Efficient Index Structures for
and
Applications of
the
CompleteSearch Engine

Ingmar Weber

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der naturwisschaftlich-technischen Faktgdn
der Universiat des Saarlandes

Saarbiicken
September, 2007



Tag des Kolloquiums: 16. November 2007

Dekan: Prof. Dr.-Ing. Thorsten Herfet
Priifungsausschuss:

Vorsitz: Prof. Dr. rer. nat. Gert Smolka

Gutachter: Dr. Holger Bast und Prof. Dr.-Ing. Gerhard Weikum

Akadem. Beisitzer:  Dr. Ernst Althaus



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorhegeArbeit selbgtndig und ohne Benutzung anderer als der
angegebenen Hilfsmittel angefertigt habe. Die aus and®@tezilen oder indirektibernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in glegcloderahnlicher Form in einem Verfahren zur Erlangung
eines akademischen Grades vorgelegt.

Ort, Datum

(Unterschrift)






Kurzzusammenfassung

Typische Suchmaschinen, wie z.B. Google, erreichen Arigigen deutlich unter einer Sekunden, selistdinen Ko-
rpus mit mehr als einer Milliarde Dokumenten. Sie dbéadies durch die Nutzung eines (parallelisierten) ingetn
Index. Da der invertierte Index jedoch haugatklich fir die Bearbeitung von einfachen Schlagwortsuchen koexipi
ist, bieten Suchmaschinen nur selten dieglichkeit, komplexere Anfragen zu beantworten, die siichtnin solch eine
Schlagwortsuche umformulieren lassen, u.U. mit der Ziehdhme von speziellen Kunstworten.

Wir haben fir die CompleteSearch Suchmaschine, konzipiert und imgadiert am Max-Planck-Institutif Infor-
matik, spezielle Datenstrukturen entwickelt, die ein delugroReres Spektrum an Anfragetypen uni@mztn, ohne dabei
die Effizienz zu opfern. Die CompleteSearch Suchmaschine bautimeihekontext-sensitiven Bfixsuch- und Ver-
vollstandigungsmechanismus auf. Dieser Mechanismus ist eitseesafach genug, um einéfiziente Implementierung
zu erlauben, andererseits hinreicherithtig, um die Bearbeitung zatzlicher Anfragetypen zu erlauben.

Wir stellen zwei neue Datenstrukturen vor, die eingese&iden lbnnen, um das zu Grunde liegendéfixsuch-
und Vervollséngigungsproblem zwsen. Die erste der beiden, AutoTree genannt, hat die ttedrerinschenswerte
Eigenschaft, dass siéif nicht entartete Korpora eine Bearbeitungszeit lineateénaufsummierten @fe der Ein- und
Ausgabe zudsst. Die zweite, HYB genannt, ist auf die Komprimierbarkksr Daten ausgelegt und isirfSzenarien
optimiert, in denen der Index nicht in den Hauptspeichespaondern auf der Festplatte ruht. Beide schlagen den
Referenzalgorithmus, der den invertierten Index benutzt,einen Faktor von 4-10 hinsichtlich der durchschnitgich
Bearbeitungszeit. Ein direkter Vergleich zeigt, dass ingéieinen HYB schneller ist als AutoTree.

Dank der HYB Datenstruktur kann die CompleteSearch Suctiniras auch anspruchsvollere Anfragetypen, wie
Facettensuchdif Kategorieninformation, Vervollahdigung zu Synonymen, Anfragen im Stile von elementarea; r
tionalen Datenbankanfragen und die Suche auf Ontologféniemt bearbeiten. i jede dieser &higkeiten beweisen wir
die Realisierbarkeit unseres Ansatzes durch Experimé&uielie3lich demonstrieren wir durch eine kleine Nutzetstu
mit Mitarbeitern des Helpdesks unseres Institutes auctpdettischen Nutzen unserer Arbeit.






Abstract

Traditional search engines, such as Googdfkeraesponse times well under one second, even for a corpsneite than

a billion documents. They achieve this by making use of aglf&lized) inverted index. However, the inverted index is
primarily designed to féiciently process simple key word queries, which is why searalines rarely fer support for
queries which cannot be (re-)formulated in this mannersibbsusing “special key words”.

We have contrived data structures for the CompleteSeargimena search engine, developed at the Max-Planck
Institute for Computer Science, which supports a far gresee of query types, without sacrificing théieiency. It is
built on top of a context-sensitive prefix search and congmiaihechanism. This mechanism is, on the one hand, simple
enough to beféiciently realized by appropriate algorithms, and, on theottand, powerful enough to be employed to
support additional query types.

We present two new data structures, which can be used tothalwanderlying prefix search and completion problem.
The first one, called AutoTree, has the theoretically dbteraroperty that, for non-degenerate corpora and quetses,
running time is proportional to the sum of the sizes of thautrgnd output. The second one, called HYB, focuses on
compressibility of the data and is optimized for scenanwasere the index does not fit in main memory but resides on
disk. Both beat the baseline algorithm, using an inverteéxnby a factor of 4-10 in terms of average processing time.
A direct head-to-head comparison shows that, in a genettalgeHYB outperforms AutoTree.

Thanks to the HYB data structure, the CompleteSearch ergfiicgently supports features such as faceted search
for categorical information, completion to synonyms, supgor basic database style queries on relational tablds an
the dficient search of ontologies. For each of these features, wnlgtrate the viability of our approach through
experiments. Finally, we also prove the practical releeasfoour work through a small user study with employees of the
helpdesk of our institute.






Zusammenfassung

Ist das “Suchproblem” denn noch nicht gebst? Es gibt doch immerhin Google!

Wenn man sich bewusst macht, dass heutzutage kommerzielle Internetscicimnerasnehrere Milliarden von
Webseiten in deutlich unter einer Sekunde durchsucbanén, um anschlieRend dem Anwender eine sortierte
Liste mit (hafentlichen) relevanten Dokumenten zwagentieren, erscheint es vielleicht unklar, warum es
lohnend sein &nnte, an einer neuen Suchmaschinentechnologie zu arbeiten. Alsriygpgakt und Moti-
vation fur die in dieser Dissertation vorgestellte Arbeit ist es daher hilfreich, dik&bt und Schachen eines
Systems wie Google genauer zu betrachten.

Googlé undahnliche Internetsuchmaschirtéseeindrucken durch ihre unglaubliche Geschwindigkeit, mit
der sie dem Anwender Suchergebnissespntieren. Nutzer haben verstanden, dass sie, solange sie imdnfor
tionsbedirfnis in klare, eindeutige Schlagworte fassémiken, auf Google vertrauedknen, wenn es darum
geht (hdfentlich) relevante Dokumente in deutlich unter einer Sekunde zu finden.l&mdstioniert grof3ar-
tig fur solche Schlagwort-basierten Suchanfragen, denn dies ist gean&umwendung, dir die es konzipiert
ist. Es gibt allerdings auch anderé&imschenswertedhigkeiten, die man konzeptuell leicht einem Anwender
bieten lonnte.

Eine solche Bhigkeit istPrafixsuche Hier tippt der Nutzer lediglich die ersten paar Buchstaben eines
Wortes und alle Dokumente mit einem Wort, das mit dieser Buchstabenfolgenbegerden danniir ihn
gefunden. Dies erspart ihm das Tippen von weiteren Buchstaben,deeiP&fix bereits hinreichend eindeutig
ist (greenp®), es findet automatisch Wortvariationen mit verschiedenen Endudgrol{ra®), und es gibt dem
Anwender die Chance den Korpus zu “erkunden”, indem automatiscteViw das selbe Konzept in Betracht
gezogen werderpfieumo®).

Eine weitere Bhigkeit, die de©fteren von Nutzen @re, istFacettensuchebei der die Suchergebnisse in
verschiedene Kategorien gruppiert werdg@hnlich wie man es von e-commerce Seiten wie baynt. Eine
automatische Aufschikselung der Google Suchergebnisse (i) nach Sprache des Dokan{éhteb es eine
private, wissenschaftliche oder kommerzielle Seite ist, oder (iii) nach Datwto konnte den Filterprozess
des Anwenders einfacher machen. Daduréhide es aucliiberflissig, manuell Kriterienifr die “erweiterte
Suche” angeben zuimssen, und dabei evtl. die Suchanfraberzuspezifizieren, so dass man am Ende keinerlei
Ergebnis bekommit.

Eine dritte, konzeptuell sehr einfachétitgkeit ware die Kombination von Informationen, dider ver-
schiedene Dokumente verteilt sind. Z.B. erlaubt Google’s “Scholartedysdie Suche in wissenschaftlichen
Arbeiten, wobei man sich dabei (in der “erweiterten Scholar-Suchd)estimmte Autoren oder Konferenzen
beschéanken kann. Dennoch erlaubt es dem Nutzer nicht, in einer Anfragfealken Autoren zu fragen, die
sowohl in der SIGIR als auch in der SODA Konferenz einen Beitragfiamtlicht haben.

Der Grund fir das Fehlen dieseraRigkeiten ist derselbe Grund, der Google @hdlichen Systemen ihre
auBRerordentliche Performanz gibt: die Nutzung des invertierten Indi&.gfolRen Suchmaschinen basieren
auf einem invertierten Index, deiirfjeden Term eine sortierte Liste von Dokumenten (oder genauer gesagt
Dokumenten-Identifikationsnummern) ber@ith Der invertierte Index wird im &chsten Kapitel im Detail

httpy/www.google.com

2httpy/www.live.com, http//search.yahoo.com
3Greenpeace.

4Demokratisch, Demokratie, Demokrat oder Demokraten.
SPrafix der Worte zum Thema Atmung und Lunge umfasst.
Shttpy//www.ebay.com

"httpy/scholar.google.com
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vorgestellt. Hier reicht es, sich einiger Charakteristika, die seinen Eigsa#ttraktiv machen, bewusst zu
sein: Das erste ist seine fast perfekte Zfiglbokalitat, da die Bearbeitung dieser Listen normaler Weise ein
lineares Durchgehen beinhaltet. Der zweite Vorteil besteht darin, dess disten stark komprimierbar sind,
was somit sowohl den Platzbedarf als auch die Lesezeit stark redu2rétens ist es leicht riaglich, einen
invertierten Indexiber mehrere Maschinen zu verteilen. Die Aufteilung kann dabei sowaatil Termen (jede
Maschine entélt die Dokumentenlisteriif ausgewihlte Terme) wie nach Dokumenten (jede Maschine&nth
die kompletten Informationeruf bestimmte Dokumente) geschehen. Viertens kann ein invertierter Index ef
fizient gebaut werden, selbst wenn die Daten nicht mehr in den Haigiispgassen. Dies geschieht mit
Hilfe von fur externen Speicher optimierten Sortieralgorithmen.afalgh ist der invertierte Index durch das
Hinzufligen von neuen Termen leicht erweiterbar.

Uberraschender Weise ebgiicht der invertierte Index jedoch nicht diéigiente Bearbeitung von Anfra-
gen der oben beschriebenen Typen. Hiedibt es hauptschlich zwei Giéinde: Erstens kann der invertierte
Index nur (éfizient) die Informationeniir einzelne Terme bereitstellen. Aber z.B. braucht man sowighl f
die Pi@fixsuche, iir die eine alphabetische Folge von Worten relevant ist, als auatiid¢ Facettensuche, wo
die Menge der Kategoriennamen potentiell erheblich sein kann, die Infiomaa fir eine (grol3e) Menge von
Worten, was ir den invertierten Index ein Problem darstellt. Zweitens gibt eine Anfaageinen invertierten
Index “nur” Dokumente zuirck. Um jedoch Autoren zu finden, die in zwei bestimmten Konferenzensetwa
publiziert haben, muss man im Wesentlichen zwei Anfragen stellen, ginede Konferenz, und dann die
Liste der Autoren (d.h. Terme) dieser Dokumente schneiden. Solch emai@m (in der Datenbanksprache
ein “Verbund” oder auf englisch “join” genannt) wird von Natur nichtnehweiteres vom invertierten Index
effizient unterditzt.

Wir haben Datenstruktureriif die CompleteSearch Suchmaschine entwickelt, die all diese Anfragetypen
und noch weitere fézient unterditzen. Diese Datenstrukturen bieten eifigzeente Umsetzung eines ein-
fachen aber dennochauhtigen Mechanismus, der inachsten Abschnitt informell vorgestellt wird, bevor er
im nachsten Kapitel formal erfasst wird. Man beachte hierbei, das dargBdizses Mechanismus zu den
drei oben besprochenen fehlendeihigkeiten nicht sofort ffensichtlich ist. In der Tat besteht ein Beitrag
dieser Arbeit darin, die Anwendbarkeit dieses Mechanisriudie Bereitstellung verschiedener&higkeiten
darzulegen.

Beschreibung des Kernmechanismus

Kontext-sensitive Autovervollahdigungs-Suche bildet das Heirst unserer CompleteSearch Suchmaschine.
Autovervollséindigung, in ihrer einfachsten Form, ist der folgende MechanismusAbsender tippt die er-
sten paar Buchstaben eines Wortes und dabei wird, entweder duigatéliggung einer bestimmten Taste oder
automatisch nach jedem Tastendruck, eine Methode aufgerufen, diecatkeafizeigt, die Vervollandigungen
der bisher getippten Buchstabenfolge sind. Dies hilft dem Anwender, dgtiohst geringem Aufwand schnell
zu einer bestimmten Information zu navigieren, wobei auch nur ein teilwdsssen (ein Pafix) des Zieles

an sich beitigt wird. Das wohl bekannteste Beispiel dieses Mechanismus ist diefaistindigung in der
Unix Shell.

Das Problem, das wir in dieser Dissertation betrachten, beruht auf eisgruahsvolleren Form der Au-
tovervollséindigung, die auch defontext in dem das zu vervollahdigende Wort getippt wurde, in Betracht
zieht. Hier sollen (sofort nach jedem Tastendruck) nur die Venasitdigungen des letzten (teilweise) getippten
Suchwortes angezeigt werden, die zu einenff@rdiihren, also zu einem Dokument das alle (auch vorherige)
Suchworte enthit. Man nehme zum Beispiel an, dass ein Anwernigeiormation ret® getippt hat. Vielver-
sprechende Vervollahdingungen &nnten dann u.aretrieval oderreturn sein, aber z.B. nichtyetire,
da dies Wort an sich zwar vielleichtibfig vorkommt, die Kombinatiodnformation retire aber nur zu
wenigen (oder keinen) guten Tern fuhrt. Das zu Grunde liegende algorithmische Problem ist in Definition
1im nachsten Kapitel formal erfasst. Diese Sufifkeit bezeichnen wir alsutovervollstandigungssucliga
Autovervolls&ndigung mit Suche kombiniert wird), oder auch, etvéemger aber déf praziser, al$rafixsuche
mit Vervollstandigung

8Man beachte, dass unser System echéi@uche macht. D.h. alle Dokumente, die die Anfragormation* ret* erfillen,
werden als Trifer gewertet.
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deutsch English Options
information ref

zoomed in on 13672 documents

1471 completions of "ret” lead to a hit:

retrieval (4928)

return (4683)

retrieval systems (766)
[more]

9 categories matching "ret" lead to a hit:

11

Hits 1 - 4 of 13672 for information ret (PageUp 4. / PageDown w for next/previous hits)

Progress in Information Retrieval, Lalmas/Riiger/Tsikrika/Yavlinsky, ECIR 2006: 1-11

... presented at the 28th European Conference on Information Retrieval and demonstrates tha:
the field has not ... ... Genomics, Multimedia, Peer-to-Peer and XML retrieval. Introduction.
Information Retrieval is certainly one of those thriving ... ... [there are more matches] ...
http://dx.doi.org/10.1007/11735106_1

Frequentist and Bayesian Approach to Information Retrieval, Amati, ECIR 2006: 13-24
... or other characteristics with unknown values. In Information Retrieval (IR), statistical
inference is a very complex type ... ... data and different populations, different types of
information tasks and information needs, and more importantly ... ... for IR thus is important
from both theoretical and pragmatical perspectives. The main result of ... ... [there are more
matches] ...

http://dx.doi.org/10.1007/11735106_3
Ernest Retzel, the AUTHOR (1)

Symeon Retalis, the AUTHOR (1) Lexical Entailment for Information Retrieval, Clinchant/Goutte/Gaussier, ECIR 2006:

[more] 217-228

... use of various lexical entailment models in Information Retrieval, using the language
Refine by AUTHOR: modelling framework. We show ... ... Machine Translation. Textual entailment may also impact
W. Bruce Croft (35) Information Retrieval (IR) in at least two ways. First ... ... [there are more matches] ...

ChengXiang Zhai (22) http://dx.doi.org/10.1007/11735106_20

[toote] Machine Learning Ranking for Structured Information Retrieval, Vittaut/Gallinari, ECIR

2006: 338-349
... Abstract . We consider the Structured Information Retrieval task which consists in ranking

Refine by CONFERENCE:

?::Erl\l?(?;:)) nested textual ... ... propose to improve the performance of a baseline Information Retrieval
[more] system by using a learning ranking algorithm which ... ... [there are more matches] ...

http://dx.doi.org/10.1007/11735106_30

Figure 1: Bildschirmanzeige des Ergebnisses unserer Suchmasdhidé fAnfrageinformation ret.
Durchsucht wird eine Dokumentensammlung mit uiapef20.000 Publikationen aus dem Bereich Informatik,
jede mit Volltext und Metadaten. Das Vervo#sidigungsfeld links und die Tifer auf der rechten Seite werden
automatisch und ohne wesentliche \@gerung nach jedem Tastendruck neu berechnet. Daher fehlt jéde Ar
von Suchknopf @llig. Man beachte, dass die vorgeschlagenen Ver@ritigungen neben normalen Worten
(“return”), auch Phrasen (“retrieval system”) und Kategorienna(emest Retzel, the AUTHOR”") beinhal-
ten kbnnen. Die Zahl in Klammern hinter jeder Vervoliatdigung ist die Anzahl der Titer, die man er-
hielte, wenn man diese Vervolistdigung per Mausklick oder durch Eintippen aak¥en wirde. Allerdings
besteht keinerlei Zwang, ein angefangenes Wort zu Ende zu tippaimskre Suchmaschine standai@ig

fur alle Suchbedfie eine Pafixsuche ausihrt. Sollte der Anwender zum Beispiel ein neues Wort anfangen
undinformation ret data tippen, so Bmen die Vervollsindigungen und Teger fir data (zum Beispiel
databases) aus den 13.672 Tfkern fur information ret. Die unteren beiden Felder schlagebgtiche
Verfeinerungen der Tfter durch Kategorieninformation vor, sofern diese Information zumxrezugefigt
wurde. Dies ist die Facettensuche, die in Kagitgenauer beschrieben wird.

Abbildung 1 zeigt die Bildschirmanzeige unserer CompleteSearch Suchmaschine mitrdebnis tir
die Anfrageinformation ret. Eine List mit online verfigbaren Demonstratoren der Suchmaschimesér-
schiedene Dokumentensammlungen findet sich untep: //search.mpi-inf.mpg.de/. Die zustzlichen
Suchhhigkeiten, wie z.B. die in der Abbildung erkennbare Facettensucheieseaitere Rhigkeiten die im
nachsten Abschnitt erahnt und in spteren Kapiteln detailliert értert werden, lassen sich allef{eient) durch
ein und denselben Mechanismus realisieren.

Wissenschatftlicher Beitrag und Inhaltdibersicht

Die grobeUbersicht dieser Dissertation ist einfach: Zuerst geben wir die fornraleiémdefinition und disku-
tieren disbeiiglich relevante Arbeiten. Dann stellen wir unsere Algorithmen zisung des Problems vor.
Anschliel3end gsentieren wir verschiedene Erweiterungen und Anwendungen é@sinde liegenden Mech-
anismus, bevor wir, vor dem Fazit, schlie3lich noch einige wichtige Implemantisaspekte betrachten. Es
folgt eine detailliertere Inhaltsaufsélgselung und kurze Zusammenfassung unseres Beitraggesiés Kapi-
tel.
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In Kapitel 2 formalisieren wir das algorithmische Problem, welches im Zentrum unsestm&schine
steht. Ferner zeigen wir, wie diéggigste Datenstruktur im Bereich Information Retrieval, der invertierte In-
dex, zur Losung dieses Problemes eingesetzt werden kann.lHdgeben wir eine theoretische Analyse seiner
Laufzeit und zeigen, wo seine Schehen liegen. Der invertierte Index ist die Referenzdatenstruktur ierdies
Dissertation, und wir vergleichen unsere Datenstrukturen dagegendiskirtieren auch die Anwendbarkeit
anderer existierender Datenstruktur@ndnser Problem, insbesondere die voffiarrays.

In Kapitel 3 stellen wir unsere erste Datenstruktur (AutoTree) vor. Wir beweiseoldaweoretisch, unter
milden Bedingungen, und experimentell, dass seine Laufzeit Ausgdide@y (output-sensitive) ist. D.h.
die Laufzeit des Algorithmus ist proportional zur Ergebnismenge. Wireregxperimentell dass AutoTree
fur eine groRRe Klasse von Anfragen deutlidiviere Antwortzeiten als der invertierte Index bietet. Dieses
Kapitel beruht auf gemeinsamer Arbeit mit Holger Bast und Christian Wowmdnssen und wurde in einer
vorlaufigen Fassung in der Konferenz SPIRE 2006 (13th Internationafle@mce on String Processing and
Information Retrieval) Bast 066 prasentiert.

Im darauf folgenden Kapitet wird unsere zweite Datenstruktur (HYB) vorgestellt. HYB ist bglich
I/0O (Eingabg¢Ausgabe) Performanz optimiert und sein Platzverbrauch kommt nahe #medietische untere
Schranke der Entropie heran. Obwohl HYB sogar eine gewisse Mladé&=eit hat, sctégt er den invertierten
Index fur nicht-entartete Anfragen. Wir vergleichen auch AutoTree und HY@ermentell miteinander und
zeigen, dass im Allgemeinen HYB mit seiner Zutglokalitat vorzuziehen ist. Der Grof3teil dieses Kapitels
wurde im Konferenzband von SIGIR 2006 (29th International Canfee on Research and Development in
Information Retrieval) vdiffentlicht [Bast 06¢ und ist gemeinsame Arbeit mit Holger Bast.

Wahrend die Kapite?-4 sich auf eine fliziente Umsetzung der Kesdfigkeit konzentrieren, wird in Kapi-
tel 5 zurachst erneut der Nutzen der Autovervdlistiigungssuche @rtert, bevor wir unser System mit ver-
schiedenen anderen Systemen vergleichen, die je@eiliche Suchiaglichkeiten wie die CompleteSearch
Suchmaschine bieten. In diesem Kapitel diskutieren wir auch einige esfackeiterungen des grundle-
genden Autovervollgindigungsmechanismus, die den Nutzen der Galrigkeit weiter erbhen. Dies sind:
Relevanzsortierung der Titerdokumente und Vervollghdigungen, hesuche, Bearbeitung von ODER und
NICHT Anfragen, Teilwortsuche und Autovervolistdigung zu Phrasen. &krend die Erweiterungen in der
obigen Liste in keiner Weise an denafiksuchmechanismus gebunden sind,isfh die Erweiterungen, die
in den anschlieBenden Kapitedrd prasentiert werden, eineffizienten Implementierung unseres Kernmecha-
nismus.

In der Facettensuche wird die Navigation in Verzeichniss@nDbkumentensammlungen die gainver-
schiedenen Kategorien klassifiziert sind, kombiniert mit normaler Schldgwahe. Im Kapiteb zeigen wir,
wie man unsere Arbeit leicht anwenden kann, ufizciente Facettensudchifiigkeiten zu erhalten. Dies ist
eine Zusammenarbeit mit Holger Bast und wurde in einem Workgbep Facettensuche bei der SIGIR 2006
vorgestellt Bast 06d. Unseres Wissens nach war dies das erste Mal, dass statt der Metzhar Bfizienza-
spekt der Facettensuche untersucht wurde.

In Kapitel 7 erweitern wir den Autovervoll&ndigungsmechanismus so, dass nicht nur Veraitigungen
eines Pafixes sondern auch verwandte Terme oder Synonyme vorgeschiggden. Wir zeigen wie man,
sofern man Gruppen von verwandten Termen oder Synonymen kertieés@s Wissen ausnutzen kann, uim f
einen bestimmten Anfragekontext diese Vorage €fizient zu erhalten und (ii) wie man dabei eiitgernaRige
VergrolRerung des Indexes verhindern kann. Dieses Kapitel basiertendigsamer Arbeit mit Holger Bast und
Debapriyo Majumdar und wird bei CIKM 2007 (16th Conference ontdmiation and Knowledge Management)
[Bast 078 vorgestellt.

In Kapitel 8 zeigen wir, wie die CompleteSearch Suchmaschine mit ihffizienten Pafixsuche und,
wie sich zeigen wird, Verbundberechnung (englisch: “join”) benutetde kann, um eine Mischung aus
Datenbankanfragen (“Welche Autoren haben sowohl in SIGIR wid auSODA vebftentlicht?”) und Voll-
textsuchanfragen (“Finde alle \@fentlichungen, die sowohl die Worte ‘Datenbank’ wie auch ‘Relevanz-
sortierung’ enthalten.”) zu bearbeiten. Dadurch wird zumindest teieveise Bilcke zwischen klassischen
Datenbanksystemen und Suchmaschinen geschlagen. Der Inhalt digiseld<entstand in Zusammenarbeit
mit Holger Bast und wurde zum Grof3teil im Konferenzband von CIDR720ird Biennial Conference on
Innovative Data Systems Research)ofamntlicht [Bast 07¢.

Kapitel 9 baut stark auf den Ideen des vorangehenden Kapitels auf und etvdégtge noch. In diesem
Kapitel zeigen wir, wie man die CompleteSearch Suchmaschine zu einer sexmani&ichmaschine erweitern
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kann. Sie ist in dem Sinne “semantisch”, als sie ontologisches Wissen nutztasl Suchen nach Erdtien

mit bestimmten Eigenschaften, z.B. Personen die in einem bestimmten JahrrgetereMitglieder einer
bestimmten Gruppe sind, zu ebglichen. Dies Kapitel beruht auf einer Zusammenarbeit mit Holger Bast,
Alexandru Chitea und Fabian Suchanek. Es wurde im Konferenzbam&iGIR 2007 (30th International
Conference on Research and Development in Information Retri@ad)t D7 veroffentlicht.

Der Ausgangspunkt unserer Arbeit war der Glaube (oder damalsliehidafnung), dass unser Systeiir f
den Nutzer einen gfrbaren Mehrwert darstelleninde. Wir haben eine kleine Nutzerstudie mit Angestellten
des Helpdesks unseres Institutes durctigef um diesen Glauben Ziberpiifen. Diese Nutzerstudie wird in
Kapitel 10 vorgestellt und ihre (ermutigenden) Ergebnisse wurden im Konfeegrazibon GWEM 2007 (Ger-
man Workshop on Experience ManagemeB@gt 07d veroffentlicht. Dieser Workshop fand in Verbindung
mit der vierten Konferenz Professionelles Wissensmanagement (WN) 8GQ7

Eine Reihe von wichtigen Implementierungs- und Designentscheidungeatemver Kapitell1l erortert.
Diese sind teilweise von einer Art, wo si@rfdie dfiziente Bearbeitung von Anfragen relevant sind, und
teilweise von einer Art, wo sie die einfache Brgungen von neuen Suchbgilichkeiten fir unser System
ermiglich(t)en.

Nur wenig Hintergrundwissen des nun folgenden Kapi&lsénsbesondere jedoch Definitidn wird in
spateren Kapiteln vorausgesetzt (oder ist dort zumindéstlich). Davon abgesehen sind alle Kapitel in
sich selbst abgeschlossen und enthalten, wo dies Sinn macht, einemefdesainitt mit experimenteller
Evaluierung. Experimentdif die erweiterten Suchoglichkeiten (Kapitel - 10) wurden nur mit der HYB
Datenstruktur gemacht, da sie sich im Allgemeinen als die bessere Datensémkies (siehe Abschnitt.6)
und das Herzsick unserer CompleteSearch Suchmaschine bildet.
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Chapter 1

Introduction

1.1 Isthe “search problem” not solved? | mean, there’s Google!

Given that nowadays commercial internet search engines can seamegtitseveral billions of web documents
in well under one second, and then present the user with a ranked (isopéfully) relevant documents, it
might not be clear, why it could be fruitful to work on a new search entggnbnology. As a starting point and
motivation for the work in this dissertation, it is helpful to ponder for a momeaistrengths and weaknesses
of a Google-like system.

Googlé and similar web search engifémpress by the blazing speed, with which they present results to
the user. Users have learned that, as long as they can phrase theiraitibor need in terms of unambiguous,
unique key words, they can rely on Google to provide them with a set piflatly) relevant documents in well
under one second. Google works great for such key word bas@ed, because this is exactly what it is built
for. There are, however, other desirable search features, wiigliwonceptually be easy tdfer to the users.

One such feature igrefix searchwhere the user only enters the first few letters of a word and all docu-
ments containing a word starting with this sequence are retrieved. Thisdeaaves typing, when a prefix
(greenp®) is already discriminative enough, it will automatically retrieve word variatieith different end-
ings democra®), and it gives the user a chance to “explore” the corpus by automaticallydimg other words
for the same conceppeumo®).

Another often desirable feature faceted searchwhere the search results are grouped inftedént cat-
egories, similar to what is done on e-commerce sites such a$.ehayautomatic breakdown of the Google
search results according to (i) the document language, (ii) whether itschor@ more of a private, scien-
tific or a commercial site, or (iii) the file format, could make the result filtering pseday the user easier,
while removing the burden of having to specify “advanced search” optjpossibly over-specifying the result
requirements.

A third conceptually easy feature involves the combination of informatioeaspacross several documents.
For example, Google’s “scholar” searcbffers a search of scientific documents refined (in the “advanced
search” options) by author or by conference. Yet it does not allowsketo pose a query asking for all authors
who have published in both the SIGIR and the SODA conference.

The reason that such features are not supported is the same reasgneth&oogle and similar systems
their extraordinary performance: the use of the inverted index. All maarch engines are based on an
inverted index, which precomputes for every term a sorted list of all wiecus (or rather their ids) containing
the term. The inverted index will be discussed in more detail in the next chdgptiefor now it siffices to
note some of its characteristics, which make it so attractive to use. The filgttig has an almost perfect
locality of access, as handling these lists usually involves linear scansetbad advantage is that these lists
are highly compressible, vastly reducing the amount of space needededlsm and the time to read them.

httpy/www.google.com

2httpy/www.live.com, http//search.yahoo.com
3Greenpeace.

“Democratic, democracy, democrat or democrats.
SPrefix pertaining to breathing, respiration and the lungs.
Shttpy//www.ebay.com

"httpy/scholar.google.com
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22 CHAPTER 1. INTRODUCTION

Thirdly, an inverted index can be easily distributed among multiple machineswiitbtrespect to terms (where
each machine holds the document lists for selected terms) and with respectitoehts (where each machine
is responsible for the data pertaining to certain documents). Fourthly, ibeaiiciently constructed, even
when the data no longer fits in main memory, using external memory sorting reukimally, it can be easily
extended by adding new terms to the index.

