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Abstract

The display of high dynamic range images and video requiteseamapping algorithm
to depict their original appearance on existing displayicks/whose capabilities in
terms of dynamic range are insufficient. The insightful &atlon of knowledge about
human visual system can assure high fidelity of depictiomghsan algorithm.

In this thesis, we design new tone mapping models and impsrigting algorithms
by an informed use of human perception to provide a high fidelkepiction of high
dynamic range. We develop a real-time tone mapping solwtioich reproduces the
subjective appearance of dynamic HDR contents by accayfdinperceptual effects
that significantly contribute to the appearance of natwahss. We design a computa-
tional model of lightness perception that can be applieddb Quality tone mapping
for static images to reproduce their original HDR appeagaincterms of lightness.
We identify common distortions typical to tone mapping whioay hinder the com-
prehension of image contents, we design appropriate reg¢trimeasure the perceived
magnitude of these distortions and evaluate existing tomgping algorithms accord-
ingly. To compensate for observed distortions, we intredaienethod which improves
the tone mapping results beyond numerically optimizedtgwilby using techniques
strongly based on perception of contrasts. Presenteda@mutan be efficiently in-
tegrated in varied HDR applications including photograpsistyback of HDR video,
image synthesis, light simulations, predictive renderargd computer games.

Kurzfassung

Die Anzeige von Bildern und Videos mit hohem KontrastumfghtiDR) erfordert
einen Algorithmusiir die Tonabbildung, um ihr urspngliches Aussehen auf vorhan-
denen Bildschirmen, dererakigkeiten in Kontrastumfang unzureichend sind, darzu-
stellen. Die aufschlussreiche Anwendung des Wisskies das menschliche visuelle
System kann die Wiedergabetreue eines solchen Algoritlyenghrleisten.

In dieser Doktorarbeit entwerfen wir neue Modelig lie Tonabbildung und verbes-
sern vorhandene Algorithmen durch eine informative Anwergdvon menschlicher
Wahrnehmung um die Wiedergabetreue der HDR zu&ieleisten. Wir entwickeln
eine Echtzeit-Tonabbildungdsung, die das subjektive Aussehen von dynamischem
HDR Inhalt reproduziert dadurch dass die Wahrnehmunddeffelie erheblich zum
Aussehen der nétlichen Szenen beitragen, bBeksichtigt werden. Wir entwerfen ein
Computermodell der menschliches Helligkeitsvorstellurgdches wir in eine Tonab-
bildung anwenden, um damit das ungpgliche HDR Aussehen von statischen Bildern
in hoher Qualiat zu reproduzieren. Weiterhin identifizieren wir die Vaeraegen, die
bei Tonabbildungen typisch sind und das Vansinis des Bildinhalts hinderrdoknten.
Wir entwerfen passende Metriken, um die wahrgenommenéfié&dieser Verzerrun-
gen zu messen und vorhandene Algorithmen dementsprechdraherten. Zur Kom-
pensierung der Verzerrungehiren wir eine Methode vor, die das Tonabbildungser-
gebnis basierend auf eine Kontrastwahrnehniibyey die numerisch optimiertédsung
hinaus verbessert. Die vorgestellte@siungen knnen in vielseitigen HDR Anwendun-
gen einschlieR3lich Fotographie, Wiedergabe von HDR Vid&isgsynthese, Globale
Beleuchtung, und Computerspielen effizient integriertdeer
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Summary

The high dynamic range (HDR) techniques overcome the legawagtraint of limited
contrast and tonal range in digital images and video whielmaw adequate to accom-
modate the complete information about light in nature. Tispldy of HDR contents,
however, requires a tone mapping algorithm to depict thagireal appearance on ex-
isting display devices whose capabilities in terms of dyicarange are insufficient.
Unfortunately, the tone mapping process inherently dee=she original quality of
HDR contents. By taking the interdisciplinary approach inieth we combine com-
puter graphics and image processing with the knowledge wfamuisual perception,
we design new tone mapping models, evaluate existing #hmoesi and improve their
results to provide a high fidelity depiction of HDR appeamnc

The subjective appearance of natural scenes is highly mdegeby the perceptual ef-
fects caused in the early stages of human vision. Thesa®#iee stimulated by abso-
lute luminance levels and are not present when observingatd displays. To account
for this, we develop computational models that predict antikate these perceptual
effects and we embed their appearance in the tone mapped e@uents such that the
depicted scenes are perceived by the human vision in the wameas in the natural
conditions. We efficiently combine these models with a highliy tone mapping and
achieve real-time performance.

The key perceptual dimension of image appearance relatediabrange is lightness.
Therefore the high fidelity depiction of HDR contents reqaithat lightness is well re-
produced during the tone mapping. To address this, we desigmputational model
of the modern lightness perception theory and apply it taioldtigh quality tone map-
ping for static images. A comparison with the existing methdemonstrate that our
model leads to a more accurate reproduction of appearartidBRfscenes.

The reduction of tonal range during tone mapping inheratiijorts contrasts of orig-
inal HDR data and a too strong distortion impedes the congmgbn of image con-
tents. By simulating the human perception of contrasts wsgdeobjective metrics
that can measure the perceived magnitude of such disterind we evaluate existing
tone mapping operators accordingly. Our evaluation pexigerceptually meaningful
information and facilitates the choice of an appropriateetmapping algorithm.

Finally, to overcome the observed distortions we introdaiceethod which improves

the tone mapping results beyond numerically optimizedtswilby using techniques

inspired by contrast illusions. We automatically identifyage features which require
restoration and insertinto an image the so called courdadisp profiles which robustly

enhance the perceived magnitude of contrasts with a spase®f tonal range. We

further develop a visual detection model which assuresdhaenhancement are not
perceived as objectionable artifacts. Our new image psiogdool generalizes the
well-known unsharp masking.

Overall, the methods presented in this dissertation sstdgsimprove and evaluate
the fidelity of tone mapping by an insightful use of knowle@dp@ut human visual per-
ception. Presented solutions can be efficiently integrate@ried HDR applications
including photography, playback of HDR video, image sysibelighting simulation,

predictive rendering, and computer games.



Zusammenfassung

Methoden @ir hohen Kontrastumfang (HDRiperwinden die Abwrtsbesctankungen
fur Kontrast- und Tonumfang in Digitalbildern und Videosg gitzt ausreichend sind
um die kompletten Informationeiiber Licht in der Natur aufzunehmen. Die Anzeige
des HDR Inhalts erfordert jedoch einen Algorithmiis Tonabbildung, um das ur-
spiingliche Aussehen auf vorhandenen Bildschirmen, deédigkeiten im Kontrast-
umfang unzureichend sind, darzustellen. Leider verrindger Tonabbildungsprozess
schon an sich die urs@ngliche Qualét des HDR Inhalts. Um eine hohe Qualiter
Wiedergabetreue der HDR zu géhrleisten, kombinieren wir Computergraphik und
Bildverarbeitung mit dem Wissen der menschlichen WahrnetgnDamit entwerfen
wir neue Tonabbildungsmodelle, bewerten vorhandene Algoen und verbessern
die Ergebnisse von existierenden Algorithmen.

Wir entwickeln eine Echtzeit-Tonabbildungsung, die das subjektive Aussehen des
dynamischen HDR Inhalts unter Beksichtigung der Wahrnehmungseffekte, die er-
heblich zum Aussehen der iaichen Szenen beitragen, reproduziert. Das subjekti-
ve Erscheinungsbild der riatichen Szenen wird stark durch die Effekte, die in den
frihen Stadien des menschlichen Sehens verursacht werasni|usest. Diese Wahr-
nehmungseffekte werden von absoluten Luminanzniveausreggund sind bei der
Beobachtung auf gedhnlichen Bildschirmen nicht vorhanden. Um dieses ziiltler
sichtigen, entwickeln wir Berechnungsmodelle die dieséniahmungseffekte vor-
aussagen und simulieren. Wir lassen diese Effekte in diefifdungsergebnisse
einflieRen, so dass die auf dem Bildschirm dargestellteme&zgenauso wie unter
natirlichen Bedingungen wahrgenommen werden. Wir kombinidiese Modelle mit
einer hoch-qualitativen Tonabbildung und erzielen Edti&stung.

Das wichtigste Wahrnehmungsmald des Bildaussehenglegz Tonumfang ist die
Helligkeit. Infolgedessen erfordert eine hohe Wiederg@he des HDR Inhalts eine
gute Reproduktion der Helligkeitsvorstellungalarend der Tonabbildung. Daf ent-
werfen wir ein Berechnungsmodell basierend auf der ThetaidHelligkeitswahrneh-
mung und wenden efiff die Tonabbildung von statischen Bildern an. Ein Verdieiat
vorhandenen Methoden zeigt, dass unser Modell zu eingstisaheren Wiedergabe
des Aussehens der HDR Szenéhrt.

Die Tonumfangreduzierungatrend der Tonabbildung verzerrt Kontraste der unsg¥

lichen HDR Daten, und eine zu starke Verzerrung behindexrMdastindnis des Bild-

inhalts. Daher entwerfen wir Metriken, die die wahrgenomen&bl3e dieser Verzer-
rungen messen indem sie die menschliche Wahrnehmung vamalsten simulieren.
Dadurch sind wir in der Lage vorhandene Tonabbildungsélgunen entsprechend
auszuwerten. Unsere Auswertung liefert wahrnehmungssileninformationen und

erleichtert die Wahl einer passenden Tonabbildungsmethod

SchlieRlich, zum abgleichen beobachteter Verzerrungkreh wir eine Methode vor,
die das Tonabbildungsergebriiber die humerisch optimiertedlsung hinaus verbes-
sert, indem sie eine starke optische Kontéasithung ausnutzt. Wir identifizieren au-
tomatisch die Bildregionen welche eine Wiederherstellerigrdern undiigen so ge-
nanntecountershadingprofile ein. Diese Profile steigern robust die Wahrnehmumg vo
Kontrasten und verbrauchen dabei sparsam den Kontrasigmifiéeiterhin entwickeln
wir einen Erkennungsmodel das g#wleistet, dass unsere Kontrastwiederherstellun-
gen als keine sichtbaren Artefakte wahrgenommen werdesetureues Bildverarbei-
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tungswerkzeug generalisiert eine Standardmethode dienalsarp maskindgpekannt
ist.

Die aufschlussreiche Anwendung des Wisséber das menschliche visuelle System
in unseren Methoden, die in dieser Doktorarbeit dargestedtden, erlaubt eine er-
folgreiche Auswertung und Verbesserung der Wiedergabetdes HDR Inhalts. Die
dargestellten bisungen knnen in vielseitigen HDR Anwendungen einschlielich Foto-
graphie, Wiedergabe von HDR Videos, Bildsynthese, GloBaleuchtung, und Com-
puterspielen effizient integriert werden.
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Chapter 1

Introduction

The recent advances in digital image processing known dsBygamic Range (HDR)
imaging bring a totally new visual experience to recording displaying real-world
equivalent images and video. The HDR techniques promisensti@ined capture of
complete light information about scenes, high quality pssing, and reproduction on
various media with a high fidelity to the real-world appea@ean

Historically, the 8-bit representation of visual data, e¥hprevails in both digital cap-
ture and display devices, sets a hard limit on the range @fstéimat can be recorded,
processed, and viewed. The choice of such representatemeskto be well moti-
vated in 90s, when digital image processing proliferatetaise it corresponded to
the technical capabilities of devices at that time and effesomparable characteris-
tics to analogue photography and video which could haveeseas a requirements’
reference. Nowadays, practically all devices related ¢ontlain-stream digital image
and video processing are manufactured according to thelatds developed at that
time despite significant technological advances in the figlthile such a long-term
standardization is advantageous in bridging varied telclgnes in video and media
industry, this so called display-referred representatibwisual contents significantly
confines the visual experience of digital images and videnpared to the real-world
experience.

The HDR techniques abandon these legacy constraints ageélrpra revolutionary ap-
proach to capturing, storing, processing and displayingisafal contents. Primarily,

the quality of these processes is not any more driven by thatilities of existing de-

vices but is adequate to accommodate the complete infaymabout light in nature.

The intensity of tones in a usual natural scene may stroragly between major image
areas and very finely within details of materials and texduriéne 8-bit representation
of visual data often causes that very bright image areadligped to white, very dark

ones to black, and subtle light changes are rounded due tdigatgon, thus in each

of these cases a part of information about the original séefest. In contrast, the

HDR representation imposes no limit on the tonal range ant @t no loss of fine

details. Such a rich description of visual data permits gorecedented visual expe-
rience of watching movies and photographs, playing conmpgdenes, or inspecting
visualizations.

We are currently observing a rapid development of HDR teldgies at all stages of

1



2 CHAPTER 1. INTRODUCTION

image and video processing pipeline. The HDR can now be regptooth with the
new types of imaging sensors and also using standard camedaspecial software
techniques. Recently, even off-the-shelf digital camer@sequipped with exposure
bracketing feature which delivers HDR capture to amatewtqgraphers and the re-
quired algorithms are implemented in most of image proogssackages. Last years
have also brought dedicated file formats and compressidmitgees for HDR with
a notable example of OpenEXR which is now widely supportedweler, the final
stage of the pipe-line — the presentation is still in its megacy form, despite the
rapid growth of technical capabilities of displays inclugliresolution, contrast range,
and peak luminance levels. Even though the HDR displayseptes significant step
forwards and give an exciting foretaste of HDR experienkeirtcurrent capabilities
are not yet on a par with the real-world appearance. To btitggap between displays
and the rest of the pipeline, prior to display the HDR corderged to be processed us-
ing the so called tone mapping algorithm to adjust their toaage to the devices’
capabilities.

This dissertation is dedicated to an in-depth analysis eftttne mapping problem.
We approach the topic from an interdisciplinary point ofwjidbecause we observe
that a successful design of a tone mapping algorithm neectsntbine the knowledge
of computer graphics and image processing with the subistamderstanding of the
human visual perception. While much research has been gldeatk in the area, in

this thesis we do not limit our interest to introducing yebtoer new algorithm. Rather,
our aim is to select and apply the aspects of perception watichuld be considered
in the context of displaying HDR content, to investigate awdluate the perceptual
quality of existing tone mapping solutions, and to seekteiripossibilities for quality

improvement by exploiting knowledge of human visual system

1.1 Problem Statement

The extensive range of tones available in high dynamic rangges and video offers a
high fidelity representation of natural scenes. Yet, tharn@al capabilities of existing
display devices are insufficient to directly depict suctnnigsual contents. Therefore
a tone mapping algorithm is required which prior to displagluces the tonal range
of HDR data to match the devices’ capabilities. While suchducéon inherently
decreases the original quality of HDR contents, a successie mapping algorithm
should strive to depict HDR images with high fidelity to theliginals and at a minimal
side effect on quality.

The high fidelity of depiction requires that the appearanica tone mapped image
matches closely the true appearance of the original HDResard that the ability of
observes to comprehend image contents remains unafféctadrough understanding
of human visual perception is necessary to both estimat&ubkeappearance of HDR
and to design an algorithm that reduces the tonal range wialataining the appear-
ance unchanged. In particular, one needs to identify whigeets of human visual
perception have a significant contribution to the appearand to build corresponding
computational models. For real-time applications, adddlly a balance between the
complexity of the models and their accuracy has to be found.

The reduction of tonal range inherently distorts the oagiiDR data to some extent
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and a too strong distortion impedes the comprehension afércantents. The quality
of tone mapping operators could be measured by the degrehith whe distortions

have been avoided. For this, a metric has to be designedstladiié to compare the
perceptibility of corresponding image contents betweemitnages with different tonal
range — the tone mapping result and the original HDR. Furtbeachieve the highest
fidelity of HDR depiction the perceivable distortions degetby the metric should be
restored in a post tone mapping step. Although, if one assuha tone mapping
results are obtained as the most optimal numerical solusioch a restoration would
have to overcome the numerical limits.

In the scope of this dissertation we cover all of the said etspaf tone mapping. We
first develop a real-time tone mapping solution which repoes the subjective appear-
ance of dynamic HDR contents by accounting for perceptdatts that significantly
contribute to the appearance of natural scenes. We thegndasiomputational model
of lightness perception that can be applied to high quadibhetmapping for static im-
ages to reproduce the original HDR appearance of tones., Mexidentify common
distortions typical to tone mapping which may hinder the poghension of image
contents, we design appropriate metrics to measure theipedcmagnitude of these
distortions, and evaluate existing tone mapping algoritlamcordingly. To compen-
sate for observed distortions, we introduce a method winigiréoves the tone mapping
results beyond numerically optimized solution by usindteques strongly based on
perception of contrasts. Presented solutions can be etficiategrated in varied HDR
applications including photography, playback of HDR vid@eage synthesis, lighting
simulation, predictive rendering, and computer games.

1.2 Main Contributions

The fundamental ideas discussed in this dissertation Hexady been partially pub-
lished in international journals and presented at confezenThey have been further
summarized in the overview papersidntiuk et al. 2007aMantiuk et al. 2007h

in the books Krawczyk et al. 2007pMyszkowski et al. 200B and at the tutorial
[Myszkowski and Heidrich 2005 Here, they are combined under the common con-
cept of applying the knowledge of human visual perceptiothéoprocessing of high
dynamic range visual contents for standard displays. \W#pect to these publications,
we revise presented methods and demonstrate improvedsteBlaé key contributions
can be summarized as follows:

e Real-time tone mapping with simulation of perceptual éfetVe design a real-
time implementation of the photographic tone reprodudtiagraphics hardware
and extend it at a minimal computational cost with selectetgptual effects
which significantly influence the appearance of scenes. gffiebts convey the
subjective impression of night scenes and bright light sesiwhich normally
is not communicated on standard displays. We use this top@imgalgorithm
in the HDR video player and in real-time realistic image bsis. Krawczyk
et al. 2005¢Mantiuk et al. 2004Dmitriev et al. 2004Havran et al. 2005

e Computational model of lightness perception. Based on eriitise model of
the anchoring theory of lightness perception we developapeational model
which aims at the accurate reproduction of HDR image appearin terms
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of lightness. We validate the model by simulating the appeee of known
perceptual illusions and apply it to tone mapping for higlelity reproduction
of HDR. [Krawczyk et al. 2005/Krawczyk et al. 2006Krawczyk et al. 2007

e Objective evaluation of tone mapping operators. We idgtintrast distortions
that typically happen in tone mapping because of the dynaamge reduction.
We design appropriate metrics that measure the perceivegitade of these
distortions, and evaluate existing tone mapping algosttancordingly. Our
evaluation facilitates the choice of an appropriate tongpitay algorithm un-
der certain known requirements and permits to easily coenpaw algorithms
to the state-of-the-artSmith et al. 200p

e Contrast restoration by adaptive countershading. Thdtsesfiour evaluation
indicate that all existing tone mapping operators intredaccertain degree of
contrast degradation. We observe that the perceived matgndf contrast can
be robustly increased with a sparing use of tonal range bywathealled coun-
tershading profiles. We automatically identify the imagatdiees which require
restoration and insert suitable profiles into the tone mappésult. A supra-
threshold visual detection model assures that our enhartetho not introduce
objectionable artifacts Krawczyk et al. 2007

1.3 Chapter Overview

This dissertation is structured as follows. In the next ¢hapve give general infor-
mation on image representations and introduce the field g Biynamic Range. In
Chapter3 we explain the fundamentals of human visual perception kvare relevant
to the topics discussed in this thesis. Our real-time toneping method for dynamic
HDR contents is presented in ChapdeiThe computational model of lightness percep-
tion is derived in Chaptes together with the demonstration of various applications. W
evaluate existing tone mapping operators in Chapterd design a contrast restoration
method in Chapte?. The dissertation is summarized in Chaewrith conclusions
and outlook for future work. Additionally, in Appendik we describe in details the
calibration of standard and HDR cameras which is useful iuwwa HDR contents
used throughout this thesis and in AppenBixve describe our Open Source software
for working with HDR images and video.



Chapter 2
High Dynamic Range Imaging

We start this dissertation with an introduction to the fiditligh dynamic range (HDR)

imaging. We explain here the difference between the stantigital image representa-
tion and the new high dynamic range imaging and indicate dvargtages of the latter.
We give an overview of capture techniques that can provid&kHbages and HDR

video which are used as input in the methods presented irotlosving chapters. We

further explain in detail the process of tone mapping whickthe main focus of this
thesis. For a broader picture, we also briefly review the g@tasnof applications in

which high dynamic range imaging is particularly attraetiv

2.1 Digital Images and Color Spaces

The topics discussed in this thesis focus around digitaggsand video. The digital
image is a numerical data structure for representationsefalicontents. It consists of
usually rectangular matrix of image elements — pixels. Hzixél has an individually
defined intensity. The intensity is usually described bgé¢hmumbers to define color,
but it can also be one number for monochrome images or mordensior multi-
spectral data. The numbers are called color components.

The way in which the color components determine the actuak ¢® defined by the
specific color space that is used. The most popular coloresfracadigital images is
sSRGB [Stokes and Anderson 19P6It defines color by three primaries: red, green,
blue, and follows the additive mixing modéHl{int 1993. The additive mixing model
means that each number defines how much of each of the priigaitg have to be
emitted to create the desired color. The sRGB standard detfieespectral specifica-
tion of these three primaries, which is the same as the re@mdation for standard
displays [TU 1990, and the nonlinear transformation between the physidahiity
of these primaries and the actual 8-bit number stored inidgitatimage — the gamma
correction. This color space is matched to the so calledlatandisplay whose spec-
ifications are a reference for the manufactures and guarangimilar appearance of
visual contents on various media that follow the standattliding also cameras, scan-
ners, and printers. Unfortunately, the SRGB specificatiotailored for displays and
it is not capable of representing the complete light infaiorain the scene. The rep-

5
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name formula example context
contrastratio  CR=1:(Ypeak/Ynoise) 1:500 displays

log exposure range B 10g;o(Ypeak) — 10919(Ynoise) 2.7 orders  HDR imaging,
L = l0g,(Ypear) — 109, (Ynoise) 9f-stops  photography

signal to noise ratio  SNR: 20-10g;¢(Ypeak/ Ynoise) 53 [dB] digital cameras

Table 2.1: Measures of dynamic range and their context dicgtipn. The example
column illustrates the same dynamic range expressed ireéliff units.

resentation of certain colors or brightness levels reguiaues that lay outside the
specified 8-bit range.

The CIE XYZ is a special color space, which is based on direzasarements of the
human eye, that can describe all apparent colors at all liylets. Although the tris-
timulus representation does not define all possible spdttiaes allow to recreate all
possible perceptible colors becausenmétamerisn{see Hunt 1995). Metamerism
occurs when two color samples of different spectral powstrithution appear to be of
the same color. It happens because color is sensed by husian wiith three types
of photoreceptors that respond to a cumulative energy fra@rtin range of wave-
lengths (SectioB.1.2. The primaries of XYZ color space, however, do not correspo
to these response functions. Instead, the Y component aslesigned to correspond
to luminance — the amount of luminous power perceived by admueye, and X, Z pri-
maries have been optimized for metameric matches. All corapis are described by
non-negative real numbers.

The CIE XYZ is a generic color space and it serves as a bagis\irleich many other
color spaces are defined, but itself is not popular in praktise, because the majority
of devices are based on RGB primaries. To combine the gétyayBKYZ space with
the popularity of RGB, the non-linearity and 8-bit restoct of SRGB color space is
dropped. The RGB intensities are in this case linearly edlab luminance, but the
representation of some colors requires negative valueseoptimaries which is not
physically correct. Nevertheless, such linear RGB reprtagion of digital images is
particularly common in high dynamic range imaging whicheésctibed further in this
chapter. Digital images and video with linear RGB represgéomn can be captured us-
ing photometrically calibrated camera systems as exglama@ppendixA, or obtained
through color space conversions. These conversions aces@lespecified by math-
ematical equations and can be found for instancédiimf 1995 Wyszecki and Stiles
200Q0.

2.2 Dynamic Range

In principle, the terndynamic ranges used in engineering to define the ratio between
the largest and the smallest quantity under consideratdth respect to images, the
observed quantity is the luminance level and there are gemagasures of dynamic
range in use depending on the applications. They are sumedan Table2.1

The contrast ratiois a measure used in display systems and defines the ratiedretw
the luminance of the brightest color it can produce (whitg) the darkest (black). In
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case the luminance of black is zero, as for instance in HDRlaljs [Seetzen et al.
2004, the first controllable level above zero is considered agiirkest to avoid infin-
ity. The ratio is usually normalized by the black level foarty.

Thelog exposure ranges a measure commonly adopted in high dynamic range imag-
ing to measure the dynamic range of scenes. Here the coedid#io is between the
brightest and the darkest parts of a scene given in lumindrelog exposure range is
specified in orders of magnitude which permits the expressisuch ratios in a con-
cise form using the logarithmic base 10 and is usually trtettéo one floating point
position. It is also related to the measure of allowed exposuor in photography —
exposure latitude. Thexposure latitudés defined as the luminance range the film can
capture minus the luminance range of the photographed sgcehis expressed using
logarithm base 2 with precision up 0. The choice of logarithm base is motivated by
the scale of exposure settings, aperture closure (f-stopbshutter speed (seconds),
where one step double or halfs the amount of captured lightisThe exposure lati-
tude tells the photographers how large a mistake they cae maetting the exposure
parameters while still obtaining a satisfactory image sTheasure is mentioned here,
because its unitg;stop step®r f-stopsin short, are often perhaps incorrectly used in
HDR photography to define the luminance range of a photog@@phene alone.

The signal to noise ratigdSNR) is most often used to express the dynamic range of a
digital camera. In this context, it is usually measured asrtio of the intensity that
just saturates the image sensor to the minimum intensityctra be observed above
the noise level of the sensor. It is expressed in decibel} dBig 20 times base-10
logarithm.

The actual procedure to measure dynamic range is not welletefind therefore the
numbers vary. For instance, display manufacturers oftemsore the white level and
the black level with a separate set of display parametetsatiedine-tuned to achieve
the highest possible number which is obviously overestahand no displayed image
can show such a contrast. On the other hand, HDR images adtenvery few pixels
of extremely bright or dim value. An image can be low-pasert before the actual
dynamic range measure is taken to assure a reliable estiim&iich filtering averages
the minimum luminance thus gives a reliable noise floor, andathes single pixels
with very high luminance thus gives a reasonable maximumligudp estimate. Such
a measurement is more stable compared to the non-blurreshamaxand minimum
luminance.

2.3 Low vs. High Dynamic Range

The termlow dynamic rangéLDR) refers in general to the 8-bit and 16-bit represen-
tations of visual contents, which are currently the most imam standards in digital
imaging. Such LDR representation is practically suppokgall consumer products
including digital cameras, scanners, displays, printmsage formats and media. Im-
portantly, the term does not, however, refer to the numbbiteper se, but rather to the
maximum dynamic range that such representation can accdatmand to its output
oriented design.

The LDR contents do not actually store the measured scenesadptured by a cam-
era, but their processed version which can be directly ¢ieghion a typical display
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Standard (Low) Dynamic Range High Dynamic Range
50 dB Camera Dynamic Range 120 dB
1:200 Display Contrast 1:15,000
8-bit or 16-bit Quantization floating point or variable
display-referred Image Representation scene-referred
display-limited Fidelity as good as the eye can see

Figure 2.1: The advantages of HDR compared to LDR from thdiegdjons point
of view. The quality of the LDR image have been reduced on ggefo illustrate a
potential difference between the HDR and LDR visual corstefithe given numbers
serve as an example and are not meant to be a precise reference

device. Such direct depiction will closely match the appaae of the photographed
scene as long as a display follows the “standard displaymewndations”[TU 1990.
These specifications, developed in the 90s, are adjustd toapabilities of the dis-
plays at that time and are also appropriate for other mediaasi prints and projectors.
For the price of compatibility, these specifications areyvestrictive and in principle
limit both the maximum dynamic range and the color gamut sfial contents. More-
over, they are currently outdated by rapid advances in captod display technology.

The main goal ohigh dynamic rangéHDR) imaging is to abandon such legacy restric-
tions and to provide the precise representation of realdiimht intensities that define
the entire scene appearance. Unlikedisplay-referredrepresentation typical to LDR
contents, the precision of suchsaene-referredepresentation matches or surpasses
capabilities of human vision and in principle correspora$he original light values
captured from a scene. In practice, the term high dynamigeasmused with respect
to the visual contents whose dynamic range is higher thanothaDR contents and
whose intensities are linearly proportional to the origjinaninance or actually equal
to it. The accommodate such a rich representation, datarisdsin variable precision
formats, often directly in floating point format. The pertueglly best motivated repre-
sentation of the HDR contents is the CIE XYZ color space, falty photometrically
calibrated Mantiuk et al. 2007a

From an applications point of view, the HDR technologiesveéelmore capture and
display contrast, more precise quantization, and highler ¢alelity. In photography,
the true range of real world luminance permits scene captina are free of under-
and over-exposures. These qualities are summarized anthsét in Figure.1 There
is, however, one caveat. The display-referred representgtiarantees approximately



2.4. CAPTURE TECHNIQUES CAPABLE OF HDR 9

the same appearance of visual contents on any media as ldhgyaf®llow the stan-
dards, because they have been stored according to the standdne scene-referred
representations are in most cases impossible to be dideglicted on even the most
current devices and require that an appropriate rendedapgéns prior to or during the
display. New recommendations can hardly be proposed in efes@nstantly improv-
ing display capabilities. A reasonable assumption, whalldguarantee the same as
display-referred representations, is that a display néng@lgorithm should aim at the
reproduction of the original appearance of a scene givenahabilities of the particu-
lar device. Such appearance reproduction for display pa®s the main focus of this
dissertation.

2.4 Capture Techniques Capable of HDR

In recent years several new techniques have been develogedre capable of cap-
turing images with a dynamic range of up to 8 orders of mageitat video frame
rates. In principle, there are two major approaches to ciagtsuch a high dynamic
range: to develop new HDR sensors or to expose LDR sensoightoak more than
one exposure level and later recombine these exposureeristbigh dynamic range
image by means of a software algorithm. With respect to tlversst approach, the
variation of exposure level can be achieved in three way® éX¥posure can change
in time, meaning that for each video frame a sequence of imafjhe same scene is
captured, each with a different exposure. The exposureltamge in space, such that
the sensitivity to light of pixels in a sensor changes sfigtand pixels in one image
are non-uniformly exposed to light. Alternatively, an @ali element can split light
onto several sensors with each having a different expostiag. \WWe summarize such
software and hardware solutions to HDR capture in the fotigvgections.

