Object Partitioning Considered Harmful: Space Subdivision for BVHs

Iliyan Georgiev'
Saarland University

Stefan Popov*
Saarland University

Abstract

A major factor for the efficiency of ray tracing is the use of good
acceleration structures. Recently, bounding volume hierarchies
(BVHs) have become the preferred acceleration structures, due to
their competitive performance and greater flexibility compared to
KD trees. In this paper, we present a study on algorithms for the
construction of optimal BVHs.

Due to the exponential nature of the problem, constructing optimal
BVHs for ray tracing remains an open topic. By exploiting the lin-
earity of the surface area heuristic (SAH), we develop an algorithm
that can find optimal partitions in polynomial time. We further gen-
eralize this algorithm and show that every SAH-based KD tree or
BVH construction algorithm is a special case of the generic algo-
rithm.

Based on a number of experiments with the generic algorithm, we
conclude that the assumption of non-terminating rays in the surface
area cost model becomes a major obstacle for using the full po-
tential of BVHs. We also observe that enforcing space subdivision
helps to improve BVH performance. Finally, we develop a simple
space partitioning algorithm for building efficient BVHs.

CR Categories: 1.3.6 [Computer Graphics]: Methodology
and Techniques—Graphics data structures and data types; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

Keywords: ray tracing, acceleration structures, bounding volume
hierarchies, construction, surface area heuristic

1 Introduction

In the recent years, the demand for interactive ray tracing of dy-
namic scenes has lead to a wave of research on fast construction
of acceleration structures. Various algorithms have been proposed,
most of which try to trade some rendering performance for faster
construction. This research has also lead to a shift in the gen-
eral understanding of acceleration structure efficiency: BVHs have
become the preferred structure for numerous applications. Even
though generally slower in rendering than KD trees, BVHs have
proved to be well suited for dynamic scenes, due to their ability
to handle changes in geometry while maintaining their topology.
BVHs also generally have predictable size, they are smaller and
shallower than KD trees, and can be built efficiently. Recent re-
search on packet based traversal has also shown that BVHs can have

*e-mail:popov @cs.uni-saarland.de
te-mail:georgiev @cs.uni-saarland.de
fe-mail:rdimov @graphics.cs.uni-sb.de
8e-mail:slusallek @dfki.de

Philipp Slusallek®
DFKI Saarbriicken
Saarland University

Rossen Dimov*
Saarland University

competitive rendering performance to KD trees [Wald et al. 2007].
However, KD trees still remain optimal for small ray packets and
static scenes.

With a few exceptions, e.g. triangle pre-splitting [Ernst and
Greiner 2007; Dammertz and Keller 2008] and tree post-
processing [Kensler 2008], most research on BVH construction in
the last years has concentrated on lower build times. In contrast,
in this paper we try to exploit the full potential of BVHs for high-
performance ray tracing by improving the construction algorithm,
while tolerating longer construction times.

The classic top-down construction algorithm for BVHs, which is
also the one that currently gives the best rendering performance,
uses sweep plane partitioning. It has been adopted from KD trees
and approximates primitives by the centroids of their bounding
boxes. This approach considers only a fraction of all possible parti-
tions for a given set of objects, since BVHs allow for simultaneous
subdivision along multiple dimensions, including spatial nesting of
sibling nodes.

In this paper, we present a theoretical framework for BVH construc-
tion that explores all possible ways of partitioning a set geometri-
cally and runs in polynomial time. The framework can perform
triangle splitting during construction in a way consistent with the
cost function, as opposed to previous heuristic-based pre-splitting
methods. We explore different building strategies based on this
framework and evaluate their impact on rendering performance. Fi-
nally, based on experimental results, we develop a simple and rel-
atively fast SAH-based algorithm, similar to KD tree construction,
that produces trees that perform best on most of the tested scenes.

We also analyze and discuss the surface area cost model and the
SAH. Even though considered good and working well in practice,
we experimentally show that the SAH is not optimal for fully ex-
ploiting the capabilities of BVHs, as it does not explicitly account
for early ray termination.

2 Background and Previous Work

In this chapter we give a brief overview of acceleration structures,
cost models, and construction methods often used in ray tracing,
and summarize relevant previous work.

2.1 Acceleration Structures

For the needs of this paper, we consider two commonly used types
of acceleration structures for ray tracing: the KD tree [Bentley
1975] and the BVH [Arvo and Kirk 1989]. A study of other accel-
eration structures can be found in [Havran 2000]. These, however,
fall beyond the scope of this paper.

The KD tree is a binary space partitioning tree, with splitting planes
aligned with the three major axes. KD trees are always constructed
in a top-down manner, and construction algorithms differ mainly in
the way they choose the splitting plane that separates the children
of a node. Popular split choices include the spatial and object medi-
ans, as well as planes chosen according to the surface area heuristic
(SAH) [MacDonald and Booth 1990].

KD Tree BVH

possible
partition

Figure 1: An extreme case where the centroids of all objects in a
node coincide. While KD tree construction will be able to partition
the set, classic BVH construction will have to create a leaf node,
even though it would be more optimal to create two children nested
in each other.