Somewhat surprisingly, the inverted index does not allow the proceskimgedes of the types mentioned
above in an fficient manner. The reason for this is essentially two-fold: On the one hlamdhverted index
can only (dficiently) provide information about individual terms. But, e.g., in the casgsaiix search, where
a range of words is of relevance, or for faceted search, wheretloélabels for directories could be potentially
considerable, information about a (large) set of words is requireidhvoses a problem for the inverted index.
On the other hand, the inverted index returns “only” documents. But tafitisbrs who have published in two
given conferences, we essentially need to retrieve documents for @reesguone for each conference, and
then intersect the lists of authors (i.e., terms) for these documents. Suplertion (a database “join”) is not
inherently supported by an inverted index.

We have developed data structures for the CompleteSearch engine, effic@ntly provide all of the
features mentioned above, as well as several others. These dataresudier an dficient realization of a
simple, yet powerful mechanism, which will be introduced informally in the sextion, before it is formalized
in the next chapter. Note that the applicability of this mechanism to the threadeatissing in Google,
mentioned above, will not be immediately obvious. Indeed, showing the cbandetween this mechanism
and various features is one of the contributions of this work and the relatidmecome clear in later chapters.

1.2 Description of the Core Mechanism

A context-sensitive autocompletion search is at the heart of our CompsetdSengine. Autocompletion,

in its most basic form, is the following mechanism: the user types the first fewdeaitesome word, and
either by pressing a dedicated key or automatically after each keystrakeedpre is invoked that displays all
relevant words that are continuations of the typed sequence. Thisthelpser to navigate to a desired piece
of information quickly and with as little fort as possible and only requires partial knowledge (a prefix) of
the information itself. The most prominent example of this feature is the tab-ctiarptaechanism in a Unix
shell.

The problem we address in this dissertation, is derived from a more soptes form of autocompletion,
which takes into account theontextin which the to-be-completed word has been typed. Here, we would
like an (instant) display of only those completions of the last query word wleith to hits, i.e., documents
containing all the entered query words, as well as a display of such bitexBmple, assume a user has typed
information ret®. Promising completions might then retrieval, return, etc., but not, for example,
retire, assuming that, althougtetire by itself is a frequent word, the queinformation retire leads
to only a few good hits. The underlying algorithmic problem is formalized in Dtedim 1 in the next Chapter.
This is the feature we refer to asitocompletion searcfas it combines autocompletion with search) or, more
concretely but somewhat less conciselypeefix search and completion

Figurel.1shows a screenshot of our CompleteSearch engine responding tcetlye gifiormation ret.

For a list of available live demos, sketp://search.mpi-inf.mpg.de/. The additional features, such as
faceted search, which can also be seen in the screenshot, and othgosiatkin the next section and discussed
in detail in later chapters, can all bef{eiently) supported via the same mechanism.

1.3 Contributions and Outline

The rough outline is simple: first the formal problem definition and relatedkwben our algorithms for its
solutions, followed by various extensions and applications of the basicanisch, and, before the conclusions,
finishing with important implementation aspects of the CompleteSearch engindy wéibave built. A more
detailed chapter-by-chapter breakdown, with a short summary of thglagions, follows.

80bserve that our system does full prefix search. So any docunaohimginformation® ret* would be returned as a hit.
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7y Hits 1 -4 0of 13672 for information ret (PageUp 4, / PageDown w for next/previous hits)

Progress in Information Retrieval, Lalmas/Riiger/Tsikrika/Yavlinsky, ECIR 2006: 1-11
... presented at the 28th European Conference on Information Retrieval and demonstrates tha:

deutsch English Options

information ret| the field has not ... ... Genomics, Multimedia, Peer-to-Peer and XML retrieval. Introduction.
. Information Retrieval is certainly one of those thriving ... ... [there are more matches] ...
zoomed in on 13672 documents http://dx.doi.org/10.1007/11735106_1

1441 eumplelions oF et leme 16 & ik Frequentist and Bayesian Approach to Information Retrieval, Amati, ECIR 2006: 13-24

retrieval (4928) ... or other characteristics with unknown values. In Information Retrieval (IR), statistical

return (4683) inference is a very complex type ... ... data and different populations, different types of

retrieval systems (766) information tasks and information needs, and more importantly ... ... for IR thus is important

[more] from both theoretical and pragmatical perspectives. The main result of ... ... [there are more
matches] ...

9 categories matching ‘ret"leadtoa hit: | /1y doi org/10.1007/11735106_3
Ernest Retzel, the AUTHOR (1)

Symeon Retalis, the AUTHOR (1) Lexical Entailment for Information Retrieval, Clinchant/Goutte/Gaussier, ECIR 2006:
[more] 217-228

... use of various lexical entailment models in Information Retrieval, using the language
Refine by AUTHOR: modelling framework. We show ... ... Machine Translation. Textual entailment may also impact
W. Bruce Croft (35) Information Retrieval (IR) in at least two ways. First ... ... [there are more matches] ...
ChengXiang Zhai (22) http://dx.doi.org/10.1007/11735106_20
[toote] Machine Learning Ranking for Structured Information Retrieval, Vittaut/Gallinari, ECIR
Refine by CONFERENCE: 2006: 338-349
SIGIR (611) ... Abstract . We consider the Structured Information Retrieval task which consists in ranking
CIKM (781) nested textual ... ... propose to improve the performance of a baseline Information Retrieval
[more] system by using a learning ranking algorithm which ... ... [there are more matches] ...

http://dx.doi.org/10.1007/11735106_30

Figure 1.1: A screenshot of our search engine for the gliefprmation ret searching in a collection of
about 20,000 computer science articles, each with full text and meta dat&ofipletion boxes on the left and
the hits on the right are updated automatically and instantly after each keydtieatce the absence of any kind
of search button. Note that the suggested completions can be wordsr(*yephrases (“retrieval system”),
and category names (“Ernest Retzel, the AUTHOR”). The number immfgizgses after each completion is
the number of hits that would be obtained if that completion was selected or. t¢gpexty words need not be
completed, however, because the search engine, by default, doediait prgfix search on all query words. If,
for example, the user continued typibgformation ret data, completions and hits fatata (for example,
databases, would be from the 13,672 hits famformation ret. The two lower boxes suggest possible
refinements of these hits via whatever category information was added talthe ifhis is the faceted search
feature described in Chaptér
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In Chapter2, we formalize the algorithmic problem that is at the heart of our engine. VWeshlsv how
an inverted index, the standard data structure in information retrieval, c¢aisdd to solve this problem, we
given a theoretical analysis of its running time and show where its shortceringThe inverted index will
be the baseline algorithm throughout this dissertation, and we will compamata structures against it. We
also discuss various other existing data structures, in particuiax amrays, that might be used to tackle the
problem.

In Chapter3, we present the first data structure developed by us, called AutoTre@rdVe both theoret-
ically, under mild assumptions, and experimentally that its running time is outputigenise., the algorithm
takes time proportional to the size of the output. We demonstrate throughragpés that AutoTree outper-
forms the inverted index on a wide range of inputs. This chapter is basginbmvork with Holger Bast and
Christian Worm Mortenssen and was presented in preliminary form in theld@&imnational Conference on
String Processing and Information Retrieval (SPIRE 208&)sf 06h.

In the following Chapte#, our second data structure HYB is introduced, which is optimized@pkrfor-
mance and whose space consumption gets close to theoretical lower deurdd from the entropy. Although
HYB actually has a certain minimal running time, it beats the inverted index fargeémputs. We also give
an experimental comparison of AutoTree vs. HYB to show that in most setdiv@s with its locality of ac-
cess is preferable in practice. Most of this chapter, was published inrdkcegaings of the 29th International
Conference on Research and Development in Information RetrievalRS2006) Bast 06¢ and is joint work
with Holger Bast.

Whereas Chapterz-4 focus on d#icient realizations of the feature, Chapfeassesses the usefulness of
autocompletion search again, before comparing several other syssahgreviding a service similar to our
CompleteSearch engine. In that chapter, we also discuss various sirtgaisiers of the basic autocompletion
mechanism, which add to its usefulness. These are the ranking of the matehittg and completions, prox-
imity search, OR and NOT queries, subword search and autocompletioma®egh Whereas the extensions
listed above are not prefix search specific but are independent pfithienes presented in the then following
Chapterss-9 heavily depend on arflécient realization of our central mechanism.

In faceted search, directory browsing is combined with key word basatls, for document collections
which are organized by various categories. In Chaptene show how to apply our work to easily obtain
efficient faceted search capabilities. This is joint work with Holger Bast arspnesented at the Workshop on
Faceted Search at SIGIR 20(84st 06d. To our knowledge, this was the first time that tHféaency aspect,
rather than the usability aspect, of faceted search was studied.

In Chapter7, we extend our autocompletion mechanism from suggesting only completioagfefix to
also suggest related terms or synonyms. We show how, given setstetiredems or synonyms, we can harvest
this information in such a way that we can (i) find, for the query contex@¢rgithese suggestionfieiently,
and (ii) we do not inadequately increase the size of the index doing thisv@hein this chapter is joint work
with Holger Bast and Debapriyo Majumdar, and will be presented at theQ@tifierence on Information and
Knowledge Management (CIKM 2007Bast 07§.

In Chapter8, we demonstrate how with itdfecient prefix search and, as we will show, join mechanism
the CompleteSearch engine can be used, to answer a mix of classicaled{y\siyich authors have published
both in SIGIR and SODA?”) and full-text queries (“List all publicationstaining the words database and
ranking.”), partly bridging the gap between DB and IR systems. Mosthafp@er8 is work published in the
proceedings of the Third Biennial Conference on Innovative DatéeSysResearch (CIDR 200B4st 07¢
and is joint work with Holger Bast.

Chapter9 heavily builds upon and extends the ideas from the previous chaptee weshow how to
incorporate our CompleteSearch engine into a semantic search enginé'sdimiantic” in the sense that it
(efficiently) uses ontological knowledge to allow searching for entities with ceptajperties, e.g., people born
in a given year or members of a given group. This is joint work with HolgastBAlexandru Chitea and
Fabian Suchanek. It was published in the proceedings of the 30thdtitaral Conference on Research and
Development in Information Retrieval (SIGIR 200Bdst 074

The initial starting point for our work was the belief (or at that time rather thgeh that our system would
give a noticeable added value to the user. We conducted a small usengtu@ynployees from our institute’s
helpdesk to (successfully) verify this belief. This user study is predént€hapterl0 and its (encouraging)
results, again joint work with Holger Bast, were published in the proceedifighe German Workshop on
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Experience Management (GWEM 200Bgst 07d, which was held in conjunction with the Vierte Konferenz
Professionelles Wissensmanagement (WM 2007).

A number of important implementation and design choices are discussed ite€hapThese are partly
of a nature, where they are relevant fdli@ent query processing, and partly of a nature, where they allow(ed)
a simple addition of new features to the system.

Only some background from the now following Chapein particular Definitiorl, is assumed (or at least
helpful) in the later chapters. Apart from this, all chapters are selfaioed and, where applicable, contain a
section with experimental evaluation. Experiments for the advanced featndeextensions (Chapteis 10)
are for the HYB index only, as it came out as the preferable data struntargeneral setting, see Sectidm,
and as it is at the heart of our CompleteSearch engine.






Chapter 2

Problem Definition and Baseline Algorithm

In the following Sectior2.1, we formalize the aforementioned autocompletion search mechanism. The then
following Section2.2 gives further insights related to thdiiltulty of the problem by presenting a first concrete
solution. This solution uses inverted lists and serves as a baseline thubtigisalissertation. The last but one
Section2.3discusses other algorithms, which could be applied to our algorithmic problest noibly stix
arrays. Finally, Sectio2.4 summarizes the (little) notation used in this and the remaining chapters, which is
mostly given for reference purposes.

2.1 Formal Problem Definition

The following problem definition formalizes the algorithmic problem underlyirg daitocompletion search
feature, described informally in Sectiar?. Chapters3 and4 then present our AutoTree and HYB data struc-
tures, which can be used to solve this problem.

Definition 1 An autocompletion search queiy a pair (D, W), where W is a range of words (all possible
completions of the last word which the user has started typing), and D is@&f secuments (the hits for the
preceding part of the query). To process the query means to conipugetd of all word-in-document pairs
(w, d) with w e W and de D, as well as both the set of matching documents=0d : d(w, d) € ®} and the
set of matching words YW= {w : d(w,d) € ®}. (Note that for the very first query word, D is the set of all
documents.)

Remark.Algorithms based on the intersection of (sorted) lists of document ids, suidVadiscussed in this
chapter, or HYB, discussed in Chapterwill require both the input sdd and the output sdd’ to besorted
sequences, rather than an unsorted sets. Our AutoTree algorithngsgidda the following Chapte3, does
not require this additional property.

Given an algorithm for solving autocompletion queries according to theitiefirabove, we obtain the
desired search feature from Sectib as follows: For the example querinformation ret, W would be
all words from the vocabulary starting witlet , andD would be the set of all hits for the quetihformation
. The outputd would be all word-in-document pairs/(d), wherew starts with ret andd containsw as well
as a word starting withinformation, * D’ would be all such documentsandW’ the corresponding union
of wordsw.

Now if the user continues with the last query word, e.gnformation retri, the set of candidate
document® does not change. This allows us to simply filter the sequence of wordeinrgent pairs from the
previous query (with the sani2 but a largeW), keeping only those pairsv(, d’), wherew’ starts withretri
. This will, in practice, always be faster than relaunching a full autocomplestgarch query. Note that this
filtering is independent of the method used to compute the initial result. SeerSettiior details on this and
other uses of result caching.

If, on the other hand, the user starts a new query word, émgfprmation ret meth, then we have an-
other autocompletion query according to Definitigrwhere nowW is the set of all words from the vocabulary

lWe always assume an implicit prefix search, that is, we are actually steera hits for all wordstartingwith information,
which is usually what one wants in practice. Whole-word-only matchingoeaenforced by introducing a special end of word symbol
$.
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starting withmeth , andD is the set of all hits forinformation ret. In a general setting, this set of the new
candidate documents can be obtained from the sequence of matchingwawdument pairs for the last query
by sorting the matchingx, d) pairs according td. This sort takes tim&®((>.yew IDNDwl) 10g(Cwew IDNDwl))
and, while finding the unique elements, also guarantees that the eleméntsilbbe sorted. However, both
of our algorithms, presented in the next two chapters, manage to avoid #tjsbgceither not requiring the
elements oD to be sorted (as is the case for AutoTree), or by working with blocksdyrearted by document
id (as is the case for HYB). Details are given in the respective chapters.

In practice, we are actually interested in thesthits and completions for a query. This can be achieved by
following standard approaches and is discussed in detail in Seztioin fact, the main reason that we chose
all matching (v, d) pairs® to be part of the output in Definitioh, rather than only the matching documebts
and words/\, is that we will usually requirall matching pairs to give an appropriate ranking.

2.2 Using the Inverted Index to Answer Autocompletion Search Quees

In this section, we will first define what we mean by an “inverted index”.ekve will analyze its space
consumption, before we show how to answer an autocompletion seanch(feinition 1) using an inverted
index. This will be the main focus of this section. It will be done through andranalysis of its processing
time for such queries, presenting upper and lower bounds, as wellaggyge case analysis. Extensions, such
as compression of the index and the incorporation of positional informatititne discussed in later chapters,
when the machinery required for the corresponding analysis has beap.sThe aim of this section is (i) to
provide the reader with more intuition concerning the problem itself, and (iiyeouws a baseline against which
we will compare our data structures both theoretically and through expggmen

2.2.1 The Inverted Index: Definition and Space Analysis

Definition 2 ByINV (inverted index) we mean the following data structure:
For each word w, store the list of all (ids of) documentg &ntaining that word, sorted in ascending order.

The elements of the inverted lists, are just a rearrangement of the setswofdlin-document pairs. The
cardinality of this set, which is essentially the size of the corpus, we dendte ligach document id can be
encoded witlTlog, n] bits. So the total (uncompressed) space usage is given by the following leBpaeae
for storing the lengths of the lists is not included in this bound.

Lemma 1 The inverted lists for INV can be stored uncompressed using a total ajsitha [log, n] bits.

INV’s intrinsic space #iciency (the “entropy”) and its compressibility will be discussed in Secfi@nl,
once the required terms and concepts have been introduced. Compredisimt change its asymptotic pro-
cessing time, which is discussed in the following.

2.2.2 INV’s Processing Time

In the rest of this section, we analyze the time complexity of processing aapdetion search queries with
INV and point out two inherent problems at the end of this section.

Lemma 2 With INV, an autocompletion que(ip, W) can be processed in the following time, whergd2notes
the inverted list for word w:
DI Wl + " 1Dul+ ) DN Dyl - log|Wi.
weW weW
Assuming that the elements of W, D, and thedde picked uniformly at random from the set of m words and
the set of n documents, respectively, this bound has an expected f/alue o
W,

IDl- W]+ — -N+

Y
m

— - — - N-log|W.
. glW

INV’s processing time is bounded below®},cyy min{|D|, [Dwl}).



2.3. RELATED WORK 29

Remark.By picking the elements of a s&tat random from a superset, we mean that each subsetldfof
size|S| is equally likely forS. We arenot making any randomness assumption ondizesof W, D, andD,,
above.
Proof. The obvious way to use an inverted index to process an autocompletion (@ué&t) is to compute,
for eachw € W, the intersection® N D,,. Then,W’ is simply the set of allv for which the intersection
was non-empty, an®’ is the union of all (non-empty) intersections and, to obi&infor each element in
d € D n Dy, we add (v, d) to the output. The intersections can be computed in time Krieahe total input
volume Y, ew(ID| + |Dwl). The unionD’ can be computed by|&V|-way merge, which requires on the order of
log|W| time per element scanned. Note that the total sum of the lefigghsver allmwords in the vocabulary
is N, which is the total number of word-in-document pairs. With the randomrssssigptions, the expected size
of a single listD,, is thusN/m. Assuming that the elements of bdithandD,, are picked uniformly at random
from the set of all documents of sire the expected size of the intersecti@n Dy is |D|/n - N/m, as the
probability that a certain element is contained in both sgB3|js - N/(mn). For the lower bound, observe that
INV computes one intersection for easte W and any algorithm for intersectirigyandD,, has to diferentiate
between 2NIPHDWI possible outputs. Assuming it is a comparison-based intersection algorithiii, fiirva
general input need at least nfjid|, |Dy|} comparisons.

|

Lemmaz2 highlights two problems of INV. The first is that the tefDj - [W| can become prohibitively large:
in the worst case, whel is on the order of (i.e., the first part of the query is not very discriminative) &kd
is on the order ofm (i.e., only few letters of the last query word have been typed), the bourdtise order of
n- m, that is, quadratic in the collection size. The second problem is due to thige@egnerging. While the
volume Y, ID N Dy| will typically be small once the first query word has been completed, it will bgela
for the first query word, especially when only few letters have beerdtyps we will see in Section3.6 and
4.5, INV frequently takes seconds for some queries, which is quite untdssiraan interactive setting. This is
exactly what motivated us to develop mof&a@ent index data structures.

Note that both problems ultimately arise because INV does not exploit théhfaetements iW form a
range The very same running times could be obtained if the elememséwrere arbitrary elements.

2.3 Related Work

This section discusses work related to the geragdrithmic problemgiven in Definitionl, as the following
two chapters will focus on data structures, which can be used to solvertiiem. Aspects related to (i) the
usability of the correspondirgutocompletion search featuee (ii) a particular feature (such as faceted search),
which hinges on anfiicient solution to the algorithmic problem of Definitidnarenot discussed here but in
the corresponding chapters.

There is a large variety of alternatives to the inverted index in the literatuine. ohes that apply to the
autocompletion search problem are discussed here. One of the moditkiraigrd ways to process an au-
tocompletion search querp(W), would be to explicitly search each document fr@nfor occurrences of a
word fromW. However, this document-by-document approach has a very podityozhaccess and would
give us a non-constant query processing time per elemdhtaimpletely independent of the respecti or
output sized,ew |ID N Dy|. For these reasons, we do not consider this approach further in this woother
approach would be to usgignature fileswhich store supersets of items in a manner similar to bloom filters.
However, in Zobel 9§ they were found to be in no way superior to (but significantly more complictian)
the inverted index in all major respects.

Our autocompletion problem is related to, but distinctlffetient frommulti-dimensional range searching
problemswhere the collection consists of tuples (of some fixed dimension, for exapgfe of word prefixes),
and queries are asking for all tuples that match a given tuple of ra@pesde 98 Arge 99 Ferragina 03
Alstrup 00J. These data structures could be used for our autocompletion seanolempt provided that we
were willing to limit the number of query words. For fast processing times gliew the space consumption

2There are asymptotically faster algorithms for the intersection of two Bstefa-Yates Q4Demaine Of) but in our experiments,
we got the best results with the simple linear-time intersect, which we attributeconitgact code and perfect locality of access.

3We don't know of any intersection algorithm that isiigt comparison-based and (i) does not need to scan either of the two input
lists completely.
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of any of these structures would be on the ordeN&fd, whereN is the size of an inverted index, add> 0
grows (fast) with the dimension. For our autocompletion search queriesamvachieve fast query processing
times and spacdigciency at the same time because we have the set of documents matching théhesguery
before the last word already computed (namely when this part was beied)tyip a sense, our autocompletion
problem is therefore a /2 - dimensional range searching problem.

When searching for prefixes (or arbitrary patterns) in a text collecidfix arrays are a standard choice
[Manber 90 Grossi 00 Grossi 04. Although these approaches are not directly applicable to our autocemple
tion problem, we could indeed usefBx arrays to produce the list of all documents that contain words with a
given prefix (or even infix). This list could then be intersected with théset

The reason why we have taken INV as our baseline, and not an algdséked on dfix arrays, as just
outlined, is as follows. Uncompressedfisuarrays use too much space, as they index every character of
the collectiorf Compressed $fix arrays are not competitive with respect to running time when it comes to
reportingand not jusicountingthe occurrences of an infix, because each reported occurramdessea large
number (depending on the compression ratio) of operations and typicaliysiatleast one cache miss.

Note that the situation would (seem to) befelient, if we wanted context-sensitive infix search.ffiu
arrays would give that just as easily as prefix search, but for thete@t/éndex the problem then becomes
much harder. Somewhat surprisingly, even for this setting, an inverted,ifdilt for an appropriate choice
of k-grams as “words”, was experimentally shown Ruflisi 0§ to outperform stix arrays. Furthermore,
the application behind our problem definition really calls for prefix searghrent for infix search. Infix
search would return too many, mostly irrelevant matches. For example,tybiag “search aut”, we are most
certainly not looking for completions like “flautist” or “aeronautics”. (On titber hand, our algorithm can be
easily extended to consider reasonable subwords like the “vector” iarfeggtor”; we can simply add these to
the index without increasing the total index size considerably. See Sécdn

Still, as our AutoTree data structure (introduced in the next chaptemgshbartain characteristics withfiy
arrays, e.g., the need for random accesses, we also comparediitrexyally against fix arrays. The results
(favorable for AutoTree) are presented in Secfioh

Concerning #icient implementations of search engines (or database systems), therdassatdavork on
guery optimization via choosing a clever execution plan. For a multi-wordycaret an inverted index this can,
e.g., involve first intersecting the shortest lists to quickly limit the set of catsliaeatches. However, these
approaches do not apply to our fully interactive setting, because theoectsoice here but to evaluate the query
in a strict order, from left to right.

2.4 Notation

The following notation will be used throughout the dissertation. Although fig)(symbols will usually be
explained again in the context where they are used, it is helpful to familianieself with them. They are given
here mostly for reference purposes.

= total number of word-in-document paing,(d)

total number of distinct words (“vocabulary”)

total number of documents

average number of word-in-document pairs in a documentLie.N/n
consecutive words (a “word range”) corresponding to a prefix

matching (sorted) document ids for the previous part of a query

(sorted) document ids for documents containing the word

matching word-in-document pairg/(d) for an autocompletion search query
{w: 3(w,d) € @}, i.e., the matching completions for an autocompletion search query
{d: A(w, d) € @}, i.e., matching documents for an autocompletion search query

Q2efosrs32Z
I monu Il

“4If the number of characters in the collectionN$, an uncompressed fix array needs at least'[log,(N’)] bits, which exceeds
the N[log,(n)1 bits required for an inverted index built over the words by a factor ofastlthe average word length.



Chapter 3

AutoTree Index

In the last chapter, we explained how to use the inverted index to solveoauptetion search queries. In this
chapter, we present our first data structure, called AutoTree, feingosuch queries. It is designed for use
in main memory and makes extensive use of bit vectors. AutoTree has tingbteproperty that its running
time depends, for realistic corpora and queries, linearly on the size olitpato The details are given by the
following theorem.

3.1 Main Result

Theorem 1 Given a collection with n documents, m distinct wordsz I° - m word-in-document pairs, and a
(constant) average humber of distinct words per documentN/n, there is a data structure AutoTree with the
following properties:

(a) AutoTree can be constructed irff{iD time.

(b) AutoTree uses at most[lNg, n] bits of space (which is the space used by an ordinary uncompressed
inverted index).

(c) AutoTree can process an autocompletion search g{izry) (according to Definitiorl) in time
O((a +pB)IDI + @),

where® = },,cw|D N Dyl and Dy is the set of documents containing word w. Here= N|W|/(mn),
which is bounded above Hy unless the word range is very large (e.g., when completing a single letter),
and by L, regardless of assumptions about W. If we assume that tlds imca document with | words
are a random size-l subset of all worgisjs at most2 in expectation. In our experimeni,is indeed
around?2 on the average and abodtin the (rare) worst case; our analysis implies a general worst-case
bound ofmin(log(mn/N), Linax), where lqax is the maximum document length.

Note that for constant andg, the running time is asymptotically optimal, as it tak¥$D|) time to merely read
in all of D and it take(® + |W| + |D]) = Q(®) time to output the resuft. Also note that asymptotically, as
the corpus growdy, n, mandW will become large bukLmax the maximum document length, and hehg¢éhe
average document length, can be assumed to remain bounded. In thedlpha and beta are bounded even
in the theoretical worst case. The necessary ingredients for the girddieoreml are developed in the next
sections and they are finally assembled in Sectién

The condition orN is a technicality and is satisfied for any realistic document collection. Detaits\are
in Section3.5. Intuitively speaking, the condition says thatthe number of documents grows at least as fast
asm, the number of terms (assuming tHatthe average document length, stays constant). This condition
will guarantee that AutoTree requires less space than BASIC, whicbeamderstood intuitively as follows:
BASIC only needs to encode, for each word-in-document pair, a sohggementid (neglecting the small

1Strictly speaking, an uncompressed inverted index needs even name, $p store the list lengths.
2The statement about the required time to read in the (usually “randotrD) tseitly assume® is explicitly represented element-
by-element. Of course, for the first prefix, whBris the set of all documents, this is not the case.

31
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overhead for storing the list lengths and the word, a list pertains to). ifShsgace requirement directly depends
on the number of documents. AutoTree, as we will explain in the following segtessentially encodes each
such pair using itsvord id.

We implemented AutoTree, and in Secti8rb show that its processing time correlates almost perfectly
with the bound from Theorerii(c) above (for constant andg). In that Section, we also compare it to the
inverted index (see Sectidh2), which AutoTree outperforms by a factor of 10 in worst-case pracggssne
(which is key for an interactive feature), and by a factor of 4 in avereggse processing time.

3.1.1 Related Work

Work related to the general autocompletion search problem accordindfitatida 1, has already been dis-
cussed in Sectio.3. Here, we merely discuss data structures with certain similarities to ours, tinybear
wavelet trees@rossi 03 Ferragina 0p

A wavelet tree consists of a tree, built over a fixed alphabet, wherereatdhcontains a bitvector. These
bitvectors are “relative” as the bits in the |eiyht child of a bit vector in a node correspond to the hits in its
parent. So the length of a particular bit vector depends on the numbgb bft4 of its parent node. To allow
for constant-time rank and select operations on these bit vectors, aygiita structures are builvfunro 94.
Our data structure also makes use of relative bitvectors, but theseaséifierent purpose than in wavelet
trees: in our tree both children of a node store only information correipgmo the 1 bits of their parent node,
andnothingfor O bits. Furthermore, an integral part of our data structure is a “wstr&sred by each 1 bit
(whereas in a wavelet tree one only obtains the final information afteeddsty to the leaf level).

In the description of our data structures we will point out some interestiatpgies to the geometric
range-search data structures fra@hpzelle 88and [McCreight 85.

3.1.2 Outline of the Rest of This Chapter

In the following sections, we explain the indexing scheme AutoTree, with thigepties given in Theorerh
A combination of four main ideas will lead us to this scheme: a tree over the W8eittion3.2), relative bit
vectors (Sectior.3), pushing up the words (Sectiéh4), and dividing into blocks (Sectiof.5). In Section
3.6, we will complement our theoretical findings with experiments on a large tésttion.

3.2 Building a Tree Over the Words (TREE)

The idea behind our first scheme on the way to Theoteis to increase the amount of preprocessing by
precomputing inverted lists not only for words but also for their prefixb$ore precisely, we construct a
complete binary tree witm leaves, wherenis the number of distinct words in the collection. We assume here
and throughout this chapter thatis a power of two. For each nodef the tree, we then precompute the sorted
list D, of documents which contain at least one word from the subtree of that Adat lists of the leaves are
then exactly the lists of an ordinary inverted index, and the list of an inrnge reexactly the union of the lists

of its two children. The list of the root node is exactly the set of all non-erdptguments. A simple example

is given in Figure3.1

Doc 1| |Doc 2| [Doc3| |Doc4 A-D
AB D AB - 1,2,3,5,7,8,10
Doc 5| |Doc 8| |Doc?| |Doc8 A-B / \ C-D
BCO | - | [AD] ABD 1,3,5,7,8,10 2,5,7,8,10
Doc 9| |Doc10 \
<) o A AN . 3 / i
1,3,7,8 1,3,5,8,10 5,10 2,578

Figure 3.1: Toy example for the data structure of scheme TREE with 10 dotsiaed 4 dierent words.
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Given this tree data structure, an autocompletion search query givewtrygaange/N and a set of documents
D is then processed as follows.

1. Compute the unique minimal sequenge..., Vv, of nodes with the property that their subtrees cover
exactly the range of wordd/. Process thesénodes from left to right, and for each nodénvoke the
following procedure.

2. Fetch the lisD, of vand compute the intersecti@n D,. If the intersection is empty, do nothing. If the
intersection is non-empty, thenufis a leaf corresponding to wowd, report for eachd € D n D, the pair
(w, d). If vis not a leaf, invoke this procedure (step 2) recursively for eacheofitio children ofv.

Scheme TREE can potentially save us time: If the intersection computed at amotey in step 2 is empty,
we know that none of the words in the whole subtreg isfa completion leading to a hit, that isjth a single
intersection we are able to rule out a large number of potential completibiosvever, if the intersection at

is non-empty, we know nothing more than that theratikeast one wordn the subtree which will lead to a hit,
and we will have to examine both children recursively. The following lemmavstibe potential of TREE to
make the query processing time depend on the output size insteadVdfasnfor INV. Since TREE is just a
step on the way to our final scheme AutoTree, we do not give the exant grocessing time here but just the
number of nodes visited, because we need exactly this information in theetidn.