2.4.1 Temporal Exposure Change

This is probably the most straightforward and the most papulethod to capture HDR
with a single low dynamic range sensor. Although such a sezeguiures at once only
a limited range of luminance in the scene, its operatinge@aran encompass the full
range of luminance through the change of exposure parasndteerefore a sequence
of images, each exposed in such a way that a different ranigeniiance is captured,
may together acquire the whole dynamic range of the scereFigeire2.2 Such
captures can be merged into one HDR frame by a simple averagipixel values
across the exposures, after accounting for a camera resposnormalizing by the
exposure change (for details on the algorithm refer to AdpeA). Theoretically,
this approach allows to capture scenes of arbitrary dynaamge, with an adequate
number of exposures per frame, and exploits the full regsind capture quality of
a camera.

HDR capture based on the temporal exposure change has, érpwestain limitations
especially in the context of video. Correct reconstructibiiDR from multiple im-
ages requires that each of the images capture exactly the seene at a pixel level
accuracy. This requirement cannot be practically fulfilledcause of camera motion
and motion of objects in a scene, and pure merging technilgagsto motion arti-
facts and ghosting. To improve quality, such global andlldisplacements in images
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exposure t; exposure tp exposure t3 HDR frame

1 1
1 1(30 10(I)00 Luminance [cd/m2]

Figure 2.2: Three consecutive exposures captured at inatgetime steps, to, t3
contain different luminance ranges of a scene. The HDR framasged from these
exposures contains the full range of luminance in this sceb¥R frame tone mapped
for illustration using a lightness perception inspirechtgique Krawczyk et al. 2005p

within an HDR frame must be re-aligned using for instancecapflow estimation.
Further, alignment of images that constitute one frame tvae ttemporarily coherent
with adjacent frames. A complete solution that captures images per frame and
allows for real-time performance with 25 fps HDR video captis described infang
et al. 2003 An alternative solution that captures a much larger dyicarange of
about 140dB, but does not compensate for motion artifaetgasable from Uner and
Gustavson 2047

The temporal exposure change requires a fast camera, leetteusffective dynamic
range depends on the amount of captures per frame. For ¢estaR00Hz camera is
necessary to have a 25fps video with 8 captures per framedhajive an approximate
dynamic range of 140dBJner and Gustavson 20D ®Vith such a short time per image
capture, the camera sensor must have a sufficiently higlitigéngo light to be able
to operate in low light conditions. Unfortunately, such a$ted sensitivity usually
increases noise.

2.4.2 Spatial Exposure Change

To avoid potential artifacts from motion in the scene, thpasure parameters may
also change within a single captufddyar and Mitsunaga 20Cas an alternative to
the temporal exposure change. The spatial exposure changeally achieved using
a mask which has a per pixel variable optical density. Thebrrmof different optical
densities can be flexibly chosen and they can create a reguteegular pattern. Nayar
and MitsunagaNayar and Mitsunaga 20D@ropose to use a mask with a regular
pattern of four different exposures as shown in Fig2u® Such a mask can be then
placed directly in front of a camera sensor or in the lens betwprimary and imaging
elements.
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[n

scene capture without the mask mask with optical densities scene capture through the mask
varying per pixel (varying pixel exposures)

Figure 2.3: Single exposure using a standard image sensooteapture full dynamic
range of the scene (left). The mask with per pixel varyindogpptdensitieses; = 4e, =
16e; = 64ey (middle) can be put in front of a sensor. Using such a maskast lene
pixel per 4 is well exposed during the capture (right). Thghtimage is best viewed
in the electronic version of the thesis.

For the pattern shown in Figu&3, the full dynamic range can be recovered either by
aggregation or by interpolation. The aggregation is penéat over a small area which
includes a capture of that area through each optical dertbkitg at several different
exposures. The different exposures in the area are combitedne HDR pixel by
means of a multi-exposure principle explained in the pnewisection, at the cost of
a reduced resolution of the resulting HDR frame. To pres#rgeoriginal resolution,
HDR pixel values can also be interpolated from adjacentlpikea similar manner
as colors from the Bayer pattern. Depending on the lumindeesds, aliasing and
interpolation artifacts may appear.

The effective dynamic range in this approach depends onuhwar of different op-
tical densities available in the pattern. A regular pattefd densities, as shown in
Figure2.3, such thats = 4e; = 16e; = 64ey gives a dynamic range of about 85dB for
an 8-bit sensoMayar and Mitsunaga 20D0T he quantization step in the reconstructed
HDR frame is non-uniform and increases for high luminaneelke The size of the
step is, however, acceptable, because it follows the gamnva.c

An alternative implementation of spatial exposure chadgkptive Dynamic Range
Imaging (ADRYI), utilizes an adaptive optical density masktead of a fixed pattern
element Nayar and Branzoi 2003 Such a mask adjusts its optical density per pixel
informed by a feedback mechanism from the image sensor. Jdiusated pixels in-
crease the density of corresponding pixels in the mask, aisy pixels decrease. The
feedback, however, introduces a delay which can appeangsotal over- or under-
exposure of moving high contrast edges. Such a delay, whidfiriimally one frame,
may be longer if the mask with adapting optical densitiestigis latency.

Another variation of spatial exposure change is impleneite sensor whose pixels
are composed of more than one light sensing element eachiohwhs a different
sensitivity to light Street August 1998 This approach is, however, limited by the size
of the sensing element per pixel, and practically only tvearednts are used. Although
in such a configuration, one achieves only a minor improvernmethe dynamic range,
so far only this implementation is applied in commercial eaas (Fuji Super CCD).
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2.4.3 Multiple Sensors with Beam Splitters

Following the multi-exposure approach to extending dymrarange, one can capture
several exposures per video frame at once using beam sp[Atggarwal and Ahuja
2004. The idea, so called split aperture imaging, is to direetlight from the lens
to more than one imaging sensor. Theoretically this allawsapture HDR without
making any quality trade-offs and without motion artifacks practice, however, the
effective dynamic range depends on the number of sensaisrudee camera and such
a solution may become rather costly when a larger dynamigerédesired. Further,
splitting the light requires an increased sensitivity @& #ensors.

2.4.4 Solid State Sensors

There are currently two major approaches to extend the digneange of an imag-
ing sensor. One type of sensor collects charge generateldebyhioto current. The
amount of charge collected per unit of time is linearly retato the irradiance on the
chip (similar to a standard CCD chigdnesick 200}, the exposure time is however
varying per pixel (sometimes called “locally auto-adagtijlLulé et al. 1999. This
can for instance be achieved by sequentially capturingiphellexposures with differ-
ent exposure time settings or by stopping after some timexpesure of the pixels
that would be overexposed during the next time step. A setygredof sensor uses the
logarithmic response of a component to compute the logarihthe irradiance in the
analog domain. Both types require a suitable analog-digitaversion and generate
typically a non-linearly sampled signal encoded using 8sit$per pixel value. Sev-
eral HDR video cameras based on these sensors are alreadyeccially available.
Such cameras allow to capture dynamic scenes with highasintand compared to
software approaches, offer considerably wider dynamigeamnd quality independent
of changes in the scene content as frame-to-frame coheienaoerequired. The prop-
erties of two of such cameras: HDRC VGAXx from IMS-CHIR$offlinger 2007 and
Lars 11l from Silicon Vision are studied in detail in Sectiém.

2.5 Tone Mapping

The contrast and brightness range in typical HDR imagesegisceapabilities of cur-
rent display devices or print. Thus these media are inadedoairectly reproduce the
full range of captured light. Tone mapping is a techniquettier purpose of reducing
contrast and brightness in HDR images to enable their depion LDR devices. The
process of tone mapping is performed by a tone mapping aperat

Particular implementations of a tone mapping operator ariee and strongly depend
on a target application. A photographer, computer grapaitist or a general user
will most probably like to simply obtain nice looking imagda such cases, one most
often expects a good reproduction of appearance of an atigiDR scene on a display
device. In simulations or predictive rendering, the go&l®ne mapping may be stated
more precisely: to obtain a perceptual brightness matokd®mt HDR scene and tone
mapped result, or to maintain equivalent object detectafopmance. In visualization

or inspection applications often the most important is &sprve as much of fine detail
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information in an image as possible. Such a plurality of ofijes lead to a large
number of different tone mapping operators.

Various tone mapping operators developed in recent yearsegeneralized as a trans-
fer function which takes luminance or color channels of anRH&ene as input and
processes it to output pixel intensities that can be digglayn LDR devices. The input
HDR image can be calibrated so that its luminance is expdgss8| unitscd/m? or

it may contain relative values which are linearly relateduminance. The transfer
function may be the same for all pixels in an image (globakafug) or its shape may
depend on the luminance of spatially local neighbors (lop&lrator). In principle, all
operators reduce the dynamic range of input data. Since ofidké algorithms pro-
cess only luminance, color images have to be converted ttbasace that decouples
luminance and chrominance, e.g. Yxy. After processingtdhe mapped intensities
are used instead of the original luminance in the inversesfoam to the original color
space of the image.

2.5.1 Luminance Domain Operators

The most néve approach to tone mapping is to “window” a part of luminangnge in
an HDR image. That is to map a selected range of luminance @aslimear transfer
function to a displayable range. Such an approach, howeseders dark parts of
image black and saturates bright areas to white, thus remakie image details in the
areas. A basic sigmoid function:

Y
L= L (2.1)
maps the full range of scene luminan¢en the domain[0,inf) to displayable pixel
intensitiesL in the range of0,1). Such a function assures that no image areas are
saturated or black, although contrast may be strongly cessed. Since the mapping
in equation 2.1) is the same for all pixels, it is an example of a global tongpirag
operator. Other global operators include logarithmic niragfDrago et al. 2001 the
sigmoid function derived from photographic proceReinhard et al. 2002a mapping
inspired by the response of photoreceptors in the humanRgmfiard and Devlin
2004, a function derived through histogram equalizatigvejd et al. 199 The subtle
difference in tone mapping result using these functiondlustrated in Figure?.4.
Usually, one obtains a good contrast mapping in the mediughtoess levels and
low contrast in the dark and bright areas of an image. Thesefotuitively, the most
interesting part of an image in terms of its contents shoeldnlapped using the good
contrast range. The appropriate medium brightness leveéh@éomapping is in many
cases automatically determined as a logarithmic averadenahance values in an
image:

2.2)

YA_eXp<zlog(Y+s)> e

N

whereY denotes luminance\ is the number of pixels in an image, aadlenotes a
small constant representing the minimum luminance vall YL value is then used
to normalize image luminance prior to mapping with a tran&faction. For example,
in equation 2.1) such a normalization would map the luminance equa¥tdo 0.5

intensity which is usually displayed as middle-gray (beftimle gamma correction).
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Figure 2.4: Comparison of global transfer functions. Thet glustrates how lumi-
nance values are mapped to the pixel intensities on a disflhg steepness of the
curve determines the contrast in a selected luminance rabgeinance values for
which display intensities are close to 0 or 1 are not transfer Source HDR image
courtesy of Greg Ward.

TheY, is often called the adapting luminance, because such a tiratian is similar
to the process of adaptation to light in human vision.

2.5.2 Local Adaptation

While global transfer functions are simple and efficient mdthof tone mapping, the
low contrast reproduction in dark and bright areas is a disaihge. To obtain a good
contrast reproduction in all areas of an image, the trarigfation can be locally ad-
justed to a medium brightness in each area:

Y/

L=c—
Y +1

(2.3)

whereY’ denotes HDR image luminance normalized by the globally tdgpumi-
nanceY’ =Y /Ya andY, is the locally adapting luminance. The value of globally
adapting luminance&/ is constant for the whole image, while the locally adapting
luminancey] is an average luminance in a predefined area centered arauhdane
mapped pixel. Practically, th¢' is computed by convolving the normalized image
luminanceY’ with a Gaussian kernel. The standard deviation of the kesngtfines
the size of an area influencing the local adaptation and lyscairesponds in pixels
to 1 degree of visual angle. The mechanism of local adaptési@gain inspired by
similar processes occurring in human eyes. FiguEsllustrates the improvement in
tone mapping result through introduction of local adaption

The details are now well visible in dark and bright areas efithage. However, along
high contrast edges one can notice a strong artifact visibléark and bright outlines
— the halo. The reason why such artifact appears is illestrit Figure2.6. Along a

high contrast edge the area of local adaptation includds figh and low luminance,
therefore the computed average in the area is inadequadmyasf them. On the side
of high luminance the local adaptation is more and more uadémated as the tone
mapped pixels are closer to the edge, therefore equati8rgfadually computes much
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of visual angle.
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Figure 2.5: Tone mapping result with global, equati®ri), and local adaptation, equa-
tion (2.3). The local adaptation (right) improves the reproductibdetails in dark and
bright image areas, but introduces halo artifacts alonf bantrast edges.
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Figure 2.6: The halo artifact along a high contrast edgé) @#fd plots illustrating the

marked scanline. Gaussian blur (under-) over-estimatetal adaptation (red) near
a high contrast edge (green). Therefore the tone mappeceifbhge) gets too bright

(too dark) closer to such an edge.

higher intensities than appropriate. The reverse happetfseoside of low luminance.
A larger blur kernel spreads the artifact over a larger andsle a smaller blur kernel
reduces the artifact but also reduces the reproductiontaflgle

2.5.3 Prevention of Halo Artifacts

Many image processing techniques have been researcheevenpthe halo artifacts
out of which the notable solutions are automatic dodginglanding [Reinhard et al.
2007 and the use of bilateral filtering instead of Gaussian burgnd and Dorsey
2003.

The automatic dodging and burning technique derives iaéljt from the observation
that a halo is caused by a too large adaptation area, FAjGrbut also a large area is
desired for a good reproduction of details. Therefore, the sf the local adaptation
area is adjusted individually for each pixel location sugdt it is as large as possible
but does not introduce halo. The halo artifact appears as asdoth very high and
very low luminance values exist in an adaptation area andifgigntly change the
estimated local adaptation. Therefore, by progressivelyeiasing the adaptation area
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for each pixel, the following test can detect the appearaihbalo:
IML(X.Y, 1) = YL(X,Y, Gi+1)| < €. (2.4)

For each pixel, the size of the adaptation area, defined bgtdrelard deviation of
the Gaussian kerne, is progressively increased until the difference betwéenwo
successive estimates is larger than a predefined threshdlte result of the Gaussian
blur for the largest; that passed the test is then used for given pixel in equa®@ (
The example of estimated adaptation areas is illustrate€igare 2.7. The whole
process can be very efficiently implemented using the Gangsiramid structure as
described inReinhard et al. 2002

Figure 2.7: Estimated adaptation areas for pixels markddugscross. In each case,
the green circle denotes the largest, thus the most optidagitation area. A slightly
larger areas denoted as red circles would change the loaptattbn estimat¥ more
than acceptable threshold in equati@ and would introduce a halo artifact.

Bilateral filtering is an alternative technique to preveatds Durand and Dorsey
2003. The reason for halos, Figu26, can also be explained by the fact that the
local adaptation for a pixel of high luminance is incorrgdtifluenced by pixels of
low luminance. Therefore, excluding pixels of significgrdifferent luminance from
local adaptation estimation prevents the appearance ofinal smilar way as in equa-
tion (2.4). The bilateral filter Tomasi and Manduchi 1998 a modification of the
Gaussian filter which includes an appropriate penalizimgtion:

YW= % fo(llp—al)-Y 9o (IYP-Y)). (2.5)
9eN(P)

In the above equatiom denotes the location of the tone mapped pigelenotes pixel
locations in the neighborhodd( p) of p. The first two terms of equatiorfig, - Y9, define
Gaussian filtering with spatials. The last termgg,, excludes from the convolution
those pixels whose luminance value differs from the tonepadpmne by more than
or. Both f andg are Gaussian functions, and luminance is usually expreassea
logarithmic space for the purpose of such filtering. Thetbikal filtering process is
shown in Figure?.8.

Compared to the automatic dodging and burning, the bilefiéexr better reproduces
details at the edges, because in most cases a relativedy knep is used for estimation
of local adaptation. Although the exact computation of ¢éigug2.5) is very expensive,
a good approximation can be computed very efficienByrand and Dorsey 2002
Chen et al. 2007
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Figure 2.8: Bilateral filtering of a similar scanline as irgkie 2.6, here marked in
magenta. The penalizing functignimproves the estimation of the local adaptation
(red) by excluding pixels in the neighborhoddmagenta) whose luminance value is
outside the defined range (orange). Thus, the local adaptéir the pixel marked
with a cross (left image) is estimated only from the pixelghia area outlined in green,
while the Gaussian blur would also include pixels in the anained in red.

2.5.4 Contrast Domain Operators

The tone mapping methods discussed so far perform the dgmange reducing oper-
ations directly on luminance or on color channel intensitidowever, one can observe
that an image with a wide range of luminance also containge leange of contrasts.
Therefore, as an alternative to luminance range compressantrast magnitudes in
the image can be reduced. Since the contrasts convey seatantormation in im-
ages, such a control over contrast can be advantageousngtanée, small contrasts
usually represent the reflectance properties of surfaiestexture, medium contrasts
often define the outlines of objects, and large contrastesept changes in illumina-
tion. Particularly, large contrasts are in most cases theecaf a high dynamic range.
By preserving small and medium contrasts, and reducing leogtrasts, one can re-
duce the dynamic range of illumination and at the same tirasgwe good visibility of
details from the original HDR image. Such a contrast basedgssing gives a better
control over transferred image information than the lumoebased operators. The
latter, however, give a better control over brightness rirappIn fact, it is hard to
impose a target luminance range for contrast based connpmess

A typical contrast based tone mapping operator includefolfmving steps. First, the

input luminance is converted to a contrast representaliba.magnitudes of contrasts
are then modulated using a transfer function for contrase-tdne mapping step. Next,
the modulated contrast representation is integrated w/ee¢he luminance informa-
tion, and such luminance is then scaled to fit the availabt@dhic range. Finally, since
the result of integration is calculated with an unknown etifshe image brightness of
the tone mapping result is adjusted.

Contrast in tone mapping applications is most often medsase logarithmic ratio of
luminance:
Yp
C=log va’ (2.6)

whereYP andYY denote luminance of adjacent pixel location. The contregtasen-
tation of an image is computed as a gradient oMpgince the logarithm of division is
equal to the difference of logarithms. For tone mappinghsucepresentation is often
multi-resolution to measure contrasts between adjaceatg{full resolution) and ad-
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jacent areas in an HDR image (coarser resolutions). Theasiatare then modulated
by a transfer function, for exampl&4ttal et al. 200R

a (lch\’
T(C)|C|-<a> . (2.7)
Given thatf € (0,1), such a function attenuates gradients that are strongaraha
and amplifies smaller ones. Thus,dfis equal to medium contrasts in an image,
equation 2.7) reduces the dynamic range caused by large differencelimiilation
and enhances fine scale details. More complex transferifunscare also possible
including for instance contrast equalizatidvigntiuk et al. 200 As the final step,
the modulated contrast representation of an HDR image Hasitdegrated in order to
obtain intensities in a tone mapped image. The integratemis performed by solving
the Poisson equation and the image brightness adjustnegrisdeft for manual setting
by a user. The stages of the contrast domain tone mappingssare illustrated in
Figure2.9.

(a) HDR image, clipped (b) contrast representation  (c) contrast transfer map (d) tone mapping result

Figure 2.9: Contrast domain tone mapping. The HDR images(&ansformed to a
contrast representation (b) which is multiplied by a casitteansfer function (c). The
contrast representation is then integrated to obtain a teaygped image (d). In (b)
white denotes strong local contrast and black no contrasfc)lblack denotes strong
contrast attenuation and white marks no change in locaftasint

255 Summary

In the previous sections we have introduced the generasidehind tone mapping
algorithms. Many variations of such algorithms exist thi#fedin subtle details from
each other and we refer the readerReinhard et al. 20Q5or detailed descriptions.

Remarkably, all tone mapping operators change the pixehgities in a tone mapped
image and their relations with spatial neighbors with respethe original HDR. The
nature of the algorithms is mostly inspired by typical imggecessing or computer
vision approaches and with some equations adopted fromrkipoacesses happening
in early stages of human vision. This imposes certain madliead properties of tone
mapped images and assures that basic appearance propigdiesiaptation to light,
are preserved. However, as explained in ChaRtdre appearance of images is largely
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influenced by processes occuring in later parts of the visygtem. Such later stages,
the cognitive processes, have so far not been studied inotiitext of tone mapping.
We argue that these process need to be considered to préseiweginal appearance
of HDR images during tone mapping, and in Chafiave propose a tone mapping
operator which is inspired by such a cognitive interpretatif scenes.

With a large number of available tone mapping algorithms sehiesults differ only
subtly, an evaluation framework would facilitate the cleoad an appropriate operator
for a given application. While several psychophysical eatiins have already been
conducted Prago et al. 2002Kuang et al. 2004Yoshida et al. 2005Ledda et al.
2004 which offer a form of ranking of available algorithms, tharfcular reasons why
some operators are preferred over others is not well uraets®lso, it is not easy to
evaluate new algorithms and include them in such rankingeréfore, in Chapteswe
propose an objective evaluation of tone mapping operatbishaallows to understand
the effect of tone mapping algorithms in terms of percepthange of contrasts and
brightness. We evaluate several state-of-the-art opsrataordingly.

2.6 HDR Applications

High dynamic range imaging offers an unprecedented quaflitgapture and represen-
tation of visual contents. Such a complete visual infororgtincluding the true range
of real world luminance, can improve the quality of many caoiep graphics applica-
tions and can enable simulations or measurements thaebedoe not been possible.

Currently the most popular application is HDR photograptwhich the high dynamic
range permits to capture photos free of under- and oversexps with an unprece-
dented level of details. New tone reproduction algorithmmvige the users with a
better control over tones, contrast, and levels of detahéir photography.

The capture of physically accurate light measurementsleddy HDR techniques,
opens new possibilities in realistic image synthesis. Rstaince, a digital representa-
tion of light surrounding a certain scene can be captureduard to synthesize com-
puter graphics objects with a high fidelity to the naturahtigonditions Havran et al.
2008. This permits the simulation of real-world light conditi® in computer graphics
visualizations Pmitriev et al. 2004, The true light information permits also to model
the behavior of human visual system and to simulate the ksttaae appearance in var-
ious illumination conditions. Precise light measuremgoffered by HDR techniques,
further increase the quality of acquisition of objects’ eprance. The reflectance prop-
erties of their complex materials can be measured and useshiistic rendering of
digitized objects to obtain high quality virtual reprodiocts [Gosele 2004

Emerging HDR displaysSeetzen et al. 2004whose capabilities outperform those
of modern displays, offer interesting visualization pbagies. For instance, the er-
gonomics of LCD displays can be directly investigated irnaas illumination condi-
tions by taking a display-in-display approadbnfitriev et al. 2004 The calculated
light interaction with LCD panel can be directly visualized the HDR display whose
display range can easily accommodate such informatiorantoe envisaged that fur-
ther ideas for applications will appear with the growing plapity of HDR imaging.
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Chapter 3

Human Visual Perception

Visual information about our surroundings is available sothirough the act of see-
ing. The ability to see involves capturing light with our eyand interpreting it with
our brain in such a way that we can understand what we seembardt, react to
it. Human eyes successfully operate in an incredibly vargdje of light conditions
from the darkest night to the brightest day and in all thes®litmns we consistently
recognize known objects, faces, materials, our environm&nom the moment the
light enters our eyes, the full process of perception idifatéd by a complex system
that consists of several stages. First, the light is focusdbe eye with a lens onto
the light sensitive back of the eye where photoreceptorstoam captured photons
into the neuronal signals. These signals are then traresirtitt the brain where they
are decomposed in a hierarchical way and processed in thal\gertex. Only such
processed visual information appears to us as the images¢hsee and understand.

The human visual system is well adapted to its tasks, butigeréect. The optics of an
eye, like any solid optical element, have certain charatierand limits. The photore-
ceptors are distributed on the retina with a finite resotutttat can be reduced under
circumstances to increase sensitivity but impairing tisei@i acuity. The channels that
transmit signals to brain have a relatively low bandwidtmpared to the amount of
captured data and some information is sent to the brain istarfaut reduced form. On
the other hand, cognitive interpretation of transmitteghals is subjective and highly
influenced by our prior knowledge. In the end, observed steloenot necessarily
appear to us exactly the same as they actually are.

The investigation of true perception of scenes as perfotmgeélde human visual system
is very worthwhile in the context of this dissertation. Theolwledge of how human
vision works may let us focus on those aspects that are impiorthen depicting HDR
scenes on devices with limited capabilities or when mengutie perceptual quality of
such depictions. For instance, the ability to adapt to a gaam light levels such that
the perceived scenes appear with a roughly constant obeigtitness is a fundamental
process of the human visual system that makes tone mappalppatssible. Further
analysis may indicate what effects typical to our visuateyscontribute to the overall
subjective appearance of scenes and perhaps to what ex¢grghiould be accounted
for during tone mapping. Likewise, the understanding of hbesvisual information
is in fact interpreted by the human brain may help to prepaeedepictions of HDR

21
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Figure 3.1: The general plan of the human eye and the retitratine names of their
principal parts. Original image of the eye courtesy of Rhittass, Wikimedia Com-
mons.

in accordance with the mechanisms of perception such teaalvcommunication is
facilitated.

The aim of this chapter is to introduce the basic knowleddeuofian vision and visual
perception, and to point the reader to those aspects thakatieularly interesting in
view of the topics addressed in this thesis. In the followsegtions, we give rather
succinct descriptions of the terms that are necessary terstahd the further chapters
of this dissertation and refer the reader for detailed digsons to related text books
[Palmer 1999Fairchild 1998 Wyszecki and Stiles 200@Wandell 199% We further
elaborate on each of the topics in the relevant chaptersedhtisis where we also cite
research papers.

3.1 The Eye

The act of seeing starts with the moment light enters our apesgenerates a visual
stimulus. The physical construction of an eye (Fig8r® and the means by which
the light is registered determines the physical appearaiiceages. The human eye is
an organ of approximately spherical shape filled with a algdyrthe vitreous humour,
which separates the lens and the retina. The eyeball is fixesh ieye socket and is
moved with extrinsic muscles to aim at a point of fixation.

The visual process which happens in the human eye can bediiritb the optical part
and the sensory part. The optical part gathers the lightiagteur eyes with a lens
which focuses it on the back of the eye — the retina. The retmaains pigment cells
and underlying photoreceptors which actually respondgbtli The photoreceptors
transform captured photons into the neuronal signals amsllikgin the sensory part.
The neuronal signals of photoreceptors are passed thrarighus intermediate cells
and are aggregated by ganglion cells whose axons form anrgtve which connects
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to the brain. Each part of this process interferes to somenéxtith the original visual
information. In the following sections we describe these@ detail and discuss
their impact on image appearance.

3.1.1 Optical System

The optical part of the visual system is embodied in the elyelpa in the main part

consist of cornea, pupil, iris, and lens (refer to FigBr®. The cornea is the transpar-
ent front of the eye which is the most exposed part to lighgetber with the lens it

refracts light and whereas it has the major contributiorhtaye’s optical power its

refraction parameter is fixed. The iris is the most recoghizemponent of the eye
with a characteristic pigment. It contains the musclesdhatv to contract and extend
the pupil. The pupil is a black opening in the eye that reggdhe amount of light

that enters it. The variable size of the pupil with respec¢heolevel of light is the most

apparent indication of the adaptation of human visual systelight. The adaptation

to light is, however, primarily a sensory process and theadontribution of variable

pupil size is minor. The main task of the optical system oféle is the accommo-
dation. It is the process of adjusting the shape of the leimgjuke ciliary muscles to

allow focusing on various distances. The accommodatiomaguees that objects of
interest form a sharp image on the retina.

The optical system of the eye, like any man-made optical, leas its characteristics
and limitations. The primary observable limitation is tlattered light in the eye as
it passes through the cornea, lens, and vitreous hunmwys4ecki and Stiles 2000
It can affect vision when for instance an eye is observingghbtight source against
a dark background as illustrated in FiglB& The veiling glarethat is observed in
such cases causes a decrease in contrast and increasehindsgin the vicinity of
such bright areas. The amount of light scatter can be mehsue described in the
form of a point spread function (PSF) dependent on the pugmhdter Wandell 199%.
The PSF gives the relative amount of light registered by @ieaeptors at a specified
angular distance on the retina from the place where the figit source is directly
projected. As the pupil diameter increases, the amountaifesing also increases. An
example of PSF function can be found in Sectib@.5where we use it to simulate
such glare effects in tone mapping.

The visual effect of light scatter in the eye has an intemgsgierceptual implication.
People so strongly associate the perception of glare ag bairsed by a strong source
of light that painting such a visual effect around an areanimaage causes this area to
appear to be much brighter than it actually is. This phenanésvisible in Figure3.2

3.1.2 Sensory Part

The sensory part of the visual system starts when the lighisied by the optical part
falls on the retina (Figur®.1) and triggers a chain of neural events that eventually
transform captured photons to a coded signal which is seatgh the optic nerve
to the brain for visual interpretation. The retina is a thagdr of neural cells which
contains light sensitive photoreceptors and a non-phogithee melanin pigment. The
photons that hit photoreceptors are absorbed by the phuibtise pigment and elicit
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Figure 3.2: In the image above, the rising sun is hidden éxbetind the street lamp.
When looking at this lamp, the light scatter causes that thadlmiparts of the lamp
create much weaker contrast with the background than thamdshat the area around
has a higher brightness. Additionally, the presence okgtaakes the area inside the
lamp appear luminous and brighter than the square besida §iv reference and the
rest of the sky, although their brightness is equal.

signal that passes through the neural cells in the retina photons which miss the
photoreceptors are absorbed by the melanin pigment.

