
The Correctness of a Distributed
Real-Time System

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Dissertation

Zum Erlangen des Grades
Doktor der Ingenieurswissenschaften (Dr.-Ing.)

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Steffen Knapp
sknapp@wjpserver.cs.uni-sb.de

Saarbrücken, Juli 2008

Tag des Kolloquiums: 07.07.2008

Dekan: Prof. Dr. Joachim Weickert

Vorsitzender des Prüfungsausschusses: Prof. Dr. Reinhard Wilhelm
1. Berichterstatter: Prof. Dr. Wolfgang Paul
2. Berichterstatter: Prof. Dr. Wolfgang Kunz

akademischer Mitarbeiter: Dr. Mark Hillebrand

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland
in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Saarbrücken, Juli 2008

Steffen Knapp

Zitat:

“Man kann niemanden überholen,
wenn man in seine Fußstapfen tritt.”

Francois Truffaut

Danke
An dieser Stelle möchte ich mich bei Allen bedanken, die zum Gelingen dieser Arbeit
beigetragen haben:

Zuerst Herrn Professor Dr. Wolfgang J. Paul für die Vergabe des spannenden und
herausfordernden Themas und die wissenschaftliche Unterstützung meiner Promotion.

Außerdem danke ich meiner Freundin Kerstin Hahn für die ständige Ermutigung
und Ermunterung insbesondere in der heißen Schlussphase: Ohne Egon und Eulilie
sähe die Welt ganz anders aus!

Mein Dank gilt auch meinen (ehemaligen und derzeitigen) Arbeitskollegen am
Lehrstuhl von Herrn Paul. Stellvertretend seien hier Peter Böhm, Mark Hillebrand und
Dirk Leinenbach genannt. Insbesondere möchte ich mich bei Eyad Alkassar bedanken,
der es nun schon viele Jahre mit mir in einem Zimmer ausgehalten hat :-)

Ich danke meinen Freunden Daniel Schmitt, Verena Kremer, Benedikt Grundmann
und Ulrich Seyfarth für die Unterstützung sowie die nötige Ablenkung: “We rocked
the Garage!”

Und – last but not least – danke ich meiner Familie für die volle Unterstützung in
allen Lebenslagen.

Die vorliegende Arbeit wurde teilweise von der International Max Planck Research
School for Computer Science (IMPRS) sowie im Rahmen des Projektes Verisoft vom
Bundesministerium für Bildung und Forschung (BMBF) unter dem Förderkennzeichen
01 IS C38 gefördert. Die Verantwortung für den Inhalt dieser Arbeit liegt bei mir.

Abstract
In this thesis we review and extend the pervasive correctness proof for an asynchronous
distributed real-time system published in [KP07a]. We take a two-step approach: first,
we argue about a single electronic control unit (ECU) consisting of a processor (run-
ning the OSEKtime-like operating system OLOS) and a FlexRay-like interface called
automotive bus controller (ABC). We extend [KP07a] among others by a local OLOS
model [Kna08] and go into details regarding the handling of interrupts and the treat-
ment of devices.

Second, we connect several ECUs via the ABCs and reason about the complete
distributed system, see also [KP07b]. Note that the formalization of the scheduling
correctness is reported in [ABK08b]. Through several abstraction layers we prove the
correctness of the distributed system with respect to a new lock-step model COA that
completely abstracts from the ABCs. By establishing the DISTR model [Kna08] it
becomes possible to literally reuse the arguments from the first part of this thesis and
therefore to simplify the analysis of the complete distributed system. To illustrate the
applicability of DISTR, we have formally proven the top-level correctness theorem in
the theorem prover Isabelle/HOL.

Throughout the thesis we tie together theorems regarding: processor, ABC, com-
piler, micro kernel, operating system, and the worst case execution time analysis of
applications and systems software.

Zusammenfassung
In dieser Arbeit betrachten und erweitern wir den durchgängigen Korrektheitsbeweis
für ein asynchrones verteiltes Echtzeitsystem aus [KP07a]. Wir gehen in zwei Schritten
vor: Zuerst betrachten wir eine einzelne elektronische Kontrolleinheit (ECU) beste-
hend aus einem Prozessor (welcher das OSEKtime ähnliche Betriebsystem OLOS
ausführt) und einem FlexRay ähnlichem Interface, auch automobiler Bus Controller
(ABC) genannt. Wir erweitern [KP07a] unter anderem um ein lokales OLOS Model
[Kna08] und detaillieren die Behandlung von Interrupts sowie den Umgang mit Geräten.

Im zweiten Schritt verbinden wir mehrere ECUs durch die ABCs und argumen-
tieren über das gesamte System, siehe auch [KP07b]. Über die Formalisierung der
Scheduler Korrektheit wird in [ABK08b] berichtet. Über mehrere Abstraktionsebe-
nen beweisen wir die Korrektheit des verteilten Systems bezüglich eines neuen gleich-
getakteten Modells COA in dem vollständig von den ABCs abstrahiert wird. Durch die
Einführung des DISTR Models [Kna08] ist es möglich die Argumente aus dem ersten
Teil dieser Arbeit in der Analyse des gesamten verteilten Systems wörtlich wieder zu
verwenden. Um die Anwendbarkeit von DISTR zu verdeutlichen haben wir formal die
oberste Korrektheits-Aussage im Theorembeweiser Isabelle/HOL beweisen.

Im Zuge dieser Arbeit verbinden wir Theoreme bezüglich: Prozessor, ABC, Com-
piler, Mikrokern, Betriebsystem und der Worst-Case Laufzeit Analyse von Applikatio-
nen und System Software.

Extended Abstract
In this thesis we consider a distributed system consisting of several electronic control
units (ECUs) based on [KP07a]. An ECU consists of a DLX processor called VAMP
[BJK+03, DHP05, BJK+05], and a FlexRay-like interface [Fle08] called automotive
bus controller (ABC). System software is a C0 compiler [LP08] and the OSEKtime-
like [OSE08b] operating system OLOS [Kna05, IdRK05, Kna08]. The latter is realized
using the generic micro-kernel CVM [GHLP05, KP07a, IdRT08]. Applications are
compiled C0 programs that are communicating via a FTCom-like [OSE08a] message
buffer of the operating system. Drivers for the ABC are part of OLOS.

Several ECUs are connected by a bus via the ABCs. Communication is done in
a time-triggered fashion similar to the static segment of the FlexRay protocol [Fle06].
Time is divided into rounds each consisting of a fixed number of slots. In each slot one
ECU is allowed to broadcast one message according to a fixed slot-based schedule.

We clearly split the argumentation about this distributed system in two separate
issues: the inter-ECU communication and the local computations on the ECUs. We
present a verification approach that separates the argumentation for both issues and
combines the results later on in an overall correctness statement.

In the first part of this thesis we argue about a single ECU only. We outline the
specification of the DLX instruction set [HP96, MP00] including the handling of in-
terrupts. Using the VAMP [BJK+05] as an example, we explain how to verify hard-
ware designs of complex processors with internal and external interrupts, as reported
in [Bey05, Dal06, Tve08]. The resulting correctness proofs are based on the scheduling
functions introduced in [SH98, KMP00, MP00].

After this we introduce an I/O device theory. We show how to specify an I/O device
and explain how to integrate it into the processor [HIP05, AHK+07]. Furthermore, we
extend the processor correctness theorem to deal with a device.

An extension of the VAMP processor by memory management units (MMUs) gives
the hardware support for multi-processing operating system kernels and for virtual ma-
chine simulation [Hil05, Dal06].

Then we survey a correctness proof for a compiler from the high-level C-like pro-
gramming language C0 to the DLX instruction set, as reported in [Pet07, LP08, Lei08].
We show how to extend the C0 language by permitting portions of inline assembly
code. The resulting language is called C0A.

We describe the generic operating system kernel called CVM [GHLP05, KP07a,
IdRT08]. Seen from the programmers perspective, it consists of a so-called abstract
kernel and a set of user processes. The user processes are virtual DLX machines. The
abstract kernel is a C0 program that can execute special statements called CVM prim-
itives. These primitives allow the transport of data between kernel and user processes.
The CVM correctness proof uses the virtual machine simulation, compiler correctness,
and the arguments regarding inline assembly code.

Next we specify the OSEKtime-like operating system OLOS [Kna05, IdRK05,
Kna08]. The user processes running under OLOS are C0 programs. These programs
can communicate via FTCom-like message buffers with user processes running on the
same or on remote ECUs. We have implemented an initial version of OLOS by instan-

tiating the abstract CVM kernel. The correctness of the implementation is proven on
paper with respect to the OLOS specification.

The main extensions done in the first part (compared to [KP07a]) are the local
OLOS specification and a more detailed argumentation regarding the treatment of de-
vices and the handling of interrupts throughout the model stack.

In the second part of this thesis we argue about the complete distributed system.
Since the ECUs are running with local oscillators of almost but not exactly equal clock
frequency, we cannot guarantee that set-up and hold times of registers are respected
when data is being transmitted between ECUs. In such situations serial interfaces
are used for data transmission. We review a correctness proof for a serial interface
from [BBG+05].

Next we introduce our automotive bus controller (ABC) implementation which
has been inspired by [Pau05]. It consists among other things of a message buffers,
a serial interface, and a local timer. We show how to prove the correctness of the
ABC [BBG+05, KP07b]. Note that we have already reported on the formalization of
the scheduling correctness in [ABK08b]. Then we connect our ABC implementation
to the processor implementation, using techniques from [HIP05, AHK+07].

The desired communication behavior is specified in a parameterized model called
DISTR [Kna08]. This model provides the basis for the separation of the arguments for
the inter-ECU communication and the local computations.

We show how to prove the correctness of the inter-ECU communication with re-
spect to the DISTR model. Note that this proof combines arguments regarding asyn-
chronous bit-level transmission with arguments regarding the clock synchronization
mechanism at the gate level.

By instantiating the DISTR model with each model of the local stack established in
Part I we obtain a distributed version of this stack. When proving correctness, we run
into a problem regarding the timer interrupts generated by the ABC: timer interrupts
occur in fixed time intervals. At the gate level it is trivial to determine in which cycle
such an interrupt is generated. But when we proceed up the model stack we have
to argue about the corresponding instruction that gets interrupted on the instruction
set architecture (ISA) level. This can inherently not be done at the ISA level alone.
The execution time of an instruction depends on cache hits and cache misses, but the
memory hierarchy is not visible at the ISA level. Only if we are allowed to look inside
the hardware at the gate level, the occurrence of timer interrupts is well-defined.

To solve this problem we first prove the correctness of our ABC implementation
with respect to the DISTR model being instantiated with a processor implementation.
Then we combine classical program correctness proofs at the ISA level, worst case
execution time (WCET) analysis at the gate level, and processor correctness proofs
into a pervasive correctness proof for our real-time system from the gate level to the
ISA level.

Once we have reached the ISA level we can reuse the local simulation theorems
introduced in the first part of this thesis to prove the correctness of the corresponding
upper layers.

Finally, we define an automata-theoretic lock-step model called communicating
OLOS automata (COA). This model completely abstracts from the devices; commu-

nication is done via the local message-buffers of the operating system directly. In the
end, we revise our formal correctness proof of DISTR instantiated with our local OLOS
model with respect to the COA model, as reported in [Kna08]. Note that this proof has
been formalized in Isabelle/HOL [NPW02].

So, using DISTR, we extended [KP07a] by a more detailed analysis of the interrupt
sampling, of all distributed models themselves, and of the propagation of the WCET
throughout the distributed model stack resulting in the easy to use COA model.

By that we have established a distributed model stack in which all layers are linked
by simulation theorems. To do so, we tie together theorems regarding processor cor-
rectness [Bey05, Dal06, Tve08], I/O device integration [HIP05, AHK+07], scheduling
correctness [KP07b, ABK08b], message transmission correctness [BBG+05, KP07b],
compiler correctness [Pet07, Lei08], micro kernel correctness [GHLP05, IdRT08], op-
erating system correctness [Kna05, IdRK05, Kna08], and the worst case execution time
analysis [KP07b] of applications and systems software.

CONTENTS

Contents

1 Introduction 18

2 Related Work 20

I Single Electronic Control Unit (ECU) 22

3 Notation 22

4 Instruction Set Architecture (ISA) 23
4.1 ISA Configuration . 23
4.2 Instruction Decoding . 24
4.3 ISA Transition Function . 25
4.4 Extended ISA Configuration . 26
4.5 Dealing with Interrupts . 26

4.5.1 Trap Instructions . 27
4.6 ISA Transition Function with Interrupts 27

5 Processor Hardware (H) 28
5.1 Hardware Configuration . 28
5.2 Hardware Transition Function . 29
5.3 Scheduling Functions . 29
5.4 Processor Correctness Theorem . 31

5.4.1 Synchronization Conditions 32
5.5 Dealing with Interrupts . 33

6 Devices (D) 33
6.1 Device Configuration . 34
6.2 Integration of a Device in General 34
6.3 Integration of a Device into the Processor Implementation 35
6.4 Implementation Semantics . 36
6.5 Implementation Semantics for a Stable Device 37
6.6 Integration of a Stable Device into the ISA 38
6.7 Processor Correctness Theorem with Devices 39

7 Memory Management (MM) 40
7.1 Physical Machine Configuration . 41
7.2 Address Translation, Physical and Virtual Machines 41
7.3 Physical Machine Transition Function 42
7.4 Virtual Memory Correctness Theorem 42

12

CONTENTS

8 The Programming Language C0 43
8.1 C0 Types Expressions and Statements 43
8.2 C0 Machine Configuration . 44

8.2.1 C0 Variables . 44
8.3 C0 Machine Transition Function . 45
8.4 Compiler Correctness Theorem . 46

9 Inline Assembly Code (C0A) 47

10 Communicating Virtual Machines (CVM) 49
10.1 CVM Configuration . 49
10.2 CVM Transition Function . 50

10.2.1 User Transition . 50
10.2.2 Kernel Transition . 50

10.3 Binary Kernel Interface . 52
10.3.1 Binary Kernel Interface Implementation 53

10.4 CVM Implementation . 54
10.5 Concrete Kernel Simulation Relation 54

10.5.1 Concrete Kernel Data Structures 55
10.5.2 Entering System Mode after an Interrupt 55
10.5.3 Leaving System Mode . 56
10.5.4 Process Virtualization . 56
10.5.5 Implementation of the CVM Primitives 56

10.6 CVM Correctness Theorem . 57

11 Automotive Bus Controller (ABC) 58
11.1 Stable ABC Specification Configuration 58

12 OSEKtime Like Operating System (OLOS) 59
12.1 Message Buffers, Applications and Schedules 59
12.2 OLOS Configuration . 60
12.3 Local Configurations (LC) and Transitions 61
12.4 OLOS Transition Function . 62

12.4.1 Local OLOS Receive Phase (a) 62
12.4.2 Local OLOS Compute Phase (b) 63
12.4.3 Local OLOS Send Phase (c) 63
12.4.4 Local OLOS Idle Phase (d) 63

12.5 OLOS Implementation Data Structures 64
12.6 OLOS Simulation Relation . 64
12.7 OLOS Correctness Theorem for One Slot 65

II Distributed ECUs 67

13

CONTENTS

13 ABC Implementation 68
13.1 Host Interface . 69
13.2 Send Environment . 70
13.3 Receive Environment . 70
13.4 Schedule Environment . 71
13.5 Hardware Construction . 72

14 ABC Verification 73
14.1 Clocks . 74
14.2 Hardware Model with Continuous Time 74
14.3 Continuous Time Lemmata for the Bus 75
14.4 Message Broadcast Correctness . 76
14.5 Startup . 78
14.6 Scheduling Correctness . 78
14.7 Extensions Towards Fault-Tolerance 81

15 Distributed Implementation (DIMPL) 81
15.1 DIMPL Properties . 82

16 Distributed Framework (DISTR) 83
16.1 DISTR Configuration . 83
16.2 DISTR Transition Function . 83

16.2.1 Global DISTR Receive Phase (1) 84
16.2.2 Global DISTR Compute Phase (2) 84
16.2.3 Global DISTR Send Phase (3) 84
16.2.4 DISTR Notation . 85

17 Distributed Hardware (DH) 85
17.1 DH Configuration . 87
17.2 DH Transition Function . 87
17.3 DIMPL Correctness . 87

18 Distributed ISA (DISA) 90
18.1 DISA Configuration . 90
18.2 DISA Transition Function . 90
18.3 DISA Correctness . 91

18.3.1 DISA Interrupt Sampling . 92
18.3.2 Worst Case Execution Time 94

18.4 Pervasive Program and Processor Correctness 96

19 Distributed CVM (DCVM) 97
19.1 DCVM Configuration . 97
19.2 DCVM Transition Function . 97
19.3 DCVM Correctness . 97
19.4 Pervasive DCVM Correctness . 99

14

CONTENTS

20 Distributed OLOS (DOLOS) 100
20.1 DOLOS Configuration . 100
20.2 DOLOS Transition Function . 100
20.3 DOLOS Correctness . 102
20.4 Pervasive DOLOS Correctness . 103

21 Communicating OLOS Automata (COA) 105
21.1 COA Configuration . 105
21.2 COA Transition Function . 106

21.2.1 Global COA Receive Phase (i) 106
21.2.2 Global COA Compute Phase (ii) 106
21.2.3 Global COA Send Phase (iii) 107
21.2.4 COA Notation . 107

21.3 COA Correctness . 107
21.4 Pervasive COA Correctness . 109

22 Conclusion 111

23 Future Work 112

24 Abbreviations 113

15

LIST OF FIGURES

List of Figures
1 DLX Instruction Types . 24
2 Processor Pipeline . 29
3 Illustration of Scheduling Functions 30
4 Memory System . 31
5 Page Table Entry . 41
6 Address Translation . 42
7 Execution of Inline Assembly Code 48
8 OLOS: Slot Partitioning and Data-Flow 62
9 ABC Schematics . 69
10 ABC Slots . 69
11 Automaton for the Message Encoding 70
12 Schedule Automaton . 71
13 Serial Interface . 74
14 Clock Edges . 74
15 Startup . 78
16 Schedule Correctness . 78
17 DISTR: Slot Partitioning and Data-Flow 84
18 Communication Delay in DISTR . 85
19 Abstraction of ABC from DIMPL to DH 86
20 DOLOS: Slot Partitioning and Data-Flow 101
21 Worst Case Execution Time (WCET) Constraint 104
22 COA: Slot Partitioning and Data-Flow 106

16

17

1 INTRODUCTION

1 Introduction

More and more safety-critical functions in modern automobiles are controlled by appli-
cations running on embedded distributed computer systems. The growing complexity
of these systems reduces the coverage of simulation and testing. Both techniques,
however useful they are for debugging and evaluation of designs, are “hopelessly inad-
equate” for proving the absence of errors [Dij72]. Formal verification emerges as the
only technique to ensure the demanded degree of reliability.

When analyzing the correctness of the applications, it is desirable to argue in a syn-
chronous model of distributed electronic control units (ECUs) broadcasting messages
in lock-step. However, such models are implemented at gate level as highly asyn-
chronous systems. To bridge this gap, it does not suffice to verify certain aspects of a
system, such as algorithms or protocols in isolation.

Correctness is shown with respect to some given specification model. Even slight
incompatibilities in the used models can allow fatal errors to creep in. With the number
of system components increasing, such errors proliferate.

Therefore, the verification objective must tie together the correctness of applica-
tions, the operating system, and the hardware implementation itself. The only solu-
tion is pervasive verification, also called systems or end-to-end verification [BHMY89,
Moo03]. To achieve pervasiveness and hereby to minimize the chance of an undiscov-
ered error, we develop a model stack that reaches from the hardware gate level up to an
automata-theoretic model of communicating applications. The term “pervasiveness”
expresses the fact that parts of the system are not picked out and verified in isolation
from the rest. Instead, the correctness of the system is shown by simulation theorems
between adjacent models in the model stack.

Note that the verification techniques introduced in this thesis are not limited to
the automotive sector. Other sectors like avionics or robotics in which time-triggered
system are being used, would benefit from the application of these techniques, too.

Overview

We start with a discussion of related work in Section 2 and an introduction to our
notation in Sections 3. The thesis splits in two parts:

In Part I, we discuss the correctness of a single electronic control unit (ECU) based
on [KP07a]. The instruction set architecture (ISA) of the DLX processor is introduced
in Section 4. We show how to implement a processor based on boolean gates and how
to prove the correctness of the implementation with respect to the ISA in Section 5. In
Section 6, we specify an I/O device and integrate it in both the ISA and the processor
using techniques from [HIP05, AHK+07]. This requires an adaptation of the processor
correctness theorem from Section 5.

By extending the processor with memory management units, as done in [Hil05,
Dal06], and reviewing the correctness proof of the virtualization mechanism in Sec-
tion 7, we lay a basis for the process separation featured by our operating system.

In Section 8, we introduce the semantics for a high-level C-like programming lan-
guage and sketch the compiler correctness theorem, see also [Pet07, LP08, Lei08]. In

18

1 INTRODUCTION

Section 9, we extend the language by an additional statement allowing the execution of
inline assembly code.

In Section 10, we show how to specify, implement, and prove the correctness of
the CVM, a generic micro-kernel [GHLP05, KP07a, IdRT08]. We extend existing
literature by going into details regarding the treatment of devices and the handling of
timer interrupts.

In Section 11, the general device model from Section 6 is instantiated with a spec-
ification of a single automotive bus controller (ABC). In Section 12, we specify our
OSEKtime-like operating [OSE08b] system OLOS from [Kna05] and show how to
prove its correctness. Both, the local ABC specification from Section 11 and the local
OLOS specification were first reported in [Kna08].

In Part II, we argue about the complete distributed system. In Sections 13 and 14,
we introduce our ABC implementation that is based on boolean gates (being inspired
by [Pau05]). Then we detail the verification approach of our implementation [BBG+05,
KP07b]. In particular, we deal with the formalization of the scheduling correctness
which we have already reported in [ABK08b]. We combine arguments regarding asyn-
chronous bit-level transmission with the arguments regarding the clock synchroniza-
tion at gate level. In Section 15, the ABC implementation is connected to the processor
implementation.

In Section 16, we specify the desired inter-ECU communication behavior in DISTR
[Kna08], a synchronous parameterized model that uses the specification of a single
ABC from Section 11. By instantiating DISTR with a hardware model, as done in
Section 17, a distributed hardware (DH) model is obtained. We prove the correctness
of the implementation with respect to this DH model.

As the notion of time is indicated to the processor by means of interrupts, the point
of view on the time might differ slightly between the processor and the ABC imple-
mentation due to the interrupt sampling policy of the processor. Thus, in Section 18, we
introduce a distributed ISA (DISA) model representing the processor’s point of view.

In the correctness proof of the DISA model we run into a problem regarding timer
interrupts generated by the ABC. While the occurrence of interrupts is well-defined
at gate level, the instructions being interrupted at the ISA level can inherently not be
determined at the ISA level alone. The execution time of an instruction depends on
cache hits and cache misses, but the memory hierarchy is not visible at the ISA level.
To solve this problem we combine classical program correctness proofs at the ISA
level, worst case execution time (WCET) analysis at the gate level, and a processor
correctness proof into a pervasive correctness proof for our real-time system from the
gate level to the ISA level.

By instantiating the DISTR model from Section 16 with the other local models
from Part I we obtain the corresponding distributed model stack: the distributed CVM
(DCVM) in Section 19 and the distributed OLOS (DOLOS) in Section 20.

To prove the correctness of all remaining distributed models we can reuse the local
correctness theorems from Part I to a large extent. This is due to the definition of the
DISTR model. Note that we were able to extend the arguments from [KP07a] by a
more detailed analysis of the interrupt sampling, of all distributed models themselves,
and of the propagation of the WCET throughout the distributed model stack.

19

2 RELATED WORK

Finally, in Section 21, we review the automata-theoretic model called communi-
cating OLOS automata (COA) that completely abstracts from the devices. We report
on our formal correctness proof of the DISTR model being instantiated with our local
OLOS model with respect to the COA model that serves as our top-level specification,
see also [Kna08]. Note that this proof has been formalized in Isabelle/HOL [NPW02].

We conclude in Section 22 and point out some future work in Section 23. In Sec-
tion 24, the important abbreviations for all configurations and transition functions that
are used throughout the thesis are summarized.

2 Related Work
Pervasive verification or systems verification, i.e. the verification of a system over
several layers of abstraction, was introduced in the context of the CLI stack project
[BHMY89]. However, the application of such verification-techniques to an industrial
scenario without setting too harsh restrictions, e.g. on the programming languages,
poses a “grand challenge” according to Moore [Moo03].

Single system layers were addressed in several other attempts. Usually the micro
kernel layer is being considered. Recent candidates in this category are L4.verified
[HEK+07, EKD+07], VFiasco [HTS02, HT05], and Eros [SW00]. All three projects
have established semantics for C variants and have verified some properties on source-
code level. However, hardware specific parts as well as the communication with I/O
devices have been left out in the argumentation so far. All properties that are considered
are purely local in the sense that they argue about a single instance of the system only.

Within the Flint project [NYS07], a verification framework for assembly code was
developed. Using this framework and a formalization of a subset of the x86 instruction
set, the correctness of context-switching code was formally proven.

There have also been severe efforts to argue about communication systems them-
selves. In particular, the formal verification of clock synchronization in timed systems
has a long history [LMS85, Sha92, PSvH99]. But almost all approaches focused on
algorithmic correctness, rather than on concrete system or even hardware correctness.
As an exception, Bevier and Young [BY91] described the verification of a low-level
hardware implementation of the “Oral Message” algorithm. The presented hardware
model is quite simplified, as synchronous data transmission is assumed.

A formal proof of a clock-synchronization circuit was reported by Miner [MJ96].
Based on abstract state machines, a correctness proof of a variant of the Welch-Lynch
algorithm [WL88] has been carried out in PVS [ORS92]. However, the algorithm was
only manually translated to a hardware specification, which was finally refined semi-
automatically to a gate-level implementation. No formal link between both is reported
and the low-level bit transmission is not covered in the formal reasoning at all. Note
that we explicitly show how to integrate such low-level results into the argumentation.

Rushby proposes the separation of the verification of timing-related properties (as
clock synchronization) and protocol specifications [Rus99]. A set of requirements is
identified which an implementation of a scheduler (e.g. in hardware) has to obey. In
short, (i) clock synchronization and (ii) a round offset large enough to compensate the
maximum clock drift between synchronization events are assumed. The central result

20

2 RELATED WORK

is a formal and generic PVS simulation proof between the real-time system and its
lock-step and synchronous specification. However, the required assumptions have not
been discharged for concrete hardware.

Rushby gives an overview of the formal verification of the Time-Triggered Archi-
tecture [SHS+97] in [Rus02] and also formally proves the correctness for some key
algorithms, e.g. a clock synchronization algorithm based on the Welch-Lynch algo-
rithm [WL88]. Nevertheless, this remains isolated work. Even Rushby himself states
that “some of these algorithms pose formidable challenges to current techniques and
have been formally verified only in simplified form or under restricted fault assump-
tions”.

A proof of the Biphase-Mark protocol was proposed by Brown and Pike [BP06].
Their models include metastability but verification is only done at specification level,
rather than at the concrete hardware. The models were extracted manually.

Pike [Pik07] corrects and extends Rushby’s work and instantiates the new frame-
work with SPIDER, a fly-by-wire communication bus used by NASA. His model was
extracted from the hardware design by hand, too. Neither of these approaches proved
the correctness of any gate-level hardware.

Assuming correct clock synchronization, Zhang verified properties of the FlexRay
bus guardian [Zha06]. He did not deal with any hardware implementation.

Serial interfaces were subject to formal verification in the work of Berry et al.
[BKS03]. They specified a universal asynchronous receiver transmitter (UART) model
in a synchronous language and proved a set of safety properties regarding FIFO queues.
Based on that a hardware description can be generated and run on a FPGA. However,
data transmission was not analyzed.

Neither of these approaches covers all aspects of the whole distributed system. Note
that due to the differences in the formalisms being used it would be very cumbersome
to combine the approaches into a single unified theory.

21

3 NOTATION

Part I

Single Electronic Control Unit (ECU)
3 Notation
Given a bit-string a = a[n − 1 : 0] ∈ Bn we denote the natural number with binary
representation a by 〈a〉n, where 〈.〉n : Bn → N:

〈a〉n =
n−1∑
i=0

ai · 2i

We use the shorthand 〈a〉 instead of 〈a〉n if the length of the bit-string is clear from the
context.

For numbers x ∈ {0, . . . , 2n − 1} the binary representation of length n is the bit-
string binn(x) where binn : N→ Bn is defined by:

binn(x) = y ⇔ 〈y〉 = x

We denote the n-bit binary addition by +n where +n : Bn × Bn → Bn is defined by:

a+n b = binn(〈a〉n + 〈b〉n mod 2n)

Bit string concatenation is denoted by ◦. For bit-strings x and natural numbers
n ≥ 1 we denote by xn the bit-string obtained by concatenating x exactly n times with
itself:

x1 = x
xn = xn−1 ◦ x

Throughout the thesis we define various configurations and transition functions on
these configurations. Given a configuration c and its transition function δC, we call the
configuration after the application of δC the next configuration and denote it by c′:

c′ = δC(c)

Transition functions are defined by their effect on c, i.e. we define how to get c′ from c.
We stick to the following notation. An update of a function f at position a with the
value x is denoted by:

f ′(a) = x

Typically, configurations are records, e.g. c.b denotes the record component b in
configuration c. A record update of the component c.b with the value y is denoted by:

c′.b = y

To shorten notation we only write down configuration components that are indeed
changed. All unmentioned components remain unchanged unless explicitly stated oth-
erwise.

22

4 INSTRUCTION SET ARCHITECTURE (ISA)

Memories m are defined using functions. The content of a memory m at address a
is denoted by m(a). For 32-bit addresses a and natural numbers x ≥ 1 we denote
by mx(a) the concatenation of x memory entries starting at address a in little endian
order:

m1(a) = m(a)
mx(a) = mx−1(a+32 1) ◦m(a)

Updates a whole memory regions are denoted by:

m′x(z) = u

Note that x must coincide with the number of memory entries in u.