A typical bounding volume hierarchy (BVH) is a binary tree, each
node of which contains an axis-aligned bounding box (AABB), en-
closing the AABBs of its children. The AABB of a leaf encloses
the primitives it contains. In general, BVHs can have arbitrary arity,
e.g. 4 or 16 [Dammertz et al. 2008; Wald et al. 2008], and can use
any convex volume instead of AABB, but such BVHs are less often
used in practice. BVHs usually do not share primitives among their
leaves, which makes their size predictable in advance. However, it
has been recently shown that sharing primitives [Ernst and Greiner
2007] or splitting them in advance [Dammertz and Keller 2008] can
be beneficial for rendering performance. BVHs are usually con-
structed in a top-down or bottom up manner, but other methods
exist as well [Lauterbach et al. 2008; Walter et al. 2008].

The traversal algorithms for BVHs and KD trees, even though dif-
ferent, share a common pattern. A node is traversed by ordering
its children along the ray and labeling them as near and far. An
intersection is recursively searched for in the near child first. Upon
return, if the best found intersection so far occurs after the entry of
the ray in the far child, the latter is also processed recursively. If
a child is not hit by the ray at all, it is not traversed. A leaf is tra-
versed by intersecting all contained primitives with the ray. A good
reference on traversal algorithms can be found in [Havran 2000].

2.2 The Surface Area Cost Model

The ray tracing performance of a tree can be estimated using the
surface area cost model [MacDonald and Booth 1990]. The ex-
pected cost of a tree 1" is

Eap(T) =Cr Y P(|T)+Cr Y _PAUD)I| (1)

nenN leL

where N is the set of all inner nodes of the tree, L is the set of all
leaves, P(.|T) is the geometric probability of a random ray hitting a
node/leaf given that it hits the root node of the tree, |I| is the number
of primitives in the leaf [, and Cr and C7 are the traversal and
intersection costs respectively. Assuming that the shapes of node
and leaf bounding volumes are convex, P(.|T") can be expressed as
the ratio of the surface area of the node/leaf to the surface area of
the root node. Thus P(.|T") = SA(.)/SA(T).

Exp(T) gives the expected cost for traversing the tree with a uni-
formly randomly chosen ray. It assumes that the ray does not hit
any primitive and processes all nodes and primitives it encounters
along its path. Even though this assumption rarely holds in prac-
tice, results show that there is a strong correlation between Exp(T')

Figure 2: A partition of the root node of the SHIRLEY6 scene pro-
duced by the classic BVH partitioning algorithm (left) and our ge-
ometric partitioner (right). Note that the classic algorithm has also
created nested siblings.

and traversal performance [Havran 2000]. Thus, construction algo-
rithms aim at minimizing Exp(T).

For binary trees, Equation 1 can be expressed recursively:

C P(NL|N)E(N, P(Ngr|N)E(N d
Exp(N):{chﬁv(HNIEN) + PNRNEWR) ot
@

where Nz and Ng are the left and right children of N, and |N]| is
the number of primitives in N. It is easy to see that Exp(T) =
Exp(Root(T)). Again, P(.|N) = SA(.)/SA(N), assuming that
the nodes and leaves of the tree have convex shape.

A tree that minimizes Exp(T") can be constructed in a top-down
manner by splitting the set of primitives and minimizing (2) at each
node. Since the cost of a subtree is not known during construc-
tion, Ezp(N1) and Exp(Ng) are usually approximated using the
number of primitives in the respective sets. This corresponds to the
worst possible case (and thus cost), i.e. when the construction algo-
rithm creates leaves from the left and right subtrees. This approxi-
mation is know as the surface area heuristic, or SAH [MacDonald
and Booth 1990]. Thus, instead of minimizing (2) for a non-leaf
node, construction algorithms minimize

E(N) = Cr + C; (P(NL|N) |[N| + P(Ng|N) |[Nzg|). (3)

Even though it is possible to construct BVHs with non top-down
approaches, practice has shown that trees built with such methods
perform worse than the ones built in a top-down fashion and ac-
cording to the SAH.

2.3 Classic BVH Construction

Existing BVH construction algorithms do not allow sharing of
primitives among leaves. Thus, their task boils down to partition-
ing the set of primitives of each node into two disjoint subsets that
minimize an objective function — the SAH. Techniques that allow
sharing of primitives add an initial (pre-splitting) step to the con-
struction algorithm, executed before construction starts [Ernst and
Greiner 2007; Dammertz and Keller 2008].

More formally, at a node N that will enclose the set of primitives
S, the BVH builder has to partition S into St & Sr = S, such that
it minimizes the SAH:

SA(SL)|SL| 4+ SA(Sr)|Sr|
SA(N)

E(N)=Cr+C; C))

where S A(S) denotes the surface area of the tight AABB around all
primitives in S. The builder then continues by recursively creating
the left and right children of N (N, and Ng) from the sets S, and
Sr respectively.

i 53| 54 i NL NR

S2

a) . b)

} S1 o .

NL NR | S2

c) d)

Figure 3: Geometric partitioning. a) The set of objects. b) Can-
didate AABBs picked at object boundaries. c) Candidate AABBs
picked on a grid. d) Objects fully contained in both AABBs are put
into the one with smaller surface area, and bounds are tightened.

Since S can be partitioned in 215! ways, finding the optimal one is
NP hard in the general case. To overcome this, the classic BVH
construction algorithm [Goldsmith and Salmon 1987] performs a
plane sweep partitioning, much like KD tree construction algo-
rithms. Furthermore, it assumes finely tessellated geometry and
approximates the primitives with points, using the centers of their
AABBs (centroids). These centroids are chosen as interesting split
points (events), each giving a potential partition S = S;, @ Sg. A
primitive goes into Sy, iff its centroid is to the left of the event. The
algorithm keeps track of the left and right subsets and their AABBs
at each event and updates them incrementally in O(1) time. At each
event, the SAH cost is evaluated and finally S;, and Sg are created
at the event with minimal cost.