There are two kinds of photoreceptors: rods and cones comggihe actual photosen-
sitive pigment. Cones are less sensitive to light than tldecedls, but their response
times are faster. There are three kinds of cones which tegatiow the perception of
color and whose absorption properties define the spectrutimeofisible light which
is 350nm - 750nm. The three cone types have their peek res@Epmoximately to
yellowish-green (L cones), green (M cones), and bluisteti(S cones). While the
human visual system can directly measure only three codmsording to the oppo-
nent color theory\Wyszecki and Stiles 20Q@he full color gamut is visible by actually
measuring the relative differences between the respofiséanent cone types. There
is only one type of rod cell that absorbs a similar spectrurthassummary response
of the cones, but being more sensitive to the blue part andsilnot sensitive to the
wavelengths above the red part. There are on average 6 middtoe cells with the
highest density around the central part of the retina — theddFigure3.1) provid-
ing high visual resolution of the object in focus. On avera§8 million rod cells are
densely located on the outer area of the fovea supportingetipheral vision.

The actual neural processes that happen in the retina aneefieinderstood and the ex-
planations given in the literature are considered to be moless speculative, although
supported by profound evidenceéfszecki and Stiles 20Q0In general, the ganglion
cells (Figure3.1) receive signals from bipolar and horizontal cells whichrtiselves

receive input from the photoreceptors. A ganglion cell ieeeinput from several pho-
toreceptors which creates a single receptive field. Thepteesfields are organized in
a center/surround manner such that the light falling onrtbenter is activating the
response and the light falling on the immediately surrongdegion is inhibiting the

response. Such an organization provides an efficient edggneament but also indi-
cates that the brain receives encoded differences in sigatiler than their absolute
intensity levels registered by the photoreceptors. TlEdddo an important conclusion
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which is that the human visual system interprets infornmagjiven in the form of local
intensity differences — contrasts.

Various properties of photoreceptors and their distrdoutin the retina have a visible
impact on the appearance of scenes and we explain the retsyacts in the following
sections.

3.1.3 Vision Modes

Cones, which allow to distinguish colors, respond well imdo bright light (10! to
10*8 cd/mP). Rods, which are much more sensitive to light than conegamed best in
darkness and up to moderate light (£@o 101 cd/m?), but are blinded by luminances
above 107 cd/m? and do not output any usable signals at such illuminatioaléev
These luminance characteristics of photoreceptors daterthree vision modes of
the human visual system: photopic, mesopic and scotopitchadre illustrated in
Figure3.3

Vision mode: SCOTOPIC MESOPIC PHOTOPIC
rod activity cone activity
k + + + + + + 1 Luminance [log cd/m?]
-6 -4 -2 0 2 4 6 8
night light office light daylight
Mode properties: monochromatic vision good color perception
limited visual acuity good visual acuity

Figure 3.3: Vision modes of the human visual system withlastilation of usual scene
appearance.

Photopic vision is active under well-lit conditions whickually occur in daylight.
During photopic vision only cone photoreceptors are actiwgle rods are blinded by
too strong illumination. Photopic mode is characterizeajbgd color perception and
sharp vision.

The scotopic vision mode refers to dim and dark illuminatiamditions and occurs
mostly at night. The light is registered only by rods, beesthhe sensitivity of cones is
too low. Since cones are inactive, colors are not distingabte. As the illumination
decreases the neural signal is aggregated over larger gafuds to increase the
effective sensitivity of the visual system. Such aggregathowever, reduces the actual
resolution of rods on the retina which is sensed as a decie#se visual acuity.

The mesopic vision occurs under dim illumination and is aditton mode between
photopic and scotopic vision. Both cones and rods are a@sugting in a color vision
with slightly stronger sensitivity to blue colors over tredrones. This is known as
Purkinje shift.
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The difference in vision modes has a strong impact on imageaxance. As illustrated
in Figure 3.3 the daylight vision is associated with good perception @bis and
good acuity, while at night most things look colorless antailie are not well visible.
These appearance properties are very common and the skahésytict the properties
of scotopic vision are immediately thought to have low ilination levels. This is
among others exploited in movies: the night scenes aregostssed to have realistic
night vision qualities, because display devices cannoctiépages at sufficiently low
luminance levels such that these quality appear naturally.

3.1.4 Photoreceptor Response

The light captured by a photoreceptor is transformed ingortéuronal signal of pro-
portional strength. There is a significant evidence thatdlegion is non-linearHflunt
1999 and the response of both rods and cones is usually apprtedmath a sigmoid
function shown in Figur8@.4. Such a response has several important properties. When
the intensity of the stimulus is low, the capture noise ispgepsed by the lower non-
linearity. When the intensity is very high, the response gadlgi reaches its maximum
beyond which no signal increase is registered. The mainipapproximately lin-

ear, so that the differences between intensity signals afemade luminance are well
transferred.

Strength of signal

from photoreceptor )
1 saturation level

=8 Luminance [log cd/m2]

night light office light daylight

Figure 3.4: Sigmoid response to light of a photoreceptore Iliminance difference

dY causes a much more pronounced signal differeliaf the response range is well
adapted to light conditions, compared to the differedBg observed in an unadapted
state.

Under constant ambient light conditions, the photoreaspmaccessfully register the
luminance range of about 4 orders of magnitude. Howeverrahge of luminance
in nature can be as high as®@uring the day and as low as 1din the night. To
accommodate such a much wider range, the photoreceptqrsthda response range
to the current ambient light level. This can be observed akifaia the response
curve with respect to the medium luminance range as illtesfran Figure3.4. Such
an adaptation is the fundamental ability of the eye whiclidets an approximately
similar sensory appearance of a scene independently obwdute luminance level,
except for changes in the vision modes.

The shape of the response function and the adjustment ofedpomse range with
respect to the medium luminance in the scene inspired désesmmapping operators,
including the one discussed in Sectihi2.1
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3.1.5 Temporal Light and Dark Adaptation

The process of adjusting the response range of photoresdptmatch the illumination
condition, mentioned in the previous section, is not imratadi Normally, the adapta-
tion processes are mostly not noticed because the changes ilfumination during
the course of day and night are very slow. Sudden changesMeowcause visible
loss in the sensitivity as illustrated in FiguBeb. For instance, when on a sunny day
one immediately enters a dark theatre, the interior is dtdask and no details can be
discerned — only after several seconds the silhouettesjeftsistart to appear.

adaptation to light e——
adaptation to dark e——»

sudden change in illumination

Figure 3.5: Visual experience in certain time intervalsimiyithe temporal adaptation
to light and to dark caused by a sudden change in illuminafitve visibility improves
with time because the response range of photoreceptorstadjuthe medium illumi-
nation in the scene as illustrated in Fig®:.d.

The adaptation of photoreceptors response to light is ademhprocess. In a sim-
ple form, the adaptation is accomplished by neural prosestebuted to cell inter-
connections in the retina and by chemical processes of tiilgg@nd regeneration of
photosensitive pigment. The neural processes react vetyafal are mostly accom-
plished after several seconds. The chemical processesradoo significant changes
in illumination, are much slower and visibly asymmetric.€eTddaptation from bright
sunlight to complete darkness takes up to 30 minutes whéleeerse process is fully
accomplished in about 5 minutes.

The precise time course of adaptation can be measured withhtbid sensitivity ex-
periments. In such experiments, the subjects are first exptisa certain ambient
illumination for enough time to adapt to its intensity. Netkte illumination changes
suddenly and experimenters measure the subjects’ atliigtect a small luminance
difference on a test stimulus. If we recall Figid, in the adapted state the difference
in the luminance on the stimuli falls on the linear part of mtoreceptors response
thus produces the strongest difference in output signaloAg as the adaptation pro-
cess is not complete, the difference of output signal is gesged by the non-linear
part and the stimulus has to be stronger to be perceived.eladhpted state the visi-
bility of the luminance difference in the test stimuli is tsteongest.

The measured time course of dark and light adaptation is shiowrigure3.6. The
plots start with a sudden change in illumination which resin high detection thresh-
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Figure 3.6: Time course of dark adaptation (a) and light tategm (b,c) as a function
of threshold sensitivity. Dark adaptation was to completkdess, light adaptation to
the specified luminance levels. Plots afteefwerda et al. 1996

olds, thus low sensitivity. The sensitivity of both rods asawhes progresses asymp-
totically. During dark adaptation, the process of cones$er but cones soon reach
their maximum sensitivity. The sensitivity level is for a ment constant because the
rods still have not recovered from the strong illuminatidith time, rods dominate
vision and continue the adaptation process until maximumsigeity is reached. The
light adaptation in the scotopic range is extremely rapid m@arly 75% of the process
is accomplished within first 400ms. The cone system adapighitbomuch slower and
requires about 3 minutes to reach maximum sensitivity wttiem slightly decreases.
Due to their asymptotic nature, the adaptation processesften approximated with
an exponential function as explained in Sec#o?.2

3.1.6 Perceptual Implications

The optical and sensory parts of early vision have a defenitivoact on the subjective
appearance of scenes. The properties of rods and cones clefinly distinguishable
vision modes, photopic and scotopic, which deliver a tgtailiferent appearance of the
same scene depending on the absolute luminance of ambignin&tion. The course
of light and dark adaptation has a temporal but significaffiémce on the appearance
of dynamic scenes in which the illumination changes suddenl

Further, we are so strongly accustomed to the effects tetatearly vision that we
tend to associate appropriate illumination levels to m#tehcorresponding image ap-
pearance $pencer et al. 1995 Therefore simulation of scotopic vision conveys to
the observers the message of low illumination conditiortge Veiling glare in images
indicates the presence of light sources and causes thatahs eentered in the glare
appear to be brighter than they actually are.

Existing display devices show images at the luminance $deegely corresponding to
the mesopic vision. When, for instance, the low luminanceltewf night scenes are
transposed to the luminance range of a display their sulgeappearance is not any
more observed. Since the characteristics of these earynyisocesses have been mea-
sured, it seems reasonable to simulate them during theaglispconvey the subjective
appearance of scenes with luminance levels outside thiagissnge. We propose an
appropriate solution in Chaptédr
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3.2 Visual Sensitivity

Contrast, which is a difference in luminance between adjacedistant areas, is the
primary form of visual information that is delivered to thealm. The visual sensitiv-
ity is therefore measured by our ability to respond to phalstontrasts of different
properties across different observation conditions.

Contrast is captured by the receptive fields and neuraldaterections in the retina.
According to the multi-resolution theory of vision, for @rpretation the visual signal is
split into several channels each dedicated to contrastpaiftecular spatial and tempo-
ral frequency, and orientation. The sensitivity to the infation in different channels
varies and depends on the significance of their informaticeims of recognition of

natural scenes. Further, all contributing components igidyhadaptive and the visual
sensitivity changes as a function of light intensity.

The understanding of human response to contrast is initegestthe context of tone
mapping algorithms, because from the technical side tlesiergtial goal is to reduce
the contrast in the HDR contents. In the following sectiomsfacus on the measured
observations that characterize the effective human ptocegf contrast, while the un-
derlying processes are fundamentally described in hardbfgandell 1995 Palmer
1999.

There are two main aspects of contrast perception. Theyabfldetecting signal on a
uniform background — contrast detection (threshold agpaitl the ability to judge if
one signal generates a stronger contrast than the othetrasbaiscrimination (supra-
threshold aspect). The difference between the two is ittt in Figure3.7. In con-
trast detection (a), the difference in luminareté between the background and the
patch is measured. For the patch to be discernible it nedass stronger than the visi-
bility threshold. In contrast discrimination (b), the @ifence between contrasts of two
patches with their background§Y is measured. It needs to be strong enough so that
the difference in brightness between the two patches i®digde. The performance
of contrast perception depends on the ambient illumindgwel, spatial frequency of
the signal, and the presence of other signals in the aredesést.

(a) contrast detection (b) contrast discrimination

Figure 3.7: Test stimuli and luminance profiles illustrgtzontrast detection and con-
trast discrimination.
3.2.1 Luminance Masking

The most basic response to contrast is measured by they abitietecting a luminance
changedY on a uniform background of luminan¥e(Figure3.7). This directly corre-
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sponds to the psychophysical measurgisf noticeable difference — jrfdr luminance.
For a single stimulus in a form of patch shown in Fig3t& the smallest detectable
luminance difference, the detection threshold, changadasction of the background
luminance. The effect is called luminance masking, bec#usexisting luminance
in the background masks the visibility of stimuli whose lamaice is slightly lower or
higher.

Initially, according to Weber’s Law the relation of just ia#able difference in lumi-
nance with respect to the background luminance has beemedsto be constant.
Currently, several more precise threshold versus inte(tsif) functions are in use, in-
cluding the one defined in the CIE standa@IE 1981 which we use in the further
chapters of this dissertation. The tvi function is plottadrigure 3.8 for reference.
In photopic vision the ratio of the visibility threshold the background luminance is
approximately constant and Weber’s law gives a good priedicin the mesopic and
scotopic range, however, the detection thresholds do moedse significantly with
respect to the background.

=
o
N

detection threshold [cd/m?]

background luminance [cd/m?]

Figure 3.8: Visibility threshold as the function of backgnal luminance (tvi) from the
CIE standardCIE 1987 (solid line) and Weber’s Law for reference (dashed line).

3.2.2 Spatial Contrast Sensitivity

The human vision response to contrasts in complex images\@pending on the fre-
guencies of their components. When observing periodic Egnéich can be thought
of as an approximation of natural images, the detectiorshiulels discussed in the
previous section further depend on the spatial frequendhefkignal. The effect is
illustrated in Figure3.9.

The pattern shown in FiguR9measures the spatial contrast sensitivity function (CSF)
for human vision. The CSF in principle increases the vigibihresholds given by the
tvi function for low and high frequencies. It also indicatkat our perception is best at
detecting medium frequencies which usually define the roesliof objects in a scene.
The sensitivity is expressed in terms of cycles per degreésafl angle, therefore the
ability to perceive contrast in a pattern of certain frequechanges with the viewing
distance.
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relative sensitivity to spatial frequencies
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Figure 3.9: Spatial contrast sensitivity chart aft€ampbell and Robson 19p8The
amplitude of signal decreases uniformly for each frequebuaythe perceived signal
disappears non-uniformly as approximately outlined byréhative sensitivity plot.

3.2.3 Contrast Masking

The ability of human vision to detect signals of certain freqcies is further impeded
by the presence of other visible signals in the area of istesich have a similar

frequency and spatial orientation. This is because egistomtrasts mask the new
contrast of the introduced signal. The effect can be obsan/gigure3.10

WO
P 13

A

test signal masking signal (image) with the test signal
superimposed

Figure 3.10: Contrast masking example. The visibility af test signal in the image
depends on the local image contents. It is hardly percedvabthe areas with high
frequency textures or with patterns of similar orientatidrne test signal consists of
periodic countershading profiles introduced in Chajster

Contrast masking is measured by finding a necessary amplitiithe test signal such
that it is visible when super-imposed on the existing sighdhe existing signal is uni-
form, this is the same effect as the luminance masking tbezéiie visibility thresholds
are equivalent. When the amplitude of contrasts of the exjstignal increases, the
initial visibility threshold changes as described by a shid elevation function. The
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threshold elevation function increases the detectiorstiulel as a function of the local
contrast of the same frequency and orientation and is ysualtieled by a power func-
tion with a typical exponent betweeng - 1, mostly 07 [Daly 1993 (Figure 3.11).
The function has two asymptotic regions, one with slope o6 zsd one with slope
near 1. The zero slope occurs for low contrasts of the massigmal (the existing
signal) that are not visible and therefore do not change igibilty threshold which
in this case is the same as for the uniform background. As aedhe local sub-band
contrast of masking signal is greater than the thresholttasiy the contrast of the test
signal must be stronger to be visible.

__ detection threshold

detection threshold =—

difference in physical contrast dW

10° 107 107 10° 10’ 10
existing physical contrast W

Figure 3.11: Necessary difference in the physical conttéét so that it is visible in
the presence of the existing contréét Plot based on the threshold elevation function
after [Daly 1993.

3.2.4 Visual Detection Models

The measurements of human visual sensitivity to varioupgatees of physical con-
trasts are often used to design computational models ofasirdetection and discrim-
ination. Such models permit to estimate whether certainalisignals are visible to
an average observer. These signals can be both useful etiormwhich should be
strong enough to be above the visibility threshold, and simdd information like com-
pression artifacts whose magnitude should be kept belowrédicted visibility level.
In this dissertation we exploit both of these aspects andsusk models to evaluate
the quality of contrast reproduction (Chap&and to predict the potential visibility of
contrast enhancement as a halo artifact (Chafter

3.2.5 Processing of Visual Information

While both color contrasts and luminance contrasts deliierination to the brain, the
luminance is the primary source and colors are supplemeimfarmation. Figure3.12
illustrates a color image and two versions of it: one corgainly luminance contrasts
and the other only color contrasts. The recognition of imagg@ents is equally good
in the luminance image as it is in the original image. In cantrthe contents of the
color only image are recognized with a substantial difficalbhd some information is
missing.
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(a) luminance contrasts only (b) luminance and color contrasts (c) color contrasts only

(original image)

Figure 3.12: The original image (b) decomposed into the hamce contrasts alone (a)
and the color contrasts (c).

The theoretical approach to processing of visual inforamadistinguishes two visual
pathways: magnocellular and parvocellula¥gndell 1995 also popularly known
as the “where system” and the “what system” respectivelyifigstone 2002 The
“where system” is responsible for the perception of depith motion, for the spatial
organization of scene objects, and for the figure/groundegdion. It can be charac-
terized by a fast response to changes and high contrastigigy)dut it is color blind
and its visual acuity is lower by a factor of 2 compared to thd&t system”. The
“what system” is color selective and has a high visual acbity its sensitivity to con-
trast is low and it responds slower to changes. The “whaegysts responsible for
recognition of objects, including faces, and perceptionaddrs. It can be subdivided
into the “form system” which uses luminance and color to defihapes of objects, and
the “color system” which identifies color of surfaces.

We have focused our discussion in the previous sectionsroiméince contrast alone,
because it appears to be the major factor in the successéupietation of scenes.
Luminance contrast is the common component of both “whene’ ‘avhat” systems
and permits the perception of objects and their spatialrorgéion in the scene. Since
it is directly affected by the process of tone mapping, weiartpat it requires closer
perceptual investigation. Consequently, we evaluatdipgisone mapping operators
in terms of their good reproduction of luminance contra€iisapter6) and develop a
contrast enhancement technique that facilitates the ptoceof image features after
tone mapping (Chaptém).

3.2.6 Contrast lllusions

The visual information is sensed locally, through the régegields, and registered
as contrasts due to the center-surround construction &f Belds. Therefore lumi-
nance differences deliver useful information which is @oated over the uniform ar-
eas. Also, a contrast needs to be sufficiently strong so thatabove the visibility
threshold and can be interpreted by the visual system. Ted Wweninance differences
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Figure 3.13: The appearance of the right image matches therle, although the
luminance profiles of these images differ (bottom plots)e Ghadual darkening and
brightening at the borders of areas of equal luminance eseaiperceived brightness
difference between them — the Craik-O’Brien-Cornsweasithn (right image).

are sensed as uniform areas.

The insensitivity to certain visual signals leads to stroagtrast illusions. A carefully
shaped luminance profile at an edge between two areas, likegure 3.13 causes
change in the brightness of the whole areas and increasgsetbeived contrast be-
tween them Dooley and Greenfield 197.7Apparently, the gradual change of the lu-
minance away from the edge towards the mean value is not b&dirged by the human
visual system. The only information in the image, immed@iptrast at the edge, de-
fines the brightness relation between the two patches whkigirdpagated over the
whole area of the patches — hence the illusory brightneereifce. Such a perceived
contrast between image areas is strong and appears everdios@cutive combination
of profiles or when an area is isolated from the area whichatosthe profile.

The appearance of illusion is not limited to simple unifomeas. Interestingly, it seems
to be stimulated not only by physical aspects of the visuadai but also by cognitive
interpretation Purves et al. 1999 For instance, certain visual cues that the profile
is caused by a difference in the illumination, possibly conéid by the perspective
information, strongly enhances the effect. In the examplans in Figure3.14 a
rough Cornsweet profile on the border of two pages createtlik®sn but the same
profile overlaid on an out-of-context area gives a very wdtdce

Such illusory contrast effects permit to influence the cleaingthe brightness appear-
ance of larger image areas only by modifying their bordetsusTan informed use of
such Cornsweet profiles can be used for image enhanceménawéry sparing use
of dynamic range. We take advantage of such possibility asigd the appropriate
image processing tool in Chaptér

3.3 Image Appearance

The final appearance of visual contents is a product of thaitieg processes highly
influenced by our understanding of scene components andréméembered appear-
ance. After Fairchild and Johnson 20DP8ne can give the following scene to interpret:
a yellow house with the blue door viewed during sunset. Aaldsspection of the
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Figure 3.14: An open book illuminated from the right creatgsofile similar to Corn-
sweet (bottom plot). Due to the perceptual illusion, thé pefge of the book appears
to be brighter than the right page, although their luminaaddentical apart from the
profile shape. The plot illustrates the intensities of a bearat the level of the page
footer. The illusion appearing on the book is articulatedcbytextual information —
the same luminance profile shown in the right image does riubixsuch a strong
effect.

scene reveals that a nearby wall casts a shadow preciselyeotiobr which means
that the blue color is actually caused by the pure illumorafrom the sky. Since it is
now apparent that the blue is a property of the illuminattbe,appearance of the door
changes from blue to yellow — its true reflectance. This ifates the ability of the
human visual system to identify the illumination in the se@md to discard it during
the interpretation of objects’ appearance. This effectiown as lightness and color
constancy and leads to a similar appearance of scenes imtlagef the illumination.

The appearance of objects is first determined through tleepretation of their visual
stimuli. The stimuli can be perceived as: illuminant, illunation, surface, volume, or
unrelated stimulifFairchild and Johnson 20D3The illuminant attribute is assigned to
objects which are perceived as being a source of light. Thmihation appearance
is attributed to the properties of prevailing illuminaticather than objects and is me-
diated by illuminated objects that reflect light and casdsiss. In the presence of a
physical and recognizable object the stimulus can be atathas the property of its
surface. The stimuli can also be interpreted as the causarefidgarency and, in a spe-
cial case, as unrelated information when the stimuli is nleskin an out of context
mode, for instance through an aperture. By determining slagses of visual stimuli,
the human visual system tries to discard the illuminatidorimation in the observed
scenes. A failure in the correct interpretation can lead wis#éble difference in the
image appearance as illustrated by the yellow house example

The interpreted stimuli are further defined by five percepattibutes: brightness,
lightness, hue, colorfulness, and chroma. Brightnessipénceived luminance com-
ing for the scene, discarding its contextual propertieghtriess is a contextual inter-
pretation of brightness and is judged relative to the brighs of a similarly illuminated
area that appears to be white. Hue is defined by the dominargievayth of stimuli.
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Chroma defines the color purity as a difference from the goagt Colorfulness is
the subjective impression of color purity determined by absolute luminance level
(the Hunt effect Fairchild and Johnson 20{)3 Lightness and chroma can only be at-
tributed to objects in the scene and are not a property ahithation, while colorfulness
is an interaction of illumination with an object. Furtherightness and colorfulness are
related to the absolute amount of energy emitted from okslenbjects.

In the context of reproducing the appearance of scenes ptayssin changed obser-
vation conditions the following can be observed. The huebate is in general not
affected by changes in illumination (excluding extremeesasf monochromatic illu-
mination). On the other hand, the brightness and colordimannot be reproduced at
all if a scene is displayed with a different luminance rartgantthe original, which is
usually the case, because these attributes depend on tiatelesminance level. For
a good reproduction of appearance, the effort should tberdfe focused on a good
match of lightness and chroma between the original scenésdisplayed depiction.
For the most part, lightness requires the correct estimatiduminance perceived as
white, and chroma requires the correct estimation of lighsnand the perceived satu-
ration of the color [Fairchild and Johnson 20D3The correct estimation of lightness is
one of the topics of this dissertation and in the next secatierbriefly review existing
lightness perception theories.

3.3.1 Perception of Lightness

Any luminance value can be perceived as literally any lightnvalue (shade of gray)
depending on its context within the image. Initially, lights has been assumed to
be equivalent with reflectance which can be obtained by bigiduminance by the
estimated illumination — a straightforward realizationlightness constancy. This as-
sumption, however, has been undermined with empiricalesdd.

The problem of lightness perception and lightness congthas been studied exten-
sively in the last two centuries for which a detailed accorart be found inPPalmer
1999. At first, the Gestalt theorists rejected the assumpti@ liiminance per se is
the stimulus for lightness. The most prominent theorielofoMallach’s observation
[Wallach 1948 that the perceived lightness depends on the ratio of thénlamnce at
edges between neighboring image regions. This inspirecetivex theory [and and
McCann 197}, in which it is assumed that even for remote image regiowh suratio
can be determined through the edge integration of lumineatgas along an arbitrary
path connecting those regions.

Lightness can be well modeled by the retinex algorithm urtdercondition that the
illumination changes slowly, which effectively means teharp shadow borders can-
not be properly processed. To overcome this problem, Gdtchnd his collaborators
suggested that the human visual system performs an edgéfickton to distinguish
illumination and reflectance edge&i[christ 1977. This led to the concept of the
decomposition of retinal images into the so called intdrisiages Barrow and Tenen-
baum 1978 Arend 1994 with reflection, illumination, depth and other informatio
stored in independent image layers. The lightness pearepitieories based on in-
trinsic images can predict lightness constancy very ssfelyg However they define
only relative lightness values for various scene regiorfgeiflimportant shortcoming
is the lack of a rule which would define the association betwbe predicted relative
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lightness and the perceived white, grays and black acresw/iole scene. Further-
more, being developed for good lightness prediction, thieseries fail to account for
lightness constancy failures typical to human visiGil¢hrist et al. 1999

The mapping of relative lightness to the perceived shadgsayfis solved by anchor-
ing. There are several rules of anchoring, each of which dsfinmethod to assign
one particular absolute lightness value (e.g. white, hlatdkidle gray) to one relative
lightness value — the so called anchor value. The remainiagping can be imme-
diately found through the known lightness ratios. In paittic, the anchoring can be
directly applied to the intrinsic image models, althoughiafly it was not included, by
mapping the maximum value in the reflectance layer to white.

The problem of lightness constancy failures and absolgteiess assignment, al-
together, is addressed by the anchoring theory of lightpesseption developed by
Gilchrist et al. [Gilchrist et al. 1999 One of the key arguments of the theory is that
lightness mapping can differ even within a single image ddpg on the considered
context of the image. In this theory, such ambiguity is acted for by the concept
of frameworks. Frameworks are image components which angogd by the terms of
Gestalt principles: mainly by common illumination, but@lsy proximity, similarity,
co-planarity, good continuation, and common fate. An imaggmposed of multiple
frameworks whose areas can overlap. The anchoring rule igancgrrect lightness
estimates when considered only within one framework. Theigietness of a surface
in an image can be found by estimating the influence of eadiedfameworks on that
surface and by calculating the weighted product of lighdmaappings within each of
the frameworks.

The main weakness of the lightness perception theorieaighly are given in a de-
scriptive form and lack computational models. To accountcimrrect lightness re-

production in tone mapping, we formulate the computationatiel of the anchoring

theory of lightness perception in Chap&erOur choice for this theory is motivated by
its sound explanation of the particular appearance of mapgrénental scenes and its
extensive experimental studies with human subjects.
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Chapter 4

Real-time Tone Mapping for
HDR Video

Low dynamic range (LDR) image and video contents, which toeed in the display-
referred representation, are usually directly shown orsplay. The parameters of a
reference display and the preferable observation comditave well defined in stan-
dards [TU 199(Q and guarantee that such in a sense oblivious depictionettelgood
quality. While the general parameters of displays usuallgiothe standard, the obser-
vation conditions, however, may not match the referencerdare able to compensate
this mismatch by adjusting few parameters like contrasghibmess and saturation to
improve the picture, however the range of adjustment igdichiMoreover, the exces-
sive adjustment of these controls may not only lay beyond#pabilities of a display,
but may also reveal artifacts in the image contents. Thipbap because the display-
referred representation contains only sufficient image addo quality to produce
good results under the assumed conditions. For instanesetriong contrast amplifica-
tion would show contouring artifacts. On the other handyrgirincrease of brightness
would not reveal the details of dark picture parts as perbapsvould expect, because
the brightness of these parts lays outside the dynamic airgeeference display and
therefore their contents have not been stored in the stream.

Contrary to the display-referred contents, scene-redefBR contents are not lim-
ited to the capabilities of typical displays. HDR video caegsion Mantiuk et al.
2004, for example, stores as wide luminance range as the huneoayobserve in a
real-world scene. This in most cases largely exceeds déjesbof displays, therefore
such scene-referred contents require processing (tonpingggprior to display. Such
processing is performed on the side of the target displaytlauglhas several notable
advantages with respect to the display-referred reprasent First, the HDR contents
can be processed in such a way that delivers the best qualityecactually used dis-
play under the actual observation conditions. Second,itiéed range of brightness
and contrast adjustments can be relaxed and moreover thty gdigheir effect is im-
proved. For instance, the brightness correction of HDR dataals contents of too
bright or too dark picture parts because, unlike in the cd4® data, the informa-
tion there is not clipped. Finally, the ample amount of luamioe information in HDR
video permits to add new controls that take advantage ofuhidahle dynamic range

39
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and can increase the realism of a picture. We observe, that fange of luminance
levels typical to certain scenes like nights or sunny ddys,depiction of true lumi-
nance is not feasible on displays. Hence all such scenesappan almost similar
way on the screen, although an average observer would etpsee bright saturated
colors only on a sunny day, while subdued grayish tones withdcuity are common
in the night and a veiling glare usually appears around btights. When these phe-
nomena are ignored, well visible details appear unreaiistiimly illuminated scenes,
because the acuity of human vision is normally degraded ¢h sonditions. On the
other hand, perceptual effects like glare cannot be evokeduse the maximum lumi-
nance of typical displays is not high enough. However, wesaresed to the presence
of such phenomena, that adding glare to an image can inctleaseibjective bright-
ness of the tone mapped imadepencer et al. 1995 Therefore by simulating such
perceptual phenomena, we can increase the realism of HDiRrasrby reducing the
appearance mismatch between the real-world and display.