Lemma 3 When processing an autocompletion search q@eryW) with TREE, at mos2(W’| + 1) log, [W|
nodes are visited, where W the set of all words from W that occur in at least one document from D.

Proof. A node at height has at most 2nodes below it. So each of the nodes. .., v has height at most
[log, |W|]. Further, no three nodes from, ...,V have identical height, which implies thhat< 2[log|W|].
Similarly, for each word inW we need to visit at most two additional nodes, each at height biétmyiwV|].

[ |

The price TREE pays in terms of space is large. In the worst case, eatbfi¢he tree would use just as much
space as the inverted index stored at the leaf level, which would give augdactor of log m.

3.3 Relative Bitvectors (TREEBITVEC)

In this section, we describe and analyze TRIBETVEC, which reduces the space usage from the last section,
while maintaining as much as possible of its potential for a query processing épending oV, the set
of matching completions, instead of ad. The INV trick will be to store the inverted lists via relative bit
vectors The resulting data structure turns out to have similarities with the static 2-dinm@hsichogonal
range counting structure of Chazel@éHazelle 88

In the root node, the list of all non-empty documents is stored as a bit vegt@an N is the number of
documents, there af¢ consecutive bits, and thth bit corresponds to document numibeand the bit is set to
1 if and only if that document contains at least one word from the subfrée mode. In the case of the root
node this means that thih bit is 1 if and only if document numbéicontains any word at all.

Now consider any one childof the root node, and with it store a vectorNf bits, wereN’ is the number
of 1-bits in the parent’s bit vector. To make it interesting already at this poitite tree, assume that indeed
some documents are empty, so that not all bits of the parent’s bit vectoetaieane, andN’ < N. Now the
jth bit of v corresponds to th¢th 1-bit of its parent, which in turn corresponds to a document numbé&ve
then set thgth bit of vto 1 if and only if document numbey contains a word in the subtree of

The same principle is now used for every nodthat is not the root. Constructing these bit vectors is
relatively straightforward; it is part of the construction given in Secighl

Lemma 4 Let S.ee denote the total lengths of the inverted lists of algorithm TREE. The total rmuohlbis
used in the bit vectors of algorithm TREBITVEC is then at mossyee plus the number of empty documents
(which cost &-bit in the root each).
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Doc 1| |Doc 2| |Doc3| [Doc4 A-D
AB D AB R 1110101101
Doc 5| |Doc 8| |Doc?| [Doc8 A-B / \ c-D
BCD - AD| ABD 1011111 0101111
Doc 9| [Docid / \ \
- BC A B C / D
110110 111011 01001 11110

Figure 3.2: The data structure of TREBITVEC for the toy collection from Figur&.1

Proof. The lemma is a consequence of two simple observations. The first obsengtiat wherever there
was a document number in an inverted list of algorithm TREE there is nowitaritbe bit vector of the same
node, and this correspondence is 1. The total number of 1-bits is therefosgse.

The second observation is that if a nod#éat is not the root has a bit corresponding to some document
numberi, then the parent node also has a bit corresponding to that same docantktitat bit of the parent is
set to 1, since otherwise nogevould not have a bit corresponding to that document.

It follows that the nodes, which have a bit corresponding to a particutked flocument, form a subtree that
is not necessarily complete but where each inner node has degreg\Zhare 0-bits can only occur at a leaf.
The total number of 0-bits pertaining to a fixed document is hence at mosttéhetonber of 1-bits for that
same document plus one. Since for each document we have as many tithmetéeaves as there are words in
the documents, the same statement holds without the plus one.

|

The procedure for processing a query with TREBETVEC is, in principle, the same as for TREE. The only
difference comes from the fact that the bit vectors, except that of thecaoipnly be interpreted relative to
their respective parents.

To deal with this, we ensure that whenever we visit a ngdee have the sef, of those positions of the
bit vector stored at that correspond to documents from the given3eas well as théZ,| numbers of those
documents. For the root node, this is trivial to compute. For any other wafigcan be computed from its
parentu: for eachi € 7, check if theith bit of uis set to 1, if so compute the number of 1-bits at positions less
than or equal td, and add this number to the sitand store by it the number of the document frbrthat was
stored byi. With this enhancement, we can follow the same steps as before, excepéthate to ensure now
that whenever we visit a node that is not the root, we have visited its paeéorie. The lemma below shows
that we have to visit an additional number of up to Zlognodes because of this.

Lemma 5 When processing an autocompletion search qényw) with TREE-BITVEC, at mos2(W’'| +
1) log, IW| + 2 log, m nodes are visited, with Ydefined as in Lemma

Proof. By Lemma3, at most 2’| + 1) log, |W| nodes are visited in the subtrees of the nodes. ., v that
coverW. It therefore remains to bound the total number of nodes contained in tihe fpam the root to these
nodesvy, ..., V.

First consider the special case, whvestarts with the leftmost leaf, and extends to somewhere in the
middle of the tree. Then each of thg ...,V is a left child of one node of the path from the rooto The
total number of nodes contained in theaths from the root to each i, .. ., v is then at mostl — 1, whered
is the depth of the tree. The same argument goes through for the symmetrisltars theange ends with the
rightmost leaf

In the general case, wheWd begins at some intermediate leaf and ends at some other intermediate leaf,
there is a node such that the leftmost leaf of the range is contained in the left subtreauod the rightmost
leaf of the range is contained in the right subtree.dBy the argument from the previous paragraph, the paths
from u to those nodes fromy, ..., v lying in the left subtree ofi then contain at mogt, — 1 different nodes,
whered, is the depth of the subtree rooteduaiThe same bound holds for the paths frarno the other nodes
fromva, ..., v, lying in the right subtree af. Adding the length of the path from the rootupthis gives a total
number of at most@— 3



3.4. PUSHING UP THE WORDS (TREEBITVEC+PUSHUP) 35

3.4 Pushing Up the Words (TREEBITVEC +PUSHUP)

The scheme TREEBBITVEC+PUSHUP presented in this section gets rid of the, [@¢ factor in the query
processing time from Lemm@a The idea is to modify the TREBITVEC data structure such that for each
element of a non-empty intersection, we find a new word-in-docunaén{vp d) that is part of the output.
For that we store with each single 1-bit, which indicates that a particulamaetiucontains a word from a
particular range, one word from that document and that range. Weislinteuch a way that each word is
stored only in one place for each document in which it occurs. Whenighergdy one document, this leads to a
data structure that is similar to the priority search tree of McCreight, whichiesigined to solve the so-called
3-sided dynamic orthogonal range-reporting problem in two dimensio€ifeight 83.

Let us start with the root node. Each 1-bit of the bit vector of the rodenmrresponds to a hon-empty
document, and we store by that 1-bit tbgicographically smallestvord occurring in that document. Actually,
we will not store the word but rather its number, where we assume that veerhuembered the words from
0,...,m-1.

More than that, for all nodes at degitffi.e., i edges away from the root), we omit the leadirgjts of its
word number, because for a fixed node these are all identical anetaamiputed from the position of the node
in the tree. However, asymptotically this saving is not required for the dpaaeds in Theorer as dividing
the words into blocks will already give aficient reduction of the space needed for the word numbers.

Now consider anyone childof the root node, which has exactly one hdlbf all words in its subtree. The
bit vector ofv will still have one bit for each 1-bit of its parent node, but the definitioa @tbit ofv is slightly
different now from that for TREEBITVEC. Consider thgth bit of the bit vector ofv, which corresponds to
the jth set bit of the root node, which corresponds to some document nun@dren this document contains
at least one word — otherwise thth bit in the root node would not have been set — and the number of the
lexicographically smallest word contained is stored by ftiatit. Now, if document; contains other words,
and at least one of thes¢herwords is contained itd, only then thejth bit of the bit vector ofv is set to 1,
and we store by that 1-hihe lexicographically smallest word contained in that document that haalready
been stored in one of its ancestdgrere only the root node).

Figure 3.3 explains this data structure by a simple example. The construction of the detiasdris relatively
straightforward and can be done in tif®éN). Details are given in Sectioh 4.1

Doc 1 Doc 2| [Doc 3| |Doc4 ADA AEDAA B
AB| | D | |AB / 1110101101 \

00110001000001
Doc 5| [Doc8| |Doc7| |Doc8 A-B Cc-D

1010010 0001111
Doc 8| [Deoc1Q 111 0110
BC / \ / \
A B C D
000 000 0000 1000

Figure 3.3: The data structure of TREBITVEC+PUSHUP for the example collection from Figusel. The
large bitvector in each node encodes the inverted list. The words stothd tybits of that vector are shown in
gray on top of the vector. The word list actually stored is shown below tb®ravhere A-00, B=01, C=10,
D=11, and for each node the common prefix is removed, e.g., for the nodedn@rb, C is encoded by 0
and D is encoded by 1. A total of 49 bits is used, not counting the redti@@@nvectors and bookkeeping
information like list lengths etc.

To process a query we start at the root. Then, we visit nodes in suohdanthat whenever we visit a
nodev, we have the sef, of exactly those positions in the bit vectorwthat correspond to elements frdin
(and for each € 7,, we know its corresponding elemegitin D). For each such position with a 1-bit, we now
check whether the word stored by that 1-bit is iV, and if so output\, d;). This can be implemented by
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random lookups into the bit vector in tin@(|7,|) as follows. First, it is easy to intersedtwith the documents
in the root node, because we can simply lookup the document numbers iitvibetdr at the root. Consider
then a childv of the root. What we want to do is to compute a newlseaif document indices, which gives
the numbering of the document indicesdfin terms of the numbering used ¥n This amounts to counting
the number of 1-bits in the bitvector efup to a given sequence of indices. Each of these so-cediekl
computations can be performed in constant time with an auxiliary data strucatinests space sublinear in the
size of the bitvectorNunro 94.

Consider again the check whether a wevdstored by a 1-bit corresponding to a document frbnis
actually inW. This check can only fail for relatively few nodes, namely those with atleae leaf not from
W in their subtree. These checks do not contribute an element to the outpamdeare accounted for by the
factorg mentioned in Theorem 1, and Lemntaand8 below.

Lemma 6 With TREE-BITVECG+PUSHUP, an autocompletion search québ;, W) can be processed in time
O(ID] - B + YXwew ID N Dyl), whereg is bounded byog, m as well as by the average number of distinct words
in a document from D. For the special case, where W is the rangd @fords, the bound holds wigh= 1.

Proof. As we noticed above, the query processing time spent in any particulavmath be made linear in the
number of bits inspected via the index ggt Recall that eache 7, corresponds to some document fr@n
Then for reasons identical to those that led to the space bound of Légforaany fixed documerd € D, the
set of all visited nodeg which have an index in theif, corresponding ta form a binary tree, and it can only
happen for the leaves of that tree that the index points to a 0-bit, so thatitiigen of these 0-bits is at most
the number of 1-bits plus one.

Let againvy, ...,V denote the at most 2 lggn nodes covering the given word rangé(see Sectior3.2).
Observe that, by the time we reach the first node figm. ., vj, the index sef’, will only contain indices from
D’, as all the 1-bits for these nodes correspond to a woWl’inStrictly speaking, this is only guaranteed after
the intersection with this node, which accounts for an additi@nal the total cost. Thus, each distinct word
w we find in at least one of the nodes can correspond to at fpastD,,| 1-bits met in intersections with the
bitvectors of other nodes in the set, and each 1-bit leads to at most two idiiia intersections. Summing
over allw € W gives the second term in the equation of the lemma.

The remaining nodes that we visit are all ancestors of one ofithe. , v, and we have already shown in
the proof of Lemmab that their number is at most 21lgg1. Since the processing time for a node is always
bounded byO(|DJ), that fraction of the query processing time spent in ancestovs, of., v, is bounded by
O(|D|log, m).

|

Lemma 7 The bit vectors of TREEBITVECG-PUSHUP require a total of at mo&N + n bits.

Proof. Just as for TREEBITVEC, each 1-bit can be associated with the occurrence of a partivola in a
particular document, and that correspondence-isl1 This proves that the total number of 1-bits is exabtly
and since word numbers are stored only by 1-bits and there is indeecood@umber stored by each 1-bit, the
total number of word numbers stored is aloByYy the same argument as in Lemdahe number of 0-bits is
at most the number of 1-bits plus 1 for each document. This can alterndiwelgen as follows: Start with an
empty document and, iteratively, insert the lexicographically smallest of itdsyavhich has not been inserted
yet. Each such word-in-document pair, which corresponds to a 1 invadiibr, will be pushed up in the tree as
far as possible, thereby replacing one 0-bit and creating (at most) tw@-déts in its children. Less than two
0-bits (and in fact none at all) will only be created, if the 1-bit was alrestdize bottom level.

|

3.4.1 The Index Construction for TREE+BITVEC +PUSHUP

The construction of the tree for algorithm TREBITVEC+PUSHUP is relatively straightforward and takes
constant amortized timger word-in-document occurrence (assuming each document coitsaivsrd sorted
in ascending order).
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1. Process the documents in order of ascending document numbefst eadh documernt do the follow-
ing.

2. Process the distinct words in documerimh order of ascending word number, and for each web the
following. Maintain acurrent nodewhich we initialize as an artificial parent of the root node.

3. If the current node does not containn its subtree, then set the current node to its parent, until it does
containw in its subtree. For each node left behind in this process, append a Q4sthd vector of those
of its children which have not been visited.

Note: for a particular word, this operation may take non-constant timephae we go from a node to its
parent in this step, the old node will never be visited again. Since we onhneidés, by which a word
will be stored and such nodes are visited at most three times, this givesnbamortized time for this
step.

4. Setthe current node to that one child which contaimsits subtree. Store the wowdby this node. Add
a 1-bit to the bit vector of that node.

3.5 Divide Into Blocks (TREE+BITVEC +PUSHUP+BLOCKS)

This section is our last station on the way to our main result, Thedrem

For a givenB, with 1 < B < m, we divide the set of all words in blocks of equal sBeWe then construct
the data structure according to TREEITVEC+PUSHUP for each block separately. As we only have to
consider those blocks, which contain any words fM#this gives a further speedup in query processing time.
An autocompletion query given by a word rangfeand a set of documenisis then processed in the following
three steps.

1. Determine the set d@f(consecutive) blocks, which contain at least one word f¥inand fori = 1,.. ., ¢,
compute the subrang®; of W that falls into blocki. Note thatW = WU - - - UW.

2. Fori =1,...,¢, process the query given by andD according to TREE BITVEC+PUSHUP, resulting
in a set of matcheW/); := {(w,d) € C : we W, d € D}, whereC is the set of of word-in-document pairs.

3. Compute the union of the sets of matching word-in-document plé:iiMi (a simple concatenation).

Lemma 8 With TREE-BITVECG+PUSHUR-BLOCKS and block size B, an autocompletion search o{izrw)
can be processed in time(lD] - (@ + B8) + Xwew |D N Dwl), wheree = |W|/B andg is bounded byog, B as
well as by the average number of distinct words fromWWV, (the first and the last subrange from above) in a
document from D.

Proof. Let Wi denote the subset & pertaining to blocki. Since each block contains at mddtwords,
according to Lemma&, we need time at mosd(|D|log, B + X ew; ID N Dyl) for a blocki. However, for all
but at most two of these blocks (the first and the last) it holds that all wafrtise blocks are iW, so that
according to the special case in Lemf)adhe query processing time for each of the at nié4tB inner blocks
is actuallyO(|D| + Y wew ID N Dyl) . Summing these up gives us the bound claimed in the lemma.

|

Lemma 9 TREE+BITVEG-PUSHUR+BLOCKS with block size B requires at m@st + n- [m/B] bits for its
bit vectors and at most Nog, B] bits for the word numbers stored by thebits. For B > mryN, this adds
up to at mos#N for the bit vectors, and 4 + [log, B]) bits in total. The auxiliary data structure (for the
constant-time rank computation) requires at most an additioryall Iits.

Proof. To count the number of bits in the relative bitvectors, we use the same argasiem Lemma/: there

is exactly one 1-bit for each of tHé word-in-document occurrences. The total number of 0-bits is at most the
total number of bits in the roots of the blocks (which giveg'm/B]), plus the total number of 1-bits. So the
total space for the bit vectors is boundedNMy nfm/B]+ N < 2N + n[N/n] < 4N. The space for the word
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numbers is exactliN[log, B], as it requireglog, B] bits to encode a word in a block of siBe Finally, as the
total length of the bit vectors is bounded by Ave can construct the auxiliary data structure to require at most
N bits [Munro 96.2

|

With all the required machinery in place, we can now prove Thedrefart (a) of Theoren is established
by the construction given in Sectigh4.1 Part (b) of Theorem follows from Lemma9 by choosingB =
[nmyN7. This choice oB minimizes the space bound of Lem@aand we call the corresponding data structure
AutoTree. Note that it is here that we use the flct= 2° - m, as it ensures 5 log,(nnyN) < log, n and
ultimately 5+ [log, B] < [log, n]. Part (c) of Theoreni follows from Lemma8 and the following remarks.

If the words in a document with words are a random siZzesubset of all words, then the average number of
words per document that fall into a fixed block is at most 1. In our experisnehe average value fgrwas
2.2.

As mentioned just before Lemnta 8 counts the number of bitvector lookup operations for a candidate
document inD, which do not contribute any element to the result set. If the wordrévigpans multiple tree
blocks of sizeB = [nm/N7 = [m/L1, then such “useless” bitvector lookups can also occur at the roosradde
the intermediate tree blocks. However, these comparisons are accoomigdliie factoky, which bounds the
number of such intermediate blocks, ghdnly counts such bitvector lookups in the boundary blocks, which
also contain at least one word notWh Note thatw is trivially bounded by the total number of blocks, which
is[m/B] < 1+ L, which is constant.

Formally, is defined as the number of bitvector lookups that need to be performed indhddry blocks
(of which there are at most two) for a candidate documer® iantil either (a) this document can be ruled
out as an element @’ (as it contains no valid completions) or (b) a relevant completion is repaied this
document (at which point the total number of additional bitvector lookup®isited by twice the number
of matching output elements for this document). A small, congtahtis indicates a strong output-sensitive
behavior of the algorithm. Note thatis bounded by Pnmax, the maximum number of words in any document.

Finally, it remains to explain, how to obtai’ andD’ from ®. Theoretically, this can be done by having
two bit vectors of lengthsn andn respectively, which are to be reused for all queries. Note that the spdice
required is negligible compared to the size of the data structure itself. ThHele wspecting the elements
(w,d) € @, we set the bit corresponding win the bit vector of dimensiomto 1, if it is not set already, and
addw to the seW'. In a similar fashion, we proceed f@r'. This takes tim&®(|®|). Finally, to be able to reuse
the two bit vectors, we pass through all element®irandW’ and reset the corresponding bits to 0. These
passes take tim@(|®@|). In the end, the elements @’ and in particular oD’ will be unsorted. At first glance,
this could cause a problem, BS will be the inputD for following autocompletion queries. But AutoTree does
not require the elements &f to be sorted (unlike INV).

In practice, we simply sort the elementg @) € ® by w within each block, to obtain the sét’. Similarly,
to obtainD’, we merge the output lists of elementg () for individual nodes as, D is sorted, these will be
sorted byd.* We chose this approach mainly as (i) it makes the use and aggregatiorres sesier, (i) we
can, in fact, use the same sortisgpring methods for documents for INV and AutoTree (which made sadtwar
maintenance easier), (iii) the absolute time for sorting is small compared to the time thdi matches, and,
(iv) the logarithmic factor in the time required for sorting is small compared tsteon costs for, e.g., copying
and other simple manipulations, so that we still obtain an almost perfect lingatatmn with the size of the
@, even as the size d varies.

3.6 Experiments

We tested both AutoTree and our baseline INV on two corpora. First, ocottpeis of the TREC 2004 Robust
Track (ROBUST '04), which consists of the documents on TREC disksd45amminus the Congressional
Record Moorhees O}  Second, on the English Wikipedia (WIKIPEDIA), using only article pagad not
discussion or user pages.

3Note that we do not count book keeping information (neither for AuteTrer for BASIC), such as space needed to store the
lengths of the bit vectors (or the lengths of the inverted lists), as this addiipaee is asymptotically negligible.

“4Interestingly, the total number of such lists is bounded_by'm, as each of th& blocks contributes at most®x non-empty
nodes. This is independentimfm, N or W, which might seem trivial, but which is something that INV fails to achieve.
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In both cases, we implemented AutoTree with an optimal block size (accordirectm®3.5), which was
4096 for the ROBUST'04 collection and 65,536 for WIKIPEDIA. Block esszwere rounded to the nearest
power of two.

The following table gives details on the collections and on the space consaroptioe two schemes; as
we can see, AutoTree does indeed use no more space (and for botti@adein fact, significantly less) than
INV, as guaranteed by Theorem

bits per word-in-doc pair

Collection raw size n m L B* INV | AutoT

ROBUST04 || 1.9GB | 528,025 | 771,189 | 219| 4,096 || 20.0| 13.9
WIKIPEDIA || 6.0 GB | 2,363,363| 7,138,267 128 | 65,536| 22.0| 17.3

Table 3.1: The characteristics of our test collectians:number of documentsn = number of distinct words,
L = N/n = (rounded) average number of distinct words in a docuni&ng, space-optimal choice for the block
size. The last two columns give the space usage of INV andrek) in bits per word-in-document pair, not
including the (small) additional space for storing list lengths and the auxili@tg structure for constant-time
rank operations. Both collections satisfy the conditior\ofor Theoreml.

For the ROBUST’04 collection, queries are derived from the 200 “dlguieries (topics 301-450 and 601-
650) of the TREC Robust Track in 200¥dorhees O For the WIKIPEDIA collection, we generated 200
gueries randomly as follows: For each query we picked a random datumith uniform probability and
sampled 4 terms of length at least 4 from it. Terms were sampled accordingrt¢fidé values, i.e., each
term had a probability of being sampled proportionatftelog(n/df), wheretf is the number of occurrences
in the given document) is the total number of documents addl is the number of documents containing this
particular term. See Tablz2for some examples of such random queries.

Query 1: highexplosives normal pyrotechnics primarysources
Query 2:  remained growth overview europe

Query 3: legislatures seats typically apportion

Query 4: salisbury inheriting westmoreland thomas

Query 5: italy mayor frazioni baroque

Table 3.2: Five of the random 200 queries generated for the WIKIREDIlection. From these queries, we
constructed 800 autocompletion search queries as described below.

In both cases, these queries were then “typed” from left to right, takimgnanum word length of 4 for
the first query word, and 2 for any query word after the first. Fronseheutocompletion search queries we
further omitted those, which would be obtained by simple filtering from a prefiom@ing to the explanation
following Definition 1 in the previous chapter. This filtering procedure is identical for Autoam® INV and
takes only a small fraction of the time for the autocompletion search queriesgs®d according to Definition
1, which is why we omitted it from consideration in our experiments. To givexamgle, for the ad hoc query
world bank criticism, we considered the autocompletion search quesiesl , world ba, and world
bank cr. For the ROBUST’04 collection, we considered a total number of 513 autdtompletion search
gueries. For the WIKIPEDIA collection, exactly 800 such autocompleti@riga were obtained (as all of the
200 “raw” queries contained exactly 4 words).

We implemented INV and AutoTree in+3 and measured query processing times on a Dual Opteron
machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main memory, runnimgxL We measured the time
for producing the output according to DefinitiGn

As we implemented a sort-based approach to derive the unique elem&itam @ (see the remarks at
the end of Sectiof3.5), the time for scoring and ranking would be essentially identical for Au®ared INV,
and would, according to a number of tests, take only a small fraction of tteraéntioned processing time.
We therefore excluded it from our measurements. For INV, we implemerftesd Bnear-time intersect, which,

5They are “old” as they had been used in previous years for TREC.
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in preliminary experiments not reported here, turned out to be faster thasyitsptotically optimal relatives
[Demaine 0] due to its almost perfect locality of access.

ROBUST'04 (513 queries)
Scheme| Max Mean | StdDev | Median | 90%-ile | 95%-ile | Correl.
INV 14.8secs| 0.22secs| 0.83secs| 0.042secs| 0.39secs| 0.98secs| 0.99
AutoT || 1.15secs| 0.07secs| 0.12secs| 0.042secs| 0.17secs| 0.24secs| 0.99
WIKIPEDIA (800 queries)
Scheme| Max Mean | StdDev| Median | 90%-ile | 95%-ile | Correl.
INV 71.9secs| 2.20secs| 7.28secs| 0.351secs| 4.77secs| 10.04secs| 0.99
AutoT || 2.17secs| 0.17secs| 0.25secs| 0.032secs| 0.47secs| 0.63secs| 0.99

Table 3.3: Processing times statistics of INV andréV (reg) for all queries for both test collections. The
6th and 7th column show thah worst processing time, whekels 10% and 5%, respectively, of the number
of queries. The last column gives the correlation factor between quecggsing times and total list volume
> wew(|D] + [Dy|) for INV, and input size plus total output volunfig| + 10- },,cw |D N Dy for AutoTree.

The results from Tabl8.3 conform nicely to our theoretical analysis. Four main observations carade:

(i) with respect to maximal query processing time, which is key for an intexaegplication, AutoTree im-
proves over INV by a factor of more than 10; (ii) in average procedsimg, which is significant for throughput
in a high-load scenario, the improvement is still a factor of 3 for the smalleratmiteand 13 for the larger
collection; (iii) processing times of AutoTree are sharply concentrataghdrtheir mean, while for INV they
vary widely (in both directions as we checked); (iv) the almost perfenietation between query processing
times and our analytical bounds (explained in the caption of Fi§uledemonstrates both the soundness of
our theoretical modeling and analysis as well as the accuracy of our impiatoan

ROBUST'04 (513 queries)
1-word (199 queries) multi-word (314 queries)
Scheme Max Mean Max Mean
INV 0.11secs 0.01secs 14.8%ecs 0.3%secs
AutoTree 0.67%ecs 0.1Z%ecs 1.15ecs 0.05secs
WIKIPEDIA (800 queries)
1-word (200 queries) multi-word (600 queries)
Scheme Max Mean Max Mean
INV 0.2%ecs 0.0%ecs 71.85ecs 2.9%ecs
AutoTree 1.36secs 0.41secs 2.17%ecs 0.0%ecs

Table 3.4: Breakdown of query processing for INV and AutoTree oyiber of query words.

Table3.4, finally, breaks down query processing times by the number of quergsvérs we can see, INV
is significantly faster than AutoTree for the 1-word queries, howewathecause AutoTree is slow, but because
INV is extremely fast on these queries. This is so, because INV dodsmetto compute any intersections for
a 1-word query but merely has to copy all relevant IB{sto the output, whereas AutoTree has to extract, for
each output element, bits from its (packed) document id and word id ve@armulti-word queries, INV has
to process a much larger volume than AutoTree, and we see essentially #iositliscussed above for the
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overall figures.

3.7 Incorporating Positional Information in AutoTree

Our implementation of AutoTree do@®t support the use of positional information. In particular, the use of
phrase or proximity search is currently not possible. One obvious appto remedy this would be to consider
each region of interest, e.g., a phrase or, in the extreme case, evéigmas a separate document and to
also keep track of which of these “micro-documents” belong to the same trtlmmument”, i.e., ordinary
document.

However, such an approach would inherently destroy any outpuitiserizhavior for the (common) case,
where we would like the usual document-level completion, disregardingjlgegositional information. We
have to commit to a certain “unit”, for which we want an output-sensitive Wiehaand this unit cannot be
dynamically changed. A solution involving the duplication of several Aute3reith diferent notions of a
“document” would lead to an increase of space.

In practice, it might still be feasible to commit to a single unit of granularity and,tfer broader queries,
merge the results from the “micro-documents”. We did, however, not fdllésvapproach to the end, as we
started developing our alternative and generally superior (see Séaf)dnYB data structure, presented in the
next chapter. HYB easily allows the incorporation of positional informatimhaso comes with guarantees on
the compressibility of this information.

3.8 AutoTree vs. Stfix Arrays

As already discussed in Secti@rB, sufix arrays could also readily be applied to find all occurrences of a given
prefix. Here, we will give experimental evidence thafisuarrays do indeed (i) take too much space or (i) take
long to report all occurrences.

We compared AutoTree against a state-of-the art implementation of Su&ifict Arrays (version 2)
[Makinen 04 (SSA2), which can be downloaded from the Pizza&Chili websitetab: //pizzachili.dcc.
uchile.cl/. We also experimented with the other availabléigwarray variants available on that site, but
SSAZ2 performed best and, for the same reason, was chosen adirebad®uglisi 04.

SSA2 comes with two crucial tuning parameters, which govern the space-tieedf. The sampling
rate, which controls the gaps between positions sampled in the fiikk suray, and a factor, which governs
the amount of space for the auxiliary data structure, which is used forotietant time rank queries for bit
vectors® Slightly confusingly, dow sampling rate, in the authors’ terminology, means thahypositions are
sampled, that the gaps are thus small, and that therefore the space comswoes up while the processing
time goes down. In Tabl8.5 we show the performance of SSA2 for various choices of this paraméter
also tried out several values for the factor pertaining to the space otitileasy data structure. However, this
turned out to have only a very smalfect and the default value of 4, so that at mg&t-ih of the space of a bit
vector is used for the constant time rank data structure, tended to giveghpdsformance.

As AutoTree returns documents, and not positions, for a given preéiXyuilt a single string for our text
corpus, where multiple word-in-document occurrence were combinedstogée occurrence of that word.
This way, the number of occurrences returned by both methods was @lenfite corpus, we used for this
experiment, contained = 51,671 documents from the domain of homeopathic medicine. In total, there
wereN = 13 970 105 word-in-document pairs and the total size of the (uncompressan str disk was
97 MB. We compared the time that both SSA2 and AutoTree take to report@lirences of 200 random
(but occurring) 4-letter prefixes. Note th& = nin this case, which constitutes the worst-case for our data
structure. As AutoTree cannot easily reproduce the original corpus its index, whereas SSA2 can, we also
counted the size of the string toward the size of AutoTree. Numbers inthasss in the table refer to the
setting, where this string is compressed with gzip, which reduces its sizedffdm26 MB. The time to sort
the occurrences isotincluded in the time for AutoTree, as SSA2 also returns a listrsfortedoccurrences.

Table 3.5 shows that even in worst case setting for AutoTree, wiigke= n and the full, uncompressed
string is counted toward AutoTree’s index size, the state-of-the-arlSHAx array needs at least 17% more

6AutoTree also uses such an auxiliary data structure.
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. (disk space SSA2) (average time SSA2)
SSA2 sample rate (disk space AutoTree) (average time AutoTree)
64 0.63 (1.15) 14.9
32 0.70 (1.30) 6.89
16 0.86 (1.58) 2.87
8 1.17 (2.17) 0.94
4 1.79 (3.30) 0.21

Table 3.5: Comparison of relative space and time consumption for Autofice&8A2. Both data structures
were used to find the (unsorted) occurrences of 200 4-letter preftesh yields AutoTree’s worst case of
ID| = n. SSA2 was built for all possible sample rates between 64 and 4. The siface to the space of
both data structures on disk. The space for storing the string, refiresdre corpus, is counted toward space
consumption for AutoTree. The numbers in parentheses in the 2nd colderrtoghe scenario, where this
string is compressed using gzip.

space, for an improvement in average running time of a mere 6%. If omgexbthe space of the compressed
string instead, or if one considered cases wiigre:< n, the comparison would be far more lopsided, which is
why we disregarded the use offBx arrays for our autocompletion search setting.