Based on this scheme, a number of BVH construction algorithms
have been proposed that speed up construction by using some form
of SAH approximation [Giinther et al. 2007; Wald 2007]. Attempts
have also been made to improve tree quality by using stochastic
search methods [Ng and Trifonov 2003] and by post-processing the
constructed trees [Kensler 2008]. Such methods, however, have
achieved only marginal performance improvements.

3 Geometric Partitioning

The method presented in this section has been originally motivated
by the rather heuristic approach for partition search in the classic
construction algorithm, which can miss partitions with significantly
lower cost (see Figure 1). Our new geometric partitioning algorithm
tries to explore the whole space of possible child AABB arrange-
ments of a node.

3.1 From NP Complete to Polynomial

The exponential number of possible ways to partition a set S makes
it prohibitively expensive to search for the best partition in a brute-
force manner even for small scenes. However, if a primitive over-
laps both children of a node, it should go to the child with the
smaller probability (i.e. the one with smaller surface area) accord-
ing to the SAH. While this observation is SAH-specific, our intu-
ition is that it will hold for other cost functions as well.

NL NL ————
B1 , ,
B3 E Be | |

= Bs T = '

- B7 /-

b)

a)

Figure 4: Accept and reject tests for the cost calculation. a) Nodes
B1 and B3 would reject the configuration. All primitives of Bs are
put into N1, and the primitives of B4 — into Nr. Bs is put into
the child with smaller surface area (N in this case). b) Undecided
cases: the nodes of B6 and BT cannot be uniquely assigned neither
to N1, nor to Nr. The algorithm needs to refine them recursively.

According to the above observation, if we know the AABBs of the
children, we know exactly how to form Sy, and Sg. This also gives
us the basis for an alternative partitioning algorithm: Instead of test-
ing all 2!°! possibilities of partitioning S, we can test all possible
configurations of child AABBs and form S, and Sg for each con-
figuration, in order to calculate the cost. Additionally, each con-
figuration should be tested for feasibility, i.e. if the AABB of each
primitive in .S is contained in at least one child AABB.

Since we do not allow primitives to be split, the events where the
child AABBs can start and end are defined at the boundaries of
the AABBs of the primitives (see Figure 3b). Thus, the number of
possible child AABB configurations is O(]S|'?).

The number of considered configurations can be further reduced
with the observation that each side of the AABB of the parent is
shared by at least one child AABB. Taking symmetry into account,
there are exactly 2°|.S|® ways to choose the child AABB configura-
tions. Thus, partitioning has a complexity of O(|S|°Q), where Q is
the complexity of the cost and feasibility estimation. The time for
partitioning the root node dominates the construction time and thus
the construction algorithm has an overall complexity of O(N°Q)
for N primitives.

3.2 Cost and Feasibility of a Configuration

When estimating the cost and feasibility of a configuration, instead
of touching each primitive, we use an auxiliary BVH over the prim-
itives in S. This BVH is built using a centroid-based split in the
middle approach. Each node of the auxiliary BVH stores the tight
bounds of its children as well as the count of primitives in the sub-
tree rooted at the node. Its construction takes O(|.S|log |S|) time
and does not impact the overall complexity of the algorithm.

Starting from the root of the auxiliary BVH, each traversed node N
is tested against a number of trivial accept and reject tests, as illus-
trated in Figure 4. If NN is trivially rejected, the configuration is de-
clared as infeasible. If IV passes an accept test, one of the counters
(|SL| or |Sr]) is increased with the number of primitives in the sub-
tree below V. If N was neither rejected nor accepted, its children
are processed recursively. Once in a leaf, the contained primitives
are tested, and either all primitives are accepted (and |Sz| and | Sg|
accordingly updated) or the whole configuration is rejected. Our
empirical tests show that the described algorithm performs a query

in O(4/|S|) time on average.

3.3 A Grid Approximation

Even though the above presented algorithm has a polynomial run
time, it is still prohibitively slow for non-trivial scenes. To make it
usable in practice, we use an approximation over the configuration
search space: we pick the AABB events on a regular grid instead
on the boundaries of the primitives (see Figure 3c).

By changing the resolution of the grid we can to control the com-
plexity of the algorithm. For practical reasons, we aim at a run
time of O(N'?). To achieve that, we limit the number of grid

cells to Kr+/|S|, with Kr = const controlling the grid resolu-
tion. For the actual resolution Rx X Ry X Rz of the grid we
run a binary search algorithm that determines these values so that
RxRyRz ~ KR\/|S| and Rx : Ry : Rz ~ Dx : Dy : Dz,
with D x|y |z being the size of the AABB of the current node.

3.4 Results and Discussion

We implemented the geometric partitioning algorithm in the RTfact
real-time ray tracing framework [Georgiev and Slusallek 2008]. We
performed tests on the BUNNY, SPONZA, FAIRY FOREST, CON-
FERENCE, VENICE, and SODA HALL scenes (Figure 8) and com-
pared it to the classic BVH construction. We were primarily inter-
ested in the rendering performance for random rays and primary
rays with different packet sizes. We additionally measured the
global expected cost and the average ray cost (function of the av-
erage number of traversal and intersection steps) for random rays.
Random rays could start at arbitrary locations inside the scene and
were traced using a single ray traversal algorithm. For primary
rays, we used the following traversal algorithms: single ray, 4-
wide packet, range packet (introduced by [Wald et al. 2007] and
discussed in [Overbeck et al. 2008]), and partition packet traver-
sal (introduced by [Overbeck et al. 2008]). All benchmarks in this
paper trace 1 million rays per frame, and all measurements have
been gathered on a single core of a Intel Core2 2.6GHz processor.
Table 3 summarizes the results for the geometric partitioner.

