Repeating the Past
Experimental and Empirical Methods
in System and Software Security

Stephan Neuhaus

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurswissenschaften
der Naturwissenschaftlich-Technischen Fakultiten der Universitit des Saarlandes

Saarbriicken, 2007

©2007, 2008 by Stephan Neuhaus
All rights reserved. Published 2008
Printed January 24, 2008 from SVN revision 143

Day of Defense February 6, 2008

Dean Prof. Dr. Thorsten Herfet

Head of the Examination Board Prof. Dr. Reinhard Wilhelm

Members of the Examination Board Prof. Dr. Andreas Zeller,
Prof. Dr. Michael Backes, Philipp Lucas

Main Typeface URW Garamond No. 8 10/12

Additional Typefaces Adobe Times, Adobe Courier,
Computer Modern Math Symbols

Typesetting System PDF-IATEX

Printed in Germany
432 2345

To Stefanie, with love.

It’s like déja vu all over again.
— Yogi Berra

Contents

[Abstract]

[Preface

(1 Introduction|

2__Causes And Effects

2.1

Analysis ot Break-Ins|

2.1.1

Forensic Analysis of Break-ins|

2.1.2 Cause-Finding as Minimization|

2.1.3 Philosophical Justification|

3.3 Naive Algorithm|

3.4 Delta Debuggingl

[4 Minimization For Intrusion Analysis|

4.1 Extended Naive Algorithm|. . . .

4.2 Extreme Minimization|

{43 Binary Minimization|
5_Malfor]

[5.1 Processes and Replay|

5.1.1 Preliminary Definitions| .

5.1.2 Replay|]

[5.2 System Call Interposition|

5.2.1 System Calls]

5.2.2 Interposition|

5.2.3 Solipsy Architecture| . . .

5.2.4 State Mappings|

5.3 Evaluauonl.

[5.3.1 Proot ot Concept|.

Vil

X1

XV

viil CONTENTS
532 AReal-WorldAttackl, 43

|5.3.3 Replacing Delta Debugging by Binary Minimization|. 48
...................... 48

5.3.5 Performanceof Capturing| 49

':5.3.6 Deployability oo o oo 49

5.3.7 FoolingMalfor{ 50

5.4 VisualizingMaltor] o oL 51
|§.5 Beyond Processes| o 52
5.5.1 Input Reassemblyl. 52

5.5.2 Signature Extraction| 54

5.5.3 Signature Generalization| L. 56

5.5.4 Preliminary Results|] 56

[5.6 Controlling Concurrency| 59
5.6.1 System Callsand Traces| 60

5.6.2 Capturing Traces| 61
......................... 62

5.6.4 Causality in Distributed Systems| 63

|§.6.5 Causality-Preserving Replay| 67

68

68

69

69

72

6 75
75

|6.2 Components and Vulnerabilities| 0L 77
6.2.1 Components| 77

6.2.2 Mapping Vulnerabilities to Components| 78

6.2.3 Vulnerable Components in Mozillaf 78

[6.3 How Imports and Function Calls Matter] 80
6.3.1 Imports| oo 81

632 FunctionCalls| 0. 82

6.3.3 Mapping Vulnerabilities to Features| 83
....................... 84

|6.4 Predicting Vulnerabilities From Features| 85
6.4.1 ValidationSetup| Lo oL 85

6.4.2 Evaluating Classification| 86

6.43 EvaluatingRankingl 87

6.4.4 Prediction using Support Vector Machines| 89

[6.5 CaseStudy: Mozillaf.o oo 90
6.5.1 Data Collectionl. 90
652 Classificationl 91
653 Rankingl. 92

6.54 A RankingExample| 93

6.5.5 Forecasting Vulnerable Components| 93

6.5.6 DISCuSSIOn|o e e e e e e e e 94

[6.5.7 Threatsto Validity| oL 95

6.6 Causes of Vulnerabilittes| L. 96

CONTENTS

Philosoph

A.1 Rationalist Philosophy| oo oo o
A.2 Empiricist Philosophy|o Lo oo
A.3 Modern Philosophy of Science| Lo oL

107

111
111
113
113

115

117

119

133

Abstract

I propose a new method of analyzing intrusions: instead of analyzing evidence and
deducing what must have happened, I find the intrusion-causing circumstances by a
series of automatic experiments. I first capture process’s system calls, and when an
intrusion has been detected, I use these system calls to replay some of the captured
processes in order to find the intrusion-causing processes—the cause-effect chain that
led to the intrusion. I extend this approach to find also the inputs to those processes
that cause the intrusion—the attack signature.

Intrusion analysis is a minimization problem—how to find a minimal set of cir-
cumstances that makes the intrusion happen. I develop several efficient minimiza-
tion algorithms and show their theoretical properties, such as worst-case running
times, as well as empirical evidence for a comparison of average running times.

Our evaluations show that the approach is correct and practical; it finds the 3
processes out of 32 that are responsible for a proof-of-concept attack in about 5 min-
utes, and it finds the 72 out of 168 processes in a large, complicated, and difficult
to detect multi-stage attack involving Apache and suidperl in about 2.5 hours. I also
extract attack signatures in proof-of-concept attacks in reasonable time.

I have also considered the problem of predicting before deployment which com-
ponents in a software system are most likely to contain vulnerabilities. I present
empirical evidence that vulnerabilities are connected to a component’s imports. In
a case study on Mozilla, I correctly predicted one half of all vulnerable components,
while more than two thirds of our predictions were correct.

Zusammenfassung

Ich stelle eine neue Methode der Einbruchsanalyse vor: Anstatt Spuren zu analysie-
ren und daraus den Ereignisverlauf zu erschlieflen, finde ich die einbruchsverursa-
chenden Umstinde durch automatische Experimente. Zunichst zeichne ich die Sy-
stemaufrufe von Prozessen auf. Nachdem ein Einbruch entdeckt wird, benutze ich
diese Systemaufrufe, um Prozesse teilweise wieder einzuspielen, so dass ich herausfin-
den kann, welche Prozesse den Einbruch verursacht haben—die Ursache-Wirkungs-
Kette. Ich erweitere diesen Ansatz, um auch die einbruchsverursachenden Eingaben
dieser Prozesse zu finden—die Angriffs-Signatur.

Einbruchsanalyse ist ein Minimierungsproblem—wie findet man eine minimale
Menge von Umstinden, die den Einbruch passieren lassen? Ich entwickle einige ef-
fiziente Algorithmen und gebe sowohl theroretische Eigenschaften an, wie z.B. die
Laufzeit im ungiinstigsten Fall, als auch empirische Ergebnisse, die das mittlere Lauf-
zeitverhalen beleuchten.

Meine Evaluierung zeigt, dass unser Ansatz korrekt und praktikabel ist; er fin-
det die 3 aus 32 Prozessen, die fiir einen konstruierten Angriff verantwortlich sind,
in etwa 5 Minuten, und er findet die 72 von 168 Prozessen, die fiir einen echten,
komplizierten, mehrstufigen und schwer zu analysierenden Angriff auf Apache und
suidperl verantwortlich sind, in 2,5 Stunden. Ich kann ebenfalls Angriffs-Signaturen
eines konstruierten Angriffs in verniinftiger Zeit erstellen.

Ich habe mich auch mit dem Problem beschiftigt, vor der Auslieferung von Soft-
ware diejenigen Komponenten vorherzusagen, die besonders anfillig fiir Schwach-
stellen sind. Ich bringe empirische Anhaltspunkte, dass Schwachstellen mit Importen
korrelieren. In einer Fallstudie tiber Mozilla konnte ich die Hilfte aller fehlerhaften
Komponenten korrekt vorhersagen, wobei etwa zwei Drittel aller Vorhersagen rich-
tig war.

X1

xil ABSTRACT

Ausfiihrliche Zusammenfassung

Ublicherweise werden Einbriiche analysiert, indem Spuren gesucht und ausgewer-
tet werden. Daraus wird dann zeitlich rickwirkend auf die Ursache-Wirkungs-Kette
geschlossen, die den Einbruch verursacht haben muss. Eine solche deduktive Vorge-
hensweise hat jedoch einige Nachteile:

Vollstindigkeit. Spuren sind oft nicht in ausreichender Menge vorhanden, um die
Ursache oder die Ursachen verldfilich bestimmen zu kénnen. Spuren werden
von Angreifern geloscht oder manipuliert, fallen aber auch manchmal routine-
mifligen Wartungsarbeiten zum Opfer.

Minimalitdt. Die relevanten Spuren sind oft in einer groffen Menge anderer nicht
relevanter Daten verborgen und sind deshalb schwer zu finden. Manche Spuren
sind verschliisselt oder kodiert und konnen daher mit automatischen Verfah-
ren nicht gefunden werden.

Greifbarkeit. Deduktive Ergebnisse erfordern immer eine Modellierung der Ver-
haltnisse. Wenn die Analyse mittels deduktiver Verfahren gelingen soll, miis-
sen alle relevanten Eigenschaften des Systems korrekt modelliert werden. Dar-
auf muss man vertrauen, wenn man einer deduktiven Analyse Glauben schenks.

In dieser Arbeit stelle ich eine neue Methode der Einbruchsanalyse vor: Anstatt Spu-
ren zu analysieren und daraus den Ereignisverlauf zu erschlieflen, finde ich die ein-
bruchsverursachenden Umstinde durch automatische Experimente. Wenn das ge-
lingt, kann man den Nachweis einer Einbruchsursache erbringen, indem man einen
Testfall ausfiihrt, der nur die als relevant vermuteten Umstinde des Angriffs ent-
hilt. Sind diese Umstinde nicht fiir den Einbruch verantwortlich, wird der Testfall
den Einbruch nicht hervorbringen. Ein solcher Testfall ist unmittelbar greifbar und
kann beliebig wiederholt werden. Es ist keine korrekte Modellierung eines Betriebs-
systems oder anderer komplizierter Laufzeitkomponenten nétig und das Vorhanden-
sein von Spuren ist auch irrelevant.

In dieser Sichtweise ist Einbruchsanalyse ein Minimierungsproblem—wie kann
man eine minimale Menge von Umstinden finden, die den Einbruch geschehen las-
sen? Ich entwickle einige effiziente Algorithmen zur Minimierung und gebe sowohl
theroretische Eigenschaften an, wie z.B. die Laufzeit im ungiinstigsten Fall, als auch
empirische Ergebnisse, die das mittlere Laufzeitverhalen beleuchten.

Um Einbriiche mit Experimenten analysieren zu konnen, benétige ich zunichst
eine Infrastruktur, die das Aufzeichnen und Wiederabspielen relevanter Systemereig-
nisse ermoglicht. Dazu speichere ich zunichst die Systemaufrufe von Prozessen in
einer Datenbank. Nachdem ein Einbruch entdeckt wird, benutze ich diese System-
aufrufe, um Prozesse teilweise wieder einzuspielen, so dass ich herausfinden kann,
welche Prozesse den Einbruch verursacht haben—die Ursache-Wirkungs-Kette.

Meine Evaluierung zeigt, dass der Ansatz korrekt und praktikabel ist; er findet
die 72 von 168 Prozessen, die fiir einen echten, komplizierten, mehrstufigen und
schwer zu analysierenden Angriff auf Apache und suidperl verantwortlich sind, in
2,5 Stunden. Dieser Angriff kann mit keinem anderen heute bekannten Werkzeug
automatisch aufgedeckt werden.

Ich habe diesen Ansatz erweitert, um auch die einbruchsverursachenden Ein-
gaben dieser Prozesse zu finden—die Angriffs-Signatur. Studenten haben unter mei-
ner Leitung fiir zwei Angriffstypen (Puffer-Uberlauf und blockweises Auftreten von

xiii

Schadcode) Algorithmen entwickelt, die die Angriffs-Signatur besonders effizient er-
stellen, wobei sie immer noch korrekt funktionieren, wenn dieser spezielle Angriffs-
typ nicht vorliegen sollte.

Im Gegensatz zu anderen Signatur-Extraktionsalgorithmen hat dieser Ansatz ei-
nige Vorteile. So bendtigt er nicht hunderte oder tausende Angriffsinstanzen wie
z.B. typische Wurm-Analyseprogramme, sondern funktioniert auch mit einer einzi-
gen Angriffsinstanz. Ausserdem ist er nicht auf bestimmte Angriffsarten festgelegt,
sondern analysiert z.B. auch Angriffe, die durch Fehlkonfiguration mdoglich wurden.

Ich habe mich auch mit dem Problem beschiftigt, vor der Auslieferung von Software
diejenigen Komponenten vorherzusagen, die besonders anfillig fiir Schwachstellen
sind. Dazu stelle ich zunichst eine Methode vor, wie Berichte von Schwachstellen
(»Security Advisories“) denjenigen Komponenten zugeordnet werden konnen, die
verandert werden mussten, um diese Schwachstellen zu beseitigen. Das ermoglicht
eine neue Sicht auf Komponenten, welche beispielsweise die Entscheidung zum ver-
starkten Test oder zum Neuentwurf einer Komponenten unterstiitzen konnen.

Ein Indikator fiir Schwachstellen ist die Domine, in der sich eine Komponen-
te befindet. Darunter verstehe ich den Bereich, in dem sie Dienste anbietet oder
nutzt, also z.B. ,grafische Benutzerschnittstelle®, ,Datenbankanbindung® usw. Die
Domine einer Komponente driickt sich in den meisten Programmiersprachen durch
Importe aus, mit der Definitionen aus der angebotenen oder verwendeten Domine
dem Ubersetzer bekannt gemacht werden, bzw. durch Funktionsaufrufe aus diesen
Dominen.

Ich bringe empirische Anhaltspunkte, dass Schwachstellen mit Importen und
Funktionsaufrufen korrelieren. In einer Fallstudie tiber Mozilla zeige ich, dass es Im-
porte gibt, die in 96% aller Fille mit Schwachstellen korrelieren. In anderen Fillen
korrelieren Importe sogar zu 100% mit Schwachstellen.

Mit diesen Informationen erstelle ich einen Prediktor, der unbekannte Kompo-
nenten als ,schwachstellenbehaftet® oder als ,nicht schwachstellenbehaftet® klassi-
fiziert. In unserer Evaluierung mit Mozilla konnte ich die Hilfte aller fehlerhaften
Komponenten korrekt vorhersagen, wobei {iber zwei Drittel aller meiner Vorher-
sagen richtig war. Ausgehend vom Stand Januar 2007 habe ich eine Liste von 10
Komponenten erstellt, die nach unserer Methode besonders anfillig fiir Schwachstel-
len waren. Von diesen 10 Komponenten wurden in den folgenden 6 Monaten fiinf
wegen Schwachstellen gedndert.

Veréffentlichungen

Stephan Neuhaus und Andreas Zeller, Isolating intrusions by automatic experiments.
In Proceedings of the 13th Annual Network and Distributed System Security Symposium,
Reston, VA, USA, Februar 2006, S. 71-80. Internet Society.

Stephan Neuhaus und Andreas Zeller, Isolating cause-effect chains in computer systems.
In Wolf-Gideon Bleek, Jorg Rasch, and Heinz Ziillighoven, editors, Software Engi-
neering 2007, number P-105 in Lecture Notes in Informatics, Bonn, March 2007,
S. 169-180. Kollen Druck + Verlag GmbH.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler und Andreas Zeller. Pre-
dicting vulnerable software components. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS), New York, NY, USA, October 2007.
ACM Press.

Preface

orking in computer security is working at the limits of computer science.
W Blackhats, unlike ordinary users, are constantly and actively seeking to un-
dermine the assumptions that we make when we design or deploy systems, and are
aggressively trying to find ways to make the system behave in an unexpected way.

This thesis is the result of studying ways to mitigate the damage attackers can do
to computer systems. The central assumptions are that attacks happen because of
faulty software and that they will remain a fact of life for the forseeable future. The
rationale behind these beliefs is explained in Chapter|[1]

One promising way to mitigate damage after we deploy software is to use experi-
mental methods to find out which interactions of the system with the outside world
are relevant for an attack, and which are not. In order to be able to use experimental
methods, we need the ability to repeat past interactions at will, and to change what
is repeated: we need capture and replay capabilities.

While this work was very interesting, it also had its low points. The reason
was that replay was much more difficult than I had anticipated. At more than one
time during the implementation of capture and replay, I believed that I had made
assumptions that would make it impossible to analyze many interesting classes of
attacks. Fortunately, this usually turned out to be wrong, and where it didn’, it
turned out to be fixable, and where it wasn’t fixable, it could be argued that it was
irrelevant or uninteresting.

If we look at the part of the software lifecycle before deployment, we can use
machine learning methods to find those components of a software system that are
most likely to contain vulnerabilities. This was the most rewarding part of my work,
since I was presented with an unexpected result: of all the features I looked at, the
one best suited was the import structure of a component. There is some theory that
explains why this might be so in Section[6.6]

Along for the ride was my advisor Andreas Zeller, who was very patient and
supportive. Thanks, Andreas! Michael Backes was kind enough to be my second
reviewer. Thank you, too! Other passengers included at various times some past
and present members of the Software Engineering Group at the Saarland University,
notably Martin Burger, Silvia Breu, Holger Cleve, Valentin Dallmeier, Christian
Lindig, Rahul Premraj, and Thomas Zimmermann.

Above all, I dedicate this work with gratitude and love to Stefanie.

Saarbriicken, February 2008
Stephan Neuhaus

XV

Chapter 1

Introduction

ccording to an estimate in the FBI’s 2005 Computer Crime Survey, computer
A crime has cost the US economy a staggering $67 billion in 2005, or about 0.5%
of the entire US gross domestic product [59} [74]]. The 2006 survey [39] no longer has
a national estimate, but the figures do not suggest that the situation has significantly
improved. Where do these huge losses come from? According to the report, they
are mostly due to “Viruses’ﬂ (65% of all respondents), unauthorized access to net-
work resources (42%), and unauthorized access to information (32%). This means
that most of the losses come not from human nature, bad communications, wrong
policies and so on, but instead from faulty software.

One possibility to reduce or completely eliminate these losses would be to deploy
only software that has been rigorously proved to be defect-free. Even if this could be
enforced—and there is no evidence that it could—, there are several drawbacks with
this approach:

¢ Specifying software and proving it correct slows down the software’s time to
market, a penalty that most software companies would rather not incur, given
today’s market pressures. In the words of one specialist, “If they don’t have to
do it—for example in order to get a certificate—, they won’t do it.” [153]]

¢ It would work only or future software, but not for most legacy software be-
cause most legacy software is generally without a formal specification. It is
certainly possible to create specifications retroactively. But software that is
already deployed without prior specification will have specifications that are
much more complicated than those that are created before the software is
written. Such specifications will therefore tend to take even longer than pre-
deployment specifications. Whether such post-deployment specifications are
at all amenable to automatic proofs is unclear. Experience within the Verisoft
project [167]] with AMD’s Hypervisor—a hardware project—indicate that it
may be possible, but only at the expense of significant manpower by excep-
tionally well-trained personnel [98]. Hardware is in general much better spec-
ified than software because the deployment of fixes—in this case, defect-free
processors—is much more difficult than for software: one cannot download a
new processor over the Internet.

10ne suspects that the CSI and FBI lump together all kinds of malware under the descriptive title of
“viruses” here.

2 CHAPTER 1. INTRODUCTION

® Rewriting such software is also out of the question most of the time because of
the huge investment in time, money and training that went into the creation
and deployment of the original software.

¢ Even software that has been rigorously proved to be defect-free and secure may
not be immune from practical attacks. For example, an encryption algorithm
may have perfect secrecy, yet be vulnerable to timing attacks as done by Dan
Bernstein on AES [21]], or by David Brumley and Dan Boneh on SSH [25]]. As
David Basin put it: “You cannot neglect best practices just because you have
proved something to be correct.” [19]

Therefore, if we want to reduce the damage done by security incidents due to
faulty software, we can do that on two fronts:

After deployment. If we were able to analyze attacks automatically, we could enable
vulnerable computers to analyze attacks and then prevent them automatically

(Chapters and5).

Before deployment. If we were able to predict which components of a program were
particularly prone to vulnerabilities, we could direct our quality assurance ef-
forts at these components. For example, we might expose the components
in question to source code review and security assessment or penetration test-
ing [52], or prove them correct or redesign them in a more secure manner. If
we make good predictions, we can risk testing the other less vulnerable com-
ponents less (Chapter [6).

Chapter[{|also provides a stand-alone framework for the analysis of minimzation
algorithms and uses this framework to analyze several algorithms such as delta debug-
ging and two others that were developed to deal with the demands of minimization
when replaying processes. We finish this thesis with a summary and conclusions

(Chapter).

The two projects that gave rise to this work can be found at
http://www.st.cs.uni-sb.de/malfor/
and

http://www.st.cs.uni-sb.de/softevo/

http://www.st.cs.uni-sb.de/malfor/
http://www.st.cs.uni-sb.de/softevo/

Chapter 2

Causes And Effects

How often have I said to you

that when you have eliminated the impossible,
whatever remains, however improbable,
must be the truth?

—Sherlock Holmes
in Arthur Conan Doyle, The Sign of the Four, 1890

Debugging systems of interconnected programs is usually done in an ad-hoc man-
ner. For single programs, there is quite some theory to explain how failures
come to be, how they propagate, and how they manifest [185], but there is little
theory to explain the causes of system failures. There is also little support: not only
are there preciously few tools that allow debugging systems of programs, but the
programs being debugged also often offer the debugger only little help, for example
by providing clear and meaningful log files.

2.1 Analysis of Break-Ins

2.1.1 Forensic Analysis of Break-ins

The traditional method of answering the question of how a break-in came to be is to
pore over log files in the hope that they contain enough clues to help us discern what
must have happened. Traces of erased files and other evidence can also help. This is
called “forensic analysis”, and there exist some excellent tools to aid the analyst [32]
58], mainly in the process of gathering and collating evidence.

Even though there have been attempts to automate this analysis [53,90], forensics
is by and large done manually and there is currently not much research that tries to
automate the analysis process.

For example, the Communications of the ACM has devoted much of its February
2006 issue to forensics. Of the articles in the issue, two were on live forensics [5, 3],
three on formats and standardization [38],[67,80]], one on visualization [[154]], and two
on future aspects of forensics [22} [142]). Only one was on the technique of construct-
ing the event chain for a sophisticated intrusion [33]. The manual character of such
investigations is evident in sentences such as “Digital investigators are continually

3

4 CHAPTER 2. CAUSES AND EFFECTS

seeking more effective ways to process and visualize network logs to identify suspi-
cious activities and recover data from covert, encoded network traffic.”, or “Once
a potential source of evidence has been preserved, digital investigators immediately
begin dissecting it for information pertaining to the intrusion.” These quotes mean
that forensics is still more of a craft than an automated technique.

Even evidence gathering (as opposed to analysis) is becoming more difficult.
Given the adversarial nature of evidence—it might be hidden or disguised—much
of the available material will need to be inspected manually in order to see whether
it contains usable evidence. However, given the sheer size of today’s hard disks and
process memories, manual inspection is simply no longer feasible.

Some attacks may not leave any usable evidence at all. ‘

Finally, even if we could gather all the evidence, we might draw the wrong con-
clusion from it. For example, we could easily believe that if a file was changed, there
must have been a process that has opened it. As we will see in Chapter this
is not necessarily the case: a loadable kernel module can modify a file without the
corresponding open call.

The reason why such mistakes happen is that deductive reasoning always requires
a previous modeling step in which facts from the real world are abstracted away
so that the only remaining things are those that are presumably of interest to the
problem at hand. For example, the fact that computers are real, physical things
that take up space and have weight is usually deemed irrelevant for security analysis
and consequently does not appear in any security model. In the words of Steve
Bellovin [20]:

Any proof depends on your axioms or system model. In security,
though, an attacker can often attack via a different model. Thus, we
may have ciphers that are fine at the Os and 1s level but are vulnerable to
things like differential power analysis, cache timing, etc. Even at the Os
and 1s level, did the proof of security account for things like related-key
attacks?

Mathematicians have known since Euclid that axioms are important.
Security, though, is math embedded in the real world, and that mat-
ters. Put another way, Euclidean geometry is completely valid as a pure
mathematical system. But that doesn’t mean it applies in a relativistic
universe. Sure, we live far from any space-warping masses, so we can
pretend that the angles in our triangles add up to 180 degrees. In the se-
curity world, though, the attacker will toss a black hole at us to warp the
space around our provably-secure triangular encryptor. Was that proof
of security flawed? Ask Riemann or Lobachevsky.

More concretely, Dolev-Yao models [51]] are used in the analysis of security pro-
tocols. They abstract away many details of concrete encryption and hash functions
and work only by rewriting abstract terms. A protocol that is deemed safe according
to that model may not be so in real life, for example because the encryption algo-
rithm may be susceptible to a timing attack. Therefore, if the abstraction used in the
model is not suitable for the attack that we wish to analyze, we may get the wrong
results.

2.1. ANALYSIS OF BREAK-INS 5

2.1.2 Cause-Finding as Minimization

The approach outlined in this thesis is to work experimentally. First, we capture
enough information so that the system—or those parts of the system that we are
currently interested in—can be replayed. That takes care of evidence gathering: if
we assume that the system is in an uninfected state at the beginning of capturing and
infected at the end, the transition must be somewhere in between. If we can replay
the system using the captured information, we can gather evidence post facto if need
be, or we can redeclare the captured information to be the evidence.

Once we have captured failure-causing information, we can then replay subsets
of the captured system and thus see whether those replayed parts are relevant for
the intrusion or not. The goal is thus to separate the relevant from the irrelevant
information. Once this is accomplished, we are left only with relevant information,
which we call the cause of the break-in. The justification for this is the counterfactual
or “what if” definition of causality: we say that a set of events A causes an event b—
called the effect—it b would not have happened if the events in A hadn’t occurred.
This is the counterfactual definition of causality.

For our work, we adopt the closest-world condition of the counterfactual defini-
tion and call A the actual cause of b if A is the (or a) smallest and most recent set
of circumstances that we have to remove so that b does not happen. By extension,
we call a finite sequence (Cy, ..., Cy) of causes a cause-effect chain if Cy is the actual
cause of Cg41 for 1 < k < n. More discussion follows below in Section[2.1.3|

Actual causes need not be unique. For example, if two stones are thrown at a glass
bottle so that they arrive there simultaneously, either one could be the actual cause.
However, two actual causes will always have the same number of events; otherwise
the larger set is not a cause because it violates the closest-world condition.

In our formulation, finding a cause is equivalent to finding a smallest set of cir-
cumstances that will makes the effect go away if removed, yet will keep as many of
the original circumstances as possible. In other words, finding a cause is the problem
of minimizing a set of intrusion-causing circumstances. This new view of causation
as minimization for cause-finding within computer programs was first developed by
Andreas Zeller [[185]].

Cause-finding can be seen as a minimization problem.

Using a suitable minimization algorithm M, we then arrive at the following informal
method for cause-finding:

1. Let M choose a subset of the effect-causing circumstances.

2. Build a world in which only these circumstances happen.

3. See whether the effect still occurs.

4. If it does not occur, take this subset as the new cause and go to step

5. If the subset cannot be minimized any further, terminate. The current subset
is then the actual cause. Otherwise, go to step

This method will be hard to use in the real world because it will in general be
impossible to exactly recreate something that is already past. Luckily, that is not
always necessary: it will suffice to recreate enough circumstances so that the effect

6 CHAPTER 2. CAUSES AND EFFECTS

can still occur. This is rather easy for computer programs because we can control
everything that they input, plus all aspects of the computation environment such as
thread schedules and so on.

The above algorithm embodies the scientific method: step [1]is the formulation of
a hypothesis, step [3|is the test by experiment of that hypothesis, and steps [4| and
refine the hypothesis, both when the experiment supports and contradicts it[l] The
explicit use of experimental methods to analyze attacks is also new.

The main advantages of this method is that the resulting minimized set has been
experimentally shown to be relevant: the result was obtained not by deduction, but
by trying the circumstances and seeing what actually happens. This lends the results
a credibility and a tangibility that deductive results do not have. In order to trust in a
deductive result, an act of belief is necessary, namely that the principles on which the
deduction is founded are correct and that the deduction itself happened according to
the laws of logic. This belief is necessary even when we feel competent enough to
check the deduction ourselves; in this case, it is the belief that we are able to deduce
logically and to assess the validity of the assumptions underlying the deduction.

This is not so with results that have been obtained in an experimental way be-
cause they contain a fest case that can be replayed. For example, if I claim that a
certain misconfiguration in Apache was the cause of an attack, and if someone tries
it out, and it does not happen, then my assertion must have been wrong. It is hard
to argue with facts.

To summarize, even if attack analysis were not done manually, these are the
problems when using deduction on evidence:

Completeness. There might not be enough evidence for the cause to be reliably

established.

Minimality. The relevant evidence might be buried in a host of other evidence and
may thus be hard to see.

Correctness. Our reasoning (by human or machine) might be faulty, leading to
wrong conclusions.

Tangibility. Experimental results can simply be tried out if we want to confirm
their validity.

In this work, we will apply this idea to two related problems of incident analysis
in order to enable partially automated diagnoses of security incidents. The first
problem is to find the processes that were involved in an attack. The second problem
is that of finding the input that caused the attack, the attack signature. Both problems
are tackled and (partly) solved in Chapter 5|

2.1.3 Philosophical Justification

Through the centuries, many philosophers have tried to understand what causation
is. How can we be sure that our definition is a good one? Our discussion of coun-
terfactual causality is based in part on the discussion in The Stanford Encyclopedia of
Philosophy [114].

11t is by no means clear, however, that scientists actually use the scientific method. Almost all philoso-
phers who have tackled this question seem to be of the opinion that they don’t. See Appendix[A]for some
discussion.

2.1. ANALYSIS OF BREAK-INS 7

The counterfactual definition of causality was first proposed by David Hume in
his An Enguiry concerning Human Understanding [81), Part IT]:

We may define a cause to be an object followed by another, and
where all the objects, similar to the first, are followed by objects sim-
ilar to the second. Or, in other words, where, if the first object had not
been, the second never had existed]

One important philosophical and practical problem with this definition is that
it works only by arguing about events that did in fact not happen. This makes it
difficult to talk about causality in a strictly empirical setting where every claim must
be substantiated by experiments. After all, arguing about what would have happened
if A had not happened is futile because A did in fact happen, time has moved on, and
we cannot turn the clock back.

This problem was solved in 1973 by David Lewis [99, [100] by proposing the
existence of possible worlds, worlds that are similar to ours. By ordering the worlds
with respect to their degree of similarity to ours, he creates a partial ordering of
worlds. For an antecedent A and a consequent C, he next introduces a truth condition
for the counterfactual “If A were (or had been) the case, C would be (or have been)
the case”, written A <> C. In his definiton, A <> C is true in the actual world if
any of the two following conditions hold:

1. there are no possible A-worlds; or

2. there is an A-world in which C holds and that is closer to the actual world
than any A-world in which C does not hold. (This is called the closest-world
condition of counterfactual causality.)

The basic idea behind this definition is that A < C is true if “it takes less of
a departure from actuality to make the antecedent true along with the consequent
than to make the antecedent true without the consequent.” [114]

For distinct and possible event sets A and a possible event b, he defines that b
causally depends on A if and only if

1. “A occurs” < “b occurs”; and

2. “A does not occur” <> “b does not occur”.

If A and b are actual events, the first condition becomes trivially true because
there is an A-world in which b holds and that is closer to the actual world than any
A-world in which b does not hold: this is the actual world. The definition then
simplifies to:

Definition 2.1 (Counterfactual Causality of Events). Let A be a set of distinct and
possible events, and let b be a possible event, distinct from any event in A. We say
that b causally depends on A if and only if “A does not occur” < “b does not occur”.

2The formulation “in other words” suggests that Hume thought that the two sentences were equiva-
lent, when they are in fact not. The first definition says that if A or something similar happens, then b or
something similar happens always. The second definition says that if A does not happen, then b also does
not happen.

8 CHAPTER 2. CAUSES AND EFFECTS

This definition takes care of problems that occur with simpler attempts at defin-
ing causality. For example, if it is true that if A didn’t happen then b wouldn’t have
happened, we might call A the cause of b. In one example, let b be “The Second
World War”, and let A be, for example, {“Existence of oxygen”} or something even
more ridiculous like {“Existence of the universe”}. Certainly, the Second World War
couldn’t have happened without a universe for it to happen in, but that is not what
we mean by cause. The closest-world condition rules out such non-causes.

The counterfactual definition of causality is not the only possible one. Taking David
Hume’s attempt at defining causality above, for example, another possible definition
is to say that causes are invariably followed by their effects. This is known as the
regularity definition of causality.

The biggest difficulty with that definition is that it contradicts common sense.
For example, most people today accept that smoking is a cause of lung cancer. Yet
not all smokers develop lung cancer and not all non-smokers do not develop it. Also,
a deterministic world-view is no longer compatible with what we know from physics
about how the world apparently works. For example, the Heisenberg inequality says
that there is an inherent limitation to the accuracy with which we can know a par-
ticle’s position and momentum simultaneously, a limitation that is apparently built
into the world itself and that is not merely due to imperfect measuring equipment.

Another problem is that a common cause for two effects may lead one to con-
clude that the two effects are causally related. For example, a drop in atmospheric
pressure may lead to the dropping of the mercury column in a barometer, and later
to a storm. Under the regularity definition, we would have to conclude that the drop
in the barometer causes the storm.

This gives rise to the probabilistic definition of causality; see for example the book
by Judea Pearl [132]. In this definition, “causes raise the probability of their effects;
an effect may still occur in the absence of a cause or fail to occur in its presence.” [76]]

The biggest problem with this definition is that it connects causation with cor-
relation. For example, there is a well-known correlation between birth rate and
stork population; one recent result is by Thomas Hofer et al. [77]. Under a sim-
ple probabilistic interpretation, we would be forced to conclude that storks bring
babies. Another problem is that causes and effects are not necessarily asymmetric
under that interpretation. Common sense dictates that causes precede their effect
and that therefore effects cannot cause causes. Under the simple probabilistic inter-
pretation, correlation works both ways, so a rise birth rate may also be said to cause
a rise in the stork population.

There are ways to fix these problems, but then the definition and the conse-
quences of probabilistic causation become so complicated that they are no longer
easily understood.

There are two questions that we must answer if we want to know whether the coun-
terfactual definition of causality is suitable for intrusion analysis:

1. Does the definition satisfy everyday notions of causality as far as they relate
to intrusion analysis? Or are there hidden subtleties that may make the under-
standing of causes difficult?

3Even though this presents a problem for some philosophers because it “rules out the possibility of
backwards-in-time causation a prior:” [76]. Why that would be a problem eludes me, however.

2.2. RELATED WORK 9

2. Does the definition enable us to decide causality in an practical and effective
way? Or is the definition merely suitable for philosophical discussions?

First, the counterfactual definition does indeed satisfy everyday notions of causal-
ity. There are some slight subtleties, though: Consider for example a glass bottle and
two stones that are thrown at it so that they arrive there one after the other In the
counterfactual sense, both stones are the cause of the glass bottle shattering, because
merely removing the stone that arrives first will not lead to the glass bottle staying
whole. Common sense, however, would say that the cause of the shattering glass
bottle is the first stone, not both. Subtleties like these do not seriously distort the
notion of causality, however.

Other definitions, such as the regularity definition or the probabilistic definition,
do not add to our understanding of intrusion analysis, because we are dealing with
actual events, events that have already happened. We are not interested in whether
our cause always or very probably produces the observed effect; we are content if
it produces the effect only under the circumstances at hand. In fact, showing only
that the cause very probably produces the effect might make the whole method
unsuitable for forensic analysis, because it raises questions about reasonable doubt.

Second, the definition does enable us to decide causality in an engineering set-
ting. While it is true that we cannot turn the clock back in order to remove the
putative cause and to see whether the effect now vanishes, we can make experiments
under conditions that are close enough to the conditions under which the intrusion
happened that results will be consistent with counterfactual causality.

The counterfactual definition of causality is well suited for intrusion analysis
(and, we suppose, for other similar post-facto cause-finding enterprises).

2.2 Related Work

There is an abundance of related work in the area of intrusion detection and analysis,
both commercial and academic, and we can show only a fraction of what is available

2.2.1 Tools

Tools to help analyze security incidents come in different levels of abstraction. On
the bottom rung are tools that display or collate information that is difficult to view
otherwise. For example, there are tools to analyze which programs run at system
startup such as autoruns [144]. There are also binary file viewers and editors such as
the binary stream editor bsed [54]; bintext, which finds ASCII and Unicode strings
in files [63]]); or bview, a binary file viewer [94]].

Next, there are programs that look at browser information such as CacheView
to look at caches [85]; Cachelnf that can additionally manipulate them [174]; or
CookieView that looks at cookies [182]. On the server side there are log file analyzers
such as webalyzer that computes web server statistics for Apache [[18]; AWSstats that
generates graphical usage statistics not only for web servers, but also for ftp and mail

*In the reference frame of the glass bottle. In our discussion, we will consistently disregard relativistic
effects, which would in any case merely complicate but not invalidate our arguments.

51f a product is mentioned here, it does not mean that we endorse this product or that some other
product might not suit a particular purpose better; the products are mainly included to demonstrate that
there are many of them. We are not affiliated with any company that makes or markets such tools.

10 CHAPTER 2. CAUSES AND EFFECTS

servers [48]; Eventlog that looks a Windows NT event logs [112]; http-analyze that
computes web statistics for a number of web servers [140]]; Analog, another web log
analyzer [160]; or 123 Log Analyzer, a multi-platform web log analyzer [186]].

Furthermore, there are lots of tools to recover lost passwords, for example Act-
Mon Password Recovery XP, that reveals the password that lurks behind a row of
dots in an input box in Windows [3]; CmosPwd that recovers BIOS passwords [37];
Lastbit, a password recovery suite for a host of Windows programs [97]; or Passkit,
a suite that recovers even more passwords [[105]].

On the next rung are programs that look at filesystem-specific information such
as Directory Snoop, a file recovery and secure deletion tool [23ﬂ CopyADS, which
looks at so-called alternate data streams (ADSs), a feature of N'TFS that hides infor-
mation from all but the most specialized programs [[109]]; Disk Investigator, a tool
that investigates the raw contents of a disk [152]]; and Crckit, which produces verious
checksums [[110]].

Disk images are useful when analyzing the forensic traces of a break-in: usually,
disks of the attacked system is imaged and the analysis confined to the disk image, for
fear of altering the evidence. There are several programs to create disk images, such
as Active Disk Image [2], Drive Image [[139], or Drive SnapShot [156]. However,
most programs create images for backup purposes, and few are usable for forensic
purposes. Of those few, there are Diskimag that creates forensic copies of floppy
disks [[111]], or X-Ways Forensics, which can do the same for hard drives [183]).

Most of these tools are geared toward presentation or recovery of data on a disk
and do not directly support the forensic workflow or do detection.

On the next rung on the ladder are rootkit checkers like chkrootkit [36] and other
host-based intrusion detection software like Tripwire [157]. These tools examine the
state of a system for obvious policy violations, and are thus an important layer of
any well-administrated system’s security. However, they cannot find out how this
state came into existence.

Still higher up there are toolkits that support the workflows associated with
forensic analysis and discovery. There are far fewer such toolkits than there are
isolated tools. One example of such a toolkit is The Coroner’s Toolkit [57, 58], plus
extensions such as SleuthKit [30, 29], or graphical user interfaces like Autopsy [28].