Chapter 4

HYB Index

4.1 Introduction

In this chapter, we present the data structure, named HYB, which our IE@m8parch engine is built upon.

It uses no more space than a state-of-the-art compressed inverted andecan respond to autocompletion
queries as described in Definitidrwithin a small fraction of a second, for collections up to about a Terabyte in
raw size. HYB is optimized for settings where the index is too large to fit in main mearat resides on disk.

Our main competitor in this chapter is, as before, the inverted index (INVer@fhta structures that could
be directly applied to our problem either use a lot of space or have other limiatse@e the discussion in
Section2.3 and also the comparison to the AutoTree index in Sectiéh We give a rigorous mathematical
analysis of HYB with respect to both space usage and query processggjand we complement the analysis
of INV, given in Section2.2, by analyzing INV’s space usage when its document lists are compre€aed
analysis accurately predicts the real behavior on our test collections.

Concerning space usage, we define a notioenapirical entropyfFerragina 0b[ Williams 99, which cap-
tures the inherent space complexity of an index independent of a partongpression scheme. We prove that
the empirical entropy of HYB is essentially equal to that of INV, and we firad the actual space usage of our
implementation of the two index data structures is indeed almost equal, for faghtbree test collections.

Concerning processing times, we give a precise quantification of the mwhbperations needed, from
which we derive bounds for the worst, best, and average-casgibebfHYB. The corresponding bounds for
INV are given in Sectior2.2. We also take into account theflidirent latencies of sequential and random access
to data Aggarwal 8§.

We compare INV and HYB on three test collections witkfelient characteristics. One of our collections
has been (semi-)publicly searchable over the last years, so that weahtncompletion search queries from
real users for it. Our largest collection is the TREC Terabyte benchmahkowver 25 million documents
[Clarke 0§.

On all three collections and on all the queries we considered, HYB ootpesfINV by a factor of 36- 60
in worst-case query processing time, and by a factordf%in average case query processing time. In absolute
terms, HYB achieves average query processing of less than one tentieoénd on all collections, on a single
machine and with the index on disk (and not in main memory).

4.2 Definition of Empirical Entropy

To analyze the inherent space complexity of INV and HYB independentlyeadpecialties of a particular com-
pression scheme, we introduce a notioewipirical entropywhich is supposed to quantify the minimal number
of bits required to store the respective data. Both INV and HYB are gallgm collection of (multi)sets and
sequences. The following definition gives a natural notion of entropydgeh such building block, and for
arbitrary combinations of them (similar definitions have been madgearrfgina Oband [Williams 99). The
reader might first want to skip the following definition and come back to it whisrfirst used in the analysis
that follows.

43
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Definition 3 We defineempirical entropyfor the following entities, wheré{(p1,..., p) = - Z!:l(pi -log, pi)
is the I-ary entropy function.

(a) Forasubsebf size rnwith elements from a universe of size n, the empirical entropyA&' /n, 1-n’/n)
(include each element of the universe into the subset with probability,rwhich is

n
n-log, —+(-n)-lo .
gzn, ( ) gzn—n’

(b) For a multisubsetof size r with elements from a universe of size n, the empirical entrogy isn’) -
H( /(n+1n’),n/(n+ 1)) (consider a bitvector of size#n’, and let a bit bed with probability ri/(n+n")
and1 otherwise; the prefix sums at tBebits give the multisubset), which is

+n n+n

n
n -log, +n-log,

nl

(c) Forasequencefn elements from a universe of size |, where the ith element ocdimsas (R +---+n =
n), the empirical entropy is 1%+ (ny/n, ..., n;/n) (for each position, pick element i with probability/n),
which is

n n
nl«logzn—l+---+n| 'Iogzﬁl.

(d) For a collection of | entities with empirical entropig4y, . . ., Hi, the empirical entropy is simply; +
e+ (}-{l .

4.3 INV, HYB, and Their Analysis

In this section we will first give a brief recap of INV and then analyze its ieicgd entropy, as it will serve
as a baseline. We then go on and describe HYB, and analyze it with taspis empirical entropy and
its processing time for autocompletion search queries according to DefititiQuery processing times will
be quantified in terms of all relevant parameters; from this we can easilyedsorst-case, best-case, and
average-case bounds. Our average-case bounds make simplifgurg®ns on the distribution of words in
the documents, but nevertheless turn out to predict the actual behaitemegll. Sectiord.4 compares the
empirical entropy of both INV and HYB when (optionally) positional informatis available. Implementation
issues and the actual performance of our implementations of INV and HYBeifliscussed in Sectigh5.
We briefly comment on index construction times in Sectidh3

4.3.1 Empirical Entropy of INV

The inverted index is described and analyzed in Sed&ianSimply recall though that, for each word, it stores
a sorted list of document (ids) containing this word. In the following, we esértiee inherent spacéfeiency
(empirical entropy) of INV. We do not consider enhancements suchipgsinters Moffat 99 (which allow
for a faster intersection of such lists), which we would expect to give sirnédaefits for both INV and HYB,
however at the price of an increased space usage.

Lemma 10 Consider an instance of INV with n documents and m words, and wherhthwrds occurs in
n; distinct documents (so that & - - - + ny, is the total number of word-in-document pairs). 7, be the
empirical entropy according to Definitio® Then

m

1 n
(]'{inv < Z(ni'm+ni'|0g2n—i s

and for all collections considered in this paper (where mqgsane much smaller than n) this bound is, in
practice, tight up t®2%.
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Proof. According to Definition3 (a) and (d), we have

m

n n
Hiny = Z(ni-logza+(n—ni)-logzn_ni).

i=1

To prove the lemma, it gfices to observe that because % < €* for any realx,

n n-—n N N
n-n)-log, —— = -In[1+ < —.
(n=m) %25 n T T2 ( n—ni) In2
Now, for almost all wordsv;, we haven, << n. This means thati/(n — n;) is close to zero, which means
1+ x ~ €*. For our collections, the (averagedjfdrence was less than 2%. [

Lemmal0 tells us that if the documents in each list were picked uniformly at random, tl@ol@mb-
encoding of the gap@Vitten 99 from one document id to the next (for listthe expected size of a gap would
ben/n;) would achieve a space usage very closgftg, bits. In our implementation, we opted to encode gaps
with the Simple-9 encoding fromAnh 05, which is easy to implement, and achieves very fast decompression
speeds at the price of only a moderate loss in compresfiica®y; details are reported in Sectibrb.

4.3.2 Our New Data Structure (HYB)

The basic idea behind HYB is simplprecompute inverted lists for prefixes instead of individual worss
sume an autocompletion search quddy\(V), where the union of all lists for word rani®& have been precom-
puted. We would then gdd’ with a single intersection (dD with the precomputed list). However, from this
precomputed list alone we can no longer infer theW§ebf completions leading to a hit. Siné& can be an
arbitrary word range, it is also not clear which unions should be preatadpespecially when we do not want
to use more space than an (optimally compressed) inverted index.

The analysis given in this section suggests the following approach: gheupords in blocks so that the
lengths of the inverted lists in each block sum to (approximately), for some constart < 1 (we will later
choosec ~ 0.2). For each block, store the union of the covered inverted lists as a esggumultisef using an
effective gap encoding scheme just as done for INV (repetitions of the damerm in the multiset correspond
to a gap of zero). In parallel to each multiset, for each elemstire the id of the word that led to the inclusion
of (this occurrence ofx in the multiset. This gives a sequence of word ids, the length of which is exaetly
size of the multiset. Encode these word ids with code length (approximatelf(nog- - - - + n;)/n;) for the
ith word, wheren; is the number of documents containing flie word, andl is the number of words in the
respective block.

Here is an example. Let one of the blocks comprise four wétd3 C, andD, with inverted lists

A3,5,6,8,9,11,12,15
B:5, 11

C3,7,11,13

D:3,8

We would then like to store, in compressed form, the multiset (of documentriddgha sequence (of word ids)

333556788 9111111121315
ACDABACADAABCACA

The optimal encoding of the words, B, C, D would use code lengths lg(.6/8) = 1, log,(16/2) = 3,
log,(16/4) = 2, log,(16/2) = 3, respectively, for examplé = 0, B = 110,C = 10, D = 111. An optimal
encoding of the four gaps 0, 1, 2, 3 that occur in the above multiset eindewt ids would be 0, 10, 110, 111,
respectively. What we actually store are then the two bit vectors (whefetl solely for better readability;
the codes in this example are prefix-free)

1110/0/1100/1010100/101100/01010110
01101110/1100]100/1110/0/111G100/100
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Note that due to the two fierent encodings the two lists end up havinfjatient lengths in compressed form,
and this is also what will happen in reality.

The following analysis will make very clear that, to obtain bounds on the totalespsage, (i) one should
choose blocks of equal list volume (and not, for example, of equal nuaflveords), (i) this volume should be
a small but substantial fraction of the number of documents (and neither smalliarger), and (iii) the lists
of document ids should be “gap-encoded” while the lists of word ids shmeiléntropy-encoded”.

As for the space usage, we will first derive a tight bound on the entodpyYB, and then show that,
somewhat surprisingly, if we only choose the block volume to be a small énfvagtion of the number of
documents, the entropy of HYB is almost exactly that of INV.

We will then show how HYB can be used to process autocompletion queries itiieae in the number of
documents, provided that the blocks are chosen fifcéently large volume and the given word range is not too
large (that is, the prefix to be completed is not too unspecific). In that EB& will provide for an excellent
locality of access, since the basic operation will be one of scanning long lists

Lemma 11 Consider an instance of HYB with n words and m documents, where the rithowours in n
documents, and where for each block the sum of théth i from that block is ¢ n, for some ¢ 0. Then the
empirical entropyHhyb, defined according to Definitiod, satisfies

m
1+c/2 n
Hiyo < ;(ni-W+ni -Iogzﬁi),

and the bound is tight as-e 0.

Proof. Consider a fixed block of HYB, and lei denote the number of documents containingitheword
belonging to that block. Throughout this proof, }étn; denote the sum over all thesg(so that the sum over
all 3 ni from all blocks gives the."; n; from the lemma). According to Definitio (b), (c), and (d), the
empirical entropy of this block is then

N+ 35N n+ ;N 2ihi
i ni'|092—|_|+n'|092Tll+Zi nj Iogz'—i'.

2iNi n

Now adding the first and the last term, the arguments of the logarithms partiatiglaaut ('), and we get

n+ N n+ ;N
Z_ n; - |ng A + n- |og2 A
I N n

Now using that, by assumptio; nj = ¢ - n, we obtain
n
Zi n; ((1 + 1/c)log,(1 + ¢) + log, H) .
|

Since (1+ 1/¢)In(1+ ¢c) < 1+ c¢/2 for allc > 0, we can upper bound this (tightly, as» 0) by

Zn- 1+C/2+Io n
i '\ In2 %)

This bounds the empirical entropy of a single block of HYB (the sum goes @\ words from that block).
Adding this over all blocks gives us the bound claimed in the lemma.
|

Comparing Lemma&1with Lemmal0, we see that if we let the blocks of HYB be of volume at mosn,
for some small fractiow, then the empirical entropy of HYB is essentially that of an inverted inde$elction

1To see that (& 1/c)In(1 +¢) < 1+ ¢/2 forc > 0, first note that the Taylor expansion of {11/c) In(1 + c) aboutc = 1 is
1+¢/2+ 32,2 (c/((2 +1)- (20 + 2)) - 1/((2i) - (2i + 1))). Forc < 1 all the individual summands are negative, and the total sum
is trivially smaller than X+ c/2. Forc > 1, we have (& 1/c)In(1+ c) < 2In(1+ c) < 1 + ¢/2. This follows from the observations
that (i) both 2 In(1+ c) and 1+ c/2 are strictly increasing in, (ii) the second derivative of 2 In(% c) is always negative, whereas the
second derivative of  ¢/2 is zero, (iii) the derivative of 2In(* c) is always smaller than that ofd.c/2 for ¢ > 3, and, finally, (iv)
2In(1+3)<1+3/2forc=3.



4.3. INV, HYB, AND THEIR ANALYSIS a7

4.4, we will see that when we take positional information into account, the empaitedpy of HYB actually
becomedessthan that of INV, for any choice of block volumes.

In our implementation of HYB, we first reduce the sorted lists of document ids ltst of gaps, i.e.,
differences between doc ids. If we would then encode a gap oksidéh a universal encodingviacKay 02
using~ log, x bits, we would attain the empirical entropy of Definition 2.2. In practice, w@dacthese gaps
using a Simple-9 encoding, just as describe for INV before, which gaisalose to the theoretical optimal
space consumption while also giving very fast decompression speeds.

For the lists of word ids, entropy-optimal compression could be achievéedbyigues such as arithmetic
encoding Witten 99 or Huffman encoding. But, if we assume that the word frequencies in a block have a
Zipf-like distribution, i.e. that the-th most frequent term has a relative frequency proportional/totthen,
as for the gaps, an encoding usingog, x for the numberx would also be (near) entropy optinfalThese
frequency ranks we then encode again using the Simple-9 encoding.

Concerning block boundaries, our implementation deviates slightly from thal-®qlume strategy sug-
gested by our theoretical analysis. Namely, we group all words with a corpmedix of a given fixed length
into one block, for example, all words starting withf. This length is fixed such that the average block size
is a fraction of the number of documents, as suggested by our analydis.tiéd it is not necessary that the
block-defining prefixes are all of the same length. We neverthelessetibem this way, accepting a number
of very specific prefixes, for exampiets, with very small blocks. It can be seen from our analysis, that for
such small blocks, the gap encoding of the lists of doc ids is suboptimal, buhthaftect is attenuated by
the fact that word ids from the small words ranges of such blocks candmded morefgciently. In practice,
we found that choosing blocks based on fixed-length prefixes gésegally the same index size as if blocks
were chosen of a corresponding equal volume.

Lemma 12 Using HYB with blocks of volume’Nautocompletion querieD, W) can be processed in the
following time, where [) is the inverted list for word w

O[(IDI+IN)) - (1+1 )" IDwl/ND) + > ID N Dl - log(1+1 > IDwl/N'T)|.
weW weW weW
For N = ®@(n) and|W| < m- n/N, and assuming that the elements of j,, 2nd W are picked uniformly at
random from the set of all n documents or all m words, respectivelygexpectedprocessing time is bounded

by Q(n).

Proof. According to Definitionl, we have to compute, givem(W), the setW’ of words fromW contained

in documents fronD, as well as the sdD’ of documents containing at least one such word. For each block
B containing at least one word frolV, a straightforward linear intersection of the givBnwith the list of
document-word pairs frorB, gives us in timeO(|D| + [N’[) the setWj of all words fromW’ from block B, as

well as the seDy, of all documents fronD” which contain a word fron.

From theseD’ can be computed bylaway merge in timé(>,,cw |D N Dwl log(k)), wherek is the number
of blocks that contain a word frow, andW’ can be computed by a simple linear-time sort ivdouckets
(becausaV is a range). Combining the time for intersection and merging, the total tidékis(|D| + |N’[) +
2wew |D N Dyllog(k)).

The numbeik of blocks is at most % [,cw|Dwl/N’1, which gives the general statement of the lemma.
The randomness assumptions stated in the lemma simply mean that the proportand-afisgoc pairs from
words inW is proportional to/. In other words, doubling/V| results in (roughly) doublingcw |Dwl. Given
this assumptior}.,ew IDwl = O(WIN/m). If the prefix corresponding to the word rangéis not too unspecific
(such as “a*” or “t*”), then|W| < m- n/N and we haveO(\W|N/m) = O(n). Thus, forN’ = ®(n) the expected
numberk of blocks is constant and the total processing tim@(is). [

4.3.3 Index Construction Time

Getting from a collection of documents (files) to INV is essentially a matter of @nexbernal sort{Vitten 99.
This can, e.g., be done in batches, where in one round we read as ntaets diés into main memory, and then

2This can be easily seen using the definition of the entropy and the two amaitipns (i) YK, 1/i ~ In(k) and (i) XX, log,(i)/i ~
0.51n%(k)/ In(2)
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we sort and compress this, and we write it back to disk. At the end, we rtfeegadividual lists Heinz 03.
HYB does not require a full inversion of the data, but can be implementedonlthtwo passes over the data:
one pass for a rough sorting by block index, and another pass ftingdne blocks. For our experiments,
however, we built the compressed indices for both INV and HYB from aermnediate fully inverted text
version of the collection, which takes essentially the same time for both.

4.4 Empirical Entropy with Positional Information

If positional information of each word occurrence is available, thentHersame word, élierent occurrences
in the same document can be distinguished, and phrase search and preeandly, where the search terms
are required to appear close to each other, becomes possible. This fealiscussed in more detail in Section
5.5. Here, we are mostly concerned with the additional space requirements.

It is not hard to extend both INV and HYB to accommodate positional informatiothe document lists
(INV and HYB) as well as in the word lists (HYB only), we duplicate eachyat many times as it occurs in
the corresponding document, and store the positions in a parallel arthg same size. Word and document
lists are compressed just as before, and the lists of positions are gagedrny Simple-9, just like the lists of
document ids. The intersection routine is adapted to consider a proximity wiaslan additional parameter.

We can extend our analysis from Secti@f to give bounds on the relative space consumption of INV and
HYB. As we will see in Sectior.5.3 the position lists increase the index size by a factor of 4-5, for both INV
and HYB (without any kind of stopword removal).

Lemma 13 Let N be the total number of occurrences of the ith words, and let N be the totabar of word
occurrences. Then

m
Hiyty < Hiny < Y (Ni/In2+ N; - logy(N/N)).
i=1
whereHin, andHyy denote the empirical entropy of INV and HYB, respectively, with positiof@imation.
That is, with positional information, HYB is always more spagieient than INV, irrespectively of how we

divide into blocks.

Proof. According to Definition3, the empirical entropy of INWvith positional informations

m N m
Hiny = Ni-log, =+ > (N—Nj)-log,
; N; ; N - N;
m
< D (Ni/In2+ N - 1ogy(N/Ny))

I
=

The last inequality follows from In(2 x) < x. If we incorporate positional information into HYB, the empirical
entropy for a single block with volumg,; N; becomes

N N
N; - lo + (N - Ni) - logy —————

% Nj
Z N; - log, N

N N
ZNi-Ingn-l-(N—ZNi)-IngN_—Z:'N_,
i : i it

where the summany; N; - log,(3; Nj/N;) is the empirical entropy of the word ids. Summing the empirical
entropy over all blocks, using }; Ni = N and the fact that the functiof(x) = (N — x) - log, %( is concave,
it is easy to see that

Hhytr

+

i N N
Z(N - Nj) - log, N_N Z(N - Z N;) - log, N=» N,
i=1 : i ]
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and henc&yy < Hiny. ]

In practice,N; - 10g,(N/N;) = 2N; - log,(n/n;) and since on average a word occurs about 2-3 times in a
document, this is just 4-5 timeslog,(n/n;), which was the corresponding term in the entropy bound for INV
or HYB without positional information (Lemmai) and11).

4.5 Experiments

We implemented both INV and HYB in compressed format, as described in Seétipand4.3.2 Each
index is stored in a single file with the individual lists concatenated and ay afrtet offsets at the end. The
vocabulary (which is the same for INV as for HYB) is stored in a separateXll our code is in G-+. All our
experiments were run on a Dual Opteron machine, with 2 Intel Xeon 3 Gbtepsors, 8 GB of main memory,
and running Linux. We ensured that the index was not cached in main memory

45.1 TestCollections

We compared the performance of INV and HYB on three collectionsfédrdint characteristics. The first col-
lection is a mailing-list archive plus several encyclopedias on homeopatdicimehttp: //www.homeonet.
org). This collection has been searchable via our engine over the past amolyean audience of several hun-
dred people. The second collection consists of a complete dump of the BWijigtedia from February 2007
(http://search.mpi-inf.mpg.de/wikipedia_en). The third collection is the large TREC Terabyte col-
lection [Clarke 09, which served as a stress test for our index structures (and fouthera as well). Details
about all three collection are given in Tablel, where the “raw size” of a collection is the total size of the
original, uncompressed files in their original formats (e.g., HTML or PDF).

4.5.2 Queries

For the Homeopathy collection, we used 47,509 queries from a fixed time $licerquery log for that
collection. In most cases, each such query was part of a sequaritassiti, acid, acidu, acidum, acidum
pho, andacidum phos, but in some cases, when the user typed very fast or just pasted the guery,

a query might just be an individual full word. For the Wikipedia collectiontogompletion queries were
generated from a set of 100 randomly generated queries. For eachwe picked a random document with
uniform probability and sampled between 1 and 5 terms of length at leastéifroTerms were sampled
according to their tf-idf values, i.e., each term had a probability of being ahppoportional td f - log(n/d f),
wheretf is the number of occurrences in the given documeris, the total number of documents add is
the number of documents containing this particular term. Furthermore, the tearasequired to lie within
a small enough window as to ensure at least one proximity hit. The numbeieof terms for these queries
was chosen with a mean of 2.2 and a median of 2, which are realistic valuesliaearch querieSpink 03.
These raw queries where then “typed” from left to right, using a minimébplength of 4 for the first term
and 3 for later terms. So the raw query “slang alcohol” would yield the antpéstion querieslan, slang,
slang alc, slang alco etc. For the Terabyte collection, autocompletion queries were generatgaliinthe
same way but with a minimal prefix length of 4 for each query word, fromstenimed) 50 ad-hoc queries of
the Robust Track BenchmarkKlarke 03, e.g.,squirrel control protect. For all collections, where we
did not generate queries artificially, we removed queries containing woatifiad no completion at all in the
respective collection, as such queries would trivially lead to empty redslt Ber the generated queries, such
words were not contained in the first place.

For Homeopathy we included full positional information (according to Seetidnin the index and some
of the queries were indeed proximity queries. (But even for the othezsegupositional information was
used for the ranking.) For WikipediaJl queries were run as proximity queries (using again a full positional
index), while for Terabyte, they were executed as ordinary documeelt-dgieries. For all collections, both
completions and hits were ranked as we described it in Segtibn

Each autocompletion query was processed according to Defiditey., foracidum pho, we compute all
completions opho that occur in a document which also contains a word startingaulium, as well as the set
of all such documents. The result for each autocompletion query is remedhibeahistory, so that we do not
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Collection Homeopathy Wikipedia Terabyte
Raw size 599 MB 9.0GB 426 GB
#documents 51,670 2,698,964 | 25,204,103
#words 287,283 7,762,159 | 25,263,176
#items 14[31] million | 0.3[0.8] billion 3.5 hbillion
Vocabulary 3.2MB 122 MB 239 MB
Entropy 6.6[13.1] bits 8.8[14.0] bits 8.4 bits
INV
index size 16[81] MB 0.7[2.4] GB 4.6 GB

-per item 9.1[21.5] bits | 15.6[25.5] bits 11.0 bits
HYB
index size 18[70] MB 0.7[2.1] GB 49 GB
-per item 10.9[18.9] bits | 15.1[22.9] bits 11.6 bits
-per doc 2.3[12.4] bits 7.8[17.9] bits 7.6 bits
-per word 8.6[6.5] bits 7.3[5.0] bits 4.0 bits

Table 4.1: Properties of our three test collections, and the space caimumipNV versus HYB. The entries
in square brackets are for a full positional index, without any wordtadever removed.

need to recompute the set of documents matching the first part of the ugrywhen processiraridum pho,
we can take the set of documents matchingdum from the history; see the explanation following Definition
1.

We nevertheless include the filtered queries in our experiments hereisiedoaeality we will always get a
mix of both kinds of queries. Tabke 3will provide figures for just the diicult (unfiltered) queries. We remark
that the history is useful also for caching purposes, but in our expetimee used it solely for the purpose of
filtering. See Sectiof1.8for other uses of the history.

4.5.3 Index Space

Table4.1shows that INV and HYB use essentially the same space on all three testioole For a full posi-
tional index, HYB is slighter more compact than INV, while for an index withpasitional information it is the
other way round. This is exactly what Lemmiasand11, and the derivation in Sectigh4 predicted! The sizes
for both INV and HYB exceed that predicted by the empirical entropy lmuab0%. This is due to our use of
the Simple-9 compression scheme, which trades very fast decompressidartabeut this increase in space
usage Anh 05. A combination of Golomb and arithmetic encoding would give us a spacesudaser to the
empirical entropy. However, decompression would then become the cdiopatabottieneck for almost all
gueries, see Table 3. We remark that, by the way we did our analysis, any new compressiomsachigh im-
proved compression rafdecompression speed profile, would immediately yield a corresponding ismpeot
for both INV and HYB.

4.5.4 Query Processing Time

Table4.2 shows that in terms of query processing time, HYB outperforms INV by & largrgin on all collec-
tions. With respect to maximum processing time, which is especially critical fortaractive application, the
improvement is by a factor of 30-50. With respect to average processiegwhich is critical for throughput
in a high-load scenario, the improvement is by a factor of 5-10. Note thatlifgollections the majority of
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Collection Method mean 90% 99% max
INV 0.029secs | 0.012secs | 0.477secs | 24.92secs
Homeopathy
HYB 0.005secs | 0.016secs | 0.062secs | 0.540secs
- _ INV 0.404secs | 0.207secs | 11.19secs| 71.11secs
Wikipedia
HYB 0.031secs | 0.098secs | 0.423secs | 0.975secs
INV 1.356secs | 0.933secs | 46.74secs | 72.32secs
Terabyte
HYB 0.077secs | 0.232secs | 1.290secs | 2.105secs

51

Table 4.2: Average, 90%-ile, 99%-ile and maximum processing times in sedondNV versus HYB on
our three test collections. The statistics are for both filtered and unfilteredeg (see comments after the
Definition Sectionl).

gueries is answered by filtering a previous result (see the comments eftaitidbn 1). Since this filtering is
identical for both INV and HYB, the median processing times are identicahemdot given in Tablé.2

The reason that for the Homeopathy collection HYB'’s 90%-ile processingsiamuallylarger than INV’s
90%-ile time, stems from the fact that for this collection the queries (taken &oeal log file) also contain
several instances of long query words with 5 or more letters, which aredrof a sequence of queries (such
assy, sym, symp, ..., sympton) and could thus not be computed by filtering. For these long prefixes with a
very small word rang&V, INV has to process a significantly smaller data volume than HYB and is thies.fas
However, HYB’s worst case behavior is clearly superior, so that téspmenon disappears for the mean, the
99%-ile and the maximum processing time, where INYfexs from its very poor performance on some hard
queries.

Table4.3gives interesting insights into where exactly INV loses against HYB. THe &dows a breakdown
of the running times of those queries for the Terabyte collection, which wetrenswered by filtering as
discussed above. (Note that the breakdown of the filtered queries Weuttentical for both methods.) The
table diferentiates betweeone-word queriesike squi, squir, etc. andmulti-word queriedike squirrel
contr or squirrel control prot.

For the one-word queries, no intersections have to be computed for kitfiear HYB. The relevant lists
merely have to be copied into afier and then be sorted (for INV) or have their words checked for coment
in the relevant prefix-range (for HYB). According to Lemyghe merging of the intersections then dominates
for INV, and this indeed shows in the first column of TaBl&€ For multi-word queries, the result volume
> w|DNDyl (Lemmas2 and12) goes down, and, according to Lem@)adhe intersection costs dominate for INV,
which shows in the third column of Tabde3. In contrast, columns two and four demonstrate that HYB achieves
a better balance of the costs for reading, uncompressing, and integseciihnone of these essential operations
becomes the bottleneck. HYB avoids merging altogether since, by consiriutbgpotential completions from
the given word rang®V always lie within a single block.

The read time of HYB is about 35% larger than that of INV. This is partly beeaHYB'’s total volume
is slightly larger, so that for each query more data is read, and partlybeddV’s data is read in (consecu-
tive) chunks, so that the disk cache can perform some precachingyhite,the current lists is used in main
memory the hard disk can, in parallel, already prefetch bits of the next tidbiamg it into the disk cache, thus
interleaving JO and computation times. The reason why HYB spends more time decompressindithhas
two reasons: one is that HYB has to handle (slightly) more data; the othettidebeampression of the word
ids takes 40% longer (for the same compressed input volume) than dessiopref the document ids. As we
remarked in Sectioh.4, the absolute time for ranking is the same for both methods. Ranking takes more time
on average for the one-word queries, because these tend to haredemgjt sets; for HYB this time dominates
everything else. Note that the time for ranking includes the time for duplicatevedr(ess we want to only
present matching completighgés once to the user). The comparison with the time needed for the maintenance
of the history, which is nothing but memory allocation and copying, showsathatf HYB’s operation are
essentially fast list scans.
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Query size 1-word multi-word

Index type INV HYB INV HYB
average time|| 0.45secs | 0.18secs 6.08secs | 0.17secs
read .02 secs 4% .03 secs 15% .04 secs .7% .06 secs 32%
decompress || .01 secs 2%| .02 secs 8%)|| .02 secs .3% .04 secs 21%
intersect —_— _— 5.94 secs 98%.04 secs 25%
merging .26 secs 599 o .02secs.3%g ——
ranking .11 secs 24% .11 secs 62% .01 secs .19 .01 secs 4%
history .03 secs 6% .03 secs 15% .02 secs .3% .03 secs 15%

Table 4.3: Breakdown of average processing times for INV and HYBtHe dificult (unfiltered) queries on
Terabyte.

4.6 AutoTree vs. HYB - Experimental Comparison

Given that we have introduced two new data structures, AutoTree @eedhious Chapted) and HYB, for the
autocompletion problem, the natural question arises, which one is betterd8@tlstructures were designed
with very different goals in mind. AutoTree was designed for main memory, as it heavignden random
accesses (bit vector lookups) and its goal was to have theoreticallglagperoperties with respect to its
running time, namely an output-sensitive behavior. HYB was designedferral memory and is based on
linear scans. It has a non-negligible minimum processing time even for emetiegubut reduces the worst
case running time.

In our experiments we examined thefdrences along two dimensions. First, we ran experiments both
for internal and external memaoty Second, we used two slightly fiiérent query sets. The first query set
corresponded to a lardge/| but small|D|, a setting where AutoTree is expected to shine. The second query set
had a less skewed distribution with respecMt and|D|. The underlying collection was, again, the ROBUST
collection (see Sectiof.6 for details). Queries were derived in the same manner as described sethian
but, to obtain the two dierent sets, we usedftirent prefix lengths. For the first query set, which is identical
to the one in SectioB.6, we used a prefix length of 4 for the first prefix and 2 for the later oiiée (long)
prefix length of 4 for the first term, filters out some very short 3-letterds@nd ensures that, when the full
word is typed, the sdD’ (and hence the ne®) will not be too large. The (short) prefix length of 2 for the
latter query words, gives a larg/| for these autocompletion queries. This query set is labeled “4-2" in Table
4.4. The second query set, labeled “3-3", uses a prefix length of 3 forefixes. Tablel.4 shows the factor in
mean processing times for both AutoTree as compared to HYB, for botly gats, and for both external and
internal memory. Note that for the first query set a HYB index with blocksseh for prefix length 2 was built,
whereas for the second query set an index for prefix size 3 was built.