4 Instruction Set Architecture (ISA)

Every processor can execute a specific set of instructions. The set of all these instruc-
tions and their effects on the processor are called the instruction-set architecture (ISA).

In this section we introduce the ISA for the DLX processor (see [MP00, HP96]).
The DLX is a 32-bit reduced instruction set computing (RISC) processor with 32 gen-
eral purpose registers (GPR) and a byte-adressable memory.

4.1 ISA Configuration

Although a 32-bit architecture with a byte-addressable memory can address up to 232

memory bytes, the available build-in memory is often much smaller in reality.
Let the available number of bytes be given by nb. The set of available memory

addresses Ma contains all binary addresses smaller than nb starting from address 0:

Ma = {a | 0 ≤ 〈a〉 < nb}, where 0 < nb ≤ 232

To simplify the argumentation regarding word accesses and paging later on we require
that nb is a multiple of 212 = 4K.

An ISA configuration isa has the following components:

• a program counter isa.pc ∈ B32,

• a delayed program counter isa.dpc ∈ B32 used to specify the delayed branch
mechanism (for details see [MP00]),

• a general purpose register file isa.gpr : B5 → B32 containing 32 registers each
32 bit wide, and

• a byte addressable memory isa.m : Ma → B8.

23

4 INSTRUCTION SET ARCHITECTURE (ISA)

opc RS1 RS2 RD

opc

opc RS1 RD

0 11162126

I -type

R -type

J -type

imm

imm

31

Figure 1: DLX Instruction Types

4.2 Instruction Decoding
The instruction executed in configuration isa is denoted by I(isa). It is the memory
word addressed by the delayed PC:

I(isa) = isa.m4(isa.dpc)

Instruction decoding is formalized by predicates on the instruction word I(isa).
The six high-order bits of the instruction word constitute the opcode opc:

opc(isa) = I(isa)[31 : 26]

In some cases it suffices to inspect the opcode to decode an instruction. For in-
stance, the current instruction is a load word lw instruction if the opcode is 100011:

lw(isa)⇔ opc(isa) = 100011

DLX instructions are divided in three instruction types as shown in Figure 1. The
type of an instruction defines how the rest of the instruction word is interpreted. An
occurrence of R-type instructions is for instance specified by:

rtype(isa)⇔ opc(isa) = 000000

We denote I-type and J-type instructions by itype(isa) and jtype(isa). Their cor-
responding definitions are stated in [MP00]. Depending on the instruction type certain
fields might have different positions within the instruction word. We illustrate this by
giving some of the definitions as examples.

The operand RS1 denotes the first register source. It is given by:

RS1 (isa) = I(isa)[25 : 21]

The operand RD denotes the register destination and is given by:

RD(isa) =

{
I(isa)[20 : 16] itype(isa)
I(isa)[15 : 11] otherwise

The immediate constant imm is given by:

imm(isa) =

{
I(isa)[15 : 0] itype(isa)
I(isa)[25 : 0] otherwise

24

4 INSTRUCTION SET ARCHITECTURE (ISA)

We compute the effective address ea of a load or store operation by adding up the
content of the register addressed by the RS1 operant isa.gpr(RS1 (isa)) and the sign
extended immediate constant imm(isa).

The addition is performed modulo 232 with two’s complement arithmetic. We de-
fine the sign extension of the immediate constant by:

sxt(imm(isa)) =

{
imm(isa)[15]16 ◦ imm(isa) itype(isa)
imm(isa)[26]5 ◦ imm(isa) otherwise

This operation turns the immediate constant into a 32-bit constant while preserving the
value as a two’s complement number (see [MP00] for details). The effective address is
thus defined by:

ea(isa) = isa.gpr(RS1 (isa)) +32 sxt(imm(isa))

This definition is possible since n bit two’s complement numbers and n bit binary
numbers have the same value modulo 2n. For details see Chapter 2 of [MP00].

4.3 ISA Transition Function
Using the above definitions we define the next configuration isa ′ as the configuration
after the execution of I(isa). This formalizes the instruction set in terms of a transition
function δisa :

isa ′ = δisa(isa)

In the definition of isa ′ we split cases depending on the instruction to be executed.
As an example we specify the next configuration for a load word and a store word
instruction.

As the main effect of a load word instruction lw, the general purpose register ad-
dressed by the RD field is updated with the memory word addressed by the effective
address ea. Furthermore, the PC is incremented by four using 32-bit binary arithmetic
and the old PC is copied into the delayed PC:

lw(isa)⇒


isa ′.gpr(RD(isa)) = isa.m4(ea(isa))
isa ′.pc = isa.pc+32 bin32(4)
isa ′.dpc = isa.pc

This update of the program counters is identical for all instructions except control in-
structions.

As the main effect of a store word instruction sw, the general purpose register
content addressed by RD is copied into the memory word addressed by ea:

sw(isa)⇒


isa ′.m4(ea(isa)) = isa.gpr(RD(isa))
isa ′.pc = isa.pc+32 bin32(4)
isa ′.dpc = isa.pc

The entire definition of δisa is obtained by formalizing all instructions in the above
formalism. Since this formalization is not important for our work, we do not give it
here but refer to a similar definition in [MP00].

25

4 INSTRUCTION SET ARCHITECTURE (ISA)

4.4 Extended ISA Configuration

Interrupts provide the means to break the execution of a sequential program. As we
will see later on in Section 10.3, they can be used by applications to request special
services from an operating system.

In order to define the interrupt semantics at the ISA level, we extend the ISA con-
figuration isa by a special purpose register file (SPR):

• the special purpose register file isa.spr : B5 → B32 contains 32 single registers
each 32 bit wide.

We use the following abbreviations to refer to particular registers of the special purpose
register file (see [MP00]):

• the status register isa.sr = isa.spr[0] stores an interrupt mask,

• the exception cause register isa.eca = isa.spr[bin5(2)] stores the masked cause
of an interrupt, and

• the exception data register isa.edata = isa.spr[bin5(5)] stores additional infor-
mation regarding the current interrupt.

4.5 Dealing with Interrupts

Interrupts are triggered by interrupt event signals that might be internally generated
(like illegal instruction, misalignment, and overflow) or externally generated (like reset
and timer interrupt). Interrupts are numbered using indices j ∈ {0, . . . , 31}. We
classify the set of these indices in two categories:

• maskable or not maskable interrupts; the set of indices of maskable interrupts is
denoted by M .

• external or internal interrupts; the set of indices of external interrupts is denoted
by E.

We denote external event signals by eev [j] with j ∈ E and we denote internal event
signals by iev[j] with j /∈ E. External event signals are gathered into a vector eev and
internal event signals into a vector iev.

Formally these signals must be treated in a very different way. Whether an internal
event signal iev[j] is activated in configuration isa is determined by the configuration
only.

Let j = 1 be used for the illegal instruction interrupt and let LI ⊂ B32 denote
the set of bit patterns not coding an instruction of the ISA. Then the illegal instruction
interrupt is given by:

iev(isa)[1]⇔ I(isa) /∈ LI

While the internal event signals are functions of the current processor configura-
tion isa , external interrupts are external inputs to the transition function.

26

4 INSTRUCTION SET ARCHITECTURE (ISA)

Before we can argue about the interrupt handling we need some more auxiliary
functions. The cause vector ca of all event signals is a function of the processor con-
figuration isa and the external input eev :

ca(isa, eev)[j] =

{
eev [j] j ∈ E
iev(isa)[j] otherwise

The masked cause vectormca is computed from ca using the interrupt mask isa.sr.
An interrupt j is masked out if it is maskable and sr[j] = 0:

mca(isa, eev)[j] =

{
ca(isa, eev)[j] ∧ isa.sr[j] j ∈M
ca(isa, eev)[j] otherwise

The jump to interrupt service routine JISR signal is turned on if any of the masked
cause bits equals 1:

JISR(isa, eev) =
∨
j

mca(isa, eev [j])

It is important to know the smallest index of an active bit in the mca since several
interrupt signals might become active simultaneously. This index is called the interrupt
level il . It specifies the interrupt of highest priority that is handled immediately:

il(isa, eev) = min{j | mca(isa, eev)[j] = 1}

4.5.1 Trap Instructions

The DLX instruction set contains a special trap instruction that allows the programmer
to generate an internal interrupt. It is of J-type format with opcode 111110. We assign
the trap instruction the internal event number 5:

iev(isa)[5]⇔ opc(isa) = 111110

A trap interrupt needs to be handled if this event signal is the active signal with
highest priority:

trap(isa, eev)⇔ il(isa, eev) = 5

4.6 ISA Transition Function with Interrupts
We extend the ISA transition function δisa to deal with interrupts:

isa ′ = δisa(isa, eev)

We case split on JISR. If no interrupt needs to be handled, i.e. JISR does not hold,
we use the simple transition function from Section 4.3. The special purpose register
file remains unchanged:

¬JISR(isa, eev)⇒ isa ′ = δisa(isa)

27

5 PROCESSOR HARDWARE (H)

Otherwise the PCs are forced to point to the start addresses of the interrupt service
routine (ISR); we assume it starts at (binary) address 0:

JISR(isa, eev)⇒

{
isa ′.dpc = bin32(0)
isa ′.pc = bin32(4)

All maskable interrupts are masked and the masked cause register is saved into the
exception cause register:

JISR(isa, eev)⇒

{
isa ′.sr = bin32(0)
isa ′.eca = mca(isa, eev)

By ed(isa) we denote the sign-extended immediate constant in case of a trap interrupt
and the effective address otherwise:

ed(isa, eev) =

{
sxt(imm(isa)) trap(isa, eev)
ea(isa) otherwise

Auxiliary data for the interrupt handling (in form of ed) is stored in the exception data
register edata:

isa ′.edata = ed(isa, eev)

Note that in case of a trap the edata registers keeps the sign-extended immediate con-
stant that was specified by the programmer as part of the instruction word.

This summary suffices for our purposes. A complete definition of the interrupt
mechanism in a similar formalism is given in Chapter 5 of [MP00].

5 Processor Hardware (H)

The ISA defined above constitutes the specification for the behavior of a processor. In
this section we show how to implement a processor that provably implements this ISA.

5.1 Hardware Configuration

The processor is implemented using a standard digital hardware model. A hardware
configuration h consists of:

• 32 bit registers, one for each specification register (comp. Sections 4.1 and 4.4),
i.e. h.pc, h.dpc ∈ B32, h.gpr : B5 → B32, and a multi-port register file h.spr as
defined in [MP00],

• an additional set of implementation specific registers, and

• an (a× d)-random access memory (RAM), i.e. h.m : Ba → Bd.

28

5 PROCESSOR HARDWARE (H)

IF

ISSUE

RS

ROB

add
sub
mul
div

WB

functional
units

mem

mem1

Figure 2: Processor Pipeline

5.2 Hardware Transition Function
Registers and RAMs are connected by Boolean circuits. We denote the value of a
signal s in configuration h by s(h). The hardware transition function δh depends on
an external hardware event vector heev . It maps a hardware configuration h to the
hardware configuration h′ = δh(h, heev), i.e. the configuration after the next clock
cycle. For registers h.r with clock enable signal rce and input rin we define:

h′.r =

{
rin(h) rce(h)
h.r otherwise

A multi-port register file which allows the simultaneous update of several register is
defined in [MP00].

For a RAM h.m with address signal addr, data input din, and the write signal w
we define:

h′.m(x) =

{
din(h) x = addr(h) ∧ w(h)
h.m(x) otherwise

Hardware computations are defined in the usual way as sequences of configura-
tions. Hardware computations must satisfy for all cycles t:

ht+1 = δh(ht, heevt)

A superscript t in this model is read as ‘during cycle t’.
In general, processor correctness theorems state that hardware defined in a hard-

ware model simulates in some sense the ISA. In the following sections we state more
precisely in which sense.

5.3 Scheduling Functions
The processor correctness proof considered here is based on the concept of scheduling
functions s as in [KMP00, MP00]. The hardware of pipelined processors, supporting

29

5 PROCESSOR HARDWARE (H)

0 MUX 1

B

C

sel

A

stage k'

stage k

stage k''

Figure 3: Illustration of Scheduling Functions

out-of-order execution [Kro01], consists of many stages as sketched in Figure 2, e.g.
instruction fetch (IF) stage, issue stage, reservation stations (RS), reorder buffer (ROB),
write back (WB) stage.

Stages can be full or empty due to pipeline bubbles. The hardware keeps track of
this with the help of full bits fullk for each stage k as defined in [MP00]. The value
of the full bit of stage k in cycle t is denoted by fullk(ht). To shorten notation we
simply write full tk. Note that the instruction fetch stage IF is always full, since new
instructions can be fetched at any time, i.e. ∀t. full tIF = 1.

For stages k that are full during hardware cycle t, i.e. full tk holds, the value of the
scheduling function s(k, t) is the index i of the instruction that is in stage k during
cycle t. If the stage is not full, s(k, t) is the index of the instruction that was in stage k
in the last cycle before t when the stage was full. Initially s(IF , 0) = 0 holds.

In the definition of scheduling functions we use a simple idea: We imagine the
hardware having registers that can hold integers of arbitrary size. We augment each
stage with such a register and use it to store the index of the instruction currently being
executed in that stage.

Note that these indices are computed exactly as the tags in a Tomasulo scheduler.
The only difference is that the indices have unbounded size because we count up to
arbitrarily large indices. In real hardware this is not possible and not necessary. Never-
theless, in this abstract mathematical model there is no problem to do this.

Each stage k of the processors under consideration has an update enable signal uek.
Stage k gets new data in cycle t if the update enable signal uek equals one in cycle t−1.
We fetch instructions in order and define for the instruction fetch stage IF :

s(IF , t) =

{
s(IF , t− 1) + 1 uet−1

IF

s(IF , t− 1) otherwise

Other stages k can get data belonging to a new instruction from one or more stages.
Examples for stages with more than one predecessor are: cycles in the data path of
a floating point unit performing iterative division, or the producer registers connected
to the common data bus of a Tomasulo scheduler. In this situation we define for each
stage k a predicate trans(k′, k, t) indicating that in cycle t data is transmitted from
stage k′ to stage k. In the example in Figure 3 we use the select signal sel of the
multiplexer MUX and define:

trans(k′, k, t) = uetk ∧ sel t

30

5 PROCESSOR HARDWARE (H)

dcache

icache

h.mainm

a
instruction

a
data

Figure 4: Memory System

If trans(k′, k, t− 1) holds for some k′ we set s(k, t) = s(k′, t− 1) for that k′. Other-
wise s(k, t) = s(k, t− 1).

5.4 Processor Correctness Theorem
The simulation relation isasim(h, isa) between some hardware configuration h and
some ISA configuration isa requires that specification registers r ∈ {pc, dpc, gpr, spr}
have identical values:

h.r = isa.r

We would like to define something similar for the memory. However, this can-
not work, since the user visible processor memory is simulated in the hardware by
a memory system consisting among others of an instruction cache icache, a data
cache dcache, and a main memory mainm as shown in Figure 4.

There exists a non-trivial function m(h) : Ma → B8 specifying the memory simu-
lated by the memory system. This function can be defined in the following way [Pau08]:
Imagine we have an abstract cache ac. This abstract cache stores content of the size of
the main memory ac.con : Ma → B8 and a valid bit ac.v : Ma → B.

We use two abstract caches to specify the memory that is simulated by the memory
system in the hardware configuration h, one for data dac(h) and one for instructions
iac(h). Let ihit(h, a) denote a hit in the instruction cache for an address a and let
dhit(h, b) denote a hit in the data cache for an address b. Then the valid bits are
defined as follows:

dac(h).v(a) = dhit(h, a)
iac(h).v(b) = ihit(h, b)

The content fields simply map addresses a to the content of the corresponding hardware
caches at address a.

Note that in the processor under consideration the caches snoop on each other.
Hence the data of address a is only in at most one cache [BJK+03, Bey05]. Thus we
define:

m(h)(a) =


iac(h).con(a) iac(h).v(a)
dac(h).con(a) dac(h).v(a)
h.mainm(a) otherwise

Using this definition we additionally require in the simulation relation isasim(h, isa):

m(h)(a) = isa.m(a)

31

5 PROCESSOR HARDWARE (H)

In a pipelined machine this simulation relation almost never holds. In one cycle
different hardware stages k usually hold data from different ISA configurations; after
all this is the very idea of pipelining. There is however an important exception when
the pipeline is drained and thus all hardware stages except the instruction fetch stage
are empty:

drained(ht)⇔ ∀k 6= IF . ¬full tk

This happens to be the case after interrupts, in particular initially after reset.
First, we ignore the interrupt event signals (which brings us formally back to an

ISA computations defined by isai+1 = δisa(isai)).
Each user visible register isa.r ∈ {pc, dpc, gpr, spr} of the processor has a counter

Part h.r belonging to some stage k = stage(r) of the hardware. We have to show by
induction on t that for all registers r in stage k = stage(r), the value of the hardware
register r in cycle t equals the value of the ISA register r for the instruction scheduled
in stage k in cycle t:

ht.r = isas(k,t).r

For the memory we have to consider the memory unit of the processor consisting
of two stages mem and mem1. Stage mem contains hardware for the computation of
the effective address. The memory m(ht) simulated by the memory hierarchy of the
hardware in cycle t is identical with the ISA memory isas(mem1,t).m for the instruction
scheduled in stage mem1 in cycle t:

m(ht)(a) = isas(mem1,t).m(a)

We combine both statements in a processor correctness theorem.

Theorem 1 (Processor Correctness) Let the pipeline be drained and let the simula-
tion relation hold initially, i.e. drained(h0) and isasim(h0, isa0). Then for all cycles t
and for all registers r ∈ {pc, dpc, gpr, spr} in stage k = stage(r):

ht.r = isas(k,t).r
m(ht)(a) = isas(mem1,t).m(a)

The theorem is proven by induction on the hardware cycle t using additional state-
ments on the implementation registers. Furthermore, restrictions for the software to be
executed by the processor are needed, as detailed below.

For complex processors this requires hundreds of pages of paper and pencil proofs
(see [MP00]). A formal correctness proof is described in [Bey05, BJK+05].

5.4.1 Synchronization Conditions

If the hardware implementation of a physical machine is pipelined or if instructions are
executed out of order the following situation might occur: An instruction I(isai) that
is in the memory stage may modify a later instruction I(isaj) for j > i after it has been
fetched. This situation is called a read after write (RAW) hazard. Instruction I(isai)
may overwrite the instruction itself or change the operating mode.

32

6 DEVICES (D)

On a RAW hazard an instruction fetch (in particular a translated fetch implemented
by a memory management unit) would not work correctly. It is possible to detect such
data dependencies in hardware and to roll back the computation if necessary.

Alternatively, the software to be run on the processor must adhere to certain soft-
ware synchronization conventions. Let iaddr(isaj) denote the address of instruc-
tion I(isaj). If I(isai) writes to address iaddr(isaj), then an intermediate instruc-
tion I(isak) for i < k < j must drain the pipe.

5.5 Dealing with Interrupts
When dealing with interrupts the hardware gets external inputs called the hardware
external event signals heev . Their value in hardware cycle t is denoted by heev t. Based
on these we construct a sequence of external ISA event signals eev i such that the ISA
computation satisfying isai+1 = δisa(isai, eev i) simulates a hardware computation
ht+1 = δh(ht, heev t).

For non-memory operations the processor hardware samples external event signals
in the write back stage WB as detailed in [Tve08]. Since WB is the last stage in the
pipeline it cannot be stalled. Thus for every instruction i there is exactly one hardware
cycle t when the instruction is written back:

t = WB(i)⇔ s(WB , t) = i ∧ full tWB

In Part II of this thesis we will argue that in the distributed system under consideration
the external interrupts occur only if the processor executes non-memory operations.
Thus the external ISA event signal observed by instruction i is:

eev i = heevWB(i)

Note that a hardware event signal heev t is not visible to the ISA computation if the
write back stage in cycle t is empty. With this new definition of the ISA-/hardware
computation Theorem 1 still holds. More details regarding a formal processor correct-
ness proof dealing with external event signals are given in [Bey05, Dal06].

Later on we argue about hardware cycles in which the pipeline is drained. To do
so, we use the signal JISR(h, heev) that indicates if an interrupt needs to be handled in
the given hardware configuration. The predicate is defined by applying the definitions
from Section 4.6 to hardware configurations. Note that once the JISR predicate holds,
the pipeline is drained in the next hardware cycle:

JISR(ht, heev t)⇒ drained(ht+1)

6 Devices (D)
In this section we introduce a framework for the integration of a device into the model
stack. This framework will later on be instantiated with an automotive bus controller
(see Sections 11 and 13).

The communication between the processor and the device is done via memory
mapped I/O. The device is assigned a set of device addresses. These addresses, called

33

6 DEVICES (D)

I/O ports, are mapped into the processors memory above the maximal physical byte
address nb. Via read and write operations to these I/O ports the processor can commu-
nicate with the device.

In the remainder of this section we show how to integrate a device into the processor
implementation and into the ISA.

6.1 Device Configuration
In general, a device has more state than is visible through the I/O ports. A device
configuration d has the following components:

• a word addressable port RAM d.m where the number of the addresses is given
by the page size K, as defined in Section 4:

d.m : B10 → B32

• a boolean interrupt flag d.int indicating if an interrupt was generated but has not
been cleared, yet.

• some device specific ‘internal’ state d.z.

We assign the external event 13 to the device. As we are dealing with a single
device only, the external event vector eev is computed as follows:

eev(d) = 013 ◦ d.int ◦ 018

6.2 Integration of a Device in General
The I/O ports of a device can be divided into three categories:

• control ports are only written from the processor,

• status ports are only read by the processor, and

• data ports can be written or read from both the processor and the outside world.

Inputs from and outputs to the outside world are device specific: network devices
have inputs and outputs, monitors produce only outputs, keyboards take only inputs,
disks neither produce outputs nor consume external inputs. Thus, in general, the clas-
sical synchronization issues of shared memory arise.

In the following section we show how to integrate a device into the processor im-
plementation. Therefore we extend the transition function by an external input from
the outside world. We use a device specific stable predicate which indicates if all the
I/O ports are not altered by the outside world and thus have memory semantics. In
Section 15 we will instantiate the device with our concrete automotive bus controller
(ABC) implementation.

In Section 6.5, we define the semantics of a purely stable device at the gate level.
In the remaining sections of Part I we will deal with a stable device only. The resulting

34

6 DEVICES (D)

theorems will be applied later on in Part II for a bounded interval in which the real
device is indeed stable.

We justify the usage of the stable device semantics in Section 17. There we will
prove a simulation theorem between our possibly unstable device implementation and
an extended semantics which is based on the stable device semantics from 6.5. Note
that our device implementation behaves most of the time like a stable device. Only
in well-defined cycles the device alters the data-ports. In the interval between those
cycles the device is stable and we can use the semantics developed throughout Part I in
our argumentation.

6.3 Integration of a Device into the Processor Implementation
We integrate a device into the processor implementation by combining the processor
configuration with the device configuration. We denote the combined configuration
by impl . It has the following components:

• a processor configuration impl .p being a hardware configuration h as defined in
Section 5, and

• a device configuration impl .d as defined above.

The device takes inputs from and produces output to the processor side and the
outside world. Inputs from the processor side are like inputs for the RAM and consist
of: data input din(impl .p), address adr(impl .p), a write signal dw(impl .p) and a read
signal dr(impl .p). Outputs to the processor side consists of data output dout(impl .d)
and an external interrupt signal. Inputs to and outputs from the processor side are
device specific.

Let address adr(impl .p) be the address of a memory operation in analogy to the
effective address ea in the ISA.

The device is mapped into the processors memory starting at some base address ba
which we assume to be 120012. Using an address decoder the memory system decides
if a read or write access to the memory is a device access. The read signal dr(impl .p),
which indicates a read-access to the device, is activated if the operation is a load
word operation lw(impl .p) and the memory address is greater or equal to the base
address ba . The latter is implemented by an equality check of the upper most bits of
the address:

dr(impl .p)⇔ (lw(impl .p) ∧ adr(impl .p)[31 : 12] = 120)

The write signal dw(impl .p), which indicates a write-access to the device, is activated
if the operation is a store word operation sw(impl .p) and the memory address is greater
or equal to the base address ba.

dw(impl .p)⇔ (sw(impl .p) ∧ adr(impl .p)[31 : 12] = 120)

Using these two signals we define a predicate daccess(impl) which indicates if the
processor is accessing the device:

daccess(impl) = (dw(impl .p) ∨ dr(impl .p))

35

6 DEVICES (D)

In case of a device access, the lower bits of the memory address code the port, i.e. the
word-address within the address range of the device:

port(impl) = adr(impl .p)[11 : 2]

Note that the cache system must be designed in a way that it does not cache accesses
to I/O ports.

6.4 Implementation Semantics
Next we define the transition function δimpl for the combined configuration impl . In
addition to the configuration itself it takes a device specific input x from the outside
world:

impl ′ = δimpl(impl , x)

Being at the gate level, the processor implementation and the device are clocked in
lock-step.

If the processor does not access the device, i.e. ¬daccess(impl), the processor
configuration is updated according to the old transition function δh from Section 5.2:

¬daccess(impl)⇒ impl ′.p = δh(impl .p)

To define the transition function δimpl in case of a device access, we use the predicate
stable(impl) which indicates if:

• the I/O ports of the ABC implementation have memory semantics. Thus for a
read operation from the device it holds that:

daccess(impl) ∧ dr(impl .p)⇒ dout(impl .d) = impl .d.m(port(impl))

For a write operation to the device it holds that:

daccess(impl) ∧ dw(impl .p)⇒

impl ′.d.m(x) =

{
din(impl .p) x = port(impl)
impl .d.m(x) otherwise

• a write to a special device address, called command port, has the side-effect that
the interrupt flag of the device is cleared. We assume w.l.o.g. that this port has
the device address cmd :

daccess(impl) ∧ dw(impl .p) ∧ (port(impl) = cmd)⇒ impl ′.d.int = 0

In case of a device access, i.e. daccess(impl), the transition function δimpl is de-
fined as follows: if the device is being accessed by a read operation and the device is
stable, the output dout(impl .d) from the device to the processor is the content of the
I/O port being addressed:

daccess(impl) ∧ dr(impl .p) ∧ stable(impl)⇒
dout(impl .d) = impl .d.m(port(impl))

36

6 DEVICES (D)

The processor component is updated using the output dout(impl .d) from the device.
If the device is being accessed by a write operation and the device is stable, the

ports behave like a RAM:

daccess(impl) ∧ dw(impl .p) ∧ stable(impl)⇒

impl ′.d.m(x) =

{
din(impl .p) x = port(impl)
impl .d.m(x) otherwise

Furthermore, if the device is stable, a write to the command port cmd has the side-
effect that the interrupt flag is cleared:

daccess(impl) ∧ dw(impl .p) ∧ stable(impl) ∧ (port(impl) = cmd)⇒
impl ′.d.int = 0

If the device is not stable, the ports might be read or modified by the device side in
a device specific way using the external input x. The effect of writing to a non-stable
device is left undefined. The processor side learns about changes in the stable predicate
by an interrupt generated by the device.

Note that according to the above definitions the device is unusually fast: it up-
dates a port in a single cycle of the processor hardware. Devices are usually slower
and thus require a busy signal indicating if a read or write access is in progress. The
above definitions could be extended in this way using a memory protocol like the one
from [MP00].

6.5 Implementation Semantics for a Stable Device
In this section we show how to integrate a stable device into the processor hardware.
This device simply behaves like an additional memory.

We denote the combined configuration by hd . It has the following components:

• a hardware configuration hd .p as defined in Section 5, and

• a device configuration hd .d.

Note that the configuration hd has basically the same components as the configu-
ration impl . However, the transition function for hd does explicitly model the behav-
ior of a stable device. In Section 17 we show that in bounded cycle intervals the hd
configuration and transition function can be used to argue about the implementation
configuration impl .

Next we define the transition function δhd for the combined configuration hd . Note
that this transition function does not take any external input:

hd ′ = δhd(hd)

If the processor does not access the device, i.e. ¬daccess(hd), we reuse the old
transition function δh from Section 5.2. The device remains unchanged:

¬daccess(hd)⇒

{
hd ′.p = δh(hd .p)
hd ′.d = hd .d

37

6 DEVICES (D)

If the device is being accessed by a read operation, the output dout(hd .d) from the
device to the processor is the content of the I/O port being addressed:

daccess(hd) ∧ dr(hd .p)⇒ dout(hd .d) = hd .d.m(port(hd))

The processor component is updated using the data output dout(hd .d) from the device.

If the device is being accessed by a write operation, the ports behave like a RAM:

daccess(hd) ∧ dw(hd .p)⇒ hd ′.d.m(x) =

{
din(hd .p) x = port(hd)
hd .d.m(x) otherwise

A write to the command port, has the side-effect that the interrupt flag of the device
is cleared:

daccess(hd) ∧ dw(hd .p) ∧ (port(hd) = cmd)⇒ hd ′.d.int = 0

Note that if the stable predicate stable holds, the δhd transition function can be used
instead of the δimpl transition function:

Lemma 1 (Stable Semantics) If the stable predicate stable(impl) holds, the δhd se-
mantics corresponds to the δimpl semantics:

∀x. stable(impl)⇒

 (δimpl(impl , x)).p = (δhd(impl)).p
(δimpl(impl , x)).d.m = (δhd(impl)).d.m

(δimpl(impl , x)).d.int = (δhd(impl)).d.int

This lemma is proven using the definition of the stable predicate from Section 6.4.

6.6 Integration of a Stable Device into the ISA
We integrate a stable device into the ISA by combining the two configurations. The
combined configuration isad has the following components:

• an ISA configuration isad .p as defined in Section 4.4, and

• a device configuration isad .d as defined above.