As a further example of workflow support, consider the Kerf toolkit [11]. It
explicitly supports hypothesis generation and refinement, but does not use any ex-
perimental techniques to test new hypotheses. The project’s goals are the support of
“Interaction” (with a human system administrator), “iteration” (of hypothesis gener-
ation), and “collaboration” (with other administrators), but do not include automa-
tion or experimentation [12].

©This program incidentally falls for the “35-pass fallacy”. This fallacy arises when people misunder-
stand an article by Peter Gutmann called “Secure Deletion of Data From Magnetic and Solid-State Me-
dia” [71]. In this article, he outlines a way to use knowledge about a hard disk’s encoding process in
order to develop patterns that would magnetize the disk’s platter deeply, thereby erasing any information
on a disk. He illustrated his method for MFM (Modified Frequency Modulation) and RLL (Run Length
Limited), two encoding methods which were in use in the 1980s and 1990s. This analysis led to a method
with 35 passes. Unfortunately, this paper led several security software vendors to think of those passes as a
magic voodoo that simply had to be done. Hence the 35-pass method is available in almost all disk-wiping
tools, no matter that current methods like PRML (Partial Response Maximum Likelihood) are no longer
susceptible to any pattern-based method. Gutmann even descibes this on his web page, but to no effect.
The most recent company to fall for the 35-pass fallacy was Apple with its Disk Utility. This utility
allows one to overwrite a disk before formatting it: the option labeled “most secure” had 35 passes. . .

2.2. RELATED WORK 11

Existing toolkits do not help the investigator interpret forensic data
to find the chain of events that led to the security incident.

2.2.2 Research in Intrusion Analysis

When there is tool support for, or research focusing on, the automated analysis of
security incidents, it is deductive. In deductive approaches, the evidence is matched
with a model of the system under investigation in order to mimic the way in which
a human investigator would operate.

In recent times, there has been a large body of research that aims at automatically
generating attack signatures by various means, such as vulnerability-based (instead of
exploit-based) signatures [26]], network-based (instead of host-based) signatures [[102]],
noise introduction to fool automatic signature generators [[131]], forensic memory
analysis [[103], or finding zero-day vulnerabilities by symbolic execution and predi-
cate testing [43]]. An attack signature is a small substring of a network request that
will cause an intrusion and that is somehow characteristic of that particular intru-
sion. Obviously, this is taking a large step towards the automatic analysis of security
incidents, but it is vulnerability-specific. What this means is that these analysis tools
are geared towards analyzing a specific kind of vulnerability, such as buffer overflows.

King and others try to answer the more general question of the cause-¢ffect chain
that led to the incident. To this end, they use the capturing part of a capture and
replay tool called ReVirt [53] to capture the system calls of processes. Once an in-
trusion is detected, they use this captured information in a tool called Backtracker to
construct dependencies between system objects such as processes or files [90]. For ex-
ample, if a process writes to the password file another process later reads from it, the
second process depends on the former through the password file. By following the
dependencides from an object of interest backwards, they find one or more chains of
events that are dependencies of the object of interest. For example, if there is a pro-
cess running with system administrator privileges when it shouldn’t, they could find
that it has these privileges because the password file was modified and now contains
a second administrator account. They then analyze which process last modified the
password file, and so on, all the way back to init.

The underlying assumption is that all security-relevant changes in the state of
the analyzed machine must have been caused by system calls. But in fact, this is
not true: We have written an attack that works by inserting a back door (a new
administrator account in the password file) from a loadable kernel module [124]; see
also Section Since the password file is modified from within the kernel, there
is no system call that ever modifies the password file. Backtracker cannot analyze
this type of attack.

This particular weakness is not restricted to Backtracker; any deductive tool
could suffer from a similar flaw. This is because a model is always a simplification of
the modelled system and thus necessarily leaves out some parts of it

Attacks that fall outside of forseen models
will be hard to analyze with deductive approaches.

7“The map is not the territory.” [92]

12 CHAPTER 2. CAUSES AND EFFECTS

2.2.3 Research in Intrusion Prevention

Can we prevent incidents through infrastructure measures or through analyzing
source code? There is a plethora of work on intrusion prevention. For software-
based methods, we cite only work on preventing buffer overflows, leaving out work
on code injection and other attacks for reasons of space. In general, research on
prevention has so far focused mostly on narrow, well-understood intrusion methods
such as buffer overflows or code injection. These methods work either statically
(that is, without running the program) by:

® detection of memory errors by using annotations [56]);

¢ detecting incorrect pointer usage by axiomatization and subsequent checking
of usage against that axiomatization [64]];

¢ analyzing semantic comments to detect buffer overruns [96]];

¢ symbolic methods for bounds checking [143]] or memory leak detection [[146]];
* using type qualifiers to detect format string vulnerabilities [149];

® scanning sounce code for bad patterns [168, [169];

e transforming the source code to check all pointer accesses (this is a hybrid
between a static and a dynamic technique: the technique works statically on
the source code but the flaw is detected at run time) [14]]

e finding buffer overruns by static bounds checking through integer range anal-
ysis (finding out if accesses could happen outside legal bounds) [173].

Or they may work dynamically (that is, at run time) by:

e preventing buffer overflows by intercepting library calls and containing any
eventual buffer overflows [[16} [17]];

e preventing buffer overflows by rewriting the binary and forcing verification of
stack contents before use; also [[16, [17]];

e preventing buffer overflows by implementing bounds checking or other mea-
sures in the compiler [24}, 41} 55} [86]);

e patching the runtime library to prevent format vulnerabilities [40];
e linking with a special library to prevent format string vulnerabilities [158[];
e using fault injection for security analysis [69]

® saving the return address in an inaccessible location and restoring it immedi-
ately before function return [[165} [166]].

Unfortunately, a method that is geared at preventing a certain kind of intrusion
method (such as stack-based buffer overflows) will in general not work against other,
fundamentally similar methods that work slightly differently (such as heap-based
buffer overflows): authors usually exaggerate when they claim that their method
will prevent “unknown” intrusions. (There are exceptions to this general rule: for

2.2. RELATED WORK 13

example, TaintCheck [[128]] will in general find all overflows. The price here is non-
negligible performance overhead.)

Dynamic methods also suffer from the problem of what to do when they detect
a buffer overflow. Most tools have no domain knowledge and thus cannot know
what the correct response would be. The most common approach seems to be to
terminate the process, but it is far from clear that this—or indeed any other approach
that treats all processes equally—solves more problems than it creates. For example,
the cryptography mailing list has had a long discussion about whether it is better to
fail with an error code or to exit the application without giving it a chance to clean
up [44]. The consensus, after many days of heated argument, was that one really
can’t say in general what the best course of action must be.

There are also anomaly detection methods that use statistical models to dis-
tinguish normal from abnormal behaviour; for recent examples, see for example
PLAYL [175]], and extensions to anomaly-based detection methods to intrusion pre-
vention, such as Autograph [89], or Shadow Honeypots [8]]. These techniques work
very well, provided that the underlying classification identifies suspicious traffic suf-
ficiently well. If an attack does manage to slip through, however, analysis of the
incident is still manual.

There have been recent advances in self-healing software; see for example the
work by Locasto and others on Application Communities [[104]. They propose to
turn the use of a software monoculture from a liability into an asset by enabling it
to detect flaws in a distributed fashion and to heal itself from detected exploits. This
works well on massively deployed software that is subject to massive well-understood
attacks that are automatically detectable as the program runs (such as buffer over-
flows by by worms). However, if one of these prerequisites is not present, such as
with a code injection attack on a custom web shop on a single server, the method
will not work at all.

’ We will have to live with intrusions for some time.

2.2.4 Verification and Formal Methods

What about avoiding security incidents from the outset? There has been a large body
of work on the verification of security-relevant software systems. Realistically, this
would require the entire execution chain from the processor to the operating system,
the compiler and the application to be proved This is such a massive undertaking
that it has only recently been attempted in the Verisoft project [167]. At any rate,
these approaches cannot be retrofitted to existing systems such as Linux or Windows
because they have no formal specifications and cannot easily be equipped with one.
Also, the languages used in implementing these systems (mostly C and C+ +) may
have formal semantics [[177]], but the problems posed by aliasing (two pointers refer-
ring to the same address) and other difficulties preclude efficient static verification of
full-blown C and C+ + programs.

Also, the adherence of a software system to a formal specification is not in it-
self a guarantee of security: if the specification is faulty, the program can be proved
correct but still be insecure. It is very difficult to specify the security properties
of a software system so that the specification captures the intent and is amenable
to mechanical verification. For example, even if secrecy conditions are correctly

81n the words of Peter Gutmann, there need to be “turtles all the way down” [72].

14 CHAPTER 2. CAUSES AND EFFECTS

specified for an encryption scheme, there might still be practical remote timing at-
tacks [21}, 25, [129]]. Also, formal specification of security features will usually need
to be done by specially trained personnel, which will not usually be available. Gut-
mann’s book chapter on verification techniques [72, Chapter 4] contains many more
examples of the deployment of formal methods in security-related fields (and their
subsequent failure to deliver on their promises).

Formal methods may also have practical limitations: recent results by Backes and
others have additionally shown that it is not possible to use the Dolev-Yao model,
a certain well-known model of (cryptographic) security, to prove that real crypto-
graphic primitives such as hash functions or the exclusive-or operation have certain
desirable propertles, such as security under composmon [15]. We have currently
no way of proving important cryptographic primitives secure, and therefore cannot
verify or prove the security of implementations that use these primitives.

Sometimes, security proofs are impossible with current methods.

Chapter 3

Minimization: State of the Art

Reason is not measured by size or height, but by principle.

—Epictetus, Discourses, Chapter xit

Beaunty depends on size as well as symmetry.

—Aristotle, Poetics, Chapter 7, Section 4

nce we have found an intrusion we want to know which processes have caused
O it. One could argue that all processes have caused the intrusion, and while this
is certainly true, it is not particularly helpful. What we want instead is a minimal set
of processes that cause the intrusion. This problem is best tackled in its generality
first. In this chapter, we show the state of the art in minimization and postpone its
adaptation to intrusion analysis to the next chapter.

3.1 Preliminary Definitions

Before we embark on a quest to find good minimization algorithms, it is useful to
define the problem these algorithms should solve.

The idea is that in order to perform experiments to refine hypotheses, we need
an oracle that tells us whether a particular set of circumstances leads to the effect that
we are currently analyzing. In practice, such an oracle would consist of taking the
circumstances and actually carrying out the experiments, but this is irrelevant to the
theoretical discussion here.

The general idea is that we have some circumstances that in whole produce some
kind of failure, but where the failure does not appear when those circumstances are
wholly missing. It follows that there must be some smallest subset of the set of
circumstances that produce the failure. The terms below were first defined by Zeller
and Hildebrandt [[75]].

Definition 3.1 (Test Function, Outcome, Failure-Causing Circumstances). Let
C be a finite set, called the set of circumstances. The power set of C is the set of all
subsets of C and is written P(C). A function test: P(C) — {V/, X, ?} is called a test
function if test(f) = ¢/. The value of test is called the outcome of the test, and the

15

16 CHAPTER 3. MINIMIZATION: STATE OF THE ART

<SELECT> <!-— <SELECT> —--> <!-- example ——>
<SELECT>
<!-- end example —-->

Figure 3.1: Three HTML documents. The left document caused Mozilla to crash
when printing it was attempted. The middle document does not cause a crash, even
though it is a superset of the first. The right document again causes the crash, even
though it is a superset of the second. It follows that failure-causing circumstances will
generally not remain failure-causing in the presence of other circumstances.

various outcomes are called passing (V/), failing (X), and unresolved (?), respectively.
Any set F C C with test(F) = X is called a failure-causing set of circumstances with
respect to test.

The condition test(#) = v/ models the requirement that applying none of the
circumstances will produce no failure. Note that any function that assigns v/, X, or
? to a subset of C is a test function if only the outcome of the empty set is passing.
It is not required that there be any internal consistency to the test. For example, one
could assume that if test(F) = X, then test(F') = X for every nonempty F’ C F,
but this is not necessarily true in real life. For example, consider the case of the
failing Mozilla browser described by Zeller and Hildebrandt [[75]]. In their case, the
presence of the HIML tag ‘<SELECT>" would make the browser fail when trying
to print the page, but the presence of HTML comments could make supersets of this
minimal document pass or fail; see Figure

Once we have found a set F of failure-causing circumstances, we are interested in
finding a minimal set F’ C F that is also failure-causing. Such a set can be said to be
the cause for the failure; we call such a set a culprit set or simply culprit:

Definition 3.2 (Culprits). Let F be a set of failure-causing circumstances with re-
spect to some test function test. A set F’ C F with

test(F') = X; (3.1)
test(G) # X for every G with G C F and |G| < |F| (3.2)
is called a culprit set of F with respect to test.

Lemma 3.1. Culprits are non-empty.

Proof. Assume that @ could be a culprit. Then Equation [3.1] of Definition [3.2]stipu-
lates that test(#) = X, but Definition [3.1]says that test(#) = v. O

Lemma 3.2. Culprits need not be unique.

Proof. It suffices to give a counterexample where two minimal failure-causing subsets
exist. Let C = {a, b} and let test(S) = X if and only if |S| > 1. Then both {a} and
{b} are culprits with respect to test. O

That culprits are not unique is not just a theoretical consequence of the defini-
tion. In practice, there often exist several minimal test cases that make a program fail,

I'This example is due to Andreas Zeller.

3.2. THE MINIMIZATION PROBLEM 17

such as when a compiler crashes with a certain input file. Renaming all identifiers
in the program will usually also crash the compiler. (Hildebrandt and Zeller give an
example where a compiler crash remains after their automated debugging method
had inadvertently renamed an indentifier [[75]]. They conclude that in this case, the
specific value of the identifier is not relevant for the compiler crash.)

While culprits are not unique, they are all of the same size.

Lemma 3.3. Let F| and F> be two culprit sets of F with respect to test. Then
|F1| = |F2l.

Proof. Assume that this were not so, and assume without loss of generality that
|Fi| < |F2|. Then, according to condition [3.2] of Definition F> cannot be a
culprit. O

From now on, we will treat the notation ‘culpy C’ as a shorthand for ‘any
convenient member of the set of all minimal failure-causing circumstances’. Usually,
the test function is implicitly understood, so we will often simply write ‘culp C*f]

3.2 The Minimization Problem

If we try to find culp C, one possibility is simply to evaluate test(S) for subsets of C
in some order. In fact, it is impossible to compute culp C otherwise than by repeated
evaluations of the test function because the definition of test function has so few
constraints: a minimizing algorithm cannot infer the value of test(S) given S and
the values of arbitrary many values of test(T) with § # T, other than test(d) =
v and test(C) = X. Consider on the contrary an algorithm that does just that.
We then construct another test function test’ such that test(7) = test'(T) for all
considered sets T, but where test(S) # test’(S). This is a test function in the sense
of Definition 3.1]since S # @. The algorithm, having seen the same input—the value
of S, the T’s and the values of test(7)—must produce two different outputs, which
is impossible.
Because this is so, it is not surprising that computing culp C is a hard problem.

Lemma 3.4 (Optimal Solution takes Exponential Time). Let |C| = n and let
culp C be equally distributed in P(C). Then, finding culp C by evaluating test on
subsets of C takes O(2") time.

Proof. We prove this lemma by proving that any algorithm that computes culp C
must consider all subsets S of C with |S| < [culp C|. If then culp C is evenly dis-
tributed in P(C), the algorithm will have to consider 0.5- (2" —2) subsets on average.

Let |C| = n, and let an algorithm consider subsets of C in the order C;, C,
...y Cx = culpC, where k < 2". Assume that there is some nonempty 7 C C
with |T| < |Ck| which has not been considered by the algorithm (that is, there
exists no 1 < j < k with C; = T). Since the only requirement for a test function
is that test(ff) = ¢/, the algorithm cannot infer that test(T) # X and therefore
cannot conclude that C; = culp C. This is a contradiction, which in turn means
that the sequence Ci, ..., Cx must contain the nonempty proper subsets of C in
non-decreasing order.

2 A previous version of this document had cul § as the notation for a culprit set. Tam indebted to
Andreas Zeller who showed me that this formulation led to a rather unfortunate and unintended double
entendre in French.

18 CHAPTER 3. MINIMIZATION: STATE OF THE ART

Since there are 2" — 2 subsets of C that are not either @ or C, and since culp C is
equally distributed in P(C) by assumption, such an algorithm will have to consider
half of the number of subsets on average before finding culp C. O

One consequence of this lemma is that we will generally have to settle for some-
thing less than the full culprit set if we want to compute the answer in reasonable
time. Either we will have to restrict ourselves to test functions with more constraints
(so that we can infer the value of the test function without having to compute it),
or we will have to relax the minimality requirement. In the general case that we are
considering here, we cannot constrain the test function because there are reasonable
cases—such as the one shown in Figure[3.1~where the test function is essentially un-
constrained. We will therefore first try to relax the minimality requirement. In this
case, we can get a reasonably small failure-inducing set with quadratic complexity.

In the next chapter, we will see that intrusion analysis offers constraints on the
test function that make it possible to compute culp C in O(| culp C|log|C]) time.

One fairly natural way to relax the minimality requirement is to constrain the ways
in which we make a failure-causing set smaller. If we try to make it smaller by
removing single elements and don’t succeed, we may have a fairly small set already.
We can easily generalize this to removing subsets of size k and arrive at the problem
that our minimzation algorithms are designed to solve:

Definition 3.3 (Minimization Problem). Let C be a set of failure-causing circum-
stances and let k > 0 be an integer. Then the k-minimization problem on C is the
problem of finding a set T with

T CC; (3.3)
test(T) = X; (3.4
test(T —T')#X forall 7" C T with1 < |T'| < k. (3.5)

Finding T should also be as fast as possible. We call T a k-minimal solution to the
minimization problem with respect to test. As usual, if the test function is implicitly
understood, we call 7' a k-minimal solution to the minimization problem, or simply
a k-minimal solution. This definition is also due to Zeller and Hildebrandt [[75]].

3.3 Naive Algorithm

A 1-minimal solution is a failing process subset with the property that removing any
single process from it will cause the replay not to fail any more. This immediately
suggests a simple algorithm for finding a 1-minimal solution

Algorithm N. (Naive 1-Minimal Solution.) Let C be a set of circumstances and let
test be a test function so that test(C) = X. This algorithm computes a 1-minimal
solution to the minimization problem on C with respect to test.

3ncidentally, we will always present and analyze algorithms using Knuth’s style from The Art of Com-
puter Programming. However, we will also always give pseudo-code. As one can see, Knuth’s style has six
steps whereas the pseudo-code takes twenty lines, even though it takes a few liberties with Algorithm N
and is not a verbatim rendition. Also, if there is a discrepancy between the algorithm and the pseudo
code, the algorithm should be considered authoritative.

15

3.3. NAIVE ALGORITHM 19

set <circumstance> algorithm_n (set<circumstance> s) {
set<circumstance> t = s;

bool finished = false;

while (!finished) {

set <circumstance> :iterator j = t.begin () ;

while (j '=t.end()) {
set <circumstance> :iterator k = j;
set<circumstance> test_set = t;
test_set . remove (*j++) ;

if (test (test_set) == fail) {
t.remove (*k) ;
break;
}
}

finished = j == t.end () ;
}

return t;

}

Figure 3.2: Pseudocode for Algorithm N

N1. [Initialize.] Set T « C.

N2. [Set up loop.] Let T = (T, ..., Ti}. Set j < k. We will repeat steps N3 to N4
for j=k,k—1,...,1.

N3. [Set up test.] Set r « test(T — T;).

N4. [Test.]Ifr = X,set T < T — T; and go to step N2. Otherwise go to step N5.
N5. [Loop.] Set j < j — 1. If j =0, go to step N6, otherwise go to step N3.

Né6. [Finish.] (At this point, we have test(T — T;) # X forall 1 < j < k.) Terminate
with T as the answer.

Lemma 3.5. Algorithm N computes a 1-minimal solution.

Proof. First, the algorithm always terminates. This is seen from the fact that T gets
smaller and smaller every time step N2 is reached: the first time N2 is reached,
we have |T| = |C|; at all other times, T has been reduced by one element (by the
assignment 7' «— T — T in step N4). Since C is finite, that means that eventually we
will have j = 0 in step N5, and will reach step Né.

Once we reach step N6 (which we will do eventually, since Algorithm N termi-
nates), we know that test(T — T;) # X forall 1 < j < k, because otherwise, step N4
would have resulted in a return to step N2. This in turn means that T satisfies the
definition of a 1-minimal solution for the minimization problem on C. O

How good is this algorithm? Not very. Its worst-case running time is quadratic
in the number of elements in C.

Lemma 3.6 (Algorithm N has Quadratic Worst-Case Running Time). Let |C| =
n. Algorithm N executes step N4 O (n?) times.

20 CHAPTER 3. MINIMIZATION: STATE OF THE ART

Proof. The outer loop (steps N2-N5) will be executed for j =n —1,..., 1 at most,
and the inner loop (steps N3-N4) will be executed j times at most. It follows that
step N4 is executed at most

n—1 n—1
dDn—j=>Dj=nm-1)2
j=1 j=1

times, which is O (n?).

This number can actually be achieved if we let C = {S, ..., S,} and assume
that culp C = {S,,}. If we assume further that test(C;) = X only for sets C; of the
form C; ={Sj, ..., Sy}, then Algorithm N will try Cy, ..., C, in order. Removing
processes from Cj element by element until we arrive at C 1 takes n — j tests. The
number of times we execute step N4 is therefore precisely the maximum number
given above. O

Now what about the average running time? This quantity is much harder to analyze.
It depends not only on the number of elements in culp C, but also on the position
of those elements in C, the distribution of culp C in P(C), and on properties of the
test function. We will only show here some preliminary results.

Even if we assume that culp C is equally distributed in P(C), we cannot answer
this question empirically, since we would have to iterate over all 32" =2 possible test
functions—2" — 2 possible nonempty subsets for which to choose one of three pos-
sible values for the test function. This is prohibitive even for small values of n.

We will therefore consider consider a special test function with

test(T) =X onlyif T D culpC. (3.6)

We call this condition the superset condition.

Now we consider a set C = {co, ..., ¢31} of 32 circumstances (departing slightly
from our convention to start counting at 1) and ask: how many times is test evaluated
for Algorithm N if the relevant circumstances range over the entire power set of C?

Subsets T of C are being mapped to 32-bit unsigned integers by a function int such
thatint 7 = (b31, ..., bo)2 where b; = lifand only if ¢; € T. The requirement that
test(7) = X if and only if culpC C T easily translates into bitwise operations on
int(culp C) and int 7: culp C C T if and only if int(culp S) Aint 7 = int(culp). (For
our purposes, it is irrelevant if test(T) is ¢ or ? if culp S Z T.) In this way, each 32-
bit unsigned integer yields a test case for each algorithm, for which we compute the
number of times test was evaluated. We write this number as testy for Algorithm N.
The results are shown in Figure

Since figures like these appear throughout this chapter, we will describe in some
detail how they must be read. The figure consists of three subfigures:

e The first plot contains the empirical density function. The x axis contains
the number of tests that were needed to minimize a set of failure-inducing
circumstances, and the y axis contains the number of times these many tests
were observed. It is a histogram, only with lines, not bars. (This is only to
facilitate reading the graph.)

® The second plot is a box-and-whisker plot. The box starts at the lower quartile
(i.e., 1/4 of all observed values were less than or equal to this value) and extends
to the upper quartile (which 3/4 of all observed values were less than or equal

3.3. NAIVE ALGORITHM 21

Naive Minimization Boxplot Normal Q-Q Plot
3 2 -
N 41; n ~N 4
g B | 8
£ 7 ' z
E » . g
- S
g dn % ; 2
: 5 | -
> ‘% | ' & =
- i W
T T T T T T T T T
50 100 150 200 -4 -2 0 2 4
Number of Tests Theoretical Quantiles

Figure 3.3: Number of tests for Naive Minimization.

to). The line dividing the box is the median (the second quartile). The height
of the box is the inter-quartile range, or IQR. The lower whisker is a datapoint
that is at most 1.5 - IQR away from the lower quartile, and similarly for the
upper whisker. Points beyond the whiskers are called outliers.

A boxplot gives information about the spread of the data (through the IQR and
whiskers), and also shows any skewness (through the position of the median
inside the box and the relative lengths of the whiskers).

¢ The third plot is a Q-Q plot. Such a plot plots the observed quantiles against
the expected quantiles of a N (0, 1) distribution. In other words, the k-th small-
est value of the n observed values is plotted against the expected k-th smallest
value of n normally distributed numbers. The closer this plot is to a straight
line (especially in the middle, near the median), the closer the empirical distri-
bution agrees with the theoretical distribution.

Why are such plots useful? Why can’t we simply run a statistical test that
would tell us at which significance level the empirical distribution deviates
from the theoretical one? The problem is that with so many data points,
any deviation from the theoretical distribution will be highly significant for
any known test. In other words, any test will reject the hypothesis that the
data is actually normally distributed. And such a test is undoubtedly correct.
However, looking at Figure we see that the Q-Q plot rises in the low
quantiles, at x < —3.5, and symmetrically flattens at x > +3.5. But these are
only approximately 0.04% of all data points, or 1.7 million of 4.3 billion total.
Additionally, these data points lie at the extreme ends of the distribution. The
middle portion, where most data points lie, agrees very well with a normal
distribution. So for all practical intents and purposes, the data is normally
distributed, as shown by the Q-Q plot, whereas a statistical test would show
significant deviations from normality.

Figure [3.3|shows that Algorithm N needs about 130 evaluations of test to find a
1-minimal solution, with about 2/3 of all numbers falling between 110 and 150. This
makes Algorithm N an impractical algorithm, because it will take too long on most
practical problems.

’ Algorithm N is too slow.

22 CHAPTER 3. MINIMIZATION: STATE OF THE ART

How can we improve on its dismal average running time? The key observation is
that relevant circumstances are not scattered randomly around the set of all circum-
stances, but instead tend to form clusters. This in turn means that we can improve
on Algorithm N by changing our strategy to cut off large swathes of circumstances
at each step. Fortunately, the theory and practice of this new algorithm, called Delta
Debugging, have already been developed, and we will give its properties in the next
section.

3.4 Delta Debugging

The basic idea of Delta Debugging is to remove large contiguous blocks of circum-
stances at each stage. When Delta Debugging starts, it removes one half of the cir-
cumstances and runs the test on the remaining half. If the test fails, we have reduced
the number of circumstances by one half and try again. If the test succeeds, we
try the other half. If we always get one failing test at each stage, we converge on
the failure-inducing circumstance with logarithmic speed, but we won’t always be
so lucky. For example, what happens if both halves contain relevant circumstances?
Then testing each half will yield either ¢ or 2. The question is what to do next?

Delta Debugging solves this problem by using two devices: splitting into more
than two pieces and testing the complements of sets. The combination of both
devices finds a 1-minimal solution to the minimization problem. The following is
adapted from Hildebrandt and Zeller’s paper on Delta Debugging [75]].

The algorithm is best formulated in a recursive fashion, although we will give an
iterative formulation also. First of all, we need some terminology.

Definition 3.4 (Complement). Let S be a set, and let T C S. We write S — T =
{x :x € SAx ¢ T}andcall S — T the complement of T with respect to S.

Lemma 3.7. If S is finite, |S — T| = |S] — |T]|.

Proof- Let S = {S1,...,8,}. U T =0, then S — T = S, and the conclusion follows
immediately. Otherwise, without loss of generality, we can let T = {Sy, ..., S}.
(This can always be achieved by rearranging the elements of S.) Then

IS=T| = {Sksts ... Sl =n—(Gk+ 1)+ 1=n—k=1S|—T|. O

Definition 3.5 (Partitioning into k equal parts). Let S be a finite set. A set P =
{S1, ..., Sk} is called a partitioning of S into k equal parts, it

® P isa partitioning of S, that is

U S;j=S and

1<j<k
SNS; =46 forl <i<j<k

* || is either [|SI/k] or [|SI/k] + 1for 1 < j < k[

Lemma 3.8. Let [S| =nand let P = {Si, ..., St} be a partitioning of S into k equal
parts. Then the number of elements S; with |S;| = [|S|/k] + 1 is n mod k.

4A weaker condition would be [18:1 — |Sj|‘ < 1forl <i < j < n,and the rest would still follow.

34. DELTA DEBUGGING 23

Proof. Let |S| = n. Since the elements of P are disjoint, we have

U sif= D] 18il= D (In/k)+9)),

1<j<k 1<j<k 1<j<k

n=|S=

where d; is either 0 or 1. Expanding further,

D (n/ki+d) = D In/kl+ D dj=kln/kl+ > o;.

1<j<k 1<j<k 1<j<k 1<j<k

Since n = k|n/k] + n mod k, we must have Zlgjsk d; = n mod k, hence the num-
ber of d;s which are 1 must equal n mod k. O

Armed with these terms, we can formulate the minimizing Delta Debugging
algorithm as follows.

Definition 3.6 (Minimizing Delta Debugging). Let S be the set of proceses en-
countered during capturing, let P (S, k) be some partitioning of S into k equal parts,
and let test(S) = X. We define ddmin(S) = ddmin(S, 2), where

ddmin(S;, 2) if test(S;) = X for some S; € P(S,k);
ddmin(S. k) ddm?n (s - tS'j,max(k -1,2) %ftest(S — S;) = X for some S; € P(S, k);

ddmin (S, min(| S|, 2k)) ifk < |S|;

S otherwise.

The first line is called “reduction to subset”, the second is called “reduction to com-
plement”, and the third line is called “increasing the granularity”.

Lemma 3.9. The function ddmin computes a 1-minimal solution to the minimiza-
tion problem.

Proof. See the paper by Hildebrandt and Zeller [[75, Proposition 11]. The main idea
of the proof is that if ddmin returns S, it will have evaluated test(S — {c}) # X for
every c € S. O

Figure [3.4 has a recursive formulation, but an iterative implementation of the
above ideas is also straightforward.

Algorithm D. (Minimizing Delta Debugging.) Let S be the set of processes en-
countered during capturing. Assuming that test(S) = X, this algorithm computes a
1-minimal solution to the minimization problem on S using Definition 3.6}

D1. [Initialize] Set T « S, k « 2.

D2. [Set up loop.] Set U «— P(T, k). Let U ={Ty, ..., Ty}

D3. [Set up subset loop.] Set j « 1.

DA4. [Set up subset test.] Set r < test(T}).

D5. [Subset test.) If r = X, set k <~ 2, T < T; and go to step D2, otherwise go to
step Dé.

Dé6. [Loop on j.] Set j < j+ 1. If j < k, go to step D4, otherwise go to step D7.
D7. [Set up complement loop.] Set j « 1.

D8. [Set up complement test.] Set r < test(T — Tj).

10

15

20

24 CHAPTER 3. MINIMIZATION: STATE OF THE ART

set<circumstance> algorithm_d (set<circumstance> s, int n_subsets) {
set <set<circumstance> > subsets = split (s, n_subsets) ;

for (int phase = testing_subsets; phase <= testing_complements; phase++) {
for (set<set<circumstance> >::const_iterator i = subsets.begin () ;
i V= subsets.end () ; i++) {
const set<circumstance>& t = phase == testing_subsets ? *i : complement (xi, s);

if (test(t) == fail) {
if (phase == testing_subsets)
return algorithm_d (t, 2, level + 1);
else
return algorithm_d (t, std:max (n_subsets — 1, 2), level + 1);
}
}
}

if (n_subsets < s.size())

return algorithm_d (s, min (failing .size (), 2xn_subsets)) ;
else

return s;

}

Figure 3.4: Pseudocode for Algorithm D

D9. [Subset test.] If r = X, set k < max(k — 1,2), T « T; and go to step D2,
otherwise go to step D10.

D10. [Loop on j.] Set j «— j+ 1. If j < k, go to step D8, otherwise go to step D11.
D11. [Increase granularity.] If k < |T|, set k « min(|T|, 2k) and go to step D2,
otherwise go to step D12.

D12. [Terminate.] Terminate with T as the answer.

Steps D4-D5 implement reduction to subset, steps D8-D9 implement reduction
to complement, and Step D11 implements granularity increase.

How good is Delta Debugging? Algorithm D’s worst-case running time is the
same as for the naive Algorithm N.

Lemma 3.10. Let |C| = n. Algorithm D invokes test at most O (n?) times.

Proof- See the paper by Hildebrandt and Zeller [75, Proposition 12]. The main idea
of the proof is that the worst case happens if first C is subdivided until only single-
element subsets remain, and then, when testing complements, only the last comple-
ment fails. O

But is Algorithm D better than Algorithm N on the average? First, we conducted
the same test for Algorithm D that we did for Algorithm N. This leads to Figure[3.5]

Having now computed these numbers for Algorithms D and N, we ask, when
should we say that one algorithm is faster than the other? We answer that question
by saying that Algorithm D is faster if Rp — Ry < 0 on the average, and that
Algorithm N is faster if conversely Rp — Ry > 0 on the average. If that average
difference is about zero, we say that both algorithms are about equally fast. All this
is under the superset condition of Equation (3.6), so this result should not be applied
to more general cases.

34. DELTA DEBUGGING

Number of Times

Number of Times

Delta Debugging Boxplot Normal Q-Q Plot
E E
= - - 4
? S : g
E f
n S o ©
s S — S5l
0 ! [
k<) -~ ! % -
[l ' n
— '
T T T T T T \. T T T T
0 50 100 200 -4 -2 0 2 4
Number of Tests Theoretical Quantiles
Figure 3.5: Number of tests for Delta Debugging.
Difference DD—Naive Boxplot Normal Q-Q Plot
E E
k=] 0 4 o o
= - - i L d
™ . <
k= ! S B
[t} @ 0
i) | g
[alke! ‘S ' T ‘S
= g ! o 7
? | P
T T T T T T T T T
-100 0 100 200 -4 -2 0 2 4
Difference Theoretical Quantiles

Figure 3.6: Difference between the number of tests for Naive Minimization and for
Delta Debugging for a 32-element set. Since the average is clearly less than zero, Delta
Debugging is faster than Naive Minimization when we consider all possible values of
culp C equally likely.

25

26 CHAPTER 3. MINIMIZATION: STATE OF THE ART

Naive vs. DD

Number of Times

1000 3m0° s
|

0 50 100 150 200 250

Number of Tests

Figure 3.7: Raw values of the number of tests for Algorithms N and D. While the
shape for Algorithm N is very regular, Algorithm D’s curve shows some kinks. We
believe that this is due to Algorithm D’s preference for cutting off large chunks of the
input if it can.

The results are given in Figure 3.6/ which plots Ry — Rp against the number of
times that difference occurred, so for example the y value 27108733 for x = —47
means that in 27108733 cases, Algorithm D needed 47 less tests than Algorithm N.
The average value of Rp — Ry is —10.2427, so Algorithm D is faster than Algo-
rithm D on the average, if we consider all possible values of culp C equally likely.

It is interesting to plot the number of tests (and not the difference) for Algo-
rithms N and D side by side; see Figure[3.7} What can be seen from the figure is that
Algorithm N behaves very regularly. The number of tests is very closely normally
distributed. Algorithm D, on the other hand, exhibits a much different and more
erratic behaviour—the curve is sloped slightly to the left: the distribution has mean
146, standard deviation 16.9 and skewness —0.302. Since we haven’t sampled the
event space, but exhausted it, we can say with certainty that the distribution is not
normal. Also, the algorithm hardly ever needs more than 200 tests.

Algorithm D is much better than Algorithm N.

Chapter 4

Minimization For Intrusion
Analysis

The algorithms considered in the previous chapter all have worst-case running
times on the order of O(n?) executions of the test function. This will be too
much when one test case entails the (re-)execution of dozens of processes. This
chapter explores ways to exploit particular features of intrusion-causing processes
in order to achieve large speedups.

The key observation is that intrusion-causing processes will in general not undo
their intrusion effects—most intrusions will want to leave some permanent change
in the system, such as added accounts, additional processes and so on. Also, harmless
processes will generally not undo the actions of attack processes.

Of course, this need not necessarily be true in real life: the intrusion-causing
processes could cause an effect that is then later partially undone by other processes,
such that the net effect is no intrusion. However, this would mean that an attacker
successfully attacks the system and then removes the effects of the attack, only to
attack again later. We consider this highly unlikely]]

That means that the cause-effect chain for the intrusion will not contain any
masking or undoing processes, which in turn means that the superset condition

Equation holds.

4.1 Extended Naive Algorithm

Why does Algorithm N perform so badly when compared to Algorithm D? Intu-
itively, if all 232 — 1 nonempty subsets of 32 failure-causing events are equally likely
to be culp C, then none of the circumstances that make Algorithm D very fast occur
very often. The reason for Algorithm N’s slowness is that when it finds an irrelevant
circumstance, it spends much time removing circumstances that it already knows are
relevant. In algorithmic terms, the inner loop terminates as soon as we have found
Jj with test(T — T;) = X, but we could terminate much faster if we made complete

IThis does not mean that attackers do not remove traces of their activity, which they do. In the case
discussed in the text, it means that there are failing subsets of passing process sets, which is something
different. The removal of traces is however not relevant for the attack and will be ruled out by any
minimization algorithm.

27

10

28 CHAPTER 4. MINIMIZATION FOR INTRUSION ANALYSIS

set<circumstance> algorithm_x (set <circumstance> s) {
set<circumstance> t = s;

bool found = false;

do {

set <circumstance> :iterator j = t.begin () ;

while (j '= t.end()) {
set <circumstance> test_set = t;
set <circumstance>:iterator k = j;
test_set . remove (*j++) ;

if (test (test_set) == fail) {
t.remove (xk) ;
found = true;

}
}
} while (found) ;

return t;

Figure 4.1: Pseudocode for Algorithm X

passes through T, removing irrelevant circumstances and repeating this process only
after we have completed an entire pass. The result of these musings is Algorithm X.

Algorithm X. (Extended Naive 1-Minimal Solution.) Let C be a set of failure-causing
circumstances. This algorithm computes a 1-minimal solution to the minimization
problem on C.

X1. [Initialize.] Set T < C and k « |C]|.

X2. [Set up loop.] Set found <« false. Let T = {Ti, ..., Tx}. Set j « k. We will
repeat steps X3 to X4 for j =k, k—1,...,0.

X3. [Set up test.] Set r < test(T — T).

X4.[Test.] It r = X, set T < T — T} and found <« true.

X5. [Loop.] Set j « j — 1. If j =0, go to step X6, otherwise go to step X3.

X6. [Finisheds.] If found = false, terminate with T as the answer. Otherwise, go to
step X2.

Lemma 4.1. Algorithm X computes a 1-minimal solution.

Proof. We first consider Algorithm X’s termination condition. Algorithm X termi-
nates in Step X6 if found = false, which is true only if the loop from Steps X2 to
X5 couldn’t remove a single element from 7. So i Algorithm X terminates, it has
computed a 1-minimal solution. If it were never to terminate, found would have to
be always true in Step X6, but if that is so, T has decreased by at least one element.
Since C (and hence T) is finite, this can happen only a finite number of times, hence
Jfound = false in Step X6 eventually. O

This algorithm should on the average be much faster than Algorithm D if culp C
is evenly distributed in P(C), but especially if we constrain the test function such
that the superset condition Equation holds: Algorithm D will try subsets of

4.1. EXTENDED NAIVE ALGORITHM 29

Difference DD-Extended Naive Boxplot Normal Q-Q Plot
k=) k=) k=)
g | i] i
g v F\! ' 3 E!
15 ! g
[=) ! [
5 g <
g =] 2 B
2 ol 5 o
£ =1 . E o
EREEN . <3
z ﬁ — " (2]
- T
T T T T T T T T T
0 50 100 150 200 -4 -2 0 2 4
Difference Theoretical Quantiles

Figure 4.2: Difference between the number of tests for the Extended Naive Minimiza-
tion and for Delta Debugging for a 32-element set. Here we can see that Algorithm X
is already dramatically faster than Algorithm D.

some set T with test(T) = ¢, even though such T cannot be supersets of culp C
under the superset condition. We note that the superset condition holds when min-
imizing process sets during a consistent replay, according to Definition In fact,
this condition makes Algorithm X’s worst case running time /inear in |C|:

Lemma 4.2. Under the superset condition, the worst case for Algorithm X has
running time 2|C| — 1.

