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Abstract

In this work, we present novel optimization approaches for important bioinformatical prob-
lems. The first part deals mainly with the local optimization of molecular structures and its
applications to molecular docking, while the second part discusses discrete global optimiza-
tion. In the first part, we present a novel algorithm to an old task: find the next local optimum
into a given direction on a molecular potential energy function (line search). We show that
replacing a standard line search method with the new algorithm reduced the number of func-
tion/gradient evaluations in our test runs down to 47.7% (down to 85% on average) . Then,
we include this method into our novel approach for locally optimizing flexible ligands in the
presence of their receptors, which we describe in detail, avoiding the singularity problem of
orientational parameters. We extend this approach to a full ligand-receptor docking program
using a Lamarckian genetic algorithm. Our validation runs show that we gained an up to
tenfold speedup in comparison to other tested methods. Then, we further incorporate side
chain flexibility of the receptor into our approach and introduce limited backbone flexibility
by interpolating between known extremal conformations using spherical linear extrapolation.
Our results show that this approach is very promising for flexible ligand-receptor docking.
However, the drawback is that we need known extremal backbone conformations for the in-
terpolation. In the last section of the first part, we allow a loop region to be fully flexible. We
present a new method to find all possible conformations using the Go-Scheraga ring closure
equations and interval arithmetic. Our results show that this algorithm reliably finds alter-
native conformations and is able to identify promising loop/ligand complexes of the studied
example. In the second part of this work, we describe the bond order assignment problem for
molecular structures. We present our novel linear 0-1-programming formulation for the very
efficient computation of all optimal and suboptimal bond order assignments and show that
our approach does not only outperform the original heuristic approach of Wang et al. but also
commonly used software for determining bond orders on our test set considering all optimal
results. This test set consists of 761 thoroughly prepared drug like molecules that were origi-
nally used for the validation of the Merck Molecular Force Field. Then, we present our filter
method for feature subset selection that is based on mutual information and uses second order
information. We show our mathematically well motivated criterion and, in contrast to other
methods, solve the resulting optimization problem exactly by quadratic 0-1-programming. In
the validation runs, our method could achieve in 18 out of 21 test scenarios the best classi-
fication accuracies. In the last section, we give our integer linear programming formulation
for the detection of deregulated subgraphs in regulatory networks using expression profiles.
Our approach identifies the subnetwork of a certain size of the regulatory network with the
highest sum of node scores. To demonstrate the capabilities of our algorithm, we analyzed ex-
pression profiles from nonmalignant primary mammary epithelial cells derived from BRCA1
mutation carriers and epithelial cells without BRCA1 mutation. Our results suggest that
oxidative stress plays an important role in epithelial cells with BRCA1 mutations that may
contribute to the later development of breast cancer. The application of our algorithm to
already published data can yield new insights. As expression data and network data are
still growing, methods as our algorithm will be valuable to detect deregulated subgraphs in
different conditions and help contribute to a better understanding of diseases.
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German Abstract