The main observation from Tabke4 is that HYB is, in terms of average processing time, never worse
than AutoTree. But it can also be seen that, somewhat surprisingly, Pagaloes hardly sier, in relative
performance compared to HYB, when the index resides on disk. Therréasthis is that, on the average, the
time for reading the whole data of a single block of AutoTree from disk (ati gquery required data from one
or at most two blocks) is dominated by the computation time of a query, most notetiyne for the random
bit vector lookups (see Secti@¥). That is, on the average, query processing with AutoTree is nokDb,
at least not for the collection sizes we have experimented with. Since theenwihbperations required for a
query is proportional to its input output size, and that in turn is on average roughly proportional to thesize
a block of AutoTree, we would expect the same behavior for larger t¢mliextoo. The observations just made
hold true on the average only. The smaller the output size of a query, tleel@round the processing is going

3To ensure that the data was not cached by the operating system, Hnchagato be read from disk, before each experiment
we read two dferent very large (20 GB) files from disk several times in a row. Withirhea@eriment (running all queries for a
collection), nothing was done to prevent caching by the operating systargth



4.6. AUTOTREE VS. HYB - EXPERIMENTAL COMPARISON 53

(average time AutoTreg

query type| internafexternal memory (average time HYB)

internal 1.2
4-2 external 1.5
internal 3.5
3-3 external 4.0

Table 4.4: A relative performance comparison between AutoTree andfeitBe ROBUST'04 collection and
for two types of queries. HYB's average running time is always better AwaoTree’s.

to be. In a worst case, each step of the algorithm (inspection of a watdenment pair) might incur one disk
seek. In absolute times, both HYB and AutoTree are about 15% slowen thie index resides on disk. This
goes up to about 40%, when the time for scoring, which is always done inmeimory, is not included in the

processing time.

It should also be mentioned that it is easy to find individual queries wragreAutoTree and HYB outper-
form their “opponent” by a factor of 4 10. E.g., AutoTree will be preferable for 2-word queries, where the
first part is very specificehvironmentalist) and the second part is extremely broad)( Still, overall, HYB
turned out to be the more performant data structure. This, along with théh&idhe integration of positional
information is easier, was the reason we built our CompleteSearch engiop ohHYB and the experiments
in the following chapters are done for HYB only.






Chapter 5

Autocompletion Search and Simple
Extensions

5.1 Introduction

In Chapterl we already gave a few hints, why the basic autocompletion feature mighteli@ urs practice.
Here, in the following Sectiob.2, we discuss the virtues of this feature a bit more. In Sedi@nwe look at
search engines and other systerfiering a related feature. Then we go on to discuss various extensighs, su
as ranking (Sectioh.4), proximity search (Sectiof.5), OR and NOT operators (Sectién/) and completions
for subwords or to phrase (SectiérB). These extensions are partly essential to a good search engineagsuch
ranking), but are not related to the basic autocompletion search feattive problem given in Definitior.
Features discussed in the following chapters, starting with faceted sea&blapters, are of a diferent nature.
They require the core functionality of the CompleteSearch engine foffiaieat realization.

5.2 Autocompletion Search Revisited

The basic autocompletion search feature was already introduced in €hapteere also some of its possible
advantages were discussed. The algorithmic core was abstracted infihidddel. Here we more closely
examine the possible benefits of this feature before discussing relatethsyia Sectiorb.3.

Recall that autocompletion search incorporates two theoretically unreleagards. First, prefix search
(with an instant display of the results) and, second, a display of releeampletions (for the last prefix).

As an example, for a case where this feature might be useful, suppess & $earching the Wikipedia
for information about the current pope. However, either he has fi@gthe exact name or he is unsure about
spelling variants (“benedict”, “benedikt”, “benedictus”, ...). He startargpthe querypope bene and is
then presented with a list of matching documents, as well as a list of matching ¢immglevhich occur
in documents also containing the term “pope”. He now has the option of fia)nge his search further by
continuing to type his query or by selecting a particular spelling variant,)agding through the result list for
the broader query as it is. Figutel (in Chapterl) shows a user interface which provides this feature along
with a number of extensions.

This feature is useful in a variety of ways. It saves typing. It spamsasier the experience of overspecifying
the query, when already a (much) shorter query would give the desisedt. It helps the user exploring
formulations used in the collection, substantially reducing the amount of quoeksequired. Note that without
the context-sensitivity this feature would lose most of its worth; for exampdeetare hundreds of completions
of bene, but only few that make sense in the context of words starting pdtie.

5.3 Related Work
One of the early uses of an automatic prefix completion mechanism was in th&bglix where pressing the
tabulator key gives a list of all file names that start with whatever has beed tyn the command line after the

last space. Nowadays, we find a similar feature in most text editors, andrigeavariety of browsing GUIs.
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Even when it comes to web search, similar features exist. E.g., Google $(igges: //www.google.
com/webhp?complete=1) offers completions coming from a precompiled list of popular quérigbis way
a “typical” user only has to typer to be presented with the completibmitney spears. The two main
differences to our feature are that (i) Google’s completions do not cometifrerull text of the documents
(e.g., the phraseutocompletion search, which occurs in web documents, is not be suggested, even when
typing autocompletion sear) and (i) no results are presented until a particular completion is chosen. Still,
in an attempt to save typingtert for the typical user, this approach is certainly sensible. Observddha
these kinds of applications we can easily achieve fast response times Iyniavg or B-tree searches in the
(pre)sorted list of candidate strings.

AlltheWeb Livesearchi{ttp://livesearch.alltheweb.com/) offers the very same feature, but addi-
tionally automatically launches a web search for the most prominent completigway, e.g., a user only has
to typebr to launch a web search foritney spears. Neither Google Suggest nor AlltheWeb Livesearch
perform a prefix search over the full document collection.

Copernic Desktop Searcht(tp://www.copernic.com/en/products/desktop-search/) offers such
a prefix search feature for the collection of private documents kepteolotal hard drive of a PC. However,
even for a collection of roughly 30,000 text documents, the search thkes ldalf a second (which is not slow
but not comparable to CompleteSearch), no list of completions is provided &not possible to rank the
results by relevance score, but only by, e.g., date or size.

The autocompletion feature as described so far is also reminiscestemiming in the sense that by
stemming, too, prefixes instead of full words are consideW¥it¢n 99. But unlike stemming, our auto-
completion feature gives the user feedback on which completions of tlie pneed so far would lead to
highly ranked documents. The user can then assess the relevanceettmpletions to his or her search
desire, and decide to (i) type more letters for the last query word (fampbea continue typing the query
from Figurel.lasinformation retriev); or (ii) to start a new query word (for example, continue typing
information ret data); or (iii) click on one of the hits displayed on the right side, in case it looksris-
ing. There is no way to provide this feature by a stemming preprocessingifdi®f user interaction is well
known to improve retrievalféectiveness in a variety of situationgjorhees 9

While our autocompletion feature is for the purposdinding information autocompletion has also been
employed for the purpose gfedicting user inpytfor example, for typing messages with a mobile phone, for
users with disabilities concerning typing, or for the composition of stand#etrdeBickel 05 [Grabski 04
[Stocky 04 [Darragh 99 [Jakobsson g6 In [Finkelstein 0], contextual information has been used to select
promising extensions for a query. Paynter et al. have devised an g@esfdh a zooming-in property on
the word level, based on the identification of frequent phraBagriter O We get a related feature by the
subwordphrase-completion mechanism described in Secién

5.4 Ranking

So far, we have considered the following problem (from Definifiazrwhile the user is typing a query, compute
after each keystroke the list afl completions of the last query word that lead to at least one hit, as well as the
list of all hits that would be obtained by any of these completions. In practice, asdjeationof items from
these lists can and will be presented to the user, and it is, of cours&l¢hat the most relevant completions
and hits are selected.

The standard approach for this task in ranked keyword search ikagg@Witten 99. Have a precomputed
scorefor each word-in-document pair. For a given query, compute fon g@cument an aggregation of the
scores pertaining to the occurrences of the query words in that doturReturn the documents with the
highest such aggregated score to the user. All of INV, AutoTree a8l ¢an be easily adapted to implement
any such scoring and aggregation scheme: store by each worddmdat pair its precomputed score, and
when intersecting, aggregate the scores.

In our setting, however, we have to deal with two issues which are ne¢ptrén standard ranked retrieval.
The first is that we do not only have to rank matchdarumentsrom D’ but also matchingvordsfrom W'.
The second issue is that the score aggregation is now a two-step pr@mssder the document scores. In
ordinary ranked retrieval, we obtain them by aggregating scores fremdlividual query terms. In our setting,

1We remark that a prototype of our engine already existed when GooglgeStwas launched.
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each such query term in fact corresponds to a whole range of wbrelscores of which we have to reconcile
first. The impact of this dual scoring mechanism on search result quality itsddf an interesting topic of
research, but beyond the scope of this dissertation.

Our implementation allows for a plug-in of arbitrary functions for the variogigregations. Our default
aggregation to reconcile the scores dfelient completions of the same prefix is as follows: when merging the
intersections (which gives the d8t according to Definitiorl), compute for each documentf the maximal
score achieved for some completionifi contained in that document, and compute for each completi@¥i in
the sum of thenaximalscores achieved for this completion for each of the elements Bfom

Our default aggregation of the scores from the various parts (ps¢ffehe query to give the final score
of a document is essentially by summing the individual contributions. But wedinote matches of words in
the title; (ii) promote matches of two words close to each other, see Séchoand (iii) promote exact word
matches (as opposed to strict prefix matches). These heuristics workmwellr test collections, since they
arespam-frean the sense that title information or the number of matching occurrences oftean®reliable
indicators of relevance.

Concerning space consumption, we use a single byte to hold individualssoba word-in-document (or
word-at-position) pair. The more significant bits are used to mark title matech@eximity matches.

For the basic Definitiorl and our theoretical analysis, both concerning (i) running time and (ii)espac
consumption, we factored out the issue of ranking. This is becaussy(ijmotically the inclusion of ranking
does not #ect the time bounds derived in Lemniaand12, and our experiments show that ranking rarely takes
more than half of the total query processing time and (ii) the required exaespidentical for INV, AutoTree
and HYB. However, even without this extra information one can do basitrgcby counting occurrences and
aggregating these counts in various ways as discussed above.

5.5 Proximity/Phrase Search

With a properly chosen scoring function, such as the one outlined abwre, ranking by score aggregation
often gives very satisfactory precisjoecall behavior. There are many queries, however, where the wkecisi
cue on whether a particular document is relevant or not lies in the fachetheertain of the query words occur
close to each othein that document. SeedVletzler 04 for a recent positive result on the use of proximity
information in ad-hoc retrieval.

The proximity operator increases the of our autocompletion feature, $edhe use of this operator will
strongly narrow down the list of completions displayed to the user, which mrhakes it easier for the user
to filter out irrelevant completions. For example, when searching the Wilkdpzadlection the most relevant
completion for the non-proximity quemyax pl would beplace (becausenax andplace are both frequent
words), but for the proximity querpax. .pl it is planck. Here the two dots . indicate that words should
occur withinx words of each other, for some user-definable paranxetarfact, we chose our score aggregation
function such that phrase or proximity matches get a higher score, etrenuser did not explicitly specify a
proximity requirement for a match.

Recall that, when positional information is included in the index, HYB requéss space than INV. See
Sectiond.4for a proof of this. AutoTree, on the other hand, has certain inherebigms with using positions
information, at least if the desirable output-sensitivity should to be prede8ee Sectiof.7 for details.

5.6 Structured Search in XML Documents

Any kind of full-text index with support for proximity search can be easiyeaded to take advantage of
semi-structured text, by which we here mean text enriched with XML tags.n&rgeway is to add all XML

tags as special words (that is, recognizable as such), for examygeemail or tag:subject. It is then
straightforward to extend the proximity operator such that a word is carsiddose to a particular tag if and
only if it occurs between a corresponding tag pair. In CompleteSearehise the syntax. (two dots) for

both normal proximity search (as discussed above) and the search wikinAa example query would be
tag:email..tag:subj..dbworld, which would retrieve all email messages (tagged as such) mentioning (a
word starting with)dbworld in their subject line.
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This simple trick of using a generalization of “proximity” is, in a certain sensmegic and not Com-
pleteSearch specific. It does not exploit the prefix search and anpdetion mechanism, which is why we
do not claim that the CompleteSearch engine is more apt than offieief@) systems for the purpose of
XML retrieval. Still, with this simple trick we can support a subset of ¥feathquery syntax, called NEXI
[Trotman 04. XML support has been added in a similar way to the TopX engireepbald 05h which we
will briefly discuss in Sectio3.2 in the context of database style retrieval. Note that CompleteSearch permits
free mixing of queries using tag information with any of the other query types.

5.7 OR and NOT Operator

Most search engines like Google also support the “advanced” quenatmrs OR and NOT. E.g., the Google
query (web OR internet) search will return documents containing the wosgarch and at least one of
the wordsinternet andweb. Similarly, the querysurfing -internet, where- (minus) is used as the
symbol for the NOT operator, will return documents containdngfing but not containinginternet. Both

of these features we also implemented for the CompleteSearch engine anflthese features also work with
prefixes.

To implement the NOT operator, a small modification of the intersection routinsufasent. This routine
takes two lists of document ids (and, optionally, positions) and parallelidem@hd, normally, outputs elements
from the second list that correspond to document ids contained in bothHmtshe NOT variant, we have to
output elements from thiérst list which correspond to document idst contained in the second list. Note the
following two slight oddities here. First, whereas usually the result seirhessmalleras the last prefix gets
longer and hence more specific, for the NOT operator the result setestarger in this case. Second, the
completions we display are for thast but oneprefix, as we prefer to display information about the matching
documents (and completions), rather than non-matching ones. Also noteelukt not allow the use of the
NOT operator for the very first query word, as it igfdiult to support ficiently (the result can be enormous,
consider-xyz) and is also not very sensible to use (“Show me all documents not contaimc@gain prefix.”).
The usual (implicit) AND operator requires intersections of lists. The ORatpeon the other hand, requires
themergingof lists, and we also implemented this operation. For words groupé¢diye), this operator will
be used.

5.8 Phrase and Subword Completion

Another simple yet often useful extension to the basic autocompletion feigtute consider as potential
matches not only the (full) words as they occur in the collection, but also ingfahsubwords and phrases.
An example involving a subword would be: for the quarntmal . . vec we might want to seeigenvector
as one of the relevant completiohsAn example involving a phrase would be: for the quénforma we
might want to see the phrasaformation retrieval as one of the relevant completions. The autocom-
pletion according to Definitiorl will automatically provide this feature if only weadd the corresponding
subwordgphrases to the index. For example, for each occurrence of the terenteigtor”, we also add the ar-
tificial term “vector:eigenvector” to our index. This term then matches thiaprector and the “.eigenvector”
lets us know that we should display the tegtigenvector to the user. Similarly, for every occurrence of the
phrase “information retrieval’, we add the term “informaticetrieval” to our index, which will be displayed
asinformation retrieval.

The problem ofiinding meaningful subwords and phrases to add to the index, is orthogonat teook.
In practice, for the subwords we use a simple greedy approach to fingbedls of minimal length which
appear sfiiciently often as subwords of longer words. To identify meaningful mease exploit the fact
that such phrases are often written (i) with hyphens, (ii) with undersaaréiii) even as a single long word.
These “misspellings” give us a small, high-quality set of word combinatiohg&ghwwe can check for phrase
occurrences. Details on this can be foundKiejn-Heyl 07).

’Note that we deliberately do not want full substring search, as this wawechgpstly irrelevant matches for short prefixes.
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Faceted Search

6.1 Introduction

When it comes to finding documents in large collections, the 1-box web sedecface approach seems to be
predominant. The user enters a couple of keywords and is then prséttiea list of matching documents
ranked by (ideally) relevance. Such interfaces are very intuitive toausestfice in many cases. On the
other hand, in settings where the focus is more on data exploration tharoomatifon retrieval, a hierarchical
organization of the documents is often used, allowing the user to browsdréindown into subcategories.
Online shopping sites nowadays present the user with both options atntieetisae: the option of entering
queries as usual while also allowing the user to refine his search by drithimg ohto the matching categories.
By pro-actively supporting this kind of query refinement, the user nezélaow less about the structure and
the items in the database and is spared the experience of over-specifgimgesat using an “advanced search”
form.

In this chapter, we demonstrate how our HYB (see Chafjtatgorithm and the CompleteSearch engine
can be directly applied to obtain both features: pro-active supporbtbrtbe query formulation (by presenting
relevant completions) and for the query refinement through categbsigg€senting matching categories). We
have built and tested a prototype with these capabilities and verified its ptalitycan terms of eficiency
by experiments with a collection of scientific articles and with the English Wikipedm.our knowledge,
this is the first experimental study of faceted search under fili@emcy aspect. Figuré.l1 (in Chapterl)
provides a screenshot of our search engine in action and givegplmaion of its main features. Sketp:
//search.mpi-inf.mpg.de/dblp-plus/ for alive demo of this.

6.2 Related Work

The number of websites whichter some kind of faceted search is enormous and spans all information do-
mains. If one loosely defines a faceted search interface as one whiatidition to showing ranked results
for keyword queries as usual, also organizes query results by cetgginen nowadays almost every online
shopping portal fiers a faceted search interfate {p: //www.ebay.com, http://www.amazon. com).

The archetypical, fairly intuitive user interface shows a search box pnaigubset of the most relevant
results below and a list of matching categories (usually organized in a¢tiezar manner) on the left. These
matching categories can then be used for further refining the queryatigas of this interface include ex-
tensions to search in the category names themselves. See, e.g., the deneoBlafmtnco Projechtp:
//flamenco.berkeley.edu). These type of interfaces are in their simpler form also used in other demain
such as medical databasis{p: //www.medlineplus.gov, provided by Recommind), news archives{p:
//browse.guardian.co.uk, provided by Endeca) and tagged webpagesy: //www . rawsugar . com, pro-
vided by RawSugar). Other systems, such as Facetmap, provide b $aeility but only allow faceted
browsing fittp://www. facetmap. com).

A number of content providers support the user in finding relevant teantgs query. Some sitea{tp:
//fastsearch.com/search.aspx, http://kayak.com) use a precompiled list of plausible queries similar
to Google Suggeshftp://www.google.com/webhp?complete=1), from which they display completions
to the user. These lists are typically only useful if one is looking for “maiastfanformation and for spelling

59



60 CHAPTER 6. FACETED SEARCH

suggestions. For fully exploring the database’s content they are inatdgecas already after a single highly
specialized term the list of queries suggested collapses completely. Sudhceseare usually referred to
by the term “live search” (se&Rjgnn-Jensen Q@or a discussion and more related links). In the domain of
library search, the AquaBrowser interfade{p://aqua.queenslibrary.org) uses data mining, machine
translation and spelling corrections to find other related query terms dityyth€hese are then presented to
the user in a star-like graph. However, these terms seem to be often (igguieeal and (i) unrelated. For
the queryinformation retrieval, broad and partly irrelevant terms such as “service”, “technologg’ an
“freedom” are displayed as associations, along with the supposed spslliiagit “Euro-travel” and the sup-
posed translation “enlightenmerit’Following a fully term-centered approach, it is also plausible to disregard
the hierarchical structures for the documents altogether and rather docorganizing the terms in the collec-
tion. Such a taxonomy can then be used to guide the user through the gruenldtion process, displaying
synonyms and other related terms at every sBépding 04.

For the case of a well-controlled database, whose structural data integnitye ensured, a query language
is presented inRoss 0%, which allows answering faceted database queries in time quadratic in thieenu
of items with linear space complexity. The problem of faceted search camals@wed more generally as
a problem of multidimensional visualization and navigation. To show the relagbomden two independent
dimensions the use of 2-D heat maps was proposefirgnfz 04 and their benefit is demonstrated by a small
user study. Similar ideas are explored 8hpeiderman (O Larger user studies to demonstrate the advantages
of the Flamenco faceted search user interface have also been cahidué&eglish 02 Yee 03.

In scenarios, where hierarchical structures or any kind of categmizare not a priori given, it is still
possible to apply the paradigm of organizing the result set in a structurgdyvclustering the results on-the-
fly. In[Hearst Ofthe relative (dis-)advantages of result clustering and faceted c&egwe compared. Besides
the lack of quality of the resulting clusters (meaning that clusters can bdggFyogeneous), even for state-of-
the-art systemshtp: //www.vivisimo.com), other disadvantages include the lack of predictability (a user
does not know in advance how his results will be organized) and thesdiveix of the obtained subcluster
hierarchies (many facets get mixed when a cluster is broken down).

In our work, we completely factor out the issue of how (hierarchical)l&beategories can be obtained.
If one hopes to accumulate a large set of documents, manually labeled lyheadohe approach is to have a
dedicated community of people all contributing to this project. Such a contribcéiorbe made by manually
inserting a web document into a taxonomy, as in the case of the open dirpotgegt (ittp://www.dmoz.
org), or by sharing (organized) bookmarks and assigning short tags torendy visited web sitehttp:
//www.rawsugar.com, http://www.flickr.com, http://del.icio.us). The latter approach is often
referred to as “social tagging” with the resulting structures being nicketh“folksonomies” jttp://en.
wikipedia.org/wiki/Folksonomy).

6.3 Faceted Search with Autocompletion

In the previous chapter, we discussed the basic “Autocompletion Sefsatute and some of its extensions.
The focus of our work in the current chapter is on showing how the iltgoiHHY B for this “ordinary” autocom-
pletion search problem (see Definitiajy can be extended to include faceted search capabilities. Specifically,
we show how the following three features can be obtained:

e adisplay of matching completions for query terms (occurring in at least ibnerfd their use for query
refinement,

e adisplay of matching categories (containing at least one hit) and their ugadoy refinement, and

e a display of matching category names (starting with the prefix and containilegsitone hit for the
remaining query) and their use for query reformulation.

The first feature is just the “normal” autocompletion search feature, wihéshdiscussed (with extensions)
in the previous chapter. Making the changes necessary to provide theteth features will only involve
adding special words to our index and will leave the functionality of the Hasiture unchanged. The other
two features, related to the use of the category information, will be disgiissiee following subsections.

1t is, however, encouraging to know that our research area is ptne path to eternal bliss.
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6.3.1 Finding Categories Containing Matches

To be able to find and display matching categories, we simply add the informatiom @ategories to our index

by inserting an artificial term, e.gcat:living_people, into a Wikipedia article about a living person before
our index structure is built. The same is done for other categories andh@otst The colon serves to distin-
guish artificial words from ordinary wordsIn the case where we have hierarchical or orthogonal categories,
we encode the structure using multiplesuch asat:author:Donald_Knuth or cat:conference:SIGIR,

but for the Wikipedia we worked with a single “flat” categorization.

To process a query, e.qappe bene, we first run the usual autocompletion search query as explained in
detail in Chapted, also benefiting from extensions discussed in the previous Chapldris gives the set of
matching documents in form of a ranked list. Then, in a second step, weeguénypope bene cat: asa
regular autocompletion search querpue to the way we inserted the artificial terms, the completions for the
termcat: will now exactly correspond to the list of categories containing a matchingrdent for the query
pope bene.

The set of matching documents for this artificial query is, on the other hasidelevant as we do not
assume that every document is forcibly tagged with at least one catégtmg case of orthogonal taxonomies,
where each document is guaranteed to have a label for each facegt thidl be the same as for the query
pope bene. In general, however, it can be an arbitrary subset.

When these matching categories are presented to the user, he then hatfothefaefining his search by
limiting the search scope to matches within a chosen category. In our examphéght choose the Wikipedia
category “Popes”. This choice then reduces both the number of matcbaugnents, as well as the relevant
completions fobene. Figurel.1(in Chapterl) shows matching categories listed as “Refine by” options. Here
the name of an author and a year of publication are also consideredriagego

In our user interface, the category selection is done by simply clicking elfeaant category. This follows
the standard conventions for providing such a feature and is implementsthilar manner in all major search
interfaces for faceted searchtftp://www.rawsugar.com, http://flamenco.berkeley.edu, http://
www.ebay.com, http://www.amazon. comn, ...).

Observe that selecting a particular category is, from the point of viewrcdlgorithm, the same as entering
an additional query term, where the query term in this case is an artificial feshas there is no limit on the
number of query terms the user can enter, there is no limit on the number gbdatewhich can be selected
during the iterative query refinement process.

In scenarios where the total number of matching categories can be \ggydaris the case for the Wikipedia
collection, we only present the most relevant ones to the user. Agaithifowe can employ the very same
ranking mechanism which we already used to select the most promising complgtée Sectiof.4).

To ensure flicient query processing, all artificial terms of the fotrmat : * should be in the same block
for HYB. That is, our data structure is built such that we have the sortedfldocuments containing at least
one of these special words precomputed. Given such a choice ofsblaekcan then answer a query of the
formpope bene cat: above with a single list intersection. Exactly for these cases, where thé fistential
categories (i.e., “words” starting widnat) is large, HYB shows the best performance compared to an approach
based on the inverted index, which would have to iterate over these ctaslida

6.3.2 Finding Matching Category Names

In some cases, the user’s intention for the queiye bene might be of a diferent nature: Maybe when typing
such a query the user is looking foategoriesstarting withbene and containing a document with the term
pope. For the Wikipedia such matching categories would include “BenedictinesVen “Benefitalbums”.
The “Categories matching” field in Figufel (in Chapterl) contains an example where a particular author is
suggested as a matching category.

Using exactly the same setup as before with the same artificial words incluttelimdex, such matching
completions can be found by answering the autocompletion query cat:bene.

Again, the user can now choose from any of these matching categorigs.diBBerent from before, a
selection of a particular category does not correspond to a quergmadim with respect to the base query

2This trick will be used repeatedly in the following chapters.
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pope bene, as now one query wordéne) getsreplacedby another €at :bene) whereas before a query word
wasadded

The selection of such a desired category is again done by clicking on the ofsthe category in our user
interface. This feature is less common but, if present, is usually providetti&isame mechanism, as in the
Flamenco Systenhttp://flamenco.berkeley.edu).

If the blocks for HYB are chosen optimally as for the feature above, theenam again answer a query of
the formpope cat:bene above with a single list intersection and avoid any merge operations. ltigarac
these types of query will be easier to answer than the query types of@beding subsection, as the relevant
word range (all category hames starting witine) is narrower than before (wheedl category names had to
be considered).

6.4 Experiments

We integrated the faceted search feature into our CompleteSearch emigase core is written in €+. The
experiments were done on an Opteron dual 2.4 GHz processor maching @Bhof RAM, with the (com-
pressed) index on disk. In our experiments, we measured the time fargsing both the “normal” and the
derived autocompletion search queries, as described in Sebtidisand6.3.2 We didnot measure the time
for the transmission of the query and the results over the network.

6.4.1 Collections and Queries

Our first data set, DBLP, consists of 11,685 scientific articles listed in DBItRp(: //dblp.uni-trier.
de), both the full text and the DBLP meta data, including information about asitlvoinferences and year of
publication. Note that all of the three facets (author, conference) gearflat” in the sense that they do not
come with a hierarchy.

Our second data set, WIKIPEDIA, consists of the full set of 2,172,888 es of the May 2006 dump of
the English Wikipedial{ttp: //en.wikipedia.org). As meta data for this collection, we took the Category
information which the Wikipedia articles themselves provide (at the bottom). Tusation is much more
diverse than for DBLP: some articles carry a dozen difedént category labels, about half of the articles,
especially if they have been recently added or are navigational pagédisted under no category at all.

For both collections we generated 500 standard keyword queries wisisticedistribution of query length
(short queries are more common) and keyword selection. As for our experiments, where queries were
generated artificially, we ensured that content-bearing words were gooreon in the queries than very fre-
quent words by usingf —id f based sampling. See Sectid.2for details. Each query was then “typed” letter
by letter (beginning with a 3-letter prefix for each query word), resulting éhain of autocompletion queries.
For example, the keyword quepppe benedict gives rise to the 8 autocompletion querpes, pope, pope
ben, pope bene, ...,pope benedict. Like this we obtained 6024 autocompletion search queries for DBLP,
and 5320 autocompletion search queries for WIKIPEDIA.

From each such autocompletion search query, then three queries evieedd the “normal” query itself
(to find relevant documents and word completions as discussed in theys&i@mpten), the query with the
qguery word prefixcat: added at the end (to find matching categories as described in Séctid and the
query with the last query word prefixed legt: (to find matching category names, as described in Section
6.3.2.

6.4.2 Results

Table6.4.2shows the average running times per query on both DBLP and WIKIPEDItA a breakdown for
the three sub-queries described above. Three main observationsterertade. First, for both collections,
queries are processed in a fraction of a second, which yields thediegg&eactive behavior. Second, the query
processing time is dominated by the second type of subqueries. This is esmletstand, since for the second
type of query, we have to screen each matching document for its cateferfy. This is a work-intensive task,
but as explained in Sectidh3.], this is exactly the kind of queries where our HYB data structure shineés, an
improves over the standard inverted-index based approach by arobrdagnitude (see Chaptéifor details).
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Collection DBLP WIKIPEDIA

Average time || 24 millisecs | 341 millisecs

- ordinary 6 millisecs | 53 millisecs

- categories 17 millisecs | 274 millisecs

- cat. names 1 millisecs 14 millisecs

Table 6.1: Average running times for the faceted autocompletion querieBof nd WIKIPEDIA, with a
breakdown with respect to the three subqueries discussed in Sédion

Third, the last type of sub-queries hardly takes any processing time, feinmost autocompletion queries, the
last query word does not match any category name at all (in which caseghfor this sub-query is zero).






Chapter 7

Synonym Search

7.1 Introduction

One of the central problems of keyword-based search is that oftea ih@ot a unique set of keywords to
identify a topic. Sometimes words referring to the same concept are merelyohogcal variants (compute,
computer, computing) which can be identified by stemmipgrfer 80, i.e., reducing words to their “normal-
ized” form, or even less trouble-some by using prefix search, as geppoy the CompleteSearch engine,
where it is left up to the user to decide whether feaively wants to use stemming (and only type a shorter
prefix) or not (and type the full word).

But almost always there are also closely related terms, e.g. car, automplidniole, which are not
just morphological variants. Adding such related terms to the query in twdacrease recall, is an old and
much-researched technique commonly knowig@sry expansionA recent, very good overview is provided
in [Billerbeck 03. In this chapter, we show how we can use the CompleteSearch engigeeior expansion.
Our work is diferent from the traditional approach in two respects.

Efficiency The standard way to implement query expansion is to replace each quehpwthedisjunc-
tion (OR)of its related terms, and thanergethe individual inverted listsBillerbeck 05. Since each step of
such a merge is logarithmic in the number of lists, expansion is typically limited to a feariamt words.
Sophisticated top-techniques, like inTheobald 05h try to prune expansion words which are unlikely to lead
to an improved ranking.