Proof. Under the superset condition, Algorithm X always needs less than two com-
plete passes through C, because any C; that has been tentatively removed and found
relevant will also be in culp C. Assume this were not so. Then we would have
some T with culpC C T = {Ty, ..., T;} where (for example) test(T — T1) # X but
Ty € culp C, which is impossible under the superset condition. That means that the
maximum number of complete passes over C is less than 2, and that means that the
maximum number of tests is at most 2|C| — 1. O

Another important fact is that under the superset condition, Algorithm X finds
not only a 1-minimal solution, but actually culp C:

Lemma 4.3. If the superset condition holds, Algorithm X computes culp C.

Proof. let T be the result of Algorithm X and assume on the contrary that T #
culpC. Now since test(T) = X, we must have culpC C T (by our convention
that culp C is just a shorthand notation for “any convenient member of the set of
all minimal failure-causing circumstances”). Since we have also stipulated that T #
culpC, we must have T — culpC # 0. Let T} € T — culpC. By the superset
condition, we would have test(T — T;) = X, and that would have been tested in
Step X3. That would have caused found to be set to true, and T to be replaced by
T — Ty, so T could not have been the result of Algorithm X, a contradiction. O

If we repeat our experiment from above, we find our theoretical computations

confirmed; see also Figure[4.2}

Algorithm X is much faster than Algorithm D.

10

15

30 CHAPTER 4. MINIMIZATION FOR INTRUSION ANALYSIS

set<circumstance> algorithm_x (set <circumstance> s) {
set<circumstance> t = s;

bool found = false;

set<circumstance> :iterator j = t.begin () ;
while (j '=t.end()) {
set<circumstance> test_set = t;
set <circumstance> :iterator k = j;
test_set . remove (*j++) ;

if (test (test_set) == fail)
t.remove (k) ;

}

return t;

Figure 4.3: Pseudocode for Algorithm E

Difference Naive—Extended Naiv¢ Boxplot Normal Q-Q Plot
k=l k=)
g i g
P g ' F
£ g4 g 1 § 3]
= L i | s ol
IS k=) & B
g o g o HAH
- 3 - S
5 & S ! E oo
Z 54 g 1 o g4
- < T <)
T T T T T T T T T
0 50 100 150 -4 -2 0 2 4
Difference Theoretical Quantiles

Figure 4.4: Difference between the number of tests for Extreme Naive Minimization
and for Extended Naive Minimization for a 32-element set. Here we can see that
Algorithm E is again faster than Algorithm X.

4.2 Extreme Minimization

Yet another important observation is that we can accelerate Algorithm X by another
factor of 2 by leaving out the last unneccessary pass. Consider this modification of
Algorithm X to only contain one pass:

Algorithm E. (Extreme Naive Minimal Solution.) Let S be the set of processes en-
countered during capturing. Assuming that test(S) = X, and assuming the superset
condition, this algorithm computes culp C.

El. [Initialize.] Set T « S.

E2. [Set up loop.] Let T = {T1, ..., Ti}. Set j « k. We will repeat steps E3 to E4 for
=k k—=1,...,0.

E3. [Set up test.] Set r « test(T — T7;).

E4.[Test.]It r = X,set T < T —T).

E5.[Loop.] Set j < j—1.1If j > 0, go to step E3, otherwise terminate the algorithm
with T as the answer.

If we repeat our experiment from above, we find now that the average difference
between the running times of Algorithms X and E is about 80. Therefore, Algo-

4.3. BINARY MINIMIZATION 31

rithm E is about twice as fast as Algorithm X and much faster than Algorithm D on
the average; see Figure[4.4]

Lemma 4.4. Algorithm E computes culp C.

Proof. First of all, test(T) = X when Algorithm E ends, so culp C C T. If there were
Tj € T — culp C, we would have test(T" — T;) = X for some intermediate value of
T’ that was computed in Step E4. That would have led to the exclusion of T} from
T, a contradiction. O

Lemma 4.5. Algorithm E’s running time is |C].

Proof. Every element of C is removed once and the result tested. 0O

It seems plausible to assume that every algorithm can compute culp C under the
superset condition will never have a worst-case running time of less than O(|C|)
tests to do so—even if we do not have a proof. If that is true, we conclude that
Algorithm E must be optimal.

Theorem 4.6 (Algorithm E is optimal). Algorithm E has a best-possible worst-
case running time among all algorithms that compute culp C under the superset
condition.

4.3 Binary Minimization

Why must we remove every element of S one at a time? Can’t we apply the key
idea of delta debugging and remove big portions of S at a time, only this time use
the superset condition effectively? We can. The key idea ist that we can find the
rightmost element of culp S via binary search. If we call this element ¢, we can then
find the rightmost element of culp C — {c} by binary search as well, and so on, until
we end up with culp C.

Algorithm B. (Binary Minimization.) Let C = {c1, ..., c,} be a set of failure-causing
circumstances. Assuming that test(C) = X, and assuming the superset condition, this
algorithm computes culp C.

B1. [Initialize.] Set T < @. Set r < n.

B2. [Prepare binary search.] Setl’ «— 1 and r’ < r. We will look for the culprit
member with the highest index between indices /" and 7.

B3. [Compute midpoint.] Let m = [(I' +r')/2].

B4. [Set up test.] Set t « test({c1,...,cu—1}UT).

B5. [Test.] If t = X, set ¥’ < m — 1, otherwise set I’ < m.

Bé6. [Loop if not found.] It I < r’, go to step B3. Otherwise, go on to B7.

B7. [Loop if found.] If t = ¢/, set T = T U {cp}, and set r < m — 1. Otherwise
return to step B2. If now r > 1, return to B2. Otherwise, terminate the algorithm
with T as the answer.

Theorem 4.7. Algorithm B computes culp C.

10

15

25

32 CHAPTER 4. MINIMIZATION FOR INTRUSION ANALYSIS

#define N 32
bitset<N> algorithm_b () {
bitset<N> s = “0; /7 Initially include all circumstances
bool found = false;
intl =0;
do {

int min = [;

while (I < N) {
[= (min + N)/2;

bitset<N> t = s;
for (int i = min; i <= 1; i++) t[i] = false;

if (test(t) == fail) {
found = true;
min =1 + 1;
break;

}

}
} while (found) ;

return t;

}

Figure 4.5: Pseudocode for Algorithm B

Proof. To begin with, the algorithm certainly terminates because first, the inner loop
(steps B3-B6) contain a binary search that always terminates, and second, r always
decreases between successive iterations in the outer loop. For the following discus-
sion, let U = {c1,...,ck} UT. A circumstance ¢ is added to T if k is the largest
index that has test(U) = X, so clearly ¢ € culpC. All other members ¢, with
m > k must already be in T, because otherwise U will not be a superset of culp C
and hence test(U) # X. Hence, when Algorithm B terminates, T = culp C. O

Theorem 4.8. Algorithm B executes O (| culp C|log|C]) tests.

Proof. To find every single element of culp C takes O(log|C|) time, so the entire
process takes O (| culp C|log|C|) time. O

If |culpC| < |C|/log|C]|, this will be less than the O(|C]) tests needed for Al-
gorithm E. Nevertheless, if | culp C| & |S|/log|S|, Algorithm B’s running time will
exceed that of Algorithm E. Therefore, while Algorithm E’s worst-case running time
might be optimal because of Theorem we usually have the needle-in-a-haystack
case (| culp C| < |C|/log|C|), which will make Algorithm B perform better.

Algorithm B is very fast under typical conditions.

Chapter 5

Malfor

ow that we have the algorithms to minimize a set of failure-causing circum-
N stances, let us apply this knowledge to intrusion analysis. The gist of the rest
of this chapter is that we can analyze intrusions by first capturing processes and re-
playing them under the control of a minimization algorithm. Each replay can be
viewed as the result of the computation of a test function (see Definition [3.1) taking
a set of process numbers as input and returning ¥/, X, or ? as output, dependmg
on whether this process set makes the intrusion happen, makes it not happen, or is
impossible to replay, respectively.

5.1 Processes and Replay

For the purposes of this section, we abstract away all the things that processes actu-
ally do, and keep just their genealogy, i.e., which process was created by which other
process. In order to do this, we identify a process with its process ID

5.1.1 Preliminary Definitions

First, we need the notion of an iterated function. This familiar notion will be needed
below when we define the ancestors of a process.

Definition 5.1 (Function Iteration). Let f: M — M be a function that maps a set
to itself. For a nonnegative integer k, we define

X fk=0

k —
frx) = f(fk_l(x)) otherwise.

G.1)

Definition 5.2 (Process ID, Parent, Ancestor, Offspring). Let P be a set of posi-
tive integers (called process IDs). Let parent: P — P be a mapping between process

IThis seemingly natural step actually has a problem because process IDs wrap around in real life. In
other words, a process ID may refer to different processes at different times. We sidestep this problem
simply by assuming that process IDs do not wrap around. In practice, we could attain this by prefixing
any real process ID by the number of times it has been issued since the system was booted, turning a
process ID into a pair (¢imes, id). Since there is an implementation-defined upper limit L for process IDs
such that p < L for all process IDs p, we can then re-map this pair of integers back to a single integer by
computing times - L + id. Since this would just clutter up the notation, we simply assume that process IDs
are unique.

33

34 CHAPTER 5. MALFOR

IDs. For p € P, we call the set |J,.{parent‘(p)} the ancestors of p and write it
ancestors(p). Conversely, the offspring of p are those processes for whom p is an
ancestor: offspring(p) = {q : p € ancestors(q)}. The function parent is called a
parent function if the following are both true:

there is exactly one proor € P for which parent(proot) = Proot
for every p € P with p # proot, p & ancestors(p). (5.2)

For example, the Unix process called init traditionally has the process ID 1, and
parent(1) = 1. The one-to-one correspondence between a process and its ID allows
us to talk about the “process p” when in fact we should be talking about the “process
whose ID is p” or even the “process whose ID is currently p”. This is only possible
because of our assumption earlier that process IDs do not wrap around. If the name
of the program that a process is executing is unique, we will also sometimes identify a
process with that program. For example, we could be talking about the init process,
or about parent(httpd).

Our definition makes sense in that parent functions induce process trees:

Lemma 5.1 (Parent functions induce trees). Let P be a set of process IDs and let
parent be a parent function. The graph (V, E) given by

V = parent(P)
E = {(p, p/) : parent(p) = pl} — {(Proot> Proot)}

is a rooted tree. (Note that edges point towards parents, not towards offspring.)

Proof. First of all, every node p # proor has outdegree 1. This is because parent(p)
is unique, hence for every such p, there is exactly one edge (p, parent(p)) € E.

Next let ((po, p1), (p1, p2),...) be a path of maximum length with py = p
and (px, pk+1) € E. This path must be finite because since V' is finite, this would
otherwise imply the existence of a cycle ((pk, pk+1), - - - (Pk» Pk+1)) in the path. That
would mean, however, that py is its own ancestor, which is expressly forbidden by
Condition (5.2). Now consider the last edge (p, p’) in the path. The reason why
it is the last edge is that there is no edge beginning with p’ in E. However, since
parent(p) exists for every p € P, that can only mean that p’ = pyoor, because that is
the only pair (p, parent(p)) that was expressly excluded from E.

Taken together, both properties mean that there exists a root node, and that there
exists exactly one finite path from every non-root node to the root node. O

In order to replay processes, we have to capture them first. This works by speci-
fying an initial set Cg of processes to be captured. Whenever such a process creates a
new process via fork, the new process is also marked for capturing.

Definition 5.3 (Captured Processes). Let P be a set of process IDs. Let Cy C P
be a set such that for every ¢ € Cy, ancestors(c) N Cop = @. We call Cy a (valid) set
of processes initially set up to be captured (sometimes simply called the initial set) and

define

C= U offspring ¢

ceCy

as the set of processes encountered during capturing.

5.1. PROCESSES AND REPLAY 35

This causes all offspring of processes in Cy to be captured as well, which in turn
leads to closedness of capturing under the parent-child relationship: the set of pro-
cesses encountered during capturing forms a set of rooted trees.

The roots of those trees are all in Cy. The only way that a process in Cy is not
also the root of a captured process tree is if one of its ancestors is also in Cy. This
is impossible in practice because a process needs to be set up for capturing at its
creation. Since ancestors are necessarily created before their offspring, the offspring
cannot be in Cy.

5.1.2 Replay

We are interested in finding the cause of an intrusion as a cause-effect chain in the
sense of Chapter[2} the processes in such chains cause the intrusion, the chains are
minimal, and chains are not unique but all have the same size. In terms of process
trees, these processes are special because they are relevant for the intrusion, which
in our case simply means that they cause some change in the state of the system
that makes some test function return X. Therefore, causes of intrusions are simply
culprits in the sense of Definition [3.2|for some convenient test function.

However, this general definition is not enough to allow the analysis of intrusions
in practice. Consider the case where a process gains root privileges through a hole in
suidperl. This is certainly the immediate cause of the breakin, but it is not sufficient
to clear it up because it fails to uncover the reason why the attacker was able to
invoke suidperl in the first place. Therefore we will have to follow the parents of the
immediate causes until we arrive at a process in Cp. This leads us to the definition of
a consistent replay:

Definition 5.4 (Consistent Replay). Let P be a set of process IDs, Cy a set of
processes initially set up to be captured, let C be the set of process IDs encountered
during capturing, and let test be a test function on C. Any function R : P(C) —
{v, X, ?} with

? if there is some p € § with p ¢ C and parent(p) ¢ S,
R(S)=1X if S D culp,,C, (5.3)
v otherwise.

is called a consistent replay of P.

The first condition stipulates that only complete process subtrees are contained
in S. In other words, if a process p is in S, then so must be its ancestors, until we
reach a process in C. The closedness property guarantees that the first and second
conditions will never be true simultaneously. The second condition is the superset
condition of Equation (3.6); the reason why we believe that it holds for intrusion
analysis was motivated at the beginning of Chapter @] This condition plays a large
part in later sections of this chapter, so it should be kept in mind.

Lemma 5.2 (Replays are Test Functions). Let R be a consistent replay of P with
respect to Co and test. Then R is a test function in the sense of Definition 3.1}

Proof. The empty set qualifes neither for condition 1 nor for condition 2 of Equa-

tion (5.3), hence R(9) = V. O

36 CHAPTER 5. MALFOR

At this point, we can apply the apparatus of Chapter [4|to find culprit processes,
or rather process subtrees and hence cause-effect chains, by minimizing C with re-
spect to R and test

’ Intrusion analysis can be viewed as another application of minimization.

5.2 System Call Interposition

We now know how to minimize a set of intrusion-causing processes—by making
a series of controlled experiments. We still need to describe how to make these
experiments: How does process capturing and replay work in practice?

The answer lies in a technique called system call interposition. This technique uses
the fact that without system calls, a process cannot have side effects (except those side
effects that happen by its sheer existence). System call interposition captures and
replays system calls. This allows us to replay and control entire processes without
having to capture and replay every machine instruction.

There are two more challenges when making experiments on processes. First, we
sometimes need to suppress a process—when that process is not being replayed by
the minimization algorithm. And second, we will need to be able to decide whether
a system call should be replayed from the database or whether it should be allowed to
execute for its side effects. We will want to replay socket I/O because that typically
happens outside the control of our machine. We will want to execute I/O when we
want to see its side effects, for example the addition of a new root account.

5.2.1 System Calls

Only by making system calls do processes make the results of their computations
available to the outside world: if a process computes the answer to a problem but
does not make a system call, noone will ever learn what that answer is}| This makes
system calls very attractive for intrusion detection or policy enforcement systems
because all interaction with the outside world has to be done through system calls,
and if we could identify the harmful system calls, we can block or report them.

A system call is nothing but a function inside the operating system kernel. The
operating system has special powers. In a monolithic design like Windows, Linux or
Unix, code that executes inside the operating system can modify each and every byte
in the system. Therefore, operating system code needs special protection and thus is
not directly accessible to processes. It has a calling convention that is different from
ordinary functions.

As an example, let us look at the read system call. This call is used to read a
number of bytes from a file descriptor into a buffer that is controlled by the process.
For convenience, the C library on a Unix system contains a so-called C binding of
the read system call, which allows user processes to call read as if it were a user-level
function. Its syntax is: int read(fd, buffer, nbytes). Here fd is Unix-speak for a file
descriptor, a non-negative integer used to denote a kernel-level data structure; buffer
is the user-level buffer where the bytes should be put and nbyzes says how many bytes

2The exception to this general rule is when a process opens a subliminal channel to other processes,
but we won’t consider these. These subliminal channels can work without system calls. For example, a
process could compute very hard for some time if it wants to convey a 1-bit, or terminate immediately if
it wants to convey a O-bit. Granted, termination needs a system call, but every process needs to terminate
eventually.

5.2,

SYSTEM CALL INTERPOSITION 37

0x00 (n/a)
0x01 (exit)

0x02 (fork)
0x03 (read)
0x04 (write)
0x05 (open)

System Call Table

read system call

Kernel Mode

Oxbfff8a0a

Registers

User Mode

C Library 0x03

read(l, Oxbfff8ala, 100)
PID 123

Figure 5.1: Operation of a system call on x86 Linux. First, the C Library puts the
system call’s parameters into processor registers. Then it executes a special processor
instruction called a trap or software interrupt, causing a transfer to the operating
system kernel. The kernel uses the eax register where it finds an index into a jump
table. It calls the routine found at the appropriate index, which then does its work
and returns. The kernel puts the system call’s result into eax, restores the process
context and resumes the process. The C library examines the return code, sets errno
and returns to the caller.

we want to read from the file descriptor. The return value is an int and we look at
the manual page of read to see that on success, it returns the number of bytes read,
and —1 otherwise. In the latter case, the global Ivalue errno contains an appropriate
error code. Here is a slightly simplified explanation of what happens when process
123 calls int read(1, Oxbf££8a0a, 100) on an x86 Linux system (see also Figure[5.1):

1. The process calls the C binding for read in the C runtime library.

2. The C binding loads the parameters for read into registers. In this case, ebx

contains the file descriptor, ecx contains the user-space address of the buffer,
and edx contains the number of bytes to be read. Register eax contains the
system call number for read, which is 3.

. The C binding then causes a transfer to the operating system by executing a

trap, also known as a software interrupt. This causes the processor to change
from user mode to supervisor mode, also known as kernel mode. It differs
from user mode in that certain machine instructions and registers are only
available in supervisor mode. For example, the memory management unit can
only be configured from supervisor mode and control and data registers of
memory-mapped devices are only visible from that mode.

. Each trap has an associated trap number which is an index into a processor-

wide jump table of addresses. In our case, the trap number is 0x80. The
address at index 0x80 in the jump table points to a piece of operating system
code that puts the system call parameters from the registers onto the stack.

38 CHAPTER 5. MALFOR

5. It then looks up the system call number in another jump table, called the sys-
tem call table or syscall table and transfers control to the appropriate routine
(usually written in C). This routine then handles the read system call and is
therefore called the system call handler.

6. The system call handler then does its work (probably transferring control to
other routines and probably even other processes) and eventually leaves kernel
mode to return to the C binding in user mode.

7. The C binding checks the system call’s return code (in register eax) and sets
its own return code and errno accordingly.

5.2.2 Interposition

System call interposition is the technique by which we capture and replay system
calls. It works by changing the system call table that is consulted in Step [5| above.
Instead of transferring control directly to the system call handler, we transfer control
to our own routine. For capturing, we note down the parameters, call the original
system call and note the result. For replaying, we note the parameters and consult a
database to find the appropriate return value; Figure[5.2]shows the architecture.

System call interposition for capturing is easy to do. There are also user-level
tools like strace that capture system calls without using system call interposition.
Replaying processes, on the other hand, is very difficult and many careful decisions
need to be made by anyone who replays processes on the basis of their system calls.
Section [5.7] contains details.

System call interposition has been used in many security-related areas, mostly for
process confinement, intrusion detection and policy enforcement [[137]. The paper
by Garfinkel has a brief survey [68]. We just mention the work by Ko and others,
who wrap system calls in order to detect intrusions [91]; Wagner and others, who use
static analysis to derive a model of system call behaviour and then monitor system
calls in order to detect violations of that behaviour [172], Acharya and others, who
use interposition to confine untrusted applications [[1l; and Dan and others, who
sandbox the entire operating system [47] .

5.2.3 Solipsy Architecture

Solipsy is the name of the capture/replay subsystem used in Malfor. It consists of
several components (see Figure [5.2):

e A system call interceptor. This component takes all interesting system calls
and moves them from kernel land to user land through a character device called

/dev/iocap.

® A database. This database contains all system calls that were intercepted during
capturing, plus additional information (see below).

® A capture daemon. This daemon reads system calls from /dev/iocap and puts
then into the database.

* A replay daemon. This daemon reads system calls from /dev/7ocap, and re-
plays the corresponding calls from the database.

5.2 SYSTEM CALL INTERPOSITION 39

Kernel Mode

System Call »| Intercepted » Original
Interface | > System Call System Call
T ; /

User Mode

ldevliocap)
T /

read(1, 0xbfiO876, 1024) ’ .

read(1, 0xbfftf234, 1024) ’

N Capture
. { - Daemon —
{ ! Solipsy
b .{ Database
User Mode Process 123 | | User Mode Process 987 D > Wplly Lo ”
Daemon
(Capture) (Replay)

Figure 5.2: How Solipsy works. Components that are part of Solipsy are shown
darker. During capturing, a read system call is intercepted and written to the de-
vice /dev/iocap, where it is read by the capture daemon and written into the solipsy
database. On replay, the system call is suspended while the replay daemon fetches the
system call’s result from the same database.

® A policy engine. This program gets system calls from the replay daemon and
decides how to replay them. This is needed for process suppression and other
manipulations.

On replay, the system call interceptor plays with the process’s notion of reality.
The process may believe that it reads bytes from a file, when in fact it is fed bytes
from the database. For this reason, this subsystem is named Solipsy (from solipsism,
the notion that the outside world comes to us through our senses and is therefore
not necessarily real).

5.2.4 State Mappings

When we replay a process, we need to make its internal state so close to its internal
state during capturing that the process’s computation during replay is the same as its
computation during capturing. The idea is that if we replay as closely as possible the
system calls that a process makes, it will make an identical computation.

Now, we may want the process to think that it is executing the original compu-
tation, but in fact, time has moved on and it will in fact be impossible to recreate
all conditions exactly as they were during the original computationﬂ That means
in practice that we will have to map between the operating system (reflecting the
current state of the world) and the application (reflecting a past state of the world).
These mappings are described in more detail in Section 5.7}

3This isn’t exactly news: Heraclitus notes in the sixth century B.C. that “[T]t is not possible to step
twice into the same river, nor is it possible to touch a mortal substance twice in so far as its state is
concerned.” [49 Fragment B91], English translation by John Burnet [27].

40 CHAPTER 5. MALFOR

‘ Command-Line Program

fork()/setsid()

‘ Session Leader ’

accept()/fork()

‘ Worker Child 1 ’ ‘ Worker Child 2 ’ ‘ Worker Child 3 ’ oo ‘ Worker Child 7

fork()/execve()

Subprocess 2.1 ‘ ‘ Subprocess 2.2 e Subprocess 2.m

Figure 5.3: Typical process structure of a network server. The server is first invoked
on the command line. It then detaches itself from its controlling terminal, becoming
a session leader. Next, it opens a socket and waits for incoming connections. On
receiving such connections, it forks a worker child process, which may in turn create
subprocesses.

5.3 Evaluation

The evaluation of Malfor was done using two test cases. The first test case (Sec-
tion is very simple and is used to show the soundness of the principles on
which Malfor is built. The second test case (Section is very complicated and
shows that Malfor can automatically analyze attacks that can be analyzed by no other
tool today. If Malfor is to be a practical system, it needs to be accurate, fast, and eas-
ily deployed. Malfor’s accuracy is currently being evaluated; all we can say at this
point is that it has so far found the relevant processes in all our tests. Sections

and contain a preliminary performance evaluation, Section looks at
Malfor’s deployability, and Section has some ideas for fooling Malfor.

5.3.1 Proof of Concept

For the proof-of-concept evaluation, we created a simple network server. This server,
named spmﬂ reads and parses a HT'TP-like command set from a network socket.
One of these commands will cause the file /tmp/pwned to be created. In our evalu-
ation, we use the existence of this file as a break-in indicator: as soon as this file has
been successfully created, we say that a break-in has happened. Spud has the following
structure which is typical of many network server programs (see also Figure 5.3):

1. it detaches itself from the controlling terminal, becoming a session leader;
2. the session leader opens a socket and binds it to a well-known port number;

3. it accepts a connection on that socket;

4 After a character from Trainspotting [181].

5.3. EVALUATION 41

BOSSE0 - IS - B

Figure 5.4: The culprits in the Spud example. Culprit processes are shown darker
than their harmless counterparts (or in red and green if viewed from the electronic
version of this document). Worker 20 causes the break-in by creating /imp/pwned.
But in order for worker 20 to do its work, processes C (the command-line process)
and § (the session leader) must also exist.

4. it forks a worker process; and

5. while the session leader continues listening, the worker reads a request from
the newly opened socket, performs the requested action (possibly using sub-
processes that run other programs), and exits

In this example, the intrusion is caused by a single system call, the one that creates
the file /tmp/pwned. The set of relevant processes then contains the process making
that system call, and its ancestors.

Assume that we have 32 processes: the command-line program C, the session

leader S and thirty workers Wy, ..., W3p, where W executes the intrusion-causing
system call. Delta debugging will try different subsets of the set of all processes
{C, S, Wi, ..., W3} and test whether the intrusion still happens. In our example,

the set of relevant processes would be {C, S, Wy}; see also Figure

The actual sequence of process subsets tried by delta debugging is shown in Ta-
ble 5.1} The column marked “R” contains the result of the test: X if the intrusion
occurs, and ¢ if it does not occur. The other columns contain a bullet if the corre-
sponding process is included in the test. For example, in row 1, processes C, S, and
Wi through W4 are included, but W5 through W3g are not. Since Wy is the culprit,
and since it is not executed, the intrusion does not happen and the output is ¢.

Lines 1-3 try to find a subset of the original processes that produce X, first by
splitting the original set in roughly equal parts and then subdividing it further and
trying complements when that does not work. Line 14 contains the minimal subset
needed for the intrusion. Further subsets need not be considered, because they have
already been tested (lines 9 and 13). Delta debugging finds the culprits (processes C,
S, and Wpg) with only fourteen tries.

The processes that Malfor found, and only those,
really were relevant for the break-in.

3Spud does not use any subprocesses.

42

CHAPTER 5. MALFOR

Processes

#C S01020304050607080910 111213141516 17 18 1920212223 24252627282930R

lleoje o ¢ ¢ ¢ 06 ¢ ¢ 0 0 0 ¢ o o v
20000 o o 0 o o v
3jeeje o o o o o e o 0o 0 olofe o « X
4o 0|0 o o 0 o o oV
S5eeje o o o o o o o o 0 ofefe o X
6|e o0 o v
7/e ole o e o 0o o 000 o X
Sle oo o eo(e|o o X
9e e (4
10|e o (oo o X
11|e @ ° o (4
12|e o oo X
13|e v
140 o . X

Table 5.1: Process subsets actually tried by delta debugging Spud with Malfor. The
column marked “#” gives the test number; the columns marked “C”, “S”, and “01”-
“30” show which processes are included in a test case. Here, C is the command-line
program, S is the session leader, and 01-30 are the 32 worker processes. For example,
test 12 contains C, S, and workers 19 and 20. The column marked “R” gives the test
result: ¢ for a passing test, and X for a failing test. The culprits in this case are C, S,
and worker 20, and the vertical lines give a visual clue how delta debugging zeros in
on them.

———
—

-

Figure 5.5: Graphical representation of Table[5.1} On the x-axis the processes are ar-
ranged in order of increasing process IDs. A process is shown in black if it is included
in the set that delta debugging tests, and it is shown in white if it is excluded. One
unit on the y axis represents one execution of a process subset. Time passes from the
top of the page to the bottom as Malfor tries 14 tests. A test that results in X is shown
with a black dot at the side; all other tests shown are v/. We can see how delta de-
bugging systematically eliminates processes: white stripes appear running down the
page that represent processes that have been permanently excluded from considera-
tion by a failing test. Delta debugging tries many more test cases than are shown here.
However, these test cases result in impossible process sets—sets where processes are
included whose parent process is not included. Malfor automatically skips these tests.

Figure 5.6: Using Algorithm B instead of Algorithm D on Spud. The figure is analo-

gous to Figure

5.3. EVALUATION 43

root :HSWJ3R0Hi .aNQ:0:0:root:/root:/bin/bash
nobody:x:65534:65534:nobody: /home: /bin/sh
sshd:!:100:65534::/var/run/sshd:/bin/false
user:unknown:456:100:Some User:/usr/someuser:/bin/bash
toor:31gJkafn501tg:0:0:root:/:/bin/bash

Figure 5.7: The password file of a compromised Linux system. The account named
toor (which is root spelled backwards) has user ID 0 and group ID 0, which under
Unix means that it is a system administrator’s account. Having an account named
toor on a system almost certainly means that it is compromised. The encrypted
passwords shown here are not real.

We emphasize that Malfor’s result does not only contain the root cause of the
attack, but all intermediate attack-relevant processes too. So if an attack involves a
long chain of events, Malfor will produce all the intermediate steps that are needed
to reproduce the attack.

Malfor produces the complete caunse-effect chain.

One concern is that a process could not exhibit its original behavior during replay
because it took a different control path. For example, what if a process launches an
attack only upon the existence of certain files, or a successful challenge-response
authentication with a remote server? In these cases, the process must have made
system calls that caused these actions to be performed. Malfor then captures these
system calls and replays them. For example, if a process creates a random challenge
as part of the challenge-response protocol, it will have to issue system calls to do
so (for example, in order to read /dev/random). When we replay the process, we
also replay these system calls, so we will have recreated the state of the process as it
was when it made the original challenge-response authentication and the computed
challenge will be the same in both cases. In the case of files on the local file system,
Malfor actually executes the system calls; in the case of a remote challenge-response
authentication, it replays a previously recorded conversation.

5.3.2 A Real-World Attack

The scenario for this analysis is that a system administrator stumbles upon the pass-
word file on one of his servers and encounters the file in Figure[5.7} From the bogus
system administrator account toor, he knows that his system must have been com-
promised. We will see how Malfor finds the cause of this additional root account
even under circumstances that make it difficult or impossible for other tools to rea-
son about the attack. [125]]

Most attacks, including ours, work according to a fixed scheme:

1. Gain access to the machine by exploiting a flaw in a network program. This
results in the attacker being able to execute any command on the machine, but
with restricted rights—usually those of the owner of the exploited network
program.

2. Using the ability to launch commands, download additional malcode.

44

3.

5.

CHAPTER 5. MALFOR

Using this downloaded malcode, exploit a flaw in a local program or process to
gain system administrator privileges. This enables the attacker to modify any
file on the system, to launch or kill any process, and to install software—even
if that is usually not possible for ordinary users.

Armed with system administrator privileges, install a backdoor. The purpose
of this backdoor is to allow the attacker to regain root privileges even when
the flaws that were exploited in steps|l|and 3|are eventually fixed.

Remove as many traces of the attack as possible and as permanently as possible.

Obur target machine is running a subset of Debian 3.0 on a Linux 2.4.24 kernel.
We have installed Apache httpd 2.0.54 together with version 1.2.2 of mod_auth_any,
a module that uses a configuration file to launch authentication programs. We have
also installed Perl 5.8.4. The attacker knows that:

® The 1.2.2 version of mod_auth_any contained a shell code insertion flaw by

which it is possible to execute arbitrary shell commands as the user that Apache
runs as (usually www-data);

Perl 5.8.4 had a buffer overflow bug in its suidperl component that allowed
the creation of files in arbitrary places through clever manipulation of the
PERLIO_DEBUG environment variable. These files are writable by anyone.
This is particularly ironic since suidperl is touted as a safe alternative to suid
shell scripts and C programs.

If one could manipulate the /etc/ld.so.preload file, one can insert code that
pre-empts system calls like getuid.

If one can convince the /bin/su program that one is already the superuser—for
example by pre-empting getwid to always return zero—, su will not ask for the
superuser password before executing an arbitrary command as root.

The attack now proceeds along the steps outlined above: download malcode, run
malcode, escalate privileges, install backdoor, erase traces (see Figure .

1.

Use the flaw in mod_auth_any to download ex_perl.c. Do this in chunks so that
the download can be spread over multiple HT'TP requests. (This is designed to
foil behaviour-based intrusion detection systems.) Use the same flaw to launch
the C compiler to compile the malcode into ex_perl.

Using the same flaw, download atzack_mod.o, a precompiled loadable kernel
module (LKM).

. Using the same flaw, execute ex_perl. This program will first of all compile a

C file that contains the source to a fake getuid function into a shared library
/tmp/getuid.so. That fake getuid function will always return 0, thereby sug-
gesting that the caller is always the superuser.

Next, ex_perl will execute suidperl using a specially prepared PERLIO_DEBUG
environment variable.

. This will cause the file /etc/ld.so.preload to have write permissions for every-

one.

5.3. EVALUATION 45

attack_mod Jetc/passwd

e | @ ®
with mod_auth_any ex_p suidper!
security hole

letc/ld.so.preload

getuid.so

Figure 5.8: A graphical depiction of the attack described in the text. The attack
proceeds in the usual phases: download malcode, run malcode, escalate privileges,
install backdoor, erase traces.

6. Now that the process can write to the preload file, it will install /zmp/getuid.so
into /etc/ld.so.preload. The effect is that every command that executes getuid
will get O as the result, thinking that the process has root privileges. The
remainder of the attack is executed in a separate shell script by /bin/su.

7. Install the LKM downloaded above. This step could have been done together
with the previous step but the intention here is to spread the attack out over
multiple steps in order to make detection and analysis more difficult.

8. The LKM modifies the password file and installs a new system administrator
account.

9. Lastly, the kernel module is unloaded and all temporary files erased.

At this point, one might wonder why we take what appears to be an unneces-
sarily awkward route to our goal of adding another account. Why do we go to all
the trouble to install a LKM once we have superuser privileges? Why don’t we just
modify the password file straightaway? The reason is that we wish to elude not only
potential host-based intrusion detection systems (including those that analyze the
system calls that are being made by processes), but also those systems that analyze
attacks by looking at a process’s system calls, such as Backtracker [90]: if we had
modified the password file directly, we would have had to issue a system call to open
the password file, which would be clearly visible in the process’s stream of system
calls. Installing the LKM allows us to open the password file from within the kernel,
without issuing a system call. Experience with real-world attacks shows that attack-
ers will usually go out of their way to avoid detection; see for example the study by
Anderson and Moore on information security economics [[10].

The attack generates a process tree containing 168 processes (see Figure[5.9). Most
of these processes are concerned with downloading the various source files. For tech-
nical reasons, every process spawned through the hole in mod_aunth _any generates
two processes that run /bin/true. The /bin/true program does nothing but exit suc-
cessfully; it has no side effects. Those processes executing this program are therefore
irrelevant for the attack: if it were possible for an attacker to forego the creation of
these processes, the attack would still succeed.

46

CHAPTER 5. MALFOR

AW TE

Figure 5.9: The process tree induced by the attack described in the text. Rectangular
nodes are processes that execute a program, oval nodes are processes that may create
other processes, but that do not execute other programs. To the left is the invocation
of Apache. In the center is the Apache daemon. The regular structure that covers most
of the circle represents downloading the various source files. The irregular structures
on the right represent the rest of the attack.

All the system administrator sees is the modified password file. For him, the

system is compromised only after Step [9] above. How does Malfor reconstruct the
chain of events?

Malfor considers the set of all 168 processes and applies delta debugging to those

processes (see Figure[5.10). After we have replayed a process subset, three outcomes
can occur:

® The attack manifests itself (X): the password file has been modified and the

new system administrator account has been added. All processes that were
necessary for the attack are therefore included in the subset. On a X outcome,
delta debugging knows that those processes not included in the process subset
must be irrelevant to the attack: after all, the attack has succeeded even without
those processes.

The attack does not manifest itself (v/). Not all processes that were necessary
for the attack are included in the subset. When the outcome is ¢/, we know
that the process set does not contain all relevant processes. We therefore need
to include some of those processes that are currently being excluded.

The proposed process subset is impossible to replay because it contains nodes
whose parent is not included (?). Note that ? runs do not take much time
because they are detected before replay is attempted.

All in all, delta debugging executes 1330 tests of which 56 fail and 1274 pass;

an additional 1220 tests yield invalid process trees that are identified right away and

5.3. EVALUATION

Figure 5.10: Minimizing the process tree in Figurewith Algorithm D. The figure
is analogous to Figure

47

48 CHAPTER 5. MALFOR

="

Figure 5.11: Minimizing the process tree in Figure With Algorithm B.

What Total Median i o
UML + Replay 3645 26s 26.0s 3.7s
Replay only 1745 135 12.4s 33s

Table 5.2: Performance when analyzing the sample attack on Spud (14 tests). All
times are in seconds. The column labeled u holds the mean and the column labeled &
holds the standard deviation.

which therefore do not take up any time. These tests contain on the average 117
processes. From the 168 processes, Malfor correctly identifies those 96 processes that
do not run /bin/true as culprits and tags as irrelevant the remaining 72.

On a typical system, and with a typical attack, we would record thousands of
processes, only a small fraction of which would be relevant. These are circumstances
under which delta debugging works particularly well [75]. However, this attack is
incidentally very difficult for delta debugging to analyze: the proportion of relevant
processes is high, and the relevant processes are not bunched up together, but rather
spread out evenly.

5.3.3 Replacing Delta Debugging by Binary Minimization

If we assume that the preconditions for Algorithm B—the superset condition—are
given, we obtain a dramatic increase in performance when we replace Algorithm D
by Algorithm B. In this case, Malfor finds the culprit processes using only 269 tests,
or about 20% of the tests that Algorithm D needs. An additional 416 tests yield
invalid process trees. The resulting diagram is shown on Figure

5.3.4 Malfor Performance

For the experiments in this section and the next, the (un-tuned) MySQL database,
UML with Solipsy and the outside “attacker” were all on the same host, a 3 GHz
Pentium 4 PC running Linux 2.4, both as the host kernel and the UML kernel. All
kernels were otherwise unoccupied.