The predicate daccess(isad) indicates if the processor is accessing the device. It is
true if the processor performs a store word or a load word operation and the effective
address equals or is greater than the base address ba which is in our case 120012:

daccess(isad) = (lw(isad .p) ∨ sw(isad .p)) ∧ (ea(isad .p)[31 : 12] = 120)

If the predicate daccess(isad) holds, the lower bits of the effective address code the
port address port(isad), i.e. the word-address within the address range of the device:

port(isad) = ea(isad .p)[11 : 2]

38

6 DEVICES (D)

Using these two functions, the transition function δisad for the combined configu-
ration isad is defined as follows:

isad ′ = δisad(isad)

This transition function will only be applied for intervals in which the device is stable
and thus behaves like an ordinary RAM.

If the device is not accessed or an interrupt needs to be handled, the old transition
function from Section 4.6 is reused. The state of the device is not altered:

¬daccess(isad) ∨ JISR(isad .p, eev(isad .d))⇒{
isad ′.p = δisa(isad .p, eev(isad .d))
isad ′.d = isad .d

If the processor is accessing the device via a memory operation and no interrupt
needs to be handled, an extended load word or store word semantics is used. In case of
a load word from a device address the return destination register RD is updated with
the content of the accessed device memory:

daccess(isad) ∧ ¬JISR(isad .p, eev(isad .d)) ∧ lw(isad .p)⇒
isad ′.p.gpr(RD(isad .p)) = isad .d.m(port(isad))

In case of a store word to a device address, the accessed ports behave like a RAM:

daccess(isad) ∧ ¬JISR(isad .p, eev(isad .d)) ∧ sw(isad .p)⇒

isad ′.d.m(x) =

{
isad .p.gpr(RD(isad .p)) x = port(isad)
isad .d.m(x) otherwise

A write to the command port cmd has the side-effect that the interrupt flag is cleared:

daccess(isad) ∧ ¬JISR(isad .p, eev(isad .d)) ∧ sw(isad .p) ∧
(port(isad) = cmd)⇒ isad ′.d.int = 0

6.7 Processor Correctness Theorem with Devices
Next, we extend the processor correctness (Theorem 1) to deal with a stable device.
Although we will quantify in the following theorem over all cycles t it will only be
applied for a bounded computation in which the device indeed behaves like an ordinary
RAM (see Section 17).

In the hardware the device is placed parallel to the normal memory system in stage
mem1 , thus we can use the same scheduling functions as for the memory.

By extending the simulation relation from Section 5.4 we get a new simulation
relation isadsim(hd , isad). We additionally require that the device configuration be
the same:

isasim(hd .p, isad .p)
hd .d = isad .d

The processor correctness theorem dealing with devices is stated as follows:

39

7 MEMORY MANAGEMENT (MM)

Theorem 2 (Processor Correctness with Devices) Let the pipeline be drained and
let the simulation relation hold initially, i.e. drained(hd .h0) and isadsim(hd0, isad0).

Then for all hardware cycles t, for all processor stages k and for all specification
registers r ∈ {pc, dpc, gpr, spr} with stage(r) = k:

hd t.p.r = isads(k,t).p.r
m(hd t.p) = isads(mem1,t).p.m

hd t.d = isads(mem1,t).d

The theorem is proven by induction on the hardware cycle t using additional statements
on the implementation registers as well as the software conditions from Section 5.4.1.
Since we are using the same device model for the ISA level as for the gate level, the
external event signals correspond to the translation from Section 5.5:

(eev(isad .d))i = (eev(hd .d))WB(i)

In [Tve08] Sergey Tverdyshev will report on the formal results regarding the inte-
gration of devices into the processor design. Note that details regarding the coupling
of the processor with a harddisk as well as with a universal asynchronous receiver
transmitter (UART) have already been reported in [HIP05, AHK+07].

7 Memory Management (MM)

Physical machines consist of a processor operating on fast physical memory and on
slow swap memory. In reality computer systems are shipped with less physical mem-
ory than could be addressed by the architecture. This is due to the fact that physical
memory is expensive. Instead, the much cheaper (and slower) swap memory, e.g. in
form of a hard-disk, is used to provide the application programmer the illusion of a
huge physical memory.

By using the existing physical memory as a write-back cache for the swap memory
this illusion is kept alive (see [GHLP05, Hil05]). Depending on the memory usage
of the applications, huge amount of data needs to be moved between swap and main
memory. This swapping is done transparent for the applications, however, due to the
slowness of the swap memory compared to the main memory, huge latencies occur.

These latencies make swapping not feasible for real-time operating systems. In
most cases these applications implement quite simple tasks like polling a crash sensor
or controlling a GPS navigation system. In practice the applications are optimized in
two ways: Low memory consumption and run-time.

We require that all applications to be run under the real-time operating system fit
in the physical memory. No swap memory is used. Nevertheless, we use the concepts
that are applied in physical machines to ensure process separation.

In the following sections we introduce these concepts and sketch the corresponding
correctness theorem.

40

7 MEMORY MANAGEMENT (MM)

ppx [19:0] v ...
0111231

Figure 5: Page Table Entry

7.1 Physical Machine Configuration
We extend the special purpose register file from the ISA configuration isa from Sec-
tion 4.1 by some additional registers:

• the page table origin pto containing the base address of the page table that is
used for address translation (see below); we use the abbreviation isa.pto.

• the page table length ptl indicating the length of the pagetable; we use the ab-
breviation isa.ptl .

• the mode register mode indicating the current operating mode; we use the ab-
breviation isa.mode.

7.2 Address Translation, Physical and Virtual Machines
The behavior of a physical machine is determined by the mode register: In system
mode, i.e. if isa.mode = 032, the physical machine operates like the basic processor
model from Section 4. In user mode, i.e. if isa.mode 6= 032, the physical machine with
appropriate software (see Section 5.4.1) simulates the basic processor model using page
tables for address translation.

The simulated machine is called a virtual machine. The addresses used by the vir-
tual machines are called virtual addresses. We keep the notation isa for configurations
of the physical machine and we denote configurations of the virtual machine by vm .
Virtual addresses vadr are split into a page index vadr.px = vadr[31 : 12] and a
byte index vadr.bx = vadr[11 : 0]. Thus the page size is 212 = 4K bytes (compare
Section 4.1).

In user mode an access to memory address vadr is subject to an address transla-
tion. It either causes a page fault or it is redirected to the translated physical memory
address pma(isa, vadr) as defined below.

The result of this address translation depends on the content of the page table, a
region of the physical memory starting at address isa.pto · 4K with isa.ptl entries.
Page table entries have a length of four bytes. The page table entry address for virtual
address vadr is defined by:

ptea(isa, vadr) = isa.pto · 4K + 4 · vadr.px

and the page table entry of vadr is defined by

pte(isa, vadr) = isa.m4(ptea(isa, vadr))

Here we use only two parts of a page table entry as depicted in Figure 5: The physical
page index ppx(isa, vadr) = pte(isa, vadr)[31 : 12] and the valid bit v(isa, vadr) =
pte(isa, vadr)[11].

41

7 MEMORY MANAGEMENT (MM)

vadr.px vadr.bx
0111231

ppx v

pma(isa,vadr)
0111231

vadr

pt(isa)

Figure 6: Address Translation

Being in user mode and accessing memory address vadr, a page fault signals if the
page index exceeds the page table length, vadr.px ≥ isa.ptl or if the page table entry
is not valid, v(isa, vadr) = 0.

If no page fault is generated, the access is performed on the (translated) physical
memory address pma(isa, vadr). It is defined as the concatenation of the physical
page index and the physical byte index (see Figure 6):

pma(isa, vadr) = ppx(isa, vadr) ◦ vadr.bx

A real-time operating system must make sure that no page-fault is generated result-
ing in additional constraints for the applications.

7.3 Physical Machine Transition Function
Hence, the transition function of the physical machine corresponds, with slight exten-
sions, to the simple ISA transition function from Section 4.3. The instruction I(isa)
fetched in configuration isa is for instance defined as follows: if isa.mode = 0
then I(isa) = isa.m4(isa.dpc), otherwise, provided that no page-fault is generated,
I(isa) = isa.m4(pma(isa, isa.dpc)). The effected address ea of a load word lw and
a store word sw operation is translated accordingly.

7.4 Virtual Memory Correctness Theorem
Let nb be the maximal physical byte address. The simulation relation B(vm, isa)
indicates if a (user mode) physical machine configuration isa encodes the virtual ma-
chine configuration vm . Essentially, B(vm, isa) is the conjunction of the following
two conditions:

• for each of the nb/4K pages of virtual memory (nb is assumed to be a multiple
of 4K see Section 4.1) there is a page table entry in the physical machine, i.e.
nb/(4K) = isa.ptl + 1.

• the content of the virtual memory addressed by vadr is stored in the physical
memory at address pma(isa, vadr):

vm.m(vadr) = isa.m(pma(isa, vadr))

42

8 THE PROGRAMMING LANGUAGE C0

The simulation theorem for a single virtual machine is stated as follows:

Theorem 3 (Virtual Machine Correctness) Let the simulation relation hold initially,
i.e. B(vm0, isa0).

For all computations of the virtual machine there is a computation of the physical
machine and there are step numbers s(i) for the physical machine such that for all
steps i:

B(vmi, isas(i))

The theorem is proven by induction on the steps i. Note that additional software con-
straints (compare Section 5.4.1) are required to prove the above theorem.

If isaj is in user mode and I(isai) for j > i writes to ptea(isaj , isaj .dpc), an
intermediate instruction I(isak) for i < k < j must drain the pipe. The mode can
only be changed to user mode by an rfe (return from exception) instruction (and the
hardware guarantees that rfe instructions drain the pipeline).

8 The Programming Language C0

In this section we introduce the high-level programming language C0 by summarizing
the results from [LP08]. C0 is roughly speaking PASCAL with C syntax.

8.1 C0 Types Expressions and Statements

In C0 types are either elementary (bool , int , . . .), or pointer types, or aggregates (array
or struct). A type is called simple if it is an elementary type or a pointer type.

We define the (abstract) size of types for simple types t by size(t) = 1, for arrays
by size(t[n]) = n · size(t), and for structures by size(struct{n1 : t1, . . . , ns : ts}) =∑
i size(ti).
Values of variables with simple types are called simple values. Variables of ag-

gregate type are called aggregate values, which are represented as a flat sequence of
simple values.

Variable names and literals are expressions. Given expressions e and e′ and a
name n, then array accesses e[e′], struct accesses e.n, pointer dereferencing ∗e, and
the ‘address-of’ operation &e are also expressions. Additionally, C0 supports the usual
unary and binary operators.

Pointer arithmetic is forbidden. In C0 expressions do not have side effects. Func-
tion calls as part of expressions are not allowed.

Given a type t and expressions e, e′ and ei, then the empty statement skip, assign-
ments e = e′, memory allocation e = new(t), function calls e = f(e1, . . . , em) and
function returns return e are statements.

Given an expression e and statements s and s′, then while loops while e do s, if
conditionals if e do s else s′, and sequential composition (s; s′) are also statements.
In each function body the last statement must be the only return statement of this body.

43

8 THE PROGRAMMING LANGUAGE C0

8.2 C0 Machine Configuration
The state of a C0 program is modeled by a C0 machine configuration co. To define
the latter a relatively explicit, low level memory model in the style of [Nor98] is used.
Memory frames mf are records with the following components:

• the number mf .n of variables in mf ,

• a function mf .name mapping variable numbers i ∈ [0 : mf .n−1] to their names
(not used for variables on the heap),

• a function mf .ty mapping variable numbers to their type; we define the size of
a memory frame msize(m) as the number of simple values stored in it:

mfsize(mf) =
mf .n−1∑
i=0

size(mf .ty(i))

• a content function mf .ct mapping indices 0 ≤ i < mfsize(mf) to the corre-
sponding simple values.

A C0 machine configuration co is a record with the following components:

• the program rest co.pr being the sequence of C0 statements to be executed,

• the current recursion depth co.rd,

• the local memory stack co.lms . It maps numbers 0 ≤ i ≤ co.rd to mem-
ory frames, i.e. co.lms : N → mf . The global memory is co.lms(0). We
denote the top-most local memory frame of a configuration co by top(co) =
co.lms(co.rd).

• a heap memory co.hm also being a memory frame.

Parameters of the configuration that do not change during a computation are:

• the type table co.tt containing information about types used in the program, and

• the function table co.ft containing information about the functions of a program.
It maps function names fn to pairs co.ft(fn) = (co.ft(fn).ty, co.ft(fn).body)
where co.ft(fn).ty specifies the types of the arguments, the local variables, and
the result of the function, whereas co.ft(fn).body specifies the function body.

8.2.1 C0 Variables

A variable v of configuration co is a pair v = (mf , i) where mf is a memory frame
of co and i < mf .n is the number of the variable in the frame. The type of a vari-
able (mf , i) is given by ty(mf , i) = mf .ty(i).

Subvariables S = (mf , i)s are formed from variables (mf , i) by appending a se-
lector s = (s1, . . . , st), where each component of a selector has the form si = [j] for
selecting array element number j or the form si = .n for selecting the struct component

44

8 THE PROGRAMMING LANGUAGE C0

with name n. If the selector s is consistent with the type of (mf , i), then S = (mf , i)s
is a subvariable of (mf , i). Selectors are allowed to be empty.

In C0, pointers p may point to subvariables (mf , i)s in the global memory or on
the heap. The value of such pointers simply has the form (mf , i)s. Component mf .ct
stores the current values va(co, (mf , i)s) of the simple subvariables (mf , i)s in canon-
ical order. Values of aggregate variables x are represented in mf .ct by sequences of
simple values starting from the abstract base address ba(x) of variable x.

With the help of visibility rules and bindings the definition of va , ty , and ba from
variables and subvariables can be easily extended to expressions e.

8.3 C0 Machine Transition Function
Eventually we want to consider several programs running as user processes under an
operating system. The computations of these programs are interleaved. Therefore
we need a compiler correctness statement based on small-steps structured operational
semantics [Win93, NN99].

Here we do not give the full definition of the (small-step) transition function δco
mapping C0 configurations co to their successor configuration:

co′ = δco(co)

The interested reader may consult [Lei08]. However, as an example, we give a partial
definition of the while statement and the function call semantics.

The first statement of a statement list sl is denoted by hd(sl) and the remaining
statements by tl(sl).

Assume the head of the current program rest is a while loop, i.e. hd(co.pr) =
while(cond){a}. If the condition cond is satisfied in configuration co, then the state-
ment list a is executed before the condition is checked once again. Otherwise we
continue with the tail of the old program rest:

hd(co.pr) = while(cond){a} ⇒ co′.pr =

{
a; co.pr if va(co, cond) = 1
tl(co.pr) otherwise

Assume the head of the current program rest is a call of function fn with param-
eters e1, . . . , en assigning the function’s result to variable v, formally hd(co.pr) =
(v = f(e1, . . . , en)). In the new program rest, the recursion depth is incremented and
the function-call statement is replaced by the body of the function f taken from the
function table co.ft . Furthermore, the values of all parameters ei are stored in the new
top local memory frame top(co′) by updating its content function at the corresponding
positions:

hd(co.pr) = (v = fn(e1, . . . , en))⇒
co′.rd = co.rd+ 1
co′.pr = (co.ft(fn).body; tl(co.pr))
top(co′).ctsize(ty(co,ei))(ba(co′, ei)) = va(co, ei) for 1 ≤ i ≤ n

45

8 THE PROGRAMMING LANGUAGE C0

8.4 Compiler Correctness Theorem
The compiler correctness theorem uses the simulation relation cosim(aba)(co, isa)
between a C0 machines configuration co and an ISA configuration isa that runs the
compiled program. The relation is parameterized by an allocation function aba map-
ping subvariables S of the C0 machine to their allocated base addresses aba(co, S) in
the ISA machine. The allocation function may change during a computation in two
situations:

• if the recursion depth and thus the set of local variables changes due to function
calls and function returns, and

• if reachable variables are moved on the heap during garbage collection (not yet
implemented).

Notice however that in the first case only the range of the allocation function is
changed. For C0 configurations co and local or global (sub) variables x the allocated
base address aba(x, co) depends only on co.

The simulation relation cosim(aba)(co, isa) consists essentially of the following
five conditions:

1. value consistency v-cosim(aba)(co, isa): This condition states that reachable
elementary subvariables x have the same value in the C0 machine and in the
ISA machine. Let asize(x) be the number of bytes needed to store a value of
type ty(x). Then we require isa.masize(x)(aba(co, x)) = va(co, x).

2. pointer consistency p-cosim(aba)(co, isa): This predicate requires for reachable
pointer variables p pointing to a subvariable y that the value stored at the allo-
cated address of variable p in the ISA machine is the allocated base address of y,
i.e. isa.m4(aba(co, p)) = aba(co, y). This induces a subgraph isomorphism be-
tween the reachable portions of the heap in the C0 machine and the memory in
the ISA.

3. control consistency c-cosim(co, isa): This condition states that the delayed PC
of the ISA configuration (used to fetch instructions) points to the start of the
translated code of the program rest co.pr of the C0 machine. Let the address
of the first assembly instruction that is generated for a statement s be denoted
by caddr(s). Then we require isa.dpc = caddr(hd(co.pr)) and isa.pc =
isa.dpc+ 4.

4. code consistency code-cosim(co, isa): This condition requires that the compiled
code of the C0 program be stored in the ISA configuration isa starting at the code
start address cstart . Thus it requires that the compiled code be not changed dur-
ing the computation of the physical machine. We thereby forbid self modifying
code.

5. stack consistency s-cosim(co, isa): This is a technical condition about stack
pointers, heap pointers etc. which does not play an important role here. For
more details see [Lei08].

46

9 INLINE ASSEMBLY CODE (C0A)

Based on the simulation relation cosim(aba)(co, isa) we state the compiler cor-
rectness theorem.

Theorem 4 (Compiler Correctness) Let the C0 machine configuration and the ISA
configuration be consistent initially, i.e. cosim(aba0)(co0, isas(0)).

For every C0 machine computation there is an ISA computation, step numbers s(i),
and a sequence of allocation functions abai such that for all steps i:

cosim(abai)(coi, isas(i))

A formal proof of this statement for a non optimizing compiler, formalized and carried
out in Isabelle-HOL [NPW02], is reported in [Lei08]. There exists an implementation
of the same compilation algorithm written in C0. A formal proof that the C0 imple-
mentation simulates the Isabelle-HOL implementation is reported in [Pet07].

To solve the bootstrap problem [Ver08a] the C0 version of the compiler can be
translated by an existing compiler into DLX code. The fact that the target DLX code
simulates the source code can be shown using translation validation [PSS98]. Further
solutions are discussed in [Lei08].

9 Inline Assembly Code (C0A)
Recall that processor registers, I/O ports and user processes are not visible in the C0
variables of an operating system kernel written in C0. Hence we extend the language
and permit sequences u of inline assembly instructions, as done in [KP07a, ST08].

We extend the language C0 by a statement of the form asm(u) and call the resulting
language C0A. In C0A the use of inline assembly code is restricted as follows:

• only a certain subset of DLX instructions is allowed (e.g. no load or store of
bytes or half words, only relative jumps).

• the target address of store word instructions must be outside the code and data
regions of the C0A program or it must be equal to the allocated base address of a
subvariable of the C0A program with type int or unsigned int (this implies that
inline assembly code cannot change the stack layout of the C0A program).

• certain registers (e.g. the stack pointer) must not be changed.

• the last assembly instruction in u must not be a jump or branch instruction.

• the execution of u must terminate.

• the target of jump and branch instructions must not be outside the code of u.

• the execution of u must neither generate misalignment nor illegal instruction
interrupts.

To argue about the correctness of C0A programs we must define the semantics
of the newly introduced statement. A store word instruction of inline assembly code
can overwrite a C0 variable x. Hence we have to specify the effect of such a store

47

9 INLINE ASSEMBLY CODE (C0A)

· · · // co co′ // · · ·

isa = isa0
��

// isa1 // · · · // · · · // isat = isa ′

OO

Figure 7: Execution of Inline Assembly Code

instruction on the value of x in the C0 machine configuration. This is easily done with
the help of the allocated base address function aba that was introduced in the previous
section.

Thus consider a C0A configuration co with program rest co.pr = asm(u); r. We
will use the ISA semantics to model the execution of the inline assembly portion.

Using the compiler correctness statement from Section 8.4 we obtain an ISA con-
figuration isa which is consistent with the given C0 machine configuration co, i.e.
cosim(aba)(co, isa). In addition to the allocated base address function aba the config-
uration isa is taken as an input parameter for the C0A transition function δcoA .

As depicted in Figure 7, the execution of the inline assembly sequence u leads
to a physical machine computation (isa = isa0, . . . , isat = isa ′) with isa ′.dpc =
caddr(tl(co.pr)) and isa ′.pc = isa ′.dpc + 4 by the restrictions on inline assembly
code.

Let j < t. If the store word predicate sw(isaj) holds, the instruction executed in
configuration isaj updates the memory word at address ea(isaj) with the value v =
isaj .gpr(RD(isaj)) as defined in Section 4.

Given that there exist one or more store word instructions in the sequence u writing
to the same effective address ea(isa), then the predicate lastsw(u, isa) indicates the
last instruction in the sequence u doing so. If the effective address is equal to the allo-
cated base address of some C0 variable x, then the corresponding variable is updated
in the new C0 machine configuration co′ such that va(co′, x) = v:

(hd(co.pr) = asm(u)) ∧ lastsw(u, isaj) ∧ (ea(isaj) = aba(co, x))⇒
va(co′, x) = isaj .gpr(RD(isaj)

The result of the C0A transition function is defined by (co′, isa ′) = δcoA(aba)(co, isa).
Note that this definition keeps the two configurations consistent:

Lemma 2 (C0A Correctness) If the current program rest of the C0 machine configu-
ration co starts with an inline assembly statement asm(u), then the compiler consis-
tency is preserved after the execution of u:

cosim(aba)(co, isa)⇒ cosim(aba)(δcoA(aba)(co, isa))

The proof of this lemma uses the restrictions on the inline assembly code. More details
will be reported in [Tsy08].

48

10 COMMUNICATING VIRTUAL MACHINES (CVM)

10 Communicating Virtual Machines (CVM)
In this section we introduce communicating virtual machines (CVM). It is a model
of a generic operating system kernel interacting with a fixed number of user pro-
cesses [GHLP05, KP07a, IdRT08].

The kernel that is presented here is not preemptive, i.e. its computation can only be
interrupted by a reset.

CVM uses the C0 language semantics to model computations of the (abstract) ker-
nel and virtual machines to model computations of user processes. It is a pseudo-
parallel model in the sense that in every step of computation either the kernel or one
user process can progress.

From a kernel implementor’s point of view, CVM encapsulates the low-level func-
tionality of a microkernel and provides access to it as a library of functions, the so-
called CVM primitives.

In the following sections we define CVM configurations, CVM computations, and
show how abstract kernels implement system calls as regular C0 function calls. The
implementation of the CVM model itself including the corresponding simulation theo-
rem is presented later on in Section 10.4.

Note that this is the first detailed report on the CVM that includes the treatment of
CVM device primitives.

10.1 CVM Configuration

The number of user processes running under CVM is denoted by np. Thus a process
number pn is given by:

pn ∈ Pn = [1 : np]

A CVM configuration cvm is split into a processor component cvm.p and a device
component cvm.d. The processor component cvm.d consists of:

• user processes are modeled by virtual machines (see Section 7). The configura-
tion of all user processes is combined in a mapping cvm.p.vm : Pn → vm .

To model dynamic memory allocation each user process has its individual page
table length cvm.p.vm(u).ptl ∈ B20.

Furthermore, each user process has its individual status register cvm.p.vm(u).sr.

• a C0 machine configuration cvm.p.co represents the so-called abstract kernel.

• the component cvm.p.cp indicates the current process, i.e. cvm.p.cp = 0 means
that the kernel is running while cvm.p.cp = u where u ∈ Pn means that user
process u is running.

The device component cvm.d is a stable device configuration as defined in Section 6.1.

We require the kernel configuration, in particular its initial configuration, be in a
certain form:

49

10 COMMUNICATING VIRTUAL MACHINES (CVM)

• some special functions f ∈ CVMP , the CVM primitives, must be declared only,
i.e. their body must be empty; their arguments and effects are described below.

• a special function called kdispatch must be declared. Further details regarding
this function are given below.

10.2 CVM Transition Function
The CVM transition function δcvm takes a CVM configuration cvm and returns an
updated configuration:

cvm ′ = δcvm(cvm)

In the definition we split cases on the current process component cvm.p.cp.
Note that this transition function is only used for a bounded computation in which

the device behaves like an ordinary RAM and does neither take external input nor
produce any external output (see Section 17).

10.2.1 User Transition

If the current process component u = cvm.p.cp is u 6= 0 then user process vm(u) does
a step:

cvm ′.vm(u) = δisa(cvm.p.vm(u))

If no interrupt needs to be handled then user process vm(u) keeps running:

¬JISR(cvm.p.vm(u), eev(cvm.d))⇒ cvm ′.cp = u

Otherwise the execution of the abstract kernel starts. Recall from Section 4.6 on inter-
rupt semantics that in case of an interrupt the masked cause register is saved into the
exception cause register eca and that the data necessary for handling the exception is
stored in the register edata .

The entry point in the kernel is the function kdispatch that is called with the ex-
ception cause eca(cvm) = mca(cvm.p.vm(u), eev(cvm.d)) and the exception data
edata(cvm) = ed(cvm.p.vm(u), eev(cvm.d)) as parameters. The current process
component and the kernel’s recursion depth are set to zero:

cvm ′.cp = 0
cvm ′.p.co.rd = 0
cvm ′.p.co.pr = (v = kdispatch(eca(cvm), edata(cvm)))

10.2.2 Kernel Transition

Initially (after power-up) and after an interrupt, the kernel execution starts with a call
of the function kdispatch . The kernel is executed if cvm.p.cp = 0 holds. Then we
further case-split on the head of the kernels program rest:

If the head of the program rest is a normal C0 statement, i.e. hd(cvm.p.co.pr) 6=
(v = f(e1, . . . , en); r) where f ∈ CVMP , it is executed using the regular C0 seman-
tics from Section 8.3:

cvm ′.co = δco(cvm.p.co)

50

10 COMMUNICATING VIRTUAL MACHINES (CVM)

Otherwise the CVM primitive hd(cvm.p.co.pr) = (v = f(e1, . . . , en); r) is exe-
cuted where f ∈ CVMP . Below we define the semantics of a few selected primitives
extending existing literature [ST08]. We ignore any preconditions or border cases1:

• the start primitive v = start(e) hands control over to the user process specified
by the current value of expression e:

cvm ′.cp = va(cvm.p.co, e)

By this definition, the kernel stops execution and is only restarted again on the
next interrupt (with a fresh program rest as described above).

• the alloc primitive v = alloc(u, x) increases the memory size of user process
U = va(cvm.p.co, u) by X = va(cvm.p.co, x) pages:

cvm ′.vm(U).ptl = cvm.p.vm(U).ptl +X

The new pages are cleared:

∀a ∈ [(cvm.p.vm(U).ptl · 4K) : (cvm.p.vm(U).ptl +X) · 4K − 1].
cvm ′.p.vm(U).m(a) = 08

• the free primitive v = free(u, x) freeing X = va(cvm.p.co, x) pages of user
process U = va(cvm.p.co, u) is defined in a similar way.

• the copy primitive v = copy(u1, a1, u2, a2, d) copies a memory region between
user processes U1 = va(cvm.p.co, u1) and U2 = va(cvm.p.co, u2). The start
addresses in the memory of the source process U1 and the destination process U2

are given by A1 = va(cvm.p.co, a1) and A2 = va(cvm.p.co, a2) respectively.
The number of words to be copied is given by D = va(cvm.p.co, d):

cvm ′.p.vm(U2).m4·D(A2) = cvm.p.vm(U1).m4·D(A1)

• the input primitive v = input(u, a) updates the value of v with the mem-
ory content of user process U = va(cvm.p.co, u) starting at address A =
va(cvm.p.co, a). The number of words to be copied is given by the size of
the type of v denoted by D = size(ty(v)):

va(cvm ′.p.co, v) = cvm.p.vm(U).m4·D(A)

• the output primitive v = output(x, u, a) copies the value of x into the memory
of user process U = va(cvm.p.co, u) starting at address A = va(cvm.p.co, a).
The number of words to be copied is given by the size of the type of x denoted
by D = size(ty(x)):

cvm ′.p.vm(U).m4·D(A) = va(cvm.p.co, x)

1Note that there exist a lot of those but in their very nature each one is quite simple (compare [ST08]).

51

10 COMMUNICATING VIRTUAL MACHINES (CVM)

• the input device primitive v = inputDev(a) updates the value of v with the
content of the device memory starting at address A = va(cvm.p.co, a). The
number of words to be copied is given by the size of the type of v denoted
by D = size(ty(v)):

va(cvm ′.p.co, v) = cvm.d.mD(A)

• the output device primitive v = outputDev(x, a) copies the value of x into the
memory of the device starting at address A = va(cvm.p.co, a). The number
of words to be copied is given by the size of the type of x denoted by D =
size(ty(x)):

cvm ′.d.mD(A) = va(cvm.p.co, x)

Note that due to the semantics of the device (see Section 6) the output device
primitive might have side effects on the interrupt flag in the device.

• the primitive v = getgpr(r, u) updates the value of v with the content of the
general purpose registerR = va(cvm.p.co, r) of process U = va(cvm.p.co, u):

va(cvm ′.p.co, v) = cvm.p.vm(U).gpr(R)

• the primitive v = setgpr(x, r, u) writes the current value of x into the general
purpose register R = va(cvm.p.co, r) of user process U = va(cvm.p.co, u):

cvm ′.p.vm(U).gpr(R) = va(cvm.p.co, x)

• the primitive v = wait() does nothing but wait for an interrupt at which it reini-
tializes the kernel as defined in Section 10.2.1:

cvm ′.p.co.pr ={
cvm.p.co.pr if ¬(∃u. JISR(cvm.p.vm(u), eev(cvm.d)))
(v = kdispatch(eca(cvm), edata(cvm))) otherwise

Note that, as no user process is scheduled no internal interrupt can be generated.
By this definition the CVM waits until the generation of an external interrupt.