To our surprise, the performance and expected cost of the trees pro-
duced by the new construction algorithm were actually worse, even
though we modified it to also consider classic BVH partitions. The
better SAH cost partitions found by the geometric partitioner had
actually resulted in lower ray tracing performance.

Suspecting that SAH might be the cause for the unexpected results,
we changed our algorithm to evaluate the cost for each configu-
ration by building the left and right subtrees using a split-in-the-
middle approach and taking their expected cost Exp (Equation 1).
The results of the modified algorithm on SPONZA are summarized
in Table 1. The produces trees indeed had better expected cost but
their rendering performance (proportional to Cost,qy in the table)

Early ray Centroid | Grid w/ recursive

termination sweep cost evaluation
Exp(T) - 142.6 124.0
Traversal yes 62.5 81.0
Intersection yes 15.2 8.0
Costray yes 85.3 93.0
Traversal no 122.3 137.4
Intersection no 48.7 26.7
Costray no 195.3 177.5

Table 1: Performance of SPONZA with recursive cost evaluation
vs. classic construction. The tree cost does not correlate to the
rendering performance if the rays terminate.

NL b NL NL

12 12

2) [T Nr b) Nef o Nr

Figure 5: Triangle splitting. a) A configuration is feasible iff the
geometry is covered by the children’s AABBs. b) A triangle can be
split by clipping it to the child AABBs or ¢) by clipping it to the
child with smaller area and putting what remains in the other.

had remained poor. Similar results have been reported in [Ng and
Trifonov 2003; Kensler 2008]. Using a modified traversal algo-
rithm, with non-terminating rays starting at the scene boundaries,
we managed to achieve the expected correlation of Exp and ray
tracing performance.

We also performed tests on the SHIRLEY6 scene, where the geo-
metric partitioner managed to actually produce a better performing
tree than the classic construction algorithm. Due to the geometric
symmetry in this scene, the classic algorithm produced two sib-
lings contained in each other, resulting in significant overlap (see
Figure 2). The geometric partitioner managed to find a partition
with lower expected cost and better performance. Extreme cases
like this, however, occur rarely in most scenes.

Up to this point, in contrast to the common belief, our experiments
had confirmed that: 1) minimizing SAH locally can have noticeable
adverse effects on Exp, and 2) minimizing Exp does not by itself
guarantee better rendering performance. On the other hand, with
the exception of [Ng and Trifonov 2003; Kensler 2008], all other
SAH based construction algorithms do not seem to have the above
two problems. We also noticed that while those algorithms operate
in a space subdivision manner, ours does not.

Considering the above observations, we form our main hypothesis:
to achieve good practical results, a construction algorithm should
not only aim at minimizing the SAH cost, but also at space subdi-
vision. Our intuition is that better space subdivision increases the
chances of a ray to terminate early, which works around the unreal-
istic assumption in the cost model that rays will miss all geometry.

At this point we could either continue using our algorithm and de-
sign an adequate cost function that accounts for early termination,
or we could try modifying our algorithm to enforce better space
subdivision. We decided to go with the second option, as we al-
ready had some intuition how to achieve it.

4 A Generic Construction Algorithm

The classic construction algorithm already does a good job in sep-
arating the children of a node spatially, given that it can not split
primitives. In order to be able to further study the partitioning prob-
lem, we decided to introduce primitive splitting in our framework
and thus to further refine the search space. We also modified the
cost function, in order to be able to control space subdivision. The
result is an algorithm that generalizes all SAH-based KD tree and
BVH construction algorithms.

4.1 Primitive Splitting

Up to this point, we have considered a configuration feasible, if
each primitive is fully contained in at least one of the child AABBs.

We now relax this condition and require each primitive to be fully
contained in the union volume of the child AABBs, and allow prim-
itives to be split (see Figure 5). To calculate the SAH cost of a fixed
configuration, we count each split primitive twice — once in the left
and once in the right child.

The actual splitting can be done in more than one ways. For tri-
angles, we do it by clipping each triangle with both child AABBs
independently. Alternatively, triangles could be clipped against the
AABB of the child with smaller probability and the remaining ge-
ometry stored in the other child (see Figure 5). Although this will
not affect the SAH cost immediately, it might reduce it in descen-
dent nodes. However, numerical instabilities prevented us from us-
ing this method.

4.2 Defining the Search Space

When primitive splitting is allowed, the AABBs of a configuration
are not anymore constrained to the primitive AABB boundaries and
can be chosen arbitrarily inside the parent AABB. To explore this
continuous space we approximate it by a uniform grid. Note that
with a fine enough resolution the grid will cover the search space
of all known construction algorithms, including classic BVH con-
struction, our geometric partitioner, and the KD tree construction
algorithm.

For practical reasons, we use moderate grid resolutions and artifi-
cially augment the search space with the configurations considered
by other construction algorithms — namely KD tree construction
and classic BVH construction.