When we actually analyzed the example attack from Section with Malfor,
we got the results summarized in Table[5.2] We can see that the time spent replaying
the processes is on average only about half of the UML running time. In other
words, about half the time is spent booting and shutting down Linux kernels. Linux
startup time is hard to speed up; in our case, we have already disabled all unneeded
services. Shutting down a UML, however, takes about ten to eleven seconds in our
setup, so if we just killed the UML instead of shutting it down cleanly, we would

5.3. EVALUATION 49

Overhead
Environment Time Ded. UML
Dedicated machine 21.55 0%
UML w/o Solipsy 224s 4% 0%
UML w/Solipsy, disabled 24.0s 12% 7%
UML w/full Solipsy 243s 13% 8%

Table 5.3: Performance of Spud in various environments. The column labeled “Over-
head Ded.” has the overhead of running Spud in the given environment relative to
running it on a dedicated machine; the column labeled “Overhead UML” has the
same overhead relative to running Spud on a UML without Solipsy.

save between 14 x 10s = 140s and 14 x 11s = 1545 of run time. If we did that, the
proportion of replay time to total running time would rise to about 75 percent and
the total running time itself would decrease by about 40 percent, to about 217 .

5.3.5 Performance of Capturing

In order to measure the performance of capturing, we ran Spud in successively more
complete Solipsy environments, as explained below. In each environment, we called
Spud 257 times in rapid succession. One of these times, the service was made to
exhibit its vulnerability. Overall, we therefore have one command-line process, one
session leader, one intrusion-causing interaction and 256 harmless interactions. Ta-
ble 5.3l has our results.

On a dedicated system that did not run inside User Mode Linux (UML) or use
Solipsy (that is, Spud performed only steps 1 and 2a in Figure [5.2), this took 21.55.
On an UML system that did not have Solipsy (steps 1 and 2a are performed, but the
network I/O has to cross a machine boundary), it took 22.4s. Once Solipsy was
loaded and enabled, but the service not traced (steps 1, 2, and 2a), execution time
rose to 24.0s. When the vulnerable service was also traced and the results put in a
database (steps 1, 2, 2a, 3, and 4a), execution time was 24.35s.

While these preliminary results cannot be definitive, we feel that the system calls
captured in this experiment (see Table are typical of larger systems and that
therefore the numbers obtained in this experiment are representative. If that is in-
deed the case, the overhead of capturing would be about 8% when compared to an
un-traced process running inside UML (the “Overhead UML” column Table[5.3), or
about 13% when compared to a dedicated machine without either UML or Solipsy
(the “Overhead Dedicated” column).

On the one hand, both results are excellent. They also compare well with those
by Dunlap and others [53]]. On the other hand, it seems as if these numbers are so
good only because the program takes so long, even on a dedicated machine (the first
row in Table 5.3). Its performance is about six requests per second, which seems
rather slow.

5.3.6 Deployability

All of Malfor’s components are easily installed: Solipsy is a loadable kernel module,
the capture and replay daemons are ordinary processes, the delta debugger is also an

50 CHAPTER 5. MALFOR

accept access bind brk close
connect execve exit fentle4 fork
fstatb4 listen llseek mmap munmap
open read setsockopt socket stat64

unlink wait4 write

Table 5.4: List of captured system calls for spud. Solipsy captures many more system
calls than given in this table; they just weren’t used by Spud.

ordinary process that can additionally reside on a remote machine, and the database
is an ordinary MySQL database without any tuning. Neither the kernel image nor
the captured processes need to be changed. The latter is particularly important if we
want to analyze processes whose programs we cannot debug. We therefore believe
that Malfor is easily deployed.

5.3.7 Fooling Malfor

Despite Malfor’s ability to analyze attacks that cannot be analyzed by any other tool
today, it is not infallible. Attackers can outmaneuver Malfor in the following ways:

Detect Capturing/Replaying. In the current implementation, system calls that af-
fect the local system only are executed and not replayed. Using ordinary sys-
tem calls, an attacker could therefore detect whether the attacked system is in
the capturing or the replaying phase and behave differently. This is however
merely an artifact of the current implementation and could be remedied.

Exploit Race Conditions. Scheduling decisions are currently not being replayed be-
cause there is no easy way to access them in the kernel in a uniform way. For
a successful analysis with Malfor, we need repeatability, however—two execu-
tions of a process must always yield the same result. Therefore, attacks that
exploit race conditions will not be analyzable with Malfor in its current state.
But this is not a general limitation of Malfor. Given enough time, Malfor
could be extended so that scheduling decisions are captured and replayed just
like system calls.

Exploit Parallelism. The current implementation essentially assumes that system
calls are atomic. This assumption has recently been challenged by Robert N.
M. Watson in a paper where he successfully attacks system call wrappers using
concurrency [[178]. This is a potentially serious attack because the assumption
of atomicity is implicit in much of the Unix API, and capture/replay on the
API layer will miss some of the subtleties that occur when real concurrency is
present.

Subliminal Channels. Malfor implicitly assumes that only system calls can help a
process learn about its environment, but this is not necessarily true. If pro-
cesses use subliminal channels to communicate, they will bypass Malfor alto-
gether. The theory of information flow is quite new; see for example the PhD
thesis by Heiko Mantel [[108]. The theory does not yet allow the analysis of

5.4. VISUALIZING MALFOR

File Edit iew

oS El- live playback neato layout o

Map RIES

Ky
g
e
¢

8, W
§'\\\W/Z

A
Process Al

- p: 269 info

" pio7a

I P27 Replay Control] »
- oa2

>

7

211 "\\
%1
};ﬂzm 'Pé K \'&\f/;}/n

Figure 5.12: The Malfor visualization tool. It can run Malfor live, visualizing Malfor
events as they happen, or it can be run in instant-replay mode, where it re-visualizes

a Malfor run that has been saved to a file.

possible data flows in real languages under real conditions, for example for con-
curent programs written in C. Therefore, the problem is practically intractable

for Malfor and thus presents a real threat.

5.4 Visualizing Malfor

Malfor is a completely automated technique and as such is designed to run autono-
mously. However, it is sometimes desirable to be able to watch Malfor run. For
example, having a visual display is useful when debugging. Or, having run Mal-
for successtully, one would sometimes like to watch certain parts of the debugging

process again in an instant replay, as it were.

The Bachelor thesis by Steven Mai provides such a tool , called Qmalfor.
Qmalfor is connected to Malfor with a pipe. Malfor sends events to the visualization

tool over this pipe. Events include:

¢ beginning and end of a Malfor run;

® beginning and end of a test (this event contains those processes that are in-

cluded in the test); and

® process creation and termination.

52 CHAPTER 5. MALFOR

Qmalfor reads the recorded process tree from the database and uses the free
graph-layout program dot to create a tree layout, which it then displays. Using dor
for layouting the tree gives sufficient flexibility to change layouts cheaply, without
having to reimplement parts of Qmalfor.

Qmalfor runs in two modes:

¢ In live mode, it displays events as they happen, in real-time. It extends these
events with a time stamp and writes them to a log file.

e In instant replay mode, it reads a previously written log file and visualizes a
previous Malfor run without actually running Malfor.

The last mode is useful for instant replays of the process minimization algorithm,
but it can of course be used to view the minimized attack. Further visualization
would provide visual clues as to what side effects have occurred, such as file or socket
I/0.

Qmalfor uses dot to lay out the process tree. This makes it possible to use many
excellent tree layout algorithms without changing the Qmalfor program. It also col-
ors those parts of the tree that are currently under consideration by the minimization
algorithm and will also color process nodes according to their status (not yet extant,
extant but will quit at the next system call, exited).

A sample screenshot can be seen in Figure[5.12]

5.5 Beyond Processes

As we have established above, the methods we use to find the processes that cause
an intrusion can in principle find the cause for any effect. It is therefore natural to
extend the approach to find not only the responsible processes but other things that
we might want to know about the attack, such as the network inputs that caused
it. Such a network input is known as an attack signature. This section describes the
work done by Stefana Nenova in her Master’s Thesis [123]].

The objective is to replay processes as above, with the difference that it is not
the set of processes that we are minimizing, but instead their network inputs. Since
we control every read-type system call (read, readv, recv, and recvfrom), we control
every byte that any process reads.

5.5.1 Input Reassembly

Before we can replay process inputs, we need to reconstruct them from the Solipsy
database because processes only rarely input something in one system call. We will
give a number of examples of process inputs in increasing order of difficulty. Some
of the examples will use cat, a program that catenates files but that can also be used
to print a file to the screen. We will suppose the existence of a file called poem.txt
which contains some text. Other examples will use spud, the network server first
introduced in Section For the examples below, we will use a single-thread
version of spud that handles requests without forking.

One Read. A command like cat poem.txt will, for a short poem, produce a
sequence of system calls as outlined in Table As can be seen, the cat command
tries to fill a 4 kByte buffer with the contents of the file, but the file contains only

5.5. BEYOND PROCESSES 53

Call Arguments Res
open "poem.txt", O RDONLY|O LARGEFILE 3
fstat64 3, {st_mode = S_IFREG|0600, st_size = 728, ...} 0
read 3,"Two roads diverged in a yellow w"...,409 728
write 1, "Two roads diverged in a yellow w"...,728 728
read 3, " 4096 0

Table 5.5: The sequence of system calls for cat poem.txt for a short poem. The
entire file is read in one go and printed to stdout.

Call Arguments Res
open "poem.txt", O RDONLY|O_LARGEFILE 3
fstat64 3, {st_mode = S_TFREG|0600, st_size = 14317, ...} 0
read 3,"From off a hill whose concave wo"..., 4096 4096
write 1, "From off a hill whose concave wo"..., 4096 4096
read 3,"st more dear, \nAnd nice affection"...,4096 4096
write 1, "st more dear,\nAnd nice affection"...,4096 4096
read 3, "ot one whose flame my heart so m"...,4096 4096
write 1,"ot one whose flame my heart so m"...,4096 4096
read 3," running from a fount\nWith brini"...,4096 2029
write 1," running from a fount\nWith brini"...,2029 2029
read 3, " 4096 0

Table 5.6: The sequence of system calls for cat poem.txt for a long poem. The
file is read in several portions.

728 bytes. Therefore, the file is read in with the first read call and is printed to the
standard output in one go. The final read returns 0, as it is at the end of the file.

If we want to replay cat and control its inputs, we can do this easily, since there
is only one read call which reads the entire file. The only thing we have to do is to
fill the provided buffer with the data we want and to return the correct number of
bytes.

Multiple Reads. For a longer poem, a process will need multiple reads to read the
entire file; see Table[5.6] When we replay this situation, we will need to keep track of
the number of bytes provided to the process so far (or, equivalently, on the number
of bytes remaining to be provided). We call this a logical read operation.

Multiple Files With Same File Descriptor. When we catenate two files, the first
file is opened and printed, then the second one; see Table Traditionally, UNIX
and similar operating systems give out the smallest unused file descriptor when a file
is opened. This causes inputs from two different files to have the same file descriptors
because the first file is closed before the second file is opened, which causes the file
descriptor for the first file to be available when the second file is opened. This means
that we will have to disambiguate two reads even if they have the same file descriptors
in order to associate the correct file with each read. The rule is that two reads belong
to one logical input operation of there is no intervening close, write or Iseck on that
file descriptor.

54 CHAPTER 5. MALFOR

Call Arguments Res
open "poem.txt", O RDONLY|O_LARGEFILE 3
fstat64 3, {st_mode = S_IFREG|0600, st_size = 14317, ...} 0
read 3,"From off a hill whose concave wo"...,4096 4096
write 1, "From off a hill whose concave wo"..., 4096 4096
read 3," running from a fount\nWith brini"...,4096 2029
write 1," running from a fount\nWith brini"...,2029 2029
read 3, " 4096 0
close 3 0
open "poem.txt", O RDONLY|O LARGEFILE 3
fstat64 3, {st_ mode = S_IFREG|0600, st_size = 14317, ...} 0
read 3,"From off a hill whose concave wo"...,4096 4096
write 1, "From off a hill whose concave wo"...,4096 4096

Table 5.7: The sequence of system calls for cat poem.txt poem.txt. Now, two
reads on file descriptor 3 do no longer refer to the same file.

Call Arguments Res
socker PF_INET, SOCK_STREAM, IPPROTO_TCP 3
bind 3, {AF_INET, 2000, 0.0.0.0}, 16) 0
listen 3,5 0
accept 3, {AF _INET, 34301, 127.0.0.1}, [16]) 4
read 4, "INFO\r\n",9 6
write 4,"200 Some message for you at 2007"...,53 53
read 4, "QUIT\r\n",9 6
write 4, "200 Quitting\r\n", 14 14

Table 5.8: The sequence of system calls for two commands sent to spud.

The same situation occurs with single-thread spud because spud reads a command
on a file descriptor and writes the result to the same descriptor before reading the
next command; see Table There, reading “INFO” and reading “QUIT” are two
different logical reads, even though there is no intervening close/open combination
because of the write in between the two. In this case, it would be a mistake to
associate the two read calls with only one read operation. This happens not only
with write, but also with [seek.

5.5.2 Signature Extraction

Besides using Delta Debugging (see Section and Binary Minimization (see Sec-
tion [4.3), Nenova also implemented Consecutive Binary Minimization. The key ob-
servation here is that relevant inputs tend to occur in bunches and are not randomly
distributed across all inputs. Therefore, instead of using binary search directly after
we have identified the leftmost relevant input, we may assume that this leftmost in-
put is the beginning of a block of relevant inputs and simply try removing the next

5.5. BEYOND PROCESSES 55

input. This algorithm is expected to give good results when used on actual exploits.

The following description gives the details. Algorithm C is a straightforward
extension of Algorithm B, shown in Section 4.3} merely adding steps C8-C9. It has
the same asymptotic worst-case running time.

Algorithm C. (Consecutive Binary Minimization.) Let C = {c1, ..., ¢y} be a set of
failure-causing circumstances. Assuming that test(C) = X, and assuming the superset
condition, this algorithm computes culp C.

C1. [Initialize.] Set T < @. Set r < n.

C2. [Prepare binary search.] Set I’ < 1 and r’ « r. We will look for the culprit
member with the highest index between indices /” and 7.

C3. [Compute midpoint.] Let m = (I’ +r')/2].

C4. [Set up test.] Set t « test({c1, ..., cp—1}UT).

C5. [Test.] If t = X, set ' < m — 1, otherwise set I’ < m.

Cé6. [Loop if not found.] It 1" < r', go to step C3. Otherwise, go on to C7.

C7.[Loop if found.] If t = ¥/, set T = T U {c;}, and set r < m — 1. Otherwise go
to step C8. If now r > 1, go to C8. Otherwise, terminate the algorithm with T as
the answer.

C8. [Set up block search.] Set b « 1. We will test T U {cy, . .., cmyp} for increasing
values of b.

C9. [Set up block test.] Set t « test({cm, - .., Cmn} U T).

C10. [Test.] If t = X, set b < b + 1, and return to Step C9. Otherwise go on to
Step C11.

C11.[Loop.] Set T < T U{cm,...Cm+p}. If m + b = n, terminate the algorithm
with T as the answer. Otherwise, set | < m + b + 1 and return to Step C2.

Using Solipsy, Nenova was able to extract signatures for attacks on modified
versions of spud. It was modified to run in two additional modes:

® In regular-expression mode, spud accepts commands with arbitrary characters in
between the command’s characters. For example, if one command is “CRE-
ATE”, spud in regular-expression mode will accept a string like “XXXCXRXX-
EXXXAXXTXEXX?”, or in fact any string that matches the regular expression
“CHRFEFAFT.*E”. This simulates the obfuscation techniques that some mal-
code uses to evade detection.

® n-character buffer-overflow mode is an extension of regular-expression mode in
which spud needs some characters before the actual command. For example,
if the command is “CREATE”, 10-character buffer-overflow mode would re-
quire ten additional characters before the actual command, such as “ABCDE-
FGHIJCREATE”. This simulates the so-called nop sled that is often used in
buffer-overflow attacks. A nop sled is a sequence of characters that translate
into machine-language instructions with no effect; it is used in order to make
the attack more robust. For the precise mechanics of nop sleds, see for example
the books by Koziol at al. [93] or by Hoglund and McGraw [[78].

We are also working on extracting signatures for a more realistic attack on wu-
ftpd. This attack exploits a hole in the server’s handling of tar file downloads: when
a tar file is being downloaded, the tar command is run using system, the C library’s
way to run a command line interpreter, usually /bin/sh. When the downloaded file

56 CHAPTER 5. MALFOR

is named, for example, --use-compress-program=/bin/sh, and if the tar command on
the system is GNU tar, then the shell itself is being executed. This can be exploited
to run a program called a bind shell, which is a shell that takes commands over a
network connection. Since wu-ftpd is run as root, the machine in question is usually
completely compromised.

5.5.3 Signature Generalization

One important goal of our type of signature generation was to have a signature for an
attack for which we only have a single instance. This is in contrast to other methods
that use massive amounts of attack instances in order to compute signatures; see
Nenova’s thesis [123]] for related work on the subject If the exact same attack is tried
again, the signature will match and either an IDS will sound an alert or a proxy can
block the malicious request.

When there are multiple different instances of the attack, however, this procedure
does not work. Instead, we will get one signature for every attack variant, which will
not help ward off future attacks of the same type. For example, the Code Red worm
attacked Internet Information Server (IIS), Microsoft’s Web server. It specifically tar-
geted I1S’s handling of .2da files, but also worked on .idg files. Malfor could correctly
analyze one attack using an .ida file and another using a .idg file, and produce two
signatures for what is essentially the same attack. Or an attack could simply use a dif-
ferent nop sled. Therefore, Nenova’s work will also generalize from two minimized
signatures.

Slightly more formally, the problem is this: given a set of (minimized) inputs,
find a specific rule that subsumes all those inputs. For example, if the rule is a
regular expression, all observed inputs must match the expression. The condition
that the rule must be specific guards against simply generating a regular expression
of the form “.*”, which would merely label all inputs as malicious. On the other
hand, the most specific rule would simply list all observed inputs as alternatives,
which is clearly not desired. There have been many attempts at signature generation
and generalization (again, see the thesis [123]] for related work), and it is not yet clear
which approach is the most promising.

5.5.4 Preliminary Results

Figure shows the distribution of the number of tests (replays) needed to find a
six-character signature in a 100-character attack vector for regular-expression Spud.
Delta debugging needs between 105 and 198 tests (median 158), but both binary
debugging variants are much faster, needing between 29 and 50 tests (both values
from consecutive binary minimization). The test data in this case were 100 random
strings that contained the characters ‘C’, ‘R’, ‘E’, ‘A’, “I°, and ‘E’ in sequence, but not
necessarily consecutively. This explains the comparatively bad performance of con-
secutive binary minimization, because there were no contiguous blocks of relevant
inputs.

Since the two binary methods perform so much better than delta debugging,
Figure [5.14] shows a closeup of the two corresponding boxplots from Figure [5.13]
From this it can be seen that pure binary minimization does almost four times better
than delta debugging (42 tests for binary minimization versus 158 tests for delta
debugging). From the picture it is also clear that consecutive binary minimization
does not work well when there are no consecutive blocks of relevant inputs because

5.5. BEYOND PROCESSES

Length 100

200
|

150
|

50

_— e
-
T T T

DD Binary Consecutive

Figure 5.13: Empirical distribution of the number of tests (replays) needed to ex-
tract a six-character signature from 100 input characters on spud in regular-expression
mode. Delta debugging needs between 105 and 198 tests, but both binary debugging
variants are much faster, needing between 29 and 50 tests (both values from consecu-
tive binary minimization).

Length 100

40
|

35
|

- °

°
T T
Binary Consecutive

Figure 5.14: Empirical distribution of the number of tests (replays) from Figure[5.13|
for the two binary minimization methods.

57

58 CHAPTER 5. MALFOR

Length 100 Boxplot Normal Q-Q Plot
o o
21 P g 1 - R :
& I .
© o . o -°
S ;3 g - g 8 -~
[} =3
g < | =] g o /
g S] f S & <
<2 o
g 3 g - S5
o § 8 4
o 7 s < < o
- ' — .
= ,,M L Ve

Figure 5.15: Empirical distribution of the number of tests (replays) from Figure
for delta debugging only.

Tests vs. String Length

8 | — Delta
- - - - Binary
% Consecutive
]
- 8 |
S —
o
)
€
5 3 4
Z JT PR T PP RER SRR il
o -

String Length

Figure 5.16: Variation of the median number of tests needed to find a signature
for various string lengths. The two binary methods scale much better than delta
debugging.

the algorithm will waste a test in order to find out whether the input next to the one
that has just been found is relevant too. If relevant inputs are scattered randomly and
thinly about, this is very unlikely.

Figure[5.15|shows the number of tests for delta debugging in the three-plot style
familiar for example from Figure 3.3} except that the leftmost plot shows the empirial
cumulative distribution function, or ecdf of the number of tests. A point (x, y) on
the ecdf means that y percent of the sampled data was less than or equal to x. it
is a step function that goes from 0 to 1 as x goes from —oo to co. What can be
seen here is that the distribution is not nearly as close to the normal distribution as
Figure[3.5 was: with a skewness of —0.45, it is slightly skewed to the left. Also, the
Q-Q plot shows significant deviations from the normal distribution. This is due to
the non-random distribution of relevant inputs: there are always six relevant inputs
in Figure but there are between one and 32 relevant inputs in Figure[3.5]

How do the various algorithms scale? In other words, how many tests are
needed as the attack vector gets longer? For this, we conducted a case study us-

5.6 CONTROLLING CONCURRENCY 59

ing spud in regular-expression mode. We created 100 random strings of length n,
where n = 20, ..., 100 and distributed the characters ‘C’, ‘R’, ‘E’, ‘A’, “I”, and ‘E’
in sequence among those n characters. Then we measured the number of tests the
various algorithms needed to find that signature. Figure shows a plot of the
median number of tests for each string length.

What can be seen from this figure is that the two binary methods fare much
better than delta debugging. In fact, the number of tests for delta debugging is well
approximated by the formula r = 65.9 + 0.98n (at the 0.1% level), whereas the
dependency for the two binary algorithms are more logarithmic. (In all fairness,
fitting a linear model to the binary algorithm data gives r = 27 + 0.15n, also at the
0.1% level, but even so, binary minimization would be 6.5 times faster than delta
debugging for large n.)

’ Binary debugging is suitable for intrusion analysis. ‘

5.6 Controlling Concurrency

As we have seen in the preceding sections, Malfor works only when the processes
in question can be replayed consistently. In practice, however, systems of processes
have a number of sources of indeterminism that hinder consistent replay:

¢ In most operating systems, process scheduling is done by programming a real-
time clock to generate an interrupt a certain number of times per second.
However, clock skew as well as other interrupt sources auch as network cards,
keyboards and mice might change processing of the clock interrupt, even when
everything else in the system is as it was before.

® When programs exchange messages, the time that messages spend in transit
before they are read is not constant across replays. The reasons for this are
similar to the reasons why process scheduling causes indeterminism.

This means that when we replay a concurrent system under the control of a min-
imization algorithm, we might alter the execution paths of the system’s constituent
processes. This may cause the system calls that are issued during replay not to occur
in the same order as they were issued during capturing, or they occur with different
parameters, or indeed not at all.

Consider this example: Processes P; and P, run in parallel and take input from
the network. Both processes append their inputs to file /. Assume that for external
reasons, P always gets its input before Po—perhaps a third process feeds first P; and
then P5. Then it is true that / always contains P;’s input before P»’s. During replay,
it could be because of different process scheduling that P, issues its write call before
Py. If we want a consistent replay, we must stop P; until P; has made its wrize call.

If we had only one process, this form of inconsistency couldn’t happen because
the process would produce outputs sequenctially. We can see from this example
that some form of concurrency control is necessary to prevent impossible (or at
least implausible) executions during replay. What follows is a formalization and
generalization of this plausibility requirement. The basic idea is that real process
executions generate traces of system calls when they execute, and that we need to
take measures to make sure that the trace that is generated during replay is consistent
with the trace that was generated during capturing.

60 CHAPTER 5. MALFOR

5.6.1 System Calls and Traces

Before we can work on eliminating nondeterminism, we need to define what it means
for a replay to be consistent. We have already laid some groundwork in the preceding
chapter with the definition of process ID and related concepts (Definition [5.2), but
we need more definitions that are specific to system calls and concurrency.

When we deal with system calls, we need to specify their parameters, but we do
not want to go to the trouble of specifying exactly what a type is, nor do we want
to specify all possible parameter types, especially since they are usually irrelevant
fot our discussion. Therefore, we assume the existence of a set Types that holds all
possible system call parameter types.

Definition 5.5 (System Call Declaration). A system call declaration is a function
declaration of the form f: Typess —s int x Types”, where k > 0 and m > 0 are
integers whose values depend on f. We call f the name of the system call, k the
number of (input) parameters, and m the number of retwrn parameters. Elements of
pointer types T are either null or point to an instance of T, and are treated as
elements of an augmented pointer type (T*)' = {x : x = null v xx € T}EI

Usually, we have m = 0, and the system call only returns an integer. Exceptions
occur in the read family of system calls (read, readv, recv, recvfrom, and recomsg),
when a buffer is returned containing the bytes that were read.

By convention, the returned integer is 0 if the system call succeeds, and some
negative value on error. There are exceptions to this, however. For example, fork
returns to the parent the forked child’s PID, and the read and write families of system
calls return the number of bytes read or written, respectively. This definition does
not model value-return parameters, such as in select, where the file descriptor sets are
modified on return. Value-return parameters are merely optimizations in order to
save on parameters. We won’t need them for our purposes; where they occur, they
are modeled as two parameters, one for input and one for output.

Definition 5.6 (System Call). A system call is a quintuplet (P, f, p, v, r), where
P is a process ID, f is the name of a system call, and where p € Typesk, v € mnt,
and r € Types". We call p the (input) parameters, v the (return) value, and r the
return parameters of the call. If S = (P, f, p,v,r) is a system call, we write Sp
for P, Sy for f and so forth. If we want to spell out the arguments, we write

P: f(p1,.--» Pk>"1,---,rm) = v. For convenience, the r; may appear among the
pj in a different order. If a system call doesn’t return, we write “~” for the return
value.

If we followed strictly our convention of always appending output parameters,
we would have to write, for example, “100: read(1, 100, "abc\n") = 4”, instead of
the more conventional “100: read(1, "abc\n", 100) = 4”. Wherever possible, we
will put return parameters where they appear in the POSIX system call prototype.

Some system calls do not return when they succeed, such as exit or execve. In
this case, there is no return value; the set of return values is effectively augmented
to contain an additonal value for “no value”. This is the same augmentation that we
have introduced above for pointer types.

6We are not modeling the possibility that a T may not be null, yet may not point to an instance of
T. This can happen for example when a pointer is uninitialized or when the memory that contains the
pointer is corrupted.

5.6 CONTROLLING CONCURRENCY 61

P —o . >
€1

e —s g

e ——————+———

Figure 5.17: Concurrent processes issuing events (system calls). Processes P» and P3
issue events e] and e simultaneously, but they will appear in the trace in some order,
either as (e, ep) or (e, ep) (shown here).

Our definition does not model that an erroneous system call might leave return
parameters unassigned. We assume that default values are substituted in this case.
Again, this is irrelevant for our discussion.

Definition 5.7 (Trace Entry, Trace). A trace is a finite sequence of system calls,
written T = (S, ..., Sy), where n > 0 is called the length of the trace. We write Py
for the P-component of S, ix for the i-component and so forth.

Capturing processes naturally leads to traces because we record the process’s sys-
tem calls sequentially, but superficially, this definition of a trace is slightly problem-
atic for multi-processor or distributed systems because it does not contain a notion
of concurrency: If two processes issue system calls at the same time, the trace will
still have one system call before the other; see Figure In what order should
these calls be replayed during replay? We will show later that this is not a problem.

5.6.2 Capturing Traces

We are concerned here with traces that occur during capturing. These traces differ
from arbitrary traces in that they actually occurred in a real execution. When we re-
play processes using these traces, we want to make sure that the traces of the replayed
processes are plausible. For example, P: wait(addr) = i is not plausible if process
i > 0 has not yet exited, or if i is not a child of P. Other replayed traces might be
plausibe, but not desirable. For example, if the captured trace has P; writing to file
f before P», we want to preserve this ordering during replay.

The purpose of this section is to find out those constraints that must hold if
replay is to be consistent with what happened during capturing.

Definition 5.8 (Capturing Trace). A trace is called a capturing trace if it contains
all system calls of captured processes in sequence.

From now on, we will only be considering capturing traces, unless explicitly
stated otherwise.

We sometimes want to extract those system calls from a trace that were issued
by a single process. Looking at Figure we can imagine this operation as a
projection of the trace back onto the process:

Definition 5.9 (Projection). Let T = (S, ..., S,) be a capturing trace, and let P
be a process id. We call T[P] = (S}, ..., S;,) the projection of T on P if and only
if there exists a strictly monotonous sequence (X1, ..., Xn) of integers such that

S; = Sy, forall 1 < j < m. If P does not occur in T, we define T[P] = (), the
empty sequence.

62 CHAPTER 5. MALFOR

Note that the definition of T[P] does not suffer from the concurrency problems
that the definition of T has: since the calls in 7[P] are made by a single process, they
happen sequentially by definition.

Lemma 5.3. Let T be a capturing trace. For every process P that occurs in T, T[P]
contains all system calls of P, in order.

Proof- Since T is a capturing trace, it contains all system calls of P; hence, T[P]
contains all system calls of P, too. Since projection doesn’t change the order of
system calls—the sequence (X) is strictly monotonous—, T'[P] contains the calls in
the order they appear in T, which is the order in which they were made. O

It should be no surprise that a trace that comes from capturing always has a
complete ancestor chain for any process that occurs in it.

Lemma5.4. Let T = (S, ..., Sy) be a capturing trace, let P and Q be two processes
that occur in T, and let P be a descendant of Q. Let Py, ..., P, be the chain of
children leading from P to Q. Then there exist indices ji, ..., ju such that jz <
jkt1and Pj, = P, P;, = Q, fj, =fork,andvj = Pj for1 <k < m

Jk+1

Proof. First of all, there must exist fork calls that have created Py, ..., Py, whether
we have captured them or not. We prove the lemma by induction on m. Induction
starts at m = 2 because for m = 1, Q is not an ancestor of P in the sense of
Definition[5.2] For m = 2, P is Q’s parent, so P must eventually issue P: fork() =
Q. From Section we know that capturing is closed under parenting, that s, if
a process Py is captured, then so are all of its decendants. Assuming that Py has any
ancestors at all, this means that the fork call that creates Py1; as an ancestor of Py
must also be in the trace. O

Another constraint is that a file descriptor needs to be opened before it can be
successfully used. Certain system calls create new file descriptors, and other system
calls use them. We call the first class open operations because it is exemplified by the
open system call. We call the second class 1/O operations. Our version is suitable for
POSIX systems, but versions for other operating systems are straightforward. Note,
however, that the conceptually simple act of opening a file descriptor needs quite
some description; this was already noted in Section

Definition 5.10 (I/O Operation, Open Operation). A system call S is called an
I/O operation if and only if Sy is one of chmod, chown, fentl, fentl64, readmsg, read,
readv, recvfrom, recomsg, recv, select, sendto, send, stat, stat64, write, or writev. A
system call 5 is called an open operation if and only if S is one of accept, dup, dup2,
open, pipe, or socket, or if Sy is fentl and the second argument is F DUPFD.

5.6.3 Plausible Traces

Now we can state what it means for a trace to be plausible, that is, when it could
have conceivably be a capturing trace. We give here a definition that is suitable for
UNIX or indeed any POSIX-conformant system, but versions for other operating
systems are probably easy to create, by suitably modifying the definition below. We
give formal and plain English versions of the conditions below to ease that process.

"We ignore the existence of clone, which creates a new kernel thread that behaves just like a new
process, except that, according to the manual page, “the new process shares part of its execution context
with the parent process”, which means that it shares memory, file descriptors and signal handlers.

5.6 CONTROLLING CONCURRENCY 63

P —a— I o= > D >~
AN . AN - s

P, 4. > P, AT P Py o= N
Capture Consistent Replay Inconsistent Replay

Figure 5.18: Ordering of message send and receive operations during capture (left)
replay. If the replay is consistent, message arrows must always point to the right
(middle); otherwise, a process would receive a message from the future (right).

Definition 5.11 (Plausible Trace). A trace (Si, ..., S,) (not necessarily a capturing
trace) is called plausible if and only if all of the conditions below are true.

® Forall1 < j <n,if fj =forkandv; = Q > 0, then all §; with Py = Q have
k > j. In other words, a process must be created before it can make system
calls.

e Forall 1 < j < n,if f; € {wait, waitpid, wait3, wait4}, and v; = Q > 0, then
there exists some k < j such that Sy = P;: exit(s) = -. In other words, only
child processes can be reaped, and they must have exited before reaping.

® Forall 1 < j < n,if fjis an I/O operation on fd and v; > 0, then there
existsa 1 < k < j such that either P, = P; or Py is an ancestor of P;, and
f« is an open operation, and v = fd, and none of the trace elements S, with
k <m < jis Py: close(fd) = 0 or Py, : execve(...) = -, with fd having the
close-on-exec flag set. In other words, successful I/O operations can be done
only on open file descriptors.

e Forall 1 < j < n,if f; is an input operation on the shared descriptor fd and
vj = Q > 0, then there exists a 1 < k < j such that f; is an output operation
on the same descriptor fd, and vy = Q > 0. In other words, message reads
must not come before their corresponding message writes

If the operating system works as specified, traces gathered during capturing are
necessarily plausible. (The first of the bulleted conditions works only if PIDs don’t
wrap around during capturing. As before in Chapter[5] we will just assume that they
do not.) Also, processes can be reaped that didn’t call exit, for example if they get
signals. For those processes, synthetic exit calls are inserted just before the corre-
sponding wait calls.

The last condition, that message reads must not come before their corresponding
message writes has a surprisingly intuitive graphical interpretation. In Figure
we see on the left process P; sending a message to process P». The message arrow
goes to the right, in the direction of time. A replay of that situation is consistent only
if the arrow points to the right (middle diagram); otherwise, a process would receive
a message from the future, which is inconsistent with our definition of causality set

forth in Section 2.1.3

5.6.4 Causality in Distributed Systems

The graphical representation shown in Figure was used by Mattern and others
in order to define and detect causal relationships in distributed systems [113]]. They
model a distributed system as a number of independent processes, communicating

64 CHAPTER 5. MALFOR

€1 €
Pl —o—o —>
1) Lo >

Figure 5.19: Causality relation. In this example, e; < ¢ and ep < e3, hence e — e3.

only by exchanging messages. Processes may issue events, which fall into three cate-
gories:

e local events, which only modify the local state of the process;
* send events, which cause a message to be sent to another process; or
e receive events, which are caused by some earlier send event.

Note that local events are trivially (and strictly) ordered: like pearls on a string,
they come one after another. This makes it possible to speak of predecessors and
successors of events. Mattern then proceeds to order events:

Definition 5.12 (Immediate Predecessor). Let e; and e, be events. We call e the
immediate predecessor of ep and write e; < e if

® ¢ happens immediately before e; in the same process; or
® ¢; is a send event and e; is the corresponding receive event.

Definition 5.13 (Causality Relation). Let e; and e; be events. We define the cansal-
ity relation — as the smallest transitive relation on events such that e; — e; if e is
the immediate predecessor of ;. (In other words, — is the transitive hull of <.)

We say that e; may causally affect e;.

Note that if e — f, there existn > 1 eventsey, ..., e, suchthate; = ¢, e, = f,
and ey < exyq for1 <k < n.

This definition is equivalent to Lamport’s “happened-before” relation [95], but
calling it the causality relation explains better what we want to do with it, namely
find orderings of events so that their causality relationship is preserved; see also

Figure

Lemma 5.5. The causality relation is irreflexive, asymmetric and transitive. That s,
it is a strict partial ordering.

Proof. The relation is transitive by definition. For irreflexivity and asymmetry, note
that < is both irreflexive and asymmetric, hence so is —. O

Lemma 5.6. Let T be a capturing trace containing events S; and Sg. If S; — Sk,
theni < k.

Proof. This lemma merely formalizes our notion that the cause must come before the
effect. Let s1, ..., s, be events such that s; isin 7, sy = Sj, 5, = St and sj < sj41.
For each pair (sj, sj41) we have either that they occur in immediate succession in
the same process (hence their indices in 7 must be increasing), or s; is a send event
with s;41 being the corresponding receive event (hence their indices in 7" must be
increasing as well, because the receive event cannot occur before the send event). [

5.6 CONTROLLING CONCURRENCY 65

€1)
Pl e >
Py o e »
63 64

Figure 5.20: Concurrent events. Concurrency is not transitive because in this exam-
ple, e |l e3 and e3 || ep, but not e || e;.

1 2 3 4
0 0 0 2
P 0 0 0 2
1 *—=e . >
‘\ .\\ €4
N2 2 2 N3
N
N2 3 N4
\ N
0 0 0 /N0
Py e ° e >
51 \\\ 2 2 I/I e4
N2 24
\\ 1 2 II
P3 o ¢ >
3
Figure 5.21: Vector time. Every event e is assigned a vector v = (vq, ..., vy) such

that vy is the index of the latest event in process k that could have influenced e. If we
compare the vector times of e; and e, componentwise, we find that all components
for e are either less than or equal to their counterparts for e, hence e; — e3. When
we do the same for e3 and e4, we find that components 1 and 2 for e are less than
those for ey, whereas component 3 is greater.

If e, — ez, those events must be replayed in order. Otherwise, the causality
relation is violated because €] can no longer influence ;. On the other hand, there
are events that can be replayed in any order:

Definition 5.14 (Concurrency). Two events e and e are called concurrent and
written e; || ez if and only of neither ¢; — e, nor e; — ej.

Lemma 5.7. The concurrency relation is reflexive and symmetric, but not transitive.

Proof. Since e; 4 e, we have e] || ej. If e] || ez, we have neither e — e nor
ey — e1, which is equivalent to saying that neither e — €] nor e — e, hence
ez || e1. Consider the events shown in Figure[5.20] Clearly, e| || e3 and e3 || e2, but
e; — ey, hence || cannot be transitive. O

The fact that || is not transitive means that it is not possible simply to group all
events into equivalence classes of simultaneous events that can in turn be replayed
in any order. Fortunately, there are other ways to determine causality-preserving
orders of events; see below.

Lamport and Mattern show how to compute — and || from traces efficiently. We
just give a brief overview of the main results. Informally, every process maintains a
time vector—a so-called Lamport clock—showing in its k-th component the number
of the most recent event in process k that could have influenced it; see Figure
We then have e; — e if e1’s vector time is less than e2’s, component by component.

66 CHAPTER 5. MALFOR

Formally, if there are n processes, we assign a vector v = (v1, ..., v,) of integers
to events in a process according to the following rules:

1. Inidally, vg <~ Oforall 1 <k < n.
2. On an internal event, set vx < v + 1.
3. On sending a message m, update the vector time as in step [2|and attach v to m.

4. On receiving a message with attached vector v/, increment v as in step [2| and
then set vx < max(vg, v;) forall 1 <k < n.

We can view vectors as being attached to events, but we can also view them as at-
tached to processes and updated when events happen. This makes its implementation
efficient.

We now define an ordering on time vectors and show how it relates to the causal-
ity relation.

Definition 5.15. Let v; and 02 be two time vectors. We define
1. v; <vpifand only if vix < vy forall 1 <k < n;
2. v; <wvpifand only if v1 < vy and v # v2; and

3. vy || v2 if neither v < vy nor vy < vy.

Time vectors are unique in the sense that every event has a time vector that
never occurs again during the computation. This happens because process k always
increments the k-th component of its time vector, hence time vectors in process k
have a strictly monotonous k component. Therefore we are justified in equating
events with their time vectors, and we write T (e) for th vector time associated with
event e. Now the connection between vector ordering and causality is simply this:

Theorem 5.8 (Vector Time and Causality). Let e; and e; be events.
1. e; > ez if and only if T'(e1) < T(e2).
2. e || ex if and only if T'(ey) || T (e2).