In our work, we focus on a real-time implementation of a higlalgy tone mapping
operator and on the introduction of new controls that takeathge of the luminance
range available in the stream. To match the real-world ajppee of recorded HDR
scenes, we enhance the tone mapping algorithm by incoimpgrtaie most significant
perceptual effects that are related to the absolute lum@avels in the scene and to
the optics of the eye (Sectidhl). Improving over previous work, we observe that
these effects have much in common in terms of spatial arsadysi show that making
use of such similarities have a tremendous impact on themweahnce. Further, we
add the functionality for convenient inspection of verbaihformation in a selectable
dynamic range. Such an inspection tool is necessary in edesit is required to view
the exact contents of the recorded scene, as for instanceendic applications. We
implement our approach in the graphics hardware as a stand-BIDR image/video
processing module and achieve a real-time performancecdin@utational overhead
of our extensions to tone mapping is negligible. Althoughpsienarily demonstrate
the module in the context of HDR video playback, it can be dsapplied to the final
stage of a real-time renderer or to other stream of HDR césiléee an input from a
surveillance camera or data for visualization.

4.1 Previous Work

The tone mapping of HDR contents has been widely addressess@arch and we
have introduced most of the existing algorithms in Sec@dh Simple algorithms,
which are based on a tone reproduction curve, can be implecherry efficiently in
the graphics hardwaréfago et al. 200B but such methods fail in reproducing fine
details in the HDR scenes. Most of the recent algorithmseeé higher quality but at
the cost of the increased complexity and only few are ablehieae interactive rates
at 1Mpx resolution Goodnight et al. 2003 In contrast, our work is unigue in a sense
that we aim at real-time tone mapping performance wihoutpgromising the quality
of HDR.

Certain perceptual effects, like the lack of visual acuitycolor perception in night
scenes, have already been accounted for in several tonengagdgorithms Ferwerda
et al. 1996 Ward et al. 1997Durand and Dorsey 200@attanaik et al. 20Q0 These
effects, however, have been discussed only in the conte}bbal operators and have
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been applied to the whole image with a uniform intensity. i5aic approach can lead
to the unrealistic depiction when a wide range of luminarsceresent in the scene
and certain phenomena should be observed only in a part aficéee. Furthermore,
the proposed solutions have been composed of multiplestsgdh involving complex

processing such as convolutions. Although the implememtaf individual perceptual

effects on graphics hardware is intuitive, aweacombination to include all of them
does not even allow for an interactive performance on thptgea hardware currently
available.

4.2 Computational Models

With many tone mapping algorithms available, we want to useethod that provides
good, widely acknowledged results for static images. Tharpaters of the method
should provide sufficient control to enable maintaining penal coherence of picture
during the HDR video playback. Furthermore, we require #hratal-time performance
is feasible for at least a reasonable approximation of sunlethod and that the trade
off between the quality and performance can be adjusteddptad the capabilities
of available graphics hardware. At the same time we wantttiaispatial analysis
involved in tone mapping bear some similarities to the reatiperceptual effects that
we plan to simulate. We have found that photographic toneotggrtion Reinhard
et al. 2002 satisfies our requirements. In the following sections, ustify our choice
by briefly explaining the tone mapping algorithm and eacthefdgerceptual effects that
we include, and by showing the apparent similarities in fregial analysis of perceived
images.

Throughout the tone mapping pipeline, we assume the RGB owbalel where each
channel is described by a positive floating point number.tRemproper estimation of
the simulated perceptual effects, the pixel intensity @alim the HDR contents should
be calibrated toﬁ—g. Such calibrated contents can be obtained using the phaiome
calibration procedure outlined in Appendifrom both standard and HDR cameras
described in Sectiod.4. In our implementation, we consider the values to be in the
range from 104 to 1, which is sufficient to describe the luminance intensities p
ceivable by human vision. The algorithm produces tone mé&B@B floating point
values in the rangf®: 1] which are then quantized to 8-bit values by an OpenGL driver.

4.2.1 Tone Mapping

The algorithm proposed by Reinhard et dRejnhard et al. 20Q2operates on the lu-
minance values which can be extracted from RGB intensitasguthe standard CIE
XYZ transform (Sectior2.1). The method is a global operator, sigmoid scaling func-
tion, combined with a local dodging & burning technique thkbws to preserve fine
details as described in Secti@®.3 The results are driven by two parameters: the
adapting luminance for the HDR scene and the key value. Tapted) luminance en-
sures that the global scaling function provides the mogtiefft mapping of luminance
to the display intensities for given illumination condit®in the HDR scene. The key
value controls whether the tone mapped image appearsvedjakiright or relatively
dark. While the general background for this tone mappingatpehas been given in
Section2.5, here we focus on a precise definition of the used method.
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Figure 4.1: Tone mapping of an HDR image with a low key (lefi)l @ high key (right).
The curve on the histograms illustrates how the luminanceapped to normalized
pixel intensities.

In this algorithm, the source luminance valtéare first mapped to the relative lumi-
nancey;:

_a-y
B
whereY is the logarithmic average of the luminance in the sceneghvisian approx-
imation of theadapting luminanceanda is the key value. The relative luminance
values are then mapped to the displayable pixel intenditiesing the following func-
tion:

Yo (4.1)

Y
L= .
1+Y;

(4.2)

The above formula maps all luminance values to [hel] range in such way that
the relative luminanc¥, = 1 is mapped to the pixel intensity= 0.5. This property
is used to map a desired luminance level of the scene to theleniatensity on the
display. Mapping a higher luminance level to middle graylessin a subjectively dark
image (low key) whereas mapping a lower luminance to midddg will give a bright
result (high key) (see Figur&.1). The modulation of the key value in equatich])
with respect to the adapting luminance in the scene allowsstalate a relatively dark
appearance of night scenes compared to bright day scenesxplégn our solution in
Section4.3.1

The tone mapping function in equatiof.?) may lead to the loss of fine details in the
scene with wide dynamic range due to the extensive contoagpession. Reinhard et
al. [Reinhard et al. 20Q2ropose a solution to preserve local details by employing a
spatially variant local adaptation valiein equation 4.2):

Yi(X,Y)

L(x,y) = m

(4.3)
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The local adaptatiol equals to an average luminance in the surround of a pixel. The
size of the surround, however, has to be carefully choseexplained in Sectiog.5.2
larger areas guarantee good detail preservation, but aatge kurround covering a
high contrast edge will lead to well known inverse gradiatifacts, halos To find an
appropriate value o¥ for a pixel, the size of the surround is successively in@das
as long as it does not introduce any artifacts. For this me@Gaussian pyramid is
constructed with successively increasing kernel:

1 7><2+y2
g(xy,s) = = e < . (4.4)

The spatial extent of the Gaussian kernel for the first scatmeé pixel wide which is
obtained withs = (2,/2) 1. On each successive scale the spatial extent parasister
1.6 times larger. The Gaussian functions used to construensssales of the pyramid
are plotted in Figurd.2 As we later show, such a pyramid is very useful in introdgcin
the perceptual effects to tone mapping.
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Figure 4.2: Plot of the Gaussian profiles used to constricstales of the pyramid
used for local dodging & burning in the tone mapping algantihe smallest scale is
denoted as #1 and the largest #8. The plots are normalizdtebyaximum value for
illustration purposes.

4.2.2 Temporal Luminance Adaptation

The luminance values in the HDR video can significantly clegingm frame to frame
and cause unnatural brightness change in the tone mapialgsteThe human vision
reacts to such changes through the temporal adaptatioegzes (Sectio®.1.5. The
time course of adaptation differs depending on whether vap&d light or to darkness,
and whether we perceive mainly using rods (during night) ares (during a day).
While several models have been introduced to computer graphiseems that it is
not as important to faithfully model the process as to somehoccount for it at all
[Goodnight et al. 2003

In the tone mapping algorithm chosen by us, the luminancptatian can be modeled
using the adapting luminance term in equatiéri). Instead of using the actual adapt-
ing luminanceY for the displayed frame, a filtered valig can be used. The value of
Y, changes according to the adaptation processes in humam vesientually reach-
ing the actual value if the adapting luminance is stable éones time. The process of
adaptation can be modeled using an exponential decay dmnj@urand and Dorsey
2000:

— T

VI =Ya+ (Y = Ya) - (1—€ 1), (4.5)
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whereT is the discrete time step between the display of two framedzas the time
constant describing the speed of the adaptation processtinib constant is different
for rods and for cones:

Trods = 0.4S€C  Teones= 0.1se¢ (4.6)

thus the speed of the adaptation depends on the level ofluh&rilation in the scene.
The time required to reach the fully adapted state depesdsidiether the observer is
adapting to light or dark conditions. The values in equaf#B) describe the adapta-
tion to light. For practical reasons the adaptation to dankat simulated because the
full process takes up to tens of minutes. Instead, we perfbenadaptation symmetri-
cally, neglecting the case of a longer adaptation to darklitioms.

4.2.3 Scotopic Vision

Human vision operates in three distinct adaptation cooiti scotopic, mesopic, and
photopic (Sectior8.1.3. The photopic and mesopic vision provide color vision, lehi
in the scotopic range color discrimination is not possitdeduse only rods are active.
The cones start to loose their sensitivity at abodl% and become completely insen-

sitive at 003#d where the rods are dominant. We model the sensitivity of mdfter
[Hunt 1995 with the following function:
0.04
o) = G0arv
whereY denotes the luminance. The sensitivity valme- 1 describes the perception

using rods only (monochromatic vision) agd= 0 perception using cones only (full
color discrimination). The plot of equation.{) is shown in Figuret.3.

4.7)

T T T
sensitivity of rods
loss of visual acuity——

log; g luminance

Figure 4.3: The influence of perceptual effects on visionetielng on the luminance
level. For details on rods sensitivity and visual acuityerdbd Sectiong.2.3and4.2.4
respectively.

4.2.4 Visual Acuity

Perception of spatial details in human vision is not perfaat becomes limited with
a decreasing illumination level. The performance of visaality is defined by the
highest resolvable spatial frequency and has been ine¢stign Shaler 193F [Ward
et al. 1997 offer the following function fit to the data provided by Skal

RF(Y) = 17.25- arctar{1.4log;,Y + 0.35) + 25.72, (4.8)
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whereY denotes the luminance amF is the highest resolvable spatial frequency in
cycles per degree of the visual angle. The plot of this fuamcts shown in Figurd.4.
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Figure 4.4: Plot of the highest resolvable spatial freqydaca given luminance level
which illustrates the effect of loss of the visual acuity.a8al frequency is given in
cycles per degree of visual angle. The horizontal line mtr&snaximum displayable
spatial frequency on a 15 inch LCD in typical viewing conafits.

To simulate the loss of visual acuity on a display device wedn® map the visual
degrees to pixels. Such a mapping depends on the size ofgpkayjithe resolution,
and the viewing distance. For a typical observation of a Th iscreen from half a
meter at 1024 768 resolution we assume 45 pixels per 1 degree of the viegde alt

is important to note that the highest frequency possibladoalize in such conditions
is 22 cycles per visual degree. Therefore, technically westaulate the loss of visual
acuity only for luminance below.BCWd. The irresolvable details can be removed from
an image by the convolution with the Gaussian kernel fromaéqo @.4) wheres is
calculated as followsWard et al. 199

width 1
fov 1.86-RF(Y)

sacuity(Y) = (4.9)

width denotes width in pixels anflov is the horizontal field of view in visual degrees.
For typical observations theidthto fovrelation equals 45 pixels. We plot the profile
of the kernel, according to equatiof.4), for several luminance values in Figute.

In Figure4.3 we show the amount of lost visual acuity with respect to thmihance
level. Apparently the loss of the visual acuity correlatéhuhe increasing sensitivity
of rods, and is therefore only present in monochromatiowisi
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Figure 4.5: Plot of the profiles of the Gaussian kernels whinh be used to simulate
the loss of visual acuity at different luminance levels.
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4.2.5 \Veiling Luminance

Due to the scattering of light in the optical system of the, es@irces of relatively

strong light cause the decrease of contrast in their viciniglare (Sectior8.1.1). The

amount of scattering for a given spatial frequepcynder a given pupil apertuikis

modeled by an ocular transfer functidbdeley et al. 19911
T 209-21d

)

OTF(p,d) = exp( N A— 1'3_0'07'd)
(4.10)
d(Y) = 4.9 3tani0.4log, oY + 1).

In a more practical manner the scattering can be represantiee spatial domain as a
point spread function. In Figur 6 we show point spread functions for several adapt-
ing luminance levels, which were numerically found by ajpmythe inverse Fourier
transform to equation4(10.

1.2 T T T T T
Y =0.0001 [cd/
1F Y=0.01[cdin]] —
Y =1 [cd/ —
0.8 Y =100 [cd/mi] — -
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0.4
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0
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Figure 4.6: The point spread function illustrating scatigiof light in the optical sys-
tem of the eye for several adapting luminance levels.

Another model of the glare effect was introduced in compgtaphics by Spencer et al.
[Spencer et al. 1995They describe this phenomenon with four point spreadtfans
linearly combined with three sets of coefficients for diffiet adaptation conditions
(scotopic, mesopic and photopic). Since their model is dexy@nd it is not obvious
how to apply it in continuously changing luminance condispwe decided to employ
the model developed by Deeley at dbdeley et al. 1991 which describes the effect
with one function that changes continuously for all adaptelevels.

4.2.6 Similarities in Spatial Analysis

Apparently, the visual acuity and the veiling luminance laased on the spatial analy-
sis of an image modeled using the point spread functionshedsame time, a Gaussian
pyramid is required to perform local tone mapping. Inténggy, convolution on par-
ticular scales corresponds to the convolution requiredintwiate visual acuity and
glare at various luminance levels. This is an important olag®n which allows to
model these effects by reusing the appropriate levels o&tngssian pyramid without
additional impact on the performance. The correspondenteden the scales from
the tone mapping (Figuré.2) and the appropriate convolutions for visual acuity and
veiling luminance are plotted in Figure?.
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Figure 4.7: The correspondence between the scales frorarthertapping (Figuré.2)
and the appropriate convolutions for visual acuity (Figh® and veiling luminance
(Figure4.6).

The Gaussian pyramid constructed for the purpose of ton@imgontains only lu-
minance values. This is sufficient to simulate the lighttecatg in the eye, but at first
glance, visual acuity requires to perform the convolutionai three RGB channels.
However, Figured.3illustrates that the noticeable loss of visual acuity isspre only

in the scotopic vision where colors are not perceived. Simeesimulate the loss of
visual acuity combined with scotopic vision, we can simellétusing the luminance
channel only.

4.3 Method

We present a method that successfully combines tone mapgihdhe effects men-

tioned in the previous section, which we implement in thepbres hardware for a
real-time performance. We first show some of our improvememthe tone mapping
method in terms of perceived brightness and luminance atlaptprocess and then
explain technical details of our hardware implementation.

4.3.1 Key value

The key value, explained in Sectidi2.1, determines whether the tone mapped image
appears relatively bright or dark, and in the original paeginhard et al. 20Q4s

left as a user choice. In his follow-up pap&dinhard 200R Reinhard proposes a
method of automatic estimation of the key value that is basetthe relations between
minimum, maximum and average luminance in the scene. Adthdbe results are
appealing, we feel this solution does not necessary carngsto the impressions of
everyday perception. The critical changes in the absoluténance values may not
always affect the relation between the three values. Thislea to dark night scenes
appearing too bright and very light too dark.

The key valueg in equation 4.1), takes values fronf0: 1] range where @5 is the
low key, 018 is a typical choice for moderate illumination, an8 & the high key. We
propose to calculate the key value based on the absolutedmee. Since the key value
has been introduced in photography, there is no scientifibaked experimental data
which would provide an appropriate relation between theuaye and the luminance,
so the proper choice is a matter of experience. We therefoprigally specify key
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values for several illumination conditions and interpeldte rest using the following
formula:
2
2+logyo(Y +1)’

wherea is the key value an is an approximation of the adapting luminance. The
plot of this estimation is shown in Figure8.

a(Y)=1.03 (4.11)
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Figure 4.8: Key value related to the adapting luminance icems.

4.3.2 Temporal Luminance Adaptation

We model the temporal luminance adaptation based on equdtk). However, in our
algorithm we do not perform separate computations for rodscamnes, which makes
it difficult to properly estimate the adaptation speed hgwimo time constantsqq and
Tecone iNstead of one. To account for this, and still be able to atlyaeproduce the
speed of the adaptation, we interpolate the actual valukeofitne constant based on
the sensitivity of rods (equatioh7):

1(Y) = 0(Y) - Trog + (1= 0(Y)) - Teone (4.12)

which we then use to process the adaptation value usingiegyats).

4.3.3 Hardware Implementation

In order to perform tone mapping with perceptual effects,n@ed to compose three
maps: a local adaptation map for the tone mapping, a map iflevispatial details

to simulate visual acuity, and a map of light scattering ia élye for the glare effect.
We will refer to these maps gerceptual dataBecause different areas of these maps
require different spatial processing, they cannot be coatgd in one rendering pass.
Instead, we render successive scales of the Gaussian pyaachiupdate the maps by
filling in the areas for which the current scale has appropsaatial processing. In the
last step we use these three maps to compose the final tonechisgsuilt.

Technically, we implement our tone mapping method as a sttt module, which
can be added at the final rendering stage to any real-time lD&erer or HDR video
player. The only requirement is that the HDR frame is suplpt@ our module as a
floating point texture, which can be efficiently realizedngsior instancepixel buffers

In addition to a texture which holds the HDR frame, our modabguires the allocation
of five textures for processing: two textures for storingaadjt scale levels, two for
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Figure 4.9: lllustration of the rendering process for torepping which includes com-
puting the local adaptation, visual acuity and glare. Thriins an HDR frame with
RGB channels and the output is a display. The blue boxesgeptéhe texture data and
yellow boxes represent rendering steps. The rendering stepked by a gray rectan-
gle are repeated for each scale to successively createdhgecscales of the Gaussian
pyramid. After the rendering of each scale, the texturesesamting the perceptual
data and the adjacent scales are swapped.

holding the previous and the current set of perceptual da&tp the updating process),
and one intermediate texture for the convolutions. Sineettihee maps contain only
luminance data, we can store them in a single texture in agpaolor channels.

The process of rendering the perceptual data is illustiat€iure4.9. We start with
calculating the luminance from the HDR frame and mappirgtié relative luminance
according to equatior(1). We calculate the logarithmic average of the luminanae
the frame using the down sampling approach describe@aofinight et al. 2003and
apply the temporal adaptation process (equadi®h The map of relative luminance
values constitutes the first scale of the Gaussian pyramticgagh scale of the Gaus-
sian pyramid, we render the successive scale by convolfiagtevious scale with
the appropriate Gaussian (equatibd). We perform the convolution in two rendering
passes: one for the horizontal and one for the vertical dativo. To increase the per-
formance we employ down-sampling, where the factor of domming is carefully
chosen to approximate the kernel. Refer to FigluE) for our choice of the scaling
factors and the corresponding approximations of the Gansgsrnels from Figurd.2.
Having the current and the previous scales, we update ticepteial data on a per pixel
basis in a separate rendering pass. The local adaptatiomisuted using the measure
of the difference between the previous and the current ssatkescribed inHeinhard
et al. 2002. For the acuity map, we first estimate the proper scale ®tuminance of
the current pixel. If it falls between the previous and caotigcales, we interpolate the
final value and update the map. In the other case the prevalus is copied without
change. The mapping from luminance to scale for visual g¢kigure4.7) is cached
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in a look-up texture to skip redundant computations. We tgtlee glare map in the
same manner, with one difference: the appropriate scatgdoz depends on the adapt-
ing luminance and is uniform for the whole frame so we supipdsia parameter to the
fragment program. Before descending to the next scale oBthessian pyramid, the
texture containing the current scale becomes the previcale,sand the texture with
the current set of the perceptual data becomes the prewbus s
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Figure 4.10: The effective approximation (solid lines) loé tGaussian kernels (dotted
lines) from Figure4.2 due to the down sampling. The values in parenthesis show the
down sampling factor for each scale. For scale #1 we use igmakrimage.

After descending to the lowest scale of the Gaussian pyraimidperceptual data tex-
ture is complete. In the final rendering step, we tone map DR ftame and apply
the perceptual effects. For this, we use equatibB) from Sectiord.2.1in a slightly
modified form to account for the loss of the visual acuity amelglare:

Yacuity(X, ¥) + Ygiare(X,y)
1+V(xy) ’

whereL is the final pixel intensity valu€Yacuity is the spatially processed luminance
map that represents the visual acu¥ygr is the amount of additional light scattering
in the eye, an¥ is the local adaptation map. Because the glare map in fataicsrthe
relative luminance from the appropriate scale of the Gangzyramid, we estimate the
additional amount of scattering in the following way to indé only the contribution
of the highest luminance:

L(x,y) = (4.13)

0.9
Yyiare = Yomap | 1— ————— |, 4.14
glare gmap ( O~9+ngap> ( )

whereYgmapdenotes the glare map from the perceptual data.

We account for the last perceptual effect, the scotopiomisivhile applying the final
pixel intensity value to the RGB channels in the original HD&me. Using the follow-
ing formula, we calculate the tone mapped RGB values as aioaiidn of the color
information and the monochromatic intensity proportityad the scotopic sensitivity:

R R 1.05

L-(1-o(Y
G |=|c -wju 0.97 | -L-o(Y), (4.15)
B. B 1.27

where {R_,GL,B.} denotes the tone mapped intensiti¢R, G,B} are the original
HDR valuesy is the luminancel, is the tone mapped luminance, amds the scotopic
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Figure 4.11: The sample results of our method showing thelaited perceptual ef-
fects: glare (left) and scotopic vision with loss of visualidy (right). The close-up in
the right image inset shows the areas around the car in suglthatitheir brightness
match to illustrate the loss of visual acuity. The source Harffmation “Rendering
with Natural Light” (left) courtesy of Paul Debevec.

sensitivity from equation4.7). The constant coefficients in the monochromatic part
account for the blue shift of the subjective hue of colorstfe night scenesHunt
1995.

An alternative implementation of this tone mapping methaithough without per-

ceptual effects, was previously introduced Boodnight et al. 2003 They propose

a method to vectorize luminance which allows for efficienbvadutions with large

support kernels. However, we resigned from their approaehtd the performance
reasons — the real-time performance of this algorithm fat2x5512 frame is reached
only when the computations are limited to two scales, whschat sufficient to intro-

duce the perceptual effects. On the other hand, the dowpisarapproach provides
higher performance with sufficient accuracy of computation

4.4 Results

We demonstrate our method in combination with an HDR videxygl The player
renders the compressed HDR video stredarjtiuk et al. 200%to a floating point
texture, which is then processed as described in Sedt®R® The sample results of
our method including the perceptual effects are shown inrigid.11 The left image
depicts a computer generated scene in moderate lightingdjtemrs with strong illu-
mination coming from behind the trees in the background.hSusetup would evoke
a glare effect in the real-world perception, which is noibls when pure local tone
mapping is applied (left part). However, accounting fostherceptual phenomenon
not only contributes to the realism of the rendered imagealsd increases a subjec-
tive impression of the dynamic range (right part). The righge shows a car driving
scene in day light and at night. Two perceptual phenomentypieal to night illumi-
nation: the scotopic vision and the loss of visual acuitgatly, in the perceptual tone
mapping of the night scene (right part), it is difficult to titiguish the colors and the
overall brightness is low, which suggests the low illumioatof the scene. The inset
shows a close-up of the car with increased brightness fonitijfet scene to illustrate
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the simulated loss of visual acuity.

4.4.1 Dynamic Range Exploration Tool

Particularly in the context of HDR vide®/[antiuk et al. 2004 in order to fully benefit
from the HDR information encoded in such a video stream wétiaddlly develop a
convenient dynamic range exploration tool. The dynamigeagxploration tool allows
the user to view a selected range of luminance in a rectangi@ow displayed on
top of the video (see Figur¢.12. The user can move the window interactively and
choose which part of dynamic range should be linearly mapp#te display for closer
inspection. When smaller range of luminances is chosen tiacdpabilities of the
display, the tool linearly increases the contrast of catstenthe exploration window.

On a technical level the dynamic range exploration tool §nigy-passes the tone
mapping process and displays linearly mapped part of thardiscrange in a selected
window. Such a tool is, however, very convenient in the cxtdé applications which
require that the displayed data are exactly the same as oritfieal scene without any
image processing. This is for instance required in medicdlfarensic applications.

Figure 4.12: Dynamic range exploration tool in form of a wondthat reveals verbatim
details in HDR video contents.

4.4.2 Performance

We measured the performance of our method on a desktop PGwigmtium4 2GHz
processor and a NVIDIA GeForce 6800GT graphics card. We thiedime-slice re-
quired for the tone mapping with our method at several framselutions in Tabld.1

In a configuration with an HDR video player, where additiotiale is required for
the decompression of the HDR video stream, we were able #irotite playback at
27Hz. Itis important to note that the performance of our sofuis scalable. If the
time-slice required for our method is too long for a certgiplacation, the number of
rendered scales can be limited at the cost of local perfocmanthe tone mapping and
the accuracy of the visual acuity processing for very lounilination conditions.

The main bottleneck in the performance is caused by the anodwontext switching
required for the multi-pass rendering using thigel buffersextension. The currently
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\ 320x240 \ 640x480 \ 1024x768
8 scales| 8ms (58Hz)| 25ms (27Hz)| 80ms (10Hz)
6 scales| 7ms (62Hz)| 21ms (30Hz)| 66ms (12Hz)
4 scales| 6ms (62Hz)| 16ms (30Hz)| 51ms (14Hz)

Table 4.1: Time-slice required for the display of an HDR feaasing our method at
several frame resolutions and several sizes of the Gauggramid. In the parenthe-
sis, we give the playback frame rate which we obtained withroethod plugged to
an HDR video player (note that the resolution also affectsfthme decompression
speed).

developedrame buffer objecéxtension to OpenGL may provide an improvement, be-
cause it eliminates the need for such context switching éetwthe rendering passes
thus reducing the delays. Also, current OpenGL drivers domplement linear in-
terpolation of floating point textures during the up-samgli Such an interpolation
is crucial for the quality of the results and currently is lerpented in the fragment
program as an additional operation.

In relation to the previous tone mapping techniques whiatoanted for perceptual
effects, our method has the following advantages: we emaltmcal tone mapping
technique, the perceptual effects are applied locally deipg on the luminance in a
given area, and we make use of the apparent similaritiesatiesanalysis between the
effects to provide a very efficient implementation. The imiance of simulating the
scotopic vision and the loss of visual acuity was noticed égerda et al. Ferwerda
etal. 1996. However, they applied these effects only in the contexflobal tone map-
ping with uniform intensity over the whole image. This magdeo visible inaccuracies
when a dark scene with an area of considerably brighter iflation is processed. In
such an area, the loss of color would be unrealistic, anddaospatial frequencies
would be removed there. This fact was noticed by Ward etviarfl et al. 199Fwho
proposed to apply the perceptual effects locally, stillombination with a global tone
mapping method. Yet, in their work each of the effects haslismated separately
and involved complex processing making it inapplicabledaldtime processing. In
the attempt to provide an interactive tone mapping solyfianmand et al. Durand and
Dorsey 200Dreverted to global application of the perceptual effeatsich in fact had
the same drawbacks as theefwerda et al. 1996nodel.

Our real-time implementation leads as well to several cairgs. For instance only
the tone mapping algorithms, which make use of the Gaussieanpd, can be im-
plemented in such an efficient combination with the percatiects. Therefore, our
framework is not appropriate for several different apphmscto tone mapping like
decomposition into intrinsic imageB{rand and Dorsey 2002r contrast domain al-
gorithms [attal et al. 200R Also, more complex functions for glare effect simulation
may not benefit from our framework, if for instance their gapread functions cannot
be approximated with the supplied Gaussian kernels.

45 Conclusions

In view of the increasing application of HDR images and videe showed how to
process such data in order to be able to render them on tygligely devices with
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a substantial dose of realism. We emphasize that it is ngt matessary to reduce
the contrast in such data, but it is also equally importarddcount for the percep-
tual effects which would appear in real-world observationditions. Owing to the
observation that the perceptual effects share similaritighe spatial analysis of the
perceived image with the tone mapping algorithm, we were abéfficiently combine
them into a stand-alone rendering module and reachedine@lperformance. The im-
plementation of our method can be built upon any real-tinmeleeing system which
outputs HDR frames or any HDR video player. To demonstraértiportance of the
account for perceptual effects, we plugged our method intd @R video player lead-
ing to an enhanced realism of the displayed video. We impttive standard methods
of simulation of the perceptual effects by applying thenalbcdepending on the illu-
mination in an area, and by providing smooth transition leetwdifferent adaptation
conditions. We envisage that in future the use of such a neodill be standard in
every real-time HDR renderer and HDR video player.



Chapter 5

Lightness Perception in Tone
Mapping

When presenting tone mapped HDR images on display mediadiéssable to re-
produce the appearance of corresponding real world (HDB)esc In Sectior3.3,
we have discussed five perceptual dimensions which defirepiearance of a scene:
brightness, lightness, colorfulness, chroma and hue.itiiely, during the dynamic
range compression of an HDR scene these dimensions shawéhranchanged. While
most of the tone mapping operators given in Secdhdo not change the hue, the
change in brightness and colorfulness of a scene cannoteveried because these
qualities depend on the absolute amount of light energy.s€mquently, the preserva-
tion of appearance requires careful reproduction of lighthand chroma during the
tone mapping. Throughout this chapter we focus on analysiseproduction of light-
ness.

Lightness is a perceptual quantity measured by the humarlvsystem which de-
scribes the amount of light reflected from a surface norredlifor the illumination
level. Contrary to brightness, which describes a visuasagon according to which an
area exhibits more or less light, the lightness of a surfagediged relative to the bright-
ness of a similarly illuminated area that appears to be whitas leads to a similar
appearance of perceived objects independently of thadiglaind viewing conditions,
which is known as lightness constan@®a]mer 1999 The existence of lightness con-
stancy enables the reproduction of appearance in tone n@ppivhich both lightning
and viewing conditions change between the original andepeoduced scenes.