In der vorliegenden Arbeit présentieren wir neue Optimierungsansétze fiir wichtige Probleme
der Bioinformatik. Der erste Teil behandelt vorwiegend die lokale Optimierung von Molekiilen
und die Anwendung beim molekularen Docking. Der zweite Teil diskutiert diskrete globale
Optimierung. Im ersten Teil prisentieren wir einen neuartigen Algorithmus fiir ein altes Prob-
lem: finde das néchste lokale Optimum in einer gegebenen Richtung auf einer Energiefunk-
tion (Liniensuche, “line search”). Wir zeigen, dass die Ersetzung einer Standardliniensuche
mit unserer neuen Methode die Anzahl der Funktions- und Gradientauswertungen in un-
seren Testldufen auf bis zu 47.7% reduzierte (85% im Mittel). Danach nehmen wir diese
Methode in unseren neuen Ansatz zur lokalen Optimierung von flexiblen Liganden im Bei-
sein ihres Rezeptors auf, den wir im Detail beschreiben. Unser Verfahren vermeidet das
Singularitdtsproblem von Orientierungsparametern. Wir erweitern diese Methode zu einem
vollstandigen Liganden-Rezeptor-Dockingprogramm, indem wir einen Lamarck’schen genetis-
chen Algorithmus einsetzen. Unsere Validierungslaufe zeigen, dass wir im Vergleich zu anderen
getesteten Methoden einen bis zu zehnfachen Geschwindigkeitszuwachs erreichen. Danach ar-
beiten wir in unseren Ansatz Seitenketten- und begrenzte Backboneflexibilitit ein, indem wir
zwischen bekannten Extremkonformationen mittels sphéarischer linearer Extrapolation inter-
polieren. Unsere Resultate zeigen, dass unsere Methode sehr viel versprechend fiir flexibles
Liganden-Rezeptor-Docking ist. Dennoch hat dieser Ansatz den Nachteil, dass man bekannte
Extremkonformationen des Backbones fiir die Interpolation bendétigt. Im letzten Abschnitt
des ersten Teils behandeln wir eine Loopregion voll flexibel. Wir zeigen eine neue Methode,
die die Go-Scheraga Ringschlussgleichungen und Intervalarithmetik nutzt, um alle méglichen
Konformationen zu finden. Unsere Resultate zeigen, dass dieser Algorithmus zuverléssig in
der Lage ist, alternative Konformationen zu finden. Er identifiziert sehr vielversprechende
Loop-Ligandenkomplexe unseres Testbeispiels. Im zweiten Teil dieser Arbeit beschreiben wir
das Bindungsordnungszuweisungsproblem von Molekiilen. Wir présentieren unsere neuar-
tige Formulierung, die auf linearer 0-1-Programmierung basiert. Dieser Ansatz ist in der
Lage sehr effizient alle optimalen und suboptimalen Bindngsordnungszuweisungen zu berech-
nen. Unsere Methode ist nicht nur besser als der urspriingliche Ansatz von Wang et al.,
sondern auch weitverbreiteter Software zur Bindungszuordnung auf unserem Testdatensatz
iiberlegen. Dieser Datensatz besteht aus 761 sorgfiltig praparierten, arzneimitteldhnlichen
Molekiilen, die urspriinglich zur Validierung des Merck-Kraftfeldes eingesetzt wurden. Danach
prasentieren wir unsere Filtermethode zur “Feature Subset Selection”, die auf “Mutual Infor-
mation” basiert und Informationen zweiter Ordnung nutzt. Wir geben unser mathematisch
motiviertes Kriterium an und l6sen das resultierende Optimierungsproblem global optimal
im Gegensatz zu anderen Ansétzen. In unseren Validierungsldufen konnte unsere Methode in
18 von 21 Testszenarien die beste Klassifizierungsrate erreichen. Im letzten Abschnitt geben
wir unsere, auf linearer 0-1-Programmierung basierende Formulierung zur Berechnung von
deregulierten Untergraphen in regulatorischen Netzwerken an. Die Basisdaten fiir diese Meth-
ode sind Expressionsprofile. Unser Ansatz identifiziert die Unternetze einer gewissen Grofe
mit der hochsten Summe der Knotenscores. Wir analysierten Expressionsprofile von nicht
bosartigen Brustepithelzellen von BRCA1 Mutationstragern und Epithelzellen ohne BRCA1
Mutation, um die Fahigkeiten unseres Algorithmuses zu demonstrieren. Unsere Resultate
legen nahe, dass oxidativer Stress eine wichtige Rolle bei Epithelzellen mit BRCA1 Mutation
spielt, der zur spateren Entwicklung von Brustkrebs beitragen kénnte. Die Anwendung un-
seres Ansatzes auf bereits publizierte Daten kann zu neuen Erkenntnissen fithren. Da sowohl
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Expressions- wie auch Netzwerkdaten stdndig anwachsen, sind es Methoden wie unser Algo-
rithmus die wertvoll sein werden, um deregulierte Subgraphen in verschiedenen Situationen
zu entdecken. Damit tragt unser Ansatz zu einem besseren Verstdndnis von Krankheiten und
deren Verlauf bei.
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German Summary

Bioinformatik ist ein schnell wachsendes und interdisziplinares Gebiet der Wissenschaft. Ziel-
setzung ist die Anwendung von Informationstechnologien auf biologische Fragestellungen.
Heutzutage umfasst Bioinformatik die Anwendung und Verbesserung oder gar ganz die Neu-
entwicklung von Berechnungsmodellen, statistische Techniken, Algorithmen, Datenbanken
und Theorien, um Probleme zu 16sen, die sich bei der Verwaltung und Analyse von biolo-
gischen Daten stellen. Die Verbesserung unseres Verstandnises von biologischen Prozessen,
sowie die Unterstiitzung von Laborpersonal mit einer vorberechneten Auswahl an sinnvollen
Versuchsablaufen sind Hauptziele in diesem Gebiet. Dadurch fiihrt Bioinformatik nicht nur
zu neuen wissenschaftlichen Erkenntnissen sondern auch zu einer Reduktion der Kosten durch
den massiven Einsatz von Computern und Berechnungsmodellen.

Eine zentrale Aufgabe bei vielen bioinformatischen Problemstellungen ist Optimierung.
Eine optimale Position, eine Struktur, eine Konformation, ein relevantes regulatorisches
oder metabolischen Netzwerk, u.s.w. zu finden, ist der Schliissel zu vielen bioinformatischen
Herausforderungen. In der vorliegenden Arbeit behandeln wir Optimierungsprobleme von
zentralen bioinformatischen Fragestellungen und deren Losung.

Wir verbessern aktuelle numerische Methoden fiir die lokale Optimierung im Kontext
von Energiefunktionen. Wir présentieren einen neuartigen Ansatz fiir ein altes Problem:
finde das néchste lokale Optimum in einer gegebenen Richtung auf einer Energiefunktion
(Liniensuche, “line search”). Diese Aufgabenstellung tritt als Teilproblem bei vielen lokalen
Optimierungsansatzen auf. Wir présentieren eine neuartige Konsensusmethode die einfach
an die lokalen Gegebenheiten der Zielfunktion angepasst werden kann, aber dennoch nicht
mehr Funktionsauswertungen als Standardverfahren benétigt. Der zuséatzliche Berechnungs-
aufwand ist vernachlassigbar. Unsere neue Methode hat nur durch die Ersetzung einer Stan-
dardliniensuche die Anzahl der Funktions- und Gradientauswertungen in unseren Testlaufen
auf bis zu 47.7% reduziert (85% im Mittel).