4.3 Controlling Space Subdivision

As discussed in Section 3.4, the correlation between tree cost and
ray tracing performance breaks when nodes can overlap arbitrarily.
Therefore, we modify Equation 4 by adding a term that can bias the
cost of a node depending on how much its children overlap:

V(NL N Ngr)
vy 1) |
SA(SL)|SL|+ SA(SR)|Sr|
SA(N)

E—CT+(CO

-Cr (%)

where Co is a parameter that controls the overlap penalty and
V(B) is the volume of a box B. Choosing C'o large enough en-
forces strict space subdivision, while Co = 0 results in no overlap
penalty.

4.4 The Algorithm

With the help of the theory presented in the above sections, we
design a generic BVH construction algorithm.

Similarly to the classic construction, the generic algorithm first
finds a partition with minimal cost and then sifts the primitives into
the left and right children accordingly. Partition searching is de-
composed into a configuration oracle and a cost calculator (Algo-
rithm 1). The oracle generates child AABB configurations, while
the cost calculator estimates the feasibility of each configuration
and the cost of the resulting partition. Sifting is performed like in
standard BVH construction, with the addition of primitive splitting
and tightening of the bounds fixed by the oracle.

Partition searching is parametrized by the oracle O and the over-
lap penalty P. By changing the oracle, we can simulate different
construction strategies. Oracles can be combined by merging their
search spaces.

Algorithm 1 The generic algorithm: partition searching.

1: function FINDOPTIMALPARTITION(O, P)
> O = AABB Oracle, P = Overlap Penalty
2 for all C € O do > C' = Current Configuration
3 cost +— GETCOSTANDFEASIBILITY(C, P)
4 if (C is feasible) and (cost < costpest) then
5: Chest «— C, costpess < cost
6: end if
7 end for
8 return CREATEPARTITION(Cyest)
9: end function

In a sense, this is the most optimal SAH-based construction algo-
rithm for binary tree acceleration structures. With a fine enough
grid, our algorithm will cover the configuration space of every other
top-down SAH based approach. However, for the same configura-
tion, our algorithm will always find a better partition w.r.t. SAH.

4.5 Results and Discussion

We performed a number of experiments using the generic construc-
tion algorithm on the following scenes: BUNNY, SPONZA, FAIRY
FOREST, CONFERENCE, VENICE, and SODA HALL. We parame-
terized the algorithm with different overlap penalties and used com-
binations of three basic oracles: CentroidGen generates the same
AABBEs as the classic BVH construction; K D NodeGen — AABBs
considered in KD tree construction; GridGen — AABBs with ver-
tices fixed on a regular grid. The results are summarized in Table 4.

We used three setups of the generic algorithm that resulted in dif-
ferent construction strategies. The first setup, named C-BVH, has
parameters P = 0 and O = CentroidGen. It corresponds to classic
construction and applies the same partitioning logic. The second,
named GK-BVH, has a parameter O = KDNodeGen, which mimics
KD tree construction. The value of P does not influence the cost
in this case. The third setup, G-BVH, has parameters P = 10'°
and O = {CentroidGen \J KDNodeGen U GridGen}, which allows
it to perform a more extended search. Both GK-BVH and G-BVH
enforce strict space subdivision.

For comparison, we also built a KD tree for each scene and con-
verted it to a BVH by removing the empty leaves and refitting the
AABBsS of the nodes.

Our results show that BVHs built with strict space subdivision per-
form consistently faster for small ray packets on all scenes. Such
trees are generally deeper and facilitate early ray termination.

On scenes with low depth and/or geometric complexity, GK-BVH
trees perform similarly or worse than C-BVH trees with large co-
herent packets, most notably with the range intersector. One reason
for this is that the range intersector relies much more on coherent
traversal than on early ray termination. Since GK-BVH trees tend
to be deeper and to reduce the amount of primitive intersections
for single rays, they provide less coherency for ray packets in the
lower levels. However, on more complex scenes with high depth or
geometric complexity (e.g., VENICE and SODA HALL), even wide
packet traversal algorithms benefit from stricter space subdivision.

We also performed experiments with different values for the over-
lap penalty P. Unsurprisingly, trees built with P = 0 had very
similar performance to the ones reported in Table 3. Increasing the
parameter gradually improved the trees, until they reached the per-
formance of G-BVH (see Figure 6). We did not observe any notice-
able difference for values of P larger than 103. Another parameter
we experimented with was the grid resolution K r for the smaller

Bunny =ss=e= Sponza ===== SodaHall ======Conference
1
80 4
f
.
& 60 %
O e
> \
I NG T LT RS Raaa
& 40 | e I
1\
.
20 \ e T T e e
0 5 10 15 20

Overlap Penalty

Figure 6: Impact of the overlap penalty on the ray cost for G-BVH.
Most scenes benefit from stricter space subdivision. The penalty
has little influence on scenes with uniform geometry distribution.

scenes. Increasing K r beyond 64 resulted in minor improvements,
while exploding construction times. We do not include the mea-
surements in this paper.

It can also be noted that G-BVH trees perform on par with or only
marginally better than GK-BVH trees, while G-BVH construction
times can be orders of magnitude larger, depending on the grid res-
olution. Additionally, BVHs converted from KD trees (KD-BVH)
tend to be larger in size and generally perform worse than GK-
BVH. Thus, taking size, construction time, and performance into
account, we can conclude that GK-BVH performs best for moder-
ately to highly complex scenes.