After an interrupt the kdispatch function is invoked in the kernel. Depending on
the interrupt itself, the corresponding interrupt handler is called (as defined bellow).
Furthermore, the body of the kdispatch function implements the scheduling policy of
the operating system. It is executed after the return from the interrupt handler. Even-
tually the start primitive must be invoked which again schedules a user process. This
user process computes until the next interrupt is generated.

10.3 Binary Kernel Interface
Before going into details regarding the CVM implementation we show how user pro-
cesses can invoke services provided by the operating system in form of system calls.

52

10 COMMUNICATING VIRTUAL MACHINES (CVM)

A user process can invoke a system call using the trap instruction that causes an
internal interrupt (compare Section 4.5.1). If the kernel provides k trap handlers, then
the user can specify the handler to be invoked using the immediate constant i being
part of the trap instruction, where 〈i〉 ∈ [0 : k − 1].

The kernel call definition function kcd maps immediate constants i to names of
functions declared in the abstract kernel. Thus kcd(i) is simply the name of the C0
function handling a trap with immediate constant i.

For each i, let npar(i) be the number of parameters of function kcd(i). We require
that user processes pass the parameters for function kcd(i) in general purpose regis-
ters gpr[1 : npar(i)]. With the specification of the functions kcd(i) and npar(i) the
binary interface to the kernel is defined.

10.3.1 Binary Kernel Interface Implementation

To handle system calls the kernel maintains a variable CUP keeping track of the user
process that is currently running or that has been running before the kernel execution
started:

cvm.p.cp 6= 0⇒ va(cvm.p.co,CUP) = cvm.p.cp

Assume cvm.p.cp = u where u 6= 0 and user process cvm.p.vm(u) executes the
trap instruction with immediate constant i. The trap instruction activates internal event
signal iev(5) as described in Section 4.5.1. Furthermore, assume that no interrupts
with higher priority (lower index) are active simultaneously. Then the masked cause
vector 026105 is saved into the exception cause register eca[31 : 0] and parameter i is
saved into the exception data register edata:

eca = mca(cvm ′.vm(u)) = 026105

edata = ed(cvm ′.vm(u)) = i

According to the CVM semantics the abstract kernel is started with the function
call kdispatch(eca, edata). By a case split on eca the kdispatch function conclude that
a trap needs to be handled. Hence it invokes the function f (e1, . . . , enpar(i)), where
f = kcd(i) using the parameters computed by the assignment ei = getgpr(i,CUP).

The effect of a system call is summarized in the following lemma: The intended handler
is called with the intended parameters.

Lemma 3 (System Call Semantics) Let cvm be the CVM configuration before the
kernel is entered and let cvm ′′ be the CVM configuration after the execution of the kcd
function. Then we can derive from the semantics of CVM and C0:

cvm ′′.co.rd = cvm.p.rd+ 1 = 1
cvm ′′.co.pr = cvm.p.co.ft(f).body; r for some r

top(cvm ′′).ct(j) = cvm.p.vm(u).gpr(j) for all j ∈ [1 : npar(i)]

This lemma formalizes the idea that an interrupt is like a function call of the handler.
Comparing with the C0 semantics in Section 8 we see that the trap instruction indeed
formally causes a function call of the handler. The function call is however remote,
because it is executed by a process (the abstract kernel) different from the calling user
process (a virtual machine).

53

10 COMMUNICATING VIRTUAL MACHINES (CVM)

10.4 CVM Implementation

So far we have argued mathematically only about the configurations of the abstract
kernel cvm.p.co. Now we also argue about its source code that we denote by sak. The
source code of the so-called concrete kernel, denoted by sck, is obtained by linking sak
with the source code of some CVM implementation scvm using a link operator ld:

sck = ld(sak, scvm)

Note that sak is a pure C0 program, whereas scvm and sck are C0A programs.
The function table of the linked program sck is constructed from the function tables

of the input programs as follows. For functions present in both programs, defined func-
tions (with a non-empty body) take precedence over declared functions (with an empty
body). We do not formally define the ld operator here; it may only be applied under
various restrictions concerning the input programs, e.g. the names of global variables
of both programs must be distinct, function signatures must match, and no function
may be defined in both input programs. More details will be given in [IdR08].

We require that the abstract kernel sak defines kdispatch and declares all CVM
primitives while the CVM implementation scvm defines the primitives and declares
kdispatch.

10.5 Concrete Kernel Simulation Relation

We define a relation kcosim(kalloc)(co, cc) stating that the abstract kernel configu-
ration co is coded by the concrete kernel configuration cc. The function kalloc maps
subvariables x of the abstract kernel configuration co to subvariables kalloc(x) of the
concrete kernel configuration cc.

Linking is less complex than compiling. The definition of the kcosim relation has
only three parts:

1. elementary variable consistency e-kcosim(kalloc)(co, cc): All reachable ele-
mentary (sub) variables x of the abstract kernel configuration co and the values
of x in the concrete kernel cc coincide:

va(co, x) = va(cc, x)

2. pointer consistency p-kcosim(kalloc)(co, cc): The function kalloc is a graph
isomorphism between reachable portions of the heaps. For all reachable pointer
variables p of abstract kernel configuration co, pointing to subvariable v, the
following holds:

(va(co, p) = v)⇒ va(cc, p) = kalloc(v)

3. code consistency c-kcosim(kalloc)(co, cc): The program rest of the concrete
kernel is a prefix of the program rest of the abstract kernel (see [KP07a, IdRT08]).

54

10 COMMUNICATING VIRTUAL MACHINES (CVM)

10.5.1 Concrete Kernel Data Structures

The CVM implementation maintains data structures for the simulation of the virtual
machines, i.e. for the support of multiprocessing. These include:

• an array of process control blocks pcb[u] for the kernel (u = 0) and the user pro-
cesses (u ∈ Pn). Process control blocks are structs with components pcb[u].R
for every processor register R of the physical machine.

• a single integer array ptarray on the heap holds the page tables of all user pro-
cesses in the order of the process numbers u. The function ptbase(u) defines the
start index of the page table for process u:

ptbase(u) =
∑
j<u

(pcb[j].ptl + 1)

Virtual addresses are split into the page index vadr .px = vadr[31 : 12] and
the byte index vadr .bx = vadr[11 : 0]. Since the C0 array ptarray is indexed
by words and not by bytes we can define the page table entry for a virtual ad-
dress vadr of process u as the following C0 expression (compare 7.2):

pte(u, vadr) = ptarray [ptbase(u) + vadr .px]

The physical memory address and the valid bit are then defined by the following
C0 expression:

pma(u, vadr) = pte(u, vadr)[31 : 12] ◦ vadr .bx
v(u, vadr) = pte(u, vadr)[11]

We require that the compiler computes the allocated base address of the ar-
ray ptarray as a multiple of the page size 4K.

• data structures (in the simplest case doubly-linked lists) for the management of
physical and swap memory (including victim selection for page faults).

• the variable CUP keeping track of the current user process and thus encoding
the cvm.p.cp component (unless the kernel is running).

10.5.2 Entering System Mode after an Interrupt

When the mode bit in the concrete kernel flips from user to system mode, the program
rest is initialized with init1; init2. In all cases except for a reset, the first Part init1
will write all processor registers R to the process control block pcb[CUP].R of the
user process CUP that was interrupted. Furthermore, it will restore the registers of the
kernel from process control block pcb[0].

In the second Part init2, the CVM implementation detects if the interrupt was due
to a page fault or to other causes. Page faults are handled silently without calling
the abstract kernel. For other interrupts, the kdispatch function is called with the
parameters obtained from the C0 array pcb[CUP], i.e.:

kdispatch(pcb[CUP].eca, pcb[CUP].edata)

55

10 COMMUNICATING VIRTUAL MACHINES (CVM)

10.5.3 Leaving System Mode

An invocation of the start primitive will switch to user mode again. The primitive is
implemented using inline assembly code. The physical processor registers are written
to pcb[0] to save the state of the concrete kernel. Then the physical processor regis-
ters for process CUP are restored from pcb[CUP]. Finally, a return from exception
instruction rfe is executed.

10.5.4 Process Virtualization

To argue about multiple user processes, we slightly extend the B relation introduced
in Section 7.4. The extended relation B(u)(cvm, cc, isa) states that the user pro-
cess cvm.p.vm(u) of the CVM configuration cvm is coded by the concrete kernel
configuration cc and the physical machine configuration isa:

1. processor registers of user process u are stored in the physical processor reg-
isters, if process u is running; otherwise they are stored in the corresponding
process control block:

cvm.p.vm(u).gpr(r) =

{
isa.gpr(r) cvm.p.cp = u

va(cc, pcb[u].gpr(r)) otherwise

2. the memory content of user process u is stored in the physical memory at the
corresponding physical memory address:

cvm.p.vm(u).m(a) = isa.m(pma(u, a))

10.5.5 Implementation of the CVM Primitives

The implementation of CVM primitives like e = getgpr(u, r) and e = setgpr(u, r, g)
is straightforward using simple assignments:

e = pcb[u].gpr(r))
pcb[u].gpr(r) = g

For the CVM primitives alloc and free the page table length of the process has to be
increased or decreased and lots of page table entries in ptarray above the portion of the
modified user process have to be moved around in the page table array. Various other
data structures concerning memory management have to be adjusted as well. Since the
page tables are accessible as a C0 data structure, inline assembly code is only required
to clear newly allocated physical pages.

Similarly, the implementation of the copy, input, and output primitive requires as-
sembly code to copy data between the kernel, user processes and devices.

The primitives input device and output device are implemented using simple load
word and store word operations to device addresses.

The primitive wait is somehow special. It is used to await the next timer interrupt.
Therefore, the primitive implementation is split in the following parts:

init idle; a : jump a; a+ 4 : noop

56

10 COMMUNICATING VIRTUAL MACHINES (CVM)

Within init idle the timer interrupt, which is normally disabled during the kernel ex-
ecution, is enabled by setting the status register to 032. Then an idle loop is entered
which consist of a self-loop to address a and a noop instruction2. The latter fills the
delay slot that occurs due to the delayed branching (see Section 4.1). Once the idle
loop is executed the configuration is not altered until an interrupt is generated. Further
details regarding this primitive will be given in [Tsy08].

10.6 CVM Correctness Theorem

The correctness proof of the CVM deals simultaneously with computations in three
computational models:

• the CVM consisting of a C0 machine and several virtual machines; configura-
tions are denoted by cvm .

• an intermediate model for the C0A computation of the concrete kernel; configu-
rations are denoted by cc

• the physical machine model; configurations are denoted by isad

Although we quantify in the following theorem over all all steps i of the CVM
computation, we will apply it only for a bounded computation in which the device
indeed behaves like ordinary RAM (see Section 19).

Theorem 5 (CVM Correctness) Let the CVM simulation relation hold initially, i.e.
assume there exists a concrete kernel cc such that kcosim(kalloc0)(cvm0.p.co, cc0)
as well as cosim(aba0)(cc0, isad0.p) and B(u)(cvm0, cc0, isad0.p) hold.

For all steps i of the CVM computation, there is a concrete kernel configuration, a
physical machine configuration, two sequences of allocation functions abai and kalloci

and two sequences of step numbers s(i) and t(i) such that:

• the abstract kernel configuration cvmi.p.co is coded by the concrete kernel con-
figuration ccs(i):

kcosim(kalloci)(cvmi.p.co, ccs(i))

• the concrete kernel configuration ccs(i) is coded by the physical machine con-
figuration isad t(i). Recall that on the physical machine the compiled concrete
kernel is executed:

cosim(abai)(ccs(i), isad .pt(i))

• the configurations of the user-processes cvmi.vm(u) are coded by the concrete
kernel configuration ccs(i) and the physical machine configuration isad t(i):

B(u)(cvmi, ccs(i), isad .pt(i))

2If not supported by the ISA a noop instructions can be faked, e.g. using an add immediate instruction
with an immediate constant that equals 0.

57

11 AUTOMOTIVE BUS CONTROLLER (ABC)

• the configuration of the device is the same.

cvmi.d = isad t(i).d

The theorem is proven by induction on the steps i of a CVM computation. Depend-
ing on the current process number cvmi.cp and the interrupts occurring, the proof
uses compiler correctness (see Section 8.4), the correctness of the memory manage-
ment mechanisms (see Section 7.4), and detailed arguments about inline assembly code
based on the C0A semantics (see Section 9). A formal version of this theorem is re-
ported in [IdRT08]. More elaborated versions will follow in [Tsy08, IdR08].

Note that the concrete kernel is only used as an intermediate model to modularized
the argumentation regarding the CVM correctness. In the remainder of this thesis we
will use the shorthand cvmsim(isad , cvm) to refer to the CVM simulation relation.

11 Automotive Bus Controller (ABC)

Our real-time operating system includes drivers for a FlexRay-like interface called au-
tomotive bus controller (ABC). Thus we introduce a specification for a single ABC
before we argue about the operating system itself in the next section. To do so, we
specialize the stable device configuration from Section 6.1.

We are dealing with a time-triggered system [Rus99]. Time is divided into so-called
rounds. Each round consists of ns many slots. Thus a slot number s is given by:

s ∈ Sn = [0 : ns − 1]

Given a slot number s the predecessor s − 1 and the successor s + 1 are computed
modulo ns .

Messages msg , to be broadcast by the ABC, are bit-stings consisting of ml many
bytes:

msg ∈ Msg = B8·ml

We require that ml is a multiple of 4 such that only complete words are being broadcast.
An ABC needs to know whether it is the sender in a given slot. This knowledge is

represented by the local schedule called FlexRay table ft :

ft : Sn → B

It indicates for each slot number s in a round if the ABC is the sender in s or not. The
schedule is repeated each round again and again.

11.1 Stable ABC Specification Configuration

We reuse the letter d to denote a stable ABC specification configuration. It consists of:

58

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

• a memory d.m addressing K words. The first ml/4 words are used as a send
buffer which we denote by d.sb = d.mml/4(0). The next ml/4 words are used
as a receive buffer which we denote by d.rb = d.mml/4(ml/4). The remaining
words are used for configuration parameters, e.g. the local schedule which we
denote by d.ft .

• an interrupt-flag d.int indicates if an interrupt is still pending, i.e. it was gener-
ated but has not been cleared by the drivers so far.

This stable ABC specification configuration behaves like an ordinary RAM and
does neither take external input nor produce any external output (compare Section 6.1).
Note that this specification is partial in the sense that it models the behavior of the ABC
for a single slot only.

However, this configuration contains everything needed to argue about the operat-
ing system OLOS. A complete specification for several ABCs is given in Section 16.

12 OSEKtime Like Operating System (OLOS)
Based on the stable ABC specification configuration described in the previous section
we specify the OSEKtime-like [OSE08b] operating system OLOS [Kna05, IdRK05,
Kna08]. It features time-triggered scheduling, process separation, buffered communi-
cation, and drivers for the ABC.

OLOS itself is not preemptive. It operates in a time-triggered fashion like the ABC.
In fact, the ABC signals the start of a new slot by generating an interrupt. OLOS rounds
might be multiples of ABC rounds. In each slot one application is scheduled.

For this thesis one OLOS round corresponds to one ABC round; slots in OLOS
directly correspond to ABC slots. This restriction preserves the idea of time-triggered
systems and thus does not limit the applicability of the presented ideas to real systems.

Applications running under OLOS can communicate via system calls that update
or read a message buffer, i.e. an application visible data structure of the operating
system. Note that the message buffer is similar to the FTCom buffer [OSE08a] of the
OSEKtime OS.

In addition, OLOS features a strict separation of user processes as well as drivers
for the ABC.

12.1 Message Buffers, Applications and Schedules
The messages being broadcast are typed. As already mentioned the applications are
executed according to a fixed schedule. All applications are known initially. Thus an
upper bound for the different message types being broadcast in the system can be fixed.
Let this bound be given by nmt . A message number mn is then given by:

mn ∈ Mn = [0 : nmt − 1]

OLOS maintains an array for storing messages that is called message buffer mb.
For each message type this array keeps the latest message that has been broadcast:

mb : Mn → Msg

59

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

The applications running under OLOS are C0 machines co as defined in Sec-
tion 8.2. As already mentioned in Section 10.1 the number of processes running under
the operating system is bounded by np thus a process number pn is given by:

pn ∈ Pn = [1 : np]

We combine the state of all applications into a process mapping pm . For all pro-
cess numbers pn the process mapping pm(pn) maps to the corresponding C0 machine
configuration co.

In each slot in a round one application is scheduled according to a fixed mapping
called the scheduling table st :

st : Sn → Pn

In slot s the process pm(st(s)) is executed. The mapping is the same in each round.
Thus we get a complete cyclic behavior.

In addition to the communication schedule the operating system needs to know
which message type is being broadcast. This is specified by the slot content function sc:

sc : Sn → Mn

It simply maps a slot number to the index in the message buffer of the message to be
broadcast.

12.2 OLOS Configuration
An OLOS configuration olos has the following components:

• the process mapping olos.p.pm combines the state of all applications.

• the message buffer olos.p.mb stores for each message type the latest message
value that has been broadcast.

• the scheduling table olos.p.st defines which application is being scheduled in a
given slot.

• the scheduling table olos.p.ft defines the sender in a given slot.

• the slot content olos.p.sc defines the type of the message being broadcast in a
given slot.

• a send flag olos.p.send ∈ B indicates if the OLOS instance is the sender in the
next slot.

• an idle flag olos.p.idle ∈ B indicates if either the kernel (olos.p.idle = 1) or the
scheduled application (olos.p.idle = 0) is executed.

• the current slot number olos.p.csn .

• an ABC specification configuration olos.d.

To specify the system calls offered by OLOS we introduce the concept of local
configurations first.

60

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

12.3 Local Configurations (LC) and Transitions

A local configuration lc is a tuple with the following components:

• a C0 machine configuration lc.co, and

• a message buffer lc.mb.

OLOS offers three system calls. The predicate is syscall(lc) indicates if the head
of the program-rest in C0 is a system call. Thus it checks if the head of the program rest
is either a ttSend system call, i.e. hd(lc.co) = (v = ttSend(mn, pmsg)), or a ttRecv
system call, i.e. hd(lc.co) = (v = ttRecv(mn, pmsg)) or a ttExFinished system call,
i.e. hd(lc.co) = (v = ttExFinished()).

The transition function δlc of a local configuration splits cases depending on the
head of the program rest in the C0 machine configuration lc.co. If the head of the
program rest is a system call, i.e. is syscall(lc) holds, the call is executed with the
following semantics:

If a ttSend system call is invoked, i.e. hd(lc.co.pr) = ttSend(mn, pmsg), the
message buffer is updated at position mn with the message given by the dereferenced
message pointer pmsg . Furthermore, the call is deleted from the program rest:

lc′.mb(va(lc.co,mn)) = va(lc.co,∗pmsg)
lc′.co.pr = tl(lc.co.pr)

If a ttRecv system call is invoked, i.e. hd(lc.co.pr) = ttRecv(mn, pmsg), the
message given by pmsg is updated with the value of the message buffer at position mn .
The call is deleted from the program rest:

va(lc′.co,∗pmsg) = lc.mb(va(lc.co,mn))
lc′.co.pr = tl(lc.co.pr)

If a ttExFinished system call is invoked, i.e. hd(lc.co.pr) = ttExFinished(), the
call is simply deleted from the program rest. From the point of view of the application
the ttExFinished system call has no effect. It just indicates that the application has
finished execution and wants to return the control back to the operating system:

lc′.co.pr = tl(lc.co.pr)

We will come back to this in Section 12.4.2.
If the head of the program rest is not a system call, i.e. is syscall(lc) does not hold,

the C0 small-step transition function δco is applied to the application. The message
buffer is left unchanged:

lc′.co = δco(lc.co)

Next we detail the transition function of the whole system.

61

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

local
receive

local
send

local
compute

a b c

send
idle

slot time

flags:

int

d

local
idle

application

OLOS

ABC

mb

sb rb

b
ECU

a

b

c

Figure 8: OLOS: Slot Partitioning and Data-Flow

12.4 OLOS Transition Function

The OLOS transition function δolos takes an OLOS configuration and returns an up-
dated one, i.e. olos ′ = δolos(olos). We distinguish 4 phases:

(a) in the local receive phase the message buffer is updated with the message that has
been broadcast in the previous slot and the interrupt flag of the ABC is cleared.

(b) in the local compute phase the currently scheduled application is executed.

(c) in the local send phase the current slot number is incremented and the sender in the
next slot updates the send buffer of the ABC with the message to be broadcast.

(d) in the idle phase the next interrupt is awaited, the OLOS configuration is not
changed at all.

Figure 8 illustrates the slot partitioning as well as the data-flow within the phases. Note
that we use the indices (a), (b) and (c) throughout the rest of this thesis to refer to the
corresponding phases.

To distinguish between the four phases we make use of the send-flag, the idle-flag
and the ABC interrupt-register. The OLOS configuration olos is within the local re-
ceive phase (a) if olos.p.send = 0 and olos.p.idle = 1 and olos.d.int = 1. The
configuration is within the local compute phase (b) if olos.p.idle = 0. The configu-
ration is within the local send phase (c) if olos.p.send = 1 and olos.p.idle = 1. The
configuration is within the idle phase (d) if olos.p.send = 0 and olos.p.idle = 1 and
olos.d.int = 0.

Next we will will case split according to the four phases. If none of the above cases
applies, the configuration is not altered, i.e. olos = δolos(olos).

12.4.1 Local OLOS Receive Phase (a)

We denote the message number of the message that has been broadcast in the previous
slot by mn = olos.p.sc(olos.p.csn − 1).

62

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

If the olos configuration is in the local receive phase the message buffer mb is
updated with the message that has been broadcast in the previous slot. Furthermore,
the interrupt is cleared, the idle-flag is set to 0 and the send-flag is set to 1. Then:

olos ′.p.mb(mn) = olos.d.rb
olos ′.p.idle = 0

olos ′.p.send = 1
olos ′.d.int = 0

Note that clearing the idle-flag leads to the local compute phase.

12.4.2 Local OLOS Compute Phase (b)

Let the process number of the application that is currently being scheduled be denoted
by pn = olos.p.st(olos.p.csn).

If the configuration olos is in the local compute phase the LC transition function δlc
is applied to the scheduled application; the ABC is left unchanged. In addition, if
ttExFinished is invoked by the application, the idle-flag is set:

(olos.p.pm(pn), olos.p.mb) = δlc(olos.p.pm(pn), olos.p.mb)

hd(olos.p.pm(pn).pr) = (v = ttExFinished())⇒ olos ′.p.idle = 1

Note that this definition enforces the scheduled application to be executed step by step
until ttExFinished is invoked which then will lead to the local send phase.

12.4.3 Local OLOS Send Phase (c)

Let the incremented slot number be denoted by icsn = olos.p.csn + 1 and let the type
of the message to be broadcast in the next slot be denoted by mn = olos.p.sc(icsn).

If the configuration olos is in the local send phase the send-flag is cleared and the
current slot number is incremented. Furthermore, if the configuration olos is the sender
in the next slot, i.e. if olos.p.ft(icsn), the send buffer is updated with the message to
be broadcast next:

olos ′.p.send = 0
olos ′.p.csn = icsn

olos.p.ft(icsn)⇒ olos ′.d.sb = olos.p.mb(mn)

Note that clearing the send-flag will start the idle phase

12.4.4 Local OLOS Idle Phase (d)

During the the local idle phase the configuration simply stalls and is not altered at all:

olos = δolos(olos)

In the remainder of this section we argue about a single slot only.

63

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

Formalization. Note that we have formalized the local OLOS model and the stable
ABC model in the theorem prover Isabelle/HOL resulting in about 1500 lines of code.

12.5 OLOS Implementation Data Structures
OLOS is implemented by specializing the abstract CVM kernel. The C0 applications
running under OLOS are compiled in order to obtain the CVM user processes.

Among others the kernel has to maintain the following variables and data structures:

• C0 implementations of the functions st , ft and sc denoted ST , FT and SC ,

• an integer variable CSN keeping track of the current slot,

• an array MB [0 : nmt − 1] capable of storing nmt messages,

• two boolean variables Send and Idle coding the corresponding flags.

Note that we have implemented an initial version of OLOS in C0. This implemen-
tation evolved over the years, e.g. due to changes in some CVM primitive signatures.
In Section 12.7 we will describe the up-to-date OLOS implementation (maintained by
Mareike Schmidt [Sch08]) along the lines of the OLOS correctness theorem.

12.6 OLOS Simulation Relation
Next we can define a simulation relation olossim(aba(pn))(cvm, olos) between some
instantiated CVM and some OLOS configuration. It is parameterized by a sequence aba
of allocation functions aba(pn), one for each process number pn:

1. the content of the OLOS message buffer is stored in the corresponding variables
of the abstract kernel:

va(cvm.p.co,MB) = olos.p.mb

2. the OLOS flags correspond to the ones in the implementation:

va(cvm.p.co,Send) = olos.p.send
va(cvm.p.co, Idle) = olos.p.idle

3. the interrupt flag in the device is the same:

cvm.d.int = olos.d.int

4. the user processes of CVM encode the applications running under OLOS:

cosim(aba(pn))(cvm.p.up(pn), olos.p.pm(pn))

5. the send buffer in the device is the same:

cvm.d.sb = olos.d.sb

64

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

6. the kernel keeps track of the current slot number:

va(cvm.p.co,CSN) = olos.p.csn

7. the receive buffer in the device is the same:

cvm.d.rb = olos.d.rb

8. the OLOS scheduling functions correspond to the one in the implementation:

va(cvm.p.co,ST) = olos.p.st
va(cvm.p.co,FT) = olos.p.ft
va(cvm.p.co,SC) = olos.p.sc

12.7 OLOS Correctness Theorem for One Slot

Assume the OLOS configuration is in phase (a) and all invariants hold. We construct
the OLOS kernel such that the invariants are maintained during a whole slot. Note
that in the two phases (a) and (c) the kernel is running; in phase (b) a user process is
scheduled that might invoke system calls.

In phase (a) the ABC driver copies the content of the local receive buffer into the
variable MB [SC (CSN − 1)] using the CVM inputdevice primitive. Hence Part 1
of olossim continues to hold after the local receive phase.

Furthermore, the send-flag is set and the idle-flag as well as the interrupt are cleared.
Thus Part 2 and Part 3 hold after the local receive phase, too.

The next process to be scheduled is computed by CUP = ST (CSN). An invoca-
tion of the CVM primitive start(CUP) starts the compute phase (b).

During the compute phase (b) we have to worry about the scheduled process only.
The handlers for the system calls ttSend and ttRecv are implemented with the help of
the CVM output and input primitive such that parts 1 and 4 of olossim continue to
hold (details regarding the implementation of system calls were given in Section 10.3).
Phase (b) ends with the system call ttExFinished returning control to the kernel again.
The kernel sets the idle-flag, i.e. Idle = 1, hence Part 2 holds after the local compute
phase. This starts the send phase.

In phase (c) the kernel checks if it is the sender in the next slot, i.e. if FT (CSN +1)
equals 1. If this is the case it copies the content of variable MB [SC (CSN +1)] into the
local send buffer of the ABC (using the CVM outputdevice primitive). This implies
Part 5 of olossim . Furthermore, the send-flag is cleared and the kernel increments the
current slot number CSN . Hence Part 2 and Part 6 of olossim hold.

In phase (d) the kernel executes the wait primitive. Thus the CVM configuration
idles waiting until the interrupt flag in the ABC is raised which starts a new slot (see
Section 10.5.5). So does the OLOS configuration.

Although we quantify in the following theorem over all all steps i of the OLOS
computation, we will apply the theorem only for a bounded interval (see Section 20).

65

12 OSEKTIME LIKE OPERATING SYSTEM (OLOS)

Theorem 6 (OLOS Correctness for One Slot) Let the simulation relation between the
CVM and OLOS hold initially, i.e. olossim(aba0)(cvm0, olos0).

For every OLOS computation there is a CVM computation, step numbers s(i), and
a sequence of allocation functions abai such that for all steps i:

olossim(abai)(cvms(i), olosi)

This theorem is proven by induction on the steps i of the OLOS computation using
the compiler correctness (see Theorem 4). A formal version of this theorem will be
reported in [Sch08].

In the remainder of this thesis we will use the shorthand olossim(cvm, olos) to
refer to the OLOS simulation relation.

66

Part II

Distributed ECUs
So far we have considered a single ECU consisting of a processor and a device without
external I/O only. In this part of the thesis we connect several instances of these ECUs
and argue about the complete distributed system.

The verification of asynchronous communication systems must, at some point, deal
with the low-level bit transmission between two automotive bus controllers (ABC) that
are connected to the bus. The core idea is to ensure that the value broadcast on the bus
is stable long enough so that it can be sampled correctly by the receiver. To stay within
such a so-called sampling interval, the local clocks on the ABCs should not drift apart
more than a few clock ticks and therefore need to be synchronized regularly. This is
achieved by a message encoding that enforces the broadcast of special bit sequences
used for synchronization.

The correctness of this low-level transmission mechanism cannot be carried out in
a conventional, digital, synchronous model. It involves asynchronous and real-time-
triggered register models taking setup- and hold-times as well as metastability into ac-
count. This part of the verification has been reported in [BBG+05, KP07b, ABK08b].

Ensuring correct message transmission between two ABCs is only one part of the
communication correctness. Let us consider a set of interconnected ABCs. To avoid
bus contention only one ABC is allowed to broadcast at a time, all others should listen
only. For that, time is divided into rounds, which are further subdivided into slots. A
fixed schedule assigns a unique sender to a given slot number. The schedule is the same
for each round. The gate-level implementation of the scheduler has to ensure that all
ABCs have roughly the same notion of the slot start and end times, i.e. they must agree
on the current sender and the transmission interval.