Im Folgenden gehen wir das Parametrisierungsproblem von molekularen Strukturen an.
Unser Ansatz einen Liganden zu parametrisieren benutzt eine kompakte Darstellung, um
die Anzahl der Freiheitsgrade zu reduzieren. Aufgrund des bekannten Singularitdtsproblems
von Orientierungsparametern kommt der Optimierungsprozess in der Praxis jedoch haufig
an nicht-optimalen Positionen schon zum Erliegen. Wir zeigen, dass unsere Methode dieses
Problem durch sehr effizientes Reparametrisieren vermeidet. Sie erlaubt es, hocheffiziente,
gradientenbasierte Optimierungsverfahren zusammen mit der kompakten Darstellung beim
molekularen Docking zu verwenden. Wir beschreiben dazu im Detail, wie unser Ansatz
in die Optimierungsprozedur eingearbeitet wird. Insbesondere zeigen wir auf, dass unsere
Liniensuche dazu sehr gut geeignet ist. Unsere Resultate verdeutlichen, dass diese Methode
der in der Praxis weit verbreiteten stochastischen Methode von Solis und Wets weit {iberlegen
ist. Das zeigt sich umso deutlicher, wenn Liganden mit wachsender Anzahl an Freiheitsgraden
betrachtet werden.

Wir erweitern in dieser Arbeit unseren Ansatz zu einem Liganden-Rezeptor-Docking-
programm, indem wir einen sog. Lamarck’schen genetischen Algorithmus einsetzen. Diese
Heuristik wird benutzt, um verschiedene Startpositionen fiir unser Verfahren zur lokalen
Optimierung zu generieren. Wir zeigen, dass diese kombinierte Methode deutlich anderen
Ansétzen, die einen stochastischen lokalen Optimierungsansatz verwenden, iberlegen ist. Der
neue Algorithmus fiihrt zu kiirzeren Laufzeiten und liefert bemerkenswert bessere Resultate,
insbesondere bei einer steigenden Anzahl von Freiheitsgraden der Liganden. Wir erhielten bis



zu zehnfache Geschwindigkeitszuwachse im Vergleich zu den anderen getesteten Methoden.
Daher ist es durch diesen Algorithmus heute mdoglich, Dockingexperimente durchzufiihren,
bei denen die Liganden viele rotierbare Bindungen haben. Dieses Verfahren behandelt in
seiner urspriinglichen Form jedoch den Rezeptor als starr, was eine sehr starke Annahme
ist. Daher erweitern wir ihn und fiihren Seitenkettenflexibilitdt fiir den Rezeptor ein. Die
Ideen dazu basieren auf der gleichen Parametrisierung wie wir sie fiir die Liganden einset-
zen. Weiterhin erreichen wir eine beschriankte Backbone Bewegung indem wir zwischen zwei
bekannten extremen Konformationen mittels sphérischer linearer Extrapolation interpoliern.
Wir zeigen im Detail auf, wie wir fiir diesen Ansatz die Gradient berechnen, so dass unsere
effizienten Methoden anwendbar sind. Dadurch sind wir in der Lage voll flexibles Liganden-
Rezepor-Docking durchzufiihren, wenn verschiedene Backbone-Konformationen bekannt sind.
Fiir unsere Studie haben wir Human Serum Albumin gewéhlt, da dieses Protein fiir seine
Féhigkeit verschiedene Arten von Liganden zu binden bekannt ist und dabei grofle Backbone-
Bewegungen eine Rolle spielen. Unsere Resultate zeigen, dass dieser Ansatz sehr vielver-
sprechend fiir flexibles Liganden-Rezeptor-Docking ist. Dennoch ist der Hauptnachteil, dass
verschiedene Backbonekonformationen bekannt sein miissen, was gerade bei Loop-Regionen
ein Problem darstellt, da diese hochflexibel und schlecht zu kristallisieren sind. Daher ver-
wenden wir noch einen weiteren Ansatz, der die Loop-Region voll flexible behandelt. Wir
modifizieren die Torsionswinkel des Backbones fiir flexibles Docking und bedienen uns dabei
globalen Optimierungstechniken. Die spezielle Herausforderung hierbei ist, “reale” Konforma-
tionen zu generieren, d.h. die erhaltenen Loops miissen fest definierte Start- und Endpositio-
nen haben. Go6 und Scheraga haben 1970 ihre Gleichungen publiziert, um geschlossene Loops
in Polypeptiden zu berechnen. Um diese Gleichungen zu l6sen, benutzten sie die Newton-
Methode. Dabei handelt es sich aber nur um eine lokale Suche. Nach unserem Wissen haben
sie diese Methode mit gleichverteilten Startpositionen immer wieder gestartet. Daher gibt
es keine Garantie, dass alle Losungen gefuden werden. Hochstwahrscheinlich waren dazu
auch viele Funktions- und Gradientauswertungen notig. Wir prasentieren hier unsere, auf
Intervalarithmetik basierende Methode alle Losungen zu finden. In unseren Testlaufen wur-
den die Resultate binnen Mikrosekunden gefunden. Fiir diese Studie haben wir “Human
17p-Hydroxysteroid Dehydrogenase Type 1”7 (178-HSD 1) gewéhlt, da in vorbereitenden Stu-
dien, andere Ansétze mit 17G-HSD 1 flexibles Docking durchzufiihren, fehlschlugen. Der
Grund ist die Flexibilitdt der Loop-Region. Unsere Resultate belegen, dass dieser Algorith-
mus zuverlassig alternative Konformationen findet und in der Lage ist, vielversprechende
Ligand-Loop-Komplexe des Testbeispiels zu berechnen.