Proof. See the paper by Mattern and Schwarz [113]]. The basic idea is that if e; — e,
the set of events that can causally influence e; must be a subset of the set of events
that can causally influence ez, hence T'(e;) < T (e2). The same argument applies in
the other order as well. The second property follows directly from the first and from
the definition of ||. O

For example, consider events e; and e, in Figure They have vector times
f1 = (2,1,0) and 1, = (4,2, 2), respectively. We have 1; < #, by Definition
and indeed e; — e;. Consider on the other hand events e3 and e4 with vector times
13 = () and 4 = (), respectively. Since 131 < t4; and 13 < t42, but 133 > 143, we have
3 || t4 and hence e3 || es.

The relations — and || model concurrent causality. ‘

5.6 CONTROLLING CONCURRENCY 67

Computing the relations — and || during a distributed computation is possible
with the algorithms given above, but it is also inefficient, since every message must
be tagged with a vector of size n. There are ways to compress the time vectors,
which are explained in Mattern and Schwarz’s paper [113]], but we don’t need such
methods, because we only need to compute the above relations from traces, that is,
the computation occurs offline.

Computation of — and || is efficient.

5.6.5 Causality-Preserving Replay

If e; || ez, we can replay them in any order without violating the causality rela-
tion. Graphically, we may stretch and compress a process’s execution as long as
send/receive event arrows still point to the right. If e; — e, and if both events hap-
pen in different processes, there is at least one send/receive event pair in any event
chain that connects the two. It should then suffice to replay send/receive event pairs
in the correct order, since events inside a process will be replayed in the correct order
anyway—the process will make the corresponding system calls in the correct order,
because it is running the same program as during capturing.

Formally, assume we have managed to put system calls into the two categories
“local event” and “send/receive event”, defined < on a trace, and computed —. Then
we can expect two distributed computations to yield the same result if events that
affect others causally happen in the same order. The order of concurrent events does
not matter.

Theorem 5.9 (Causality-Preserving Replay). Let T = (Si, ..., S,) be a capturing
trace and let 7" = (S{, ... S;) be a trace. If the following conditions hold:

1. T’ is a permutation of T, that is, there exists a permutation 7 of {1, ..., n}
such that S; = S;(i) forall 1 <i < njand

2. ifS; — S, thenz (i) < w(k) forall1 <i,k <n,

then S;r(i) - S;T(k) only if §; — Sg forall 1 < i,k < n. In this case, we call T’ a
causality-preserving replay of T

Proof. Assume S; — Si. It follows that 7 (i) < 7 (k) and there exist events S; =
S1 < ... < 8 = Sk. We will prove the conclusion by induction on n. First
consider the case n = 2. If both events S| and S happen in the same process,
then Sy, is a predecessor of S), hence S7) = 87 (5. If both events happen in
different processes, then S; is a send event and S; s its correspondmg receive event.
Since w(1) < z(2), the send event S M happens before the receive event S/ @)
hence S;r(l) =< S;r(Z)’ hence S;r(l) - S;r(Z)' Now assume n > 2 and that we have
proved the assertion for 2, ..., n — 1. The same argument as above will establish that
S;r(n_l) < S;r(n). Since S;T(l) - S;r(n_l) by assumption, the conclusion follows. [

In practice, this means that once we can compute — and | efficiently, we can
decide when we need to delay the replay of a process’s system call and when we can
let it go ahead. We can let a system call e go ahead if it is a local event. If it is a send
event, we block it until the corresponding receive event happens (because otherwise
we wouldn’t know the correct return value: if the receive event never happens, we

68 CHAPTER 5. MALFOR

need to return an error). If it is a receive event, we wait until the corresponding
send event happens. If we know already that the corresponding send or receive
events will never happen—for example, if the sending or receiving process is not
being replayed—, we return an error.

’ Efficient consistent replay of concurrent systems is possible. ‘

5.7 Lessons Learned

That men do not learn very much from the lessons of history
is the most important of all the lessons of history.

—Aldous Huxley

In this section, I want to review some of the issues that were impressed on me while
preparing the implementation outlined above. Some of these issues have already
been noted by other authors; in this case, they are another data point in support of
their theses. Other issues seem to be new, or at least little-known; in these cases, this
discussion could help future authors of capture-replay systems.

5.7.1 State Changes

A number of state changes must be correctly tracked so that replay can happen faith-
fully. If any of those are not correctly tracked, replay may fail. The problem with
these state changes is that they are not systematic, but are instead the result of Linux’s
evolution. That means that there is no recipe that will make replay work if consis-
tently applied, but rather need to be dealt with on a case-by case basis. This section
lists some of the more unusual state changes whose implementation in replay tended
to get postponed until needed, but which needed to be implemented anyway.

File Descriptors. File descriptors need to be tracked because some of them are
going to be replayed by a database lookup, while others need to be executed by the
operating system. That means that the file descriptor numbers within the application
are not necessarily the same as the ones in the operating system: the replay daemon
will have to map between them. Furthermore, the replay daemon cannot afford to
be left in the dark about any change in any file descriptor because otherwise the
mapping might no longer be correct.

File descriptors are created by a number of calls. Most familiar are open, socket,
and accept. Less familiar is pipe, which needs to be replayed for the Apache attack.
File descriptors are shared after fork, hence when a process forks, the child must also
inherit the file descriptor mapping.

File descriptors are closed with close. They are also closed implicitly when the
process exits, but that is irrelevant for replay purposes since a process that has exited
cannot issue any more system calls. However, some file descriptors are closed on
execve; this can happen whena process issues a fentl syscall with a SO_CLOEXEC

argument.

Processes. Process identifiers need to be tracked for two reasons:

5.7. LESSONS LEARNED 69

® During delta debugging, we will change the set of active processes, so the pro-
cess identifiers that are issued by the operating system will change from replay
to replay; yet, we will want the replayed processes to have the same view as
during capturing.

e We will not in general be able to guarantee that the operating system issues
process IDs in the same sequence as during capturing. For example, we might
debug the replay daemon, forking processes as we go.

Processes are created by fork, as everyone knows. However, processes are not
deleted by exiz, but rather by wait, which may come as a surprise to some. True, all
the process’s resources (file descriptors, memory, etc.) have been recycled at the time
the wait suceeds, but the process ID is still in use.

5.7.2 State Mappings

As we have seen in Section we need to track changes to certain operating
system objects in order to be able to map object identifiers such as file descriptors or
process identifiers between between the application, the operating system, and the
replay daemon. The most general mapping is that of file descriptors, which need to
be mapped two ways: between the application and the replay daemon, and between
the application and the operating system. (Process IDs also need to be mapped these
two ways, but the mappings are identical.) Tracking these mappings accurately is
important for accurate replay. If there is a mistake, the application could for example
reference files that no longer exist from the operating system’s point of view.
Unfortunately, mistakes are easy to make. In one particular instance, the symp-
tom was that the replayed attack on Apache hung reading from a file descriptor. After
several weeks (sic!) of debugging, it finally turned out that I had forgotten to register
the first file descriptor that came out of a pipe call. This had the effect that the replay
daemon instructed Solipsy to let the operating system execute a read call on that file
descriptor, but to pre-empt the corresponding write operation, which was executed
from the database. This resulted in a blocking read operation, which caused one

Apache worker to hang; see Figure

5.7.3 Why Is Replay So Hard To get Right?

It would be nice to be able to say that I have found a kind of unified theory of system
calls, and that I have applied that theory to the replay process in order to be able to
say that mistakes like these are no longer possible, but unfortunately, this is not so.
These are the reasons, as I see them:

Idiosyncrasy. Linux shapes its services not according to any abstract orthogonal
service matrix with nice theoretical properties, but according to the needs of real
programmers with real problems. In this, Linux is similar to other Unices and to
Windows. That means in practice that system calls may behave idiosyncratically
and that this idiosyncrasy must be faithfully tracked by the replay daemon. This
amounts to a partial reimplementation of operating system semantics; if this reim-
plementation is incomplete or buggy, replaying a process might fail or give incorrect
results. This said, some idiosyncrasies are more the result of bad design rather than
inevitable quirks of difficult-to-implement programmer requirements.

70 CHAPTER 5. MALFOR

File descriptor for reading

File descriptor for writing

Closes read descriptor Closes write descriptor

write(2)

‘\‘
\ Actual Path
Intended Path N\,

owry <@

Served from database; Served from operating system;
does not block blocks

Figure 5.22: The “Pipe Bug” that caused the replay of the Apache attack to hang.

The most appalling example of this is foctl. This system call is just a catch-
all entry point for device drivers to access driver-specific functionality. Since the
arguments to ioctl are untyped and driver-specific, it is impossible to write code a
priori that captures all past and future ioct/ calls. Hence, it is also impossible to
replay in general. If it turns out that attacks use certain ioctl calls, they must be
explicitly programmed into Solipsy.

These comments apply to a lesser degree to all system calls which have a “com-
mand” argument, and, depending on the specific value of the command, “argument”
arguments. These calls must make their own command demultiplexing, and they
must also extract the correct arguments from the stack, for which they cannot use
va_arg. One such example is fentl, which has as its third argument either a long
integer or a pointer to a struct flock. Another, more egregious example is sock-
etcall, which is, to my knowledge, unique to Linux. This “system call” collects all
socket-related calls under one name. This would be justifiable if the calls shared code,
but all that sockezcall does is demultiplex according to the “command” argument.

Perl Syndrome. The Perl motto is, “There is more than one way to do it” [148]),
and it applies equally well to Linux and other operating systems with Posix-confor-
mant APIs, such as Solaris or Microsoft Windows. In practice this means that there
are often two or more system calls that accomplish essentially the same result. One
example is the wait family of calls, consisting of wait, waitpid, wait3, and wait4; see
Table[5.9} The most general of these calls is wair4. All others could be implemented
within the C library in terms of wait4. This would still have been Posix-conformant
because Posix only describes C bindings for system calls, not the low-level system
call interfaces. Still, these calls are all present. Miss replaying any of them and your
process might not replay correctly.

The situation is even more grave for dup and friends; see Table[5.10} Here there

5.7. LESSONS LEARNED 71

Name Description

wait Suspends execution until something interesting
happens to any child.

waitpid ~ Suspends execution until something interesting
happens to a specific child.

wait3 Suspends execution until something interesting
happens to any child, then gets accounting infor-
mation.

wait4 Suspends execution until something interesting
happens to a specific child, then gets accounting
information.

Table 5.9: The wait family of system calls.

Name Description

dup Find lowest-numbered free file descriptor and
make it an alias for the argument.

dup2 Force first argument to be an alias for the second
argument.

fentl With second argument of F DUPFD, find
lowest-numbered free file descriptor greater than
or equal to the third argument and make it an
alias for the first argument.

Table 5.10: The dup family of system calls.

are three different ways of duplicating a file descriptor, and none can be said to sub-
sume all the others. First, there is dup, which allocates the lowest free file descriptor
and makes it synonymous to its argument. Then there is dup2, which forces the
second argument to be an alias for the first, and then there is fentl (or fentl64) with a
command argument of F DUPFD, which finds the lowest free file descriptor greater
than or equal to its third argument and makes it an alias for the first argument.
While it is easy to find dup2 given dup, it is quite difficult to divine the existence of a
fentl command that also duplicates a file descriptor. This was the source of another
hard-to-find replay bug.

Also interesting is the case of sleep or nanosleep versus select. Apparently, it is
quite common to use select as a substitute for sleep. The manual page even says,

“Some code calls select with all three sets empty, n zero, and a non-
null timeout as a fairly portable way to sleep with subsecond precision.”

Apparently, Apache falls into that category. While it isn’t strictly necessary to
replay sleep calls, it does speed up the replay process, because the sleeping can just be
skipped. Also, it is somewhat annoying if you think that you have covered all your
bases and then to realize that you missed one.

Another pitfall is that close is not the only way to close a file. It could also be
that a file descriptor has the close-on-exec flag set by a fenil call and subsequently,
execve was called. If this state change is not correctly tracked, then the application

72 CHAPTER 5. MALFOR

and the operating system could have much different ideas about how many files are
kept open by the application.

It’s Too Big. Rob Pike argues that

“[Systems Software Research contains] [tJoo much phenomenology:
invention has been replaced by observation. Today we see papers com-
paring interrupt latency on Linux vs. Windows. They may be interest-
ing, they may even be relevant, but they aren’t research. [...]

With so many external constraints, and so many things already done,
much of the interesting work requires effort on a large scale. Many
personyears are required to write a modern, realistic system. That is
beyond the scope of most university departments.

Also, the time scale is long: from design to final version can be five
years. Again, that’s beyond the scope of most grad students.

This means that industry tends to do the big, defining projects—
operating systems, infrastructure, etc.—and small research groups must
find smaller things to work on.

Three trends result:

1. Don’t build, measure. (Phenomenology, not new things.)

2. Don’t go for breadth, go for depth. (Microspecialization, not sys-
tems work.)

3. Take an existing thing and tweak it.” [133]].

Designing, implementing and testing Solipsy and Malfor took just about twenty
months. During these twenty months, a single publishable paper emerged. Had it
not been for the encouragement given to me by my advisor, the work would have
been abandoned after about one year, and the effort would have been wasted. The
scope of the undertaking was the biggest single miscalculation I made; I had assumed
that after capturing worked, replaying would only be a small additional effort. But
in fact, capturing is easy, because it is passive. The more difficult thing is replay,
because it must actively sit between a process and the operating system, providing a
consistent picture to both.

5.7.4 Solutions

What solutions are there that would make replaying easier?

More Regular System Calls. The existence of system calls like fentl, where the
meaning and type of the third argument is dependent on the value of the second was
perhaps justifiable thirty years ago; today, these calls only complicate things need-
lessly. For example, one variation of fcntl has as its third argument a pointer, in
another variant, the third argument is a long integer. On a 64-bit system, a C com-
piler would be free to implement the long integer as a 32-bit value, but the pointer
would have to be 64 bits long. In this case, the system call proper (in the kernel)
needs an interface that is different from the C binding, which makes maintenance
worse than it already is.

Needless to say, a system call with anything-goes semantics like ioct/ should be
replaced by better mechanisms, perhaps taken from the design of microkernels.

5.7. LESSONS LEARNED 73

No Redundant System Calls. Who says that the system call interface needs to be
close to the (standards-prescribed) C binding? It is entirely possible to use a clean,
orthogonal system call interface below the untidy but necessary C binding.

It would certainly help if there were only one system call per function. It would
suffice if there were one call that implemented wair4. Likewise, it is easy to imagine a
super_dup syscall that handled all variations on duplicating file descriptors. It would
not be necessary to forgo the variety that the current API offers; this variety could
just as easily be handled inside the C library, just like several varieties of exec are
expressed as variations of execve.

Still, some duplication will be unavoidable. For example, it is difficult to see
how select should be implemented so that it can not function as a substitute for sleep
under certain circumstances. The implementation will at least become more compli-
cated. But it is still a good idea to reduce the amount of redundancy to the absolute
minimum, not just for the sake of simplifying replay, but for ease of maintenance,
to0.

Designing the Kernel With an Eye to Replay. There should be a regular and
approved method of changing kernel functionality in a well-defined way for autho-
rized modules. For example, the kernel could provide hooks at crucial points during
system call execution, or when other decisions are made that affect (or could affect)
replay, such as signal delivery or scheduling.

Chapter 6

Forecasting Vulnerable
Components

Early morning: low cloud and westerly winds;
Later: clear skies over the Channel and later over the Normandy beaches

—Weather forecast for June 6, 1944

n the previous chapters, we have seen how to analyze break-ins after they have
I happened. The key was to isolate the intrusion-causing circumstances through
minimization. In this chapter, we will use entirely different techniques to find vul-
nerabilities before they are deployed to be exploited. Whereas minimization was an
experimental technique—it designed, carried out and evaluated the impact of changes
to a process’s operating environment—this technique is empirical—relying on obser-
vation, without actively changing anything.

This chapter first introduces a method to assign source code components to bug re-
ports. It then presents evidence that vulnerabilities are correlated with certain features
of the program text, notably import statements and function calls. Next, we use that
correlation to forecast places in the program text that may contain unknown vulnerabil-
ites.

Some of the work that is presented in this chapter was done by Christian Holler
in his Bachelor Thesis [79]]. The results of this chapter have also been published [[126]].

6.1 Introduction

Many software security problems are instances of general patterns, such as buffer
overflow or format string vulnerabilities. Another general pattern is the time-of-
check/time-of-use vulnerability in which security decisions are made before the af-
fected objects are used. Such vulnerabilities usually occur in far-apart places in pro-
gram code, which illustrates that such patterns need not be local.

Some problems, though, are specific to a single project or problem domain:
JavaScript programs escaping their jails are a problem only in web browsers, as is
cross-site scripting; SQL insertion makes sense only in database-using web applica-
tions; and so on. To improve the security of software, we must therefore not only

75

76 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

Vulnerability Version corr’:‘eov::ent
database archive P
Vulture | /= produces = Predictor
maps vulnerabilities to components predicts vulnerability

Figure 6.1: How Vulture works. Vulture mines a vulnerability database (e.g. a Bugzilla
subset), a version archive (e.g. CVS), and a code base, and maps past vulnerabilities to
components. The resulting predictor predicts the future vulnerabilities of new compo-
nents, based on their imports.

look for general problem patterns, but also learn specific patterns that apply only to
the software at hand.

Modern software development usually does a good job in tracking past vulnera-
bilities. The Mozilla project, for instance, maintains a vulnerability database which
records all incidents, together with bug identification numbers. However, these
databases do not tell how these vulnerabilities are distributed across the Mozilla code-
base. Our Viulture tool automatically mines a vulnerability database and associates
the reports with the change history to map vulnerabilities to individual components;

see Figure

One of Vulture’s results is a distribution of vulnerabilities across the entire code-
base. Figure [6.2] shows this distribution for Mozilla: the darker a component, the
more vulnerabilities were fixed in the past. What is immediately apparent is that
the distribution is very uneven: Only 4% of the 10,452 components were involved
in security fixes. This raises questions such as “Are there specific code patterns that
occur only in vulnerable components?”, or “Why do vulnerable components often
occur in clusters?”

In our investigation, we were not able to determine code features (such as, say,
code complexity or any other code metric, or buffer usage) that would correlate with
the number of vulnerabilities. What we found, though, was that vulnerable compo-
nents shared similar sets of imports and function calls. In the case of Mozilla, for
instance, we found that of the 14 components importing nsNodeUtils.h, 13 compo-
nents (93%) had to be patched because of security leaks. The situation is even worse
for those 15 components that import nsIContent.h, nslinterfaceRequestorUtils.h and
nsContentUtils.h together—they all had vulnerabilities. This observation can be used
to automatically predict whether a new component will be vulnerable or not: “Tell
me what you import, and I'll tell you how vulnerable you are.”

6.2. COMPONENTS AND VULNERABILITIES 77

Mozilla Vulnerabilities

security mailnews content extensions nsprpub
nss base imap base xslt Xl canvas3d_|webservice |python [spellch pr i
lib src util src src p src ‘temp|doc src soap |pro |(xpco | |[src src tests t
Tibpkix freebl softoken xslt_[xpath] [src |[src - md
sche walle univ [sche
pkix_pl_nss || mpi_[ecl . wrc src Tlsrc || Wi [uniTma
modu] pki [sy *::(cont Java olb
svg events xml xpcom | met|pre lins [typ
ki el | ssT il certd Tsmim || addrbook | compose | import html content | src][]l xforms m misc_|pthre T
top |uti|r st st outl [src || content [doc || src Xt xmiterm autiwis |p thrlep | i
oex s [[lsre] base]line | %% coo/s io 2
eud sc Jan b 1 l
amf | pki|pkes|de xm
ckfw TR TR Xpcom directory db of xpinstall
builtins [ca pk1lwr Pkes12 mime e lmaim io glue csdk sqlite3 Compiler _[Utilitie wizard
o kil jar Jary = La dap sic Code [Front |[Gener || windows [libxpne
certhg - bl libraries _[cle [md CiToa | [setup Juni [CUSI
as [asn Primi
mapi @ o] reflect |string [typelipl||l0idap exa x <
and t old_Jma xotcal [x |[pu [sr|xpi[x || suncsck |wp T
Ziib ib]m [pk]si fips ok Jcelc = src [|ls = b mork [t juntim |gc [Pack | gatup T umix
arlulbit [~] Wi & base |tests Idap 51 St [Syste |fsri
manager Jss s | tests fsr| tools [sam libraries |cli md || €N [C| Tools L
org src test s |s ||def build compo
layout NI 3 obsolete thrpr intl editor toolkit xpfe
generic style xul CArA[C base 3 MoreFi o uconv ibeditor Jtxm |[components | airbag | compone |bootstra
base Ac pull [0 - ucviat| src |uti [ucv]|[html base place [his[s |[airbag ||[sear[boo |[app
widge com |[src
- stc libimg _|libfont |libpr0n | zIib S o dolpal xre Tm i
png |fjmege |[dec [s |['src Tac qikz | Text | XISV m appshel
src
= T unichar |locale |ctl calendar parser tools accessible
— A SoTtupd e DD e e [s7c_|[sre Lsrc] ™ Tibical | tmiparser expa|trace- codes re stc
ase rdf e | 03 S chardet|[s sic sic |p|[lib I eTaTr o) 2K Joas]it
Ste st fibjar XmI s i st libical [libic ; s
svg pro Xpwi |qt |ph e au € ljp!
Base _[re] prin [in |t b gtk st dom msgsdk ok c
prin i u ro base | protocol g g
STC xlib [colg g STC http [ftp base src C expat |muc|| boehm
Js ps i | mac theb [xiib stc is2 base | ljprotocol |{icesip
Src tamarin
embedding sic
Xpconnect _liveco, core qt_|phot Hrowser Streamco | test oo m plugin _|uriloader| camino | ipc
st test 052 oji extha [b|[src ipcd
gtk windo be xp [sh| activex | gtk Tphot bui other-license
cache MRJ MRJ e
| ish |2 src src dns_ s 72st [ibart_ ||, o
fdiib e Tcode MM Xer < [0 web sic i |mston |view | mail
airo thebe | | plu [pI | [P2¥eP gt i Jaa — 7zi rdf [mac |[src |[src| | com
webclient |pluggal browser ~
cairo litz src atk-1. | base |chro
= 2 compon | ga | tests _|[srcmoz || wf | | components =1 - === profile Pul dbm sin web
shell [plle oubl[Pin teste mfc [w places [migrat|—— o d [l win s [i]/stu [{w
i
do |pl
. libpixma win I Xpcom Pu il sre T docshell | = caps sto gcon]mini
jsd se||PD te Jajul_ " 00 5 base s or
web) jaj st |57 | chro

Figure 6.2: Distribution of vulnerabilities within Mozilla’s codebase. A component’s
area is proportional to its size; its shade of gray is proportional to its number of
vulnerabilities. A white box means no vulnerabilities, as is the case for 96% of the
components.

6.2 Components and Vulnerabilities

6.2.1 Components

For our purposes, a component is an entity in a software project that can have vul-
nerabilities. For Java, components would be .java files because they contain both the
definition and the implementation of classes. In C+ +, and to a lesser extent in C,
however, the implementation of a component is usually separated from its interface:
a class is declared in a header file, and its implementation is contained in a source
file. A vulnerability that is reported only for one file of a two-file component is nev-
ertheless a vulnerability of the entire component. For this reason, we will combine
equally-named pairs of header and source files into one component.

In C, it is often the case that libraries are built around abstractions that are differ-
ent from classes. The usual case is that there is one header file that declares a number
of structures and functions that operate on them, and several files that contain those
functions’ implementations. Without a working build environment, it is impossible
to tell which source files implement the concepts of which header file. Since we want
to apply Vulture to projects where we do not have a working build environment—for
example because we want to analyze old versions that we cannot build anymore due
to missing third-party software—, we simply treat files which have no equally-named

78 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

counterpart as components containing just that file. We will subsequently refer to
components without any filename extensions.

Of course, some components may naturally be self-contained. For example, a
component may consist only of a header file that includes all the necessary imple-
mentation as inline functions there. Templates must be defined in header files. A
component may also not have a header file. For example, the file containing a pro-
gram’s main function will usually not have an associated header file. These compo-
nents then consist of only one file.

6.2.2 Mapping Vulnerabilities to Components

A wulnerability is a defect in one or more components that manifests itself as some
violation of a security policy. Vulnerabilities are announced in security advisories
that provide users workarounds or pointers to fixed versions and help them avoid
security problems. In the case of Mozilla, advisories also refer to a bug report in the
Bugzilla database. We use this information, to map vulnerabilities to components
through the fixes that remove the defect.

First we retrieve all advisories from the Web to collect vulnerabilities. In case
of Mozilla, this is a web page entitled “Known Vulnerabilities in Mozilla Products”,
www.mozilla.org/projects/security/known-vulnerabilities.html. We
then search for references to the Bugzilla database that typically take the form of
links to its web interface:

https://bugzilla.mozilla.org/show_bug.cgi?id=362213

The number at the end of this URL is the bug identifier of the defect that caused the
vulnerability. We collect all bug identifiers and use them to identify the correspond-
ing fixes in the version archive. In version archives every change is annotated with a
message that describes the reason for that change. In order to identify the fixes for

a particular defect, say 362213, we search these messages for bug identifiers such as
“362213”, “Bug #362213”, and “fix 362213” (see also Figure [6.3). This approach is

described in detail by Sliwerski et al. [150] and extends the approaches introduced by

Fischer et al. [62]] and by Cubranié et al. [43].

Once we have identified the fixes of vulnerabilities, we can easily map the names
of the corrected files to components. Note that a security advisory can contain
several references to defects, and a defect can be fixed in several files.

It is important to note that we do not analyze binary patches to programs, but
source code repository commits. Binary patches usually address other bugs as well,
or contain functionalityt enhancements, whereas commits are very specific, fixing
only one vulnerability at a time. This is why we can determine the affected compo-
nents with confidence.

6.2.3 Vulnerable Components in Mozilla

Mozilla as of 4 January 2007 contains 1,799 directories and 13,111 C/C+ + files
which are combined into 10,452 components. There were 134 vulnerability advi-
sories, pointing to 302 bug reports. Of all 10,452 components, only 424 or 4.05%
were vulnerable.

Security vulnerabilities in Mozilla are announced through Mozilla Foundation
Security Advisories (MFSAs) since January 2005 and are available through the Mozilla

www.mozilla.org/projects/security/known-vulnerabilities.html

6.2. COMPONENTS AND VULNERABILITIES 79

Mozilla Foundation Security Advisory 2006-74

fix 362213 (=

Security Advisory Changes Components

Figure 6.3: Mapping Mozilla vulnerabilities to changes. We extract bug identifiers
from security advisories, search for the fix in the version archive, and from the cor-
rected files, we infer the component(s) affected by the vulnerability.

Distribution of MFSAs Distribution of Bug Reports
o (=}
o o
0 ™ 0 o
< <
0) (1)
c c
g2 o g2 o
g © g ¥
[=3 o
° R ° R
ks ks
z z
= = | I
S E]
4 N z N I
- N I - n..n. .
rrrrrrrrrrr 11 T o rrr .1
1 3 5 7 9 11 13 13579 13 17 24
Number of MFSAs Number of Bug Reports

Figure 6.4: Distribution of Mozilla Foundation Security Advisories (MFSAs). The
y axis is logarithmic.

Foundation’s web site [118]]. These advisories describe the vulnerability and give as-
sorted information, such as Bugzilla bug identification numbers. Of all 302 vulnerability-
related bug reports, 280 or 92.7% could be assigned to components using the tech-
niques described above.

Some bug reports in Bugzilla [117] are not accessible without an authenticated
account. We suppose that these reports concern vulnerabilities that have high impact
but that are not yet fixed, either in Mozilla itself or in other software that uses
the Mozilla codebase. In many cases, we were still able to assign bug reports to
files automatically because the CVS log message contained the bug report number.
By looking at the diffs, it would therefore have been possible to derive what the
vulnerability was. Denying access to these bug reports is thus largely ineffectual and
might even serve to alert blackhats to potential high-value targets.

If a component has a vulnerability-related bug report associated with it, we call
it vulnerable. In contrast to a vulnerable component, a nentral component has had
no vulnerability-related bug reports associated with it so far.

The distribution of the number of MFSAs can be seen in Figure [6.4] There were
twice as many components with one MESA (292) than all components with two or

80 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

Rank Component Directory MFSAs BRs
1 nsGlobal Window dom /src/base 14 14
2 jsob Js/src 13 24
3.5 jsfun 7s/src 11 15
3.5 nsScriptSecurityManager caps/src 11 15
5 Jsscript js/sre 10 14
6 nsDOMClassInfo dom/src/base 9 10
7 nsDocShell docshell /base 9 9
8 jsinterp 7s/src 8 14
9 nsGenericElement content/base/src 7 10

10 nsCSSFrameConstructor layout/base 6 17

Table 6.1: The top ten most vulnerable components in Mozilla, sorted by associated
MEFSAs and bug reports (BRs). Components with equal numbers of MFSAs get an
averaged rank.

more MFSAs combined (132).

One consequence of this empirical observation is that the number of past vulner-
ability reports is not a good predictor for future reports, because it would miss all
the components that have only one report.

As for using other metrics such as lines of code and so on to predict vulnera-
bilities, studies by Nagappan et al. have shown that there is no single metric that
correlates with failures across all considered projects [[120].

The top ten most vulnerable components in Mozilla are listed in Table The
four most vulnerable components all deal with scripting in its various forms:

1. nsGlobal Window, with fixes for 14 MFSAs and 14 bug reports, has, among
others, a method to set the status bar, which can be called from JavaScript and
which will forward the call to the browser chrome.

2. jsobj (13 MFSAs; 24 bug reports) contains support for JavaScript objects.
3. jsfun (11 MFSAs; 15 bug reports) implements support for JavaScript functions.

4. nsScriptSecurityManager (11 MFSAs; 15 bug reports) implements access con-
trols for JavaScript programs.

In the past, JavaScript programs have shown an uncanny ability to break out
of their jails, which manifests as a high number of security-related changes to these
components.

6.3 How Imports and Function Calls Matter

As discussed in Section we found that several components related to scripting
rank among the most vulnerable components. How does a concept like scripting
manifest itself in the components’ code?

Our central assumption in this work is that what a component does is char-
acterized by its imports and function calls. A class that implements some form of
content—anything that can be in a document’s content model—will import 7s/Con-
tent.h and calls functions defined in that header; a class that implements some part

63. HOW IMPORTS AND FUNCTION CALLS MATTER 81

of the Document Object Model (DOM) will likely import definitions from and call
functions defined in nsDOMError.h. And components associated with scripting are
characterized by the import of nsIScriptGlobalObject.h.

In a strictly layered software system, a component that is located at layer k would
import only from components at layer k + 1; its imports would pinpoint the layer at
which the component resides. In more typical object-oriented systems, components
will not be organized in layers; still, its imports will include those components whose
services it uses and those interfaces that it implements.

If an interface or component is specified in an insecure way, or specified in a man-
ner that is difficult to use securely, then we would expect many components that use
or implement that interface or component to be vulnerable. In other words, we as-
sume that it is a component’s domain, as given by the services it uses and implements,
that determine whether a component is likely to be vulnerable or not.

From now on, we will use the term “features” to mean “imports and function
calls”. It is of course possible to select other feature sets, such as keywords, authors,
time of last change and so on. These may make good candidates for future work.
When we want to differentiate between our choice of features and other possible
choices, we will revert to calling them “imports and function calls”.

How do features correlate with vulnerabilities? For this, we first need a clear
understanding of what constitutes an import or a function call and what it means
for a set of features to correlate with vulnerability.

6.3.1 Imports

Cand C+ +, acomponent’s imports are those files that it references through #include
preprocessor directives. For Java projects, a component’s imports would be refer-
enced by import statements. Component extraction in Java is also much easier
than for C and C+ + since Java does not distinguish between the definition and
implementation of a class and because everything has to be encapsulated in classes.

C and C+ + imports are handled by the preprocessor and come in three flavors:

#include <name> This variant is used to import standard system headers.

#include "name" This variant is used to import header files within the current
project.

#include NAME This variant is a so-called computed include. Here, NAME is
treated as a preprocessor symbol. When it is finally expanded, it must resolve
to one of the two forms mentioned above.

The computation of imports for C and C+ + is difficult because the exact se-
mantics of the first two variants are implementation-dependent, usually influenced
by compile-time switches and macro values. That means that it is not possible to de-
termine exactly what is imported without a working build environment. We adopted
the following heuristics:

® We treat every occurrence of #include asan import, even though it may not
be encountered in specific compile-time configurations—for example because
of conditional compilation. The reason is that we want to obtain all possible
import relations, not just the ones that are specific to a particular platform.

82 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

#ifdef XP_0S2

if (DosCreatePipe (&pipefd[0], &pipefd[l], 4096) != 0) {
felse
if (pipe(pipefd) == -1) {
#endif
fprintf (stderr, "cannot create pipe: %d\n", errno);
exit (1);

Figure 6.5: Extract from nsprpub/pr/tests/sigpipe.c, lines 85ff. Parsing C and C+ +
is generally only possible after preprocessing: attempting to parse these lines without
preprocessing results in a syntax error.

e For <. ..>-style includes, we assume that the name inside the angle brackets
is not under the project’s root directory. That means even if the compile-time
switches are set so that, say, #include <util.h> isresolved to src/util/util.h,
We will treat it as a reference to an external include file, different from src/util /util.h.
it also means that if compile-time switches make <util.h>and <util/util.h>
refer to the same file, we will treat them as two different imports.

e For "..."-style includes, we assume that the name inside the double quotes
is under the project root, even if compile-time switches might make them refer
to different files, as above. If an include references "util.h", but if there
is no file called #til.h under the project root, it is treated as a reference to an
external include. If there are two or more files named #tilh, the include will
be treated as importing a “meta-include”, consisting conceptionally of all like-
named files. There are some additional disambiguation heuristics in place, and
Vulture does its best to find out the target of an include directive. For example,
when a file includes "util/util.h", and there is more than one file named
util.h, but only one is in a subdirectory called #zil. However, describing all of
them would be tedious.

¢ Implementing the computed include would require a full preprocessor pass
over the source file. This in turn would require us to have a fully compilable
(or at least preprocessable) version of the project. Fortunately, this use of the
include directive is very rare, so we chose to ignore it.

6.3.2 Function Calls

In C and C+ +, a function call is an expression that could cause the control flow to
be transferred to a function when it is executed A function call is characterized by
the name of the function and a parenthesized list of arguments.

Statically extracting function calls from unpreprocessed C or C+ + source code
is difficult. Even a full parser cannot resolve dynamic dispatch. Parsing with type
information would require compilable source code, and even in the absence of dy-
namic dispatch there are syntax errors caused by some preprocessor statements; see
Figure As a consequence, we simply treat all occurrences of identifier (...) and
identifier<...>(...) as function calls.

I'This cautious phrasing is necessary because of the possibility of inlining.

63. HOW IMPORTS AND FUNCTION CALLS MATTER 83

Keywords are excluded so that if or while statements are not erroneously
classified as function calls. Also, to match only function calls and not function defi-
nitions, these patterns must not be followed by an opening curly bracket. But even
with these restrictions, there are many other constructs which match these patterns,
such as constructors, macros, forward declarations, member function declarations,
initialization lists, and C+ + functional-style type casts.

Some of these, like constructors and macros, are very similar to function calls and
hence are actually desired. The false classifications of forward declarations, member
function declarations, initialization lists, and type casts do not seem to affect our
results.

In contrast to these undesirable positive classifications, there are also function
calls that are not caught by our heuristic, such as function calls using function point-
ers or overloaded operators. A simple parser without preprocessing will generally
not be able to do type checking, and will therefore not be able to correctly classify
such calls. However, we believe that this is a rather uncommon practice in C+ +,
especially in bigger projects such as Mozilla because such dynamic calls are more
effectively employed through virtual functions. Hence, we ignore this category of
call.

6.3.3 Mapping Vulnerabilities to Features

In order to find out which feature combinations are most correlated with vulnerabil-
ities, we use frequent pattern mining [6} [107].

The result of frequent pattern mining is a list of feature sets that frequently occur
in vulnerable components. To judge whether these features are significant, we apply
the following criteria:

Minimum Support. The pattern must appear in at least 3% of all vulnerable com-
ponents. (In other words, it must have a minimum support count of 3% of
424, or 13). For function calls, this threshold is raised to 10%, or 42, because
otherwise, frequent pattern mining simply takes too long.

Significance. We want to make sure that we only include patterns that are more
meaningful than their sub-patterns. For this, we test whether the entire pat-
tern is more specific for vulnerabilities than its sub-patterns. Let I be a set
of includes that has passed the minimum-support test. Then for each proper
subset J C I, we look at all files that feature I and at all files that feature 7 — J.
We then classify those files into vulnerable and neutral files and then use the
resulting contingency table to compute whether additionally featureing J sig-
nificantly increases the chance of vulnerability. We reject all patterns where we
cannot reject the corresponding hypothesis at the 1% level. (In other words, it
must be highly unlikely that including J in addition to I — J is independent
from vulnerability.) For this, we use y tests if the entries in the correspond-
ing contingency table are all at least 5, and Fischer exact tests if at least one
entry is 4 or less.

For patterns that survive these tests, the probability of it occurring in a vulner-
able component is much higher than for its subsets. This is the case even though
the conditional probability of having a vulnerability when including these particular
includes may be small.

84 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

P(V|I) VAT 'V AT Includes

.00 13 0 nslContent.h - nslinterfaceRequestorUtils
- nsContentUtils.h

1.00 14 0 nslScriptGlobalObject.hh - nsDOMCID.h
.00 19 0 nslEventListenerManager.h - nsIPresShell.h
1.00 13 0 nslSupportsPrimitives.h - nsContentUtils.h
1.00 19 0 nsReadableUtils.h - nsIPrivateDOMEwvent.h
.00 15 0 nslScriptGlobalObject.h - nsDOMError.h
097 34 1 nsCOMPrr - nsEventDispatcher.h
097 29 1 nsReadableUtils.h - nsGUIEvent.h
096 22 1 nslScriptSecurityManager.h - nsIContent.h

- nsContentUtils.h
0.95 18 1 nsWidgetsCID.h - nsContentUtils.h

Table 6.2: Include patterns most associated with vulnerability. The column labeled
“Includes” contains the include pattern; the column labeled P(V|I) contains the con-
ditional probability that a component is vulnerable (V) if it includes the pattern (7).
The columns labeled V A I and !V A I give the absolute numbers of components that
are vulnerable and include the set, and of components that are not vulnerable, but still
include the set.

6.3.4 Features in Mozilla

Again, we applied the above techniques to the Mozilla base. In Mozilla, Vulture
found 79,494 import relations of the form “component x imports import y”, and
9,481 distinct imports. Finding imports is very fast: a simple Perl script goes through
the 13,111 C/C+ + files in about thirty seconds. We also found 324,822 function call
relations of the form “component x calls function y”, and 93,265 distinct function
names. Finding function calls is not as fast as finding imports: the script needs about
8 minutes to go through the entire Mozilla codebase.

Frequent pattern mining, followed by weeding out insignificant patterns yields
576 include patterns and 2,470 function call patterns. The top ten patterns are shown
in Table Going through all 576 include patterns additionally reveals that some
includes occur often in patterns, but not alone. For example, nsIDocument.h appears
in 45 patterns, but never appears alone. Components that often appear together
with ns[Document.h come from directories layout/base or content/base/public, just
like nsIDocument itself.