Interactivity & context-sensitivity Our feature interactively suggests words related to the word currently
being typed, and the suggestions are ranked by their ability to lead to godddather with the preceding part
of the query. For example, for the quaryssia metal from Figure7.l, aluminum is high up in the list of
words related taetal, because there are many news articles about aluminum production in R8ssitar
interactive features have been discussed in the literafimesca Op but with the focus on féectiveness and
not on dficiency.

We do not claim novelty for any of these individual pointffig@ent, interactive, context-sensitive). How-
ever, we have not seen them presented in combination, and we wants® thieesimplicity with which we
realize this feature here, using CompleteSeardfisient prefix completion mechanism.

7.2 Query Expansion via Prefix Completion

Given knowledge about related terms, we could, when the user is typirlg automo, suggest the term “car”
to him, assuming that the quergnt car would lead to a hit.

One way to obtain such a feature would be as follows. In a first phasthrgogh each completion of
automo (e.g., automobile, automotive, automower) and for each such completioredist thf synonyms (e.qg.,
car, vehicle, wagon). In a second phase, for each such synoeyrouid launch the corresponding query such
asrent car, rent vehicle orrent wagon. The subset of such queries, which leads to a hit, gives us the
“completions” to display to the user.

The obvious problem with this approach is that a single initial query can rasvtteseveral queries in the
second phase, not exploiting HYB'’s strength to deal with prefinges This can be avoided by introducing

65



66 CHAPTER 7. SYNONYM SEARCH

Hits 1 - 3 of 1534 for russia metal (PageUp A / PageDown W for next/previous hits)

FT 22 SEP 92 / Commodities and Agriculture: Russia faces Daollars 6.8bn bill to update aluminium
smelters
... FT 22 SEP 92 / Commodities and Agriculture: Russia faces Dollars 6.6bn bill to update
russia metal| aluminium smelters By KENNETH GOODING, Mining Correspondent ABOUT ... .. [there are
< = more matches] ...

http:#isearch.mpi-inf. mpg.defrobust/Vold/FT/FT923/FT923_5 ZIFT923-1530 html

deutsch English Options

zoomed in on 1534 documents

2 10 completions of "metal® lead to a hit. &% FT 28 OCT 92 / Survey of Aluminium (2): Giants with a deadly breath - Russia's smelters

metal {1096) 921028 FT 28 OCT 92 / Survey of Aluminium (2). Giants with a deadly breath - Russia's
alurminium {366) smelters By KENNETH GOODING SOME western aluminium ... ... [there are more matches] ...
nickel (319) http:#isearch.mpi-inf.mpg.defrobust/Vold/FTIFT924/FT924_31.Z/FT924-10913 html

copper {363)

zinc (206) FT 26 OCT 94 / Survey of Alurniniumn (2): Statistics gap delays plans - VWestern groups see
smelters {112) opportunities in Russia

tin (201) ... 941026 FT 26 OCT 94 / Survey of Aluminium (2): Statistics gap delays plans - ¥vestern
smelter (120) groups see opportunities in Russia By KENNETH GOODING When the mayor of ... ... [there are
Ime (160) more matches] ...

mooney (79) http:#fsearch.mpi-inf. mpg.defrobust/Vold/F T/FT944/FT944_41 Z/FT944-13691.html

Figure 7.1: The proposed feature, integrated into the CompleteSearicie efipe box under the search field
shows words related to the last query word, metal in this case, that wodltble@od hits, and to the right the
best such hits are displayed. Both related words and hits are updatetkdictdly after each keystroke.

artificial prefixes corresponding to groups of synonyms. Then thieedkefeature becomes a matter of a few
prefix completion operations, which ariieiently supported by HYB. We realize this as follows:

0. Asinput, assume we haetustersof related terms. These clusters may overlap, for example the auel
may be in one cluster together witlover, shell, etc. as well as in another cluster together witx,
chest, etc.

1. For each occurrence of a tekn> that occurs in a cluster with idid>, add the artificial terns : <id>:<t>,
in the same document and at exactly the same position.

(Document position is important for proximity and phrase search. We rethatkhe HYB index does not
mind several terms at the same position in the same document.)

Also add, but onlyoncefor each such term and in a special document that is used for no ottprgey the
artificial terms: <t>:<id>. The number of words in this document is just the total size of all clusters.

2. For a given querkqgl> ... <ql> <p>, we then realize our feature via one or two prefix completion
operations as follows: We first check whetherl> ... <ql> s:<p> has a unique completion of the
form s:<t>:<id>. If so, this completion gives us the id d> of the cluster containingt>. Then the query
<ql> ... <ql> s:<id>: gives us the desired completions and hits.

(Note that the partgl> ... <ql>is evaluated only once, just after its last letter being typed, and stored
by a cache-like mechanism from then on, see Sedtio&for details.)

The terms added under point 2. above do, of course, lead to an iadrete total space usage. By how
much depends on (i) for how many words we have synonymy informatiorndfi) often these words occur in
the corpus and (iii) in how many synsets these words are contained.slt llmsever, not depend on the sizes
of the synsets. If we chose the straight-forwards approach of inthegl@ll of the synset’s elements (e.qg, car,
automobile, vehicle, ...) for every occurrence of a word (e.qg., car) thensynset, then the space blowup could
become dramatic.

7.3 Term Clusters

We implemented and tested our feature for two collections: the TREC Robisttmn (1.5 GB, 556,078
documents), and the English Wikipedia (8 GB, 2,863,234 documents). Elroéahe collections we used a
different method to derive the clusters of related terms, one unsupervidemharsupervised. The following
two subsections give details on each of the methods. The results of thénespks are given in Section4.
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7.3.1 Unsupervised Approach - Spectral Method

For the Robust collection, we used a completely unsupervised appraseti bn the technique frorBdst 03,
as follows.

1. Since Eigenvector computations on large matrices are very expews\@st removed common stop-
words, and restricted ourselves to a set of frequent nouns, whicldemtified using the TnT tagger
[Brants 0. We then ran Porter’'s stemmirigprter 8Q algorithm on these nouns and got a set of 10,098
terms to work with.

2. We obtained a set of related term pairs from these 10,098 terms usingdlo¢hsiess test described in
[Bast 0. We used a high smoothness threshold to select term pairs to ensure ttved ninrelated
(or not closely related) terms qualify as related terms. Figueshows the kind of term-term relations
extracted this way.

3. We used the Markov Clustering Algorithm (MCL) algorithrinom [van Dongen OPto derive clusters
from the list of term pairs, as required by our approach.

Figure 7.2: One of the clusters of related terms automatically obtained fromadbesRcollection. Edges
present in the graph denote term-term relations found by the smoothnessrtefBast 03. The cluster itself
was then found using the clustering algorithm frovarjf Dongen 0D Indeed, all the terms in the cluster are
closely related: most of them arefidirent metals, LME stands for London Metal Exchange, and Richard
Mooney is the author of several articles regarding the general topictal.me

Note that this approach makes the result of this unsupervised learningttaigoand its &ect on the
search results, completely transparent to the user. In contrast, methbdsspirit of latent semantic indexing
[Deerwester 9Pare often criticized for their incomprehensibility on the side of the user ewneg why a
certain document show up high in the ranking. 1t would be interesting toméefsignificance of this éierence
in a user study.

http://micans.org/mcl
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7.3.2 Supervised Approach - WordNet

For the Wikipedia, we made a straightforward use of WordNretllpaum 98 to obtain clusters of related
terms. Namely, we put two words that occur somewhere in Wikipedia in the sastercif and only if they
share the same most frequent synset. E.g., for the term “car” the sypmsetponding to “auto”, “automobile”,
“machine” and “motorcar” was used, bubtthe ones corresponding to “railcar” or “gondola”. TalBlé shows
all synsets for the term “car”. This heuristic leads to only about 30% méentin the index. Usingll synets,
would spoil both éiciency and usefulness of our feature.

1. car, auto, automobile, machine, motorcar (a motor vehicle with four wheslslly propelled by an
internal combustion engine) “he needs a car to get to work”

2. car, railcar, railway car, railroad car (a wheeled vehicle adaptéuktaails of railroad) “three cars had
jumped the rails”

3. car, gondola (the compartment that is suspended from an airshiparuwithes personnel and the cargo
and the power plant)

4. car, elevator car (where passengers ride up and down) “theasaomthe top floor”

5. cable car, car (a conveyance for passengers or freight drl@redlway) “they took a cable car to the top
of the mountain”

Table 7.1: A complete list of the WordNet synsets for the noun “car”. kEorexperiments, we assigned each
word only to its most frequent synset, so for “car” we used the firsinsete list above. The term “machine”
would in the end not be used as a synonym for car, as its most frequesgtsefers to a elierent concept.

Furthermore, we only used single terms and ignored compound nounsririaype(“lawn tennis”), as we
build our index for individual term$. The descriptions and the example phrases for the synsets were also not
used, as they do not explicitly contain any synonymy information.

7.4 Experiments

We integrated the described feature with our CompleteSearch engine, andragits ficiency on two query
sets. The first query set is derived from the 200 “dldtieries (topics 301-450 and 601-650) of the TREC
Robust Track in 2004\oorhees O}t For the second query set, we started with 100 random queries ageder
as follows: For each query, we picked a random document with unifoaiability and sampled 1 to 5 terms
according to their tf-idf values from it, i.e., each term had a probability of des@mpled proportional to
tf-log(n/df), wheretf is the number of occurrences in the given documeigt the total number of documents
andd f is the number of documents containing this particular term. The terms wereg@tplre within a small
enough window as to ensure at least one proximity hit. The number of tpreng for these queries was chosen
with a mean of 2.2 and a median of 2, which are realistic values for web sgaectes Spink 03.

For both query sets, these raw queries were then “typed” from left I, nigging a minimal prefix length
of 3. So the raw query “cult lifestyles” would yield the autocompletion queti€l§ cult, cult 1lif, cult
1life and so on. Additionally, whenever for a prefig> the querys: <p> led to a unique term cluster with id
<id>, we added an OR (for which we use th8 With the prefixs:<id>:. E.g., one autocompletion query in
the sequence for “airport security” sirport|s:399: secu|s:385:.

All experiments were run on a machine with two 2.8 GHz AMD Opteron proecegsoo cores each, but
only one of them used per run), with 16 GB of main memory, operating in 32wite, running Linux.

Table 7.2 shows that, by using the term clusters, the average processing time @xisasoughly 50%
(but not more) with respect to queries without synonymy information, argdgtill well within the limits of
interactivity. Somewhat surprisingly, the maximum processing timevier for the queriesvith synonymy
information. This is because the queries which take the longest to proee#isoae with a very unspecific
last query word, for exampleont. Such words tend to have more than one completion for which synonymy

2Inclusion of such compound nouns is theoretically possible, but it weisnmemented for this study.
3They had been used in previous years for TREC.
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Table 7.2 Breakdown of processing times for both of our query sets.“féosmal” queries there was no
synonymy information to be used.

| Query set | Average| 90%-tile | 99%-tile | Max |
Robust (all) 32 ms 90ms | 375ms | 970 ms
- normal 22 ms 55ms | 329ms | 970 ms

- synonyms 57ms | 129 ms | 385ms | 655 ms
Wikipedia (all) | 64 ms | 238 ms | 614 ms | 1218 ms
- normal 42ms | 128 ms | 569 ms | 1218 ms
- synonyms 35ms | 356 ms | 799ms | 841 ms

information is available, and in that case our interface, as describeé atmss not show any related terms, but
only syntactic completions.






Chapter 8

DB-style Search

8.1 Introduction

In this chapter, we show how we can use CompleteSearch to process alagdeof database-style queries.
First, we discuss other work related to the topic of “bridging the gap beti&eand IR” in the following
Section8.2. Then, in SectioB.3we explain that, by creating special documents with the appropriate artificial
words, we can put an arbitrary relational table into a form, where it cgrdeessed by the CompleteSearch
engine. Sectio®.4 gives examples of the types of query that the CompleteSearch engingittathese arti-
ficial words added, process and how this is done. Interestingly, vilg eagain support for a mix of key word
and db-style queries, thus taking a step toward-Bintegration. Besides CompleteSearch’s autocompletion
feature, the capability to procegsns will be central for this. Sectio.5 discusses how arbitrary joins can
be processed. Finally, in Secti@®6, we prove experimentally that this added functionality does not impede
CompleteSearch’s ability taféciently handle even advanced queries.

8.2 Related Work

The QUIQ engineKabra 03 is another recent attempt to integrate IR and DB functionality into a singlerayste
in a uniform manner. QUIQ is built on top of a DBMS, partly motivated by thetuondynamic updateéo
which we give only relatively little attention, see Sectioh?2.3. Like CompleteSearch, QUIQ makes extensive
use of the idea to “map non-text data to pseudo-keywords that canoohhesed with actual keywords of text”,
and for the case of CompleteSearch this will be discussed in the next section

TheTopXengine, developed by our colleagues at MPH¢obald 05h combines search in semi-structured
(XML) data with techniques for top-k retrieval, with a strong focus on thelafie explained in Sectioh.6,
CompleteSearch supports exactly the same subset of XPath querieskatikepQUIQ, TopX is built on top
of an df-the-shelf DBMS (Oracle).

The HySpirit system Fuhr 9§ was designed for “hypermedia retrieval integrating concepts fronr-info
mation retrieval and deductive databases.” The system is based obabitistic model of Datalog. Like
CompleteSearch, it can combine ranked retrieval with database quakeQUIQ and TopX, HySpirit is built
on top of a DBMS.

Our work on CompleteSearch addresses some of the issues and clsikEingd in a recent overview pa-
per by Chaudhuri, Ramakrishnan, and Weiku@h@udhuri 0 Our central completion mechanism might
be viewed as an instance of the “storage-level core system with 'R§@ functionality” argued for in
[Chaudhuri 0h We certainly agree with their point of view that an integrated IR&DB (or DB&kystem
shouldnot be built on top of an SQL-engine or a vanilla B-tree implementation, for reaebmficiency.
This is discussed in more detail in Chapier (in particular see Tabld1.1). Flexible scoring and ranking
and high-performance query processing, the first two items on the eegent list of Chaudhuri Of are at
the core of the design of CompleteSearch. See Sebtibfor details on the scoring mechanism used by the
CompleteSearch engine.

1Reduced Instruction Set Computer. SE€aqudhuri 0Pfor a discussion of the relation of this concept to DB-system design.
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For a more thorough overview of the area of IR&DB-integration, we réferreader to the SIGMOD’05
panel discussiormer-Yahia 0%, in particular its references. A classification of existing schemes aicaprd
to criteria such as integration architecture and general approach is atlemfiRaghavan Q[L In the following
sections we discuss our approach to combine basic IR and DB functionality.

8.3 Putting Data Tables into Document Form

Consider a collection of computer science articles, where for each articleave its conference, the authors
and the year of publication. Let’s, for now, assume that we have only thisda and no full text. How can
we preprocess this data, such that it is in a form “digestible” by our Conggeteh engine?

We do this by transforming the corresponding table, with the schema (eoickerauthor, year), as follows:
we add special words of the froreategory name>:<category instance>to a(new)document pertaining
to the article. The colon simply serves to distinguish these words from oydimards. For example, we
might addconference:vldb, or author: jon kleinberg, or year:2006. Generally, given any table with
attributesattr_1 up toattr_n we add the attribute-value pairsaistr_1:<val_1>uptoattr n:<val n>, where
<val_i>isthe entry for attribute All the words of this document will then correspond tmev of the relational
table where the doc id acts as an implicit, unique ID for each row. All the wood®sponding to a special
prefix, e.g.,conference:, will correspond to aolumnof this table. If we have more than one table, we also
add the table name, s#BC, astable:ABC to each such document.

Recall from Chapte# that, when the block boundaries are chosen appropriately, HYB staegotta-in-
document pairs for such a special prefix contiguously in memory, justddly it works. This is known in the
database world asolumn stord Stonebraker 05 which is generally preferred in systems optimized for read,
rather than for write access. With such a layout one daniently obtain all the information in a particular
column. If we later also want to support queries for the full text, we simptethd whole text to the same
document with the artificial words.

8.4 Supported DB-style and Mixed Queries

Consider thewo queriesconference:sigir author: andconference:sigmod author: . According to
Definition 1, the first query produces a list of authors (as completions) who havéspead at SIGIR, along
with the corresponding publications (as hits). Similarly, the second quedupes a list of authors who have
published at SIGMOD, along with the corresponding publications. Nowdatsuintersect the two lists of
authors, that is, the lists of (ids ofpmpletionsof the two queries. Details will be given in the following
section. Note the duality to the archetypical search engine operation &fantierg lists of (ids offlocuments
The intersection of the two lists of completions gives us the lists of all authdrighvihave published at both
SIGIR and SIGMOD, and the two lists of documents provide the withessessé ttacts. That is, we have
effectively computed &elf-join on the table which he have implicitly created by the addition of the special
words. In Sectior8.5, we explain how to generalize this to arbitrary joins. Note that the informatigquined
to process this kind of query is spread over several documents, whsomisthing standard IR-style keyword
search cannot handle. For example, the qeernference:sigir conference:sigmod author: would not
match any document, because no document is a SIGIR paper and a SI@&febat the same time.

If we prependedr db integration to the two queries above, we would obtain the join table restricted
to documents matching this query, and we would obtain a list of authors whiehphdolished at both SIGIR
and SIGMOD about the topic of IR&DB integration. This is a first example o l@ompleteSearch can
combine IR-style with DB-style querying and what kind of more advancextigsi we can process, given the
join capability. Our semantic search engine, built on top of CompleteSeadcprasented in Chapt@ will
make heavy use of such combined queries and of the join operation.

8.5 General DB-style Joins

In this section, we explain in detail how we can process arbitrary joins witlCtmepleteSearch engine. Sup-
pose that we are given two tabla8C and XZY and, as a starting point, that we would like to compute their
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inner join for the attributattr_k. We then launch the queri@able:ABC attr_k: andtable:XYZ attr k:
as prefix search and completion queries according to DefinitioRor the two result sets, we then have to
intersect the lists of matchingpmpletiongnot documents). Unfortunately, such lists of word ids cannot be
intersected just as easily as the document ids, because the lists of word itisarted One approach, called
merge join, would be to first sort the lists by word id and then intersect. Amaltiee would be to use a hash
join (computing the list of word ids that occur in both lists via hashing). As thetvids always come from a
smallrange we can compute the intersectioffieiently via a realization of a hash join with two bit vectors. We
experimented with both variants (see Sectodfor details) and the hash join was generally faster by a factor
of 3-5. A general discussion about join processing can be foundishfa 93.
Once we have computed this intersection, the elements contained in both listsaetly the matching
attribute-value pairs for the join attribute. To obtain the corresponding obwee join result table féciently,
we profit from the fact that whenever we are intersecting lists of woravits HYB, we are actually handling
pairs. l.e., we also have the corresponding document id at hand (and vie® ween we are intersecting lists
of document ids). This way we can easily obtain the corresponding dadudse which correspond to the
matching rows in both tables. By slightly modifying the intersection routine to olplitl when a word id is
present in only one of the two lists, we can use the same procedure to cdefpuight or outer joins as well.
Since the special words for a particular attribki{starting with the prefixxttr_k:) of any such table share
a common prefix, they will be stored in consecutive locations by HYB, anckitiier form their own block, or
be part of a single block. This allows for affieient processing of join queries. Note that the complex problem
of join ordering[Swami 89 Steinbrunn 9Fdoes not occur in our interactive setting, because the fact that we
want results after every keystroke demands an evaluation of the quastrict order from left to right.

8.6 Experiments

To test, if the join operation becomes the bottleneck for processing advantecompletion search queries,
we experimented with such advanced queries on tiferdint collections.

The first collection (DBLP) consists of about 20,000 scientific articles.ecoh of these articles the index
contains both the full text and meta data from the DBLP dafa 3&e meta data we used comprises information
for 24,028 authors, for 26 conferences, and for 33 years of mifdic® The queries we used were of the type
discussed at the beginning of Sectid. Namely, for each of the 325 pairs of (distinct) conferences we asked
(i) for a list of authors, who have published in both conferences, #sawéi) the list of their publications.

For our second collection (WikiYago) we combined the Wikipedia with the Yago ontolo§uEhanek Q7
which makes it possible to answer certain mseenanticqueries. This collection and its applications will be
discussed in detail in the following Chaptér For the queries (which are the “hard ontology queries” from
Section9.9.1) we used 1000 persons, present in both the Wikipedia and the ontotabigraeach such person
we asked for the death dates of all persons that were born in the samasy#ee given person. Processing
these queries involves a join on the (common) birth years. The data comgptsasof 2.9 million documents
and information about the birth years of 165,000 people.

The experiments were done on an Opteron dual 2.4 GHz processor maeitin8 GB of RAM. The
index resided in main memory (disk cache). While running the queries we mxéeleseve use of our result
caching mechanism (see Sectioh8) to avoid, e.g., that the information for the predixthor: has to be read
multiple times from disk. The time it takes to transmit the results over the network etasciuded in the
measurements.

For the DBLP collection, all the queries were, due to the collection size,tegaycess with an average
processing time of a mere2milliseconds (using hash joins). For the Wiklago collection, the average
processing time for the advanced queries was 65 milliseconds (also usimgoitas). However, the absolute
processing time was not under investigation here. More interestingly, figidia turned out to be 4 6 times
faster than the merge join and did not make up more than 30% of the averdgaotssing timé. Details
are given in Tablé.1 Note that the relative processing time would decrease further if the iratkreisided on

*http://www.informatik.uni-trier.de/ ley/db/index.html

3This collection is a more recent version of the DBLP collection already fmsdtie experiments in Chaptér

4An experimental evaluation of the HYB data structure (underlying the Getef@earch engine) for the basic prefix search and
completion queries was given in Sectidrb.
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Collection Merge join Hash join
DBLP 30% (0.9my) 9% (0.2mg)
Wiki+Yago 71% (12Imy) 30% (20ms)

Table 8.1: Query processing times for advanced queries involving a jeratpn. The percentage refers to
the percentage of the average total processing time, when the particulenjdé@mentation is used. The time
in parentheses is the average time spent in the join operation.

disk (and we had ensured that no disk caching was performed by thatiogesystem) and if we had not used
any result caching mechanism. Further experiments for other advanegdsjinvolving the join capability are
given at the end of Chaptér



Chapter 9

Semantic Search

9.1 Introduction

In the previous Chapted, we showed that, by adding a join functionality and by augmenting the corjlas w
the appropriate special keywords, CompleteSearch could do much marerilyaranked keyword (or rather
prefix) search. Here, we take these ideas to the next level by usingthpl€eSearch engine to handle queries,
which are of a moresemanticnature. For example, consider the query “which musicians are assowiiited
The Beatles”. This requires a search not for the literafd musician, but rather foinstances of the class
denotes.

Already this simple query highlights two of the main challenges of semantic s€ajabtain the necessary
semantic information, in this case, identify each occurrence of a musician givéae text collection; and (2)
make that information searchable in a convenient dhdient way.

Concerning (1), there are actually two problems hiding in here. First, e toefind out which entities are
musicians. Second, given such a list of musicians (including “Elvis Prealay “Britney Spears”), we need
to identify occurrences of these entities in the corpus, which might look likey“&f rock” or “teen pop star”.
For our concrete application of the CompleteSearch engine to the Wikipediasad the YAGO ontology
[Suchanek QJto address the first issue and the link structure present in Wikipediad@etitond issue. Details
will be given in the following sections.

The focus of this chapter, however, is on (2): given semantic informatiake it searchable fast and
conveniently. The main problem here is that standard IR data structurethdikaverted index (see Section
2.2) do not provide the necessary functionality. All research prototypstswb know of either use an ad-hoc
extension of the inverted index or they are built on top of a general-gardatabase management system. In
either case, they do not scale well for retrieval tasks on large collectioen either use a lot of space, or they
are slow, and sometimes both. This is discussed more in Secfion

The remainder of this Chapter is structured as follows. Se&i@mgjives a short summary of the results
presented in this section. The following Sect®B discusses a number of other systems which also combine
full-text and ontology search. Secti@y will provide details on our query engine. Sectigr will describe
how we add the ontology as artificial words to the corpus. Se&iémwill describe how entity recognition
gives us combined full-text and ontology search. In Secligiwe prove that with this approach can handle all
basic SPARQL graph-pattern queries, and in Sed@i8nve describe an intuitive user interface to the low-level
query engine. In Sectiod.9, we describe our experiments with regard to bdiitency and search quality.

9.2 Results

In this Chapter, we show how to use the CompleteSearch engine to obtain a neydtgan for highly ficient
combined full-text and ontology search. Besides the CompleteSearcteatsgili, such a system requires (i)
an ontology, (ii) an entity recognizer, and (iii) a special user interfade job of the ontology is to provide
us with basic knowledge about existing entities (“John Lennon is a musicidiig entity recognizer then
“applies” this knowledge to the corpus by assigning words or phrasetit@es they refer to. Finally, the user
interface maps simple queries input by the user to the only two basic opertdt®@mpleteSearch engine
supports:prefix search with autocompleti@ndjoin. The main challenge in the design of such a system was
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Hits 1 - 4 of 1543 for beatles musicia (PageUp A f PageDown W for next/previous hits)

John Lennon
beatles musicia John Winston Ono Lennon, MBE (October 8, 1940 — December 8, 1980) was an iconic
20th century composer and singer of popular music with Paul McCartney as Lennon-
McCartney throughout the 1860s, and was the founding member of The Beatles. ...
http:/fen.wikipedia.orgiwikifJohn_Lennon

zoomed in on 1543 documents

758 completions of "musicia”

musician (20271) Paul McCartne
musicians (16056) Sir James Paul McCartney, MBE (born June 18, 1842) is an English singer,
instrumentalist and songwriter, who first came to prominence as a member of The Beatles.

musicianship (424) http:/fen wikipedia.orgiwikifPaul_MecCartney
musician stubs (29) G Harri
[more] eorge Harrnson

George Harrison, MBE (February 24, 1843 — November 29, 2001) was a popular English
guitarist, singer, songwriter, record producer, and film producer, best known as a member

2924 instances of class "musician™ of The Beatles.

John Lennon (5541) http:ffen.wikipedia.orghwikifGeorge_Harrison

Paul McCartney (4357) Ringo Starr

George Harrison (3180) Richard Starkey, MBE (born July 7, 1840), known by his stage name Ringo Starr, is a
Ringo Starr {1087} popular English acter, singer, and musician, best known as the drummer for The Beatles. .
[more] http:ffen wikipedia.orgfwiki/Ringo_Starr

Figure 9.1: A screenshot of our CompleteSearch engine for the fjeetyles musicia searching the English
Wikipedia. As for the other applications, the list of completions and hits is ugdat®matically and instantly
after each keystroke, and the number in parentheses after each comiglétie number of hits that would be
obtained for that particular completion. The upper box suggests woddstaases that start witlusicia and

that occur together with the woikgkatles. The lower box suggesisstances of musiciarteat occur together
with the wordbeatles. In fact, fast processing of this apparently simple query requires tiodevdomplexity

of our system in the background: prefix queries, join queries, entiygration, and ontological knowledge;
see Sectio®.6. Our interactive and proactive (suggest-as-you-type) user ioteHaes this complexity from
the user as much as possible. See Sedi8rfor other types of queries which the CompleteSearch engine,
when the appropriate information is added to its index, can handle in a simitaorias

to map the knowledge from the ontology and the output of the entity recogiwizetificial words such that
complex semantic queries can be processed by mere prefix search aoplgmtions. We show how this can
be done #iciently for all basic SPARQL graph pattern queries.

As a proof of concept, we have implemented the whole system with an entitymeeo following insights
from [Dill 03], and a user interface, with a similar look to, but (partlylfelient functionality from the one
of our “standard” CompleteSearch engine. The ontological knowledggeprovided by the YAGO ontology
[Suchanek Q)¢ For this whole system, we conducted a variety of experiments regarditmgdbiciency and
search quality. The key novelties are as follows:

Scalability By building on the CompleteSearch engine, we can process complex semanrtescextremely

fast, with a very compact index. On the Wikipedia corpus, which has @million documents, together with

the YAGO ontology, which has about 2.5 million facts, we achieve procesisites of a fraction of a second

for a variety of complex queries, with an index size of just about 4 GB. Tbimes close to state of the art
full-text search with respect to both query processing time and indexkitaeyith much enhanced querying
capabilities; see Sectidh9. Compared to systems with comparable querying capabilities, this is faster by up
to two orders of magnitude; see SectiR.

Modularity Each of our system’s components is easily exchangeable. We could etheadata structure
for the query engine, as long as it can process the two required basiatiops: prefix search and join. For
example, one could replace the underlying HYB data structure (ChéapteAutoTree (Chaptes). Similarly,
the only requirement concerning the user interface is that it translatasewenanput it gets from the user to
these two basic operations. Since the task of the entity recognizer is irdgpest the indexing and query
processing, both it and the ontology used are easily exchangeable, too.

Queries supported We show how our system can solve arbitrary basic SPARQL graph-pafteries, by
reducing them to the basic operations of prefix search and join. If th&&RAguery is a tree withn edges,
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we can show that at most#basic operations are needed. SPARQL is one of the standard quenadgasgfor
ontologies, and a query is essentially a labeled graph to be matched agaimstdlogy graph; see Sectiérv.

User interface We carefully designed the user interface, so that it is intuitive (easy jo ingeractive (short
response time) and proactive (automatically trying out “sensible” intetpyetaof the query). For example,
when a user has typdskatles musician, the system will give instant feedback that there is semantic in-
formation on musicians, and it will execute, in addition to an ordinary full-tesdrg, a query searching for
instances of that class (in the context of the other parts of the quey)t aill show the best hits for either
query. See Figur®.1 for a screenshot of the system in action for that query. Our user acteifuilds on
experience we gained from the extension of CompleteSearch to alsorstaumied search (see Chap@@r
Note that by “user interface” we do not so much refer to graphical demigl layout issues, but really to the
issue of an adequaisterfacebetween the user, who should not be bothered with complicated syntatheand
system in the background, which only understands a low-level “larejuag

Entity recognition For the entity recognition component, we implemented a general-purposegaenvised
algorithm following ideas and insights fror@{ll 03]. For our Wikipedia application, we took the links between
Wikipedia pages as training data. We achieve a precision of about 90 istsimilar to what is reported in
[Dill 03] for a collection of 264 million web pages.

9.3 Related Work

There are still relatively few systems that explicitly combine full-text and ontokgarch. In none of the
systems we know,ficiency was a primary design goal, and performance measurements aretable
only as anecdotal evidence. A typical example is the recent syste@asfdlls 0F, which supports essentially
the same class of combined semantic and full-text queries as our system.uthbesaeport an “average
informally observed response time on a standard professional desktoputer [of] below 30 seconds” on
a corpus (CNN news) with 145,316 documents and an ontology (KIM) with848 facts; index size is not
reported. This has to be contrasted with the subsecond query times achgg our system, based on the
CompleteSearch engine, on the 2.8 million document Wikipedia, with a provainpact index.