The lightness constancy achieved by the human visual syistaot perfect and many
of its failures appear in specific illumination conditionseven due to changes in the
background over which an observed object is imposegiichrist 1988. It is well
known that lightness constancy increases for scene retiiahare projected over wider
retinal regionsRock 1983. This effect is reinforced for objects whose perceive@ siz
is larger even for the same retinal sizgilchrist and Cataliotti 1994 The reproduc-
tion of HDR images on various media not only limits the lunmoa range but also
introduces further constraints like a narrow field of viewon® failures of lightness
constancy still appear in such conditions (simultaneounsrast for instance), but other
effects, such as the Gelb illusion, are only observed if asa®vers the complete

55
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field of view. The appearance of an HDR image cannot be cdyregproduced if a
tone mapping operator does not take into account such presranin Sectior3.3.1,
we have briefly reviewed several lightness perception tesavhich strive to explain
how the human visual system perceives lightness in scermgeVér, only recently the
anchoring theory of lightness perceptidgilchrist et al. 1999provides a sound expla-
nation for an unprecedented number of perceptual expetinwenlightness constancy
and lightness constancy failures.

In this chapter, we investigate in detail the anchoring thex lightness perception
[Gilchrist et al. 1999in the context of tone mapping. The principal concept o§ thi
theory is the perception of complex scenes in terms of grafigonsistent areas —
frameworks. Such areas, following the Gestalt theorists,defined by regions of
common illumination. The key aspect of image perceptiomésdstimation of light-
ness within each framework through anchoring to the luntiegrerceived as white,
followed by the computation of the global lightness. We dea computational model
for automatic decomposition of HDR images into frameworksal is based on the
heuristics defined in the theory. We use the model in a tongpmgmperator which
predicts lightness perception of the real world scenes @nd at its accurate repro-
duction on low dynamic range displays. Furthermore, we lesthat a decomposi-
tion into frameworks opens new grounds for local image asiglin view of human
perception.

5.1 Previous Work

A number of tone mapping operators is to a certain extenténfted by theories of
perception of brightness and lightness. Initially, theoaithms were based on the
power-law relationship between the brightness and theespanding luminance, as
proposed in$tevens and Stevens 196The main objective was to preserve a constant
relationship between the brightness of a scene perceivadi@play and its real coun-
terpart for any lighting condition. Implementations ofglipproach were presented
in [Tumblin and Rushmeier 1998Stevens law) and inQrago et al. 200B(Weber-
Fechner law). Further attempts in lightness reproductaal to direct application of
the Retinex theorylJand and McCann 19710 tone mapping. Jobson et allgbson
et al. 1997 proposed a multi-resolution Retinex algorithm for lunmiga compression,
which unfortunately leads to halo artifacts for HDR imagkesg high contrast edges.
Inspired by the lightness perception model based on cdritrigration, Fattal et al.
proposed a successful gradient domain tone mapping op¢katibal et al. 200R The
concept of intrinsic imagesBjarrow and Tenenbaum 1978rend 1994 to separate
the illumination and reflectance (detail) layers inspireahsnalgorithms. The idea was
firstimplemented inTumblin et al. 1999where it was assumed that these layers were
explicitly provided which is the case only for synthetic iges. Later, several methods
for an automatic layer separation have been introduced.LTH8 operator Tumblin
and Turk 1999separates the image into large scale features (presurtlaibiynation)
and fine details. A much better separation has been achieied the bilateral filter
[Durand and Dorsey 2002

Evidently, perception theories have been inspiring tonppimey algorithms to a certain
extent. Although the early operators are based on simpteigewhich do not account
well for lightness in complex scenes, the new algorithmsdbwpon intrinsic images
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and contrast models which are very advanced theories. Tgega®n into illumina-
tion and reflectance presents a convenient image processihfpr detail preserving
dynamic range compression. However the theory remainsevagout how to map
luminance to lightness in such separated layers so thatcdmesappearance is well
preserved. Moreover, the intrinsic image models fail toradsl the apparent failures
in lightness constancydilchrist et al. 199R On the other hand, the algorithms in-
spired by Retinex and contrast theories focus on optimibinghtness relations and
leave the aspect of lightness mapping to the user. The irgguthages look as if
enhanced through numerical optimizations rather thamigatfie original appearance
reproduced. Overall, many questions in the area of appeanaproduction remain
open, motivating us to develop a computational model of tireently most advanced
theory of lightness perception and to examine it with arialiysthe context of natural
scenes.

5.2 Anchoring Theory Of Lightness Perception

The anchoring theory of lightness perception Byji¢hrist et al. 1999is qualitatively
different from other recent lightness models and is based combination of global
and local anchoring of lightness values. In the followingtsms we explain the main
concepts of this theory. First, we discuss the estimatidightness within the simple
scenes (background/patch stimuli) using the anchorirgsrilext, we explain how to
extend the anchoring of lightness to complex scenes usamgefworks.

5.2.1 Anchoring Rule

In order to relate luminance values to lightness, it is neagsto define at least one
mapping between the luminance value and the value on the s€aderceived gray
shades the anchor The anchor cannot be defined once for absolute luminanaesal
because each luminance level can be perceived as any shgds aflepending on the
observation conditions. It therefore must be tied to a meastirelative luminance.
Two such measures are commonly used for anchoring: thega/krainance rule and
the highest luminance rule. Once the anchor is defined fadbee, the lightness value
for each luminance value can be estimated by the luminanizelratween the value
and the anchor. This mapping is referred tosaaling Although usually a veridical
scaling is assumed, the compression or expansion of the iampssible if necessary.

The average luminance rule derives from the adaptaticgi-tbeory Helson 1964and
states that the average luminance in the visual field is ped@s middle gray. Thus
the relative luminance values in a scene should be anchgrétely average value to
middle gray. This assumption was later commonly adopteoria thhapping techniques
[Ferwerda et al. 199@umblin et al. 1999Pattanaik et al. 20Q®Reinhard et al. 2042

The highest luminance rule initially defined the anchor asapmping of the highest
luminance in the visual field to a lightness value perceivedvhite. However, the
evident perception of self-luminous surfaces (lightentlite) leads to an extended
definition. According to I[i and Gilchrist 1999 there is a tendency of the highest
luminance to appear white and a tendency of the largest areppear white. When
the highest luminance covers the largest area, the higlh@dtdnce becomes a stable
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anchor and is mapped to white. However, if the darker arearhes larger, the highest
luminance starts to be perceived as self-luminous and tbleoaibecomes a weighted
average of the luminance proportionally to the occupyirgaar

The experimental evaluation of the average luminance refsus the highest lumi-
nance rule was presented lri fnd Gilchrist 1999. In this study, the visual field of the
observers was limited to a large acrylic hemisphere withtwaigpainted matte black
and the other half painted middle-gray. The experiment waslacted in isolated con-
ditions to prevent the uncontrolled influence of other stimt and Gilchrist reported
that the middle-gray half was seen by the observers as fulliewwhile the black half
was seen as dark gray. Additionally, when the black area m@sased and became
considerably larger than the middle-gray area, the penegépffect of self-luminosity
for the middle-gray part was reported. Other findings, basedlondrians Palmer
1999, which are more complex stimuli, agree with these conodlsifGilchrist and
Cataliotti 1994. The experimental evidence decisively favors the highasinance
rule over the average luminance rule.

5.2.2 Complex Images

The anchoring rule, described in the previous section, aaba applied directly to
complex images. Insteadi[Ichrist et al. 199Pintroduce the concept of decomposi-
tion of an image into segmenfsameworksin which the anchoring rule can be applied
directly. In their theory, following the Gestalt theoristameworks are defined by re-
gions of common illumination. For instance, all objectsigeinder the same shadow
would constitute a framework. Additionally, proximity itsa considered as a grouping
factor. A real-world image is usually composed of multiplenheworks.

Framework regions can be organized in an adjacent or a biecat way and their areas
may overlap. Additionally, the whole scene constitutesaditionalglobal framework
with its global anchor. The lightness of a target in a scermmputed according to
the anchoring rule in each framework. A target in a complesnscthat belongs to
more than one framework, may have different lightness wWigen anchored within
different frameworks. According to the model, the net ligggs of a given target is
predicted as a weighted average of its lightness valuesan efthe frameworks in
proportion to their strength and with a certain constar¢lle influence of the global
framework. The strength of a framework is mainly determitgdits size and the
variety of luminance values it containgsticulation. Frameworks with lower variance
or smaller sizes have less influence on the net lightness.

5.3 Computational Model

The anchoring theory has been presented without a formaém@uh a technical level
this requires the development of a method for automatic seggtion of an image
into frameworks, to build heuristics estimating the infloerof each framework on
total lightness, and to estimate the anchors within the émaonks. Furthermore, the
algorithm must perform accurately when used with naturahss.

The presented model takes an image with relative luminaaktees as an input. Such
values can be computed from RGB channels of an HDR image @iogoto the CIE
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XYZ luminous efficiency functions. We first segment the injnage into the overlap-
ping frameworks and define the probabilities with which fExeelong to each frame-
work. Next, we estimate the anchor in each framework andlfiralculate the net
lightness in the scene.

5.3.1 Decomposition into Frameworks

We define the framework as a probability map over the wholgamawhich each pixel
is assigned a probability of being part of that frameworke Titamework, in order to
be valid, must be defined by a number of pixels which belongiftamework with
a very high probability, for instance above 95%. In prineifghe task of segmentation
into frameworks is to identify luminance values which pdiglly represent a common
illumination and to assign to each pixel for each framewdrk probability that the
pixel is under considered illumination. Due to the lack gbléit information about the
distribution of illumination, we assume here that the casitrange typical to everyday
situations is wide enough to allow us to identify such sefeatlumination areas based
on luminance. It is for example possible to identify shaddweeas on a sunny day,
dim interior of a room with a window view, street light illumation in a night scene,
and similar.

Initially, we have experimented with several segmentadigorithms in order to find
a plausible decomposition into frameworks. The mean ségheentation Comaniciu
and Meer 200Phas produced the most appropriate results. However, sggiien al-
gorithms in general assign a pixel to only one segment arréfibre do not implement
the notion of probability of belonging to a segment. A bordetween two frameworks
which might occur on a smooth gradient in the image is in susituation impossible
to represent correctly. We therefore decide to tailor asusiecomposition method.

As mentioned before, our method is based on the luminaneasiites in the HDR
image. We start with the standard K-means clustering atyorto find the centroids
that provide an appropriate segmentation of the HDR image fiameworks. We
operate on a histogram in the lggf luminance. We initialize the K-means algorithm
with values ranging from the minimum to maximum luminancéhi@ HDR image with
a luminance step equal to one order of magnitude and we exéuweiiterations until
the algorithm converges. Upon convergence, we removeaidsatrepresenting empty
segments.

Given the centroid values, we initially assign the proligbitalues based on the dif-
ference between the pixel value and the centroid. We mod#l an attribution to the
centroid with a Gaussian function:

~(Gi-Y(xy)?
R(xy)=e 27 (5.1)

wherePR represents the probability map for framewarlC; is the centroid for that
framework,Y denotes the luminance of the HDR image (bGtlandY are in the logy,
space), and the varianceequals to the maximum distance between adjacent centroids.
The attribution values are normalized to correctly repnetige probabilities.

Often at this stage, pairs of centroids may represent sirfrdaneworks — all pixels
in an image belong with a similar probability to both of thekiVe iteratively merge
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the centroids whose probability maps differ by less than 200average, and the new
centroid value is equal to the weighted average of both ptimpally to their area:
GC-S+Cj-S
o , 5.2

Gij S+5S (5.2)
whereC; andC; are the values of the too similar centroids, &h@ndS; denote the
number of pixels clustered to these centroids. After thegmeprobability values are
recalculated according t&(1), and the iteration is repeated until no centroids need to
be merged.

As the next step, we spatially process the probability magach framework to include
the proximity aspect of Gestalt grouping factors. The gpatiocessing smoothes local
variations in the probability values which may appear dutextured surfaces. High
local variations, however, cannot be smoothed becausenthgydefine the outline of
objects or frameworks. The bilateral filtefFdmasi and Manduchi 1998 an appro-
priate image processing tool for this purpose. We filter trabability map of each
framework with a bilateral filter in which the range varianigset to 02 and the spatial

variance to 17 pixels.

u

(@) luminance channel of an HDR(b) intensity based frameworks(c) spatially processed frameworks
image

Figure 5.1: The decomposition of an HDR image into framewdrkfore and after

spatial processing. Notice the artifacts in the intenségdal frameworks decomposi-
tion (marked area) which are corrected after the spatiaiqesing. The HDR image

appears dark because it has been exposed for details irotidsclThe original image

courtesy of Greg Ward.

luminance luminance luminance

(a) initial centroids (b) probabilities for initial cen{c) valid centroids with probabili-
troids after K-means convergencéies

Figure 5.2: The histogram of the HDR image from Fig6r&(a)illustrating the esti-
mation of centroids which provide an appropriate decontjrsinto frameworks. In
the middle and right histograms the probability distribns are shown for each frame-
work. The maxima of the probabilities do not always matchdéetroids due to the
normalization.

We demonstrate the decomposition procedure on an exampkR iRiage shown in
Figure5.1 with details of decomposition in Figu2 First, we converge the initial
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segmentation to identify luminance values that would re@né the most accurate de-
composition into frameworks, Figu®2(a) We then calculate the probabilities and
merge one centroid which does not represent a valid framewayuress.2(b) 5.2(c)
The final centroids define the probability maps based onlyherluminance property
and contain several incorrect assignments visible in Ei§ut(b) The reflections on
the logs at the bottom of the image are incorrectly assignea framework which
mainly contains clouds. We refine the probability maps tduide also spatial interac-
tions as shown in Figurg.1(c)

5.3.2 Strength of Frameworks

Apart from the illumination conditions, the strength withieh a framework influences
the lightness of a given surface also depends on the atiimulaf the framework and
its relative size. If a framework is highly articulated, tpixels tend to be strongly
anchored within this framework. Also, large frameworks éavhigher influence on
the lightness than small ones. Strength of a framework isi@éfas the product of the
articulation and size factors.

We estimate the articulation factor independently for elilamework based on the
mean contrast calculated as a standard deviation of lbgaidtiuminance in the frame-
work. The articulation factoA; is the mean contrast in the framework divided by the
mean contrast in the image. Thus the frameworks which cortdarger part of the
contrasts in the image have a stronger influence on the Bghtn

Similarly, a larger framework will have a tendency to haveighbr influence on the
lightness of surfaces, while a relatively small frameworil Wave a rather limited
impact. We estimate the size factor in the following way:

~(5)2
X =1—e2002 (5.3)

whereX; denotes the size factor of the framewadrlandS represents the normalized
relative area of a framework. Here we attenuate the influefideameworks with a
size below 10% of the total image area. The 10% value is chadgtrarily and can
be modified if necessary. Although, it is not as importanté¢awe a precise number as
to include the factor at all. The lack of the factor may leadiexcessive influence of
unimportant frameworks on the net lightness estimation.

We apply the strength factor to the frameworks by multipdyineir probability map#
by their respective articulation factér and size facto§. We then normalize the prob-
ability maps again and obtain the final result of the decoritiposinto frameworks.
Most of the time, all frameworks in an image will have a sim#éaticulation. Some-
times however, a uniform area like a background may constéuramework due to
its unique illumination. Articulation prevents such a bgaund framework to play an
important role in the computation of the net lightness byimining the local anchor-
ing of pixels to this framework in favor of other frameworks. an extreme situation,
when all frameworks have minimum articulation, the framegwwith the highest an-
chor is assigned a maximum articulation, thus imposing tbeaj anchoring in the
image.
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5.3.3 Estimation of Anchor

After the HDR image is decomposed into frameworks, we edértiae anchor within
each framework. Since we employ the highest luminance mwéeneed to find the
luminance value that would be perceived as white in caseemdiramework would be
observed as stand-alone.

7
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(a) anchoring for framework #1 (b) anchoring for framework #2 (c) netlightness

Figure 5.3: Local anchoring in the frameworks and the ndittigss calculated as
described in Sectiob.3.4

Although we apply the highest luminance rule, we cannotdiyaise the highest lumi-
nance in the framework as an anchor. As discussed in Segi2oh there is a relation
between what is perceived as white and its area relativetii@gsurround. This im-
plies that a spatial filtering is required prior to the estiwra of the local anchor. Our
procedure is to filter the area of a framework with a mediuragi@aussian kernel to
suppress plausible small areas with high luminance. Wesdlinsnate potential self-
luminous areas, allowing us to take the highest luminandbefest of the pixels as
the anchor. In Figur&.3we show the two frameworks identified in the example HDR
image with their lightness computed according to the looahar.

Alternatively, the self-luminance areas could be iderditising image processing tools
which remove highlights. Numerous algorithms are avadlas for instanceJchluens
and Koschan 20Q0Nesolkowski et al. 2001 However, we have noticed throughout
our experiments that such algorithms can at most removeulgpdughlights in HDR
images. The direct light sources, which are also self-lau or larger highlights are
left in the image. On average these methods performed I&sstp. Therefore we
excluded them from consideration.

Ultimately, it would be interesting to know which luminaniceeach framework is as-
sumed to be white by an average human observer. Interastinglperceptual evidence
of preferred brightness adjustment in images may be hehgté. In an experiment,
[Yoshida et al. 200Basked subjects to adjust the contrast and brightness tohmat
their preference in a number of LDR images (an LDR image hisare framework).
While the preferred brightness and contrast adjustmentsotally different between
subjects, they observed that after the adjustment all stsbdign histograms along
a very similar luminance value depicting white. Apparenthe subjects performed
the anchoring to white. Therefore, if one can build a modeictvipredicts the pre-
ferred brightness of images, indirectly this could also beduas the model to predict
anchoring to white. In the recent evaluation of such modetafczyk et al. 2007ja
the preferred brightness in a set of 33 images is best pegtigt a combined anchor-
ing to white, middle gray, and black, which in effect maps @¥6reflectance. The
predictions based on image processing methods directlyiagpanchoring to white
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were less accurate. Since the anchoring to white has bedinnsed in the original
experiment, the lower accuracy is most probably caused lpyeiaise estimation of
luminance perceived as white.

5.3.4 Net Lightness

Given the decomposed frameworks and estimated local amet®icompute the net
lightness of the pixels by merging the frameworks. We pre@ssch framework indi-
vidually. We sum the original luminance values of the HDR gmaormalized by the
locally estimated anchor value and proportionally to thabability map:

L(xy) = 30%: § (Y VW) -R(X,y) +70%: (Y —VWp), (5.4)

whereL denotes the final lightness valué,the original luminance of the HDR im-
age,W the local anchor of framework Wy the anchor in the global framework (all
these values are in the Iggspace), and is the probability map. The 30% and 70%
coefficients for local and global anchor influence respettiare arbitrarily suggested
in [Gilchrist et al. 1999and can be modified if necessary. In Fig&8 we illustrate
how the net lightness has been computed for the sample HDgeinfacomparison of
the net lightness result to the original HDR image in FidouEllustrates an improved
perception of image contents in the processed image.

5.4 Model Analysis

The main focus of this chapter is the computational modeheflightness perception
theory applied to the tone mapping of HDR images. A thorouwgification of the pre-
sented model would require a psychophysical experimentiwisi beyond the scope
of this thesis. Instead, we test our computational modelrbylsiting two experiments
related to the perception of lightness. The first one analitzeaccuracy of the decom-
position into frameworks for natural scenes and the secapdrament is a simulation
of the Gelb illusion using various lightness mapping altjons for HDR images (tone
mapping operators).

5.4.1 Frameworks within Multi-llluminant Scenes

According to the anchoring theory of lightness perceptiarccessfully identified frame-
works should define the areas in which the lightness is pardehomogeneously
[Gilchrist et al. 1998 The evidence for such lightness perception can be oldaine
through a distribution of probe disks of constant known lamice value across an im-
age. The disks should have the same lightness within a frankemwdependently of
the ratio of their luminance to the background luminance bicivthey are placed.

Such an experiment has recently been presented by GilemisRadonijic Gilchrist
and Radonjic 2005 In Figure5.4we provide an HDR reproduction of this experiment
using an image similar to the original material. We decorepibe HDR image into
frameworks using our computational model and place seyeode disks of constant
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(a) probe discs in natural scene (b) probe discs (c) identified frameworks

Figure 5.4: The probe discs of constant luminance (middie)irsserted to a multi-
illuminant natural scene (left). The perceived brightnelsthe probes changes in the
context the scene, but is constant within the two identifragneworks (right) and is
independent of the local background luminance. The cantasies of the probes with
the background range in the shadow framework from 1:2 todi€ (s an increment)
and in the light framework from 9:1 to 2:1 (disc is a decrement

luminance value in various areas of the image. The contagisisrbetween the probe
disks and the background in both shadow and light framewaunkge from 1:2 to 1:9.

The lightness of the probes is perceived consistently witié area of the frameworks
independently of the background. These leads to the santus@ms as in the orig-

inal experiment: lightness is determined by the framewarid the influence of local

contrasts is minimal. Our contribution here is not to conftha theory, but to pro-

vide an automated method for obtaining an appropriate dposition. In this sense,
the reproduction of the experiment serves as the evidermtdrdimeworks areas are
accurately identified using our computational model.

5.4.2 Anchoring in the Gelb Illusion

The Gelb Effect is a well known illusion which provides a gamdmple of lightness
constancy failureGilchrist et al. 1999 In the illusion, one observes perceptual dark-
ening of a surface despite its constant reflectance andargrisimination. The failure
is caused by the appearance of new brighter surfaces in éme sdhe illusion can be
reproduced in a darkroom with low ambient light using sevpeaiches of gray paper
with a different reflectance. A single beam of light shouldtfiluminate only the dark-
est paper, which will appear to be white. Placing a bit begpaper beside the existing
one causes perceptual darkening of the darkest paper wasdhitially appeared to be
white. Each time a brighter paper is added to the scene, dirbes white and all others
immediately become darker. This perceptual illusion cadéfjnition be attributed to
the anchoring in general and to the highest luminance rupaiticular. It can neither
be explained with the contrast theories because the papenstchave to be placed
adjacent to each otheGjlchrist et al. 1998 nor with intrinsic image models because
the illumination does not change. Furthermore, if the samteipies only a part of the



5.4. MODEL ANALYSIS 65

visual field, like a tone mapped image observed on a disfiaypérceptual darkening
will not appear because other visible surfaces may servendsta reference. There-
fore it needs to be reproduced during tone mapping to predaesappearance of the
original scene.

(a) scene setup for Gelb illusion (b) decomposed frameworks (c) illumination layer

Figure 5.5: Photograph of the scene in which the Gelb effaotle observed (left).
The middle image shows the decomposition into frameworkaioed from our model
—red, green, and blue define the distinct frameworks, yathawks the shared influence
of the red and the green frameworks. The right image showdltimination layer
obtained with the bilateral filtering which is used in theriimsic images model.

We have performed a study of this experiment to validate é¢salts of our algorithm.
For comparison, we chose two other methods whose principéé igcludes the re-
production of appearance of the original image. The phajalgic tone reproduction
algorithm presented by Reinhard et REjnhard et al. 2002s based on a sigmoid
function and follows the rule of anchoring to middle-grayh€eTfast bilateral filtering
presented by Durand and DorsByfrand and Dorsey 2001 inspired by the theory of
intrinsic images. We will refer to the first one as tnéldle-gray anchoring@nd to the
latter as thentrinsic images modeln the study, we used four HDR captures of exactly
the same scene setup, showing from one to four patches vagngasively increasing
maximum reflectance. The relative reflectance of the patehsgespectively equal to
39% 56% 72% and 100% with the reference to the brightest one. The areehiich
we showed the patches, was illuminated from the top and ic@oditions the Gelb il-
lusion was reproduced. A photograph of the setup with alptitehes visible is shown
in Figure5.5.

The results of tone mapping of the four HDR images are showhidgnre 5.6 and
the respective reproductions of lightness of the patcheplatted in Figures.7. All
tone mapping methods reveal the objects placed outsidesohdin illumination that
are not visible in a standard photograph in Figbrb. The intrinsic images model
maps the lightness of the patches in each of the images topanxamately constant
value and maintains the overall brightness of the scenegbackd constant. This is
in accordance with the lightness constancy rule, but contawhat was observed in
the real setup. The middle-gray anchoring reproduces tteeptial darkening of the
patches, however the brightest one is mapped to white ongnvaltl four patches are
visible. Further, each brighter patch causes the darkesfisgene background which
was originally not observed. The lightness perception rpdesented in this chapter
reproduces both the Gelb illusion on the patches and ho&lightness constancy of
the objects in the scene background.
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1 patch 2 patches 3 patches 4 patches

Figure 5.6: Simulation of the Gelb Effect by three tone mapgpnethods. The map-
ping of lightness by each of the tone mapping is plot in Figbg The intrinsic
images modeiefers to Purand and Dorsey 2002perator, thaniddle-gray anchoring
to [Reinhard et al. 20J2andlightness perception mod#&d the operator presented in
this chapter.

lightness percep-
tion model

middle-gray
anchoring

intrinsic images
model

Analysis

The decomposition of the scene into frameworks (shown inf€i§.5) in the lightness
perception model permits the processing of patches an@shefrthe scene separately.
The estimation of local anchors using the highest luminauleeestimates the appear-
ance of patches in accordance with the observations in fgenak conditions. The
net lightness calculation with the influence of a global amghaintains the brightness
relation between the frameworks.

The lightness constancy of the intrinsic images model caexp&ined as follows. In
the illumination layer (shown in Figurg.5), obtained by processing the original HDR
image with the bilateral filter, the brightness of each p&approximately equal while
the actual differences are in the reflectance layer. The rieaygping reduces the dy-
namic range of the illumination layer and overlays the unified reflectance layer.
Since the intensities in the illumination layer do not sfigpaintly change between the
four images, the lightness mapping is constant. Therefeeiher the average lumi-
nance rule nor the highest luminance rule applied to thmilhation layer could repro-
duce the Gelb illusion. The application of the highest luamice rule to the reflectance
layer or to the final tone mapping result could reproduce #r&ehing of the patches,
however it would also cause the undesired darkening of ath@ge parts.

The middle-gray anchoring reproduces the darkening of étehes because the addi-
tion of a new brighter patch causes change in the averagednoe of the scene. When
the average luminance increases in a new image, the pathie$, have constant lu-
minance, are mapped to darker gray shades. Unfortunatedly, a global connection
causes the overall darkening of the scene which is not eageahd the brightest patch
is mapped to white only when all four patches are presentdistiene.
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Figure 5.7: The plots illustrate how the mapping of lumirent the patches to light-
ness changes between the four images in case of each of dlectdime mapping oper-
ators. On the scale of lightness, the value 100 maps to whdedo black. Refer to
the corresponding images in Figuse.

5.5 Applications

The computational model of lightness perception theorynepew possibilities in pro-
cessing of HDR images. As a direct application we presenha toapping operator
which aims at the reproduction of lightness as closely asiplesto the lightness per-
ceived in a natural scene. Besides, decomposition intodwaorks defined by homo-
geneous illumination gives an interesting possibility &vqeptually supported image
processing.

5.5.1 Tone Mapping

Based on the computational model of lightness perceptiendevive a tone mapping
algorithm for contrast reduction in HDR images. The aldorittakes as input an HDR
image defined by floating point RGB values that are linearligteel to luminance and
produces a displayable LDR image as a result. The contréisttien process is based
on the luminance channel.

The main technical goal of tone mapping is to reduce the ashof the original HDR
image. While through the net lightness computation the dyoaamge in the image is
reduced, it may still exceed the capabilities of the displayice. Hence, an additional
dynamic range reduction may be necessary to achieve goolistefor the purpose
of tone mapping we use a modified version of net lightness coatipn 6.4) which
includes a dynamic range reduction (scaling) by a fabor

Y -W

L(x,y) = 70%: Z % -R(X,y) +30%: (Y —Wp). (5.5)
T i

The value ofD; can be set individually for each framework in such way thatdles

down the dynamic range of a framework if it exceeds the cdifiabiof the target

display device. Also the influence of the global framework baen limited, because

it counteracts the luminance range compression goal.

We first calculate the luminance from the RGB colors usingGHe Yxy color space
and segment the input scene into the frameworks. Next, weaastthe anchor in each
framework, i.e. the luminance value perceived as white. Néa ttompute the local
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pixel lightness within each framework. Finally, we caldel#he net lightness of each
pixel using equations.5). We recover the color information with an inverse CIE Yxy
transform, using the computed lightnésgstead of luminance channél The result

is suitable to be viewed on an LDR display device.

To illustrate the performance of our tone mapping algoritiva have selected several
HDR images which contain various distinct illumination tie@s. We present our re-
sults in Figureb.8, where each row contains the source HDR image, the tone mgppi
result, and a map of framework areas. The decompositionfiatneworks obtained
using our model correlates with the intuitive impressiomich areas have common
illumination: daylight, shadow, desk lamp, room interiexterior, etc. The separation
performs well even in presence of occluders like the grasingcture of the window
pane. The extracted frameworks are plausible despite tkefasemantic information,
which might seem to be necessary to perform a successfuhgEsition. In the re-
sults shown here, the scalilly has not been necessary, however we have sometimes
reduced the influence of the global framework down to 10%rmages with a partic-
ularly high dynamic range. Interestingly, the images tende decomposed only into
two or three frameworks, although there is no restrictionh@annumber.

One important issue is that Gilchrist’'s model generallyuasss approximately diffuse
surfaces and if self-luminous areas exist, they occupy iddrield of view. In our ap-
plication we use this theory for complex scenes beyond wasibhiginally been tested
but we do not observe any problems invalidating our approaalour knowledge, per-
ceptual models of lightness perception able to deal withnadscenes, which contain
large self-luminous surfaces, do not exist.

The evaluation of aesthetic properties of this tone mappargbe done with recently
presented methodology édda et al. 2005Yoshida et al. 2005 In Figure 5.9, we
provide analysis of how the luminance values are mappededightness levels in
three different tone mapping techniques: the presentathiégs perception model, the
global version of photographic tone reproducti®e[nhard et al. 20Q2vhich is a sig-
moid mapping function, and the fast bilateral filterif@rand and Dorsey 200&/hich

is inspired by the intrinsic images model. The technicalityaf a tone mapping algo-
rithm can be measured by the efficiency in use of the availabieed dynamic range
on a display device. In our example, the global operatorgpers$ a strictly monotonic
reproduction, thus leads to the loss of fine details as exgdhin Sectior2.5. The
local adaptation using the bilateral filtering enables aevedficient use of the avail-
able dynamic range. The preservation of details can be videas a deviation from
the monotonic mapping of luminance. However, the tone nrappsing frameworks
permits to break this monotonicity and perform partiallgeépendent mapping of lumi-
nance in two distinct image areas, resulting in an even nféogeat use of the dynamic
range. The mapping within the frameworks is not uniform lseaof the varying in-
fluence of the global framework. We further evaluate the prtgs of the lightness
perception tone mapping in Chap&mwhere we analyze it in terms of communication
of contrast in images.