Der letzte Teil dieser Arbeit behandelt diskrete Optimierungsprobleme in der Bioinfor-
matik. Wir beschreiben zunéchst das Problem der Zuweisung von Bindungsordnungen bei
einem gegebenen Molekiil. Bindungsordnungsinformationen kénnen oft nicht direkt aus den
vorhandenen experimentellen Daten erschlossen werden. Sogar wichtige molekulare Daten-
banken wie die Cambridge Structural Database und die Protein Data Bank sind dafiir
bekannt, fehlerhafte Bindungsinformationen zu enthalten. In manchen Féllen sind gar keine
Informationen enthalten. Fiir Aminosduren und Proteine kénnen Bindungsordnungen einfach
durch ihren besonderen Aufbau bestimmt werden. Das gilt allerdings nicht fiir andere Arten
von Molekiilen wie beispielsweise Liganden. Es ist auch nicht praktikabel, die Ordnungen
von Hand durch Experten im Falle von Tausenden von Molekiilen beispielsweise fiir Virtual
Screening zuzuweisen. Dadurch ist die automatisierte Zuweisung von Bindungsordnungen eine
fundamentale Aufgabe bei der Arbeit mit Molekiilen. Zu diesem Zweck wurden iiber die Jahre
viele verschiedene Anséitze entwickelt, von denen die meisten auf korrekte Atomkoordinaten
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angewiesen sind. Wir erweitern einen Ansatz von Wang et al., der heuristische Strafscores nur
basierend auf Konnektivitatsinformationen zuweist. Wang et al. versuchen dieses Kriterium
heuristisch zu optimieren, was zwei Nachteile hat: Die Scores der resultierenden Zuweisung
sind nicht notwendigerweise optimal und es wird nur eine Zuweisung gefunden. Es kommt in
der Praxis jedoch haufig vor, dass mehrere optimale Zuweisungen existieren. In dieser Arbeit
prasentieren wir unsere neue, auf linearer 0-1-Programmierung basierende Formulierung, die
sehr effizient alle optimalen und auch suboptimalen Zuweisungen berechnen kann. Unsere
Resultate zeigen nicht nur, dass die neue Methode dem Originalansatz von Wang et al. klar
iiberlegen ist, sondern unter Beriicksichtigung aller optimalen Zuweisungen auch zwei weitver-
breiteten Programmen fiir diese Aufgabenstellung, obwohl sie fiir unseren Testdatensatz ideal
geeignet sein sollten. Sie vertrauen auf korrekte Atompositionen, und unser Testdatensatz
besteht aus 761 sorgfaltig praparierten, arzneistoffahnlichen Molekiilen, die urspriinglich fir
die Validierung des Merck-Kraftfeldes eingesetzt wurden.

Im Weiteren behandeln wir die Aufgabenstellung eine optimale Untermenge aus einer
Menge von gegebenen Features zu selektieren. Beim maschinellen Lernen besteht die Auf-
gabe der Klassifizierung darin, anhand von beschrifteten Beispielen ein Modell zu erlernen,
das unbekannten Objekten in eine Klasse einordnet. In der Bioinformatik treten zahlre-
iche solcher Problemstellungen auf. Die Anwendungen reichen von der Unterscheidung von
Krebs- und Normalgewebe bis zur Vorhersage der “Splice Site”. Es ist wichtig irrelevante oder
redundante Features zu vermeiden, da sie einen negativen Effekt auf die Genauigkeit des Klas-
sifizierers haben kénnen. Anstatt mit allen vorhandenen Features zu arbeiten wird nur eine
kleine Untermenge verwendet. Die Ziele dabei sind: (1) Reduzierung von Ubertraining und
dadurch Verbesserung der Klassifizierungsgenauigkeit, (2) die selektierten Features sind besser
interpretierbar, was helfen kann, verschiedene Funktionstypen im Krankheitsverlauf zu iden-
tifizieren, (3) Dimensionsreduktion senkt die Anzahl der Berechnungen der Klassifizierungsal-
goithmen. Die vorherrschenden Methoden sind Filteransédtze und Wrapperverfahren. Letztere
sind sehr aufwéandig im Vergleich zu Filter. In dieser Arbeit présentieren wir unsere Filter
Methode, die “Mutual Information” und Informationen zweiter Ordnung verwendet, whrend
andere Ansatze nur Informationen erster Ordnung benutzen. Unser Kriterium ist mathema-
tisch gut motiviert und wird von uns exakt mittels quadratischer 0-1-Programmierung gelost.
In unseren Validierungsldufen konnte unsere Methode in 18 von 21 Testszenarien die beste
Klassifizierungsgenauigkeit erreichen.