The powerful XQuery language can be used for the kind of queriewsider here. However, experiments
(not reported in detail here) with the currently fastest engine, Mong&t{RBery Boncz 0§, have shown pro-
cessing times that are two to three orders of magnitude slower than whahigeeaasing our system. Another
alternative is the XML fragment search @#rmel 03, which deals with a subset of XQuery and which can be
used for some, though not all of our queries. While most semantic seagaies are built on top of a database
management system, with queries being translated into SQL, the engiGarofi¢l 03 builds on an inverted
index. Similar to the CompleteSearch engine, prefix search on artificiabvi®idsed, but without arfiecient
implementation, and neither query times nor index size are reported.

Volkel et al., in their “Semantic Wikipedia” pape¥ plkel 0§, propose a semantic Wiki engine which
makes it easy for users to add semantic information while creating or editingpAfges. This approach,
if accepted by the community, will combine semantic information with full text infornmattaut it will not
provide a means of searching this informatidhogently.

The general idea of enhancing full-text search by the addition of artificeds is, of course, not new. In
the QUIQ systemHKabra 03 this idea has been employed in the context of DB&IR integration. For the XML
fragments search fronClarmel 03 enclosing tags have been prepended to indexed wordsSdmejnkel OF,
the Wikipedia corpus has been enriched with XML tags. None of thesensysiges any specialized index data
structures, which does not let them scale well to large collections.

There are several works concerned with intuitive user interfacesfoantic search engines. Prominent ex-
amples are HaystackKprger 03, Magnet Sinha 0%, and the Simile toolsHluynh 0§. Our proactive user inter-
face is essentially that of our “normal” CompleteSearch engine and is iddpjrthe faceted-search paradigm
[Hearst 02 To our knowledge, our system is the first to combine semantic search withteractive and
proactive user interface.
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9.4 The Query Engine

The CompleteSearch engine with its HYB data structure is at the core ofstensyHowever, the query engine
is modular and only requires the following characteristics:

e Prefix search: Given aposting list, sorted by its document ids &hda range W of word idsit must be
able to compute the (sorted) posting list of all occurrences with a documéonicthe given sebD and
a word id from the given rangé/.

e Join: Given two posting lists, it must be able to compute the single posting list considtalbims
whose word ids occur in both lists, and which is sorted by document id.

By “posting list” we mean a list of tuples, where each tuple consists of (deedd id, position, score). The
reason that we need to have both document ids and the corresponduhgde/dundled is that we will make
use of a kind of duality, e.g., outputting word ids while intersecting documentridgéce versa. Positional
information is required as in Sectién5, where we will carefully construct artificial documents, we will make
heavy use of the positional information to put certain keywords at fixstipns. Scores for individual word-
in-document pairs (or rather word-at-position pairs) are optional luinypractice always be present, as they
allow for a highly customizable ranking of the results. HYB stores such sgtarallel lists, sorted by document
id.

The first item in the list above (prefix search) essentially refers to theatddefinition 1 and at the
corresponding algorithmic problem, which HYB and AutoTree addresss reeded as in Sectigh5 we
will use a mechanism to put database-like information into artificial documents simitae one in Section
8.3, With this prefix search operation alone, we can already answer basanse queries of the following
type. Assume that in our collection we have replaced each referenlmhioLennorby the artificial word
musician: john_lennon, and accordingly for all mentionings of a musician. We can then find all mengen
of a musician on pages mentioning theatles by two prefix search queries: First, get the sorted list of all
ids of documents containing the wasdatles, by solving the prefix search query whékécontains only the
id of that word, and is the set of all documents. Then perform another prefbmpletion search whei@ is
the list of these document ids akid s the list of ids of all words starting witlusician:. This will give us
the list of all mentionings of a musician in documents that also contain the beardles. We will write the
corresponding query dsatles musician:*. For another example, assume that every musician has its own
document (as is the case in Wikipedia) and that, along with the artificial wotlédanusician’s name, we also
added the birth year as, for examp@derninyear: 1940. In the same manner as for the previous example, we
would then obtain the list of all musicians born in 1940 by the qemhinyear: 1940 musician:*.

The join mechanism is needed, as our system depends on the ability togpdiestyle queries similar
to those discussed in the Secti®rl. For example, consider the two prefix search queries from above: the
first gave us a list of all musicians occurring in the context of the Beatlessélcond gave us the list of all
musicians born in 1940. Since the ids in both lists are of words of the samesgkiifitial words starting with
musician:), a join of these lists gives us the list of all musicians who are mentioned in thextaf the
Beatlesandwho were born in 1940. The list of document ids of the result list can ée ae “witnesses” of its
individual items. Note that this example quexssembled information fromgrent documenighis is a kind
of functionality which an ordinary inverted index cannot provide.

9.5 Mapping the Ontology to Artificial Words

We assume the ontology to be given as a directed graph, where the medabeled with entities, and the
arcs are labeled with names of relations. As a minimum, we require the rel&iarend subclass ofwith
the obvious (standard) semantics that will become clear by the following éganffor our application of the
system to the Wikipedia, we picked the YAGO ontology froBug¢hanek 0f7 which beyond the requireid a
andsubclass qgfcontains relations such &srn in year died in year andlocated in YAGO was obtained by
a clever combination of Wikipedia’s category informations with the WordNetahiady [Fellbaum 98 The
YAGO graph has about 2.5 million arcs. Example arcs, written as ordetigeglation-entity triples ardohn
Lennon is a musicigrdohn Lennon born in year 194fMusician subclass of artist
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In Section8.3, we showed how arbitrary relational tables could be put into a form suathttle Com-
pleteSearch engine can process it. In the following, we describe hovaster8GO, and similarly any other
ontology which has at least tieeaandsubclass ofelation, intoartificial words, so that we can answer complex
semantic queriesficiently using the two basic operations (prefix search and join) describin iprevious
section.

Ontology items as artificial words We assume that for each entity in the ontology there is a canonical
document. For the Wikipedia collection and the YAGO ontology this is indeed the dhait is not, we can
simply add such canonical documents to the corpus. The constructioolibatst has, as a parameter, a set of
top-level categoriesThe right setting of this parameter will be key to diaent query processing. Intuitively,
this set contains classes that are high up irstifeclass ohierarchy, likeentity, person substanceetc.

Now consider an arcx(r,y) from the ontology wherex andy are the entities of the source and target
node, respectively, andis the relation of the arc. We then add the following artificial words to the daabn
document for the entitk: At position 0, we addckce>:<x>, for each top-level categony of which x is an
instance; at position 1, we adat>: <p>, and at positiorp we addentity:<y>, wherep is unique for relation
r. For the speciais arelation we further add, for each chain of triplesié a y1), (y1, subclass o,fy,), ...,

(v, subclass 0,2), the artificial wordclass: <z>.

For the three example triples from above, assuming that John Lennon istiopthevel categories entity

and person, this would add (the first column gives the positions):

entity:john_lennon
person: john_lennon
is_a:2
class:musician
class:artist
born_in year:3
entity:1940

W kL NNRFR S

Note thatentity: john_lennon andperson: john_ lennon are added only once, irrespectively of in how
many triples the entity occurs, that all relations are added at position 1, ahthéhrelation name contains
a reference to the position of the entities from the target domain of the relailso. note that there is no
problem, if in the occurrence lists processed by the CompleteSearch essy@@l words occupy the same
position in the same document.

Ontology queries Let us give a simple example for how we can make use of these artificiabwabume
we want to know the birth date of John Lennon. First, the query

entity:john_lennon + born_in year:*

which is of the kind we have already discussed above, would give us tifeh@ canonical document for the
entity John Lennon, as well as the (word id of the artificial word containiey plosition 3. Then the query

entity:john_lennon + born_in year:* ++ entity:*

gives us the (id of the word containing the) desired year. Here the parse€ompleteSearch’s proximity
operators:<x> + <y> means thaky> must occur at the position followingx>, andn pluses say that the
words must have a gap of- 1 positions between them. Analogously, the CompleteSearch engine prthedes
negative proximity operator, with <x> - <y> meaning<y> + <x>'. Note that the basic definition of prefix
search given at the beginning of SectiA can easily be extended to perform proximity search; see Chéapter
for details on how to incorporate positional information in HYB, and Secidiérfor details on the general use
of proximity search.

In Section9.7, we will see that with artificial words added as described, we can harttesay SPARQL
gueries. In Sectiof.8we will see how the artificial words together with the prefix search operatiable us
to free the user from having to know any special syntax or names of meliatia completely interactive and
proactive way.

1The symbols+ and- are only used for clarity here. The syntax used internally is less intuitive &nd . ; ,), but these queries
will never be entered by the user directly, as they are constructed bgéhénterface. The is actually used for the NOT operator (see
Section5.7).



80 CHAPTER 9. SEMANTIC SEARCH

9.6 Entity Recognition and Combined Queries

The example queries in the previous section are purely semantic in the sahtieethare operating on the
ontology alone. In this section, we show how we can combine full-text atmlagy search in an integrative
manner, providing a functionality that is more than the sum of the two components.

Entity recognition We add, at the position of each occurrence of a word or phrase in thedléection that
refers to an entiti from the ontology, the artificial word<c>:<x> for each top-level categony of which

X is an instance. For example, if we take the same top-level categories as athple from the previous
subsection, then wherevdohn Lennons mentioned (either by his full name, parts of his name, or however),
we would add the artificial words

entity:john_lennon
person: john_lennon

Here we see that the set of top-level categories must not be too largewisth, a large number of artificial
words would be added for each occurrence of an entity in the corgushwould blow up our index beyond
manageability.

Combined full-text and ontology queries Let us give an example of which kinds of queries are possible now.
Assume that we want to find all occurrencegpefsondn documents that also contain the warehtles (see
Section9.9.2for a discussion of when and why this kind of query makes sense). thieesimple prefix query
beatles person:* would give us the desired list. But now assume that we are looking for aliroences
of musiciansin the set of documents matchimgatles. Further assume that musician is not a top-level
category so that we do not have artificial words of the kindician:<x>. However, note that in the canonical
document of each entity that is a musician, we have the artificial wattlass:musician. Then the query
class:musician - is_a:* - person:* will give us a list of all (ids of words containing the names of)
personghat are musicians, whereis the above-mentioned negative proximity operator. A simple join of this
list with the list of the previous query will now give us the desired list ofalisicianghat occur in documents
which also contain the worbleatles.

In Section9.7, we show that in this fashion any basic SPARQL graph-pattern querpeanocessed by a
combination of prefix search and join operations.

Efficiency We have already seen that, in order to keep the index size small, we haveptthikenumber of
top-level categories small, so that for each reference to an entity in thessave add only few artificial words
(one for each top-level category to which that entity belongs). Thetiguesrises, why we then not just take
the top categorgntity (to which each entity belongs) as the only top-level category.

The problem is, that for a query like the one above, we would then havetue the two queries

beatles entity:*
class:musician - is_a:* - entity:*

and join them. Nowentity:* will have very many completions; indeed, one for every occurrencngf
entity in the corpus. However, the prefix search queries can be gextésciently only when the number of
occurrences of words from the input word range (occurrencegads starting withentity: in this case) is
not too large; see Chaptérfor details. We must therefore choose the set of top-level categocestisat for
every sensibfequery of the kind above, there is a top-level category above the cgtagoare looking for,
which does not have too many completions.

Realization for Wikipedia For our Wikipedia application, we identify occurrences of words or gésahat
refer to an entity from the collection as follows. Recall our assumption thatpuiitioss of generality, each
entity in the ontology has a canonical document in the collection. Now Wikipediahat of internal links,
which, for selected words or phrases do exactly what we are lookingHey associate them with an entity.
We use these links as training set for a simple Btgative learning algorithm, which essentially follows the
approach fromDill 03].

In a nutshell, the approach proceeds in two phases: a training phasa,disambiguation phase. In the
training phase, we compute, for each word or phrase that is linked atli@éisnes to a particular entity, what

2A query for allentities(people, substance, abstractions, etc.) associated with The Beatlelsvajlsde very expensive, for the
reasons just explained. But it is not a very sensible query precisefube it is looking for entities from a very, very general class.
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we call aprototype vectar this is a tf.idf-weighted, normalized list of all terms which occur in one of the
neighborhoods (we consider 10 words to the left and right) of the céigpdinks. Note that one and the same
word or phrase can have several such prototype vectors, onadbrestity linked from some occurrence of
that word or phrase in the collection.

In the second phase, we iterate over all words or phrases that hawesbeountered in the training phase.
For each of them, we compute the similarity to each of the possible prototypesidnt@dding up those values
in the prototype vector which occur in the neighborhood of the word agehwe are disambiguating. We then
assign the meaning with the highest similarity. Similarly a€dill[03], we achieve a precision of around 90%,
see Sectiod.9.

9.7 SPAROQL Queries

SPARQL [W3C 05 has been proposed by the W3C as a query language for ontologiePARG@L query
corresponding to our (purely semantic) query “musicians born in 1941 Sectior®.4 would be:

SELECT ?who WHERE ({
?who is_a musician .
?who born_in year 1940 .

}

These so-callebasic graph patternare at the core of SPARQL, and for the purpose of this section we will
consider them as instances of the followhigary constraint satisfaction problem (BCSKumar 92:

Given a directed grapt, a finite setS, for each node a subseSy c S of values, and for each edge
of the graph an arbitrary relatidR. € S x S. Then compute all possible assignments of valueS &j the
nodes ofG that satisfy all relations, that is, all assignments such that for eacheadijle value x assigned to
its source node, and valyeassigned to its target node, ¥) € Re.

The example SPARQL query from above would correspond to a graphiwéh nodeg, y, andz, and two
edges X y) and , z), whereSy is the set of all possible valueS, consists of the single entitywusician S,
consists of the single entitl94Q Sy is theis arelation, andS(y , is theborn in yearrelation.

The simplest algorithm for solving an instance of BCSP will iterativelgx the arcs of the given graph as
follows: for an arc &, r,y), where the current set of values fois X, and the current set of values fpis Y,
replaceX by all values which are related, with respecttdo a value fromY, and, analogously, repladeby
all values which are related, with respectido a value fromX. Like this, relax the nodes in some fixed order
and repeat until the sets of values do not change anymore.

There are a number of more sophisticated algorithms making use of the saorelaa®peration Kumar 93.
It is not hard to see that in the important special case, where the quetness @nd the vast majority of mean-
ingful SPARQL queries are trees), itfiaes to relax each arc exactly once (going from the leafs to the root).
It is also not hard to see that, for our system, each relax operation is a magemost two prefix search
gueries and two join queries. TheandY from above correspond to list&X> and<Y> of occurrences in the
CompleteSearch engine. To compute the set gfallY which are related, vig, to somex € X, we first execute
the query <X> + <r> ? <c>:* wherec is the (top-level category encompassing the) domain ahd?
is to be replaced by the proximity operator pertaining.té join of the matching completions for the prefix
<c>:* in the query above with the result list 7> then gives the desired subsetofThe desired subset of
is obtained analogously. We therefore have the following theorem.

Theorem: Following the approach above, we can process an arbitrary giveao 8BARQL graph-pattern
query with at most &1 prefix search andr join queries, wheren is the number of relaxations required for
the solution of the corresponding binary constraints satisfaction probfeime EPARQL query is a tree, one
relaxation per arc of that tree isfiigient.

9.8 User Interface

By “user interface” we do not mean the choice of colors and the like lallyrthe interface, or “query trans-
lation device” between the user and the CompleteSearch engine in the dan#tgrNeither SPARQL nor
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CompleteSearch’s low-level query language (combinations of prefielsesaand joins) are suitable for a front
end to a search engine, where users are accustomed to extremely simfdeeéstémnamely, keyword search).
Inspired by the works ofHearst 02 and addressing similar issues as for the case of faceted search (see

Chapter6), we have therefore devised an interactive and proactive useraiogerivhich handles the most
common types of semantic queries in a simple and intuitive manner. We have Sestregample in Figure

9.1 Here, we describe the other features in words and by example. E#ud following kinds of queries are

a matter of a small SPARQL query that is a tree, and can therefore be sfiieéehtly by the theorem proved

in the previous section.

Semantic completion of the last prefix This is the feature, an example of which is shown in Figurde At

every keystroke, the system checks whether the last prefix of thentuquery string matches a class name.
This is easily realized via artificial words as follows. For each class naneh, & musician , we add an
artificial word of the type cn:musician:person , where “person” would generally be the nearest top-level
category containing the respective class, to a special document cogtairtynsuch words. From the matching
completions to the querycn:music , which is launched automatically in the background, we then get the
information that the prefixmusic could also be interpreted as a class name. If more than one class name
matches, a box with possible choices is displayed. For example, for thelepeetrles music, we get

Musical instrument (Object)
Music Genre (Relation)
Musician (Person)

Clicking on one of these choices then gives a picture similar to the one ofeFigur

Proactive display of properties of an entity If we click on one of the musician’s names in the lower box
shown in Figured.1, the right panel will show documents referring to that musician prominenttyth® left
side, the lower box then shows a list of prominent properties of that entiyrding to the ontology, for exam-

ple

John Lennon born in year 1940
John Lennon died in year 1980
John Lennon is a pacifist

Narrowing down a class Another frequent query is for entities from a given class which havaracplar
property. For example, assume we are looking for songs by German nmgsiciais can be formulated as
the query musician[german] song for which the system displays occurrences of songs in documents that
mention a musician, which in this or any other document occurs together withdtegarman. Note the
subtle diference to the querygerman musician song for which all occurrences of songs in documents
which contain the word German and mention a musician are displayed. Both ddirnglgeries are needed
from time to time, but the user interface can be configured to translate the lattieofkquery into the former
automatically.

9.9 Experiments

We have implemented the whole system as described above. For the qgiesy/wa used the CompleteSearch
engine, but the only required features are described in SegtibonThe entity recognizer was described in
Section9.6, and the user interface in Sectiér8. We have applied it to the Wikipedia corpus combined with
the YAGO ontology. Our version of the Wikipedia corpus has 2,863,234irdeats and a raw size of the
corresponding xml file of 8.0 GB. Our version of the YAGO ontology grapk 984,361 nodes (entities) and
2,505,638 arcs (facts). The total number of word occurrences, ingule artificial words, is 1,513,596,408,
which the CompleteSearch engine manages to hold in an index of size 4.1 @Rlingc300 MB for the
(compressed) vocabulary. Our experiments were run on a machine wiiB 18 main memory, 2 dual-core
AMD Opteron 2.8 GHz processors (but we used only one core at a tirpejating in 32 bit mode, running
Linux. The ontology-only queries were run on an Intel Pentium 4, 3 Gkth, 1 GB of main memory, running
Windows. We verified that the running times on these two machines are cdrgara
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9.9.1 Hfciency

As we discussed in Sectio®s2 and 9.3, efficiency aspects have hardly been considered for other semantic
search engines with similar capabilities as the orfiessed by our system. Preliminary experiments (not further
reported in this chapter) have pointed to performanéferdinces of up to two orders of magnitude.

For a more challenging performance assessment, we therefore deedetlatving, somewhat extreme,
stress test. We constructed five query sets, three of which are purelpgioal, while two others com-
bine full-text and ontology search. For the pure ontology queries, praipiexperiments with Jena’s ARQ
[Seaborne 05 a state of the art SPARQL engine, have again pointed to performafieesdices of up to two
orders of magnitude; we instead chose to compete with the highly tuned (ophdy) search engine that
comes with YAGO Buchanek Q7 For the combined queries, we compare our system to a state of the art
engine for full-text search; for this we took our own implementation which Ineady used as a baseline in
Chapterd.

This comparison is extremely unfair because both the ontology-only andltiext only system are highly
tuned toward their specific task, and cannot be used for the respetitametask. Moreover, YAGO's ontology-
only search is realized via a database management system with one lasgeliée, with indexes built over
each possible attribute, which means that it has the set of answers fasmllfact queries precomputed. The
space requirement is accordingly high: roughly 3 GB. This has to be aeahpath the about 4 GB which the
CompleteSearch engine requires for the whole full-texintology index. A version of our system built for
ontology search alone has an index size of only about 100 MB.

Queries We considered the following five queries sets. Note that queries fromrdigtiree sets can be
answered from the ontology alone, and do not need the full-text seapability. For our experiments, we
always used the complete index though.

Simple ontology queriesthese ask for a list of triples from the ontology. Namely, for 1000 pex$mm the
ontology, we ask for their birth year.

Advanced ontology queriesthese queries require following paths in the ontology graph. Namely,dor 1
relatively general classes, like biologists, social scientists, etc., wenal &ntities from that class.

Hard ontology queriesThese queries require the combination of several facts from the onta\aggely, for
1000 persons, we asked for the death dates of all persons that everim bhe same year as the given person.

Combined full-text ontology queries, Easyfhese queries require the combination of full-text and ontology
search as described in Secti@m. For the easy set, we asked 50 queries for all counties of a given tS sta
The counties class is in our frontier set, so these queries can be mosésPprefix search queries alone, e.g.,

alabama counties:*.

Combined full-text+ ontology queries, Hard:These 50 queries ask for all computer scientists of a given
nationality. Since the computer scientist class is not in our frontier set, Iytlo® more general scientists
class, these queries require more expensive prefix search guewedl as a join; see Secti¢h6.

Results Table 9.1 summarizes the results of ouffieiency experiments. Given the unfairness of the com-
parison, discussed above, the fact that the CompleteSearch’s quessging times are comparable to the
respective specialized baselines is a strong result in favor of ouoagipr

For the full-text only queries, we simply replaced all entity prefixes byesgonding index words, e.g.,
alabama county Or german computer scientist. Note that these queries hardly retrieve any relevant
documents. We provide these figures merely to show that unlike the systesussdid in Sectiof.3 Com-
pleteSearch manages to stay in the same order of magnitude as state of thidext §earch. Also note that
for the full-text only search, the hard query set can be processeat than the easy set because there are more
occurrences of the wordounty than of the wordscientist in the Wikipedia. Finally, note that the Com-
pleteSearch engine manages to keep also worst-case (max.) queigsprgdines low (which was in fact one
main design goal as discussed in Chagjethis is especially important for the interactive, suggest-as-you-type
user interface.

9.9.2 Search Result Quality

Thequality of the search results provided by our system, or any other semantit smioe of a similar kind,
depends on three main factors: (1) the quality of the ontology; (2) the quélibe entity recognizer; and (3)
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CompleteSearch Onto-only or
Full-text only
avg. | max. avg. | max.

Onto Simple 2ms 5ms 3ms | 20ms
Onto Advanced | 9ms | 31ms 3ms | 794ms
Onto Hard 64ms | 208ms || 78ms | 550ms
Onto+ Text Easy| 224ms| 772ms || 90ms | 498ms
Onto+ Text Hard| 279ms| 502ms || 44ms | 85ms

Table 9.1: Query processing times on five query sets

the principal ability of the combined full-text and ontology search to provitkrésting results.

Quality of the ontology We employ an existing ontology, hamely YAGO froi@Jchanek O)7 In that paper
the authors estimate, by extrapolation from human assessment on a sampd&%haf YAGO’s facts are
correct.

Quality of the entity recognizer Table9.2shows the quality of our entity recognizer, described in Seé&ién
For this assessment we held out 10% of the words or phrases for wieidottesponding entities are known
(because they link to some Wikipedia page), and measured the percehtaggties recognized correctly
(precision). We compare our implementation (OUR) against two simple baselineshaive scheme that
assigns every word to the most common sense that has been encouateiteat fvord in the training set
(TOP), and the scheme that assigns every word to a random sens®@MN

Scheme |all words| 2 senses3 senses> 4 senses

OUR 93.4% | 88.2% || 84.4% | 80.3%

TOP 91.9% | 83.5% || 77.2% | 77.6%
RANDOM| 71.5% | 50.2% || 33.4% | 14.0%

Table 9.2: The precision of the entity recognizer used by our system

Combined ontology and full-text queries quality Since there are no benchmarks for combined full-text and
ontology queries on the Wikipedia, we came up with the following geaeric(as opposed to hand-crafted)
query sets:

People associated with universities (PEOPLE, 100 querid& ook the first 100 lists from the Wikipedia page
“Category:Lists of people by university in the United States”, for exampist'af Carnegie Mellon University
people”. For each such list, we generated a combined ontology and futidexy, for example, carnegie
+ mellon + university person:* and computed the percentage of relevant entities which appear in the
result list (RECALL) and the percentage of relevant entities among thedt@Pp@ 10), considering the entities
listed on the respective Wikipedia page as the relevant ones.

Interestingly, our system found a number of false-negatives: fanpleg among the top ten entities for the
above query, Andrew Carnegie was returned, who is not listed on$pectve Wikipedia page.

Counties of American states (COUNTIES, 50 queriEs):the second query set, we took 50 Wikipedia lists of
the form “List of counties ikUS state-".

Results As shown in Tabl®.3 CompleteSearch enriched with the ontological knowledge achieves antalmos
perfect recall and a reasonable precision on both query sets. tuimdioely we could achieve these precisions
only withoutthe additional entities learned by our recognizer, while recall is fietted much. This may sound
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paradoxical at first but there is a simple explanation: the amount of infmmprovided by the Wikipedia
links (our training data) is already very complete, e.g., at least the first mérgiof a person on a Wikipedia
page almost always contains a link to that person’s entry in the Wikipedi#s riibans that for the broad
kinds of queries from our two sets, tagging more entities only creates mize fidne entity recognizer would
obviously help if we had additional documents with interesting information, iihbwt human-labeled entities,
for example, news articles. Here we could then, e.g., ask for politicians medtio a news article containing
the word “nuclear power”, or for countries occurring together with ‘ftecrease”. This issue requires further
investigation.

PEOPLE COUNTIES

P@10 37.3% 66.5%

RECALL| 89.7% 97.8%

Table 9.3: Precision and recall on two query sets






Chapter 10

User Study

10.1 Introduction

Fast response time is one of the keys to user satisfaction: for user éet®ifageneral, and for knowledge
management systems in particular. Our CompleteSearch engine was design@dde a set of “intelligent”
search features, yet with response times suitable for a fully interactvek@ystroke) user interface, even for
very large amounts of text.

In this chapter, we describe how we combined CompleteSearch with our irstitaledesk system, which
contains over 7,000 records from a few hundred users. We comblactmall user study with five members
from our helpdesk st who each performed ten typical tasks, alternatingly using Complete SaaacBoogle
Desktop Searchdgsktop.google. com).

All five users preferred CompleteSearch over Google Desktop, maiiguse of its speed, the feeling
of being in power, and the enhanced search facilities. The interactiavioe with its instant response time
was unanimously perceived as the single, greatest strength of the sySitbiwugh this did not come unex-
pected for us, it is somewhat surprising given the many other intelligemia(stc) search features provided by
CompleteSearch, and given that Google Desktop Search is by no mear{thelogh not as interactive) either.

In Section10.3 we describe the adaptations we made to the CompleteSearch engine to optionzkeat f
helpdesk setting. In Sectid).4, we discuss work related to the problem of experience management iragjene
and to helpdesk systems in general. In Secfiorf we describe the setup of our user study and discuss the
results.

Following our study, the helpdesk ftés now using CompleteSearch on a daily basis. For privacy reasons,
we cannot fer a demo of the CompleteSearch setup for our helpdesk system. Howkseof related demos,
can be found atttp://search.mpi-inf.mpg.de/.

10.2 The Helpdesk System

Our institute’s helpdesk system is essentially a databasbaart text fragmentgrouped into threads, called
tasks Each fragment has an author, user privileges, etc. and each task praority, a status, someone
responsible for it, etc. Customers can initiate or react to a task by email omwd anterface. At the time of
our user study, the database contained about 7,300 tasks. Tasksrerditerature sometimes also referred to
as ‘trouble tickets’.

10.3 Adapting the CompleteSearch Engine to the Helpdesk System

The screenshot of Figufg.1shows our CompleteSearch engine in action for the collection of helpddsk tas
Note that the basic autocompletion search feature (see Seéxfipis a purely syntactic one: it is all
about words starting with a particular sequence of letters. We next &lyoavfew examples, how by adding
appropriate artificial words to the index, a surprising variety of more arreé semantic features can be realized,
too. The examples here are for the particular use case of our helpdaskns A far more thorough study of
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searcn L::] Hits 1 - 10 of 61 for ssh pass (Pagelip A/ PageDown W for nestiprevious hits)

SRy Bghaly)  Gpticas Request: Emall problem / ssh-X11 tunnaling / passwd name comaction (status: archived)

Emal problem/ ggh-# 11 wnneling / passwd name comection Mahbooby Alam Khaid will Cormect your name in the
sshpass unix pagswel fiz - The hElludE‘.nf shoud hslp you to Sét up the XWindows/ssh tunnfing fha you nead to dispiay
XWindows

2oomed in on 51 documents
Reguest: Fw: ssh oder mein MP1 account (status: archived)

O Fwr gsh oder mean MP1 account narmar Stechir@sg ¢S uni-magdeburg de Subject sah oder mein MP| account
passwart (15 Habo Lhwe, ich hat pamand meinen Account "geknackl” und main Passwort geasndert? Oder hat sich an der S5H
password (229 ithere & more matches]
passwd (5) hitps firmabaads mpi-ind mpa defrhafarchivela ogtade nefC 1 I560EB0EEEDS 1 C1 25T 185007 F TES S Onanlac umant
passworiengabe (1)
passphrase (4) Request: ssh account (stalus. archivad)
passiect [5) ssh account bass tifweb de wab de wicte. b, | pist changed my passwond to it e new secunty needs fast
[maria] [ast vk LI hop-e it dn:-'s:l bt rrry “h at LOL1II. 3 h"L dlbabléd :Iu:ll S—DI]IE'I:'IHI._] ‘MOIr_,'I
https Aimikada mpl-inf mpg defrbglarchvela_bgtods nsbliC 125808B005EE03 10 1257 1300024 1BBCIOpeniocument
Fsfine by REQUESTER Request: ssh demon auf nobelium slarten {status: archived)
Mahiboob: Alam khaid (1) agh demon aif nebakium starten Michasd Software.pdate eine Psaudo- Benutser aus dem Passwort-File
Michasl Gosele (2) verschwanden 151 Erwird sich hewte ) ]
Ingras Weber (2] hitps rmikiade mpi-inf mpgdeirbalarchiveda_thotodo rehOiC 1 2568000038447 0C 1 Z56E0F 002 TF 6T Tis
Baszs tiZweab da | 1)
Biarke Shiemaa (1) Request: ssh pubipriv key problems (status: archived)
Joachem Buch 1) &5h pubipriv key problems Bjaria wrate: Hi these, tha contents of my ssh directory look ke tes_-pa-r-r— 1 jminoth
[miares] by the Bist of known hosts. skjemasdicontact's password: Last login: Tue hMar 11 13.51 ACCEPT dabug?
sutharticabons that Can continue. publickey password debug 1. net Suth method 1ot 15 [Ehete are rione matihes]
Refing try RESPONSELE hitps: dimikado pi-inf mpg deftbgfarctvela_mgtods R0 1 256B00003E4470C 1256C0E0035E0E 1 Dpaniocisrient
Wioltfram Wagmer {13)
U Erahm (5) Request: Vom notebook aus ohne Passworteingabe auf ganymed einloggen (status: archived)
Jarg Hammann (10) Vom notabook aus ohne Passworteingabe auf gamymed sinloggsn Joachim Jegler . liegles an foigendam #1s-kd
Bemd Farar (8] -megiarn 8sh downe-5-- 2 Heglar Mebihom 512 Feb 25 1015 MMiusiinegled ssh/ d h. der sshd als Root {=nobody Ober
Patrick Ceombn (9) NFS . [ihens are more matches]
Marko Jung {3) hetes: e keado.mipd-inf mpg deirbgdarchiveda_rbgreds nstiC 1255800003E44T0C 1 256 C0E0I034 256C OpenDocumeng
[mare] =
Request: Zugang vom Internet 2u Subversion ohne ssh login (status: assigned)
Zugang vom internet u Subversion ohinve ssh login Joachim Bich Hailo Jarg grbt &5 eine Mogkchkedt einen 38H
Redine by STATUS Tunned 20 mpicl3468 Port 3680 vom Intemst solte sowleso mecycled wearden, d b Du kannst das Passwert nou

Figure 10.1: A screenshot of the CompleteSearch engine in action foudhg £gh pass on a collection of
over 7,000 tasks of our helpdesk system, indexed with full tegategory information. The list to the right
shows documents which contain a word starting with together with a word starting withass. The first box
below the search field shows words, subwords, and phrases staittingaws (passwort, password, passphrase,
etc.) that lead to the best hits. The other boxes show a breakdown of thle sét of 2,302 hits by various
categories: requesting user, who is responsible, task status, etc. Afifdrimation is updated instantly after
every single keystroke, hence the absence of any kind of searcmb#étideatures are obtained via one and
the same highlyf@icient and scalable prefix search and completion mechanism.

how the CompleteSearch engine can be used to allow more semantic queripeeserged in the previous
Chapter.

