
Compiler Verification in the Context

of Pervasive System Verification

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Dirk Carsten Leinenbach

dirkl@cs.uni-sb.de

Saarbrücken, Juni 2008

Tag des Kolloqiums: 24.06.2008
Dekan: Prof. Dr. Joachim Weickert

Vorsitzender des Prüfungsausschusses: Prof. Dr. Gert Smolka
1. Berichterstatter: Prof. Dr. Wolfgang J. Paul
2. Berichterstatter: Prof. Dr. Tobias Nipkow
3. Berichterstatter: Prof. Dr. Andreas Podelski

akademischer Mitarbeiter: Dr. Mark A. Hillebrand

i

Science: A way of finding things out and then
making them work. There is a lot more Science
than you think.
—From A Scientific Encyclopedia for the Enquiring
Young Nome by Angalo de Haberdasheri.

Wings
Terry Pratchett

Danksagung
An dieser Stelle möchte ich all jenen danken, die zum Gelingen der vorliegenden
Arbeit beigetragen haben.

Zunächst gilt mein Dank meinen Eltern, die mich stets ermutigt haben mei-
nen Weg zu gehen und mich während meiner gesamten Ausbildung unterstützt
haben.

Herrn Prof. Paul danke ich für die Möglichkeit, meine Promotion im Rahmen
eines so interessanten Projektes wie Verisoft durchführen zu können, sowie für
die wissenschaftliche Betreuung insbesondere im Anfangsstadium der Arbeit.

Ganz besonders danke ich meiner Freundin Sandra Schäfer, ohne deren
grenzenlose Geduld und Aufmunterungen diese Arbeit nicht zustandegekommen
wäre.

Mein Dank gilt auch meinen Arbeitskollegen und Freunden am Lehrstuhl
Paul für die gute Arbeitsatmosphäre und so manche lebhafte Party. Ganz
besonders danke ich Mark Hillebrand, dessen schier endloses Wissen über
LATEX und Perl mir oft viele Stunden Arbeit erspart hat (außerdem hat er den
Divisionscode entwickelt, der in dieser Arbeit benutzt wird), sowie Tom In der
Rieden, ohne den das Verisoft-Projekt sicherlich ganz anders aussehen würde
und der auf verschlungenen Pfaden eine grandiose Kaffeemaschine beschafft
hat.

Des Weiteren danke ich Michael Backes für die tolle Zusammenarbeit
während des Studiums und die Ermunterung, mich beim Graduiertenkolleg zu
bewerben, sowie Norbert Schirmer, der so manche Stunde in die erfolgreiche
Verbindung von Small-Step und Big-Step Semantik von C0 investiert hat.

Für ihre Hilfe bei der Verifikation der Codegenerierung für Ausdrucksaus-
wertung danke ich außerdem Hristo Pentchev, Verena Kremer, und Kara Abdul
Qadar.

Nicht zuletzt danke ich Sabine Nermerich, der guten Seele im Verisoft
Projekt, die es schon so lange mit uns seltsamen Informatikern aushält.

This thesis work was funded by DFG Graduiertenkolleg “Leistungsgarantien
für Rechnersysteme” and by the German Federal Ministry of Education and
Research (BMBF) in the framework of the Verisoft project under grant 01 IS
C38.

iii

Abstract

This thesis presents the formal verification of the compiling specification for a
simple, non-optimizing compiler from the C-like programming language C0 to
VAMP assembly code. The main result is a step-by-step simulation theorem
between C0 programs and the compiled code (which is specified by the compil-
ing specification). Additionally, a C0 small-step semantics and a verification
methodology for VAMP assembly have been developed.

This work is part of the Verisoft project which aims at the pervasive formal
verification of an entire computer system. The key concept in Verisoft’s method-
ology is to prove properties of computer systems at the relatively abstract C0
layer and to transfer them via several intermediate layers down to the concrete
hardware layer. After successful transfer of a property to the hardware layer,
we can be sure that no oversimplifications have been done in the formalizations
of the more abstract layers.

This context of pervasive system verification imposes several special re-
quirements to our compiler correctness theorem. In particular, the simulation
theorem had to be formulated based on small-step semantics to allow for rea-
soning about non-terminating and interleaving programs. Another important
feature is that our result incorporates resource restrictions at the hardware
layer and allows to discharge them at the C0 layer.

All results presented in this thesis have been formalized in the theorem
prover Isabelle / HOL.

Kurzzusammenfassung

Die vorliegende Arbeit befasst sich mit der formalen Verifikation des Codegene-
rierungsalgorithmus eines nicht optimierenden Compilers von der C-ähnlichen
Sprache C0 nach VAMP Assembler. Das Hauptergebnis ist ein Schritt-für-
Schritt Simulationssatz zwischen C0 Programmen und dem compilierten Code.
Die Arbeit umfasst zusätzlich die Entwicklung einer Small-Step Semantik für C0
sowie einer Verifikationsmethodik für VAMP Assemblerprogramme.

Diese Arbeit ist Teil des Verisoft Projekts, das auf die durchgängige formale
Verifikation von Computersystemen abzielt. Die Methodik von Verisoft basiert
auf der Verifikation von Eigenschaften eines Computersystems auf der relativ
abstrakten C0 Ebene und deren anschließendem Transfer auf die konkrete
Hardwareebene. Ein solcher erfolgreicher Eigenschaftstransfer garantiert, dass
auf den abstrakten Ebenen keine zu starken Vereinfachungen vorgenommen
worden sind.

Die Einbettung in die durchgängige Verifikation von Systemen stellt zahlrei-
che speziellen Anforderungen an den Compilerkorrektheitssatz. Insbesondere
muss der Simulationssatz auf einer Small-Step Semantik basieren, um die Be-
handlung von nebenläufigen und von nicht terminierenden Programmen zu
ermöglichen. Eine weitere Eigenschaft ist, dass unser Resultat Ressourcenbe-
schränkungen auf der Hardwareebene einbezieht und deren Entlastung auf der
C0 Ebene erlaubt.

Alle Resultate dieser Arbeit sind im Theorembeweiser Isabelle / HOL
formalisiert worden.

iv

Extended Abstract

This thesis presents the formal verification of the compiling specification (or
code generation algorithm) of a simple, non-optimizing compiler from the C-like
programming language C0 to the assembly language of the formally verified
VAMP processor. It covers the proof of a step-by-step simulation theorem
between a C0 program and the compiled code as specified by the compiling
specification; that is, it proves the correctness of the code generation algorithm.
This result complements the verification of a C0 implementation of the code
generation algorithm which has been done by E. Petrova.

As basis for the compiler verification, we have developed a C0 small-step
semantics and proved several important invariants about its computations. On
top of the semantics of the VAMP assembly language (which has been defined by
Tsyban et al.) we have developed a verification methodology for the verification
of VAMP assembly programs. This verification methodology has been used for
the verification of assembly templates of the compiling specification.

The main result of our work is the formal proof of a step-by-step simulation
theorem between execution of programs in the C0 small-step semantics and
the execution of the compiled code in the VAMP assembly machine. This
theorem states for every step of the C0 machine executing a program p that
there exists a corresponding state in the computation of the VAMP assembly
machine executing the compiled code of p. The meaning of correspondence in
this theorem is mainly that the values of reachable variables of the C0 program
are properly represented in the assembly machine.

This thesis is part of the Verisoft project which aims at the pervasive
formal verification of entire computer systems. The goal of pervasive system
verification is to have a single top-level correctness theorem for the complete
system without abstracting from restrictions or properties of the underlying
hardware or assembly language. The lower the language layer at which we
formulate such an overall theorem is the better and more reliable is the result.
One of the key concepts in Verisoft’s methodology is to prove properties at a
relatively abstract layer (e.g., the C0 layer) and to transfer them using meta
theorems down to more concrete layers (e.g., an assembler language or even
the processor hardware). After successful transfer of a property, we can be
sure that no oversimplifications have been done in the formalization of the
more abstract layers. However, abstractions of higher layers have to be justified
during property transfer. This can sometimes be done once and for all in a
meta theorem. Other justifications depend on the program being compiled.

The compiler correctness theorem presented in this thesis is such a meta
theorem. To enable property transfer from the C0 to the assembly layer, it has to
meet special requirements. In particular, we have verified a complete compilation
chain from the C0 language down to assembly code instead of focusing on just
a few parts of the compiler (like optimization patterns). Furthermore, the
simulation theorem is formulated based on small-step semantics to allow for
reasoning about non-terminating and interleaving programs. Additionally, the
compiler correctness proof considers resource restrictions at the hardware layer
and allows to discharge them at the C0 layer.

All results presented in this thesis have been formalized in the theorem
prover Isabelle / HOL.

v

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der formalen Verifikation des Code-
generierungsalgorithmus eines einfachen, nicht optimierenden Compilers aus
der C-ähnlichen Programmiersprache C0 in die Assemblersprache des formal
verifizierten VAMP Prozessors. Die Arbeit beinhaltet den Beweis eines Schritt-
für-Schritt Simulationssatzes zwischen einem C0 Programm und dessen kompi-
lierten Codes. Dieses Ergebnis vervollständigt die von E. Petrova durchgeführte
Verifikation einer C0 Implementierung des Codegenerierungsalgorithmusses.

Als Basis für die Verifikation des Compilers haben wir eine C0 Small-Step
Semantik entwickelt und mehrere wichtige Invarianten über deren Berechnungen
bewiesen. Basierend auf der Semantik der VAMP Assemblersprache, die von
A. Tsyban definiert wurde, haben wir eine Verifikationsmethodik für VAMP
Assemblerprogramme entwickelt. Diese haben wir bei der Verifikation von kurzen
Assemblercodestücken angewendet, die der Compiler als Vorlagen benutzt.

Das Hauptergebnis dieser Arbeit stellt der formale Beweis eines Schritt-für-
Schritt Simulationssatzes zwischen der Ausführung von Programmen in der
C0 Small-Step Semantik und der Ausführung des kompilierten Codes in der
VAMP Assemblermaschine dar. Dieser Simulationssatz zeigt für jeden Schritt
während der Ausführung eines Programms p in der C0 Maschine, dass es einen
korrespondierenden Zustand in der Berechnung der VAMP Assemblermaschine
gibt, die den kompilierten Code von Programm p ausführt. Korrespondierend
bedeutet hierbei hauptsächlich, dass die Werte von erreichbaren Variablen der
C0 Maschine im Zustand der entsprechenden Assemblermaschine kodiert sind.

Die vorliegende Arbeit ist Teil des Verisoft Projektes, das die durchgängige
formale Verifikation ganzer Computersystem anstrebt. Das Ziel von durchgängi-
ger Verifikation ist der Beweis eines einzigen Korrektheitssatzes für das komplette
System, ohne von Einschränkungen oder Eigenschaften der zugrunde liegenden
Schichten zu abstrahieren. Je tiefer die Sprachebene ist, auf der solch ein Ge-
samtkorrektheitssatz bewiesen wird, desto vertrauenswürdiger ist das Ergebnis.
In Verisoft versucht man, Eigenschaften auf einer möglichst abstrakten Ebene
(z.B. auf der C0 Ebene) zu verifizieren und die Ergebnisse danach mittels
Meta-Theoremen auf konkretere Schichten (z.B. Assemblersprache oder sogar
die Prozessorhardware) zu transferieren. Nachdem dies für eine Eigenschaft
gelungen ist, kann man sicher sein, dass keine zu starke Vereinfachung in der
Formalisierung der abstrakten Ebene gemacht worden ist. Trotzdem müssen
Abstraktionen der höheren Ebenen beim Transfer von Eigenschaften gerechtfer-
tigt werden. Für einige Abstraktionen kann dies ein für alle Mal im Rahmen
des Meta-Theorems gezeigt werden; für andere hängt es vom kompilierten
Programm ab.

Der Compilerkorrektheitssatz der vorliegenden Arbeit ist solch ein Meta-
Theorem. Um den Eigenschaftstransfer von der C0 auf die Assemblerebene zu
erlauben, muss der Satz spezielle Anforderungen erfüllen. Insbesondere umfasst
er einen kompletten Übersetzer von C0 nach Assemblercode und konzentriert
sich nicht bloß auf einige Teile (wie einzelne Optimierungsstufen). Weiterhin
ist der Simulationssatz auf Basis einer Small-Step Semantik formuliert, um
Aussagen über nicht terminierende oder nebenläufige Programme zu ermöglichen.
Der Korrektheitssatz berücksichtigt ferner auch Ressourcenbeschränkungen auf
der Hardwareebene und erlaubt deren Entlastung auf der C0 Ebene.

Alle Resultate dieser Arbeit wurden in Isabelle / HOL formalisiert.

Contents

1 Introduction 1
1.1 Outline . 3
1.2 Notation . 5

1.2.1 Basics . 5
1.2.2 Abstract Data Types . 6
1.2.3 Lists . 7
1.2.4 Bits and Bit Vectors . 8
1.2.5 Miscellaneous . 9

2 Requirements Analysis and Related Work 11
2.1 Requirements Analysis . 11

2.1.1 Language Layers . 11
2.1.2 Small-Step Semantics and Step-By-Step Simulation The-

orem . 12
2.1.3 Implementation Correctness and Bootstrapping 14
2.1.4 Property Transfer . 14

2.2 Related Work . 15
2.2.1 Related Work in the Context of System Verification . . 15
2.2.2 Detached Related Work 16
2.2.3 Integration of Solutions 23

I Languages 25

3 The Language C0 27
3.1 Informal Description . 27

3.1.1 Types . 28
3.1.2 Expressions . 29
3.1.3 Statements . 29
3.1.4 Initialization of Variables 32
3.1.5 Inline Assembly . 32

3.2 Concrete Syntax . 32
3.3 Front End Tool . 32

4 Formal C0 Small-Step Semantics 35
4.1 Representation of C0 Programs 35

4.1.1 Types and Type Name Environment 35
4.1.2 Expressions . 36

vii

viii Contents

4.1.3 Statements . 37
4.1.4 Function Table . 41

4.2 Configuration of the C0 Small-Step Semantics 41
4.2.1 Memory Configuration 42
4.2.2 Program Rest . 46
4.2.3 Configuration . 46

4.3 Expression Evaluation . 46
4.3.1 Address of G-Variables 47
4.3.2 Reading from the Memory 48
4.3.3 Semantics of Operators 49
4.3.4 Evaluation Functions for Expressions 52

4.4 Execution of C0 Programs . 58
4.4.1 Initial Configuration . 58
4.4.2 Updating Memory . 60
4.4.3 Transition Function . 60
4.4.4 Computations . 67

5 Properties of the Small-Step Semantics 69
5.1 Basic Properties . 69
5.2 The Set of Valid C0 Programs 70

5.2.1 Valid Expressions . 70
5.2.2 Valid Statements . 74
5.2.3 Valid Type Name Environments 77
5.2.4 Valid Function Tables 78

5.3 Type Correctness . 80
5.3.1 Definitions . 80
5.3.2 Basic Lemmas . 83
5.3.3 Type Correctness of Initial Values 84
5.3.4 Type Correctness: Expression Evaluation 85

5.4 Structure of the Program Rest 87
5.4.1 Structure of Statement Trees 88
5.4.2 Extending Statement Structure to Complete Programs . 91
5.4.3 Valid Program Rest . 92

5.5 Valid Configurations . 94
5.5.1 Definitions . 94
5.5.2 Maintaining Valid Configurations 96

6 Target Language 99
6.1 VAMP Instruction Set Architecture 100
6.2 VAMP Assembly Language . 101

6.2.1 Instructions . 102
6.2.2 Memory Model . 103
6.2.3 Integers vs. Natural Numbers 104
6.2.4 Configuration . 105
6.2.5 Semantics . 106

6.3 Correctness of the VAMP Assembly Model 112
6.3.1 Formalizing the Requirements 113

6.4 Assembly Code Verification Methodology 114
6.4.1 Predicates for Execution of Assembly Code 114
6.4.2 Executing Single Instructions 115

Contents ix

6.4.3 Combining Code Pieces 117
6.4.4 Automation . 119

II Compiler 121

7 Code Generation Algorithm 123
7.1 Introduction to the Code Generation 124

7.1.1 Code Size . 124
7.1.2 Base Addresses of Code 126

7.2 Memory Layout . 128
7.2.1 Alignment and Allocated Size 130
7.2.2 Displacement of Variables and G-Variables 133
7.2.3 Base Addresses . 133

7.3 Code Generation for Expressions 135
7.3.1 Introduction . 135
7.3.2 Literals . 137
7.3.3 Variable Access . 138
7.3.4 Unary Operators . 139
7.3.5 Binary Operators . 139
7.3.6 Lazy Binary Operators 145
7.3.7 Structure and Array Access 146
7.3.8 Address-of and Pointer Dereferencing 148

7.4 Code Generation for Statements 148
7.4.1 Skip and Compound . 149
7.4.2 Assignments . 149
7.4.3 Assignments of Aggregate Literals 151
7.4.4 Loops . 152
7.4.5 Conditional Statements 152
7.4.6 Allocation of Heap Variables 153
7.4.7 Function Calls . 154
7.4.8 Return . 157
7.4.9 Code Displacement of Statements 158

7.5 Code Generation for Complete C0 Programs 159
7.5.1 Init Code . 160
7.5.2 Code Generation for Programs 160

7.6 Translatable Programs . 161
7.7 Execution of the Compiler Specification 165

8 Simulation Theorem 167
8.1 Overview . 167
8.2 Simulation Relation . 168

8.2.1 Correctness of the Simulation Relation 168
8.2.2 Reachability . 169
8.2.3 Allocation Function . 173
8.2.4 Matching Values . 173
8.2.5 Definition of the Simulation Relation 175

8.3 Resource Restrictions . 181
8.3.1 Lifting Resource Restrictions to More Abstract Layers . 182

8.4 Simulation Theorem . 183

x Contents

9 Correct Compilation of Expressions 185
9.1 Execution of Assembly Code for Expressions 185
9.2 Correctness Statement for Expressions 186

9.2.1 Precondition for Correct Execution of Expressions . . . 187
9.2.2 Postcondition for Correct Execution of Expressions . . . 187
9.2.3 Compatibility . 188

9.3 Correctness Theorem . 189

10 Correct Compilation of Statements 193
10.1 Control Consistency . 193

10.1.1 Correctness of the Control Code 195
10.1.2 Proof of Control Consistency 198

10.2 Auxiliary Lemmas for Data Consistency 199
10.2.1 Basic Lemmas About Allocation Functions 199
10.2.2 Consistency After Updating Memory 201

10.3 Conditional . 208
10.4 Loop . 210
10.5 Assignment . 212

10.5.1 Low-Level: Assigning Basic Values 212
10.5.2 Low-Level: Big Assignments 212
10.5.3 High-Level Correctness 214

10.6 Assignment of Aggregate Literals 219
10.7 Allocation of Dynamic Memory 222

10.7.1 Low-Level Correctness 222
10.7.2 High-Level Correctness 224

10.8 Function Calls . 229
10.8.1 Parameter Passing . 229
10.8.2 Setting up the New Stack Frame 234
10.8.3 Putting it All Together 234

10.9 Return . 237

11 Implementation Correctness 241

12 Summary and Future Work 243

A Concrete C0 Syntax 249
A.1 C0 Grammar . 249
A.2 C0 Lexer . 254

B Mapping to Lemmas in Isabelle / HOL 257

Bibliography 261

Index 273

List of Figures

2.1 Semantics Layers in Verisoft . 13

3.1 Structure of c0 check . 33

4.1 Hierarchy of G-Variables . 42
4.2 Execution of Compound Statements: Real Statement 61
4.3 Execution of Compound Statements: Skip Statement 62
4.4 Modeling the Semantics of Inline Assembly Code 66

5.1 Different Views to Statement Trees 88
5.2 Correspondence Between Stack and Program Rest 95

6.1 Conversion From Integers to Natural Numbers 105
6.2 Conversion From Natural Numbers to Integers 105
6.3 VAMP Assembly Machine: Storing 107

7.1 Start Address of Functions . 127
7.2 Memory Layout of the C0 Compiler 129
7.3 Example for the Allocated Size of Arrays 132
7.4 Register Allocation Strategy . 137
7.5 Code Generation for Expressions With Binary Operators 140
7.6 Code Generation for Expressions With Lazy Binary Operators . . 146
7.7 Code Generation Template for Loops 152
7.8 Code Generation Template for Conditional Statements 152
7.9 Call Distance for Function Calls 156
7.10 Construction of the New Stack Frame 157
7.11 Code Displacement of Statements 159
7.12 Overall Structure of the Generated Code 160

8.1 Overall Structure of the Compiler Simulation Relation 176
8.2 Small-Step Compiler Simulation Theorem 183

10.1 Fragmented Generation for Control Statements 194
10.2 Fragmented Generation for Control Statements Cont. 194
10.3 Correctness of Parameter Passing: Induction Step 233

11.1 Correctness of the Compiler Implementation 242
11.2 Correctness Theorem for the Compiler Implementation 242

A.1 Operation Modes of the C0 Lexer 254

xi

List of Tables

3.1 Unary C0 Operators . 29
3.2 Binary C0 Operators . 30
3.3 Lazy C0 Operators . 30

4.1 Unary Operators . 37
4.2 Binary Operators . 38
4.3 Comparison Operators . 38
4.4 Lazy Binary Operators . 38

6.1 Implemented Interrupts . 101
6.2 Memory Instructions and Constant Loading 108
6.3 Control and Special Instructions 109
6.4 Test Instructions . 109
6.5 Arithmetic and Bitwise Instructions 110
6.6 Shift Instructions . 110

7.1 Frame Header Layout . 129
7.2 Special Registers Used in the C0 Compiler 129

A.1 Regular Expressions for Some Complex Tokens 255
A.2 Mapping of Characters to Tokens in Normal Mode 255
A.3 Mapping of Characters to Tokens in Assembly Mode 256

xiii

Chapter 1

Introduction

Contents
1.1 Outline . 3

1.2 Notation . 5

Nowadays, computer systems are used more and more in security and safety
critical applications. They are ubiquitous not only in the obvious places, i.e.,
personal computers which we use for on-line banking or confidential commu-
nication, but also hidden, e.g., in machine controls, automobiles, or aircrafts.
Computer errors in these application areas can cause tremendous costs, both in
money and human life.

Developers and engineers try to reduce the risk of failure in many ways.
They use special development and controlling principles [The99], use redun-
dant systems (both for hardware and software), do extensive and systematic
tests, and – especially in highly critical systems – prove the correctness of
hardware and software both using traditional paper-and-pencil mathematics
and formal methods (where ‘formal methods’ means that computer systems
check or completely conclude correctness proofs).

However, even the formal verification of single parts of a computer system
does not ensure the correctness of the overall system. For example the fail-
ure of the Ariane 5 maiden flight 1996 was caused by the Inertial Reference
System (SRI) which is responsible for the position monitoring system of the
rocket. About 40 seconds after take-off, the SRI software produced an uncaught
exception while trying to convert a 64-bit floating point number to a 16-bit
integer; the software component was reused from Ariane 4 where metered values
have been in a smaller domain. However, “the supplier of the SRI followed the
specifications given to it, which stipulated that in the event of any detected
exception the processor was to be stopped.” [Boa96] The backup system which
was activated automatically after shutting down the first SRI produced the
same error within micro seconds and fate took its course.

The value whose computation generated the exception was for Ariane 5 only
needed during take-off whereas for Ariane 4 it was also needed later; thus, there
was no reason for the component in Ariane 5 to be still active 40 seconds after
take-off. Additionally, because of a different trajectory of Ariane 5 compared

1

2 Introduction

with Ariane 4, the problem did only occur for the new model. What can we
learn from this disaster?

1. Redundant hardware system are a good idea in general, but they do not
help against software failures or design errors.

2. Even the correctness of all components of a system does not imply the
correctness of the overall system if the specifications do not fit together
or external influences are not considered correctly.

3. We can only trust in the correctness of specifications of a component or
even a complete system if it allows us to prove specific top-level properties
of the system.

In addition to these qualitative arguments, King [KHCP00] stresses the fact
that formal verification does often require less effort than normal testing (given
that good and highly-automated tools are available). Beyer et al. [BBM+07]
come to similar conclusions: they report that normal testing of a given complex
processor has required twice the effort than the formal verification of a similar
design while it did not deliver as high a quality.

The Verisoft project [Ver03] worked on eliminating the above-mentioned
three problems by pervasively verifying the correctness of entire computer
systems, including gate level hardware [BJK+06], system software [GHLP05],
compiler [LPP05, LP08], and communicating applications [BGH+06], with a
special focus on industrial applications [IK05]. In particular, the seamless
verification of large parts of the academic system has been attempted and was
successfully finished. This system consists of hardware (processor and devices)
on top of which runs a micro kernel, a simple operating system, and applications.
The software of the academic system is implemented in the C-like language C0
together with few lines of inline assembly code.

In the context of pervasive verification, it is not sufficient to prove application
correctness only at the source level. A faulty compiler may introduce bugs
into the application during translation to machine language. Additionally,
trustworthy execution of programs on a concrete processor with restricted
resources (memory etc.) imposes additional requirements which are often
abstracted in programming language semantics. Thus, the verification of a C0
compiler including treatment of restricted resources is a central part of the
Verisoft project.

This thesis presents a formal small-step semantics of the C0 language and a
formal correctness proof of the code generation algorithm (also called compiling
specification) of a simple, non-optimizing C0 compiler. These formalizations
of the C0 semantics, the compiling specification, and the compiler correctness
proof have been inspired by paper-and-pencil definitions and a compiler proof
sketch which W. J. Paul has given in two internal technical reports of the
Verisoft project [LP04, BKLP04].

To integrate the work presented in this thesis smoothly into the rest of the
Verisoft project we had to meet several special requirements.

• In multitasking systems like the academic system, programs do not run
in isolation: execution of (many) user programs and of the operating
systems is interleaved. In big-step semantics computations cannot be
interleaved in a simple way as it is hard to argue about intermediate

1.1. Outline 3

states. Additionally, non-terminating programs have to be considered;
this is also non-trivial in big-step semantics. Thus, big-step semantics
(and classical Hoare logics built on top of them) alone do not suffice to
conveniently model interleaving programs. Therefore, we model source
language semantics by small-step semantics. Of course this does not
entirely preclude the use of Hoare logics for pervasive verification.

Indeed both a big-step semantics and classical Hoare logics for C0 were
formally defined [Sch05, Sch06]. Program analysis in Hoare logics nec-
essarily concerns the execution of terminating portions of programs. In
order to handle interleaving, these results then have to be ‘imported’
into the small-step semantics. This import is based on classical results
relating Hoare logics and small-step semantics in the style of Theorem 6.16
in [NN99]. In a pervasive verification effort these results have to be shown
formally; this has been done in the Verisoft project [ASS08].

• The compiler should make it possible to discharge most of the low-level
resource restrictions already on the C0 level. This allows to show the
total correctness of a particular C0 program on an abstract level without
arguing about the compiled assembly code.

• To solve the bootstrap problem [GH98] it is not sufficient to verify the
code generation algorithm. E. Petrova has verified a C0 implementation
of the C0 compiler [Pet07] using a C0 verification environment [Sch06] for
Isabelle / HOL [NPW02]. Her results are briefly sketched in Chapter 11.
There are several ways to get a trustworthy executable from the compiler
implementation in C0. One of them – using Isabelle’s built-in code
generation feature – is described in more detail in [Tzi07].

• A big effort went into the integration of this work into the large project.
Harmonization of the big-step and small-step semantics was surprisingly
hard, but had to be done in order to allow formal equivalence proofs.
The compiler simulation theorem had to be enriched with several special
properties to make it useful for the correctness proofs of the operating
system kernel. Additional properties, e.g. the absence of self-modifying
code, are needed to allow for the transfer of results to the hardware layer.

1.1 Outline

In the last section of this first chapter we introduce some basic notation. A
detailed requirements analysis and related work are discussed in Chapter 2.
The remainder of the thesis is divided into two parts.

Part I defines the syntax and semantics of the source and target language
of the compiler.

• In Chapter 3 we introduce the C-like programming language C0. In
particular, we introduce a preprocessor tool which translates C0 source
code into different representations (e.g., for the formal small-step semantics
in Isabelle / HOL) and provides a front end for the verified compiler
implementation. Additionally, we sketch the language stack which is used
in the Verisoft project.

4 Introduction

• In Chapter 4 we formally define the C0 small-step semantics. We start with
a definition of the data types which represent C0 programs in Isabelle and
continue with definitions of the expression evaluation and of the transition
function.

• In Chapter 5 we introduce several properties and invariants of the C0
small-step semantics, which are later needed for compiler correct proof.
In particular, we define the set of valid C0 programs, introduce the notion
of type correctness and show that the C0 expression evaluation is type
correct. Finally, we define an invariant about the structure of program
rests and prove that it is preserved by the C0 transition function (this
theorem is called ‘folklore theorem’ in [LPP05]).

• In Chapter 6 we describe the instruction set architecture and assembly
language of the verified architecture microprocessor (VAMP) which is
the target architecture of the verified C0 compiler. Amongst others, we
list requirements which allow to prove that the VAMP ISA simulates the
VAMP assembly language and introduce a verification methodology for
VAMP assembly programs. This verification methodology is used to prove
the low-level correctness of the generated assembly code.

Part II handles the C0 compiler itself and presents a correctness proof.

• In Chapter 7 we define the code generation algorithm of the C0 com-
piler. Additionally, we investigate restrictions on input programs which
are caused by restrictions of the target machine and define the set of
translatable C0 programs. We conclude this chapter with a discussion
on how the Isabelle specification of the code generation algorithm can be
executed; this is a possible solution of the bootstrap problem.

• In Chapter 8 we present the simulation theorem which states the cor-
rectness of the compiling specification of the C0 compiler. This includes
defining the simulation relation for the compiler correctness theorem, the
introduction of reachability and allocation functions, and, finally, the for-
malization of the main correctness theorem for the compiling specification
and a sketch of its correctness proof.

• In Chapter 9 we sketch the proof that the code generation algorithm for
expressions produces correct code.

• In Chapter 10 we prove the correct compilation of statements. We start
with a theorem which allows us to separate the correctness of control
flow instructions from the correctness proofs for individual statements.
In the remaining sections of the chapter we prove theorems about the
code generation for the different C0 statements. This proves the different
induction cases of the proof in Chapter 8.

• In Chapter 11 we briefly sketch Petrova’s top-level correctness theorem
for the C0 implementation of our compiler (cf. [Pet07]).

We conclude in Chapter 12 with summary and future work.

1.2. Notation 5

1.2 Notation

In this section we introduce some basic notation which is used in the remainder
of this thesis.

1.2.1 Basics

We denote by S the set of identifiers (e.g., variable or type names), by Z
the set of integers, by N the set of natural numbers including zero, and by
{a, . . . , b} the integer interval from a to b (inclusive). By Zw and Nw, we
denote the set of integers and natural numbers which fit into w bits; that is,
Zw = {−2w−1, . . . , 2w−1 − 1} and Nw = {0, . . . , 2w − 1}. For natural numbers
n and d > 0 we use the notation dned = dn/de · d. This is the smallest multiple
m of d such that m is greater or equal than n.

We use a ÷ b to denote integer division. Unfortunately, the semantics
of modulo computation for integers differs between Isabelle / HOL and the
standard gcc C-compiler (observe, that the C standard from [ISO99] does not
require a specific behavior). Thus, we define our own version of a signed modulo
operator a mods b = ((a + b) mod (2 · b)) − b which is used to define the
modulo semantics of binary operators (cf. Section 4.3.3). Unsigned modulo
a modu b = a mod b is computed using the usual mathematical definition. The
predicate a | b checks whether a divides b.

We use the notation a +32 b = a + b modu 232 and a−32 b = a− b modu 232

to denote bounded addition and subtraction, respectively. Functions are anony-
mously introduced using lambda expressions. For example, λ x, y. (x + y) is a
function which adds its two operands.

We use the notation r.c to access record component c of a record r. Update
of records is written as r[c1 := 5, c2 := 6, . . . , cn := 42] where r is the original
record and c1 to cn are its components; record components which are not
mentioned in the update remain unchanged. Records may also be composed on
the fly writing [c1 = 5, c2 = 6, . . . , cn = 42].

The ternary operator, ? :, is used for case distinctions in formulas. We
write c?e1 : e2 to denote an expression which evaluates to e1 if the condition is
fulfilled, i.e., c = true, and to e2 otherwise.

Predicates are functions from a given domain into the set B of boolean values.
We say that a predicate p holds or is fulfilled for some value x if p(x) = true.
In formulas we often abbreviate p(x) = true with p(x) and p(x) = false with
¬p(x).

We use inference rules of the form

a b

c

to denote logical implication (a ∧ b) =⇒ c. Inference rules are often used for
definitions of predicates by case distinction or pattern matching, giving one
inference rule for every case. Observe, that everything which is not covered
explicitly by rules does by default not fulfill the predicate.

Observe also, that we often omit quantifiers like ∀ and ∃ for free variables

6 Introduction

in definitions and lemmas to keep formulas concise. For example, the definition

a · i = b i ∈ Z
a | b

should be read as: a divides b if there exists an integer i s.t. a · i = b.
We use fst :: (t1, t2) 7→ t1 and snd :: (t1, t2) 7→ t2 to extract the first and

second element of a pair. The function flip :: (t1, t2) 7→ (t2, t1) exchanges the
elements of a pair: flip(a, b) = (b, a).

In general we model finite sequences of elements from set A as mappings
s : [0 : n − 1] 7→ A. For natural numbers a, b with 0 ≤ a ≤ b ≤ n − 1 we
denote by s[a : b] the subsequence (s[a], . . . , s[b]). Formally, this is the sequence
s′ : [0 : b − a + 1] 7→ A with s′[i] = s[a + i] for all i. We denote by s[a, l] the
subsequence s[a : a + l − 1] of s of length l starting at index a. Note that we
will sometimes just write s for the only element of a singleton sequence instead
of s(0). A constant sequence of elements a, b, c, and d may be written in the
form [a, b, c, d]; correspondingly, [a] denotes a sequence with only one element.
Updating a sequence s starting a position a with l values from sequence s′ is
denoted by s ([a, l] := s′) and defined as follows:

s ([a, l] := s′) [i] =

{
s′[i− a] if a ≤ i < a + l

s[i] otherwise

We denote intervals of natural numbers as ranges in this thesis. A range
(a : b) is represented by start and end address and contains all numbers i
with a ≤ i ≤ b. We define several predicates on ranges. We use the notation
(i ∈ (a, b)) = (a ≤ i ≤ b) to denote that a given number i is inside a range
(a : b). We denote by b ⊆ a that range b is completely contained in range a.

Sometimes we denote ranges also by pairs of start address and length. Such
ranges a and b are said to be disjoint iff

a � b = (fst(a) ≥ fst(b) + snd(b) ∨ fst(b) ≥ fst(a) + snd(a)) ;

they overlap iff

a 6� b = (fst(a) < fst(b) + snd(b) ∧ fst(b) < fst(a) + snd(a)) .

1.2.2 Abstract Data Types

In this section we introduce the concept of abstract data types. They are a way
to formalize terms which are built by a set of so-called constructors. The set of
terms which can be built for an abstract data type t is identified with the type
t. Each constructor is a function with an arbitrary number of parameters and
image t. We demonstrate the concept by an abstract data type for lists whose
elements are of type t.

t list = nil
| cons(t, t list)

Thus, lists have constructors nil :: list and cons :: Z× list 7→ list . A list is either
the empty list nil or concatenation of a single element and a list. Recognizers

1.2. Notation 7

are predicates over elements of a given data type which check whether the
element is built by a specific constructor. For example, the recognizer

is cons(l) =

{
true if ∃h, t : l = cons(h, t)
false otherwise

checks whether l is built using the cons constructor. Observe, that we often
omit the existential quantifiers in such formulas, when the meaning is clear
from the context.

Isabelle / HOL only supports total functions. Partial functions can be
simulated by using an uninterpreted constant for undefined values. In this
thesis we use ‘undef ’ as such a constant.

Another way to simulate partial functions is the so-called option type. The
option type is a polymorphic data type with two constructors. For type t it is
defined by

t option = None
| Some(t).

The constructor None models an undefined value and Some(x) a defined value x.
We use the abbreviations t⊥ for t option and bxc for Some(x). The function
the :: t option 7→ t converts option types back into the base type.

the(y) =

{
x if y = bxc
undef if y = None

1.2.3 Lists

In this section we introduce some basic notation and functions regarding lists.
In addition to the definition of the list data type from above we use the

following pretty printing for the constructors. We denote the empty list nil
by [], and cons(h, t) by h#t. Additionally, we use the abbreviation [a, b, c] =
a#b#c#[] to denote concrete instances of list.

Inductive definitions on data types can be easily done via pattern matching.
As example we define the function map :: (t1 7→ t2) × t1 list 7→ t2 list which
maps a function f :: t1 7→ t2 on a list of type t1 list .

map(f, []) = []
map(f, h#t) = f(h)#map(f, t)

We define the length of lists by the following notation.

|[]| = 0
|h#t| = |t|+ 1

Functions hd :: t list 7→ t and tl :: t list 7→ t list compute the head and tail
of lists, respectively.

hd([]) = undef
hd(h#t) = h

tl([]) = undef
tl(h#t) = t

8 Introduction

Similarly, last returns the last element of a list and butlast all elements but the
last one. Function l[i, n] returns the n elements of list l starting at the i-th
element.

Concatenation of two lists l1 and l2 is defined by induction on the first list.

[] ◦ l2 = l2

(h#t) ◦ l2 = h#(t ◦ l2)

We overload the notation [l1, l2, . . . , ln] to denote concatenation of lists l1, l2,
up to ln.

We turn lists l into sets by just writing {l}. With l!n we denote the n-th
element of list n; if n ≥ |l|, the result is undefined. Updating the n-th element
of a list with some value x is denoted by l [n := x].

We reuse the notation x ∈ l to denote that x is element of list l and x /∈ l to
denote that x is not an element of l.The predicate distinct(l) checks whether the
elements of list l are pairwise distinct. The function replicate(n, x) generates a
list which consists of n copies of element x.

Finally, we define two additional functions on lists. The first one is map-of ::
(t1, t2) list × t1 7→ t2⊥. This function takes a list l of pairs and finds the first
element whose first component equals the second parameter x; it returns the
second component of this pair. If no such element exists, the function returns
None. Formally, we define the function by list induction.

map-of ([], x) = None

map-of ((a, b)#t, x) =

{
bbc if a = x

map-of (t, x) otherwise

The second function is max :: N list 7→ N which finds the maximum element in
a given list of natural numbers.

1.2.4 Bits and Bit Vectors

We use standard notation for bits a, b :: bit and bit vectors (bit lists) x, y :: bvn

of length n. We denote with xi the i-th bit of bit vector x and with x[15 : 8]
bits 15 to 8. The notation bl produces a bit vector of length l consisting only of
bits b.

Bit vectors can be interpreted as natural numbers by 〈x〉 =
∑n−1

i=0 xi · 2i

and as integers by [x] = −xn−1 · 2n−1 + 〈x[n − 2 : 0]〉. For conversion in the
other direction we define functions binn(j) and twon(i) which compute the
n-bit binary and two’s complement representation of j and i, respectively. For
details see also [MP00].

The highest bit of a two’s complement number is also called sign bit. Sign
extension sextn(x) extends a bit vector x to length n by cloning the sign bit. A
simple computation shows that this does not alter the integer value of the bit
vector.

We use the basic operations on single bits: negation (¬b), or (∨b), and
(∧b), and exclusive or (⊗b). Observe that these operations are also used for bit
vectors; there, they are applied to each bit.

1.2. Notation 9

We use two kinds of shift operations on bit vectors. Logical left shift �l

and logical right shift �l pad with zeroes; arithmetic right shifts �a pad with
the sign bit of the original bit vector.

1.2.5 Miscellaneous

In the remainder of this thesis we will sometimes refer to details of the corre-
sponding formalization in Isabelle / HOL. These remarks are denoted by the
keyword Isabelle. More general remarks are marked by Remark.

Chapter 2

Requirements Analysis and Related Work

Programming language semantics and compiler verification are active fields
of research and a lot of impressive results have been achieved. However, the
context of pervasive system verification imposes many special requirements.
Without meeting all of them, our results would not be suitable to prove the
desired overall correctness theorems for whole computer systems.

We start this chapter in Section 2.1 with a detailed discussion of the special
requirements. Then, we present in Section 2.2 the most relevant related work
and check whether their results meet our needs.

2.1 Requirements Analysis

The goal of pervasive system verification is to have a single top-level correctness
theorem for complete systems without abstracting from restrictions or properties
of the underlying hardware or assembly language. In the following, we will
elaborate on the requirements imposed by this kind of pervasiveness.

2.1.1 Language Layers

The lower the implementation layer at which we formulate an overall correctness
theorem is the better and more reliable is the result. For example, it is better
to prove the correctness of some program by showing that its binary computes
the correct result when executed at the hardware layer than just showing that
the result at the C layer is correct; in particular, the latter does not ensure that
the program has been correctly compiled. There are basically two ways how to
obtain such an overall theorem at lower language layers.

The naive approach is to verify the top-level theorem directly arguing at
the lowest considered language layer, e.g., directly at the level of an instruction
set architecture or assembly language or even directly at the hardware layer.
Obviously, this approach does not scale very well for non-trivial applications
because we have to consider all (possibly irrelevant) details of the architecture in
every single proof step and because assembly implementations of programs tend
to hide or obscure a lot of useful structure which is present in implementations
using high-level languages.

The better approach is to introduce additional and more abstract language
layers. This increases the level of abstraction and by that also productivity.

11

12 Requirements Analysis and Related Work

However, to achieve the ultimate goal of having a correctness theorem at the
lowest layer of abstraction, we have to transfer results from the higher layers to
the lower layers. In Verisoft, this is handled using meta theorems which allow
to transfer individual correctness results all the way down to the lowest layer
and combine them into a single overall system correctness theorem.

The lower the layer at which we argue is the more restrictions and side
conditions have to be considered. The meta theorems justify the abstractions
on the different layers and ensure that no oversimplifications have been done.

Obviously, a high-level programming language which is supposed to be useful
in pervasive verification needs to be expressive enough to handle the bulk of all
implementations while at the same time remaining ‘neat’ to allow for efficient
formal verification of medium sized applications. Simultaneously, in order to
prevent the results of such effort from being academic toys, the stack needs to
be based on some realistic target architecture.

Figure 2.1 depicts the semantics stack used in the Verisoft project. The
lowest layer represents the gate-level hardware of the verified VAMP proces-
sor [BJK+06]. On top of it we have the VAMP instruction set architecture
(ISA) and its assembly language. In the upper half of the figure we have three
different C0 semantics (cf. below for more details). Observe that the semantics
stack is orthogonal to the stack of system components (hardware with devices,
micro kernel, operating system, . . .) in the Verisoft project.

The justification of the C0 language layers on top of the assembly layer is the
compiler correctness theorem presented in this thesis. This meta theorem allows
to transfer properties of concrete C0 programs down to the assembly layer.
There are also meta theorems which relate all other layers of the semantics
stack. Exemplary, this is detailed in [ASS08]; additional details about the
simulation theorems between the C0 Hoare logic and big-step semantics are
given in [Sch06].

In order to prove the correctness of programs which invoke – directly or
indirectly – inline assembly code using the C0 Hoare logic or the big-step
semantics we need a way to formalize the effects of the inline assembly parts.
Besides performance optimizations, inline assembly is usually used when the
intended effect of a piece of code is not expressible in the pure C0 state but
changes machine components which are not visible in C0. Nevertheless, we
want to use the Hoare logic verification environment also for programs with
inline assembly. Thus, the C0 state in the Hoare logic has been extended
by an extended state component for the essential parts of the environment
and so-called XCalls have been introduced which model the inline assembly
parts [ASS08].

XCalls can arbitrarily change the additional state component and have
limited access to the Hoare logic state. In the C0 semantics, the effect of
XCalls is defined axiomatically. Their implementation, usually containing inline
assembly, can be plugged in at the level of the assembly semantics. Here, the
axiomatic specification which is used in the higher layers has to be justified.

2.1.2 Small-Step Semantics and Step-By-Step Simulation
Theorem

An important decision regarding the pervasive verification of systems is whether
high-level languages should be modeled using big-step or small-step semantics.

2.1. Requirements Analysis 13

C0 Hoare Logic

C0 Big-Step Semantics

C0 Small-Step Semantics

XCalls

VAMP Assembly

VAMP ISA

VAMP Hardware

Abstract Program Property

Property of the Real System

tr
an

sf
er

:
m

et
a

th
eo

re
m

s

+

+

+

Figure 2.1: Semantics Layers in Verisoft

At first glance, big-step semantics seems to be adequate for the scenario in the
Verisoft project: C0 is a sequential language and the target system consists only
of a single processor, i.e., there is no real parallel execution of several programs
on the hardware. Big-step semantics are more abstract (e.g., they do not need
to model a stack explicitly) and they allow proofs by rule induction on the
depth of the syntax tree of the program being verified. Both properties speed
up verification of concrete programs and make the use of big-step semantics
desirable to achieve optimal verification productivity.

However, the processor is not the only hardware unit present. Devices like
hard disk, timer, network interface, and serial interface execute concurrently
and may interrupt execution of user programs. Additionally, execution of C0
applications may be interrupted when they communicate with an operating
system or a kernel via trap interrupts (these are activated using inline assembly
code). A good example is inter process communication (IPC) which is imple-
mented via special kernel calls. In big-step semantics computations cannot be
interleaved in a simple way as it is hard to argue about intermediate states.

Moreover, big-step semantics do not distinguish between non-terminating
and stuck computations in a natural way. This limits the use of big-step
semantics for the verification of non-terminating programs like operating system
kernels or user applications implementing server processes. In contrast, small-
step semantics easily handle proofs about non-terminating computations.

However, a simulation theorem for small-step semantics also needs to be
formulated in a small-step manner relating every state of the high-level machine
to some state of the target machine (step-by-step simulation). A big-step
style simulation theorem would only argue about the final state of terminating
computations and would render the use of small-step semantics unnecessary.

Thus, big-step semantics (and classical Hoare logics build on top of them)
alone do not suffice to conveniently model interleaving or non-terminating
programs. The use of small-step semantics is appropriate. However, it is still
possible (and reasonable) to use big-step semantics and Hoare logics for the
verification of uninterrupted and terminating parts of programs. These partial

14 Requirements Analysis and Related Work

results can then be transfered to (via the meta theorems) and combined at the
small-step layer.

In the same way, the combination of pure C0 parts and inline assembly can
be handled. The step-by-step simulation theorem allows for switching from
C0 to assembly layer when entering inline assembly parts and switching back
to a consistent C0 small-step state when the inline assembly portion has been
executed (some more details regarding the verification of inline assembly code
in Verisoft are given on page 66 of this thesis and in [ASS08]).

In a similar way as combining the inline assembly portions with the C0
parts of programs, small-step semantics are needed to combine verified parts
of both applications and system software. Execution of these parts starts
and ends in intermediate states. Thus, small-step semantics and a small-step
style compiler correctness theorem are the best choice in handling this kind
of arguments. Examples are the combination of application programs issuing
system calls and the isolated correctness statements about the execution of the
corresponding parts of the operating system kernel [IT08], the integration of
driver correctness into the micro kernel [HIP05, ASS08], and the concatenation
of single executions of the main kernel loop to argue about the correctness of
this kind of non-terminating code [GHLP05].

2.1.3 Implementation Correctness and Bootstrapping

For pervasive verification, it is not sufficient to have a verified compiling specifi-
cation: we additionally need to have a trustworthy executable version of the
compiler (cf. [Moo88, CM86]). The question how to obtain such an executable
is known as the bootstrap problem and was stressed in [GH98].

One simple way to solve this problem is to have an executable compiling
specification (as the one presented in Chapter 7). However, as the runtime
system (e.g., the underlying hardware, a ML interpreter, or Isabelle’s code
generation package [Ber03]) is not completely reliable, simply executing the
compiling specification still leaves a certain probability for errors in the generated
code.

Another solution is to generate – once and for all – a trustworthy binary
of the verified compiler and to execute this binary on the pervasively verified
computer system. This requires us to have – in addition to the compiling
specification – an implementation of the compiler in its own source language.
Not only is it more comfortable to have an executable binary instead of having
to apply the runtime system for the executable compiling specification for each
compilation, it also decreases the probability of errors because only a single
program (the compiler) is compiled by the (not completely trusted) execution
of the compiling specification.

2.1.4 Property Transfer

The lower the language layer at which we formulate correctness statements of a
system the more additional side conditions show up. To successfully transfer
correctness statements from the more abstract to the more concrete layers these
conditions need to be discharged. Depending on the kind of conditions, this
can be done in several ways.

2.2. Related Work 15

Some conditions can be discharged once and for all as part of the meta
theorem between the layers concerned. For a compiler from C0 to VAMP
assembly code, this set of conditions comprises the correct alignment of data
and instructions, the absence of most kinds of interrupts, the immutability
of special purpose registers and of memory outside the application’s address
range, and the guarantee that no illegal instructions or self modifying code are
generated.

Other conditions require additional proof effort for each individual program.
However, a proper formulation of the meta theorems can greatly simplify the
verification of such side conditions. This set of conditions comprises resource
restrictions on the target machine (e.g., the bounded memory size for heap or
stack) and real-time requirements as in Verisoft’s automotive sub project [KP07,
BGH+06].

Our compiler correctness theorem incorporates resource restrictions and
allows to discharge them at the C0 rather than at the assembly level. This
simplifies arguing that the restrictions are not violated and thereby increases
productivity. The small-step character of our simulation theorem allows to
easily argue about resource restrictions also for intermediate states.

Even more, a properly designed compiler correctness theorem is an inevitable
requisite for discharging some of the conditions at all. An important example
is the question whether the theorem states total or partial correctness of the
compiled programs. A partial correctness statement which shows that after
termination the compiled program has computed the same result as the original
high-level program, does only allow to transfer safety properties, i.e., to show
that the compiled program does nothing bad. Functional correctness statements
could only be transferred assuming the termination of the compiled code. To
completely transfer functional correctness properties we need to know that
every result (also intermediate ones) being computed by the high-level program
is also computed by the compiled code. This includes the fact that termination
of the high-level program implies termination of the compiled code.

Finally, at least in Verisoft, system level software relies on some special
low-level properties of the compiled programs. For example, the operating
system kernel allocates the page tables in the heap memory and depends on
them being allocated at a given (fixed) address and staying there. Without
detailed knowledge about the compiler used, such properties cannot be deduced.

2.2 Related Work

2.2.1 Related Work in the Context of System Verification

There have been different approaches to system verification. In the late 1980s,
the CLI stack project [BHMY89] developed the idea of building a system of
formally verified and hierarchically stacked components. This project achieved
impressive results including a formal correctness proof for a compiler from
the high-level language Micro-Gypsy to the Piton assembly language [You89,
Moo88]. Micro-Gypsy is a subset of the Gypsy programming language; however,
it does not support the dynamic data types and concurrency features of Gypsy.
As this project was – like Verisoft – aiming at the pervasive verification of
systems, their compiler correctness proof also considers resource restrictions on
time and space. Similar to our result, these restrictions have to be proved at the

16 Requirements Analysis and Related Work

Micro-Gypsy layer for each individual program. In contrast to our work, the
compiler correctness statement in the CLI stack does only argue about the final
state of Micro-Gypsy computations. However, this is not as bad as it would be
in the Verisoft context as the CLI system stack does not contain devices.

More recently, the projects L4.verified [HEK+07] and VFiasco [HTS02]
started working on the verification of micro kernels. L4.verified uses a larger
subset of C than C0, including pointer arithmetic, for the verification of the L4
micro kernel [Lie95]. For code verification they use a special instantiation of
Verisoft’s Hoare environment [Sch06]. VFiasco aims at the verification of the
Fiasco micro kernel implemented in a subset of C++. They embed the C++
code into the PVS theorem prover [OSR92]. Both projects stop at the source
code level: there is no attempt to map results down to lower system or language
layers. Consequently, the projects do not involve any compiler verification.

In the FLINT project, an assembly code verification framework has been
developed and used for the formal verification of code for context switching on
x86 machines [NYS07]. However, this project does – so far – work on smaller
code examples and does not yet comprise any results regarding high-level
languages. Accordingly, the project does not address formal verification of a
compilation.

2.2.2 Detached Related Work

There exist several formalizations of semantics for large subsets of the C pro-
gramming language [GH93, Pap98, Nor98]; among these, the work of Norrish
is most interesting for us as it is formalized in Isabelle / HOL – the theorem
prover which is being used in Verisoft. None of these works addresses the
integration of inline assembly code. However, semantics of the (almost) full
C language are complex [ISO99] and the use of all features of C leads to an
error-prone programming style [MIR04]. For example, expression evaluation in
C is non-deterministic in the evaluation order; in [ZD03] the author describes a
framework which is able to model this.

As stated in the previous section, when trying to verify properties of non-
toy programs, such complicated languages are not desirable as they make
correctness proofs of larger programs infeasible. It seems worthwhile to restrict
implementation languages to a small set of features as has been done for the
above-mentioned Micro-Gypsy programming language.

In [dRHH+01, OG76] Hoare logics for concurrent programs have been de-
veloped but the languages considered there are not powerful enough for our
purposes, e.g., they do not support function calls. N. Schirmer has devel-
oped a generic Hoare logic environment for imperative programming languages
in [Sch05]. An C0 instantiation of this environment is being used in the Verisoft
project to accomplish code verification [Sch06].

Compiler verification is a well established field in computer science and a
lot of remarkable work has been done. Some overview is given in [Dav03]. In
the following we discuss related work with respect to compiler verification. The
discussion is segmented according to the verification approach; recent big efforts
in compiler verification are presented separately. In general, we distinguish
several approaches for the reliable compilation of computer programs. We
briefly sketch these approaches before actually examining the related work.

2.2. Related Work 17

• Verification of the Compiling Algorithm and its Implementation
This approach tries to verify the translation algorithm once and for all.
To achieve this, one proves that for any given program p the translated
program c(p) behaves equivalently. As mentioned in the previous section,
there are several ways how to define equivalence between the source
program and the compiled code. In contrast to the work in Verisoft,
most early work following this approach only argues about the compiling
algorithm and ignores the correctness of the implementation.

• Compiler Synthesis
This approach tries to automatically generate compilers for a given source
and target language. One variety of the approach uses formalizations of
the semantics of both languages to generate the compiler. This compiler
is then correct ‘by definition’ although the algorithm which generates
code from the semantical description of the source language is usually not
verified.
Another variety uses domain specific languages to specify the code trans-
formations. However, most work using the latter approach do not formally
verify the correctness of their transformations. And even when verifying
the transformations, they do not show formally that the generation of the
compiler out of the description is being done correctly.

• Certifying Compilers
In addition to the compiled code, a certifying compiler generates an easily
checkable proof that the compiled code and the source program behave
equivalently (this is sometimes also called credible compilation). The
approach of certifying compilers is related to the work on proof-carrying
code [Nec97]. In contrast to the previous approaches, certifying compilers
do not guarantee the correctness of translation once and for all but the
check has to be repeated for each translated program.
A big advantage of certifying compilers (and proof carrying code in
general) is that the user does not have to trust the compiled binary but
can easily check the provided proof prior to execution of the program.
This guarantees that the binary, even if modified by an attacker (before
the check), still fulfills the promised (safety) properties. However, this
advantage is not relevant for the Verisoft scenario where we verify a
complete stack including the applications (which means that we do not
have to trust in the safety of unknown code).

• Translation Validation
Similar to the previous approach, translation validation has to be repeated
for each source program being compiled. However, not the compiler itself
is in charge of generating a proof that source program and compiled code
behave equivalently, but an external tool tries to find this proof. This
external tool, the so-called analyzer, either establishes the equivalence
between inputs or produces a counter-example. Such a counter-example is
produced not only when the compiler introduces a bug during translation
but also when the analyzer cannot decide whether the translation has
been done correctly or not. A big advantage of this approach is that it
can be applied to (industrial) compilers, for which no implementation or
specification details are available.

18 Requirements Analysis and Related Work

Miscellaneous and Early Work. Early work of McCarthy [MP67] proves
the correct translation of simple arithmetic expressions into a very simple
target language. Some years later, Samet [Sam75, Sam78] used a technique
similar to translation validation to check the correctness of optimizations steps
in compilers. In [GB03], the authors present correctness proofs for constant
folding; these proofs have been formalized in Isabelle / HOL.

Curzon presents in [Cur92, Cur94] the verification of a compiler from a
significant subset of the structured assembly language Vista to the assembly
language of the VIPER microprocessor. The proof has been verified in the
HOL theorem prover and the compiler specification is reliably executable using
formal proof within HOL. Curzon is very interested in ensuring that properties
proved on the source program also hold for the compiled code. His work allows
to transfer properties from high-level to low-level and he addresses the boot
strap problem in a similar way as we propose in Section 7.7. However, his proofs
are carried out big-step style and are only applicable to terminating programs.

In [ORW95], the authors describe a verified compiler for PreScheme, the
implementation language for the vlisp run-time system. The compiler as
well as the proof were divided into three parts: a front end which translates
source text into a core language, a syntax-directed compiler which translates
the core language into a combinator-based tree-manipulation language, and a
linearizer which translates combinator code into the target language. The work
has not been formalized in a theorem prover. However, the authors believe
that a simplification-based theorem prover could automatically handle most
cases of the syntax-directed translation while the back end proofs may be
amenable to mechanization by interactive theorem provers. During tests of a
compiler implementation which was manually derived from the specification, the
authors found bugs in the assembly code sequences generated for the so-called
stored-program machine instructions. These errors were below the grain of the
presented proofs (e.g., registers not being saved across routine calls). According
to the authors, extending the proof to reach this level – which is obviously
required in our scenario – would require an extremely detailed model of the
behavior of the machine and operating system.

[BZ07] presents a semantic type soundness result, formalized in the Coq proof
assistant, for a compiler from a simple imperative language with heap-allocated
data into an idealized assembly language.

Chirica and Martin [CM86] address the problem of implementation correct-
ness of compilers. They compare, for each source program, the corresponding
object program produced by the compiler implementation to the object program
dictated by the compiler specification.

Refinement Techniques. In the ProCoS project, refinement techniques have
been used to show compiler correctness. Hoare [HJS93] and Müller-Olm [MO97]
verify translation to the machine language of an actual processor: the Inmos
Transputer. Börger et al. apply refinement techniques to the translation from
Occam, a non-toy imperative programming language with non-determinism
and parallelism, to Transputer code [BD96]. Later, Stärk, Börger et al. used
refinement techniques to prove a compiler from Java to Java byte code cor-
rect [SSB01]. All this work does not include correctness proofs for the compiler
implementation.

2.2. Related Work 19

Translation Validation. Despite the earlier work in [Sam75, Sam78] which
uses a similar technique, the term ‘translation validation’ was only introduced
by Pnueli in [PSS98a, PSS98b]. In this work, the authors examine translation
from finite automata to C. Using a rather general approach, the paper presents
theoretical insights into the constructions of translation validation tools.

In [PSS98c] Pnueli et al. present a first tool which implements their transla-
tion validation approach. This tool, called CVT, validates the translation of
State-Mate / Sildex mixed specifications to C. It was developed in the scope
of the ESPRIT project SACRES which dealt with the formal development
of ‘Safety Critical Real-time Embedded Systems’. Before actually proving
equivalence between the original and the translated program they have been
translated into a common semantic domain: synchronous transition systems.
The tool was successfully evaluated on an industrial-sized program of a few
thousand lines of code.

More recently, in [ZPFG02, ZPF+02, ZPFG03] the authors present an
improved translation validation methodology called VOC which has been im-
plemented in the prototype translation validator VOC-64 that automatically
produces verification conditions for the global optimizations (including some
structure modifying optimizations like loop unrolling) of the SGI Pro-64 compiler;
these optimizations are performed on the basis of the compiler’s intermediate
language WHIRL.

As already hinted in [ZPF+02], Barret et al. present in [BGZ03] an approach
to deal with speculative loop optimizations. Speculative loop optimization is an
aggressive form of compiler optimizations which is only correct under certain
conditions which cannot be validated at compile time. The paper suggests
using run-time verification to ensure that the conditions are fulfilled. For each
application of speculative loop optimization a runtime test is automatically
generated using the automatic theorem prover CVC. This run-time test checks
whether the condition is true. If it is not, the optimization is reverted without
destroying the program’s semantics.

In [GZB05], the authors describe an approach for improving the tool Tvoc
which handles many optimizations of Intel’s ORC compiler but is limited when
dealing with loop reordering transformations. Leviathan applies translation to
loop optimizations and to several compiler back ends [Lev04]; in particular, he
demonstrates his method on a commercial compiler which translates synchronous
C programs to PowerPC binary code.

In [Eme05], the author uses a translation validation approach to show
absence of interrupts for a given assembly program.

Necula [Nec00] presents the tool ‘prototype translation validation infrastruc-
ture’ (TVI) for the GNU C Compiler gcc. TVI compares programs in gcc’s
intermediate language and handles most optimizations applied by the compiler.
The tool has been tested on large software systems as gcc itself and the Linux
kernel. However, TVI produced a relatively large number of false alarms.

In general, a great advantage of translation validation techniques is the
high degree of automation and that they are applicable to optimizing industrial
compilers. However, it produces no general, pervasive compiler correctness
theorem (even more, most work in this area focuses only on specific parts of the
translation process) and a bug in the compiler can only be discovered when the
compiler is run on a program which triggers the bug. In contrast, our approach
guarantees correct compilation for each and every legal C0 program.

20 Requirements Analysis and Related Work

Certifying Compilers. Necula introduced in [Nec98, NL98] the notion of
certifying compilers whose realization has later been declared a great challenge
by Hoare in [Hoa03]. In his work Necula presents a certifying compiler which
translates a type-safe subset of C to highly optimized DEC Alpha assembly
code. The certifier checks automatically type safety and memory safety of the
generated programs. If certification fails, the system generates a counterexample
pointing to a potential violation of the type system. In [CLN+00], Colby et al.
extend this approach to a certifying compiler which translates a large subset
of Java to x86 code. However, the work of Necula and Colby concentrates
completely on safety properties. They do not address any functional correctness
properties.

Rinard presents in [Rin99] an approach called ‘credible compilation’ for
standard imperative languages which is basically equivalent to the concept of
certifying compilers. However, Rinard does not stop at safety properties. His
approach allows to show that both programs produce the same final result, i.e.,
that they are semantically equivalent. The paper contains several examples
illustrating how standard optimizations (dead assignment elimination, branch
movement, induction variable elimination, loop unrolling, dead code elimination)
could be handled. In [RM99] he extends this approach to programs with pointers.

Blech and Poetzsch-Heffter also extend the approach of certifying compilers
to functional correctness [BPH07]. They study a compiler from a C subset to
MIPS. However, their verification is limited to the compiler back end which
translates a simple intermediate language (no function calls, no dynamic memory
allocation) to MIPS. Their work was formalized in the theorem prover Isabelle /
HOL. A prominent result of their work is that they do not only show that both
programs produce the same result. Instead, they model language via small-step
semantics and prove them equivalent by showing that they produce the same
output traces. Thus, they are not limited to terminating programs. Internally,
they use a simulation relation similar to ours (although much simpler, due
to the simple intermediate language) which finally implies the observational
equivalence. The run-time of their proofs is dependent on the number of
variables in the source program (counting array elements as single variables).
Unfortunately, the performance of their certifier is still very bad for non-trivial
programs. For example, for a program that computes the first two hundred
Fibonacci numbers the correctness proof runs about 1 500 seconds. For a
program sorting an array of fifty elements, the run-time is over 6 000 seconds.

In [Tch04], the author uses a so-called phase semantics. Phase semantics
model the semantics of real-life programming languages through a series of
equivalence relations between languages L0, . . . , Ln where for each i the lan-
guages Li and Li+1 are very similar. Using this concept, the author developed
a self-validating compiler called Vitamin for a subset of C. This compiler trans-
lates from language to language, finally translating L0 (the C subset) to Ln (the
machine language). In addition to the compiled code, the compiler generates
expressions in all intermediate languages which are used as a certificate in the
sense of certifying compilers.

In [Riv04, Riv05], Rival presents a new framework for reasoning about
compilation and of compiled programs. He uses a symbolic representation
of source and assembly for a new approach of invariant translation based on
translation validation. The framework supports pointer aliasing and dynamic
memory allocation. The properties which he was able to prove include the

2.2. Related Work 21

absence of runtime errors in the compiled program. He implemented and tested
his approach on real examples of highly critical embedded software (targeting
mainly at safety properties) based on the GNU C compiler generating code for
the PowerPC processor. Rival successfully applied his tools to a large real-world
example (75 000 lines of C code) with a run-time of approximately one hour.

Compiler Synthesis. Early work regarding the synthesis of compilers from
semantical descriptions of source and target language has been done by Po-
lak [Pol81]. Paulson describes in [Pau82] a system that accepts definitions of
programming languages given via attribute grammars and denotational seman-
tics and produces an interpreter for the language. These classical systems have
the problem that the performance of the generated code is by several orders of
magnitude slower than the code generated by standard compilers.

Later, Palsberg used the technique to compile a non-trivial subset of ADA
to RISC code [Pal92a, Pal92b]. He reports that the generated code is an
order of magnitude better than that produced by compilers generated by the
classical systems. Although the algorithm was proved correct manually, the
implementation of the generation tool (written in Perl) is not verified and hence
cannot be completely trusted.

Brown et al. developed the Actress compiler generator [BMW92] which
is, as the previous work of Palsberg, based on action semantics. Later, Diehl
further improved performance of code generated via the compiler synthesis
approach [Die96].

The approach to specify code transformations using domain specific lan-
guages goes back to [TH92]. In [LJWF02, LMC03, KSK06], temporal logic is
used for the specification and correctness proofs of optimizations. This restricts
the analysis to properties which are expressible in the used temporal logic.
Of these, only the Cobalt system [LMC03] allows for completely automatic
verification but it is restricted to structure preserving transformations. The
Rhodium system enhances the Cobalt system by replacing temporal logic by
local propagation rules [LMRC05]. These allow to formulate more program
properties while still guaranteeing fully automatic correctness proofs for the
transformations.

[BGL04] reports on the correctness proofs of compiler optimizations based on
data-flow analysis. The optimizations and analyzes are formulated as instances
of a general framework for data-flow analyzes and transformations. Proof
obligations for specific optimizations are generated automatically and are to be
proved in the Coq proof assistant.

µJava. Strecker presents in [Str02] the formal verification of a compiler for a
subset of Java (called µJava) in the theorem prover Isabelle. The semantics of
µJava and of the generated Java byte code are defined using big-step semantics.
The correctness theorem states (via the usual commuting diagram) that (com-
plete) execution of some Java statement and of the generated byte code have
corresponding effect. Due to the big-step nature of the semantic definitions, the
theorem is restricted to terminating programs. The compiler correctness proof
presented in this paper is part of a more comprehensive research effort aiming
at formalizing and verifying key aspects of a substantial subset of the Java
programming language. This includes type system and operational semantics of

22 Requirements Analysis and Related Work

Java with a proof of type soundness [Ohe01a], an axiomatic semantics with a
proof of its equivalence to the operational semantics [Ohe01b], and an abstract
data flow analyzer instantiated for Java byte code, with a proof of correctness
of Java byte code verification [KN03].

Verifix. The goal of the DFG project Verifix (1995–2003) was to develop
methods for the construction of correct compilers for realistic source and target
languages [GZ99]. The correctness property (preservation of observable behavior
up to resource restrictions [DV01, Section 4]) allows support of all common
optimizations; however, no optimizations have been verified within Verifix. The
project partitioned compiler correctness into three sub tasks: correctness of
the compiling specification, correct high-level implementation of the compiling
specification, and a correct binary for the compiler (cf. Section 7.7 of this thesis).

In [GGZ99, Gle03] an approach similar to translation validation was used
to prove correctness of the compiler implementation. The latter combines this
with ideas from certifying compilers. Program checking was also applied to
compiler front ends [HGG+99].

The correctness of the compiling specification was shown using simulation
theorems based on small-step semantics [DV01]. However, only partial correct-
ness of the compiled programs is proved. That is, a compiled program behaves
equivalently to the source program only if the compiled code terminates. As
stated before, partial correctness of the compiled code it not sufficient for our
needs regarding pervasive verification.

In [ZG97] and [GZ00], the authors present an elegant theory using abstract
state machines for the translation across the various intermediate languages
used in compilers; the work was partially formalized in the PVS theorem prover.
The results on the correctness of the transformations in compiler back ends
have been summarized in [Zim06]. This work sums up earlier work and presents
results for the translation from intermediate language to DEC-Alpha binary
code. However, no integration of these results has been done in Verifix.

Nevertheless, a non-optimizing compiler from ComLisp (a Lisp subset) to
binary machine code of the Inmos Transputer has been pervasively verified in
the scope of Verifix. The verification has been done at the binary layer in the
theorem prover PVS [GL01, DV01]. In [GH98], the authors discuss the problem
of how to get an initial correct binary for this compiler. They use manual code
inspection to close the last remaining gaps in the argumentation.

Clight. Recently, Leroy et al. have developed and verified a lightly optimizing
compiler which translates the C subset Clight via the intermediate language
Cminor to PowerPC assembly code [BDL06, Ler06]. The results of this effort
are for several reasons very impressive. Clight [BDL06] supports more features
of C than C0; in particular, pointer arithmetic is supported. However, similar
to C0 pointers to local variables are not supported. Additionally, the back-end
of the compiler is lightly-optimizing and very well structured using four inter-
mediate languages. There exist optimization modules for constant propagation
and common sub expression elimination, although, according to [Ler06], only
constant propagation has been integrated in the certified compiler so far. The
most prominent feature of Leroy’s work for the purpose of pervasive verification
is that he has verified a complete optimizing compilation chain from a structured

2.2. Related Work 23

imperative language down to assembly code instead of focusing on just a few
parts of the compiler (like optimization patterns) like recent other work tends
to do.

The Clight compiler has been specified and verified in the Coq proof assistant.
An executable version has been obtained by automatic translation from Coq
specifications to Caml code (cf. Section 2.1.3).

Similar to us, Leroy targets the translation of critical embedded software.
However, Clight and Cminor semantics as well as the compiler correctness
theorem are currently formulated in big-step style. That is, he shows that
source program and compiled code behave observationally equivalent only if the
source program terminates. In [Ler06], he points out the need for small-step
simulations theorems to allow reasoning over non-terminating executions.

Another drawback of his work in the context of pervasive verification is
that his memory model assumes an infinite memory: allocation requests always
succeed. This prevents from transferring properties from the abstract layer (in
our case C0) to the machine layer without an expensive proof at the machine
layer that the compiled code respects memory resources. Although Leroy states
that it is hopeless to prove a stack memory bound on the source program
and expect this resource certification to carry out to compiled code, we have
integrated exactly this property in our compiler correctness theorem. However,
to transfer such a property into his much more complex translation scheme may
actually turn out to be infeasible.

2.2.3 Integration of Solutions

As pointed out in Section 2.1, there are many challenges for compiler verification
in the context of pervasive verification. Some of them have been solved (in
isolation) in a similar or even more general way in other work. Most recent
work with respect to compiler verification has concentrated on just a few parts
of compilers, mostly optimization patterns. However, an essential part of
the verification effort has to be invested in the combination of the individual
solutions into a single framework to gain a completely verified compilation
chain from a high-level source language to machine code.1 In addition to
the impressive work of the CLI stack project [BHMY89, Moo03], early work
from Joyce discusses problems imposed by the formal combination of a verified
compiler with verified hardware [Joy89]. Leroy [Ler06] also stresses these special
requirements (although his work presently does not address an important one:
non-terminating computations).

To deal with these requirements, the C0 language has been designed to
be powerful enough to implement system software while remaining ‘neat’ to
allow for efficient formal verification of medium sized applications. Additionally,
both the C0 semantics and the compiler correctness proof have been done in
a small-step manner, allowing for the application of the compiler correctness
theorem also for non-terminating and interleaving programs [ASS08].

Furthermore, our compiler correctness theorem shows total correctness of
the compiled code. That is, for every state of the source program’s computation,
the target machine will eventually reach a corresponding state, in which the

1 Confer the work of Beyer et al. in [BJK+06] for an example of the efforts needed to
combine several formal results.

24 Requirements Analysis and Related Work

values of all reachable C0 variables are properly represented. Without a total
correctness theorem, it would not be possible to transfer functional correctness
properties of source program’s down to the compiled code without proving the
termination of the compiled code. The correctness theorem also includes lifting
resource restrictions from the target layer to the C0 layer. If these resource
restrictions have been discharged at the C0 layer, we can be sure that they also
hold for the compiled code.

To the best of our knowledge, our work is the first compiler correctness
result which simultaneously

1. proves a small-step simulation theorem between source programs in a non-
toy input language and compiled code for a realistic target architecture,

2. considers resource restrictions and other special requirements of pervasive
verification, and

3. argues about the complete compilation chain from source to target lan-
guage (both represented by abstract data types in the theorem prover)
instead of focusing on just a few parts of the compiler (like optimization
patterns).