Zum Schluss prasentieren wir unsere Branch-and-Cut Methode fiir die Berechnung von
deregulierten Untergraphen in regulatorischen Netzwerken basierend auf Expressionsprofilen.
Dazu werden Scores auf die Gene des Netzwerks abgebildet, die die Deregulierung symbol-
isieren. In dieser Studie haben wir das menschliche, regulatorische Netz von KEGG verwendet.
Die Unternetze werden anhand der Summe ihrer Knoten-Scores bewertet. Unser Ansatz iden-
tifiziert das Unternetz einer gewissen Grosse mit der hochsten Score-Summe. Diese Methode
(und ihre Weiterentwicklungen) koénnen entscheidend sein, um z.B. Therapien gegen ver-
schiedene Arten von Krebs zu optimieren, indem Schliisselgene durch unseren Ansatz iden-
tifiziert werden. Wir analysierten Expressionsprofile von nicht bdsartigen Brustepithelzellen
von BRCA1 Mutationstriagern und Epithelzellen ohne BRCA1 Mutation, um die Fahigkeiten
unseres Verfahrens zu demonstrieren. Unsere Resultate legen nahe, dass oxidativer Stress eine
wichtige Rolle bei Epithelzellen mit BRCA1 Mutation spielt, der zur spateren Entwicklung
von Brustkrebs beitragen kénnte. Die Anwendung unseres Ansatzes auf bereits publizierte
Daten kann zu neuen Erkenntnissen fithren. Da sowohl Expressions- wie auch Netzwerk-
daten standig anwachsen, sind es Methoden wie unser Algorithmus die wertvoll sein werden,
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um deregulierte Subgraphen in verschiedenen Situationen zu entdecken. Damit trégt unser
Ansatz zu einem besseren Verstidndnis von Krankheiten und deren Verlauf bei.

Abschlieflend miissen wir sagen, dass durch die vorliegende Arbeit die angegangenen Prob-
leme zwar nicht als gegenstandslos betrachtet werden koénnen, jedoch grofle Fortschritte in
die richtige Richtung erzielt werden konnten. Es ist auch moglich, die entwickelten Ansétze
und Algorithmen weiter zu verbessern. Bereits als diese Arbeit entstand, haben wir schon an
Weiterentwicklungen gearbeitet, die aus Zeitgriinden leider nicht mehr ihren Weg in diese Dis-
sertation fanden. Weitere Untersuchungen werden zeigen, inwieweit Verbesserungen méglich
sind.
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Chapter 1

Introduction

Bioinformatics is a fast growing interdisciplinary field of science. It consists of the applica-
tion of information technology to the field of molecular biology. Nowadays, bioinformatics
entails the creation and advancement of computational and statistical techniques, algorithms,
databases, and theory to solve problems arising from the management and analysis of bio-
logical data. Increasing our understanding of biological processes and supporting scientists
in laboratories with precalculated selections of experimental setups (“virtual lab”, see Figure
1.1 for a typical workflow) are main goals in this area. Hence, bioinformatics leads to new
scientific insights on the one hand and cost reduction on the other hand by employing massive
computer usage and computational models, which will be even more accurate in the future.

natural sciences b i o i n f or m ati
problem abstraction algorithm computation real

. for (uint i=0; =
i =
\ list<uint>: 5 l

° vector<doub

question modeling development evaluation experiments
medicine, pharmaceutics

Figure 1.1: Typical workflow in drug design, nowadays with the aid of bioinformatics. From the
question/task (left) to the real drug molecule(s) (right) ready for biological/pharmaceutical testing.
During these studies, typically new/other questions arise and this workflow may be iterated until a
new remedy could be identified.

A core task in many bioinformatical problems is optimization. Finding an optimal or
nearly optimal position, a structure, a conformation, a relevant regulatory or metabolic
(sub)network, etc. under certain conditions is the key to many bioinformatical challenges.
In this work, we address optimization problems for central bioinformatical topics. We il-
lustrate the basic questions by a small example, which is borrowed from biochemistry and
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pharmaceutics. A laboratory head may ask:
(Q1l) “How can we reduce experimental costs?”

(Q2) “What is the cheapest approach to a certain experiment (maybe under several con-
straints like the given equipment)?”

Each single answer saves money in practice. Both questions represent different kinds of
optimization problems: local optimization, and (provable) global optimization. In order to
address such a problem, the workflow has to be prepared for applying optimization techniques.

Parametrization and Scoring: If a computer is supposed to solve problems, e.g. questions
(Q1) and (Q2), it needs to be able to handle the different experimental approaches and
setups. Basically, a computer can only deal with numbers. Thus, the situation has to be
mathematically modeled and parameters (“variables”) have to be found that represent and
describe the problem, see Figure 1.2. These values must uniquely define the different states.
While the task of describing simple geometric objects in space might be obvious, e.g. the
spatial arrangement of a molecule might be represented by the Cartesian coordinates of all
its atoms as well as a set of bonds that defines their interconnectivity, the parametrization
problem is not trivial at all for a whole experimental setup.