5.5.2 Local Image Processing

Image processing algorithms are usually applied with unifparameter settings over
the whole image. When the algorithm is localized, the paramador the method are
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source HDR image lightness perception decomposition
(linear mapping) tone mapping into frameworks

Figure 5.8: Results of lightness perception tone mappitg. [&ft column (apart from
the last row) contains the source HDR image shown with trealimapping. The mid-
dle column contains results of the presented tone mappirtigatie The right column
depicts the decomposition into frameworks. Red, blue aedmgcolors depict the dis-
tinct frameworks. Higher saturation of the color illuseststronger anchoring within
the framework and the intermediate colors depict the infleesf more frameworks
on an image area. The HDR images in tH& and 3" row from the top courtesy of
SpheronVR, and the HDR image in th& fow courtesy of Byong Mok Oh.
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-1 0 1 - -1 0 1
HDR luminance (Iog10 scale) HDR luminance (Iogﬂ0 scale) HDR luminance (Iog10 scale)
(a) global tone mapping (b) bilateral filtering (c) lightness perception model

Figure 5.9: Comparison of three tone mapping operatorsbaglsigmoid function,
local tone mapping with bilateral filter, and lightness @g@tion tone mapping. Color
of the mapping functions in the plots correspond to the nthekeas of frameworks
(inset in image (c)). HDR image courtesy of SpheronVR.

set based on some constant local neighborhood. Howevesgyitaften be desired to
vary the parameters of such algorithms between the areasiofage. In this case it
often has to be done manually by the user. With the use of frame decomposi-
tion, it is now possible to identify the areas that are pemxtihomogeneously in an
image. For the purpose of automated image processing, ¢hisits to estimate the
most appropriate parameters for a given algorithm indiilguor each framework.

In digital photography, it often happens that an image doatawvo different sources

of illumination — for instance daylight from a cloudy sky an@érm indoor tungsten
light as in Figure5.10 Such an image requires a white balance correction. However
correcting for the daylight will result in an increased agarcast in the tungsten light.
The decomposition into frameworks allows the identificatad such separate areas
and enables different white balance correction in each efth Again, frameworks
represented as probability maps guarantee proper bleondliedges where differently
processed areas merge. One can envisage further pomsbilitvhich our decompo-
sition into frameworks reduces the required amount of mikinteraction.

5.5.3 Performance

The estimation of lightness in a 4Mpx image using our conmutal model takes

below a minute on a modern PC. The timing mainly depends onuheer of decom-

posed frameworks, since the majority of computations isispa the decomposition
stage. Once the frameworks are known, the estimation ofcarefd net lightness

computation consists of simple operations. The K-meanridfign operates on a his-
togram and is therefore independent of the image resolufidre only bottleneck is

the spatial processing using the bilateral filter, althoughuse an efficient approach
presented by Durand and Dors&urand and Dorsey 2002
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(a) global white balance (b) white balance within frameworks (c) frameworks

Figure 5.10: The daylight from a cloudy sky dominates thetevhialance in image
(a) and causes the orange color cast in the interior illutethdy a tungsten light.
The frameworks (c) can be used to separate such areas eédiffdumination and to
perform an independent white balance in each of them (b).

5.6 Conclusions

We have presented a computational model of the anchorirgythad lightness per-
ception. The model provides a practical implementationhef key concepts of this
theory and aims at an accurate estimation of lightness inwedd scenes captured
as HDR images. We leveraged the theory to handle complexdsbyg developing
an automatic method for image decomposition into framew/ofirough the estima-
tion of local anchors we formalized the mapping of the lumtevalues to lightness.
We examined the accuracy of our model by reproducing thdtsestitwo perceptual
experiments that were initially conducted to prove the eacyof the theory.

We have demonstrated a novel tone mapping operator which atirthe accurate re-
production of lightness perception of real world scenesandynamic range displays.
The strength of our operator is especially evident for diffishots of real world scenes,
which involve distinct regions with significantly differeluminance levels. Moreover,
the decomposition of an image into frameworks gives adutigpotential for auto-
mated image processing fine tuned to the perceptual asgabtstdVs.
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Chapter 6

Objective Evaluation of Tone
Mapping

Existing tone mapping algorithms can be generalized asresfea function in the
form of a “black box” which converts scene luminances to ldigable pixel inten-
sities. While the universal goal of such a transfer funct®moi reduce the original
dynamic range and at the same time preserve the originahegpee of an HDR im-
age, a particular realization of it can be variable and ddpam the objectives of a
target application. In many cases one may wish to simplyiobtice looking im-
ages that resemble the original HDRs, but the requiremeaysaiso be more precise:
perceptual brightness match, good visibility of detaitpjigalent object detection per-
formance in tone mapped and corresponding HDR image, etéewof the technical
limitations and constrained observation conditions fandtard displays, such require-
ments can only be met at the cost of other image propertigsngiance, if an available
dynamic range is assigned to enable good visibility of detéical contrasts), there is
no dynamic range left to depict global contrast variationghie scene. The trade-off
between these conflicting goals is often balanced througiptimization process, but
sometimes the design of an algorithm is focused on the renpgints and is oblivious
to the side-effects. In the end, the overall impact of imageE@ssing operations on
the perceived image quality or fidelity to the real world agma@ce is not thoroughly
understood.

Recent psychophysical studies attempt to evaluate ton@ingpperators in terms of
subjects’ preference or fidelity of the real world scene digm [Drago et al. 2002
Kuang et al. 2004Ledda et al. 2005Yoshida et al. 2005 In such studies each op-
erator is treated as a “black box” and its performance is @agon the whole with
respect to other operators, without an attempt at undetistaithe reasons for subjects’
judgments. While some studies of tone mapping operatorsrjeefuand take into ac-
count the reproduction of overall brightness, global casttor details (local contrast)
in dark and bright image regionkgdda et al. 2005Yoshida et al. 2005 they remain
focused on comparing the operator performance for eacteséttasks. These studies,
however, provide no deeper analysis of how the pixels of afRHiDage have been
transformed by tone mapping and in what way the outcome df aucansformation
depends on image content.

73
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In this chapter, instead of subjective analysis, we focusereloping objective met-
rics which could help in understanding how particular imabaracteristics, such as
contrast or brightness, are distorted by tone mapping atefrdaing the impact of
such distortions on perceived image quality. We identiit tihhajor distortions in tone
mapped images with respect to their HDR originals come fréwbaj and local con-
trast modulations. We create relevant metrics which evaltiee magnitude o&lobal
Contrast Changeand Detail Visibility Changealong a perceptually meaningful scale
and perform a corresponding study of 8 tone mapping algosthBesides the eval-
uation, the output of these metrics can be used as a feedbapkrceptual enhance-
ments Bmith et al. 200p

6.1 Related Work

A number of perception-based visible difference (fideligtrics for image pairs have
been developed, mostly for image compression and colobdetion applications
(refer to Winkler 2003 for a recent survey of such metrics). State of the art figelit
metrics such as the Visible Differences Predictor (VDPaly 1993 or the Sarnoff
Visual Discrimination Model (VDM) Lubin 1995 include many important character-
istics of the HVS, such as eye optic imperfections, lumimanmasking, the contrast
sensitivity function (CSF), and pattern masking, makingnthvery general metrics.
However, such complex metrics may perform worse than simmékdrics specialized
for the task of detecting well-defined distortion types,rsas blocking artifacts that
arise in image compressiolVinkler 2003. The majority of existing fidelity metrics
are based on HVS models developed through threshold pslgbicpl experiments,
the goal of which is to determine the magnitude of a simphauiiis so that it becomes
just noticeable. Such metrics successfully detect theepsof perceivable image dis-
tortions, but perform poorly in estimating the magnitudesoprathreshold distortions
and predicting their distraction to the human obser@hrgndler and Hemami 20D3
With its spatial features for estimating imperceptiblette® details, the iCAM model
[Fairchild and Johnson 20D% an exception. However, since the magnitude of per-
ceptual responses to local contrast is not available, ihcdie used to determine the
change in detail visibility.

In this work, we are mostly concerned with one well definedathpeshold distortion:
contrast compression due to tone mapping. While much workbbaa done in the
subjective evaluation of different tone mapping operafbesida et al. 2005Yoshida
et al. 200%, to our knowledge, we present the first feature-based ctexiaation and
objective perceptual measure of tone mapping distortiorceSidelity metrics dealing
with image pairs of significantly different dynamic ranges/é not so far been pro-
posed, and since we have found existing models to be ilegtr our purposes, we
present custom fidelity metrics for comparing perceivediremt differences between
an original HDR image and its tone mapped LDR counterpart.

6.2 Distortion Metrics

All successful tone mapping operators balance the tradesifffeen accurate repro-
duction of the luminance range and preservation of detdllae can argue that the
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photographic tone reproductiomperator Reinhard et al. 20Qbest reproduces global
contrast, while thg@radient domain compressigfattal et al. 200Roperator best pre-
serves details. However, the accuracy of such statementslepeend on the particular
HDR image, and as concluded by evaluations of tone mappiegatgrs foshida et al.
2005 Ledda et al. 200B it is difficult for one tone mapping operator to be wellisul
to all types of images. Regardless of technique, each toppimgoperator introduces
a degree of distortion into the resulting LDR tone mappedjen®rawing conclusions
from previous evaluations and our own observations, wetifyetwo major contrast
distortions resulting from tone mapping:

Global Contrast Change the ratio between lightest and darkest areas of the HDR is
reduced in the LDR,

Detail Visibility Change (textures and contours) the high frequency contrasts of the
HDR image become less prominent, disappear, or become esagd in the
LDR.

A significant Global Contrast Change is undesirable not émi\esthetic reasons, but
also because of changes in image understandability, degmitd detail visibility. Cer-
tain specialized tone mapping operators assign a widerndignange to detailed re-
gions to preserve textures and contours, which results iareower dynamic range
available for global luminance changes, decreasing tieblatween lightest and dark-
est areas. Detail Visibility Change occurs either becaussgin becomes entirely
saturated or because an area is mapped to very few or veryrightiess levels. The
second case is especially interesting from the perceptiat pf view, because the
physical contrasts still exist in the LDR image, howeverdpéails are invisible to the
human observer.

Our goal is to determine the apparent distortion in detaibility and global contrast
change which were introduced during the tone mapping of HD&gee. We focus on
the luminance compression aspect of the operators. Insfemthlyzing particular al-
gorithms one by one, we consider tone mapping as an unknawsformation applied
to the luminance of an HDR image, resulting in an LDR image. ddoso, we use
knowledge of human perception to compare a real world orm&fitt scene, captured
as an HDR image, to its LDR tone mapping as depicted on a giepteg device. The
output of our metric consists of a single value representiegglobal contrast change
factor and a map representing the magnitude of change iil disthility. The units
of the detail visibility map are Just Noticeable Differea¢dND), which allows for an
informed use of this information for potential perceptydlased correctionsSimith
et al. 2006.

To compare images of significantly different dynamic rangescompare the lumi-
nance of an HDR image, denoted“sto the luminance shown on a display device,
denoted a&. To accurately predict the displayed luminance, we asshatestifficient
characteristics of the display device are known so that weceéculate the luminance
value incd/n? of each LDR image pixel. For an sSRGB monitor, this requireskland
white levels increased by an ambient illumination levelmi&rly, a photometrically
calibrated HDR image is desirable.

We transform the gamma corrected intensity valuesf the LDR image to display
luminance valuet. Given the display blackpjack and whiteLypite levels incd/nm?

limage luminance is calculated from the RGB channels accotditiie [TU 1990 standard.
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and assuming sRGB response, the transformation is theviatijp
L = Lplack+ SRGB_l(Y) : (Lwhite* I-black)- (6-1)

If the absolute luminance values of an HDR image are unknaveralign the relative
HDR valuesY to the LDR valued. according to the average logarithmic luminance,
a method often used as an adaptation estimate in tone mafipiago et al. 2003
Reinhard et al. 2002

6.2.1 Global Contrast Change

The change in ratio between brightest and darkest points @hage is a traditional
definition of global contrast change that is necessarilustégd by tone mapping, and
so would not be considered a distortion. Particularly, sitene mapping algorithms
most often use the whole display dynamic range, above defirdlways results in a
constant global contrast. Yet images resulting from défféritone mapping operators
can create starkly different impressions of global contnaganing that such a e
measure is not appropriate. Contrary to this definition @hdrs, such as one using the
multi-resolution definition given byNlatkovic et al. 200f we consider global contrast
change to be a characteristic defined by the shape of the tapping function, thus
removing the emphasis on extreme lights and darks which lesgeimpact on the
impression of global contrast. Our definition of global cast change is more closely
related to image comprehension, which according to Gestatirists, involves the
cognitive task of separating the image into recognizabjeat®, most importantly, the
separation of foreground objects from the backgroundrigstone 2002 As such, a
decrease in global contrast may make comprehension of tieilriage more difficult,
indicating a loss in visual communication efficacy.

While it is sensible to analyze tone mapping functions to iokaieglobal contrast esti-
mate, these functions are either unknown or not well-defiagih the case aradient
domain compressiotHowever, we argue that a general approximation of the tcaqe m
ping function is sufficient for estimating global contrdstour metric, we approximate
the tone mapping function using linear regression in thaditigmic domain:

logioL = TM(log,pY) = € -109:0Y + Z, (6.2)

where% and # are estimated coefficients, adand L are the luminances of the
HDR and LDR images. The meaning of logarithm in equat®2)(is two-fold. First,

the logarithm of luminance provides a crude approximatibbrightness and the cal-
culated values of the coefficients reflect the brightnesspingp Further, the linear
regression estimates a general tendency of the mappingy ithédm being prone to de-
tail enhancing procedures which do not influence globalreshtrelations. Second, if
we exponentiate the equatio®.?), we obtain a standard contrast scaling equation in
image processindiratt 1991

L~TM(Y)=Y?.107, (6.3)

where% adjusts contrast and #0adjusts brightness. Summarizing, equati@g6.3)
estimate the shape of the tone mapping curve and relate tiiesbin LDR image.
to its original HDRY. Therefore the coefficier” obtained through linear regression
denotes the Global Contrast Change, such#hat1 indicates a decrease in the global
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contrast in the LDR image, where&S> 1 indicates an increase with respect to the
original HDR.

The result of applying our measure of Global Contrast Chaadgeo tone mappings
(one global and one local) is shown in Fig@rd. While both methods make use of the
entire available dynamic range, the shapes of their magpimgions differ: the global
mapping function is well-defined, as opposed to the noneumifand scattered local
mapping function. Higher global contrast is obtained wtik global tone mapping
method, whereas the detail preserving local method eshébgmaller ratio between
bright and dark areas (the function approximation is neigaty.

tone mapping
“E L1 tm approx. e %
= 10 HDR d.r. =
§ display d.r. 2
©
£ £
5 5
° he]
[
8 &
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= . ko]
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HDR relative luminance HDR relative luminance

Figure 6.1: Global Contrast estimation for globREinhard et al. 20QZleft) and local
[Fattal et al. 200R(right) tone mapping. Each plot shows pixel-by-pixel meggp
between HDR and LDR, linear brightness mapping estimatmid, dynamic ranges
(d.r.) of LDR and HDR. Global Contrast Change for global tom&pping is¢’ = 0.49
and for localg = 0.10.

6.2.2 Detail Visibility Change

Details of textures and contours can be described as thefit@gbhency contrast be-
tween a pixel and its adapting field. Visibility, the resperms the HVS to the mag-
nitude of such contrasts, is not linear and depends on thatatdan level. Contrast
visibility can be analyzed in terms of contrast detectiod anntrast discrimination.
We use contrast detection for identifying visible detarisbioth the HDR and LDR
images, and we use contrast discrimination for identifyting magnitude of visible
difference in detail contrast between the HDR and LDR images

We start by identifying high frequency contrasts that preably create texture and
contour details in the image. For each piXelve estimate the adapting luminan¢e®
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in its neighboring area and calculate the contrast exptease logarithmic ratio of
luminance values: s

max(Y;,Y;>)
% min(Y;,Y°P)”

We simulate the adaptation to low spatial frequencies imeagie and we take special
care to prevent the influence of significantly different lnarice values on an adapta-
tion level. We obtain the adaptation m#gP by processing the HDR image with a low
pass bilateral filter in the logarithmic domain. Such a filemoves high frequencies
while preserving high contrast edges. The adaptation magfiised by eliminating
frequencies above 20 cycles per pixel and preserving eddegarithmic contrast ra-
tio higher than ®5. We calculate the high frequency contrasts of the LDR &riag
the same way. It is important to note that the particular chaif the bilateral filter
for estimating the adaptation map is not critical. Othewo&athms known from tone
mapping can be used as well, as long as they do not introdtitacts at high contrast
edges.

G(Y;,Y°P) = logyo (6.4)

To estimate the Detail Visibility Change between two imagesignificantly different
dynamic range, knowledge of the hypothetical HVS respoaggivien physical con-
trasts under given adaptation conditions is required. Aarable prediction for a full
range of contrast values is given by the following transddigection that is derived
and approximated by Mantiuk et aMpntiuk et al. 2008

T(G) = 54.09288 G%41850 (6.5)

with the following properties:

T(0)=0 and T(Gthreshold = 1. (6.6)

The transducer function estimates the HVS response togaiysintrast in Just Notice-
able Difference (JND) units. Thus for a given contrast thodd, Gihresholg @ transducer
value equals 1 JND. It is important to note that this measatéshfor suprathreshold
measurements, since it not only estimates the detectidnalba the magnitude of
change.

The approximation given by Equatiof.b) has been derived with the assumption of
1% contrast detection threshéd.e. Ginreshold= log;0(1.01). Although such an as-
sumption is often made in image processing for LDR, the dietethreshold depends
on an adapting luminance level and is described by the Thléslersus Intensity
(TVI) function [CIE 198]. The TVI function shows that this threshold varies in the
luminance range of displays and the dynamic range in HDRtendfigh enough to
make this 1% assumption for the detection threshold inateukVe therefore derive a
scaling factot (YSP) for the transducer functior6(5) which adjusts its propertie$ )

to match the TVI function given an adapting luminance:

l0g;01.01

YSP+Vi(YSP)
|0910 YSp( )

t(YSP) = (6.7)

Such a scaling factor is appropriate because the apprarimattthe transducer func-
tion (6.5) was derived with starting conditions from.6), and since the influence of the

2While equation 6.5) gives a good approximation of the response to contrast inda veinge of physical
contrasts, it actually has a slightly larger fitting error fiear-threshold values. Thus equatiérbf does not
precisely satisfy equatior®(6) for 1% detection threshold. For detailed derivation d¢arjtiuk et al. 2006
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threshold is multiplicativefantiuk et al. 2008 Figure6.2illustrates the magnitude
of change in the HVS response depending on the adapting &noé The response
changes by a factor of almost 1 order of magnitude within ik#éle range of lumi-
nance on a display. In practice, the scaling factor reduresedsponse to contrast in
the dark areas of an image.

scale factor t(¥9)

o
i
N

0.1 1 10 100 1000
adapting luminance ¥ [cd/mZ]

Figure 6.2: Plot of the scale factor from equati@i7f. Luminance range of a typical
LCD display is 2 to 20@&d/n?.

Given the scaled transducer function, we can estimate thethgtical response of the
HVS to the high frequency contrasts measured with equa@i@: (

T (Y, Y5%) = T(G(Y, Y°P)) -t (Y*P). 6.8)

The responsd * is expressed in JND units, which means that a détai$ visible
under given luminance conditions onlyTif > 1. Given this relation, we are able to
estimate the details of a displayed LDR image and the deihdls HDR image which
would be visible to a human observer. Furthermore, sincérémsducer function is a
suprathreshold measure, we are able to estimate changeripadag the magnitude
of detail visibility in a displayed LDR image to its HDR veosi (spatial arguments are
omitted for brevity):

1 for TH(Y)>1>T*L),
AT*(Yi,Li)=q 0 for_[IT(¥)-T*(L) <1, (6.9)
T(Y) — T*(L) otherwise.
For practical reasons, we consider the average detaililitigimeasure over its neigh-
boring pixels, denoted a&*, because we are interested in general detail visibility in a
certain small area. As shown in equat®8, we consider three cases of detail visibility
change. When a response to high frequency contrast in the Ir{aBd is attenuated
from above 1 JND to below 1 JND in the tone mapped image, thegshas 1 JND.
When the difference in response is below 1 JND, the changeeinee invisible and
is set to 0. In all other cases, the magnitude of Detail VigjpChange is set to the
difference in responséds‘. We illustrate the performance of this measure in Figuge

6.3 Analysis of Tone Mapping Algorithms

We analyzed the performance of 8 tone mapping methods irstefi@lobal Contrast
Change and Detail Visibility Change using the presentediosefThe analysis was per-
formed on a set of 18 HDR images with an average dynamic rahggpooximately 4
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Figure 6.3: Detail Visibility. HDR image (A) contains subtteflection on a surface
of the cup. A global tone mapping (B) reveals the coffee béatise shadow but the
reflection details become indiscernible. The areas of tregamwith lost details are
predicted by our metric (C), where red color maf&* > 1.

orders of magnitude and a resolution betwednaihd 4 megapixels. The set contained
a variety of scenes with differing lighting conditions ametluded panoramic images.
We tested the following global (spatially uniform) tone mpagy algorithms:gamma
correction(y = 2.2), adaptive logarithmic mappinfPrago et al. 2008 photographic
tone reproduction (global)Reinhard et al. 20g2photoreceptofReinhard and Devlin
2003; and the following local (detail preserving algorithmgjradient domain com-
pression[Fattal et al. 200R. bilateral filtering [Durand and Dorsey 20(2lightness
perception(Chapters), photographic tone reproduction (locdliReinhard et al. 2042
The tone mapped LDR images were obtained either from theeti these methods
or by using publicly available implementationgfstmq AppendixB. Tone mapping
parameters were fine tuned whenever default values did ndupe satisfactory im-
ages.

In practice, the contrast detection component of our D&figibility Change metric
required calibration to correctly estimate the visibilitiysubtle details in extreme dark
and light regions. We introduced a scaling factor to equaid to increase the pre-
dicted response of the HVS to contrasts, and found that @&\l 89 led to satisfac-
tory predictions in our set of test images. The display attaréstics corresponded to
a typical consumer LCD with an SRGB response, black levelzd2n?, and white
level at 21@d/n? measured in office illumination conditions.

We measure the Global Contrast Change according to theiplésein Section6.2.1

and the results of our analysis are summarized in FiguteThere is an apparent ad-
vantage of thehotographic tone reproduction (local & globat)ethods in conveying

the global contrast impression almost without any chandes& methods were also
among the top rated in other studi¢gflda et al. 2005Yoshida et al. 2005 In con-

trast thegradient domain compressi@auses a severe decrease in the global contrast.
Other local methods perform moderately. Particularly,asecof thdightness percep-
tion model the decrease of global contrast is caused by the @atiiimin of difference in
luminance between the frameworks. The superior performahthe global methods

is traded for less efficient reproduction of details as okein the further analysis.

We analyze the Detail Visibility Change for two cases that jgart of equationg.9):
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Figure 6.4: The influence of various tone mapping operatote® change of the global
contrast¢” from equation §.2). The negative values denote the decrease in global
contrast and 0 means no change. The red bars show the metiiskerg denote 2%

and 7%" percentile of data, and the red crosses are outliers.

the loss of detail visibility and the change in the magnitatithe detail visibility. The
loss of detail visibility refers to th&*(Y;) > 1 > T*(L;) case in equation6(9) and
describes the situation in which details have been visiblgdhé HDR image but are
not perceivable in the tone mapped image. To measure thegeliarthe magnitude
of detail visibility we analyze the areas in which the detaite visible both in the
HDR and in the tone mapped image and the analysis refers g — T*(L;) case
in equation 6.9). The average decrease and increase of the visibility dogilated
separately. FollowingYoshida et al. 2005 we further split the analysis into the dark
and bright image areas. To segment these areas, we assigof #83&/garkest pixels in
an image to the dark area, and 33% of the brightest pixelstbrilght area. The results
are summarized in Figurés5and6.6. The results of the increase in detail visibility
are not shown because they can be only observed fgrétient domain compression

The analysis of Figuré.6indicates that the dynamic range compression and the change
in luminance levels lead to a decreased perception of detatase of all operators.
The magnitude of change, however, is in most cases below 1 JNB means that
the loss of detail visibility, largely observed in Figuses, is unlikely caused by the
stark luminance range compression, but rather even a mompiession causes the
magnitudes of details to drop below the visibility thresholhis would suggest that
a minimal correction is sufficient to restore the visibiliffhe detail preserving tools
implemented in local tone mapping methods seem to perforlimeright image ar-
eas, however the dark image areas are often not well repedduith the exception
of the gradient domain compressiand theadaptive logarithmic mappingNotably,
the adaptive logarithmic mappingwhich is a global operator, preserves details ex-
ceptionally well in dark image areas. This advantage corhéiseacost of a slightly
higher loss of details in bright areas. Tlightness perceptiotone mapping performs
on par with other local methods, being slightly advantageiauthe bright image ar-
eas. Tharadient domain compressiasmparticularly interesting, because the results of
this detail preserving method indicate both the increadedacrease in detail visibility
while at the same time the visibility of any details is nottldSuch behavior indicates
good performance of the contrast transfer function whitdnaiates large contrasts and
increases the small ones as explained in Se&ibrt
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Figure 6.5: The influence of various tone mapping operatorthe loss of the details
visibility. The analysis are split into dark (left) and biig(right) image areas. The
percentage denotes the part of the dark/bright image aredich details have been
visible in the HDR image but are not perceivable in the tonpped image.
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Figure 6.6: The average decrease of the magnitude of deisiitslity caused by the
analyzed tone mapping operators. The analysis are spiitdatk (left) and bright
(right) image areas. The average is calculated over the pdntre details are visible
both in the HDR and in the tone mapped image. 0 denotes no ehangsibility and
1 JND denotes a visible change.

Overall, the better performance of the global tone mapppeyators in the analysis of

Global Contrast Change is not surprising. However, thegperénce of the algorithms

in terms of Detail Visibility Change is very unstable acrdiss test images and there
is no obvious winner of the evaluation. Interestingly, tth@ncements required to
improve the results do not necessarily need to be strong.evtnl discovery of a new

universal operator seems unlikely, our analysis motiviiteslevelopment of enhance-
ment algorithms that could restore the missing informatimmone mapped images
based on their HDR originals. Such enhancements can benettasing colorsmith

et al. 2006 or carefully shaped countershading profiles as explain€thiapter?.

6.4 Conclusions

Based on experience and conclusions from previous work @rifted two major dis-
tortions introduced to luminance while tone mapping: Gldbantrast Change and
Detall Visibility Change. To our knowledge, we present thistfobjective perceptual
metric for the measure of contrast distortions between aRHbage and its LDR
depiction. To construct these metrics, we extended thedraer function to handle
HDR luminance levels. We analyzed selected tone mappintatps using our met-
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rics and we provided an indicative characterization ofetegserators in terms of global
contrast and detail preservation in dark and light regid®isice only luminance val-
ues are evaluated by our distortion metrics, their apptinas most suitable for the
luminance-based subset of tone mapping operators. Oumitpas for distortion de-

tection and magnitude evaluation can be used with otheradstbf perceived contrast
enhancementJalabria and Fairchild 20038 mith et al. 200p including luminance

manipulation at contrasting edges — an enhancement metptaited in Chaptef.
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Chapter 7

Restoration of Lost Contrast

Successful comprehension of observed images and scenesddepn our ability to
distinguish their features. Human vision identifies scezaures through the appar-
ent contrasts that they create within their context. Wadible contrasts facilitate the
recognition of objects in a scene, identification of thekttiee, understanding of their
spatial distribution, and the ability to judge brightnestvieen adjacent and distant
areas. Together, these features directly influence peogpésessment of overall image
quality [Janssen 20Q1Therefore, a well pronounced rendition of perceived casts

is an important goal of computer graphics algorithms whiobcpss visual informa-
tion. Unfortunately, often this goal is not achieved dueitoer technical limitations or
poor input data. In tone mapping for instance, the insufficeapabilities of displays
require reduction of the dynamic range in images, whichitably leads to attenuation
of contrasts and loss of visual information as shown in Géreptin rendering on the
other hand, poor design of illumination or bad shading aigors produce low con-
trast images in which comprehension of scene content ingraonfined [uft et al.
2004.