Semantic annotations. Assume the word&mhp81001 has been identified, as a printer name. We would
then add the wordsrinter: kmhp81001 andkmhp81001:printer to the index. If a user then typgaoblem
pri, one of the completions might lprinter:kmhp81001 (which in our current GUI would be displayed as
kmhp81001, the PRINTER), provided that there is at least one document in the collection which centain
both problem andkmhp81001. And similarly so for the querproblem kmhp. For our institute, we could
simple obtain an exhaustive inventory list of all printers, notebooks asktaje, for which we then added this
information.

Faceted search.Assume that a document is known to belong to certain categoried,isayx andmail.

We would then add the wordsat:1linux andcat:mail to the system. Then, for the quefigtwork slow
cat:, the list of completions would give a breakdown into categories of the hithéquerynetwork slow.

In the actual GUI, users do not have to type thae: but a query with this word appended is launched auto-
matically after every keystroke. See Figur@.1for an example. This feature, known faxeted searcland
described in detail in Chaptér gives the user complete freedom to alternate between keyword-lemetisg
and directory-style browsing. This category information, e.g., the custatus of the request or the person
responsible, was already provided with the document itself in the databtsebackground.

More features could be added in this vein, following the approach giveseation8.3. With the help
of DB-style joins (see Sectio.5), we could then even find information spread over several documents, f
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example: which PhD students have notebooks of a particular type. Herdamument could mention the
name of the student (without mentioning his position) and the type of his ndtiebod another document
could mention that this particular person is PhD student. Other features @bthpleteSearch engine, such as
proximity search (see Sectién5) or the OR and NOT operators (see Sectior), work out-of-the-box.

10.4 Related Work

In our user study, we concentrated on te&ieval aspect of managing a helpdesk system. Indeed, in a study
of Brandt Brandt 03, only 14% of all helpdesk calls were new problems that required seadttastion. For
the helpdesk system of our institute, where the majority of the customersrapitar experts themselves, this
percentage is somewhat larger, but finding existing bits of information is gipptédominant task. Most of the
existing helpdesk systems can be viewed as a combination of some kind afitcoateagement system with
some kind of search engin8ipnett 04.

In case-base reasoning (CBR), equal attention is paid to the probladdinfgnew cases to the system (in
order to maximize utility for the solution of similar future casdsg¢gke 96 Bergmann 04 While we did not
directly address this problem in our user study, the combination of CompetdBeith any kind of content
management system shares many desirable features with full-blown CBfnsylike HOMER {Goker 99.
Such CBR systems require a hierarchy of category labels that is caraéljllgted to the application at hand.
These category labels are then used to guide the search for existisgstagar to a given one, as well as the
task of storing new cases in the right place in the hierarchy. By apptelyriadding these category labels to
the search index, CompleteSearch, with its context-sensitive completion fdwlkiyhe potential for achieving
much of this too. We consider an in-depth investigation of this relationship asygovomising direction for
future research.

10.5 The User Study

10.5.1 Setup of Study

For our study we asked five volunteers from the helpdedk staise both Google Desktop Search (GDS) and
our CompleteSearch (CS) system to each process a set of ten fictititlesmpsomodeled after typical helpdesk

requests. For example, the first two problems were:
P1. I'll be away for a couple of weeks soon: How can | configuselMAP account to send an automatic reply “I'll
be back in X weeks"?

P2. When | run matlab on the compute server 'dude’ some winduattsdialogues (e.g., to satapen files) have all
the text unreadable, i.e., only symbols rather than letisgglisplayed. What can | do?
After a minimum of 1 minute and a maximum of 5 minutes, each participant answexdalltwing nine

multiple choice questions for each problem:

M1. How much time did you spend on this request? [1-5 minutes]

M2. How realistic was the given problem? H.completely artificighvould never happen, 4 could happefhas
happened]

M3. How easy was it to find enough relevant information fostleéquest? [£ impossible, 4= trivial]

M4. How many relevant documents did you find? [None, One or tiue@e to five, six to ten, more than 10]

M5. How empowered by the system did you feel?[Lfelt powerlesgvery lost, 4= | had all the control and power
one could hope for]

M6. GDS only: Did you use GDS advanced search syntax? [yés, no

M7. CS only: Did you use the categories (status, requegtgponsible)? [yes, no]

M8. CS only: Did you use the proximity (‘..") or phrase (‘."perator? [yes, no]

M9. CS only: Did you use the completions under the search P, noj

After having attempted to find information for all ten of the problems, they wengsix more questions

concerning the whole CS system and its perceived benefits. For exahgpfist two questions were:
G1. Overall, in your everyday work, would you use GDS or CSiwgys GDS, mostly GDS, mostly CS, always CS]

G2. For the particular helpdesk application, distributetaltof 20 points among the following eight features. Design
speed, useful completions, useful categories, proximity phrase search, high quality ranking, high quality srigppe
usability

Finally, there was also a short personal interview at the end to havenaetmget more explicit feedback.
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10.5.2 Division of Problem Sets Into Two Halves

The set of 10 problems was split into two halves. Each of the five participaets GDS for one half and CS
for the other. Three participants first used CS and then GDS, two usegsteams in the other order. In total,
both CS and GDS were used for 25 problems. This way we tried to ensti(@}tladl problems were attempted
by both systems (to avoid biases fronftdiences between easy anéidult problems) and (b) all participants
used both systems (to avoid biases frofiedtences between lenient and critical users).

As it turned out, the first half of the problems was significantly mofieadilt. The average ease of finding on
a 4-point scale (question M3) was 2.2 for the first half set compared for2lée second half. Correspondingly,
the number of relevant documents found (question M4) was smaller forethi$Ise average selected category
(of five possible) was only 2.4 compared to 3.2 for the other set. Our sysippened to be used more often
on the dificult set of queries.

10.5.3 Main Findings of Study

All users prefer CS. Four of the five test users always prefer CS (question G1). Onenasty prefers CS!

It's easier to find information with CS. All except one test user found it easier to find results with CS
than with GDS. For these four users the average response to Questi@@abt8of finding information) was
higher when using CS than when using Gb®e overall average ease of finding, on a 4-point scale with more
meaning “easier” was 2.6 for CS vs. 2.2 for GDS.

More relevant documents are found with CS.Correspondingly, more relevant documents were found
with CompleteSearch (question M4). The average selected categor§;paiat scale with 1 being no relevant
document at all, was 3.0 for CS vs. 2.6 for GDS.

Users feel more empowered by CS-our of the five test users felt more empowered by CS than by GDS.
For these participants the average response to Question M5 was higl@® finan for GDS. The overall
average “feeling of empowerment” was 3.0 for CSE vs 2.3 for GDS.

Problems were found to be realistic.To ensure the relevance of the study to the helpdesk’s daily business,
we asked the participants to evaluate the realism of the given problems.vétsgea rating was 3.4 on a 4-
point scale, with 1 corresponding to “completely artifigiauld never happen” and 4 corresponding to “could
havehas happened before”.

Relative importance of features.Question G2 was targeted at the relative importance of various ingredi-
ents of a search engine as perceived by the user. The users hattibui@isa total of 20 points among eight
features, which means that a score above 2.5 indicates an importanéfeatur

The three most important ones turned out to be (i) general speed (B.Byokimity and phrase queries
(3.0) and (iii) to present good completions to the user (2.8). Indeedimityxand phrase queries were tried
for 19 of the 25 problems for which CS was used. Users stated to hadetheselisplayed completions (in
whatever way) for 13 of the same set of 25. Interestingly, the GDS addasyntax (phrase queries, negation
operator) was used for only 7 of 25 problems.

Observations from interview. All participants unanimously explained that, for their everyday use, the
categories (see Sectidn.? areactually useful, despite the fact that in the study they only used this information
to refine search results for two of 25 problems. The reason for this isitagtegory information isot very
useful for information finding tasks (where any category can contd@vant information), buts useful for
navigational tasks (where the student is looking fpagicular request and might remember the current status
of that request).

All users stated that they heavily depended on the short documentysaieselect documents to inspect
more closely. One user asserted that with CS he never (!) went to the dotusnent (which takes about 2-5
seconds to open), but simply used CS'’s feature to increase the sizesviipipet. This way he could view all
of the document’s content in less than a second, without leaving the setdhce. Interestingly, in the list of
8 most important aspects (question G2), high quality snippets only got esgavecore of 2.3, leaving it 6th in
the list.

Two of the three users who used CS for the first set of queries unsdliciteentioned that they felt a
considerable “oh no"f€ect, when they had to use GDS for the second half. Now they had to type naaréo
wait longer for their results and had no option to adjust the size of the grippe

1The single ‘outlier’ used CS for the morefiicult first problem set.
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Some of the participants of our study pointed out that a lot of their search tidevdged to repeated query
formulations in both English and German. As a patrtial solution, we have,thftestudy, integrated ‘semantic
tags’ for certain words. For example, all terms starting with any of the m®foruck’, ‘print’ or ‘lpr’ (and
others) are now tagged to belong to the category ‘printer’.






Chapter 11

Implementation and Design Choices

11.1 Introduction

Without an dficient data structure, such as HYB (see Chapgter AutoTree (see Chapt&) to handle au-
tocompletion search queries (according to Definitignour CompleteSearch engine would not nearly be as
powerful as it is. Still, when building the system, there were many cruciasides to be made, which were
not necessarily of an algorithmic nature but often more of a software esgng nature. They all had a direct
impact on the usability (as perceived by the end user), the extensibility (asthect to new features) or the
efficiency.

11.2 Maximizing Locality of Access

It is a truism that sequential access to data is faster than random aeceadypical disk, average seek time is
5 milliseconds versus an average transfer rate of 50 Megabytes jpadsdgut even when the data is entirely
in main memory, sequential access is up to 100 times faster than random dd¢tsgactor tends to be smaller
for complex applications (or programs in higher-level languages, segatfagraph after the next), but when
other factors of infficiency are eliminated it plays a crucial role. Indeed, our firstindex datetare AutoTree
is theoretically close to optimal, in that we could prove its query processing timedeymptotically bounded
by the size of the output, for corpora with a realistic average case behaeip our follow-up scheme HYB
without this theoretically desirable property, but highly optimized for localitacdess, beats AutoTree by a
factor of 12 — 4.0, depending on the inploutput volume of the query. See Secti®i for details.

11.3 Minimizing the Amount of Data to Read

To reduce the amount of data that have to be read from disk and pedcessquery, the HYB index makes
extensive use of compression. Further, it is one of the distinguishitgyészof HYB that the index data is laid

out such that the processing of a query requires reea@sof portions of the data. In particular, no sorting or
other non-linear or non-local operations of large portions of the dataeguired to find the matching word-

in-document pairs. Such operations are only performed on the (smatfj thetse matching pairs (for scoring)
when they are in main memory, but not on the whole data that is processedifsk to obtain them.

11.4 Choosing the Right Programming Language

Concerning implementation of the core compute module; @as the programming language of chotcé.

is often debated how much faster an implementation-#+ @eally is compared to, say, a program written in
JAVA, or queries to a DBMS like Oracle or MySQL. Indeed, anecdotaleawce as well as a study by Prechelt
[Prechelt 0D have it that the choice of programming language does not make much diieeedce for the
average program. However, when it comes to algorithms highly optimizedfpresitial access to data, the

10f course, the user interface used AJAX (Php and Javascript) amdpnggessing steps we extensively used Perl.
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C++ JAVA MySQL Perl
1800 MB/s | 300 MB/s | 16 MB/s | 2 MB/s

Figure 11.1: Average processing rate (in Megabytes per secondjodor different programming lan-
guagegenvironments scanning an ordinary (in-memory) array of 10 million 4-bytgénte measured on a
Linux PC with two 3 GHz Intel Xeon processors and 4 GB of main memory. @tesfor Cr+ is close to the 2
GB/s memory bandwidth specified for that machine.

difference is enormous. See Table 1, where for a simple scanning task+ € wins over JAVA by factor of 6,
over a MySQL application by a factor of more than 100, and over a scrifgimguage like Perl by a factor of
almost 1000.

We made extensive use t#mplating to reduce the code complexity without compromising instruction-
cache éiciency (few instructions in the inner loops) and branch predictability (maitionals in the inner
loops, wherever possible).

11.5 The Right Building Blocks

HYB's and also AutoTree's inherent duality, in the sense that they awayk with word-in-document pairs,
made the later addition of the join functionality (see Sec8ds) easy. Rather than intersecting the document
ids, we now had to intersect the word ids. The intersection algorithm slyddeatifferent (as word ids are not
sorted), but apart from that the same framework holds. Similarly, it allayged easily integrate customizable
scoring for the matching completions, as we also had the scores for eagfinsdocument pair.

These parallel lists of document ids, word ids, positions and scoreajsaréhe main building blocks to
be processed by our system. All central routines, such as intersectjoinm,agake as input two such lists and
output a new one. This choice of data encapsulation helped to facilitatedit®adf new features.

11.6 Keeping the Core System Simple

It proved to be of enormous benefit to have chosen just the right |€abisbraction for the central mechanism.
The prefix search and completion mechanism, with the join functionality addedtlateed out to be powerful
enough to provide a wide range of features, yet simple enough to alloanfeficient implementation. The
addition of these advanced features later, which were not foreseshvalten we started with our system,
turned out to generally require no or only very minor modifications of the completer engine. Most features
such as faceted search (Chagiieor even the whole semantic search (Chapjarould be implemented by (i)
choosing the right artificial words to add and (ii) modifying the user interiightly.

11.7 Hiding the Complexity From the User

We tried to design the system such that the user has to know as little as pobsilti¢he features available and
their syntax. In fact, he could even choose to ignore the basic prefighsgachanism and simply type full
words as usual. Then our system would work as a normal search e&gmiéarly, in cases where categorical
information is available, the user does not need to know about the synthag aftificial words to exploit the
faceted search feature. This becomes even more relevant for thetiesearnch feature, which is built on top of
such an intricate use of artificial words that no user could be expectethtiiéhit directly. In all of these cases
the mechanism to hide the complexity from the user is the same: the user intatfackes complex queries
automatically in the background and, if they give the appropriate resulfgagssthis additional information to
the user, who can ignore this information completely or try to make use of it.
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11.8 Result Caching

Besides the use of arffieient data structure such as HYB to process autocompletion searchsjtiegisingle
most important “detail” to obtain short processing times, is a clever reusesofts already computed in the
(recent) past. Recent queries (and the corresponding result®rbeykour system in a cache, which we refer
to as “history”. All the use cases discussed below are independerd afgbrithm used to compute the results,
and apply equally well to INV, AutoTree or HYB.

The simplest application of the history would be to do a simple lookup for thet eamee query and, if
found, return the cached result. This mechanism is already required¢ess a normal sequence of auto-
completion search queries, corresponding to a user typing one quedyafter the other. Once the user starts
typing a new (partial) word, we first do a lookup for the part of the queegceding this last prefix. Ifitis in the
history, as it always will be if the query has been typed normally, we then iratedgl obtain the result for this
first part, including theD (according to Definitiorl) to be used in combination with the last prefix. Without
this mechanism, a query withprefixegwords would be roughly a factdrslower.

The mechanism, which we call “result filtering”, was already mentioned irii@&e2.1. We dicuss it
here again for completeness. It has a less dram#gctethan the crucial result caching above, but it is still
of very practical relevance. It is applicable to query sequences a&sithfo, infor, ..., information, or
information ret, ..., information retrieval. Here, we can exploit the fact that the sequence of auto-
completion search queries is of the forb, W), (D, W), (D, W), ..., whereW 2 W 2 W” 2 .... The result
of the currenlast query, say”, is hence a subset of the res@tt for the previous query. That is, we merely
have to scan the element ) € @’ once and filter out those for whick € W”. This is in practice always
faster than launching a full recomputation.

A slightly more intricate method of filtering works, when thé¢ in a sequence such as above remains
constant but th® gets smaller (where bodv andD are with respect to the very last prefix). This can happen
when, as described in Secti@n3.1, we always add the same constant prefix after each query typed by the
user. For the case of faceted query, we would, e.g., always addefir gut:author to get a breakdown
of the results by author. While typingetrieval, the following sequence might be generated in this way:
retr cat:author, retri cat:author, ...,retrieval cat:author. To optimize the performance for this
case, we do the following. We get the list for the last prefix the user hasegh sayretriev, and intersect it
with the result list for the last query from the sequence in the historyreayie cat:author. This way we
avoid processing the potentially long list feat : author in such a setting altogether. In a similar fashion, we
can obtain the result fatnformation ret cat:author by intersecting the results fdmformation ret
andinformation cat:author.

11.9 Running Several Threads in Parallel

Although our HYB data structure was built with the aim of minimizing worst casaing times in mind, there
are still instances where our CompleteSearch engine cannot guardnotlseirseractive response time. This
happens when the query is of a very unspecific nature sugthoasr the?, where the input volume to process is
enormous and the output volume is of a similar size. (Also see the following sgdilaring times, when the
query load is very high, a single worst case query could cause manyretheest to wait for an unacceptable
amount of time. This can be avoided by processing each request inratee®U thread.

Making the CompleteSearch engine multi-threaded, was relatively straigtdit, as most (small) data
elements, such as counters, did not need to be shared between thiileadsly data element, whiahustbe
shared for #icient processing, is the history, with its cached results of recent quédtie® problems could
occur if two threads both try to concurrently create the same entry in thi ceshe, or if one thread tries to
read a recent result, which is still under construction. In such cagesetond thread needs to wait for the first
one to finish, before it can access the cached result.

2We usually do not remove any stop words, such as “the” or “andimfiloe documents.
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11.10 Not Making Life Harder Than Necessary

The hypothetical query, which asks for all documents containg a word starting with “t”, rankedegvance,
along with a list of such words, would for the Wikipedia collection take more thamnute for our Complete-
Search engine. But this, and similar queries, are of no practical useusé¢heand so we simply disallow them.
That is, we require a certain minimal length of a prefix, while it is typed, leefee (i) launch any query at all
and (ii) do a full prefix search, rather than treating it as an exact matety qwithout the implicit “*” at the
end). This takes a significant amount of load of the system, without saugifice usability of the system. In
practice, we choose a minimum length of 3, before we launch a query. For this minimum length, the last
prefix is interpreted as a full word and a “*” it yet implicitly added. For prefixes of at least-3! letters, we
then provide the usual autocompletion search feature.

11.11 Putting Everything Together

Building an interactive web application like CompleteSearch that is supposhsiiay its GUI via any stan-
dard web browser, was a very challenging task.

It starts with the design, which is all but obvious. The completion servezssecily has a non-negligible
start-up cost and cannot be started from scratch for every queryal to run as a background process contin-
uously. But letting the client’s web browser communicate with a program omateecomputer is a security
problem. We solved this by a three-step approach: the web page dispiatfes client contains JavaScript
code, which for each user action triggers the loading of a special wgdb\pa an AJAX protocol. This web
page is dynamically created via PHP, in particular taking care of the commumiedtiothe completion server,
and generating the HTML as well as the JavaScript code. Figui&shows a simple diagram of the data flow.

1. User client sends 2. Web server forwards
query to web server query to compute server
User Client Web Server Compute Server
JavaScript PHP C++
4. Web server forwards 3. Compute server sends
result to user client back result to web server

Figure 11.2: The communication between the user client and the web seteaeisia AJAX. The web server
exchanges data directly with the compute server via socket communication.

The advantage of this approach is that no installation or special softwaeguged on the side of the
user; any standard web browser will do. Nor can any firewall settiegs problem: if web browsing works,
CompleteSearch works too. The price for this is complex code on thffeeatit machines (completion server,
web server, client machine) which interacts with each other in a non-tmaalner, and can be hard to debug.
Missing standards and inconsistencies concerning the way web beogreeess JavaScript, render a complex
layout, or deal with the browser history (back button) are a constantsafi trouble.

3“Asynchronous JavaScript and XML". Uses the JavaScript XMLH#g#est object to trade data with the web server, without
reloading the page.
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11.12 Keeping in Touch with the Users

The CompleteSearch engine would not be close to what it is today withoueelibdck of our users. In this
section we report on some of the main lessons we learned from this féeldbac

The first users were ourselves. When starting the project 3 yearsvadivst wrote a prototype (in Perl) to
see the search engine in action, on a real collection. Many of the featare$orn in that way, e.g., the search
within tags (see Sectioh.6), such as the “From” or the “Subject” field in a collection of email messages fr
a newsgroup.

One of the lessons we had to learn was that the vast majority of (our)igseswilling to read even the
tiniest bit of documentation before using a search engine, not even ietrelsdoes not give the expected
results. Actually, we anticipated this to some extent, and tried to keep the usémdatantuitive and simple
right from the beginning. And after all, the whole approach of CompleteBea a proactive one: display
completions, hits, refinements, alternatives, etc. as the user is typingorighe opts to ignore this information,
the basic functionality of a search engine is still there.

But the following surprised us: below the search field we put a veryt stode saying "Type ? for help”,
and the mechanism was such that typihgat any point in the query would instantaneously display a few
sentences on the most important advanced operators which can helpeénspareh results. Well, hardly any
user ever pressed titekey, let alone read the help information. After this experience we aba&daihour
plans for more elaborate help pages, feedback forms, etc. and fomuseaking our whole system as proactive
as possible.

Still, we have not given up on receiving feedback at least on a smalés.sSOur user study (see Chapter
10) was an opportunity to do this. The personal, short interviews with the ieBunat the end gave us valuable
insights into the “user perspective”, e.qg., clarifying how they use whict &frinformation on a regular basis.
We also continue to receive feedback from interested colleagues, seéhoun system to search in a collection
of scientific articles. Sekttp://search.mpi-inf.mpg.de/ for a list of available online demos.






Chapter 12

Conclusions

12.1 Recap of Main Contributions

We have built a search engine, called CompleteSearch, whickeatly supports a wide range of features. Itis
built on top of a mechanism to solpeefix search and completiaqueries: Given a set of documents (containing
all the query words typed so far) and a prefix (corresponding to teeyquord currently being typed), find (i)
the most promising completions of the prefix which, if fully typed, would yield ast®ne matching document
from the given set, as well as (ii) the most relevant such documents.

In the first part of this dissertation, we formalized this problem (Chaftand presented two data struc-
tures, AutoTree (Chapted) and HYB (Chapte), which address the corresponding algorithmic problem.
AutoTree has the desirable property that, for realistic corpora andegués running time depends linearly on
the size of the output. HYB is optimized for scenarios, where the index is tge tarfit in main memory, and
offers space bounds in terms of the empirical entropy of the corpus. Fodbtalstructures, we performed
extensive experiments to evaluate their performance relative to a bassligetiie inverted index, and also to
evaluate their performance relative to each other. In a general settitig)pHtperforms AutoTree.

In the following chapters, we then discussed various extensions atidajoms of our CompleteSearch
engine. These included a list of features, such as ranking or proximatgtsewhich are applicable to any
search engine, and which do not rely on the prefix search and compiegicimanism for anficient realization
(Chapter5), but also more advanced features, which depend on this mechanidmasdiaceted search of
hierarchical information (Chapte), interactive completion to synonyms (Chap@r support for database-
style queries (Chapt&) and dficient search of ontologies (Chap&r We also combined our CompleteSearch
engine with the database of the helpdesk of our institute. This we used tomexfsmall user study, to prove
the usefulness of your system (Chaptéy. All of the additional features are provided in a proactive manner.
That is, the user does need to know about the feature, and can ewee igoompletely. Some of the lessons
learned from building our system, and some crucial details not directly defathe the other chapters, were
discussed in Chaptérl.

We obtained anféicient realization of these advanced features mentioned above usingatiecasame
mechanism, namely our context-sensitive prefix search and completiom\ogading suitable words to the
documents. Note the relevance to a web scenario, where users haat coer their documents, but not over
the search engine.

12.2 Loose Ends and Possible Improvements
Although our CompleteSearch engine has certainly matured well beyonthtiee &f a mere ephemeral pro-

totype to be only used to give running times for a comparative experimeng, anerstill a number of issues,
which can be improved. These issues are discussed in the following section

Lt will indeed be interesting to see, if any major search engine will in thefadare dfer (small) content-providers the possibility,
to provide additional semantic information about the pages, or partsofhénea well-defined format, e.g., by using special key
wordgtags for persons or place names, going well beyond the ftndta> tags. Such information could be harvested to improve the
search quality and tofter new features, but it also poses the usual risk of creating just arsathiece of search engine spam.
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12.2.1 Improving the User Interface

The user interface could be improved in several ways. For examplgocete with a hierarchical structure
should be displayed in a tree-like fashion and not as a flat list, as wentlyrde. Furthermore, the user should
in such a setting have the possibility to limit his search scope to any of the sgbigate Fortunately, as a
hierarchical structure (e.g., ‘Subjeet"Computer Science’>‘Information Retrieval’) can easily be encoded
via the appropriate prefixes (e.gat:subject:computer_science:information_retrieval ), this does
not pose any principal problem.

Some users also pointed out the lacking possibility to display completions fafdhe previous prefixes
when a user, after having typed several prefixes, moves the cuasbitd edit an earlier term. Here, it might
be desirable, to show completions for the prefix, which is currently beiitgdedather than for the last prefix.
This feature could be easily implemented by duplicating the prefix, currentlyséa on, and appending it
(again) to the end of the query. This could be done automatically by the useface and the completions
returned would then naturally be for the prefix of interest.

Another nice-to-have feature would be a button to remove query wortlsdakia been added by a refine-by-
category operation. Similarly, it might be desirable to select more than orgocag the same time (and then
display matches from any of these). So far we concentrated on prowdingin new features, and showing
that we can support them veryfieiently. Over time, and with helpful input from our users, these additional
improved features will be added.

12.2.2 Improving the Algorithms

As, ultimately, the user is only interested in tim®st relevantiocuments (and completions), our approach of
first computingall matches, and then rank them in a second phase, seems to leave room &aeimgnt in
terms of éficiency. Indeed, standard techniquestém-k retrieval[Fagin 03 Bast 06dseem to lend themselves
nicely to this problem. They address the issuef€iently reporting the tofx items from multiple lists, which
pertain to the best aggregated score (where, e.g., scores ffiaredt lists are summed for a fixed item). All
approaches try to limit the depth to which the lists involved have to be scanmgidgithat the bedtitems can
be reported without scanning all the lists to the end, which is exactly whatvonkl hope to achieve for the
HYB algorithm.

Unfortunately, none of the approaches is immediately applicable withoutriviad-modifications. The
reason for this is that, while it is flicient to onlydisplaythe, say, top 10 document from the §tto the
user, we need thilll such set, if the user starts typing a new prefix, asDhaow becomes the ne®. Two
possible approaches to remedy this would be as follows. (i) We could giwmuhe strict left-to-right order
of processing an autocompletion search query. Then the “usual mac¢himauld apply directly, as we are
dealing with a (small) number of lists which need to be (partially) intersecteddiogao document ids, while
reporting elements with high aggregated scores as early as possibleif thigemented unmodified, would
most likely incur higher processing costs, as we are no longer exploitifgahihat we have already computed
the result for all parts, except the very last part of the query. (ii) Wdccimplement a more involved re-use
of previously computed items (see Sectibh8), such that no full recomputation of the ndis required.
E.g., we could compute the top 100 documents, but only display the top 10 toaheTiren, ideally, in the
computation for the following result, these 100 results will contain the new tap<idts. Obviously, as more
and more prefixes are added to the query, we will have to go back amibleste knowledge, i.e., compute
more hits, for previous entries in the history. In the same spirit, we could ctentipe top 10 hits quickly, and
present these to the user, but at the same time, in the background, cdotrcamaputeall (or a suficiently
large number of) hits, so that for anticipated future requests the reqafi@dation is already precomputed.
This way, we would use the time the user spends inspecting the results figragaputations.

These issues are worth further investigation, especially as the corpu@si the result size) continue to
grow.

2There is a small caveat involved here, if this prefix is part of a phrasfogm. ret) or is required to be close to another prefix
(unit..ameri). Then one needs to use the corresponding “inverse proximity opérsimilar to the use of positive and negative
proximity operators in Sectio®.5.
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12.2.3 Improving the Index Management

In Section10.4, we mentioned the similarity between the classical case-based reasoniogdppsed in sys-
tems like Homer, and a corresponding tagging used in conjunction with thext@mtare completion mecha-
nism of CompleteSearch. It would indeed be interesting to integrate the CoBSgédeth engine into a content
management system, such that users can input the documents (and taggjbs directly.

A closely related aspect, to which we have paid little attention so far, is the quedtimw to deal with
dynamic updatesSo far, our philosophy has been to split large collections into sevental pahave one small
part into which all the changes are immediately incorporated, and to rebuildlpadices from scratch when
it becomes necessary. In the IR world this is actually considered one afidkedtective ways of updating
[Lester 04. Still, there is work to do for us here, especially in automating this process.

There is also the issue of distributing our indices over several machinbks,dble to scale up to not just
millions but billions of documents. Both standard techniqiéstfat 0§, either using a term based partitioning
(where each machine becomes responsible for a subset of key woaldpcument based partitioning (where
each machine becomes responsible for a subset of documents), immedatgloaour setting.

12.2.4 Evaluating the Search Quality

Finally, the general focus of this dissertation has been oreffent realization of certain features. The
question of theguality of the search results, or even the features themselves has generallietiempen.
The results from our user study (Chapi€)), however, already provided strong indications that the approach
of proactively and fiiciently providing advanced search features has a positive practicatimptawould
be interesting to conduct a user study on the perceived usefulness ofdiidual features, in particular
concerning the type of semantic queries supported by our system (€CBg@ed, indeed, semantic queries in
general.

As with all the features provided by the CompleteSearch engine, the ho thely allow the user to find
more relevant information in less tinthan with a traditional search engine, while requirlegs knowledge
about the corpus at hand.
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