Figure 1.2: The parametrization problem. Before a computer can handle a situation, numbers have
to be found that fully describe the corresponding state (parametrization).

In addition to the parametrization that permits a computer to distinguish between differ-
ent states, a so-called scoring function is required that maps each set of variables onto a score
(a real value) allowing the computer to assess the quality of solutions. For instance, in our
laboratory example this function may measure the costs for carrying out the experimental
procedure and, thus, lower values are better than higher values. Depending on the setup this
function might be without theoretical margin. In bioinformatics, a scoring function mostly
only approximates reality. If this function is improper for the considered question, we cannot
expect to obtain a good outcome. However, we use well known scoring functions for several
tasks like molecular structure optimization. Nevertheless, the scoring functions in Sections 4.2
and 4.3 are own developments and directly related to the corresponding optimization tasks.

A good visualization of the initial situation obtained so far is to identify the scoring
function with mountains, see Figure 1.3. The height of each point is the value of the scoring
function, e.g. costs in the laboratory example, whereas the coordinates are the parameters,
e.g. they represent the associated setup. We want to reduce costs and, thus, we are looking
for a deeper position, in fact, the deepest position we can find.



Figure 1.3: Sketch of a scoring function depicted as a grass covered mountain part. The geographical
coordinates are the parameters, the height of each coordinate pair is the associated score.

Local Optimization: Question (Q1) symbolizes the task of local optimization. We already
know a working setup, i.e. a position on the scoring function, and we want to improve it, i.e.
we want to find a position with better score. Certainly, more cost reduction is better than less
reduction in Question (Q1). Thus, we look for better scores until we cannot find directly a
further improvement!. Human hikers in the mountains can receive much information through
their eyes, whereas a computer is blind. A computer knows the current position and can
evaluate the height at that point. Either by primitive testing or a bit more information it
knows which direction leads to a lower score. Then the process of local optimization is given in
a simplified manner by walking downhill in the mountains until no further direction will result
in a lower score. Maybe the best real world correspondence is a ball manually positioned in
the mountains, which rolls into the next hollow after its release, see Figure 1.4.

Heuristic Global Optimization: Certainly, any improvement is welcome. Thus, methods
that help us to find deeper points are of high interest. Clearly, our hope is to find the global
optimum, in our mountain example the deepest point at all. In this illustration we could
escape from local minima and throw the ball into random directions, see Figure 1.5, let it
roll, and store the found position if it is deeper than all previous identified positions. Such
and other improvements fall into the category of heuristics. However, even if we find the
global optimum, we are usually not able to prove that we found the deepest point at all. To
be exact, we do not have any guarantee that the deepest point we identified is indeed the
global optimum.

Global Optimization: The answer to question (Q2) might be crucial if new laboratory
material or equipment has to be purchased. The costs can reach millions of euro and any
however guarantee not to spend too much money is welcome. Global optimization stands for
the aim to find the guaranteed global optimum, i.e. the deepest point at all with the proof

Tt is important to note that in this case only a reduction is requested. Question (Q1) does not cover
Question (Q2), which is difficult to answer in general.
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score

v

parameters

Figure 1.4: Procedure of local minimization depicted as a ball rolling into the next hollow. A
computer calculates iteratively every position of the ball on its way using the current point to predict
the following location.

Score

v

parameters

Figure 1.5: Possible heuristic. Throw the ball into a random direction and start a new local opti-
mization process. Repeat this process for a predetermined number of times.

of global optimality. Of course, this is the hardest task at all. Only for special classes of
optimization tasks this problem can be seen as “solved”. For most other classes, not even in
theory algorithms exist for general problems without special properties. Under mild assump-
tions the problem is solved if only one parameter is involved [70], but this does not hold with
increasing number of degrees of freedom. Certainly, we can (and do) use heuristics to obtain
acceptable results in practice. However, in global optimization, the most time consuming part
is usually the proof that an already identified position is globally optimal.

In this thesis, we present novel optimization approaches for important bioinformatical
problems. The subsequent chapters are organized as follows: Chapter 2 gives the mathemati-
cal background and associated formalism without special view of bioinformatical applications.
Chapter 3 deals mainly with the local optimization of molecular structures and its applications
to molecular docking, while Chapter 4 discusses discrete global optimization.

In Chapter 2, we distinguish several optimization problems considered in this work and



sketch the solution strategies. Where necessary, we prove facts that cannot be found in the
literature, but in general we only state formulas that are important for an understanding of
the topic or are used in the remaining chapters. This chapter can also be seen as an overview
of up-to-date techniques for the addressed questions.

In Section 3.1, we improve current computational approaches for local optimization in the
context of molecular potential energy functions. In fact, we present a novel, more modern
algorithm [154] to an old task: find the next local optimum into a given direction on a
molecular potential energy function (line search). This task arises as a part of many local
optimization approaches. We present a new consensus like approach that can be easily adapted
to the local behavior of objective functions, while it does not require additional function
evaluations, imposing only negligible computational overhead. Replacing a standard line
search method with the new algorithm reduced the number of function/gradient evaluations
in our test runs down to 47.7% (down to 85% on average).