Due to drifting clocks a synchronization algorithm becomes necessary. We use a
simple approach: a cycle offset is added at the beginning and end of each slot. This
offset is chosen large enough to compensate the maximal clock drift that can occur
during a full round. The local timers are synchronized only once, at the beginning of
each round. This is done by choosing a distinguished master ABC which is the ABC
sending in the first slot of a round.

The combination of the results into a lock-step and synchronous view of the system
is now simple. The scheduler correctness ensures that at all time only one ABC sends
and all other ABCs listen. Then we can conclude from the first part that the broadcast
data is correctly received by all ABCs.

In contrast, others like [Pik07] have used purely digital models to argue about the
scheduling correctness. However, abstract hardware models were considered only. The
justification of the used abstractions for a concrete gate-level hardware implementation
have not been reported, yet.

Note that we have defined the hardware in Isabelle/HOL [NPW02] being inspired
by [Pau05]. Note that this implementation is based on boolean gates and sums up to
2800 lines of code. The resulting hardware definitions can be translated to Verilog and
run on a FPGA. More details regarding the translation algorithm are reported in [AT08].

67

13 ABC IMPLEMENTATION

Overview of Part II

In the second part of this thesis we extend the results from [KP07a, Kna08].
In Section 13, we detail our ABC implementation that was inspired by [Pau05].

Then we show how to verify this implementation based on [BBG+05, Sch06, KP07b,
ABK08b]. The lemmata regarding message transmission and clock synchronization
are sketched in Sections 14 and 15. In particular, we review the clock synchronization
mechanism from [KP07b, ABK08b].

In Section 16, we specify the communication behavior. To do so, we define a
general distributed framework (DISTR) that models the interaction between the ECUs
using the stable ABC specification from Section 11. In this framework the inter-ECU
communication is clearly separated from the local computations done at each ECU
during a slot. Note that we first reported on DISTR in [Kna08].

By instantiating DISTR in Section 17 with the processor configuration from Sec-
tion 5.1, we obtain a gate-level specification of the communication mechanism. We
prove the correctness of our implementation from Section 13 with respect to this instan-
tiated framework. Note that in both cases, the processor part is the gate-level processor
implementation from Section 5.1. However, the ABC implementation is abstracted to
a stable ABC specification from Section 11.

Once the generic framework is justified at the gate level it is instantiated with the
other local models introduced in Part I. We deal with the distributed ISA (DISA) model
in Section 18, the distributed CVM (DCVM) model in Section 19, and finally with
the distributed OLOS (DOLOS) model in Section 20. Using the corresponding local
simulation theorems we prove the correctness of the distributed system on each layer
at the end of the corresponding sections.

Finally, in Section 21, we define an automata-theoretic model, called communicat-
ing OLOS automata (COA), see [Kna08]. This model completely abstracts from the
devices; communication is done directly via the local message buffers in OLOS. We
prove the correctness of DOLOS with respect to the COA model.

Thus, by the end of Part II, we have established a pervasive correctness proof for
the complete distributed system.

13 ABC Implementation
We consider a time-triggered scenario. As already mentioned in Section 11, time is
divided into so-called rounds each consisting of ns slots. We uniquely identify slots
by a tuple consisting of a round number r ∈ N and a slot number s ∈ [0 : ns − 1].
Predecessors (r, s) − 1 and successors (r, s) + 1 are computed modulo ns , see also
Section 11:

(r, s) + 1 =

{
(r, s + 1) s < ns − 1
(r + 1, 0) otherwise

The predecessor is defined analogously.

The ABC implementation is split in four main parts, as depicted in Figure 9:

68

13 ABC IMPLEMENTATION

receive
env.
(rb)

send
env.
(sb)

schedule
env.

host interface

startsndstartedrcv

setrd

ABC

to/from host

to busfrom bus

Figure 9: ABC Schematics

T

off

.

offtc

time

Figure 10: ABC Slots

• the host interface provides the connection to the host and contains configuration
registers.

• the send environment performs the actual message broadcast and contains a send
buffer.

• the receive environment takes care of the message reception and contains a re-
ceive buffer.

• the schedule environment is responsible for the clock-sychronization and the
conformance to the schedule.

Note that we have implemented the ABC inspired by [Pau05]. Furthermore, we
have extended the design in particular by a more sophisticated schedule environment.

Next we detail each part of the implementation starting with the host interface.

13.1 Host Interface

In this section we recall and extend the set of configuration parameters already men-
tioned in Section 11.

Unless synchronization is performed, slots are locally T hardware cycles long. A
slot can be further subdivided into three parts (see Figure 10): an initial as well as a final
offset (each off hardware cycles) and a transmission interval (tc hardware cycles). The
length of the transmission interval is implicitly given by the slot-length and the offset.

Within each slot one fixed-length message msg is broadcast which consists of ml
bytes, i.e. msg ∈ B8·ml .

A local schedule ft , implemented as a bit-vector, indicates if the ABC is the sender
in a given slot. Intuitively, if the ABC is in slot s and ft(s) = 1 then the ABC broad-
casts the message stored in the send buffer (see Section 13.2). Note that the ABC
implementation is not aware of the round number. It simply operates according to the
slot-based fixed schedule, that is repeated again and again.

The special parameter iwait indicates the number of hardware cycles to be awaited
before the ABC starts executing the schedule (see Section 13.4).

69

13 ABC IMPLEMENTATION

i≠ml-1

TSS
0

FSS
1

BS0
1

BS1
0

FES
0

TES
1

idle
1

startsnd
i=ml-1

msg[i]b

Figure 11: Automaton for the Message Encoding

All configuration parameters introduced so far need to be set by the host during an
initialization phase using simple store word operations to device addresses (see Sec-
tion 11). The host indicates that it has finished the initialization by invoking a setrd
command. It does so by writing the word 0311 to the command port of the ABC.

13.2 Send Environment

The send environment starts broadcasting the message contained in the send buffer sb
if the schedule environment raises the startsnd signal (see Figure 9).

To define the message encoding we need to introduce some more notation first
(see also Section 3). For natural numbers n and a bit y we denote by yn the string
in which y is replicated n times, e.g. 04 = 0000. For strings x[0 : k − 1] consisting
of k bits x[i] we denote by 8 · x the string obtained by repeating each bit eight times,
i. e. 8 · x = x[0]8 . . . x[k − 1]8.

The following protocol is used for transmission (see Figure 11). Given a mes-
sage msg a frame f (msg) is created by inserting falling edges between the message
bytes and adding some bits at the start and at the end:

f (msg) = 0110msg [0]b10msg [1]b10 . . . 10msg [ml − 1]b01

Note that we refer to a complete message byte with number i by msg [i]b.
In a frame f (msg) we call the first ‘zero’ the transmission start sequence (TSS), the

first ‘one’ the frame start sequence (FSS), the last ‘zero’ the frame end sequence (FES)
and the last ‘one’ the transmission end sequence (TES). The two bits producing a
falling edge before each byte are called the byte start sequence (BS0 ,BS1).

The sending ECU broadcasts 8 · f (sb) over the bus. The send environment basi-
cally implements the automaton from Figure 11. The additional hardware to insert the
protocol bits is implemented straight forward using signals from the send-automaton.
The duplication of the single bits is achieved by clocking the send-automaton every 8
cycles only.

13.3 Receive Environment

The receive environment permanently listens on the bus. At an incoming message,
indicated by a falling edge (the bus is high-active), it signals the start of a frame recep-
tion to the schedule environment via the startedrcv signal. In addition it decodes the
broadcast frame and writes the message into the receive buffer rb. Therefore it also
implements an automaton similar to Figure 11 to keep track of the frame bits.

70

13 ABC IMPLEMENTATION

offwait:
inccycle

iwait:
inccycle

reset

Twait:
inccycle

eqiwait:
clrcycle,clrslot

rcvwait

startbroad:
startsnd,
inccycle

idle

setrd ∧ sendl0:
clrcycle

¬eqiwait

eqoff ∧ sendlcur

eqT ∧ ¬eqns:
clrcycle, incslot

eqT ∧ eqns
∧ sendl0:

clrcycle, clrslot

eqoff ∧ ¬sendlcureqT ∧ eqns
∧ ¬sendl0

startedrcv:
setoff,
clrslot

¬eqT

¬startedrcv setrd ∧
¬sendl0

¬eqoff

¬setrd

Figure 12: Schedule Automaton

The receive environment tries to sample the sequence of the 8 identical frame bits
roughly in the middle. To do so, it uses a modulo-8 counter cnt that is synchronized
regularly to stay roughly in the middle of the 8-bit interval. Further details are given in
Section 14.4.

13.4 Schedule Environment

The correctness of the scheduling mechanism, which argues in particular about the
implementation of our schedule environment, has been subject to formal verification
in the master thesis of Peter Böhm [Böh07]. We supervised his work resulting in
a joint paper [ABK08b]. Here we only sketch the main ideas behind the schedule
environment. The interested reader may consult [Böh07] for further details regarding
the latter.

The schedule environment maintains two counters: The cycle counter cy and the
current slot counter csn . Both are periodically synchronized at the beginning of each
round. All ECUs except the one broadcasting in slot 0 (we call the former slaves and
the latter master) synchronize their counters according to the incoming transmission in
slot 0. Hence, the startedrcv signal from the receive environment is used to provide a
synchronized time base (see below). Furthermore, the schedule environment initiates
the message broadcast by raising the startsnd signal.

The schedule environment implements the automaton from Figure 12. The au-
tomaton takes the following inputs (see Figure 9): The signal setrd denotes the end
of the configuration phase. The start of a message reception is indicated by the sig-
nal startedrcv . The signal sendl0 = ft(0) indicates if the ECU is the sender in the
first slot and thus the master. Three signals are used to categorize the cycle counter;
eqiwait , eqoff and eqT indicate if the initial iwait , off or T cycles have been reached.
The signal eqns indicates that the end of a round has been reached, i.e. that the slot
counter equals ns − 1. Finally, sendlcur indicates if the ABC is the sender in the
current slot, i.e. sendlcur = ft(csn).

The automaton has six states and is clocked each hardware cycle. Its functionality
can be summarized as follows: If the reset signal is raised (which is assumed to happen

71

13 ABC IMPLEMENTATION

only at power-up) the automaton is forced into the idle-state. If the host is done with
the initialization and thus invoked setrd we split cases on the sendl0 signal. If the
ABC is the master, i.e. if sendl0 holds, the ABC waits first iwait hardware cycles
(in the iwait-state), then an additional off cycles (in the offwait-state) before it starts
broadcasting the message (in the startbroad -state) and proceeds to the Twait-state.

If the ABC is a slave (¬sendl0), it waits in the rcvwait-state for an incoming
transmission (that is indicated by startedrcv). Then it clears its slot-counter (clrslot),
sets its cycle counter to off cycles (setoff), and proceeds to the Twait-state. In the
Twait-state all ABCs await the end of a slot indicated by eqT . At the end of a slot
we split cases if the round is finished or not. If the round is not finished yet (indicated
by ¬eqns), all ABCs proceed to the offwait-state. Then, after off many cycles, the
sender in the current slot (indicated by sendlcur) proceeds to the startbroad -state,
initiates the message broadcast, and proceeds to the Twait-state; all other ABCs skip
the startbroad -state and proceed directly to the Twait-state. At the end of a round,
the master ABC simply repeats the ‘normal’ sender cycle (from the Twait-state to
the offwait-state and finally to the Twait-state again). All other ABCs proceed to the
rcvwait-state to await an incoming transmission.

Once initialized, the master ABC follows the schedule without any synchroniza-
tion. At the beginning of a new round it waits off many cycles and initiates the broad-
cast.

The clock synchronization on the slave ABCs is done in the rcvwait-state. In this
state the cycle counter is not altered but simply stalls in its last value. At an incoming
transmission (from the master) the slaves clear their slot-counter and set their cycle
counter to off , i.e. the number of hardware cycles at which the master initiated the
broadcast. After this all ABCs are (relatively) synchronized to the masters clock.

13.5 Hardware Construction
The number of ECUs that are connected to the bus is denoted by ne . Thus an ECU
number is given by:

u ∈ En = [0 : ne − 1]

We use subscript ECU numbers to refer to single ECUs.
In this section we argue only about the ABC implementation. Later on, we will

integrate the ABC implementation into the processor.
We denote the ABC configuration of ECUu by abcu. If the index u of the ECU

does not matter, we drop it. The essential components of the ABC configuration are:

• two single bit-registers, one for sending and one for receiving. Both are directly
connected to the bus. We denote them abc.S and abc.R.

• a second receiver register, denoted by abc.R̂, to deal with metastability (see Sec-
tion 14.2).

• double buffers abc.sb(par) and abc.rb(par), where par ∈ {0, 1}, implement
the send and receive buffers. Each pair of the double buffer is capable of storing
one complete message.

72

14 ABC VERIFICATION

• the registers of a non-trivial timer implementing a current slot counter abc.csn
and a cycle counter abc.cy.

• a 3-bit counter abc.cnt that is used as a modulo-8 counter to perform a low level
bit synchronization (see Section 14.4).

• all automata are implemented straight forward as a transition system on a unary
coded bit-vector (see [MP00]). In the following we will argue only about the
schedule automaton in detail. To do so, we use abc.state to code the current
state of this automaton (see Figure 12).

• configuration registers as detailed in Section 13.1.

The cycle counter abc.cy counts the cycles of a slot. Unless the timer is synchro-
nized, slots have locally T cycles. The slot counter abc.csn counts the slot index s of
the current slot (r, s).

The lowest bit of the slot counter keeps track of the parity of the current slot and is
called the hardware parity signal, i.e. par(abc) = abc.csn mod 2.

The bus side of the interface sees the buffer abc.sb(par(abc)) as well as the buffer
abc.rb(par(abc)). We will use the two shorthands abc.sbd = abc.sb(par(abc)) and
abc.rbd = abc.rb(par(abc)) where ‘d’ refers to ‘device’. Messages are always trans-
mitted between these two copies of the buffers.

The host, on the other hand, writes to buffer abc.sb(¬par(abc)) and reads from
buffer abc.rb(¬par(abc)). We use the shorthands abc.sbp = abc.sb(¬par(abc)) and
abc.rbp = abc.rb(¬par(abc)) where ‘p’ refers to ‘processor’. This does not work at
boundaries of rounds unless the number of slots ns is even.

The configuration registers are written immediately after reset or power-up. They
contain in particular the locally relevant portions of the scheduling function.

To simplify arguments regarding the schedule, we define a global scheduling func-
tion send. Given a slot number s it returns the number of the ECU sending in this slot.
Let ftu denote the local schedule of ECUu, then send(s) = u ⇔ ftu(s) = 1. Note
that this definition implicitly requires the existence of a unique sender for each slot.
Otherwise correct message broadcast becomes impossible due to bus contention.

Thus if ECUu is (locally) in a slot with slot index s and send(s) = u then ECUu

will transmit the content of the send buffer abc.sbd via the bus during some transmis-
sion interval. A serial interface that is not actively transmitting during slot (r, s) puts
by construction the idle value (the bit 1) on the bus.

14 ABC Verification

To argue about asynchronous distributed communication systems we have to formalize
the behavior of the digital circuits connected to the analog bus, as reported in [BBG+05,
KP07b]. Using the formalization of digital clocks from Section 14.1 we introduce a
hardware model for continuous time in Section 14.2. In Section 14.3, we detail two
important Lemmata regarding asynchronous communication, i.e. a bounded clock drift

73

14 ABC VERIFICATION

bus

clks

R̂
clkr

analog
digitalS R

Figure 13: Serial Interface

e (i)

ts th

Ω
x

y

tpd

R

clk

ce

s

clkr

s

e (j)r

r
din r

r

ΩSs,

Figure 14: Clock Edges

and a correct sampling interval. In the remainder of this section we sketch the mes-
sage transmission correctness, detail the scheduling correctness [ABK08b] and com-
bine both into one correctness statement.

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r, s), then transmission is successful according to the message transmission cor-
rectness. The clock synchronization algorithm together with an appropriate choice of
the transmission interval will ensure exactly that.

14.1 Clocks
The hardware of each ECU is clocked by an oscillator having a nominal clock period
of τref . The individual clock period τu of an ECUu is allowed to deviate by at most
δ = 0.15% from τref , i.e. ∀u. | τu − τref | ≤ τref · δ. Note that this bound can be
easily achieved by current technology. Thus the relative deviation of two individual
clock periods compared to a third clock period is bounded by | τu − τv | ≤ τw · ∆
where ∆ = 2δ/(1− δ).

Given some clock-start offset cu < τu the date of the clock edge eu(i) that starts
cycle i on ECUu is defined by:

eu(i) = cu + i · τu

Thus cycle i of ECUu denotes the time interval (eu(i) : eu(i+ 1)]. Note that each τu
is assumed to be constant. We do not deal with jitter here.

In our scenario all ECUs are connected to a bus. The sending ECUs broadcasts data
which is sampled by all other ECUs. Due to clock drift it is not guaranteed that the
timing parameter, i.e. set-up time and hold time, of the sampling registers are obeyed.
This problem is tackled by a non-trivial message protocol as defined in Section 14.4.
To argue formally we first introduce a continuous time model for bits being broadcast.

14.2 Hardware Model with Continuous Time
The problems solved by serial interfaces can by their very nature not be treated in a
standard digital hardware model with a single digital clock clk . Nevertheless, we can
describe the ABC of each ECUu in such a model.

74

14 ABC VERIFICATION

In order to argue about the sender register abc.S of a sending ECU that is trans-
mitting data via the bus to a receiver register abc.R of a receiving ECU, as depicted in
Figure 13, we have to extend the digital model.

For the registers connected to the bus –and only for those– we extend the hard-
ware model such that we can deal with the concepts of propagation delay (tpd), set-up
time (ts), hold time (th), and metastability of registers from hardware data sheets. In
the extended model used near the bus we therefore consider time to be a real valued
variable t.

Next we define in the continuous time model the output of the sender register abcu.S
during cycle i of ECUu . The content of the sender register abcu.S at time t is denoted
by Su(t).

In the digital hardware model we denote the value of some register r during cycle i
by abciu.r which equals the value at the clock edge eu(i+ 1).

If in cycle i − 1 the digital clock enable Sce(abci−1
u) signal was off, we see dur-

ing the whole cycle the old digital value abci−1
u .S of the register. If the register was

clocked (Sce(abci−1
u) = 1) and the propagation delay tpd has passed, we see the new

digital value of the register, which is equal to the digital input Sdin(abci−1
u) during the

previous cycle. Otherwise we cannot predict what we see, which we denote by Ω:

Su(t) =


abci−1

u .S : Sce(abci−1
u) = 0 ∧ t ∈ (eu(i) : eu(i+ 1)]

Sdin(abci−1
u) : Sce(abci−1

u) = 1 ∧ t ∈ [eu(i) + tpd : eu(i+ 1)]
Ω : otherwise

The bus is an open collector bus modeled for all t by:

bus(t) =
∧
u

Su(t)

Now consider a receiver register abcu.R on ECUu whose clock enable is continu-
ously turned on; thus the register always samples from the bus. In order to define the
new digital value abcju.R of register R during cycle j on ECUu we have to consider
the value of the bus in the time interval (eu(j) − ts, eu(j) + th), i.e. from the clock
edge minus the set-up time until the clock edge plus the hold time. Only if the bus has
a constant digital value x ∈ {0, 1} during that time interval, the register can sample
this value, i.e. ∃x ∈ {0, 1}. ∀t ∈ (eu(j)− ts, eu(j) + th). bus(t) = x⇒ abcju.R = x.
Otherwise we do not know what is sampled and define abcju.R = Ω. Thus we have to
argue how to deal with unknown values Ω as input to digital hardware.

The output of register abcu.R is used only as input to a second register abcu.R̂
whose clock enable is always turned on, too. If Ω is clocked into abcu.R̂ we assume
that abcu.R̂ has an unknown but digital value, i.e. abcju.R = Ω⇒ abcj+1

u .R̂ ∈ {0, 1}.
In real systems the counterpart of register R̂ exists. The probability thatR becomes

metastable for an entire cycle and that this causes R̂ to become metastable too is for
practical purposes zero.

14.3 Continuous Time Lemmata for the Bus
Consider a pair of ECUs, where ECUs is the sender and ECUr is a receiver in a given
slot. Let i be a sender cycle such that Sce(abci−1

s) = 1, i.e. the output of S is not

75

14 ABC VERIFICATION

guaranteed to stay constant at time es(i). This change can only affect the value of
register R of ECUr in cycle j if it occurs before the sampling edge er(j) plus the
hold time th, i.e. es(i) < er(j) + th. The first cycle that is possibly being affected is
denoted by:

cyr,s(i) = min{j | es(i) < er(j) + th}

The receiver puts, by construction, the value 1 on the bus and keeps its Sce sig-
nal off (hence bus(t) = Ss(t) for all t under consideration). Therefore we drop the
indices r and s and simply write cy(i) instead of cyr,s(i).

We will show that despite clock drift, the receiver misses at most one of the 8
broadcast copies of a frame bit. Figure 14 depicts a situation in which one bit is missed
because the sender signal is not propagated, yet. If the two intervals [es(i), es(i)+ tpd]
and [er(j)−ts, er(j)+th] intersect, then the receiver samples some undefined signal Ω.

The potential miss in cycle i is modeled by the sampling drift σr,s(i) which is
defined by:

σr,s(i) =

{
0 : er(cy(i)) ≥ es(i) + tpd+ ts

1 : otherwise

Analogous to cy(i) we write σ(i) if sender and receiver are obvious from the context.
There are two essential lemmata whose proofs base on the continuous time model.

The first lemma considers a situation, where the clock enable Sce of the sender ECU
is activated in cycle i− 1 but not in the following seven cycles. In the digital model we
then have abcis.S = . . . = abci+7

s .S and in the continuous time model we observe x =
bus(t) = Ss(t) = abcis.S for all t ∈ [es(i) + tpd : es(i + 8)]. Then x is correctly
sampled in seven consecutive cycles.

Lemma 4 (Correct Sampling Interval) Let the clock enable signal of the sender reg-
ister S be turned on in cycle i − 1, i.e. Sce(abci−1

s) = 1. Furthermore, let the same
signal be turned off in the next seven cycles, i.e. Sce(abcjs) = 0 for j ∈ {i, . . . , i+ 6},
then:

abccy(i)+σ(i)+k
r .R = abcis.S for k ∈ {0, . . . , 6}

The second lemma simply bounds the clock drift. It essentially states that within
300 cycles clocks cannot drift by more than one cycle; this is shown using δ ≤ 0.15%.

Lemma 5 (Bounded Clock Drift) Given a cycle m ∈ {1, . . . , 300} it holds that:

cy(i) +m− 1 ≤ cy(i+m) ≤ cy(i) +m+ 1

Detailed proofs of similar lemmata can be found in [BBG+05, KP07b], formal proofs
are reported in [Sch06] as well as in the master thesis of Peter Böhm [Böh07] which
we have supervised.

14.4 Message Broadcast Correctness
According to Lemma 4, for each bit of the frame that is replicated 8 times, a sequence
of seven bits is sampled correctly. If the receiver succeeds to sample that sequence

76

14 ABC VERIFICATION

roughly in the middle, he wins. For this purpose the receiver uses the modulo-8 counter
abc.cnt that is trying to keep track of which of the eight identical copies of a frame bit
is currently being transmitted. When the counter value equals four a strobe signal is
raised. For frame decoding the bus is sampled with the strobe signal. The automaton
trying to keep track of the protocol is also clocked with this strobe signal.

Clocks are drifting, hence the hardware has to perform a low level synchronization.
The counter abc.cnt is reset by a sync signal in two situations: At the beginning of a
transmission or at an expected falling edge during the byte start sequence. Let v denote
the bit sampled from the bus. Abbreviating signals s(abcir) with si we write:

synci = (idlei ∨ BS0 i) ∧ (¬vi ∧ vi−1)

We do not go into further details here. The interested reader may consult [KP07b].
The crucial part of the message transmission correctness is a lemma which argues

about three statements using induction on the receiver cycles:

Lemma 6 (Single Message Reception)

1. the state of the automaton keeps track of the transmitted frame bit.

2. the sync signal is activated at the corresponding falling edges of the sampled bit
between BS0 and BS1 .

3. sequences of identical bits are sampled roughly in the middle.

We sketch the proof: Statement 1 is clearly true in the idle state. From statement 1
follows that the automaton expects the falling edges of the sampled signal exactly when
the sender generates them. Thus the counter is well synchronized after these falling
edges. This shows statement 2. Immediately after synchronization the receiver sam-
ples roughly in the middle. There is a synchronization about every 80 sender cycles
due to the message encoding (at the edge between BS0 and BS1). By Lemma 5 and
because 80 < 300, the sampling point can wander by at most two bits between acti-
vations of the sync signal. This is good enough to stay within the correctly sampled
seven copies. This shows statement 3. If transmitted frame bits are correctly sampled,
then the automaton keeps track of them. This shows statement 1.

Note that the 8-bit replication for each encoded message bit is prescribed by the
FlexRay standard. We do not consider any transmission errors therefore less replication
would actually be needed in our case. Due to drifting clocks and metastability the
reception could be off by 2 bits. Thus a 5 bit replication, i.e. 2 bits in each direction,
would suffice to prove the theorem.

Next we state the correctness of the broadcasting mechanism of a single message.

Theorem 7 (Message Broadcast Correctness) Let the broadcast message be started
in the sender-cycle i. The value of the device visible send buffer of the current sender is
copied to all device visible receive buffers within the transmission interval of tc sender
cycles, where tc = 41 + 80 ·ml :

abccy(i+tc)u .rbd = abcisend(s).sbd

77

14 ABC VERIFICATION

ECU

ECU

0

u

p
0
cp
max

p
u

I
maxsetrd

0

time

awaiting sync
setrdu

init iwait message broad.

init

Figure 15: Startup

time

te(r,s)ts(r,s)
ECU

ECU

ECU

send(s)

u

v
α (r,s)
v α ((r,s)+1)v

Figure 16: Schedule Correctness

The proof of this theorem is based on Lemma 6. We obtain the number of transmis-
sion cycles as follows: the replicated frame length ml is given by 32 + 80 ·ml cycles.
Note that protocol bits are inserted and that we are using a eight-bit replication (as de-
scribed in Section 13.2). The additional 9 hardware cycles result from local sender and
receiver delays.

14.5 Startup

We assume w.l.o.g. that the ECU with number 0 is the master, i.e. send(0) = 0. Let
pu be the point in time when ECUu is switched on (see Figure 15). We assume that
at most cpmax hardware cycles have passed on the master ECU, since it was switched
on, until all other ECUS are also switched on, i.e. ∀u. | pu − p0 | ≤ cpmax · τ0.

After initialization, all hosts invoke a setrd command. Recall that this initialization
phase is needed to set the configuration registers of the ABC. Once the setrd command
was invoked, the master ECU waits iwait hardware cycles before it starts executing the
schedule.

We assume that there exists a point in time denoted by Imax at which all slaves
have invoked the setrd command and await the first incoming message, however the
master has not started the transmission, yet. This assumption can be easily discharged
by deriving an upper bound for the duration of the initialization phase, say imax hard-
ware cycles in terms of the master ECU, and choosing iwait to be cpmax + imax. The
upper bound can be obtained by industrial worst case execution time (WCET) analyz-
ers [FMWA99] for the concrete processor and software.

14.6 Scheduling Correctness

We introduce some notation first. The start times of slot (r, s) on an ECUu is denoted
by αu(r, s). Initially, for all uwe define αu(0, 0) = Imax. To define the slot start times
greater than slot (0, 0) we need a predicate schedexec that indicates if the schedule
automaton is in one of three executing states, i.e. schedexec(abciu) = abciu.state ∈
{offwait ,Twait , startbroad}. Let i be the smallest cycle such that eu(i) is greater
than αu((r, s)− 1) and the schedule is executed, the cycle counter has the value 0 and
the slot counter the value s:

schedexec(abciu) ∧ abciu.cy = 0 ∧ abciu.csn = s

78

14 ABC VERIFICATION

Moreover let j be the smallest cycle such that eu(j) is greater than αu((r, s)− 1) and
abcju.state = rcvwait:

αu(r, s) =
{
eu(i) u = 0 ∨ s > 0
eu(j) otherwise

Similarly to the slot start times we define the slot end-times ωu(r, s) of the slot (r, s)
to be ωu(r, s) = αu((r, s) + 1)− τu.

Using the definition of a clock edge we obtain the hardware cycle corresponding to
αu(r, s). It is denoted by αtu(r, s). The hardware-cycle corresponding to ωu(r, s) is
denoted by ωtu(r, s) = αtu((r, s) + 1)− 1.

The local timers are synchronized each round. This point in time when the syn-
chronization is performed in round r is called the synchronization end time of r. On
ECUu it is denoted by βu(r). It is the smallest time point eu(i) such that the schedule
is executed, the cycle counter has the value off and the slot counter the value 0, i.e.
schedexeciu ∧ cycleiu = off ∧ slotiu = 0.

A gate-level timing analysis of the synchronization process in the complete hard-
ware design shows that:

Lemma 7 (Synchronization Times Relation) For all u and y the synchronization of
ECUu to the master is completed within the adjustment time of ad = 10 hardware
cycles:

β0(r) = α0(r, 0) + off · τ0
βu(r) < β0(r) + ad · τy

The proof of this lemma is split in two parts. First we need to calculate the time it takes
after the startsnd signal was raised until the sender puts the first bit of a transmission
on the bus. In the implementation this takes 2 cycles.

Second we need to bound the delay on the receiver side until the startedrcv signal
is raised after an incoming transmission plus an additional cycle to update the counters
and the schedule control automaton. This bound is 7 cycles in the implementation. All
in all this sums up to 9 cycles which is strictly smaller than 10.

Next we relate the start times of slots on the same ECU.

Lemma 8 (Slot Start Times Relation) The start of slot (r, s) on the master ECU de-
pends only on the progress of the local counter, i.e. α0(r, s) = α0((r, s)− 1) + T · τ0.
The start of slot (r, s) on all other ECUs is given by:

αu(r, s) =

{
βu(r) + (T − off) · τu s = 1
αu((r, s)− 1) + T · τu s 6= 1

Proof by induction on r and s. For s > 1 no synchronization takes place and the start
of new slots is only determined by the progress of the local timer.