Our results have been heavily used in other parts of the Verisoft project.
Most prominently, the compiler correctness theorem has been used to transfer
correctness properties from the C0 layer to the lower layers according to the
Verisoft approach to system verification. The formal pervasive verification
of a paging mechanism gives a concrete example of this approach [ASS08].
This result provides strong confidence that our notion of compiler correctness
is indeed appropriate for the targeted field of application. Furthermore, the
small-step compiler correctness theorem has been used for the integration of
(verified) inline assembly code into (verified) C0 applications. Without such
a ‘semantics’ for inline assembly code, the system layer software in Verisoft
(and the libraries which allow invocation of operating system services from user
applications) could not have been implemented in a high-level programming
language as C0 [ST08].

Part I

Languages

25

Chapter 3

The Language C0

Contents
3.1 Informal Description . 27

3.2 Concrete Syntax . 32

3.3 Front End Tool . 32

In this chapter we introduce the C-like programming language C0. Most
applications and the system layer software of the Verisoft project are imple-
mented in C0 with only small parts being written using inline assembly. C0
is the source language of the compiler which has been formally verified in this
thesis.

In Section 3.1 we describe the main features of C0 in an informal way
and highlight some design choices. In Section 3.2 we present the concrete
syntax of C0 programs. In Section 3.3 we describe a tool that does some basic
syntax and type correctness checks on C0 programs, acts as front end for the
implementation of the formally verified C0 compiler, and allows to translate
concrete C0 programs into different representations (e.g., for the formal C0
semantics in Isabelle / HOL and a translation validation tool). We conclude this
chapter with an introduction of a stack of three different C0 semantics: (i) a
deep embedded small-step semantics, (ii) a deep embedded big-step semantics,
and (iii) a shallow embedded big-step semantic together with a Hoare logic and
a C0 verification environment.

3.1 Informal Description

One of the goals of the Verisoft project is the formal verification of implemen-
tations of an operating system micro kernel, a simple operating system, and
several user programs [GHLP05]. Operating systems and especially operating
system kernels, are usually not written in functional languages or Java (for an
exception see [HJLT05]). Most operating system kernel are implemented in
C while some hardware dependent parts have to be implemented with inline
assembly code. Even the kernel of the JavaOS operating system [Jav96] is
written in C with inline assembly.

Semantics of the full C language are complex [GH93, Pap98, Nor98] and
the use of all features of C leads to an error prone programming style [MIR04].

27

28 The Language C0

In contrast, formal verification of programs is easier and more efficient for
programming languages with concise and well-defined semantics.

In this thesis we introduce the C-like imperative programming language C0
which meets both requirements: (i) it has sufficient features to implement all
system and application software in the Verisoft project and (ii) has a concise
semantics which allows for efficient verification of C0 programs with several
thousand lines of code.

Compared with standard C [ISO99] the language C0 has several limitations.
We list the most important differences. Side effects in expressions are not
allowed; this forbids in particular function calls a sub expressions and requires
a special function call statement in C0 (cf. below). C0 Pointers are typed and
must not point to local variables or to functions; void pointers and pointer
arithmetic are not supported. There is a separate type for arrays in C0 and
the size of arrays has to be statically fixed at compile time. Unions or bit fields
are not supported. Switch and goto statements as well as long jumps are also
not allowed in C0.

In contrast to normal C, C0 does not support manual deallocation of
memory via some kind of ‘free’ statement. Instead, a garbage collector is
planned to be used to free unreachable parts of the heap automatically. So far,
no garbage collector has been integrated into the C0 compiler. However, the C0
implementation of a copying garbage collector has been verified recently by E.
Petrova. Its integration into our results remains as future work (cf. Chapter 12).

One of the main reasons to use a garbage collector instead of explicit
deallocation and to forbid pointers to local variables is to avoid the problem
of dangling pointers. A pointer is called dangling if it is different from the
null pointer but does not point to a valid memory object. To make sure that
C0 expressions always refer to valid memory object, we have to make sure
that no dangling pointers are dereferenced. This would be an additional proof
obligation for languages which do not preclude dangling pointers by design.

A dangling pointer can occur by ‘deallocating’ a memory object while there
still exist references to that object; observe, that this includes the case that
we have a pointer to some local variable and return from the stack frame to
which that variable belongs. In C0, both causes are impossible; thus, dangling
pointers cannot occur in this language.

3.1.1 Types

C0 supports four basic types:

• Boolean: bool , {true, false}

• 32-bit signed integers: int , {−231, . . . , 231 − 1}

• 32-bit natural numbers: unsigned int , {0, . . . , 232 − 1}

• 8-bit signed integers: char , {−27, . . . , 27 − 1}

We call int and unsigned int arithmetic types. Arithmetic operations with 8-bit
signed integers are not supported.

If t, t1, . . . , ts are types, n is a number, and n1, . . ., ns are names, then
pointers ∗t, arrays of fixed size t[n], and structures struct{n1 : t1, . . ., ns : ts}
are aggregate types. Thus, pointers are typed in C0; there exists a special type

3.1. Informal Description 29

Table 3.1: Unary C0 Operators

Operator Meaning Supported Operand Types Result Type

~ bit-wise nega-
tion

t ∈ {int , unsigned int} t′ = t

! logical negation t ∈ {bool} t′ = t
- unary minus t ∈ {int} t′ = t

int cast to int t ∈ {char , unsigned int , int} t′ = int
unsigned cast to

unsigned int
t ∈ {char , unsigned int , int} t′ =

unsigned int
char cast to char t ∈ {char , unsigned int , int} t′ = char

t is the type of the operand, t′ is the type of the result

for null pointer constants. Void pointers, function pointers, or pointers to local
variables are not allowed. Unions or bit fields are not supported.

We combine the basic types and pointer into elementary types.

3.1.2 Expressions

Variable names and literals of a basic type are expressions.
If e and i are expressions, and n is a name, then array access e[i], access

to structure components e.n, dereferencing of pointers ∗e, and the ‘address-of’
operator &e are also expressions given that some preconditions on the types
of e and i are fulfilled. We permit the setting of pointers to sub variables of
aggregate variables;1 pointer arithmetic however is forbidden. Expressions in
C0 do not have side effects; thus, we do not permit function calls as part of
expressions.

If ◦1 is one of the unary operators from Table 3.1 and if ◦2 is one of the
binary operators from Table 3.2 then ◦1e1 and e1 ◦2 e2 are also expressions.

The evaluation of the logical and and or operators is done using short
circuit evaluation.2 Thus, for the logical and operator the evaluation of the
right operand is skipped in case that the left operand evaluates to false. In this
case the result of the logical and is false. Similarly for the logical or operator
the evaluation of the second operand is skipped if the first one evaluates to
true. In this case the result of the logical or is true. The lazy operators of C0
are listed in Table 3.3.

Finally, if e is an expression then (e) is also an expression.
For a detailed definition of the additional requirements regarding the ex-

pressions see Section 5.5.

3.1.3 Statements

If s1 and s2 are statements, e and ei are expressions, t is a type specifier, and
f is the name of a function, C0 supports the following standard statements:

1This is only allowed for the C0 small-step semantics and will be forbidden when we
integrate the garbage collector.

2This is sometimes also called lazy evaluation.

30 The Language C0

Table 3.2: Binary C0 Operators

Operator Meaning Supported Operand Types Result Type

+ addition t1 = t2 ∈ {int , unsigned int} t′ = t1
- subtraction t1 = t2 ∈ {int , unsigned int} t′ = t1
* multiplication t1 = t2 ∈ {int , unsigned int} t′ = t1
/ division t1 = t2 ∈ {unsigned int} t′ = t1
% modulo t1 = t2 ∈ {unsigned int} t′ = t1
| bit-wise or t1 = t2 ∈ {int , unsigned int} t′ = t1
& bit-wise and t1 = t2 ∈ {int , unsigned int} t′ = t1
^ bit-wise exclu-

sive or
t1 = t2 ∈ {int , unsigned int} t′ = t1

<< logical left
shift

t1 ∈ {int , unsigned int},
t2 ∈ {char , int , unsigned int}

t′ = t1

>> logical right
shift

t1 ∈ {int , unsigned int},
t2 ∈ {char , int , unsigned int}

t′ = t1

< less t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

<= less or equal t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

> greater t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

>= greater or
equal

t1 = t2 ∈
{char , int , unsigned int}

t′ = bool

== equal ceq t′ = bool
!= not equal ceq t′ = bool

t1 and t2 are the types of the operands, t′ is the type of the result, the type
condition ceq for equality tests is fulfilled if both types are equal or if one of

them is a pointer and the other the special null pointer type

Table 3.3: Lazy C0 Operators

Operator Meaning Supported Operand Types Result Type

&& logical and t1 = t2 ∈ {bool} bool
|| logical or t1 = t2 ∈ {bool} bool

t1 and t2 are the types of the operands, t′ is the type of the result

3.1. Informal Description 31

• assignments: e1 = e2

Observe that in C0 not only assignments of elementary types or structures
are allowed, but also assignments of array values, which is not possible in
C.

• dynamic heap memory allocation: e1 = new(t)
There is no statement for deallocation of memory. Instead, a garbage
collector will be used to free unreachable parts of the heap. The correctness
of the garbage collector is not part of this thesis, but is currently being
verified in the Verisoft project.

• function calls: e = f(e1, . . . , en)
In order to guarantee that C0 expressions do not have side effects, there
is a separate statement for function calls. Function calls may be recursive.
Similar to assignments, the arguments and return value of the function
call may be of arbitrary type.

• return from a function: return e
Each function contains a single return statement at the end of the function
body.

• while loops: while (e) s1

• for loops: for (e1 = e2; e3; e4 = e5) s1

• if statements: if e s1 or if e s1 else s2

Statements can be concatenated by ; or grouped by braces. Switch or goto
statements and long jumps are not allowed in C0.

Aggregate Literals

In addition to these standard statements C0 supports assignments of so-called
aggregate literals. If e is an C0 expression and c is an aggregate literal of
matching type then e = c is a C0 statement.

In addition to normal literals, aggregate literals comprise literals of structure
and array types. They are used for the initialization of non-elementary local
variables which, in the C0 Hoare logic [Sch06], has to be done in one atomic
step and cannot be split into several assignments of normal literals. Observe
that aggregate literals must not be used inside expressions.

Normal literals of an elementary type are the base case of aggregate literals.
If ci are aggregate literals of type t then {c0, c1, . . . , cn} is an aggregate literal
of array type t[n].3 If ci are aggregate literals of types ti and ni are component
names then {.n0 = c0, .n1 = c1, . . . , .nn = cn} is an aggregate literal of structure
type struct{n0 : t0, . . . , nn : tn}.

3 Do not confuse this notation with mathematical sets. This informal section uses the
concrete C0 syntax (cf. Appendix A) to give the programmer a consistent introduction. In
the (formal) remainder of the thesis, we will use unambiguous data type notation to represent
C0 language elements.

32 The Language C0

3.1.4 Initialization of Variables

Global variables and dynamically allocated heap memory are automatically
zero initialized in C0. However, local variables of a function – except for the
function parameters – are not initialized automatically. The programmer has
to ensure to initialize them before the first read access.

3.1.5 Inline Assembly

Some low-level parts of system software cannot be implemented in C0 alone.
For these parts we extend C0 with inline assembly statements and call the
resulting language C0A. If u is a list of assembly instructions then the inline
assembly statement has the form asm {u}.

In C0A the use of inline assembly code is restricted.

• Only a certain subset of DLX instructions is allowed (e.g., no load or store
of bytes or half words, only relative jumps).

• The target address of store word instructions must be outside the code
and data regions of the C0A program or it must be equal to the allocated
base address of a sub variable of the C0A program with type int or
unsigned int . This implies that inline assembly code cannot change the
stack layout of the C0A program.

• Certain registers (e.g., the stack pointer) must not be updated.

• The last assembly instruction in u must not be a jump or branch instruction
and the target of jump and branch instructions must not be outside the
code of u.

• The execution of u must terminate and must not generate misalignment
or illegal instruction interrupts.

3.2 Concrete Syntax

The concrete C0 syntax resembles the corresponding parts of the standard C
syntax (cf. [ISO99]). Its grammar in Backus-Naur form [NBB+97] is given in
appendix A.

3.3 Front End Tool

The formal work described in this thesis starts from syntax trees of C0 programs.
These syntax trees are represented by an instance of an abstract data type in
Isabelle / HOL (cf. Section 4.1). Of course, C0 programs are not written in
this form. Instead, they have to be translated from C0 text files into different
intermediate formats, one of them being the abstract data types as they are
used by the formal C0 small-step semantics in Chapter 4 and by the compiler
specification from Chapter 7. This translation is done by a preprocessor tool
called c0 check.

The structure of c0 check is depicted in Figure 3.1. The tool has several
responsibilities. First, it checks C0 text files for syntactical errors and type

3.3. Front End Tool 33

Back Ends

Front End

Syntax and
Type Check

Compiler
Implementation

Translation
ValidationSemantics

C0 source code

syntax tree

assembly file transition systemIsabelle theory

Figure 3.1: Structure of c0 check

checks them.4 If these tests have been successful, several back ends are available
to translate the programs into different forms. The first back end translates
into representations suitable for the different formal C0 semantics; its output
are Isabelle / HOL theory files. A second back end generates transition systems
which are suitable for the Verisoft translation validation tool. The third back
end is the formally verified C0 compiler implementation (cf. Chapter 11) which
translates a given C0 program to VAMP assembly code.

4During these tests the tool also does some simple transformations. Constant arithmetic
expressions like 4*1024 are being evaluated. Additionally, ‘for’ loops – which are not directly
supported by C0 – are transformed into equivalent ‘while’ loops.

Chapter 4

Formal C0 Small-Step Semantics

Contents
4.1 Representation of C0 Programs 35

4.2 Configuration of the C0 Small-Step Semantics 41

4.3 Expression Evaluation . 46

4.4 Execution of C0 Programs 58

We start this chapter in Section 4.1 with a description of how we formally
represent C0 programs for the small-step semantics in Isabelle / HOL. In
Section 4.2 we extend this to the representation of entire C0 configurations
including memory and program rest. We introduce expression evaluation in
Section 4.3 and conclude the Chapter in Section 4.4 with a definition of the C0
transition function.

4.1 Representation of C0 Programs

A C0 program is identified by the functions of the program, including information
about the list of parameters and local variables of the functions, by the list of
global variables, and by a type name environment which maps type names to
types. In this Section we show how we formally represent C0 programs, i.e.,
their function table and the symbol table for the global variables, in the C0
small-step semantics.

4.1.1 Types and Type Name Environment

There are four basic types in C0: BoolT for booleans, IntT for signed 32-bit
integers, CharT for signed 8-bit integers, and UnsignedT for 32-bit naturals. If
ti are types and ni are component names then StrT([(n0, t0), . . . , (nl, tl)]) is a
structure type with l components. If t is a type then ArrT(l, t) is an array with
l elements of type t. We call a type t elementary if it is neither a structure nor
an array type:

elem?t(t) = t ∈ {BoolT, IntT,UnsignedT,CharT,PtrT,NullT}.

35

36 Formal C0 Small-Step Semantics

struct l i s t e l em e n t {
int data ;
struct l i s t e l em e n t ∗next ;

} ;
Listing 4.1: Example of a Fully Recursive Type in C0

In C0 pointers can be used inside the definition of the type to which they
point (cf. Listing 4.1). Such loops in the type structure cannot be modeled
directly by an abstract data type. Thus, we introduce an additional level of
indirection for pointer types. They do not directly contain the type of the target
but a name for the type. Using a so-called type name environment these type
names can be mapped to a type. A pointer to a type name tn is represented by
PtrT(tn).

Null pointer literals may be assigned to or compared with pointers of
arbitrary type. Thus, we introduce a special representation Null of the type of
null pointer literals to simplify the formalization of type correctness conditions.

We represent C0 types formally in Isabelle by the abstract data type ty .

ty = BoolT | IntT | CharT | UnsignedT

| StrT(S× ty list)
| ArrT(N, ty)
| PtrT(S) | NullT

Type name environments are represented in Isabelle / HOL by the type
tenv : (S, ty) list , i.e., they map type names to types.

Definition 4.1 (Abstract size of types) We define the abstract size sizet

of C0 types by induction. The size of elementary types is set to 1; the size of
aggregate types is the sum of the size of their components.

sizet :: ty 7→ N

sizet(t) =

1 if elem?t(t)
0 if t = StrT([])
n · sizet(t′) if t = ArrT(n, t′)
sizet(t) + sizet(StrT(xs)) if t = StrT((cn, t)#xs)

4.1.2 Expressions

The most basic element of C0 expressions are literals. They are modeled by
the abstract data type lit with one constructor for each of the four basic types
and for null pointer literals. Except for null pointers they all have a single
parameter of the corresponding type which stores their value.

lit = Bool(B) | Int(Z) | Unsigned(N) | Char(Z) | Null

In addition to these literals of elementary types, aggregate literals allow to

4.1. Representation of C0 Programs 37

Table 4.1: Unary Operators

Operator Meaning

minus unary minus
neg bitwise negation
not logical not
toint conversion to IntT

tounsgnd conversion to UnsignedT

tochar conversion to CharT

build literal values for structures and arrays.

lita = ALPrim(lit)
| ALStruct(S× lita list)
| ALArr(lita list)

Expressions are defined inductively by the data type expr .

expr = Lit(lit)
| Var(S)
| Arr(expr , expr)
| Str(expr , S)
| UnOp(unop, expr)
| BinOp(binop, expr , expr)
| LazyBinOp(lazyop, expr , expr)
| AddrOf (expr)
| Deref (expr)

The basic cases are literal expressions Lit(l) with a literal l and variable access
Var(n) to a local or global variable of name n.

Let n be a name and e, e1, e2, and i expressions. Then, array access Arr(e, i)
to the i-th element of an array expression e, access to structure components
Str(e, n), addr-of computation AddrOf (e) and dereferencing of pointers Deref (e)
are also expressions.

Arithmetic and logical computations can be done by unary, binary, and lazy
operators. The operators which are supported by C0 are listed in Tables 4.1,
4.2, 4.3, and 4.4.

4.1.3 Statements

Statements of the C0 small-step semantics are tagged with unique statement
identifiers of type sid . Theses identifiers are used to determine during the
execution of a program where a certain statement in the program rest was
originally placed in the program and to examine the relationship between
statements. This is mainly used in the compiler correctness proof. For simplicity
we omit the statement identifiers in the text when they are not explicitely used.

38 Formal C0 Small-Step Semantics

Table 4.2: Binary Operators

Operator Meaning

add addition
sub subtraction
mult multiplication
div division
mod modulo
orb bitwise or
andb bitwise and
xorb bitwise exclusive or
shift l arithmetic left shift
shift r arithmetic right shift

Table 4.3: Comparison Operators

Operator Meaning

compless less?
comple less or equal?

compgreater greater?
compge greater or equal?
compeq equal?
compneq different?

Table 4.4: Lazy Binary Operators

Operator Meaning

and l logical and
or l logical or

In the C0 small-step semantics statements are modeled by the following
data type.

stmt = Skip
| Comp(stmt , stmt)
| Ass(expr , expr , sid)
| AssAL(expr , lita, sid)
| PAlloc(expr , S, sid)
| SCall(S, S, expr list , sid)
| Return(expr , sid)
| Ifte(expr , stmt , stmt , sid)
| Loop(expr , stmt , sid)
| Asm(asm list , sid)
| XCall(S, expr list , expr list , sid)

4.1. Representation of C0 Programs 39

Skip represents the empty statement and Comp(s1, s2) the sequential com-
position of two statements s1 and s2. These two statements are not tagged with
a statement identifier and also called structural statements in the rest of this
thesis. We use the predicate stmtstructural :: stmt 7→ B to distinguish structural
from non-structural statements: stmtstructural(s) = (is Skip(s) ∨ is Comp(s)).

Assignments come in two flavors. We have normal assignments of an
expression er to an expression el, which is modeled by Ass(el, er). Additionally,
we allow assignments of aggregate literals. Allocation of dynamic memory for a
type with name tn is done by the statement PAlloc(e, tn). The pointer to the
newly allocated memory will be assigned to expression e.

Function calls to a function of name f with parameters e1 to en are repre-
sented by SCall(vn, f, [e1, . . . , en]). After termination, the return value of the
function will be stored in variable vn. Return statements with return expression
e are modeled by Return(e).

Conditional execution is supported via Ifte(e, s1, s2) which executes one of
the statements s1 and s2 depending on condition e. ‘While’ loops with condition
e and body lb are represented by Loop(e, lb). There is no special statement for
‘for’ loops; however, they are supported in the concrete syntax and converted
to equivalent ‘while’ loops by the preprocessor (cf. Section 3.3).

In C0A a sequence a of VAMP assembly instructions can be inlined by the
statement Asm(a). However, inline assembly is not covered by the compiler
which is considered in this thesis. The semantics of C0 programs with inline
assembly are defined by alternating execution of the C0 small-step semantics
and of the VAMP assembly semantics (cf. on page 66). For the transitions from
the C0 to the assembly layer, the compiler simulation relation from Section 8.2
is used. The big-step semantics and Hoare logic do not support inline assembly
code.

XCalls are represented by the statement XCall(f, [e1, . . . , en], [p1, . . . , pm]),
where f is the name of the XCall, ei are left-expressions denoting the parts of
the C0 state that can be changed by the XCall, and pi are right-expressions
which are used as input parameters for the XCall. In addition to the parts of the
normal C0 state (defined by the left-expressions ei), the XCall may arbitrary
change the extended state component.

Isabelle For better readability, we have two separate constructors for normal
assignments and assignments of aggregate literals in this thesis. In Isabelle,
both cases are covered by the same constructor.

Miscellaneous Functions on Statements

We define several functions on statements.

Definition 4.2 (Sub statements) First we define the set of sub statements
of a given statement.

subs :: stmt 7→ stmt set

subs(Comp(s1, s2)) = {Comp(s1, s2)} ∪ subs(s1) ∪ subs(s2)
subs(Ifte(e, s1, s2)) = {Ifte(e, s1, s2)} ∪ subs(s1) ∪ subs(s2)

subs(Loop(e, lb)) = {Loop(e, lb)} ∪ subs(lb)

For all other statements s we simply define subs(s) = {s}.

40 Formal C0 Small-Step Semantics

Definition 4.3 (Number of returns) We define a function #ret :: stmt 7→
N which computes the number of return statements in the statement tree
spanned by a given statement. For compound statements and returns we set

#ret(Comp(s1, s2)) = #ret(s1) + #ret(s2)
#ret(Return(e)) = 1.

For all other statements s we define #ret(s) = 0.

Definition 4.4 (Number of top-level returns) We also define the number
of top-level return statements in a given statement list.

#rettop :: stmt list 7→ N

#rettop([]) = 0

#rettop(h#t) =

{
#rettop(t) + 1 if is Return(h)
#rettop(t) otherwise

Compound statements can be regarded as a special encoding of lists of
top-level statements (cf. Fig. 5.1). To convert a statement tree to such a list of
top-level statements we introduce the two functions s2l and s2lns.

Definition 4.5 (List of top-level statements) To convert a list of state-
ments encoded by compound statements into a real list of statements we
introduce the function s2l :: stmt 7→ stmt list .1 For compound statements we
define

s2l(Comp(s1, s2)) = s2l(s1) ◦ s2l(s2).

For all other statements s we set s2l(s) = [s].

Definition 4.6 (Top-level statements no skips) We introduce the func-
tion s2lns :: stmt 7→ stmt list which is similar to s2l except that it removes Skip
statements from the statement list. We set

s2lns(Skip) = []
s2lns(Comp(s1, s2)) = s2lns(s1) ◦ s2lns(s2)

For all other statements s we define: s2lns(s) = [s].

Definition 4.7 (Code behind first return) We define a function dropret ::
stmt list 7→ stmt list which removes the prefix of a given statement list up to
the first return statement.

dropret([]) = []

dropret(h#t) =

{
t if is Return(h)
dropret(t) otherwise

1Observe that this function only converts the top-level of a statement tree. For example,
the body of loop statements will stay unchanged.

4.2. Configuration of the C0 Small-Step Semantics 41

Definition 4.8 (Successor of the i-th return) We introduce the function
succithret :: stmt list ×N 7→ stmt⊥ which returns the statement behind the i-th
return statement of a statement list. Observe that we count the returns starting
from 0, s.t. for i = 0 we return the statement behind the first return. Formally,
we define the function by a double induction on i and the statement list

succithret(sl, 0) =

{
bhc if dropret(sl) = h#t

None if dropret(sl) = []

succithret(sl, i + 1) = succithret(dropret(sl), i)

Definition 4.9 (Remove last statement) To define later the initial pro-
gram rest of a C0 program (cf. Section 4.4.1) we will need to remove the last
statement from the body of the main function (this is the return statement).
Thus, we define the function remlast :: stmt 7→ stmt which replaces the last
statement in a statement tree by Skip, i.e., which effectively removes the last
statement. For compound statements its definition is recursive.

remlast(Comp(s1, s2)) = Comp(s1, remlast(s2))

For all other statements s we simply set remlast(s) = Skip.

4.1.4 Function Table

The function table stores information about the functions of a C0 program.
Information for a single function is stored in the record funcT . Elements p of
this type have four components.

• p.body :: stmt : The body of the function.

• p.params :: (S×ty) list : A list of function parameters. For every parameter
we store its name and its type.

• p.rtype :: ty : The return type of the function.

• p.lvars :: (S × ty) list : The list of local variables of the function. This
list has the same format as the list of function parameters but does not
include those.

The complete function table is a list of pairs of the functions name and a
funcT record which contains the information about the function. Formally, it
is represented by the type functableT = (S× funcT) list .

4.2 Configuration of the C0 Small-Step Semantics

A configuration of the C0 small-step semantics stores the run-time information
about the execution of a program in the small-step semantics. The configuration
has two components.

• The memory configuration stores information about the variables of a C0
program and their values. This includes the values of the dynamically
allocated variables on the heap.

• The program rest keeps track of the statements which still have to be
executed.

42 Formal C0 Small-Step Semantics

global symbol table

gvargm (x)

gvararr

(gvargm (x),4)

gvar str (gvararr

(gvargm (x),4),d1)

ArrT (8, StrT ([. . . ,

d1: IntT, . . .]))

StrT ([. . . , d1:

IntT, . . .])

IntT

a b c x y

0 1 2 3 4 5 6 7

next prev d1 d2

Figure 4.1: Hierarchy of G-Variables

4.2.1 Memory Configuration

The memory configuration of the C0 small-step semantics stores information
about the variables of a C0 program and their values. It consists of three parts:
a memory frame for the global variables, a memory frame for the heap variables,
and a list of memory frames and return destinations for the local variables.

Generalized Variables

We represent pointers in the small-step semantics in a structural way using
so-called generalized variables or short g-variables. G-variables are defined
inductively and structurally similar to left-expressions.

There are three base cases for g-variables. Global variables of name x are
represented by gvargm(x), local variables x in the i-th local memory frame by
gvar lm(i, x), and nameless heap variables by gvarhm(i). Variables in the global
memory or in one of the local memories are referenced by their name; heap
variables are nameless, so they are referenced by an index i.

The inductive case defines g-variables for structure and array access. If g
is a g-variable of structure type then a component gvar str(g, n) of name n is
also a g-variable. If g is a g-variable of array type then the i-th array element
gvararr(g, i) is also a g-variable.

Formally, we represent g-variables by the following data type.

gvar = gvargm(S)

| gvar lm(N, S)
| gvarhm(N)
| gvararr(gvar ,N)
| gvar str(gvar , S)

We define several functions which allow to reason about the hierarchy of
g-variables (cf. Figure 4.1). The figure illustrates the structure of a g-variable
in the global symbol table. In every level we look deeper into global variable
x; the structure of the corresponding g-variable is denoted to the left of the
figure. Observe that while the structure of the g-variables gets more complex

4.2. Configuration of the C0 Small-Step Semantics 43

the structure of the corresponding type (denoted to the right of the figure) gets
simpler.

Definition 4.10 (Parent g-variable) For g-variables g = gvararr(h, n) or
g = gvar str(h, c) we call h the parent g-variable of g. We formalize this by the
function parentg : gvar 7→ gvar⊥.

parentg(gvargm(x)) = None

parentg(gvar lm(i, x)) = None

parentg(gvarhm(i)) = None

parentg(gvararr(h, i)) = bhc
parentg(gvar str(h, c)) = bhc

Definition 4.11 (Root g-variable) If we would apply the function parentg

multiple times to a g-variable g we would finally reach the last (or highest)
ancestor r of g. We call r the root of g-variable g. Formally, we define the
function rootg : gvar 7→ gvar which computes the root of a given g-variable.

rootg(gvargm(x)) = gvargm(x)

rootg(gvar lm(i, x)) = gvar lm(i, x)
rootg(gvarhm(i)) = gvarhm(i)

rootg(gvararr(g, i)) = rootg(g)
rootg(gvar str(g, c)) = rootg(g)

Definition 4.12 (Sub variables of a g-variable) We define by induction
the set subg :: gvar 7→ gvar set of sub variables of a given g-variable. Initally,
this set contains the g-variable itself.

g ∈ subg(g)

For the inductive cases we define

h ∈ subg(g)
gvararr(h, i) ∈ subg(g)

h ∈ subg(g)
gvar str(h, c) ∈ subg(g)

Memory Frames

We use a relatively explicit, flat memory model in the style of [Nor98], which
stores the memory content as a mapping from addresses (natural numbers) to
memory cells.

A single memory cell can store the value of a variable of an elementary type.
Values of aggregate types are stored as a consecutive sequence of memory cells.
Memory cells are modeled by an abstract data type with one constructor for
each elementary type. Thus, the memory model of the C0 small-step semantics

44 Formal C0 Small-Step Semantics

is typed. Pointers are represented by a generalized variable or by a special null
pointer value ⊥.

mcellC0 = Int(Z) | Nat(N) | Char(Z) | Bool(B) | Ptr(gvar ∪ {⊥})

In addition to the content of the memory, a memory frame contains a list of
variables of the memory frame together with their types and keeps track of the
set of variables which are already initialized. Formally, we represent memory
frames m by the record mframe which has three components.

• m.ct :: N 7→ mcellC0: The content of the memory frame. Althoguh
technically infinite, we use this mapping only for addresses smaller than
the size of the memory (which changes dynamically for the heap memory);
the values for other addresses are not defined.

• m.st :: (S× ty) list : A list of all variables of the memory frame together
with their types. We call this list a symbol table.

• m.init :: S set : The set of variables which are already initialized.

Definition 4.13 (Base address of variables) We define the base address of
variables x in a symbol table by induction on the symbol table. For non-empty
symbol tables the base address is zero if x is the first variable in the symbol
table. Otherwise, it is defined inductively as the sum of the size of the first
variable and the base address of x in the tail of the symbol table. If the variable
is not present in the symbol table we return None.

bav :: (S× ty) list × S 7→ N⊥

bav([], x) = None

bav((n, t)#xs, x) =

b0c if n = x

bsizet(t) + bc if n 6= x ∧ bav(xs, x) = bbc
None if n 6= x ∧ bav(xs, x) = None

Definition 4.14 (Type of variables) We define the type of variable x in a
given symbol table st by

typev :: (S× ty) list × S 7→ ty⊥

typev(st, x) = map-of (st, x).

Memory Configuration

Based on single memory frames we can now give a formal definition of the
memory configuration of the C0 small-step semantics. A memory configuration
mc is formalized by the record memconf which has three components.

• mc.gm :: mframe: The memory frame for the global variables.

• mc.lm :: (mframe × gvar) list : A list of memory frames and g-variables
which model the stack of local memories. The memory frames store the
values of the local variables whereas the g-variables store the so-called

4.2. Configuration of the C0 Small-Step Semantics 45

return destination of a stack frame. During the execution of a return
statement, the value of its return expression is stored at the memory
location specified by the return destination of the currently topmost stack
frame.

G-variables refer to local memories by their index. To keep the (list)
index of stack frames – and thus also the names of g-variables which
refer to them – constant during their lifetime, we store the current stack
frame at the end of the list of local memories. Thus, the top most (or
current) local memory frame has index |mc.lm| − 1. We abbreviate it
with lmtop(mc) = mc.lm!(|mc.lm| − 1).

• mc.hm :: mframe: The memory frame for the dynamically allocated heap
variables. Observe that the variable names of heap variables in mc.hm.st
are not used because heap variables are nameless.

Isabelle Observe that in Isabelle the local memories are stored in reverse order.
This simplifies the definitions for adding and removing new local memory frames
because it corresponds to the direction in which lists grow due to the datatype
constructors. However, indices of stack frames are still constant because we
index in Isabelle starting from the end of the local memory list.

We introduce abbreviations for the symbol tables of the global memory, of
the current local memory frame, and of the heap memory.

lst top :: memconf 7→ (S× ty) list
gst :: memconf 7→ (S× ty) list
hst :: memconf 7→ (S× ty) list

lst top(mc) = lmtop(mc).st
gst(mc) = mc.gm.st
hst(mc) = mc.hm.st

We name memories in the obvious way. A memory name is either gm for
the global memory, lm(i) for the i-th local memory, or hm for the heap memory.
Formally, we define memory names by the data type memname.

memname = gm | lm(N) | hm

Symbol Configuration

Frequently in this thesis we are not interested in the memory content and do not
need the complete memory configuration. It suffices to have only the symbol
tables of all memory frames available. For these situations we introduce similar
to the type for memory configurations a record type for symbol configurations.
Symbol configurations sc of the C0 small-step semantics are formalized by the
record symbolconf which has three components.

• sc.gst :: (S× ty) list : The symbol table of the global memory frame.

• sc.lst :: (S × ty) list list : A list of symbol tables for the stack of local
memories.

46 Formal C0 Small-Step Semantics

• sc.hst :: (S× ty) list : The symbol table of the heap memory frame.

We will use the notation sc(mc) to refer to the symbol configuration of a given
memory configuration mc.

4.2.2 Program Rest

The program rest keeps track of the statements which still have to be executed.2

It is initialized with the body of the main function and grows or shrinks
depending on the execution of the program. Formally, the program rest is
represented by a C0 statement of type stmt .

4.2.3 Configuration

Now, we can introduce configurations of the C0 small-step semantics. A
configuration c of the C0 small-step semantics is formalized by the record
conf C0 consisting of two components:

• the memory configuration c.mem :: memconf and

• the program rest c.prog :: stmt .

4.3 Expression Evaluation

In this section we will define the evaluation of expressions in the C0 small-step
semantics. This definition will slightly differ from the formal definition of
expression evaluation in Isabelle / HOL.

Isabelle In Isabelle, we have defined a single function eval for the evaluation
of expressions. This function takes a type name environment, a memory
configuration, and an expression and returns a (option of a) record ds of type
data slice which has five components: (i) the left value of the expression,
(ii) its type, (iii) a flag which determines whether the expression represents
a memory object or if it is a literal or a unary or binary operator,3 (iv) a
flag which indicates if the expression is initialized, and (v) the value of the
expression. Additionally, we have defined two functions which compute the
same result as the components ii and iii of the eval function. The main
advantage of these additional functions is that they do not take a complete
memory configuration as parameter but just the symbol configuration; this
allows to conclude automatically that their result is independent of the current
memory content whereas this would be a proof obligation for the corresponding
components of the eval function.

In this thesis, we define five separate functions, each computing one compo-
nent of the eval function, instead of one monolithic function. The definitions
of these functions are mutually recursive, which is easy to handle on paper
but makes induction proofs in Isabelle much harder. The formalization of

2In [NN99] the program rest is called code component of the configuration.
3In Isabelle, this component is called intermediate and is set to false if the expression is

a memory object and to true otherwise. In this thesis, we represent it by a predicate mobj
which checks whether the expression represents a memory object or not. The value of mobj
corresponds to the inverted value of the component intermediate.

4.3. Expression Evaluation 47

expression evaluation via the monolithic eval function, however, is possible
without mutual recursion.

4.3.1 Address of G-Variables

In this section we define several functions and predicates which compute among
others type and address of g-variables. Let te be a type name environment and
sc a symbol configuration in the remainder of this section.

Remark For simplicity we will often omit constant parameters like te and sc
in the following formulas when the meaning is clear from the context.

Definition 4.15 (Type of g-variables) We define the type of a g-variable
by the inductive function tyg : symbolconf × gvarT 7→ ty . For the base cases
we get the type directly from the corresponding symbol table.

tyg(sc, gvargm(x)) = typev(sc.gst , x)

tyg(sc, gvar lm(i, x)) = typev(sc.lst !i, x)

tyg(sc, gvarhm(i)) = snd(sc.hst !i)

For array and structure accesses we use underspecified definitions.

tyg(sc, gvararr(g, i)) =

{
t if tyg(g) = ArrT(t, j)
undef otherwise

tyg(sc, gvar str(g, x)) =

{
the(map-of (c, x)) if tyg(g) = StrT(c)
undef otherwise

Definition 4.16 (Memory name of a g-variable) We define the memory
name of a g-variable by the function memg : gvar 7→ memname.

memg(gvargm(x)) = gm

memg(gvar lm(i, x)) = lm(i)
memg(gvarhm(i)) = hm

memg(gvararr(g, i)) = memg(g)
memg(gvar str(g, x)) = memg(g)

Definition 4.17 (Named g-variables) We define the predicate namedg ::
gvar 7→ B to refer to g-variables which are not located in the heap memory.

namedg(g) = (memg(g) = gm ∨ ∃i : memg(g) = lm(i))

Definition 4.18 (Base address of g-variables) We define the base address
of a g-variable by the function bag : symbolconf × gvarT 7→ N.

bag(sc, gvargm(x)) = bav(sc.gst , x)

bag(sc, gvar lm(i, x)) = bav(sc.lst !i, x)

48 Formal C0 Small-Step Semantics

Heap variables are not named, so we cannot use the function bav to compute
their base address. Instead, we add the size of all preceding heap variables.

bag(sc, gvarhm(i)) =
i−1∑
j=0

sizet(snd(sc.hst !j))

For array and structure access we have again incomplete definitions.

bag(sc, gvararr(g, i)) =

{
bag(g) + i · sizet(t) if tyg(g) = ArrT(t, j)
undef otherwise

For structure access, we exploit that the list of structure components looks
exactly like a symbol table. Thus, we can use the function bav, which computes
the base address of a variable in a symbol table, also for the offset of a component
inside a structure.

bag(sc, gvar str(g, x)) =

{
bag(g) + the(bav(scl , x)) if tyg(g) = StrT(scl)
undef otherwise

Definition 4.19 (Overlapping g-variables) We say that two g-variables g
and g′ overlap if the following formula is fulfilled.

overlapg(sc, g, g′) =memg(g) = memg(g′)

∧ (bag(sc, g), sizet(tyg(sc, g))) 6�
(bag(sc, g′), sizet(tyg(sc, g′)))

Definition 4.20 (Initialized g-variables) We call a g-variable initialized if
its root g-variable is in the set of initialized variables of the corresponding
memory frame; g-variables in the heap are initialized by definition. We define
inductively the predicate initializedg : memconf × gvar 7→ B.

initializedg(mc, gvargm(x)) = x ∈ mc.gm.init

initializedg(mc, gvar lm(i, x)) = x ∈ mc.lm!i.init
initializedg(mc, gvarhm(i)) = true

initializedg(mc, gvararr(g, i)) = initializedg(mc, g)
initializedg(mc, gvar str(g, x)) = initializedg(mc, g)

4.3.2 Reading from the Memory

To denote reading of memory cells from the memory of the C0 configuration
we use the following abbreviation.

Definition 4.21 (Reading memory cells) Let mc be a memory configura-
tion, n a memory name, and a and b natural numbers. We define the content
of the memory n in the range from a to b by case distinction on the memories
name:

mcn [a : b] =

mc.gm.ct [a : b] if n = gm
mc.lm!i.ct [a : b] if n = lm(i)
mc.hm.ct [a : b] if n = hm

4.3. Expression Evaluation 49

For convenience, we also define the following syntax for the content of the
memory n in the range from a to a + l:

mcn [a, l] = mcn [a : a + l − 1]

Definition 4.22 (Value of a g-variable) Let mc a memory configuration,
and g a g-variable. We define the value of g-variable g by

valueg(mc, g) = mcmemg(g)

[
bag(sc(mc), g), sizet(tyg(sc(mc), g))

]
4.3.3 Semantics of Operators

In this section we will define the semantics of the unary and binary operators
of C0. For operators, only the value and type of the result are of interest, so
we will not define the left value, the memory object flag, or the initialized flag
in this section.

For unary operators we will define

value◦1 : unop ×mcellC0⊥ 7→ mcellC0⊥

type◦1
: unop × ty 7→ ty

and for binary operators

value◦2 : binop ×mcellC0⊥ ×mcellC0⊥ 7→ mcellC0⊥

type◦2
: binop × ty × ty 7→ ty .

The functions which compute the values of operator application use option
types to support operators like division or modulo which compute partial
functions. If one of the inputs of the functions is None the result will also
be None by default (the only exception are the lazy binary operators from
Section 4.3.3). In the following we only define the remaining cases.

Arithmetic Operators

C0 supports arithmetic operators for integer and unsigned integer operands.
Arithmetic operations on character operands are not supported.

Unary minus is only supported for integer operands and defined by

value◦1(minus, bInt(a)c) =

{
bInt(a)c if a = −231

bInt(−a)c otherwise

type◦1
(minus, IntT) = IntT

Addition, subtraction, and multiplication for integer and unsigned integer
operands are defined by

value◦2(add , bInt(a)c , bInt(b)c) =
⌊
Int(a + b mods 231)

⌋
value◦2(add , bNat(a)c , bNat(b)c) =

⌊
Nat(a + b modu 232)

⌋
value◦2(sub, bInt(a)c , bInt(b)c) =

⌊
Int(a− b mods 231)

⌋
value◦2(sub, bNat(a)c , bNat(b)c) =

⌊
Nat(a− b modu 232)

⌋
value◦2(mult , bInt(a)c , bInt(b)c) =

⌊
Int(a · b mods 231)

⌋
value◦2(mult , bNat(a)c , bNat(b)c) =

⌊
Nat(a · b modu 232)

⌋

50 Formal C0 Small-Step Semantics

Division and modulo are only defined for unsigned operands. If the divisor is
zero we define the result of division and modulo to be None.

value◦2(div , bNat(a)c , bNat(b)c) =

{
None if b = 0⌊
Nat(a div b modu 232)

⌋
otherwise

value◦2(mod , bNat(a)c , bNat(b)c) =

{
None if b = 0⌊
Nat(a mod b modu 232)

⌋
otherwise

For all binary arithmetic operators b the type of the result equals the type of
the first operand: type◦2

(b, t1, t2) = t1.

Comparison Operators

We support the usual comparison operators (cf. Table 4.3) for operands of
basic types. Additionally, we support tests for equality and inequality for
pointers. The tests have the usual semantics; thus, we omit formal definitions
here. For all comparision operators c we define the type of the result by
type◦2

(c, t1, t2) = BoolT.

Bitwise Operators

For the formalization of the C0 semantics, we had the choice to model the
basic types IntT, UnsignedT, and CharT as bit vectors, which is close to the
definitions in the VAMP processor [BJK+03, BJK+06] and thus would simplify
the compiler verification, or as numbers, which is closer to the usual usage of such
types in high-level languages as C and thus would simplify the verification of C0
programs. Obviously, if enough C0 programs have to be verified the additional
one-time effort for compiler correctness proof pays off. Verification of non-trivial
C0 programs plays a major role in the Verisoft project thus we decided to
represent the basic types as numbers. This decision makes the definition of
bitwise operations more complicated: we have to convert the numbers to bit
vectors before applying the bitwise operations and back to numbers afterwards.

For bitwise negation and for all bitwise binary operators ◦ we define the
result type as the type of the first operand. We set type◦1

(not , t) = t and
type◦2

(◦, t1, t2) = t1. We define the value of bitwise negation by

value◦1(not , bInt(a)c) = bInt([¬b(two32(a))])c
value◦1(not , bChar(a)c) = bChar([¬b(two8(a))])c
value◦1(not , bNat(a)c) = bNat(〈¬b(bin32(a))〉)c

The values of applying the binary operators bitwise and, bitwise or, and bitwise
exclusive or are defined by

value◦2(orb, bInt(a)c , bInt(b)c) = bInt([two32(a) ∨b two32(b)])c
value◦2(orb, bChar(a)c , bChar(b)c) = bChar([two8(a) ∨b two8(b)])c

value◦2(orb, bNat(a)c , bNat(b)c) = bNat(〈bin32(a) ∨b bin32(b)〉)c

4.3. Expression Evaluation 51

value◦2(andb, bInt(a)c , bInt(b)c) = bInt([two32(a) ∧b two32(b)])c
value◦2(andb, bChar(a)c , bChar(b)c) = bChar([two8(a) ∧b two8(b)])c

value◦2(andb, bNat(a)c , bNat(b)c) = bNat(〈bin32(a) ∧b bin32(b)〉)c

value◦2(xorb, bInt(a)c , bInt(b)c) = bInt([two32(a)⊗b two32(b)])c
value◦2(xorb, bChar(a)c , bChar(b)c) = bChar([two8(a)⊗b two8(b)])c

value◦2(xorb, bNat(a)c , bNat(b)c) = bNat(〈bin32(a)⊗b bin32(b)〉)c

Logical Shift Operators

C0 does not support arithmetic shifts; only logical shifts are possible. For shift
operators we do not require the types for left and right operands to be equal.
Thus, let x ∈ {Int(b),Char(b),Nat(b)} be the shift distance. We define the
semantics of the logical shift operators in C0 by

value◦2(shift l, bInt(a)c , bxc) =
⌊
Int([two32(a)�l (b modu 25)])

⌋
value◦2(shift l, bChar(a)c , bxc) =

⌊
Char([two8(a)�l (b modu 25)])

⌋
value◦2(shift l, bNat(a)c , bxc) =

⌊
Nat(〈bin32(a)�l (b modu 25)〉)

⌋
value◦2(shift r, bInt(a)c , bxc) =

⌊
Int([two32(a)�l (b modu 25)])

⌋
value◦2(shift r, bChar(a)c , bxc) =

⌊
Char([two8(a)�l (b modu 25)])

⌋
value◦2(shift r, bNat(a)c , bxc) =

⌊
Nat(〈bin32(a)�l (b modu 25)〉)

⌋
The type of the result is determined by the type of the left operand. We define
for logical shift operators l the result type by type◦2

(l, t1, t2) = t1.

Logical Operators

C0 supports logical operators only for operands of boolean type. The result
type of logical negation and binary logical operators ◦ is always boolean:
type◦1

(neg ,BoolT) = BoolT and type◦2
(◦,BoolT,BoolT) = BoolT. We define

the value of logical negation by

value◦1(neg , bBool(a)c) = bBool(¬a)c

The binary logical operators are defined using lazy evaluation. Thus, if the
result is already determined by the first operand the second operand will not
be evaluated; in this case the second operand cannot generate run time errors.4

We define

value◦2(and l, bBool(a)c , bBool(b)c) =

{
bBool(false)c if a = false
bBool(b)c if a = true

value◦2(or l, bBool(a)c , bBool(b)c) =

{
bBool(true)c if a = true
bBool(b)c if a = false

4This is often useful to simplify conditions, as in the following code snippet where the
value of p is only read if p is not the null pointer: ‘ if ((p != NULL) && (p−>value==5))’

52 Formal C0 Small-Step Semantics

Type Conversion

We define three function for conversion between C0 types

value◦1(toint , bInt(a)c) = bac
value◦1(toint , bChar(a)c) = bac
value◦1(toint , bNat(a)c) =

⌊
a mods 231

⌋
value◦1(tounsgnd , bInt(a)c) =

⌊
a modu 232

⌋
value◦1(tounsgnd , bChar(a)c) =

⌊
a modu 232

⌋
value◦1(tounsgnd , bNat(a)c) = bac

value◦1(tochar , bInt(a)c) =
⌊
a mods 27

⌋
value◦1(tochar , bChar(a)c) = bac
value◦1(tochar , bNat(a)c) =

⌊
a mods 27

⌋
For type conversion the definition of the result type is obvious

type◦1
(toint , t) = IntT

type◦1
(tounsgnd , t) = UnsignedT

type◦1
(tochar , t) = CharT

4.3.4 Evaluation Functions for Expressions

In this section we define the evaluation functions for expressions in the C0
small-step semantics using the definitions from the previous sections. We define
five functions for expression evaluation:

The function type computes the type of an expression. If the memory of the
C0 configuration fulfills certain type correctness requirements (cf. Section 5.3)
this function corresponds to the field ds.type for a data slice in Isabelle.

The function leval computes the address of an expression. It corresponds to
the field ds.lval for a data slice in Isabelle. If the expression has no address,
e.g., for literals, leval is undefined.

The function reval computes the value of an expression. It corresponds to the
field ds.data for a data slice in Isabelle. If reval is applied to an uninitialized
expression it returns None.

The function mobj tests whether an expression represents a memory object
(mobj = true) or not (mobj = false). It corresponds to the (negated) field
ds.intermediate for a data slice in Isabelle.

The function initialized tests whether an expression is initialized. It corre-
sponds to the field ds.initialized for a data slice in Isabelle.

The signature of these functions is as follows. Observe that instead of the
complete memory configuration the functions type and mobj take only two
symbol tables – for the global and the local variables – as parameters. These
symbol tables are usually the global and topmost local symbol table of the

4.3. Expression Evaluation 53

current memory configuration.

leval : tenv ×memconf × expr 7→ gvar⊥
type : tenv × (S× ty) list × (S× ty) list × expr 7→ ty⊥

mobj : tenv × (S× ty) list × (S× ty) list × expr 7→ B

initialized : tenv ×memconf × expr 7→ B

reval : tenv ×memconf × expr 7→ (N 7→ mcellC0)⊥

Remark For the first memory cell of a value v :: N 7→ mcellC0 we will some-
times just write v instead of v(0) when the context is clear, i.e., when it is
obvious that we just refer to a single memory cell.

For the remainder of this section we denote by te a type name environment,
mc a memory configuration, and by gst and lst global and local symbol tables,
respectively.

Literals

We start with the evaluation of literals which also includes aggregate literals
(cf. Section 3.1.3). The definition of memory object and initialized flags and of
the left value is simple for expressions of primitive literals l.

mobj (te, gst , lst ,Lit(l)) = false
initialized(te,mc,Lit(l)) = true

leval(te,mc,Lit(l)) = undef

We will not define these three functions for aggregate literals because they
are only used in the special statement for assignments of aggregate literals (cf.
Section 3.1.3). There, these functions are not needed.

The type of literal expressions and of aggregate literals is defined in two
steps.

Definition 4.23 (Type of literals) First we define the function type lit ::
lit 7→ ty which computes the type of primitive literals.

type lit(Bool(b)) = BoolT
type lit(Int(i)) = IntT

type lit(Unsigned(u)) = UnsignedT

type lit(Char(c)) = CharT

type lit(Null) = NullT

Definition 4.24 (Type of aggregate literals) The type of aggregate liter-
als is defined by the recursive function typealit :: lita 7→ ty .

typealit(ALPrim(l)) = type lit(l)
typealit(ALStruct(xs)) = StrT(map(typealit,map(snd , xs)))
typealit(ALArr(x#xs)) = ArrT(|x#xs| , typealit(x))

The definitions of the value of literal expressions and aggregate literals follow
the same structure.

54 Formal C0 Small-Step Semantics

Definition 4.25 (Value of literal expressions) To compute the value of
primitive literals we define the function reval lit :: lit 7→ mcellC0.

reval lit(Bool(b)) = Bool(b)
reval lit(Int(i)) = Int(i)

reval lit(Unsigned(u)) = Nat(u)
reval lit(Char(c)) = Char(c)

reval lit(Null) = Ptr(⊥)

Definition 4.26 (Value of aggregate literals) We define the value of ag-
gregate literals by the recursive function revalalit :: lita 7→ mcellC0 list .

revalalit(ALPrim(l)) = [reval lit(l)]
revalalit(ALStruct([])) = []

revalalit(ALStruct(x#xs)) = revalalit(snd(x)) ◦ revalalit(ALStruct(xs))
revalalit(ALArr([])) = []

revalalit(ALArr(x#xs)) = revalalit(x) ◦ revalalit(ALArr(xs))

The definition of type and reval for literal expressions is now trivial:

type(te, gst , lst ,Lit(l)) = btype lit(l)c
reval(te,mc,Lit(l)) = breval lit(l)c

Variable Access

The mobj flag for access to a variable v is obviously defined as

mobj (te, gst , lst ,Var(v)) = true.

In C0, local variables shadow / hide global variables of the same name.
Thus, for an access to variable v we first have to test whether a local variable
of this name exists. If it does we access the local variable. Otherwise, we access
the corresponding global variable. If the variable is defined neither in the local
nor in the global memory, evaluation fails and we set

initialized(te,mc,Var(v)) = false
type(te, gst , lst ,Var(v)) = None

leval(te,mc,Var(v)) = None
reval(te,mc,Var(v)) = None

Otherwise, we define type and left evaluation by

type(te, gst , lst ,Var(v)) =

{
typev(lst , v) if v ∈ map(fst , lst)
typev(gst , v) otherwise

leval(te,mc,Var(v)) =

{
bgvar lm(|mc.lm| − 1, v)c if v ∈ map(fst , lst top(mc))⌊
gvargm(v)

⌋
otherwise

4.3. Expression Evaluation 55

For the remaining evaluation functions we abbreviate with m the memory
which is used for the variable access

m =

{
lmtop(mc) if v ∈ map(fst , lst top(mc))
mc.gm otherwise

and define

initialized(te,mc,Var(v)) = v ∈ m.init

reval(te,mc,Var(v)) = bm.ct [bav(m.st , v), sizet(typev(m.st , v))]c

Pointer Dereferencing

Now, we define the evaluation of pointer dereferencing Deref (e). By definition,
pointers refer to memory object; thus, we set

mobj (te, gst , lst ,Deref (e)) = true.

For the remaing definitions we require

• initialized(te,mc, e), i.e., that e is initialized,

• type(te, gst(mc), lst top(mc), e) = bPtrT(tn)c, i.e., that e is of pointer type,

• map-of (te, tn) = btc, i.e., that the type name tn is present in the type
name environment,

• reval(te,mc, e) = bPtr(p)c ∧ p 6= ⊥, i.e., that the value of e is a non-null
pointer, and finally,

• memg(p) ∈ {gm, hm}, i.e., that the pointer points to the global memory
or to the heap.

If one of these conditions is violated evaluation fails and we set initialized to
false and type, leval , and reval to None. Otherwise, we define:

initialized(te,mc,Deref (e)) = initializedg(mc, p)
type(te, gst , lst ,Deref (e)) = map-of (te, tn)

leval(te,mc,Deref (e)) = bpc
reval(te,mc,Deref (e)) = bvalueg(mc, p)c

Address-Of Operator

Now, we define the evaluation of the address-of operator AddrOf (e). The
address of an object is not a memory object itself but it is always initialized.
Thus, we define

mobj (te, gst , lst ,AddrOf (e)) = false
initialized(te,mc,AddrOf (e)) = true

As for pointer derefering we have some requirements for the successful
evaluation of an address-of operator. We require

• map-of (map(flip, te), type(te, gst(mc), lst top(mc), e)) = btnc, i.e., that
there exists a type name for the type of expression e,

56 Formal C0 Small-Step Semantics

• mobj (te, gst , lst , e) = true, i.e., that e is a memory object, and

• leval(te,mc, e) = bgc, i.e., that left evaluation of e gives some g-variable
g.

If one of these requirements is violated we set type, leval , and reval to None.
Otherwise, we define

type(te, gst , lst ,AddrOf (e)) = bPtrT(tn)c
leval(te,mc,AddrOf (e)) = undef
reval(te,mc,AddrOf (e)) = b[Ptr(g)]c

Access to Structure Components

In this section we define the evaluation of an access to a structure component.
The memory object and initialized flags of a structure access Str(e, cn) equal
the corresponding flags for e.

mobj (te, gst , lst ,Str(e, cn)) = mobj (te, gst , lst , e)
initialized(te,mc,Str(e, cn)) = initialized(te,mc, e)

For the remaining evaluation functions we require

• that e is a structure, i.e., type(te, gst , lst , e) = bStrT(cl)c

• that the component name cn occurs in the compont list cl of this structure,
i.e., map-of (cl, cn) = btc, and

• that e can be evaluated, i.e., leval(te,mc, e) = bgc and reval(te,mc, e) =
bvc.

If one of these requirements is violated we set type, leval , and reval to None.
Otherwise, the relative base address of component cn in the structure is defined,
i.e., bav(cl, cn) = bbc, and we define

type(te, gst(mc), lst top(mc),Str(e, cn)) = btc
leval(te,mc,Str(e, cn)) = bgvar str(g, cn)c
reval(te,mc,Str(e, cn)) = bv[b, sizet(t)]c

Access to Array Elements

For array access we have instead of a component name cn a second sub expression
ei which specifies the index of the requested array element. The definition of
the memory object and initialized flags is similar to structure access.

mobj (te, gst , lst ,Arr(ea, ei)) = mobj (te, gst , lst , ea)
initialized(te,mc,Arr(ea, ei)) = initialized(te,mc, ea) ∧ initialized(te,mc, ei)

For the remaining evaluation functions we require

• that the array expression ea can be evaluated, i.e., leval(te,mc, ea) = bgac
and reval(te,mc, ea) = bvac,

4.3. Expression Evaluation 57

• that the index expression ei can be evaluated to some numerical value

reval(te,mc, ei) = bInt(i)c
∨ reval(te,mc, ei) = bNat(i)c
∨ reval(te,mc, ei) = bChar(i)c

• that type(te, gst(mc), lst top(mc), ea) = bArrT(l, t)c, i.e., that ea is an
array with l elements of type t,

• and that the index is in range, i.e., i < l.

If one of these requirements is violated we set type, leval , and reval to None.
Otherwise, we define:

type(te, gst , lst ,Arr(ea, ei)) = btc
leval(te,mc,Arr(ea, ei)) = bgvararr(ga, i)c
reval(te,mc,Arr(ea, ei)) = bva[i · sizet(t), sizet(t)]c

Unary Operators

For the definition of expression evaluation for unary operators we use the
definitions from Section 4.3.3. For an expression UnOp(◦1, e) which applies a
unary operator ◦1 to an expression e we define

mobj (te, gst , lst ,UnOp(◦1, e)) = false
initialized(te,mc,UnOp(◦1, e)) = initialized(te,mc, e)

For the definition of the remaining evaluation functions we require

• reval(te,mc, e) = bvec, i.e., that e can be evaluated and

• value◦1(◦1, ve) = bvc, i.e., that applying the unary operator to this value
returns a meaningful result.

If one of these requirements is violated we set type, leval , and reval to None.
Otherwise we define

type(te, gst , lst ,UnOp(◦1, e)) =
⌊
type◦1

(◦1, the(type(te, gst , lst , e)))
⌋

leval(te,mc,UnOp(◦1, e)) = undef
reval(te,mc,UnOp(◦1, e)) = b[v]c

Binary and Lazy Binary Operators

The definition of the evaluation functions for binary and lazy operators follows
the scheme from the unary operators. Let e be a binary or a lazy binary
expression, i.e., e = BinOp(◦2, e1, e2) or e = LazyBinOp(◦2, e1, e2). We define
the memory object and initialized flags by

mobj (te, gst , lst , e) = false
initialized(te,mc, e) = initialized(te,mc, e1) ∧ initialized(te,mc, e2)

For the definition of the remaining evaluation functions we require that

58 Formal C0 Small-Step Semantics

• e1 and e2 can be evaluated to values, i.e., reval(te,mc, e1) = bv1c and
reval(te,mc, e2) = bv2c,

• that applying the binary operator to these values returns a meaningful
result, i.e., value◦2(◦2, v1, v2) = bvc,

• and that for both sub expressions we can compute a type

type(te, gst(mc), lst top(mc), e1) = bt1c
type(te, gst(mc), lst top(mc), e2) = bt2c

If one of these requirements is violated we set type, leval , and reval to None.
Otherwise we define

type(te, gst , lst , e) =
⌊
type◦2

(◦2, t1, t2)
⌋

leval(te,mc, e) = undef
reval(te,mc, e) = b[v]c

4.4 Execution of C0 Programs

In this section we define the execution of C0 programs. We start in Section 4.4.1
with the definition of the initial configuration for a given C0 program. In
Section 4.4.2 we formalize a function for memory updates which is used in
Section 4.4.3 to define the transition function of the C0 small-step semantics.

4.4.1 Initial Configuration

In C0 the values of global and heap variables are initialized with default values.
In this section we define these default values (sometimes also called initial
values) for all C0 types. Then, we use the initial values to define the initial
configuration for a given C0 program. This initial configuration depends only
on the function table and the global symbol table.

Definition 4.27 (Initial memory frame) Before its initialization with de-
fault values, the initial content of a memory frame for a given symbol table st
is defined as follows.

initmem(st) =

 ct = undef
st = st
init = ∅

Definition 4.28 (Initial values) We introduce the function initval :: ty 7→
mcellC0 list which defines default values for all C0 types by structural induction.

initval(BoolT) = [Bool(false)]
initval(IntT) = [Int(0)]

initval(CharT) = [Char(0)]
initval(UnsignedT) = [Nat(0)]

4.4. Execution of C0 Programs 59

initval(PtrT(tn)) = [Ptr(⊥)]
initval(NullT) = [Ptr(⊥)]

initval(ArrT(n, t)) = replicate(n, initval(t))
initval(StrT([])) = []

initval(StrT((cn, t)#xs)) = initval(t) ◦ initval(StrT(xs))

Definition 4.29 (Initial symbol tables) We introduce the function initst ::
(S× ty) list 7→ mcellC0 list . The function computes the initialized content for a
given symbol table by concatenation of the initial values of all its variables.

initst([]) = []
initst((vn, t)#xs))) = initval(t) ◦ initst(xs)

Definition 4.30 (Initializing variables) We define the function initvars ::
mframe 7→ mframe which initializes all variables of a given memory frame. The
function initializes the content of a memory and additionally adds all variables
of the memory to the set of initialized variables.

initvars(m) = m

[
ct := λ i. initst(m.st)!i
init := {map(fst ,m.st)}

]

Next, we define the initial memory configuration of a C0 machine. The
initial memory depends on the function table and the symbol table for the
global variables. The global variables are zero-initialized using the function
initvars, the local memory stack is initialized with a single frame for the main
function, and the heap memory is initially empty.

Definition 4.31 (Initial memory configuration) The initial memory con-
figuration of a C0 program is defined by the function initmc :: functableT ×
(S × ty) list 7→ memconf ⊥. Let ft be a function table and gst a symbol ta-
ble with the global variables. Further, let mf be the main function of the
program, i.e., map-of (ft , ”main”) = bmf c. If there is no main function, i.e.,
map-of (ft , ”main”) = None, we set initmc(ft , gst) = None. Otherwise, we
define

initmc(ft , gst) =

 gm = initvars(initmem(gst))
lm = [(initmem(mf .params ◦mf .lvars), undef)]
hm = [initmem([])]

Now, we can define the initial configuration of a C0 machine.

Definition 4.32 (Initial configuration) Let ft be a function table and gst
the symbol table of the global variables. We define the function initconf ::
functableT × (S× ty) list 7→ conf C0⊥ which generates the initial configuration
of a C0 machine. If there is no main function, i.e., map-of (ft , ”main”) =
None, we set initconf(ft , gst) = None. Otherwise, we abbreviate with mf =
the(map-of (ft , ”main”)) the main function of the given function table and
initialize the program rest of the C0 machine with the body of the main
function without the final return statement.

initconf(ft , gst) =
⌊[

mem = the(initmc(ft , gst))
prog = remlast(mf .body)

]⌋

60 Formal C0 Small-Step Semantics

4.4.2 Updating Memory

Before we start defining the C0 transition function we introduce a function
which updates the memory of a C0 configuration. This function will be used
in Section 4.4.3 to model the semantics of assignments, function calls, returns,
and memory allocation.

Let mc a memory configuration, g a g-variable, and v :: N 7→ mcellC0 a
value. We define the function memupd :: memconf × gvar × (N 7→ mcellC0) 7→
memconf ⊥ which updates g-variable g with value v.

In C0, partial updates of uninitialized variables are not allowed; thus, we
require that g is initialized or it is a root g-variable: initializedg(mc, g) ∨
rootg(g) = g. If this requirement is violated, we set memupd(mc, g, v) = None.

Otherwise, we define the memory update by case distinction on g’s root
g-variable. For this, abbreviate the base address of g by b = bag(sc(mc), g) and
its size by s = sizet(tyg(sc(mc), g)).

• rootg(g) = gvargm(x):

memupd(mc, g, v) :=
⌊
mc

[
gm.init := gm.init ∪ x
gm.ct := gm.ct ([b, s] := v[0, s])

]⌋

• rootg(g) = gvar lm(i, x):

memupd(mc, g, v) :=
⌊
mc

[
lm!i.init := lm!i.init ∪ x
lm!i.ct := lm!i.ct ([b, s] := v[0, s])

]⌋

• rootg(g) = gvarhm(j):

memupd(mc, g, v) :=
⌊
mc

[
hm.ct := hm.ct ([b, s] := v[0, s])

]⌋
Observe that we do not update the set of initialized variables for heap variables,
because all heap variables are initialized by definition. Thus, the set of initialized
variables for the heap memory frame is never used.

Isabelle Observe that for the formal counterpart mem update of this function
in Isabelle the value is represented by a data slice. The data slice contains a
flag which specifies whether the value of the data slice is initialized and this flag
is checked by mem update: if the data slice is not initialized it returns None. In
this thesis the function memupd cannot check if the value is initialized; rather,
this test is done explicitely for each use of memupd .

4.4.3 Transition Function

Now, we define the transition function δC0 of the C0 small-step semantics which
models the execution of C0 programs. Given a type name environment te and
a function table ft , the transition function maps the current C0 configuration c
to its successor configuration δC0(te, ft , c) or, in case of an error, to None.

δC0 :: tenv × functableT × conf C0 7→ conf C0⊥

4.4. Execution of C0 Programs 61

Comp

Comp

Ass(el, er) s1

s2

Comp

Comp

Skip s1

s2
δC0

Figure 4.2: Execution of Compound Statements: Real Statement

We define the transition function by induction on the program rest. If the
program rest is a compound statement Comp(s1, s2), we apply the transition
function recursively to s1. Otherwise, it consists of a single statement and we
execute it without recursive execution of δC0.

Skip

If c.prog = Skip the C0 program has terminated. We model termination by a
fix point and define δC0(te, ft , c) = bcc.

Statement Composition

For c.prog = Comp(s1, s2) we define the execution of the C0 program by
recursion on the left sub statement s1. We consider two cases.

If s1 = Skip the execution of the left sub tree has finished and we set
δC0(te, ft , c) = bc[prog := s2]c, i.e., we execute the skip statement. Otherwise,
we define

δC0(te, ft , c) ={
bC ′[prog := Comp(C ′.prog , s2)]c if δC0(c[prog := s1]) = bC ′c
None otherwise

.

The effect of this recursive definition is that the transition function executes the
first real (i.e., different from Comp) statement in the program rest and replaces
it by a skip statement. The structure of the program rest changes only locally
at the executed statement. This is illustrated in Figures 4.2 and 4.3.

Conditional

If the program rest is built by some conditional statement, i.e., c.prog =
Ifte(e, s1, s2), the new program rest will either be s1 or s2 depending on the
condition e. We require type(te, gst(c.mem), lst top(c.mem), e) = bBoolTc and
initialized(te, c.mem, e), i.e., that the condition expression is of boolean type
and initialized, and that in can be evaluated, i.e., reval(te, c.mem, e) = bvec. If
one of these requirements is violated we set δC0(te, ft , c) = None. Otherwise

62 Formal C0 Small-Step Semantics

Comp

Comp

Skip s1

s2

Comp

s1 s2
δC0

Figure 4.3: Execution of Compound Statements: Skip Statement

we define

δC0(te, ft , c) =

{
bc[prog := s1]c if ve = Bool(true)
bc[prog := s2]c otherwise

While Loop

If c.prog = Loop(e, lb) the new program rest will either be Skip, if the loop
condition evaluates to false, or Comp(lb,Loop(e, lb)), if the condition is true.
In the latter case, the loop body lb will be executed once before testing the loop
condition again. For loops we require as for conditionals initialized(te, c.mem, e)
and type(te, gst(c.mem), lst top(c.mem), e) = bBoolTc, i.e., that the loop condi-
tion is initialized and of boolean type, and that it can be evaluated to some
value, i.e., reval(te, c.mem, e) = bvec. If one of these requirements is violated
we set δC0(te, ft , c) = None. Otherwise we define

δC0(te, ft , c) =

{
bc[prog := Comp(lb,Loop(e, lb))]c if ve = Bool(true)
bc[prog := Skip]c otherwise

Assignment

As described in Section 4.1.3, the C0 small-step semantics distinguishes two
kinds of assignments: normal assignments and assignments of aggregate literals.
The latter form is used for the initialization of non-elementary variables in
a single step which is necessary for the equivalence proof between the C0
small-step semantics and the Hoare logic from [Sch06].

Normal Assignment. Let the program rest consist of a normal assignment
statement: c.prog = Ass(el, er). We require that the left expression el can
be evaluated to some g-variable g, i.e., leval(te, c.mem, el) = bgc, that the
right expression er can be evaluated to some value v and is initialized, i.e.,
reval(te, c.mem, er) = bvc and initialized(te, c.mem, er), and that updating the
memory succeeds, i.e., memupd(c.mem, g, v) = bmc′c.

If one of these conditions is violated we set δC0(te, ft , c) = None. Otherwise
we define

δC0(te, ft , c) =
⌊
c

[
prog := Skip
mem := mc′

]⌋

4.4. Execution of C0 Programs 63

Assignment of Aggregate Literals. The semantics of aggregate literal
assignments are similar to normal assignments. Let the program rest be
c.prog = AssAL(el, l). We require that the left expression el can be evaluated
to some g-variable g, i.e., leval(te, c.mem, el) = bgc, that the aggregate literal l
can be evaluated to some value v, i.e., revalalit(l) = bvc, and that updating the
memory succeeds, i.e., memupd(c.mem, g, v) = bmc′c.

If one of these requirements is violated we set δC0(te, ft , c) = None. Other-
wise we define as before for normal assignments

δC0(te, ft , c) =
⌊
c

[
prog := Skip
mem := mc′

]⌋

Memory Allocation

Let the program rest consist of a statement for allocation of new heap memory,
i.e., c.prog = PAlloc(el, tn).

We introduce the predicate availheap :: memconf × ty 7→ B which specifies
if there is enough heap memory available to allocate a new object of a given
type. For the C0 semantics, this predicate remains an uninterpreted parameter.
This keeps the C0 semantics independent of the amount of available memory in
a concrete machine. However, in Section 8.3 we will give a concrete instance
of this predicate which decides based on the available memory on the target
machine and the set of already allocated objects. It is possible to replace that
simple instance with a more involved version which supports garbage collection
without changing the C0 semantics.

If there is enough free heap memory left the execution of the allocation
statement can be divided into two steps.

1. In a first step, we extend the heap memory by a new (unnamed) variable
of correct type and initialize it.

2. In a second step, we create a pointer to the newly allocated variable and
assign it to the left expression el.

If there is not enough heap memory left we skip the first step and assign a null
pointer in the second.

For both cases we require that the left expression el can be evaluated to
some g-variable g, i.e., leval(te, c.mem, el) = bgc, and that the type name tn is
defined in the type name environment, i.e., map-of (te, tn) = btc.

Definition 4.33 (Heap extension) We introduce the function extendheap ::
(memconf × ty ×B)×memconf × ty 7→ memconf which handles step 1 of the
above list, i.e., it adds a new initialized variable to the heap. Let m the old
memory configuration, and t the type of the new heap variable. Then the new
memory configuration m′ = extendheap(availheap,m, t) is defined as follows.

We abbreviate the base address of the new heap variable (which equals the
abstract size of the old heap memory) by b =

∑|hst(m)|−1
j=0 sizet(snd(hst(m)!j)).

If there is enough heap memory available, i.e., availheap(m, t) = true, the new
heap memory is defined by

hm′ = m.hm
[

st := hst(m) ◦ [(undef , t)]
ct := m.hm.ct ([b, sizet(t)] := initval(t)[0, sizet(t)])

]
.

64 Formal C0 Small-Step Semantics

Otherwise, if availheap(m, t) = false, we set hm′ = m.hm.

For the second step, let p be a pointer which is either the null pointer, if
there is not enough heap memory, or points to the newly allocated heap variable.

p =

{
Ptr(gvarhm(|hst(c.mem)|)) if availheap(c.mem, t)
Ptr(⊥) otherwise

If one of the requirements is violated we set δC0(te, ft , c) = None. Otherwise,
updating g with p succeeds (because p is by definition properly initialized) and
gives a new memory configuration mc′, i.e.,

memupd(extendheap(availheap, c.mem, t), g, [p]) = bmc′c .