In Section 3.2, we deal with the above mentioned parametrization problem in the context
of molecular representations [54]. Our approach to parameterize a ligand uses a compact
representation to reduce the number of variables. However, due to the well-known singularity
problem of orientational parameters, the optimization process in ligand-receptor docking may
get stuck at non-optimum positions. We show that our method avoids this problem by com-
putationally efficient reparametrization and enables gradient-based optimization of molecular
complexes using the compact molecular representation. We give details on the incorporation
of our orientational parametrization [54] into the local optimization procedure in Section 3.2.
Especially, we show that our line search method is well suited for this task. Our results
indicate that this approach is clearly superior to the stochastic method of Solis and Wets
[164] widely used in practice. This becomes even more substantial if we consider ligands of
increasing complexity.

We extend this local optimization procedure to a ligand-receptor docking approach [55] in
Section 3.3. We present a so-called Lamarckian genetic algorithm, a heuristic for providing
different start positions for the local optimization procedure. We show that this combined
approach is clearly superior to other approaches employing a stochastic local optimization
method. The new algorithm features shorter run times and gives substantially better results,
especially with increasing complexity of the ligands. In our validation runs, we gained an up
to tenfold speedup in comparison to other tested methods. Thus, it may be used to dock
ligands with many rotatable bonds with high efficiency.

While the ligand is fully flexible in our docking method of Section 3.3, the receptor is
kept rigid. In Section 3.4, we further incorporate side chain flexibility of the receptor with
the same parametrization as we introduced for the ligand. Additionally, we achieve limited
backbone movement by interpolating between two extremal conformations using spherical
linear extrapolation [163] and give details on how the resulting gradient can be calculated.
This enables application of the whole range of gradient-based optimization methods to flexible
ligand-receptor docking when two or more extremal backbone conformations are known. In
our study of Schackmann [156], see also Rurainski et al. [152], we chose human serum albumin
(HSA), which is the most abundant transport protein of the human blood plasma. It is known
for its promiscuity to bind different ligand species, and it is one of the most extensively studied
proteins. The fact that HSA undergoes tremendous backbone movements upon binding to
fatty acids, facilitating enormous topological and structural changes over the whole protein,
rendered this molecule to an ideal candidate for our study. Our results show that this approach
is very promising for flexible ligand-receptor docking.
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Our approach of Section 3.4 needs known extremal backbone conformations for the inter-
polation. In general, we cannot assume that all necessary conformations can be obtained by
interpolation between already known structures. In Section 3.5 we allow a loop region to be
fully flexible, see also Rurainski et al. [151] and Roth [148]. We deal with the modification of
backbone torsion angles for flexible docking [148] using global optimization techniques. The
special challenge is here to calculate “real” conformations, i.e. the obtained loops must start
and end at given positions. Crucial for this approach is to find all possible conformations.
In 1970, Go and Scheraga published equations whose solutions represent the loop closure
in polypeptides [58]. They addressed the problem of solving these equations with Newton’s
method. Since this is only a local search method, they may have sampled the search space
by providing different equally distributed start positions. Thus, there is no guarantee to find
all solutions and, most probably, many function and derivative evaluations had to be per-
formed. We present a new method to find all possible conformations using interval arithmetic
[120, 129]. In our test runs, all results were obtained nearly instantly. For this study, we chose
the human 17(3-hydroxysteroid dehydrogenase type 1 (178-HSD 1). In preliminary studies,
different approaches to perform flexible docking with 178-HSD 1 failed because of the high
flexibility of the loop region. Our results show that this algorithm reliably finds alternative
conformations and is able to identify promising loop/ligand complexes of the studied example.

Dealing with global optimization, we describe the bond order assignment problem for
molecular structures in Section 4.1. Bond order information can often not be directly in-
ferred from the available experimental data. Even important molecular databases, like the
Cambridge Structural Database [6] and the Protein Data Bank (PDB) [18, 17|, are known
to contain erroneous data for connectivity and bond order information [106] or to omit them
entirely. For nucleic acids and proteins bond orders can easily obtained due to their building
block nature, but this does not hold for other kinds of molecules like ligands. Furthermore, it
is not practicable to assign bond orders manually for, e.g., virtual screening purposes, where
thousands of molecules are to be considered. Hence, automated bond order assingment is
often a fundamental task for the work with molecules. Very different strategies have been
applied to derive bond order information, most of them relying on the correctness of the
atom coordinates. We extend an ansatz proposed by Wang et al. [182] that assigns heuristic
molecular penalty scores solely based on connectivity information and tries to heuristically
approximate its optimum. This procedure has two drawbacks: the scores of the resulting
assignments are not guaranteed to be optimal and the algorithm provides only one solution
while there can be more than one assignment with optimal score. Here, we present our novel
linear 0-1-programming formulation for the very efficient computation of all optimal and
suboptimal bond order assignments. We show that our approach does not only outperform
the original heuristic approach of Wang et al. [182], but also commonly used software for
determining bond orders on our test set considering all optimal results. It consists of 761
thoroughly prepared drug like molecules that were originally used for the validation of the
Merck Molecular Force Field (MMFEFF94).