The table reveals that it implementing or using nsIContent.h together with nsl-
InterfaceRequestorUtils and nsContentUtils.h correlated with vulnerability in the past.
Typical components that imports these are nsJSEnvironment or nsHTMLContentSink.
The first is again concerned with JavaScript, which we already know to be risky. The
second has had a problems with a crash involving DHTML that apparently caused
memory corruption that could have led to arbitrary code execution (MFSA 2006-64).

Looking at Table[6.2] we see that of the 35 components importing nsIScriptSecu-
rityManager.h, nsContent.h, and nsContentUstils.h, 34 are vulnerable, while only one
is not. This may mean one of two things: either the component is invulnerable or
the vulnerability just has not been found yet. At the present time, we are unable
to tell which is true. However, the component in question is nsObjectLoadingCon-
tent. It is a base class that implements a content loading interface and that can be
used by content nodes that provide functionality for loading content such as images

6.4. PREDICTING VULNERABILITIES FROM FEATURES 85

or applets. It certainly cannot be ruled out that the component has an unknown
vulnerability.

6.4 Predicting Vulnerabilities From Features

In order to predict vulnerabilities from features, we need a data structure that cap-
tures all of the important information about components and features (such as which
component has which features) and vulnerabilities (such as which component has
how many vulnerabilities), but abstracts away information that we consider unim-
portant (such as the component’s name). In Figure we describe our choice: if
there are m components and n features, we write each component as a n-vector of
features: X = (X1, ..., Xkn), wherefor 1 <k <mand1 < j <n,

_ |1 if component i features feature j,
=10 otherwise.

We combine all components into X = (X1, ..., Xn)’, the project’s feature marrix.
Entities that cannot have imports or function calls, such as documentation files, are
ignored.

In addition to the feature matrix, we also have the wvulnerability vector v =
(1, ...,0m), where v is the number of vulnerability-related bug reports associated
with component ;.

Now assume that we get a new component, Xp,+1. Our question, “How vulnera-
ble is component m+1?” is now equivalent to asking for the rank of v,,4.1 among the
values of v, given X,,+1; and our other question, “Is component m + 1 vulnerable?”
is now equivalent to asking whether v,,41 > 0.

As we have seen in the preceding sections, features are correlated with vulner-
abilities. How can we use this information to answer the above questions? Both
questions can be posed as machine-learning problems. In machine learning, a pa-
rameterized function f, called a model, is trained using training data X and y, so
that we predict § = f(X). The parameters of f are usually chosen such that the
error, that is, the difference between y and §y, is minimized. The question, “Is this
component vulnerable?” is called classification (because it classifies components as
vulnerable or not vulnerable), and “Is this component more or less vulnerable than
another component?” can be answered with regression: by predicting the number of
vulnerabilities and then ranking the components accordingly.

In our case, X would be the project’s feature matrix, and y would be the vulner-
ability vector v. If we now train a model and feed it with a new component x’ and
if it classifies it as vulnerable, this means that this component has features that were
associated with vulnerabilities in other components.

6.4.1 Validation Setup

To test how good features work as predictors for vulnerabilities, we simply split our
feature matrix to train and to assess the model. For this purpose, we randomly select
anumber of rows from X and the corresponding elements from v—collectively called
the training set—and use this data to train f. Then we use the left-over rows from
X and elements from y—the validation set—to predict whether the corresponding
components are vulnerable and to compare the computed prediction with what we

86 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

= = -
-
Vulnerability vector v &AL = < [®)
A %8550 59+
sS85 EX s8¢
f3E782bs5EF2
nsCOMArray \[0)[1 0 0 0 1 0 0 0 I 0)
nsIDocument.h I OO0l O0OOOT1 O I
nspr_md.h ollo1 1 00000 1 0
nsDOMClassInfo . 0010 o@o 0 0 0 Row vectorx,
EmbedGtkTools J¥0 000OOf0OT1 00O
MozillaControl.cpp /| 0 J (0 I 0 I o/ 0000 0
nsDOMClasslInfo has had 10 nsDOMClassInfo imports Import matrix X
vulnerability-related bug reports "nsiXPConnect.h"

Figure 6.6: The feature matrix X and the vulnerability vector v. The rows of X
contain the imports of a certain component as a binary vector: xj is 1 if component
i imports import k. The vulnerability vector contains the number of vulnerability-
related bug reports for that component.

already know from the bug database. It is usually recommended that the training set
be twice as large as the validation set, and we are following that recommendation.
We are not using a dedicated test set because we will not be selecting a single model,
but will instead be looking at the statistical properties of many models and will thus
not tend to underestimate the test error of any single model [73, Chapter 7].

One caveat is that the training and validation sets might not contain vulnerable
and neutral components in the right proportions. This can happen when there are
so few vulnerable components that pure random splitting would produce a great
variance in the number of vulnerable components in different splits. We solved this
problem by stratified sampling, which samples vulnerable and neutral components
separately.

6.4.2 Evaluating Classification

For classification, we can now compare the predicted values v with the actual values
v and count how many times our prediction was correct. This gives rise to the
measures of precision and recall, as shown in Figure

¢ The precision measures how many of the components predicted as vulnerable
actually have shown to be vulnerable. A high precision means a low number
of false positives; for our purposes, the predictor is efficient.

® The recall measures how many of the vulnerable components are actually pre-
dicted as such. A high recall means a low number of false negatives; for our
purposes, the predictor is effective.

Achieving a maximum precision is easy—just predict zero components to be vul-
nerable. This implies maximum efficiency, but also a minimum recall. Likewise,

6.4. PREDICTING VULNERABILITIES FROM FEATURES 87

Actually has
vulnerability reports

yes no

Predicted to have | Yes || True Positive (TP) | False Positive (FP) Precision

vulnerability reports | o | False Negative (FN) | True Negative (TN)

Recall

Figure 6.7: Precision and recall explained. Precision is TP/(TP + FP); recall is
TP/(TP + FN).

achieving a maximum recall can be done by predicting 4/l components to be vulner-
able, which is effective, but not efficient, as the precision is low. The key is therefore
in achieving a balance between precision and recall, or between efficiency and effec-
tiveness.

In order to assess the quality of our predictions, consider a simple cost model.
Assume that we have a “testing budget” of T units. Each component out of m total
components is either vulnerable or not vulnerable, but up front we do not know
which is which. Let us say there are V vulnerabilities distributed arbitrarily among
the m components and that if we spend 1 unit on a component, we determine for
sure whether the component is vulnerable or not. In a typical software project, V
would be much less than m.

If we fix T, m, and V, and if we have no other information about the components,
the optimal strategy for assigning units to components is simply to choose compo-
nents at random. In this case, the expected return on investment would be Tv /m: we
test T components at random, and the fraction of vulnerable components is V /m.

Now assume that we have a predictive method with precision p and that we
spend our T units only on components that have been flagged as vulnerable by the
method. In this case, the expected return on investment is Tp because the fraction
of vulnerable components among the flagged components is p. If p > V/m, the
predictive method does better than random assignment. In practice, we estimate V
by the number of components already known to have vulnerabilities, V', so we will
want p to be much larger then V’/m:

We want p > V'/m. 6.1

6.4.3 Evaluating Ranking

When we use a regression model, we predict the number of vulnerabilities in a com-
ponent. One standard action based on this prediction would be allocating quality
assurance efforts: As a manager, we would spend most resources (such as testing, re-
viewing, etc.) on those components which are the most likely to be vulnerable. To
assess the quality of the prediction, we thus want to know whether the ranks of the
predicted and actual values correlate—in other words, we check whether the alloca-
tion of quality assurance efforts would be effective.

88 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

.\
&00' @\ &éeb
& & ¢
£ QQ’ « 0\‘2 «
co& & & & &
Iy 42310 1 1o/ I
187] 9 | 3 g8 |3
287 9 | 3 8|3
28 654 9 | 3 8 |3
o |253] 85 2 |7
N 32| 4 | 6 55
4903 |7 2|7
28 1 | 9 2 |7
409 1 [9 010
143/ 1]9 I |9

Figure 6.8: Rank correlation is computed for the top 1% of predicted values only. In
this case, the rank correlation would be 0.94, which is very high. In the case of ties
(equal values), we take the average rank.

To measure the quality of our rank prediction, we took the actual top 1% compo-
nents and computed their predicted ranks; see Figure We then used Spearman’s
rank correlation coefficient to measure the rank correlation. This is a real number
between —1 and +1, where +1 means that the ranks agree perfectly, zero means
that there is no correlation and —1 means that the ranks are in reverse order; see
Figure[6.9)

The rank correlation coefficient is however not the only measure of ranking
quality and may indeed have problems. In fact, it is inappropriate within the simple
cost model from above. Suppose that we can spend T units on testing. In the best
possible case, our ranking predicts the actual top T most vulnerable components
in the top T slots. The relative order of these components doesn’t matter because
we will eventually fix all top T components. While high rank correlation values
are always good, and while bad rankings will always produce values near zero, the
converse is not true: values near zero do not necessarily mean that the ranking is
bad, and good rankings will not necessarily produce high rank correlations.

Instead, we extend our simple cost model as follows. Let p = (p1, ..., pm) be a
permutation of 1, ..., m suchthat v, = (0,,,...,0p,,) is sorted in descending order
(that is, 0 pi > by, for 1 < j < k < m), and let ¢ and v, be defined accordingly.
When we fix component pj, we fix v,, vulnerabilities. Therefore, when we fix the
top T predicted components, we fix

F = z Up;
1<j<T
vulnerabilities, but with optimal ordering, we could have fixed

Fopr = Z Ug;

1<j<T

6.4. PREDICTING VULNERABILITIES FROM FEATURES 89

e e o
- g - 5 - g
< a < a < [=8
[| | 6 | 10
2 2 2 10 2 9
3 3 3 2 3 8
4 4 4 7 4 7
5 5 5 | 5 6
6 6 6 9 6 5
7 7 7 3 7 4
8 8 8 4 8 3
9 9 9 5 9 2
10 10 10 8 10 [

@) (b) (©

Figure 6.9: Rank correlation explained. Figure (a) has rank correlation +1, Figure (b)
has rank correlation near 0, and Figure (c) has rank correlation —1.

vulnerabilities instead. Therefore, we will take the quotient

Q=F/Fop= D, u,,j/ > vy (6.2)

1<j<T l<j<T

as a quality measure for our ranking. This is the fraction of vulnerabilities that we
have caught when we used p instead of the optimal ordering g. It will always be
between 0 and 1, and higher values are better.

In a typical situation, where we have V < n and T small, a random ranking will
almost always have Q = 0, so our method will be better than a random strategy if
Q is always greater than zero. In order to be useful in practice, we will want Q to be
significantly greater than zero, say, greater than 1/2, so that we get at least half the
vulnerabilities that we would get with optimal allocation:

We want Q > 1/2. 6.3)

6.4.4 Prediction using Support Vector Machines

For our model f, we chose support vector machines (SVMs) [[164] over other models
such as k-nearest-neighbors [[73, Chapter 13] because they have a number of advan-
tages:

® When used for classification, SVMs cope well with data that is not linearly
separable. (Two sets of n-dimensional points are said to be linearly separable if
there exists an n — 1-dimensional hyperplane that separates the two sets.)

® SVMs are not prone to overfitting, which happens when a statistical model has
too many parameters: the algorithm will try to minimize the error for the
training set, but the parameters will offer many wildly differing combinations
that will make the error small. Choosing one such combination will then
generally increase the error for the validation set. The only possible remedy

90 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

for such a method is to decrease the number of parameters. In the words of
Forman S. Acton [4]],

[Researchers that try to fit a 300-parameter model by least squa-
res] leap from the known to the unknown with a terrifying inno-
cence and the perennial self-confidence that every parameter is to-
tally justified. It does no good to point out that several parameters
are nearly certain to be competing to “explain” the same variations
in the data and hence the equation system will be nearly indetermi-
nate. It does no good to point out that a// large least-squares matri-
ces are striving mightily to be proper subsets of the Hilbert matrix—
which is virtually indeterminate and uninvertible—and so even if all
300 parameters were beautifully independent, the fitting equations
would still be violently unstable. [...]

Most of this instability is unnecessary, for there is usually a
reasonable procedure. Unfortunately, it is undramatic, laborious,
and requires thought [...]. They should merely fit a five-parameter
model, then a six-parameter one. If all goes well and tere is a statis-
tically valid reduction of the residual variability, then a somewhat
more elaborate model may be tried. Somewhere along the line—
and it will be much closer to 15 parameters than to 300—the signif-
icant improvement will cease and the fitting operation is over. [...]
The computer center’s director must prevent the looting of valuable
computer time by these would-be fitters of many parameters.

® SVMs come with plug-in kernels that can be used to achieve better effective-
ness. Kernels add additional dimensions to the training data to achieve greater
separability.

® SVMs have parameters that can be automatically tuned to achieve better effec-
tiveness.

6.5 Case Study: Mozilla

To evaluate Vulture’s predictive power, we applied it to the code base of Mozilla [119].
Mozilla is a large open-source project that has existed since 1998. It is easily the sec-
ond most commonly used Internet suite (web browser, email reader, and so on) after
Internet Explorer and Outlook.

6.5.1 Data Collection

We examined Mozilla as of January 4, 2007. Vulture mapped vulnerabilities to com-
ponents, and then created the feature matrix and vulnerability vector as described in
Sections and

Table[6.3| reports approximate running times for Vulture’s different phases when
applied to Mozilla. Vulture is so fast that we consider making it part of a real-time
feedback system; see Figure[6.16]at the end of this chapter.

The 10,452 x 9,481 import matrix would take up 280 MB of disk space if it were
written as a full matrix. It would take about ten minutes just reading the matrix into
R. The sparse representation that we used cuts this space requirement down to about

6.5. CASE STUDY: MOZILLA 91

Phase Time
Downloading and analyzing MFSAs 5 m
Mapping vulnerabilities to components 1 m
Finding includes 0.5m
Finding function calls 2 m

Creation of SVM, w/classification and regression 0.5 m

Table 6.3: Approximate running times for Vulture’s different phases.

(a) Imports (b) Function Calls
[oe] o] o °
o o °
o
o 0°0 ° Y %o o° °
c 0~ °® o c ™~ ° s T, °
o o 0 0% ° o o o P
] ® °8o] % ° 8
3] o &P o ° °
L o ° @, o R °
(R ° o ° o a3 °
o o
ol 0
o o
I T T T T 1 I T T T T 1
030 035 040 045 050 055 030 035 040 045 050 0.55
Recall Recall

Figure 6.10: Scatterplot of precision/recall values for the 40 experiments. Figure (a)
shows the values for imports, Figure (b) shows the corresponding values for function
calls.

200 KB. Reading this sparse matrix takes only about one second. The 10,452 x 93,265
function call matrix took up 2.6 MB of disk space.

From the feature matrices and the vulnerability vector, we created 40 random
splits using stratified sampling. This ensures that vulnerable and neutral components
are present in the training and validation sets in the same proportions. The training
set had 6,968 entries and was twice as large as the validation set with 3,484 entries.
Finally, we assessed these SVMs with the 40 validation sets.

For the statistical calculations, we used the R system [[138] and the SVM imple-
mentation available for it [50]. It is very easy to make such calculations with R; the
size of all R scripts used in Vulture is just about 200 lines.

6.5.2 Classification

The SVM used the linear kernel with standard parameters.

Figure (a) reports the precision and recall values for our 40 random splits.
The recall has an average of 0.45 and standard deviation of 0.04, which means that
half of all vulnerable components are correctly classified:

Of all vulnerable components,
Viulture flags 45% as vulnerable.

92 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

(a) Imports (a) Function Calls

E o E o
2 & 2 4]
T T
o o
& o & o o0 ©
E o E o o o o ©
= 3 o © 0
@ a‘P o g o oo ﬁ ﬂ°° °° o
o g0 & ° o o0 o °
£ o 7 g0 ©° © ° £ o 7 o 9 °
3 g% % 3 ° °
i L0 & O i
o ~ ° ° o o ~
_g c ° ° S o 7]
S 3 °
o ° o
o 9o] 9o]

© I T T T 1 © I T T T 1

120 140 160 180 200 120 140 160 180 200
Number of vulnerabilities present Number of vulnerabilities present

Figure 6.11: Scatterplot of Q versus Fopt for the 40 experiments where 7 = 30.
Figure (a) shows the results for imports, figure (b) shows the results for function calls.
Higher values are better.

For function calls, the precision has a mean of 0.70 and a standard deviation of
0.05, which means that seven out of ten predictions of vulnerability are correct.

Of all components flagged as vulnerable,
70% actually are vulnerable.
Vulture is much better than random selection.

6.5.3 Ranking

The SVM used the linear kernel with standard parameters. The coefficient Q that
was introduced in Equation (6.2) was computed for imports and function calls, for
T = 30. It is shown in Figure |6.11} plotted against Fop. For imports, its mean is
0.78 (with a standard deviation of 0.04), for function calls, it is 0.84 (with a standard
deviation of 0.05), for function calls, it is 0.84 (standard deviation 0.05).

Among the top 30 predicted components,
Viulture finds 84% of all vulnerabilities.

The rank correlation coefficients for imports are shown in Figure The
average rank correlation is +0.46 with a standard deviation of 0.03. The probability
that the rank correlations are as high as they are, even when in fact there is no
correlation, is less than 0.01 in 32 out of 40 cases, and less than 0.10 in all cases. This
makes the results statistically significant.

There is a statistically significant fairly strong
positive correlation between actual and predicted
vulnerability ranks.

6.5. CASE STUDY: MOZILLA 93

(b) Rank Correlation

Q

3 S
c H
S « s
5 o o~
o &
= H
o © H
& o H

H
[S
2 T | s
8 o K3
= -~
£ « M
=1 - Ped
(6) o —
U
< =
o

Rank Correlation

Figure 6.12: Empirical cumulative distribution function for rank correlation coeffi-
cients on the top 1% of predicted components.

6.5.4 A Ranking Example

Let us illustrate the ranking correlation by an actual example. As a quality assurance
manager, you want to focus extra efforts on the top ten new components that Vulture
predicts as vulnerable. Table shows such a prediction as produced in one of
the random splits. We spent no effort in specifically selecting this particular split.
Within the validation set, these would be the components to spend extra effort on.
Your effort would be well spent, because all of the top ten components actually turn
out to be vulnerable. (SgridRowLayout and NsHttp Transaction are outliers, but still
vulnerable.) Furthermore, in your choice of ten, you would recall the top four most
vulnerable components, two more would still be in the top ten (at predicted ranks
3 and 6), and two more would be in the top twenty (at predicted ranks 7 and 9).

Focusing on highly ranked components
Jurther improves effectiveness and efficiency.

6.5.5 Forecasting Vulnerable Components

The previous sections have focused on validating the approach, but we have not
yet actually forecast any vulnerable components. That would entail taking neu-
tral components—components that were not known to have any vulnerabilities—and
rank them according to our predictive method. In other words, we would be rank-
ing false positives. Unfortunately, when we use our classification model on the entire
CVS, we get no false positives. What we did instead was to use leave-one-out cross
validation. The entire process worked as follows:

1. Let C = {ci, ..., cm} be the set of components. Set k «— 1 and R « §.

2. Compute a regression model for C — {cy}.

3. Compute the prediction f(cx) according to the above regression model.

94 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

Prediction Validation set

Rank Component Bug reports Actual rank

1 NsDOMClassInfo 10 35
2 SgridRowLayout 1 95
3 xpcprivate 7 6
4 Jsxml 11 2
5 nsGenericHTMLElement 6 8

6 Jsgc 10 35
7 Ns|SEnvironment 4 12
8 Jsfun 15 1
9 NsHTMLLabelElement 3 18
10 NsHttpTransaction 2 35

Table 6.4: The top ten most vulnerable components from a validation set, as produced
by Vulture. Six of the predicted top ten are actually in the top ten, with ranks 1, 2,
3.5 (two times), 6, and 8. Two more are in the top twenty, at positions 12 and 18. So
eight of the predicted top ten are actually very vulnerable.

4. If vy = 0 (in other words, if the component had no known vulnerabilities),

add (ck, f(ck)) to R.
5. Setk « k+ 1. If k < m, return to step 2.

6. Sort R by f(ck) and output the top ten values.

We then took the Mozilla CVS as of July 17 and re-assigned vulnerabilities to
components in order to see which components had new changes due to vulnerabil-
ities. We were particularly interested in those components that had no previously
known vulnerabilities and in whether any of them would turn up in the result from
our leave-one-out cross validation. The result of this process can be seen in Table[6.5]
It turns out that fully half of our predictions were confirmed within six months!

When we look at the actual changes that were made to the source code, we find
that all but one component had changes that actually fixed vulnerabilities in the
implementation.

Vulture can make actual predictions with high accuracy.

6.5.6 Discussion

In the simple cost model introduced in Section we have m = 10,452 and
V' = 424, giving V//m = 0.04. With p = 0.65, we see that the condition from
Equation are fulfilled: Vulture does more than fifteen times better than random
assignment. Even when we take into account that in reality V > v, we consider it
unlikely that V/m > p.

For ranking, all values for the quantity Q introduced in Equation are higher
than 0.6; the average values are way above that. This more than satisfies our criterion
from Equation (6.3): Vulture finds a significant number of vulnerabilities.

Threrfore, our case study shows three things. First of all, allocating quality as-
surance efforts based on a Vulture prediction achieves a reasonable balance between

6.5. CASE STUDY: MOZILLA 95

Rank Component Vulnerable?

js/src/jsxdrapi

Js/src/jsscope
modules/plugin/base/src/ns]SNPRuntime
Js/src/jsatom

js/src/jsdate

cck/expat/xmlparse/xmlparse
layout/xul/base/src/nsSliderFrame
dom/src/base/nsJSUtils
layout/tables/nsTableRowFrame
layout/base/nsFrameManager

O O O NNV A~ WVWIN—

—_

Table 6.5: Vulture forecast using the CVS from January 4, 2007. The table shows
the top ten predicted most risky components. The third column shows “*” if vul-
nerabilities have surfaced in the predicted component between January 5 and July 17,
2007, encompassing MFSAs 2007-01 through 2007-25. Out of the top ten predicted
components, five have had changes due to vulnerability reports within six months of
making the prediction.

effectiveness and efficiency. Second, it is effective because half of all vulnerable com-
ponents are actually flagged. And third, Vulture is efficient because directing quality
assurance efforts on flagged components yields a return of 70%—more than two out
of three components are hits. Focusing on the top ranked components will give even
better results.

Furthermore, these numbers show that there is empirically an undeniable cor-
relation between imports and vulnerabilities. This correlation can be profitably ex-
ploited by tools like Vulture to make predictions that are correct often enough so
as to make a difference when allocating testing effort. Vulture has also identified
imports that always (or very often) lead to vulnerabilities when used together and
can so point out areas that should perhaps be redesigned in a more secure way.

Obur cross-validation has further shown that Vulture’s predictions are very good—
tully half of our predictions were confirmed within six months, and the proportion
can only rise as time goes on.

Best of all, Vulture has done all this automatically, quickly, and without the need
to resort to intuition or human expertise. This gives programmers and managers
much-needed objective data when it comes to identify (a) where past vulnerabilities
were located, (b) other components that are likely to be vulnerable, and (c) effectively
allocating quality assurance effort.

6.5.7 Threats to Validity

Our work is empirical and statistical: we look at correlations between two pheno-
mena—vulnerabilities on one hand and imports or function calls on the other—, but
we do not claim that these are cause-effect relationships. It is clearly not the case that
importing some import or calling some function causes a vulnerability. Programmers
writing that import statement or function call generally have no choice in the matter:
they need the service provided by some import or function and therefore have to
import or call it, whether they want to or not.

We have identified the following circumstances that could affect the validity of

96 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

our study:

Study size. The correlations we are seeing with Mozilla could be artifacts that are
specific to Mozilla. They might not be as strong in other projects, or the correlations
might disappear altogether. From our ownwork analyzing Java projects, we think
this is highly unlikely [147]; see also Section [6.7]on related work.

Bugs in the database or the code. The code that imports the CVS or the MFSAs
into the database could be buggy; the import matrix and vulnerability vector could
have been incorrectly calculated; or the R code that does the assessment could be
wrong. All these risks were mitigated either by sampling small subsets and check-
ing them manually for correctness, or by implementing the functionality a second
time starting from scratch and comparing the results. For example, the vulnerability
matrix was manually checked for some entries, and the R code was rewritten from
scratch.

Bugs in the R library. We rely on a third-party R library for the actual computa-
tion of the SVM and the predictions [50], but this library was written by experts in
the field and has undergone cross-validation, also in work done in our group [147]].

Wrong or noisy input data. The Mozilla source files could contain many “noisy”
import relations in the sense that some files are imported but actually never used;
or the MFSAs could accidentally or deliberately contain wrong information. Our
models do not incorporate noise. From manually checking some of the data, we
believe the influence of noise to be negligible, especially since results recur with
great consistency, but it remains a (remote) possibility.

6.6 Causes of Vulnerabilities

We have seen that, empirically, vulnerabilities correlate with imports, but we have
not answered the natural question why they correlate. In this section, we will take a
look at some vulnerabilities and try to find the reason for the apparent correlation.

For this, we return to Figure[6.2} It is apparent from the figure that some vulner-
abilities occur in the same directory as others (called a vulnerability cluster or simply
cluster), whereas others are isolated and occur alone (called a vulnerability singleton
or simply singleton). Looking at specimen examples of both clusters and singletons,
we will find evidence that the reasons for the correlation of vulnerablilities and im-
ports are different for the two classes of vulnerable components: clusters will tend
to fix the vulnerable implementation of some functionality, whereas singletons will
tend to reflect changes in the interfaces of components that were fixed elsewhere.

If these claims turn out to be correct, we have the following consequences:

¢ Clusters are more important than singletons. Defects in clusters contain the
real security vulnerabilities; singletons occur mostly because of changes in clus-
ters. This also explains why there are so many singletons and so few clusters:
there is a relatively small amount of security-critical code in the project and
when that is fixed in the interface, many places that use this code will have to
adapt to the changed interfase.

6.6. CAUSES OF VULNERABILITIES 97

Mozilla Vulnerabilities

src src util
tree |grid
src

| [softoken | ssl

| ki I fce

Src src

ﬁ el

Figure 6.13: A new view of the treemap presented in Figure A component’s
area is no longer proportional to its size, but rather to the number of its associated
vulnerability reports. What is apparent is that large rectangles tend to appear together
in one directory.

® We can use the character of fixes as predictors for clusters and singletons: if we
find ourselves fixing the implementation of components, we might conjecture
that this component is part of a cluster, so we might think of reimplementing
the entire directory or package in a more secure way.

First, we present a slightly different view of the Mozilla treemap shown in Fig-
ure In this new view, the rectangles have an area that is not proportional to
the component’s size, but to the number of vulnerabilities; see Figure What
is apparent from the figure is that components in clusters have more vulnerabilities
than components in singletons.

See Section [6.8]for ways to test these claims rigorously.

6.6.1 Clusters

Let us take a closer look at the largest cluster, js/src, which is responsible for the
execution of JavaScript scripts. This directory contains components that have 194
vulnerability-related bug reports associated with them, out of a total of 857 reports,
which accounts for 22 percent. (Note that the reports need not be unique; a report
may be associated with two or more components.)

First of all, clusters would correlate with imports because typically, components
that are defined in a cluster will import similar imports. This is because the compo-
nents in a cluster implement similar functionality (such as JavaScript support) and
will hence tend to import those header files that declare that functionality.

98 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

A look at the vulnerability reports for components in that directory reveal that
apparently JavaScript is highly insecure, both because the specification is unclear and
because the implementation is insecure. For example, a typical vulnerability report
that affects components in js/src (MFSA 2006-71) reads,

Steven Michaud reported a crash in LiveConnect, the bridge code
that allows Java applets and web JavaScript to communicate. The crash
is due to re-use of an already-freed object and we presume this could be
exploited with enough effort.

This necessitated three changes in mozilla/js/src/liveconnect/jsj_JavaObject.c (bug
#352064) and a look at the changes shows that the implementation of j5§ GC_callback
was changed to make sure that an object that is no longer used is properly deleted.
In other words, it is the implementation of the component’s functionality that was
changed.

Looking at other security-repated changes from this directory reveals a similar
picture. Therefore the following conjecture seems justified:

Vulnerability-related changes that appear in clusters
tend to change the implementation of functionality.
They fix insecure code.

In other words, once we have identified a cluster, we should think of reimple-
menting the functionality in that cluster in a more secure way, probably from the
ground up.

6.6.2 Singletons

Consider a singleton like intl/unicharutil/util/nsUnicharUtils, which has only one
vulnerability-related bug report associated with it (MFSA 2006-55), which says, in
part,

As part of the Firefox 1.5.0.5 stability and security release, developers
in the Mozilla community looked for and fixed several crash bugs to
improve the stability of Mozilla clients. Some of these crashes showed
evidence of memory corruption that we presume could be exploited to
run arbitrary code with enough effort.

Looking at the bug report (#284219), we find

There’s a fair amount of code out there that does something equiva-
lent to:

nsCString s;
s.SetLength (n);

char *p = s.BeginWriting();
memcpy (P, ...);

Any of these could be potential buffer overruns if an attacker can set
n sufficiently large to trigger an out of memory condition. That would
then result in p pointing at the static empty buffer, which lives at a fixed
known address, and could then be exploited by an attacker :(

6.7. RELATED WORK 99

I think we need to ensure that consumers like this verify the suc-
cess of SetLength by testing Length() afterwards. This is similar to the
ReplacePrep problem that was recently fixed.

The attacker-controlled value of 7 could lead to p pointing to a known address,
with the ensuing memcpy overwriting memory at a known location. The suggested
fix here is to (a) have SetLength return a boolean to indicate whether the operation
has succeeded (i.e., if there was enough memory to resize the string), and (b) adding
checks to make sure that the string is only accessed when SetLength returns true. This
amounts to changing the above code snippet to:

nsCString s;
if (!s.SetLength(n))

return NS_ERROR_OUT_OF_MEMORY;
char xp = s.BeginWriting();
memcpy (P, ...);

In comparison to the fix to bug #352064 above, we therefore find that it is not
the implementation of the functionality that has changed. Rather, interfaces that
are implemented in other parts of the program were difficult to use securely, which
caused a change in these interfaces, which needed to be reflected everywhere that the
interface was used.

Also, singletons would be correlated with imports too because all components
that use the hard-to-use functionality (such as #sCString) would import the same
imports.

Looking at other security-repated changes from other singletons reveals a similar
picture. Therefore the following conjecture seems justified:

Vulnerability-related changes that appear in singletons
tend to changes how other code is called.
They fix code that is hard to use securely.

In other words, once we have identified a singleton, we should think of reimple-
menting the called interfaces so that they are easier to use securely.

6.7 Related Work

Previous work in this area tried to reduce the number of vulnerabilities or their
impact by one of the following methods:

Looking at components’ histories. The Vulture tool was inspired by the pilot
study by Schroter et al. [147]], who first observed that imports correlate with failures.
While Schroter et al. examined general defects, the present work focuses specifically
on vulnerabilities. To our knowledge, this is the first work that specifically mines and
leverages vulnerability databases to make predictions. Also, our correlation, preci-
sion and recall values are higher than theirs, which is why we believe that focusing
on vulnerabilities instead of on bugs in general is worthwhile.

100 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

Evolution of defect numbers. Both Ozment at al. [130] as well as Li et al. [101]
have studied how the numbers of defects and security issues evolve over time. Oz-
ment et al. report a decrease in the rate at which new vulnerabilities are reported,
while Li et al. report an increase. Neither of the two approaches allow mapping of
vulnerabilities to components or prediction.

Estimating the number of vulnerabilities. Alhazmi et al. use the rate at which
vulnerabilities are discovered to build models to predict the number of as yet undis-
covered vulnerabilities [7]]. They use their approach on entire systems, however, and
not on source files. Also, in contrast to Vulture, their predictions depend on a model
of how vulnerabilities are discovered.

Miller et al. build formulas that estimate the number of defects in software, even
when testing reveals no flaws [116]. Their formulas incorporate random testing re-
sults, information about the input distribution, and prior assumptions about the
probability of failure of the software. However, they do not take into account the
software’s history—their estimates would be unchanged no matter how large the his-
tory is.

Tofts et al. build simple dynamic models of security flaws by regarding security
as a stochastic process [155]], but they do not make specific predictions about vulner-
able software components. Yin at al. [184] highlight the need for a framework for
estimating the security risks in large software systems, but give neither an example
implementation nor an evaluation.

Testing the binary. By this we mean subjecting the binary of the program in ques-
tion to various forms of testing and analysis (and then reporting any security leaks
to the vendor). This is often done with techniques like fuzz testing [115] and fault
injection; see the book by Voas and McGraw [171]).

Eric Rescorla argues that finding and patching security holes does not lead to an
improvement in software quality [141]]. But he is talking about finding security holes
by third-party outsiders in the finished product and not about finding them by in-house
personnel during the development cycle. Therefore, his conclusions do not contradict
our belief that Vulture is a useful tool.

(Statically) examining the source. This usually happens with an eye towards spe-
cific vulnerabilities, such as buffer overflows. Approaches include linear program-
ming [66]], data-flow analysis [87]], locating functions near a program’s input [46]], ax-
iomatizing correct pointer usage and then checking against that axiomatization [64]],
exploiting semantic comments [96]], computing and checking path conditions [[151]),
symbolic pointer checking [146]], or symbolic bounds checking [143]].

As an aside, the hypothesis of DeCast et al. [46]] that vulnerabilities occur more
in functions that are close to a program’s input is not supported by the present study.
Many of Mozilla’s vulnerable components, such as nsGlobal Window, lie in the heart
of the application.

Instead of describing the differences between these tools and ours in every case,
we we briefly discuss ITS4, developed by Viega at al. [170], and representative of the
many other static code scanners. Viega et al.’s requirement was to have a tool that
is fast enough to be used as real-time feedback during the development process, and
precise enough so that programmers would not ignore it. Since their approach is es-
sentially pattern-based, it will have to be manually extended as new patterns emerge.

6.8. BEYOND IMPORTS AND SVMS 101

The person extending it will have to have a concept of the vulnerability before it can
be condensed into a pattern. Vulture will probably not flag components that contain
vulnerabilities that were unknown at training time, but it will flag components that
contain vulnerabilities that have been fixed before but have no name.

Since ITS4 checks local properties, it will also be very difficult for it to find
security-related defects that arise from the interaction between far-away components,
that is, components that are connected through long chains of def-use relations. Also,
ITS4, as it exists now, will be unable to adapt to programs that for some reason con-
tain a number of pattern-violating but safe practices, because it completely ignores a
component’s history.

Another approach is to use model checking [34, [35]. In this approach, specific
classes of vulnerabilities are formalized and the program model-checked for viola-
tions of these formalized properties. The advantage over other formal methods is
that if a failure is detected, the model checker comes up with a concrete counter-
example that can be used as a regression test case. This too is a useful tool, but like
ITS4, it will have to be extended as new formalizations emerge. Some vulnerability
types might not even be formalizable.

Vulture also contains a static scanner—it detects imports by parsing the source
code in a very simple manner. However, Vulture’s aim is not to declare that certain
lines in a program might contain a buffer overflow, but rather to direct testing effort
where it is most needed by giving a probabilistic assessment of the code’s vulnerability.

Hardening source or runtime environment. By this we mean all measures that
are taken to mitigate a program’s ability to do damage. Hardening a program or the
runtime environment is useful when software is already deployed. StackGuard is a
method that is representative of the many tools that exist to lower a vulnerability’s
impact [41]]. Others include mandatory access controls as found in AppArmor [42]
or SELinux [121]]. However, Vulture works on the other side of the deployment
divide and tries to direct programmers and managers to pieces of code requiring
their attention, in the hope that StackGuard and similar systems will not be needed.

6.8 Beyond Imports and SVMs

6.8.1 Learning Patterns

The most interesting way to use version archives and vulnerability databases would
be to extend the work by Neamtiu et al. [122]] and learn vulnerability patterns from
the project’s history. This is the topic of a Masters Thesis by Cathrin Weif} [[180].
Consider a singleton like the one discussed above in Section There, code that
looked like Figure[6.14|(a) was to be replaced with code that looks like Figure[6.14] (b).

The only difference between parts (a) and (b) is that the unconditional call to
SetLength has been guarded with an if statement. Now suppose that we look at that
difference not in textual form, but as an abstract syntax tree (AST); see Figure An
AST is a representation of source code as a directed graph where internal nodes are
operators—such as statements—and leaf nodes are their operands—such as variable or
object references. ASTs differ from full parse trees by omitting all nodes and edges
that do not affect the semantics of the program.

102 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

nsCString s;
if (!s.SetLength(n))

return NS _ERROR OUT OF MEMORY;
char *p = s.BeginWriting();
memcpy (P, ...)7

(a) (b)

nsCString s;
s.SetLength (n) ;

char *p = s.BeginWriting();
memcpy(p, ...)7

Figure 6.14: Typical bug/fix pattern. Code that looks like (a) is buggy because of the
unguarded call to SetLength. This code is replaced by the guarded version (b).

if-statement

method call

A4

s SetLength n !
\

method call |N57ERR0R70UT70F7MEM0RY

return-statement

A\

SetLength

(a) (b)

Figure 6.15: The fix from Figure as an abstract syntax tree (AST). In this case,
code is added to guard against the failure of the SerLength function.

Once we have identified fixes to vulnerabilities and once we have put them into
AST form, we can learn vulnerability patterns. For example, from Figure [6.15] we
can learn that an unguarded call to SetLength will need a guard. This pattern will
have high support (number of instances where this pattern occurred) and high confi-
dence (percentage of times when this pattern was changed). So whenever this pattern
appears in code, we are fairly confident that this is a vulnerability that needs to be
fixed. Since the fix is also present in AST form, we can even suggest a fix: when-
ever someone submits a check-in to the source code control system, we check if the
vulnerability pattern appears and if so, we suggest the fix from the fix pattern.

More abstractly, let V be the code that is deleted from the vulnerable version and
let F be the code that is added to the fixed version. We call (V, F) a vulnerability/fix
pattern, or pattern for short. A fix that only deletes code would have F = @. In this
case, a recommendation would be to delete V from the source code whenever we
find an instance of it. The case of adding code is more complicated, however.

Let us consider the fix in Figure again. It consists of adding code, so we
would have V = @. Now the pattern V appears trivially at every place in the AST,
so it is not apparent where to add code. Fortunately in our case, it is relatively easy to
identify the place where the fix was added, namely at an unguarded call to SetLength.
In general, code additions do not appear out of thin air, and added code appears
in context, which in the case of ASTs would mean nodes in the vicinity of (above,
below, or beside) the added code. So we would have to compute those contexts and
use the one with the highest support and the highest confidence for a particular fix.

6.8. BEYOND IMPORTS AND SVMS 103

From AST representations we can learn vulnerability patterns.
In some cases, we may even be able to suggest fixes.

6.8.2 Other Future Work

More future work will work on the following topics:

More on Clusters and Singletons. In Section we made a case why clusters
and singletons should be correlated with imports, but we have not provided solid
empirical evidence for that. In order to do that, we would have to proceed along the
following lines, after defining precisely what clusters and singletons are:

1. In each cluster, find which combination of includes correlates most with vul-
nerabilities.

2. See if the include combinations overlap between clusters. The idea is that
clusters correlate with imports because components in clusters tend to import
imports containing the declaration of implemented services and especially of
declarations that declare functionality that is internal to the component. If
that idea is correct, there should be no significant overlap between relevant
import combinations in different clusters.