Lemma 9 (Difference between Slot Starts) Let off = (ad + dns · T ·∆e). The dif-
ference between the slot starts of the same slot on different ECUs is bounded by off :

αu(r, s)− αv(r, s) < τw · off

79

14 ABC VERIFICATION

We have off = ad + drift with an adjustment time of ad = 10 and a maximal round
drift of drift = dns · T ·∆e cycles:

αu(r, s)− αv(r, s) < ad · τw + (s · T) · (τu − τv) (Lemma 7 + Lemma 8)
≤ ad · τw + dns · T ·∆e · τw) (round drift + Def. ∆)
= τw · (ad+ dns · T ·∆e)
= τw · off

The transmission is started in slot (r, s) by ECUsend(s) when the local cycle count
equals off . Thus the transmission start time is given by:

ts(r, s) = αsend(s)(r, s) + off · τsend(s)

According to Theorem 7 the transmission is finished within tc hardware cycles of the
sending ECU:

te(r, s) = ts(r, s) + tc · τsend(s) = αsend(s)(r, s) + (off + tc) · τsend(s)

The schedule is correct if the transmission interval [ts(r, s), te(r, s)] is contained in
the time interval, when all ECUs are in slot (r, s), as depicted in Figure 16 on Page 78.

Theorem 8 (Schedule Correctness) All ECUs must be in slot (r, s) before the trans-
mission starts. Furthermore, the transmission must be finished before any ECU thinks
it is in the next slot:

αu(r, s) < ts(r, s)
te(r, s) < αu((r, s) + 1)

We prove the first statement:

αu(r, s) < αx(r, s) + τx · off (Lemma 9 for some x)
= ts(r, s) (for x = send(s))

To prove the second statement we case split on the current slot. For s > 0:

te(r, s) = αsend(s)(r, s) + (T − off) · τsend(s) (T = 2 · off + tc)
= αsend(s)((r, s) + 1)− off · τsend(s) (Lemma 8 for s > 0)
< αu((r, s) + 1) (Lemma 9)

For s = 0 (the master is sending):

te(r, 0) = αsend(0)(r, 0) + (T − off) · τsend(0) (T = 2 · off + tc)
= αsend(0)(r, 1)− off · τsend(0) (Lemma 8 for the master)
< αu(r, 1) (Lemma 9)

Now the transmission correctness can be stated in the purely digital hardware model:

Theorem 9 (Transmission Correctness) Consider slot (r, s). The value of the device
visible send buffer of the sending ECU at the start of slot (r, s) is copied to all device
visible receive buffers of all ECUu by the end of the slot:

abcωtu(r,s)
u .rbd = abcαtsend(s)(r,s)

send(s) .sbd

80

15 DISTRIBUTED IMPLEMENTATION (DIMPL)

To prove this theorem we have to combined Theorem 7 and Theorem 8. According
to Theorem 7 the actual broadcast is correctly performed if the transmission interval
[ts(r, s), te(r, s)] is big enough. The latter is proven by Theorem 8.

A formalization of the low-level bit-transmission correctness is described in [Sch06]
based on [Pau05]. The formalized theorem does not argue about the broadcast of a mes-
sage from a send buffer to a receive buffer but only about some intermediate registers
involved in the transmission.

Formal proofs regarding the scheduling correctness have been reported in [Böh07,
ABK08b]. In the formal Isabelle/HOL proofs an inductive invariant has been shown
for all slots s. The arguments from [KP07b] have been extended to fit the new schedule
environment implementation described in Section 13.4.

The startup mechanism described in Section 14.5 is novel. It has not been integrated
into any formal Isabelle/HOL proofs, yet.

14.7 Extensions Towards Fault-Tolerance
In [ABK08a] we have shown how to extend the ABC implementation to become fault-
tolerant. This requires an enhancement of the scheduling automaton, the message en-
coding, and the start-up as well as the normal scheduling algorithm. Furthermore, we
have added a possibility for reintegration of faulty ABCs into the regular schedule.

Instead of relying on a distinguished master doing the synchronization, at the begin-
ning of each round, every ABC listens on the bus for a specific time. If no transmission
is detected by that time, the ABC declares itself as the master and starts broadcasting.
The time span must be long enough to ensure that all previous ABCs (according to the
schedule) had the possibility to start a transmission themselves. After synchronization
and until the end of the current round the schedule of all ABCs is insensitive to bus
activity and therefore also to failing ABCs.

For details regard fault-tolerance the interested reader may consult [ABK08a]. This
paper is meant to be a proof of concept rather than a sequel in our pervasive verification
approach. In the remainder of this thesis we will stick to the non-fault-tolerant case.

15 Distributed Implementation (DIMPL)
In this section we argue about the implementation configuration of the complete dis-
tributed system which we denote by dimpl . It consists of a mapping dimpl .lm from
ECU numbers to local implementation configurations. For a given ECU number en the
mapping returns the corresponding local implementation configuration impl that has
been defined in Section 6.4:

dimpl .lm(en) = (impl .p, impl .d)

Note that each local device configuration impl .d is an ABC implementation configu-
ration abc as defined in the previous sections.

We denote the first implementation configuration in slot (r, s) by dimpl(r, s). To
define the latter we need to know the number of hardware cycles in slot (r, s) which

81

15 DISTRIBUTED IMPLEMENTATION (DIMPL)

we denote by ntu(r, s). This number is:

ntu(r, s) = αtu((r, s) + 1)− αtu(r, s)

Given some initial configuration dimpl0, the first configuration of the next slot
dimpl((r, s) + 1) is defined by applying the implementation transition function δimpl

from Section 6.4 to each local implementation configuration as often as there are hard-
ware cycles in slot (r, s), i.e. ntu(r, s) many times.

Note that the local transition function δimpl takes external input. As the ABCs are
connected by a bus, this external input is given by the value of the bus at the respective
hardware cycle (see Section 14.2).

15.1 DIMPL Properties
Next, we state some properties of the combined processor and ABC implementation:

Lemma 10 (Current Slot Number Incrementation) In the first configuration of each
slot (r, s) the current slot number off each ECUu is incremented modulo the number
of slots in one round (compare Section 11 and 13):

dimpl(0, 0).lm(u).d.csn = 0
dimpl((r, s) + 1).lm(u).d.csn = s+ 1

Lemma 11 (Interrupt Generation) In the first configuration of each slot (r, s) an in-
terrupt is generated on all ECUu:

dimpl(r, s).lm(u).d.int = 1

Both lemmata are proven by an analysis of the scheduling automaton from Section 13.4
using the slot start times relation (Lemma 8). The interrupt is cleared by software via a
write to the command port of the device as sketched in Section 6.4.

Lemma 12 (Message Broadcast) The content of the send buffer of the current sender
is correctly broadcast to the receive buffer of all ECUs and becomes visible to the
processor at the start of the next slot:

dimpl((r, s) + 1).lm(u).d.rbp = dimpl(r, s).lm(send(s)).d.sbd

Note that the parity of the ABC configuration does not change during the slot. Using
Theorem 9 we conclude that the message is correctly broadcast until the end of the slot.
At the slot boundaries the current slot number is incremented resulting in a flip of the
parity (as defined in Section 13.5). Thus the broadcast message becomes visible to the
processors.

During a slot our ABC implementation is stable according to the definition in Sec-
tion 6.4:

Lemma 13 (Stable ABC Implementation) The ABC implementation is stable during
a slot but not at the slot boundaries:

∀r, s. ∀t ∈ [αt(r, s) : αt((r, s) + 1)− 1]. stable(impl t)

82

16 DISTRIBUTED FRAMEWORK (DISTR)

This lemma is proven by induction over all slots (r, s) and all hardware cycles t
using the fact that the ABC implementation updates the processor visible buffers based
on the double buffering mechanism as described in Section 13.5.

16 Distributed Framework (DISTR)
In this section we develop a distributed framework (DISTR) which defines the commu-
nication behavior between the ECUs. Thus it represents a specification of the commu-
nication mechanism provided by the ABCs.

Note that the DISTR framework is parameterized by a local model such that it can
be used throughout an existing model stack for a single ECU to obtain the correspond-
ing distributed models. The use of DISTR will greatly simplify the argumentation
regarding the distributed models as huge parts of the framework are literally the same
for each instantiation.

In the remainder of this thesis the DISTR framework is instantiated with each layer
of the (local) model stack that has been developed in Part I.

16.1 DISTR Configuration
To define the DISTR configuration we first introduce a parameterized local state ls .
Such a local state ls is a tuple consisting of the parameterized model itself and a sta-
ble ABC specification configuration from Section 11. We refer to the parameterized
model with ls.p for ‘processor’ and to the ABC specification configuration with ls.d
for ‘device’.

A DISTR configuration distr is parameterized by a local model. It consists of:

• a mapping distr .lm from ECU numbers to local states. For a given ECU num-
ber en the mapping returns the corresponding local state ls:

distr .lm(en) = (ls.p, ls.d)

• the message that has been broadcast in the previous slot, denoted by distr .oldm .

• the message to be broadcast in the current slot, denoted by distr .newm .

• the current slot number, denoted by distr .csn .

• the current round number, denoted by distr .crn .

16.2 DISTR Transition Function
The DISTR transition function δdistr specifies the execution of all ECUs for a complete
slot. It is split in three phases:

(1) in the global receive phase δdr the receive buffers of all ECUs are updated with the
message that has been broadcast in the previous slot,

83

16 DISTRIBUTED FRAMEWORK (DISTR)

slot

global
receive

abstract time

global
send

global
compute

1 2 3

α

bus

α

sb rbsb rb

ECUs

1 1

2

3

2

Figure 17: DISTR: Slot Partitioning and Data-Flow

(2) in the global compute phase δdc all ECUs do a computation for one complete slot,

(3) in the global send phase δds the current sender broadcasts a message, the current
slot numbers are incremented and interrupts are generated.

Figure 17 illustrates the slot partitioning as well as the data-flow within the phases.
Note that we use the indices (1), (2) and (3) throughout the rest of this thesis to refer to
the corresponding global DISTR phases.

The transition function of the distributed framework δdistr applies first δdr , then δdc
and finally δds on a given configuration:

δdistr (distr) = δds(δdc(δdr (distr)))

Next we define the transition function of each phase. For a better reading ECU numbers
like en are not quantified explicitly.

16.2.1 Global DISTR Receive Phase (1)

The transition function δdr of the global receive phase updates the receive buffer of all
ECUs with the message that has been broadcast in the previous slot:

distr ′.lm(en).d.rb = distr .oldm

16.2.2 Global DISTR Compute Phase (2)

In the global compute phase the ECUs are executed for the whole slot. The semantics
of this so-called slot-step must be specified for each instantiation of the framework
specifically. Thus for each instantiation, we have to define a function δlcomp doing a
slot-step, i.e. ls ′ = δlcomp(ls). The transition function δdc of the global compute phase
simply applies δlcomp to all ECUs:

distr ′.lm(en) = δlcomp(distr .lm(en))

Note that δlcomp requires stable devices as introduced in Part I.

16.2.3 Global DISTR Send Phase (3)

We require the local bus schedules be valid, i.e. for each slot number s there exists a
unique sender:

∃!en. distr .lm(en).d.ft(s) = 1

84

17 DISTRIBUTED HARDWARE (DH)

sb

slot time

oldm

newm

oldm oldm

newm

oldm

rb sb rb

oldm

sn sn+1 sn+2

Figure 18: Communication Delay in DISTR

The ECU number of the sender in slot s is denoted by send(s) as introduced in Sec-
tion 13.5.

The transition function δds of the global send phase increments the current slot
number and the current round number. Furthermore, an interrupt is raised, the sender
in the next slot broadcasts the message stored in its send buffer, and the broadcast of
the message in the current slot is modeled by updating the old-message component:

(distr ′.crn, distr ′.csn) = (distr .crn, distr .csn) + 1
distr ′.lm(en).d.int = 1

distr ′.newm = distr .lm(send(distr .csn + 1)).d.sb
distr ′.oldm = distr .newm

Note that the interrupt flag of the ABC is cleared by software during the global
compute phase. This flag is needed in the upper layers to specify the start of local
computations.

Furthermore, note that the inter-ECU communication is delayed by one slot as done
(see Figure 18). At the end of the global send phase in slot sn the message is taken
from the send-buffer of the sender, it is broadcast in slot sn + 1 and can be accessed
after the global receive phase in slot sn+ 2 by all other ECUs. The actual broadcast is
modeled by the update of the old-message component.

16.2.4 DISTR Notation

The first DISTR configuration in slot (r, s) is denoted by distr(r, s). Given some initial
DISTR configuration distr0 it is defined by:

distr(0, 0) = distr0

distr((r, s) + 1) = δdistr (distr(r, s))

Formalization. Note that we have formalized DISTR in the theorem prover Isabelle/-
HOL resulting in about 1000 lines of code.

17 Distributed Hardware (DH)
To simplify the argumentation, we separate the correctness of the ABC implementation
from the correctness of the processor implementation.

85

17 DISTRIBUTED HARDWARE (DH)

α(r,s)-1

ABC impl. (processor visible)

processor implementation

ABC impl. (processor visible)

processor implementation

α(r,s) α(r,s)+1

α(r,s)-1

stable ABC spec.

processor implementation

stable ABC spec.

processor implementation

α(r,s) α(r,s)+1

no communication
(stable)

no communication
(stable)

communication via bus communication via bus

abstracted
communication

DH

DIMPL

ABC impl. (bus visible)ABC impl. (bus visible)

Figure 19: Abstraction of ABC from DIMPL to DH

In this section, we introduce a distributed hardware (DH) model. We argue about
the correctness of the ABC implementation with respect to that model. The correctness
of the processor implementation is dealt with later on in Section 18.

As the main result of this section we will establish a simulation theorem between
DIMPL and DH.

In DIMPL the communication and the computation are performed in parallel (com-
pare Figure 19). The processor only sees a subset of the ABC implementation through
the I/O ports. This subset is changed from time to time due to the double buffering
mechanism in the ABC implementation. Thus, in general the I/O ports in the imple-
mentation are not stable.

The DH model represents the processors point of view on the system. In DH the
ABC is abstracted. We do only argue about the processor visible subset of the ABC.
Communication and computation are serialized and clearly separated into three phases.
The inter-ECU communication is performed at the start and at the end of the slot ab-
stracting from the behavior of the implementation. During the slot, the processor can
access a stable ABC specification configuration as defined in Section 11. Note that the
stability is explicitly coded in the transition function.

This is possible due to the fact that the processor visible state of the ABC is altered
at slot boundaries only. During the slot the processor visible state of the ABC is only
changed by the processor itself.

Once this simulation theorem is established we can use the stable local models
introduced in Part I to argue about the local computation on each ECU.

86

17 DISTRIBUTED HARDWARE (DH)

17.1 DH Configuration
We obtain a DH configuration dh by instantiating the DISTR configuration with a hard-
ware configuration h from Section 5.1. Thus for each ECU number en the local map-
ping dh.lm returns the corresponding hardware configuration hd with an integrated
stable ABC specification:

dh.lm(en) = hd

17.2 DH Transition Function
The transition function executing the distributed hardware for a complete slot is de-
noted by δdh . It is obtained using the definition of δdistr . The only function that is
left undefined is the local slot-step function δlcomp , compare Section 16. To define
the latter, we use the hardware transition function δhd from Section 6.5. Note that this
function defines a transition using the stable device semantics.

Recall that the number of hardware cycles in slot (r, s) is given by nt(r, s). The
transition function δhd is applied nt(r, s) many times on each configuration hd :

δlcomp(hd) = δ
nt(r,s)
hd (hd)

Given some initial DH configuration dh0 we denote the first DH configuration in
slot (r, s) by dh(r, s). It is defined by:

dh(0, 0) = dh0

dh((r, s) + 1) = δdh(dh(r, s))

Note that δdh first applies δdr , then δdc and finally δds where δdc is defined in a model
specific way (using δlcomp as defined above).

17.3 DIMPL Correctness
Next we prove the correctness of the implementation with respect to the DH model.
The simulation relation dhsim(s, dimpl , dh) between some slot number s , some DIMPL
configuration dimpl , and some DH configuration dh states that:

1. the processor configurations are the same:

dimpl .lm(u).p = dh.lm(u).p

2. the new-bus component contains the message to be broadcast, i.e. the message
stored in the device visible send buffer of the sender implementation:

dimpl .lm(send(s)).d.sbd = dh.newm

3. the old bus component contains the message that has been broadcast in the pre-
vious slot and that is being stored in the processor visible receive buffer of all
implementations:

dimpl .lm(u).d.rbp = dh.oldm

87

17 DISTRIBUTED HARDWARE (DH)

4. the current slot numbers of all implementations are equal to the current slot num-
ber in DH which itself is equal to s:

dimpl .lm(u).d.csn = dh.csn = s

5. the interrupt flags are equal:

dimpl .lm(u).d.int = dh.lm(u).d.int

6. the local scheduling functions are equal:

dimpl .lm(u).d.ft = dh.lm(u).d.ft

We require that the processor accesses the send buffer only by store word operations
and the receive buffer only by load word operations. In addition, we require, that the
sender always updates the complete send buffer. Thus the message to be broadcast is
well defined.

Furthermore, we require that the device is not accessed in the last cycle of each slot.
Note that this assumption cannot be justified at this level since we do not deal with any
concrete code here. Instead we will propagate the requirements up in the model stack
resulting in concrete requirements for the code to be run in the system.

Theorem 10 (DIMPL Correctness) Let the simulation relation between DIMPL and
DH hold initially, i.e. dhsim(0, dimpl(0, 0), dh(0, 0)). Furthermore, let an interrupt
be generated on all ECUs in both models initially. Then, the simulation relation holds
for all slots (r, s):

dhsim(s, dimpl(r, s), dh(r, s))

The theorem is proven by induction over all slots (r, s). We argue along the global DH
phases.

In the global receive phase (1) only the content of the receive buffer is changed. It
is updated with the message that has been broadcast in the previous slot:

dimpl(r, s).lm(u).d.rbp = dh(r, s).oldm (Ind. Hyp.)
= (δdr (dh(r, s))).lm(u).d.rb (Def. δdr)

Note that the processor configuration is not altered in the global receive phase.
In the global compute phase (2) the DH configuration is executed for nt(r, s) hard-

ware cycles, so is the DIMPL configuration. Note that during this computation all
ABC implementations dimpl(r, s).lm(u).d are stable according to Lemma 13. Thus,
according to Lemma 1, we can use the semantics for stable devices to argue about both
DH and DIMPL for all the nt(r, s) cycles.

The following argumentation holds inductively for all nt(r, s) cycles: The proces-
sor configurations in both models are still equal after the execution of read operations
since only the receive buffers are accessed (according to the assumptions for read op-
erations) which are equal as shown above. The processor configurations remain equal

88

17 DISTRIBUTED HARDWARE (DH)

after the execution of a write operation. As the processor configurations are equal the
processor sending in the next slot updates its send buffer in the same way.

We summarize this fact as follows: The ABC implementation and the ABC speci-
fication get the same inputs and thus produces the same outputs. We conclude:

dimpl((r, s) + 1).lm(u).p = (δdc(δdr (dh(r, s)))).lm(u).p

At slot boundaries the current slot number is incremented and thus the parity flips.
According to the assumptions, the device is not being accessed in this cycle, thus we
can conclude that the send buffers to be broadcast in the next slot are the same after
phase (2):

dimpl((r, s)+1).lm(send(s+1)).d.sbd = (δdc(δdr (dh(r, s)))).lm(send(s+1)).d.sb

Hence statement 1 of the simulation relation holds in slot (r, s)+1 as the processor
part is not altered in the global send-phase:

dimpl((r, s) + 1).lm(u).p = dh((r, s) + 1).lm(u).p (Def. δds)

Furthermore, after the execution of phase (3) statement 2 holds in slot (r, s) + 1:

dimpl((r, s) + 1).lm(send(s+ 1)).d.sbd = dh((r, s) + 1).newm (Def. δds)

According to Lemma 12 the send buffer is correctly broadcast in the implementa-
tion. Thus, the message stored in the receive buffers equals the message stored in the
send buffer of the sender which, according to statement 2, equals the content of the
new-bus component in the DH configuration. Hence, after the execution of the global
send-phase (3) the old-bus component contains the message that has been broadcast in
the current slot, i.e. the new-bus component:

dimpl((r, s) + 1).lm(u).d.rbp = dimpl(r, s).lm(send(s)).d.sbd (Lemma 12)
= dh(r, s).newm (Ind. Hyp.)
= dh((r, s) + 1).oldm (Def. δds)

Thus statement 3 holds in slot (r, s) + 1.
The current slot number is incremented in the implementation configuration ac-

cording to Lemma 10 and in the DH model according to the definition of δds :

dimpl((r, s) + 1).lm(u).d.csn = dh((r, s) + 1).csn (Lemma 10 and Def. δds)

Thus statement 4 holds in slot (r, s) + 1.
The interrupt flag is set in the implementation according to Lemma 11 and in the

DH model according to the definition of δds :

dimpl((r, s)+1).lm(u).d.int = dh((r, s)+1).lm(u).d.int (Lemma 11 and Def. δds)

Thus statement 5 holds in slot (r, s) + 1.
Statement 6 is invariant after initialization, as the configuration registers are not

allowed to be written at all.

89

18 DISTRIBUTED ISA (DISA)

Formalization. Note that we have worked on an initial version of the simulation
relation dhsim in the theorem prover Isabelle/HOL resulting in about 1500 lines of
code.

18 Distributed ISA (DISA)
In the DH model each ECU is executed from one slot boundary to the next. At these
boundaries the ABCs generate interrupts that indicate the start of a slot to the processor.

Note that the DH model defines the behavior of the ABCs strictly from the point of
view of the devices themselves, i.e. the start of the slot directly corresponds to the point
in time when the interrupt is generated by a device. However, we aim at proving the
correctness of the software running on the processors where the interrupt sampling is
possibly delayed. To bridge this gap we introduce the distributed ISA (DISA) model.

To argue about the DISA model we need to go into details regarding the interrupt
sampling as well as the worst case execution time (WCET) of programs to be run on
the processor.

18.1 DISA Configuration
The DISA configuration disa is obtained by instantiating the distributed framework
from Section 16.1 with an ISA configuration from Section 4. Thus for each ECU
number en the local mapping disa.lm returns the corresponding ISA configuration
isad with an integrated ABC:

disa.lm(en) = isad

18.2 DISA Transition Function
We consider only programs of the form:

{0 : P ; a : jump a; a+ 4 : noop}

The program does the useful work in portion P and then waits in an idle loop for a
timer interrupt. The idle loop starts at address a. Note that we have a byte addressable
memory and that in an ISA with delayed branch the idle loop has two instructions.

P initially has to clear and then to unmask the timer interrupt, which is masked
when P is started (see Section 4.5).

The transition function executing a DISA configuration for a complete slot is de-
noted by δdisa . It is obtained using the definition of δdistr . The only function left
undefined is δlcomp .

Using the δisad semantics we execute the local ISA configurations until an instruc-
tion is fetched from address a, i.e. until the idle loop is entered. The runtime of such a
computation is defined by:

Tisa(isad) = min{t | δtisad(isad).p.dpc = a}

90

18 DISTRIBUTED ISA (DISA)

The result of this computation is:

res isa(isad) = δ
Tisa(isad)+1
isad (isad)

Thus δlcomp is set to the result of the computation:

δlcomp(isad) = res isa(isad)

Given some initial DISA configuration disa0 we denote the first DISA configuration
in slot (r, s) by disa(r, s). It is defined by:

disa(0, 0) = disa0

disa((r, s) + 1) = δdisa(disa(r, s))

18.3 DISA Correctness
The simulation relation disasim(dh, disa) between some DH and some DISA config-
uration states that:

1. the local simulation relation isadsim from Section 6.7 holds for all local models:

isadsim(dh.lm(u), disa.lm(u))

2. the old-bus component, the new-bus component, and the current slot- and round
number are equal:

dh.oldm = disa.oldm
dh.newm = disa.newm

dh.csn = disa.csn
dh.crn = disa.crn

Furthermore, we obtain a weakened (local) simulation relation isadsim ′(hd , isad)
based on the simulation relation isadsim(hd , isad) by dropping the requirement that
the PC and the delayed PC match. We denote the weakened global simulation relation
that is defined using isadsim ′(hd , isad) by disasim ′(dh, disa).

We require that the processor accesses the send buffer only by store word operations
and the receive buffer only by load word operations. In addition, the sender always
updates the complete send buffer.

Furthermore, we require that the ISA computation terminates, i.e. that the bound
for the ISA runtime Tisa(isad) exists.

Theorem 11 (Distributed Processor Correctness) Let the simulation relation between
DH and DISA hold initially, i.e. disasim(dh(0, 0), disa(0, 0)). Furthermore, let the
idle loop be executed and let an interrupt be generated on all ECUs in dh(0, 0) and
disa(0, 0) respectively. Then the weakened simulation relation holds for all slots (r, s):

disasim ′(dh(r, s), disa(r, s))

91

18 DISTRIBUTED ISA (DISA)

The proof is done by induction on the slot (r, s). It is split along the global phases.
The argumentation in the global receive and in the global send phase is straight

forward due to the definition of the DISTR framework. However, to argue about the
global compute phase we need to go into details.

In the global receive phase we apply the same function to both configurations. Only
the device configuration is changed, thus the simulation relation still holds:

disasim ′(δdr (dh(r, s)), δdr (disa(r, s)))

The argumentation in global compute phase is purely local. We abbreviate the local
configurations at the start of the global compute phase by:

hdu(r, s) = δdr (dh(r, s)).lm(u)
isadu(r, s) = δdr (disa(r, s)).lm(u)

Furthermore, we abbreviate the local configurations at the end of the global compute
phase by:

hd ′u(r, s) = δdc(δdr (dh(r, s))).lm(u)
isad ′u(r, s) = δdc(δdr (disa(r, s))).lm(u)

Since the arguments are the same for each ECU we drop the index and simply write
hd(r, s), hd ′(r, s), isad(r, s), and isad ′(r, s).

Before going into further details we first sketch the main idea behind the rest of the
proof. We will argue that the following invariant holds: In both, the hardware and the
ISA configuration, the idle loop is executed and the interrupt flag is raised in the first
configuration of each slot. As the processor configuration and the interrupt flag are not
altered during the global receive phase, the invariant holds for the start of the global
compute phase, too.

Due to the fact, that the idle loop is being executed (only the PC and the delayed PC
are altered), the weakened simulation relation holds until the interrupt is being sampled.
Then, the pipeline is drained and the PC and the delayed PC are forced to 0 and 4 in
both configurations. Thus the stronger simulation relation holds and we can instantiate
the processor correctness (Theorem 2) for each step until the idle loop is entered again.
We require that the code being executed does indeed enter the idle loop before the start
of the next slot. Once being in idle loop again, only the PC and the delayed PC are
altered and the weakened simulation relation holds until the end of the slot.

18.3.1 DISA Interrupt Sampling

Slot boundaries are indicated to the processor by means of interrupts. As we have
already argued in Section 5.5, interrupts are sampled in the write-back stage of the
processor implementation in case of non-memory operations. Furthermore, interrupts
are not sampled each hardware cycle but only if the write-back state is full .

Therefore, the point in time when the device generates an interrupt might differ
from the point in time, when the processor actually samples the interrupt. The time
that elapses in between depends on the content of the processor pipeline.

92

18 DISTRIBUTED ISA (DISA)

To argue about this time period we have to assume some kind of liveness for the
processor. For a given hardware configuration hd there exists the smallest number of
hardware cycles o, called liveness offset, such that after o hardware cycles the next
instruction is written back:

o(hd) = min{t |WB(δthd(hd).p)}
We assume that the liveness offset o is bounded by some constant C:

o(hd) < C

The slot start from the point of view of the processor is denoted by αp(r, s). Using
the liveness offset it is defined by:

αp(r, s) = αt(r, s) + o(hd(r, s))

We consider the computation starting at the configuration hd(r, s) and ending at
configuration hd ′(r, s), i.e. we argue about the cycles t where:

αt(r, s) ≤ t < αt((r, s) + 1)

We already know that there are at least T − off hardware cycles between two
consecutive slot starts from the point of view of the device (see Section 14.6):

αt((r, s) + 1)− αt(r, s) > T − off

Thus we conclude that there exist at least T − off − C hardware cycles between the
point in time when the interrupt is sampled by the processor and the point in time the
next interrupt is generated by the device:

αt((r, s) + 1)− αp(r, s) > T − off − C
Note that the liveness offset must be much smaller than T − off hardware cycles.
Otherwise there is no time to do any useful computation in a slot.

We denote the processor configuration in which the interrupt is sampled by hd∗(r, s):

hd∗(r, s) = δ
o(hd(r,s))
hd (hd(r, s))

The following arguments are the same for each slot hence we will drop the slot
index and simply write hd , hd∗, hd ′, isad , and isad ′.

Let us first consider the computation starting at configuration hd until configura-
tion hd∗. Due to the definition of the liveness offset, no instruction is written back in
between. Thus the simulation relation isadsim ′ holds until configuration hd∗:

isadsim ′(hd∗, isad)

We use the following abbreviations hd+ = δhd(hd∗) and isad+ = δisad(isad). As the
processor samples the interrupt in configuration hd∗, the pipeline is drained in the next
cycle, i.e. drained(hd+). The JISR forces the PC and the delayed PC to 4 and 0, see
Section 4.6. Hence the stronger simulation relation isadsim holds for hd+ and isad+:

isadsim(hd+, isad+)

Now we can instantiate the processor correctness (Theorem 2). However, to argue
about the computation until the end of the slot, we first need to introduce some more
notation.