In this chapter we are concerned with the problem of comnatimg contrasts in im-
ages that suffered from contrast degradation with resmethdir original. In case
of a tone mapped image, the original is its source High DyodRa@nge (HDR) ver-
sion. Such HDR images can be captured with HDR cameras, usirtgrexposure
techniques, or obtained in many rendering application iiqaar in realistic image
synthesis and lighting simulation as explained in ChapteEven if rendering leads
to low dynamic range images, e.g. non-photorealistic rengecontrasts from the
depth map can be used for similar purpodas#iet al. 200§. Unlike in typical con-
trast enhancement tools such as histogram equalizatioonrdrast equalization, we
do not want to change the general appearance of processgeésmélor de we try
to restore the physical contrasts in the image, especialgngthat most often it is
not possible due to the dynamic range restrictions. Inste@dpropose to enhance
the perceived contrasts through a gradual modulation ghbiess in the vicinity of
the contrasting edge inspired by a family of known percdplugions [Kingdom and
Moulden 1988 Craik, O'Brien, Cornsweet. These illusions, which we @aviefly in-
troduced in Sectio.2.6 address several models of gradual darkening and liglgenin
of areas towards their common edge to which we in generat esfeountershading
profiles Our approach has particular advantages in that the cominaancement can
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be achieved within the available dynamic range, and the fications do not change

the general appearance of an image because they are lim#eekts along the edges of
the enhanced features. Furthermore, the perceived cbmniegsbe larger than would

be normally achievable on a target display. Similar techegghave since long time

been used by artists to obtain better contrasts in paintagexplored by Livingstone

[Livingstone 2002

We present an image processing tool that creates countimgharofiles for an image
to enhance perceived contrast of features degraded witlece$o the original. Our
tool can be considered as a generalizationrsfharp masking an image enhancement
technique which in certain cases also creates counterghpdifiles by overlaying the
difference of an image and its blurred version. The deveknof a new algorithm
is motivated by the disadvantages of the traditional urshaasking which cannot be
applied to automatically correct individual image featurdo deliver the automatic
correction with respect to a reference image, we combinethmtershading algo-
rithm with a multi-resolution contrast metric. The metrieasures local contrast of
features at different scales, compares the processed itndigereference, and drives
the spatial extent and the strength of countershading esofiVe first demonstrate how
to match the physical amplitude of a reference contrast thithamplitude at the pro-
filed edge, and later we adjust the amplitude according torfgsdin psychophysics
to reduce the perceptual difference between them. Finetigessive countershading
profiles may become visible as halo artifacts and degraderthge quality, which in
most cases is unacceptable and in fact reduces the streihtit contrast enhance-
ment. We employ the visual detection model to estimate tharman amplitude of a
countershading profile that is not objectionable in a giveadased on the luminance
threshold, contrast sensitivity and the contrast maskifegts.

We start with a review of unsharp masking and contrast erdraant techniques re-

cently used in computer graphics in Sectibf, and we summarize relevant findings
in psychophysics in Section.2. Next, in Section7.3we present a new algorithm to

create the countershading profiles. In Secffohwe introduce the visual detection
model used to adjust the adaptive countershading to prevefgsired halo artifacts,

and draft the implementation in Secti@b. Finally, we illustrate and discuss possible
applications in Sectiof.6.

7.1 Previous Work

Unsharp maskingHratt 1991 is the technique in which a Gaussian blurred image
is subtracted from its original luminandeto create an unsharp mask that is added to
the original image with a coefficielat

Y =Y+c(Y-Yo), (7.1)

where? is the enhanced image amddetermines the spatial extent of the Gaussian
kernel. The magnitude of the correctiomeeds to be adjusted by the user and all
pixels in the image are corrected with the same coefficieatvéver, the enhancement
happens in two dissimilar ways: through the countershadijthrough the reintro-
duction of features. The highest quality of correction i;gd only for image features
whose scale is similar to or larger than the size of the Gandsérnel Neycenssac
1993, because they obtain valid countershading profiles. Skeatlels, however, lead
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unsharp masking original signal

Figure 7.1: Countershading using unsharp masking givesciresults when the ker-
nel size is adjusted to the size of the feature (left). If @mphmasking is used to
enhance the contrast lost on a step edge with details, therfilbdels the countershad-
ing profile on the edge but also strongly amplifies all theseed of a smaller scale

(right).

to sharpening effects at the edges of larger featiNegdenssac 199and have limited
capabilities to enhance contragtifigdom and Moulden 1988 All features smaller
than the kernel size are reintroduced with a varied stremgtich is influenced by
their scale and the difference from the local average, astitited in Figurd.1 The
noise amplification caused by such a reintroduction of thallssoale features and the
sharpening artifacts at the high contrast edges can be mgwith the adaptive un-
sharp maskingHolesel et al. 200(Ramponi et al. 1996 Psychophysical findings,
which show that the uniform physical correction is percdias stronger in the dark
parts of an image than in light areas, motivated the noratiaelaptive unsharp mask-
ing [Ramponi et al. 1996 In spite of the numerous improvements to this technique,
we are not aware of any method for an automatic enhancemiggt inslividually ad-
justed kernel sizes and profile magnitudes to create thetemlnading profiles that are
appropriate for enhanced features without distorting roplagts of the restored image.

The influence of weak contrasts on a limited comprehensidheo$patial distribution
of objects in a scene has been studied by Luft etlalft[et al. 200§. They show
that unsharp masking using the depth map of a scene stronighnees the cognition
of spatial distribution of objects. Their results are vepod because depth maps ex-
tract precisely the edges which outline objects in a scedearrection of these edges
improves the perception of the spatial organization. Thenisity of countershading,
however, depends only on the depth relations of objectsndelind therefore unnat-
urally looking dark outlines may appear over the objectshier behind in the scene.
The visual model presented here limits the countershadmeggth based on the ac-
tual image contents to prevent the visible degradation efgies, thus limiting such
artifacts.

The loss of communicated information is also typical fore@mapping, where the con-
trasts are explicitly reduced in an HDR image to fit into thealyic range of a display
or print. In Chapte6 we show that, despite the different approaches to tone mgppi
each algorithm suffers from a certain amount of contrastat&gfion leaving space for
improvements towards the reference HDR. To better commatmiost contrast infor-
mation, fine details can be corrected with opposite coloigegliby a single-resolution
local contrast metric, and the largest contrast can beregbtoith a segmentation based
countershading technique adjusted by a single global asintneasuregmith et al.
2004. Unfortunately, in such an approach all features of therimediate size remain
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Figure 7.2: Different countershading profiles and theiruiefice on the perceived
brightness. Plots afteKjngdom and Moulden 1988

uncorrected and the countershading is applied to only drigany edge in the image.
We propose to strongly couple the countershading with ainregblution local con-
trast metric and automatically correct features at vargmades in a consistent manner
with the individually adjusted profiles. Further, we prawid perception model which
counteracts the objectionable halo artifacts.

A comprehensive model of the human visual system is embeuidee: Visual Dif-
ferences Predictoaly 1993, which detects the differences between the reference
and distorted images. Such a visual model accounts for lmeie masking, spatial
contrast sensitivity, and contrast masking in spatialdssgy and orientation bands.
However, it is computationally expensive and therefordtisrosimplified in computer
graphics applications. Predicting visible renderingfacts [Ramasubramanian et al.
1999, for instance, is successfully done with a simpler modeicllignores the ori-
entation bands. We derive a similar detection model to pretlee countershading
profiles from appearing as the halo artifacts. While theseaisoare more focused on
the near-threshold noise detection, in our context thesstipeshold effects of lower
frequencies are of more interest.

7.2 Perceptual Background of Countershading

In Section3.2.6 we have introduced the illusion of perceived brightneffeidince be-
tween two adjacent surfaces of equal intensity. This diffee is induced by a carefully
shaped brightness profile at the border between these ssathis particular exam-
ple of countershading is the Cornsweet profile. We have gbdehat the perceived
difference appears both on simple uniform patches, Figurg and in natural images
Figure3.14 The latter figure illustrates also that contextual infotiorg like shape or
perspective, articulate the effect of the illusion.

While the Craik-O'Brien-Cornsweet illusion describes osbveral cases, Kingdom
et al. [Kingdom and Moulden 19§&ummarize a family of border profiles and their
influence on the brightness of adjacent areas. As shown ir&2, practically any
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Figure 7.3: Apparent contrast of the Cornsweet profile asetion of the peak contrast
of the profile and its width in degrees of visual angle. Thaight line (red) denotes the
actual step edge (Cornsweet profile of infinite size). PlwrgbDooley and Greenfield
1977, Fig.4], contrasts given in Michelson measure.

form of countershading and the combination of them leadsnmagnification of the
perceived contrast. Such profiles can be modeled using thsdiza function in which
the amplitude and the standard deviation determine thasitteof countershading.
The modeling algorithm is technically similar to unsharpskiag, and leads to alike
profiles (compare with Figur@.1).

The informed use of such an illusion to enhance images regjuliowever, that the per-
ceptual properties of the profiles are well understood. Bypahd GreenfieldQooley
and Greenfield 197 determined the relation that gives the amplitude of a censhtad-
ing profile that is required to obtain a perceptual contraaticinwith a step edge with
respect to a simple stimulus. Additionally, BuBUrr 1987 observed the increase of
perceived contrast when a countershading profile is added &xisting step edge. It
has also been found that the spatial extent of a profile da@temthe maximum possi-
ble enhancement and has to be appropriate for the magnitilde corrected contrast.
For instance, a Cornsweet profile of 1 visual degree can ateain edge of up to.25
Michelson contrast (i.e. strong supra-threshold contrast further amplification of
this profile leads in fact to a decreased illusion as illusttan Figure7.3. As soon
as the low frequency of the profile can be independently tiedethe profile is clearly
distinguished at an edge and the increase in the amplitusledaffect on the per-
ceived contrastBurr 1987. This suggests that the contrast enhancement using the
countershading profiles should be guided by a visual deteatiodel. Finally, the illu-
sions created by the spatially larger profiles are not afibbly an additive noiséBjurr
1987, thus the countershading profiles applied to the diffdyetextured areas give
consistent effects.

The strength of the perceived contrast enhancement dueutdtershading is influ-
enced by visual cues. In particular, a contextual hint thatdountershading profile
results from a difference in the illumination of two surfacpossibly confirmed by the
perspective information, almost doubles the strength ektfect Purves et al. 1999
This is confirmed by the success of the Luft et buff et al. 2006 approach, in which
objects separated by different depths are likely to be wiffgy illuminated as well.
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In contrary, the confidence that a profile is a feature of thiéasa reflectance signif-
icantly reduces the illusion. These observations, esihec@ated to the larger scale
contrasts, cannot be explained by the receptive field ptiegenf the lower order vi-
sual neurons, or by the fact that both the step edge and tiéezshading profile have
almost the same frequency characteristics when normabigéke contrast sensitivity
function [Kingdom and Moulden 1988

While the early explanations of the Cornsweet effect aredarahreshold sensitivity,
the illusion is clearly supra-threshold and in fact a caesistheory explaining all
experimental findings has not been found so far. Our decisiase the modified supra-
threshold sensitivity[Dooley and Greenfield 19T Ts motivated by the fact that this
model explains well the results of the experiments whichsueathe apparent contrast,
including the supra-threshold effects, of up t@ th Michelson measure. Clearly, the
visual cues strongly articulate the effePurves et al. 1999but even if an appropriate
model was available, it would require a robust decompasititto illumination and
reflectance which practically is only possible in image bgsts.

7.3 Image Processing for Countershading

We develop a method that creates the countershading primfilgghance the perceived
contrasts of edges in the restored (input) image that asepiemounced than the cor-
responding contrasts in the specified reference image. @iig such edges in the
restored image by comparing it to the reference image ubmgnulti-resolution local
contrast metric. Guided by the metric, we create the prdfites the sub-band compo-
nents such that the profiles are individually adjusted toctireected features without
distorting information that has been well preserved fromréference.

7.3.1 Multi-resolution Local Contrast Metric

We use a metric which measures the physical local contraswaral frequency bands

in a similar manner to PelHeli 199Q. We decompose an image into a Gaussian pyra-
mid, in which each lower level is filtered by a5 kernel and its resolution is halved
as described inBurt and Adelson 1983 Such a decomposition splits the image fre-
guencies into octaves which corresponds to the frequenmaraton observed for the
human visual systenPli 1990Q. Thus, on the highest level we measure the contrast of
fine details, and on the lowest level the contrasts betwem#jor areas in the image.
The lowest level we consider is 4 pixels long in the smallenetision, and we ignore
the base band. For each pixel at each pyramid leweé calculate the local sub-band
contrasiC; using the formula:

_ |Y - Ymear{

Ymean

G , (7.2)

whereY is the luminance of a pixel at the pyramid leveindYyeanis the local mean
luminance. In practic¥meanis taken from the corresponding pixel at the lower pyramid
level. The final output of the metric is the pyramid that camtathe ratios of the
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corresponding local contrasts between the input imagetamdference:

inp

RI - min(%?

1). (7.3)

In this equation, the input and reference image pair camf&iance be a tone mapping
result and its original HDR image. The raf® is limited to the maximum value of 1
because the detail amplification with respect to the refarémnot considered.

7.3.2 Adaptive Countershading

We develop a method which selectively adds the countemsfauiofiles to the restored
image guided by the sub-band local contrast rati@)(from the metric. We start with
an observation that the addition of successive levels diuthessolution Difference of

Gaussians up to a certain level (here the example for 3 Jevels

U= (Y—Yo1) + Yo —Yo) + Yoz —Yo3): (7.4)
gives the same result as unsharp mask, equafidj for this level:
U=(—Y3)

whereo (1) = 2'-1/1/2 denotes the Gaussian blur at levandY is the luminance of
the reference image. When the terms of such a sum are furtiéplied by the output

of the multi-resolution metric which locally adjusts the @itudes of the sub-band
components:

N
P= I;(1— 1R) x (log¥ys ;) —logYy7)), (7.5)

we obtain the countershading profileswvhich are adjusted to match the contrasts in
the reference image. In equation.§) | denotes the level of the Gaussian pyramid
with N being the lowestR are the contrast ratios from the metric at the selected
level, operatof ) denotes upsampling to the full resolution, operatas the element-
wise multiplication, and((rfe((';) is the luminance of the reference image. The difference

(IogY;Ifil) — IogY;‘Zf)) is a sub-band component of the countershading profile at the

levell. The luminance and the countershading profilBsare calculated in the loga-
rithmic space. Such a coarse approximation of brightnesgpts too strong darkening
which would happen in the linear space. The sub-band conmp®aee not taken from
the contrast metric, but are stored in the full resolutiowrder to preserve the phase
information which would be lost by the resolution reductidrhe contrasts in the in-
put image are restored by adding the countershading préfileshe luminance of the
input image in the logarithmic space.

Equation 7.5) has several good properties. The uncontrolled amplitioadf features

does not happen because the algorithm is adjusted to theme&image. The counter-
shading profiles are created from the reference image, beaairtain features might
have been lost in the input image, thus both detail enhantearal detail reintro-

duction are solved using one framework. The sharp edgesg# Ecale features are
detected by the contrast metric at the top level and at allevels down to the scale
corresponding to the size of these features. Therefore dhatershading for such
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reference attenuated
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unsharp masking
adaptive c-shading
————— partial profiles
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Figure 7.4: Countershading profile for a step edge with Bef{tp), where the step
edge is attenuated while the details are preserved witkecesp the reference. Adap-
tive countershading (bottom) recovers the smooth profilelvjprevents artifacts. The
unsharp mask profile is distorted by the high frequency custef the reference edge
and exaggerates details during enhancement as shown ireFdgu Unlike in our
method, unsharp masking also requires manual adjustmém spatial extent and the
amplitude of the profile.

edges is progressively composed from the sharp componeshthi@ components with
a larger spatial extent. This is illustrated in Figurd along with a comparison to the
traditional unsharp masking.

At this stage, the multi-resolution contrast metric assuhat the physical contrast of
the features in the image restored with the countershadioiijgs are equal to their
physical contrast in the reference image.

7.3.3 Saturation of Profiles

Countershading profiles may increase or decrease luminahges beyond the avail-
able dynamic range and cause the saturation to black or whiteval of details, and
clearly reveal the presence of a profile. Therefore, thespsrthe profile that correct
beyond the available range have to be attenuated, as shadwigure7.5. The atten-
uation is performed successively starting from the lowestjdency sub-bands, and
separately for the darkening and the lightening parts ofptiodiles. Each sub-band
component is attenuated so that the restored image plusoth@ershading profiles
does not exceed the dynamic range. We motivate our bottoapppoach with the
fact that the saturation is mostly caused by the much larggditudes of the low-
frequency components. Although the strength of the conémr@lsancement is reduced
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— + — - dynamic range limit countershading

clipped countershading

Figure 7.5: Countershading may exceed the dynamic rangedimd cause clipping:
the profile is then distorted and fine details are removed) (I8uccessive attenuation
of a profile retains all details and as much of the profile asiptes (right).

in such case, the asymmetric profiles still increase thegpard contrast, as shown in
Figure7.2 and the degradation of the restored image is prevented.

7.3.4 Natural Image Statistics

One aspect evident in the analysis of CornswBetdley and Greenfield 197,4s that
strong contrasts cannot be corrected with small profileswvéver, according to find-
ings in natural image statisticB@vik et al. 2000, the average amplitudes of frequen-
cies in images tend to decay as a power function, being langev frequencies and
small for high frequencies. Such a phenomenon is known gsawer law for the am-
plitude of frequencies. This observation assures thateérctintext of natural images
we are highly unlikely to encounter the necessity to coraeatry high contrast with a
small profile.

7.4 Perception of Countershading Profiles

The countershading profiles modulate physical contras¢siges in an image in or-
der to increase the perceived contrasts between featumegeudr, as soon as the low
frequency of a profile can be independently detected, thdenprofile is distinguish-
able at an edge, and the increase in the profile amplitude dhésrther effect on the
perceived contrasBurr 1987. To counteract such situations, we develop a visual de-
tection model which assures that the sub-band componemsfifes remain below
the objectionable amplitude.

We use a model which explains the behavior of the Cornswlestah with a good ac-
cordance to the perceptual experiments which match therappeontrast of a profile
with the contrast of a step edg@doley and Greenfield 197.7The model is based on
a spatial contrast sensitivity function (CSF), but its #rty to the frequencies varies
with the amplitude of a profile, as shown in Figuté®. It therefore estimates the ampli-
tude thresholds above which the components of the profilerhedndividually visible
and render a much weaker Cornsweet illusion with objecbtmbalo artifacts. This
model, however, analyzes single Cornsweet profiles on aumi2D background and
it may be too conservative for natural images. The contrastking effect, explained
in Section3.2.3 suggests that in areas which already contain featurestaircapatial
and orientation characteristics, the acceptable amglinfdhe profile may be higher
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Figure 7.6: Contrast sensitivity function for the threshaffects and the supra-
threshold model of tolerance to the magnitude of sub-bamipoments of the Corn-
sweet profile added to an existing step edge of Michelsonrastimh. Vertical lines
denote frequency ranges of sub-bands at pyramid levels engdlin the top.

if the profile is composed of signals with similar charatcs. Such a selectivity of
independent visual channels fits well to our multi-resolutcontrast analysis which
uses filter banks motivated by the visual channels in humarepéon. We therefore
improve the model by accounting for this strong effect in lanmperception.

An important insight from [Dooley and Greenfield 197,7shown in Figure?.6, is that
the sensitivity to the higher frequencies in the Cornsweetilp and in the step edge
is similar which justifies our approach to equal the contedghe profile edge to the
contrast of the feature edge.

We take a standard approach to modeling visual detectiorelmaghich we have
briefly introduced in Sectio.2.4 In such a model we combine three effects typical
to human vision: luminance masking, spatial contrast sgitgiand contrast masking.
For the sub-band component at levedf our pyramid representation, the maximum
amplitude of a profilY expressed in luminance is calculated as follows:

_ tVi(Ymean)
 csf

whereYmneanis the local mean luminance in the sub-band (consideredeaadapting
luminance) andC; is the sub-band contrast at the leVeltvi is the threshold versus
intensity function CIE 1981, csf is the relative loss of contrast sensitivity for the
spatial frequency band[Daly 1993, and maskingdescribes the contrast masking at
the given contrast. TheAY is calculated for each pixel at the sub-band lével

AY -maskingCi, Ymean): (7.6)

The threshold versus intensity functibn describes the luminance masking effect, ex-
plained in Sectior8.2.1 by giving the minimum luminance change which is visible at
the adapting luminance level. Whitei describes the thresholds for a patch shown on
a uniform background, the human visual response to complagés varies depending
on the frequencies of the components. Our sensitivity tatimrast at a given spatial
frequency is described by the contrast sensitivity fumc{l©SF), which we give in Sec-
tion 3.2.2 In practice, the CSF function increases the luminancestiulels estimated
by tvi for very high and low frequencies.
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In our model, however, instead of using the typical CSF wihlebkcribes the detection
thresholds, we use the function given ibdoley and Greenfield 197Fig.6] which
determines the tolerable amplitudes of the countershagiofijes and also accounts
for the increase in sensitivity to low frequencies when dilerés added to an existing
edge of Michelson contrast. Due to the lack of an equation, we provide a fit based
on the normalized CSHaly 1993:

This function replacess f in equation 7.6) for levels| with frequencies lower than the
frequency of peak sensitivitye 5cpd. Since in the original publication this relation is
expressed using Michelson contrast, for compatibility e@atculate here our contrast
measuréC. The plot is given in Figuré&.6.

Signals added to textured areas are harder to perceivefthdaed to uniform areas. In
Section3.2.3 we have shown that the existing contrasts in an area maslottigast of
the introduced signal. Contrast masking elevates the tigtethreshold as a function
of the local sub-band contraSt in the corrected image:

: G 07>
maskingC;, Y, =max|{ 1l (=————)""), 7.8
40 Yoea) = max( 1. (7o) 79)
whereTc is the threshold contrast for the local mean luminance Mygl, and
tVi(Ymean)

TC (YmearD Ymean

Contrast masking is modeled by a power function with a typgegonent 07 [Daly
1993, which increases the thresholds as soon as the local suthdumtrast is greater
than the threshold contrast. Contrast masking is normalhsiclered within the fre-
guency band and the orientation bafzhly 1993. We ignore the orientation bands
due to the high computational costs. In case of the low fregjgs, the introduced pro-
file in our case has the same orientation as the existing Isjgoaected edge) which
gives a strong masking effect.

The maximum tolerable amplitude of the proffl¥ from equation 7.6) sets the limit
for the amplitude of the sub-band component of the counaelisly profile at the given
location.

7.5 Implementation

The adaptive countershading algorithm restores the dedrmsageY™P with respect
to its referenc&™" and outputs an enhanced versiony8¥. The algorithm operates
only on luminance values. To process a color image, the RGRrutls are converted
to Yxy color space and reverted back to RGB with an enhanaethance channel .
We clip the colors that are mapped out of the SRGB gamut afterggsing. Nonstan-
dard references, such as depth maps, may be directly ugeddnsf contrast ratioR.
However, such ratios have to be manually scaled to reaspigaide the strength of
the contrast enhancement.

The algorithm outline is given in Figura7. The process is fully automatic given the
reference imag&'™" or arbitrary data passed as the contrast raRodnitially, the
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Adaptive Countershading(Y™P, y™f)

1 CI"P = contrastspyramidY"P)
2 C"' = contrastspyramid Y™")

3 R = profile.componentdog, ,(Y™"))
4 P = 0// countershading profile

5 n=log,(min(width, height))

6 forl:=n..1

7 R(l)=C(1)/Cf(1)

8 Ar=1-min(3,R(l))

9 As= saturationlimit (log;o(Y™P) + P,R(1))
10 Ay = visualmodellimit (Y"P,C"P(1), Po(1))
11 P+ =R(l)-upsamplémin(Ar,As,Av))

12 RESULT= 100910(Y"?)+P)

Figure 7.7: Pseudocode implementation of adaptive cosimaeling for contrast
restoration in a tone mapped HDR image.

“contrastspyramid” function measures local contrasts in the inputgesat different
resolution levels as described in SectiB.1 Then the “profilecomponents” function
calculates the sub-band components of the countershadifitep which are used in
equation 7.5. The main loop in lines 6-11 builds the countershading @k from
the sub-band componen®s. For each spatial location at the resolution leielve
calculate the desired and the maximum allowed amplitudésesub-band component
R=(I) of the profile.Ar is the desired amplitude of the profile component which would
match the original contrastAs is the maximum amplitude of the profile component
which does not saturate the input image enhanced by alregldylated profiles,
andAy is the maximum amplitude of the profile that cannot be detkictehe image,
equation 7.6). In line 11, the countershading profikeis enhanced with the new sub-
band component at the magnitude required to match the atigontrastAg, but not
larger thanAs andAy. The resolutions ofr, As, Ay correspond to the resolution of
the local contrast metric at the given level, and the profilsponents are in the full
resolution of the restored image. The result of the proceshd input imagey"P
modulated by the calculated countershading profiles

The visual model, embedded in the “vistrabdellimit” function, assumes an sRGB
display and requires that the image frequencies are cédclia cycles per degree of
visual angle which depend on the screen resolution and #weing distance. The
results in Sectiory.6 are obtained for the resolution 12801024 viewed from the
distance of 15x the screen height. An enhancement of a 1Mpx image requiasg ab
minute on a modern PC. The bottleneck of the algorithm aredhgolutions, three are
calculated per pyramid level: to measure the contrast&®ih contrasts iry'"P, and to
calculate the components Bf A linear filter is used for upsampling.
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(a) reference image, DR=2.2 (b) tone mapped image, DR=1.6

(e) countershading profiles

Figure 7.8: Test pattern for the contrast restoration bypaweka countershadingDR
describes the dynamic range in jgainits of luminance. In the image (e), the blue
countershading profiles darken the image and red lighte, ithtensity corresponds
to the profile magnitude. The right patch in (e) obtained gbtkning because of the
dynamic range limit. Refer to Sectiagh6 for details.

7.6 Results and Applications

We first demonstrate adaptive countershading on a testpaligure7.8. The refer-
ence image (a) contains a textured background and two &zkpatches. After the tone
mapping (b), the texture of the right patch has been predewlgile the textures of the
background and the left patch have been attenuated. Alsaadihtrast between both
patches and background has been attenuated. Thus thettéfilhsstrates global tone
mapping and the right one local. The goal of the correctidio isestore the contrast
between the patches and the background, to restore thditjsih the textures in the
background and the left patch, to assure that the textuteeafght patch is not empha-
sized and that objectionable halo artifacts do not appdae.ifage (a) spans the full
dynamic range and in the images (b,c,d) the dynamic rangsifigially limited for
demonstration purposes. The countershading (c) visibhaeces the contrasts com-
pared to the tone mapped image (b). The texture details dfabkground and the left
patch are restored to almost the same level as in the refeierage (a). The contrast
and the brightness of the right patch have also improveldadth it cannot match the
reference due to the dynamic range restrictions. The detaihe right patch remain
unchanged, which is confirmed in the map (e). Unsharp mastiiighe spatial extent
and the magnitude manually adjusted for correction of thelpt background con-
trast is shown in image (d). The image is visibly enhanced;ever, when compared
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Figure 7.9: Image tone mapped using the contrast equalizfiantiuk et al. 2006
(top/left) and restored by adaptive countershading (bofttft). The restored image
better communicates the brightness relations and the deptie image. (top/right)
shows unsharp masking with parameters set manually to eguahant countershad-
ing profile. Although overall enhancement of unsharp magksmimpressive, the
changes are hardly controllable and modify the style of nhege.

to the reference (a), the background and the right patclisibtase clearly too strong
magnitude. The undesired halo is well visible in the righthavhere also some areas
became saturated.

7.6.1 Post Tone Mapping Restoration

In Chapter6 we observe that tone mapping inevitably leads to the attemuaf con-
trasts and loss of visual information with respect to theiodl HDR, because the
insufficient capabilities of displays require the reductid dynamic range in HDR im-
ages. In Figur@.9an HDR image has been tone mapped with a contrast equatizatio
technique Mantiuk et al. 2006to reveal the details. Unfortunately, the result does not
depict any more the strong brightness difference betweeltuds and the building
which is very apparent in the original image. This has bedrated by the multi-
resolution contrast metric and corrected with the appateicountershading profiles to
reintroduce the brightness difference. After the enhamcenthe overall appearance
of the tone mapped image including the fine details is not gédnSuch a correction

is not possible with unsharp masking, although the size badragnitude of the blur

in the mask has been manually adjusted according to theawtta. The reason is
that the larger kernel, which is required for this correatiamplifies details so strong
that the countershading effect disappears. Another examphown in Figur&.10
where an HDR image has been tone mapped with the logaritheppimg Drago et al.
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countershading profiles

Figure 7.10: Image tone mapped using logarithmic mappdrggo et al. 200B(top)
and restored using adaptive countershading (middle). I&eghanges to the image
bring back the contrast at the horizon and the details, bnbdlchange the style of the
image. Image courtesy of SpheronVR.

2003. After using this global operator, some cloud details ia #ky are not visible
any more, the area around the sun becomes almost isolumamehinuch contrast has
been lost in the horizon area. This is automatically restevgh the adaptive coun-
tershading and the style of the particular tone mappingrélhgo is not changed. In
both examples the halo artifacts are not disturbing evengha stronger correction
was allowed by the visual detection model in Figir® because of the masking by
the clouds. Figur@.1lillustrates tone mapping of an HDR image with two different
techniques. The global operator (a) preserves well bregsmelations between lit and
shadowed image areas but looses the texture due to a largenttyrange compres-
sion. The local operator (b) equalizes all contrasts inthagie so that all information
is preserved from the original HDR. However, since both it shadowed areas are
very detailed, there is not enough dynamic range left toadepée shadow boundaries.
The brightness relations between image parts are not pnaedu The adaptive coun-
tershading automatically restores missing image featarlesth tone mapping results,
rendering a rich image which preserves the original lookazheof the operators.

7.6.2 Adaptive Depth Sharpening

Unsharp masking using the depth map of a scene strongly eekaognition of the
spatial distribution of objectd pft et al. 200§. We obtain a similar enhancement using



100 CHAPTER 7. RESTORATION OF LOST CONTRAST

Ltone mapped image countershading profiles

@;@%« B L DB
o

er: countershading profiles

fitone mapped image-

(b) contrast equalization tone mapping

Figure 7.11: An HDR image tone mapped with two different réghes: global op-
erator Reinhard and Devlin 20Q%and contrast equalizatiorMantiuk et al. 2006
Adaptive countershading automatically restores the wisitof texture details in the
globally tone mapped image. The shadow boundaries, whichrbe weak after the
contrast equalization tone mapping, are automaticallyaeoéd by adaptive counter-
shading so that the brightness relations between the intage ean be well recognized.
Note that the particular style of the tone mapping operaorains unchanged.

the adaptive countershading by measuring the relation epthdnap of an image to a
uniform map in place of the contrast ratiBsn equation 7.3) and by using the depth
map instead of the reference luminance in equafios) (In our approach, Figuré.12
the intensity of countershading does not only depend ondpéhdelations of objects,
but is also guided by the visual model which prevents the agmee of unnaturally
looking dark outlines over objects further behind in thengcelhe visual model limits
the countershading strength based on the actual imagentsraed prevents visible
degradations.

