen). Let w and w′ denote the width of cells C and C ′, respectively.
We have w′ ≤ ε|ab|/(8 ·16 ·d) since C ′ was critical. Furthermore, |eT (q)|> ε|T (q)q|
but also by construction of the grid for (E,F) |eq| ≤ 32dw/ε ≤ 32dw′/ε ≤ |ab|/4.
Furthermore we have |T (q)q| ≤ |ab|/2 otherwise C ′ would not have been critical and
hence |T (q)e| ≤ |T (q)q|+ |eq| ≤ |ab|/2+ |ab|/4≤ 3|ab|/4 which contradicts the fact
that 6 ∃s ∈ S : ε|qT (q)|< |sT (q)|< |ab|15/16. ¤

The previous two Lemmas imply that if the smallest generated cell C containing a
query point q is not critical, the point stored with that cell is a valid cANN, i.e. it has
distance at most (1 + ε) times the distance of the exact cNN, and the returned point
lies at most an angle of 2ε off the reverse cone with apex at q.
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STAGE II OF THE CONSTRUCTION:

In the following we will refine the construction to cope with the case that the query
point ends up in a critical cell.

Let C be a smallest critical cell and suppose C was generated and declared critical
while processing WSPD pair (A,B) with representatives (a,b) and d(C ,a) < |ab|/8,
where d(C ,a) = minp∈C d(p,a). We simply split the relevant region of C by the planes
of the econe(a) and assign a to one part, the ’old’ representative (if existant) to the
other part of C . Note, however, that this procedure affects all possible smaller cells in
C , if any. Thus, the complexity of the intersection of relevant parts of C with the en-
larged cone can be quite considerable (in particular, if C has many direct descendants).
But since every cell has only one direct parent and the complexity of the intersection
between a cube and d hyperplanes is constant for constant d, the overall complexity of
the resulting decomposition remains linear in the number of original cubic cells. This
finishes the second stage of the construction.

Lemma 4.10 Let C be a critical cell that is also the smallest cell containing some
query point q. If the true conic nearest neighbor of q is not in the set A but exists, then
C has already an approximate conic nearest neighbor for q associated.

Proof: Consider the WSPD pair (E,F) with representatives (e, f ) separating T (q) and
a (T (q) ∈ E, a ∈ F), let C ′ be the respective cell containing q. If d(C ′,e) ≥ |e f |/8,
the cell containing q got a point associated that is a cANN (proof along the lines of
the above: if |T (q)e| < ε|T (q)q| we don’t have anything to show, otherwise consider
the WSPD pair separating T (q) and e . . . ). But if d(C ′,e) < |e f |/8 the cell C ′ has
to be smaller than the cell C (as it is closer to e than to a). Furthermore either C ′ or
one of its children containing q has been marked or associated with a point (again the
argument is that if |T (q)e|< ε|T (q)q|, C ′ would have been marked, otherwise consider
the WSPD pair separating T (q) and e . . . ). This contradicts the assumption that C was
the smallest cell created containing q. ¤

So we know that for points q for which a critical cell C is the smallest containing cell,
the conic nearest neighbor is in A (the cluster whose representative a marked C as
critical) or it is already associated with C .

Lemma 4.11 Let C be a smallest critical cell and let δ be the minimum distance of a
part of C to a, that is not covered by smaller cells. Then the diameter of point set A
must be less than δε.

Proof: Assume |A| > 1 since otherwise claim holds trivially. If δ = 0 (i.e. a is not
covered by a smaller cell), another point in A together with a would have induced
a finer grid cell at a. Hence assume δ > 0 and suppose the diameter of point set A
is greater than δε. Consider the WSPD pair (E,F) separating a and the point x ∈ A
furthest from a. Since the distance |e f | is much smaller than ab (e.g. |e f |< |ab|/32),
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either the cell C is non-critical for (E,F) (contradiction to the initial assumption) or it
is covered by smaller cells induced by (E,F). ¤

Lemma 4.12 Any point q in a smallest critical cell C uncovered by smaller cells but
contained in the enlarged cone of a has a as a cANN, distance wise and angle-wise.

Proof: The returned point lies at most an angle of 2ε off the reverse cone with apex
at q since the point q lies in the enlarged cone econe(a). Furthermore, note that
Lemma 4.10 and Lemma 4.11 imply that the point stored with that cell C has distance
at most (1+ ε) times the distance of the exact cNN. ¤

The main result of this section can now be summarized in the following Theorem:

Theorem 4.3 For a set of points S ⊂ Rd and a cone defined by d halfspaces, one can
compute a decomposition of Rd into O( n

εd log 1
ε ) regions with one associated point ∈ S

each, such that for any point q ∈ Rd , the point associated with the cell C containing q
is a cANN. If C has no point associated, q has no cNN in S. The space decomposition
can be queried in time O(log(n/ε)) and constructed in O((n/εd) log(n/ε) log(1/ε))
time.

Proof: The size follows from the fact that the WSPD created has O(n) pairs and
each pair induces O((1/εd) log(1/ε)) cells. These are then stored in a BD tree T .
By BD-tree property (ii), the number of nodes in T is O((n/εd) log(1/ε)) and can be
constructed in time O((n/εd) log(n/ε) log(1/ε)). Finally we can transform the BD
tree T into a BBD tree T ′. This can be performed in time O(m logm), where m denotes
the number of nodes in. This does not increase the space asymptotically, but has the
desirable effect of reducing the time for tree descent to logarithmic in the total number
of nodes, that is O(log(n/ε)).

¤
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4.4 Discussion and Open Problems

In this work we tried to cope with a conic nearest neighbor problem, a variant of one
of the most fundamental and basic problems in computational geometry, the nearest
neighbor problem. The conic nearest neighbor problem has an applications in spanner
constructions and wireless connectivity algorithms as already discussed in more detail
at the beginning of this work.

However, our (approximate) datastructures that allow for polylogarithmic query time
all require a fixed cone during their construction (e.g. the computed data structure
depends on the cone). Even though in before mentioned applications, one is typically
interested only in a constant number of cones – hence building our datastructures a
constant number of times does not change the asymptotic space and running time –
practicability would be greatly increased if we could design a data structure that could
answer queries for variable cones (like the partition-tree based approach, but the latter
has almost-linear query time).
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