5 A Spatial Split Construction Algorithm

Based on the results from Section 4.5, we developed a simple BVH
construction algorithm that performs space subdivision. It mimics
the behavior of the generic algorithm, but with search space re-
stricted to KD tree events (i.e. GK-BVH), as they produced optimal
BVHs in the experiments from Table 4.

The new construction algorithm performs axis aligned sweep plane
partitioning, and takes as events the boundaries of the primitive
AABBs along each axis. Each position of the sweep plane uniquely
defines the AABBs of the left and right children. During the plane
sweep, the algorithm incrementally updates the counts of the prim-
itives that go to the left, right, and both children. Also similar to
KD tree construction, the algorithm calculates the SAH cost at each
event and takes the best split among all three dimensions. During
sifting, the tight bounds of the left and right children are incremen-
tally computed. This allows the BVH to cut empty space faster than
a KD tree. The complexity of the algorithm is O(N log N') when
implemented according to [Wald and Havran 2006].

5.1 Results and Discussion

The spatial split algorithm (SS-BVH) produces trees nearly identical
to GK-BVH (see Section 4.5). However, its implementation is much
simpler and more numerically stable. The results for GK-BVH in
Table 4 also apply to SS-BVH.

Finally, we compared SS-BVH to early split clipping (ESC-
BVH) [Ernst and Greiner 2007] and the edge volume heuris-
tic (EVH-BVH) [Dammertz and Keller 2008] on two variants of
SPONZA: the original one and one rotated about the major axes.

As can be noted from Table 2, the pre-split algorithms cannot im-
prove the BVH cost and performance on the original scene. In con-
trast, SS-BVH increases performance by more than 50%.

Scene Type Size Exp(T) | Costray || FPS
SpoNnzAa | C-BVH 1.0 MB 142 85 0.60
original | EVH-BVH;—14 1.0 MB 142 85 0.60
EVH-BVH;—16 1.0 MB 142 85 0.60
ESC-BVHgg 1.1 MB 185 103 0.50
ESC-BVHzoo 1.1 MB 167 96 0.55
G-BVH 2.6 MB 121 63 0.95
SS-BVH 2.8 MB 119 63 0.96
SpoNzA | C-BVH 1.0 MB 144 396 0.11
rotated EVH-BVH;-14 1.3 MB 148 190 0.25
EVH-BVH;—16 1.6 MB 154 170 0.28
ESC-BVHsgo 1.3 MB 155 179 0.29
ESC-BVHa200 1.2 MB 147 196 0.26
G-BVH 11.4 MB 86 100 0.59
SS-BVH 1.5 MB 134 199 0.24
SS-BVH 2.6 MB 120 175 0.27
SS-BVH 4.3 MB 101 134 0.36
SS-BVH 7.7 MB 89 105 0.54
SS-BVH 10.3 MB 87 100 0.57

Table 2: Comparison of our construction algorithms to pre-split
methods for single primary rays on two variations of SPONZA.
Our algorithms achieve larger speed-up on both scenes, and pre-
split methods only help for non-axis-aligned geometry. The size and
quality of SS-BVH can be controlled by the termination criterion.

On the rotated SPONZA, no choice of parameters for the pre-
splitting methods can increase performance by more than a factor
of 3 over C-BVH. Depending on the termination criterion, SS-BVH
can achieve up to 6 times speed-up, and for the same size, tree per-
formance is comparable to that of pre-splitting methods.

SS-BVH achieves construction times between the ones of classic
BVHs and KD trees. These can be further improved using approx-
imation schemes like [Popov et al. 2006; Hunt et al. 2006].

A further natural extension is to combine the algorithm with clas-
sic BVH construction. By choosing the best partition from either
schemes at each step, a trade-off between tree size and space sub-
division can be made. Additionally, this trade-off can be controlled
by penalizing the overlap.

5.2 Improving Cost Estimation

One disadvantage of the spatial split algorithm is that it does not
maintain tight child bounds during the plane sweep. This is the
correct behavior for KD tree construction but not for BVHs which
store tight bounds in their nodes. Thus, in order to compute the
correct probabilities, the construction algorithm must keep track of
the tight AABBs around the primitive subsets at each event.

An efficient solution is to maintain a priority queue, which stores
the primitives currently intersected by the sweep plane, sorted by
their end event. During the plane sweep, the queue is updated by
removing the primitives that end at the current position and by in-
serting the ones that begin there. For the actual accumulation of the
left and right AABBs at each event, a two pass sweep plane scheme
(in increasing and decreasing directions) can be used, like in [Wald
et al. 2007]. At each step of the sweep, AABBs are extended with
the primitives that leave the split queue, as well as the part of each
primitive in the queue that lies to the left, respectively right, of the
current plane position.

A further issue with computing tight AABBs during the plane
sweep can be the right choice of events. KD tree construction
algorithms take the boundaries of the primitive AABBs, as the
cost function has been proven to be linear between such two
events [Havran 2000]. This is not true if keeping tight bounding
boxes during the sweep (Figure 7).

Figure 7: Taking an additional event through the red cross will
result in a split with SAH cost 5.5 for C; = 3 and Cr = 1. The
spatial build algorithm will not consider this event and will create
a leaf with cost 6.

It can be proven that for BVHs the SAH cost function is piece-wise
quadratic between two primitive AABB events. The discontinuity
points and the coefficients of the function between them can be de-
termined from the primitives in the split queue with an algorithm
similar to line segment intersections [de Berg et al. 2000]. Thus,
the global SAH minimum can also be computed analytically.