7.7 Conclusions

Based on findings from psychophysics, we have explained b@mhance contrast in
images using the Craik-O’Brien-Cornsweet illusion in atcolled way by employing
the multi-resolution local contrast metric to guide thesgth of enhancement and the
visual detection model to prevent the appearance of objeatile artifacts. Counter-
shading in most cases cannot be expected to restore thaarigintrast of the refer-
ence, however the enhancement is well visible when profilesvall adjusted and are
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Figure 7.12: Poor design of illumination in the scene resinita “flat” look of the
image (a). Countershading using depth information (b) rods cognition of the spa-
tial distribution of objects in the scene (c). The visual misdimits the appearance of
countershading as halo artifacts. Unnaturally lookingkdartlines may appear over
objects further behind in the scene if only depth relatiors @nsidered, image (d)
from [Luft et al. 2006. Image and depth data fror8§harstein and Szeliski 20P3

masked by image contents.

We have presented an image processing tool to create cebatiing profiles which
are individually and automatically adjusted to enhancectet image features that
require such correction when compared to the reference saime framework is also
able to reintroduce lost contrast information. We have destrated how it can be used
to enhance images using their HDR originals or the depthiimétion as the reference.
Comparing to the results of traditional unsharp masking,ehhanced images better
communicate information through contrast while the ovexgppearance is not distorted
and the enhancement is achieved within the available dyneange.

This research direction can be furthered by evaluating¢h&eaed corrections in a per-
ceptual experiment. Such an experiment could measure thallgperceived strength
of the countershading enhancement in complex images foubtof different scales

and given a variety of contrast references.
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Chapter 8

Summary

In the following we summarize the contributions of this tisedraw conclusions, and
we end with an outlook on future work.

8.1 Conclusions

The continuing interest of this dissertation was to appnogrious aspects of tone
mapping with a strong emphasis on human visual perceptibrough this interdisci-
plinary point of view, the several methods presented inttiésis successfully improve
and evaluate the fidelity of tone mapping.

By approaching the human visual system as a black box we kiaveified the per-
ceptual effects which significantly contribute to the appeae of scenes and included
them in real-time tone mapping with a minimal overhead. €heffects are simulated
according to known behavior of human visual system with eesfo the absolute lu-
minance levels in a scene. This leads to an increased levehtifm in the depiction
of dynamic HDR contents particularly in applications for RDideo playback or real-
time realistic image synthesis. Such effects convey thgestiee impression of ap-
pearance of night scenes and bright light sources which albyriis not communicated
on standard displays.

The appearance of natural images is influenced by both seasar cognitive pro-

cesses. The knowledge acquired from perception theorigsisedesign a computa-
tional model of the anchoring theory to obtain accurateaépction of HDR image

appearance in terms of lightness. We demonstrated thecapiph of the model to

tone mapping, including difficult examples that are not welhdled by other algo-
rithms, and we validated the fidelity of its reproduction logcessfully simulating the
appearance of known perceptual illusions.

Psychophysical models of contrast perception let us ifyegstthe quality of tone map-
ping in terms of communicating original HDR contents. Sunlohjective evaluation
gives a perceptually meaningful ranking without the bur@®mlved in evaluations
with human subjects, and furthermore permits the study détging reasons for bet-
ter visual performance of some algorithms over others. Thput of our metric can

103
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be further used to guide the restoration processes.

The perceptual illusions of contrast inspired us to exglatpossibility of strong per-
ceived contrast enhancement within the available dynaamge. Our adaptive coun-
tershading can automatically fix any imperfections of ariteaty tone mapping result
through the use of such illusions even if the numerical tdsulvell optimized. Our
technique generalizes unsharp masking, a common enhant&okin photography,
by enabling a selective enhancement of image features iofugasizes with no manual
intervention. Finally, the known characteristics of hunpanception of contrasts let us
build a supra-threshold visual detection model which asstirat our enhancements do
not introduce objectionable visual artifacts.

The results of presented methods show that the merge of ipragessing with knowl-
edge of human visual perception can deliver an improvedtydehen depicting HDR
contents on displays with limited capabilities. Althoudte tcontrast and luminance
range of consumer displays grows rapidly, their match tordad-world seem to be
still distant and a certain degree of tone mapping is necgssa that sense, meth-
ods presented in this thesis may have long lasting apmitatithe fields of computer
graphics, digital photography, video, and cinema. While yraspects of perception
have been addressed in this thesis, our work motivatesfuréisearch in the area. To-
gether with this dissertation, we provide an Open Sourcevseoé for working with
HDR images and video, and we hope it will promote the HDR tegples and facilitate
further developments.

8.2 Future Work

Future work in the area of HDR depiction will always be to @sh techniques that
produce results with an increased fidelity to the real-wo@ae particularly interest-
ing direction to pursue is the appearance of color. The coreproduction of color is

in general neglected under the assumption that it is notfgigntly influenced by dy-

namic range reduction. However, certain findings in psyblgsfes, including the Hunt
effect, indicate that this is not entirely true. Also our lexsdion and restoration tech-
niques could be more accurate if extended to consider vist@imation represented
by color.

The majority of the methods presented in this thesis is dgesl for static images.
Further investigation could be made, to verify if adaptiaimtershading and light-
ness perception model are applicable to time sequencescufanty, the concept of
frameworks gives a unique possibility for a correct simolaof time-dependent local
adaptation. A nive approach to simulate the effect of local adaptation g1ooth the
changes of individual pixel values over time, thus simuaigithe luminance adaptation
of the photo receptors. For moving objects that have a sogmifly different lumi-
nance level than the background, this may lead to ghostiiegtsf In fact, the HVS
performs a tracking of moving objects of interest with snieptirsuit eye movements,
therefore the retinal image of these objects is unchangsplitéetheir movement on
the display. With the help of frameworks we could follow thHgexts and perform the
local adaptation correctly.

Finally, we recognize that certain techniques presentétkithesis could be improved.
Particularly, we would like to design a more robust estimatduminance perceived as
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a white surface within the framework for the lightness pptica model. Furthermore,
several psychophysical evaluations which are beyond tbpesof this thesis would
be beneficial to the presented techniques. For instancey#teation framework uses
psychophysical models obtained for a simple stimulus togame contents of complex
images. Although we have not noticed any incorrectnessyehpphysical validation
of the models in the new context is an important next stepil&ily, the actual strength
of countershading corrections could be verified in a studl tMiman subjects in which
one would compare the original HDR to a restored tone mapg@neglt. Finally, we
have presented only a limited number of enhancements maséhpoby our adaptive
countershading technique and we believe that this regtariftamework could support
more applications.
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Appendix A

Photometric Calibration of
HDR Cameras

Ideally, in a photometrically calibrated system the pixalae output by a camera would
directly inform about the amount of light that this camerasveaposed to. However,
in view of display-referred representation it has becomgartant to obtain a visually
pleasant image directly from a camera rather than such aptattic image. With the
advance of high dynamic range imaging, however, the shitrophasis in require-
ments can be observed. Many applications such as HDR vidptyre of environment
maps for realistic rendering, image-based measurememigeephotometrically cal-
ibrated images with absolute luminance values per pixek ifgiance, the visually
lossless HDR video compressiadgntiuk et al. 200%is based on a model of human
vision performance in observing differences in absoluteihance. An incorrect esti-
mation of such performance due to the uncalibrated inputmesuyit in visible artifacts
or less efficient compression. The capture technologiegeter, especially in the con-
text of HDR, are very versatile and a simple solution to abthe photometric output
from all types of cameras is not possible.

In this chapter we explain how to perform the absolute phetoimcalibration of HDR
cameras and we validate the accuracy of two HDR video canferagpplications
requiring such calibration. For camera response estimatie adapt an existing tech-
nique by Robertson et alRpbertson et al. 20Q3o the specific requirements of HDR
camera system&fawczyk et al. 2005a We determine the absolute photometric cal-
ibration to obtain camera output in luminance units. We carmaghe measurements
obtained with the absolute photometric calibration to meaments performed with a
luminance meter and discuss the achieved accuracy in titeligossible applications.

A.1 Camera Response to Light

An image or a frame of a video is recorded by capturing thaliarace at the cam-
era sensor. At each pixel of the sensor, photons collectelight sensitive area are
transformed to an analog signal (electric charge) which farin read and quantized by
a controller. Such a quantized signal is further processedduce noise, interpolate
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i —image index

j — pixel position index

tj — exposure time of image

yij — pixel value of input imageat position;j

[ (-) — camera response function

Xj — estimated irradiance at pixel positipn

w(-) — weighting function from certainty model

m— pixel value from a set of possible camera output values

Table A.1: Symbols and notation in formulas for responsienadion.

color information from the Bayer pattern, or enhance imaggity, and is finally out-
put from a camera. The camera response to irradiance, @y tlghcribes the relation
between incoming light and produced output value. The @edhithe capture process
are often unknown thus the camera response is convenierdlyzed as a black box,
which jointly describes the sensor response and builtgnaiprocessing. In principle,
the estimation of a camera response can be thought of asigeaulithe camera values
for each single light quantity, although this is practigalbt feasible.

The camera response to light can be inversed to retrievaatigradiance value. Di-
rectly, the inverse model produces values that are onlygstigmal (linearly related)
to the true irradiance. The scale factor in this linear refatilepends on the exposure
settings and has to be estimated by additional measurements

The HDR cameras have a non-linear and sometimes non-consmasponse to light
and their output range exceeds 8 hit. Our choice of the frasrlefor response esti-
mation explained in the following section is motivated ks/generality and the lack of
restricting assumptions on the form of the response.

A.2 Mathematical Framework for Response Estimation

The camera response is estimated from a set of input imagesl loa the expectation
maximization approachobertson et al. 2003The input images capture exactly the
same scene, with correspondence at the pixel level, butdbesare parameters are
different for each image. The exposure parameters have kade&n and the camera
response is observed as a change in the output pixel valtlegegpect to a known
change in irradiance. For the sake of clarity, in this secti@ assume that the only
parameter is the exposure time, but in general case it isseageto know how many
times more or less energy has been captured during eachuegp&snce the exposure
time is proportional to the amount of light captured in angaaensor, it serves well
as the required factor. In the mathematical formulas bel@wpbey the notation given
in TableA.1 and consider only images with one channel.

There are two unknowns in the estimation process. The pyinn@known, the camera
response functioh, models the relation between the camera output values and th
irradiance at the camera sensor, or luminance in the scdrecdmera output values
for a scene are provided as input images, but the irradiamoening from the scene
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is the second unknown. The estimation process starts witimial guess on the
camera response function, which for instance can be a lresapnse, and consists of
two steps that are iterated. First, the irradiance from temes is computed from the
input images based on the currently estimated camera resp&@econd, the camera
response is refined to minimize the error in mapping pixaleslfrom all input images
to the computed irradiance. The process is terminated wieeitdration step does not
improve the camera response any more. We explain the detdlie process below.

Estimation of Irradiance

Assuming that the camera response functidsm correct, the pixel values in the input
images are mapped to the relative irradiance by using thresevfunction ~. Such
relative irradiance is proportional to the true irradiafirten the scene by a factor in-
fluenced by the exposure parameters (e.g. exposure tingtftharmapping is called
linearization of camera output. The relative irradianciither normalized by the ex-
posure timd; to estimate the amount of energy captured per unit of timéeénrput
images at pixel position;:
1 (yij)

{;

Each of thex; images contains a part of the full range of irradiance vatmsing
from the scene. This range is determined by the exposuieggetnd is limited by the
dynamic range of the camera sensor. The complete irrad&he sensor is estimated
from the weighted average of this partial captures:

Xij = (A1)

Wi - X
Xj = “sowp (A.2)

The weightsw;; are determined for camera output values by the certaintyefhis-
cussed later in this section. Importantly, the weights fier tmaximum and minimum
camera output values are equal to 0, because the captuaeéairce is bound to be
incorrect in the pixels for which the sensor has been sa&drmat captured no energy.

Refinement of Camera Response

Assuming that the irradiance at the senspis correct, one can recapture the camera
output values/ij in each of the input imagea<y using the camera response:

yij = |(ti -Xj). (A.3)

In the ideal case when the camera respdriseperfectly estimated, thf}j is equal to
yij. During the estimation process, however, the camera reggonction needs to be
optimized for each camera output valudy averaging the recaptured irradiangdor
all pixels in the input imagesg; that are equal tan:

Em={(,]) :yij =m}, (A.4)

1

Cal’d(Em) i7j;m b ( )

I=*(m)
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Certainty model

The presence of noise in the capture process is conveniegglgcted in the capture
model in equationsA.1, A.3). A complete capture model would require characteri-
zation of possible sources of noise and incorporation of@piate noise terms to the
equation. This would require further measurements andssisadf particular capture
technology in the camera, thus is not practical. Insteadntise term can be accounted
for by an intuitive measure of confidence in the accuracy pfu&d irradiance. In typ-
ical 8-bit cameras, for instance, one would expect highenmighe low camera output
values, quantization errors in the high values, and goodracyg in the middle range.
An appropriate certainty model can be defined by the follgw@aussian function:

(A.6)

(m—1275)?
12752

w(m) = exp(4-

The certainty model can be further extended with knowledigeibthe capture process.
Normally, longer exposure times, which allow to capture en@nergy, tend to exhibit
less random noise than short ones. Therefore an improvéairdgrmodel for input
imagesyjj can be formulated as follows:

Wi = W(yij) t|2 (A.7)

Such weighting function minimizes the influence of noise lo@ éstimation of irradi-
ance in equation/.2). This happens apart from noise reducing properties ofitlagje
averaging process itself.

Minimization of Objective Function

After the initial assumption on the camera respohsghich is usually linear, the re-
sponse is refined by interactively computing equatighng)and @A.5). At the end of
every iteration, the quality of estimated camera respomsegiasured with the follow-
ing objective function:

O =S w(yij) - (I (%ij) —ti - %)% (A.8)
]

The objective function measures the error in the estimatadiance for input images
yij when compared to the simulated capture of the true irradianc The certainty
model requires that the camera output values in the rangigloftlonfidence give more
accurate irradiance estimates. The estimation processrisnated as soon as the
objective functiorO falls below predetermined threshold.

The estimation process requires an additional constragdause two dependent un-
knowns are calculated simultaneously. Precisely, theegatix; depend on the map-
ping of | and the equations are satisfied by infinitely many solutioriswhich differ
by a scale factor. Convergence to one solution is enforecedach iteration, through
normalization of the inverse camera respoinseby the irradiance causing the medium
camera output value ™ (mpeq).
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A.3 Procedure for Photometric Calibration

In the following sections we outline a step-by-step procedar photometric calibra-
tion of HDR cameras.

Scene Setup for Calibration

The response estimation algorithm requires that each eaowtput value is observed
in more than one input image. Moreover, frequent obsemataf the value reduce
the impact of noise. Therefore, an ideal scene for calinds static, contains a range
of luminance wider than the expected dynamic range of theecamand smoothly
changing illumination which gives a uniform histogram ofjuut values. Additionally,
neutral colors in the scene can minimize the possible imp&cblor processing in a
color camera.

When calibrating HDR cameras, a static scene with a suffigi@nitle dynamic range
may not be feasible to create. In such a case, it is advisalgepare several scenes,
each covering a separate but partially overlapping lundealange, and stitch them
together into a single image.

Capture of Images for Calibration

Input images for the calibration process capture exactlysdime scene with varying
exposure parameters. A steady tripod and remote controloaiveera are essential
requirements. A slight out-of-focus reduces edge aliadirgyto sensor resolution and
limits potential sharpening in a camera, thus makes thmattin process more stable.

HDR cameras often do not offer any adjustment of exposuranpeters or available
adjustments are not bound to have a linear influence on epamergy. The aperture
value cannot be changed to adjust the exposure, becausdifteadhe depth-of-field,
vignetting, and diffraction pattern, thus practically obas the scene between input
images. Instead, the optical filters, such as neutral de(i$D) filters, can be mount
in front of the lens to limit the amount of irradiance at theser at a constant exposure
time. The ND filters are characterized by their optical dgnshich defines the amount
of light attenuation in logarithmic scale. In the responstneation framework, such
optical density can be used to calculate a simulated expdsne of captured images:

ti =to- 1071, (A.9)

wheret; is simulated exposure time of imageaptured through an optical filter of
densityD; calculated with respect to the true exposure tignéf tg is not known from
the camera specifications, it can be assumed equal to 1. @uédsinake sure that
the optical filters are spatially uniform and equally redtleintensity of all captured
wavelengths.

Following the analysis inGrossberg and Nayar 2003 can be suggested to acquire
two images that are exposed similarly and one that is coraditiedifferent. Addi-
tionally, when calibrating a video camera one may captuagel number of frames
for each of the exposures. Such a superfluous number of images will reduce the
influence of image noise on the response estimation.
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Figure A.1: Cameras used in our experiment: HDRC VGAX (lole#}, Silicon Vision
Lars 1ll (center), Jenoptik C14 (lower right), and Minolt&4100 luminance meter
(top).

Absolute Photometric Calibration

The images of the calibration scene are input to the estimdtamework from Sec-
tion A.2 to obtain a camera response. For an RGB or multi-spectra¢i@rthe cam-
era response has to be estimated for each color channebtdpaiHere, we assume
that a camera captures monochromatic images with spetficadéecy corresponding
to luminance. In case of an RGB camera, an approximationroflanceY can be
calculated from color channels using RGB to XYZ color tramsf.

The relative luminance values obtained from the estimategdanse curve are linearly
proportional to the absolute luminance with a scale facapeshdent on the exposure
parameters and the lens system. Absolute calibration mdbais the acquisition of a
scene containing patches with known luminaiceThe scale factof is determined
by minimizing relative error between known and capturedihance values:

Y =f-17Y(m). (A.10)

A.4 Example Calibration of HDR Video Cameras

We demonstrate photometric calibration of two HDR video eean: the Silicon Vi-
sion Lars Il camera and the HDRC VGAXx camera. For comparamposes we also
include the Jenoptik C14 — a high-end, CCD based LDR cameeaHigureA.1). The
Lars Il sensor is an example of a locally auto-adaptive iensgnsorl[ulé et al. 1990
the exposure is terminated for each individual pixel aftee out of 12 possible ex-
posure times (usually powers of 2). For every pixel, the gameturns the amount
of charge collected until the exposure was terminated as-itl&lue and a 4-bit
timestamp. The HDRC sensor is a logarithmic-type serSegér et al. 1993and the
camera outputs 10-bit values per pixelefflinger 2007.
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Figure A.2: Three scene setups for the estimation of regpomses (tone mapped for
presentation). The histogram shows the luminance digioibun the stitched images
for acquisition without filter, and using ND filters witkh1.5 and x 10 optical density.
This setup covers 8 orders of luminance magnitude.

Estimation of Camera Response

To cover the expected dynamic range of calibrated camerasoguire three scene
setups with varied luminance characteristic (see Figu®: a scene with moderate
illumination, the same scene with a strong light source,alight source with reflector
shining directly towards the cameras. Stitching thesestimeages together yields an
input for the response estimation algorithm covering a dyinaange of more than

8 orders of magnitude. Each scene setup has been captureditrany filter and with

a x1.5 ND filter and ax 10 ND filter. The response of C14 camera was estimated using
a series of 13 differently exposed images of a GretagMadbelbrChecker.

The estimated responses of the three cameras are showruie Bi§. The certainty
functions have been modeled using equati&ré) such that maximum confidence is
assigned to the middle of operational luminance range amitslto zero at the camera
output levels dominated by noise. A single response curgeblegn estimated for
the monochromatic Lars Ill camera and separate curves teesm determined for the
three color channels of the other cameras. As we had accéss taw sensor values
of the HDRC camera before Bayer interpolation, we estim#iedesponse curve for
each channel directly from corresponding pixels in ordewvaid possible interpolation
artifacts.

FigureA.3 shows that the response curves of the two HDR cameras both amon-
siderably wider range of luminance than the high-end LDReranthat covers a range
of about 3.5 orders of magnitude. The different shapes dfiibR response curves are
caused by their respective sensor technology and the ergzothe logarithmic HDRC
VGAX camera has the highest dynamic range (more than 8 oadenagnitude), but
an offset in the A/D conversion makes the lower third of thebitrange unusable.
The multiple exposure values of the locally auto-adaptiaesllil camera are well vis-
ible as discontinuities in the response curve. Note thaluiminance range is covered
continuously and gaps are only caused by the encoding. Thereacovers a dynamic
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Figure A.3: The estimated response curves and corresgpradighting functions
from the certainty model (value 1.0 represents the full cnfce in capture accuracy,
0.0 represents no confidence). The peaks of the weightirgjifuns are centered at the
middle of the operational range of each camera.
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Figure A.4: The results of absolute calibration. The est@taesponse curves were
fitted to the measurements of 6 gray patches of GretagMadbaitbrChecker chart
under 6 different illumination conditions.

range of about 5 orders of magnitude. Noise at the switchimgte between exposure
times is well visible.

Results of Photometric Calibration

The inverse of the estimated responses convert the camgrat @alues into relative
luminance values. To perform an absolute calibration, vepiimed a GretagMacbeth
ColorChecker chart under 6 different illumination conatits. The luminance of the
gray patches was measured using a Minolta LS-100 luminamterrnjielding a total
of 36 samples and an optimal scale factor was determinedafdr eamera. The ac-
curacy of the absolute calibration for the 36 patches careba & FigureA.4. The
calibrated camera luminance values are well aligned to teasored values proving
that the response curve recovery was accurate. To quahsfgtality of the abso-
lute calibration, we calculated the average relative dopthese data points. For the
HDRC camera, relative error in the luminance range of 16Q0[cd/n¥] is 13% while
the relative error for the Lars Ill camera in the luminancege of 10-1000[cd/n?]
amounts to $%. Note that these results can be obtained with a singleistiqn.
Using multiple exposures, the C14 camera is capable of aragweelative error of
below 7% in the range.0-25000[cd/n¥], thus giving the most accurate results.

A.5 Quality of Luminance Measurement

The described procedure for photometric calibration of HE#neras proved to be
successful, however the accuracy obtained for example Hibirecas is not very high.
Although one should not expect to match the measuremenityjadla luminance
meter, still the relative error of the LDR camera is lowemntlbhHDR cameras. Besides,
both HDR cameras keep the error below 10% only in the rangaroiance that is
much narrower than their operational range. The low acguratow illumination is
mostly caused by noise in the camera and can be hardly impriovihe calibration



128 APPENDIX A. PHOTOMETRIC CALIBRATION OF HDR CAMERAS

process. On the other hand, the low accuracy in high lummascge can be affected
by the calibration process: a very bright scene was requgeibserve high camera
output values. The only possibility to get a bright enougtnscwas to directly capture
a light source, but the intensity of the light source might Imave been stable during
the capture and an additional noise have been introducée testimation process.

To improve the results, we fit the estimated response to aiod fumction appropri-
ate for the given HDR sensor. Thus, for the HDRC camera we difprameters of
a logarithmic functiory; = axlog(x;) + b and for the decoded valukesf the Lars IlI
camera we fit a linear functioyy = ax*x; +b. We compare the relative errors achieved
by the pure response estimation including absolute cdililirand the function fit in
Figure A.5. The average relative error is equal to about 6% for the HDR@eza
and luminance values abovéctl/n?]. For the Lars Il camera it is also about 6%
for luminance values above fd@i/n?|. Especially for high luminance values above
10,000[cd/n?], the calibration via function fitting provides more acceragsults. In
addition, the fitting approach allows to extrapolate the eamesponse for values be-
yond the range of the calibration scene. To verify this, wgu@ed an extremely bright
patch (194600[cd/n¥?]) and compared the measurement of the light meter to the cal-
ibrated response of the HDR cameras. Only the readout frentHiDRC camera de-
rived via function fitting is reliable while the HDRC respensurve seems to be bogus
in that luminance range. The Lars lll camera reached theatan level and yielded
arbitrary results. Likewise, this patch could not be reedraith the available settings
of the LDR camera.

HDRC VGAX video camera
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Figure A.5: Comparison of the relative errors in luminanaasurement achieved by
the pure response estimation including absolute caldmmatnd by the function fit.

laccording to the data sheet, the 16-bit output value of Liasaera is in fact a composite of a 12-hit
mantissanand a 4-bit exponent valigi.e. y; = m-2°,
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A.6 Alternative Response Estimation Methods

In principle, three different approaches can be used tonesti the response of 8-bit
cameras (Reinhard et al. 20Q%rovides a good survey). The method of Robertson et
al. [Robertson et al. 20QBas been selected, because of its unconstrained apliiticabi
to varied types of sensors in cameras. For completenessrigfly ldiscuss here the
remaining two methods in view of possible application to tphuetric calibration of
HDR cameras.

The algorithm developed by Debevec and Malilepevec and Malik 1997s based
on the concept that a particular pixel exposure is defined @®duct of the irradi-
ance at the film and the exposure time, transferred by the rearasponse function.
This concept is embedded in an objective function which isimized to determine
the camera response curve. The objective function is addilly constrained by the
assumption that the response curve is smooth, which is tesfen the minimization
process. Whereas this assumption is generally true for LDRecas based on CCD
technology, the response curve is normally not smooth iallp@utoadaptive HDR
sensors. Furthermore, the process of recovering the resmamve is based on solving
a set of linear equations. While the size of the matrix reprisg these linear equa-
tions is reasonable for 8-bit data, memory problems may rofeiarbitrary precision
data typical to HDR acquisition so that extensive sub-sarmgp$ required.

The method proposed by Mitsunaga and Najitgunaga and Nayar 1998omputes
a radiometric response function approximated using a brgler polynomial without
precise knowledge of the exposures used. The refinemene @xposure times dur-
ing the estimation process is major advantage, howeverrtieegs itself is limited to
computation of the order of the polynomial and its coeffitseThe authors state that
it is possible to represent virtually any response curvagisi polynomial. This fact
is true for LDR cameras based on a CCD sensor, however it ipassible to approx-
imate the logarithmic response of some CMOS sensors in taisner. Polynomial
approximation also assumes that the response curve iswaons, which depends on
the encoding.

A.7 Discussion

The ability to capture HDR data has a strong impact on vargmmications, because
the acquisition of dynamic sequences that can contain ber wight and dark lu-

minance (such as sun and deep shadows) at the same momeptesadented. Pho-
tometrically calibrated HDR contents offer further bersefiPerceptually enabled al-
gorithms employed in compression or tone mapping can apigtefy simulate the

behavior of human visual system. Dynamic environment mapsbe captured in real
time to faithfully convey the illumination conditions ofétreal world to rendering al-
gorithms. The results of global illumination solutions ¢han be directly compared to
the real world measurements.

We presented estimation approach for photometric caidraif HDR cameras ex-
tended with a function fit. Although the relative error acieie by the function fitting
approach is lower, the response estimation algorithm igiLiseobtain the exact shape
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of the camera response and to give confidence that the chgs@ridunction is cor-
rect. It can also help to understand the behavior of the seaspecially if the encod-
ing is unknown. The low precision of the measurements indh@rance range below
10[cd/n?] is a clear limitation which can be explained by the high néésel in the
sensors. The quality of a high-end CCD camera such as thetile@i4 combined
with traditional HDR recovery algorithms still cannot bénaeved consistently over the
whole dynamic range of the HDR cameras.

The function fitting approach has strong advantages in tladitgwof the results and
the ability to extrapolate from the calibration data. Thef@ence in extrapolated
measurements is however limited and the error cannot becpeddbecause the ex-
act shape of the response function in this range is unknownall; the accuracy of
the photometric calibration is not the only important gtyafheasure. Depending on
the application, other issues such as the quantizationeofutminance values might
have an important influence on the quality of the measuresratd need to be further
investigated.



Appendix B

Software

To facilitate the work with HDR we have developed a set ofwafe tools that provide
a wide range of image and video processing functionalitye fiwls share a common
design pattern based on system pipes which permits to centiém in form of filters
in a processing pipeline, similar to tmetpbmtoolkit. Such a pipeline starts with an
input program that reads a list of images and forwards thee ided uniform manner to
the next tool. The subsequent tools can perform certain énpagcessing operations
including cropping, rotating, and tone mapping. The last to the pipeline usually
stores the processed content.

The communication in the pipeline is facilitated by a genprbtocolpfswhose imple-
mentation is offered as a C++ library. The protocol is alsaightforward to implement

in other languages. The tools exchange data using the pgmesonly supported by
many operating systems. Such a design eases the implemergdnew tools and
permits to transparently combine programs written in vaiprograming languages
including MATLAB®and GNU Octave scripts, Perl, Python and many others. This
is very advantageous in rapid prototyping often requireksearch. The design prin-
ciples, including the choice of data representation in tipelme, are published in
[Mantiuk et al. 2007h

The main package of the softwarepfstoolsand it is currently extended witbfstmo
andpfscalibration The whole software is Open Source and can be compiled onedeve
operating systems. It is supported by an active news-groaipgathers users and de-
velopers. The HDR software code has been adopted to sewsvadna party projects.
More details and download options can be found on the projgge:
http://www.mpi-inf.mpg.de/resources/pfstools/

B.1 pfstools

pfstoolsis the main package of the software. It implements the gemernmunication
protocol in the stand-alone libralppfs, and contains numerous basic image process-
ing tools including an HDR capable viewgifstoolssupports many HDR and standard
file formats including: Radiance RGBE, OpenEXR, Tiff, Logl.tPFM, PPM, RAW
formats of digital cameras, and practically all 8-bit fotsithrough ImageMagick).
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Project page:
http://www.mpi-inf .mpg.de/resources/pfstools/

B.2 pfscalibration

pfscalibrationpackage provides an implementation of tRepertson et al. 2003 ethod
for the recovery of the response curve of arbitrary caméiaals provided in this pack-
age can be used for photometric calibration of both offgheH digital cameras and
HDR cameras as described in Appendixand for the recovery of high dynamic range
images from the set of low dynamic range exposures as erganSectior?2.4.1

Project page:
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html

B.3 pfstmo

pfstmopackage contains implementations of the state-of-thésag mapping opera-

tors, including those described in Secti®d®. The implementations are suitable for
convenient processing of both static images and animatantsin the most part have
been used throughout this dissertation.

Project page:
http://www.mpi-inf.mpg.de/resources/tmo/


http://www.mpi-inf.mpg.de/resources/pfstools/
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
http://www.mpi-inf.mpg.de/resources/tmo/
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