Then, we define the new configuration by

δC0(te, ft , c) =
⌊
c

[
prog := Skip
mem := mc′

]⌋

Function Call

Let the program rest consist of a function call to a function with name fn and
parameters pl, i.e., c.prog = SCall(vn, fn, pl). The return value of this function
call with later be stored in variable vn. Such a function call to is executed in
several steps.

1. First, we extend the local memory stack by a new stack frame. The
symbol table of this new stack frame consists of the parameters and local
variables of the called function.

2. Then, we evaluate the parameters of the function call and copy their
values into the new stack frame.

3. As a last step, we set the new program rest to the body of the called
function.

We start with the definition of a function which copies the parameters.

Definition 4.34 (Parameter passing) We define the semantics of parameter
passing via the function copypara :: memconf × (N 7→ mcellC0) list × S list 7→
memconf ⊥. An application copypara(mc, vl, pnl) of this function copies the
values from the value list vl to variables in the current local memory frame of
memory configuration mc. Which variables are updated is specified by the list
pnl of parameter names. The function copypara is defined by recursion on the
list of values. We define the base case by

copypara(mc, [], pnl) = bmcc .

For the recursive case, i.e., copypara(mc, v#vl, pnl), assume that copying the
first parameter value to the local variable hd(pnl) in the current local mem-
ory frame succeeds. If this is not the case we set copypara(mc, v#vl, pnl) =
None. If it succeeds there exists a new memory configuration mc′ such that
memupd(mc, gvar lm(|mc.lm| − 1, hd(pnl)), v) = bmc′c and we define

copypara(mc, v#vl, pnl) = copypara(mc′, vl, tl(pnl)).

4.4. Execution of C0 Programs 65

Now, we start with the definition of the transition function for function calls.
We combine steps 1 and 2 in the function extend stack. First, we introduce the
notation st fun(f) = f.params ◦ f.lvars to refer to the symbol table of a function
f :: funcT . This symbol table is composed of the parameters f.params and of
the local variables f.lvars.

Definition 4.35 (Stack extension) We introduce the function extend stack ::
tenv × memconf × S × funcT × expr list 7→ memconf ⊥. An application
extend stack(te,mc, vn, f, pl) of this function adds a new memory frame for
function f to the local memory stack of configuration mc and copies parameters
pl to it. The return destination of the new memory frame – the address /
g-variable where the result of the function will be written – is obtained from
variable vn.

Let m′ be the new local memory frame and mc′ an intermediate extended
memory configuration:

m′ =

 ct = undef
st = st fun(f)
init = ∅

mc′ = mc [lm := mc.lm ◦ [(m′, leval(te,mc,Var(vn)))]]

Observe that the local variables of the function are not automatically initialized
(m′.init = ∅). Only the function’s parameters are being initialized during the
function call. For all other local variables, the programmer is in charge of proper
initialization before usage. Given that all parameters can be evaluated and
are initialized, we obtain the final extended memory configuration from mc′ by
copying the values of the parameters

extend stack(te,mc, vn, f, pl) =
copypara(mc′,map(the(reval(te,mc)), pl),map(fst , f.params)).

Otherwise, i.e., if not all parameters can be evaluated, stack extension fails, and
we set extend stack(te,mc, vn, f, pl) = None.

Now, it is easy to define step 3 and by that the new configuration of the
C0 machine after executing the statement SCall(vn, fn, pl). Abbreviating with
f = the(map-of (ft , fn)) the function which is being called we define

δC0(te, ft , c) =
⌊
c

[
prog := f.body
mem := the(extend stack(te,mc, vn, f, pl))

]⌋

Return

Let the program rest consist of a return statement with return expression re,
i.e., c.prog = Return(re). The execution of this statement can be divided into
two steps.

1. Evaluate the return expression and store its value at the return destination
specified by the current local memory frame.

2. Remove the current local memory frame from the stack.

66 Formal C0 Small-Step Semantics

ci−1 ci ci+1

ds(i−1) ds(i) ds(i)+t

synthesize

execution
of inline
assembly

Figure 4.4: Modeling the Semantics of Inline Assembly Code

We require that the return expression re can be evaluated to some value v
and is initialized, i.e., reval(te, c.mem, re) = bvc and initialized(te, c.mem, re),
and that updating the return destination with the value of the return expression
succeeds, i.e., memupd(c.mem, snd(hd(c.mem.lm)), v) = bmc′c.

If one of the requirements is violated we set δC0(te, ft , c) = None. Otherwise,
we define the new configuration by

δC0(te, ft , c) =
⌊
c

[
prog := Skip
mem.lm := butlast(mc′.lm)

]⌋

Inline Assembly

Originally, we planned to introduce a separate computational model to define
the semantics of C0 with inline assembly (cf. [GHLP05]). However, during the
verification of Verisoft’s academic system, it turned out to be more effective
to verify chunks of C0 code and chunks of assembly code separately [ST08]
and to combine the results later using the compiler correctness theorem from
Chapter 8. This method heavily depends on the fact that the correctness
theorem is formulated as a small-step simulation theorem which relates every
state of a C0 computation to some consistent assembly state. The simulation
theorem provides a ‘double’ computation consisting of a sequence of C0 states
and a sequence of corresponding assembly states.

This allows to switch at the start of inline assembly code from the C0 layer
in configuration ci to some configuration ds(i) at the assembly layer. Starting
from ds(i), we completely execute the inline assembly part (we do not support
non-terminating inline assembly code). After its execution, we derive a new
(consistent) C0 configuration ci+1 from that part of the final assembly state
ds(i)+t which resembles the variables of the C0 program.5

This method of integrating inline assembly into the execution of C0 programs
is illustrated in Figure 4.4. Observe that the dotted arrow in the assembly layer
corresponds to several steps of the assembly machine.

5 Observe that this method for the integration of assembly code into C0 computations is
not a part of this thesis except for the development of the simulation theorem which it depends
on. A. Tsyban has developed and successfully applied the method during the verification of
low-level parts of Verisoft’s academic system.

4.4. Execution of C0 Programs 67

XCalls

As mentioned in Section 2.1.1, the meaning of each individual XCall is defined
axiomatically. Confer [ASS08] for a detailed example where the authors use
XCalls for the pervasive verification of a paging mechanism which is used in
Verisoft’s academic sub project.

4.4.4 Computations

In this section we combine the initial configuration of a C0 program and the
C0 transition function in order to define computations of a C0 program. We
start with the definition of a function which executes the C0 transition function
several times.

Definition 4.36 (Multiple C0 transitions) We define the function δn
C0 ::

tenv × functableT × conf C0 7→ conf C0⊥ which executes the C0 transition
function n times starting from a given configuration. The definition is done by
induction on n.

δ0
C0(te, ft , c) = bcc

δi+1
C0 (te, ft , c) =

{
δC0(te, ft , c′) if δi

C0(te, ft , c) = bc′c
None if δi

C0(te, ft , c) = None

C0 programs consist of a type name environment te, a function table ft ,
and a symbol table gst for the global variables.

Definition 4.37 (C0 computation) We introduce the function nthstepn
C0 ::

tenv × functableT × (S× ty) list 7→ conf C0⊥ which computes the n-th configu-
ration of a C0 program starting from its initial configuration.

nthstepn
C0(te, ft , gst) =

{
δn
C0(te, ft , c0) if initconf(ft , gst) =

⌊
c0

⌋
None otherwise

Chapter 5

Properties of the Small-Step Semantics

Contents
5.1 Basic Properties . 69

5.2 The Set of Valid C0 Programs 70

5.3 Type Correctness . 80

5.4 Structure of the Program Rest 87

5.5 Valid Configurations . 94

In this chapter, we will introduce several properties and invariants of the C0
small-step semantics which we will need in Part II for the compiler correctness
proof.

We start with some basic properties of the C0 transition function in Sec-
tion 5.1. Then, we introduce in Section 5.2 the set of valid C0 programs which
requires expressions, statements, and other components of C0 programs to be
consistent and well-formed. In Section 5.3, we introduce the notion of type
correctness and show that the C0 expression evaluation is type correct. In
Section 5.4, we define an invariant about the structure of program rests and
prove that it is preserved by the C0 transition function. Finally, we define in
Section 5.5 the set of valid C0 configurations. This definition includes among
others static type correctness properties and well-formedness conditions on the
program structure.

5.1 Basic Properties

The following lemma relates the execution of one step for a given program rest
with the execution of one step when the program rest is replaced by its first
non-compound statement, i.e., by hd(s2l(c.prog)). This lemma allow to prove
properties about the next step of the C0 machine without doing induction on
the structure of the program rest.

Lemma 5.1 (Execution of the first statement) Let te be a type name en-
vironment, ft a function table, and c a C0 configuration and assume that the
C0 transition function does not produce an error in the next step.

Then, if we execute the C0 transition on a fictive configuration which equals
c, except for the program rest which is replaced by the first non-compound

69

70 Properties of the Small-Step Semantics

statement in the program rest of c, we get the same memory configuration as if
we would have executed the transition function on the original configuration c.

δC0(te, ft , c) = bc′c
=⇒ c′.mem = the(δC0(te, ft , c [prog := hd(s2l(c.prog))])).mem

Proof This lemma is proved by a simple induction on the program rest. The
different induction steps are trivial and omitted here.

5.2 The Set of Valid C0 Programs

Only a small fraction of the C0 configurations which could theoretically be
build according to the definitions from Section 4.2 are reasonable. For example,
we could build a configuration where one of the statements in a function is
‘5=true;’. This particular statement is invalid for two reasons:

1. ‘5’ is a constant, i.e., it should not be used as a left expression, and

2. the types of left and right expression do not match.

In this section we define a predicate which separates the ‘good’ from the ‘bad’
C0 configurations. We start with the definition of valid expressions, extend this
to valid statement, introduce valid type name environments, and define finally
the set of valid function tables.

All these properties are static and the formal definitions are executable via
Isabelle’s code generation feature [BN02, Ber03]. Thus, the properties can be
checked once and for all for a given C0 program which is in fact nothing else
than a (huge) constant in Isabelle / HOL. For details how this approach can be
used inside proofs see [Tzi07].

5.2.1 Valid Expressions

In this section we define the set of valid C0 expressions. We start with the
definition of three predicates which specify which types are valid for the unary,
binary, and lazy operators of C0. In particular, arithmetic operations for
expressions of type CharT are not supported.

Definition 5.1 (Valid unary operations) We define inductively the set of
valid unary operations.

validunop :: unop × ty set

t = IntT

(minus, t) ∈ validunop

t ∈ {IntT,UnsignedT}
(neg , t) ∈ validunop

t = BoolT
(not , t) ∈ validunop

5.2. The Set of Valid C0 Programs 71

◦ ∈ {toint , tounsgnd , tochar} t ∈ {IntT,UnsignedT,CharT}
(◦, t) ∈ validunop

Definition 5.2 (Valid binary operations) We define the set of valid binary
operations.

validbinop :: binop × ty × ty set

For arithmetic and bitwise operators we require both operands to have the same
type. Observe that division and modulo computation are only supported for
unsigned operands.

◦ ∈ {add , sub,mult , orb, andb, xorb} t1 = t2 t1 ∈ {IntT,UnsignedT}
(◦, t1, t2) ∈ validbinop

◦ ∈ {div ,mod} t1 = t2 t1 = UnsignedT

(◦, t1, t2) ∈ validbinop

The type of the shift distance can be an arbitrary numeric type.

◦ ∈ {shift l, shift r}
t1 ∈ {IntT,UnsignedT} t2 ∈ {IntT,UnsignedT,CharT}

(◦, t1, t2) ∈ validbinop

◦ ∈ {compless, comple, compgreater, compge}
t1 = t2 t1 ∈ {IntT,UnsignedT,CharT}

(◦, t1, t2) ∈ validbinop

We allow equality tests if both types are equal and elementary. Additionally, we
support one of them being a pointer and the other the special type NullT which
represents null pointer constants. This allows to compare arbitrary pointers
with Null .

◦ ∈ {compeq, compneq}
elem?t(t1) t1 = t2 ∨ (t1 = PtrT ∧ t2 = NullT) ∨ (t1 = NullT ∧ t2 = PtrT)

(binop, t1, t2) ∈ validbinop

Definition 5.3 (Valid lazy operations) We define the set of valid lazy op-
erations.

validlazyop :: lazyop × ty × ty set

t1 = BoolT t2 = BoolT
(and l, t1, t2) ∈ validlazyop

t1 = BoolT t2 = BoolT
(or l, t1, t2) ∈ validlazyop

72 Properties of the Small-Step Semantics

Next, we define the sets of valid primitive and aggregate literals. We restrict
the range of values to come up with the bounded register size of computers.

Definition 5.4 (Valid literals) We define the set of valid literals.

validlit :: lit set

−231 ≤ i < 231

Int(i) ∈ validlit

0 ≤ n < 232

Unsigned(n) ∈ validlit

−27 ≤ i < 27

Char(i) ∈ validlit

Bool(b) ∈ validlit

Null ∈ validlit

Definition 5.5 (Valid aggregate literals) We define the set of valid aggre-
gate literals.

validalit :: lita set

ALPrim(p) ∈ validalit

For array literals we require that all elements have the same type and are
themselves valid aggregate literals.

vl 6= [] ∀v ∈ vl : v ∈ validalit ∀v ∈ vl : typealit(v) = typealit(hd(vl))
ALArr(vl) ∈ validalit

For structure literals we also require that the components are themselves valid
aggregate literals and additionally that the component names are pairwise
distinct.

cvl 6= [] distinct(map(fst , cvl)) ∀cv ∈ cvl : snd(cv) ∈ validalit

ALStruct(cvl) ∈ validalit

Isabelle Observe that for technical reasons the definition of valid aggregate
literals in Isabelle / HOL has been done slightly different using three mutual
recursive functions instead of an inductive set. Nevertheless, the semantics of
both definitions are equivalent.

For the definition of valid expressions we need a predicate which checks
whether a given expression refers to an object in the local memory. Of course

5.2. The Set of Valid C0 Programs 73

we could simply left evaluate the expression and check the memory name of
the obtained g-variable. But this would require to have a complete memory
configuration which conflicts with our intention to define a static property.

Definition 5.6 We define the predicate lmexpr :: tenv × (S × ty) list × (S ×
ty) list × expr 7→ B which tests whether a given expression belongs to a local
memory. In C0, pointers to local variables are forbidden. Thus, in valid C0
programs, the address-of operator and pointer dereferencing cannot generate
expressions which reference a local memory frame.

lmexpr(te, gst , lst ,Var(vn)) = vn ∈ map(fst , lst)
lmexpr(te, gst , lst ,Arr(ea, ei)) = lmexpr(te, gst , lst , ea)
lmexpr(te, gst , lst ,Str(e, cn)) = lmexpr(te, gst , lst , e)

For all other expressions e we set the predicate to false.

lmexpr(te, gst , lst , e) = false

Definition 5.7 (Valid expressions) We define the set of valid expressions.
It depends on the type name environment te and on the symbol tables lst and
gst for local and global variables.

validexpr :: tenv × (S× ty) list × (S× ty) list 7→ expr set

We require literals to be valid according to the definition on the facing page.

l ∈ validlit

Lit(l) ∈ validexpr(te, gst , lst)

Variables must be defined in the local or in the global memory.

vn ∈ map(fst , lst) ∨ vn ∈ map(fst , gst)
Var(vn) ∈ validexpr(te, gst , lst)

An access to an array element is valid if all sub expressions are valid and have
proper types. Observe that array indices have to be unsigned expressions.

type(te, gst , lst , ea) = bArrTn, tc type(te, gst , lst , ei) = bUnsignedTc
ea ∈ validexpr(te, gst , lst) ei ∈ validexpr(te, gst , lst)

Arr(ea, ei) ∈ validexpr(te, gst , lst)

For access to structure components we require that the sub expression is valid
and has a proper type and that the component name is present in the structure
type.

type(te, gst , lst , e) = bStrT(scl)c
cn ∈ map(fst , scl) e ∈ validexpr(te, gst , lst)

Str(e, cn) ∈ validexpr(te, gst , lst)

74 Properties of the Small-Step Semantics

Operator application is a valid expression if all sub expressions are valid and
their types go with the operator.

type(te, gst , lst , e) = btc (◦, t) ∈ validunop e ∈ validexpr(te, gst , lst)
UnOp(◦, e) ∈ validexpr(te, gst , lst)

e1 ∈ validexpr(te, gst , lst)
e2 ∈ validexpr(te, gst , lst) type(te, gst , lst , e1) = bt1c

type(te, gst , lst , e2) = bt2c (◦, t1, t2) ∈ validbinop

BinOp(◦, e1, e2) ∈ validexpr(te, gst , lst)

e1 ∈ validexpr(te, gst , lst)
e2 ∈ validexpr(te, gst , lst) type(te, gst , lst , e1) = bt1c
type(te, gst , lst , e2) = bt2c (◦, t1, t2) ∈ validlazyop

LazyBinOp(◦, e1, e2) ∈ validexpr(te, gst , lst)

Application of the address-of operator is a valid expression if the sub expression
is valid, there exists a type name for its type, and it represents a memory object
which does not refer to a local variable.

e ∈ validexpr(te, gst , lst) type(te, gst , lst , e) = btc
t ∈ map(snd , te) mobj (te, gst , lst , e) ¬lmexpr(te, gst , lst , e)

AddrOf (e) ∈ validexpr(te, gst , lst)

Dereferencing of an expression e is valid if e is a valid expression and the type
of e is a pointer to some type name which exists in the type name environment.

e ∈ validexpr(te, gst , lst)
type(te, gst , lst , e) = bPtrT(tn)c tn ∈ map(fst , te)

Deref (e) ∈ validexpr(te, gst , lst)

5.2.2 Valid Statements

In this section we define the set of valid C0 statements. We start with two
predicates which test whether two types are suitable for assignments and whether
the types of function call parameters go with the signature of the called function.

Definition 5.8 (Suitable types for assignments) We define the function
tmatchass :: ty × ty 7→ B which tests for two types tl and tr if a value of type tr
can be assigned to a g-variable of type tl. Such an assignment is possible if tl and
tr are equal or differ only for sub variables where the right type has the special
null pointer type, i.e., corresponds to a null pointer literal (cf. Definition 4.23
on page 53). Null pointer constants may be assigned to arbitrary pointer types,

5.2. The Set of Valid C0 Programs 75

even when they occur inside some aggregate literals.

tmatchass(t, t)

tmatchass(PtrT(tn),NullT)

|scl| = |scl′| ∀i < |scl| : tmatchass(scl!i, scl′!i)
tmatchass(StrT(scl),StrT(scl′))

tmatchass(t, t′)
tmatchass(ArrT(n, t),ArrT(n, t′))

Definition 5.9 (Suitable parameter types) Based on tmatchass we define
the function tmatchpara :: (ty⊥) list × ty list 7→ B which tests if the types of
a given list of function call parameters match the parameter types from the
function’s signature.

Let stl be the list of types from the function’s signature. We define the
function by induction on the list of (options of) parameter types. If one of the
elements of this list is None we return false.

tmatchpara([], stl) = (stl = [])

tmatchpara(pt#xs, stl) =

tmatchass(hd(stl), t)
∧tmatchpara(xs, tl(stl))

if pt = btc

false otherwise

Now, we can define the set of valid C0 statements.

Definition 5.10 (Valid statements) We define the set of valid statements.
Let te be a type name environment, ft a function table, and gst and lst the
symbol tables for the global and local variables.

validstmt :: tenv × functableT × (S× ty) list × (S× ty) list 7→ stmt set

Skip statements are always valid.

Skip ∈ validstmt(te, ft , gst , lst)

For compound statements both sub statements have to be valid.

s1 ∈ validstmt(te, ft , gst , lst) s2 ∈ validstmt(te, ft , gst , lst)
Comp(s1, s2) ∈ validstmt(te, ft , gst , lst)

For normal assignments we require that both expressions are valid, that their
types match, and that the left expression refers to a memory object.

el ∈ validexpr(te, gst , lst)
er ∈ validexpr(te, gst , lst) type(te, gst , lst , el) = btlc

type(te, gst , lst , er) = btrc tmatchass(tl, tr) mobj (te, gst , lst , el)
Ass(el, er) ∈ validstmt(te, ft , gst , lst)

76 Properties of the Small-Step Semantics

The rule for assignments of aggregate literals is similar to the rule for normal
assignments. It only differs in the requirements for the right expression.

el ∈ validexpr(te, gst , lst) lc ∈ validalit type(te, gst , lst , el) = btlc
typealit(lc) = tr tmatchass(tl, tr) mobj (te, gst , lst , el)

AssAL(el, lc) ∈ validstmt(te, ft , gst , lst)

For allocation of heap memory we require that the left expression is valid, of
the correct pointer type, and represents a memory object.

e ∈ validexpr(te, gst , lst)
type(te, gst , lst , e) = bPtrT(tn)c mobj (te, gst , lst , e)

PAlloc(e, tn) ∈ validstmt(te, ft , gst , lst)

For function calls we require that the function name exists, that the number and
types of parameters match the definition of the function, that all parameters are
valid expressions, and that the variable which is supposed to store the return
value is defined and has a matching type.

map-of (ft)(fn) = bfc |pl| = |f.params|
tmatchpara(map(λ e. type(te, gst , lst , e), pl),map(snd , f.params))

∀e ∈ pl : e ∈ validexpr(te, gst , lst)
Var(vn) ∈ validexpr(te, gst , lst) type(te, gst , lst ,Var(vn)) = bf.rtypec

SCall(vn, fn, pl) ∈ validstmt(te, ft , gst , lst)

For return statements we just require that the return expression is valid. Observe
that here we do not require that the type of the return expression matches the
return type of the function which the return statements belongs to. The reason
is simply that we do not know which function that is. The requirement that the
type of the return statement matches the return type of the function will be
part of the definition of valid functions on page 78 where we have the necessary
context information.

e ∈ validexpr(te, gst , lst)
Return(e) ∈ validstmt(te, ft , gst , lst)

For conditional statements we require that the condition is a valid boolean
expression and that both sub statements are valid and contain no return
statements.

e ∈ validexpr(te, gst , lst)
s1 ∈ validstmt(te, ft , gst , lst) s2 ∈ validstmt(te, ft , gst , lst)

type(te, gst , lst , e) = bBoolTc #ret(s1) = 0 #ret(s2) = 0
Ifte(e, s1, s2) ∈ validstmt(te, ft , gst , lst)

For loop statements we require that the condition is a valid boolean expression
and that the loop body is a valid, non-empty statement without returns.

e ∈ validexpr(te, gst , lst) lb ∈ validstmt(te, ft , gst , lst)
type(te, gst , lst , e) = bBoolTc #ret(lb) = 0 s2lns(lb) 6= []

Loop(e, lb) ∈ validstmt(te, ft , gst , lst)

5.2. The Set of Valid C0 Programs 77

Remark Observe that we do not give a definition of the validstmt predicate for
inline assembly or XCalls. For the latter, A. Tsyban has defined corresponding
requirements. For the former, N. Schirmer and E. Alkassar have formulated the
conditions.

5.2.3 Valid Type Name Environments

In this section we characterize valid type name environment. We start with a
definition of valid types.

Definition 5.11 (Valid type) Let te be a type name environment. We call
a type valid if it fulfills the following predicate:

valid ty :: tenv × ty 7→ B

Basic types are valid.

t ∈ {BoolT, IntT,CharT,UnsignedT,NullT}
valid ty(te, t)

Pointer types are valid if the type name is defined in the type name environment.

tn ∈ map(fst , te)
valid ty(te,PtrT(tn)

Structure types are valid if the list of components is not empty and all component
names are pairwise distinct and themselves valid types.

scl 6= [] distinct(map(fst , scl)) ∀sc ∈ scl : valid ty(te, snd(sc))
valid ty(te,StrT(scl)

Array types are valid if they are not empty and the element type itself is a valid
type.

0 < n valid ty(te, t)
valid ty(te,ArrT(n, t)

Definition 5.12 (Valid type name environment) Based on the definition
of valid types we define the set of valid type name environments. We say that a
type name environment is valid if the type names are pairwise distinct and all
types are valid.

valid tenv :: tenv set

distinct(map(fst , te)) ∀(tn, t) ∈ te : valid ty(te, t)
te ∈ valid tenv

78 Properties of the Small-Step Semantics

5.2.4 Valid Function Tables

In this section we characterize valid function tables. Roughly speaking, a
function table is valid if all its functions are valid. This requires among others
that the variable types in the function’s symbol tables are valid and that the
function body consists of valid statements. Additionally, we require that all
statements in the function table have distinct identifiers. We start by defining
the set of valid symbol tables.

Definition 5.13 (Valid symbol table) We call a symbol table valid if the
variable names are pairwise distinct and the types of all variables are valid
types.

valid st :: tenv 7→ ty set

distinct(map(fst , st)) ∀(vn, t) ∈ st : valid ty(te, t)
st ∈ valid st(te)

Definition 5.14 (Valid function) We define the set of valid functions. A
function f is valid if its body is a valid statement, the last statement in the
body of f (and only the last one) is a return statement, the type of the return
expression matches the return type of the function, and the symbol table
consisting of parameters and local variables of f is a valid symbol table.

valid fun :: tenv × functableT × (S× ty) list 7→ funcT set

f.body ∈ validstmt(te, ft , gst , st fun(f)) last(s2l(f.body)) = Return(re)
∀s ∈ butlast(s2l(f.body)) : ¬is Return(s) type(te, gst , st fun(f), re) = brtc

tmatchass(f.rtype, rt) st fun(f) ∈ valid st(te)
f ∈ valid fun(te, ft , gst)

To be able to refer uniquely to statements of a C0 program we require all
non-structural statements in valid function tables to be distinct. For statements
which are otherwise identical, this can be achieved by adapting the statement
identifier. Because this identifier is part of the constructor we can distinguish
statements – except structural statements like Skip and Comp – by simple
comparison which implicitly also compares the statement identifier.

Definition 5.15 (Distinct statements) We define the predicate dstnct s ::
stmt 7→ B which tests whether all sub statements of a given statement – except
for structural statements – are distinct.

dstnct s(s) = ∀x, y ∈ subs(s) : ¬ (stmtstructural(x) ∨ stmtstructural(y))
=⇒ x 6= y

Isabelle In Isabelle, the definition of distinct statements has been formalized
slightly different. However, the definition given above is more concise and has
the same semantics as the original definition.

5.2. The Set of Valid C0 Programs 79

Definition 5.16 (Globally distinct statemens) We extend the predicate
from the previous definition to complete function tables.

dstnct fts :: functableT 7→ B

dstnct fts ([])

dstnct s(snd(h).body) dstnct fts (t)
∀s ∈ subs(snd(h).body) : ¬stmtstructural(s) −→ ∀f ∈ t : s /∈ subs(snd(f).body)

dstnct fts (h#t)

Now, we can start with the definition of valid function tables.

Definition 5.17 (Valid function table) We define the set of valid function
tables. We call a function table ft valid if all functions in ft are valid, the
function names are pairwise distinct, all statements of all function bodies are
distinct, and the function table is not empty.

valid ft :: tenv × (S× ty) list 7→ functableT set

∀(fn, f) ∈ ft : f ∈ valid fun(te, ft , gst)
distinct(map(fst , ft)) dstnct fts (ft) ft 6= []

ft ∈ valid ft(te, gst)

Observe that we do not require the presence of a ‘main’ function in valid function
tables. The presence of a ‘main’ function is only needed when arguing about
the initial state of C0 computations. In such cases we will state the requirement
explicitly.

The non-emptiness requirement for the function table is – besides the
fact the empty programs do not make much sense – only needed for rather
technical arguments in the compiler correctness proof. However, we include
the requirement here, to keep the list of assumptions in lemmas as concise as
possible.

Remark Observe that, from now on, we often omit certain parameters of
functions (e.g., the type name environment te or the symbol configuration
sc(mc)) during proofs given that this does not introduce ambiguities.

Lemma 5.2 (Left and right evaluation are compatible) Evaluating the
right value of an expression via reval gives the same result as first evaluating
the left value g of the expression via leval and then reading the corresponding
part of the memory via valueg.

Formally, let te be a type name environment, mc a memory configuration,
and e an expression which represents a memory object. Then, the following
formula is true.

reval(te,mc, e) 6= None
∧mobj (te, gst(mc), lst top(mc), e)
∧mc.lm 6= []
=⇒ valueg(mc, the(leval(te,mc, e))) = the(reval(te,mc, e))

80 Properties of the Small-Step Semantics

Proof This lemma is proved by structural induction on e. Because e represents
a memory object, we only have to consider the following cases.

Case 1: e = Var(vn)
This case follows directly from the definitions of expression evaluation for
variables and of the base address of g-variables from definition 4.18.

Case 2: e = Arr(ea, ei)
Let type(ea) = bArrT(n, t)c and reval(ei) = bmc, where m is a numerical
memory cell with value i. Then we have

valueg(the(leval(Arr(ea, ei))))
=valueg(gvararr(leval(ea), i)) (definition of leval)
=valueg(leval(ea))[i · sizet(t), sizet(t)] (definition of valueg)
=the(reval(te,mc, ea))[i · sizet(t), sizet(t)] (induction hypothesis)
=reval(Arr(ea, ei)) (definition of reval)

Case 3: e = Str(es, cn)
The proof for this case follows the same structure as the proof for array
access.

Case 4: e = Deref (e′)
This case follows directly from the definition of reval . q.e.d.

5.3 Type Correctness

In this section we introduce the notion of type correctness. In short, type
correctness means that a value or a sequence of values matches a given type.
This means both that the memory cell is of the right kind, i.e., the constructor
matches the type, and that the value is in the range of the type, e.g., unsigned
naturals should be smaller than 232.

We start in Section 5.3.1 with the formal definition of type correctness. We
continue in Section 5.3.2 with basic lemmas and conclude in Sections 5.3.3
and 5.3.4 with the proof that expression evaluation produces type correct results.

5.3.1 Definitions

In this section we formally define type correctness. We start with defining
valid memory cells. This includes the definition of valid g-variables and valid
pointers.

Definition 5.18 (Valid memory cells) We define predicates for each basic
type which specify if a given memory cell m is valid with respect to that type.
The predicates can be false mainly for two reasons.

• If the memory cell has the wrong type (e.g., a memory cell Int for type
unsigned int) or

• if the value of the memory cell is not in the domain of the type.

5.3. Type Correctness 81

Formally we define

−231 ≤ i < 231

mcell
√

Int(Int(i))

0 ≤ i < 232

mcell
√

Nat(Nat(i))

−27 ≤ i < 27

mcell
√

Char (Char(i))

mcell
√

Bool(Bool(b))

Before we can give the definition of valid memory cells for pointers, we need
to introduce some auxiliary definitions. We start with the definition of valid
g-variables.

Definition 5.19 (Valid g-variables) We define the set gvars
√

of valid g-
variables which contains all g-variables with a well-formed structure for a given
symbol configuration sc.

gvars
√

:: symbolconf 7→ gvar set

For the base cases, the definition of valid g-variables is simple: we just require
that the referenced variable exists.

vn ∈ map(fst , sc.gst)
gvargm(vn) ∈ gvars

√
(sc)

vn ∈ map(fst , sc.lst !i) i < |sc.lst |
gvar lm(i, vn) ∈ gvars

√
(sc)

i < |sc.hst |
gvarhm(i) ∈ gvars

√
(sc)

For array g-variables we require that their parent g-variable is of array type,
that the index is smaller than the number of array elements, and that the parent
g-variable itself is a valid g-variable.

tyg(sc, g) = ArrT(n, t) i < n g ∈ gvars
√

(sc)
gvararr(g, i) ∈ gvars

√
(sc)

For structure access g-variables we require that their parent g-variable is of
structure type, that the component name is defined in that structure, and that
the parent g-variable itself is a valid g-variable.

tyg(sc, g) = StrT(scl) cn ∈ map(fst , scl) g ∈ gvars
√

(sc)
gvar str(g, cn) ∈ gvars

√
(sc)

82 Properties of the Small-Step Semantics

Based on this definition we define now the set of valid pointers.

Definition 5.20 (Valid pointers) We define the predicate ptr
√

which spec-
ifies if a given pointer is valid. Null pointers are always valid pointers whereas
pointers to g-variables g are valid if they are valid g-variables and refer to the
global memory or to the heap.

ptr
√

:: symbolconf × (gvar ∪ {⊥}) 7→ B

ptr
√

(sc,⊥)

memg(g) = gm ∨memg(g) = hm g ∈ gvars
√

(sc)
ptr
√

(sc, g)

Isabelle Observe that in Isabelle / HOL the preceding definition is split into
several predicates. For example, the requirement that the pointer is a valid
g-variable is formulated in an extra definition valid ptr. Also the following
definitions are split in Isabelle into two groups of predicates: one for non-pointer
types and a second with additional requirements for pointers (see the theories
ptr valid.thy and ptr valid lemmas.thy). For simplicity, we merge these
two groups of definitions here with the definitions regarding type correctness.

Definition 5.21 (Valid pointer memory cells) Similar to the definition of
valid memory cells we define valid pointer memory cells. For a pointer memory
cell which is not null we require that the g-variable which represents the pointer
destination has the type specified by parameter tn.

mcell
√

Ptr :: tenv × symbolconf × S×mcellC0 7→ B

ptr
√

(sc, p) p 6= ⊥ =⇒ map-of (te, tn) =
⌊
tyg(sc, p)

⌋
mcell

√
Ptr (te, sc, tn,Ptr(p))

Now, we can formally define the notion of type correctness.

Definition 5.22 (Type correctness) We define the predicate ty
√

:: tenv ×
symbolconf × (N 7→ mcellC0)× ty ×N 7→ B which check whether a given value
(or a sequence of values) matches a given type. In addition to the obvious
parameters (type name environment te, symbol configuration sc, value v, and
type) the predicate has a parameter b ∈ N which specifies the base address
inside the sequence of values where we start the comparison. For example, if
b = 0 we start at the beginning of the sequence, if b = 10 we ignore the first ten

5.3. Type Correctness 83

values. We define the predicate by induction on the type.

ty
√

(te, sc, v,BoolT, b) = mcell
√

Bool(v[b])
ty
√

(te, sc, v, IntT, b) = mcell
√

Int(v[b])
ty
√

(te, sc, v,CharT, b) = mcell
√

Char (v[b])
ty
√

(te, sc, v,UnsignedT, b) = mcell
√

Nat(v[b])
ty
√

(te, sc, v,PtrT(tn), b) = mcell
√

Ptr (te, sc, tn, v[b])
ty
√

(te, sc, v,NullT, b) = (v[b] = Ptr(⊥))
ty
√

(te, sc, v,StrT([]), b) = true
ty
√

(te, sc, v,StrT(h#t), b) = ty
√

(te, sc, v, snd(h), b)
∧ ty
√

(te, sc, v,StrT(t), b + sizet(snd(h)))
ty
√

(te, sc, v,ArrT(n, t), b) = ∀i < n : ty
√

(te, sc, v, t, b + i ∗ sizet(t))

Isabelle In Isabelle / HOL the preceding definition does not require that
pointer destinations are valid g-variables. However, to simplify presentation
we include this requirement here into ptr

√
and thus it is also part of ty

√
. In

Isabelle the validity of pointer targets is formulated in the additional definition
content valid ptrs.

Now we extend the definition of type correctness from values to complete
memory frames. We call a memory type correct if all its initialized variables
are type correct. Because normal memory frames with named variables and
the heap memory frame differ slightly we introduce a separate definition for the
heap memory.

Definition 5.23 (Type correct memory) For normal memory frames we
introduce the predicate ty

√
mem :: tenv × symbolconf × mframe 7→ B which

checks whether a given memory is type correct.

ty
√

mem(te, sc,m) = ∀vn ∈ (map(fst ,m.st) ∩m.init) :
ty
√

(te, sc,m.ct , the(typev(m.st , vn)), the(bav(m.st , vn)))

For the heap memory we need a slightly different definition of type correctness
because the heap differs in two points from the other memory frames. The heap
variables haves no names and they are automatically initialized, i.e., there is no
set of initialized variables for the heap memory.

Definition 5.24 (Type correct heap) We define the predicate ty
√

heap ::
tenv × symbolconf ×mframe 7→ B which checks whether a given memory frame
is a type correct heap memory frame.

ty
√

heap(te, sc,m) = ∀i < |m.st | :

ty
√

(te, sc,m.ct , snd(m.st !i),
i−1∑
j=0

sizet(snd(m.st !j)))

5.3.2 Basic Lemmas

In this section we present some basic lemmas about type correctness. We only
show the non-trivial basic lemmas; the most basic ones from the formal theories

84 Properties of the Small-Step Semantics

in Isabelle / HOL are not given here because they are quite trivial and would
distract the reader from the interesting facts.

Lemma 5.3 (Type correctness: base transformation) In this lemma we
prove that base parameter in the type correctness predicate can be removed if we
appropriately trim the sequence of memory cells.

ty
√

(te, sc, v, t, b) =⇒ ty
√

(te, sc, v[b, sizet(t)], t, 0)

Proof The proof is done by induction on the type t. We omit the details here.

Lemma 5.4 Type correctness is independent of the symbol tables of the local
memory stack and of additional heap variables:

ty
√

(te, sc, v, t, b)
∧ sc′.gst = sc.gst ∧ |sc′.hst | ≥ |sc.hst | ∧ sc′.hst [0, |sc.hst |] = sc.hst
=⇒ ty

√
(te, sc′, v, t, b)

Proof This lemma is proved by a simple induction on the type t. The
correctness follows from the fact that the symbol configuration sc is only used
to test the validity of pointers which can only point to the global or heap
memory. Thus, changes in the local memory stack do not alter their validity.
Additional heap variables in sc′ also have no effect, because all relevant pointers
in v must have been valid before and can only refer to variables which have
already been present in the old symbol configuration. But those variables have
not been changed. q.e.d.

Lemma 5.4 can easily be extended from ty
√

to ty
√

mem and ty
√

heap. The
proofs are trivial and skipped here.

Lemma 5.5 Type correctness of memory frames is independant of the symbol
tables of the local memory stack and of additional heap variables:

ty
√

mem(te, sc,m)
∧ sc′.gst = sc.gst ∧ |sc′.hst | ≥ |sc.hst | ∧ sc′.hst [0, |sc.hst |] = sc.hst
=⇒ ty

√
mem(te, sc′,m)

Lemma 5.6 Type correctness of the heap memory is independant of the symbol
tables of the local memory stack and of additional heap variables:

ty
√

heap(te, sc,m)

∧ sc′.gst = sc.gst ∧ |sc′.hst | ≥ |sc.hst | ∧ sc′.hst [0, |sc.hst |] = sc.hst
=⇒ ty

√
heap(te, sc′,m)

5.3.3 Type Correctness of Initial Values

In this section we present lemmas which state that the initial values defined in
Section 4.4.1 are type correct. The proofs of these lemmas are not interesting,
so we omit them here.

Lemma 5.7 (Type correctness: initial values) The inital value for a type
t is type correct.

ty
√

(te, sc, initval(t), 0)

5.3. Type Correctness 85

Proof The proof of this lemma follows directly from the definitions. It can be
done by a simple induction over t.

Lemma 5.8 (Type correctness: initial symbol table) All variables of a
memory frames which is initialized via initst are type correct.

∀vn ∈ map(fst , st) : ty
√

(te, sc, initst(st), the(typev(st , vn)), the(bav(st , vn)))

Proof This lemma can be proved by a simple list induction over the symbol
table st .

Corollary 5.9 (Type correctness: initial memories) We conclude from
the previous lemma that initialized memories are type correct.

ty
√

mem(te, sc, initvars(m))

5.3.4 Type Correctness: Expression Evaluation

In this section we will sketch a proof of the type correctness of expression
evaluation in the C0 small-step semantics. We will not give all details because
expression evaluation is made up of too many cases. However, the main idea of
the proof will be sketched.

Lemma 5.10 (Results of unary operators are type correct) Let ◦ be a
unary operator, t a type which is compatible with ◦, and m a memory cell.
Moreover, let r be the result of applying ◦ to m. If m is type correct with respect
to t then the result r will be type correct with respect to the type of the result.

ty
√

(te, sc, [m], t, 0) ∧ value◦1(◦, bmc) = brc
=⇒ ty

√
(te, sc, [r], type◦1

(◦, t), 0)

Proof The proof is done by a case distinction over all unary operators. The
individual cases are trivial; thus, we skip the proofs here.

Observe that similar lemmas also hold for binary and lazy operators.
Now, we prove a lemma which states that a value which has been read from

a type correct memory is itself type correct.

Lemma 5.11 (G-variables are type correct) Let mc be a memory config-
uration where the global and all local memory frames are type correct memories,
the heap memory frame is a type correct heap, and all symbol tables are valid.
Further, let g be a valid and initialized g-variable. Then, the value of g is type
correct.

ty
√

mem(te, sc(mc),mc.gm) ∧mc.gm.st ∈ valid st(te)
∧ ∀lm ∈ mc.lm : ty

√
mem(te, sc(mc), lm) ∧ lm.st ∈ valid st(te)

∧ ty
√

heap(te, sc(mc),mc.hm) ∧ ∀i < |mc.hm| : valid ty(te, snd(mc.hm!i))

∧ g ∈ gvars
√

(sc(mc)) ∧ initializedg(mc, g)
=⇒ ty

√
(te, sc(mc), valueg(mc, g), tyg(sc(mc), g), 0)

Proof The proof is done by induction on g:

86 Properties of the Small-Step Semantics

Case 1: g = gvargm(x)
Let typev(mc.gm.st , x) = btc. From gvargm(x) ∈ gvars

√
(sc(mc)) we

conclude x ∈ map(fst , sc(mc).gst). From this and ty
√

mem(mc.gm) follows

ty
√

(mc.gm.ct , t, the(bav(mc.gm.st , x)))
= ty
√

(mc.gm.ct [bag(g), sizet(tyg(g))], t, 0) (Lemma 5.3)

= ty
√

(valueg(mc, g), tyg(g), 0) (Defs. 4.15 and 4.22)

which proves this case.

Case 2: g = gvar lm(i, x)
This case is proved similar to the previous case.

Case 3: g = gvarhm(i)
This case is proved similar to the first case.

Case 4: g = gvararr(g′, i)
Let tyg(g′) = ArrT(n, t). We conclude

ty
√

(valueg(g′),ArrT(n, t), 0). (hypothesis)
= ty
√

(valueg(g′), t, i ∗ sizet(t)) (Def. 5.22)
= ty
√

(valueg(g), t, 0) (Def. 4.18 and Lemma 5.3)

Case 5: g = gvar str(g′, cn)
Let tyg(g′) = StrT(scl) and typev(scl , x) = btc. We conclude

ty
√

(valueg(g′),StrT(scl), 0). (hypothesis)
= ty
√

(valueg(g′), t, the(bav(scl , x))). (Def. 5.22)
= ty
√

(valueg(g′)[the(bav(scl , x)), sizet(t)], t, 0) (Lemma 5.3)
= ty
√

(valueg(g), tyg(g), 0) (Def. 4.15 and 4.22)

q.e.d.

Lemma 5.12 (Literals are type correct) Let te be a type name environ-
ment and sc a symbol configuration. Then, the evaluation of a valid literal in
the context of te and sc is type correct.

l ∈ validlit =⇒ ty
√

(te, sc, [reval lit(l)], type lit(l), 0)

Proof Trivial case distinction on the constructors for the literal data type.

Lemma 5.13 (Aggregate literals are type correct) The evaluation of a
valid aggregate literal c in this context of a symbol configuration sc and a type
name environment te is type correct.

c ∈ validalit =⇒ ty
√

(te, sc, revalalit(c), typealit(c), 0)

Proof Trivial induction on the constructors of aggregate literals.

5.4. Structure of the Program Rest 87

Theorem 5.14 (Expression evaluation is type correct)
Let te be a type name environment, mc a memory configuration, and e a valid
expression. If the type name environment is valid, the symbol tables of the
memory frames of mc are valid, the memory frames are type correct, and the
evaluation of e is successful then the result of right evaluation is type correct
and left evaluation produces a valid g-variable.

e ∈ validexpr(te, gst(mc), lst top(mc)) ∧ reval(te,mc, e) = bvc
∧ initialized(te,mc, e) ∧ te ∈ valid tenv ∧mc.lm 6= []
∧ gst(mc) ∈ valid st(te) ∧ ty

√
mem(te, sc(mc),mc.gm)

∧ ∀i < |mc.lm| : mc.lm!i.st ∈ valid st(te) ∧ ty
√

mem(te, sc(mc),mc.lm!i)
∧ ∀i < |mc.hm.st | : valid ty(te, snd(mc.hm.st !i)) ∧ ty

√
heap(te, sc(mc),mc.hm)

=⇒ ty
√

(te, sc(mc), v, the(type(te, gst(mc), lst top(mc), e)), 0)

∧
(

mobj (te, gst(mc), lst top(mc), e)
=⇒ the(leval(te,mc, e)) ∈ gvars

√
(sc(mc)))

)
Proof We prove this lemma by induction on expression e. We omit the boring
details of unfolding the definitions of expression evaluation and type correctness
and just present the main idea of the proof. Observe that we need to do
the proof simultaneously for left and right evaluation because address-of and
dereferencing expressions invert the usage of these functions. Thus, a statement
only about one of the functions would not be inductive.

For expressions which represent memory objects, the type correctness proof
is done using lemmas 5.2 and 5.11. That the left value is a valid g-variable
follows by definition of leval from the fact that e is a valid expression and from
the induction hypothesis.

For literals the type correctness follows from Lemma 5.12 and for application
of operators from Lemma 5.10 and the corresponding lemmas for binary and
lazy operators. For these expressions we have ¬mobj (te, gst(mc), lst top(mc), e);
thus, we do not have to argue about their left value.

For the address-of operator e = AddrOf (e′) we use the fact that the left
value of e′ is a valid g-variable (induction hypothesis) and that e is a valid
expression to prove type correctness. q.e.d.

Isabelle In Isabelle, this theorem has a separate statement about the validity
of pointers in the resulting data slice. However, in this thesis this requirement
has been added to the definition of type correctness (cf. Definition 5.21).

5.4 Structure of the Program Rest

In this section we will first introduce some notation to talk about the structure
of statement trees and the relationship of statements inside such a tree. Then
we will prove a theorem about the structure of the program rest during the
execution of a C0 program. This theorem will state that for every statement
in the program rest, except for return statements, we know statically which
statement follows them. This property will be useful in the compiler correctness
proof in Chapters 8 and 10; for return statements we will need special machinery
there.

88 Properties of the Small-Step Semantics

Comp

Comp

Ifte

Comp

PAlloc Ass

Loop

SCall

Ass

Loop

Ass

(a) Syntax Tree

Ifte Ass Loop

LoopAssPAlloc Ass

SCall

(b) Flattened

Figure 5.1: Different Views to Statement Trees

5.4.1 Structure of Statement Trees

In this section we look in a special way at the syntax trees of C0 programs,
which are spanned by the data type stmt . We interpret all statements of the
same level simply as a list of statements (cf. function s2lns on page 40) and
organize them in a tree-like structure where the branches are built by statements
which contain sub statements, i.e., Ifte and Loop. Observe that a statement
Comp does not create branches in this structure because it is removed by s2lns.
We illustrate this structure in Figure 5.1 where we face the conventional view to
statement trees (cf. Figure 5.1(a)) and the flattened version which we explore
in this section (cf. Figure 5.1(b)).

We start with some simple notation.

Definition 5.25 (Direct sub statement) Let s and t be statements. We
call t a direct sub statement of s if s is a loop statement with body lb and
t ∈ s2lns(lb) or if s is a conditional statement with sub statements s1 and s2

and t ∈ s2lns(s1) or t ∈ s2lns(s2). Formally, this is written as t ∈ subdi
s (s).

Similary, we define the parent statement of a given statement s. In informal
language, t is the parent statement of s if s is a direct sub statement of t.
To make the definition of parent statements formal we need to put the cart
before the horse: we start with a given ‘top-level’ statement x and search our
way through the syntax tree until s is a direct sub statement of the current
statement.

Definition 5.26 (Parent statements) Let s be a statement. We define the
parent statement of s in the context of some top-level (or start) statement
by the function parents :: stmt × stmt 7→ stmt⊥. The definition is done by

5.4. Structure of the Program Rest 89

induction on the structure of the top-level statement.

parents(s,Comp(s1, s2)) =

{
parents(s, s1) if s ∈ subs(s1)
parents(s, s2) otherwise

parents(s, Ifte(e, s1, s2)) =

bIfte(e, s1, s2)c if s ∈ subdi

s (Ifte(e, s1, s2))
parents(s, s1) if s ∈ subs(s1)
parents(s, s2) otherwise

parents(s,Loop(e, lb)) =

{
bLoop(e, lb)c if s ∈ subdi

s (Loop(e, lb))
parents(s, lb) otherwise

For all other top-level statements s′ we set parents(s, s′) = None.

Definition 5.27 (I-th parent statement) We extend the previous defini-
tion in a natural way to the i-th father of a statement in the context of some
top-level statement x.

parent0
s (s, x) = bsc

parent i+1
s (s, x) =

{
parents(f, x) if parent i

s(s, x) = bfc
None otherwise

Definition 5.28 (Statement environment) We define the environment of a
given statement s with respect to a given top-level statement. This environment
consists of a list of statements which share the same parent statement f
and, for the case that f is a conditional statement, are located in the same
branch. For top-level statements, i.e., statements without parent statement,
the environment is just the list of top-level statements. Formally, we define
the function env s :: stmt × stmt 7→ stmt list⊥ by induction on the top-level
statement.

env s(s,Skip) = None

env s(s,Comp(s1, s2)) =

bs2lns(Comp(s1, s2))c if s ∈ s2lns(Comp(s1, s2))
env s(s, s1) if s ∈ subs(s1)
env s(s, s2) otherwise

env s(s, Ifte(e, s1, s2)) =

bsc if s = Ifte(e, s1, s2)
env s(s, s1) if s ∈ subs(s1)
env s(s, s2) otherwise

env s(s,Loop(e, lb)) =

{
bsc if s = Loop(e, lb)
env s(s, lb) otherwise

For all other statements s′, i.e., the ones without sub statements, we define

env s(s, s′) =

{
bsc if s = s′

None otherwise

Now, we can define the direct successor of a statement.

90 Properties of the Small-Step Semantics

Definition 5.29 (Direct successor of a statement) Let s and x be state-
ments. We define the direct successor of s in the context of x by the function
succdirect :: stmt × stmt 7→ stmt⊥.

If s is not the last statement in its environment env s(s, x) then there
exists a statement s′ which follows s in env s(s, x). In this case we define
succdirect(s, x) = bs′c. Otherwise, we set succdirect(s, x) = None.

Finally, the goal of this section is to prove a theorem which states that
all statements in the program rest of a valid C0 configuration, except return
statements, are followed by a particular unique statement. For statements which
are not the last statement in their environment, this particular statement is just
their direct successor. However, for statements which are the last statement in
their environment we need some more definitions.

Definition 5.30 (Last statements) We start with a formalization of ‘last
statement in their environment’. Let s and x be statements. We define the
predicate is lasts :: stmt × stmt 7→ B which checks whether s is the last
statement in its environment.

is lasts(s, x) =

{
(s = last(env)) if env s(s, x) = benvc
false otherwise

Additionally, we define two predicates which differentiate if s is a last statement
in one of the branches of a conditional statement or if it is the last statement
of a loop body. Formally, we define

is lasts(s, x) parents(s, x) 6= None is Loop(the(parents(s, x)))

is last loops (s, x) = true

is lasts(s, x) parents(s, x) 6= None is Ifte(the(parents(s, x)))

is lastcond
s (s, x) = true

For conditionals we further distinguish whether a statement is the last statement
in the if part (is last ifs) or in the else part (is lastelses).

If s is the last statement in the body of a while loop, i.e., is last loops (s, x), its
successor statement will just be its parent statement, i.e., the loop statement (cf.
the definition of the C0 transition function in Section 4.4.3). If is lastcond

s (s, x)
holds, the definition of successor statements involves induction because the
successor statement of s equals the successor statement of the parent statement
of s, i.e., the condition statement, which itself could again be a last statement.

Definition 5.31 (Condition nesting level) To compute how deep a given
statement s is nested in such a stack of last statements in conditionals we
introduce the function cond lvl :: stmt × stmt 7→ N.

cond lvl(s, x) =

{
cond lvl(the(parents(s, x)), x) + 1 if is lastcond

s (s, x)
0 otherwise

Definition 5.32 (Condition senior) We use the definition of the condition
nesting level (cond lvl) to define the condition senior of a statement. This senior
statement is the first statement in the sequence of parent statements of a given

5.4. Structure of the Program Rest 91

statement which is not a last statement in a conditional statement. Formally,
the condition senior is defined by the function cond sen :: stmt × stmt 7→ stmt⊥.
We set cond sen(s, x) = parentcond lvl(s,x)

s (s, x).

Now, we can define the successor of a statement.

Definition 5.33 (Successor of a statement) We define the function succ ::
stmt × stmt 7→ stmt⊥.

Let s and x be statements. Then, succ(s, x) computes the successor state-
ment of s in the context of x. We define

succ(s, x) =

parents(s, x) if is last loops (s, x)
succ(the(cond sen(s, x)), x) if is lastcond

s (s, x)
succdirect(s, x) otherwise

Based on the definition of successor statements it is now simple to define
what valid successors are.

Definition 5.34 (Valid successors) We define the predicate successors
√

::
stmt list × stmt 7→ B which checks whether in a given list sl of statements all
statements are followed by their successor statement. There is one exception:
for return statements we do not require this condition to hold because they
are followed by that statement which has followed the corresponding function
call statement when the function call has been executed. Functions may be
called from several places in a statement tree; thus, return statements have no
unique successor statement. Formally, we define the predicate by induction on
the statement list.

successors
√

([], x)

successors
√

(t, x) (t 6= [] ∧ ¬is Return (h)) =⇒ succ(h, x) = bhd(t)c
successors

√
(h#t, x)

5.4.2 Extending Statement Structure to Complete Programs

In the previous section we have defined several functions and predicates which
describe the structure and relationship of statements with respect to a given
top-level or starting statement. In this section we briefly describe how these
definitions can be extended from the local context of a single statement to the
context of a complete C0 program.

For this extension we introduce a new function fos :: stmt × functableT 7→
(S× funcT)⊥ which computes for given function table and statement in which
function of the function table the statement occurs. The formal definition of
fos is straightforward:

fos(s, []) = None

fos(s, h#t) =

{
bhc if s ∈ subs(snd(h).body)
fos(s, t) otherwise

Using this function it is relatively easy to expand the ‘local’ definitions of
statement structure to the context of complete programs. We demonstrate this

92 Properties of the Small-Step Semantics

with the function parents which computes the parent of a given statement. Let
ft be a function table and s and x be statements. We extend the definition of
parents in the following way.

parents(s, ft) =

{
parents(s, f.body) if fos(s, ft) = bfc
None otherwise

In a similar way we can expand the remaining definitions from Section 5.4.1.
We omit the details here.

Isabelle Observe that we overload the notation to minimize the number of
symbols which the reader has to remember. In Isabelle / HOL there exists a
completely new set of functions which work in the context of function tables
instead of single statements.

5.4.3 Valid Program Rest

In this section we use the definitions from the previous section to define a
predicate for the set of valid program rests. Then we will prove an important
structural invariant about the program rest of C0 machines.

Definition 5.35 (Valid program rest) We define the predicate progrest
√

::
stmt × functableT 7→ B which checks whether a given statement s forms a valid
program rest with respect to a given function table ft . We set progrest

√
(s, ft) =

true if all statements in the program rest are present in the function table and
followed by their successor statement. Formally, we have

successors
√

(s2lns(s), ft) (∀x ∈ s2lns(s) : fos(x, ft) 6= None)
progrest

√
(s, ft)

Lemma 5.15 All statements in a function table fulfill (by definition) the pred-
icate successors

√
.

fos(s, ft) 6= None =⇒ successors
√

(s2lns(s), ft)

Proof We prove this lemma by induction on s. The different cases follow
directly from the definition of valid successors. We do not present the details
here.

Theorem 5.16 (Transition function preserves valid program rests)
Let te be a type name environment, gst a symbol table for the global variables, ft
be a valid function table, m a memory configuration, and c.prog a valid program
rest in the context of ft . Then, the C0 transition function δC0 preserves the
predicate progrest

√
. This means in particular that in the new program rest

all statements (except for return statements) are followed by their successor
statement. Formally, this means

progrest
√

(c.prog , ft) ∧ ft ∈ valid ft(te, gst) ∧ δC0(te, ft , c) = bc′c
=⇒ progrest

√
(c′.prog , ft)

Proof We prove this theorem by induction on the program rest c.prog .

5.4. Structure of the Program Rest 93

Case 1: c.prog = Skip
In this case, the program rest is unchanged by the transition function.
Thus, the claim of the theorem is obviously true.

Case 2: c.prog = Comp(s1, s2)
If s1 6= Skip the program rest of the new configuration has the structure
Comp(c′′.prog , s2) where c′′ = the(δC0(c[prog := s1])). We cannot prove
progrest

√
for c′′.prog and s2 completely separately. This would be simple

because progrest
√

(c′′.prog) follows from the induction hypothesis and
progrest

√
(s2) from progrest

√
(Comp(s1, s2)).

Instead, we have to additionally prove that the first statement in s2lns(s2)
is a valid successor of the last statement in s2lns(c′′.prog). The interesting
case is when s2lns(s1) contains just a single statement, i.e., s2lns(s1) = [s],
because otherwise the last statement of the first part of the composition
statement would not change (last(s2lns(c′′.prog)) = last(s2lns(s1))) and
thus the proof would become trivial. In the interesting case we have to
make a case distinction on s.

If is Ass(s), is AssAL(s), is PAlloc(s), is Return(s), or is Asm(s) the
proof is trivial because s2lns(c′′.prog) = [] and thus, there is nothing to
show.

If is SCall(s) we know from the requirements on valid functions (cf.
Definition 5.14 on page 78) that is Return(last(s2lns(c′′.prog))) = true.
Thus, we have nothing to show for successors

√
because return statements

are allowed to precede arbitrary statements.

If is Loop(s) and the loop condition is true we have last(s2lns(c′′.prog)) =
s = last(s2lns(s1)), i.e., the last statement of the left part of the com-
pound statement has not changed. If the loop condition is false we have
s2lns(c′′.prog) = [] and the proof is obvious.

If is Ifte(s) the last statement of s2lns(c′′.prog) is the last statement of
one of the branches of the conditional statement. In both cases we know
by definition 5.33 that their successor statement is the successor statement
of the conditional statement. Because hd(s2lns(s2)) was a valid successor
statement for the conditional statement we can conclude that it is also a
valid successor of the new last statement in s2lns(c′′.prog).

This finishes the proof of the inductive case.

Case 3: c.prog = Ass(el, e2), c.prog = AssAL(el, c), c.prog = Asm(il),
c.prog = PAlloc(el, tn), or c.prog = Return(e)
In these cases we have by the definition of the transition function c′.prog =
Skip; thus there is nothing to show.

Case 4: c.prog = SCall(vn, fn, pl)
In this case we have c′.prog = f.body where f = the(map-of (ft , fn)) is the
called function. From Lemma 5.15 we know that the function body fulfills
the predicate successors

√
; this proves the first requirement of progrest

√
.

Obviously, the function body is also present in the function table, which
proves the second requirement.

Case 5: c.prog = Ifte(e, s1, s2), c.prog = Loop(e, lb)
For these cases we know that the new program rest is either s1 or s2 (for

94 Properties of the Small-Step Semantics

the conditional statement) or lb (for the loop). We know also that these
statements are present in the function table because we can conclude
from progrest

√
(c.prog , ft) that their parent statements are in the function

table. Using Lemma 5.15 we can easily show that the statements in the
new program rest are followed by the correct successors. This proves the
last case of the theorem. q.e.d.

5.5 Valid Configurations

As we have seen in Theorem 5.14 on page 87 we have sometimes quite big
assumptions in lemmas where most of these assumptions are about validity
of certain parts of the configuration. We combine this, the requirements on
valid successors, and some additional properties in a predicate which defines
the set of valid configurations. This will allow keeping the list of preconditions
in lemmas as short as possible.

5.5.1 Definitions

Before defining the predicate for valid configurations we introduce two more
auxiliary predicates. We start with the definition of valid stacks.

Definition 5.36 (Valid stack) Let ft be a function table and lms a list of
memory frames (i.e., the stack of local memory frames of a C0 configuration).
This stack of local memories is called valid if it goes with the program rest, i.e.,
if the sequence of statements in the program rest is in correspondance with the
sequence of symbol tables in the local memory stack.

In more detail: we require for all statements in the program rest that the
symbol table of the function which they belong to concerning their statement
identifier (cf. the definition of fos on page 91) matches the symbol table which
belongs to the statements position in the program rest. More formally, this
requires for all statements between the i-th and the i + 1-th return statement
in the program rest that they origin from the function which belongs to stack
frame |lst | − i − 1. For example, for the statements before the first return in
the program rest the symbol table of their function has to match the top most
local symbol table in the local memory stack (cf. Figure 5.2).

Formally, we define the predicate by induction on the list of statements. For
the empty program rest, all stacks are valid.

stack
√

:: functableT ×mframe list × stmt list 7→ B

stack
√

(ft , lst , [])

For the inductive case, we do a case split on the first statement in the program
rest.

lst 6= [] st fun(snd(the(fos(h, ft)))) = hd(lst).st
is Return(h) −→ stack

√
(ft , butlast(lst), t)

¬is Return(h) −→ stack
√

(ft , lst , t)
stack

√
(ft , lst , h#t)

5.5. Valid Configurations 95

prog Return Return Return . . .

ft
|lst | − 1

|lst | − 1− 1

|lst | − 1− 2
. . .

0

lst

fos

fos

fos

Figure 5.2: Correspondence Between Stack and Program Rest prog

As a last predicate before the definition of valid configurations we introduce
the set of valid return destinations. This predicate argues about the return
destinations (cf. Section 4.2.1 on page 44) which are stored in the stack of local
memory frames and ensures that they are valid g-variables and that their type
matches the return type of the corresponding return statement in the program
rest.

Definition 5.37 (Valid return destinations) Let te be a type name envi-
ronment and mc a memory configuration. We define the predicate rdest

√
,

which ensures that the list of return destinations in mc matches a given list of
statements. This definition is done by induction on the list of statements.

rdest
√

:: tenv ×memconf × stmt list 7→ B

rdest
√

(te,mc, [])

For the inductive case we do a case split on the head for the statement list. We
first treat the case that the head of the statement list is a return statement.

h = Return(re)
tmatchass(tyg(sc(mc), snd(lmtop(mc))), type(te, gst(mc), lst top(mc), re))

snd(lmtop(mc)) ∈ gvars
√

(sc(mc))
namedg(snd(lmtop(mc))) rdest

√
(te,mc [lm := butlast(mc.lm)] , t)

rdest
√

(te,mc, h#t)

If h is not a return statement the definition gets much simpler.

¬is Return(h) rdest
√

(te,mc, t)
rdest

√
(te,mc, h#t)

Finally, we can define the set of valid configurations.

96 Properties of the Small-Step Semantics

Definition 5.38 (Valid configurations) Let te be a type name environment,
ft a function table, and c a C0 configuration. We call c a valid configuration
with respect to te and ft iff

1. the function table ft is valid with respect to the global symbol table,

2. the program rest of c is valid,

3. the number of return statements in the program rest is not greater than
the recursion depth of c,

4. the stack of c is valid,

5. the type name environment te is valid,

6. the global symbol table of c is valid,

7. all local symbol tables of c belong to some function in ft ,1

8. the types of all heap variables are valid types,

9. all memory frames of c are type correct, and

10. the return destinations of c are valid.

Formally, we define

conf
√

:: tenv × functableT 7→ conf C0 set

ft ∈ valid ft(te, gst(c.mem))
progrest

√
(c.prog , ft) #rettop(s2l(c.prog)) < |c.mem.lm|

stack
√

(ft ,map(fst , c.mem.lm), s2lns(c.prog))
te ∈ valid tenv gst(c.mem) ∈ valid st(te)

∀lm ∈ c.mem.lm : ∃f ∈ map(snd , ft) : st fun(f) = fst(lm)
∀i < |c.mem.hm.st | : valid ty(te, snd(c.mem.hm.st !i))

ty
√

mem(te, sc(c.mem), c.mem.gm)
∀lm ∈ c.mem.lm : ty

√
mem(te, sc(c.mem), fst(lm))

ty
√

heap(te, sc(c.mem), c.mem.hm) rdest
√

(te, c.mem, s2lns(c.prog))

c ∈ conf
√

(te, ft)

5.5.2 Maintaining Valid Configurations

In this section, we present a theorem which states that the C0 transition
function preserves the predicate conf

√
. In Isabelle, the proof of this theorem

is quite complex and requires several auxiliary lemmas. However, we present
here only the main theorem and omit its proof. The most complicated part of
the proof has already been done in Theorem 5.16.

Theorem 5.17 (Transition function preserves valid configurations)
Let te be a type name environment, ft a function table, and c a valid C0
configuration with respect to te and ft. If executing the C0 transition function

1This implies that they are valid symbol tables.

5.5. Valid Configurations 97

gives a next configuration c′, i.e., δC0(te, ft , c) = bc′c, then c′ is also a valid C0
configuration. Formally,

c ∈ conf
√

(te, ft) ∧ δC0(te, ft , c) = bc′c
=⇒ c′ ∈ conf

√
(te, ft)

Chapter 6

Target Language

Contents
6.1 VAMP Instruction Set Architecture 100

6.2 VAMP Assembly Language 101

6.3 Correctness of the VAMP Assembly Model 112

6.4 Assembly Code Verification Methodology 114

In this chapter we describe the instruction set architecture and assembly
language of the verified architecture microprocessor (VAMP) which is the
target architecture of the verified C0 compiler. The VAMP [BJK+03, BJK+06,
DHP05, Dal06] is a formally verified DLX-like processor. It is based on the
designs and proofs from [MP00] and [Kro01].

The VAMP has first been implemented (on the gate-level) and verified using
the PVS [OSR92] theorem prover. In the Verisoft project [Ver03], its imple-
mentation and correctness proof have been ported to Isabelle / HOL [NPW02].
Thereby, the proofs have been considerably simplified using automatic meth-
ods [Tve05]. The implementation of the VAMP has been synthesized on a
Xilinx FPGA [BJK+06, Lei02].

The VAMP realizes the full DLX instruction set from [HP96], delayed branch
with one delay slot to support pipelining of instruction fetches, a Tomasulo
scheduler [Tom67, Kro01], maskable nested precise interrupts, and a memory
management unit for virtual memory support. In addition, the PVS version
of the VAMP supports separate instruction and data caches [Bey05] and a
pipelined fully IEEE compatible dual precision floating point unit with variable
latency. The correctness of a simple cache system for the VAMP processor has
also been verified in Isabelle / HOL [Mül07] but has not yet been integrated into
the main correctness proof. However, compared with the PVS work of [Bey05]
the usage of automatic proof could be greatly increased. Currently, the VAMP
is being extended with a translation look aside buffer (TLB). [HIP05] describes
the integration of external devices into the VAMP ISA.

In this thesis we will refer to the Isabelle version of the VAMP without TLB,
caches or devices.

In Section 6.1 we briefly introduce the VAMP instruction set architecture.
We continue in Section 6.2 with a closer look at the semantics of the VAMP

99

100 Target Language

assembly language. In Section 6.3 we list requirements which allow to prove
that the VAMP ISA simulates the VAMP assembly language. We conclude
in Section 6.4 with a verification methodology for VAMP assembly programs
which is used for the low-level correctness proofs in Chapters 9 and 10.

Observe that the VAMP ISA and assembly semantics have not been devel-
oped as part of this thesis. They have been written by several other persons
during the Verisoft project. The requirements from Section 6.3 have been
developed in their original form by A. Tsyban. However, they have been
slightly adapted and generalized for this thesis. The verification methodology
in Section 6.4 has been developed completely in the scope of this thesis.

6.1 VAMP Instruction Set Architecture

In this section we give a brief overview on the VAMP instruction set architecture
(ISA) as defined in the Isabelle formalization. We do not present any details; we
introduce the ISA rather to argue why the introduction of a VAMP assembly
machine in Section 6.2 is useful and what kind of special restrictions have to be
met to be able to prove the equivalence between the assembly semantics and
the ISA.

A configuration of the VAMP ISA consists of

• GPR :: bv5 7→ bv32, SPR :: bv5 7→ bv32

Two register files for general purpose and special purpose registers. Each
register file contains thirty two 32-bit registers; the registers are addressed
by 5-bit addresses. Register GPR(0) is always 0.

The special purpose registers are

– SR, ESR, ECA, EPC, EDPC, and EData for interrupt handling,
– RM, IEEEf, and FCC for the floating point unit, and
– PTO, PTL, EMODE, and MODE for virtual memory management.

• DPC :: bv32, PCP :: bv32

Two program counters which implement the delayed branch mechanism.
DPC is the current (delayed) program counter which stores the address
where the current instruction is fetched from; PCP stores the address of
the next instruction.

• mem :: bv29 7→ bv64

A double word addressed memory.

Transitions of the VAMP ISA are defined by its transition function δISA ::
confISA × bv19 7→ confISA. Let d be a VAMP ISA configuration and intre a bit
vector representing 19 flags for external interrupts. Then the next configuration
d′ is computed by the VAMP ISA transition function: δISA(d, intre) = d′.
Instructions are stored as 32-bit bit vectors. If the MODE register is zero the
VAMP executes in system mode (without address translation), otherwise it
executes in user mode where address translation is activated. In user mode, a
program is not allowed to access special purpose registers except for SR, RM,
IEEEf, and FCC.

Due to the pipelined implementation of the VAMP self modifying code poses
problems and the following sync criterion is required by the VAMP correctness

6.2. VAMP Assembly Language 101

Table 6.1: Implemented Interrupts

index name maskable type

0 reset no abort
1 illegal instruction no repeat
2 misalignment no repeat
3 page fault on fetch no repeat
4 page fault load store no repeat
5 trap no continue
6 arithmetic overflow yes continue

7 . . . 12 FPU interrupts yes continue
13 . . . 31 external interrupts yes continue

proof (cf. [BJK+06, Section 6.3]): between the modification of an instruction by
a write access to the memory at address a and the fetch from the same address
a the programmer (or compiler) is required to execute a special sync instruction.
This sync instruction has the effect that all following instructions are stalled
until the VAMP pipeline is empty and all pending memory accesses have been
completed. Thus, after execution of the sync instruction we are guaranteed to
fetch the updated instruction from address a.

Table 6.1 shows the interrupts supported by the VAMP. Observe that the
floating point interrupts (index 7 to 12) are not covered by the ISA which is used
in the Verisoft project. For a detailed explanation of the different interrupts
see [Dal06, Chapter 3]. We highlight a few conditions which trigger interrupts:

• execution of illegal instructions, i.e., opcodes which are not defined by the
instruction set

• misaligned memory accesses, i.e., instruction fetch from addresses which
are not aligned to four and read or write instructions to addresses which
are not aligned to the width (in bytes) of the access

• page faults, i.e., access to memory pages which are currently swapped out
or (in user mode) which are not mapped with sufficient rights by the page
table

• execution of the trap instruction

• arithmetic overflows when executing certain arithmetic instructions which
have overflow signaling enabled

6.2 VAMP Assembly Language

Verification of programs at the ISA level is hard – for most kinds of programs
unnecessary hard – for several reasons. We highlight the most important ones
and show how the assembly semantics, which we will introduce in this section,
solves these problems by abstraction from the VAMP ISA.

• The representation of instructions as bit vectors requires a quite complex
instruction decoding scheme. This causes several non-trivial but never-
theless boring proof steps in order to extract the source and destination

102 Target Language

registers as well as the instruction mnemonic from the instruction bit
vector.

The VAMP assembly semantics represents instructions as an abstract
data type. Each instruction is realized via its own constructor. Source
and destination registers as well as immediate constants are represented
by numerical parameters to this constructor.

• Usually, programs execute mostly numerical computations instead of bit
vector operations. Thus, it costs quite some effort to convert bit vectors
back and forth to numerical values for each machine step. The same holds
for the program counters and addresses in general.

In the VAMP assembly semantics, registers and memory content are
represented as numerical values. Because – at least in the Verisoft project –
programs make more frequently use of integers than of natural numbers,
general purpose registers and the memory contents are modeled as integers.
Only the program counters are modeled as natural numbers.

• At the ISA level there are many implicit conditions which have to be met
in order not to cause unwanted interrupts.

In the VAMP assembly machine interrupts are not modeled and thus one
does not have to worry about them during verification. Obviously, this
prevents verification of some programs at the assembly level; namely those
which make explicit use of interrupts. Nevertheless, for most programs
this is a convenient level of abstraction.