3. The idea is that for every fix inside a cluster that changes some interface, there
ought to be a number of singletons that occur because they need to adapt to
the new interface. If that is true, it would mean that singletons would tend to
be created in batches, and that they are correlated to changes in clusters.

The discrimination between clusters and singletons should also increase the pre-
cision and recall of SVM-based or conditional probability-based methods.

Fine-grained approaches. Rather than just examining imports at the component
level, one may go for more fine-grained approaches, such as caller-callee relation-
ships. Such fine-grained relationships may also allow vulnerability predictions for
individual classes or even individual methods or functions.

In this case, the rows and columns of the import matrix contain the differ-
ent method names as they are extracted form the source code by a simple parsing
method; an entry x;x would be 1 if method i calls method k; alternatively, x;x could
be the number of times the source code of method i contains calls to method k.

Inheritance and dynamic dispatch will make it generally impossible to compute
exactly which method of which class is being called. Also we will not distinguish
between similarly-named methods in different classes that are not in the same class
hierarchy. Initially, the rows of X might even still contain components instead of
methods.

Evolved components. This work primarily applies to predicting vulnerabilities of
new components. However, components that already are used in production code
come with their own vulnerability history. To test whether our approach also works
in this condition, the same thesis will apply the approach in a simulation of the
development process. To do this, we compute a predictor

104 CHAPTER 6. FORECASTING VULNERABLE COMPONENTS

Bayesian Filters. The same work will work on improving the explanatory power
of prediction. It is certainly nice to know that the SVM can with high accuracy
predict whether a module will be vulnerable or not, but it would be even nicer to
know why this is so. We will therefore try to use Bayesian filters instead of SVMs.
Bayesian filters are used in spam filters where words appear in email messges that are
classified as either “spam” (undesirable) or “ham” (desirable). From this, the classifier
computes the conditional probability that a message is spam or ham under the condi-
tion that thie word is present. The words with the highest percentages then serve as
an explanation why the message is spam or ham: “pOrn” very probably means spam,
whereas “Thomas” very probably means ham. Using such filters for vulnerability
prediction would have the advantage that results would be much easier to explain
and understand: “If d2i X509 SIG appears in a component, it has a vulnerability
with probability 95%”.

Characterizing domains. We have seen that empirically, imports are good pre-
dictors for vulnerabilities. We believe that this is so because imports characterize a
component’s domain, that is, the type of service that it uses or implements, and it is
really the domain that determines a component’s vulnerability. We plan to test this
hypothesis by studies across multiple systems in similar domains.

More significant features. Besides imports, there may be further characteristics
that make a component vulnerable. We plan to examine further features, such as
complexity metrics, or the usage of specific data types; and to check whether such
features would be applicable to predict vulnerabilities.

Usability. Right now, Vulture is essentially a batch program producing a textual
output that can be processed by spreadsheet programs or statistical packages. We
plan to integrate Vulture into current development environments, allowing program-
mers to query for vulnerable components. Such environments could also visualize
vulnerabilities by placing indicators right next to the individual entities (Figure[6.16).

In a recent blog [[145]], Bruce Schneier wrote “If the IT products we purchased
were secure out of the box, we wouldn’t have to spend billions every year making
them secure.” One first step to improve security is to learn where and why current
software had flaws in the past. Our approach provides the essential ground data for
this purpose, and allows for effective predictions where software should be secured
in the future.

Another area where our approach might be useful is the emerging area of self-
diagnosing and self-repairing system. A tool like Vulture that can successfully predict
profitable attack targets could select components to be put under a special protective
umbrella such as a proxy that scans requests, canonicalizes them, and weeds out
potentially harmful ones before it lets them through.

e 06 C/C++ - nsGenericElement.cpp - Eclipse SDK

e SlE]S g e -6]330 |B]®PL| G]O]EFrto by 5 [@C/C++ &')ava

T C/C4+ Projects 58\ |2 & ¥ = O)f[TRscenericEiement epp S

> nsDOMDocumentType.cpp
nsDOMLists.cop PRBool Equals(nsContentOrDocument& aOther)

nsframeLoader.cop return mContent ? mContent -- aOther.mContent :
nsGenConimageContent.cpp m mDocument == aOther.mDocument;
nsGeneratedIterator.cpp }

nsGenericDOMDataNode.cpp N X

nsGenericDOMNodeList.cpp ::;sg:::::t,mri;:z::im,

nsGenericElement.cpp };

Hjsapi.h

= nsContentList.h
= nsContentUtils.h

4vVVVVYYVYY
PERPERERBE

static nsresult
doRemoveChildAt(PRUInt32 alndex, PRBool aNotify, nsIContent* aKid,

=1 nsDOMAtribute.h nsIContent* aParent, nsIDocument* aDocument,
nsAttrAndChildArrayé aChildArray)
. {
Methods predlcted as NS_PRECONDITIONCaParent |1 aDocument, "Must have document if no parent!");
NS_PRECONDITIONC!aParent || aParent->GetCurrentDoc() == aDocument,
vulnerable are marked "Incorrect aDocument”);
: . .
=1 nsCenericElement.h : nsMutationGuard: :DidMutate();
[)<T> nsContentOrDocument container(aParent, abocument);
n”“dic‘m"s PG o NS_PRECONDITIONCaKid && aKid-»GetParent() -- aParent &&
Hetagns o= akid = container. GetChildAt(alndex) && . .
ACREERECHIR 0.89 0 - container.Index0f(aKid) -- (PRInt32)alndex, "Bogus aKid"); I
nsGenericElement::RemoveChildAt 0.84 L =
nsContentAreaDragDrop::DragDrop 0.84 Problems | Console Dangerous Imports £\
nsDocument::EndLoad 0 0.81 Import combination Vulnerable Neutral Risk
nsDocument::InsertBefore 0.77 nsiContent.h nslinterfaceRequestorUtils nsContentUtils.h 13 0 1.00
nsDocument:ReplaceChild 0.76 nsiscriptGlobalObject.h nsDOMCID.h 14 0 1.00

nsD nslEventListenerManager.h %
nsD Methods predicted as nsISupportsPrimitives.h nsContentUtils.h List of dangerous

nsG nsReadableUtils.h nsIPrivateDOMEvent.h

nsG most vulnerable nsiScriptGlobalObject.h nsDOMError.h import combinations
IsAll 4 || nsCOMPtr nsEventDispatcher.h

nsGenericElement::doRemoveChildAt 0.66 v || nsReadableUtils.h nsGUIEvent.h 29 1 0.97

] o° Writable | Smartinsert | 2955 : 1]

Figure 6.16: Sketch of a Vulture integration into Eclipse. Vulture annotates meth-
ods predicted as vulnerable with red bars. The view “Predictions” lists the methods
predicted as most vulnerable. With the view “Dangerous Imports”, a developer can
explore import combinations that lead to past vulnerabilities.

Chapter 7

Conclusions

The preceding chapters have presented methods that address software security con-
cerns both before and after the deployment of a software system. Vulture uses
statistics and machine learning to predict which components are most likely to con-
tain vulnerabilities and Malfor uses experiments to decide which parts of a system—
processes or inputs—are relevant for the intrusion.

Malfor is employed after software has been deployed. It makes the following
contributions:

1. An automatic technique to find the processes that are relevant for an intrusion,
or in fact any effect whose presence can be reliably tested.

2. An automatic technique to generate intrusion signatures for single day-zero
attacks.

Vulture is used before deployment. It makes the following contributions:

1. A technique for mapping past vulnerabilities by mining and combining vul-
nerability databases with version archives.

2. Empirical evidence that contradicts popular wisdom saying that vulnerable
components will generally have more vulnerabilities in the future.

3. Evidence that imports correlate with vulnerabilities.

4. A tool that learns from the locations of past vulnerabilities to predict future
ones with reasonable accuracy.

5. An approach for identifying vulnerabilities that automatically adapts to spe-
cific projects and products.

6. A predictor for vulnerabilities that needs only the set of imports, and thus can
be applied before the component is fully implemented.

Additionally, both the work on pre-deployment vulnerability prediction and
post-deployment incident analysis resulted not only in studies, but also in tools.
This shows that the ideas in this thesis are well suited to implementation.

Beyond these, there is one contribution that is more fundamental, namely the
introduction of experimental and empirical methods to the area of software security.

107

108 CHAPTER 7. CONCLUSIONS

This is arguably the first work to use experimental and empirical methods paradig-
matically to solve problems of software security. There has been some recent, later,
work that uses experiments, such as Packet Vaccine [[176], but from the paper it is
apparent that the authors are not aware of the power of experimental techniques:
they use experiments only as one step in their procedure to find the relevant parts of
an attack signature. Malfor, and the work that precedes it, solves the more general
problem of finding the cause for any effect.

Similarly, there have been phenomenological studies on software security (see
Section for more details), but to our knowledge, no publication used the results
from their empirical findings to predict useful things about security properties

We believe that it is important to introduce methods from the natural sciences
to software security because software systems are getting so large that they begin to
resemble natural phenomena more than man-made artifacts, and it is increasingly
difficult to deduce their behaviour from first principles such as operative semantics.
That is especially true for systems that have been developed without formal specifi-
cations. Such systems form the vast majority of deployed systems today. Here is a
small list of such systems:

¢ Operating Systems: Microsoft Windowsﬂ Linux, BSD in all its variations,
Mac OS, Unix.

Office software: Microsoft Office, OpenOffice, KOffice.

e Web servers: Apache, Microsoft IIS.

Internet clients: Internet Explorer, Outlook, Firefox, Thunderbird.
¢ Business software: SAP R3, Lexware Financial Office.

If we add the myriad lines of VBA script code that are deployed on production
systems, this should account for over 99% of CPU cycles on the planet.

Also, systems are increasingly becoming interconnected and it is a well-established
fact that the composition of systems will usually make the resulting system less se-
cure. Ross Anderson gives the example shown in Figure [7.1][9} Section 7.5.1]: Two
high-value (secret) inputs are exclusive-ored, the result is exclusive-ored with a one-
time pad and the resulting stream output on a low-value (non-secret) channel. The
pad is output on a high-value channel. This device, when used in isolation, is prov-
ably secure, meaning that it is not possible to guess the values of any bit of one of
the two high-value inputs knowing only the low-value output with a probability of
more than 1/2. (Proof sketch: every bit of L has the form h; @ hy @ r and therefore
has an equal probability of being either 0 or 1 because r is random and because of the
properties of exclusive-or.) On the other hand, if we manage to feed the pad back to
one of the inputs, the other input suddenly appears on the non-secret channel. (Proof
sketch: 1y @ r @ r = hy.) This shows that secure systems need not be composable
into systems that are also secure, a point also made by Peter G. Neumann [127]).

The increase in size and the breakdown of security under system composition
mean that traditional methods in software security such as static checking will quickly
become less and less useful: large software systems will make checking more expen-
sive and the non-composability of secure systems means that the whole system will

INetwork security is a different matter: due to the large amount of traffic, statistical and machine-
learning methods are routinely used to make predictions.
2With the possible exception of drivers, which are supposed to be model-checked during certification.

109

One-Time Pad

Generator

Exclusive-Or 3 L

Hl—b

Exclusive-Or
H)y—

Figure 7.1: This device accepts two high-value (secret) channels on Hj and H», xors
them, xors the result with a one-time pad and outputs the result on the low-value
(non-secret) channel L and the pad on the high-value channel Hj. In isolation, it is
provably secure, but if H3 can be fed back to Hj, the previously secret input H; now
appears on the non-secret channel L. This shows that systems that consist of provably
secure components need not be secure when composed into larger systems.

have to be checked, not just its individual componens. It is like trying to predict the
temperature, volume and pressure of a gas knowing only the masses, positions and
velocities of its constituent molecules.

Still, most research in software security overemphasizes formal methods and first
principles, a point that was excellently made by Peter Wegner and Dina Goldin in
their essay “Principles of Problem Solving” [179]]. I believe on the contrary that we
need more research in empirical methods.

As this thesis has shown, empirical and experimental methods can help where
more fundamental methods must fail because of the complexity of the analyzed sys-
tems. It is my hope that these methods are taken up and developed further, maybe to
their logical conclusion of auto-diagnosing and perhaps even auto-repairing systems.

Appendix A
Philosophy

There is in software security a gap between theorists and practitioners. Theorists
argue that most problems with information systems would disappear if we just spec-
ified them properly beforehand and used formal methods and verification to make
sure that the specified systems are defect-free. Practitioners argue that most systems
today do not have specifications and cannot retroactively be equipped with them
without jeopardizing that software’s ability to generate revenue; see Chapter 1] Be-
sides, they say, even if a system specification is “correct” (whatever that means), and
even if an implementation can be rigorously proved to adhere to the specification,
this does not mean that the system is proof against practical attacks. For example, an
encryption system can have perfect secrecy and still be vulnerable to a timing attack.
This section explores the origins of that gap.

If we reduce the quarrel to its essentials, we find on the one hand the opinion that
reasoning about computer programs is all that is needed to produce correct programs, and
on the other hand the belief that only observation and theorizing will allow us to
analyze and predict the behaviour of complex software systems. If we generalize away
the references to computer science, we arrive at these two beliefs:

¢ Knowledge is gained only by reasoning; and

¢ Knowledge is gained only by observation.

We call the first belief rationalist and the second empiricist. People are accordingly
called rationalists or empiricists, respectively, depending on their beliefs.

Both beliefs are incompatible in the extreme form in which they were stated
above, but there is no reason why they should not both be partially true. For exam-
ple, once we find out that F = ma by experiment, we could deduce a = F/m.

In order to find out about the origins of the incompatibility between rationalists
and empiricists, we must look into the history of both rationalist and empiricist
philosophy.

A.1 Rationalist Philosophy

An early rationalist was Pythagoras (582? BC-507? BC). It is difficult to say exactly
what he taught, his school being a mix of mathematics and mysticism. One of his
views was that the whole world was based on integers, which led, for example, to the

111

112 APPENDIX A. PHILOSOPHY

pythagorean tuning of musical scales, which later had to be modified by the mean-
tone tuning and still later by the well-tempered tuning in order to use all twenty-four
major scales. When a Pythagorean (usually believed to be Hippasus of Metapontum)
discovered that the side and diagonal of a square were not in integer proportions,
and therefore invalidated a central tenet of Pythagorean philosophy, his colleagues
acted in the time-honored manner of fundamentalists everywhere and killed him,
throwing him overboard during a cruise. [65]

The origins of what we understand today by rationalism lie with the idealism of
Plato (4272 BC-347? BC), who was in turn influenced by Pythagoras. In his State,
Plato believed that the world we perceive is merely a shadow image of the real world
of ideas [134]. This real world contains, for example, the idea of a table, which
encompasses the table-ness of all tables. Using software engineering terms, the idea
is a class and the shadow that we see is an instance of that class. Only philosophers
get glimpses of that ideal world and were therefore the first object-oriented system
analysts

Skipping many centuries, we arrive at René Descartes (1596-1650). His main
contribution to philosophy was the notion of solipsism, which holds that all our
knowledge of the world comes to us through our senses and that this outside world
is therefore not necessarily real. The same argument is made today when critics of
electronic signatures claim that no-one knows what they are really signing because
there is in general no trusted path from the memory (which holds the document
to be signed) to the display (which displays to users what they are supposed to be
signing). Solipsism also appears in Chapter [5| as the name of the capture/replay
subsystem of Malfor. Following Descartes’s logic, the only thing we can be sure of
is our own existence, hence “I think therefore I am”. Descartes is certainly one of
the more radical rationalists, entirely discarding perception as a means of obtaining
knowledge and admitting only deduction. Still, he later turns around somewhat by
proving that God exists (even though he proves it only to his own satisfaction) and
then deducing that he can trust his senses after all because God would not want to
deceive him. This contorted argument is necessary because it is otherwise extremely
difficult to explain certain things, such as the (apparent) existence of natural laws, a
flaw noted by Richard Feynman [61].

Next in line is Gottfried Wilhelm Leibniz (1646-1716). For our purposes, his
main contribution to rationalist philosophy is his Calculus Ratiocinator. This is a
method in which problems are solved by writing them down in a specialized language
and then applying the rules of his calculus. This calculus was not only for solving
technical problems; Leibniz believed he could also apply the method to matters of
opinion and thereby solve any dispute in a completely rational way, by calculating
what the right answer must be This optimistic view echoes both Charles Babbage’s
nineteenth-century analytical engine as well as David Hilbert’s motto ,Wir miissen
wissen und wir werden wissen!“ (“We must know and we will know!”).

Leibniz explicitly believed that the negation of a true statement must be false. Im-
plicitly, Leibniz must also have believed that every true statement could be proved,
something that Bertrand Russell and Alfred North Whitehead also believed, and

10f course, Plato was also a power-hungry politician who argued that since only philosophers get
glimpses of the real world, an ideal state should be run by philosophers. The term “conflict of interests”
was coined only much later..

2 For example, to decide whether Britney Spears or Christina Aguilera was the better singer, we could
write down some formulas which we know will differentiate good singers from bad ones, calculate and
compare the results. All teen magazines would instantly vanish from the newsstands.

A.2. EMPIRICIST PHILOSOPHY 113

which was finally refuted by Kurt Godel in his 1931 paper ,Uber formal unent-
scheidbare Sitze der Principia Mathematica und verwandter Systeme I“ [70], and
again later by Alan M. Turing in his “On computable numbers with an application
to the Entscheidungsproblem” [159].

A.2 Empiricist Philosophy

Returning to the empiricists, one the first philosophers usually credited with that
label is Aristotle (384 BC-322 BC). He could not have been more different from
Plato. Recall that Plato said that the real world was the world of ideas and that the
material world was separate from the ideal world and related to it only as a shadow
to the object which casts it. In contrast, Aristotle believed that universal principles
manifest in particular things. Consequently, philosophy should work from studying
particular things and from that study find their universal quality, or essence. Basi-
cally, Aristotle’s method was inductive and Plato’s method was deductive. But we
should not believe that Aristotle used an empirical method. Rather, he had his head
in the clouds just like Plato. For example, he asserts in his theory of gravity that
things fall down because they come from the earth and therefore have a natural ten-
dency to return to the earth from which they came, something that a truly empirical
method would easily refute.

Again skipping many centuries (and some important philosophers), we come
to Isaac Newton (1643 [1642 OS]-1727). Newton was not a philosopher per se, but
his work was influential in shaping the thoughts of many, such as David Hume;
see below. While certainly using his powers of deduction to discover natural laws,
Newton was also a keen observer. He borrowed from Francis Bacon the notion
of the crucial experiment or experimentum crucis, which is an experiment that has
the power to falsify a theory. For example, the Michelson-Morley experiment was
a crucial experiment that falsified the theory of the electromagnetic ether. Newton
used many crucial experiments in his works. The idea of crucial experiments was
later expanded by Karl Popper; see below.

Newton influenced David Hume (1711-1776). In his Treatise of Human Na-
ture [82]], written when Hume was only twenty-six, he lays out his belief that all
our knowledge comes to us only through our senses. He was a radical empiricist. In
the Treatise, he also expounds his theory of causation, something dear to all com-
puter scientists wishing to find bugs in their programs. For Hume, causation is not a
strict if-then relationship between events; rather, causation happens when we believe,
based on many previous observations, that two events are causally connected. This
makes causation a statistical thing and in effect removes from the very concept many
features which enable us to reason about causes and effects. This is already hard to
swallow, but Hume goes even further and argues that even Truth is not absolute, but
instead relies on convention.

It is interesting to note that many important rationalists were also excellent math-
ematicians (with the exception of Plato), and that almost none of the empiricists were
(with the significant exception of Newton).

A.3 Modern Philosophy of Science

The first attempt to reconcile the rationalist and empiricist world-views was made by
Immanuel Kant (1724-1804). Recall Hume’s formulation of causation which in his

114 APPENDIX A. PHILOSOPHY

view is entirely subjective. How then to explain the existence of natural laws? Kant
solved this metaphysical problem with a neat trick.

In his Kritik der Reinen Vernunft [88]], Kant invented something called synthetic
a priori truths. Basically, he argues that all natural laws are self-evident, yet cannot
be derived by logic alone. This argument unmasks Kant as a rationalist at heart. But
the argument also turns around in circles, because he cannot offer any evidence for
the existence of synthetic a priori truths other than otherwise, natural laws would be
difficult to explain. Obviously, Kant was under the impression that there is only one
possible universe, ours, and that its natural laws are not changing with time. Both
assertions have been challenged. Also, if natural laws are self-evident, it is somewhat
difficult to explain why it sometimes takes so long to find them, or why they have
to be modified in the face of contradicting evidence.

The next (and last) philosopher on our list is Karl Popper (1902-1994). Popper
wasn’t so much interested in how we gain knowledge (the central problem of epis-
temology), but rather how scientific progress happens. This is a related yet different
problem. Popper argued that scientific progress happened through the formulation
of scientific theories which are then tested by experiments [[135} [136]. Some experi-
ments would contradict, or falsify, a theory, which must lead to its abandonment
and to the search for a better theory that explains the experiment.

What makes a good scientific theory? A good theory will make specific predic-
tions. For example, the (Newtonian) theory of gravity makes the prediction that
two bodies are attracted with a force proportional to the product of their masses
and inversely proportional to the square of their distance. This prediction invites
experiments, experiments that would falsify the entire theory if they failed. For
example, we could try to see whether it also holds at very large distances, at high
relative speeds, for very light objects or for very heavy objects and so on. Such a
risky experiment is called a crucial experiment or experimentum crucis.

Psychoanalysis on the other hand makes no predictions. Every form of human
behaviour is permitted by it. So the theory of psychoanalysis is not a scientific
theory. It doesn’t mean that it is bad medicine, though; it’s just nor science.

Falsifying theories leads to better theories. Does this process ever stop? Will we
ever get to the ultimate form of natural laws? Do natural laws exist at all? Popper
doesn’t say (even though he was of the opinion that natural laws did exist), and it’s
also not part of his methodology, which sets it apart from metaphysics.

It is also interesting to note that according to Popper, knowledge does not appear
by inductive reasoning, that is, by finding a general law from specific events. So, how
do we get theories? According to Popper, we get them by guessing hypotheses, not
by finding natural laws by induction.

Popper’s view is mostly accepted in the scientific community, but there are crit-
ics. The most notable critic is Paul Feyerabend, a former pupil of Popper’s, who says
that scientific progress happens more by accident than by design, and whose motto
is “Anything Goes” [[60].

Notation

Notation Definition Meaning

ancestors(p) Ancestors of a process

C Captured processes

culp S Culprit set

ddmin Delta Debugging algorithm
X Failing test case

Co Initial set of captured processes
F*(x) Iteration

test(S) Outcome of a test function
offspring(p) Offspring set

parent(p) Parent process ID

4 Passing test case

P(S) Power set

P Process IDs

Proot Root process

R Replay function

? Unresolved test case

115

Glossary

abstract syntax tree A directed tree in which the internal nodes are operators and
the leaf nodes are the operands. Related to the parse tree, but much simpler.

antecedent The precondition A in a conditional “if A then C”.
AST — abstract syntax tree.

box-and-whisker plot A plot that shows many characteristics of an empirical dis-
tribution. The central element is a box divided by a line, usually drawn ver-
tically, joined at the top and bottom by graphical elements called whiskers.
The box starts at the lower quartile (i.e., 1/4 of all observed values were less
than or equal to this value) and extends to the upper quartile (which 3/4 of
all observed values were less than or equal to). The line dividing the box is
the median (the second quartile). The height of the box is the inter-quartile
range, or IQR. The lower whisker is a datapoint that is at most 1.5 - IQR away
from the lower quartile, and similarly for the upper whisker. Points beyond
the whiskers are called outliers.

cluster — vulnerability cluster.
consequent The postcondition C in a conditional “if A then C”.

cross validation A method of assessing a machine-learning algorithm. Works by
partitioning a data set into n (usually equal) parts and then using n — 1 parts
to train the algorithm and then predicting for the remaining part.

ecdf — empirical cumulative distribution function.

empirical cumulative distribution function Let (xi, ..., x,) be a sequence of real
numbers. The empirical cumulative distribution function is then defined as
ecdf(x) = |{k : xx < x}|/n. Typically, the x; are observations of some sort.

inter-quartile range — box-and-whisker plot.
IQR — box-and-whisker plot.
Lamport clock — time vector.

leave-one-out cross validation A special form of rightarrow cross validation where
the number of partitions is equal to the number of elements. In other words,
if the data set has m elements, the cross validation proceeds with m = n.

lower whisker — box-and-whisker plot.

117

118 GLOSSARY

nop sled A string of instructions that have no side effects. This is used by buffer
overflow attacks: by prepending a nop sled to the attack string, the attacker
does not need to know the memory layout to the byte.

outlier — box-and-whisker plot.
singleton — vulnerability singleton.

time vector A way to compute causality in distributed systems. Works by having
every process maintain a vector of event numbers in other processes that could
affect the events generated by this process.

UML — User Mode Linux.
upper whisker — box-and-whisker plot.

User Mode Linux An early form of operating system virtualization. The operating
system is run as an ordinary user-mode process. In this way, several operaying
systems can be run in parallel on one machine. Now superseded by Xen.

vector time A way of keeping time in a distributed computation. — time vector.

vulnerability/fix pattern A pattern that is mined from the change history of a soft-
ware project and that characterizes a vulnerability and its fix. For example, a
call to gets() is replaced by a call to fgets().

vulnerability cluster Set of files that have been fixed because of vulnerabilities and
that appear together in one directory.

vulnerability singleton A file that has been fixed because of vulnerabilities but
where only few other files in the same directory are similarly vulnerable.

Bibliography

[1] Anurag Acharya and Mandar Raje. MAPbox: Using parameterized behavior
classes to confine untrusted applications. In Proceedings of the 9th USENIX
Usenix Security Symposium [[161]]. See page 38}

[2] Active@ Data Recovery Software. Active@ Disk Image. |http://www.
disk-image.net/, May 2007. See page[i0|

[3] ActMon Software. ActMon Password Recovery XP. |http://www.
actmon.com/password%2Drecovery/, February 2006. See page[10}

[4] Forman S. Acton. Numerical Methods That (Usually) Work. Mathematical As-
sociation of America, Washington, D.C., USA, 1990. See page

[5] Frank Adelstein. Live forensics: Diagnosing your system without killing it
first. Communications of the ACM, 49(2):63-66, February 2006. See page[3]

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, edi-
tors, Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB, pages 487-499. Morgan Kaufmann, September 1994. See page[83]

[7] Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Securiry Vulnerabilities
in Software Systems: A Quantitative Perspective, volume 3645/2005 of Lecture
Notes in Computer Science, pages 281-294. Springer Verlag, Berlin, Heidelberg,

August 2005. See page[100]

[8] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. D. Keromytis. Detecting targeted attacks using shadow honeypots. In
Proceedings of the 14th Usenix Security Symposium, pages 129-144, Berkeley,
CA, USA, August 2005. Usenix Association, Usenix Association. See page[13]

[9] Ross Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. John Wiley and Sons, Inc., 2001. See page [108]

[10] Ross Anderson and Tyler Moore. Information security economics — and be-
yond. In Advances in Cryptology - CRYPTO 2007: 27th Annual International
Cryptology Conference, Berlin, August 2007. Springer Verlag. See page [45]

[11] Javed Aslam, Sergey Bratus, David Kotz, Ron Peterson, Daniela Rus, and Brett
Tofel. The Kerf toolkit for intrusion analysis. Technical Report TR2004-493,
Dartmouth College, Department of Computer Science, and the Institute for
Security Technology Studies, 2004. See page

119

http://www.disk-image.net/
http://www.disk-image.net/
http://www.actmon.com/password%2Drecovery/
http://www.actmon.com/password%2Drecovery/

120 BIBLIOGRAPHY

[12] Jay Aslam, David Kotz, and Daniela Rus. Kerf project outline. https:
//kerf.cs.dartmouth.edu/outline.shtml) February 2006. See

page[10}

[13] Association for Computing Machinery. Proceedings of the 12th ACM conference
on Computer and Communications Security, New York, NY, USA, 2005. ACM

Press. See pages and

[14] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection
of all pointer and array access errors. In Proceedings of the ACM SIGPLAN *94
Conference on Programming Language Design and Implementation, pages 290-
301, New York, NY, USA, 1994. ACM Press. See page

[15] Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization
of Dolev-Yao-style XOR. In Sabrina De Capitani di Vimercati, Paul Syver-
son, and Dieter Gollmann, editors, Proceedings of 10th European Symposium
on Research in Computer Security, ESORICS’05, number 3679 in Lecture Notes
in Computer Science, pages 178-196, Berlin, September 2005. Springer Verlag.

See page[14}

[16] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack
smashing attacks. In Proceedings of the 9th USENIX Usenix Security Symposium

[161]]. See page

[17] A. Baratloo, T. Tsai, and N. Singh. libsafe: Protecting critical elements
of stacks. http://www.avayalabs.com/project/libsafe/. See

page[12

[18] Bradford L. Barrett. The Webalyzer: what is your web server doing today?
http://www.mrunix.net/webalizer/} February 2006. See page[9}

[19] David Basin. Personal communication, March 2006. See page

[20] Steven M. Bellovin. Re: Neal koblitz critiques modern cryptography. Message
<20070904231107.93191766105@berkshire.machshav.com> on
the cryptography mailing list, September 2007. See page [4}

[21] Dan Bernstein. Cache-timing attacks on AES. |http://cr.yp.to/
papers.html#cachetiming, 2004. See pagesand

[22] Rahul Bhaskar. State and local law enforcement is not ready for a cyber kat-
rina. Communications of the ACM, 49(2):81-83, February 2006. See page[3}

[23] Briggs Softworks. Directory snoop. http://www.briggsoft.com/
dsnoop . htm, February 2006. See page|[10}

[24] Herman ten Brugge. Gecc bounds checking. http://web.inter.nl.
net/hcc/Haj.Ten.Brugge/. See page

[25] David Brumley and Dan Boneh. Remote timing attacks are practical. In Pro-
ceedings of the 12th Usenix Security Symposium [[163]], pages 1-14. See pages
and

https://kerf.cs.dartmouth.edu/outline.shtml
https://kerf.cs.dartmouth.edu/outline.shtml
http://www.avayalabs.com/project/libsafe/
http://www.mrunix.net/webalizer/
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://www.briggsoft.com/dsnoop.htm
http://www.briggsoft.com/dsnoop.htm
http://web.inter.nl.net/hcc/Haj.Ten.Brugge/
http://web.inter.nl.net/hcc/Haj.Ten.Brugge/

BIBLIOGRAPHY 121

[26] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha.
Towards automatic generation of vulnerability-based signatures. In Proceedings
of the 2006 IEEE Symposium on Security and Privacy [83]]. See page

(27] John Burnet. Early Greek Philosophy. London, 1920. See page[39]

[28] Brian Carrier. Autopsy forensic browser manual page. http://www.
sleuthkit.org/autopsy/man/autopsy.html, February 2006. See

page

[29] Brian Carrier. File activity timelines: Sleuth kit reference document. http:
//www.sleuthkit.org/sleuthkit/docs/ref_timeline.html,
February 2006. See page|[10}

[30] Brian Carrier. File system analysis techniques: Sleuth kit reference doc-
ument. http://www.sleuthkit.org/sleuthkit/docs/ref_fs.
html} February 2006. See page[10}

[31] Brian D. Carrier. Risks of live digital forensic analysis. Communications of the
ACM, 49(2):56-61, February 2006. See page

[32] Eoghan Casey. Digital Evidence and Computer Crime: Forensic Science, Com-
puters, and the Internet. Academic Press/ ElAseAvier, London, UK, Second
edition, 2004. See page 3}

[33] Eoghan Casey. Investigating sophisticated security breaches. Communications
of the ACM, 49(2):48-54, February 2006. See page

[34] Hao Chen, Drew Dean, and David Wagner. Model checking one million lines
of C code. In Proceedings of the 11th Annual Network and Distributed System
Security Symposium, pages 171-185, Reston, VA, USA, February 2005. Internet
Society, Internet Society. See page[101]

[35] Hao Chen and David Wagner. MOPS: An infrastructure for examining se-
curity properties of software. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS), pages 235-244, New York, NY,
USA, November 2002. ACM Press. See page[101}

[36] The chkrootkit Team. chkrootkit. http://www.chkrootkit.org/)
February 2006. See page|[10}

[37] Grenier Christophe. CMOS password recovery tools. http://www.
cgsecurity.org/index.html?cmospwd.html, May 2007. See

page

[38] The Common Digital Evidence Storage Format Working Group. Standardiz-
ing digital evidence storage. Communications of the ACM, 49(2):67-68, Febru-
ary 2006. See page[3}

[39] Computer Security Institute and Federal Bureau of Investigation. 2006
CSI/FBI computer crime survey. |i.cmpnet.com/gocsi/db_area/
pdfs/fbi/FBI2006.pdf, December 2006. See pagel[l]

http://www.sleuthkit.org/autopsy/man/autopsy.html
http://www.sleuthkit.org/autopsy/man/autopsy.html
http://www.sleuthkit.org/sleuthkit/docs/ref_timeline.html
http://www.sleuthkit.org/sleuthkit/docs/ref_timeline.html
http://www.sleuthkit.org/sleuthkit/docs/ref_fs.html
http://www.sleuthkit.org/sleuthkit/docs/ref_fs.html
http://www.chkrootkit.org/
http://www.cgsecurity.org/index.html?cmospwd.html
http://www.cgsecurity.org/index.html?cmospwd.html
i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf
i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf

122 BIBLIOGRAPHY

[40] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. Formatguard:
Automatic protection from printf format string vulnerabilities. In Proceedings
of the 10th Usenix Security Symposium [[162]]. See page[12]

[41] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow at-
tacks. In Proceedings of the 7th Usenix Security Symposium, pages 6378, Berke-
ley, CA, USA, January 1998. Usenix Association, Usenix Association. See

pages[12and

[42] Crispin Cowan. Apparmor linux application security. http://
www.novell.com/linux/security/apparmor/, January 2007. See

page[10}

[43] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On
deriving unknown vulnerabilities from zero-day polymorphic and metamor-
phic worm exploits. In Proceedings of the 12th ACM conference on Computer
and Communications Security [13]], pages 235-248. See page |11}

[44] The Cryptography Mailing List. GnuTLS (libgrypt really) and postfix. http:
//www.archivesat.com/Cryptography/threadl26448.htm,

2006. See page|[13]

[45] Davor éubranié, Gail C. Murphy, Janice Singer, and Kellogg S. Booth.
Hipikat: A project memory for software development. IEEE Transactions on
Software Engineering, 31(6):446-465, June 2005. See page[78]

[46] Dan DaCosta, Christopher Dahn, Spiros Mancoridis, and Vassilis Prevelakis.
Characterizing the security vulnerability likelihood of software functions. In
IEEE Proceedings of the 2003 International Conference on Software Maintenance
(ICSM’03), September 2003. See page[100]

[47] Asit Dan, Ajay Mohindra, Rajiv Ramaswami, and Dinkar Sitaram.
Chakravyuha (cv): A sandbox operating system environment for controlled

execution of alien code. Technical report, IBM T.J. Watson Research Center,
Yorktown Heights, NY, USA, September 1997. See page

[48] Laurent Destailleur. AWStats real-time logfile analyzer. http://awstats.
sourceforge.net/, February 2006. See page

(49] Hermann Diels. Die Fragmente der Vorsokratiker. Berlin, 1951. See page[39}

[50] Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, and An-
dreas Weingessel. e1071: Misc Functions of the Department of Statistics (e1071),
TU Wien, 2006. R package version 1.5-13. See pages[91]and[9¢]

[51] Daniel Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198-208, 1983. See page 4|

[52] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment. Pearson Education, Inc., Boston, MA, USA, 2007. See page

http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
http://www.archivesat.com/Cryptography/thread126448.htm
http://www.archivesat.com/Cryptography/thread126448.htm
http://awstats.sourceforge.net/
http://awstats.sourceforge.net/

BIBLIOGRAPHY 123

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

(62]

[63]

[64]

(65]

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 211-224, New York, NY, USA, December

2002. ACM Press. See pages[3}[L1} and 49

Dave Dykstra. bsed binary stream editor home page. http://wwwl.
bell-labs.com/project/wwexptools/bsed/, February 2006. See

page 9}

Hiroaki Etoh. Gee extension for protecting applications from stack-
smashing attacks. http: //www.trl.ibm.com/projects/security/

ssp/}, 2001. See page[12]

David Evans. Static detection of dynamic memory errors. In Proceedings
of the ACM SIGPLAN °96 Conference on Programming Language Design and
Implementation, pages 44-53, New York, NY, USA, 1996. ACM Press. See

page

Dan Farmer. Frequently asked questions about the coroner’s toolkit. http:
//www.fish.com/tct/FAQ.html} January 2005. See page[10]

Dan Farmer and Vietse Venema. Forensic Discovery. Addison-Wesley, January

2005. See pages[3|and

Federal Bureau of Investigation. 2005 FBI computer crime survey. http:
//www.fbi.gov/publications/ccs2005.pdf, January 2006. See

page
Paul Feyerabend. Against Method. Verso, third edition, 1993. See page[114}

Richard P. Feynman. Surely You’re Joking, Mr. Feynman: Adventures of a Cu-
rious Character. W. W. Norton & Co., New York, N.Y., USA, 1997. See

page[112]

Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of
the International Conference on Software Maintenance (ICSM’03), Amsterdam,
Netherlands, September 2003. IEEE. See page 78]

Foundstone, Inc. BinText finds ASCII, Unicode and resource strings
in a file. http://www.foundstone.com/index.htm?subnav=
resources/navigation.htm\&subcontent=/resources/
proddesc/bintext . htm, February 2006. See page[9]

Pascal Fradet, Ronan Caugne, and Daniel Le Métayer. Static detection of
pointer errors: An axiomatisation and a checking algorithm. In European
Symposium on Programming, pages 125-140, 1996. See pages[12)and [100}

Kurt von Fritz. The discovery of incommensurability by Hippasos of
Metapontum. Annals of Mathematics, 46:242-264, 1954. See page[112}

http://www1.bell-labs.com/project/wwexptools/bsed/
http://www1.bell-labs.com/project/wwexptools/bsed/
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/
http://www.fish.com/tct/FAQ.html
http://www.fish.com/tct/FAQ.html
http://www.fbi.gov/publications/ccs2005.pdf
http://www.fbi.gov/publications/ccs2005.pdf
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm\&subcontent=/resources/proddesc/bintext.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm\&subcontent=/resources/proddesc/bintext.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm\&subcontent=/resources/proddesc/bintext.htm

124 BIBLIOGRAPHY

[66] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David
Vitek. Buffer overrun detection using linear programming and static analysis.
In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), New York, N'Y, USA, October 2003. ACM Press. See page[100]

[67] Simson L. Garfinkel. AFF: A new format for storing hard drive images. Com-
munications of the ACM, 49(2):85-87, February 2006. See page

[68] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposi-
tion based security tools. In Proceedings of the 10th Internet Society Symposium
on Network and Distributed System Security, pages 19-34, Reston, VA, USA,
February 2003. Internet Society, Internet Society. See page

[69] A. K. Ghosh, T. O’Connor, and G. McGraw. An automated approach for
identifying potential vulnerabilities in software. In Proceedings of the 1999 IEEE
Computer Society Symposium on Security and Privacy (SSP °89), pages 104-114,
Washington, DC, USA, May 1998. IEEE Computer Society, IEEE Press. See

page[12]
[70] Kurt Gédel. Uber formal unentscheidbare Sitze der Principia Mathematica

und verwandter Systeme 1. Monatshefte fiir Mathematik und Physik, 38:173-
198, 1931. See page[113}

[71] Peter Gutmann. Secure deletion of data from magnetic and solid-state memo-
ry. In Proceedings of the 6th Usenix Security Symposium, Berkeley, CA, USA,
July 1996. Usenix Association, Usenix Association. See page

[72] Peter Gutmann. Cryptographic Security Architecture. Springer Verlag, October

2003. See pages|13|and

[73] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer Verlag, 2001. See pages|[86]and 89}

[74] heise online. FBI: Computer-KriminalitAct kostet US-Firmen 67 Milliar-
den Dollar im Jahr. http://www.heise.de/newsticker/meldung/
mail/ 68593, January 2006. See page|i}

[75] Ralf Hildebrandt and Andreas Zeller. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 26(2):183-200, Fe-

bruary 2002. See pages and

[76] Christopher Hitchcock. Probabilistic causation. In Edward N. Zal-
ta, editor, The Stanford Encyclopedia of Philosophy. Stanford University,
Fall 2007. |http://plato.stanford.edu/archives/fall2007/
entries/causation-probabilistic/l See page@

[77] Thomas Hofer, Hildegard Przyrembel, and Silvia Verleger. New evidence for
the theory of the stork. Paediatric and Perinatal Epidemiology, 18(1):88-92,
2004. See page[]

[78] Greg Hoglund and Gary McGraw. Exploiting Software. Addison-Wesley, 2004.
See page

http://www.heise.de/newsticker/meldung/mail/68593
http://www.heise.de/newsticker/meldung/mail/68593
http://plato.stanford.edu/archives/fall2007/entries/causation-probabilistic/
http://plato.stanford.edu/archives/fall2007/entries/causation-probabilistic/

BIBLIOGRAPHY 125

[79] Christian Holler. Predicting vulnerable methods. Bachelor thesis, Department
of Informatics, Saarland University, September 2007. to appear. See page[75]

[80] Chet Hosmer. Digital evidence bag. Communications of the ACM, 49(2):69-70,
February 2006. See page 3}

(81] David Hume. An Enquiry concerning Human Understanding, volume
XXXV, Part 3 of The Harvard Classics. P.F. Collier & Son, New York, NY,
USA, 1909-1914. See page[7]

[82] David Hume. A Treatise of Human Nature. Oxford University Press, 2000. See
page

[83] IEEE Computer Society. Proceedings of the 2006 IEEE Symposium on Security
and Privacy, Washington, DC, USA, May 2006. IEEE Press. See pages

and 128}

[84] Internet Society. Proceedings of the 13th Annual Network and Distributed System
Security Symposium, Reston, VA, USA, February 2006. Internet Society. See

pages|126|and

[85] Tim Johnson. Cache View for Firefox, Netscape, Mozilla, Opera and Internet
Explorer. http://www.progsoc.uts.edu.au/~timj/cv/, February
2006. See page[9}

[86] Richard W. M. Jones and Paul H.]J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In Automated and Algorithmic
Debugging, pages 13-26, 1997. See page |12}

[87] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static ana-
lysis tool for detecting web application vulnerabilities (short paper). In IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2006.