6 Conclusion and Future Work

In this paper, we have presented a study on construction algorithms
that aim at improving the cost and rendering performance of BVHs.
We have developed a theoretical framework for searching an opti-
mal geometric partition of a set of primitives in polynomial time.
Based on the obtained results, we formed a hypothesis that the SAH
works well only for hierarchical structures that maintain space sub-
division.

We have then developed a generic BVH construction algorithm,
which can in theory find an optimal partition of the set of primitives
at each node. The algorithm can split primitives consistently with
the cost function and can control the space subdivision. We have
shown that all other known SAH based construction algorithms for
BVHs and KD trees can be considered special cases of the generic
algorithm.

Based on many experiments with the generic algorithm, we have
concluded that the optimal partition strategy for most scenes is to
perform space subdivision. Finally, we have developed a simple
and robust SAH-based BVH construction algorithm that creates ef-
ficient trees.

Throughout the paper we point out many directions for future work.
We believe that the most relevant open problem remains the devel-
opment of a better cost model for tree construction that can ac-
count for early ray termination. This way, explicit enforcement of
space subdivision would no longer be needed, and more optimal
trees could be obtained w.r.t. size and ray tracing performance.

References

ARVO, J., AND KIRK, D. 1989. A Survey of Ray Tracing Accel-
eration Techniques. An Introduction to Ray Tracing, 201-262.

BENTLEY, J. L. 1975. Multidimensional Binary Search Trees Used
for Associative Searching. Commun. ACM 18, 9, 509-517.

DAMMERTZ, H., AND KELLER, A. 2008. Edge Volume Heuristic
— Robust Triangle Subdivision for Improved BVH Performance.
In IEEE/Eurographics Symposium on Interactive Ray Tracing.

DAMMERTZ, H., HANIKA, J., AND KELLER, A. 2008. Shallow
Bounding Volume Hierarchies for Fast SIMD Ray Tracing of
Incoherent Rays. Computer Graphics Forum 27, 4 (jun).

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 2000. Computational Geometry: Algo-
rithms and Applications, second ed. Springer-Verlag.

ERNST, M., AND GREINER, G. 2007. Early Split Clipping for
Bounding Volume Hierarchies. Symposium on Interactive Ray
Tracing 0, 73-78.

GEORGIEV, 1., AND SLUSALLEK, P. 2008. RTfact: Generic
Concepts for Flexible and High Performance Ray Tracing. In
IEEE/Eurographics Symposium on Interactive Ray Tracing.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Comput. Graph. Appl.
7,5, 14-20.

GUNTHER, J., PopPov, S., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proceedings of the IEEE/Eurographics Symposium
on Interactive Ray Tracing 2007, 113-118.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. Ph.D. The-
sis, Department of Computer Science and Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague.

HUNT, W., MARK, W. R., AND STOLL, G. 2006. Fast kd-
tree Construction with an Adaptive Error-Bounded Heuristic. In
2006 IEEE Symposium on Interactive Ray Tracing, IEEE.

KENSLER, A. 2008. Tree Rotations for Improving Bounding Vol-
ume Hierarchies. In Interactive Ray Tracing, 2008. RT 2008.
IEEE Symposium on, 73-76.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2008. Fast BVH Construction on GPUs.
In (Proceedings of Eurographics).

MACDONALD, D. J., AND BooOTH, K. S. 1990. Heuristics for
Ray Tracing Using Space Subdivision. Visual Computer 6, 3.

NG, K., AND TRIFONOV, B. 2003. Automatic Bounding Vol-
ume Hierarchy Generation Using Stochastic Search Methods. In
CPSC532D Mini-Workshop ”Stochastic Search Algorithms”.

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2008.
Large Ray Packets for Real-time Whitted Ray Tracing. In
IEEE/Eurographics Symposium on Interactive Ray Tracing.

Popov, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2006. Experiences with Streaming Construction of SAH KD-
Trees. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, 89-94.

WALD, 1., AND HAVRAN, V. 2006. On Building Fast KD-Trees for
Ray Tracing, and on Doing That in O(NlogN). In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing , 61-69.

WALD, 1., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes Using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1, 6.

WALD, I., BENTHIN, C., AND BouLOS, S. 2008. Getting Rid
of Packets: Efficient SIMD Single-Ray Traversal using Multi-
branching BVHS. In IEEE/Eurographics Symposium on Interac-
tive Ray Tracing 2008.

WALD, I. 2007. On fast Construction of SAH based Bounding Vol-
ume Hierarchies. In Proceedings of the 2007 Eurographics/IEEE
Symposium on Interactive Ray Tracing.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K.
2008. Fast Agglomerative Clustering for Rendering. In Pro-
ceedings of the IEEE Symposium on Interactive Ray Tracing.

Figure 8: Our test scenes and the view points for the benchmarks. Respective triangle counts are given in brackets. From left to right:
BUNNY (69K), SPONZA (67K), FAIRY FOREST (174K), CONFERENCE (282K), VENICE (1,236K), SODA HALL (2,169K).