In order to transfer results from the assembly layer down to the ISA layer
we need to justify the abstractions from above. In Section 6.3 we will explain
in more details what additional properties need to be proved for an assembly
program to ensure its correctness also on the ISA layer.

6.2.1 Instructions

Instructions of the VAMP assembly machine are modeled by the abstract
data type instr . Each instruction is modeled by a separate constructor with
parameters for register names and immediate constants. To distinguish register
names from normal numbers we will prepend them with a lowercase r like in
r16 which stands for register 16.

We list the constructors of instr and their meaning in Tables 6.2, 6.3, 6.4,
6.5, and 6.6; the detailed mathematical semantics for the instructions will be
given in Section 6.2.5. For better readability of the constructors we introduce
the type aliases reg = N5 for register names, imm16 = Z16 and imm26 = Z26

for the value of integer immediate constants, and sa5 = N5 for immediate
constants denoting shift distances.

Isabelle In Isabelle, the type for immediate constants is Z, i.e., there is no
range restriction. However, to ensure that immediate constants are not too
small or too big, there exists a predicate is instr with type instr 7→ B. We
omit its lengthy definition here by using restricted types for the immediate
constants and register names.

6.2. VAMP Assembly Language 103

There is no special ‘no operation’ (nop) instruction for the VAMP assembly
semantics. We use ori(r1, r1, 0) for this purpose.1 However, we will often simply
write nop instead of ori(r1, r1, 0).

For later use we introduce several simple predicates and functions on VAMP
assembly instructions.

is store(i) = i ∈ {sb, sh, sw}
is load(i) = i ∈ {lb, lh, lw , lbu, lhu}

is loadstore(i) = is store(i) ∨ is load(i)

widtha(i) =

4 if i ∈ {lw , sw}
2 if i ∈ {lh, lhu, sh}
1 otherwise

Additionally, we define functions REG i :: instr 7→ N and IMM :: instr 7→ N

which extract the i-th register parameter and the immediate constants of
instructions.

6.2.2 Memory Model

Single memory cells of the VAMP assembly are modeled by an axiomatic type
mcellasm. We introduce two uninterpreted functions cell2int :: mcellasm 7→ Z

and int2cell :: Z 7→ mcellasm. The expected behavior of these functions is
defined by the following two axioms.

Axiom 6.1 cell2int(int2cell(i)) = i

Axiom 6.2 int2cell(cell2int(m)) = m

To handle storage of instructions in the memory we introduce two more
functions int2instr :: Z 7→ instr and instr2int :: instr 7→ Z. The formal
definition of these two functions is based on the instruction encoding scheme
of the VAMP ISA. The details are only of interest for the simulation proof
between assembly and ISA layer (cf. Section 6.3) and will not be given in this
thesis.

We combine the functions for conversion between instructions and integers
and between memory cells and integers in the following way.

Definition 6.1 (Converting instructions and memory cells) We define
two functions to convert between instructions given by the datatype instr and
memory cells mcellasm.

cell2instr :: mcellasm 7→ instr
instr2cell :: instr 7→ mcellasm

instr2cell(i) = int2cell(instr2int(i))
cell2instr(c) = int2instr(cell2int(c))

1 There are several other ways to encode a nop instruction for the VAMP processor.
However, the ori instruction was the only one which allowed us to prove (formally) that it
has no-op semantics without needing any preconditions (like source registers being in the
correct range).

104 Target Language

Using the definitions of int2instr and instr2int (which are not given in this
thesis) we can prove the following lemma.

Lemma 6.3 cell2instr(instr2cell(i)) = i

Proof From the definitions and from Axiom 6.1 we conclude

cell2instr(instr2cell(i)) = int2instr(cell2int(int2cell(instr2int(i))))
= int2instr(instr2int(i))
= i (by definition)

q.e.d.

6.2.3 Integers vs. Natural Numbers

Bit vectors can represent numbers in two different ways (cf. Section 1.2.4).
In normal binary representation for natural numbers or in two’s complement
representation for integers. Thus, the same bit vector has a completely different
meaning depending on its interpretation as natural number or integer.

The VAMP assembly semantics stores register contents as numbers, more
precisely as integers. So, if we want to interpret register contents as natural
numbers rather than integers we have to use conversion functions. These
conversion functions simulate numerically the convertion from integers to bit
vectors and then back to naturals. The same holds (of course in the opposite
order) if we try to store natural numbers in a register.

Definition 6.2 (Convertion: integers and natural numbers) We define
the conversion from integers to natural numbers and vice versa by the two
functions i2n :: Z 7→ N and n2i :: N 7→ Z.

i2n(i) =

{
i + 232 if i < 0
i otherwise

n2i(n) =

{
n− 232 if 231 ≤ n < 232

n otherwise

The semantics of the conversion functions is sketched in Figures 6.1 and 6.2.
Observe that the conversion functions which we define here are only correct if the
number to be converted is in the range of 32-bit numbers. If so, that half of the
domain which is not present in the image of the function is just moved to that
half of the image which is not present in the domain. For example, i2n moves
the negative interval [−231, . . . ,−1] of integers to the interval [231, . . . , 232 − 1]
of naturals.

One can choose to define assembly instruction semantics based on integers
or based on naturals. Either decision would simplify reasoning about arithmetic
on one type of numbers. Unfortunately, the authors of the VAMP assembly
semantics have chosen a mixture of both concepts: register values are stored
as integer values and semantics of arithmetic operators are defined based on
natural numbers. This creates unnecessary (and sometimes tedious) proof
obligations involving i2n and n2i . Fortunately, when using the VAMP assembly
semantics for verification of concrete assembly code, most of these conversions
occur pairwise and can be eliminated using the following lemmas.

6.2. VAMP Assembly Language 105

−231 0 231

0 231 232

i

i2n(i)

Figure 6.1: Conversion From Integers to Natural Numbers

0 231 232

−231 0 231

n

n2i(n)

Figure 6.2: Conversion From Natural Numbers to Integers

Lemma 6.4 For 32-bit integers conversion to natural numbers and then back
to integers is transparent.

−231 ≤ i < 231 =⇒ n2i(i2n(i)) = i

Proof We omit the proof of this property since it follows directly from the
definitions.

Lemma 6.5 Conversion from natural number to integers and then back to
natural numbers is transparent.

i2n(n2i(n)) = n

Proof We omit the proof of this property.

6.2.4 Configuration

Configurations d :: confasm of the VAMP assembly semantics consist of five
components:

• two program counters: d.dpc :: N32, d.pcp :: N32,

• two register files for general purpose and special purpose registers: d.gpr ::
Z32 list , d.spr :: Z32 list , and

• a word addressed memory: d.mm :: N 7→ mcellasm.

106 Target Language

Observe that register gpr !0 is tied to zero. For a formalization of the VAMP
assembly semantics, there are two ways to realize this: we can initialize the
register with zero and henceforth ignore all writes to it or we modify the
function which reads out register values and implement a special case for this
register. The second solution has the advantage that we do not need to keep
track of an invariant about the value of gpr !0 and has been implemented in the
formalization in Isabelle / HOL.

Now, we introduce a technical predicate which defines the set of valid VAMP
assembly configurations.

Definition 6.3 (Valid VAMP configuration) We define VAMP assembly
configurations d :: confasm to be valid if both register files have length 32 and
all memory cells of the memory contain data in the domain of 32-bit integers.
Formally, we introduce the predicate confasm

√
:: confasm 7→ B.

|d.gpr | = 32 |d.spr | = 32 ∀a : −231 ≤ cell2int(d.mm(a)) < 231

confasm
√

(d)

Isabelle In Isabelle the definition of valid VAMP assembly configurations is
slightly more complicated because it additionally contains requirements about
the value of registers and program counters. In this thesis we omit these
restrictions and instead use types with bounded domain for the values.

We introduce some predicates and functions related to configurations of the
VAMP assembly machine.

Definition 6.4 (A given memory region is unchanged) Let m :: N 7→
mcellasm and m′ :: N 7→ mcellasm be memories of the VAMP assembly machine
and a :: N and b :: N word addresses. We say that the memory between a and b
has not been changed from memory m to memory m′ if the following predicate
holds.

∀i : a ≤ i < b −→ m′(i) = m(i)
unchngdmem(m,m′, a, b)

Definition 6.5 (Only given region is changed) Let m :: N 7→ mcellasm
and m′ :: N 7→ mcellasm be memories of the VAMP assembly machine and
a :: N and b :: N word addresses. We say that only the memory between a and
a+ l has been changed from memory m to memory m′ if the following predicate
holds.

∀i : i < a ∨ a + l ≤ i −→ m′(i) = m(i)
memchngd(m,m′, a, l)

6.2.5 Semantics

In this section we will define the semantics of the VAMP assembly language.
We start with the semantics of single instructions and define then a transition
function.

6.2. VAMP Assembly Language 107

a÷ 4− 1 a÷ 4 a÷ 4 + 1 a÷ 4 + 2

m ovl ovr

ofs
w

vnew

Figure 6.3: VAMP Assembly Machine: Storing

Instruction Semantics

To define the semantics of the VAMP assembly instructions we start with the
introduction of several auxiliary functions which specify the behavior of load
and store instructions.

We define the effective address of a memory instruction i in configuration d
by the function ea :: confasm × instr 7→ N. Formally, it is defined by

ea(d, i) = (i2n(d.gpr !REG2(i)) + i2n(IMM (i))) modu 232.

Memory accesses have to be properly aligned. This means for a memory
access with a width of w bytes that w divides the address a of the access. For
properly aligned memory accesses we know that they are completely contained
in a single 32-bit memory word; i.e., they do not cross word boundaries. Thus,
we can define the access in two steps: we first load a complete 32-bit word from
the memory and in a second step we extract the interesting part.

For the second step we introduce the notation x[o,w]. Its meaning is that we
extract w bytes from the word x starting at byte offset o.

x[o,w] = (i2n(x)÷ 28·o) modu 28·w

Definition 6.6 (Loading) We define the functions loadu and load s to abbre-
viate the semantics of unsigned and signed load accesses to the memory. For
signed load accesses we additionally convert the result to a 32 bit wide bit
vector and then back to an integer.

loadu :: (N 7→ mcellasm)×N×N 7→ N

load s :: (N 7→ mcellasm)×N×N 7→ Z

loadu(m,a,w) = cell2int(m(a÷ 4))[a modu 4,w]

load s(m,a,w) = [bin32(8 · w)
(
cell2int(m(a÷ 4))[a modu 4,w]

)
]

Store instructions are simpler than load instructions as we do not distinguish
between signed and unsigned variants. Similar to loads, a store affects exactly
one word in the memory. To support storage of parts of words, we split the
original data word at the destination address in three parts. The medium part
is replaced by the new value; the upper and lower parts (if they exist) remain
unchanged.

Definition 6.7 (Storing) We define the function store :: (N 7→ mcellasm)×
N ×N × Z 7→ (N 7→ mcellasm) to abbreviate the semantics of store accesses

108 Target Language

Table 6.2: Memory Instructions and Constant Loading

Instruction (i) Meaning Effect (d′ = exec(d, i))

lb(reg , reg , imm16) load byte d′.gpr !r1 := load s(d.mm, ea(d, i), 1)
lh(reg , reg , imm16) load half word d′.gpr !r1 := load s(d.mm, ea(d, i), 2)
lw(reg , reg , imm16) load word d′.gpr !r1 := load s(d.mm, ea(d, i), 4)
lbu(reg , reg , imm16) load byte un-

signed
d′.gpr !r1 := loadu(d.mm, ea(d, i), 1)

lhu(reg , reg , imm16) load half word
unsigned

d′.gpr !r1 := loadu(d.mm, ea(d, i), 2)

sb(reg , reg , imm16) store byte d′.mm :=
store(d.mm, ea(d, i), 1, d.gpr !r1)

sh(reg , reg , imm16) store half word d′.mm :=
store(d.mm, ea(d, i), 2, d.gpr !r1)

sw(reg , reg , imm16) store word d′.mm :=
store(d.mm, ea(d, i), 4, d.gpr !r1)

lhgi(reg , imm16) load high imm. d′.gpr !r1 := imm · 216

lhg(reg , reg) load high d′.gpr !r1 := d.gpr !r2 · 216

For all instructions holds d′.dpc := d.pcp and d′.pcp := d.pcp +32 4.

to the memory. Let m be a memory, a the byte address of the destination, w
the width of the access in bytes, and v the value to be written. We use the
abbreviation ofs = a modu 4 for the offset of address a inside the accessed word.

To store v we first have to read the original value ov = i2n(cell2int(m(a÷
4))) from the memory and clip the two parts which should not be over-
written: the lower part ovl = ov modu 28·ofs and the higher part ovh =
(ov ÷ 28·(ofs+w)) · 28·(ofs+w). Then we shift and clip the new value accordingly:
vnew = (i2n(v) modu 28·w) · 28·ofs . Finally, we combine the three parts and
update the memory

store(m,a,w, v) = m
[
(a÷ 4) := n2i((ovh + vnew + ovl) modu 232)

]
.

This is illustrated in Figure 6.3 for a store at address a with width w = 1 and
byte offset ofs = a modu 4 = 1.

Definition 6.8 (Instruction execution) The semantics of single VAMP as-
sembly instructions are defined by the function exec :: confasm×instr 7→ confasm.
We give its definition in Tables 6.2, 6.3, 6.4, 6.5, and 6.6.

In these tables we use ri to refer to the i-th register parameter of the
instruction’s constructor, imm to refer to its immediate constant, and sa to
refer to the shift amount. With d we denote the original configuration and with
d′ = exec(d, i) the new configuration after executing instruction i. All parts x
of the configuration which are not mentioned otherwise stay unchanged, i.e.,
d′.x = d.x.

Lemma 6.6 (Execution preserves confasm
√

) Executing an instruction i
in a valid VAMP assembly configuration d leads to a new configuration d′ which
is again valid.

confasm
√

(d) =⇒ confasm
√

(exec(d, i))

6.2. VAMP Assembly Language 109

Table 6.3: Control and Special Instructions

Instruction (i) Meaning Effect (d′ = exec(d, i))

beqz (reg , imm16) branch if equal
zero

d′.pcp := d.pcp +32 ((d.gpr !r1 =
0)?i2n(imm) : 4)

bnez (reg , imm16) branch if not
equal zero

d′.pcp := d.pcp +32 ((d.gpr !r1 6=
0)?i2n(imm) : 4)

jal(imm26) jump and link d′.pcp := d.pcp +32 i2n(imm),
d′.gpr !31 := n2i(d.pcp +32 4)

jalr(reg) jump and link
register

d′.pcp := i2n(d.gpr !r1),
d′.gpr !31 := n2i(d.pcp +32 4)

j (imm26) jump d′.pcp := d.pcp +32 i2n(imm)
jr(reg) jump register d′.pcp := i2n(d.gpr !r1)

movs2i(reg , reg) move special to
general purpose
register

(
d′.gpr !r1 := d.spr !r2 if spr

√
(d, r2)

d′ := d otherwise

movi2s(reg , reg) move general to
special purpose
register

(
d′.spr !r1 := d.gpr !r2 if spr

√
(d, r1)

d′ := d otherwise

trap(imm26) trap d′ := d
rfe return from ex-

ception
d′ := d

For all instructions except the identity cases (d′ := d) we have d′.dpc := d.pcp.
In the rows for movi2s and movs2i we use the following predicate as abbreviation:

spr
√

(d, r) = (d.spr !MODE 6= 0 =⇒ r ∈ {SR, RM, IEEEf, FCC}).

Table 6.4: Test Instructions

Instruction (i) Meaning Effect (d′ = exec(d, i))

clri(reg) clear imm. d′.gpr !r1 := 0
sgri(reg , reg , imm16) set if greater

imm.
d′.gpr !r1 := (d.gpr !r2 > imm)?1 : 0

seqi(reg , reg , imm16) set if equal
imm.

d′.gpr !r1 := (d.gpr !r2 = imm)?1 : 0

sgei(reg , reg , imm16) set if greater
equal imm.

d′.gpr !r1 := (d.gpr !r2 ≥ imm)?1 : 0

slsi(reg , reg , imm16) set if less imm. d′.gpr !r1 := (d.gpr !r2 < imm)?1 : 0
snei(reg , reg , imm16) set if not equal

imm.
d′.gpr !r1 := (d.gpr !r2 6= imm)?1 : 0

slei(reg , reg , imm16) set if less equal
imm.

d′.gpr !r1 := (d.gpr !r2 ≤ imm)?1 : 0

seti(reg) set imm. d′.gpr !r1 := 1
clr(reg) clear d′.gpr !r1 := 0

sgr(reg , reg , reg) set if greater d′.gpr !r1 := (d.gpr !r2 > d.gpr !r3)?1 : 0
seq(reg , reg , reg) set if equal d′.gpr !r1 := (d.gpr !r2 = d.gpr !r3)?1 : 0
sge(reg , reg , reg) set if greater

equal
d′.gpr !r1 := (d.gpr !r2 ≥ d.gpr !r3)?1 : 0

sls(reg , reg , reg) set if less d′.gpr !r1 := (d.gpr !r2 < d.gpr !r3)?1 : 0
sne(reg , reg , reg) set if not equal d′.gpr !r1 := (d.gpr !r2 6= d.gpr !r3)?1 : 0
sle(reg , reg , reg) set if less equal d′.gpr !r1 := (d.gpr !r2 ≤ d.gpr !r3)?1 : 0

set(reg) set d′.gpr !r1 := 1

for all instructions: d′.dpc := d.pcp, d′.pcp := d.pcp +32 4.

110 Target Language

Table 6.5: Arithmetic and Bitwise Instructions

Instruction (i) Meaning Effect (d′ = exec(d, i))

addi(reg , reg , imm16) add imm. d′.gpr !r1 := n2i(i2n(d.gpr !r2) +32

i2n(imm))
subi(reg , reg , imm16) subtract imm. d′.gpr !r1 := n2i(i2n(d.gpr !r2) −32

i2n(imm))
andi(reg , reg , imm16) bitwise and

imm.
d′.gpr !r1 := [two32(d.gpr !r2) ∧b

two32(imm)]
ori(reg , reg , imm16) bitwise or imm. d′.gpr !r1 := [two32(d.gpr !r2) ∨b

two32(imm)]
xori(reg , reg , imm16) bitwise xor imm. d′.gpr !r1 := [two32(d.gpr !r2) ⊗b

two32(imm)]
add(reg , reg , reg) add d′.gpr !r1 := n2i(i2n(d.gpr !r2) +32

i2n(d.gpr !r3))
sub(reg , reg , reg) subtract d′.gpr !r1 := n2i(i2n(d.gpr !r2) −32

i2n(d.gpr !r3))
and(reg , reg , reg) bitwise and d′.gpr !r1 := [two32(d.gpr !r2) ∧b

two32(d.gpr !r3)]
or(reg , reg , reg) bitwise or d′.gpr !r1 := [two32(d.gpr !r2) ∨b

two32(d.gpr !r3)]
xor(reg , reg , reg) bitwise xor d′.gpr !r1 := [two32(d.gpr !r2) ⊗b

two32(d.gpr !r3)]

for all instructions: d′.dpc := d.pcp, d′.pcp := d.pcp +32 4.

Table 6.6: Shift Instructions

Instruction (i) Meaning Effect (d′ = exec(d, i))

slli(reg , reg , sa5) shift left logical
imm.

d′.gpr !r1 := [two32(d.gpr !r2) �l

i2n(sa)]
srli(reg , reg , sa5) shift right logical

imm.
d′.gpr !r1 := [two32(d.gpr !r2) �l

i2n(sa)]
srai(reg , reg , sa5) shift right arith-

metic imm.
d′.gpr !r1 := [two32(d.gpr !r2) �a

i2n(sa)]
sll(reg , reg , reg) shift left logical d′.gpr !r1 := [two32(d.gpr !r2) �l

(i2n(d.gpr !r3) modu 25)]
srl(reg , reg , reg) shift right logical d′.gpr !r1 := [two32(d.gpr !r2) �l

(i2n(d.gpr !r3) modu 25)]
sra(reg , reg , reg) shift right arith-

metic
d′.gpr !r1 := [two32(d.gpr !r2) �a

(i2n(d.gpr !r3) modu 25)]

for all instructions: d′.dpc := d.pcp, d′.pcp := d.pcp +32 4.

6.2. VAMP Assembly Language 111

Proof This lemma is proved by case distinction on i. We omit the details
here.

Isabelle Observe that in Isabelle the preceding lemma has an additional
requirement (is instr) about instruction i. This requirement claims that the
register numbers and immediate constants of i are in the proper range. In this
thesis we replace this predicate by using sub types for the immediate constants
(cf. Section 6.2.1).

Transition Function

For the definition of the VAMP assembly transition function we need just one
more auxiliary function which defines the current instruction.

Definition 6.9 (Current instruction) We define the current instruction of
a configuration d of the VAMP assembly machine by the following function.

currinstr :: confasm 7→ instr
currinstr(d) = cell2instr(d.mm(d.dpc ÷ 4))

Definition 6.10 (VAMP transition function) We define the single step
transition function δasm :: confasm 7→ confasm for the VAMP assembly semantics
in the obvious way by applying the exec function to the current instruction.

δasm(d) = exec(d, cell2instr(((d÷ 4)).mm, d.dpc)

Similar to the C0 semantics we use the notation δi
asm to denote several steps of

the VAMP assembly machine. This function is defined by induction on i.

δ0
asm(d) = d

δi+1
asm(d) = δi

asm(δasm(d))

For later use we introduce some more functions and abbreviations regarding
configurations of the VAMP assembly machine.

Definition 6.11 (Reading lists of memory cells) Let m be the memory of
a VAMP assembly configuration, a a start address (in words), and l the number
of words to be read. We define the function readdata :: N 7→ mcellasm×N×N 7→
mcellasm list which reads the content of l consecutive memory cells from memory
m starting at word address a. The function is defined by induction on l.

readdata(m,a, 0) = []
readdata(m,a, l + 1) = m(a)#readdata(m,a + 1, l)

Definition 6.12 (Reading lists of instructions) Let m be the memory of a
VAMP assembly configuration, a a byte address, and l the number of instructions
to be read. We define the function read instr :: N 7→ mcellasm×N×N 7→ instr list
which reads l consecutive instructions from m starting at address a.

read instr(m,a, l) = map(cell2instr , readdata(m,a÷ 4, l))

112 Target Language

6.3 Correctness of the VAMP Assembly Model

Obviously, it is a good idea to use an abstraction like the VAMP assembly
semantics instead of arguing about compiler correctness directly at the ISA level.
However, the Verisoft project aims at the pervasive verification of compuer
systems which requires us to justify this abstraction formally. Such a justification
has been done for user mode programs by A. Tsyban in form of a simulation
theorem between the VAMP instruction set architecture and the VAMP assembly
semantics.

In order to use this simulation theorem to transfer results from the assembly
level to the ISA level we have to meet several additional requirements. Observe
that we do not formally define the requirements in this section but instead
we introduce a verification methodology for VAMP assembly programs in the
following section which incorporates sufficient conditions for the justification of
the abstraction. We highlight the most important requirements.

No Self Modifying Code. As mentioned in Section 6.1 on page 101, the
VAMP correctness proof requires a special sync instruction between the mod-
ification of code and its execution. The C0 compiler does not generate self
modifying code. Thus, we can fulfill this requirement by just proving that
we never execute code from memory locations where the code has previously
written to.

To distinguish between memory locations from which we will fetch instruc-
tions at some point in time and other locations we introduce the concept of a
code range. The code range rangec :: N×N of a given assembly program is a
pair of start address and end address. Roughly speaking, all memory locations
inside rangec are considered to contain instructions and all other to contain
data.

Alignment of Data and Instructions. The VAMP ISA requires memory
accesses to be properly aligned. The VAMP assembly machine does not contain
explicit requirements about alignment of accesses; nevertheless, the definitions
of memory accesses in the assembly machine are only correct (and meaningful)
if proper alignment is given.

No Access Outside the Address Space. The VAMP ISA generates page
fault interrupts mainly for two reasons.

1. A memory access is in principle permissible but the affected page is
currently swapped out. In this case, the page fault handler of the operating
system will swap in the accessed page transparently and the assembly
program will not observe any problems. For the compiler correctness
proof, we do not have to care about this kind of page fault interrupts.

2. A program tries to access a memory location which it is not allowed to. In
this case, there is in general no way for the operating system to fulfill the
program’s request and it will probably terminate the program. We have
to prevent this case by ensuring that the program does not access memory
outside its own address space neither by load or store instructions nor by
instruction fetches.

6.3. Correctness of the VAMP Assembly Model 113

Similar to rangec we introduce the notion of an address range. With
rangea :: N × N we represent the address space of a program. The
program is not supposed to do any memory access to an address which is
not inside rangea.

Isabelle Observe that in Isabelle the address range is a pair of start address
and length in contrast to the code range which is a pair of start and end address.
This difference is just for historical reasons and thus we do not reflect it here.
In this thesis, all ranges are modeled as pair of start and end address.

No Execution of Non-Modeled Instructions. The VAMP assembly se-
mantics does not model all instructions of the VAMP ISA. The instructions
trap and rfe which (in the VAMP ISA) generate trap interrupts and return
from exceptions are just modeled by the identity function and thus must not be
executed in a program at the assembly level. For user mode, this also holds for
instructions movs2i and movi2s if they access certain special purpose registers.

6.3.1 Formalizing the Requirements

We define two predicates which formally sum up the requirements from above.

Definition 6.13 (Advancing instructions) We call an instruction advanc-
ing if its semantics is not the identity mapping. Based on the definition of
instruction semantics from Section 6.2.5 we know that only few instructions can
lead to an identity step. Thus, we define the predicate advancing :: instr 7→ B

formally as advancing(i) = i /∈ {rfe, trap}.

Definition 6.14 (Interrupt free configuration) Let d be a configuration
of the VAMP assembly semantics, rangec the code range, and rangea the
address range. Additionally, let i = currinstr(d) be the current instruction of
configuration d. The predicate interruptfree :: confasm×(N×N)×(N×N) 7→ B

states that the next step of the VAMP assembly machine would not generate
interrupts on the ISA layer. This allows to prove for that step the equivalence
between the VAMP assembly machine and the ISA layer.

If the current instruction is neither a load or store nor a movi2s the rules are
quite simple. We just require that the delayed program counter is a multiple of
four and inside the code range.

¬is loadstore(i) i 6= movi2s 4 | d.dpc d.dpc ∈ rangec

interruptfree(d, rangec, rangea)

We forbid moves to or from special purpose registers other than floating point
registers because this would generate an illegal interrupt [Dal06, Chapter 3].

4 | d.dpc d.dpc ∈ rangec

i ∈ {movi2s,movs2i} REG1(i) ∈ {IEEEf, RM, FCC}
interruptfree(d, rangec, rangea)

114 Target Language

For load and store instructions we additionally require that the effective ad-
dresses of the memory access is inside the address range and that the access is
properly aligned.

is load(i) 4 | d.dpc widtha(i) |REG2(i) fst(rangea) ≤ ea(d, i)
ea(d, i) + widtha(i) ≤ snd(rangea) d.dpc ∈ rangec

interruptfree(d, rangec, rangea)

Furthermore, for stores the effective address must not be inside the code range.

is store(i) 4 | d.dpc widtha(i) |REG2(i)
fst(rangea) ≤ ea(d, i) ea(d, i) + widtha(i) ≤ snd(rangea)

ea(d, i) + widtha(i) ≤ fst(rangec) ∨ snd(rangec) < ea(d, i) d.dpc ∈ rangec

interruptfree(d, rangec, rangea)

6.4 Assembly Code Verification Methodology

The formal verification of VAMP assembly programs directly at the level of
the transition function δasm is non-practical for several reasons. First, repeated
unfolding of definitions is time consuming and makes proofs long and hard
to maintain. Second, the need to keep track of side conditions (confasm

√
,

etc.) and a lot of bookkeeping regarding requirements for absence of interrupts
and the simulation proof from the previous section complicates pre and post
conditions of lemmas. Additionally, it is hard to carry the preconditions from
one instruction to the next. Third and last, the bulk of proof goals is similar for
each instruction and need to be done over and over again. Thus, they should
be moved into ‘general’ lemmas which abstract from the concrete situation and
can be applied with less effort.

In this section we introduce a methodology which allows us to verify VAMP
assembly programs in a straightforward fashion. First, we define a predicate
which states that a certain block of assembly instructions executes without
generating interrupts. Then we introduce lemmas about the effect of single
assembly instructions which are formulated based on this predicate. These
lemmas generate only those verification conditions which are really necessary
for the given instruction and cannot be concluded in a general way. Finally, we
prove lemmas about the successive execution of several assembly instructions
or even of several blocks of assembly instructions. This allows us to combine
the lemmas about single instructions to lemmas about the behavior of larger
pieces of assembly code.

6.4.1 Predicates for Execution of Assembly Code

We need to formalize what we mean exactly when talking about the execution
of a certain piece of assembly code starting in a configuration d and ending in
another configuration d′.

Definition 6.15 (Execution of assembly code) We use the notation

d
t,dest−−−−−−−−−→

rangec,rangea

d′

6.4. Assembly Code Verification Methodology 115

to state that the VAMP assembly machine started in configuration d reaches
in t steps a configuration d′ with d′.dpc = dest and d′.pcp = d′.dpc + 4 using
rangec and rangea as code range and address range, respectively.

The predicate requires that the final configuration is reached by executing t
steps of the assembly machine, that its delayed program counter is equal to the
destination, that the second program counter pcp points to the next instruction,
that the code stays unchanged, that no interrupt generating events occur, and
that all instructions which are being executed are advancing.

Formally, this is defined by

d′.dpc = dest d′.pcp = d′.dpc + 4 δt
asm(d) = d′ confasm

√
(d′)

∀t′ ≤ t : unchngdmem(d.mm, d′.mm, fst(rangec)÷ 4, snd(rangec)÷ 4)
∀t′ < t : interruptfree(δt′

asm(d), rangec, rangea)
∀t′ < t : advancing(currinstr(δt′

asm(d)))

d
t,dest−−−−−−−−−→

rangec,rangea

d′

To keep formulas in the rest of this thesis concise we combine a set of
preconditions which are common for lemmas about the execution of assembly
code.

Definition 6.16 (Preconditions for assembly execution) Let rangec be
the code range, d a configuration of the VAMP assembly machine, and il a list
of assembly instructions. We define the predicate asmpre :: confasm× (N×N)×
instr list 7→ B which combine several preconditions for the successful execution
of VAMP assembly code.

The predicate requires that d is a valid VAMP assembly configuration, that
the delayed program counter is a multiple of four, that the second program
counter pcp points to the next instruction, that the instruction list il is stored in
the memory of d starting at address d.dpc, that il is completely located within
the code range, and that the code range fits into 32-bit addresses.

Formally, we define

confasm
√

(d) 4 | d.dpc
d.pcp = d.dpc + 4 read instr(d.mm, d.dpc, |il|) = il fst(rangec) ≤ d.dpc

d.dpc + 4 ∗ |il| < snd(rangec) snd(rangec) + 4 < 232

asmpre(d, rangec, il)

Isabelle In Isabelle, the predicate asmpre has an additional conjunction is
instr with type instr 7→ B. It requires that all instructions in il are valid
VAMP assembly instructions, i.e., that register names and immediate constants
are in the correct domain. However, in this thesis the property follows directly
from the fact that we use bounded types for register names and immediate
constants (cf. remark on page 102). Thus, there is no need to explicitly state it.

6.4.2 Executing Single Instructions

We have proved dozens of lemmas in Isabelle which state, given a small set of
preconditions, the meaning of certain assembly instructions. These lemmas have
been very useful in the low-level correctness proofs for the assembly code which is
being generated by the C0 compiler. But in this thesis we will not give detailed

116 Target Language

correctness proofs about the execution of small building blocks of assembly code;
instead we will concentrate on the interesting parts of the compiler correctness
proof, where C0 layer and assembly layer are linked together. Thus, we will
show only a few lemmas of the aforementioned kind to give the reader an idea
of the kind of low-level proofs which have been done.

We start with a simple lemma about the execution of the addi instruction.

Lemma 6.7 (Correctness of addition) If the preconditions from asmpre

hold for a configuration d where addi is the current instruction then the next
step of the VAMP assembly transition function has the expected behavior.

asmpre(d, rangec, [addi(rd, rs, i)])

=⇒ d
1,d.dpc+4−−−−−−−−−→

rangec,rangea

d

 dpc := d.dpc + 4
pcp := d.pcp + 4
gpr !rd := n2i(i2n(d.gpr !rs) +32 i2n(i))

Proof We do not give a detailed proof of this lemma here. In Isabelle the
proof is done mainly by unfolding the corresponding definitions of the VAMP
assembly semantics and by some simple arguments about modulo arithmetic.

The previous lemma is not very impressive and its formal proof is quite short.
Thus, the question may arise what this kind of lemmas is good for. But, even if
the lemma and its proofs are quite short its repeated use while proving larger
pieces of assembly code saves quite some time. However, the main advantage is
that most pre and post conditions of these lemmas are encapsulated in special
predicates; this gives a standard way of encoding this conditions. Thereby,
this kind of lemmas can be easily combined to lemmas about larger pieces of
assembly code as demonstrated in the following section.

Usually, a programmer does not make use of the fact the the program
counter is increased using modulo arithmetic. Thus, these lemmas abstract the
program counter computation to ordinary addition as long as the preconditions
from asmpre are fulfilled.

The second example is a lemma about the execution of a branch-equal-
zero instruction (beqz) in case that the condition is fulfilled. In contrast to
the first lemma, we cannot use the predicate for the execution of assembly
code from Definition 6.15 on page 114 directly for lemmas about branch and
jump instructions. The reason is that in a configuration d′ after executing a
jump or branch instruction (given that the branch has been taken) it is not
true that d′.pcp = d′.dpc + 4. Nevertheless, this condition is very helpful as
it allows to look at the execution of a given code block in isolation without
knowing too much details about the past of the assembly machine. Thus, we
formulate lemmas about the execution of branch and jump instructions always
as lemmas about two instructions: the branch and the instruction in the delay
slot. After executing the delay slot instruction (which must not be a control
flow instruction, cf. [BJK+06]) the condition d′.pcp = d′.dpc +4 holds again. In
the code generated by the C0 compiler there are not many different instructions
in the delay slots of branches. This keeps the number of different combinations
of branch and delay slot instructions – and the number of lemmas – small.

We present here exemplarily the combination of a beqz instruction with an
addi in the delay slot. Observe that the jump distance can be negative.

6.4. Assembly Code Verification Methodology 117

Lemma 6.8 (Correctness of a conditional branch) Let d be a configura-
tion where the preconditions from asmpre hold and beqz is the current instruction
followed by addi . If the source register is zero and the destination address of the
branch is reasonable then the branch is taken and the next step of the VAMP
assembly transition function has the expected behavior.

asmpre(d, rangec, [beqz (rs, dist), addi(rd, rs, i)])
∧ d.gpr !rs = 0

∧ 0 ≤ d.dpc + 4 + dist + 4 < 232 ∧ −231 ≤ dist < 231

=⇒ d
2,d.pcp+dist−−−−−−−−−→
rangec,rangea

d

 dpc := d.pcp + dist
pcp := d.pcp + dist + 4
gpr !rd := n2i(i2n(d.gpr !rs) +32 i2n(i))

Proof We omit the proof.

For this kind of lemmas there are basically two ways to specify the new
configuration d′. We can either define the new configuration explicitly like in
the lemmas above or we can specify its interesting properties implicitly. For the
compiler correctness proofs we have preferred the latter way in lemmas which
argue about more than one or two instructions (cf. Section 6.4.3). The main
advantage of this kind of formalization is that we can work on a slightly higher
level of abstraction. Additionally, Isabelle’s simplifier is not overstressed by un-
successfully trying to exploit the explicit representation of the new configuration
and the user is not overwhelmed by the exploding size of formulas.

6.4.3 Combining Code Pieces

In this thesis we developed a verification methodology for VAMP assembly
code which allows to combine lemmas about the execution of single assembly
instructions (cf. the previous section) or about small code pieces to correctness
proofs about larger code pieces. This verification is done in a forward style.

1. Have asmpre for the whole list il of assembly instructions in a configuration
d .

2. From step 1 deduce asmpre for a certain prefix a of il = a ◦ b for which
we already have a lemma.

3. Apply the lemma for a. This gives a new configuration d′ with certain
properties.

4. From the execution of a, infer asmpre for b in configuration d′.

5. Now, repeat steps 2 to 4 starting in configuration d′ for a prefix a′ of the
remaining assembly instructions. This leads to a new configuration d′′

after execution of this prefix.

6. Combine the execution of a and a′ to the execution of a ◦ a′ from config-
urations d to d′′ and start again with step 5 until the original assembly
program il is completely processed.

118 Target Language

In formal proofs, small differences in the way of proving lemmas can make a
big difference in the required effort. A big advantage of the described verification
methodology is that it allows to keep the formal proof context in Isabelle concise.
The same holds for the proof scripts themselves. With the right kind of lemmas
(cf. below) and a good way of applying them we can process the assembly
instructions step-by-step without poisoning the proof state with obsolete facts
and without having to state complicated facts by copy-and-paste.

Now, we present some lemmas which implement the verification methodology
from above. We start with a lemma which allows to combine results about
the execution of two separate code blocks a and b to the execution of a@b (cf.
step 6 of the methodology).

Lemma 6.9 (Combined execution of code blocks) Given that a list a of
assembly instructions is executed from configuration d to configuration d′ in ta
steps and a code piece b is executed from d′ to d′′ in tb steps we can conclude
that the composed list a ◦ b is executed from d to d′′ in ta + tb steps.

d
ta,desta−−−−−−−−−→

rangec,rangea

d′ ∧ d′
tb,destb−−−−−−−−−→

rangec,rangea

d′′ =⇒ d
ta+tb,destb−−−−−−−−−→

rangec,rangea

d′′

Proof The proof of this lemma is quite simple; even in Isabelle it does only
require 15 proof steps. We have to verify seven conditions for this lemma (cf.
Definition 6.15 on page 114):

1. d′′.dpc = destb

2. d′′.pcp = d′′.dpc + 4

3. δta+tb
asm (d) = d′′

4. confasm
√

(d′′)

5. ∀t′ ≤ ta+tb : unchngdmem(d.mm, d′′.mm, fst(rangec)÷4, snd(rangec)÷4)

6. ∀t′ < ta + tb : interruptfree(δt′

asm(d), rangec, rangea)

7. ∀t′ < ta + tb : advancing(currinstr(δt′

asm(d)))

Conditions 1, 2, and 4 follow directly from the correct execution of b.
Condition 3 follows by a simple argument about the VAMP assembly transition
function. Finally, conditions 5, 6, and 7 follow for t′ < ta (t′ ≤ ta for condition 5)
from the proper execution of a and for the other cases from the execution of
b. q.e.d.

We continue with statements about concluding asmpre for prefixes of a list
of assembly instructions (cf. step 2 of the methodology)

Lemma 6.10 Given that we have proper preconditions for the execution of a
list il of assembly instructions in configuration d we also have the preconditions
for any prefix of il.

asmpre(d, rangec, il) ∧ n ≤ |il| =⇒ asmpre(d, rangec, il[0, n])

Proof The proof of this lemma follows directly from the definition of asmpre.

6.4. Assembly Code Verification Methodology 119

To further simplify formal reasoning in Isabelle we also use the following
corollaries of the previous lemma. These corollaries are trivial with paper-and-
pencil and their proof is trivial also in Isabelle / HOL. However, using them
instead of the original lemma often saves several additional proof steps which
would be required to bring the current proof state in correspondence with the
lemma on the facing page.

Corollary 6.11 Given that we have proper preconditions for the execution of
a list of assembly instructions in configuration d we also have the preconditions
for the execution of the first instruction in that list.

asmpre(d, rangec, a#b) =⇒ asmpre(d, rangec, [a])

Corollary 6.12 Given that we have proper preconditions for the execution of
a list of assembly instructions which is composed of two parts the precondition
holds in the same configuration also for the first part of the list.

asmpre(d, rangec, a ◦ b) =⇒ asmpre(d, rangec, a)

Finally, we present a lemma which formalizes step 4 of the verification
methodology on page 117.

Lemma 6.13 Let the preconditions for the execution of assembly code hold for
a list a ◦ b of assembly instructions in configuration d. Furthermore, assume
that the instructions a are executed from configuration d to configuration d′

such that the program counter of d′ points to the start of instruction list b.
Then, we can conclude that the preconditions also hold for the execution of b in
configuration d′.

asmpre(d, rangec, a ◦ b) ∧ d
t,d.dpc+4·|a|−−−−−−−−−→
rangec,rangea

d′ =⇒ asmpre(d′, rangec, b)

Proof We omit the simple proof of this lemma.

We also present the following corollary of the previous lemma which simplifies
formal reasoning.

Corollary 6.14 If the preconditions for the execution of assembly code hold in
configuration d for a list of assembly instructions, the first statement of that list
is executed from configuration d to d′, and the program counter of d′ points to
the second instructions of the list we can conclude that the preconditions holds
for the tail of the instruction list in d′.

asmpre(d, rangec, a#b) ∧ d
t,d.dpc+4−−−−−−−−−→

rangec,rangea

d′ =⇒ asmpre(d′, rangec, b)

6.4.4 Automation

The assembly level correctness proofs which have been done in this thesis
using the assembly verification methodology from Section 6.4, can probably be
automated to a large extent. In [Eme05], the author presents a method for an
automatic proof that no interrupts are generated by a given piece of assembly
code. When more and larger assembly programs have to be verified, it could
pay off to develop a semi-automated assembly verification environment as has
been done for C0 programs in [Sch06].

Part II

Compiler

121

Chapter 7

Code Generation Algorithm

Contents
7.1 Introduction to the Code Generation 124

7.2 Memory Layout . 128

7.3 Code Generation for Expressions 135

7.4 Code Generation for Statements 148

7.5 Code Generation for Complete C0 Programs 159

7.6 Translatable Programs 161

7.7 Execution of the Compiler Specification 165

In this chapter we describe the code generation algorithm of the C0 compiler.
A C0 program consists of a type name environment, a function table, and

a symbol table for the global variables (cf. Section 4.1). The code generation
algorithm of the C0 compiler is quite simple and follows directly the structure
of the input program. The C0 compiler starts by iterating over all functions in
the function table and generates code for the function bodies (which are formed
by a single statement). The code generation for statements and expressions –
in the context of a certain function – is done by a simple recursive algorithm
which follows the structure of the corresponding data types.

The code generation algorithm does not use any optimizations. Registers
are not used to store (intermediate) results or memory content between different
expressions or statements. Thus, there is no need for a special register allocation
phase. Register allocation is done together with instruction selection in one
step.

In this chapter we introduce the code generation algorithm bottom up. We
start in Section 7.1 with some basic definitions and introduce the memory
layout of the compiled programs in Section 7.2. We continue with the code
generation for expressions in Section 7.3, with the code generation for statements
in Section 7.4, and conclude in Section 7.5 with the code generation algorithm
for complete C0 programs. In Section 7.6 we investigate restrictions on input
programs which are caused by restrictions of the target machine. We conclude
this chapter in Section 7.7 with a discussion on how the Isabelle specification of
the code generation algorithm can be executed. This is a possible solution of
the bootstrap problem (cf. [GH98]).

123

124 Code Generation Algorithm

7.1 Introduction to the Code Generation

7.1.1 Code Size

On several occasions we need to know the size of the generated code. To name
just a few: we need to compute jump distances (e.g., to miss out the body
of a loop if the condition is false), to compute the absolute start address of
functions (for function calls), and to compute the base address of variables,
which depends – at least for the C0 compiler – on the size of the program (cf.
Figure 7.2 on page 129).

For the first and for the last example we do not necessarily need to know
the code size in advance, i.e., before generating the corresponding code.

As we will see later, code is generated by recursion, thus we know the
code for the loop body already when we generate the code which reacts to the
condition. Thus, we can figure out the size of the loop body by just looking at
its code.

For the last example, we anticipate the meaning of special registers (cf.
Table 7.2 on page 129) which store the base address of the global memory frame
and the base address of the current stack frame. We compute the address of
variables relative to one of these registers and can keep the code which accesses
variables independent of the real values for the base address. Obviously, these
two registers need to be initialized.

This is done by some initialization code which is located at the beginning of
the compiled program (cf. Figure 7.12 on page 160). Thus, the initialization
code need to know the code size of the program, in order to compute the initial
register values. However, the initialization code – which is of fixed size – could
be generated at the end, after generating the code for the remaining program,
when we already know the size of the remaining code.

Nevertheless, the solutions from above do not work for function calls. C0
supports mutual recursion, thus there is – at least for some C0 programs – no
way to generate code without having to jump to functions which have not yet
been compiled. To compute the jump distance to or the absolute address of
these functions we would need to know the size of the current function, which
we do not.

There are two solutions to this problem.

• We could compile a program in two passes: in a first pass we would miss
out jump distances from function calls – taking notes of where we need to
insert the jump distance to which function – and in a second pass, when
we know the size of all functions, we would insert the jump distances.

• We can introduce simple functions which compute, given a necessary set
of parameters, the size of the generated code, without having to know all
details like jump distances.

In terms of correctness proofs, we would have to prove that the selected
solution generates correct jump distances for function calls. For the two-pass
compilation this would require us to keep a list of positions where we have to
fill in jump distances and to prove that inserting the distances works correctly.
Such a proof is be quite complicated to do in a formal verification system.
The second approach is much simpler as it just requires to prove for all code

7.1. Introduction to the Code Generation 125

generation functions that the corresponding code size functions compute the
correct result. Thus, we have chosen the second approach to specify the code
generation algorithm in Isabelle. For the compiler implementation in C0 [Pet07],
Elena Petrova has chosen to implement the two-pass approach. This was mainly
done for efficiency and required a quite lengthy equivalence proof between both
solutions.

Even if not mandatory, the code size functions also simplify code generation
for the first and third problem from above because they decouple computation
of addresses and actual code generation.

We will not give a detailed (and boring) definition of the code size functions,
here. Instead we present the signatures of the most important code size function
and leave their concrete definitions and some auxiliary functions to the Isabelle
theories. One can easily calculate the code size by hand from the code generation
algorithm in Sections 7.3 and 7.4. Observe that we count the size of code in
words, which corresponds directly to the number of VAMP instructions. To
have the code size in bytes we have to multiply by four.

Definition 7.1 (Code size of expressions) Let e be an expression, te a
type name environment, gst and lst global and local symbol tables, and rf a flag
which specifies if e should be evaluated as a left or as a right expression. Then,
the function csizee(te, gst , lst , rf , e) computes the size of the code generated for
e.

csizee :: tenv × (S× ty) list × (S× ty) list ×B× expr 7→ N

Definition 7.2 (Code size of statements) Let s be a statement, te a type
name environment, and let gst and lst be global and local symbol tables,
respectively. Then, the function csizes(te, gst , lst , s) computes the size of the
code generated for statement s.

csizes :: tenv × (S× ty) list × (S× ty) list × stmt 7→ N

As an abbreviation we introduce a second variant of the above function
which computes the neccessary local symbol table depending on the function to
which the statement belongs. The result of this function is of option type to
cope with statements which are not present in the program.

csizes :: tenv × (S× ty) list × functableTstmt 7→ N⊥

csizes(te, gst , ft , s) =

{
bcsizes(te, gst , st fun(f), s)c if fos(s, ft) = bfc
None otherwise

Definition 7.3 (Code size of function lists) Let te a type name environ-
ment, gst the global symbol table, and ft a function table. Then we introduce
the function csize fl :: tenv × (S × ty) list × functableT 7→ N which computes
the code size of a given list of functions. We define by induction on the list of
functions

csize fl(te, gst , ft , []) = 0
csize fl(te, gst , ft , (fn, f)#fs) = csize fl(te, gst , ft , fs)

+ csizes(te, gst , st fun(f), f.body)

126 Code Generation Algorithm

Definition 7.4 (Size of the init code) We introduce the following constant
which denotes the size of the init code.

csize ini :: N

The code size of a C0 program is composed of the code size of the init code
and of all functions of the program.

Definition 7.5 (Code size of programs) Let te a type name environment,
gst the global symbol table, and ft a function table. We define the code size of
a C0 program by

csizeprog(te, gst , ft) = csize ini + csize fl(te, gst , ft , ft)

7.1.2 Base Addresses of Code

Now, we define several functions which compute the (byte) base addresses
of code. We start with a function which computes the start address of the
code which has been generated for a given function. Then, we define for a
statement s and a sub statement s′ of s the code displacement of s′ in s. The
code displacement tells us the displacement of the code generated for s′ with
respect to the start of the code which has been generated for s. Finally, we will
define the code base of statements using the start address of the statement’s
function and the code displacement of the statement with respect to the start
of the code for that function.

Definition 7.6 (Displacement of functions) We define the displacement
of a function with name fn with respect to the start of the code generated for a
given list of functions. We do this definition by induction on the function list.
As we are not interested in the case that fn is not present in the function list
we can omit the induction start.

displ f :: tenv × (S× ty) list × S× functableT × functableT 7→ N

displ f(te, gst , fn, ft , (fn ′, f)#fl) =
0 if fn ′ = fn
4 · csizes(te, gst , st fun(f), f.body)

+displ f(te, gst , fn, ft , f l) otherwise

Based on the displacement of a function it is now simple to define its absolute
start address.

Definition 7.7 (Start address of functions) We define the start address
of a function f by adding its displacement to the program base and the size of
the initialization code. Formally, we define

cbase f :: tenv × (S× ty) list × S× functableT 7→ N

cbase f(te, gst , f, ft) = progbase + 4 · csize ini + displ f(te, gst , f, ft , ft)

7.1. Introduction to the Code Generation 127

init code

code for ft !0

code for ft !1

code for ft !2

. . .

code for ft !(n− 1)

progbase

cbase f (fst(ft !0))

cbase f (fst(ft !1))

cbase f (fst(ft !2))

..
.

4 · csize ini

displ f(fst(ft !2), ft , ft)

displ f(fst(ft !(n− 1)), ft , ft)

Figure 7.1: Start Address of Functions for Function Table ft

Let te be a type name environment, ft a function table, and gst and lst
the global and local symbol tables. Furthermore, let s be a statement and s′

a non-structural sub statement of s. We introduce the code displacement (in
bytes) of statement s′ with respect to statement s.

displ s :: tenv × functableT × (S× ty) list × (S× ty) list × stmt × stmt 7→ N⊥

For easier understanding of the formulas, we will not give the concrete definition
of displ s until Section 7.4.9 after we have defined the code generation for
statements.

Based on these definitions we can finally define the base address of arbitrary
statements.

Definition 7.8 (Base address of statements) Let te a type name environ-
ment, ft a function table, gst the symbol table for the global memory, and s a
statement. We define the function cbases :: tenv × (S× ty) list × functableT ×
stmt 7→ N⊥ which computes the base address of s. To do that it adds the base
address of the function f to which s belongs and the displacement of s inside
the function body of f .

cbases(te, gst , ft , s)

=

⌊

cbase f(te, gst , fn, ft)+
the(displ s(te, ft , gst , st fun(f), s, f.body))

⌋
if fos(s, ft) = b(fn, f)c

None otherwise

We prove the following simple lemma about the base address of sub state-
ments.

Lemma 7.1 (Base address of sub statements) Let statements s and f be
non-structural. Furthermore, let s be a sub statement of f and f a sub statement
of f ′. Then, the code displacement of s with respect to f ′ equals the displacement

128 Code Generation Algorithm

of s with respect to f plus the displacement of f with respect to a.

s ∈ subs(f) ∧ ¬stmtstructural(s)
∧ f ∈ subs(f ′) ∧ ¬stmtstructural(f)
∧ dstncts(f ′)
=⇒ the(displ s(s, f

′)) = the(displ s(s, f)) + the(displ s(f, f ′))

Proof We prove this lemma by induction on f ′. Most induction cases follow
directly from the definition of displ s.

The condition that all sub statements of f ′ are distinct is not strictly
necessary for the lemma. However, it simplifies the proof for the inductive
cases, i.e., for the statement with several sub statements: Comp(s1, s2) and
Ifte(e, s1, s2). In these cases, we have to argue that s and f are in the same sub
tree, e.g., that the case s ∈ subs(s1) ∧ f /∈ subs(s1) ∧ f ∈ subs(s2) cannot occur.
This is trivial, if we have dstnct s(f ′) because f ∈ subs(s2) implies s ∈ subs(s2)
which is a contradiction to the distinctness requirement.

Without distinctness, the goal would also be provable but would require
more auxiliary lemmas which argue that f is in some sense smaller than f ′

(because f ∈ subs(s2)) and so it has to be a sub statement of s1 because s
is a sub statement of s1. Then, we would not care whether s or f are sub
statements of s2 because in the definition of displ s the left sub statement has
higher priority.

We omit other details of the proof. q.e.d.

7.2 Memory Layout

The data memory layout of the C0 compiler consists of three main areas: the
global memory frame, a stack of local memory frames, and the heap. A rough
overview on the layout of these areas in the memory of a VAMP assembly
machine is depicted in Figure 7.2.

The memory layout starts with the assembly code for the compiled program.
The code starts at address progbase which is a parameter to the C0 compiler and
thus treated as a constant here. Behind an unused area of size bubblecode – this
is also a parameter to the compiler and can be zero – follows the global memory
frame. The global memory is followed by an unused area of size bubblegm.

The global memory frame is followed by the stack of local memories. Each
local memory frame starts with a stack frame header which occupies three
words and stores the return address, the return destination, and the previous
stack pointer. The offsets and meaning of these fields are explained in Table 7.1.
New stack frames are placed at the upper end of the stack, i.e., the C0 compiler
lets the stack grow to the top.

The last part of the memory is the heap. The heap starts at address
abaseheap, which is also a constant parameter to the compiler, and grows to the
top. The size of the heap memory is bounded by the constant asizemax

heap.
The compiler stores the base address of the global memory, the first unused

address on the heap, and the base address of the current stack frame in registers
(cf. Table 7.2).

7.2. Memory Layout 129

Table 7.1: Frame Header Layout

Offset Name Meaning

0 return address where to jump after completion of the
corresponding function

4 return destination where to store the result of the func-
tion

8 previous stack pointer start address of the previous stack
frame

Table 7.2: Special Registers Used in the C0 Compiler

Register Mnemonic Meaning

r28 rsbase base address of the global memory frame
r29 rhtop first unused address on the heap
r30 rlframe base address of the current (top) stack frame
r31 rjal used by the VAMP for jump-and-link instructions

free heap

used heap

free stack area

frame header

stack frame
|m.lm| − 1

frame header

stack frame 0

global memory
frame

code

stack

bubblecode

bubblegm

abaseheap + asizemax
heap

i2n (gpr !rhtop)

abaseheap

abase lm(te, ft , sc(m), 0)
= abase lm(te, ft , gst(m))

i2n(gpr !rlframe)
= abase lm(te, ft , sc(m), |m.lm| − 1)

i2n(gpr !rsbase)
= abasegm(te, ft , gst(m))

progbase

stack
grow

s
upw

ards
heap

grow
s

upw
ards

Figure 7.2: Memory Layout of the C0 Compiler

130 Code Generation Algorithm

7.2.1 Alignment and Allocated Size

We define inductively the alignment of types and the number of bytes needed
to store a value of certain type in the target machine. We call the latter the
allocated size of a type.

Remark The following definitions of alignment and allocated size of types
and the displacement of structure components are unnecessary complex for the
current version of the C0 compiler which reserves a complete word for all basic
types. For such a compiler, all structure components are automatically aligned
to four bytes and there is no need to insert holes in the memory layout for
proper alignment.

However, having these complex definitions allows us to switch without too
much effort to a memory layout where some basic types (e.g., boolean and
character) occupy only a single byte. The generated code – with the exception
of the code for big assignments – works also for this case. The proofs, however,
would requirement some adjustments.

Definition 7.9 (Alignment of types) We define the function algn :: ty 7→
N which computes the neccessary alignment for a given type.

algn(BoolT) = 4
algn(IntT) = 4

algn(CharT) = 4
algn(UnsignedT) = 4

algn(PtrT(tn)) = 4
algn(NullT) = 4

The alignment of arrays is the alignment of the element type.

algn(ArrT(n, t)) = algn(t)

The alignment of a structure is the maximum of the alignments of its compo-
nents.

algn(StrT(scl)) = max(map(algn, scl))

Definition 7.10 (Allocated size of types and displacement) We define
simultaneously the function asizet :: ty 7→ N which computes the allocated size
for a given type and the function displv :: N × (S × ty) list × S 7→ N which
computes the displacement of structure components inside a structure.

asizet(BoolT) = 4
asizet(IntT) = 4

asizet(CharT) = 4
asizet(UnsignedT) = 4

asizet(PtrT(tn)) = 4
asizet(NullT) = 4

All array elements have to be properly aligned. However, the allocated size
of array elements may not correspond to their alignment: e.g., consider the

7.2. Memory Layout 131

case of an array of structures which contain a pointer followed by a boolean
and imagine that booleans would have an allocated size of just one byte. In
this case, the allocated size of the array elements would be five, whereas the
required alignment would be four; accordingly, the compiler would have to insert
three unused bytes behind every array element (this example is illustrated in
Figure 7.3). Thus, we have to round the element size up to a multiple of its
alignment.

asizet(ArrT(n, t)) = n · dasizet(t)ealgn(t)

The allocated size of a structure equals the displacement of the last component
plus its allocated size.

asizet(StrT(scl)) = displv(0, scl , fst(last(scl))) + asizet(snd(last(scl)))

The displacement of a component x inside a structure is defined using an
accumulator parameter i. The intended meaning of i is that it represents
the displacement of the previous component plus the allocated size of that
component. Then, as soon as we reach component x, we just have to round i
up to a multiple of the alignment of the type of component x.

Observe that we apply asizet only to the type of single structure components
not to the type of the whole structure. This allows us to use displv to define
the allocated size of structures while still having well defined functions.

displv(i, [], x) = i

displv(i, (cn, t)#xs, x) =

{
diealgn(t) if x = cn
displv(diealgn(t) + asizet(t), xs, x) otherwise

Isabelle To avoid the need for a simultaneous definition of asizet and displv,
the definition of asizet for structures has been done differently in Isabelle. It
uses an auxiliary accumulator parameter and is far from being as intuitive
as the definition above. However, we have proved a lemma1 which shows the
equivalence between the Isabelle definition and the intuitive definition above.

Lemma 7.2 (Allocated size is a multiple of four) Let te be a type name
environment and t a valid C0 type. Then, the allocated size of t is a multiple of
four.

valid ty(te, t) =⇒ 4 | asizet(t)

Proof This lemma is proved by induction on the structure of t. For the basic
types, the statement follows directly from the definition of asizet. The induction
steps for arrays and structures are done using some basic properties of the
ceiling function dxey. q.e.d.

As an abbreviation we introduce the function asizealgn which aligns the
allocated size of a type by the alignment of the type. We set

asizealgn :: ty 7→ N

asizealgn(t) = dasizet(t)ealgn(t).

1asize struct components as displ var of last

132 Code Generation Algorithm

a[0].p

a[0].b
unused
unused
unused

a[1].p

a[1].b
unused
unused
unused

0

4

8

12

asize
t (s)

dasize
t (s)e

a
lg

n
(s

)

asize
t (A

rr
T
(2,s))

=
2
·dasize

t (s)e
a
lg

n
(s

)

In this example consider an array a with two elements where the array’s
element type is a structure type s with components p : PtrT and b : BoolT.

Figure 7.3: Example for the Allocated Size of Arrays

We extend the definition of allocated size from types to symbol tables and
memories.

Definition 7.11 (Allocated size of symbol tables) Compared to a global
memory frame, the stack frames of the local memory store additional information
in the frame header. Thus, the function asizest :: (S× ty) list ×N 7→ N, which
computes the allocated size of a given symbol table st has a second parameter
which represents the size of the frame header. For the global memory frame,
this parameter is zero, for the stack frame it is twelve. We define

asizest(st, hs) ={
hs if st = []
displv(hs, st, fst(last(st))) + asizet(snd(last(st))) otherwise

which means that the size of an empty symbol table equals the header size and
for a non-empty symbol table equals the displacement of the last variable plus
the allocated size of the variable.

Based on this definition we define the allocated size of a memory by

asizemem :: mframe ×N 7→ N

asizemem(m,hs) = asizest(m.st , hs)

Variables in the heap have no names so we have to define the allocated size
of the heap differently.

7.2. Memory Layout 133

Definition 7.12 (Allocated size of the heap) We define the allocated size
of the heap by induction. Observe that all heap objects are aligned to word
boundaries.

asizeheap :: (S× ty) list 7→ N

asizeheap([]) = 0
asizeheap((x, t)#xs) = dasizet(t)e4 + asizeheap(xs)

7.2.2 Displacement of Variables and G-Variables

The displacement of a variable in a memory frame is equal to the displacement
of a structure component inside a structure. Thus, we reuse the function displv
from Definition 7.10 on page 130 to compute displacement of variables. Observe
that for variables in stack frames we have to set the headersize to twelve.

Definition 7.13 (Displacement of g-variables) We introduce a function
displg :: symbolconf × gvar 7→ N which computes the displacement of a g-
variable g with respect to its root g-variable. The function is defined by
induction on g.

displg(sc, gvargm(x)) = 0

displg(sc, gvar lm(i, x)) = 0

displg(sc, gvarhm(i)) = 0

displg(sc, gvararr(g, i)) = displg(sc, g)

+ i · asizealgn(tyg(sc, gvararr(g, i)))

For structure access let tyg(sc, gvararr(g, i)) = StrT(scl). Then we set

displg(sc, gvar str(g, cn)) = displg(sc, g)

+ displv(0, scl , cn)

Definition 7.14 (Relative displacement) We define the relative displace-
ment displ rel of a g-variable g with respect to another g-variable h by

displ rel :: symbolconf ××gvar × gvar 7→ N

displ rel(sc, g, h) = displg(sc, h)− displg(sc, g)

7.2.3 Base Addresses

After defining the size of the generated code in the previous section, we can
define the absolute base addresses of variables and g-variables. We start by
defining the absolute base address of the global memory and of the local memory
stack.

Definition 7.15 (Base address of the global memory) Let te be a type
name environment, gst the global symbol table, and ft a function table. To
compute the base address of the global memory we have to add the size of the
program (in bytes) and the size of bubblecode to the base address of the code
(cf. Figure 7.2). Formally, this is defined as

abasegm :: tenv × functableT × (S× ty) list 7→ N

abasegm(te, ft , gst) = progbase + 4 · csizeprog(te, gst , ft) + 4 · bubblecode

134 Code Generation Algorithm

Definition 7.16 (Base address of stack frames) Let te a type name envi-
ronment, ft a function table, and sc the current symbol configuration. We
define the base address of the i-th local memory frame. The base address of the
lowest stack frame can be easily computed from the base address of the global
memory by adding the size of the global memory frame and bubblegm. For the
other stack frame we define the base by induction on i.

abase lm :: tenv × functableT × symbolconf ×N 7→ N

abase lm(te, ft , sc, 0) = abasegm(te, ft , sc.gst) + dasizest(sc.gst , 0)e4
+ 4 · bubblegm

abase lm(te, ft , sc, i + 1) = abase lm(te, ft , sc, i) + dasizest(sc.lst !i, 12)e4

For simplicity, we will sometimes use the following abbreviation for the
base address of the first stack frame: abase lm(te, ft , gst) = abase lm(te, ft , sc, 0),
where gst = sc.gst is the global symbol table of the given symbol configuration.

Using the definition from above, we define the allocated base address of
g-variables. Observe that this definition only works for g-variables in the global
or in one the local stack frames. For g-variables in the heap we cannot statically
define the allocated base address because they may be moved or even deleted
by the garbage collector.

Definition 7.17 (Base address of g-variables) Let te a type name envi-
ronment, ft a function table, sc the current symbol configuration, and g a local
or global g-variable. We define the allocated base address of a g-variable by
case distinction on the location of the root g-variable of g.

abaseg :: tenv × functableT × symbolconf × gvar 7→ N

abaseg(te, ft , sc, gvargm(x)) = abasegm(te, ft , sc.gst) + displv(0, sc.gst , x)

abaseg(te, ft , sc, gvar lm(i, x)) = abase lm(te, ft , sc, i) + displv(12, sc.lst !i, x)
abaseg(te, ft , sc, gvararr(g, i)) = abaseg(te, ft , sc, g)

+ i · asizealgn(tyg(sc, gvararr(g, i)))

For structure access let tyg(sc, gvararr(g, i)) = StrT(scl).

abaseg(te, ft , sc, gvar str(g, cn)) = abaseg(te, ft , sc, g) + displv(0, scl , cn)

Lemma 7.3 The allocated base address of g-variables and the displacement of
g-variables are consistent:

memg(g) 6= hm
=⇒ abaseg(te, ft , sc, g) = abaseg(te, ft , sc, rootg(g)) + displg(sc, g)

Proof We omit the simple induction proof of this lemma.

Isabelle In Isabelle, this lemma is split into two lemmas: one for global
g-variables and one for local ones.

7.3. Code Generation for Expressions 135

7.3 Code Generation for Expressions

In this section we describe the code generation algorithm for C0 expressions.
For this purpose we introduce the following function which computes the code
for a given expression:

codeexpr ::tenv × (S× ty) list × (S× ty) list ×B× reg × reg list × expr
7→ instr list

The function has the following parameters: a type name environment, a symbol
table for the global variables, a symbol table for the current local variables,
a flag which specifies whether the code should compute the left or the right
value of the expression, the name of the destination register, and list of registers
which may be used during evaluation of sub expressions.

In the following sections we will define codeexpr by induction on the expression
structure. Before we actually start with the definition of codeexpr for literals,
we describe in Section 7.3.1 some general properties of the code generation
algorithm.

For the remainder of this section, let te be a type name environment, gst
and lst two symbol tables (for global and local variables), rf a flag which defines
whether evaluation should return the value of the expression (rf = true) or
its address (rf = false), r the name of the destination register, fregs a list of
available (free) registers, and finally e the expression to be translated.

7.3.1 Introduction

In this section we discuss some basic properties of the code generation algorithm
for expressions before we continue with the formal definitions.

Basic Evaluation Strategy

The C0 compiler uses a quite simple and direct expression evaluation strategy
by induction on the datastructure for an expression. Intermediate results are
stored in the processor’s registers. We do not use intermediate results from one
part of an expression in another part (this is sometimes called elemination of
common sub expressions); instead, we recompute the value of sub expressions
for each occurence. We also do not remember the result of expression evaluation
between C0 statements.

Left and Right Evaluation

We distinguish between expressions for which we want to compute the value and
expressions for which we want to compute the address. We call the former case
evaluation as a right expression and the latter evaluation as a left expression.
The naming (left and right evaluation) arises from the situation in assignments
where we compute the address of the left expression and the value of the right
expression.

To differentiate between left and right evaluation we use the boolean flag
rf of the codeexpr function. We set this flag to true for right evaluation and to
false for left evaluation. During the inductive descent we can determine this
flag for the sub expression from the context (cf. below). For the top-level call

136 Code Generation Algorithm

of codeexpr during the code generation for statements, the flag depends on the
position of the expression in the statement (cf. Section 7.4).

There is one exception to the intuitive meaning of left and right evaluation.
If the value of an expression does not fit into a processor register we generate
code for left evaluation (i.e., to compute the address) even if the expression is
located on the right side of an assignment. In this case, the assignment code
determines and assigns the value of the expression step-by-step in chunks that
fit into a register.

Observe that the previous exception implies the invariant that rf is only
true for expressions which fit into the processor registers.

Register Allocation and Order of Sub Expressions

Before we start with the actual definition of the code generation function for
expressions, we give a short overview on the (simple) register allocation strategy
and about the order in which we generate code for sub expressions.

The C0 compiler uses registers r1 to r3 as scratchpad registers and registers
r28 to r31 to store special values (cf. Table 7.2 on page 129). Register r0 is tied
to zero. Thus, registers r4 to r27 remain available for expression evaluation.
We call this the set of initially free registers or short fregs ini.

We introduce the function sizee :: expr 7→ N which computes the (abstract)
size of an expression. We define the size of an expression e as the number of
data type constructors in e.

The code generation function for expressions gets a destination register
rd and a list of currently available registers fregs as input. If there are no
sub expressions we just compute the result and store it in the destination
register rd. If there is a single sub expression we use codeexpr recursively and
set r′d = hd(fregs) and fregs ′ = rd#tl(fregs) for the sub expression. Observe
that we use the destination register of an expression as free register for the
computation of its sub expressions.

If the expression has two sub expressions (binary operators, array access,
structure access) and is not a lazy expression (‘logical and’ or ‘logical or’) we
use r′d = hd(fregs) and fregs ′ = rd#tl(fregs) to evaluate the first sub expression
and r′′d = hd(tl(fregs)) and fregs ′ = rd#tl(tl(fregs)) to evaluate the second. In
order to have more registers available we evaluate the larger sub expression
first.

For lazy operators, we cannot choose the order of sub expression evaluation
arbitrarily because the C0 semantics force use not to evaluate the right sub
expression if the left sub expression suffices to compute the result of the lazy
operator. This makes a difference if the evaluation of the right operand would
generate a runtime error like division-by-zero. Thus, for lazy operators we
evaluate the sub expressions strictly from left to right.

Figure 7.4 demonstrates the register allocation strategy for expressions. We
state between the operands of binary operators how their sizes relate to each
other and print the number of available free registers to the right of every node.

7.3. Code Generation for Expressions 137

¬

∧

≤

−

8

5

=

x []

s i

>

<

<

=

24

24

24

24

24

23

23

22 23

23 22

Figure 7.4: Register Allocation Strategy

7.3.2 Literals

For the VAMP processor, code generation for literals is not completely trivial
because there is no support 32-bit immediate constants. Thus, 32-bit literals
have to be loaded in two steps.

Definition 7.18 (Code generation for literals) We define by case distinc-
tion the function code lit :: reg × lit 7→ instr list which generates code for
literals.

The definition for null pointers, boolean, and character literals is simple.

code lit(rd,Null) = addi(rd, r0, 0)

code lit(rd,Bool(b)) =

{
addi(rd, r0, 1) if b

addi(rd, r0, 0) if ¬b

code lit(rd,Char(c)) = ori(rd, r0, c)

Loading of 32-bit signed and unsigned literals is done in two steps. First, we
load the upper half word to the upper half of the destination register using
the lhgi instruction. After that, we combine it with the lower half word using
exclusive or. Because the xori instruction sign extends the immediate constant
we have to invert the upper half word in the case that the most significant bit
of the lower half word is set.

code lit(rd,Unsigned(u)) =
[

lhgi(rd, [bin32(u)[31 : 16]⊗b bin32(u)[15]16]),
xori(rd, rd, [bin32(u)[15 : 0]])

]
code lit(rd, Int(i)) =

[
lhgi(rd, [two32(i)[31 : 16]⊗b two32(i)[15]16]),
xori(rd, rd, [bin32(i)[15 : 0]])

]

138 Code Generation Algorithm

Using code lit we define the code generation for literals by

codeexpr(te, gst , lst , true, rd, fregs,Lit(l)) = code lit(rd, l).

Remark Observe that we will omit the first three parameters of codeexpr in the
following because they are passed-trough without change. This keeps formulas
shorter and focuses the readers attention to the interesting parts.

7.3.3 Variable Access

Accesses to variables can be used both as left and as right expressions. If they
are used as left expressions we just compute the address of the variable. For
right expressions we have to additionally load the corresponding value from the
memory.

Definition 7.19 (Code generation for memory accesses) We define the
function code load :: N × reg 7→ instr list which generates code to load values
of a given type from the memory. Let n be the allocated size of the type (in
bytes) and rd a register name. This register rd specififies the address where we
want to read from. After execution of the code, rd is also supposed to contain
the value which has been read. We define

code load(n, rd) =

lbu(rd, rd, 0) if n = 1
lhu(rd, rd, 0) if n = 2
lw(rd, rd, 0) otherwise

Obviously, this code can only be used for values which fit into a 32-bit register.

Now, we can define the code for variable access for the case of a left expression.
We distinguish two cases: the variable is either local or global. The base address
of the memory frame is stored in register rlframe and rsbase, respectively (cf.
Figure 7.2 and Table 7.2 on page 129).

• If x is a local variable, i.e., lst ∈ map(fst , x), we define

codeexpr(false, rd, fregs,Var(x)) =
[

code lit(r1, displv(12, lst , x)),
add(rd, rlframe, r1)

]

• Otherwise, x is a global variable (if it is defined at all) and we define

codeexpr(false, rd, fregs,Var(x)) =
[

code lit(r1, displv(0, gst , x)),
add(rd, rsbase, r1)

]

For right expressions we add code to load the value from the memory. Let
t be the type of the variable, i.e., t = the(typev(lst , x)) for local variables and
t = the(typev(gst , x)) for global ones.

codeexpr(true, rd, fregs,Var(x)) =
[

codeexpr(false, rd, fregs,Var(x)),
code load(asizet(t), rd)

]

7.3. Code Generation for Expressions 139

7.3.4 Unary Operators

Unary operators are the first example of an expression which contains sub
expressions. Thus, we need to apply the code generation for expressions
recursively. The code for unary operators starts with the code for the sub
expression which computes the result in rd. Then we append the real code for
the unary operator.