See page[100]
[88] Immanuel Kant. Kritik der Reinen Vernunft. Reclam, Ditzingen, 1986. See
page[TT4

[89] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed
worm signature detection. In Proceedings of the 13th Usenix Security Symposi-
um, Berkeley, CA, USA, August 2004. Usenix Association, Usenix Associati-

on. See page

[90] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of
the Nineteenth ACM Symposinm on Operating Systems Principles, pages 223-236,
New York, NY, USA, 2003. ACM Press. See pages and[45]

[91] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas Kilpatrick. Detecting
and countering system intrusions using software wrappers. In Proceedings of
the 9th USENIX Usenix Security Symposium [[161]]. See page

[92] Alfred Korzybski. An aristotelian system and its necessity for rigour in ma-
thematics and physics. In Science and Sanity: an introduction to non-aristotelian
systems and general semantics, pages 747-761. International Non-aristotelian Li-
brary Publishing Co., Lakeville, Conneticut, USA, Dritte edition, 1948. See

page

http://www.progsoc.uts.edu.au/~timj/cv/

126 BIBLIOGRAPHY

[93] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Meh-
ta, and Riley Hassell. The Shellcoder’s Handbook. John Wiley & Sons, 2004.

See page[55]

[94] Nick Kurshev. BIEW is Binary vIEW project. http://biew.
sourceforge.net/en/biew.html, February 2006. See page@

[95] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978. See page [64}

[96] David Larochelle and David Evans. Statically detecting likely buffer overflow
vulnerabilities. In Proceedings of the 10th Usenix Security Symposium [[162], pa-

ges 177-190. See pages[12]and[100]

[97] LastBit Software. Password recovery and security. |http://lastbit.
com/}, May 2007. See page

[98] Dirk Leinenbach. Personal communication, August 2007. See page

[99] David Lewis. Causality. The Journal of Philosophy, 70:557-567, 1973. See
page[/}
[100] David Lewis. Counterfactuals. Blackwell, Oxford, 1973. See page[7]

[101] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Cheng-
xiang Zhai. Have things changed now? An empirical study of bug charac-
teristics in modern open source software. In Proceedings of the Workshop on
Architectural and System Support for Improving Software Dependability 2006,
pages 25-33. ACM Press, October 2006. See page [100]

[102] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez.
Hamsa: Fast signature generation for zero-day polymorphic worms with pro-
vable attack resilience. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy [83). See page|[11}

[103] Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatu-
res: a basis for building self-protecting servers. In Proceedings of the 12th ACM
conference on Computer and Communications Security [13], pages 213-222. See

page [T}

[104] Michael Locasto, Stelios Sidiroglou, and Angelos D. Keromytis. Software self-
healing using collaborative application communities. In Proceedings of the 13th
Annual Network and Distributed System Security Symposinm [84]], pages 95-106.

See page

[105] Lostpassword.com. Passware password recovery kit. |http://www.
lostpassword.com/kit.htm, May 2007. See page[i0l

[106] Steven Mai. Visualization of process replay. Bachelor thesis, Department of
Informatics, Saarland University, June 2007. to appear. See page 51}

[107] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algo-
rithms for discovering association rules. In Knowledge Discovery in Databases:
Papers from the 1994 AAAI Workshop, pages 181-192, 1994. See page

http://biew.sourceforge.net/en/biew.html
http://biew.sourceforge.net/en/biew.html
http://lastbit.com/
http://lastbit.com/
http://www.lostpassword.com/kit.htm
http://www.lostpassword.com/kit.htm

BIBLIOGRAPHY 127

[108] Heiko Mantel. A Uniform Framework for the Formal Specification and Verifica-
tion of Information Flow Security. PhD thesis, Saarland University, Postfach 15
11 50, 66041 Saarbriicken, Germany, July 2003. See page[50]

[109] Mares and Company, LLC. Copy_ads: copy and investigate alternate data
streams. http://www.dmares.com/maresware/ac.htm#COPYADS,
February 2006. See page|[10}

[110] Mares and Company, LLC. Crckit. http://www.dmares.com/
maresware/ac.htm#CRCKIT, February 2006. See page

[111] Mares and Company, LLC. Diskimag. |http://www.dmares.com/
maresware/df.htm#DISKIMAG, February 2006. See page[10]

[112] Mares and Company, LLC. Eventlog. |http://www.dmares.com/
maresware/df . htm#EVENTLOG, February 2006. See page[10]

[113] Friedemann Mattern and Reinhard Schwarz. Detecting causal relationships in
distributed computations: In search of the holy grail. Distributed Computing,

7(3):149-174, 1994. See pages[63} 66} and [67}

[114] Peter Menzies. Counterfactual theories of causation. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Stanford University,
Spring 2003. |http://plato.stanford.edu/archives/spr2003/
entries/causation-counterfactual/, See pages@] and

[115] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the
reliability of UNIX utilities. Communications of the Association for Computing
Machinery, 33(12):32-44, 1990. See page

[116] K.W. Miller, L.J. Morell, R.E. Noonan, S.K. Park, D.M. Nicol, B.W. Murrill,
and M. Voas. Estimating the probability of failure when testing reveals no
failures. IEEE Transactions on Software Engineering, 18(1):33-43, January 1992.

See page

[117] The Mozilla Foundation. Bugzilla. http: //www.bugzilla.org, January
2007. See page[/9

[118] The Mozilla Foundation. Mozilla foundation security adviso-
ries. http://www.mozilla.org/projects/security/
known-vulnerabilities.html) January 2007. See page

[119] The Mozilla Foundation. Mozilla project website. http://www.mozilla.
org/} January 2007. See page [90]

[120] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceedings of the 27th International Conference
on Software Engineering, New York, NY, USA, May 2005. ACM Press. See

page[80]

[121] National Security Agency. Security-Enhanced Linux homepage. http://
www .nsa.gov/selinux/} January 2007. See page 101}

http://www.dmares.com/maresware/ac.htm#COPYADS
http://www.dmares.com/maresware/ac.htm#CRCKIT
http://www.dmares.com/maresware/ac.htm#CRCKIT
http://www.dmares.com/maresware/df.htm#DISKIMAG
http://www.dmares.com/maresware/df.htm#DISKIMAG
http://www.dmares.com/maresware/df.htm#EVENTLOG
http://www.dmares.com/maresware/df.htm#EVENTLOG
http://plato.stanford.edu/archives/spr2003/entries/causation-counterfactual/
http://plato.stanford.edu/archives/spr2003/entries/causation-counterfactual/
http://www.bugzilla.org
http://www.mozilla.org/projects/security/known-vulnerabilities.html
http://www.mozilla.org/projects/security/known-vulnerabilities.html
http://www.mozilla.org/
http://www.mozilla.org/
http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/

128 BIBLIOGRAPHY

[122] Tulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source
code evolution using abstract syntax tree matching. In MSR °05: Proceedings
of the 2005 International Workshop on Mining Software Repositories, pages 1-5,
New York, NY, USA, 2005. ACM Press. See page

[123] Stefana Nenova. Extraction of attack signatures. Master’s thesis, Department
of Informatics, Saarland University, June 2007. to appear. See pages[52and[56]

[124] Stephan Neuhaus and Andreas Zeller. Isolating intrusions by automatic ex-
periments. In Proceedings of the 13th Annual Network and Distributed System
Security Symposium [84]], pages 71-80. See page[11}

[125] Stephan Neuhaus and Andreas Zeller. Isolating cause-effect chains in computer
systems. In Wolf-Gideon Bleek, Jorg Rasch, and Heinz Ziillighoven, editors,
Software Engineering 2007, number P-105 in Lecture Notes in Informatics, pa-
ges 169-180, Bonn, March 2007. K6llen Druck + Verlag GmbH. See page

[126] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zel-
ler. Predicting vulnerable software components. In Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS), New York,
NY, USA, October 2007. ACM Press. See page

[127] Peter G. Neumann. Inside risks: Risks relating to system composition. Com-
munications of the ACM, 49(7):128, July 2006. See page

[128] James Newsome and Dawn Song. Dynamic taint analysis for automatic detec-
tion, analysis, and signature generation of exploits on commodity software. In
Proceedings of the 12th Annual Network and Distributed System Security Sympo-
sium, Reston, VA, USA, February 2005. Internet Society, Internet Society. See

page[3]

[129] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. In Proceedings of the RSA Conference 2006, Cryp-
tographers’ Track, number 3860 in Lecture Notes in Computer Science, Berlin,
February 2006. Springer Verlag. to appear. See page[14]

[130] Andy Ozment and Stuart E. Schechter. Milk or wine: Does software security
improve with age? In Proceedings of the 15th Usenix Security Symposium, Ber-
keley, CA, USA, August 2006. Usenix Association, Usenix Association. See

page[T00}

[131] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sha-
rif. Misleading worm signature generators using deliberate noise injection.
In Proceedings of the 2006 IEEE Symposium on Security and Privacy [83]. See

page[T}

[132] Judea Perl. Causaliry: Models, Reasoning, and Inference. Cambridge University
Press, 2001. See page [}

[133] Rob Pike. Systems software research is irrelevant. |http://herpolhode.
com/rob/utah2000.pdf, February 2000. See page

[134] Platon. Politeia: Der Staat. Reclam, Ditzingen, 1982. See page[112}

http://herpolhode.com/rob/utah2000.pdf
http://herpolhode.com/rob/utah2000.pdf

BIBLIOGRAPHY 129

[135] Karl R. Popper. Conjectures and Refutations: The Growth of Scientific Knowled-
ge. Routledge, 2002. See page[114

[136] Karl R. Popper. The Logic of Scientific Discovery. Routledge, 2002. See page[114}

[137] Niels Provos. Improving host security with system call policies. In Proceedings
of the 12th Usenix Security Symposium [[163]], pages 257-272. See page

[138] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006.
ISBN 3-900051-07-0. See page[91]

[139] r-tools technology. R-drive image. http://www.drive-image.com/,
May 2007. See page[10]

[140] Rent-A-Guru. HTTP-analyze: a logfile analyzer for web servers. http:
//www.http-analyze.org/} February 2006. See page

[141] Eric Rescorla. Is finding security holes a good idea? |http://www.dtc.
umn.edu/weis2004/rescorla.pdf, July 2006. See page

[142] Golden G. Richard IIT and Vassil Roussev. Next-generation digital forensics.
Communications of the ACM, 49(2):76-80, February 2006. See page

[143] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In Proceedings of the ACM SIGPLAN
00 Conference on Programming Language Design and Implementation, pages
182-195, New York, NY, USA, 2000. ACM Press. See pages and

[144] Mark Russinovich and Bryce Cogswell. Autoruns. |http://www.
sysinternals.com/Utilities/Autoruns.html, February 2006.

See page %}

[145] Bruce Schneier. Do we really need a security industry? Wired, May 2007.
http://www.wired.com/politics/security/commentary/
securitymatters/2007/05/securitymatters_0503. See pa-

ge[104

[146] Berhard Scholz, Johann Blieberger, and Thomas Fahringer. Symbolic pointer
analysis for detecting memory leaks. In Proceedings of the 2000 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pa-
ges 104-113. ACM Press, 1999. See pages|[12]and [100]

[147] Adrian Schréter, Thomas Zimmermann, and Andreas Zeller. Predicting com-
ponent failures at design time. In Proceedings of the 5th International Sympo-
sium on Empirical Software Engineering, pages 18-27, New York, NY, USA,
September 2006. Association for Computing Machinery, ACM Press. See pa-

ges[96|and

[148] Randal L. Schwartz, Tom Phoenix, and Brian D. Foy. Learning Perl. O’Reilly
Media, Vierte edition, August 2005. See page

[149] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In Proceedings of the 10th
Usenix Security Symposium [[162]], pages 201-220. See page

http://www.drive-image.com/
http://www.http-analyze.org/
http://www.http-analyze.org/
http://www.dtc.umn.edu/weis2004/rescorla.pdf
http://www.dtc.umn.edu/weis2004/rescorla.pdf
http://www.sysinternals.com/Utilities/Autoruns.html
http://www.sysinternals.com/Utilities/Autoruns.html
http://www.wired.com/politics/security/commentary/securitymatters/2007/05/securitymatters_0503
http://www.wired.com/politics/security/commentary/securitymatters/2007/05/securitymatters_0503

130 BIBLIOGRAPHY

[150] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes
induce fixes? In Proceedings of the Second International Workshop on Mining
Software Repositories, pages 24-28, May 2005. See page[78]

[151] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path condi-
tions in dependence graphs for software safety analysis. In Proceedings of the
24th International Conference on Software Engineering, New York, NY, USA,
May 2002. ACM Press. See page|[100}

[152] Kevin Solway. Disk investigator. http://www.theabsolute.net/
sware/dskinv.html, February 2006. See page

[153] Werner Stephan. Personal communication, August 2007. See page

[154] Sheldon Teelink and Robert F. Erbacher. Improving the computer forensic
analysis process through visualization. Communications of the ACM, 49(2):71-
75, February 2006. See page 3}

[155] Chris Tofts and Brian Monahan. Towards an analytic model of security flaws.
Technical Report 2004-224, HP Trusted Systems Laboratory, Bristol, UK, De-

cember 2004. See page

[156] Tom Ehlert Software. Drive snapshot. http://www.drivesnapshot.
de/en/index.htm, February 2006. See page[10]

[157] Tripwire, Inc. How tripwire works. |http://www.tripwire.com/
products/technology/index.cfm, January 2005. See page[I0]

[158] Timothy Tsai and Navjot Singh. Libsafe 2.0: Detection of format string vulne-
rability exploits. http: //www.avayalabs.com/project/libsafe/.

See page

[159] Alan M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230-265,
1936. See page[113]

[160] Stephen Turner. Analog log file analyzer. http: //www.analog.cx/, May
2007. See page|[10]

[161] Usenix Association. Proceedings of the 9th Usenix Security Symposium, Berkeley,
CA, USA, June 2000. Usenix Association. See pages and[125

[162] Usenix Association. Proceedings of the 10th Usenix Security Symposinm, Berke-
ley, CA, USA, August 2001. Usenix Association. See pages and[129

[163] Usenix Association. Proceedings of the 12th Usenix Security Symposium, Berke-
ley, CA, USA, August 2003. Usenix Association. See pages and

[164] Vladimir Naumovich Vapnik. The Nature of Statistical Learning Theory. Sprin-
ger Verlag, Berlin, 1995. See page

[165] Vendicator. Stack shield: A “stack smashing” technique protection tool for
linux. http://www.angelfire.com/sk/stackshield/. See page[12]

[166] Vendicator. Stack shield technical info file. http://www.angelfire.
com/sk/stackshield/download.htmll See page[l2

http://www.theabsolute.net/sware/dskinv.html
http://www.theabsolute.net/sware/dskinv.html
http://www.drivesnapshot.de/en/index.htm
http://www.drivesnapshot.de/en/index.htm
http://www.tripwire.com/products/technology/index.cfm
http://www.tripwire.com/products/technology/index.cfm
http://www.avayalabs.com/project/libsafe/
http://www.analog.cx/
http://www.angelfire.com/sk/stackshield/
http://www.angelfire.com/sk/stackshield/download.html
http://www.angelfire.com/sk/stackshield/download.html

BIBLIOGRAPHY 131

[167] The Verisoft Project Team. Das Verisoft-Projekt. |http://www.
verisoft.de/| February 2006. See pages|l|and

[168] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A static
vulnerability scanner for C and C+ + code. In Proceedings of the 16th Annual
Computer Security Applications Conference, page 257, Washington, DC, USA,
2000. IEEE Computer Society. See page[12]

[169] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. Token-based
scanning of source code for security problems. ACM Transactions on Informa-
tion and System Security, 5(3):238-261, 2002. See page[12]

[170] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. Token-based
scanning of source code for security problems. ACM Transaction on Informati-
on and System Security, 5(3):238-261, 2002. See page

[171] Jeffrey Voas and Gary McGraw. Software Fanlt Injection: Innoculating Pro-
grams Against Errors. John Wiley & Sons, 1997. See page[100]

[172] David Wagner and Drew Dean. Intrusion detection via static analysis. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington,
DC, USA, May 2001. IEEE Computer Society, IEEE Press. See page

[173] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In Procee-
dings of the 7th Internet Society Symposinm on Network and Distributed System
Security, pages 3-17, Reston, VA, USA, February 2000. Internet Society, Inter-

net Society. See page

[174] Lee Wallen. Cachelnf: Read/delete information from internet cache. http:
//www.winsite.com/bin/Info?500000012549, February 2006. See

page 9}

[175] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion
detection. In Proceedings of the Seventh International Symposium on Recent
Adwvances in Intrusion Detection, number 3224 in Lecture Notes in Computer
Science, Berlin, September 2004. Springer Verlag. See page[13]

[176] XiaoFeng Wang, Zhuowei Li, Jun Xu, Michael K. Reiter, Chongkyung Kil,
and Jong Youl Choi. Packet vaccine: black-box exploit detection and signature
generation. In Proceedings of the 11th ACM Conference on Computer and Com-
munications Security (CCS), pages 37-46, New York, NY, USA, October 2006.
ACM Press. See page[108]

[177] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An ope-
rational semantics and type safety proof for multiple inheritance in ¢+ +. In
OOPSLA °06: Object oriented programming, systems, languages, and applicati-
ons, pages 345-362, New York, NY, USA, 2006. ACM Press. See page

[178] Robert N. M. Watson. Exploiting concurrency vulnerabilities in system call
wrappers. In Proceedings of the first USENIX Workshop on Offensive Technolo-
gies, Berkeley, CA, USA, 2007. Usenix Association, Usenix Association. See

page

http://www.verisoft.de/
http://www.verisoft.de/
http://www.winsite.com/bin/Info?500000012549
http://www.winsite.com/bin/Info?500000012549

132 BIBLIOGRAPHY

[179] Peter Wegner and Dina Goldin. Principles of problem solving. Communicati-
ons of the ACM, 49(7):27-29, July 2006. See page

[180] Cathrin Weifl. Learning vulnerability patterns and fixes. Master’s thesis, De-
partment of Informatics, Saarland University, October 2007. to appear. See

page[10T}
[181] Irvine Welsh. Trinspotting. W. W. Norton & Company, June 1996. See

page[40}

[182] Craig Wilson. CookieView. http://www.digital-detective.co.
uk/freetools/cookieview.asp, February 2006. See page[9|

[183] X-Ways Software Technology AG. X-Ways Forensics: an advanced compu-
ter examination and data recovery software. http://www.x-ways.net/
winhex/forensics.html, May 2007. See page[i0}

[184] Jian Yin, Chungiang Tang, Xiaolan Zhang, and Michael McIntosh. On esti-
mating the security risks of composite software services. In Proceedings of the
PASSWORD Workshop, June 2006. See page

[185] Andreas Zeller. Why Programs Fail, A Guide to Systematic Debugging. Morgan
Kaufman, October 2005. See pages[3]and

[186] ZY Computing, Inc. 123LogAnalyzer. http://www.123loganalyzer.
com/,, February 2006. See page|[10}

http://www.digital-detective.co.uk/freetools/cookieview.asp
http://www.digital-detective.co.uk/freetools/cookieview.asp
http://www.x-ways.net/winhex/forensics.html
http://www.x-ways.net/winhex/forensics.html
http://www.123loganalyzer.com/
http://www.123loganalyzer.com/

Index

.ida,

.idg,

/bin/sh,

/bin/su,
/bin/true,
/dev/iocap,
/dev/random,
setc/ld.so.preload, 44}

/tmp/pwned,
123 Log Analyzer,

300,90

A Lover’s Complaint, 53, 54t
abstract syntax tree, 101
Acharya, Anurag,

Active Disk Image
ActMon,

Acton, Forman S.,

actual cause, see cause, actual
Adelstein, Frank,
Agrawal, Rakesh,
Aguilera, Christina, 112n
Aiken, Alexander,

Aitel, Dave,
Akritidis, P.,
Algorithm B,
Algorithm C,
Algorithm D,
Algorithm E,
Algorithm N,
Algorithm X,
algorithm_b,
algorithm _d,
algorithm_n,
algorithm x,
alternate data streams,

analytical engine,
Anderson, Pamela,
Anderson, Ross,
Andy, Ozment,
Anley, Chris, i

antecedent, 7

Apache,[9

Apache, [xi} [x11, (68
AppArmor,
Apple,

Aristotle, |15}
Aslam, Jay,

AST, see abstract syntax tree
Austin, Todd M.,
autoruns, [J]

AWstats, [9]

Babbage, Charles,

Backes, Michael, [xv} |14} [f]

BackTracker,

Bacon, Francis, [113

Badger, Lee,

Bakke, Peat, [12]

Ball, Thomas, 80

Baratloo, A.,

Baron, Stefanie, [v} [xv]

Barringer, Matt, H

Beattie, Steve, [12]

Bellovin, Steve,

Bernstein, Dan,

Berra, Yogi,

Bhaskar, Rahul,

Binary Minimization, 37-32
algorithm,

bind shell, 56

bintext, [9]

BIOS password,

An Enguiry concerning Human Understand-birds

ing, 7]
Anagnostakis, K. G.,
Analog,

for the, [1H114
Blieberger, Johann,
Bloch, J. T.,[12]

133

134 INDEX

Boneh, Dan, consequent, 7
Booth, Kellogg S., CookieView, [9]
box-and-whisker plot, 20 CopyADS,
Breach, Scott E., COVERS, [1]]
Breu, Silvia, [xv] Cowan, Crispan,
Brewer, Eric A., Cowan, Crispin,
Brian Monahan, Crandall, Jedidiah R.,
Brugge, Herman ten, |12 Crckit,
Brumley, David, 2} [11] cross-site scripting,
bsed, [9] cryptography mailing list,
Burger, Martin, Cubranié, Davor,
Burnet, John, 39n culprit, 76
bview, [9]
DACODA,
Cachelnf, [9] DaCosta, Dan, [100]
CacheView, El Dagon, David,
capture daemon, 38 Dahn, Christopher,
capturing trace, 61 Dallmeier, Valentin, [xv]
Carrier, Brian D., Dan, Asit,
Casey, Eoghan, ddmin,
cat, [52] Dean, Drew, 38] [101]
cat, debugging
Caugne, Ronan, distributed systems,
causality relation, 64 Delta Debugging, 22-26
causality-preserving replay, 67 versus Binary Minimization,
cause, 5 versus Extreme Minimization,
actual, 5 versus Naive Minimization,
closest-world condition, 7 algorithm, 23
counterfactual, Delta Debugging algorithm,
effect chain, 5 dependencies,
probabilistic, Descartes, René,
regular, Directory Snoop,
Chandler, David, Discourses,
Chavez, Brian, Disk Investigator,
Chen, Hao, Disk Utility,
Chen, Peter M., Diskimag,
Chen, Yan, dot,
chkrootkit, Drive Image,

Choi, Jong Yogl, Drive SnapShort,
Chong, Frederic T., Dunlap, George W.,
Cleve, Holger,

closest-world condition, 5 ecdf, see empirical cumulative distribution

cluster, see vulnerability cluster function

CmosPwd, effect, 5

The Common Digital Evidence Storage empirial cumulative distribution function,
Format Working Group, 58

complement, 22 empirical density function,

concurrency, 65 empiricism, 111-114

Consecutive Binary Minimization, 54 Epictetus,
algorithm, Erbacher, Robert F.,

INDEX

Eren, Sinan,

errno, 37

errno, 37} B8]
Etoh, Hiroaki,
Euclid,

Evans, David,
Eventlog,
evidence,
evidence gathering,
experimental vs. empirical,
experiments, [114]
experimentum crucis, 114
Extended Naive Minimization, 27-29
Extreme Minimization, 30-31

versus Binary Minimization,

algorithm,
Fahringer, Thomas,

Farmer, Dan, 3]
Feyerabend, Paul,
Feynman, Richard,
file descriptors,
using close-on-exec,
Fischer, Michael,
Fogla, Prahlad,
forensic analysis, |3
workflow,
Foster, Jeffrey S.,
Foy, Brian D.,
Fradet, Pascal, [12]
Fraser, Timothy,
Fredriksen, Lars,ﬁ
Fritz, Kurt von, [112
Frost, Robert, 53t

Gall, Harald,

Garfinkel, Tal,

Garfinkel, Simson L.,

George W. Dunlap,

Ghosh, Anup K.,

Gaodel, Kurt,

Goldin, Dina,

Grier, Aaron,
Gutmann, Peter, [0} [T3] 13n,[T4]

Hamsa,

Hassell, Riley,
Hastie, Trevor, |36]
Heisenberg, Werner,
Heraclitus, 39n

Herfet, Thorsten,[b]
Hilbert, David,
Hilbert matrix,
Hildebrandt, Ralf,
Hinton, Heather,
Hippasus of Metapontum,[112
histogram,

Hofer, Thomas, [§]
Hoglund, Greg,
Holler, Christian,
http-analyze,

Hume, David, [/}
Huxley, Aldous,
Hyang-Kim, Ah,

idealism, [T12]
init,

inter-quartile range, 21
Internet Information Server,

intrusion analysis,

intrusion detection, [9]
host-based,

intrusion detection system,

IQR, see inter-quartile range

iterated function, 33

JavaScript,
Jerome, Friedman,

Jha, Somesh,
Jones, Richard W. M.,

Jovanovic Nenad,

Kant, Immanuel,
Kao, Ming-Yang,
Karp, Brad,

Kelly, Paul H. J.,

kernel mode, see supervisor mode

Keromytis, Angelos D.,
Kil, Chongkyung, [10
Kilpatrick, Douglas,

King, Samuel T.,[3} [11]
Kirda, Engin,
Knuth, Donald E., 18n
Ko, Calvin,

Kohno, Tadayoshi,
Korzybski, Alfred,
Kotz, David,

Koziol, Jack,

Krinke, Jens,
Kritik der Reinen Vernunft,

%)

135

136

Kroah-Hartman, Greg,
Kruegel, Christopher,
Lamport clock, 65

Lamport, Leslie, [64]
Larochelle, David, [12}
Lastbit,

Le Métayer, Daniel,
leave-one-out cross validation, 93
Lee, Wenke,

Leibniz, Gottfried Wilhelm,
Lewinsky, Monica,

Lewis, David,

Li, Zhichun,

Li, Zhuowei, [108§]

Liang, Zhenkai,

Lindig, Christia

Linux,

Litchfield, David,

live forensics,

Lobachevsky, Nikolai Ivanovich,
Locasto, Michael,

log files, 3,

lower whisker, 27
Lucas, Philipp, b]

Mai, Steven,
Maier, Dave,
Malfor,
Mancoridis, Spirow
Mannila, Heikki,
Mantel, Heiko,
Markatos, E.,
Mattern, Friedemann,
McGraw, Gary, [12}[55} [101]
MclIntosh, Michael,
Mehta, Neel,
Melski, David,
memory management unit,
metaphysics, [T14]
Le Métayer, Daniel,
MFSA,
Michelson, Albert Abraham,
Microsoft Windows, see Windows,
Miller, Barton P.,
Miller, K.W.,
minimization
algorithm,
for intrusion analysis, 27-32
problem, 18

INDEX

with Binary Minimization, see Binary
Minimization
with Delta Debugging, see Delta De-
bugging
with Exreme Minimization, see Ex-
treme Minimization
with Extended Naive Minimization,
see Extended Naive Minimiza-
tion
with Naive Minimization, see Naive
Minimization
Minkovski, Hermann,
MMU, see memory management unit
mod_anth_any,[44]
Mohindra, Ajay,
Moore, Tyler,
Morell, L.J.,
Morley, Edward,
Modzilla,
Mozilla,
Mozilla Foundation Security Advisory,
see MFSA

Murphy, Gail C,,
Murrill, B.W.,
Murtaza A. Basrai,

Naive Minimization, 18-22
algorithm,

Nagappan, Nachiappan, [80)

National Security Agenc

Nenova, Stefana,

Neuhaus, Stephan, [11} [

Neumann, Peter G.,

Newsome, James, [TT} [T3]

Newton, Isaac, [T13} [T14]
Nicol, D.M.,

Noonan, R.E.,

nop sled, 55,
NTES,

O’Connor, Tom,
Omar, Alhazmi,
Osvik, Dag Arne,
outliers, 21
overfitting, 89

parent process, 33

Park, S.K.,
partitioning into equal parts, 22

Passkit,

INDEX

Pearl, Judea,
Perdisci, Roberto,
Perl,[70]

Peter M. Chen, [#9]
Pfitzmann, Birgit,
Phoenix, Tom,
Pike, Rob,
Pinzger, Martin,
Plato,
plausibe trace, 63
Pluto,

Poetics,[15]

policy engine, 39
Popper, Karl,
POSIX, 60} [62

Premraj, Rahul, @
Prevelakis, Vassilis,
process

ancestor, 33

ID, 33,69

process suppression,
Provos, Niels, 3§]

Przyrembel, Hildegard,

Pu, Calton,
Pythagoras,

influence on tunings,

Q-Q plot,
Qmalfor, 51H52
Raje, Mandar,

Ramaswami, Rajiv,
rationalism, 171-114

Ray, Indrajit,
register
eax, 37} 39
ebx,
ecx, [37]
edx,

Reiter, Michael K.,
replay

137

Robschink, Torsten, [100]
rootkit checkers, [1
Roussev, Vassil, 3]

Rugina, Radu' 12} [100]

Rus, Daniela, [10

Russell, Bertrand, |1

Samuel T. King, [49
Sanghi, Manan,

Schechter, Stuart E.,[100]
Scholz, Berhard,
Schréter, Adrian, 96}
Schwartz, Randal L.,[70]
Schwarz, Reinhard,
scientific method, [6]
scientific theory,

Sekar, R.,[11]

Shakespeare, William, 53, 54t
Shamir, Adi, [14]

Shankar, Umesh, [12]

Sharif, Monirul,
Sidiroglou, Stelios, [13]

Singer, Janice,

Singh, Navjot,

singleton, see vulnerability singleton
Sitaram Dinkar,

skewness,

Sliwerski, Jacek,

Snelting, Gregor,

So, Bryan, [T00]
software interrupt,
Sohi, Gurindar S.,
Solaris, [7

sohp31sm Bo 112

Solipsy, 38- 39 . (5169 70 [72]

connection to solipsism,

Song, Dawn, [T1} [T3]

Spears, Britney, 112n
Spud, [49]

spnd

SQL insertion,

causality-preserving, see causality-preseSvikgnt, Ramakrishnan,

replay
daemon, 38,
function, 35
Rescorla, Eric,
ReVirt, [11]
Richard, Golden G,
Riemann, Bernhard, [4]

Rinard, Martin,

StackGuard,
Stagg, James Martin,

State,

state changes

tracking,

state changes

file descriptors,
processes, [68H6Y]

138

state mappings, 39, 69|
Stolfo, Salvatore J.,
strace, [38]

su,

Su, Zhendong,
suidperl,] [xii] [35}
Sukru Cinar,
supervisor mode,
system (library call),
system call, 36-38,[60} 60

write, 53} 54, 59} [60} [62]

writev,

as cause of intrusion,
capture of,
declaration, 60

handler, 38

I/O operation, 62
interposition, 36, 38
number, 37

open operation, 62

INDEX

accept,[54}[62} [68]
bind,

chmod,
chown,

clone, 62n

close,[53]

dup, 62,70,
dup2,|62,

exec,
execve, [60} [63] [68]
exit,[60}, [63} [69]
fontl, GA R0

fentle4, (62471
fork, B4, 160,62} 63} [68} 6]
353

listen,

Iseck,
nanosleep,

open, El B3 B4 62 68

pzpe, 00}, |6

read, 3 l 54,60 [62} 9]
readmsg, 62

readw, 52} 160]

recv, |52} [60} [62]

recufrom, [52}[60} [62]
recumsg,

select, ‘ 71, [73]
send, |6 .

sendto, [6

sleep,[71}

socket, 54} |62]
sockercall,

stat, [62]

stat64,
super_dup,
wait, [61} [63} [69)
wait3,[63} [70,[71]
wait4,[63} 70, 71} [73]
waitpid, |63 [70}

parameter, [60]

parameter type, [60]
table, 38

unified theory of,

Talwar, Kunal,
Tang, Chungiang,

tar, 55} 56|
Teelink, Sheldon,

test case, [f]

The Art Of Computer Programming, 18n

The Road not Taken, 53t

The Stanford Encyclopedia of Philosophy, 6]

Tibshirani, Robert,
time vector, 65

time-of-check/time-of-use,

TOCTOU, see time of check-time of use

Tofts Chris, [100]

Toivonen, Hannu,

trace, 61
capturing, see capturing trace
entry, 61
plausible, see plausible trace
projection, 61

trap, see software interrupt

trap number, 37]

Treatise of Human Nature,[113|

Tripwire,

Tromer, Eran,

Tsai, Timothy,
tunings,

Turing, Alan M.,

UML, see User-Mode Linux

UNIX, 53] [62]
Unix,

upper whisker, 21

user mode,
User Mode Linux,

Vapnik, Vladimir Naumovich,

INDEX

vector time, 65

Venema, Wietse,
Verisoft,

Verkamo, A Inkeri,
Verleger, Silvia, [§

Viega, John,

Viega, John,

Vinod, Ganapathy, [100]
Vitek, David,

Voas, M., [100]
vulnerability cluster, 96
vulnerability singleton, 96
vulnerability/fix pattern, 102
Vulture,

Wagle, Perry, |12
Wagner, David,
Wagner, David, [12]
Walpole,]onathan,
Wang, Hao, [T1]

Wang, Ke, T3]

Wang, XiaoFeng,

Watson, Robert N. M., [50]
webalyzer, [9]

Wegner, Peter, (109

Weif3, Cathrin
Whitehead, Alfred North,
Wilhelm, Reinhard, [b]
Windows,

W, S. Felix, [11]

wu-ftpd,

X-Ways Forensics,

Xinidis, K.,

XSS, see cross-site scripting

Xu, Jun, [108]

Yashwant, Malaiya,
Yin, Jian,

Zeller, Andreas, [xv] 17n,
18 [6] 06 b9

Zhang, Qian,[12]
Zhang, Xiaolan,

Zimmermann, Thomas, [xv} [78} [96] [09]

139

	Abstract
	Preface
	Introduction
	Causes And Effects
	Analysis of Break-Ins
	Forensic Analysis of Break-ins
	Cause-Finding as Minimization
	Philosophical Justification

	Related Work
	Tools
	Research in Intrusion Analysis
	Research in Intrusion Prevention
	Verification and Formal Methods

	Minimization: State of the Art
	Preliminary Definitions
	The Minimization Problem
	Naïve Algorithm
	Delta Debugging

	Minimization For Intrusion Analysis
	Extended Naïve Algorithm
	Extreme Minimization
	Binary Minimization

	Malfor
	Processes and Replay
	Preliminary Definitions
	Replay

	System Call Interposition
	System Calls
	Interposition
	Solipsy Architecture
	State Mappings

	Evaluation
	Proof of Concept
	A Real-World Attack
	Replacing Delta Debugging by Binary Minimization
	Malfor Performance
	Performance of Capturing
	Deployability
	Fooling Malfor

	Visualizing Malfor
	Beyond Processes
	Input Reassembly
	Signature Extraction
	Signature Generalization
	Preliminary Results

	Controlling Concurrency
	System Calls and Traces
	Capturing Traces
	Plausible Traces
	Causality in Distributed Systems
	Causality-Preserving Replay

	Lessons Learned
	State Changes
	State Mappings
	Why Is Replay So Hard To get Right?
	Solutions

	Forecasting Vulnerable Components
	Introduction
	Components and Vulnerabilities
	Components
	Mapping Vulnerabilities to Components
	Vulnerable Components in Mozilla

	How Imports and Function Calls Matter
	Imports
	Function Calls
	Mapping Vulnerabilities to Features
	Features in Mozilla

	Predicting Vulnerabilities From Features
	Validation Setup
	Evaluating Classification
	Evaluating Ranking
	Prediction using Support Vector Machines

	Case Study: Mozilla
	Data Collection
	Classification
	Ranking
	A Ranking Example
	Forecasting Vulnerable Components
	Discussion
	Threats to Validity

	Causes of Vulnerabilities
	Clusters
	Singletons

	Related Work
	Beyond Imports and SVMs
	Learning Patterns
	Other Future Work

	Conclusions
	Philosophy
	Rationalist Philosophy
	Empiricist Philosophy
	Modern Philosophy of Science

	Notation
	Glossary
	Bibliography
	Index