Scene Build type Exp(T) | Cost}®® | Trav.je™® | Itjo™¢ || FPST®"® | FPS4 | FPSLend® | FPShestHiom
BUNNY C-BVH 66.6 325 247 5.2 0.7 44 13.0 11.0
GP-BVH (K = 25) 68.1 33.7 26.6 47 0.7 42 12.8 10.4
SPONZA C-BVH 142.6 683 46.7 144 0.4 14 8.1 43
GP-BVH (K g = 2%) 167.1 85.5 54.6 20.6 0.3 0.9 7.7 3.6
GP-BVH (K = 2'%) 150.0 75.8 51.0 16.5 0.4 0.8 7.2 3.4
FAIRY C-BVH 385 335 23.6 6.6 1.0 1.9 59 53
GP-BVH (K = 25) 68.9 46.9 29.5 11.6 0.7 1.0 34 3.6
GP-BVH (K g = 2'?) 80.7 443 27.8 11.0 0.7 1.0 33 3.5
CONFERENCE | C-BVH 86.2 51.3 35.1 10.8 0.6 1.9 6.5 5.8
GP-BVH (K = 25) 88.0 57.9 40.8 11.4 0.6 1.8 4.8 5.5
GP-BVH (Kr = 2'%) 852 54.8 40.8 9.3 0.6 1.9 4.6 5.3
VENICE C-BVH 95.0 383 29.7 5.7 0.8 1.7 1.9 33
GP-BVH (K = 29) 108.8 61.8 51.1 7.1 0.5 1.0 1.9 2.8
SobDA HALL C-BVH 166.0 43.1 36.5 4.4 0.8 2.0 6.6 5.3
GP-BVH (K g = 2%) 167.5 56.8 46.7 6.7 0.5 1.5 44 4.1

Table 3: Performance comparison of several BVHs produced by the geometric partitioner (GP-BVH) with different grid resolution coefficients
KRr (see Section 3), compared to classic centroid sweep constructed trees (C-BVH). The resolution of the grid is chosen so that the number
of cells is \/ KrN. The traversal algorithms are described in Section 3.4. Although GP-BVH also considers C-BVH partitions at each step
and chooses the one with lower SAH cost, the resulting trees have higher expected cost and lower ray tracing performance. Statistics have
been gathered on a single core of an Intel Core2 Duo processor with image resolution of 10242.

Scene Type Size Exzp(T) | Cost;™® | Trav.]®"® | Int.]*"? || FPST*"¢ | FPS, | FPS}en9® | FPSherton
BUNNY C-BVH 1.0 MB 66.6 326 247 5.2 0.7 iz 13.0 11.0
G-BVH 3.1 MB 67.2 31.6 26.0 3.7 0.8 4.1 73 93
GK-BVH 3.1 MB 69.0 323 26.4 3.9 0.8 4.0 75 93
KD-BVH 6.6 MB 95.3 437 39.2 3.0 0.7 3.0 6.0 7.0
SPONZA C-BVH 1.0 MB 1426 683 46.7 144 0.4 14 8.1 13
G-BVH 2.6 MB 1212 432 32.8 6.9 0.8 2.0 7.6 5.9
GK-BVH 2.8 MB 119.3 43.0 33.5 6.3 0.8 2.0 74 5.8
KD-BVH 8.0 MB 120.7 43.1 38.0 3.4 0.8 1.8 73 5.2
FAIRY C-BVH 2.5MB 585 340 23.6 6.9 1.0 1.9 59 5.1
G-BVH 12.2 MB 69.9 36.4 25.1 75 1.0 1.9 3.8 5.1
GK-BVH 11.6 MB 70.0 36.3 252 7.4 1.0 1.9 3.7 5.1
KD-BVH 154 MB 73.2 37.6 30.8 45 0.9 1.7 3.5 43
CONFERENCE | C-BVH 4.1 MB 86.2 51.3 35.1 10.8 0.6 1.9 6.5 5.8
G-BVH 4.4 MB 745 36.2 29.9 42 1.0 2.1 4.6 5.8
GK-BVH 42 MB 74.0 372 30.9 42 1.0 2.1 42 5.7
KD-BVH || 30.0 MB 77.0 39.1 33.1 4.0 0.9 2.0 5.8 5.6
VENICE C-BVH 17.7MB 95.0 383 297 5.7 0.8 1.7 2.0 33
G-BVH 86.7 MB 84.0 29.2 25.0 2.8 1.1 2.1 1.8 3.7
GK-BVH || 66.8 MB 86.7 29.6 254 238 12 22 1.9 3.9
KD-BVH || 141.0 MB 102.7 355 323 2.1 1.0 1.9 1.9 34
SobA HALL | C-BVH 324 MB 166.0 431 365 44 0.8 2.0 6.6 53
G-BVH 152.0 MB 121.3 23.6 19.5 2.7 1.2 32 10.8 8.7
GK-BVH || 80.0 MB 126.2 24.6 20.1 3.0 1.2 3.1 10.7 8.7
KD-BVH || 252.0 MB 136.0 29.3 27.6 1.1 1.0 2.8 11.0 7.7

Table 4: Comparison of different configurations of our generic BVH construction algorithm. The construction algorithms — C-BVH, G-
BVH, GK-BVH, and KD-BVH, are described in Section 4.5 and the traversal algorithms in Section 3.4. Performance can be dramatically
improved for small packets and incoherent rays, when space subdivision is enforced. This can also increase tree size which can in turn reduce
coherence for large ray packets. All traversal algorithms, however, benefit from space subdivision on scenes with high geometric and/or depth
complexity. Statistics have been gathered on a single core of an Intel Core2 Duo processor with image resolution of 1024>.