Definition 7.20 (Code for unary operators) We introduce the function
code◦1 :: reg × unop 7→ instr list which generates code for unary operators. Let
rd be both the source and the destination register. We define the function by
case distinction

code◦1(rd,minus) = [sub(rd, r0, rd)]
code◦1(rd,neg) = [xori(rd, rd,−1)]
code◦1(rd,not) = [xori(rd, rd, 1)]

For conversion to integers or to unsigned integers we do not need to do anything.

code◦1(rd, toint) = []
code◦1(rd, tounsgnd) = []

For conversion to 8 bit signed numbers we need to ensure that the result is in
the correct domain. The necessary modulo computation is done by first shifting
the value 24 bits to the left and afterwards shifting it back to the right.

code◦1(rd, tochar) =
[

slli(rd, rd, 24),
srai(rd, rd, 24)

]
Finally, code generation for unary operators is defined by

codeexpr(true, rd, fregs,UnOp(◦, e)) =
[

codeexpr(true, rd, fregs, e),
code◦1(rd, ◦)

]
7.3.5 Binary Operators

Code generation for binary operators works similar to code generation for unary
operators. We first generate code for the sub expressions. For the first and
second sub expression, we use hd(fregs) and hd(tl(fregs)) as destination registers
and rd#tl(fregs) and rd#tl(tl(fregs)) as free registers, respectively. Then we
generate code for the operator itself which computes the result of the operation
and stores it in the destination register. The structure of the generated code is
illustrated in Figure 7.5.

Larger expressions may need more free registers to store intermediate results
than smaller expressions. For the first we have one additional free register for
the evaluation of the first sub expression. Thus, we evaluate the larger sub
expression of a binary operator first [AU73]. Figure 7.4 clarifies the register
allocation strategy.

Definition 7.21 (Code for binary operators) We introduce the function
code◦2 :: reg × reg × reg × ty × ty × binop 7→ instr list . Application of
code◦2(rd, rl, rr, tl, tr, ◦) generates code for a given binary operator ◦, assuming
that the left and right source operands of type tl and tr, respectively, are stored
in registers rl and rr. Below, we will define code◦2 for the various operators.

140 Code Generation Algorithm

codeexpr(eb) codeexpr(es) code◦2(◦)

Figure 7.5: Code Generation for Expressions With Binary Operators

Based on code◦2 we easily define the code generation for binary operators.
Let tl = the(type(te, gst , lst , el)) and tr = the(type(te, gst , lst , er)) be the types
of the sub expressions. To keep formulas short, we define abbreviations for the
bigger and the smaller sub expression. If sizee(el) < sizee(er) we set eb = er

and es = el. Otherwise, we set eb = el and es = er.
For the evaluation of the bigger sub expression we use rb = hd(fregs) as

destination register; for the smaller sub expression we use rs = hd(tl(fregs)).
Depending on the size of the expressions, we also have to use the right order
of source registers for the application of the binary operator. For this purpose
we define rl = rs and rr = rb if sizee(el) < sizee(er). Otherwise, we set rl = rb

and rr = rs. Finally, we define

codeexpr(true, rd, fregs,BinOp(◦, el, er)) = codeexpr(true, rb, rd#tl(fregs), eb),
codeexpr(true, rs, rd#tl(tl(fregs)), es),
code◦2(rd, rl, rr, tl, tr, ◦)

Simple Binary Operators

In this section we define the function code◦2 for simple binary operators whose
generated code is very short. We do the definition by case distinction

code◦2(rd, rl, rr, tl, tr, add) = [add(rd, rl, rr)]
code◦2(rd, rl, rr, tl, tr, sub) = [sub(rd, rl, rr)]

code◦2(rd, rl, rr, tl, tr, shift l) = [sll(rd, rl, rr)]
code◦2(rd, rl, rr, tl, tr, shift r) = [srl(rd, rl, rr)]

code◦2(rd, rl, rr, tl, tr, orb) = [or(rd, rl, rr)]
code◦2(rd, rl, rr, tl, tr, andb) = [and(rd, rl, rr)]
code◦2(rd, rl, rr, tl, tr, xorb) = [xor(rd, rl, rr)]

code◦2(rd, rl, rr, tl, tr, compeq) = [seq(rd, rl, rr)]

code◦2(rd, rl, rr, tl, tr, compneq) = [sne(rd, rl, rr)]

Comparison

Comparison of unsigned values is not directly supported by the VAMP processor,
except for equality and inequality tests where signed and unsigned operand
are equivalent. In fact, using one of the test instructions from Table 6.4 on
page 109 for unsigned values va = i2n(d.gpr !a) and vb = i2n(d.gpr !b) gives a
wrong result in case that one source register is negative the other one is not.
Observe that this is equivalent to the case that one of the unsigned values va

and vb is greater than 231 and the other one is not (cf. definition of i2n on
page 104).

Assume, without loss of generality, that va > 231 and vb ≤ 231. In this
case d.gpr !a would be negative and d.gpr !b positive or zero. Execution of

7.3. Code Generation for Expressions 141

a sls(r1, a, b) instruction would set r1 to one although va > vb. To fix this
behavior we do code generation for unsigned operands in two steps: first, we
generate the normal test code for signed operands and in a second step we add
code to correct the result in the special case that one register is negative and
the other one is not.

Definition 7.22 (Code for signed comparison) Code for signed compari-
son is generated by the function codes

cmp :: reg × reg × reg × bool 7→ instr list .
Its fourth parameter is used as an equality flag and specifies whether equal
operands make the test successful or not. We define

codes
cmp(rd, rl, rr, eq) =

{
[sle(rd, rl, rr)] if eq

[sls(rd, rl, rr)] if ¬eq

Code generated by codes
cmp(rd, rl, rr, false) tests if rl < rr and sets the desti-

nation register appropriately. Similarly, codes
cmp(rd, rl, rr, true) generates code

which tests for rl ≤ rr.

Definition 7.23 (Code for unsigned comparison) For comparison of un-
signed operands we define the following code generation function

codeu
cmp(rd, rl, rr, eq) =

codes

cmp(r1, rl, rr, eq),
xor(rd, rl, rr),
sls(rd, rd, r0),
xor(rd, r1, rd)

The correctness of this code pattern is shown in Section 9.3 on page 189.

Finally, for unsigned values (i.e., tl = UnsignedT) we define the code gener-
ation for comparison operators by

code◦2(rd, rl, rr, tl, tr, compless) = codeu
cmp(rd, rl, rr, false)

code◦2(rd, rl, rr, tl, tr, comple) = codeu
cmp(rd, rl, rr, true)

code◦2(rd, rl, rr, tl, tr, compgreater) = codeu
cmp(rd, rr, rl, false)

code◦2(rd, rl, rr, tl, tr, compge) = codeu
cmp(rd, rr, rl, true)

We define accordingly for signed values

code◦2(rd, rl, rr, tl, tr, compless) = codes
cmp(rd, rl, rr, false)

code◦2(rd, rl, rr, tl, tr, comple) = codes
cmp(rd, rl, rr, true)

code◦2(rd, rl, rr, tl, tr, compgreater) = codes
cmp(rd, rr, rl, false)

code◦2(rd, rl, rr, tl, tr, compge) = codes
cmp(rd, rr, rl, true)

Multiplication

The VAMP processor does not provide hardware support for multiplication
or division. Thus, we have to generate code which computes the result of
multiplication in software.

The code which we generate for multiplication (cf. Listing 7.1) executes
the following algorithm which computes unsigned multiplication: i2n(rd) =
i2n(rl) · i2n(rr) modu 232. However, the algorithm is also correct for signed
multiplication (cf. remarks in the proof of Theorem 9.2). Observe that arithmetic
in this algorithm corresponds to VAMP arithmetic, i.e., is modulo 232.

142 Code Generation Algorithm

0 xor(rd, rd, rd)
4 andi(r2, rr, 1)
8 beqz (r2, 8)

12 srli(rr, rr, 1)
16 add(rd, rd, rl)
20 bnez (rr,−20)
24 slli(rl, rl, 1)

Listing 7.1: Code for Software Multiplication: codemult(rd, rl, rr)

rd ← 0
repeat

rr ← rr � 1
if lowest bit of rr is set then

rd ← rd + rl

end if
rl ← rl � 1

until rr = 0
The algorithm uses the fact that multiplication of a bit vector a with a single
bit b can be trivially computed by a case distinction on the bit’s value. If b = 1
the result is a, otherwise the result is 0.

In a first step we set the destination register to zero. Then we loop over
the bits of rr and add, depending on the value of the currently lowest bit, a
properly shifted version of rl. i.e., for the i-th bit of rr we add (if the bit is set)
rl � i = rl · 2i to the result. In the end this sums up to the expected result.

The formal correctness proof for the multiplication code from Listing 7.1 has
been done by Hristo Pentchev in his Master’s Thesis [Pen07]. There, you find a
more detailed description of the multiplication algorithm and of its correctness
proof.

Division and Modulo

In this section we present the code which is generated for division and modulo
computation. The algorithm which has been chosen computes both values at
the same time. Thus, the code generated for division and modulo computation
is the same except for an additional instruction in the modulo case which moves
the result to the destination register.

The implementation of the division algorithm described in this section has
been developed by Mark A. Hillebrand and has been verified by Hristo Pentchev
within the scope of his Master’s Thesis [Pen07]. Observe that C0 currently only
supports division and modulo for unsigned integers (cf. Section 5.2.1), thus we
do not have to care about negative values of dividend or divisor.

Basic Idea of the Algorithm. Let rl and rr be the registers which hold
dividend and divisor, respectively. The basic idea of the algorithm is to divide
by continuously subtracting the divisor from the dividend until the dividend
becomes smaller than the divisor.

7.3. Code Generation for Expressions 143

i← 0
while rl ≥ rr do

rl ← rl − rr

i← i + 1
end while

After execution of the algorithm, the number i of successful subtractions equals
a÷ b and the final value of the dividend is a modu b.

However, this simple algorithm has one major drawback: if the divisor
is small it requires many iterations. In fact, the runtime of the algorithm is
linear in the dividend which means for our case that it could require up to 232

iterations.
To improve the performance of the division algorithm we proceed in two

phases:

1. Shifting the divisor. As long as the divisor is smaller than the dividend,
we shift it step-by-step to the left. Assume, that we shift i times.

2. Subtracting. In a second step we act similar to the trivial division
algorithm from above. We subtract the shifted divisor from the dividend
and add 2i to the result. Then, we shift the divisor to the right and
subtract again, this time adding 2i−1. We finish after i subtraction steps.

Below, we describe the two steps in more details.

Shift Loop. In the shift loop, we iteratively shift the divisor i times to the
left, where i is the smallest natural number such that 2i · i2n(rr) ≥ i2n(rl). We
have to be careful not to shift ones out of rr; thus, we also stop shifting if the
most significant bit of rr is 1. We store the number i of iterations in register r3.

Instead of using unsigned comparison, which needs three instructions, we
implement the algorithm using signed comparison and treat negative values of
rl in a special test.

while rr ≥ 0 ∧ (rl < 0 ∨ rr < rl) do
rr ← rr � 1
r3← r3 + 1

end while
The assembly code for the shift loop is given in Listing 7.2. Observe that the
condition of the while loop has been implemented in assembly in a quite efficient
but hard to understand way in instructions zero to three.

Subtract Loop. The subtract loop implements the following algorithm:
1 repeat
2 rd ← rd � 1
3 if rl ≥ rr then
4 rl ← rl − rr

5 rd ← rd + 1
6 end if
7 rr ← rr � 1
8 r3← r3− 1
9 until r3 = 0

144 Code Generation Algorithm

0 sgei(r2, rr, 0)
4 sls(r1, rr, rl)
8 or(r1, r1, rd)

12 and(r2, r2, r1)
16 add(r3, r3, r2)
20 bnez (r2,−24)
24 sll(rr, rr, r2)

Listing 7.2: Code for Software Division: Shift Loop

0 slli(rd, rd, 1)
4 codeu

cmp(r2, rl, rr, false)
· · ·

20 addi(r2, r2,−1)
24 sub(rd, rd, r2)
28 and(r2, r2, rr)
32 srli(rr, rr, 1)
36 subi(r3, r3, 1)
40 bnez (r3,−44)
44 sub(rl, rl, r2)

Listing 7.3: Code for Software Division: Subtract Loop

The algorithm uses r3 as loop counter which was initialized by the shift loop.
In each iteration it shift the current quotient in the rd register one bit to the
left and, if rl ≥ rr, adds one to rd and subtracts rr from the current dividend
in rl. After that it shift the current divisor one bit to the right and proceeds to
the next loop iteration. Finally, the quotient is stored in register rd and the
remainder in register rl.

The main difference between the algorithm and the basic idea from above is
that instead of adding 2i−1 we just add one and shift the quotient i− 1 bits to
the left in the remaining loop iterations. This approach has the same effect but
is more efficient.

The code for the subtract loop is given in Listing 7.3. As it is by no means
obvious that this code implements the algorithm we explain its critical part in
more details. The critical part is the implementation of the two conditionally
executed statements rl = rl − rr and rd = rd + 1. To improve performance,
this part has been realized without branch or jump instructions with the seven
instructions starting at offset 4 and with the last instruction, which is in the
delay slot of the branch instruction.

The first four out of the seven instructions mentioned above do an unsigned
comparison of rl and rr, as done in line 3 in the algorithm. The next instruction
subtracts one from register r2. It sets r2 to zero if rl was smaller than rr and
to −1 otherwise. This implies that the following sub instruction adds one to rd

if rl ≥ rr and otherwise leaves it unchanged; this resembles the behavior of the

7.3. Code Generation for Expressions 145

conditional execution of the statement in line 5 of the algorithm. The following
instruction (and(r2, r2, rr)) set register r2 to rr if r2 = −1, i.e., if rl ≥ rr, and
to zero otherwise. This together with the last instruction of the code block for
the subtract loop realizes the statement in line 4 of the algorithm.

Combining the Pieces. Assembling the code for division and modulo com-
putation by combining shift and subtract loop is not hard.

Definition 7.24 (Code for division and modulo) Let rd be the destina-
tion register and rl and rr the registers which contain the dividend and the
divisor, respectively. We define the code module for division and modulo by

codediv(rd, rl, rr) =

slsi(rd, rl, 0)
addi(r3, r0, 1)
codeshift

div (rd, rl, rr)
addi(rd, r0, 0)
codesubtract

div (rd, rl, rr)

First, the code initializes the destination register with the most significant bit
of the dividend and sets rl, which is used as the shift counter in the shift loop,
to one. This prepares the work of the shift loop. Then we have the code for the
shift loop itself and afterwards we initialize the destination register to zero to
prepare the execution of the subtract loop which computes the result.

Finally, we define code generation for divide and modulo expressions by

code◦2(rd, rl, rr, tl, tr, div) = [codediv(rd, rl, rr)]

code◦2(rd, rl, rr, tl, tr,mod) =
[

codediv(rd, rl, rr),
addi(rd, rl, 0)

]
Isabelle Observe that in Isabelle the final addi instruction for the division
case is placed inside the codediv function. Thus, this function has an additional
parameter which specifies whether code should be generated for division or
modulo. For clarify of definition, we changed this slightly in this text.

7.3.6 Lazy Binary Operators

Code generation for lazy binary operators (and l and or l) differs from code
generation for other binary operators in two ways.

1. For lazy binary operators we have no choice in the execution order of sub
expressions. We have to compute the result of the left sub expression first
because this may forbid to evaluate the second sub expression.

2. We have to add code in between the code for the two sub expressions in
order to check whether the second one needs to be evaluated or not. We
will call this the central code for the lazy operator.

Figure 7.6 depicts the code generation for expressions with lazy binary operators.
In the following, we introduce two functions which generate the code for the

lazy binary operator and the corresponding central code. The code for the lazy
operators is quite trivial.

146 Code Generation Algorithm

codeexpr(el) codecenter(◦) codeexpr(er) code lazy(◦)

dist

Figure 7.6: Code Generation for Expressions With Lazy Binary Operators

Definition 7.25 (Code for lazy operators) The function code lazy :: reg ×
reg × reg × lazyop 7→ instr list generates code for lazy operators.

code lazy(rd, rl, rr, and l) = [and(rd, rl, rr)]
code lazy(rd, rl, rr, or l) = [or(rd, rl, rr)]

The central code also depends on the operator but is more complicated. In
case that the result of the left sub expression suffices to compute the result of
the whole expression, we jump over the code for the right sub expression and
for the lazy operator. Instead we set the destination register directly to the
correct value and jump behind the code for the complete lazy expression.

Definition 7.26 (Lazy operators: central code) We introduce the func-
tion codecenter :: reg × reg ×Z× lazyop 7→ instr list which generates the central
code for lazy operators. Let rl be the register which contains the result of the
left sub expression, rd the destination register, and dist the size of the code
which is generated for the right sub expression and for the lazy operator. Then
we define the central code as follows.

codecenter(rd, rl, dist , and l) =

bnez (rl, 12),
nop,
j (dist + 4),
addi(rd, r0, 0)

codecenter(rd, rl, dist , or l) =

beqz (rl, 12),
nop,
j (dist + 4),
addi(rd, rl, 0)

Finally, the code generation for lazy binary expressions is defined by

codeexpr(true, rd, fregs,LazyBinOp(◦, el, er)) =
codeexpr(true, hd(fregs), rd#tl(fregs), el),
codecenter(rd, hd(fregs), 4 · csizee(true, er) + 4, ◦),
codeexpr(true, hd(tl(fregs)), rd#tl(tl(fregs)), er),
code lazy(rd, hd(fregs), hd(tl(fregs)), ◦)

7.3.7 Structure and Array Access

For access to structure components and to array elements we proceed in a
similar way. We first generate code for the base expression (i.e., the structure
or the array) and in a second step we generate code which computes the offset
of the component or the element in the base expression. For structures the
second step is similar to variable access (cf. Section 7.3.3) whereas for access to
array elements we need to reuse the multiplication code from Section 7.3.5.

7.3. Code Generation for Expressions 147

Access to Structure Components

After having the address of the structure in a register, say rl, the code for
structure access is nearly the same as the code for variable access.

Let t = the(type(te, gst , lst , e)) = StrT(scl) be the type of the structure and
tc = the(typev(scl, cn)) the type of component cn. Then, we define for left
expressions

codeexpr(false, rd, fregs,Str(e, cn)) =[
codeexpr(false, hd(fregs), rd#tl(regs), e),
addi(rd, hd(fregs), displv(0, scl, cn))

]
For right expressions we define

codeexpr(true, rd, fregs,Str(e, cn)) =[
codeexpr(false, rd, fregs,Str(e, cn)),
code load(asizet(tc), rd)

]
Access to Array Elements

Code generation for arrays is similar to code generation for structure access:
generate code for the sub expression, compute an offset, in case of a right
expressions load the value from memory. Only the computation of the offset
inside the array is done differently. We first have to generate code to evaluate
the index expression and then we have to multiply the result with the element
size of the array.

As for other binary expressions we evaluate the larger sub expression first.
Thus, let eb and es be the bigger and smaller sub expression, respectively. Also,
let ri be the register into which we evaluate the index expression and ra the
register containing the address of the array expression. Thus, if the index
expression is bigger (eb = ei) we have ri = hd(fregs) and ra = hd(tl(fregs)). In
the other case we have ri = hd(tl(fregs)) and ra = hd(fregs).

Let t = the(type(te, gst , lst , ea)) = ArrT(n, te) be the type of the array
which has n elements of type te. Then, we define for left expressions

codeexpr(false, rd, fregs,Arr(ea, ei)) =
codeexpr(true, hd(fregs), rd#tl(regs), eb),
codeexpr(false, hd(tl(fregs)), rd#tl(tl(regs)), es),
addi(r1, r0, asizealgn(te)),
codemult(rd, r1, ri),
add(rd, rd, ra)

The code behind the evaluation of the sub expression just initializes r1 with

the element size of the array. Then we multiply r1 with the index which has
been stored in ri. This computes the element’s offset inside the array and stores
it in rd. Finally, we add the offset to the base address of the array which has
been stored in ra.

For right expressions we simply append code to load the value of the array

148 Code Generation Algorithm

element from the memory.

codeexpr(true, rd, fregs,Arr(ea, ei)) =[
codeexpr(false, rd, fregs,Arr(ea, ei)) =
code load(asizet(te), rd)

]
7.3.8 Address-of and Pointer Dereferencing

Code generation for dereferencing pointers and for the address-of operator is
quite simple.

The address-of operator can only be used as a right expression in valid C0
programs. Code generation for it works by simply generating code for its sub
expression as a left expression. This code computes the address of the sub
expression and thus fulfills the semantics of the address-of operator.

codeexpr(true, rd, fregs,AddrOf (e)) = codeexpr(false, rd, fregs, e)

Dereferencing a pointer, Deref (ep), can occur both as left and as right
expression. In both cases we first generate code which evaluates the sub
expression as a right expression. If Deref (ep) is used as a left expression, we are
done. In this case the address of the expression, which is just the value of ep,
has already been computed by the code for ep. Otherwise, if it is used as a right
expression, we have to append code which loads the value from the memory.
Let t = the(type(te, gst , lst , ep)) = PtrT(tn) be the type of expression ep and
let tp = the(map-of (te, tn)) be the type to which the pointer of type t refers.

codeexpr(false, rd, fregs,Deref (ep)) = codeexpr(true, rd, fregs, ep)

codeexpr(true, rd, fregs,Deref (ep)) =
[

codeexpr(true, rd, fregs, ep),
code load(asizet(tp), rd)

]
7.4 Code Generation for Statements

In this section we describe the code generation for statements. We introduce
the function codestmt which computes the code for a given statement.

codestmt :: tenv × functableT × (S× ty) list × (S× ty) list × stmt 7→ instr list

As an abbreviation we introduce a second variant of the above function
which computes the necessary local symbol table depending on the function to
which the statement belongs. If the statement is not present in the program
the function is undefined.

codestmt :: tenv × (S× ty) list × functableT × stmt 7→ instr list

codestmt(te, gst , ft , s) =

{
bcodestmt(te, ft , gst , st fun(f), s)c if fos(s, ft) = bfc
undef otherwise

Remark The code generation algorithm presented in this thesis does not cover
XCalls or inline assembly code. Support for the latter has been added recently
by A. Tsyban. Support for XCalls is not required for the compiler because they
are replaced by an appropriate implementation (using inline assembly code)
before invocation of the C0 compiler (cf. [ASS08]).

7.4. Code Generation for Statements 149

In the remainder of this section we define codestmt by induction on the state-
ment structure. As in the previous section for the definition of codeexpr we omit
the parameters for type name environment, function table, and symbol tables
to keep formulas simple. Thus, let te be the current type name environment, ft
the function table, and gst and lst the global and current local symbol table,
respectively.

7.4.1 Skip and Compound

We start the definition of codestmt with the simplest cases. For Skip we need
no code at all and for the compound statement we recursively generate code for
the sub statements.

codestmt(gst , lst ,Skip) = []

codestmt(gst , lst ,Comp(s1, s2)) =
[

codestmt(gst , lst , s1),
codestmt(gst , lst , s2)

]
7.4.2 Assignments

For assignments Ass(el, er) we first generate code for the expressions el and er.
We evaluate el as a left expression to get the allocated address of the expression.
For the evaluation of er we distinguish two cases. If the type of er is elementary
we evaluate er as a right expression. Otherwise, er is an array or a structure
and we evaluate it as a left expression. Finally, we add code which copies the
value of the right expression to the address of the left expression.

For the first case this code is quite simple.

Definition 7.27 (Code for storing basic values) We define the function
codestore :: N× reg × reg ×N 7→ instr list which generates code to copy a value
of a given type from a register to a given destination address in the memory.
Let n be the allocated size of the type (in bytes), rd and rs register names,
and ofs an (byte) offset. The register rd and the offset define the destination
address of the access; the value to be copied is stored in register rs.

We define depending on the given offset. If the offset is zero we set

codestore(n, rd, rs, 0) =

sb(rs, r1, 0) if n = 1
sh(rs, r1, 0) if n = 2
sw(rs, r1, 0) otherwise

If the offset is greater than zero we define

codestore(n, rd, rs, ofs) =

 code lit(r1, ofs),
add(r1, r1, rd),
codestore(n, r1, rs, 0)

Obviously, this code can only be used for values which fit into a single 32-bit

register.

For the second case, i.e., assignments of arrays and structures, we use a
loop which copies a memory region word-by-word. The code of this loop (cf.
Listing 7.4) is generated by the function code loop

cpy :: reg × reg ×N 7→ instr list .

150 Code Generation Algorithm

0 addi(r1, r0, n)
4 lw(r2, rs, 0)
8 sw(r2, rd, 0)

12 subi(r1, r1, 4)
16 addi(rd, rd, 4)
20 bnez (r1,−20)
24 addi(rs, rs, 4)

Listing 7.4: Code for Copying Memory Regions: code loop
cpy (rd, rs, n)

Let n be the size of the memory region in words and let registers rs and
rd contain the source and destination address, respectively. Then, the code
generated by code loop

cpy (rd, rs, n) implements the following algorithm:
r1← n
repeat

mm[rd ÷ 4]← mm[rs ÷ 4]
r1← r1− 4
rd ← rd + 4
rs ← rs + 4

until r1 =0

Definition 7.28 (Code for copying memory regions) Similar to assign-
ments of elementary values we combine this code template with code to add an
offset to the destination address.

If the offset is zero, we set codecpy(rd, rs, n, 0) = code loop
cpy (rd, rs, n). Other-

wise, we define

codecpy(rd, rs, n, ofs) =

 code lit(r3, ofs),
add(r3, rd, r3),
code loop

cpy (n, r3, rs, 0)

Definition 7.29 We combine the code generation for assignments of basic and
of big values.

Let big be a flag which specifies whether we assign a basic value (big = false)
or a big value, rd and rs the destination and source register, n the number
of bytes to be copied, and ofs an offset to the destination address. Then, the
function codeass :: B× reg × reg ×N×N 7→ instr list copies the value specified
by the source register – either stored in the register (if ¬big) or at the address
which is specified by the register (if big) – to the memory at the address specified
by the destination register.

codeass(big , rd, rs, n, ofs) =

{
codecpy(rd, rs, n, ofs) if big
codestore(n, rd, rs, ofs) if ¬big

Now, we define the code generation for an assignment statement Ass(el, er).
Let t = the(type(te, gst , lst , el)) be the type of the left expression and rf =
elem?t(t) be the flag which specifies whether we have to evaluate er as a right

7.4. Code Generation for Statements 151

or as a left expression. Then, we set

codestmt(Ass(el, er)) = codeexpr(false, hd(fregs ini), tl(fregs ini), el),
codeexpr(rf , hd(tl(fregs ini)), tl(tl(fregs ini)), er),
codeass(¬rf , hd(fregs ini), hd(tl(fregs ini)), asizet(t), 0)

7.4.3 Assignments of Aggregate Literals

In the previous case for ‘normal’ assignments we had a value which either fit
into a register a the target machine or was stored in the memory. Assignments
of aggregate literals need special treatment; they are not stored in the memory
and they do not fit into a register.

Code generation for assignments of aggregate literals, which are composed
of basic literals, works by appending code for assigning these basic literals at
the destination address with a proper offset.

Definition 7.30 (Assignments of aggregate literals) We define the func-
tion codealit which generates code to store an aggregate literal at a given
destination address. For the handling of structure literals we introduce the aux-
iliary function codestruct

alit . Let rd be the register which contains the destination
address of the assignment and ofs an offset to this destination address.

codealit :: reg ×N× lita 7→ instr list

codestruct
alit :: reg ×N×N× (S× lita) list 7→ instr list

Simple literals are evaluated into an auxiliary register and then stored in the
memory.

codealit(rd, ofs,ALPrim(p)) =
[

code lit(r2, p),
codestore(asizet(type lit(p)), rd, r2, ofs)

]
For arrays we just generate code for the single elements with corresponding
offsets.

codealit(rd, ofs,ALArr([])) = []
codealit(rd, ofs,ALArr(h#t)) =[

codealit(rd, ofs, h),
codealit(rd, ofs + asizealgn(typealit(h)),ALArr(t))

]
For structures it is a little bit harder to compute the right offset. We introduce a
new accumulator parameter which keeps track of the offset within the structure;
this local offset is initially zero.

codealit(rd, ofs,ALStruct(scl)) = codestruct
alit (rd, ofs, 0, scl)

Let in the following i′ = diealgn(typealit(snd(h))) be the aligned local offset, i.e.,
the local offset where we store the next component of the structure.

codestruct
alit (rd, ofs, i, []) = []

codestruct
alit (rd, ofs, i, h#t) =[

codealit(rd, ofs + i′, snd(h)),
codestruct

alit (rd, ofs, i′ + asizet(typealit(snd(h))), t)

]

152 Code Generation Algorithm

codeexpr(e) b nop codestmt(lb) j nop

Figure 7.7: Code Generation Template for Loops

codeexpr(e) b nop codestmt(s1) j nop codestmt(s2)

Figure 7.8: Code Generation Template for Conditional Statements

Finally, we define the code generation for aggregate literals. Observe that
the actual copying of the literals is hidden in the definition of codealit for the
case of primitive literals.

codestmt(AssAL(el,Lit(l))) =
[

codeexpr(false, hd(fregs ini), tl(fregs ini), el),
codealit(hd(fregs ini), 0, l)

]

7.4.4 Loops

For while loops Loop(c, lb) we generate code in four steps. First, we generate
code for the condition c. Then, we generate code to conditionally jump behind
the code of the loop body if the condition is false. This code is followed by the
code for the body of the loop. Finally, we generate code to jump back to the
evaluation of c to start another loop iteration. This code generation template
is depicted in Figure 7.7.

Formally, we define

codestmt(Loop(c, lb)) =

codeexpr(true, hd(fregs ini), tl(fregs ini), c),
beqz (hd(fregs ini), 4 · (csizes(lb) + 3)),
nop,
codestmt(lb),
j (−4 · (csizee(true, c) + csizes(lb) + 3)),
nop

7.4.5 Conditional Statements

For conditional statements Ifte(c, s1, s2) we generate code in five steps. We
start with code generation for the condition, which is followed by a branch
which jumps to the code for the second sub statements if the condition is false.
This branch is followed by the code for the first sub statement. To skip the
second sub statement if the condition was true, we append a jump behind the
last instruction of the code for the conditional statement. Finally, we generate
code for the second sub statement. This code generation template is depicted
in Figure 7.8.

7.4. Code Generation for Statements 153

0 sw(r0, rz, 0)
4 addi(rc, rc,−4)
8 bnez (rc,−12)

12 addi(rz, rz, 4)

Listing 7.5: Code for Zero-Filling a Memory Region: codezerofill(rz, rc)

Formally, we define

codestmt(Ifte(c, s1, s2)) =

codeexpr(true, hd(fregs ini), tl(fregs ini), c),
beqz (hd(fregs ini), 4 · (csizes(s1) + 3)),
nop,
codestmt(s1),
j (4 · (csizes(s2) + 1)),
nop,
codestmt(s2)

7.4.6 Allocation of Heap Variables

The code which we generate for PAlloc(e, tn), i.e., for the allocation of new
heap variables, is composed of two parts. The first part tests whether there is
enough heap memory available and stores a pointer to the new heap variable
(or a null pointer in case there was not enough memory) in one of the registers.
The second part assigns this pointer to the allocated address of e and – given
that the allocation was successful – initializes the new memory region with
zeroes.

We start with the function codetest
alloc :: N× reg 7→ instr list which specifies

the first part. The code codetest
alloc(n, r) tests whether there are at least n more

bytes available in the heap and correspondingly stores a null pointer or a pointer
to the newly allocated memory in register r. We define

codetest
alloc(n, r) =

code lit(r,Unsigned(abaseheap + asizemax

heap − dne4)),
codeu

cmp(r, r, rhtop, true),
subi(r, r, 1),
and(r, r, rhtop)

The compiler will ensure that the value of rhtop is always aligned to multiples of
four. This guarantees that newly allocated heap variables are always properly
aligned. Thus, we need to round n up to a multiple of four before the test.

Additionally, the subtraction and bitwise-and instructions allow to condi-
tionally set r without a branch instruction which is usually (at least for modern
processors with branch prediction) faster.

For the second part, we introduce the function codezerofill :: reg × reg 7→
instr list which generates code to fill a certain region of the memory with zeroes.
Let rz be the register which contains the start address of the region and rc the
register which contains the length of the region. Then, the code in Listing 7.5
is generated by codezerofill(rz, rc).

Now, we define the second code part for allocation using the function
codezero

alloc :: N×reg×reg 7→ instr list . Let r be the register which contains either

154 Code Generation Algorithm

0 beqz (r, 28)
4 sw(r, rd, 0)
8 code lit(r3,Unsigned(dne4))

16 codezerofill(rhtop, r3)
32 · · ·

Listing 7.6: Second Part of the Code for Allocation: codezero
alloc(n, rd, r)

a zero (null pointer) or the address of the newly allocated heap variable. Further,
let n be the number of bytes to allocate and rd the address where the content
of register r should be copied two, i.e., the allocated address of the left side
expression of the allocation statement. Then, codezero

alloc(n, rd, r) generates the
code depicted in Listing 7.6. Observe that the store word instruction is executed
in any case because it is located in the delay slot of the branch instruction.

Finally, we combine the two parts. Let Ptr(tn) = the(type(te, gst , lst , e)) be
the type of the expression and t = the(map-of (te, tn)) the type of the newly
allocated heap variable. Then we define

codestmt(PAlloc(e, tn)) =

 codeexpr(false, hd(fregs ini), tl(fregs ini), e),
codetest

alloc(asizet(t), r2),
codezero

alloc(asizet(t), hd(fregs ini), r2)

7.4.7 Function Calls

The code generated for function calls SCall(vn, fn, [p1, . . . , pn]) works in four
phases.

1. It computes the address of the return destination.

2. It evaluates the parameters p1 to pn and copies their values to the corre-
sponding position in the new stack frame.

3. It initializes the frame header of the new stack frame and updates the
stack pointer in register rlframe.

4. It jumps to the called function and stores the return address, i.e., the
current value of PCP , in the frame header of the new stack frame.

Observe that we perform the evaluation of the parameters still in the
old memory frame (before updating the stack pointer). This will allow us to
smoothly reuse the correctness proofs for expression evaluation for the evaluation
of the parameters.

In the remainder of this section we first introduce code generation for
parameter passing (phase 2). Then we define the code generation for the
initialization of the new frame header and the jump to the function. Finally,
we put the code pieces together in the definition of codestmt for function calls.

Parameter Passing

Passing a single parameter is similar to an assignment. We evaluate the
parameter as a right or left expression depending on its type. Structures and

7.4. Code Generation for Statements 155

arrays are evaluated as left expressions; all other parameter are evaluated as
right expressions. Using expression evaluation for the target of the parameter
passing would generate some problems, because the destination would have
to be evaluated in the context of the new frame although the stack is still
unchanged. However, the destination of the parameter passing is always a local
variable of the function. Thus, we can easily compute the destination address
via specialized code.

To copy a single parameter we use the same code as for assignments. The
code for passing several parameters is generated by induction on the parameter
list.

Definition 7.31 (Code for parameter passing) We introduce a function
codepassing :: tenv×funcT×(S×ty) list×(S×ty) list×reg list×N×expr list×
S list 7→ instr list which generates code for passsing a list of parameters. Let
te be a type name environment, f the called function, gst and lst global and
current local symbol table, fregs a list of free register names, fs the allocated
size of the current stack frame, and pnl a list which contains the names of the
local variables which have to be initialized with the values of the parameters or
short the parameter names.

Then, we define codepassing(te, f, gst , lst , fregs, fs, pl, pnl) by induction on
the list pl of parameter expressions. Observe that we omit te, f , gst , lst , and
fs in the formulas below to keep them short and readable.

For the induction start, the definition is trivial.

codepassing(fregs, [], []) = []

For the non-empty case let t = the(type(te, gst , lst , ph)) be the type of the first
parameter, rf = elem?t(t) a flag which specifies if we evaluate the parameter
as right or left expression, and ofs = fs + displv(12, st fun(f), pnh) the offset of
the first destination variable with respect to the base of the current frame.

codepassing(fregs, ph#pt, pnh#pnt) = codeexpr(rf , hd(fregs ini), tl(fregs ini), ph),
codeass(¬rf , rlframe, hd(fregs ini), asizet(t), ofs),
codepassing(fregs, pt, pnt)

Initialization of the New Frame Header and Jump to the Function

Now, we define the code which sets up the headers of the new stack frame,
adapts the stack pointer, and jumps to the called function. We start with the
computation of the distance to the called function (cf. Figure 7.9).

Definition 7.32 (Call distance) We introduce the function distscall :: tenv×
functableT×(S×ty) list×(S×ty) list×stmt 7→ Z which computes the distance
from the jal instruction of a function call to the start of the called function. The
function subtracts the address of the jump-and-link instruction from the start
address of the called function. Let npp be the size of the parameter passing code
from above and observe that code lit for unsigned numbers has size 2. Observe
that we additionally subtract one from the call distance to compensate the fact
that the immediate constant for jumps is added to pcp which equals dpc + 4

156 Code Generation Algorithm

progbase

cbase f(fn)

code
stm

t
(SC

all
(vn,fn

,pl))

jal (distscall)

csizee(Var(vn)) + npp + 7

cbases(SCall(vn, fn, pl))call
distance

··
·

··
·

Figure 7.9: Call Distance for Function Calls

(cf. Table 6.3 on page 109). We define

distscall(te, ft , gst , lst ,SCall(vn, fn, [p1, . . . , pn])) =

cbase f(te, gst , fn, ft)
−cbases(te, gst , ft ,SCall(vn, fn, [p1, . . . , pn]))
−4 · (csizee(false,Var(vn)) + npp + 2 + 4 + 1)

Using this definition, we can easily define the code which sets up the new
frame and jumps to the called function. The effect of this code fragment is
illustrated in Figure 7.10 (d is the assembly configuration before and d′ after
the execution of codenewfr).

Definition 7.33 (Code for setting up the new frame) Let fscur be the
size of the current stack frame, fsnew the size of the new one, and let s =
SCall(vn, fn, [p1, . . . , pn]) be the function call statement. We define the func-
tion codenewfr :: tenv× functableT×(S×ty) list×(S×ty) list×N×N×stmt 7→
instr list . Observe that we omit some parameters for readability.

codenewfr(fscur, fsnew, s) =

(1) code lit(r1, fscur),
(2) add(r2, r0, rlframe),
(3) add(rlframe, rlframe, r1),
(4) sw(hd(fregs ini), rlframe, 4),
(5) sw(r2, rlframe, 8),
(6) jal(distscall(te, ft , gst , lst , s)),
(7) sw(rjal, rlframe, 0)

7.4. Code Generation for Statements 157

free stack
space

d.rlframe

fscur

execute
codenewfr

free stack
space

d′.rlframe
return address

return destination
d.rlframe

frame headers

new
frame

Figure 7.10: Construction of the New Stack Frame

In the first line of the code from codenewfr we store the size of the current
frame in r1 for later use. In the second line we save the current stack pointer in
r2 and update in the third line the stack pointer to the base of the new stack
frame. In the fourth and fifth line we store the return destination, i.e., the
address where the result of the function has to be copied to, and the old stack
pointer to the frame header of the new stack frame. In line six we jump to the
new function. Finally, in line seven, i.e., in the delay slot of the jump, we store
the return address, which has been stored by the jump-and-link instruction in
register rjal, in the new frame header.

Putting it All Together

Building on the definitions from above, we define the code generation for function
calls. Let f = the(map-of (ft , fn)) be the function which is called. Furthermore,
let fscur = dasizest(lst , 12)e4 and fsnew = dasizest(st fun(f), 12)e4 be the size of
the current and of the new stack frame, respectively.

We define

codestmt(SCall(vn, fn, pl)) = codeexpr(false, hd(fregs ini), tl(fregs ini),Var(vn)),
codepassing(te, f, gst , lst , tl(fregs ini), fscur, pl,map(fst , f.params)),
codenewfr(te, ft , gst , lst , fscur, fsnew,SCall(vn, fn, pl))

7.4.8 Return

Compared to function calls, code generation for return statements Return(re) is
quite simple. First we evaluate the return expression, then we copy the result to

158 Code Generation Algorithm

the destination specified in the header of the current frame. Finally we restore
the stack pointer with the base address of the previous frame and jump back to
the return address, which was also stored in the frame header.

Let t = the(type(te, gst , lst , re)) be the type of the return expression and let
rf = elem?t(t) be a flag which specifies if we evaluate the return expression as
right or as left expression. We define

codestmt(Return(re)) =

(1) codeexpr(rf , hd(fregs ini), tl(fregs ini), re),
(2) lw(r3, rlframe, 4),
(3) codeass(¬rf , asizet(t), r3, hd(fregs ini), 0),
(4) lw(r3, rlframe, 0),
(5) lw(rlframe, rlframe, 8),
(6) jr(r3),
(7) nop

In the first line the code evaluates the return expression. In the second line

it loads the return destination from the frame header and in line three copy the
result. In line four and five it loads the return address and the base address of
the previous stack frame from the frame header and stores them in registers r3
and rlframe, respectively. Finally, in line six the code jumps back behind the
function call statement which initiated the execution of the current function.

7.4.9 Code Displacement of Statements

After having given the code generation for statements, we now give a concrete
definition of displ s as announced in Section 7.1.2. We illustrate the displacement
exemplarily in Figure 7.11.

Definition 7.34 (Displacement of statements) Let te be a type name en-
vironment, ft a function table, and gst and lst the global and local symbol tables.
Furthermore, let s and s′ be statements. We define the code displacement of
statement s′ with respect to statement s by induction on s. This definition
requires s′ to be non-structural and to be a sub statement of s.

displ s :: tenv × functableT × (S× ty) list × (S× ty) list × stmt × stmt 7→ N⊥

For clarity of formulas, we omit most parameters in the following formulas.

displ s(s
′,Skip) = None

displ s(s
′,Comp(s1, s2)) =

bdispl s(s′, s1)c if s′ ∈ subs(s1)
b4 · csizes(s1) + displ s(s′, s2)c if s′ ∈ subs(s2)
None otherwise

7.5. Code Generation for Complete C0 Programs 159

codeexpr(e)

b

codestmt(s1)

j

codestmt(s2)

codestmt(s3)

codestmt(s4)

displ s(s2, s)

displ s(s4,Comp(s2,Comp(s3, s4)))

Example: s = Ifte(e, s1,Comp(s2,Comp(s3, s4)))

Figure 7.11: Code Displacement of Statements

For conditional statements Ifte(e, s1, s2) let lc be the number of instructions
which have been generated for the evaluation of the condition e and the corre-
sponding branch to either s1 or s2. Additionally, let lj be the size of the code
which has been inserted behind the code for s1 to jump over the code for s2 (cf.
Figure 7.8).

displ s(s
′, Ifte(e, s1, s2)) =

b4 · lc + displ s(s′, s1)c if s′ ∈ subs(s1)⌊

4 · (lc + csizes(s1) + lj)
+displ s(s′, s2)

⌋
if s′ ∈ subs(s2)

None otherwise

For a loop statement Loop(e, lb) let lc be the number of instructions which have
been generated for the evaluation of the condition e and the corresponding
conditional branch behind the code of the loop (cf. Figure 7.7).

displ s(s
′,Loop(e, lb)) =

{
4 · lc + displ s(s′, lb) if s′ ∈ subs(lb)
None otherwise

For all other (non-structural) statements s we set

displ s(s
′, s) =

{
b0c if s′ = s

None otherwise

Observe that the code displacement is measured in bytes.

7.5 Code Generation for Complete C0 Programs

Having code generation functions for expressions and statements is an important
part of the C0 compiler specification but two things are still missing. We need
a function which generates the initialization code of a program and we need
functions which extend the code generation for single functions – more precisely
for the body of single functions – to code generation of lists of function (i.e.,
function tables) and prepend the initialization code (cf. Figure 7.12).

160 Code Generation Algorithm

Initialization Code

Code for the first function f1

Code for the last function fn

cbases

cbase f(f1)

cbase f(f2)

cbase f(fn)

..
.

..
.

Figure 7.12: Overall Structure of the Generated Code

7.5.1 Init Code

The initialization code of a C0 program sets up the special registers which
store the allocated base address of the global memory, the top most used heap
address, and the base address of the current stack frame (cf. Table 7.2 on
page 129). Let te be a type name environment, gst a symbol table for the
global variables, and ft a function table. We introduce the function code ini ::
tenv × (S× ty) list × functableT 7→ instr list which defines the code generation
of the init code for user mode programs.

code ini(te, gst , ft) =

 code lit(rsbase, abasegm(te, ft , gst)),
code lit(rhtop, abaseheap),
code lit(rlframe, abase lm(te, ft , gst))

Observe that abaseheap in the second line is a constant whereas abasegm and
abase lm are computed using te, gst , and ft .

7.5.2 Code Generation for Programs

The code generation for complete C0 programs is done by appending code for
all functions of the function table and the init code (cf. Figure 7.12).

Definition 7.35 (Code generation for lists of functions) The code gen-
eration for a list fl of functions is done by the function codeflist :: tenv ×
functableT × (S× ty) list × funcT list . This function is defined by induction
on the list of functions.

codeflist(te, ft , gst , []) = []

codeflist(te, ft , gst , f#t) =
[

codestmt(te, ft , gst , st fun(f), f.body),
codeflist(te, ft , gst , t)

]
Definition 7.36 (Code generation for programs) Let te be a type name
environment, ft a function table, and gst a symbol table for the global variables.
We introduce the function codeprog :: tenv×functableT×(S×ty) list 7→ instr list
which generates code for a complete C0 program.

codeprog(te, ft , gst) =
[

code ini(te, gst , ft),
codeflist(te, ft , gst ,map(snd , ft))

]

7.6. Translatable Programs 161

We will later sometimes just write code for different versions of the code
generation functions when it is obvious from the context which version is actually
used. For example, we will write code(s) or code(e) instead of codestmt(s) or
codeexpr(e), respectively.

7.6 Translatable Programs

The code generation from the previous sections does not work for arbitrary
C0 programs. For example, if a program contains an expression which uses
too many registers, or if the jump distance for a function call is too large, the
generated code will not work.

In this section we introduce predicates which restrict expressions, statements,
and programs in such a way

1. that the generated code fulfills the necessary requirements regarding the
size of immediate operands and

2. that there are enough free registers to evaluate the expressions.

We call expressions, statements, and programs which have this property trans-
latable.

Isabelle In Isabelle / HOL we have proved that the code which is generated
for translatable expressions, statements, and programs indeed fulfills the require-
ments regarding the size of immediate operands and the number of registers.
However, these proofs are quite lengthy and not very interesting; we omit them
here. The proofs can be found in the theory is instr lemmas.thy.

We start by introducing a predicate which tests if there are enough free
registers for a given expression.

Definition 7.37 (Enough free registers) Let te be a type name environ-
ment, gst and lst symbol tables for the global and (current) local variables,
rf a flag which specifies if the expression has to be evaluated as right or left
expression, and n the number of available free registers. We introduce the
predicate enoughregs :: tenv × (S× ty) list × (S× ty) list ×B×N× expr 7→ B

which is defined by induction on the expression.

enoughregs(te, gst , lst , rf , n,Lit(l))

enoughregs(te, gst , lst , rf , n,Var(v))

0 < n enoughregs(te, gst , lst , false, n, e)
enoughregs(te, gst , lst , rf , n,Str(e, cn))

2 ≤ n
enoughregs(te, gst , lst , true, n, el) enoughregs(te, gst , lst , true, n− 1, er)

enoughregs(te, gst , lst , rf , n,LazyBinOp(el, er))

162 Code Generation Algorithm

enoughregs(te, gst , lst , true, e)
enoughregs(te, gst , lst , rf , n,UnOp(e))

enoughregs(te, gst , lst , false, n, e)
enoughregs(te, gst , lst , rf , n,AddrOf (e))

enoughregs(te, gst , lst , true, n, e)
enoughregs(te, gst , lst , rf , n,Deref (e))

We define the predicate for array access and binary operators using a case
distinction. We have one case if the left expression is bigger and another one if
it is not.

sizee(ea) < sizee(ei) 2 ≤ n
enoughregs(te, gst , lst , true, n, ei) enoughregs(te, gst , lst , false, n− 1, ea)

enoughregs(te, gst , lst , rf , n,Arr(ea, ei)

sizee(ea) ≥ sizee(ei) 2 ≤ n
enoughregs(te, gst , lst , false, n, ea) enoughregs(te, gst , lst , true, n− 1, ei)

enoughregs(te, gst , lst , rf , n,Arr(ea, ei)

sizee(el) < sizee(er) 2 ≤ n
enoughregs(te, gst , lst , true, n, er) enoughregs(te, gst , lst , true, n− 1, el)

enoughregs(te, gst , lst , rf , n,BinOp(el, er))

sizee(el) ≥ sizee(er) 2 ≤ n
enoughregs(te, gst , lst , true, n, el) enoughregs(te, gst , lst , true, n− 1, er)

enoughregs(te, gst , lst , rf , n,BinOp(el, er))

We have a few additional requirements for translatable expressions.

Definition 7.38 (Translatable expressions) Let te be a type name envi-
ronment, ft a function table, and gst and lst symbol tables for the global and
local variables. We introduce the predicate xltblexpr which checks for translat-
able expressions. This predicate is mainly motivated by the restricted size of
immediate constants in the generated code.

xltblexpr :: tenv × functableT × (S× ty) list × (S× ty) list 7→ expr set

Lit(ALPrim(p)) ∈ xltblexpr(te, ft , gst , lst)

Var(v) ∈ xltblexpr(te, ft , gst , lst)

el ∈ xltblexpr(te, ft , gst , lst) er ∈ xltblexpr(te, ft , gst , lst)
BinOp(el, er) ∈ xltblexpr(te, ft , gst , lst)

7.6. Translatable Programs 163

For lazy binary operators we require that the jump distance from the center
code to the end of the expression fits into a 26 bit immediate constant.

el ∈ xltblexpr(te, ft , gst , lst)
er ∈ xltblexpr(te, ft , gst , lst) 4 · (1 + csizee(te, gst , lst , true, er) + 1) < 225

LazyBinOp(el, er) ∈ xltblexpr(te, ft , gst , lst)

e ∈ xltblexpr(te, ft , gst , lst)
UnOp(e) ∈ xltblexpr(te, ft , gst , lst)

For structures we require that the allocated size of the structure’s type fits into
a 16 bit immediate constant.

e ∈ xltblexpr(te, ft , gst , lst) asizet(the(type(te, gst , lst , e))) < 215

Str(e, cn) ∈ xltblexpr(te, ft , gst , lst)

For arrays we have the same requirement for the size of an individual array
element. Let t = the(type(te, gst , lst , ea)) = ArrT(n, t′) be the type of the array.

ea ∈ xltblexpr(te, ft , gst , lst)
ei ∈ xltblexpr(te, ft , gst , lst) asizet(t′) < 215

Arr(ea, ei) ∈ xltblexpr(te, ft , gst , lst)

e ∈ xltblexpr(te, ft , gst , lst)
AddrOf (e) ∈ xltblexpr(te, ft , gst , lst)

e ∈ xltblexpr(te, ft , gst , lst)
Deref (e) ∈ xltblexpr(te, ft , gst , lst)

Definition 7.39 (Translatable statements) Let te be a type name environ-
ment, ft a function table, and gst and lst symbol tables for the global and local
variables. We introduce the predicate xltbl stmt which checks if a given statement
is translatable. This predicate requires that we have sufficiently many registers
for expression evaluation, that the expressions are translatable, and contains
some additional requirements which ensure that we do not create immediate
constants which are too large.

xltbl stmt :: tenv × functableT × (S× ty) list × (S× ty) list 7→ stmt set

Skip ∈ xltbl stmt(te, ft , gst , lst)

s1 ∈ xltbl stmt(te, ft , gst , lst) s2 ∈ xltbl stmt(te, ft , gst , lst)
Comp(s1, s2) ∈ xltbl stmt(te, ft , gst , lst)

164 Code Generation Algorithm

For assignments we require that the left and right expressions are translatable
and that we have enough register to do this. Additionally, we require that the
size of the assigned expressions is less than 215 bytes, s.t. it fits into a 16 bit
immediate constant. Let t = the(type(te, gst , lst , el)) be the type of the left
expression.

el ∈ xltblexpr(te, ft , gst , lst) er ∈ xltblexpr(te, ft , gst , lst)
asizet(t) < 215 enoughregs(te, gst , lst , false, |fregs ini| − 1, el)

enoughregs(te, gst , lst , elem?t(t), |fregs ini| − 2, er)
Ass(el, er) ∈ xltbl stmt(te, ft , gst , lst)

el ∈ xltblexpr(te, ft , gst , lst)
asizet(t) < 215 enoughregs(te, gst , lst , false, |fregs ini| − 1, el)

AssAL(el, lc) ∈ xltbl stmt(te, ft , gst , lst)

For memory allocation, let t = the(map-of (te, tn)) be the type for which we
allocate the memory. We require that the allocated size of t is less than the
maximum heap address.

e ∈ xltblexpr(te, ft , gst , lst) dasizet(t)e4 < abaseheap + asizemax
heap

enoughregs(te, gst , lst , false, |fregs ini| − 1, e)
PAlloc(e, tn) ∈ xltbl stmt(te, ft , gst , lst)

For function calls, we require that all parameters are translatable expressions,
that we have enough registers to evaluate them, and that the allocated size of
each parameter is not too big.

∀e ∈ pl : e ∈ xltblexpr(te, ft , gst , lst)
∀e ∈ pl : enoughregs(te, gst , lst , elem?t(the(type(te, gst , lst , e))), |fregs ini| − 2, e)

∀e ∈ pl : asizet(the(type(te, gst , lst , e))) < 215

SCall(vn, fn, pl) ∈ xltbl stmt(te, ft , gst , lst)

re ∈ xltblexpr(te, ft , gst , lst)
enoughregs(te, gst , lst , elem?t(the(type(te, gst , lst , re))), |fregs ini| − 1, re)

asizet(the(type(te, gst , lst , re))) < 215

Return(re) ∈ xltbl stmt(te, ft , gst , lst)

The most interesting requirement for conditional statements and while loops
is that the sub statements are not too big, s.t. the jump distances fit into the
immediate constants (cf. Figures 7.7 on page 152 and 7.8 on page 152).

c ∈ xltblexpr(te, ft , gst , lst) enoughregs(te, gst , lst , true, |fregs ini| − 1, c)
s1 ∈ xltbl stmt(te, ft , gst , lst) s2 ∈ xltbl stmt(te, ft , gst , lst)

4 · (csizes(te, gst , lst , s1) + 3) < 215 4 · (csizes(te, gst , lst , s2) + 1) < 225

Ifte(c, s1, s2) ∈ xltbl stmt(te, ft , gst , lst)

7.7. Execution of the Compiler Specification 165

c ∈ xltblexpr(te, ft , gst , lst) enoughregs(te, gst , lst , true, |fregs ini| − 1, c)
lb ∈ xltbl stmt(te, ft , gst , lst) 4 · (csizes(te, gst , lst , lb) + 3) < 215

−4 · (csizee(te, gst , lst , true, c) + csizes(te, gst , lst , lb) + 3) < 225

Loop(c, lb) ∈ xltbl stmt(te, ft , gst , lst)

Definition 7.40 (Translatable functions) Let te be a type name environ-
ment, ft a function table, gst the symbol tables for the global variables, and f
a C0 function. We introduce the predicate xltbl func which checks whether f is
a translatable function, i.e., whether the body of f is a translatable statement
and whether the size of the function symbol table is small enough.

xltbl func :: tenv × functableT × (S× ty) list 7→ funcT set

f.body ∈ xltbl stmt(te, ft , gst , st fun(f)) 2 · dasizest(st fun(f), 12)e4 < 232

f ∈ xltbl func(te, ft , gst)

Remark When copying function call parameters, their offset with respect
to the current value of register rlframe is the sum of the old frame’s size and
(at most) the size of the new frame. The factor two in the above predicate
ensures that this offset not exceeds 232 − 1. Of course, this definition could be
strengthened. For two functions f and f ′ where f contains a function call to
f ′, it would suffice to require that the size of the frame for f and the offset of
the last parameter in the frame of f ′ is smaller than 232. However, the above
definition simplifies proofs and will probably not be an actual restriction.

Definition 7.41 (Translatable program) Let te be a type name environ-
ment, ft a function table, and gst the symbol tables for the global variables. We
introduce the predicate xltblprog which checks whether these form a translatable
C0 program or not.

xltblprog :: (tenv × functableT × (S× ty) list) set

progbase + 4 · csizeprog(te, gst , ft) < 225

∀(fn, f) ∈ ft : f ∈ xltbl func(te, ft , gst) 2 · dasizest(gst , 0)e4 < 232

abase lm(te, ft , gst) < 232 abaseheap + asizemax
heap < 232

(te, ft , gst) ∈ xltblprog

7.7 Execution of the Compiler Specification

To solve the bootstrap problem [GH98], i.e., to obtain a trustworthy binary of
the C0 compiler, it is not sufficient to verify the code generation algorithm or the
C0 implementation of the compiler [Pet07]. We additionally need to translate
the compiler implementation to VAMP assembly and machine language.

Of course, we could simply translate the compiler implementation using
some unverified existing compiler. But the probability that this translation
induces errors in the generated compiler binary is quite high. In Verisoft, we
follow two different ways how to reduce this probability.

First, B. Finkbeiner’s group applies translation validation techniques to show
that a binary compiler which has been generated by some untrusted bootstrap
compiler is a correct translation of the compiler implementation from [Pet07].

166 Code Generation Algorithm

Second, we have used Isabelle’s built-in ML code generation feature [Ber03,
BN02]. The (verified) compiling specification from Chapter 7 is executable
using this ML code generation. In particular, it can be used to compile the
compiler’s C0 implementation from [Pet07] to obtain a trustworthy compiler
binary. This approach is presented in more details in [Tzi07].

Of course, both approaches extend the trusted code base: the first by the
translation validation tool, the second by Isabelle’s code generation module.
However, we can drastically reduce the likelihood of errors by applying all
three methods and comparing the resulting binaries.2 The probability that all
methods produce the same error is negligible.

2 For the first method we would have to proceed in two steps. First, we would compile
the compiler implementation with an unverified existing compiler. The resulting binary would
not be comparable to the binary generated by the other two methods because the unverified
compiler is likely to use a different code generation algorithm. After that, we would use this
binary (which uses our code generation algorithm) to compile the implementation again.

Chapter 8

Simulation Theorem

Contents
8.1 Overview . 167

8.2 Simulation Relation . 168

8.3 Resource Restrictions . 181

8.4 Simulation Theorem . 183

We present in this chapter the simulation theorem which states the correct-
ness of the compiling specification of the C0 compiler. Additionally, E. Petrova
has proved the correctness of the compiler implementation [Pet07] using the
C0 verification environment from [Sch06]. Her results are briefly sketched in
Chapter 11. Recently, she has formally combined her result with the simulation
theorem from this chapter.

Observe that we first present the main theorem and the structure of its
induction proof. This gives the reader some idea of the overall structure of the
compiler correctness proof. The correctness of the individual induction cases
will be proved later in Chapters 9 and 10.

We start this chapter in Section 8.1 with a short overview. We continue in
Section 8.2 with the formal definition of the simulation relation (this includes the
definition of reachability and allocation functions) and in Section 8.3 with some
requirements about available memory in the target machine. We conclude the
chapter in Section 8.4 with the formalization of the main correctness theorem
for the compiling specification and a sketch of its correctness proof.

8.1 Overview

We prove the correctness of the C0 compiler using a small-step simulation
theorem between the execution of a C0 program p = (te, ft , gst) on the ab-
stract C0 machine from Chapter 4 and the execution of the compiled code
codeprog(te, ft , gst) of the program on the VAMP assembly machine from Sec-
tion 6.2.

The important words in the previous sentence are ‘small-step’ and ‘simulation
theorem’.

167

168 Simulation Theorem

• ‘Simulation theorem’ means that we define a simulation relation consis
between states of the C0 small-step semantics and states of the VAMP
assembly machine. Then, we prove that the execution of the compiled
program preserves this simulation relation.

• ‘Small-step’ means that we assure the simulation relation after every
single step of the C0 small-step semantics. In contrast, a big-step simula-
tion theorem only states simulation between the final states of program
execution.

We call a state c of the C0 machine and a state d of the VAMP assembly
machine consistent if they fulfill the simulation relation.

We illustrate the correctness statement in Figure 8.2 on page 183. Let
c0 = initconf(ft , gst) be the initial state of a given C0 program p and d0 a
(arbitrary) state of the VAMP assembly machine where the compiled code
codeprog(p) is stored at address progbase. The correctness statement assures
that for every state ci = δi

C0(te, ft , c0) in the computation of a C0 program there
exists a number of assembly steps s(i) such that δ

s(i)
asm(d0) and ci are consistent.

8.2 Simulation Relation

In this section we define the simulation relation of the compiler correctness
proof. We start in Section 8.2.1 with some thoughts about why we believe that
the simulation relation is correct, sufficiently expressible, and consistent. In
Section 8.2.2 we define the set of reachable g-variables. Then, in Section 8.2.3
we introduce the concept of allocation functions which specify how g-variables
are located in the assembly machine. We define in Section 8.2.4 when a C0 value
and an assembly value are matching, i.e., when they are considered equivalent.
Finally, in Section 8.2.5 we formally define the compiler simulation relation.

8.2.1 Correctness of the Simulation Relation

The compiler correctness proof in the following sections ensures that the compiled
code preserves some simulation relation. But how can we be sure that the
simulation relation itself is correct, i.e., that it correctly reflects the intuitive
meaning of correctness? How can we be sure that a property of a certain C0
program also holds for the compiled assembly code?

We could for instance use consis(c, d) = true as definition for the simulation
relation. This would make the compiler correctness proof quite simple but
would not guarantee any meaningful property of the compiled code.

There are three main reasons why we have confidence in the simulation
relation which we specify in this thesis.

1. The definition of the simulation relation consis is quite simple. This
makes it easy to manually inspect it and look for errors. Of course, such
a manual inspection can never clear out all skepticism; after all, we are
doing formal verification here, i.e., we try to rely on manual checks as
little as possible.

8.2. Simulation Relation 169

2. The Verisoft approach, i.e., pervasive verification, can give us ultimate
confidence in the correctness of the simulation relation; at least for concrete
properties of individual programs.

Let PC0 be a property on the C0 layer and Pasm be the corresponding
property on the assembly layer. We first prove that PC0 holds for a
given C0 program. Then we use the compiler simulation relation and the
simulation theorem to show that we can conclude the validity of Pasm for
the compiled program. Then we know that the property Pasm holds for
the concrete program. Observe that this does not completely guarantee
the compiler correctness or the correctness of the simulation relation for
arbitrary programs. Nevertheless, it shows that the compiler and the
simulation relation are good enough for one concrete property of one
concrete program.

Exemplary, this has been done for the page fault handler used in Verisoft’s
academic sub project [ASS08].

3. If we would only prove the induction step correct, i.e., that from simulation
consistency in step i we can conclude simulation consistency in step i + 1,
we still could have contradictions in the simulation relation. For example,
for the simulation relation sim(c, d) = false it would be quite simple to
conclude sim(ci, di) −→ sim(ci+1, di+1). Instead, we additionally prove
the induction start correct which would be impossible for a contradictory
simulation relation because from a contradiction in sim(c, d) we could
prove sim(c, d) = false and would then have to show sim(c0, d0) which
could not be done. Thus, we can be sure that the simulation relation is
consistent.

8.2.2 Reachability

In the following sections we require only for reachable g-variables that their
value from the C0 configuration is properly stored in the assembly memory.
Having this condition only for reachable variables makes the compiler simulation
proof a little bit more complicated because we have to show that g-variables
which are reachable in the new configuration

• have either been freshly allocated and are properly stored in the assembly
machine by the correctness of the allocation code, or

• have also been reachable in the previous C0 configuration which allows to
apply the induction hypothesis.

On the other hand, having this condition only for reachable variables will
simplify the integration of a garbage collector which can remove unreachable
g-variables from the heap memory. The current version of the C0 compiler does
not yet include a garbage collector. However, the implementation of a copying
garbage collector for the C0 compiler has already been verified using the C0
verification environment [Sch06]. Only the integration of the code into the code
generation of the C0 compiler and the necessary adaptations of the compiler
simulation proof have to be done.

In this section we will formally define the set of reachable g-variables.

170 Simulation Theorem

Definition 8.1 (Pointer g-variable) Let te be a type name environment, sc
a symbol configuration, and g a g-variable. We say that g is a pointer g-variable
if it is of type PtrT or NullT. Formally,

is gvarp(sc, g) = is PtrT(tyg(sc, g)) ∨ tyg(sc, g) = NullT

Definition 8.2 (Reachable nameless g-variables) Let mc a memory con-
figuration of the C0 machine. We introduce the set reachablenameless

g which
defines the set of reachable g-variables in the heap memory.

We do this definition by induction: we start with the g-variables in the
global and local memories and – doing pointer chasing – we add step by step
all g-variables which are reachable from these starting points to the set.

reachablenameless
g :: memconf 7→ gvar set

For the induction start let x be an initialized pointer g-variable in the global
or in one of the local memories. If the value of x points to some nameless
g-variable g we add g to the set of reachable nameless g-variables.

x ∈ gvars
√

(sc(mc))
namedg(x) is gvarp(sc(mc), x) initializedg(mc, x)

g ∈ gvars
√

(sc(mc)) ¬namedg(g) valueg(mc, x) = Ptr(g)

g ∈ reachablenameless
g (mc)

(8.1)

Similarly to the induction start, we call a nameless g-variable g reachable
if a second nameless g-variable h – which is already in the set of reachable
g-variables – points to g.

h ∈ reachablenameless
g (mc) initializedg(mc, h) is gvarp(sc(mc), h)

g ∈ gvars
√

(sc(mc)) ¬namedg(g) valueg(mc, h) = Ptr(g)

g ∈ reachablenameless
g (mc)

(8.2)

Finally, sub g-variables of reachable nameless g-variables are also reachable.

h ∈ reachablenameless
g (mc) g ∈ subg(h) g ∈ gvars

√
(sc(mc))

g ∈ reachablenameless
g (mc)

(8.3)

Definition 8.3 (Reachable g-variables) Let mc a memory configuration of
the C0 machine. We define the set reachableg :: memconf 7→ gvar set which
contains all reachable g-variables of memory configuration mc.

g ∈ reachablenameless
g (mc)

g ∈ reachableg(mc)

g ∈ gvars
√

(sc(mc)) namedg(g)
g ∈ reachableg(mc)

8.2. Simulation Relation 171

Definition 8.4 (Reachable pointers) Now, we extend the previous defini-
tion from g-variables to pointers by defining

memconf 7→ (gvar ∪ {⊥}) set

⊥ ∈ reachableptr(mc)

g ∈ reachableg(mc)
g ∈ reachableptr(mc)

Definition 8.5 (Reachable pointer memory cells) We define a predicate
for memory cells which contain reachable pointers.

reachablemcell :: memconf ×mcellC0 7→ B

For pointer memory cells we require that the contained pointer is reachable.

p ∈ reachableptr(mc)
reachablemcell(mc,Ptr(p))

For other memory cells there are no requirements.

c ∈ {Int(i),Nat(u),Char(c),Bool(b)}
reachablemcell(mc, c)

The following theorem shows that the values and addresses which we obtain
by expression evaluation are reachable.1 For AddrOf and Deref operators we
switch between left value and right value during evaluation. Thus, we have to
state the theorem simultaneously for both left and right values.

Theorem 8.1 (Evaluation gives reachable g-variables)
Let c be a valid C0 configuration and e an expression which can be evaluated
both as a left and as a right expression. Then, given that e represents a memory
object, the left value of e is a reachable g-variable and, given that e is initialized,
all pointer memory cells in the right value of e are reachable.

c ∈ conf
√

(te, ft)
∧ leval(te, c.mem, e) = bgc ∧ reval(te, c.mem, e) = bvc
=⇒ (mobj (e) −→ g ∈ reachableg(c.mem))

∧ (initialized(e) −→ ∀i < sizet(type(e)) : reachablemcell(c.mem, v(i)))

Proof We prove this lemma by induction on e.
For variable accesses the first goal follows directly from the definition of

reachable g-variables because g is a named g-variable. The second goal holds
because reachability is transitive: if g is reachable then the content of g in the
memory is also reachable (via g).

1This is the expected meaning of the word reachability; thus, we should not be surprised
that the theorem holds.

172 Simulation Theorem

Literals do not represent memory objects. Thus, we only have to prove the
second goals which follows from the fact that literals may only contain null
pointers.

For array and structure access, the first goal follows from the fact that sub
g-variables of reachable g-variables are also reachable (cf. Definition 8.2). The
second goal holds because the content of the sub g-variables is contained in the
content of g.

Application of operators is trivial: they give results which are not memory
objects and which contain no pointers at all.

The address-of operator AddrOf (e) also does not give a memory object;
thus, we only have to prove the second goal which follows from the fact that
the value of AddrOf (e) is just a pointer to the address of e which – by the
induction hypothesis – is a reachable g-variable.

For dereferencing Deref (e) the first goal is true because – by the induction
hypothesis – the value of e, which is the left value of Deref (e), is a reachable
pointer. For the second goal we use the same arguments as for the second goal
for variable access. q.e.d.

Theorem 8.2 (No new reachable g-variables by memory updates)
Let c be a valid configuration and let m′ be the C0 memory configuration after
a successful update of the valid g-variable gl with some value v. Furthermore,
assume that all pointers in v point to reachable g-variables. Then, all heap
g-variables which are reachable in the new memory configuration m′ have already
been reachable in the old memory configuration c.mem.

c ∈ conf
√

(te, ft) ∧ g ∈ reachablenameless
g (m′)

∧ gl ∈ gvars
√

(sc(c.mem)) ∧memupd(c.mem, gl, v) = bm′c
∧ tmatchass(tyg(sc(c.mem), gl), t) ∧ ty

√
(te, sc(c.mem), v, t, 0)

∧ ∀i < sizet(t) : reachablemcell(c.mem, v(i))

=⇒ g ∈ reachablenameless
g (c.mem)

Proof We prove this theorem by induction according to the definition of
reachablenameless

g . There are three ways how g can be reachable in m′.

Case 1: Induction start (Equation (8.1))
In this case, g is reachable in m′ via some named g-variable x (i.e., the
value of x in m′ is Ptr(g)). We consider two cases.

1. x ∈ subg(gl): In this case we use the last precondition of the theorem.
This precondition ensures that every pointer memory cell inside v
points to a g-variable which was reachable in the old configuration.
During the memory update x is updated with one of these reachable
pointers (observe that we need the preconditions ty

√
and tmatchass

to know that the embedded pointers in both types are at correspond-
ing positions). So, the new value of x – which is Ptr(g) – has also
been reachable in the old configuration and thus, g itself has been
reachable.

2. x /∈ subg(gl): In this case the value of x has not been changed by
the memory update and it must have pointed to g also in the old
configuration. Thus, g was reachable.

8.2. Simulation Relation 173

Case 2: Induction step: indirectly reachable (Equation (8.2))
In this case, g is reachable in m′ via some reachable nameless g-variable x.
From the induction hypothesis we know that x has also been reachable
in the old configuration. The rest of this proof case follows the proof of
case 1.

Case 3: Induction step: sub g-variable (Equation (8.3))
This case is easy. From Equation (8.3) we know that g is a sub g-
variable of some other reachable nameless g-variable x. From the induction
hypothesis we conclude that x was also reachable in the old configuration.
However, the fact of being a sub g-variable is a structural property of the
g-variables and does not depend on any memory configuration. Thus, g
was also a sub g-variable of x in the old configuration and reachable by
Equation (8.3). q.e.d.

8.2.3 Allocation Function

The simulation relation consis which we define in Section 8.2.5 is parameterized
with the allocation function alloc :: gvar 7→ (N×N). The allocation function
maps a g-variable g to a pair alloc(g) = (b, s) of an allocated base address b for
g and the allocated size s of g’s type.

Later we will instantiate alloc for global and local variables with values
computed by abaseg and asizet. For heap variables we have to keep track of
their actual position in the heap. For the current version of the C0 compiler this
address stays constant as we have not yet integrated a garbage collector. After
the integration of a garbage collector, the allocated address of heap variables
may change with every execution of an allocation statement.

8.2.4 Matching Values

In this section, we introduce three predicates which test for given values of the
C0 and the assembly semantics whether the C0 value is properly represented
by the assembly value. This gives us some kind of equality measure between
the two kinds of values.