93

18 DISTRIBUTED ISA (DISA)

18.3.2 Worst Case Execution Time

We consider some hardware configuration hd and some ISA configuration isad . Let
isadsim(hd , isad) hold. Then the ISA configuration isad can be decoded from the
hardware configuration hd using a function decisa :

isad = decisa(hd)

We formulate conditions using predicates on configurations. The configurations
obeying the condition are denoted using sets. The set Hh(E) of all hardware configu-
rations hd encoding an ISA configuration isad ∈ E is defined by:

Hh(E) = {hd | decisa(hd) ∈ E}

While the decoding is unique, the encoding is not. E.g. portions of the ISA memory
can be kept in the caches in various ways.

Given some hardware configuration hd the hardware run time Th(hd , a) until a
fetch from address a is the smallest number of cycles t′ such that an instruction,
which has been fetched in an earlier cycle t < t′ from address a, is in the write back
stage WB . Using the scheduling functions from Section 5.3 we define:

Th(hd , a) = min{t′ | ∃t < t′. s(WB , t′) = s(IF , t) ∧ hd t.p.dpc = a}

We consider a set of ISA configurations E obeying some given condition. The
worst case execution time WCET (E, a) until a fetch from address a is the largest hard-
ware runtime Th(hd , a) of a hardware configuration encoding a configuration in E:

WCET (E, a) = max{Th(hd , a) | hd ∈ Hh(E)}

In analogy we define the best case execution time BCET (E, a) until a fetch from
address a as the smallest runtime Fh(hd , a) of a hardware configuration encoding a
configuration in E:

Fh(hd , a) = min{t | s(IF , t) ∧ hd t.p.dpc = a}

BCET (E, a) = min{Fh(hd , a) | hd ∈ Hh(E)}

Using the above definitions we define the worst case execution time WCET (E, a, b)
of a computation starting with the fetch from address a and ending with the write-back
of the instruction stored at address b by:

WCET (E, a, b) = WCET (E, b)−BCET (E, a)

Such estimates can be obtained from industrial tools [Abs07] based on the concept
of abstract interpretation [FMWA99]. AbsInts WCET analyzer does not calculate the
“real” worst-case execution time WCET (E, a) but an upper bound WCET ′(E, a) ≥
WCET (E, a). Furthermore, it does not calculate the “real” best-case execution time
BCET (E, a), but an lower bound BCET ′(E, a) ≤ BCET (E, a).

94

18 DISTRIBUTED ISA (DISA)

In the remainder of this thesis we require that the idle-loop is reached within the bound-
aries of one slot:

WCET (E, 0, a) ≤ T − off − C

We look again at the ISA configuration isad+ and the hardware configuration hd+.
Considering the computation for hardware run time many cycles, where Th(hd+, a) <
T − off −C, we conclude that the instruction in the write back stage (at the end of the
computation) is the first instruction being fetched from a. The same holds for the ISA
computation.

As argued above the processor pipeline is drained, i.e. drained(hd+). Furthermore,
the simulation relation isadsim holds:

isadsim(hd+, isad+)

Let resh(hd+) = δ
Th(hd+,a)
hd (hd+) be the hardware configuration after Th cycles and

let isad ′ = res isa(isad+) = δ
Tisa(isad+,a)
isad (isad+) be the corresponding ISA configu-

ration.
We apply the processor correctness (Theorem 2) for all Th(hd+, a) cycles using

hd+ and isad+ as initial configurations and obtain:

isadsim(resh(hd+), isad ′)

In this situation the pipeline is almost drained. It contains nothing but instructions from
the idle loop. In particular, no memory operation is executed until the end of the slot.

Note that the weakened simulation relation isadsim ′ does not argue about the PC
or the delayed PC:

isadsim(resh(hd+), isad ′)⇒ isadsim ′(resh(hd+), isad ′)

Until the end of the global compute phase only instructions from the idle loop are
executed which do not affect the isadsim ′ relation, hence:

isadsim ′(hd ′, isad ′)

Thus the simulation relation holds after the global compute phase:

disasim ′(δdc(δdr (dh(r, s))), δdc(δdr (disa(r, s))))

In the global send phase the same function is applied to both configurations. Only
the bus components, the configuration of the device, the slot number and the round
number are changed. The simulation relation still holds after the global send phase:

disasim ′(dh((r, s) + 1), disa((r, s) + 1))

Note that after the global compute phase and thus after the global send phase the
idle loop is being executed on all ECUs. Furthermore, interrupts are generated on all
ECUs during the global send phase. Thus, the initial conditions of Theorem 11 are
satisfied for the slot (r, s) + 1 and are therefore invariant.

95

18 DISTRIBUTED ISA (DISA)

18.4 Pervasive Program and Processor Correctness
Using classical program correctness proofs at the ISA level we can show that: Given
the precondition E holds for an ISA configuration, then, after the execution of the
program P , the postcondition Q is satisfied. Written in a Hoare-triple style this reads
{E}P{Q}. We require that the definition of E and Q does neither involve the PC nor
the delayed PC, nor the configuration of the device.

We say that all ISA configurations satisfying the precondition E terminate within
one slot if their WCET is smaller than T − off − C cycles:

termisa(E, a) = (WCET (E, a) < T − off − C)

For any slot (r, s) let hdu(r, s) denote the hardware configuration of the ECU with
number u, i.e. hdu(r, s) = dh(r, s).lm(u). Furthermore, let isadu(r, s) denote the
ISA configuration of the ECU with number u, i.e. isadu(r, s) = disa(r, s).lm(u).

We consider some DIMPL configuration dimpl and some DH configuration dh .
Let dhsim(s, dimpl , dh) hold. Then a local HD configuration hd can be decoded from
the local implementation impl using a function dech:

hd = dech(impl)

Note that dech is defined through the simulation relation dhsim .

Now we can state the pervasive program and processor correctness:

Theorem 12 (Pervasive Program and Processor Correctness) Let all the simulation
relations down to the implementation configuration hold at the start of slot (r, s), i.e.
dhsim(s, dimpl(r, s), dh(r, s)) and disasim(dh(r, s), disa(r, s)). Let the pre condi-
tion and the post condition hold for an ISA configuration, i.e. isadu(r, s) ∈ E and
isadu((r, s) + 1) ∈ Q and let the ISA configuration terminate within one slot, i.e.
termisa(E, a) = 1. Then, at the end of the slot, the decoded implementation obeys the
postcondition Q:

decisa(dech(dimpl((r, s) + 1).lm(u))) ∈ Q

The theorem is proven by induction over all slots (r, s). Using the processor correctness
(Theorem 11) we conclude that the simulation relation disasim ′ holds at the start of
slot (r, s) + 1:

disasim ′(dh((r, s) + 1), disa((r, s) + 1))

Note that the idle loop only changes the PC and the delayed PC of the computation.
AsE andQ do not argue about the PC and the delayed PC we derive that the propertyQ
holds during the execution of the idle loop:

dhu((r, s) + 1) ∈ Hh(Q)

Using the implementation correctness (Theorem 10) we derive:

dhsim(s + 1, dimpl((r, s) + 1), dh((r, s) + 1))

The simulation relation dhsim requires that the processor component is equal in the
DIMPL and the DH model. Thus the we get the desired theorem (see also [KP07a]).

96

19 DISTRIBUTED CVM (DCVM)

19 Distributed CVM (DCVM)
Next we introduce the distributed CVM (DCVM) model based on the local CVM model
from Section 10.

19.1 DCVM Configuration

A DCVM configuration dcvm is given by instantiating the distributed framework with
the processor part of a CVM configuration. Thus for each ECU number en the local
mapping dcvm.lm returns the corresponding CVM configuration cvm with an inte-
grated ABC:

dcvm.lm(en) = cvm

19.2 DCVM Transition Function

We only consider programs of the form P2;wait(). Thus we will argue about the wait
primitive instead of the idle loop. Note that this structure fits the structure introduced
in Section 18.2 as the wait primitive is implemented using an idle-loop.

The transition function executing a DCVM configuration for a complete slot is
denoted by δdcvm . It is obtained using the definition of δdistr based on the following
definition of δlcomp .

The local CVMs are executed using the δcvm semantics until the invocation of the
wait primitive. The runtime Tcvm of such a computation is given by:

Tcvm(cvm) = min{t | (hd(δtcvm(cvm).p.co.pr) = (v = wait())}

We require that the CVM computation terminates, i.e. that the bound for the CVM
runtime Tcvm(cvm) exists. The result of this computation is then given by:

rescvm(cvm) = δTcvm(cvm)+1
cvm (cvm)

The function δlcomp is set to the result of the CVM computation:

δlcomp(cvm) = rescvm(cvm)

Given some initial DCVM configuration dcvm0 we denote the DCVM configura-
tion at the start of slot (r, s) by dcvm(r, s). It is defined by:

dcvm(0, 0) = dcvm0

dcvm((r, s) + 1) = δdcvm(dcvm(r, s))

19.3 DCVM Correctness

We use the shorthand cvmsim to denote the local CVM simulation relation as intro-
duced in Section 10.6. The simulation relation between some DISA configuration disa
and some DCVM configuration dcvm is denoted by dcvmsim(disa, dcvm). It requires:

97

19 DISTRIBUTED CVM (DCVM)

1. the local CVM simulation relation holds for all ECUs:

cvmsim(disa.lm(en), dcvm.lm(en))

2. the old-bus component, the new-bus component, and the current slot and round
number are the same:

disa.oldm = dcvm.oldm
disa.newm = dcvm.newm

disa.csn = dcvm.csn
disa.crn = dcvm.crn

Now we can state the DCVM correctness theorem:

Theorem 13 (DCVM Correctness) Let the simulation relation between the DISA and
the DCVM model hold initially, i.e. dcvmsim(disa(0, 0), dcvm(0, 0)). Let the idle loop
be executed on all ECUs in disa(0, 0) and let the wait primitive be executed on all
ECUs in dcvm(0, 0). Furthermore, let an interrupt be generated on all ECUs in both
models respectively. Then the simulation relation holds for all slots (r, s):

dcvmsim(disa(r, s), dcvm(r, s))

The theorem is proven by induction over all slots (r, s).
In the global receive phase we apply the same function to both configurations. The

simulation relation is not affected:

dcvmsim(δdr (disa(r, s)), δdr (dcvm(r, s)))

In the global send phase we also apply the same function to both configurations.
If the simulation relation holds after the global compute phase the simulation relation
still holds after the global send phase and thus at the start of the next slot:

dcvmsim(δdc(δdr (disa(r, s))), δdc(δdr (dcvm(r, s))))⇒
dcvmsim(disa((r, s) + 1), dcvm((r, s) + 1))

Thus we have to show that the simulation relation indeed holds after the global compute
phase.

In the global compute phase the argumentation is purely local. We abbreviate the
local configurations at the start and at the end of the global compute phase by:

isadu = δdr (disa(r, s))).lm(u)
cvmu = δdr (dcvm(r, s))).lm(u)
isad ′u = δdc(δdr (disa(r, s)))).lm(u)
cvm ′u = δdc(δdr (dcvm(r, s)))).lm(u)

The arguments are the same for each ECU, hence we drop the index and simply write
isad , cvm , isad ′, and cvm ′. Note that according to the definition of dcvmsim the local
simulation relation cvmsim(isad , cvm) holds after the global receive phase.

98

19 DISTRIBUTED CVM (DCVM)

We apply the local CVM correctness (Theorem 5) for all Tcvm(cvm) + 1 steps of
the CVM during the global compute phase and derive:

cvmsim(isad ′, cvm ′)

Details regarding this local simulation proof that go beyond the sketch from Sec-
tion 10.6 will be given in [Tsy08, IdR08].

The global simulation relation dcvmsim holds after the global compute phase as
neither the bus components, nor the slot counter, nor the round counter are altered:

dcvmsim(δdc(δdr (disa(r, s))), δdc(δdr (dcvm(r, s))))

Note that after the global compute phase and thus after the global send phase the
idle loop is being executed in all ECUs of the DISA model due to the definition of
the result of an ISA computation from Section 18.2. Similarly, the wait primitive is
executed in all ECUs of the DCVM model according to the definition of the result
of a CVM computation from Section 19.2. Furthermore, in the global send phase an
interrupt is generated. Thus the initial conditions of the above theorem also hold for
slot (r, s) + 1 and are therefore invariant.

19.4 Pervasive DCVM Correctness
We consider some ISA configuration isad and some CVM configuration cvm . Let the
local simulation relation cvmsim(isad , cvm) hold Then the CVM configuration cvm
can be decoded from the ISA configuration isad using a function deccvm :

cvm = deccvm(isad)

Note that this decoding function is based on the allocation function of the compiler (see
Section 8).

Given some precondition E′ holds for the CVM configuration, we assume that
the post condition Q′ is satisfied after the execution of P2 (see Section 19.2). The
corresponding pre and post conditions for the ISA level are given by:

Hisa(E′) = {isa | deccvm(isa) ∈ E′}
Hisa(Q′) = {isa | deccvm(isa) ∈ Q′}

We require that in the compiled CVM code the idle-loop being part of the wait
primitive implementation starts at address a. A CVM configuration satisfying the pre-
condition E′ terminates within one slot if the WCET until the execution of the idle
loop is smaller than T − off − C cycles:

termcvm(E′, a) = (WCET (Hisa(E′), 0, a) < T − off − C)
= termisa(Hisa(E′), a)

For any slot (r, s) let cvmu(r, s) and isadu(r, s) denote the CVM and the ISA
configuration of the ECU with number u, i.e. cvmu(r, s) = disa(r, s).lm(u) and
isadu(r, s) = disa(r, s).lm(u).

99

20 DISTRIBUTED OLOS (DOLOS)

Theorem 14 (Pervasive DCVM Correctness) Let all simulation relations down to
the implementation hold at the start of slot (r, s), i.e. dhsim(s, dimpl(r, s), dh(r, s))
and disasim(dh(r, s), disa(r, s)) and dcvmsim(disa(r, s), dcvm(r, s)). Furthermore,
let a pre and post condition hold for the CVM configuration, i.e. cvmu(r, s) ∈ E′ and
cvmu((r, s) + 1) ∈ Q′ and let the CVM configuration terminate within one slot, i.e.
termcvm(E, a) = 1. Then, at the end of the slot, the decoded implementation obeys
the postcondition Q′:

deccvm(decisa(dech(dimpl((r, s) + 1).lm(u)))) ∈ Q′

The theorem is proven by induction over all slots (r, s). Using the CVM correctness
(Theorem 13) we obtain that the simulation relation holds at the start of slot (r, s) + 1:

dcvmsim(disa((r, s) + 1), dcvm((r, s) + 1))

We conclude that the ISA configuration at the start of slot (r, s) + 1 obeys the post-
condition, i.e. isadu((r, s) + 1) ∈ Hisa(Q′).

The theorem is proven by applying the pervasive program and processor correctness
(Theorem 12) using Hisa(E′) and Hisa(Q′) as pre and post-conditions.

20 Distributed OLOS (DOLOS)
In this section we introduce the distributed OLOS (DOLOS) model based the local
OLOS model from Section 12.

20.1 DOLOS Configuration
The configuration of the distributed OLOS (DOLOS) model is obtained by instantiating
the distributed framework with the processor part of an OLOS configuration. Note that
for each ECU number en the local mapping dolos.lm returns the corresponding OLOS
configuration olos with an integrated ABC:

dolos.lm(en) = olos

20.2 DOLOS Transition Function
The definition of the DOLOS local transition function for one slot δdolos is based on
the function δdistr which requires a definition of δlcomp .

Let pn be the application that is scheduled in the current slot on a given OLOS
configuration olos:

pn = olos.p.st(olos.p.csn)

The OLOS runtime is the smallest number of steps until the application with num-
ber pn executes the ttExFinished system call according to the δolos semantics (see
Section 12.4):

Tolos(olos) = min{t | (hd(δtolos(olos).p.pm(pn).pr) = (v = ttExFinished())}

100

20 DISTRIBUTED OLOS (DOLOS)

slot

global
receive

abstract time

local send

global compute

1 b 3

local receive
global
sendlocal compute

2a 2b 2c

application

mb

sb rb

bapplication

mb

sb rb

b ECUs

1 13

2b

2c 2a2a

2b

2c

bus

OLOS

ABC

OLOS

ABC

Figure 20: DOLOS: Slot Partitioning and Data-Flow

We require that the OLOS computation terminates, i.e. that the bound for the OLOS
runtime Tolos(olos) exists. The result of the computation is then given by:

resolos(olos) = δ
Tolos(olos)+1
olos (olos)

As mentioned in Section 12.4, the OLOS transition function is split in four phases.
First, the local receive phase (a) is executed. Second, during the local compute phase (b)
the message-buffer and the scheduled application is updated with the result of the local
computation. Third, the local send phase (c) is executed. And finally, in the local idle
phase (d) the configuration simply stalls.

In the following definitions we abstract from the local idle phase (d). Note that
the local receive phase and the local send phase are executed in one step of the OLOS
model while the number of steps during the local compute phase is process specific as
defined above:

δlcomp(olos) = δolos(resolos(δolos(olos)))

The definitions of δdolos and δlcomp are illustrated in Figure 20.
Note that the interrupt, that is generated during the global send phase (3), as de-

fined in Section 16.2.3, directly leads to the start of the local receive phase (compare
Section 12).

Given some initial DOLOS configuration dolos0 we denote the DOLOS configura-
tion at the start of slot (r, s) by dolos(r, s). It is defined by:

dolos(0, 0) = dolos0

dolos((r, s) + 1) = δdolos(dolos(r, s))

Formalization. Note that we have formalized DOLOS in the theorem prover Is-
abelle/HOL using our DISTR formalization as well as our OLOS formalization. All in
all the formalization of DOLOS sums up to about 3000 lines of code.

101

20 DISTRIBUTED OLOS (DOLOS)

20.3 DOLOS Correctness
The simulation relation between some DCVM configuration and some DOLOS con-
figuration is denoted by dolossim(dcvm, dolos). In its definition we use the short-
hand olossim for the local OLOS simulation relation as introduced in Section 12.6.
Thus dolossim states that:

1. the local OLOS simulation relation from Section 12.6 holds for all ECUs:

olossim(dcvm.lm(en), dolos.lm(en))

2. the old-bus component, the new-bus component, and the current slot and round
number are the same:

dcvm.oldm = dolos.oldm
dcvm.newm = dolos.newm
dcvm.csn = dolos.csn
dcvm.crn = dolos.crn

Now we can state the DOLOS correctness theorem:

Theorem 15 (DOLOS Correctness) Let the simulation relation between DCVM and
DOLOS hold initially, i.e. dolossim(dcvm(0, 0), dolos(0, 0)). Let let all ECUs in
dcvm(0, 0) execute the wait primitive and let all ECUs in dolos(0, 0) be in the lo-
cal receive phase. In addition, let an interrupt be generated on all ECUs in both
configurations respectively. Then the simulation relation holds for all slots (r, s):

dolossim(dcvm(r, s), dolos(r, s))

The theorem is proven by induction over all slots (r, s).
In the global receive phase we apply the same function to both configurations. Only

the device state is changed, thus the simulation relation still holds:

dolossim(δdr (dcvm(r, s)), δdr (dolos(r, s)))

As no communication between the ECUs is done during the global compute phase,
the argumentation is purely local. We abbreviate the local configurations before and
after the local compute phase by:

cvmu = δdr (dcvm(r, s))).lm(u)
olosu = δdr (dolos(r, s))).lm(u)
cvm ′u = δdc(δdr (dcvm(r, s)))).lm(u)
olos ′u = δdc(δdr (dolos(r, s)))).lm(u)

The argumentation is the same for each ECU thus we drop the indices and simply write
cvm , olos , cvm ′, and olos ′. After the global receive phase the local simulation relation
holds:

olossim(cvm, olos)

102

20 DISTRIBUTED OLOS (DOLOS)

We can apply the OLOS correctness (Theorem 6) for all OLOS steps during the local
compute phase and obtain:

olossim(cvm ′, olos ′)

Details regarding this local simulation proof that go beyond the sketch from Sec-
tion 12.7 will be given in [Sch08].

The simulation relation dolossim holds after the global compute phase:

dolossim(δdc(δdr (dcvm(r, s))), δdc(δdr (dolos(r, s))))

In the global send phase we again apply the same function to both configurations.
The simulation relation still holds after the global send phase and thus at the start of
the next slot:

dolossim(dcvm((r, s) + 1), dolos((r, s) + 1))

Note that during the global send phase an interrupt is generated on all ECUs of
both models. After the global compute phase and thus after the global send phase all
ECUs in the DOLOS model are again in the local receive phase due to the definition of
the result of an OLOS computation from Section 20.2. Furthermore, the wait primitive
is being executed on all ECUs of the DCVM model according to the definition of the
result of a CVM computation from Section 19.2. Hence, the initial conditions of the
above theorem also hold for slot (r, s) + 1 and are therefore invariant.

20.4 Pervasive DOLOS Correctness

We consider only programs of the form R; A; S where the letter R denotes the code
executed in the local receive phase, A the code executed by an application during the
local compute phase, and S the code executed in the local send phase. Note that this
structure fits the requirements from Section 19 as the local send-phase is implemented
using the CVM wait primitive which itself is implemented using an idle loop.

We consider some CVM configuration cvm and some OLOS configuration olos .
Let olossim(cvm, olos) hold. Then the OLOS configuration olos can be decoded from
the CVM configuration cvm using a function decolos :

olos = decolos(cvm)

Given some precondition E′′ holds for the OLOS configuration, we assume that
some post condition Q′′ is satisfied after the execution of R, A, and S. The corre-
sponding pre and post conditions for the CVM level are given by:

Hcvm(E′′) = {cvm | decolos(cvm) ∈ E′′}
Hcvm(Q′′) = {cvm | decolos(cvm) ∈ Q′′}

We require that the code of the receive phase starts at address 0, the code of the
application at address b, the code of the send phase at address c and the idle loop at
address a.

103

20 DISTRIBUTED OLOS (DOLOS)

slot with > T - off - C hardware cycles

WCET(0,c)

0: R c: A a: idle loopd: S

time

WCET(c,d) WCET(d,a)

Figure 21: Worst Case Execution Time (WCET) Constraint

A OLOS configurations satisfying the precondition E′′ terminates within one slot
if the WCET until the idle loop is smaller than T − off − C cycles:

WCET (Hisa(Hcvm(E′′)), 0, a) < T − off − C

Note that at this abstraction level we know the concrete OLOS code. Thus we can
reformulate the requirements for the WCET resulting in a constraint for the WCET of
the applications. We require that the WCET of the application fits in one slot together
with the WCET of R and S as illustrated in Figure 21:

termolos(E′′, c, d, a) = (WCET (Hisa(Hcvm(E′′)), c, d) < (T − off − C−
WCET (Hisa(Hcvm(E′′)), 0, c)−WCET (Hisa(Hcvm(E′′)), d, a)

The system calls can be analyzed independently from the applications. By annotating
the function calls with the corresponding WCETs the results can be integrated into the
analysis of the application code A.

Note that the above requirement implies the requirements for DCVM from Sec-
tion 19.4:

termolos(E′′, c, d, a)⇒ termcvm(Hcvm(E′′), a)

For any slot (r, s) let olosu(r, s) and cvmu(r, s) denote the OLOS and the CVM
configuration of the ECU with number u, i.e. olosu(r, s) = dolos(r, s).lm(u) and
cvmu(r, s) = disa(r, s).lm(u).

Theorem 16 (Pervasive DOLOS Correctness) Let all simulation relations down to
the implementation hold at the start of slot (r, s), i.e. dhsim(s, dimpl(r, s), dh(r, s))
and disasim(dh(r, s), disa(r, s)) and dcvmsim(disa(r, s), dcvm(r, s)) and last but
not least dolossim(dcvm(r, s), dolos(r, s)). Furthermore, let pre and post condition
hold for the OLOS configuration, i.e. olosu(r, s) ∈ E′′ and olosu((r, s) + 1) ∈ Q′′
and let the OLOS configuration terminate in one slot, i.e. termolos(E′′, c, d, a) = 1.
Then, at the end of the slot, the decoded implementation obeys the postcondition Q′′:

decolos(deccvm(decisa(dech(dimpl((r, s) + 1).lm(u))))) ∈ Q′′

The theorem is proven by induction over all slots (r, s). Using the DOLOS correctness
(Theorem 13) we obtain that:

dolossim(dcvm((r, s) + 1), dolos((r, s) + 1))

104

21 COMMUNICATING OLOS AUTOMATA (COA)

Thus the CVM configuration at the start of slot (r, s) + 1 obeys the post-condition, i.e.
cvmu((r, s) + 1) ∈ Hcvm(Q′′).

To prove the theorem we apply the CVM pervasive correctness (Theorem 14) using
Hcvm(E′′) and Hcvm(Q′′) as the pre and post-condition.

21 Communicating OLOS Automata (COA)
The communicating OLOS automata (COA) model defines the behavior of the dis-
tributed system from the point of view of the applications themselves, as reported
in [Kna08]. It completely abstracts from the devices; communication is done directly
via the message buffers of the operating systems. Furthermore, the global knowledge
like the slot-content function or the current slot number is made explicit. In the COA
model we do not have to deal with those local details any more. Thus the argumenta-
tion, for instance about application correctness, is eased a lot.

Note that, it is possible to move from the COA model to an even more abstract au-
tomata theoretic model called AFTM. The latter specifies the semantics of the CASE
tool AutoFocus [Aut08] that is being used in the automotive industry to specify appli-
cations to be run in the distributed system. We do not go into details here, a simulation
proof between a very initial version of COA, and AFTM is reported in [BBG+08].

21.1 COA Configuration
The local knowledge of an ECU is combined into a configuration denoted by ecu . This
configuration contains:

• a process mapping ecu.pm ,

• a message buffer ecu.mb,

• a bus schedule ecu.ft , and

• a scheduling table ecu.st .

All these components have been defined in Section 12 already.

A COA configuration coa consists of:

• a mapping from an ECU number en to the corresponding ECU configuration,
i.e. coa.em(en) = ecu ,

• a slot-content function coa.sc as defined in Section 12,

• the current slot number coa.csn ,

• the current round number coa.crn ,

• the message that has been broadcast in the previous slot coa.oldm , and

• the message to be broadcast coa.newm .

Note that the two bus components coa.oldm and coa.newm have the same semantics
as the corresponding components in the DISTR model.

105

21 COMMUNICATING OLOS AUTOMATA (COA)

slot

global
receive

abstract time

global
send

global
compute

i ii iii

APP

OLOSmb

b
ECUs

ii

iii i

APP

OLOSmb

b

ii

i

Figure 22: COA: Slot Partitioning and Data-Flow

21.2 COA Transition Function
The COA transition function δcoa is split in 3 phases:

(i) in the receive phase δcr the message buffers of all ECUs are updated with the
message that has been broadcast in the previous slot,

(ii) in the compute phase δcc all ECUs are executed locally for one slot,

(iii) in the send phase δcs the sender in the next slot updates the new bus component
with the message to be broadcast. Furthermore, the current slot number is incre-
mented.

Figure 22 illustrates the slot partitioning as well as the data-flow within the phases.
Note that we use the indices (i), (ii) and (iii) throughout the rest of this thesis to refer
to the corresponding COA phases.

The COA transition function δcoa first applies δcr then δcc and finally δcs on a given
configuration, i.e. δcoa(coa) = δcs(δcc(δcr(coa))).

21.2.1 Global COA Receive Phase (i)

Let the number of the message that has been broadcast in the previous slot be mn =
coa.sc(coa.csn − 1). The transition function δcr of the global receive phase updates
all message buffers at position mn with the message that has been broadcast in the
previous slot:

coa ′.em(en).mb(mn) = coa.em(en).oldm

21.2.2 Global COA Compute Phase (ii)

In the definition of the global compute phase we reuse the concept of a local configura-
tion from Section 12.3. The runtime Tlc(lc) of a local configuration lc is the smallest
number of steps until ttExFinished is executed using the δlc semantics:

Tlc(lc) = min{t | hd(δtlc(lc).co.pr) = (v = ttExFinished())}

We require that the computation terminates, i.e. that the bound for the runtime Tlc(lc)
exists. The result res lc(lc) of a local configuration lc is then obtained by applying the

106

21 COMMUNICATING OLOS AUTOMATA (COA)

function δlc runtime plus one many times (note that the ttExFinished system call is
executed, too):

res lc(lc) = δ
Tlc(lc)+1
lc (lc)

Let the process number of the application that is scheduled in the current slot on
the ECU with number en be denoted by pn(en) = coa.em(en).st(coa.csn). Further-
more, let co′ and mb′ denote the result of the local message buffer and the currently
scheduled application:

(co′(en),mb′(en)) = (res lc(coa.em(en).pm(pn(en))), coa.em(en).mb)

The transition function δcc of the global compute phase updates the message buffer and
the scheduled application with the result of their computation:

coa ′.em(en).pm(pn(en)) = co′(en)
coa ′.em(en).mb = mb′(en)

21.2.3 Global COA Send Phase (iii)

Like in DISTR we require the bus schedule in COA be valid, i.e in each slot s there
exists a unique sender (see Section 16):

∃!en(s). coa.em(en).ft(s) = 1

We denote the ECU number of the sender in slot s by send(s).
Let the message number of the message to be broadcast in the next slot be given by

mn = coa.sc(coa.csn + 1). The transition function δcs of the global send phase incre-
ments the current slot number. Furthermore, the actual message broadcast is modeled
by updating the old-bus component with the value of the new-bus component. The
new-bus component itself is updated with the content of the send buffer of the ECU
sending in the next slot:

(coa ′.crn, coa ′.csn) = (coa.crn, coa.csn) + 1
coa ′.newm = coa.em(send(coa.csn + 1)).mb(mn)
coa ′.oldm = coa.newm

21.2.4 COA Notation

Given some initial COA configuration coa0 we denote the COA configuration at the
start of slot (r, s) by coa(r, s). It is defined by:

coa(0, 0) = coa0

coa((r, s) + 1) = δcoa(coa(r, s))

21.3 COA Correctness
First we define a local simulation relation ecusim(olos, ecu) between some OLOS
configuration olos and some ECU configuration ecu . It requires that the configuration

107

21 COMMUNICATING OLOS AUTOMATA (COA)

of the applications, the message buffers, the scheduling tables, and the bus schedules
of both configurations are the same. Note that in olos the bus schedule is stored in two
places, in the operating system and in the ABC:

olos.p.pm = ecu.pm
olos.p.mb = ecu.mb
olos.p.st = ecu.st
olos.p.ft = ecu.ft
olos.d.ft = ecu.ft

The global simulation relation between some DOLOS configuration dolos and
some COA configuration coa is denoted by coasim(dolos, coa). It requires that the
local simulation relation holds for all ECUs. Furthermore, the two bus components,
the slot-content function, and the current slot numbers must be equal. Note that in
dolos the current slot number is counted in two parts, in the operating system and in
the ABC:

ecusim(dolos.lm(en), coa.em(en))
dolos.oldm = coa.oldm
dolos.newm = coa.newm

dolos.lm(en).p.sc = coa.sc
dolos.csn = coa.csn
dolos.crn = coa.crn

dolos.lm(en).p.csn = coa.csn

Next we state the COA correctness theorem:

Theorem 17 (COA Correctness) Let the simulation relation between DOLOS and
COA hold initially, i.e. coasim(dolos0, coa0). Let an interrupt be generated on all
ECUs in dolos0 and let all ECUs start in the local receive phase. Then the simulation
relation holds for all slots (r, s):

coasim(dolos(r, s), coa(r, s))

The theorem is proven by induction over all slots (r, s). The proof is split along the
global and local phases (compare Figure 20 and 22).