We start with the definition of a predicate for non-pointer values.

Definition 8.6 (Matching values) Let vC0 :: mcellC0 be a C0 value and
vasm :: Z an assemble value. We introduce the predicate vmatch which checks
whether vC0 and vasm match, i.e., whether they contain equivalent values. We
define vmatch by case distinction on the C0 value. Observe that pointer values
never fulfill the predicate.

vmatch :: mcellC0 × Z 7→ B

vasm = i

vmatch(Int(i), vasm)

vasm = i

vmatch(Char(i), vasm)

174 Simulation Theorem

For unsigned values we have to interpret the assembly value as a natural number.

i2n(vasm) = n

vmatch(Nat(n), vasm)

We represent false by 0 and true by 1.

vC0 = Bool(vasm 6= 0) vasm ∈ {0, 1}
vmatch(Bool(b), vasm)

For pointers the equality test slightly differs from the above definition.

Definition 8.7 (Matching pointer values) Let alloc be an allocation func-
tion, p :: gvar ∪ {⊥} a C0 pointer, and vasm :: Z a value of the assembly
machine. We introduce the predicate vmatchptr which checks whether p and
vasm correspond to each other. Formally, we define

vmatchptr :: (gvar 7→ (N×N))× gvar ∪ {⊥} × Z 7→ B

For null pointers the definition is trivial.

vasm = 0
vmatchptr(alloc,⊥, vasm)

For pointers to g-variables g we require that the assembly value – interpreted
as a natural number – equals the allocated base address of g as defined by the
allocation function.

i2n(vasm) = fst(alloc(g))
vmatchptr(alloc, g, vasm)

Finally, we combine the definitions of matching values for pointers and
normal values in the following definition.

Definition 8.8 (Matching right values) Let alloc be an allocation function,
vC0 :: mcellC0 a C0 value, and vasm :: Z a value of the assembly machine. We
introduce the predicate vmatchrval :: (gvar 7→ (N × N)) × mcellC0 × Z 7→ B

which checks whether vC0 and vasm correspond to each other.

vmatchrval(alloc, vC0, vasm) =

{
vmatchptr(alloc, p, vasm) if vC0 = Ptr(p)
vmatch(vC0, vasm) otherwise

Finally, we extend the definition of matching values from single values to
complete g-variables.

Definition 8.9 (Content consistent g-variables) Let sc a symbol configu-
ration and alloc an allocation function. Further, let vg :: N 7→ mcellC0 be the
content of a given g-variable g and b the allocated base address of g in assembly
configuration d. Then we define the predicate vmatchgvar :: symbolconf × (N 7→
mcellC0)× confasm × (gvar 7→ (N×N))× gvar ×N 7→ B which checks for all
elementary sub g-variables of g whether their value at the proper offset in vg

8.2. Simulation Relation 175

matches the value stored in d. If all sub g-variables match we say that vg is
content consistent with g in assembly configuration d. Formally, we define

vmatchgvar(sc, vg, d, alloc, g, b) =

∀g′ ∈ subg(g) :
(
elem?t(tyg(sc, g′)) ∧ g′ ∈ gvars

√
(sc)

)
=⇒ vmatchrval(alloc, vg(bag(sc, g′)− bag(sc, g)),

cell2int(d.mm(b + displ rel(sc, g, g′)÷ 4)))

8.2.5 Definition of the Simulation Relation

The simulation relation consis :: tenv × functableT × conf C0 × (gvar 7→ (N×
N)) × confasm 7→ B defines whether a C0 configuration and an assembly
configuration are equivalent with respect to a given allocation function.

Basically, the simulation relation is supposed to state that all (reachable)
g-variables of the C0 configuration are properly stored at their allocated address
in the assembly configuration. This part of consis will be used to translate and
transfer correctness statements about C0 programs to the assembly layer (cf.
Section 8.2.1).

Additionally, we need many more properties in the simulation relation to
make the compiler correctness statement inductive, i.e., to be able to infer
consistency between δi+1

C0 (te, ft , c0) and δ
s(i+1)
asm (d0) given that δi

C0(te, ft , c0) and
δ

s(i)
asm(d0) are consistent. Among other things, these additional properties argue

• that the compiled code has not been changed,

• that the program counters of the assembly machine point to the code of
the current statement of the C0 machine, and

• that all stack frames are properly reprented.

We will define the simulation relation in several steps. But before we start
with the formal definition of consistency we introduce some auxiliary functions.

Definition 8.10 (Reading frame headers) We define three functions with
signature tenv×functableT×symbolconf ×(N 7→ mcellasm)×N 7→ N which read
the return address, the return destination, and the previous stack pointer from
the frame headers in the stack. Let te be a type name environment, ft a function
table, sc a symbol configuration, and mm the memory of a VAMP assembly
configuration. Then, the following functions read frame header information
from the i-th stack frame

fhra(te, ft , sc,mm, i) = i2n(cell2int(mm((abase lm(te, ft , sc, i))÷ 4)))
fhrd(te, ft , sc,mm, i) = i2n(cell2int(mm((abase lm(te, ft , sc, i) + 4)÷ 4)))

fhpsp(te, ft , sc,mm, i) = i2n(cell2int(mm((abase lm(te, ft , sc, i) + 8)÷ 4)))

We give the top-level definition of the simulation relation consis before we
formally define its parts in the following sections.

Definition 8.11 (Consistency) Let te be a type name environment, ft a
function table, c a C0 configuration, d a configuration of the VAMP assembly

176 Simulation Theorem

consis

consiscode

consisd

consisc consisra

consisalloc

consisv

consisp

consisr

consis fh

Figure 8.1: Overall Structure of the Compiler Simulation Relation

machine, and alloc an allocation function. We say that c and d are consistent
if they fulfill the predicate consis which requires code consistency, control
consistency, and data consistency.

consis :: tenv × functableT × conf C0 × (gvar 7→ (N×N))× confasm 7→ B

consiscode(te, ft , c, d) consisc(te, ft , c, d) consisd(te, ft , c, alloc, d)
consis(te, ft , c, alloc, d)

For a better overview during the following definitions we illustrate the
structure of the consistency relation in Figure 8.1.

Code Consistency

Code consistency requires that the compiled code is stored at address progbase
in the assembly configuration.

Definition 8.12 (Code consistency) Let te be a type name environment,
ft a function table, c a C0 configuration, and d a configuration of the VAMP
assembly machine. We define the predicate consiscode which checks whether c
and d are code consistent.

consiscode :: tenv × functableT × conf C0 × confasm 7→ B

read instr(d.mm, progbase, csizeprog(te, gst(c.mem), ft))
= codeprog(te, ft , gst(c.mem))

consiscode(te, ft , c, d)

Control Consistency

Control consistency requires that the program counters of the assembly machine
point to the start address of the code which has been generated for the head
of the current program rest and that return addresses of all stack frames are
correct. The latter requirement is formally defined via the predicate consisra.

8.2. Simulation Relation 177

Definition 8.13 (Return address consistency) Let te be a type name en-
vironment, ft a function table, c a C0 configuration, and d a configuration
of the VAMP assembly machine. We define the predicate consisra. It checks
whether for all i < |c.mem.lm| − 1 there exists a function call statement s in
the function table such that

1. the successor statement of s follows the i-th return statement in the
program rest and

2. the return address in stack frame |c.mem.lm| − (i + 1) points directly
behind the code of s, i.e., s has been the function call which generated
that stack frame.

Formally, we define

consisra(te, ft , c, d) =
∀i < |c.mem.lm| − 1 : ∃s :

is SCall(s)
∧ fos(s, ft) 6= None
∧ succithret(s2lns(c.prog), i) = bxc =⇒ succ(s, ft) = bxc
∧ fhra(te, ft , sc(c.mem), d.mm, |c.mem.lm| − (i + 1))

= cbases(te, gst(c.mem), ft , s) + 4 · csizes(te, gst(c.mem), ft , s)

Consistency of the return addresses together with the correctness of the
program counters gives control consistency.

Definition 8.14 (Control consistency) Let ft be a function table, te a type
name environment, c a C0 configuration, and d a configuration of the VAMP
assembly machine. If the program rest is not empty, we say that c and d are
control consistent if consisra(te, ft , c, d) holds and the program counters of d
point to the code of the head of the current program rest of c. However, if the
program rest is empty we have no requirements for control consistency.

consisc :: tenv × functableT × conf C0 × confasm 7→ B

d.dpc = the(cbases(te, gst(c.mem), ft , hd(s2lns(c.prog))))
d.pcp = d.dpc + 4 consisra(te, ft , c, d) s2lns(c.prog) 6= []

consisc(te, ft , c, d)

s2lns(c.prog) = []
consisc(te, ft , c, d)

Data Consistency

Data consistency states that reachable g-variables are correctly stored in the
assembly machine, that some auxiliary information about stack and heap are
stored correctly, and that the allocation function conforms with the allocated
base address of global and local g-variables as computed by abaseg. We define
data consistency using several auxiliary definitions.

178 Simulation Theorem

Allocation Consistency. First, we require that the allocation function re-
turns meaningful values. We require that the second component of the allocation
function returns for all g-variables their allocated size. For named g-variables
we require additionally that the first component returns the same values as
abaseg. We cannot argue about the absolute position of nameless g-variables
in the assembly memory because they might be moved by a garbage collector.
Instead, we require that sub g-variables are properly placed relatively to their
root g-variables and that nameless g-variables with different roots do not overlap
in the assembly memory.

Definition 8.15 (Named allocation consistency) We define the predicate
consisnamed

alloc :: tenv × functableT × conf C0 × (gvar 7→ (N × N)) 7→ B which
tests whether a given allocation function contains the correct data for named
g-variables.

consisnamed
alloc (te, ft , c, alloc) =

∀g ∈ gvars
√

(sc(c.mem)) :

namedg(g) =⇒ fst(alloc(g)) = abaseg(te, ft , sc(c.mem), g)
∧snd(alloc(g)) = asizet(tyg(sc(c.mem), g))

Definition 8.16 (Heap allocation consistency) The introduce the predi-
cate consisheap

alloc :: tenv × functableT × conf C0 × (gvar 7→ (N×N)) 7→ B which
tests whether a given allocation function returns reasonable data for reachable
nameless g-variables. We have three conditions for heap allocation consistency.

1. We require that the end of the top most local frame |c.mem.lm|−1 (which
coincides with the base address of the non-existing stack frame |c.mem.lm|,
cf. Definition 7.16 on page 134) is below the heap base.

2. We require for all valid named g-variables g that the second component
of alloc(g) equals the allocated size of the g-variable g.

3. We require for all reachable nameless g-variables g′ (i) that the allocated
base address fst(alloc(g′)) of g′ corresponds to the allocated base address
of its root g-variable rootg(g′) plus the relative displacement of g′, (ii) that
the root g-variable of g′ is properly aligned, (iii) that no g-variable h with
a different root g-variable does overlap with g′, and (iv) that the allocated
base address of g′ is above the heap base.

Formally, this is defined as

consisheap
alloc(te, ft , c, alloc) =

abase lm(te, ft , sc(c.mem), |c.mem.lm|) ≤ abaseheap

∧ ∀g ∈ gvars
√

(sc(c.mem)) :
¬namedg(g) =⇒ snd(alloc(g)) = asizet(tyg(sc(c.mem), g))

∧ ∀g′ ∈ reachablenameless
g (c.mem) :

fst(alloc(g′)) = fst(alloc(rootg(g′))) + displg(sc(c.mem), g′)

∧ algn(tyg(sc(c.mem), rootg(g′))) | fst(alloc(rootg(g′)))

∧ abaseheap ≤ fst(alloc(g′))

∧ ∀h ∈ reachablenameless
g (c.mem) :

rootg(g′) 6= rootg(h) =⇒ alloc(g′) � alloc(h)

8.2. Simulation Relation 179

Definition 8.17 (Allocation consistency) We combine allocation consis-
tency for nameless and named g-variables.

consisalloc :: tenv × functableT × conf C0 × (gvar 7→ (N×N)) 7→ B

consisnamed
alloc (te, ft , c, alloc) consisheap

alloc(te, ft , c, alloc)
consisalloc(te, ft , c, alloc)

Value Consistency. Value consistency requires that the values of reachable
non-pointer g-variables are properly represented in the assembly configuration.
We define value consistency in two steps. We define first a predicate for a single
g-variable. Then we extend this predicate for all g-variables.

Definition 8.18 (Value consistent g-variable) Let mc a memory configu-
ration, alloc an allocation function, d a VAMP assembly configuration, and g a
g-variable. We define the predicate consisg

v :: memconf × (gvar 7→ (N×N))×
confasm × gvar 7→ B which tests whether the value of g is properly stored in
the memory of assembly configuration d.

Observe that we define the predicate for arbitrary g-variables although it is
only meaningful for reachable non-pointer g-variables of elementary type. For
other g-variables the predicate is true by default.

Formally, we define

consisg
v(mc, alloc, d, g) =

vmatch(valueg(mc, g)(0),
cell2int(d.mm(fst(alloc(g))÷ 4))) if g ∈ reachableg(mc)

∧elem?t(tyg(sc(mc), g))
∧¬

(
is gvarp(sc(mc), g)

)
∧initializedg(mc, g)

true otherwise

Definition 8.19 (Value consistency) We say that a C0 configuration c is
value consistent with assembly configuration d in the context of alloction function
alloc if all g-variables are value consistent. Formally, we define

consisv(c, alloc, d) = ∀g.consisg
v(c.mem, alloc, d, g).

Pointer Consistency. Pointer consistency states that the values of reachable
pointer g-variables are properly represented in the assembly configuration. In
principle, its definition is similar to value consistency except that we have a
different notion of equality between values in the assembly and the C0 machine.

As in the definition of value consistency, we first define when a single
g-variable is called pointer consistent.

Definition 8.20 (Pointer consistent g-variable) Let mc a memory con-
figuration, alloc an allocation function, d a VAMP assembly configuration,
and g a g-variable. Furthermore, let the value of g be a pointer value, i.e.,
valueg(mc, g)(0) = Ptr(p). We define the predicate consisg

p :: memconf ×
(gvar 7→ (N×N))× confasm × gvar 7→ B which tests whether the pointer value

180 Simulation Theorem

of g is properly stored in the memory of assembly configuration d. Similar to
consisg

v, the predicate only tests the value of reachable and initialized g-variables
of pointer type; for other g-variables it is true by default.

consisg
p(mc, alloc, d, g) =

vmatchptr(p,

cell2int(d.mm(fst(alloc(g))÷ 4))) if g ∈ reachableg(mc)
∧

(
is gvarp(sc(mc), g)

)
∧initializedg(mc, g)

true otherwise

Definition 8.21 (Pointer consistency) We say that C0 configuration c is
pointer consistent with assembly configuration d in the context of allocation
function alloc if all g-variables are pointer consistent. Formally, we define

consisp(c, alloc, d) = ∀g.consisg
p(c.mem, alloc, d, g).

Register Consistency. Register consistency argues about the content of
some special registers (cf. Table 7.2 on page 129).

Definition 8.22 (Register consistency) We introduce a predicate consisr

which checks whether C0 configuration c and assembly configuration d are
register consistent. For this we require

1. that the contents of registers rsbase, rlframe, and rhtop have values according
to their intended meaning from Table 7.2,

2. that no reachable nameless g-variables are allocated above the top most
heap address from rhtop, and

3. that the value of rhtop is properly aligned to the maximum alignment.

Formally, this is defined as

consisr :: tenv × functableT × conf C0 × (gvar 7→ (N×N))× confasm 7→ B

i2n(d.gpr !rsbase) = abasegm(te, ft , gst(c.mem))
i2n(d.gpr !rlframe) = abase lm(te, ft , sc(c.mem), |c.mem.lm| − 1)

i2n(d.gpr !rhtop) = abaseheap + asizeheap(hst(c.mem))
∀g ∈ reachablenameless

g (c.mem) : fst(alloc(g)) + snd(alloc(g)) ≤ i2n(d.gpr !rhtop)
4 | i2n(d.gpr !rhtop)

consisr(te, ft , c, alloc, d)

Frame Header Consistency. Frame header consistency requires the values
in the frame headers of the local stack frames to be consistent with their
intended meaning (cf. Table 7.1 on page 129). Observe that we do not argue
about the return addresses here; they are already part of control consistency.

Definition 8.23 (Frame header consistency) We introduce the predicate
consis fh which requires the previous stack pointers and the return destinations in
all stack frames – except for stack frame 0 – to be consistent with their intended

8.3. Resource Restrictions 181

meaning. This means that the previous stack pointer of frame i contains the
allocated base address of frame i− 1 and that the return destination of frame
i contains the allocated base address of the i-th return destination of the C0
configuration.

Formally, we define

consis fh(te, ft , c, alloc, d) = ∀0 < i < |c.mem.lm| :
fhpsp(te, ft , sc(c.mem), d.mm, i) = abase lm(te, ft , sc(c.mem), i− 1)

∧ fhrd(te, ft , sc(c.mem), d.mm, i) = fst(alloc(snd(c.mem.lm!i)))

Data Consistency. We combine the above definitions to data cosistency.

Definition 8.24 (Data consistency) Let te be a type name environment,
ft a function table, c a C0 configuration, alloc an allocation function, and
d a configuration of the VAMP assembly machine. We define the predicate
consisd(te, ft , c, alloc, d) which checks whether c and d are data consistent via
the allocation function alloc.

consisd :: tenv × functableT × conf C0 × (gvar 7→ (N×N))× confasm 7→ B

consisalloc(te, ft , c, alloc) consisv(c, alloc, d)
consisp(c, alloc, d) consisr(te, ft , c, alloc, d) consis fh(te, c, alloc, d)

consisd(te, ft , c, alloc, d)

8.3 Resource Restrictions

Besides the requirement that the compiled code fits into memory (cf. Section 7.6),
an important proof goal of the compiler correctness proof will be that during
execution the compiled program does not use more memory than is available
on the target machine.

There are basically two ways in which a program can use too much memory.
First, if the program allocates to much data on the heap, it produces a heap
overflow. Second, too many nested function calls may lead to a stack overflow.

The definition of memory allocation in the C0 semantics (cf. Section 4.4.3
on page 63) allows to discharge the proof goals regarding heap overflow at the
C0 layer if we instantiate the availheap parameter of the C0 transition function
correctly. For the current version of the C0 compiler, i.e., without garbage
collection, we instantiate

availheap(mc, t) =
(
asizeheap(hst(mc)) + dasizet(t)e4 < asizemax

heap

)
.

This instantiation ensures that memory allocation has in every situation the
same result – a null pointer or a pointer to the newly allocated memory – both
for the original C0 program and for the compiled code (cf. the correctness proof
for memory allocation in Section 10.7).

The C0 compiler does not annotate the function call code with a stack
watch nor does the C0 semantics check for stack size when executing function
calls. To allow the C0 program to react on a stack overflow would require
major changes in the C0 language; e.g., adding support for exception handling
or similar features to C0.

182 Simulation Theorem

Because of the missing stack watch, we cannot guarantee equivalent execution
of function calls in case of a stack overflow. However, we can formulate a
predicate which checks at the C0 level whether we have enough stack or not.
This predicate allows to lift argumentation about the required stack size from
the assembly to the C0 layer.

Definition 8.25 (Enough stack available) Let te be a type name environ-
ment, ft a function table, and c a C0 configuration. We define the predicate
avail stack which tests whether the top most stack frame ends below the heap
base, i.e., whether we have a stack overflow or not.

avail stack :: tenv × functableT × conf C0 7→ B

abase lm(te, ft , sc(c.mem), |c.mem.lm|) ≤ abaseheap

avail stack(te, ft , c)

We combine the predicate avail stack with a statement about a sufficient
amount of heap memory.

Definition 8.26 (Sufficient memory available) Let te be a type name en-
vironment, ft a function table, and c a C0 configuration. Furthermore, let
addrmax denote the maximum address in the program’s address space. We
define the predicate availmem which combines the previously defined predicate
avail stack with requirements regarding heap consumption.

availmem :: N× tenv × functableT × conf C0 7→ B

avail stack(te, ft , c) abaseheap + asizeheap(hst(c.mem)) < addrmax

availmem(addrmax, te, ft , c)

8.3.1 Lifting Resource Restrictions to More Abstract Layers

Above, we have defined predicates which allow to ensure at the C0 small-step
layer that a compiled program does not violate resource restrictions of the
target machine. However, formally proving at the small-step layer that these
predicates hold for all steps of the program is quite costly because a lot of work
from the program’s functional verification in the C0 Hoare logic would have to
be repeated. It seems worthwhile to lift the requirements to the Hoare logic
layer and to discharge them as part of the program’s functional correctness
proof.

Without a garbage collector, tracking heap usage in the C0 verification
environment is treated in [Sch06] via a ghost variable which counts the number
of free heap memory cells (similar to the work in [BPS05]). However, in
the presence of a garbage collector, this simple method only gives an upper
bound of heap memory usage because it does not keep track of deallocation of
unreachable memory objects (neither manually nor via garbage collection). A
garbage collector may automatically deallocate all memory objects which are
not reachable anymore.

Because of the big-step nature of the C0 verification environment only
the current stack frame is directly accessible. To keep track of the maximum

8.4. Simulation Theorem 183

d0 . . . δs(0)
asm (d0) . . . δs(1)

asm (d0) δs(n)
asm (d0)

c0 δ1
C0(c

0) . . . δn
C0(c

0)

co
n
si

s

co
n
si

s

co
n
si

s

co
n
si

s

Figure 8.2: Small-Step Compiler Simulation Theorem

recursion depth and of all root pointers for a reachability analysis it would be
necessary to have (at least partly) access to all stack frames. This requires to
add additional ghost state. To examine the best way of formulating such ghost
state and to prove the necessary meta theorems remains as future work.

8.4 Simulation Theorem

In this section, we present the top-level correctness theorem of the C0 compiler
specification and sketch the structure of its proof which is done by induction on
the steps of the C0 machine. For each step we do the proof by case distinction
on the next statement in the program rest. The correctness proofs for the
different statements are given later in Chapter 10.

As already stated in Section 8.1 we prove the correctness of the C0 compiler
by a small-step induction proof over the execution steps of the C0 program (cf.
Figure 8.2). This means that we prove for every step of a C0 program that
the assembly machine executing the compiled code will reach an equivalent
state; of course this theorem has several additional requirements both to the
C0 program and to the initial state of the assembly machine.

Theorem 8.3 (Compiler correctness)
Let te be a type name environment, ft a function table, and gst the symbol table
for the global variables. Furthermore, let p = (te, ft , gst) be the corresponding
C0 program. Let d be the initial state of the VAMP assembly machine.

Then for all steps i of the C0 machine executing program p there exists a
step number t of the assembly machine such that the C0 machine after i steps
is consistent with the assembly machine after t steps. However, this is only true
if the following requirements about p and d are fulfilled.

• The C0 program p is a translatable program with a non-empty function
table which starts with the main function.

• The type name environment te is valid, ft is a valid function table, and
gst is a valid symbol table.

• The C0 computation does not produce a ‘None’ configuration in step i.

• The constants addrmax, which denotes the maximum address in the pro-
gram’s address space, abaseheap, and asizemax

heap are meaningful.

• The assembly configuration d is valid and its program counters point to
the start of the compiled program.

184 Simulation Theorem

• The global memory is zero initialized.

• For all steps of the C0 machine up to step i we had not have a stack
overflow.

• The C0 program p does not contain inline assembly.2

Formally, this theorem is stated as follows

(te, ft , gst) ∈ xltblprog ∧ ft 6= [] ∧ fst(hd(ft)) = ”main”

∧ te ∈ valid tenv ∧ gst ∈ valid st(te) ∧ ∃c′ : nthstepi
C0(te, ft , gst) = bc′c

∧ confasm
√

(d) ∧ d.dpc = progbase ∧ d.pcp = d.dpc + 4

∧ addrmax ≤ 232 ∧ abaseheap + asizemax
heap < addrmax ∧ 0 < asizemax

heap

∧ consiscode(te, ft , the(initconf(ft , gst)), d)
∧ ∀j < dasizest(gst , 0)e4 : cell2int(d.mm((abasegm(te, ft , gst) + j)÷ 4)) = 0

∧ ∀i′ ≤ i : avail stack(te, ft , the(nthstepi′

C0(te, ft , gst)))

∧ ∀i′ < i : ¬is Asm(hd(s2l((the(nthstepi′

C0(te, ft , gst))).prog)))

=⇒ ∃t, alloc, d′ : d
t,d′.dpc−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(progbase,progbase+4·csizeprog(te,gst,ft)),(progbase,addrmax)
d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

Proof We prove this theorem by induction on the step number i of the C0
machine.

For the induction start we have to show that the initialization code code ini

from Section 7.5.1 correctly sets up an assembly configuration which is consistent
with the initial C0 configuration. We omit details of this (simple) proof here.

For the induction step we have to conclude from step i to i + 1. We
know that there exists an intermediate assembly configuration d′′ such that
c′′ = the(nthstepi

C0(te, ft , gst)) and d′′ are consistent with respect to some
allocation function alloc′′. We distinguish two cases.

Case 1: s2lns(c′′.prog) = []
In this case, the program has terminated (or only contains Skip statements)
and the C0 transition function has reached a fix point (i.e., c′ = c′′

modulo Skip statements in the program rest). Thus, it is easy to prove
the conclusion of the theorem by just instantiating the existence quantifier
with t = 0, d′ = d′′, and alloc = alloc′′.

Case 2: s2lns(c′′.prog) = h#t
We prove this case by a case distinction on h. The proofs for the respective
cases are given in Chapter 10. q.e.d.

2The compiler correctness proof has been extended by A. Tsyban with support for inline
assembly statements. However, this extension is not part of this thesis.

Chapter 9

Correct Compilation of Expressions

Contents
9.1 Execution of Assembly Code for Expressions 185

9.2 Correctness Statement for Expressions 186

9.3 Correctness Theorem . 189

In this section we sketch the proof that the code generation algorithm for
expressions from Section 7.3 produces correct code. This means that – given
that some preconditions hold – the generated code computes a result in the
destination register which is equivalent to the result computed by the evaluation
functions leval and reval in the C0 machine.

Observe that we not present details of this proof. We present the overall
structure of the proof – which is done by induction on the structure of the
expressions – but we do not look deeper into the various cases. A thorough
discussion of the correctness proof for several types of expressions can be found
in the theses [Pen07] (multiplication, division, and modulo), [Pen06] (literals,
bitwise operators, and comparison), and [Kre06] (addition and subtraction).
These theses were supervised by the author. The remaining expressions have
been verified as part of this thesis.

We start in Section 9.1 with some notation and continue in Section 9.2 with
a more formal definition of the correctness statement for expression evaluation.
Finally, we sketch the proof of correct compilation of expressions in Section 9.3.

9.1 Execution of Assembly Code for Expressions

Because the verification of expression evaluation was started and finished before
the correctness proof for statements, the formulations of ‘execution of assembly
code’ slightly differs between both proofs. The execution predicate for assembly
code from Section 6.4.1 on page 114 has been improved after finishing the
expression proofs. Nevertheless, in order to keep the expression proofs as stable
as possible we have not adapted the execution predicate there but instead
verified that we can use the expression code execution predicate inside the
statement correctness proofs.

185

186 Correct Compilation of Expressions

Definition 9.1 (Execution of expression code) Let d and d′ be two as-
sembly configurations, il a list of assembly instructions, rangec and rangea the
code and address range, and t a step number. We define the predicate execasm

which states – for the context of the expression correctness proofs – that the
list of assembly instructions il is being executed from d to d′.

execasm :: (confasm × instr list × (N×N)× (N×N)×N× confasm) set

read instr(d.mm, d.dpc, |il|) = il d.pcp = d.dpc + 4
d′.dpc = d.dpc + 4 · |il| d′.pcp = d′.dpc + 4 d′ = δt

asmd

∀t′ < t : interruptfree(δt′

asmd, rangec, rangea) ∧ advancing(currinstr(δt′

asm(d)))
∀t′ ≤ t : unchngdmem(d.mm, δt′

asmd.mm, fst(rangec)÷ 4, snd(rangec)÷ 4)
(d, il, rangec, rangea, t, d

′) ∈ execasm

9.2 Correctness Statement for Expressions

In this section, we define the correctness statement for the assembly code
which handles expression compilation. To give the reader a better intuition we
start top-down by first defining the correctness predicate using uninterpreted
predicates for pre and post conditions. Only then we give concrete definitions
for them.

Definition 9.2 (Correct compilation of expressions) Let ft be a function
table, te a type name environment, c a C0 configuration, addrmax the maximum
address in the address space of the program, e an expression, and rf the flag
which specifies whether we evaluate the expression as right or left value.

Furthermore, let codee be the code which is generated for expression e,
destination register rd, and the list fregs of free registers. That is, codee =
codeexpr(te, gst(c.mem), lst top(c.mem), rf , rd, fregs, e).

We define the predicate codeexpr
√

which checks whether e has been correctly
compiled. Correct compilation means here that for all assembly configurations,
allocation functions, destination registers, and set of free registers the precondi-
tion exprpre implies that there exists a step number t and a new configuration
such that the code for the expression is being executed in t steps and the
postcondition exprpos holds.

Formally, we define codeexpr
√

(te, ft , c, rangec, addrmax, e, rf) to be true iff
the following implication is true for all assembly configurations d, allocation
functions alloc, destination registers rd, and lists of free registers fregs.

exprpre (d, te, ft , c, alloc, e, codee, rf , rd, fregs, rangec, addrmax)

=⇒ ∃t, d′ : (d, codee, rangec, (progbase, a), t, d′) ∈ execasm

∧exprpos (d, d′, te, c, alloc, e, codee, rangec, addrmax, t, rf , rd, fregs)

In the following we give a formal definition of the precondition and postcon-
dition which are used above. Observe that the definition of the precondition
contains a lot of technical details. Most of these details can later – when we
use the expression correctness in the correctness proofs for statements – be
directly derived from the predicates for valid configurations and the compiler
consistency relation.

9.2. Correctness Statement for Expressions 187

To guide the reader to the important parts of the conditions we define them
in three steps. We start with an informal introduction of the most important
conditions, followed by an informal list of more technical requirements, and
finally we present the formal definition.

9.2.1 Precondition for Correct Execution of Expressions

We define the predicate exprpre which holds if all preconditions for the correct
execution of code for a given expression hold. The main requirements of the
predicate are (i) data consistency between c and d (this is only required if the
expression is not a literal), (ii) that c and d are valid configurations, (iii) that e
is a valid and translatable expression, (iv) that the evaluation of e does return
some value, (v) that the expression is a memory object if rf = false, and
(vi) that the expression is of elementary type and initialized if rf = true.

For literals we cannot assume data consistency because we use the code
generation for literals in intermediate steps of the execution of assignments for
aggregate literals (cf. Section 7.4.3 for the code generation and Section 10.6 for
the correctness proof). Initialization is mainly needed for the correctness of
division and modulo expressions where we need to know that the divisor is not
zero.

Additionally, we have the following technical requirements: that there are
enough free registers, that the global and the top most local symbol tables
are translatable, that there is sufficient memory, i.e., that all memory objects
are allocated below 232, that the maximum address addrmax is a valid 32-bit
number, that program counters and code range fulfill some basic requirements,
that the code for expression e is located at the address referenced by the program
counters, and that the destination register and the list of free registers are ok.

Definition 9.3 (Expression code: preconditions) Let gst = gst(c.mem)
and lst = lst top(c.mem) be the global and local symbol tables. Then, the
predicate for correct expression evaluation is formally defined as

¬is lit(e) −→ consisd(te, ft , c, alloc, d) confasm
√

(d)
c ∈ conf

√
(te, ft) e ∈ validexpr(te, gst , lst) e ∈ xltblexpr(te, ft , gst , lst)

rf −→ reval(te, c.mem, e) 6= None ¬rf −→ leval(te, c.mem, e) 6= None
enoughregs(te, gst , lst , rf , |fregs| , e) 2 · dasizest(gst , 0)e4 < 232

2 · dasizest(lst , 12)e4 < 232 availmem(addrmax, te, ft , c)
addrmax ≤ 232 ¬rf −→ mobj (te, gst , lst , e)

rf −→ elem?t(the(type(te, gst , lst , e))) rf −→ initialized(te, c.mem, e)
4 | d.dpc d.pcp = d.dpc + 4 d.dpc + 4 · (|codee|+ 1) < 232

fst(rangec) ≤ d.dpc d.dpc + 4 · |codee| ≤ snd(rangec)
snd(rangec) + 4 < 232 read instr(d.mm, d.dpc, |codee|) = codee

rd ∈ fregs ini distinct(fregs) ∧ ∀r ∈ fregs : fregs ∈ fregs ini rd /∈ fregs
exprpre (d, te, ft , c, alloc, e, codee, rf , rd, fregs, rangec, addrmax))

9.2.2 Postcondition for Correct Execution of Expressions

The definition of the postcondition for correct expression execution is much
simpler than the definition of the precondition. The predicate exprpos states
that (i) the result of the expression has been correctly computed, (ii) only free
registers have been changed, (iii) the memory has not been changed, (iv) the

188 Correct Compilation of Expressions

special purpose registers have not been changed, and, finally, (v) that the new
configuration is a valid assembly configuration.

Before we give a formal definition of exprpos we have to define what it means
that the result of expression evaluation is correct.

Definition 9.4 (Correct expression result) Let te be a type name environ-
ment, c a C0 configuration, and alloc an allocation function. Let furthermore e
be an expression and vasm :: Z a register content.

We define the predicate expr result

√
which tests whether the value of expres-

sion e in configuration c and the value vasm in the assembly machine match.
If e cannot be evaluated, we define the predicate to be true; this will later

slightly simplify our formulas and lemmas. Otherwise, let reval(te, c.mem, e) =
bvC0c be the C0 value of the expression and leval(te, c.mem, e) = bgc the
g-variable which represents its address.

expr result

√
:: tenv × conf C0 × (gvar 7→ (N×N))× expr ×B× Z 7→ B

For right expressions we require the assembly value to represent the value of the
expression; if the expression is not yet initialized, every assembly value is fine.

initialized(te, c.mem, e) −→ vmatchrval(alloc, vC0(0), vasm)
expr result

√
(te, c, alloc, e, true, vasm)

For left expressions we require the assembly value to contain the allocated
address of the g-variable which represents the address of the expression.

i2n(vasm) = fst(alloc(g))
expr result

√
(te, c, alloc, e, false, vasm)

Definition 9.5 (Expression code: postconditions) Now, we can formally
define the predicate exprpos which formalizes the five requirements on the
previous page.

expr result

√
(te, c, alloc, e, rf , d′.gpr !rd)

∀r /∈ ({rd, r1, r2, r3} ∪ fregs) : d.gpr !r = d′.gpr !r
d′.mm = d.mm d′.spr = d.spr confasm

√
(d′)

exprpos(d, d′, te, c, alloc, e, codee, rangec, a, t, rf , rd, fregs)

9.2.3 Compatibility

We present one of the lemmas which guarantee compatibility between the
predicates about the proper execution of expression code and the predicates
which are used for the statement correctness proofs in Chapter 10 (cf. the start
of Section 9.1).

Lemma 9.1 Let e be a valid, translatable, and correctly compiled expression,
let c be a valid C0 configuration, and (te, ft , gst) a translatable C0 program.
Additionally, let gst = gst(c.mem) and lst = lst top(c.mem) be abbreviations for
the global and local symbol tables. This implies, given that a lot of additional
technical requirements (which resemble essentially the predicates exprpre and

9.3. Correctness Theorem 189

asmpre) are fulfilled (cf. below), that the expression code can be executed accord-
ing to the definitions in Section 6.4.1 with a result that is correct according to
Definition 9.4.

codeexpr
√

(te, ft , c, rangec, addrmax, e, rf)
∧ e ∈ validexpr(te, gst , lst) ∧ e ∈ xltblexpr(te, ft , gst , lst)
∧ c ∈ conf

√
(te, ft) ∧ (te, ft , gst) ∈ xltblprog

∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ ¬is lit(e) −→ consisd(te, ft , c, alloc, d)
∧ enoughregs(te, gst , lst , rf , |fregs| , e)
∧ ¬rf −→ mobj (te, gst , lst , e)
∧ rf −→ (elem?t(the(type(te, gst , lst , e))) ∧ initialized(te, c.mem, e))
∧ fregs 6= [] ∧ distinct(fregs) ∧ ∀r ∈ fregs : fregs ∈ fregs ini

∧ rf −→ reval(te, c.mem, e) 6= None
∧ ¬rf −→ leval(te, c.mem, e) 6= None
∧ asmpre(d, rangec, codeexpr(te, gst , lst , rf , hd(fregs), tl(fregs), e))

=⇒ ∃t, d′ : d
t,d.dpc+4·csizee(e)−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r /∈ fregs ◦ [r1, r2, r3] : d′.gpr !r = d.gpr !r
∧expr result

√
(te, c, alloc, e, rf , d.gpr !(hd(fregs)))

Proof We omit the lengthy proof of this lemma as it mostly just discharges
all the technical preconditions of exprpre.

9.3 Correctness Theorem

Using the definitions from Section 9.2 we can state the correctness theorem for
expression evaluation in a compact way. Note however, that a lot of additional
conditions are hidden in the predicates exprpre and exprpos from the previous
section.

Theorem 9.2 (Correct compilation of expressions)
Let te be a type name environment, ft a function table, rangec a code range,
addrmax the maximum address in the address space, c a C0 configuration, and
e a C0 expression.

Then, e is correctly compiled by the C0 compiler for arbitrary right flags rf .
Formally the theorem states

∀rf : codeexpr
√

(te, ft , c, rangec, addrmax, e, rf)

Proof The correctness of the code generation algorithm for expressions has
been proved in Isabelle / HOL by induction on the expression’s structure.

In this thesis we will not give detailed proofs for the different induction
cases; instead, we highlight very briefly some interesting parts of the proof.
Detailed proof transcripts for some of the cases can be found in several bachelor
and master theses [Kre06, Pen06, Pen07]. q.e.d.

190 Correct Compilation of Expressions

We sketch some proof details which are not covered by the above theses:

• Hristo Pentchev presents in [Pen07] correctness proofs for signed multipli-
cation, division, and modulo. His proofs for signed multiplication relies on
the fact that (for C0) an assembly multiplication algorithm for unsigned
numbers can be reused for signed multiplication without change. To allow
this, the following lemma has been proved as part of this thesis.

Lemma 9.3 (Signed multiplication) Let a and b be natural numbers.
Then the signed multiplication of a and b interpreted as integers gives the
same result as first doing unsigned multiplication of a and b and then
interpreting the result as an integer.

0 ≤ a < 232 ∧ 0 ≤ b < 232

=⇒ n2i(a) · n2i(b) mods 231 = n2i(a · b modu 232)

• The correctness of the equality test for pointers requires some special
argument.

In C0, equality or inequality of pointers is tested by comparing the
embedded g-variables. However, the code generation for equality tests
uses directly the corresponding instructions seq and sne of the VAMP
processor (cf. Section 7.3.5). Thus, we have to show that equality of
the register values (i.e., the allocated base addresses of the pointers)
implies equality of the pointers on the C0 layer (i.e., both pointers are
null pointers or refer to the same g-variable). This sounds quite trivial,
but there are two hidden problems.

1. We have to show that no g-variable is allocated at address zero
because this would coincide with the register representation of null
pointers. However, this follows directly from the fact that g-variables
are allocated behind the code and that the program’s code is not
empty.

2. There exist indeed multiple valid g-variables which are allocated at
the same address on the target architecture. For example, let g be a
g-variable of type array. Then, g and gvararr(g, 0) are both allocated
at the same address. However, only g-variables of different types
may be allocated at the same address and, for type correct equality
tests in C0, we know that both sub expressions have to be of the
same type.

We have proved the following lemma to discharge these proof obligations.

Lemma 9.4 Let c be a C0 configuration, alloc an allocation function,
p1 :: gvar ∪{⊥} and p2 : gvar ∪{⊥} be C0 pointers, and r1 and r2 register
values. If c is a valid configuration and consistent with alloc, both p1

and p2 are reachable and of the same type, and p1 and p2 are proper
representations of r1 and r2, respectively, then we can show that equality

9.3. Correctness Theorem 191

of r1 and r2 is equivalent to equality of p1 and p2.

c ∈ conf
√

(te, ft)
∧ consisalloc(te, ft , c, alloc)
∧ p1 ∈ reachableptr(c.mem) ∧ p2 ∈ reachableptr(c.mem)
∧ vmatchptr(alloc, p1, r1) ∧ vmatchptr(alloc, p2, r2)
∧ (p1 6= ⊥ ∧ p2 6= ⊥ =⇒ tyg(sc(c.mem), p1) = tyg(sc(c.mem), p2))

∧ −231 ≤ r1 < 231 ∧ −231 ≤ r2 < 231

=⇒ (r1 = r2) ≡ (p1 = p2)

• The correctness of the code for unsigned comparison (cf. Definition 7.23
on page 141) is not obvious. A correctness proof is given in [Pen06].

Chapter 10

Correct Compilation of Statements

Contents
10.1 Control Consistency . 193

10.2 Auxiliary Lemmas for Data Consistency 199

10.3 Conditional . 208

10.4 Loop . 210

10.5 Assignment . 212

10.6 Assignment of Aggregate Literals 219

10.7 Allocation of Dynamic Memory 222

10.8 Function Calls . 229

10.9 Return . 237

In this Chapter we prove the correct compilation of statements. We start in
Section 10.1 with a theorem which allows us to pull out a large part of the control
consistency proof from the correctness proofs for individual statements. In the
remaining sections of this chapter, we prove theorems about the code generation
for the different C0 statements. These theorem are used in the induction step
of the main compiler correctness theorem (cf. the proof of Theorem 8.3 on
page 183). Observe that we do not argue about compilation of Skip and Comp
here because they are treated in a special way in the proof of Theorem 8.3.

10.1 Control Consistency

The code for control statements (conditionals and loops) is fragmented, i.e., it
is not generated in a single piece but interrupted by sub statements. Figure 10.1
demonstrates this for conditional statements. The code which is generated for
the conditional starts with code for the test expression followed by a branch.
Then follows the code for the first sub statement s, a jump instruction, and
finally the code for the second sub statement s′.

During the execution of such fragmented code we run into situations where
we have to execute code (the jump instruction in the example) but the C0
statements for which this code has been generated has already been removed
from the program rest.

193

194 Correct Compilation of Statements

code(e) b nop

code(s)

j nop

code(s′)

code(r)conditional

s,s′

Figure 10.1: Fragmented Generation for Control Statements

code(e′) b

code(e) b

code(s)

j

code(s′)

j code(r)loop

conditional

s,s′

Nop instructions are omitted in this figure

Figure 10.2: Fragmented Generation for Control Statements Cont.

We demonstrate this with the execution of the example code from Figure 10.1;
we assume that the condition evaluates to true. Initially, the program rest is
c0.prog = Ifte(e, s, s′); r and the program counter points to the start of code(e).
After one step of the C0 machine, the conditional statement has been executed
and the program rest is c1.prog = s; r; now, the program counter of the assembly
machine points to the start of code(s). Given that the execution of statement
s terminates, we eventually reach a C0 configuration where s has just been
completely executed and the program rest is ci.prog = r. When we just have
executed the last instruction of code(s) the program counter points to the
address of the jump instruction which has been generated for the conditional
statement.

This means that after the execution of the code of a certain statement, e.g.,
the last statement in the if-part, we may have to execute code pieces from
other statements (in this example: the conditional) before we reach a control
consistent state; i.e., before the program counter reaches the start of code(r).

Figure 10.2 shows a slightly more involved example, where two control
statements are nested. In this example we would have to execute two old jump
instructions to reach a control consistent state after the execution of code(s).
In the following, we will call such separated jump instructions control code. In
general, such structures can be arbitrarily deeply nested.

The remainder of this section is divided into two parts.
1. In Section 10.1.1, we prove the correctness of the control code, i.e., that if

the program counter points directly behind the last instruction of code(s)
for some statement s we will eventually reach an assembly configuration in
which the program counter points to the first instruction of the successor
statement of s and the memory has not been altered.

2. In Section 10.1.2, we use Theorem 5.16 on page 92 to show that the first
statement in s2lns(r) is the successor statement of the last statement in
s2lns(s). This allows us, together with the lemmas from 1, to show that
we eventually reach a control consistent state.

10.1. Control Consistency 195

Observe that this method does not work for Return statements because they
do not have a unique successor statement but are followed by the successor
statement of the corresponding function call statement. Thus, we need the
special consistency invariant about return addresses (cf. Definition 8.13 on
page 177).

10.1.1 Correctness of the Control Code

We split the correctness proof of the control code into several cases. The first
and simplest case is the control code behind the last statement in a while loop.

Lemma 10.1 (Correct control code: loops) Let (te, ft , gst) be a translat-
able C0 program, c a valid C0 configuration, d a valid assembly configuration,
rangec = (progbase, progbase + 4 · csizeprog(te, gst , ft)) the code range of the
program, and rangea = (progbase, addrmax) the address range. Furthermore, let
s be a statement which is the last statement in some loop body and let f be the
father statement of s. Finally, let the program counter of assembly configuration
d point behind the last instruction of code(s).

Then we will eventually reach an assembly configuration d′ in which the
program counter points to the code base of f and neither the memory nor the
special registers have changed.

c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog ∧ confasm
√

(d)

∧ is last loops (ft , s) ∧ parents(s, ft) = bfc ∧ consiscode(te, ft , c, d)
∧ d.dpc = the(cbases(te, gst , ft , s)) + 4 · the(csizes(te, gst , ft , s))
∧ d.pcp = d.dpc + 4

=⇒ ∃t, d′ : d
t,the(cbases(te,gst,ft,f))−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof We conclude from Definition 5.26 on page 88 that the parent statement
(and thus by Definition 5.33 also the successor statement) of s is a loop statement;
thus, let f = Loop(e, lb). From the code generation algorithm for statements we
can conclude that the code of statement s is followed by the jump instruction
which is generated at the end of code(f) (cf. Figure 7.7 on page 152). Thus,
we just have to show that the jump distance is correct. If we instantiate the
existential quantifiers with t = 2 and d′ = δ2

asm(d) we have

δ2
asm(d).dpc = d.pcp − 4 · (csizee(true, e) + csizes(lb) + 3)

= the(cbases(s)) + 4 · the(csizes(s)) + 4
− 4 · (csizee(true, e) + csizes(lb) + 3) (precondition)

= the(cbases(f)) (Lemma 7.1 and correctness of displ s)
q.e.d.

Lemma 10.2 (Correct control code: conditionals) Let c be a valid C0
configuration, (te, ft , gst) a translatable C0 program, d a valid assembly configu-
ration, rangec = (progbase, progbase + 4 · csizeprog(te, gst , ft)) the code range of

196 Correct Compilation of Statements

the program, and rangea = (progbase, addrmax) the address range. Furthermore,
let s be a statement which is the last statement either in the if or in the else
part of a conditional statement, let i ≤ cond lvl(s, ft) be natural number which is
not greater than the condition nesting level of s, and let f be the i-th father of
s. Finally, let the program counter of assembly configuration d point behind the
last instruction of code(s).

Then we will eventually reach an assembly configuration d′ in which the
program counter points behind the last instruction of code(f) and neither the
memory nor the special registers have changed.

c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog ∧ confasm
√

(d)

∧ is lastcond
s (ft , s) ∧ i ≤ cond lvl(s, ft) ∧ parent i

s(s, ft) = bfc
∧ consiscode(te, ft , c, d) ∧ d.pcp = d.dpc + 4
∧ d.dpc = the(cbases(te, gst , ft , s)) + 4 · the(csizes(te, gst , ft , s))

=⇒ ∃t, d′ : d
t,the(cbases(f))+4·the(csizes(f))−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof We prove this lemma by induction on i.
For the induction start there is nothing to prove because we have s = f by

the Definition 5.27 and simply instantiate t = 0 and d′ = d.
For the induction step – from i to i + 1 – we know that there exists a t′

and some intermediate configuration d′′ such that the program counter after t′

steps points behind the code of the i-th father f i = the(parent i
s(s, ft)). So it

just remains to show that the control code behind the i-th father is correct and
that the program counter points behind the code of the i + 1-th father f i+1.
We distinguish two cases.

Case 1: f i is the last statement in an else part: is lastelses (ft , f i)
This is the easy case: behind the last statement in the else part there
is no additional control code (at least not from the current conditional
statement). Thus, we can simply instantiate t = t′ and d′ = d′′.

Case 2: f i is the last statement in an if part: is last ifs (ft , f i)
In this case we have to prove – similar to the proof of Lemma 10.1 that the
jump instruction between the if and the else part is correct (cf. Figure 7.8
on page 152). If we instantiate the existential quantifiers with t = 2 and
d′ = δ2

asm(d′′) and assuming that the else part of the conditional statement
is s2 we have

δ2
asm(d′′).dpc = d′′.pcp + 4 · (the(csizes(s2)) + 1)

= the(cbases(f i)) + 4 · the(csizes(f i)) + 4
+ 4 · (the(csizes(s2)) + 1) (induction hypothesis)

= the(cbases(f i+1)) + 4 · the(csizes(f i+1))
(from code structure)

q.e.d.

10.1. Control Consistency 197

Corollary 10.3 (Correct control code: conditionals) The correctness of
the control code for conditionals can be extended to the condition senior of s by
using i = cond lvl(s, ft).

c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog ∧ confasm
√

(d)

∧ is lastcond
s (ft , s) ∧ cond sen(s, ft) = bsenc ∧ consiscode(te, ft , c, d)

∧ d.dpc = the(cbases(te, gst , ft , s)) + 4 · the(csizes(te, gst , ft , s))
∧ d.pcp = d.dpc + 4

=⇒ ∃t, d′ : d
t,the(cbases(sen))+4·the(csizes(s))−−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

We combine Lemma 10.1 and Corollary 10.3 into the following theorem.

Theorem 10.4 (Correct control code)
Let (te, ft , gst) be a translatable C0 program, c a valid C0 configuration, and d a
valid assembly configuration. Further denote by rangec = (progbase, progbase +
4 · csizeprog(te, gst , ft)) the code range of the program and its address range by
rangea = (progbase, addrmax). Furthermore, let s be a non-structural statement;
we assume that s is not a Return statement. Finally, let the program counter
of assembly configuration d point behind the last instruction of code(s).

Then, after a certain number t of assembly steps, we reach a configura-
tion where the program counter points to the first instruction of the successor
statement of s and neither the memory nor important registers have been altered.

c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog ∧ confasm
√

(d)
∧ ¬stmtstructural(s) ∧ ¬is Return(s) ∧ succ(s, ft) = bs′c
∧ consiscode(te, ft , c, d) ∧ d.pcp = d.dpc + 4
∧ d.dpc = the(cbases(te, gst , ft , s)) + 4 · the(csizes(te, gst , ft , s))

=⇒ ∃t, d′ : d
t,the(cbases(s

′))−−−−−−−−−−→
rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof We prove this theorem by case distinction.

Case 1: s is not a last statement: ¬is lasts(ft , s)
In this case the code for the successor statement of s is directly placed
behind the code of s. Thus, we simply instantiate t = 0 and d′ = d and
the proof is done.

Case 2: s is the last statement in a while body: is last loops (ft , s)
In this case we use Lemma 10.1 to obtain t and d′ for the instantiation.
From Definition 5.33 on page 91 we conclude that the successor of the last
statement in a loop is the loop statement itself. Thus, our instantiation is
correct and we are done with this case.

198 Correct Compilation of Statements

Case 3: s is the last statement in a conditional: is lastcond
s (ft , s)

This case is the most complicated one. Firstly, we have to use Corol-
lary 10.3 which argues about the correct ascent up to to the condition
senior sen of s. I.e., we know that there exists t such that the program
counter after t assembly steps points directly behind code(sen).

However, sen itself can be the last statement in a loop. In this case we
have to argue as in the previous case that we correctly reach the beginning
of the loop statement.

If sen is not a last statement in a loop we know by Definition 5.33 the
successor statement of s is the successor statement of the condition senior.
And because sen is not a last statement, the code of its successor is placed
directly behind code(sen) in the code. Thus, the program counter already
points to the code base of the successor statement s′. q.e.d.

10.1.2 Proof of Control Consistency

We combine Theorems 5.16 and 10.4 to the following theorem which allows to
conclude that after reaching a data consistent state directly behind the code
of a statement we will eventually reach a state which is completely consistent.
This lemma will be used in the following sections to conclude from the local
correctness of certain statements (i.e., that they correctly manipulate memory
and registers) to the global correctness including the correct execution of
potentially present control code.

Theorem 10.5 (Control consistency)
Let (te, ft , gst) be a translatable C0 program, c a valid C0 configuration, and d a
valid assembly configuration. Further, denote by rangec = (progbase, progbase +
4 · csizeprog(te, gst , ft)) the code range of the program and its address range by
rangea = (progbase, addrmax). Furthermore, let c′ be the next configuration
after one step of the C0 machine. Finally, let the first statement in the program
rest of c not be a Return statement which will be executed completely in a single
C0 step (i.e., not a loop with true condition, not a conditional with non-empty
branch, and not a function call statement) and let the program counter of
assembly configuration d point behind the code of that statement.

Then, – given that we have data and return address consistency between d
and c′ – after a certain number t of assembly steps we reach a configuration
which is completely consistent with c′.

c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog ∧ confasm
√

(d)
∧ consiscode(te, ft , c′, d) ∧ consisd(te, ft , c′, alloc, d) ∧ consisra(te, ft , c′, d)
∧ s2lns(c.prog) 6= [] ∧ δC0(te, ft , c) = bc′c ∧ s2lns(c′.prog) = tl(s2lns(c.prog))
∧ ¬is Return(hd(s2lns(c.prog))) ∧ d.pcp = d.dpc + 4
∧ d.dpc = the(cbases(hd(s2lns(c.prog)))) + 4 · the(csizes(hd(s2lns(c.prog))))

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

10.2. Auxiliary Lemmas for Data Consistency 199

Proof We prove this theorem by case distinction on the length of the old
program rest.

Case 1: |s2lns(c.prog)| = 0
In this case the precondition s2lns(c.prog) 6= [] is violated.

Case 2: |s2lns(c.prog)| = 1
In this case – which happens exactly when the C0 program has terminated –
the proof of control consistency is simple because we have s2lns(c′.prog) =
[] and thus there is nothing else to show (cf. Definition 8.14 on page 177).
We instantiate t = 0 and d′ = d and are done.

Case 3: |s2lns(c.prog)| ≥ 2
Here we use Theorem 10.4 with instantiation s′ = hd(s2lns(c′.prog)) to
show that we eventually reach the base of the code of the successor
statement. In order to discharge the last precondition of the lemma we
exploit that c.prog forms a valid program rest according to Definition 5.35
on page 92 and thus hd(s2lns(c′.prog)) is the valid successor statement.

Now, we just have to show that data consistency and return address
consistency are not destroyed by the control code. This holds because
the memory stays unchanged (data consistency) and because we do not
change the structure of Return statements in the program rest (return
address consistency). q.e.d.

10.2 Auxiliary Lemmas for Data Consistency

In this section we present several lemmas which will be used later in the
correctness proofs for the different C0 statements.

10.2.1 Basic Lemmas About Allocation Functions

We start with some basic properties of allocation functions. The proofs for most
of these lemmas are straightforward and will not be presented here.

Lemma 10.6 (Base address is multiple of four) Let c be a valid C0 con-
figuration which is allocation consistent with allocation function alloc. Then,
the first component of alloc(g) for any reachable g-variable g is a multiple of
four.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc) ∧ g ∈ reachableg(c.mem)
=⇒ 4 | fst(alloc(g))

Lemma 10.7 (Base address is behind the code region) Let c be a valid
C0 configuration which is allocation consistent with the allocation function alloc.
Then, the allocated base address of any reachable g-variable is behind the code
region.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc) ∧ g ∈ reachableg(c.mem)
=⇒ fst(alloc(g)) ≥ snd((progbase, progbase + 4 · csizeprog(te, gst(c.mem), ft)))

200 Correct Compilation of Statements

Lemma 10.8 (Allocation below maximum address) Let c be a valid C0
configuration which is data consistent with an assembly configuration d via
allocation function alloc. Further, assume that we have sufficient memory.
Then, any reachable g-variable is allocated completely below the maximum
address.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d)
∧ availmem(addrmax, te, ft , c) ∧ g ∈ reachableg(c.mem)
=⇒ fst(alloc(g)) + snd(alloc(g)) < addrmax

The two previous lemmas can be easily combined in the following way.

Lemma 10.9 (Allocation inside the address range) Let c be a valid C0
configuration which is data consistent with an assembly configuration d via
allocation function alloc. Further, assume that we have sufficient memory.
Then, any reachable g-variable is allocated completely in the address range.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d)
∧ availmem(addrmax, te, ft , c) ∧ g ∈ reachableg(c.mem)
=⇒ alloc(g) ⊆ (progbase, addrmax)

Lemma 10.10 (Allocation: no overlap with frame headers) Let c be a
valid and allocation consistent C0 configuration and let g be a reachable g-
variable. Then, the allocated memory region of g does not overlap with any
frame header.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ i < |c.mem.lm|
=⇒ alloc(g) � (abase lm(te, ft , sc(c.mem), i), 12)

Lemma 10.11 (Elementary sub g-variables do not overlap) Let c be a
valid C0 configuration which is allocation consistent with the allocation function
alloc. Further, let g and g′ be two reachable g-variables and assume that g is
an elementary g-variable which is not a sub g-variable of g′. Then, the allocated
range of g and g′ does not overlap.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ g′ ∈ reachableg(c.mem)
∧ elem?t(tyg(sc(c.mem), g)) ∧ g /∈ subg(g′)

=⇒ alloc(g) � alloc(g′)

Proof First, we conclude from g being an elementary g-variable that g′ is
not a sub g-variable of g. In principle, they could be equal, but this would
contradict with g /∈ subg(g′). The only interesting remaining case is that g and
g′ have a common ancestor; all other cases are trivial.

If g and g′ have a common ancestor let w.l.o.g. g be the ‘simpler’ one (i.e.,
the one with fewer recursive steps from its root g-variable). Then, we prove the
goal by induction on the structure of g. Eventually, we will reach the junction
where the ancestry of g and g′ split up. Here, it is easy to show that the
allocated ranges of the split sub trees do not overlap. q.e.d.

10.2. Auxiliary Lemmas for Data Consistency 201

Lemma 10.12 (G-variables do not overlap) Let c be a valid C0 configu-
ration which is allocation consistent with the allocation function alloc. Further,
let g and g′ be two reachable g-variables which have the same allocated size.
Then, the allocated range of g and g′ either does not overlap at all or is identical.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ g′ ∈ reachableg(c.mem)
∧ asizet(tyg(sc(c.mem), g)) = asizet(tyg(sc(c.mem), g′))

=⇒ alloc(g) � alloc(g′) ∨ alloc(g) = alloc(g′)

Proof If g ∈ subg(h) or h ∈ subg(g), i.e., one is a sub g-variable of the other, a
simple induction proof following the structure of the sub g-variable shows that
both g-variables have the same displacement. Observe that they do not need to
be equal: imagine the case that g ∈ subg(h) where h is a one-elementary array
and g is this one element. Obviously, g and h would be different but still would
have the same displacement.

If g and h are not sub g-variables the proof is trivial. q.e.d.

10.2.2 Consistency After Updating Memory

The statement correctness proofs in the following sections will often argue that
updating a g-variable g in the C0 machine and simultaneously updating the
memory of an assembly machine at the allocated base address of g with the
corresponding assembly value preserves data consistency. In this section we will
prove several lemmas which state this formally.

First, we show that value and pointer consistency are preserved by updates
of g-variables. Then, we extend this to return address, frame header, and
allocation consistency. Finally, we combine those results to the preservation of
data consistency.

Value and Pointer Consistency

We start this section with proofs about value and pointer consistency when
updating a given g-variable g.

First, we present a lemma which shows that value and pointer consistency
are preserved for sub g-variables of the updated g-variable g.

Lemma 10.13 (Updated g-variables: consistency inside) Let c be some
valid C0 configuration which is allocation consistent with the allocation function
alloc, gl a reachable g-variable, and g a sub g-variable of gl. Further, let
value v match the value stored at the allocated address of gl in an assembly
configuration d′ and be type correct with a given type t which matches the type
of gl. Finally, assume that updating gl with v is successful and gives a new C0
memory configuration m′.

Then, we know that – after the memory update – g is value and pointer
consistent with respect to the C0 memory m′, the allocation function alloc, and

202 Correct Compilation of Statements

the assembly configuration d′.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ gl ∈ reachableg(c.mem) ∧ g ∈ subg(gl)
∧memupd(c.mem, gl, v) = bm′c
∧ ty
√

(te, sc(c.mem), v, t, 0) ∧ tmatchass(tyg(sc(c.mem), gl), t)

∧ vmatchgvar(sc(c.mem), v, d′, alloc, gl, fst(alloc(gl)))
=⇒ consisg

v(m
′, alloc, d′, g) ∧ consisg

p(m
′, alloc, d′, g)

Proof We know from the definition of consisg
v and consisg

p that g is reachable –
and thus also valid – in memory m′ and of an elementary type; otherwise the
lemma is trivially true.

Finally, we have to show that the value v′C0 = valueg(m′, g)(0) of g in m′

matches the value v′asm = cell2int(d′.mm(fst(alloc(g)) ÷ 4)) which is stored
at the allocated base address of g in assembly machine d′. We can conclude
from the definition of vmatchgvar that the value vC0 = v[bag(sc(c.mem, gl) −
bag(sc(c.mem, g)] at the relative base address of g inside gl in the old memory
c.mem matches the value cell2int(d′.mm(fst(alloc(gl)) + displ rel(sc, gl, g)÷ 4))
at the allocated base address of gl plus the relative displacement of g inside gl

in the assembly configuration d′. Using allocation consistency we can show that
this address corresponds to the allocated base address of g. Thus, we know that
vC0 matches v′asm. Additionally, we can show from the semantics of memory
updates that vC0 equals the value v′C0 which we read from m′ at the address of
g. q.e.d.

Isabelle Observe that the preconditions tmatchass and ty
√

in the previous
and some of the following lemmas are merely needed for technical reasons: The
definition of vmatchrval (e.g., used inside vmatchgvar) makes a case distinction
based on the value of a memory cell (whether or not is Ptr(vC0)). In contrast,
the definition of consisg

v and consisg
p require a certain type of the g-variable.

Thus, to relate the value and types of the g-variables we have to know that
type correctness holds. However, we can easily discharge these additional
preconditions using, e.g., Theorem 5.14 on page 87.

Similar, to the previous lemma we now prove value and pointer consistency
for g-variables outside the updated memory region.

Lemma 10.14 (Updated g-variables: value consistency outside) Let c
be an allocation consistent valid C0 configuration, gl a reachable g-variable, v a
value which, again, is type correct with a matching type t, and m′ the updated
memory configuration. Now, in contrast to the previous lemma, g is not a sub
g-variable of gl and we require that g is value consistent with respect to c, alloc,
and assembly configuration d. Additionally, we require that the reachability of g
is not changed during the update and that between assembly configurations d
and d′ only that part of the memory has changed which is allocated to gl.

Then, we can show that g is value consistent with respect to C0 memory m′,

10.2. Auxiliary Lemmas for Data Consistency 203

allocation function alloc, and assembly configuration d′.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ gl ∈ reachableg(c.mem) ∧ g /∈ subg(gl)
∧ consisg

v(c.mem, alloc, d, g)
∧memupd(c.mem, gl, v) = bm′c
∧ (g ∈ reachableg(c.mem) = g ∈ reachableg(m′))
∧ tmatchass(tyg(sc(c.mem), gl), t)

∧memchngd(d.mm, d′.mm, fst(alloc(gl))÷ 4, snd(alloc(gl))÷ 4)
=⇒ consisg

v(m
′, alloc, d′, g)

Proof This lemma is quite simple to prove. Basically, we have to show that
neither in the C0 machine nor in the assembly machine the value of g is changed.
Additionally, we need to show that g was already initialized in the old configura-
tion c; otherwise, we could not use the precondition consisg

v(c.mem, alloc, d, g).
The second goal follows from the fact that memory updates of a g-variable gl

in the C0 machine do not affect whether g /∈ subg(gl) is initialized or not. The
first goal has two parts. The C0 value of g is constant because memory updates
of gl do only affect values of g-variables which overlap with gl. Because g is an
elementary g-variable it would only overlap with gl if g ∈ subg(gl) which does not
hold.1 The allocated memory regions of g and gl are distinct by Lemma 10.11.
Thus, the assembly value of g is constant because the last preconditions ensures
that only memory which is allocated to gl has been altered between d and
d′. q.e.d.

Corollary 10.15 The preceding lemma holds also for pointer consistency.

c ∈ conf
√

(te, ft) ∧ consisalloc(te, ft , c, alloc)
∧ gl ∈ reachableg(c.mem) ∧ g /∈ subg(gl)
∧ consisg

p(c.mem, alloc, d, g)

∧memupd(c.mem, gl, v) = bm′c
∧ (g ∈ reachableg(c.mem) = g ∈ reachableg(m′))
∧ tmatchass(tyg(sc(c.mem), gl), t)

∧memchngd(d.mm, d′.mm, fst(alloc(gl))÷ 4, snd(alloc(gl))÷ 4)
=⇒ consisg

p(m
′, alloc, d′, g)

Isabelle In Isabelle, we have proved several corollaries from the preceding
lemmas which shorten some of the formal correctness proofs about code genera-
tion for statements. However, we will not present them here because they are
quite trivial combinations and / or extensions and can be explained inline in
the informal proofs.

Now, we know that updating a g-variable with content consistent values
preserves value and pointer consistency. The next step will be to show that
the value of a g-variable g is content consistent with g if the corresponding

1Observe that a non-elementary g-variable g′ may overlap with gl even if g′ /∈ subg(gl),
namely if gl ∈ subg(g′).

204 Correct Compilation of Statements

C0 and assembly configurations are value, pointer, and allocation consistent
(cf. Lemma 10.16). Then, we will show in Corollary 10.17 that updating a
g-variable gl with the value of some other g-variable g both in the C0 and in
the assembly configuration preserves value and pointer consistency.

Lemma 10.16 (valueg provides matching values) Let c be an allocation
consistent valid C0 configuration which is value and pointer consistent with
an assembly configuration d. Additionally, let g be a reachable and initialized
g-variable. Then, the value of g in configuration c is content consistent with g
in configuration d, i.e., the value which is stored in d at the allocated address of
g matches the value of g in the C0 configuration.

c ∈ conf
√

(te, ft)
∧ consisv(c, alloc, d) ∧ consisp(c, alloc, d) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ initializedg(c.mem, g)
=⇒ vmatchgvar(sc(c.mem), valueg(c.mem, g), d, alloc, g, fst(alloc(g)))

Proof To prove content consistency we need to show for all elementary sub
g-variables g′ of g that their value at the proper offset in valueg(c.mem, g)
matches the value stored in d at address

a = fst(alloc(g)) + displ rel(sc(c.mem), g, g′).

In the remainder of this proof we will concentrate on non-pointer values; the
proof for pointers is done likewise.

Let in the following ofs = bag(sc(c.mem), g′) − bag(sc(c.mem), g) be the
offset of g′ inside of g. We instantiate the all quantifier in the definition of value
consistency with g′ and get

vmatch(valueg(c.mem, g′)(0), cell2int(d.mm(fst(alloc(g′))÷ 4)))
=vmatch(valueg(c.mem, g′)(0), cell2int(d.mm(a÷ 4)))

(by correctness of displ rel)

=vmatch(valueg(c.mem, g)(ofs), cell2int(d.mm(a÷ 4)))
(by definition of ofs)

=vmatchrval(alloc, valueg(c.mem, g)(ofs), cell2int(d.mm(a÷ 4)))
(by Def. 8.8)

q.e.d.

Corollary 10.17 (Memory updates: value consistency) Let c be an al-
location consistent valid C0 configuration which is value and pointer consis-
tent with an assembly configuration d. Further, let gl and gr be two reach-
able g-variables whose types match and let m′ be the C0 memory config-
uration after a successful update of gl with the value of gr. Finally, let
vasm = readdata(d.mm, fst(alloc(gr)) ÷ 4, snd(alloc(gr)) ÷ 4) be the value of
gr in the old assembly configuration and let d′ be the new assembly configuration
after updating the allocated memory region of gl with vasm. Then, the C0
configuration c′ = c[mem := m′] after the update and the assembly configuration

10.2. Auxiliary Lemmas for Data Consistency 205

d′ are value and pointer consistent.

c ∈ conf
√

(te, ft)
∧ consisv(c, alloc, d) ∧ consisp(c, alloc, d) ∧ consisalloc(te, ft , c, alloc)
∧ gl ∈ reachableg(c.mem) ∧ gr ∈ reachableg(c.mem)
∧memupd(c.mem, gl, valueg(c.mem, gr)) = bm′c
∧ tmatchass(tyg(sc(c.mem), gl), tyg(sc(c.mem), gr))

∧ d′.mm = d.mm ([fst(alloc(gl))÷ 4, snd(alloc(gr))÷ 4] := vasm)
=⇒ consisv(c′, alloc, d′) ∧ consisp(c′, alloc, d′)

Proof We prove this fact by a combination of the previous lemmas and
corollaries.

We have to show for all elementary g-variables g′ in c′ that they are value
and pointer consistent. From Lemma 10.16 we know that valueg(c.mem, gr) is
content consistent with gr in the old C0 configuration. If g′ is a sub g-variable
of gl this fact allows us to use Lemma 10.13. Otherwise, if g′ is not a sub
g-variable of gl we use Lemma 10.14 and Corollary 10.15 to show value and
pointer consistency. q.e.d.

Return Address and Frame Header Consistency

In this paragraph we will present two lemmas which state that neither return
address nor frame header consistency are destroyed by updates of g-variables in
an assembly machine.

Lemma 10.18 (Memory updates: frame header consistency) Let c be
an allocation consistent valid C0 configuration which is frame header consistent
with assembly configuration d. Updating the allocated memory region of a
reachable g-variable g will not destroy frame header consistency.

c ∈ conf
√

(te, ft)
∧ consis fh(te, ft , c, alloc, d) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ 4 · |vl| = snd(alloc(g))
∧ d′.mm = d.mm ([fst(alloc(g)÷ 4, |vl|] := vl)
=⇒ consis fh(te, ft , c, alloc, d′)

Proof The main idea of this proof is that – if allocation consistency is given –
the allocated memory regions of reachable g-variables and frame headers do not
overlap (cf. Lemma 10.10). Thus, updating the allocated memory regions of
reachable g-variables does no harm and it is easy to show that frame header
consistency is preserved. q.e.d.

Lemma 10.19 (Memory update: return address consistency) Let c be
an allocation consistent valid C0 configuration which is return address consistent
with assembly configuration d. Updating the allocated memory region of a

206 Correct Compilation of Statements

reachable g-variable g will not destroy return address consistency.

c ∈ conf
√

(te, ft)
∧ consisra(te, ft , c, d) ∧ consisalloc(te, ft , c, alloc)
∧ g ∈ reachableg(c.mem) ∧ 4 · |vl| = snd(alloc(g))
∧ d′.mm = d.mm ([fst(alloc(g)÷ 4, |vl|] := vl)
=⇒ consisra(te, ft , c, d′)

Proof As long as the program rest and the return addresses of the C0 machine
are not changed return address consistency only depends on the return addressees
in the frame headers of the assembly machine. Thus, the proof of this lemma
follows the same arguments as the proof of Lemma 10.18. q.e.d.

Allocation Consistency

In this paragraph we will show that allocation consistency is preserved while
updating g-variables. These lemmas are simpler than those in the previous
paragraphs since allocation consistency does not argue about assembly config-
urations but only about the relationship between a C0 configuration and an
allocation function.

Lemma 10.20 (Memory update: heap allocation consistency) Let c be
a valid C0 configuration which is heap allocation consistent with an allocation
function alloc. Furthermore, let gl be a valid g-variable and let m′ be the C0
memory configuration after a successful update of gl with value v which is type
correct with respect to a type t which matches the type of gl. Finally, we require
that all pointers in v point to reachable g-variables. Then, we can show that the
new configuration c[mem := m′] is also heap allocation consistent with alloc.

c ∈ conf
√

(te, ft) ∧ consisheap
alloc(te, ft , c, alloc)

∧ gl ∈ gvars
√

(sc(c.mem)) ∧memupd(c.mem, gl, v) = bm′c
∧ tmatchass(tyg(sc(c.mem), gl), t) ∧ ty

√
(te, sc(c.mem), v, t, 0)

∧ ∀i < sizet(t) : reachablemcell(c.mem, v(i))

=⇒ consisheap
alloc(te, ft , c[mem := m′], alloc)

Proof The first conjunct in the definition of consisheap
alloc does not depend on

the whole memory configuration but only on symbol configuration and recursion
depth which are not affected by memory updates.