In the COA receive phase (i) all message buffers are updated with the message that
has been broadcast in the previous slot. In the DOLOS model this message is first
written in the receive buffers of the ABCs during the global receive phase (1). In the
local receive phase (2a) the ABC driver updates the message buffer with the content of
the receive buffer. Thus the simulation relation holds at this point in time.

During the global compute phase (ii) in COA as well as during the local compute
phase (2b) in DOLOS the scheduled application is executed. Note that two different
transition functions are being used in the definition of the result, i.e. δolos in DOLOS
while in COA the function δlc is applied directly. The simulation relation holds after
this computation, too.

In the local send phase (2c), the sender in the next slot updates the send buffer of
the ABC with the message to be broadcast in the next slot. In the global send phase (3)
this send buffer is written to the new-bus component. Similar, in the COA global send

108

21 COMMUNICATING OLOS AUTOMATA (COA)

phase (iii) the message to be broadcast in the next slot is taken from the message-buffer
of the sender and is written in the new-bus component directly. Thus the simulation
relation holds at the start of the next slot:

coasim(dolos((r, s) + 1), coa((r, s) + 1))

Note that during the global send phase an interrupt is generated on all ECUs in
the DOLOS model. Thus after the global send phase, all ECUs in the DOLOS model
start in the local receive phase again, due to the definition of the result of an OLOS
computation from Sections 20.2. Hence, the initial conditions of the above theorem
also hold for slot (r, s) + 1 and are therefore invariant.

Formalization. Note that we have formalized the COA model in the theorem prover
Isabelle/HOL resulting in about 1000 lines of code. In addition we have proven the
above COA correctness theorem in Isabelle/HOL, as reported in [Kna08]. The proof is
about 3500 lines of code long.

21.4 Pervasive COA Correctness
Note that in the step from DOLOS to COA some communication related details are
hidden. However, the configurations of the applications themselves are not altered.

We consider some OLOS configuration olos and some ECU configuration ecu . Let
ecusim(olos, ecu) hold. Then the ECU configuration ecu can be decoded from the
OLOS configuration olos using a function dececu :

ecu = dececu(olos)

Given some precondition E′′′ holds for the ECU configuration, we assume that the
post condition Q′′′ is satisfied after the execution of δcoa . The corresponding pre and
post conditions for the OLOS level are given by:

Holos(E′′′) = {olos | dececu(olos) ∈ E′′′}
Holos(Q′′′) = {olos | dececu(olos) ∈ Q′′′}

We consider applications having the following structure: The application code
starts at address c and ends with an invocation of the ttExFinished system call at
address d. The system call returns the control back to the operating system.

We require that the WCET of the application fits in one slot together with the
WCET of the OLOS code:

termecu(E′′, c, d, a) = (WCET (Hh(Hisa(Holos(E′′))), c, d) < T − off − C −
(WCET (Hh(Hisa(Holos(E′′))), 0, c) + WCET (Hh(Hisa(Holos(E′′))), d, a))

Note that the above requirement implies the termination requirement for DOLOS from
Section 20.4:

termecu(E′′′, c, d, a)⇒ termolos(Holos(E′′′), c, d, a)

For any slot (r, s) let ecuu(r, s) and olosu(r, s) denote the ECU and the OLOS
configuration with number u, i.e. ecuu(r, s) = coa(r, s).em(u) and olosu(r, s) =
dolos(r, s).lm(u).

109

21 COMMUNICATING OLOS AUTOMATA (COA)

Theorem 18 (Pervasive COA Correctness) Let all simulation relations down the im-
plementation hold at the start of the slot (r, s) i.e. dhsim(s, dimpl(r, s), dh(r, s)) and
disasim(dh(r, s), disa(r, s)) and dcvmsim(disa(r, s), dcvm(r, s)) and furthermore
dolossim(dcvm(r, s), dolos(r, s)) as well as coasim(dolos(r, s), coa(r, s)). Let a pre
and post condition hold for an ECU, i.e. ecuu(r, s) ∈ E′′′ and ecuu((r, s) + 1) ∈ Q′′′
and let the ECU terminate within one slot, i.e. termecu(E′′′, c, d, a) = 1. Then, at the
end of the slot, the decoded implementation obeys the postcondition Q′′′:

dececu(decolos(deccvm(decisa(dech(dimpl((r, s) + 1).lm(u)))))) ∈ Q′′′

The theorem is proven by induction over all slots (r, s). Using the COA correctness
(Theorem 17) we obtain that:

coasim(dolos((r, s) + 1), coa((r, s) + 1))

Thus we derive that the OLOS configuration at the start of slot (r, s) + 1 obeys the
post-condition, i.e. olosu((r, s) + 1) ∈ Holos(Q′′′).

We apply the pervasive DOLOS correctness (Theorem 16) using the pre and post-
conditions Holos(E′′′) and Holos(Q′′′) to prove the theorem.

110

22 CONCLUSION

22 Conclusion
We have presented a complete model stack for a distributed system starting at the asyn-
chronous gate-level implementation and going up to the synchronous simple-to-use
COA model. Using the methodology described in this thesis the pervasive verification
of industrial-sized real-time systems becomes feasible.

Note that this model stack results from the joint work of many people. In particular,
the model stack for a single ECU introduced in Part I has been subject to research for
several years within the Verisoft Project [Ver08b]. With the number of people that are
working on parts of the model stack increasing, the integration of the achieved results
into a single consistent theory becomes more and more difficult.

The contributions of the author are the following: based on our early approaches
in the formalization of the OSEKtime and the FlexRay standard [IdRK05, BBG+05]
we have elaborated on the ABC correctness [KP07b] and, in particular, on the sched-
uler correctness [ABK08b]. Based on [KP07a] we have integrated already established
theorems in the analysis of the model stack. Besides programming an initial OLOS
implementation in C0, we have defined the ABC in Isabelle/HOL based on boolean
gates (inspired by [Pau05]), and we have detailed the integration of devices throughout
the stack, see also [AHK+07]. We have formalized OLOS, the ABC, the distributed
framework (DISTR), and COA in Isabelle/HOL, too. In particular, our new DISTR
model is vital for the extension of the model stack for single ECUs to a model stack
for the complete distributed system. We have shown how to instantiate DISTR with all
local models to obtain the corresponding distributed models, i.e. DH, DISA, DCVM
and DOLOS.

All presented models are linked by simulation theorems. We have shown how to
propagate the WCET of applications and systems software throughout the model stack
resulting in a pervasive correctness proof for the complete distributed system.

To illustrate the applicability of DISTR we have formally proven the COA cor-
rectness (Theorem 17) in Isabelle/HOL, as reported in [Kna08]. All in all we have
contributed approximately 9.000 lines of Isabelle/HOL code to the formalization of the
model stack (as detailed in the corresponding sections) and an additional 2.800 lines in
form of the ABC implementation.

Besides, we have supervised the master thesis of Peter Böhm [Böh07] which re-
ports on the formal ABC scheduler correctness proof and we have coordinated the
work of Mareike Schmidt on the formal OLOS correctness (see Section 12).

Last but not least, we have summarized and highlighted the essential parts of the
whole theory on a few pages (based on [KP07a]), which can be taught in computer
science lectures.

111

23 FUTURE WORK

23 Future Work
The formalization of the local models and the local correctness theorems presented
in Part I has either been completed already [LP08] or will hopefully be completed
soon [Tve08, IdRT08]. However, the initialization (power-up) of the system has not
been addressed in detail, yet.

The formal argumentation regarding the ABC implementation has been approached
by Schmaltz and Böhm [Sch06, Böh07]. However, the results still need to be integrated
following the arguments from Section 17.

One of the challenging proofs that is still left to be formalized in the theorem prover
is the distributed processor correctness. Arguments regarding the liveness offset and
the WCET have to be formalized and combined to obtain the DISA model.

To prove the distributed correctness theorems for the upper layers of the model
stack the corresponding local correctness theorems need to be applied. The argumen-
tation has been simplified a lot due to the DISTR framework. Note that the global
send and receive phases are literally the same for each instantiation. In addition, the
argumentation in the global compute phase is purely local allowing a straightforward
application of the local correctness theorems.

The pervasive correctness theorems pose another challenge. So far, the transfer
of properties between several layers of abstraction has not been argued about in the
theorem prover.

Hereby we encourage the community to have a closer look at the theories and to
extend and prove the remaining theorems along the lines of Part II.

112

ABBREVIATIONS

24 Abbreviations

Single electronic control unit (ECU):
Abbreviation Meaning
isa instruction set architecture (ISA) configuration (see Section 4)
h hardware (H) configuration (see Section 5)
d device (D) configuration (see Section 6)
impl implementation (IMPL) configuration with a device (see Section 6.4)
hd H configuration with a device (see Section 6.5)
isad ISA configuration with a device (see Section 6.6)
vm virtual machine configuration (see Section 7)
co C0 machine configuration (see Section 8)
cvm communicating virtual machine (CVM) configuration (see Section 10)
olos OSEKtime-like operating system (OLOS) configuration (see Section 12)
lc local configuration (LC) (see Section 12.3)
δisa ISA transition function (see Section 4)
δh hardware transition function (see Section 5)
δisad ISA transition function with devices (see Section 6.6)
δhd hardware transition function with devices (see Section 6.5)
δco C0 machine transition function (see Section 8)
δcoA C0A machine transition function (see Section 9)
δcvm CVM transition function (see Section 10)
δolos OLOS transition function (see Section 12)
δlc LC transition function (see Section 12.3)

Distributed System (Several ECUs):
Abbreviation Meaning
dimpl distributed implementation (DIMPL) configuration (see Section 15)
distr distributed framework (DISTR) configuration (see Section 16)
dh distributed hardware (DH) configuration (see Section 17)
disa distributed ISA (DISA) configuration (see Section 18)
dcvm distributed CVM (DCVM) configuration (see Section 19)
dolos distributed OLOS (DOLOS) configuration (see Section 20)
coa communicating OLOS automata (COA) configuration (see Section 21)
δdistr DISTR transition function (see Section 16)
δdr DISTR global receive phase (1) transition function (see Section 16)
δdc DISTR global compute phase (2) transition function (see Section 16)
δds DISTR global send phase (3) transition function (see Section 16)
δcoa COA transition function (see Section 21)
δcr COA global receive phase (i) transition function (see Section 21)
δcc COA global compute phase (ii) transition function (see Section 21)
δcs COA global send phase (iii) transition function (see Section 21)

113

REFERENCES

References
[ABK08a] Eyad Alkassar, Peter Böhm, and Steffen Knapp. Correctness of a Fault-

Tolerant Real-Time Scheduler Algorithm and its Hardware Implementa-
tion. In Formal Methods and Models for Codesign (Memocode’08), pages
175–186. IEEE Computer Society Press, 2008.

[ABK08b] Eyad Alkassar, Peter Böhm, and Steffen Knapp. Formal Correctness
of a Gate-Level Automotive Bus Controller Implementation. In 6th
IFIP Working Conference on Distributed and Parallel Embedded Systems
(DIPES’08). Springer Science and Business Media, 2008. To appear.

[Abs07] AbsInt Angewandte Informatik GmbH, 2007. www.absint.com.

[AHK+07] Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rustilav Rusev, and
Sergey Tverdyshev. Formal Device and Programming Model for a Serial
Interface. In B. Beckert, editor, Proceedings, 4th International Verifica-
tion Workshop (VERIFY’07), Bremen, Germany, pages 4–20. CEUR-WS
Workshop Proceedings, 2007.

[AT08] Eyad Alkassar and Sergey Tverdyshev. Efficient bit-level model reductions
for automated hardware verification. In 15th International Symposium on
Temporal Representation and Reasoning (TIME’08). IEEE Computer Soci-
ety Press, 2008. To appear.

[Aut08] AutoFocus Project, 2008. http://autofocus.in.tum.de.

[BBG+05] Sven Beyer, Peter Böhm, Michael Gerke, Mark Hillebrand, Thomas In der
Rieden, Steffen Knapp, Dirk Leinenbach, and Wolfgang J. Paul. Towards
the Formal Verification of Lower System Layers in Automotive Systems. In
23nd IEEE International Conference on Computer Design: VLSI in Com-
puters and Processors (ICCD’05), San Jose, CA, USA, Proceedings, pages
317–324. IEEE, 2005.

[BBG+08] Jewgenij Botaschanjan, Manfred Broy, Alexander Gruler, Alexander
Harhurin, Steffen Knapp, Leonid Kof, Wolfgang J. Paul, and Maria
Spichkova. On the Correctness of Upper Layers of Automotive Systems.
In Formal Aspects of Computing, 2008. To appear.

[Bey05] Sven Beyer. Putting it all together - Formal Verification of the VAMP. PhD
thesis, Saarland University, Saarbrücken, Germany, 2005.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D.
Young. An Approach To Systems Verification. Journal of Automated Rea-
soning (JAR), 5(4):411–428, December 1989.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolf-
gang J. Paul. Instantiating uninterpreted functional units and memory sys-
tem: Functional verification of the VAMP. In Proc. of the 12th Advanced

114

REFERENCES

Research Working Conference on Correct Hardware Design and Verifica-
tion Methods (CHARME’03), LNCS, pages 51–65. Springer, 2003.

[BJK+05] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolf-
gang J. Paul. Putting it all together - Formal Verification of the VAMP.
STTT Journal, 2005.

[BKS03] Gérard Berry, Michael Kishinevsky, and Satnam Singh. System Level De-
sign and Verification Using a Synchronous Language. In ICCAD’03, pages
433–440, 2003.

[BP06] Geoffrey M. Brown and Lee Pike. Easy Parameterized Verification of
Biphase Mark and 8N1 Protocols. In Proceedings of the 12th International
Conference on Tools and the Construction of Algorithms (TACAS’06), vol-
ume 3920 of LNCS, pages 58–72. Springer, 2006.

[BY91] William R. Bevier and William D. Young. The proof of correctness of a
fault-tolerant circuit design. In Second IFIP Conference on Dependable
Computing For Critical Applications (DCCA’91), Tucson, Arizona, pages
107–114, 1991.

[Böh07] Peter Böhm. Formal Verification of a Clock Synchronization Method in
a Distributed Automotive System. Master’s thesis, Saarland University,
Saarbrücken, Germany, 2007.

[Dal06] Iakov Dalinger. Formal Verification of a Processor with Memory Manage-
ment Units. PhD thesis, Saarland University, Saarbrücken, Germany, 2006.

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang J. Paul. On the Verifi-
cation of Memory Management Mechanisms. In Proceedings of the 13th
Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME’05), volume 3725 of LNCS, pages 301–
316. Springer, 2005.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–
866, October 1972.

[EKD+07] Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and
Gernot Heiser. Towards a Practical, Verified Kernel. In 11th Workshop
on Hot Topics in Operating Systems, page 6, San Diego, CA, USA, 2007.

[Fle06] FlexRay Consortium. FlexRay Communications System Specifications
Version 2.1, 2006.

[Fle08] FlexRay Consortium, 2008. http://www.flexray.com.

[FMWA99] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt.
Cache Behavior Prediction by Abstract Interpretation. Sci. Comput. Pro-
gram., 35(2):163–189, 1999.

115

REFERENCES

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang J. Paul.
On the Correctness of Operating System Kernels. In 18th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’05),
volume 3603 of LNCS, pages 1–16. Springer, 2005.

[HEK+07] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M.
Petters. Towards Trustworthy Computing Systems: Taking Microkernels to
the Next Level. ACMSIGOPS, 41(3):9, July 2007.

[Hil05] Mark Hillebrand. Address Spaces and Virtual Memory: Specifica-
tion, Implementation, and Correctness. PhD thesis, Saarland University,
Saarbrücken, Germany, 2005.

[HIP05] Mark Hillebrand, Thomas In der Rieden, and Wolfgang J. Paul. Deal-
ing with I/O Devices in the Context of Pervasive System Verification. In
ICCD’05, pages 309–316. IEEE Computer Society, 2005.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, San Mateo, California, second edi-
tion, 1996.

[HT05] Michael Hohmuth and Hendrik Tews. The VFiasco approach for a verified
operating system. In 2nd ECOOP Workshop on Programm Languages and
Operating Systems, July 2005.

[HTS02] Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying
source-code verification to a microkernel: the VFiasco project. In EW10:
Proceedings of the 10th workshop on ACM SIGOPS European workshop,
pages 165–169. Association for Computing Machinery (ACM), 2002.

[IdR08] Thomas In der Rieden. CVM – A formally verified framework for microker-
nel programmers. PhD thesis, Saarland University, Saarbrücken, Germany,
2008. To appear.

[IdRK05] Thomas In der Rieden and Steffen Knapp. An Approach to the Pervasive
Formal Specification and Verification of an Automotive System (Status Re-
port). In Tenth International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’05), 2005.

[IdRT08] Thomas In der Rieden and Alexandra Tsyban. CVM - A Verified Frame-
work for Microkernel Programmers. In 3rd intl Workshop on Systems Soft-
ware Verification (SSV’08). Elsevier Science B.V., 2008.

[KMP00] Daniel Kroening, Silvia M. Mueller, and Wolfgang J. Paul. Proving the
Correctness of Processors with Delayed Branch using Delayed PCs. In
Proceedings of the Symposium on Numbers, Information and Complexity,
Bielefeld, pages 579–588. Kluwer Academic Publishers, 2000.

116

REFERENCES

[Kna05] Steffen Knapp. Towards the Verification of Functional and Timely Be-
havior of an eCall Implementation. Master’s thesis, Saarland University,
Saarbrücken, Germany, 2005.

[Kna08] Steffen Knapp. Pervasive Layered Verification of a Distributed Real-Time
System. In Third International Conference on Systems (ICONS’08), pages
323–328. IEEE Computer Society Press, 2008.

[KP07a] Steffen Knapp and Wolfgang J. Paul. Pervasive Verification of Distributed
Realtime Systems. In T. Hoare M. Broy, J. Grünbauer, editor, Software Sys-
tem Reliability and Security, volume 9 of NATO Security Through Science
Series. Sub-Series: Information and Communication. IOS, 2007.

[KP07b] Steffen Knapp and Wolfgang J. Paul. Realistic Worst Case Execution Time
Analysis in the Context of Pervasive System Verification. In Program Anal-
ysis and Compilation, Theory and Practice: Essays Dedicated to Reinhard
Wilhelm, volume 4444 of LNCS, pages 53–81. Springer, 2007.

[Kro01] Daniel Kroening. Formal Verification of Pipelined Microprocessors. PhD
thesis, Saarland University, Saarbrücken, Germany, 2001.

[Lei08] Dirk Leinenbach. Compiler Verification in the Context of Pervasive System
Verification. PhD thesis, Saarland University, Saarbrücken, Germany, 2008.

[LMS85] Leslie Lamport and P.M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. J. ACM, 32(1):52–78, 1985.

[LP08] Dirk Leinenbach and Elena Petrova. Pervasive Compiler Verification –
From Verified Programs to Verified Systems. In 3rd intl Workshop on Sys-
tems Software Verification (SSV’08). Elsevier Science B.V., 2008.

[MJ96] Paul S. Miner and Steve D. Johnson. Verification of an Optimized Fault-
Tolerant Clock Synchronization Circuit. In Designing Correct Circuits.
Springer, 1996.

[Moo03] J S. Moore. A Grand Challenge Proposal for Formal Methods: A Verified
Stack. In Bernhard K. Aichernig and T. S. E. Maibaum, editors, 10th An-
niversary Colloquium of UNU/IIST, volume 2757 of LNCS, pages 161–172.
Springer, 2003.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture: Complex-
ity and Correctness. Springer, 2000.

[NN99] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
A Formal Introduction. John Wiley & Sons, Inc., New York, NY, USA,
1992, revised online version 1999.

[Nor98] Michael Norrish. C Formalised in HOL. Technical Report UCAM-CL-TR-
453, University of Cambridge, Computer Laboratory, December 1998.

117

REFERENCES

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[NYS07] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify real-
istic systems code: Machine context management. In Klaus Schneider and
Jens Brandt, editors, Theorem Proving in Higher Order Logics, 20th Inter-
national Conference, TPHOLs’07, Kaiserslautern, Germany, pages 189–
206. LNCS, 2007.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype ver-
ification system. In 11th International Conference on Automated Deduction
(CADE’92), volume 607 of LNCS, pages 748–752. Springer, 1992.

[OSE08a] OSEK/VDX Group. Fault-Tolerant Communication (FTCom) Layer,
2008. http://portal.osek-vdx.org/files/pdf/specs/
ftcom10.pdf.

[OSE08b] OSEK/VDX Group. Time Triggered Operating System Specification,
2008. http://portal.osek-vdx.org/files/pdf/specs/
ttos10.pdf.

[Pau05] Wolfgang J. Paul. Lecture Notes: Computer Architecture II (Automotive
Systems) WS0506, 2005. http://www-wjp.cs.uni-sb.de/
lehre/vorlesung/rechnerarchitektur2/ws0506/temp/
060302_CA2_AUTO.pdf.

[Pau08] Wolfgang Paul. Lecture Notes: Computer Architecture I WS0708, 2008.

[Pet07] Elena Petrova. Verification of the C0 Compiler Implementation on the
Source Code Level. PhD thesis, Saarland University, Saarbrücken, Ger-
many, 2007.

[Pik07] Lee Pike. Modeling Time-Triggered Protocols and Verifying Their Real-
Time Schedules. In FMCAD’07, pages 231–238, 2007.

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation Validation.
In Bernhard Steffen, editor, TACAS’98, volume 1384 of LNCS, pages 151–
166. Springer, 1998.

[PSvH99] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal Verifi-
cation for Time-Triggered Clock Synchronization. In Dependable Comput-
ing for Critical Applications (DCCA’99), volume 12, pages 207–226, San
Jose, CA, 1999. IEEE Computer Society.

[Rus99] John Rushby. Systematic Formal Verification for Fault-Tolerant Time-
Triggered Algorithms. IEEE Transactions on Software Engineering,
25(5):651–660, September 1999.

118

REFERENCES

[Rus02] John Rushby. An Overview of Formal Verification for the Time-Triggered
Architecture. In Werner Damm and Ernst-Rüdiger Olderog, editors, For-
mal Techniques in Real-Time and Fault-Tolerant Systems, volume 2469 of
LNCS, pages 83–105, Oldenburg, Germany, September 2002. Springer.

[Sch06] Julien Schmaltz. A Formal Model of Lower System Layers. In FMCAD’06,
pages 191–192, Los Alamitos, CA, USA, November 2006. IEEE Computer
Society.

[Sch08] Mareike Schmidt. The Formal Correctness of Real-Time Operating System.
PhD thesis, Saarland University, Saarbrücken, Germany, 2008. To appear.

[SH98] Jun Sawada and Warren A. Hunt. Processor Verification with Precise Ex-
ceptions and Speculative Execution. In Alan J. Hu and Moshe Y. Vardi,
editors, CAV’98, pages 135–146. Springer, 1998.

[Sha92] Natarajan Shankar. Mechanical Verification of a Generalized Protocol for
Byzantine Fault Tolerant Clock Synchronization. In FTRTFT’92, volume
571, pages 217–236, Netherlands, 1992. Springer.

[SHS+97] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple.
Time-Triggered Architecture (TTA). In Advances in Information Technolo-
gies: The Business Challenge. IOS, 1997.

[ST08] Artem Starostin and Alexandra Tsyban. Correct microkernel primitives.
In 3rd intl Workshop on Systems Software Verification (SSV’08). Elsevier
Science B.V., 2008.

[SW00] Jonathan S. Shapiro and Sam Weber. Verifying the EROS Confinement
Mechanism. In IEEE Symposium on Security and Privacy (SP’00), pages
166–176. IEEE, 2000.

[Tsy08] Alexandra Tsyban. Formal Verification of a Framework for Microkernel
Programmers. PhD thesis, Saarland University, Saarbrücken, Germany,
2008. To appear.

[Tve08] Sergey Tverdyshev. Formal Verification of Gate-Level Computer Systems.
PhD thesis, Saarland University, Saarbrücken, Germany, 2008. To appear.

[Ver08a] Verifix. Verifix Project Website, 2008.
http://www.info.uni-karlsruhe.de/˜verifix.

[Ver08b] The Verisoft Project, 2008. http://www.verisoft.de.

[Win93] Glynn Winskel. The formal semantics of programming languages: An in-
troduction. MIT Press, Cambridge, MA, USA, 1993.

[WL88] Jennifer Lundelius Welch and Nancy A. Lynch. A new fault-tolerant algo-
rithm for clock synchronization. Information and Communication, 77(1):1–
36, April 1988.

119

REFERENCES

[Zha06] Bo Zhang. On the Formal Verification of the FlexRay Communication Pro-
tocol. Automatic Verification of Critical Systems (AVoCS’06), pages 184–
189, 2006.

120

	Introduction
	Related Work
	I Single Electronic Control Unit (ECU)
	Notation
	Instruction Set Architecture (ISA)
	ISA Configuration
	Instruction Decoding
	ISA Transition Function
	Extended ISA Configuration
	Dealing with Interrupts
	Trap Instructions

	ISA Transition Function with Interrupts

	Processor Hardware (H)
	Hardware Configuration
	Hardware Transition Function
	Scheduling Functions
	Processor Correctness Theorem
	Synchronization Conditions

	Dealing with Interrupts

	Devices (D)
	Device Configuration
	Integration of a Device in General
	Integration of a Device into the Processor Implementation
	Implementation Semantics
	Implementation Semantics for a Stable Device
	Integration of a Stable Device into the ISA
	Processor Correctness Theorem with Devices

	Memory Management (MM)
	Physical Machine Configuration
	Address Translation, Physical and Virtual Machines
	Physical Machine Transition Function
	Virtual Memory Correctness Theorem

	The Programming Language C0
	C0 Types Expressions and Statements
	C0 Machine Configuration
	C0 Variables

	C0 Machine Transition Function
	Compiler Correctness Theorem

	Inline Assembly Code (C0A)
	Communicating Virtual Machines (CVM)
	CVM Configuration
	CVM Transition Function
	User Transition
	Kernel Transition

	Binary Kernel Interface
	Binary Kernel Interface Implementation

	CVM Implementation
	Concrete Kernel Simulation Relation
	Concrete Kernel Data Structures
	Entering System Mode after an Interrupt
	Leaving System Mode
	Process Virtualization
	Implementation of the CVM Primitives

	CVM Correctness Theorem

	Automotive Bus Controller (ABC)
	Stable ABC Specification Configuration

	OSEKtime Like Operating System (OLOS)
	Message Buffers, Applications and Schedules
	OLOS Configuration
	Local Configurations (LC) and Transitions
	OLOS Transition Function
	Local OLOS Receive Phase (a)
	Local OLOS Compute Phase (b)
	Local OLOS Send Phase (c)
	Local OLOS Idle Phase (d)

	OLOS Implementation Data Structures
	OLOS Simulation Relation
	OLOS Correctness Theorem for One Slot

	II Distributed ECUs
	ABC Implementation
	Host Interface
	Send Environment
	Receive Environment
	Schedule Environment
	Hardware Construction

	ABC Verification
	Clocks
	Hardware Model with Continuous Time
	Continuous Time Lemmata for the Bus
	Message Broadcast Correctness
	Startup
	Scheduling Correctness
	Extensions Towards Fault-Tolerance

	Distributed Implementation (DIMPL)
	DIMPL Properties

	Distributed Framework (DISTR)
	DISTR Configuration
	DISTR Transition Function
	Global DISTR Receive Phase (1)
	Global DISTR Compute Phase (2)
	Global DISTR Send Phase (3)
	DISTR Notation

	Distributed Hardware (DH)
	DH Configuration
	DH Transition Function
	DIMPL Correctness

	Distributed ISA (DISA)
	DISA Configuration
	DISA Transition Function
	DISA Correctness
	DISA Interrupt Sampling
	Worst Case Execution Time

	Pervasive Program and Processor Correctness

	Distributed CVM (DCVM)
	DCVM Configuration
	DCVM Transition Function
	DCVM Correctness
	Pervasive DCVM Correctness

	Distributed OLOS (DOLOS)
	DOLOS Configuration
	DOLOS Transition Function
	DOLOS Correctness
	Pervasive DOLOS Correctness

	Communicating OLOS Automata (COA)
	COA Configuration
	COA Transition Function
	Global COA Receive Phase (i)
	Global COA Compute Phase (ii)
	Global COA Send Phase (iii)
	COA Notation

	COA Correctness
	Pervasive COA Correctness

	Conclusion
	Future Work
	Abbreviations