The same holds for the second conjunct because the set of valid heap
g-variables is also not affected by memory updates.

Finally, for the third conjunct only the last part is of interest. There, we
have to show that the allocated memory region of two reachable heap g-variables
which do not have the same root g-variable does not overlap. Using Theorem 8.2
on page 172 we can show that both g-variables must have been reachable in
the old configuration as well. Thus, this goal follows from the precondition
consisheap

alloc(te, ft , c, alloc). q.e.d.

Lemma 10.21 (Memory update: named allocation consistency) Let c
be a C0 configuration which is named allocation consistent with the allocation

10.2. Auxiliary Lemmas for Data Consistency 207

function alloc. Updating the memory of c preserves named allocation consis-
tency.

consisnamed
alloc (te, ft , c, alloc) ∧memupd(c.mem, gl, v) = bm′c

=⇒ consisnamed
alloc (te, ft , c[mem := m′], alloc)

Proof This lemma follows directly from Definition 8.15 on page 178: named
allocation consistency does only depend on the symbol configuration which is
not altered by memory updates. q.e.d.

Data Consistency

In this paragraph we will combine the lemmas from the previous sections into
theorems which ensure that data consistency is preserved by memory updates.

Theorem 10.22 (Updating memory preserves data consistency)
Let c be a valid C0 configuration which is data consistent with assembly con-
figuration d via allocation function alloc. Furthermore, let gl be a reachable
g-variable and let m′ be the C0 memory configuration after a successful update
of gl with value v which is type correct with respect to a type t which matches
the type of gl. Finally, let v be content consistent with gl in assembly configura-
tion d′ which differs from d only in the allocated memory region of gl and in
non-special registers.

Then, the updated C0 configuration is data consistent with d′ via alloc.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d)
∧ gl ∈ reachableg(c.mem) ∧memupd(c.mem, gl, v) = bm′c
∧ ty
√

(te, sc(c.mem), v, t, 0) ∧ tmatchass(tyg(sc(c.mem), gl), t)

∧ ∀i < sizet(t) : reachablemcell(c.mem, v(i))
∧ ∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r
∧memchngd(d.mm, d′.mm, fst(alloc(gl))÷ 4, snd(alloc(gl))÷ 4)
∧ vmatchgvar(sc(c.mem), v, d′, alloc, gl, fst(alloc(gl)))
=⇒ consisd(te, ft , c[mem := m′], alloc, d′)

Proof To prove this theorem we first unpack the definition of data consistency
and then apply the previous Lemmas 10.13, 10.14, 10.15, 10.18, 10.20, and 10.21.

For some of these lemmas we need to know that a g-variable g which is
reachable in c[mem := m′] has also been reachable in c; we prove this using
Theorem 8.2.

The only remaining sub goal is to show that register consistency is preserved.
This is easy to show because (except for the reachability aspect from the previous
paragraph) register consistency only uses the symbol configuration which has
not been changed by the memory update. q.e.d.

Corollary 10.23 Let c be a valid C0 configuration which is data consistent
with assembly configuration d via allocation function alloc. Furthermore, let
gl and gr be reachable g-variables with matching types and let m′ be the C0
memory configuration after a successful update of gl with the value of gr in
the old C0 configuration. Finally, let d′ be a new assembly configuration
which is updated in the memory region allocated to gl with the value vasm =

208 Correct Compilation of Statements

readdata(d.mm, fst(alloc(gr))÷ 4, snd(alloc(gr))÷ 4) of gr in the old assembly
configuration.

Then, the new C0 configuration c[mem := m′] is data consistent with d′ via
alloc.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d)
∧ gl ∈ reachableg(c.mem) ∧ gr ∈ reachableg(c.mem)
∧memupd(c.mem, gl, valueg(c.mem, gr)) = bm′c
∧ tmatchass(tyg(sc(c.mem), gl), tyg(sc(c.mem), gr))

∧ d′.mm = d.mm ([fst(alloc(gl)÷ 4, snd(alloc(gr))] := vasm)
=⇒ consisd(te, ft , c[mem := m′], alloc, d′)

Proof We prove this corollary using Theorem 10.22. The only difficulty is
that we have to discharge the last precondition

vmatchgvar(sc(c.mem), valueg(c.mem, gr), d′, alloc, gl, fst(alloc(gl))).

From Lemma 10.16 we can conclude

vmatchgvar(sc(c.mem), valueg(c.mem, gr), d, alloc, gr, fst(alloc(gr))).

So, looking into the definition of vmatchgvar, it remains to show that the
allocated region of gl in d′.mm contains the same values as the allocated region
of gr in the old assembly memory d.mm. This is trivially true by the precondition
on d′.mm. q.e.d.

10.3 Conditional

For the correctness proofs of the different C0 statements we usually argue
in two levels. At the lower level we argue that the generated assembly code
manipulates memory and registers in a certain way. These proofs use the
verification methodology from Section 6.4. We will mostly omit these proofs
here and just mention the statement of the corresponding lemmas. At the upper
level we then show that the low-level behavior of the assembly code achieves
consistency.

In this section we will exemplarily present the statements of the low-level
lemmas in details. Later, we will handle these as briefly as possible. Even in
this section, we will omit the proofs of the low-level lemmas. In the following
sections we will mostly just summarize these kind of lemmas in the proofs of
the top-level lemmas.

Lemma 10.24 (Conditionals low-level: true case) Let the C0 configura-
tion c and the assembly configuration d be consistent with respect to the allocation
function alloc. Furthermore, let the first statement in the program rest of c be
a conditional statement and let the value of its condition e be true.

Then, given that some low-level preconditions hold, we will eventually reach
an assembly configuration d′ in which the program counter points behind the
code of the first nop instruction, i.e., to the start of the code for the if-part
(cf. Figure 7.8 on page 152 which illustrates the code generation for conditional

10.3. Conditional 209

statements). Formally, this is stated by the following formula.

consis(te, ft , c, alloc, d) ∧ c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog
∧ hd(s2l(c.prog)) = Ifte(e, s1, s2) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(hd(s2l(c.prog))))
∧ reval(te,mc, e)(0) = Bool(true)

=⇒ ∃t, d′ : d
t,the(cbases(hd(s2l(c.prog))))+4·csizee(e)+8−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Lemma 10.25 (Conditionals low-level: false case) Let the C0 configura-
tion c and the assembly configuration d be consistent with respect to the allocation
function alloc, let the first statement in the program rest of c be a conditional,
and let the value of condition e be false.

Then, given that some low-level preconditions hold, we will eventually reach
an assembly configuration d′ in which the program counter points behind the
code of the second nop instruction, i.e., to the start of the code for the else-part
(cf. Figure 7.8 on page 152).

consis(te, ft , c, alloc, d) ∧ c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog
∧ hd(s2l(c.prog)) = Ifte(e, s1, s2) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(hd(s2l(c.prog))))
∧ reval(te,mc, e)(0) = Bool(false)

=⇒ ∃t, d′ : d
t,the(cbases(hd(s2l(c.prog))))+4·csizee(e)+8+4·the(csizes(s1))+8−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Theorem 10.26 (Correctness of conditionals)
Let (te, ft , gst) be a translatable C0 program, and let the valid C0 configuration c
and the valid assembly configuration d be consistent with respect to the allocation
function alloc. Let the head of the current program rest s = hd(s2l(c.prog)) be
a conditional statement. Furthermore, assume that there is sufficient memory
and that the preconditions for the execution of codestmt(s) are fulfilled.

Then, we will eventually reach an assembly configuration d′ which is consis-

210 Correct Compilation of Statements

tent with the next C0 configuration c′.

consis(te, ft , c, alloc, d) ∧ c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog
∧ is Ifte(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(s))

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

Proof We prove this theorem by case distinction on the value of e. For
both cases, the only interesting proof goal is to show control consistency; data
consistency is preserved because neither the C0 machine nor the assembly
machine alter their memory.

Case 1: reval (te, mc, e)(0) = Bool (true)
In this case we use Lemma 10.24 to show that eventually the program
counter points behind the first nop instruction (cf. Figure 7.8 on page 152).

If the if branch of s is not empty we are mostly done; we just have to
show that the code for the first statement in this branch starts directly
behind the first nop instruction.

If the if branch is empty we first show that the jump instruction behind
the if branch works correctly, i.e., that the program counter eventually
points directly behind the code of s. Then, we use Theorem 10.5 to derive
control consistency.

Case 2: reval (te, mc, e)(0) = Bool (false)
In this case we use Lemma 10.25 to show that eventually the program
counter points behind the second nop instruction (cf. Figure 7.8 on
page 152).

If the else branch is not empty we are mostly done; the arguments are
similar to the corresponding case of the if branch.

If the else branch is empty we apply Theorem 10.5 to show that we
eventually reach the code base of the successor statement and can derive
control consistency. q.e.d.

10.4 Loop

Similar to the previous section we divide the correctness proof for Loop state-
ments into two levels. Two lemmas argue about the low-level correctness of
the code in case that the condition is true or false, respectively. The top-level
theorem then combines this into a statement that the code for loops preserves
the simulation relation.

Lemma 10.27 (Loops low-level: true case) Assume that the C0 configu-
ration c and the assembly configuration d are consistent with respect to the

10.4. Loop 211

allocation function alloc. Further, let the first statement in the program rest of
c be a loop Loop(e, lb), and let the value of the loop condition e be true.

Then, given that some low-level preconditions hold, we will eventually reach
an assembly configuration d′ in which the program counter points to the first
instruction of the loop body:

∃d′, t : d
t,the(cbases(hd(s2lns(lb))))−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Lemma 10.28 (Loops low-level: false case) With the same preconditions
as in the previous lemma except that the value of the loop condition e is false we
will eventually reach an assembly configuration d′ in which the program counter
points directly behind the code of the loop.

∃d′, t : d
t,the(cbases(hd(s2lns(lb))))+4·csizes(Loop(e,lb))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Theorem 10.29 (Correctness of loops)
Let (te, ft , gst) be a translatable C0 program, and let the valid C0 configuration c
and the valid assembly configuration d be consistent with respect to the allocation
function alloc. Let the head of the current program rest s = hd(s2l(c.prog)) be
a loop statement. Furthermore, assume that there is sufficient memory and that
the preconditions for the execution of codestmt(s) are fulfilled.

Then, we will eventually reach an assembly configuration d′ which is consis-
tent with the next C0 configuration c′.

consis(te, ft , c, alloc, d) ∧ c ∈ conf
√

(te, ft) ∧ (te, ft , gst) ∈ xltblprog
∧ is Loop(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(s))

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

Proof We prove this theorem by case distinction on the value of e. For all cases,
the only interesting proof goal is to show control consistency; data consistency
is preserved because neither the C0 machine nor the assembly machine alter
their memory.

Case 1: reval (te, mc, e)(0) = Bool (true)
In this case we use Lemma 10.27 to show that eventually the program
counter points to the beginning of the code of the first statement in the
loop body. From the definition of the C0 transition function we know
that hd(s2lns(c′.prog)) = hd(s2lns(lb)). Thus, we have control consistency
between c′ and d′.

212 Correct Compilation of Statements

Case 2: reval (te, mc, e)(0) = Bool (false)
In this case we use Lemma 10.28 to show that eventually the program
counter points directly behind the code of the loop. Then, we apply
Theorem 10.5 to show that we eventually reach the code base of the
successor statement of the loop. This proves control consistency between
c′ and d′. q.e.d.

10.5 Assignment

The low-level correctness proofs for assignments are split into two groups. In
Section 10.5.1 we handle assignments of basic values which fit into processor
registers. In Section 10.5.2 we argue about the correct assignment of larger
values. Finally, in Section 10.5.3 we combine both results to the high-level
correctness of assignments.

Isabelle In Isabelle, normal assignments (Ass) and assignments of aggregate
literals (AssAL) share the same constructor. There, the correctness proof for
assignments is split into three parts and there exists only a single top-level
theorem for all three kinds of assignments. Here, we present the correctness
proof about assignments of aggregate literals separately in Section 10.6.

10.5.1 Low-Level: Assigning Basic Values

Lemma 10.30 (Correct storage of basic values) Let rd and rs be regis-
ters different from r1 and let i2n(d.gpr !rd) + ofs be a valid destination address,
e.g., it must be inside the address range but not inside the code range. Further,
assume that the preconditions for the execution of codestore(n, rd, rs, ofs) hold
in configuration d.

Then, we will eventually reach an assembly configuration d′ in which the
value of register rs has been written to the memory at address i2n(d.gpr !rd)+ofs.

asmpre(d, rangec, codestore(n, rd, rs, ofs))
∧ rd 6= r1 ∧ rs 6= r1

∧ i2n(d.gpr !rd) + ofs < 232 ∧ 4 | i2n(d.gpr !rd) + ofs
∧ (i2n(d.gpr !rd) + ofs, 4) ⊆ rangea ∧ i2n(d.gpr !rd) + ofs /∈ rangec

∧ 4 | fst(rangec) ∧ 4 | snd(rangec) ∧ 0 ≤ ofs < 232

=⇒ ∃t, d′ : d
t,d.dpc+4·|codestore(n,rd,rs,ofs)|−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm [(i2n(d.gpr !rd) + ofs)÷ 4 := int2cell(d.gpr !rs)]
∧d′.spr = d.spr
∧∀r /∈ {r1} : d′.gpr !r = d.gpr !r

10.5.2 Low-Level: Big Assignments

The code template for big assignments (cf. Figure 10.1) contains a loop which
slightly complicates the low-level verification. In Isabelle, the proof is partitioned
into several lemmas. Here, we just give a brief overview on these lemmas; only
for the last lemma we will additionally present a formal statement.

10.5. Assignment 213

1. big assignment code aux loop correct common
This lemma argues about the effect of the loop body (the highlighted part
in Figure 10.1). It proves that a single word has been copied and that the
destination register rd and the auxiliary register r1 have been updated
correctly.

2. big assignment code aux loop correct1
This lemma argues about one execution of the loop (all instructions except
the initial addi) in case that the branch will not be taken, i.e., when we
have i2n(d.gpr !r1) = 4. In this case only a single word has to be copied
and we will eventually reach a configuration d′ where the program counter
points behind codecpy(rd, rs, n, 0), the correct word has been updated in
the memory, and only registers in {r1, r2, rd, rs} have been changed.

3. big assignment code aux loop correct2
This lemma argues about one execution of the loop in case that the
branch will be taken, i.e., i2n(d.gpr !r1) > 4. In this case we show that
we eventually reach a configuration d′ where the program counter points
to the load instruction at offset 4, the correct word has been updated in
the memory, the destination register rd has been incremented by 4, the
destination and source registers rd and rs have both been incremented
by 4, the auxiliary register r1 has been decremented by 4, and no other
registers except r2 have been altered.

4. big assignment code aux loop correct
This lemma proves the overall correctness of the loop by induction on the
number i of words which have to be copied (assuming i2n(d.gpr !r1) = 4 · i
and i > 0). Depending on the value of i2n(d.gpr !r1) we use the previous
two lemmas to verify the induction step. We prove, that we eventually
reach a configuration where the program counter points directly behind
the code template and i word have been copied from and to the right
addresses.

5. big assignment code aux correct
This lemma adds the initial add instruction to the correctness proof.

6. big assignment code correct
Finally, this lemma adds the correctness of the offset computation (cf.
Definition 7.28 on page 150). Below, we present this lemma in more detail.

Lemma 10.31 (Correct copying of memory regions) Let n be the num-
ber of bytes to be copied (a multiple of four), let rd and rs be proper destination
and source registers, and let i2n(d.gpr !rs) and i2n(d.gpr !rd) + ofs be valid2

source and destination addresses, respectively. Further, assume that the precon-
ditions for the execution of codecpy(rd, rs, n, ofs) hold in configuration d.

Finally, we require that either the source and destination regions do not
overlap at all or that they are exactly identical.3

2i.e., properly aligned, inside the address range, etc.
3We need this requirement to show that no parts of the source region which have not yet

been copied are being overwritten. Strictly speaking, it would be sufficient to require that
the start address of the destination region is not greater than the start of the source region
or that it is greater than the last address of the source region ((i2n(d.gpr !rd) + ofs)÷ 4 ≤

214 Correct Compilation of Statements

0 addi(r1, r0, n)
4 lw(r2, rs, 0)
8 sw(r2, rd, 0)

12 subi(r1, r1, 4)
16 addi(rd, rd, 4)
20 bnez (r1,−20)
24 addi(rs, rs, 4)

Listing 10.1: Code for Copying Memory Regions: code loop
cpy (rd, rs, n)

Then, we will eventually reach an assembly configuration d′ in which the
content data = readdata(d.mm, i2n(d.gpr !rs)÷ 4, n÷ 4) of the source memory
region has been copied to the destination region ((i2n(d.gpr !rd)+ofs)÷4, n÷4).

asmpre(d, rangec, codecpy(rd, rs, n, ofs))

∧ 3 < rd < 32 ∧ rs ∈ fregs ini ∧ rs 6= rd ∧ 0 ≤ ofs < 232

∧ 4 | i2n(d.gpr !rd) + ofs ∧ 4 | i2n(d.gpr !rs) ∧ 4 |n ∧ 4 ≤ n < 215

∧ (i2n(d.gpr !rd) + ofs, n) ⊆ rangea ∧ (i2n(d.gpr !rs), n) ⊆ rangea

∧ i2n(d.gpr !rs) + n < 232 ∧ i2n(d.gpr !rd) + ofs + n < 232

∧
(

(i2n(d.gpr !rd) + ofs, n) � (i2n(d.gpr !rs), n)
∨ i2n(d.gpr !rd) + ofs = i2n(d.gpr !rs))

)
∧ 4 | fst(rangec) ∧ 4 | snd(rangec) ∧ 4 < snd(rangec) ≤ i2n(d.gpr !rd) + ofs

=⇒ ∃t, d′ : d
t,d.dpc+|codecpy(rd,rs,n,ofs)|−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧d′.mm = d.mm ([(i2n(d.gpr !rd) + ofs)÷ 4, n÷ 4] := data)
∧d′.spr = d.spr
∧∀r /∈ {r1, r2, r3, rd, rs} : d′.gpr !r = d.gpr !r
∧(ofs 6= 0 −→ d′.gpr !rd = d.gpr !rd)

10.5.3 High-Level Correctness

The high-level correctness proof for assignments is divided into four parts.

1. In Lemmas 10.32 and 10.33 we show that – given a lot of technical
preconditions – the assignment code from Definition 7.29 on page 150
preserves allocation, value, and pointer consistency. We have split this
into two lemmas here: one about elementary assignments and one about
big assignments. In Isabelle both lemmas are merged into a single one.
These lemmas are independent from assignment statements. We will later
reuse them in the correctness proofs for function calls and returns.

2. In Lemma 10.34, we specialize the previous lemmas to prove that, starting
from data consistent configurations, the execution of the assignment code

i2n(d.gpr !rs)÷ 4 ∨ i2n(d.gpr !rs)÷ 4 + n÷ 4 < (i2n(d.gpr !rd) + ofs)÷ 4). However, for big
assignments of C0 programs we can show the stronger assumption from the lemma.

10.5. Assignment 215

(without the code for expression evaluation) eventually reaches an assembly
configuration which is data consistent with the next C0 configuration and
in which return addresses have not been messed up. In this lemma we
assume the expression evaluation to be done correctly.

3. In Lemma 10.35, we combine this lemma with the correct evaluation of
the left and right expression of the assignment.

4. In Theorem 10.36, we add a proof for control consistency.

We start with a general lemma about the high-level correctness of the
assignment code codeass for the case of elementary assignments. This lemma is
general because it is not fixed to assignment statements but will be reused in
the proofs for function call and return statements.

Lemma 10.32 (Correct assignment code: elementary values) Let c be
a valid C0 configuration which is value, pointer, and allocation consistent with
assembly configuration d via the allocation function alloc and assume that the
preconditions for the execution of the assignment code are fulfilled. Moreover,
assume that source register rs and destination register rd are valid, that the C0
value v matches the content of rs, and that rd plus an offset ofs is the allocated
address of a reachable elementary g-variable gl with a type t. Finally, let the
content of v be type correct with respect to t and contain only reachable pointers.

Then, the assembly machine will eventually reach a configuration d′ in which
the the allocated address of gl has been updated with the content of rs, where the
program counter points directly behind the assignment code, and which is value,
pointer, and allocation consistent with the new configuration where a memory
update of gl with value v has happened. Furthermore, only auxiliary registers
and rs and (if ofs = 0) rd have been changed.

c ∈ conf
√

(te, ft) ∧memupd(c.mem, gl, v) = bm′c
∧ consisv(c, alloc, d) ∧ consisp(c, alloc, d) ∧ consisalloc(te, ft , c, alloc)
∧ asmpre(d, rangec, codeass(false, rd, rs, asizet(t), ofs))
∧ rs ∈ fregs ini

∧ (ofs = 0 −→ rd ∈ fregs ini ∪ {r3}) ∧ (ofs 6= 0 −→ 3 < rd < 32)
∧ tmatchass(tyg(sc(c.mem), gl), t) ∧ vmatchrval(alloc, v, d.gpr !rs)

∧ gl ∈ reachableg(c.mem) ∧ (fst(alloc(gl)), asizet(t)) ⊆ rangea

∧ i2nd.gpr !rd + ofs = fst(alloc(gl))
∧ ty
√

(te, sc(c.mem), v, t, 0) ∧ ∀i < sizet(t) : reachablemcell(c.mem, v(i))

∧ 4 | d.dpc ∧ fst(alloc(gl)) < 232 ∧ 0 ≤ ofs < 232

=⇒ ∃t, d′ : d
t,d.dpc+4·|codeass|−−−−−−−−−−−−→

rangec,rangea

d′

∧consisv(c[mem := m′], alloc, d′)
∧consisp(c[mem := m′], alloc, d′)
∧consisalloc(te, ft , c[mem := m′], alloc)
∧memchngd(d.mm, d′.mm, fst(alloc(gl))÷ 4, snd(alloc(gl))÷ 4)
∧d′.spr = d.spr
∧∀r /∈ {r1, r2, r3, rd, rs} : d′.gpr !r = d.gpr !r
∧ofs 6= 0 −→ d′.gpr !rd = d.gpr !rd

216 Correct Compilation of Statements

Proof To prove this lemma we have to apply the low-level Lemma 10.30.
For this, we have to discharge numerous preconditions. After applying the
low-level assignment lemmas, we know that the correct memory region of the
assembly machine has been updated with the correct value without messing up
the registers.

To prove value and pointer consistency we use Lemmas 10.13, 10.14, and
Corollary 10.15. This proves that all elementary g-variables (inside and outside
of the updated region) are value and pointer consistent after the update.

Finally, we have to show that only the correct part of the assembly memory
and only the right registers have been altered. This follows directly from the
low-level correctness. q.e.d.

The next lemma is similar to the previous one except that it argues about
big assignments.

Lemma 10.33 (Correct assignment code: big values) Assume the same
preconditions as in Lemma 10.32 with the exception that the value to be copied
is not elementary. Thus, rs does not contain the value but the allocated address
of a g-variable gr whose content will be copied.

Then, the assembly machine will eventually reach a configuration d′ in
which the the allocated address of gl has been updated with the content at the
allocated address of gr, where the program counter points directly behind the
assignment code, and which is value, pointer, and allocation consistent with
the new configuration where a memory update of gl with value of g-variable
gr. Furthermore, only auxiliary registers and rs and (if ofs = 0) rd have been
changed.

c ∈ conf
√

(te, ft) ∧memupd(c.mem, gl, v) = bm′c
∧ consisv(c, alloc, d) ∧ consisp(c, alloc, d) ∧ consisalloc(te, ft , c, alloc)
∧ asmpre(d, rangec, codeass(true, rd, rs, asizet(t), ofs))
∧ rs ∈ fregs ini

∧ (ofs = 0 −→ rd ∈ fregs ini ∪ {r3}) ∧ (ofs 6= 0 −→ 3 < rd < 32)
∧ tmatchass(tyg(sc(c.mem), gl), t)

∧ gl ∈ reachableg(c.mem) ∧ (fst(alloc(gl)), asizet(t)) ⊆ rangea

∧ gr ∈ reachableg(c.mem) ∧ (fst(alloc(gr)), asizet(t)) ⊆ rangea

∧ i2nd.gpr !rd + ofs = fst(alloc(gl)) ∧ i2nd.gpr !rs = fst(alloc(gr))

∧ 4 | d.dpc ∧ fst(alloc(gl)) + asizet(t) < 232 ∧ fst(alloc(gr)) + asizet(t) < 232

∧ 0 ≤ ofs < 232 ∧ −215 ≤ asizet(t) < 215 ∧ rd 6= rs

∧ v = valueg(c.mem, gr) ∧ initializedg(c.mem, gr)

=⇒ ∃t, d′ : d
t,d.dpc+4·|codeass|−−−−−−−−−−−−→

rangec,rangea

d′

∧consisv(c[mem := m′], alloc, d′)
∧consisp(c[mem := m′], alloc, d′)
∧consisalloc(te, ft , c[mem := m′], alloc)
∧memchngd(d.mm, d′.mm, fst(alloc(gl))÷ 4, snd(alloc(gl))÷ 4)
∧d′.spr = d.spr
∧∀r /∈ {r1, r2, r3, rd, rs} : d′.gpr !r = d.gpr !r
∧ofs 6= 0 −→ d′.gpr !rd = d.gpr !rd

10.5. Assignment 217

Proof To prove the lemma for big assignments we use Lemma 10.31. Besides
this, we argue similarly to the previous lemma. q.e.d.

Now, we combine the general lemmas about elementary and big assignments
and specialize them for the case of assignment statements. Many of the pre-
conditions from the previous lemmas are now implicitly given by more general
preconditions; thus, the list of preconditions is much shorter than before.

Lemma 10.34 (Assignments: data consistency) Let the valid C0 config-
uration c be data and return address consistent with assembly configuration d
via the allocation function alloc and let the head of the current program rest be a
translatable assignment statement. We abbreviate the type of the left expression
by

tl = the(type(te, gst(c.mem), lst top(c.mem), el))

and the code which is generated for the assignment by

il = codeass(¬elem?t(tl), hd(fregs ini), hd(tl(fregs ini)), asizet(lt), 0).

Furthermore, assume that there is sufficient memory, that the next transition
of the C0 machine does not fail, that the preconditions for the execution of
codestmt(hd(s2l(c.prog))) are fulfilled, and that expressions el and er have al-
ready been correctly evaluated into the registers hd(fregs ini) and hd(tl(fregs ini)),
respectively.

Then, the assembly machine will eventually reach a configuration where the
program counter points directly behind the assignment code and which is data
and return address consistent with c′. Furthermore, the special registers have
not been altered.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d) ∧ consisra(te, ft , c, d)
∧ hd(s2l(c.prog)) = Ass(el, er) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧Ass(el, er) ∈ xltbl stmt(te, ft , gst(c.mem), lst top(c.mem))
∧ expr result

√
(te, c, alloc, el, false, d.gpr !(hd(fregs ini)))

∧ expr result

√
(te, c, alloc, er, elem?t(tl), d.gpr !(hd(tl(fregs ini))))

∧ asmpre(d, rangec, il)

=⇒ ∃t, d′ : d
t,d.dpc+4·|il|−−−−−−−−−→
rangec,rangea

d′

∧consisd(te, ft , c′, alloc, d′)
∧consisra(te, ft , c′, d′)
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof Before we actually start with the proof we apply Lemma 5.1 on page 69
which allows us to unfold the definition of the C0 transition function without
agonizing over leading Skip statements.

Then, depending on whether we assign elementary or big types we use
either Lemma 10.32 or 10.33. In both cases we have to discharge numerous
preconditions; e.g., we use Theorem 8.1 to show that the g-variables are reachable
which allows use to prove – using Lemma 10.6 – that their allocated base address
is a multiple of four.

218 Correct Compilation of Statements

After applying these lemmas we have value, pointer, and allocation consis-
tency; not for the new configuration c′ but for some auxiliary configuration
c[mem := c′.mem], e.g., consisv(c[mem := c′.mem], alloc, d′). This is not ex-
actly what we need. However, value and pointer consistency does not depend
on the program rest, so we are done for these.

It remains to prove register, frame header, and return address consistency.
For return address consistency we first apply Lemma 10.19 which ensures
consisra(te, ft , c, d′). However, the successors of return statements in the pro-
gram rest as well as the recursion depth have not changed between c and c′, thus
we can conclude consisra(te, ft , c′, d′). With the same arguments we conclude
frame header consistency from Lemma 10.18.

To prove register consistency we mainly need to show (besides the fact that
the special registers are not changed) that every reachable g-variable is allocated
below the top heap address:

∀g ∈ reachablenameless
g (c′.mem) :

fst(alloc(g)) + snd(alloc(g)) ≤ i2n(d.gpr !rhtop).

Since neither the allocation function nor the top heap address have changed
in-between d and d′ we just need to show that all g-variables g which are
reachable in c′ have also been reachable in c. This follows from Theorem 8.2
and allows us to conclude the property from register consistency in the old
configuration c. q.e.d.

Lemma 10.35 (Assignment including expression evaluation) Let c be
a valid C0 configuration which is consistent with assembly configuration d via
allocation function alloc, let (te, ft , gst) be a translatable C0 program, and let
the head of the current program rest s = hd(s2l(c.prog)) be an assignment
statement. Again, we assume that there is sufficient memory, that the next
transition of the C0 machine does not fail, and that the preconditions for the
execution of codestmt(s) are fulfilled.

Then, the assembly machine eventually reaches a configuration d′ where the
program counter points directly behind the code of the assignment statement and
which is data and return address consistent with c′. Furthermore, the special
registers have not been altered between d and d′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is Ass(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′ : d
t,the(cbases(s))+4·the(csizes(s))−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧consisd(te, ft , c′, alloc, d′)
∧consisra(te, ft , c′, d′)
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof First, we have to show – using Theorem 9.2 and Lemma 9.1 – that the
evaluation of the left and right expression works correctly.

10.6. Assignment of Aggregate Literals 219

Now, we combine the execution of both expressions using Lemma 6.9 on
page 118 and obtain a new (intermediate) assembly configuration d′′ in which
the results of both expressions are stored in registers. Using Lemma 6.13 we
conclude that in d′′ the precondition asmpre for the actual assignment code
holds.4

Next, we apply Lemma 10.34 which provides us with an assembly configura-
tion d′ for the existential quantifier in the proof goal (additionally, we instantiate
t with the sum of the step numbers for the execution of both expressions and
the assignment code). This completes the proof of data and return address
consistency and shows that no registers are unexpectedly changed.

It remains to combine using Lemma 6.9 the execution from d to d′′ with the
execution from d′′ to d′. q.e.d.

Theorem 10.36 (Correctness of assignments)
Let (te, ft , gst) be a translatable C0 program, let the valid C0 configuration c be
consistent with assembly configuration d with respect to the allocation function
alloc, and let the head of the current program rest s = hd(s2l(c.prog)) be an
assignment statement. Assume that there is sufficient memory, that the next
transition of the C0 machine does not fail, and that the preconditions for the
execution of codestmt(s) are fulfilled.

Then, the assembly machine eventually reaches a configuration d′ which is
completely consistent with c′. Furthermore, the special purpose registers have
not been altered.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is Ass(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

Proof We start by applying Lemma 10.35 which proves data and return
address consistency. So, we are left with control consistency which depends on
the correctness of control code (from conditionals or while loops) that possibly
follows codestmt(s).

The correctness of this kind of control code has already been verified in
Section 10.1.2. Thus, using Theorem 10.5, we can easily conclude that we
will eventually reach an assembly configuration which is additionally control
consistency with c′. q.e.d.

10.6 Assignment of Aggregate Literals

The high-level parts of the correctness proof for assignments of aggregate literals
are similar to those for normal assignments. The low-level proof, however, is

4 These fine-grained arguments about execution of assembly machines should give the
reader some impression about (hidden) work in the formal proof system. In the following
proofs we will not mention the usage of lemmas from Section 6.4.3 in as much detail as here.

220 Correct Compilation of Statements

completely different. The following lemma proves that the execution of the
code which is generated for assignments of aggregate literals stores values in
the assembly memory which are content consistent with the original C0 literal.

The code generation for aggregate literal assignments works by recursion on
the structure of the literal (cf. Section 7.4.3 on page 151). Thus, the lemma
has been verified by structural induction. However, the code generation is not
defined by a single recursive function, but by two mutual recursive functions.5

To prove properties of mutual recursive functions it is necessary to do the proof
simultaneously for all of them. Thus, the claim of the lemma needs a separate
part for each function to be inductive. These parts are very similar but differ in
some details (e.g., for a structural literal we need to keep track of the additional
offset i. However, as we will not give details of this proof, we present here only
the main statement for codealit.

Lemma 10.37 (Aggregate assignments: low-level) Let c be a valid C0
configuration and let the assembly code preconditions hold for the code which is
generated for an assignment of the valid aggregate literal l to the destination
address i2n(d.gpr !rd) + ofs. Additionally, let the usual low-level preconditions
hold and abbreviate with t = typealit(l) the type of l.

Then, we will eventually reach an assembly configuration d′ in which the
destination memory region is content consistent with the C0 value of l for
arbitrary g-variables g whose type matches the type of the aggregate literal.
Besides the intended change in the destination memory region and two auxiliary
registers, no parts of the assembly machine have been changed between d and d′.

c ∈ conf
√

(te, ft) ∧ rd ∈ fregs ini ∧ 4 | i2n(d.gpr !rd) + ofs

∧ snd(rangec) ≤ i2n(d.gpr !rd) + ofs ∧ addrmax ≤ 232

∧ asmpre(d, rangec, codealit(rd, ofs, l)) ∧ l ∈ validalit

∧ (i2n(d.gpr !rd) + ofs, asizet(t)) ⊆ rangea

=⇒ ∃t, d′ : d
t,d.dpc+|codealit(rd,ofs,l)|−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧∀g : tmatchass(tyg(sc(c.mem), g), t)
=⇒ vmatchgvar(revalalit(l), d′, alloc, g, i2n(d.gpr !rd) + ofs)

∧memchngd(d.mm, d′.mm, (i2n(d.gpr !rd) + ofs)÷ 4, asizet(t)÷ 4)
∧∀r /∈ [r1, r2] : d′.gpr !r = d.gpr !r ∧ d′.spr = d.spr

Proof We prove this lemma by induction on the structure of the literal. For
the induction start we combine the correctness of the code for (basic) literal
expressions with Lemma 10.30.

Observe that we do not have data consistency during the induction step due
to the fact that only a part of the aggregate literal has been copied. There is no
corresponding (data consistent) C0 configuration for this situation. Although
we need data consistency for all other kinds of expressions (cf. Definition 9.3), it
is not required for literals and the absence of data consistency poses no problem.
The reason for this is simply that the evaluation of literals does not access the
memory.

The remaining details of this proof are not interesting, so we omit them
here. q.e.d.

5In Isabelle, there are four such functions.

10.6. Assignment of Aggregate Literals 221

Lemma 10.38 (Aggregate assignments: high-level) Let (te, ft , gst) be a
translatable C0 program, let the valid C0 configuration c be consistent with
assembly configuration d via allocation function alloc, and let the head of the
current program rest s = hd(s2l(c.prog)) be an assignment of an aggregate
literal. Assume that there is sufficient memory, that the next transition of
the C0 machine does not fail, and that the preconditions for the execution of
codestmt(s) are fulfilled.

Then, the assembly machine eventually reaches a configuration d′ where the
program counter points directly behind the code of the assignment statement and
which is data and return address consistent with c′. Furthermore, the special
registers have not been altered between d and d′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is AssAL(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′ : d
t,the(cbases(s))+4·the(csizes(s))−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧consisd(te, ft , c′, alloc, d′)
∧consisra(te, ft , c′, d′)
∧d′.spr = d.spr
∧∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof We start out as in Lemma 10.35 by proving that the left expression le
of s is correctly compiled and that its allocated address is stored in register
hd(fregs ini). Then, we apply Lemma 10.37 – instantiating ofs = 0 and rd =
hd(fregs ini) – which gives a step number t and a new assembly configuration d′.
Instantiating the g in the lemmas claim with leval(te, c.mem, le) we obtain

vmatchgvar(revalalit(l), d′, alloc, leval(le), fst(alloc(leval(le))).

It remains to prove return address and data consistency. Data consistency
follows directly from Theorem 10.22. For return address consistency we use
Lemma 10.19. q.e.d.

We combine this lemma with control consistency in exactly the same way
as for normal assignments.

Theorem 10.39 (Correctness of assignments of aggregate literals)
Let (te, ft , gst) be a translatable C0 program, let the valid C0 configuration c be
consistent with assembly configuration d with respect to the allocation function
alloc, and let the head of the current program rest s = hd(s2l(c.prog)) be an
assignment statement. Assume that there is sufficient memory, that the next
transition of the C0 machine does not fail, and that the preconditions for the
execution of codestmt(s) are fulfilled.

Then, the assembly machine eventually reaches a configuration d′ which is
completely consistent with c′. Furthermore, the special purpose registers have

222 Correct Compilation of Statements

not been altered.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is AssAL(s) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

10.7 Allocation of Dynamic Memory

In this section we prove the correct compilation of PAlloc statements. For the
low-level correctness, we present in Section 10.7.1 only the two most important
lemmas; in Isabelle, there are several more Lemmas which argue separately
about the correctness of codetest

alloc, codezerofill, and codezero
alloc. The correctness

proofs for high-level correctness are given in Section 10.7.2.

10.7.1 Low-Level Correctness

We present two low-level lemmas about the correctness of the code for memory
allocation on the heap. The first lemma comprises the case that allocation
fails because of insufficient heap memory. The second lemma argues about the
correctness of successful allocation. For both lemmas we omit the proofs.

Lemma 10.40 (Low-level correctness: failure) Let n be the allocated size
of the newly allocated g-variable, let register rd contain the address where the
new pointer should be stored (i.e., the address of the left side expression), and
let the preconditions for the assembly execution of the heap allocation code hold
for configuration d. Additionally, assume that registers rd and rhtop contain
multiples of four, and that the allocated memory region for the left side expression
is properly located in the memory (e.g., does not overlap with the code region).
Finally, assume that allocation fails, i.e., that d.gpr !rhtop + dne4 exceeds the
maximum heap address.6

Then, we will eventually reach an assembly configuration d′ in which the
program counter points directly behind the heap allocation code, the memory at
address d.gpr !rd has been updated with a null pointer, and no registers besides

6 Observe that we align n to multiples of four to ensure that the top heap address is
properly aligned for all types (cf. Section 7.4.6).

10.7. Allocation of Dynamic Memory 223

the auxiliary registers have been changed.

asmpre(d, rangec, code
test
alloc(n, r2) ◦ codezero

alloc(n, rd, r2))

∧ 4 | i2n(d.gpr !rhtop) ∧ 4 | i2n(d.gpr !rd) ∧ 0 ≤ dne4 < 232

∧ snd(rangec) ≤ i2n(d.gpr !rd) < 232

∧ (i2n(d.gpr !rd), 4) ⊆ rangea ∧ rd ∈ fregs ini

∧ dne4 < abaseheap + asizemax
heap ∧ 0 ≤ abaseheap + asizemax

heap < 232

∧ i2n(d.gpr !rhtop) + dne4 ≥ abaseheap + asizemax
heap

=⇒ ∃t, d′ : d
t,d.dpc+64−−−−−−−−−→

rangec,rangea

d′

∧∀r /∈ [r1, r2, r3] : d′.gpr !r = d.gpr !r
∧d′.mm = d.mm [i2n(d.gpr !rd)÷ 4 := int2cell(0)]
∧d′.spr = d.spr

Lemma 10.41 (Low-level correctness: success) Let, as in the previous
lemma, n be the allocated size of the newly allocated g-variable, let rd contain
the destination address, and let the preconditions for the assembly execution of
the heap allocation code hold in configuration d. Assume that registers rd and
rhtop contain multiples of four, and that the allocated memory regions for the left
side expression and for the newly allocated variable are properly located in the
memory (e.g., they do not overlap with the code region). Finally, assume that
allocation succeeds, i.e., that d.gpr !rhtop + dne4 does not exceed the maximum
heap address.

Then, we will eventually reach an assembly configuration d′ in which the
program counter points directly behind the heap allocation code, the heap top
register has been incremented by dne4, and the memory has been updated in
two steps. First, address d.gpr !rd has been updated with a pointer to the
newly allocated heap variable. We abbreviate this intermediate memory with
mm ′ = d.mm [i2n(d.gpr !rd)÷ 4 := int2cell(d.gpr !rhtop)]. Second, the allocated
region of the new heap variable has been initialized with zeroes. Finally, no
registers besides rhtop and the auxiliary registers have been changed.

asmpre(d, rangec, code
test
alloc(n, r2) ◦ codezero

alloc(n, rd, r2))

∧ 4 | i2n(d.gpr !rhtop) ∧ 4 | i2n(d.gpr !rd) ∧ 0 < dne4 < 232

∧ snd(rangec) ≤ i2n(d.gpr !rd) < 232

∧ (i2n(d.gpr !rd), 4) ⊆ rangea ∧ (i2n(d.gpr !rhtop), dne4) ⊆ rangea

∧ snd(rangec) ≤ i2n(d.gpr !rhtop) ∧ d.gpr !rhtop 6= 0

∧ i2n(d.gpr !rhtop) + dne4 < 232

∧ 0 ≤ abaseheap + asizemax
heap < 232 ∧ rd ∈ fregs ini

∧ i2n(d.gpr !rhtop) + dne4 < abaseheap + asizemax
heap

=⇒ ∃t, d′ : d
t,d.dpc+64−−−−−−−−−→

rangec,rangea

d′

∧d′.spr = d.spr ∧ ∀r /∈ [rhtop, r1, r2, r3] : d′.gpr !r = d.gpr !r
∧i2nd′.gpr !rhtop = i2nd.gpr !rhtop + dne4
∧d′.mm =

mm′ ([i2nd.gpr !rhtop ÷ 4, dne4] := replicate(dne4, int2cell(0)))

224 Correct Compilation of Statements

10.7.2 High-Level Correctness

For the high-level correctness of allocation we need to extend the allocation
function with an entry for the new heap variable which contains its allocated
base address and size (cf. Definition 10.1).

Using this new allocation function, we will then show in Lemma 10.44 data
and return address consistency. For the case that allocation is successful, the
proof depends on Lemma 10.42 which argues that sub g-variables of the new
heap variable are value and pointer consistent if they are properly initialized
with zeroes. Finally, in Theorem 10.45, we add control consistency as in the
correctness proof for assignments by using the results from Section 10.1.

Definition 10.1 (Extended allocation function) We define the function
allocxt :: (gvar 7→ (N × N)) × symbolconf × N × N 7→ (gvar 7→ (N × N))
which extends a given allocation function with values for the newly allocated
g-variable.

Let te be a type environment, sc a symbol configuration, alloc the old
allocation function, i the index of the new heap g-variable (i.e., the number of
variables in the old heap), and b the allocated base address of the new heap
variable. Then, we define the new allocation function by

allocxt(alloc, sc, i, b)(g) ={
(b + displg(g), asizet(tyg(g))) if rootg(g) = gvarhm(i)
alloc(g) otherwise

The following auxiliary lemma shows that sub g-variables of the newly
allocated heap variable are value and pointer consistent with the new C0 config-
uration if they are properly initialized with zeroes in the assembly configuration.

Lemma 10.42 Let d be an assembly configuration, t a valid type, and c a valid
C0 configuration in which we have sufficient heap memory for the additional
allocation of a variable of type t. Further, let g be a sub g-variable of this new
heap variable, let gl be a valid elementary g-variable which does not overlap
with g, and assume that the value at the allocated address of g in assembly
configuration d is 0.

We abbreviate the C0 memory configuration after heap extension with
m′ = extendheap(availheap, c.mem, t) and the extended allocation function with
alloc′ = allocxt(alloc, sc(m′), |hst(c.mem)| , b). Finally, we assume that updat-
ing gl in C0 memory configuration m′ with a pointer to the newly allocated
g-variable is successful and gives a new memory configuration m′′.

Then, g is value and pointer consistent is configuration d with respect to C0

10.7. Allocation of Dynamic Memory 225

memory m′′ and allocation function alloc′.

c ∈ conf
√

(te, ft) ∧ rootg(g) = gvarhm(|hst(c.mem)|)
∧ valid ty(te, t) ∧ availheap(c.mem, t)
∧ gl ∈ gvars

√
(sc(m′)) ∧ sizet(tyg(sc(m′), gl)) = 1

∧ ¬overlapg(sc(m′), gl, g)

∧ cell2int(d.mm(fst(alloc′(g))÷ 4)) = 0
∧memupd(m′, gl, [Ptr(gvarhm(|hst(c.mem)|))]) = bm′′c
=⇒ consisg

v(m
′′, alloc′, d, g) ∧ consisg

p(m
′′, alloc′, d, g)

Proof The main effort of this proof is to show that the value of g in m′′

corresponds to the init value of g, i.e., that

valueg(m′′, g)(0) = initval(tyg(sc(m′′), g))!0.

Then we know, because 0 matches the init values of all elementary types, that
g is value and pointer consistent.

The former is proved as follows.

valueg(m′′, g)(0)
= valueg(m′, g)(0) (g and gl do not overlap)
= valueg(m′, rootg(g))(bag(sc(m′), g)− bag(sc(m′), gl))
= initval(tyg(sc(m′′), rootg(g)))!(bag(sc(m′), g)− bag(sc(m′), gl))

(correct initialization during extendheap)

= initval(tyg(sc(m′′), g))!0 (correctness of initval)
q.e.d.

Now, we present a lemma which shows that g-variables which are reachable
after allocation are either sub g-variables of the newly allocated variable or have
already been reachable in the old configuration. Similar to Theorem 8.2 on
page 172, this lemma will be very important in the proof of Lemma 10.44 where
we show that reachable g-variables which have not been altered are still value
and pointer consistent: we can conclude from the lemma that these variables
must have been reachable – and thus consistent – also in the old configuration
and because they have not been altered we know that they are still consistent.

Lemma 10.43 (Reachable g-variables after allocation) Let the program
rest of the valid C0 configuration c start with an allocation statement and
assume that the C0 transition function gives a new configuration c′, i.e., that
there are no runtime errors. Then, given that g is a reachable g-variable in c′,
it either has also been reachable in the previous configuration c or it is a sub
g-variable of the newly allocated g-variable.

c ∈ conf
√

(te, ft) ∧ hd(s2l(c.prog)) = PAlloc(e, tn) ∧ δC0(te, ft , c) = bc′c
∧ g ∈ reachableg(c′.mem) ∧ rootg(g) 6= gvarhm(|hst(c.mem)|)
=⇒ g ∈ reachableg(c.mem)

Proof We prove this lemma in two steps. The easy part is to show that
g ∈ reachableg(extendheap(availheap, c.mem, t)) implies that g has also been

226 Correct Compilation of Statements

reachable in c. This can be proved in a similar way as Theorem 8.2 via
induction about the definition of reachable g-variables.

For the second part, we abbreviate with gl = leval(te, c.mem, e) the g-
variable which gets assigned a pointer to the new heap variable, i.e., the left
value of the left expression of the allocation statement. We have to prove that
every reachable g-variable in the new configuration c′ has also been reachable
in an intermediate configuration where only the heap has been extended but
the pointer assignment has not yet happened; formally: g ∈ reachableg(c′.mem)
implies g ∈ reachableg(extendheap(availheap, c.mem, t)). Here, the idea is to
show that every reachable g-variable outside the newly allocated variable is
reachable via a path which does not contain gl. Then, the remaining proof is
just a simple exercise because changing a g-variable which is not needed for the
reachability should not affect it.

However, to prove formally that g is reachable in c′ without going over gl is
not so easy: e.g., to make the arguments inductive in Isabelle, we are required to
introduce a strengthened version of reachability: reachable nameless gvars
strong. We will not introduce the formal definitions here because the main
idea is quite obvious and can be given in a few words: in c′, the g-variable gl

points to the newly allocated g-variable and all pointer g-variable inside the
new one are initialized with null pointers. Thus, the inductive definition of
reachability finds its end here. This means that no g-variable outside the new
one is reachable via gl.

As g is not such a sub g-variable of gl it must be reachable without going
through gl. Thus, it must have been reachable already in c. q.e.d.

However, observe that there might be g-variables which have been reachable
in the old configuration c (via gl) but are not reachable in c′ anymore.

Lemma 10.44 (Data consistency) Let (te, ft , gst) be a translatable C0 pro-
gram, let the valid C0 configurtion c be consistent with assembly configuration
d via allocation function alloc, and let the head of the current program rest
s = hd(s2l(c.prog)) be an allocation statement. Further, assume that there is
sufficient memory, that the next transition of the C0 machine does not fail, that
the maximum heap size is a meaningful number, and that the number of return
statements in the program rest corresponds to the recursion depth. Finally, we
require that the preconditions for the execution of codestmt(s) are fulfilled.

Then, the assembly machine eventually reaches a configuration d′ which is
data and return address consistent with the next C0 configuration c′ via some
(new) allocation function alloc′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ s = PAlloc(e, tn) ∧ δC0(te, ft , c) = bc′c
∧ abaseheap + asizemax

heap < addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)

∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′, alloc′ : d
t,the(cbases(s))+4·the(csizes(s))−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧consisd(te, ft , c′, alloc′, d′) ∧ consisra(te, ft , c′, d′)
∧d′.spr = d.spr

10.7. Allocation of Dynamic Memory 227

Proof Let in the following t denote the type of the newly allocated variable, and
gl = leval(te, c.mem, e) the g-variable which corresponds to the left expression.
We split the correctness proof of this lemma into two cases: either there is
enough free heap memory and the allocation succeeds or there is not enough
memory and it fails.

Before we start with the case distinction we show using Theorem 9.2 and
Lemma 9.1 that the evaluation of e is correctly compiled, i.e., that we reach an
assembly configuration d′ in which the allocated base address of gl is stored in
register hd(fregs ini).

Case 1: ¬availheap(c.mem, t)
In this case allocation fails: this makes the proof quite simple because
there is only a single memory update with a null pointer and the heap
memory remains unchanged.

We use Lemma 10.40 to show that we eventually reach an assembly
configuration d′′ in which the assembly memory at address fst(alloc(gl))
has been set to zero. The numerous preconditions of the lemma can be
proved using lemmas similar to the ones from Section 10.2.1; we omit the
details. This proves the first and the last goal of the theorem. It remains
to prove data and return address consistency.

Data consistency follows from Theorem 10.22. Among others, this theorem
requires us to prove that gl is reachable; this follows from Theorem 8.1.
We also have to show that the right value of the memory update is type
correct and contains only reachable pointers; in this case this is obvious
because we update with a null pointer.

For return address consistency we first conclude consisra(te, ft , c, d′) using
Lemma 10.19. That we have consisra(te, ft , c′, d′) finally follows from the
fact that neither the Return statements in the program rest nor the return
destinations in the stack have changed between configurations c and c′.

Case 2: availheap(c.mem, t)
In this case allocation succeeds and we have to use an extended allocation
function alloc′ = allocxt(alloc, sc(m′), |hst(c.mem)| , d.gpr !rhtop). Addi-
tionally, we have to deal with the zero initialization of the new heap
variable.

We start using Lemma 10.41 to show that we eventually reach an assembly
configuration d′′ in which the heap top register has been incremented by
dne4 and where the assembly memory at address fst(alloc(gl)) has been
set to the allocated base address of the new heap variable, which itself has
been initialized with zeroes. Again, we use lemmas from Section 10.2.1
and similar ones to discharge the numerous preconditions. This proves
the first and the last goal of the theorem and we are, as before, left with
data and return address consistency.

In the following, we present only the main ideas of the proof, in order not
to distract the reader from the important arguments.

In the previous case we could simply use Theorem 10.22 to prove data
consistency. Now, this is harder because we have to simultaneously
consider two memory updates: the update of the left side expression with
a pointer to the new heap variable and the zero initialization of the new

228 Correct Compilation of Statements

heap variable. The first update makes the new heap variable reachable;
thus, data consistency can only hold if all its sub g-variables are value
and pointer consistent. This does not hold before the second memory
update is done. So, we have to prove preservation of data consistency in
this case in one big-step for both memory updates.

We unpack the definition of data consistency and do the proof bit-by-bit.

• First, we have to show for all reachable elementary g-variables g in
the new configuration c′ that they are value and pointer consistent.
We distinguish three cases.
If the considered g-variable g is the just updated left side expression,
i.e., g = gl, we have to show that the update in the assembly machine
correctly sets mm(fst(alloc(gl))) to the address of the new heap
variable. This follows directly from Lemma 10.41.
If g is a sub g-variable of the newly allocated g-variable, value and
pointer consistency follows from Lemma 10.42.
In the third case, i.e., if g is nothing special, we first have to show that
g was also reachable in the old C0 configuration c; this follows from
Lemma 10.43. Then, we can conclude that g was value and pointer
consistent in c and we use Lemma 10.14 and Corollary 10.15 to show
that the memory update of gl has not destroyed this consistency.
It remains to show that the initialization has done no harm to the
consistency of g. This is easy to do because the allocated memory
region for the new heap variable cannot overlap with the allocated
region of any g-variable which was reachable (and thus valid) in the
old configuration.

• For frame header consistency, register consistency, and allocation
consistency there are no special or interesting proof goals. Thus, we
omit the proof details here.

q.e.d.

Isabelle The last requirement of the previous lemma is rather technical. For
some proof details we need to know that all return destinations are valid g-
variables. We can derive this from the predicate rdest

√
(which is part of valid

configurations), but only if there is a return statement in the program rest for
every return destination, i.e., if the number of return statements equals the
number of return destinations.

Observe, that the (similar) requirement about the number of return state-
ments which is included in the conf

√
predicate only requires that there are

not more return statements than return destinations. This weaker condition
was chosen to simplify the equivalence proof between big-step and small-step
semantics; however, it is not strong enough to formally prove the lemma in
Isabelle / HOL.

Now, it remains to combine the data consistency from the previous lemma
with control consistency.

Theorem 10.45 (Correctness of allocation)
Assume the same preconditions as in the previous Lemma 10.44. Then, the
assembly machine eventually reaches a configuration d′ which is completely

10.8. Function Calls 229

consistent with the next C0 configuration c′ and in which the special purpose
registers have not been altered.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is PAlloc(s) ∧ δC0(te, ft , c) = bc′c
∧ abaseheap + asizemax

heap < addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)

∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))
∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|

=⇒ ∃t, d′, alloc′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc′, d′)
∧d′.spr = d.spr

Proof For the proof of this theorem we combine Lemma 10.5 and 10.44 in the
same way as in the proof of Theorem 10.36. q.e.d.

10.8 Function Calls

In this section, we prove that SCall statements are compiled correctly. We do
not strictly separate low-level and high-level proofs here but split up the proofs
similar to the structure of the generated code (cf. Section 7.4.7). We start the
proofs in Section 10.8.1 by showing that parameter passing works correctly and
preserves value and pointer consistency. We continue in Section 10.8.2 with a
low-level correctness proof for the code which sets up the new stack frame and
conclude in Section 10.8.3 with a combination of the partial results.

Before we start with the actual proofs we define a function which adjusts an
allocation function to a given stack. When extending the runtime stack during
function calls we have to adapt the allocation function. We have to extend the
domain for the local g-variables in the new stack frame.

Definition 10.2 (Updated allocation function) We introduce a function
allocupd :: (gvar 7→ (N × N)) × functableT × tenv × symbolconf 7→ (gvar 7→
(N ×N)) which updates a given allocation function with regards to a given
symbol configuration. This means that we set the allocation function for named
g-variables to their allocated base address and allocated size, respectively, and
we leave it unchanged for heap g-variables. This adapts the allocation function
to changes in the stack and in the global symbol table. However, we use it only
for the extension of the stack during function calls.

Let ft be a function table, te a type environment, sc a symbol configuration,
and alloc the old allocation function. Then, we define the updated allocation
function by

allocupd(alloc, ft , te, sc)(g) ={
alloc(g) if memg(g) = hm(
abaseg(te, ft , sc, g), asizet(tyg(sc, g))

)
otherwise

10.8.1 Parameter Passing

The formal verification of parameter passing was somewhat complicated. The
main reason for this are the strong preconditions of Lemmas 10.32 and 10.33

230 Correct Compilation of Statements

which are used to verifiy the correct transfer of a single parameter. These
lemmas have to be used inside an induction proof to derive the correctness of
parameter passing of all parameters. Thus, we have to keep the neccessary
preconditions available during the induction which requires us to keep track of
them inside the induction invariant. This makes the invariant rather verbose.

In the following Lemma 10.46 we present the actual correctness lemma for
parameter passing, including the complex induction invariant. To make the
lemma inductive we simultaneously argue about two C0 configurations c and
c′. Configuration c is the initial configuration before the parameter passing
has started. Configuration c′ is an intermediate C0 configuration in which a
certain prefix of the parameters has already been copied. According to the C0
semantics of function calls (cf. Section 4.4.3 on page 64) all function parameters
are evaluated in the old configuration c. In order to be able to apply the
correctness theorem for expression evaluation we require data consistency for
the old configuration c in addition to value, pointer, and allocation consistency
for the intermediate configuration c′.

We will prove Lemma 10.46 by induction on the number of parameters.
But instead of using the fixed parameter list from the function table we will
use a variable pl which initially equals the parameter list from the function
table. This allows to consume the list of parameter expressions el (from the
function call statement) and the list of parameters pl synchronously during the
induction. Figure 10.3 illustrates the different C0 and assembly intermediate
configurations and their relation.

Lemma 10.46 Let (te, ft , gst) be a translatable C0 program and let the valid
C0 configurtion c (the original configuration before start of the parameter
passing) be data consistent with assembly configuration d via allocation function
alloc. Assume that extending the memory configuration of c with a new frame
nlm(whose symbol table is the function symbol table for f) gives the memory
of c′. Let the intermediate C0 configuration c′ (after a certain prefix of the
parameter list has already been copied) be valid and value, pointer, and allocation
consistent with assembly configuration d via the updated allocation function
alloc′ = allocupd(alloc, ft , te, sc(c′.mem)). Further, assume that the types of the
expression list el match the types of the parameter list pl, and that copying all
parameters gives a new C0 memory configuration m′.

We require all elements of the parameter list to be present in the parameters
of the function f (i.e., that pl is a sub list of the parameter list of f). We
require for all parameter expressions that they are valid and translatable, that
there are enough registers for their evaluation, and that the allocated size of
their type is not too large. Finally, we assume the usual requirements regarding
sufficient memory and the preconditions for execution of the generated code.

We abbreviate with fscur = dasizest(lst , 12)e4 the allocated size of the cur-
rent frame and with gst and lst the symbol tables of the global memory and
the top most local memory of c, respectively. Additionally, we abbreviate by
il = codepassing(te, f, gst , lst , tl(fregs ini), fscur, el,map(fst , pl)) the code which is
generated for parameter passing.

Then, we will eventually reach an assembly configuration d′ which is value,
pointer, and allocation consistent with the C0 memory configuration m′ (i.e.,
after copying all parameters) and in which the memory outside the new stack
frame has not been changed. Additionally, d′ is data consistent with the old C0

10.8. Function Calls 231

configuration c (this is neccessary to make the statement inductive).

c ∈ conf
√

(te, ft) ∧ c′ ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d)
∧ consisv(c′, alloc′, d) ∧ consisp(c′, alloc′, d) ∧ consisalloc(te, ft , c′, alloc′)
∧ c′.mem = c.mem[lm := c.mem.lm ◦ nlm ∧ nlm.st = st fun(f)
∧ tmatchpara(map(type(te, gst , lst), el),map(snd , pl))
∧ copypara(c

′.mem,map(the(reval(te,mc)), el), pl) = bm′c
∧ ∀p ∈ pl : p ∈ st fun(f)

∧∀e ∈ el : e ∈ validexpr(te, gst , lst)
∧e ∈ xltblexpr(te, ft , gst , lst)
∧enoughregs(te, gst , lst , elem?t(type(te, gst , lst , e)), |fregs ini| − 2, e)
∧ − 215 ≤ asizet(type(te, gst , lst , e)) < 215

∧ (te, ft , gst) ∈ xltblprog ∧ 4 | d.dpc

∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c) ∧ avail stack(te, ft , c′)
∧ asmpre(d, rangec, il)

=⇒ ∃t, d′ : d
t,d.dpc+4·|il|−−−−−−−−−→
rangec,rangea

d′

∧ consisd(te, ft , c, alloc, d′)
∧ consisv(c′[mem := m′], alloc′, d′)
∧ consisp(c′[mem := m′], alloc′, d′)
∧ consisalloc(te, ft , c′[mem := m′], alloc′)
∧ unchngdmem(d.mm, d′.mm, 0, abase lm(sc(c′.mem), |c.mem.lm|)÷ 4)
∧ unchngdmem(d.mm, d′.mm, abaseheap ÷ 4, i2n(d.gpr !rhtop)÷ 4)
∧ d′.spr = d.spr
∧ ∀r ∈ hd(fregs ini)#{rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

Proof We prove this lemma by induction on the list el of parameter expressions
and simultaneously strip down the list pl of function parameters.

Case 1: induction start: el = [] and pl = []
This case is trivial. We instantiate t = 0 and d′ = d and are done.

Case 2: induction step: el = e#el′ and pl = p#pl′

For the induction step we have to

1. show that copying the first parameter works correctly and
2. combine this with the induction hypothesis which argues that copying

the remaining parameters also works correctly.

Figure 10.3 illustrates the different intermediate configurations.

We first show using Theorem 9.2 that the first parameter e is correctly
evaluated. Then we apply Lemmas 10.32 and 10.33 to prove that the
assignment of this parameter works as expected. We instantiate among
others c with c′ and alloc with the extended allocation function alloc′. We
use rlframe as destination register and fscur +displv(12, lst , p) as offset. To
apply these lemmas we have to discharge a lot of low-level preconditions.
We present the most involved ones.

232 Correct Compilation of Statements

• For non-elementary parameters we have to show that their C0 value
and reachability does not change between configurations c and c′; this
allows to inherit most of the necessary preconditions from properties
of expression evaluation in c.

• For elementary parameters we have to show that their value v fits
the register value from expression evaluation. We conclude

vmatchrval(alloc, v, d.gpr !hd(tl(fregs ini))) (Theorem 9.2)
= vmatchrval(alloc′, v, d.gpr !hd(tl(fregs ini))).

This conclusion is correct because we know from the definition
of allocupd and from allocation consistency that the allocated base
address of all g-variables which have been reachable in c is unchanged.

• We have to show that the destination region of the assignment is
contained inside the new frame. This follows from the instantiation
of rlframe as destination register and fscur + displv(12, lst , p) as offset
and from the definition of the allocated range of the new frame.

We conclude from these two lemmas and the correctness of expression
evaluation via Lemma 6.9 on page 118 that we eventually reach an assembly
configuration d′′ which is value and pointer consistent with the C0 memory
m′′ = the(memupd(c′.mem, gvar lm(|c.mem.lm| , p), reval(c.mem, e)) after
copying the first parameter e (cf. Definition 4.34 on page 64). Additionally,
we know that between d and d′′ only the allocated region for the new
frame has been changed in the assembly memory.

Now, we instantiate the induction hypothesis with c′ = c′[mem := m′′],
d = d′′, el = el′, and pl = pl′. After some easy proof steps, including
the proof that we have data consistency consisd(te, ft , c, alloc, d′′) and
allocation consistency consisalloc(te, ft , c′[mem := m′′], alloc′) with these
instantiations, we are able to conclude that passing the remaining param-
eters works as expected. This shows that we eventually reach an assembly
configuration d′ in which – among others – the following holds

consisd(te, ft , c, alloc, d′)
consisv(c′[mem := m′], alloc′, d′)
consisp(c′[mem := m′], alloc′, d′)

Now, it only remains to instantiate t in the lemma’s statement with the
corresponding step number to complete the proof of this lemma. q.e.d.

To simplify later the usage of the previous lemma we remove those precon-
ditions which are only used for the induction proof and obtain the following
corollary.

Corollary 10.47 Let (te, ft , gst) be a translatable C0 program, let the valid C0
configuration c be data consistent with assembly configuration d via allocation
function alloc, and let the head of the current program rest s = hd(s2l(c.prog))
be a function call statement. Further, assume that the function (fn, f) is defined
in the function table, that the types of the expression list el match the parameter
types of f , and that extending the stack with a frame for f gives a new C0

10.8. Function Calls 233

c c′ c′[mem := m′′] c′[mem := m′]

d d′′ d′

consisd

co
ns

is
v
,
co

ns
is

p

co
ns

is
v
,
co

ns
is

p

co
ns

is
v
,
co

ns
is

p

copying e copying el′

Figure 10.3: Correctness of Parameter Passing: Induction Step

memory configuration m′. Finally, we require the same properties for the list of
expressions and the same abbreviations as in the previous lemmas and some
more technical conditions.

To keep formulas readable, we abbreviate the code for parameter passing by
il = codepassing(te, f, gst , lst , tl(fregs ini), fscur, el,map(fst , f.params)).

Then, we will eventually reach an assembly configuration d′ which is value,
pointer, and allocation consistent with the C0 memory configuration m′ (i.e.,
after copying the parameters) and in which the memory outside the new stack
frame has not been changed.

c ∈ conf
√

(te, ft) ∧ consisd(te, ft , c, alloc, d) ∧ (fn, f) ∈ ft
∧ hd(s2l(c.prog)) = SCall(vn, fn, pl)
∧ ∃p : s2l(p) = s2l(f.body) ◦ tl(s2l(c.prog))
∧ tmatchpara(map(type(te, gst , lst), el),map(snd , f.params))
∧ extend stack(te, c.mem, vn, f, el) = bm′c
∧∀e ∈ el : e ∈ validexpr(te, gst , lst)

∧e ∈ xltblexpr(te, ft , gst , lst)
∧enoughregs(te, gst , lst , elem?t(type(te, gst , lst , e)), |fregs ini| − 2, e)
∧ − 215 ≤ asizet(type(te, gst , lst , e)) < 215

∧ (te, ft , gst) ∈ xltblprog ∧ 4 | d.dpc

∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c) ∧ avail stack(te, ft , c′)
∧ asmpre(d, rangec, il)

=⇒ ∃t, d′ : d
t,d.dpc+4·|il|−−−−−−−−−→
rangec,rangea

d′

∧ consisv(c[mem := m′], alloc′, d′)
∧ consisp(c[mem := m′], alloc′, d′)
∧ consisalloc(te, ft , c[mem := m′], alloc′)
∧ unchngdmem(d.mm, d′.mm, 0, abase lm(sc(c′.mem), |c.mem.lm|)÷ 4)
∧ unchngdmem(d.mm, d′.mm, abaseheap ÷ 4, i2n(d.gpr !rhtop)÷ 4)
∧ d′.spr = d.spr ∧ d′.gpr !hd(fregs ini) = d.gpr !hd(fregs ini)
∧ ∀r ∈ {rsbase, rhtop, rlframe, rjal} : d′.gpr !r = d.gpr !r

234 Correct Compilation of Statements

10.8.2 Setting up the New Stack Frame

In this Section we present a lemma about the low-level correctness of the code
which sets up the new stack frame and jumps to the beginning of the called
function.

Lemma 10.48 Let c be a valid C0 configuration and let the preconditions
for the execution of codenewfr hold in assembly configuration d. Besides some
additional (technical) preconditions, abbreviate with s = SCall(vn, fn, pl) the
function call statement, with fscur and fsnew the allocated size of the cur-
rent and the new stack frame, respectively, with f = the(map-of (ft , fn)) the
called function, with dist = distscall(te, ft , gst(c.mem), lst top(c.mem), s) the rel-
ative jump distance to its start address which itself is abbreviated with cb =
the(cbases(hd(s2lns(f.body)))). Finally, let fbasenew = i2n(d.gpr !rlframe)+fscur

denote the base address of the newly created stack frame.
Then, the execution of codenewfr(fsnew, fscur, s) results after t steps in a new

assembly configuration d′ in which the rlframe register has been correctly updated,
the frame header fields of the new frame are properly initialized, and the special
registers rsbase and rhtop have not been changed.

c ∈ conf
√

(te, ft) ∧ asmpre(d, rangec, codenewfr(fsnew, fscur, s))

∧ 0 ≤ fscur < 232 ∧ fscur > 4 ∧ 0 ≤ fsnew < 232

∧ 4 | fscur ∧ 4 | i2n(d.gpr !rlframe)

∧ i2n(d.gpr !rlframe) + fscur + 12 < 232

∧ (i2n(d.gpr !rlframe) + fscur, 12) ⊆ rangea ∧ snd(rangec) ≤ i2n(d.gpr !rlframe)

∧ cb ∈ rangec ∧ cb < 232 ∧ d.dpc + 4 · |codenewfr(fsnew, fscur, s)|+ dist = cb

=⇒ t, d′ : d
t,cb−−−−−−−−−→

rangec,rangea

d′

∧ i2n(d′.gpr !rlframe) = fbasenew

∧ d′.mm =

d.mm

 (fbasenew)÷ 4 := int2cell(n2i(d.dpc + 4 · |codenewfr|)),
(fbasenew + 4)÷ 4 := int2cell(d.gpr !hd(fregs ini)),
(fbasenew + 8)÷ 4 := int2cell(d.gpr !rlframe)

∧ d′.gpr !rsbase = d.gpr !rsbase ∧ d′.gpr !rhtop = d.gpr !rhtop
∧ d′.spr = d.spr

Proof We omit the straightforward proof of this lemma.

10.8.3 Putting it All Together

In this section we combine the results from the previous sections to a complete
correctness proof for function call statements. We start with a lemma which
shows that function calls do not create new reachable heap g-variables. Then,
we prove that the code for function calls preserves data and return address
consistency. We conclude with Theorem 10.51 which shows that the code for
function calls preserves consistency.

Lemma 10.49 Let c be a valid C0 configuration and let the head of the program
rest be a function call to some existing function f . Further, assume that

10.8. Function Calls 235

extending the stack for this function call succeeds and gives a new memory
configuration m′.

Then, all heap g-variables which are reachable in m′ have already been
reachable in the old memory configuration c.mem.

g ∈ reachablenameless
g (m′)

∧ c ∈ conf
√

(te, ft) ∧ (fn, f) ∈ ft
∧ hd(s2l(c.prog)) = SCall(vn, fn, pl)
∧ ∃p : s2l(p) = s2l(f.body) ◦ tl(s2l(c.prog))
∧ extend stack(te, c.mem, vn, f, el) = bm′c
=⇒ g ∈ reachablenameless

g (c.mem)

Proof We present only the main idea of the proof. We proceed in two steps.
First we show that extending the stack with a new frame does not create new
reachable heap variables. Intuitively, this holds because all local variables are
uninitialized and cannot be on the reachability path for some g-variables. In
the second step we prove using Theorem 8.2 on page 172 by induction on
the number of parameters that copying the parameters does not create new
reachable g-variables. q.e.d.

Lemma 10.50 Let (te, ft , gst) be a translatable C0 program, let the valid C0
configuration c be consistent with assembly configuration d via allocation function
alloc, and let the head of the current program rest be a function call statement
which calls function f = the(map-of (ft , fn)). Further, assume that there is
sufficient memory, that the next transition of the C0 machine does not fail,
that the number of Return statements in the program rest corresponds to the
recursion depth, and, finally, that the preconditions for the execution of the
compiled code for the function call statement are fulfilled.

Then, the assembly machine will eventually reach a configuration d′ which
is data and return address consistent with the next C0 configuration c′ via some
(new) allocation function alloc′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ s2l(c.prog) = SCall(vn, fn, pl) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c) ∧ avail stack(te, ft , c′)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s2l(c.prog)))
∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|

=⇒ ∃t, d′, alloc′ : d
t,the(cbases(hd(s2lns(f.body))))−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧consisd(te, ft , c′, alloc′, d′)
∧consisra(te, ft , c′, d′)
∧d′.spr = d.spr

Proof The code for function call statements consists of three parts: the
evaluation of the return destination, code for parameter passing, and code to
set up the new stack frame and jump to the called function (cf. Section 7.4.7
on page 154). Thus, the proof is also divided into three parts.

First, we apply Theorem 9.2 to show that the allocated address of the
return variable is corrected computed in register hd(fregs ini). Then, we apply

236 Correct Compilation of Statements

Corollary 10.47 to show that parameter passing works as expected. This gives us
an intermediate assembly configuration d′ which is value, pointer, and allocation
consistent with the new C0 configuration c′. Finally, we apply Lemma 10.48 to
prove that we correctly set up the new stack frame and jump to the start of
the code of function f . Combining these three steps gives us a new assembly
configuration d′′ and a step number t which we use to instantiate the existential
quantifiers for d′′ and t. We instantiate the existential quantifier for alloc′ with
allocupd(alloc, ft , te, sc(c′.mem)).

It remains to show that d′ is data and return address consistent with c′ via
alloc′. We easily prove that only memory inside the new stack frame has been
modified in-between the original assembly configuration d and configuration d′′.
We prove the five components of data consistency separately.

Allocation consistency does not depend on the program rest; thus we can
directly conclude allocation consistency for c′ from Corollary 10.47. Value
and pointer consistency for d′′ follow from value and pointer consistency for d′

because only memory inside the frame header of the new stack frame has been
changed in between; thus, assembly values of g-variables have not changed.

For frame header consistency consis fh(te, ft , c′, alloc′, d′′) we have to show
for all 0 < i < |c′.mem.lm| that previous stack pointer and return destination
fields in the frame header of the i-th frame are correct. For the new frame, i.e.,
i = |c.mem.lm|, this follows from Lemma 10.48 and for all other frame from
consis fh(te, ft , c, alloc, d) as neither the frame headers nor the allocated base of
the frames or the allocated address of the return destinations have changed.

We know from the precondition that consisr(te, ft , c, alloc, d) holds and
have to show consisr(te, ft , c′, alloc′, d′′). There is only one demanding goal
here: to show that all reachable heap g-variables in c′ are allocated below
i2n(d′′.gpr !rhtop). Because i2n(d′′.gpr !rhtop) = i2n(d.gpr !rhtop) we just have to
show that the set of reachable heap g-variables has not been extended from c
to c′ which follows from Lemma 10.49.

This completes the proof of data consistency and the only remaining proof
goal is to show return address consistency consisra(te, ft , c′, d′). For return
address consistency (cf. Definition 8.13 on page 177) we have to show for all i <
|c′.mem.lm| that there exists some function call statement s such that the succes-
sor statement of s follows the i-th return statement Return(re) in the program
rest of c′ and the return address fhra(te, ft , sc(c′.mem), d′.mm, |c′.mem.lm| −
(i + 1)) points directly behind the code of s. We distinguish here between the
return address of the newly created frame (i = 0) and the return addresses in
the old frames.

For i = 0 we instantiate the existential quantifier in the definition of consisra

with the return statement which we just execute. We know from Lemma 10.48
that the return address in the new stack frame correctly points behind the
code of this statement. Additionally, we conclude from c ∈ conf

√
(te, ft)

that successors
√

(s2lns(c.prog), ft) holds, which implies that the function call
statement is followed by its successor statement. The C0 transition function
puts the body of f in front of this statement; thus, the first return statement
is followed by the successor of the current function call and return address
consistency for i = 0 is proved.

For i > 0 return address consistency holds because neither the frame header
of the i-th frame nor the structure of the program rest behind the first return
statement have been changed. q.e.d.

10.9. Return 237

Theorem 10.51
Assume the same preconditions as in the previous lemma and abbreviate the
current head of the program rest by b = hd(s2l(c.prog)). Then, the assembly
machine will eventually reach a configuration d′ which is completely consistent
with the next C0 configuration c′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ is SCall(s) ∧ δC0(te, ft , c) = bc′c ∧ addrmax ≤ 232

∧ availmem(addrmax, te, ft , c) ∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem), s))

=⇒ ∃t, d′, alloc′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc′, d′) ∧ d′.spr = d.spr

Proof The extension of Lemma 10.50 to complete consistency is for function
calls easier than for most other statements. Function calls jump directly to the
beginning of the first statement in the called function. We know from the C0
semantics of function calls that this statement will be the head of the program
rest in the new configuration c′. Thus, there is no need to execute additional
control code and to apply lemmas from Section 10.1.

The last proof obligation is code consistency, i.e., we have to show that the
program code has not been modified. This follows directly from the definition
of assembly code execution (cf. Definition 6.15 on page 114). q.e.d.

10.9 Return

The induction step for Return statements is relatively simple such that we can
omit special low-level lemmas. We prove in a single lemma the preservation of
data and return address consistency and add in a second step control consistency.

Lemma 10.52 (Data consistency) Let (te, ft , gst) be a translatable C0 pro-
gram, let the valid C0 configuration c be consistent with assembly configuration
d via allocation function alloc, and let the head of the current program rest
s = hd(s2l(c.prog)) be a return statement. Further, assume that there is suffi-
cient memory, that the next transition of the C0 machine does not fail, that the
number of Return statements in the program rest corresponds to the recursion
depth, and, finally, that the preconditions for the execution of codestmt(s) are
fulfilled.

Then, the assembly machine will eventually reach a configuration d′ which
is data and return address consistent with the next C0 configuration c′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ hd(s2l(c.prog)) = Return(re) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem),Return(re)))
∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|

=⇒ ∃t, d′ : d
t,fhra(te,ft,sc(c.mem),d.mm,|c.mem.lm|−1))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rangec,rangea

d′

∧consisd(te, ft , c′, alloc, d′) ∧ consisra(te, ft , c′, d′)
∧consiscode(te, ft , c′, d′) ∧ d′.spr = d.spr

238 Correct Compilation of Statements

Proof We present only the main idea of this proof. We divide the execution
of the return code into three phases: the expression evaluation, the assignment
of the return value, and the update of the stack.

Observe that allocation consistency is preserved from c to c′ because all valid
g-variables in c′ have also been valid in the original configuration7 and their
(C0) address and size has not changed by execution of the return statement.

The correctness of expression evaluation follows from Theorem 9.2.
We prove for the code which copies the return value that it preserves value

and pointer consistency and that the frame headers are not changed. We name
the memory configuration after assignment of the return value (but before the
removal of the top most stack frame) m′. We combine the low-level correctness
lemma for load word instructions8 with Lemmas 10.32 and 10.33 where we
instantiate ofs = 0 and (if the return expression is not elementary) gr = leval(re).
For the preconditions of this lemma we argue that the types of expression and
return destination match because the predicate rdest

√
holds in configuration c.

For the same reason we know that the return destination is a valid g-variable.
That the assembly destination address corresponds to the allocated address
of the return destination follows from frame header consistency. Finally, we
conclude from correct expression evaluation (cf. Theorem 9.2 on page 189) that
the correct value (for elementary return expressions) or the correct address (for
big return expressions) of the right expression is stored in the source register.
The lemma guarantees value, pointer, and allocation consistency of m′ with the
new assembly configuration. Simple arguments show that these are preserved
also after removing the top most stack frame. The lemma also ensures that
the memory of the frame headers is not changed during the update because
allocated region of valid g-variables and frame headers do not overlap.

Finally, it remains to show that we correctly update register rlframe with
the value from the frame header of the previous frame and that we correctly
jump to the return address. Assume, that the corresponding code executes
from assembly configuration di to dj . We get from the low-level correctness of
the code

dj .mm = di.mm

dj .dpc = n2i(fhra(te, ft , sc(c.mem), di.mm, |c.mem.lm| − 1))

dj .pcp = dj .dpc + 4

dj .gpr !rlframe = n2i(fhpsp(te, ft , sc(c.mem), di.mm, |c.mem.lm| − 1))

Value and pointer consistency have not changed between di and dj or by
removing the top most frame from the stack because we have not created new
reachable g-variables (thus, we have for all current g-variables value and pointer
consistency also in c) and have also not updated there value in the assembly or
C0 machines.

We ensure the remaining properties of data consistency in the following way.

• Register consistency consisr requires mainly the correctness of rlframe

which follows from consis fh. The rest follows from consisr in the old

7Observe that the reverse is not true because the local variables from the current stack
frame in c are not valid any more after the return statement has been executed

8The corresponding lemma is in the style of Lemma 6.7 on page 116. Its concrete
formulation is not used here, so we omit it.

10.9. Return 239

configuration and the fact that the set of reachable heap variables has not
been extended.

• For frame header consistency consis fh we just have to show that abase lm

and frame headers have not changed from c to c′.

• Return address consistency consisra holds because the first return of
c.prog and the corresponding entry in the stack have been removed; for
all other return addresses in the frame headers, the situation has not
changed. q.e.d.

Theorem 10.53 (Correctness of returns)
Assume the same preconditions as in the previous lemma. Then, the assembly
machine will eventually reach a configuration d′ which is completely consistent
with the next C0 configuration c′.

c ∈ conf
√

(te, ft) ∧ consis(te, ft , c, alloc, d) ∧ (te, ft , gst(c.mem)) ∈ xltblprog
∧ hd(s2l(c.prog)) = Return(re) ∧ δC0(te, ft , c) = bc′c
∧ addrmax ≤ 232 ∧ availmem(addrmax, te, ft , c)
∧ asmpre(d, rangec, codestmt(te, ft , gst(c.mem), lst top(c.mem),Return(re)))
∧#rettop(s2l(c.prog)) + 1 = |c.mem.lm|

=⇒ ∃t, d′ : d
t,d′.dpc−−−−−−−−−→

rangec,rangea

d′

∧consis(te, ft , c′, alloc, d′)
∧d′.spr = d.spr

Proof The main part of the theorem follows from Lemma 10.52. It only
remains to prove control consistency.

From Lemma 10.52 we know that the program counters point to the address
ra which was stored in the return address field of the old frame header. We
instantiate return address consistency consisra(te, ft , c′, d′) with i = 0. Then,
we know that there exists some function call statement s such that the successor
statement of s follows then original return statement Return(re) in the program
rest of c and the return address ra points directly behind the code of s. Now,
we can apply Theorem 10.5 – instantiating with the function call statement and
not with the original return – to show that we will finally reach the beginning
of the next statement in the program rest. q.e.d.

Chapter 11

Implementation Correctness

In this chapter we briefly sketch the correctness proof of the compiler im-
plementation which has been done by E. Petrova in [Pet07]. The goal of
this presentation is to give the reader some intuition how the combination of
Petrova’s result with our simulation theorem fits the Verisoft context.1

Roughly speaking, Petrova has proved that her compiler implementation and
our compiling specification produce for a given C0 program the same assembly
code. This is illustrated in Figure 11.1.

More formally speaking, she proves that the diagram in Figure 11.2 com-
mutes, i.e., that when starting in the left upper corner both ways gives the
same result, namely codes(absC0(p)) = absasm(code i(p)). In this diagram

• code i represents the compilation via the compiler implementation,

• codes represents the compiling specification from Chapter 7, and

• absC0 and absasm are so-called abstraction functions (cf. [MN03]) which
abstract C0 and assembly programs which are represented as C0 data
structures in the memory of the compiler implementation to corresponding
C0 and assembly programs in Isabelle / HOL where they are represented
by abstract data types.

Petrova’s verification of the compiler implementation has been finished
roughly one year before the verification of the simulation theorem from this
thesis had been completed. However, the code generation algorithm has been
improved to some extent after her final version. Restricted project resources
have prevented us from adapting her large proofs to the current version of the
code generation algorithm. Instead, we have proved the simulation theorem in
two versions: one for the old code generation algorithm (which perfectly fits
Petrova’s results) and one for the new algorithm.

In this thesis we have presented the new code generation algorithm. However,
differences to the old version are restricted to just a few places.

• Code generation for unary operators, address-of, and dereferencing of
pointers has been slightly improved and needs fewer assembly instructions.

1 This combination of both results has been formalized recently by E. Petrova.

241

242 Implementation Correctness

p: C0 source
code

compiling
specification

compiler
implementation

codes(p) codei(p)
?≡

Figure 11.1: Correctness of the Compiler Implementation

p

code i(p)

absC0(p)

codes(absC0(p))

co
de

i

co
de

s

absC0

absasm

Figure 11.2: Correctness Theorem for the Compiler Implementation

• We have filled a delay slot in the center code for lazy binary operators
with useful code instead of a nop instruction.

• A deprecated field in the frame headers has been removed.

• The code generation for assignments has been improved and unified. In
particular, assignments, returns, and function calls can now all use the
same code templates.

• The semantics of heap allocation have been improved. Now, the code
returns a null pointer in case that there is no more heap memory available.
In the old version, this run-time failure was not observable by the C0
program. For this reason, the new simulation theorem uses a meaningful
instantiation for the availheap predicate (cf. Section 8.3 on page 181) while
the old version just used the predicate which always returns true.

Chapter 12

Summary and Future Work

We have presented in this thesis the formal verification of a simple, non-
optimizing compiler for the C-like language C0; this includes the definition of a
small-step semantics for the C0 language. All results have been formalized and
mechanically checked in the interactive theorem prover Isabelle / HOL.

In contrast to most related work, the work presented in this thesis is geared
to usage in the context of pervasive system verification. Accordingly, the C0
language has been designed to be powerful enough to implement system software
while remaining ‘neat’ to allow for efficient formal verification of medium sized
applications. Additionally, both the C0 semantics and the compiler correctness
proof have been done in a small-step manner, allowing for the application of
the compiler correctness theorem also for interleaving and non-terminating
programs.

Furthermore, our compiler correctness theorem shows total correctness of
the compiled code. That is, for every state of the source program’s computation,
the target machine will eventually reach a corresponding state, in which the
values of all reachable C0 variables are properly represented. Without a total
correctness theorem, it would not be possible to transfer functional correctness
properties of source programs down to the compiled code. The correctness
theorem also includes lifting resource restrictions from the target layer to the
C0 layer. If these resource restrictions have been discharged at the C0 layer,
we can be sure that they also hold for the compiled code.

To the best of our knowledge, our work is the first compiler correctness result
which simultaneously proves a small-step simulation theorem between source
programs in a non-toy input language and compiled code for a realistic target
architecture, considers resource restrictions and other special requirements of
pervasive verification, and argues about the complete compilation chain from
source to target language (both represented by abstract data types in the
theorem prover) instead of focusing on just a few parts of the compiler (like
optimization patterns).

Our results have been successfully used as basis for several other pieces of work
in the Verisoft project. We sketch the most important examples.

• As noted in Section 4.4.3, the small-step compiler correctness theorem
is being used for the integration of (verified) inline assembly code into
(verified) C0 applications. Without such a ‘semantics’ for inline assembly

243

244 Summary and Future Work

code, the system layer software in Verisoft (and the libraries which allow
invocation of operating system services from user applications) could
not have been implemented in a high-level programming language as
C0. In [ST08], the authors give several examples for the verification of
so-called CVM primitives which combine C0 and inline assembly code.

• The property transfer from abstract to concrete system layers according
to the Verisoft approach to system verification heavily depends on the
compiler correctness theorem. The formal pervasive verification of a paging
mechanism gives a concrete example of this approach [ASS08]. This result
provides strong confidence that our notion of compiler correctness is
indeed appropriate for the targeted field of application.

• The simulation theorem from this thesis and the correctness theorem about
the compiler implementation from [Pet07] have been formally combined
by E. Petrova.

Finally, we discuss possible directions of future work.

Integration of a Garbage Collector. The compiler correctness theorem
presented in this thesis only argues about reachable memory objects. This
simplifies the integration of a garbage collector like the copying garbage collector
which has been verified by E. Petrova using the C0 Hoare logic environment.

The compiler correctness theorem and the correctness statement for the
garbage collector have not yet been formally combined. However, this is a
interesting direction of future work as no formally verified integration of a
garbage collector into a verified compiler is known to us.

Memory Usage in the Presence of a Garbage Collector. Pavlova ana-
lyzes in [BPS05] heap memory consumption by counting how many memory
objects are being allocated. In this thesis we sketched ideas how this idea can
be realized using our compiler correctness theorem and the C0 verification envi-
ronment from [Sch06]. However, both methods ignore deallocation of memory
(regardless of whether this is done manually or using a garbage collector).

Without a garbage collector, a heap overflow occurs once the size of all
allocated heap objects exceeds the heap size. In the presence of a garbage
collector, a heap overflow only occurs if the size of the reachable heap objects
exceeds the heap size.

At the layer of the C0 small-step semantics, we can easily track the reachable
heap objects because all stack frames (and thus all root pointers for the reacha-
bility analysis) are visible. Here, we can precisely analyze heap usage even in
the presence of a garbage collector. However, formally proving at the small-step
layer that a program never uses too much heap memory would be quite costly
because a lot of work from the program’s functional verification in the C0
Hoare logic would have to be repeated. The same holds for proofs regarding
the maximum recursion depth of a program (which is closely connected to its
maximal stack usage).

The development of a methodology to discharge these kinds of properties
already at the Hoare logic layer is interesting future work. Obviously, such a
methodology has to keep track of the program’s recursion depth and of the

Summary and Future Work 245

root pointers for the reachability analysis. How exactly this information is best
represented and how the results can be transferred down the semantic stack
has to be elaborated.

Unified Framework for Verified Optimizing Compilers. The Verifix
project [GZ99] and Leroy’s Clight compiler [BDL06, Ler06] present nicely
structured frameworks for compiler verification. However, their work is not
completely compatible with the requirements of pervasive verification. In
contrast, our work matches these requirements, while it does not address the
issue of layered compilation or optimization.

We propose1 to establish a standardized framework for compiler verification
which allows to separately verify different parts of compilers (optimization
patterns, front end, instruction selection, . . .) and is able to deal with different
notions of correctness (adjusted to different fields of application). To make
the latter manageable it is obviously necessary to develop a (small) set of
standard correctness statements and to make sure that all components which
are verified with respect to a given correctness statements fit seamlessly together.
By building a compiler from components which all respect such a correctness
statement one could obtain a compiler which also respects this correctness
statement.

Such a framework could considerably increase the impact of formally verified
compilers because efforts invested by different groups into the verification of
different parts of a compiler could be easily integrated into a complete product.

1inspired by discussions with Andrew Appel and Helmut Seidl

Appendices

247

Appendix A

Concrete C0 Syntax

In this appendix we print the grammar for the concrete C0 syntax. Section A.1
lists the C0 grammar based on these tokens. In Section A.2 you can see the
rules used by the C0 lexer to map sequences of characters to tokens.

A.1 C0 Grammar

The start rule of the C0 grammar is translation_unit.

translation_unit:

external_declaration

| translation_unit external_declaration

external_declaration:

function_definition

| function_declaration

| EXTERN function_declaration

| declaration

declaration:

var_declaration

| EXTERN var_declaration

| type_definition

| struct_id_definition

function_definition:

type_specifier function_name ’(’ parameter_list ’)’ function_body

| type_specifier function_name ’(’ ’)’ function_body

function_declaration:

type_specifier function_name ’(’ parameter_list ’)’ ’;’

| type_specifier function_name ’(’ ’)’ ’;’

function_name:

ID

| ’*’ ID

function_body:

’{’ ’}’

249

250 Concrete C0 Syntax

| ’{’ statement_list ’}’

| ’{’ var_declaration_list ’}’

| ’{’ var_declaration_list statement_list ’}’

compound_statement:

’{’ ’}’

| ’{’ statement_list ’}’

var_declaration_list:

var_declaration

| var_declaration_list var_declaration

statement_list:

statement

| statement_list statement

type_definition:

TYPEDEF type_specifier identifier ’;’

struct_id_definition:

STRUCT ID ’{’ var_declarations ’}’ ’;’

| STRUCT ID ’;’

struct_type:

STRUCT ID

identifier_list:

identifier

| identifier_list ’,’ identifier

identifier:

identifier2

| ’*’ identifier

identifier2:

ID

| identifier2 ’[’ numeric_constant_expression ’]’

parameter_spec:

type_specifier identifier

parameter_list:

parameter_spec

| parameter_list ’,’ parameter_spec

type_declaration:

type_specifier identifier_list ’;’

constant:

TRUE

| FALSE

| NIL

| NUMERIC_CONSTANT

| UNSIGNED_NUMERIC_CONSTANT

A.1. C0 Grammar 251

| CHAR_CONSTANT

struct_literal:

’.’ ID ’=’ complex_literal

| ’.’ ID ’=’ rexpression

numeric_constant_expression:

’-’ numeric_constant_expression %prec UNARY_MINUS

| numeric_constant_expression ’+’ numeric_constant_expression

| numeric_constant_expression ’*’ numeric_constant_expression

| numeric_constant_expression ’-’ numeric_constant_expression

| numeric_constant_expression SHIFTLEFT numeric_constant_expression

| numeric_constant_expression SHIFTRIGHT numeric_constant_expression

| NUMERIC_CONSTANT

| UNSIGNED_NUMERIC_CONSTANT

| CHAR_CONSTANT

| ’(’ numeric_constant_expression ’)’

struct_literal_list:

struct_literal

| struct_literal_list ’,’ struct_literal

constant_list:

rexpression

| constant_list ’,’ rexpression

complex_literal:

’{’ complex_literal_list ’}’

| ’{’ constant_list ’}’

| ’{’ struct_literal_list ’}’

| STRING_LITERAL

complex_literal_list:

complex_literal

| complex_literal_list ’,’ complex_literal

statement:

lexpression ’=’ rexpression ’;’

| lexpression ’=’ complex_literal ’;’

| lexpression ’=’ NEW ’(’ type_specifier ’)’ ’;’

| lexpression ’=’ ID ’(’ rexpr_list ’)’ ’;’

| lexpression ’=’ ID ’(’ ’)’ ’;’

| ID ’(’ rexpr_list ’)’ ’;’

| ID ’(’ ’)’ ’;’

| WHILE ’(’ rexpression ’)’ compound_statement

| FOR ’(’ lexpression ’=’ rexpression ’;’

rexpression ’;’

lexpression ’=’ rexpression

’)’

compound_statement

| RETURN rexpression ’;’

| if_statement

| ASM ’{’ asm_instruction_list ASMEND

| ’;’

252 Concrete C0 Syntax

if_statement:

IF ’(’ rexpression ’)’ compound_statement

| IF ’(’ rexpression ’)’ compound_statement ELSE compound_statement

| IF ’(’ rexpression ’)’ compound_statement ELSE if_statement

rexpr_list:

rexpression

| rexpr_list ’,’ rexpression

rexpression:

basic_rexpr %prec BASICREXPR

| constant

| rexpression ’|’ rexpression

| rexpression ’&’ rexpression

| BITWISENEGATION rexpression

| rexpression SHIFTLEFT rexpression

| rexpression SHIFTRIGHT rexpression

| rexpression XOR rexpression

| rexpression LOGICALOR rexpression

| rexpression LOGICALAND rexpression

| rexpression EQUALS rexpression

| rexpression NOTEQUALS rexpression

| rexpression ’<’ rexpression

| rexpression ’>’ rexpression

| rexpression LE rexpression

| rexpression GE rexpression

| rexpression ’+’ rexpression

| rexpression ’-’ rexpression

| rexpression ’*’ rexpression

| rexpression ’/’ rexpression

| rexpression ’%’ rexpression

| ’-’ rexpression %prec UNARY_MINUS

| ’!’ rexpression

| ’&’ lexpression %prec ADDRESSOF

| INT ’(’ rexpression ’)’

| UNSIGNED ’(’ rexpression ’)’

| CHAR ’(’ rexpression ’)’

lexpression:

ID

| ’*’ lexpression %prec DEREFERENCE

| lexpression ’[’ rexpression ’]’

| lexpression ’.’ ID

| lexpression ARROW ID

| ’(’ lexpression ’)’

basic_rexpr:

ID

| ’*’ lexpression %prec DEREFERENCE

| basic_rexpr ’[’ rexpression ’]’

| basic_rexpr ’.’ ID

| basic_rexpr ARROW ID

| ’(’ rexpression ’)’

A.1. C0 Grammar 253

type_specifier:

elementary_type

| struct_type

| ID

elementary_type:

INT

| BOOL

| UNSIGNED INT

| CHAR

var_declarations:

var_declaration

| var_declaration var_declarations

var_declaration:

type_declaration

asm_gpr:

R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9

| R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19

| R20 | R21 | R22 | R23 | R24 | R25 | R26 | R27 | R28 | R29

| R30 | R31

asm_spr:

SR | ESR | ECA | EPC | EDPC | EDATA | RM

| IEEEF | FCC | PTO | PTL | EMODE | MODE

asm_constant:

’-’ asm_constant

| NUMERIC_CONSTANT

| UNSIGNED_NUMERIC_CONSTANT

| CHAR_CONSTANT

asm_immediate:

asm_constant

| ASM_SIZEOF ’(’ rexpression ’)’

| ASM_OFFSET ’(’ ID ’)’

| ASM_OFFSET_LO ’(’ ID ’)’

| ASM_OFFSET_HI ’(’ ID ’)’

asm_instruction_list:

asm_instruction

| asm_instruction_list asm_instruction

asm_instruction:

ASM_ADD ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_ADDI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_SUB ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SUBI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_AND ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_ANDI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_OR ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

254 Concrete C0 Syntax

normal asmcomment asmcomment

‘asm’

‘}’

‘/*’

‘*/’

‘/*’

‘*/’

Figure A.1: Operation Modes of the C0 Lexer

| ASM_ORI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_XOR ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_XORI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_BNEZ ’(’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_BEQZ ’(’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_TRAP ’(’ asm_immediate ’)’ ’;’

| ASM_MOVI2S ’(’ asm_spr ’,’ asm_gpr ’)’ ’;’

| ASM_MOVS2I ’(’ asm_gpr ’,’ asm_spr ’)’ ’;’

| ASM_LW ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_SW ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_SEQ ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SGE ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SGR ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SLE ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SLS ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SNE ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SLSI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_SLL ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SLLI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_SRL ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_gpr ’)’ ’;’

| ASM_SRLI ’(’ asm_gpr ’,’ asm_gpr ’,’ asm_immediate ’)’ ’;’

| ASM_RFE ’(’ ’)’ ’;’

A.2 C0 Lexer

The C0 lexer distinguishes four modes of operation: normal for normal C0
code, asm for inline assembly code, comment for multi-line comments, and
asmcomment for multi-line comments in inline assembly code. If the lexer
encounters an ASM token in normal mode it switches to asm mode; it switched
back to normal mode when hitting a closing brace (cf. Figure A.1). The
character sequence ‘/*’ starts a multi-line comment in assembly or normal
mode. Multi-line comments end with the following ‘*/’.

A double slash introduces a comment which ends with the current line.
White spaces (space, new line, tabulator) are ignored by the lexer except of
course for detecting token boundaries.s

In Table A.1 you see the regular expressions which match complex tokens
like identifiers. In Tables A.2 and A.3 we list the mapping of characters to
tokens in normal and assembly mode, respectively.

A.2. C0 Lexer 255

Table A.1: Regular Expressions for Some Complex Tokens

Regular Expression Token

"(\\"|[^\n"]*)*" STRING LITERAL
[a-zA-Z][a-zA-Z0-9_]* ID
(0|([1-9][0-9]*)) NUMERIC CONSTANT
(0|([1-9][0-9]*))u UNSIGNED NUMERIC CONSTANT
’.’ CHAR CONSTANT
’\\[0-3][0-7]{2}’ CHAR CONSTANT

Table A.2: Mapping of Characters to Tokens in Normal Mode

Character String Token

int INT
unsigned UNSIGNED
bool BOOL
char CHAR
typedef TYPEDEF
struct STRUCT
NULL NIL
if IF
else ELSE
for FOR
while WHILE
true TRUE
false FALSE
return RETURN
new NEW
extern EXTERN
-> ARROW
<= LE
>= GE
== EQUALS
!= NOTEQUALS
&& LOGICALAND
|| LOGICALOR
<< SHIFTLEFT
>> SHIFTRIGHT
~ BITWISENEGATION
^ XOR
asm ASM

256 Concrete C0 Syntax

Table A.3: Mapping of Characters to Tokens in Assembly Mode

Character String Token

emode EMODE
mode MODE
asm_sizeof ASM SIZEOF
asm_offset ASM OFFSET
asm_offset_lo ASM OFFSET LO
asm_offset_hi ASM OFFSET HI
addi ASM ADDI
add ASM ADD
andi ASM ANDI
and ASM AND
subi ASM SUBI
sub ASM SUB
xori ASM XORI
xor ASM XOR
seq ASM SEQ
sge ASM SGE
sgr ASM SGR
sle ASM SLE
sls ASM SLS
sne ASM SNE
slsi ASM SLSI
sll ASM SLL
slli ASM SLLI
srl ASM SLE
srli ASM SRLI
rfe ASM RFE
ori ASM ORI
or ASM OR
lw ASM LW
sw ASM SW
bnez ASM BNEZ
beqz ASM BEQZ
trap ASM TRAP
movi2s ASM MOVI2S
movs2i ASM MOVS2I
sr SR
esr ESR
eca ECA
epc EPC
edpc EDPC
edata EDATA
rm RM
ieeef IEEEF
fcc FCC
pto PTO
ptl PTL
r0 R0
· · · · · ·
r31 R31
} ASMEND

Appendix B

Mapping to Lemmas in Isabelle / HOL

This section gives a mapping from lemmas, corollaries, and theorems in this
thesis to the corresponding formal proofs in the Isabelle theories.

Name Page Name in Isabelle

Lemma 5.1 69 delta first statement executes invariant
Lemma 5.2 79 eval lval get dataslice correct
Lemma 5.3 84 type correct aux base transform
Lemma 5.4 84 type correct aux invariant
Lemma 5.5 84 type correct memory invariant
Lemma 5.6 84 type correct heap invariant
Lemma 5.7 84 init value type correct aux
Lemma 5.8 85 initialize content type correct aux
Corollary 5.9 85 initialize vars type correct
Lemma 5.10 85 apply unop type correct
Lemma 5.11 85 get dataslice type correct aux
Lemma 5.12 86 eval prim val type correct
Lemma 5.13 86 eval complex val type correct
Theorem 5.14 87 eval type correct
Theorem 5.14 87 eval content valid ptrs
Lemma 5.15 92 stmt in proctable valid successors
Theorem 5.16 92 delta aux valid programrest
Theorem 5.17 96 delta valid conf
Axiom 6.1 103 data2cell2data
Axiom 6.2 103 cell2data2cell
Lemma 6.3 104 instr2cell2instr
Lemma 6.4 105 intwd2natwd2intwd
Lemma 6.5 105 natwd2intwd2natwd
Lemma 6.6 108 ASMcore consis
Lemma 6.7 116 addi execution woi
Lemma 6.8 117 beqz addi execution2 woi
Lemma 6.9 118 asm executes woi append
Lemma 6.10 118 asm exec precond woi take
Corollary 6.11 119 asm exec precond woi hd
Corollary 6.12 119 asm exec precond woi append2
Lemma 6.13 119 asm exec precond woi append

257

258 Mapping to Lemmas in Isabelle / HOL

Name Page Name in Isabelle

Corollary 6.14 119 asm exec precond woi tl
Lemma 7.1 127 relative code base of sub stmt
Lemma 7.2 131 asize type dvd 4
Lemma 7.3 134 abase correct local global
Theorem 8.1 171 eval lval reachable gvars
Theorem 8.2 172 mem update reachable nameless gvars subset
Theorem 8.3 183 compiler correct
Lemma 9.1 188 correctly compiled expression asm

executes
Theorem 9.2 189 expression correctly compiled
Lemma 9.3 190 unsigned mult eq signed mult
Lemma 9.4 190 eq regs same eq ptr
Lemma 10.1 195 control code last in while correct
Lemma 10.2 195 control code last stmt in cond aux
Lemma 10.3 197 control code last stmt in cond
Theorem 10.4 197 control code non return correct
Theorem 10.5 198 control consistency no return
Lemma 10.6 199 fst alloc dvd 4
Lemma 10.7 199 fst alloc ge code range
Lemma 10.8 200 reachable gvars allocated in mem
Lemma 10.9 200 alloc address range range contains
Lemma 10.10 200 g vars frame header not overlap
Lemma 10.11 200 elementary gvar no sub gvars not range

overlap
Lemma 10.12 201 gvar not range overlap or same alloc
Lemma 10.13 201 content consistent mem update gvar e p

consistent invariant inside
Lemma 10.14 202 content consistent mem update gvar e

consistent invariant outside
Corollary 10.15 203 content consistent mem update gvar p

consistent invariant outside
Lemma 10.16 204 get dataslice content consistent
Corollary 10.17 204 mem part word update e p consistent

invariant
Lemma 10.18 205 mem part word update gvar fh consistent

invariant
Lemma 10.19 205 mem part word update gvar ra consistent

invariant
Lemma 10.20 206 mem update heap consistent invariant
Lemma 10.21 206 mem update ws consistent invariant
Theorem 10.22 207 content consistent mem update d

consistent invariant
Corollary 10.23 207 mem part word update d consistent

invariant
Lemma 10.24 208 ifte correct true case
Lemma 10.25 209 ifte correct false case
Theorem 10.26 209 ifte correct
Lemma 10.27 210 loop correct true case

Mapping to Lemmas in Isabelle / HOL 259

Name Page Name in Isabelle

Lemma 10.28 211 loop correct false case
Theorem 10.29 211 loop correct
Lemma 10.30 212 write to memory code behavior correct aux
Lemma 10.31 213 big assignment code correct
Lemma 10.32 215 part of assignment code correct aux
Lemma 10.33 216 part of assignment code correct aux
Lemma 10.34 217 assign assignment code correct
Lemma 10.35 218 assign correct aux
Theorem 10.36 219 assign correct
Lemma 10.37 220 complex val assign code correct; the induc-

tive version of the lemma is complex val assign
code correct aux

Lemma 10.38 221 integrated into assign correct aux
Theorem 10.39 221 integrated into assign correct
Lemma 10.40 222 heap alloc code correct failure
Lemma 10.41 223 heap alloc code correct success
Lemma 10.42 224 combination of palloc gvar e consistent new

hm var and palloc gvar e consistent new hm
var

Lemma 10.43 225 delta palloc reachable gvars subset
Lemma 10.44 226 combination of palloc correct aux failure

and palloc correct aux success
Theorem 10.45 228 palloc correct
Lemma 10.46 230 parameter passing code correct aux
Corollary 10.47 232 parameter passing code correct
Lemma 10.48 234 SCall misc code correct
Lemma 10.49 234 extend stack reachable nameless gvars

subset
Lemma 10.50 235 scall correct aux
Theorem 10.51 237 scall correct
Lemma 10.52 237 return correct aux
Theorem 10.53 239 return correct

Bibliography

[ASS08] Eyad Alkassar, Artem Starostin, and Norbert Schirmer. Formal
pervasive verification of a paging mechanism. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Fourteenth International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2008), volume 4963 of LNCS, pages 109–123.
Springer, 2008.

[AU73] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,
Translation and Compiling, volume II: Compiling. Prentice-Hall,
1973.

[BBM+07] Jörg Bormann, Sven Beyer, Adriana Maggiore, Michael Siegel,
Sebastian Skalberg, Tim Blackmore, and Fabio Bruno. Complete
formal verification of TriCore2 and other processors. In DVCon
2007, February 2007.

[BD96] Egon Börger and Igor Durdanovic. Correctness of compiling Occam
to Transputer code. The Computer Journal, 39(1):52–92, 1996.

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verifica-
tion of a C compiler front-end. In FM 2006: Int. Symp. on Formal
Methods, volume 4085 of Lecture Notes in Computer Science, pages
460–475. Springer-Verlag, 2006.

[Ber03] Stefan Berghofer. Proofs, Programs and Executable Specifications
in Higher Order Logic. PhD thesis, Technical University of Munich,
2003.

[Bey05] Sven Beyer. Putting It All Together: Formal Verification of the
VAMP. PhD thesis, Saarland University, Computer Science De-
partment, March 2005.

[BGH+06] Jewgenij Botaschanjan, Alexander Gruler, Alexander Harhurin,
Leonid Kof, Maria Spichkova, and David Trachtenherz. Towards
modularized verification of distributed time-triggered systems. In
Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM,
volume 4085 of Lecture Notes in Computer Science, pages 163–178.
Springer, 2006.

[BGL04] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured
approach to proving compiler optimizations based on dataflow
analysis. In Jean-Christophe Filliâtre, Christine Paulin-Mohring,

261

262 Bibliography

and Benjamin Werner, editors, TYPES, volume 3839 of Lecture
Notes in Computer Science, pages 66–81. Springer, 2004.

[BGZ03] Clark Barrett, Benjamin Goldberg, and Lenore Zuck. Run-time
validation of speculative optimizations using CVC. Electronic Notes
in Theoretical Computer Science, 89(2), 2003.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D.
Young. An approach to systems verification. Journal of Automated
Reasoning, 5(4):411–428, 1989.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach,
and Wolfgang Paul. Instantiating uninterpreted functional units
and memory system: Functional verification of the VAMP. In
D. Geist and E. Tronci, editors, Proc. of the 12th Advanced Research
Working Conference on Correct Hardware Design and Verification
Methods (CHARME), volume 2860 of Lecture Notes in Computer
Science, pages 51–65. Springer, 2003.

[BJK+06] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach,
and Wolfgang Paul. Putting it all together: Formal verification of
the VAMP. International Journal on Software Tools for Technology
Transfer, 8(4–5):411–430, August 2006.

[BKLP04] Christoph Berg, Michael Klein, Dirk Leinenbach, and Wolfgang
Paul. Formal operational semantics of C0. Verisoft, Internal
Technical Report #8, 2004.

[BMW92] Deryck F. Brown, Hermano Moura, and David A. Watt. Actress:
an action semantics directed compiler generator. In Compiler
Compilers 92, volume 641 of Lecture Notes in Computer Science,
1992.

[BN02] Stefan Berghofer and Tobias Nipkow. Executing higher order logic.
In TYPES ’00: Selected papers from the International Workshop
on Types for Proofs and Programs, volume 2277 of Lecture Notes
in Computer Science, pages 24–40, London, UK, 2002. Springer.

[Boa96] Ariane 501 Inquiry Board. Ariane 5: Flight 501 failure. http://
esamultimedia.esa.int/docs/esa-x-1819eng.pdf, July 1996.

[BPH07] Jan O. Blech and Arnd Poetzsch-Heffter. A certifying code gen-
eration phase. Electronic Notes in Theoretical Computer Science,
190(4):65–82, 2007.

[BPS05] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider. Precise
analysis of memory consumption using program logic. In Bernhard
Aichernig and Bernhard Beckert, editors, 3rd International Confer-
ence on Software Engineering and Formal Methods (SEFM 2005),
5-9 September 2005, Koblenz, Germany, pages 86–95, 2005.

[BZ07] Nick Benton and Uri Zarfaty. Formalizing and verifying semantic
type soundness of a simple compiler. In PPDP ’07: Proceedings
of the 9th ACM SIGPLAN international symposium on Principles

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Bibliography 263

and practice of declarative programming, pages 1–12, New York,
NY, USA, 2007. ACM.

[CLN+00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark
Plesko, and Kenneth Cline. A certifying compiler for Java. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, pages 95–107,
New York, NY, USA, 2000. ACM.

[CM86] Laurian M. Chirica and David F. Martin. Toward compiler imple-
mentation correctness proofs. ACM Transactions on Programming
Languages and Systems, 8(2):185–214, 1986.

[Cur92] Paul Curzon. A verified compiler for a structured assembly lan-
guage. In Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and
Phillip J. Windley, editors, Proceedings of the 1991 International
Workshop on the HOL Theorem Proving System and its Applica-
tions. IEEE Computer Society Press, 1992.

[Cur94] Paul Curzon. The verified compilation of Vista programs. Presented
at the 1st ProCoS Working Group Meeting, Gentofte, Denmark.,
January 1994.

[Dal06] Iakov Dalinger. Formal Verification of a Processor with Memory
Management Units. PhD thesis, Saarland University, Computer
Science Department, July 2006.

[Dav03] Maulik A. Dave. Compiler verification: A bibliography. ACM
SIGSOFT Software Engineering Notes, 28(6), 2003.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the
verification of memory management mechanisms. In D. Borrione
and W. Paul, editors, Proceedings of the 13th Advanced Research
Working Conference on Correct Hardware Design and Verifica-
tion Methods (CHARME 2005), volume 3725 of Lecture Notes in
Computer Science, pages 301–316. Springer, 2005.

[Die96] Stephan Diehl. Semantics-Directed Generation of Compilers and
Abstract Machines. PhD thesis, Universität Saarbrücken, 1996.

[dRHH+01] Willem-Paul de Roever, Ulrich Hanneman, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, Job Zwiers, and Frank de Boer. Concur-
rency Verification. Cambridge University Press, Cambridge, UK,
2001.

[DV01] Axel Dold and Vincent Vialard. A mechanically verified compiling
specification for a Lisp compiler. In Ramesh Hariharan, Madhavan
Mukund, and V. Vinay, editors, Foundations of Software Tech-
nology and Theoretical Computer Sience, volume 2245 of Lecture
Notes in Computer Science, pages 144–155. Springer, 2001.

[Eme05] Pavel Emeliyanenko. Automatic verification of conditions for ab-
sence of interrupts. Diploma thesis, Saarland University, Computer
Science Department, 2005.

264 Bibliography

[GB03] Sabine Glesner and Jan O. Blech. Classifying and formally verifying
integer constant folding. Electronic Notes in Theoretical Computer
Science, 82(2), 2003.

[GGZ99] Wolfgang Goerigk, Thilo Gaul, and Wolf Zimmermann. Correct
programs without proof? On checker-based program verification.
In R. Berghammer and Y. Lakhnech, editors, Tool Support for
System Specification and Verification, Springer Series Advances in
Computing Science, pages 108–123, 1999.

[GH93] Yuri Gurevich and James K. Huggins. The semantics of the C pro-
gramming language. In Egon Börger, Gerhard Jäger, Hans Kleine
Büning, Simone Martini, and Michael M. Richter, editors, CSL ’92,
volume 702 of Lecture Notes in Computer Science, pages 274–308.
Springer, 1993.

[GH98] Wolfgang Goerigk and Ulrich Hoffmann. Rigorous compiler im-
plementation correctness: How to prove the real thing correct. In
Dieter Hutter, Werner Stephan, Paolo Traverso, and Markus Ull-
mann, editors, Applied Formal Methods – FM-Trends 98, volume
1641 of Lecture Notes in Computer Science, pages 122–136, 1998.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang
Paul. On the correctness of operating system kernels. In J. Hurd
and T. F. Melham, editors, 18th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 2005), volume
3603 of Lecture Notes in Computer Science, pages 1–16. Springer,
2005.

[GL01] Wolfgang Goerigk and Hans Langmaack. Compiler implementation
verification and trojan horses. IJDEA International Journal of
Differential Equations and Applications, 3(3), 2001.

[Gle03] S. Glesner. Using program checking to ensure correctness of com-
piler implementations. Journal of Universal Computer Science,
9(3):191–222, 2003. Special Issue on Compiler Optimization meets
Compiler Verification.

[GZ99] Gerhard Goos and Wolf Zimmermann. Verification of compilers.
In E.-R. Olderog and B. Steffen, editors, Correct System Design,
volume 1710 of Lecture Notes in Computer Science, pages 201–230.
Springer, 1999.

[GZ00] Gerhard Goos and Wolf Zimmermann. Verifying compilers and
ASMs. In Yuri Gurevich, Philipp W. Kutter, Martin Odersky,
and Lothar Thiele, editors, Abstract State Machines, Theory and
Applications, volume 1912, pages 177–202. Springer, Apr 2000.

[GZB05] Benjamin Goldberg, Lenore Zuck, and Clark Barrett. Into the loops:
Practical issues in translation validation for optimizing compilers.
Electronic Notes in Theoretical Computer Science, 132(1):53–71,
2005.

Bibliography 265

[HEK+07] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and
Stefan M. Petters. Towards trustworthy computing systems: Taking
microkernels to the next level. SIGOPS Oper. Syst. Rev., 41(4):3–
11, 2007.

[HGG+99] Andreas Heberle, Thilo Gaul, Wolfgang Goerigk, Gerhard Goos,
and Wolf Zimmermann. Construction of verified compiler front-
ends with program-checking. In Proceedings of PSI ’99: Andrei
Ershov Third International Conference on Perspectives Of System
Informatics, volume 1755 of Lecture Notes in Computer Science.
Springer Verlag, 1999.

[HIP05] Mark Hillebrand, Thomas In der Rieden, and Wolfgang Paul. Deal-
ing with I/O devices in the context of pervasive system verification.
In ICCD ’05, pages 309–316. IEEE Computer Society, 2005.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew
Tolmach. A principled approach to operating system construction
in Haskell. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 116–
128, New York, NY, USA, 2005. ACM Press.

[HJS93] C. A. R. Hoare, He Jifeng, and Augusto Sampaio. Normal form
approach to compiler design. Acta Informatica, 30(9):701–739,
1993.

[Hoa03] Tony Hoare. The verifying compiler: A grand challenge for com-
puting research. Journal of the ACM, 50(1):63–69, 2003.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, San Mateo, CA,
second edition, 1996.

[HTS02] Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying
source-code verification to a microkernel: The VFiasco project. In
Proc. 10th ACM SIGOPS, pages 165–169. ACM Press, 2002.

[IK05] Thomas In der Rieden and Steffen Knapp. An approach to the
pervasive formal specification and verification of an automotive
system. In FMICS ’05, pages 115–124. IEEE Computer Society,
2005.

[ISO99] ISO 9899:1999: Programming languages – C. International Stan-
dardization Organization, 1999.

[IT08] Tom In der Rieden and Alexandra Tsyban. CVM - a verified
framework for microkernel programmers. In 3rd intl Workshop on
Systems Software Verification (SSV08), to appear. Elsevier Science
B. V., 2008.

[Jav96] The JavaOS web-page at sun microsystems. http://java.sun.
com/developer/products/JavaOS/, 1996.

http://java.sun.com/developer/products/JavaOS/
http://java.sun.com/developer/products/JavaOS/

266 Bibliography

[Joy89] Jeffrey J. Joyce. Totally verified systems: Linking verified software
to verified hardware. In Miriam Leeser and Geoffrey Brown, editors,
Hardware Specification, Verification and Synthesis, volume 408 of
Lecture Notes in Computer Science, pages 177–201. Springer, 1989.

[KHCP00] Steve King, Jonathan Hammond, Rod Chapman, and Andy Pryor.
Is proof more cost-effective than testing? IEEE Transactions on
Software Engineering, 26(8):675–686, 2000.

[KN03] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers.
Theoretical Computer Science, 298(3):583–626, 2003.

[KP07] Steffen Knapp and Wolfgang J. Paul. Realistic worst case execution
time analysis in the context of pervasive system verification. In
Program Analysis and Compilation, Theory and Practice: Essays
Dedicated to Reinhard Wilhelm, volume 4444 of Lecture Notes in
Computer Science, pages 53–81. Springer, 2007.

[Kre06] Verena Kremer. Formally verified evaluation of expressions in a
simple compiler. Bachelor’s thesis, Saarland University, Computer
Science Department, 2006.

[Kro01] Daniel Kroening. Formal Verification of Pipelined Microprocessors.
PhD thesis, Saarland University, Computer Science Department,
2001.

[KSK06] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. Structuring
optimizing transformations and proving them sound. In Proceedings
of the 5th International Workshop on Compiler Optimization meets
Compiler Verification (COCV’06), Vienna, Austria, April 2006.

[Lei02] Dirk Leinenbach. Implementierung eines maschinell verifizierten
Prozessors. Diploma’s thesis, Saarland University, Computer Sci-
ence Department, 2002.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In 33rd symposium
Principles of Programming Languages, pages 42–54. ACM Press,
2006.

[Lev04] Raya Leviathan. Validation of Translation to Optimized Machine
Code. PhD thesis, Weizmann Institute of Science, Rehovot, Israel,
2004.

[Lie95] Jochen Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating systems principles, pages
237–250. ACM Press, 1995.

[LJWF02] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian
Frederiksen. Proving correctness of compiler optimizations by
temporal logic. In POPL, pages 283–294, 2002.

Bibliography 267

[LMC03] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically
Proving the Correctness of Compiler Optimizations. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2003), San Diego, California,
June 2003.

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers.
Automated soundness proofs for dataflow analyses and transfor-
mations via local rules. In Conference Record of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2005), Long Beach, California, January 2005.

[LP04] Dirk Leinenbach and Wolfgang Paul. Translation from C0 to DLX.
Verisoft, Internal Technical Report #5, 2004.

[LP08] Dirk Leinenbach and Elena Petrova. Pervasive compiler verification
– from verified programs to verified systems. In 3rd intl Workshop on
Systems Software Verification (SSV08), to appear. Elsevier Science
B. V., 2008.

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards
the formal verification of a C0 compiler: Code generation and
implementation correctness. In Bernhard Aichernig and Bernhard
Beckert, editors, 3rd International Conference on Software Engi-
neering and Formal Methods (SEFM 2005), 5-9 September 2005,
Koblenz, Germany, pages 2–11, 2005.

[MIR04] The Motor Industry Research Association (MIRA), Ltd., UK.
MISRA-C:2004 — Guidelines for the use of the C language in
critical systems, 2004.

[MN03] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. In F. Baader, editor, CADE’03, volume 2741 of
Lecture Notes in Computer Science, pages 121–135. Springer, 2003.

[MO97] Markus Müller-Olm. Modular Compiler Verification: A Refinement-
Algebraic Approach Advocating Stepwise Abstraction, volume 1283
of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
New York, 1997.

[Moo88] J S. Moore. Piton: A verified assembly level language. Technical
Report 22, Comp. Logic Inc. Austin, Texas, 1988.

[Moo03] J S. Moore. A grand challenge proposal for formal methods: A
verified stack. In Bernhard K. Aichernig and T. S. E. Maibaum,
editors, 10th Anniversary Colloquium of UNU/IIST, volume 2757
of Lecture Notes in Computer Science, pages 161–172. Springer,
2003.

[MP67] John McCarthy and James Painter. Correctness of a compiler for
arithmetic expressions. In J. T. Schwartz, editor, Mathematical
Aspects of Computer Science, volume 19 of Proceedings of Symposia
in Applied Mathematics, pages 33–41. American Mathematical
Society, 1967.

268 Bibliography

[MP00] Silvia M. Müller and Wolfgang J. Paul. Computer Architecture:
Complexity and Correctness. Springer, 2000.

[Mül07] Christian Müller. Verification of a simple cache system. Master’s
thesis, Saarland University, Computer Science Department, 2007.

[NBB+97] Peter Naur (ed.), J.W. Backus, F.L. Bauer, J. Green, C. Katz,
J. McCarthy, A.J. Perlis, H. Rutishauser, K. Samelson, B. Vaquois,
J.H. Wegstein, A. van Wijngaarded, and M. Woodger. Revised
report on the algorithmic language ALGOL 60. In Peter O’Hearn
and Robert D. Tennent, editors, Algol-like Languages, chapter 1,
pages 19–49. Birkhäuser, 1997. First appeared in Communica-
tions of the ACM 6(1):1-17, The Computer Journal 5:349-67, and
Numerische Mathematik 4:420-53, 1963.

[Nec97] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 106–119, New York, NY, USA,
1997. ACM.

[Nec98] George C. Necula. Compiling with proofs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1998.

[Nec00] George C. Necula. Translation validation for an optimizing compiler.
In PLDI’00: SIGPLAN Conference on Programming Language
Design and Implementation, pages 83–95. ACM, 2000.

[NL98] George C. Necula and Peter Lee. The design and implementation
of a certifying compiler. In PLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation, pages 333–344, New York, NY, USA, 1998. ACM.

[NN99] Hanne Riis Nielson and Flemming Nielson. Semantics with Appli-
cations: A Formal Introduction. John Wiley & Sons, Inc., New
York, NY, USA, 1992, revised online version: 1999.

[Nor98] Michael Norrish. C Formalised in HOL. PhD thesis, University of
Cambridge, Computer Laboratory, December 1998.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.

[NYS07] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to
certify realistic systems code: Machine context management. In
Klaus Schneider and Jens Brandt, editors, TPHOLs, volume 4732
of Lecture Notes in Computer Science, pages 189–206. Springer,
2007.

[OG76] Susan Owicki and David Gries. Verifying properties of parallel
programs: an axiomatic approach. Communications of the ACM,
19(5):279–285, 1976.

Bibliography 269

[Ohe01a] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,
Type Safety and Hoare Logic. PhD thesis, Technische Universität
München, 2001.

[Ohe01b] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Con-
currency and Computation: Practice and Experience, 13(13):1173–
1214, 2001.

[ORW95] Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The VLISP
verified PreScheme compiler. Lisp and Symbolic Computation,
8(1/2):111–182, 1995.

[OSR92] Sam Owre, Natarajan Shankar, and John M. Rushby. PVS: A
prototype verification system. In 11th International Conference
on Automated Deduction (CADE), volume 607 of Lecture Notes in
Computer Science, pages 748–752. Springer, 1992.

[Pal92a] Jens Palsberg. An automatically generated and provably correct
compiler for a subset of ADA. In IEEE International Conference
on Computer Languages, 1992.

[Pal92b] Jens Palsberg. Provably Correct Compiler Generation. PhD thesis,
Computer Science Department, Aarhus University, 1992. xii+224
pages.

[Pap98] Nikolaos S. Papaspyrou. A Formal Semantics for the C Program-
ming Language. PhD thesis, National Technical University of
Athens, 1998.

[Pau82] Lawrence Paulson. A semantics-directed compiler generator. In
POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 224–233,
New York, NY, USA, 1982. ACM.

[Pen06] Hristo Pentchev. Verification of expression evaluation. Bachelor’s
thesis, Saarland University, Computer Science Department, 2006.

[Pen07] Hristo Pentchev. Verified expression evaluation for multiplication
and division. Master’s thesis, Saarland University, Computer
Science Department, 2007.

[Pet07] Elena Petrova. Verification of the C0 Compiler Implementation on
the Source Code Level. PhD thesis, Saarland University, Computer
Science Department, 2007.

[Pol81] Wolfgang Polak. Compiler specification and verification. In J. Hart-
manis Gerhard Goos, editor, Lecture Notes in Computer Science,
volume 124 of Lecture Notes in Computer Science. Springer, 1981.

[PSS98a] Amir Pnueli, Ofer Shtrichman, and Michael Siegel. Translation
validation for synchronous languages. In ICALP ’98: Proceedings
of the 25th International Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science,
pages 235–246, London, UK, 1998. Springer-Verlag.

270 Bibliography

[PSS98b] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation
validation. In Bernhard Steffen, editor, TACAS ’98, volume 1384
of Lecture Notes in Computer Science, pages 151–166. Springer,
1998.

[PSS98c] Amir Pnueli, Ofer Strichman, and Michael Siegel. The code vali-
dation tool CVT: Automatic verification of a compilation process.
Software Tools for Technology Transfer, 2(2):192–201, 1998.

[Rin99] Martin Rinard. Credible compilation. Technical Report MIT-LCS-
TR-776, MIT Laboratory for Computer Science, March 1999.

[Riv04] Xavier Rival. Symbolic transfer functions-based approaches to
certified compilation. In Xavier Leroy, editor, 31st Symposium on
Principles of Programming Languages, pages 1–13. ACM, janvier
2004.

[Riv05] Xavier Rival. Traces Abstraction in Static Analysis and Program
Transformation. PhD thesis, École Normale Supérieure, Computer
Science Department, 2005.

[RM99] Martin Rinard and Darko Marinov. Credible compilation with
pointers. In Proceedings of the FLoC Workshop on Run-Time
Result Verification, Trento, Italy, July 1999.

[Sam75] Hanan Samet. Automatically proving the correctness of translations
involving optimized code. PhD thesis, Stanford University, May
1975.

[Sam78] Hanan Samet. Proving the correctness of heuristically optimized
code. Communications of the ACM, 21(4):570–582, 1978.

[Sch05] Norbert Schirmer. A verification environment for sequential imper-
ative programs in Isabelle/HOL. In F. Baader and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Rea-
soning, 11th International Conference, LPAR 2004, volume 3452
of Lecture Notes in Computer Science, pages 398–414. Springer,
2005.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs
in Isabelle/HOL. PhD thesis, Technical University of Munich, 2006.

[SSB01] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the
Java Virtual Machine. Springer, 2001.

[ST08] Artem Starostin and Alexandra Tsyban. Correct microkernel
primitives. In 3rd intl Workshop on Systems Software Verification
(SSV08), to appear. Elsevier Science B. V., 2008.

[Str02] Martin Strecker. Formal verification of a Java compiler in Isabelle.
In Conference on Automated Deduction, volume 2392 of Lecture
Notes in Computer Science, pages 63–77. Springer Verlag, 2002.

Bibliography 271

[Tch04] Andrei Tchaltsev. Self-Validating Compilation based on Phase
Semantics. PhD thesis, The University of Manchester, Computer
Science Department, 2004.

[TH92] Steven W. K. Tjiang and John L. Hennessy. Sharlit – a tool
for building optimizers. In PLDI ’92: Proceedings of the ACM
SIGPLAN 1992 conference on Programming language design and
implementation, pages 82–93, New York, NY, USA, 1992. ACM
Press.

[The99] The Common Criteria Project Sponsoring Organisations. Common
Criteria for Information Technology Security Evaluation version
2.1, Part I. http://www.commoncriteriaportal.org/public/
files/ccpart1v21.pdf, 1999.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development,
11(1):25–33, January 1967.

[Tve05] Sergey Tverdyshev. Combination of Isabelle / HOL with automatic
tools. In Bernhard Gramlich, editor, Frontiers of Combining Sys-
tems: 5th International Workshop, FroCoS 2005, Vienna Austria,
September 19–21, 2005. Proceedings, volume 3717 of Lecture Notes
in Computer Science, pages 302–309. Springer, 2005.

[Tzi07] Hristo Tzigarov. Extended oracle proof methods for Isabelle /
HOL: Reflection and SMV support. Diploma’s thesis, Saarland
University, Computer Science Department, 2007.

[Ver03] The Verisoft project. http://www.verisoft.de/, 2003.

[You89] William D. Young. A mechanically verified code generator. Journal
of Automated Reasoning, 5(4):493–518, 1989.

[ZD03] Wolf Zimmermann and Axel Dold. A framework for modelling the
semantics of expression evaluation with abstract state machines.
In Elvinia Riccobene Egon Börger, Angelo Gargantini, editor,
Abstract State Machines – Advances in Theory and Applications
10th International Workshop, ASM 2003, volume 2589 of Lecture
Notes in Computer Science, pages 391–406. Springer Verlag, 2003.

[ZG97] Wolf Zimmermann and Thilo Gaul. On the construction of correct
compiler back-ends: An ASM-approach. Journal of Universal
Computer Science, 3(5):504–567, May 1997.

[Zim06] Wolf Zimmermann. On the correctness of transformations in
compiler back-ends. In Leveraging Applications of Formal Methods
First International Symposium, volume 4313 of Lecture Notes in
Computer Science, pages 74–95, 2006.

[ZPF+02] Lenore Zuck, Amir Pnueli, Yi Fang, Benjamin Goldberg, and
Ying Hu. Translation and run-time validation of optimized code.
Electronic Notes in Theoretical Computer Science, 70(4), 2002.

http://www.commoncriteriaportal.org/public/files/ccpart1v21.pdf
http://www.commoncriteriaportal.org/public/files/ccpart1v21.pdf
http://www.verisoft.de/

272 Bibliography

[ZPFG02] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. VOC:
A translation validator for optimizing compilers. In Jens Knoop
and Wolf Zimmermann, editors, 1st International Workshop on
Compiler Optimization meets Compiler Verification COCV2002,
volume 65 of Electronic Notes in Theoretical Computer Science.
Elsevier, 2002.

[ZPFG03] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg.
VOC: A methodology for the translation validation of optimizing
compilers. Journal of Universal Computer Science, 9(3):223–247,
2003.

Index

⊥, 7
#, 7
#ret, 40
#rettop, 40
+32, 5
−32, 5
�l, 8
�a, 8
�l, 8
?, 5
�, 6
6�, 6
⊆, 6
∧b, 8
∈, 6, 8
λ, 5
¬b, 8
/∈, 6, 8
∨b, 8
◦, 8
⊗b, 8

abaseg, 134
abasegm, 129, 133
abaseheap, 128, 129
abase lm, 129, 134
abstract data type, 6
academic system, 2
add , 38
address range, 113
addrmax, 182, 183
advancing , 113
aggregate type, 28
ALArr , 37
algn, 130
alloc, 173
allocated

base address, 173
size, 173

allocation function, 173
extension, 224
update, 229

allocupd, 229
allocxt, 224
ALPrim, 37
ALStruct , 37
analyzer, 17
andb, 38
and l, 38
arithmetic type, 28
asizealgn, 131
asizeheap, 133
asizemax

heap, 128, 129
asizemem, 132
asizest, 132
asizet, 130
asmpre, 115
availheap, 63, 181
availmem, 182
avail stack, 182

bag, 47
basic type, 28
bav, 44
bin32(n), 8
bit , 8
bit field, 28
bootstrap problem, 14, 165
bubblecode, 128, 129
bubblegm, 128, 129
butlast , 8
bvn, 8

cbase f, 126
cbases, 127
cell2instr , 103
cell2int , 103
central code, 145

273

274 Index

certified compilation, 17
code

component, 46
displacement, 126, 127, 158
range, 112

code, 161
codealit, 151
codestruct

alit , 151
codetest

alloc, 153
codezero

alloc, 153
codeass, 150
codecenter, 146
codes

cmp, 141
codeu

cmp, 141
codecpy, 150
code loop

cpy , 149
codediv, 145
codeshift

div , 143
codesubtract

div , 143
codeexpr, 135
codeexpr

√
, 186

codeflist, 160
code ini, 160
code lazy, 146
code lit, 137
code load, 138
codenewfr, 156
code◦1 , 139
code◦2 , 139
codepassing, 155
codeprog, 160
codestmt, 148
codestore, 149
codezerofill, 153
compeq, 38
compge, 38
compgreater, 38
compiler synthesis, 17
comple, 38
compless, 38
compneq, 38
condition nesting level, 90
condition senior, 90
conditional operator, 5
cond lvl, 90
cond sen, 90
conf

√
, 95

confasm, 105
confasm

√
, 106

conf C0, 46
confISA, 100
cons, 7
consis, 168, 175
consisalloc, 179
consisheap

alloc, 178
consisnamed

alloc , 178
consiscode, 176
consisc, 177
consisd, 181
consis fh, 180
consisg

p, 179
consisg

v, 179
consisp, 180
consisr, 180
consisra, 177
consistency, 175

allocation, 179
code, 176
control, 177
data, 181
frame header, 180
heap allocation, 178
named allocation, 178
pointer, 180
register, 180
return addresses, 177
value, 179

consistent, 168
consisc, 179
constructor, 6
content consistent, 174
control code, 194
copypara, 64
credible compilation, 17, 20
csizee, 125
csize fl, 125
csize ini, 126
csizeprog, 126
csizes, 125
current instruction, 111
currinstr , 111

dangling pointer, 28
default value, 58
δasm, 111
δi
asm, 111

δC0, 60
δi
C0, 67

δISA, 100

Index 275

direct sub statement, 88
direct successor statement, 90
displv, 130
displacement of variables, 133
displ f, 126
displg, 133
displ rel, 133
displ s, 127, 158
distinct , 8
distscall, 155
div , 38
dropret, 40
dstnct s, 78
dstnct fts , 78

ea, 107
effective address, 107
elem?, 35
elementary type, 29
enoughregs, 161
env s, 89
exec, 108
execasm, 185
expr , 37
expression evaluation, 52
exprpos, 187, 188
exprpre, 187
expr result

√
, 188

extendheap, 63
extend stack, 65

fhra, 175
flip, 6
fos, 91
frame header layout, 129
fregs ini, 136
fst , 6
funcT , 41
functableT , 41
function table, 41

g-variable, 42
base address, 47
content consistent, 174
initialized, 48
memory name, 47
named, 47
overlapping, 48
parent, 43
pointer, 170

pointer consistent, 179
reachable, 170
reachable nameless, 170
root, 43
sub, 43
type, 47
valid, 81
value consistent, 179

garbage collector, 28, 63, 169, 244
goto, 28
gst , 45
gvar , 42
gvars

√
, 81

hd , 7
heap overflow, 181
hst , 45

i2n, 104
IMM , 103
imm16, 102
imm26, 102
inference rule, 5
initconf, 59
initial

configuration, 59
memory configuration, 59
memory frame, 58, 59
symbol table, 59
value, 58

initialization, 32
code, 124, 160
global variables, 58
heap variables, 58, 63
local variables, 65

initialized , 52–58
initializedg, 48
initmc, 59
initmem, 58
initst, 59
initval, 58
initvars, 59
inline assembly, 32, 66
instr2int , 103
instr , 102
instr2cell , 103
int2cell , 103
int2instr , 103
interruptfree, 113
is gvarp, 170

276 Index

is lasts, 90
is lastcond

s , 90
is lastelses , 90
is last ifs , 90
is last loops , 90
is load , 103
is loadstore, 103
is store, 103

lambda expression, 5
last , 8
last statement, 90
lazy evaluation, 51
leval , 52–58
list, 7
lit , 36
lita, 37
lmexpr , 73
lmtop, 45
load s, 107
loadu, 107
long jumps, 28
lst top, 45

map, 7
map-of , 8
matching

pointer values, 174
right values, 174
values, 173

max, 8
mcell

√
Bool , 80

mcell
√

Char , 80
mcell

√
Int , 80

mcell
√

Ptr , 82
mcell

√
Nat , 80

mcellC0, 43
mcellasm, 103
memchngd , 106
memconf , 44
memg, 47
memname, 45
memory cell, 43
memory configuration, 42, 44
memory frame, 43, 44
memory layout, 129
memory name, 45
memupd , 60
meta theorem, 12
mframe, 44

minus, 37
mobj , 52–58
mods, 5
modu, 5
mod , 38
mult , 38

N, 5
n2i , 104
namedg, 47
neg , 37
nesting level, 90
nil , 7
None, 7
nop, 103
not , 37
nthstep, 67
null pointer type, 29, 36
Nw, 5

option type, 7
orb, 38
or l, 38
overlapg, 48

parameter passing, 64
parent g-variable, 43
parent statement, 88
parentg, 43
parents, 88
parent i

s, 89
partial function, 7
pervasiveness, 11
pointer

arithmetic, 28
void, 28

predicate, 5
progbase, 128, 129
program rest, 46
progrest

√
, 92

ptr
√

, 82

range, 6
rangea, 113
rangec, 112
rdest

√
, 95

reachability, 169
strong, 226

reachable
g-variable, 170

Index 277

nameless g-variable, 170
pointer, 170
pointer memory cell, 171

reachableg, 170
reachablenameless

g , 170
reachablemcell, 171
reachableptr, 170
readdata, 111
read instr, 111
recognizer, 6
record, 5
reg , 102
remlast, 41
replicate, 8
resource restrictions, 181
return

address, 128, 129, 154, 177
destination, 42, 45, 65, 128, 129

reval , 52–58
revalalit, 54
reval lit, 54
rhtop, 128, 129
rjal, 129
rlframe, 128, 129
root g-variable, 43
rootg, 43
rsbase, 128, 129
REG i, 103

S, 5
s2l , 40
s2lns, 40
sa5, 102
sequence, 6
sext , 8
shift l, 38
shift r, 38
short circuit evaluation, see lazy

evaluation
sign bit, 8
sign extension, 8
simulation relation, 175

correctness, 168
simulation theorem, 167
sizee, 136
sizet, 36
small-step, 167
snd , 6
special registers, 129
stack

√
, 94

stack extension, 65
stack overflow, 181
statement

function of, 91
identifier, 37, 78
structural, 39
successor, 91

step-by-step simulation, 13
st fun, 65
stmt , 38
stmtstructural, 39
store, 107
sub, 38
sub g-variable, 43
sub sequence, 6
sub statement, 39
subg, 43
subs, 39
subdi

s , 88
succdirect, 90
succ, 91
successor statement, 91
successors

√
, 91

succithret, 41
sufficient

heap, 63
memory, 181, 182

switch, 28
symbol configuration, 45
symbol table, 44
symbolconf , 45
sc, 46
sync criterion, 101
synthesis of compilers, 17

tenv , 36
ternary operator, 5
tl , 7
tmatchass, 74
tmatchpara, 75
tochar , 37
toint , 37
top local memory, 45
total function, 7
tounsgnd , 37
transition function, 58, 60
translatable, 161
translation validation, 17
two32(i), 8
two’s complement, 8

278 Index

ty , 36
ty
√

, 82
tyg, 47
ty
√

heap, 83
ty
√

mem, 83
type, 52–58
type correctness, 82
type name environment, 36
typealit, 53
type lit, 53
type◦1

, 49–52
type◦2

, 49–52
typev, 44

unchngdmem, 106
undef , 7
union, 28

valid
configuration, 94
function table, 79
memory cells, 80
program rest, 92
return destinations, 95
stack, 94
successors, 91

validalit, 72
validbinop, 71
validexpr, 73
valid ft , 79
valid fun, 78
validlazyop, 71
validlit, 72
valid st, 78
validstmt, 75
valid tenv, 77
valid ty, 77
validunop, 70
valueg, 49
value◦1 , 49–52
value◦2 , 49–52
VAMP

assembly configuration, 105
assembly language, 101
instruction semantics, 108
instruction set architecture (ISA),

100
memory model, 103
transition function, 111
valid configurations, 106

vmatch, 173
vmatchgvar, 174
vmatchptr, 174
vmatchrval, 174
void, 28

widtha, 103

xltblexpr, 162
xltbl func, 165
xltblprog, 165
xltbl stmt, 163
xorb, 38
x[o,w], 107

Z, 5
Zw, 5

	Introduction
	Outline
	Notation
	Basics
	Abstract Data Types
	Lists
	Bits and Bit Vectors
	Miscellaneous

	Requirements Analysis and Related Work
	Requirements Analysis
	Language Layers
	Small-Step Semantics and Step-By-Step Simulation Theorem
	Implementation Correctness and Bootstrapping
	Property Transfer

	Related Work
	Related Work in the Context of System Verification
	Detached Related Work
	Integration of Solutions

	Languages
	The Language C0
	Informal Description
	Types
	Expressions
	Statements
	Initialization of Variables
	Inline Assembly

	Concrete Syntax
	Front End Tool

	Formal C0 Small-Step Semantics
	Representation of C0 Programs
	Types and Type Name Environment
	Expressions
	Statements
	Function Table

	Configuration of the C0 Small-Step Semantics
	Memory Configuration
	Program Rest
	Configuration

	Expression Evaluation
	Address of G-Variables
	Reading from the Memory
	Semantics of Operators
	Evaluation Functions for Expressions

	Execution of C0 Programs
	Initial Configuration
	Updating Memory
	Transition Function
	Computations

	Properties of the Small-Step Semantics
	Basic Properties
	The Set of Valid C0 Programs
	Valid Expressions
	Valid Statements
	Valid Type Name Environments
	Valid Function Tables

	Type Correctness
	Definitions
	Basic Lemmas
	Type Correctness of Initial Values
	Type Correctness: Expression Evaluation

	Structure of the Program Rest
	Structure of Statement Trees
	Extending Statement Structure to Complete Programs
	Valid Program Rest

	Valid Configurations
	Definitions
	Maintaining Valid Configurations

	Target Language
	VAMP Instruction Set Architecture
	VAMP Assembly Language
	Instructions
	Memory Model
	Integers vs. Natural Numbers
	Configuration
	Semantics

	Correctness of the VAMP Assembly Model
	Formalizing the Requirements

	Assembly Code Verification Methodology
	Predicates for Execution of Assembly Code
	Executing Single Instructions
	Combining Code Pieces
	Automation

	Compiler
	Code Generation Algorithm
	Introduction to the Code Generation
	Code Size
	Base Addresses of Code

	Memory Layout
	Alignment and Allocated Size
	Displacement of Variables and G-Variables
	Base Addresses

	Code Generation for Expressions
	Introduction
	Literals
	Variable Access
	Unary Operators
	Binary Operators
	Lazy Binary Operators
	Structure and Array Access
	Address-of and Pointer Dereferencing

	Code Generation for Statements
	Skip and Compound
	Assignments
	Assignments of Aggregate Literals
	Loops
	Conditional Statements
	Allocation of Heap Variables
	Function Calls
	Return
	Code Displacement of Statements

	Code Generation for Complete C0 Programs
	Init Code
	Code Generation for Programs

	Translatable Programs
	Execution of the Compiler Specification

	Simulation Theorem
	Overview
	Simulation Relation
	Correctness of the Simulation Relation
	Reachability
	Allocation Function
	Matching Values
	Definition of the Simulation Relation

	Resource Restrictions
	Lifting Resource Restrictions to More Abstract Layers

	Simulation Theorem

	Correct Compilation of Expressions
	Execution of Assembly Code for Expressions
	Correctness Statement for Expressions
	Precondition for Correct Execution of Expressions
	Postcondition for Correct Execution of Expressions
	Compatibility

	Correctness Theorem

	Correct Compilation of Statements
	Control Consistency
	Correctness of the Control Code
	Proof of Control Consistency

	Auxiliary Lemmas for Data Consistency
	Basic Lemmas About Allocation Functions
	Consistency After Updating Memory

	Conditional
	Loop
	Assignment
	Low-Level: Assigning Basic Values
	Low-Level: Big Assignments
	High-Level Correctness

	Assignment of Aggregate Literals
	Allocation of Dynamic Memory
	Low-Level Correctness
	High-Level Correctness

	Function Calls
	Parameter Passing
	Setting up the New Stack Frame
	Putting it All Together

	Return

	Implementation Correctness
	Summary and Future Work
	Concrete C0 Syntax
	C0 Grammar
	C0 Lexer

	Mapping to Lemmas in Isabelle / HOL
	Bibliography
	Index