In Section 4.2, we address the task of selecting a subset of a given set of features based
on mutual information, see also Rurainski et al. [153]. In machine learning, the problem
of supervised classification is concerned with using labeled examples to induce a model that
classifies objects into a finite set of known classes. Copious classification tasks occur in bioin-
formatics, such as distinguishing cancer tissues from normal tissues [7] or one cancer subtype
vs another [5], predicting protein fold or super-family from its sequence [85, 43], etc.. Avoid-
ing irrelevant or redundant features is important because they may have a negative effect



on the accuracy of the classifier. Instead of using all available features, only a subset is em-
ployed for classification tasks mainly with the following aims: (1) reduction of overfitting of
the used learning methods and, hence, improvement of the classification accuracy, (2) the
obtained features are more interpretable that can help identifying and monitoring the target
diseases or function types, and, finally, (3) dimension reduction decreases the computational
costs for the classification algorithms. The prevalent methods are filter approaches and wrap-
per type methods [35, 100]. The last-named methods are computationally very expensive in
comparison to filters. Here, we present our filter method that uses second order information
while other methods strongly rely only on first order information, see Sections 4.2.2 to 4.2.4.
Furthermore, our criterion is mathematically well motivated and, in contrast to other meth-
ods, exactly solved by quadratic 0-1-programming. In the validation runs, our method could
achieve in 18 out of 21 test scenarios the best classification accuracies.

In Section 4.3, we present our novel branch-and-cut approach for the determination of
deregulated subgraphs in regulatory networks using expression profiles. In this study, scores
indicating the deregulation of the genes are mapped onto the vertices of the KEGG [93, 94]
human regulatory network. The subnetworks are assessed by the sum of their participating
vertex scores. Our approach identifies the subnetwork of a certain size with the highest sum
of node scores. The vision implicated by the proposed connectivity model is to identify —
besides the most deregulated components — the root node that may represent a key player
in the pathogenic process. This key player may be responsible for the observed differences
between the investigated conditions and may serve as a potential target for therapy pur-
poses. To demonstrate the capabilities of our algorithm, we analyzed expression profiles from
nonmalignant primary mammary epithelial cells derived from BRCA1 mutation carriers and
epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays an
important role in epithelial cells with BRCA1 mutations that may contribute to the later
development of breast cancer. It is important to note that the application of our algorithm
to already published data can yield new insights. As expression data and network data are
still growing, methods as our algorithm will be valuable to detect deregulated subgraphs in
different conditions and help contribute to a better understanding of diseases.
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Chapter 2

Mathematical Background

In this chapter, we put the problems on a firm mathematical basis and formalize the different
tasks we address in this work without special view of bioinformatical applications. Further-
more, we give a short overview of algorithms for the different tasks covered by this work and,
dependent on the individual case, present them on a detailed level if it is required for the
understanding of the following chapters.

2.1 Notation

In the rest of this work, we use the following notations: R denotes the field of real numbers
and Z C R the subset of integer values. We define N := {x € Z | x > 0} and R", n € N,
denotes the Euclidean n-dimensional vector space over R (n-tupel of real values). The n x m
matrices with real valued entries are represented by R™"*™, n,m € N. Bold lower case letters,
e.g. x € R", symbolize vectors, bold upper case letters, e.g. A € R™ ™, matrices. Single
real values are indicated by small italic letters, e.g. y € R, vector and matrix entries with
additional corresponding index (indices), for example x = (z;)_; and A = (a;;);';—;. We
denote the set of symmetric real n X n matrices by S™ and set

(A,B) :=tr(ATB) forall A,BcS",

where tr symbolizes the trace, i.e.
n
tl"(A) = Z Qi
i=1

for a matrix A = (a;;)7;—; € S". We denote the fact that A is positive semidefinite (definite)
by
A>0 (A >0)

based on the Lowner partial ordering [150]. The identity matrix is denoted by

1 0 - 0

I:= O h 0 es”
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and we expand “<” component-by-component to vectors: Given two vectors x,y € R", we
set
x<y & z;<y, 1<i<n.

The gradient of a real valued function f is denoted by Vf and V?f symbolizes the matrix of
the second derivatives, its Hessian (matrix).

2.2 Problem Definition
Definition 2.2.1. Let f : R™ — R be a function that maps from R™, n € N, into R.
(a) The problem of finding x* € R™ for which
f(x*) < f(x) for allx € R"

holds is called an unconstrained global minimization problem. Usually the problem

is abbreviated to !
min f(x). (2.1)

x€eR”
(b) The pair (x*, f(x*)) is called a global minimum and the point x* a global minimizer,
usually denoted by
x* = arg min f(x).
xER™
(c) If there exists € > 0 and x* € R™ for which
f(x) < f(x) for all x € R™ with ||x —x*|| < e

holds, then (x*, f(x*)) is called a local minimum and the point x* a local minimizer.

(d) The set
B-(x*) = {x | [x =x7| <&}

is called the e-neighborhood of x* or the c-ball around x*.

(e) If f is continuous (continuously differentiable), the minimization problem is called con-
tinuous (continuously differentiable).

Obviously, every global minimum is a local minimum, but not vice versa. Figure 2.1 shows
the different types of problems. In general, there are two classes of optimization problems:
minimization and mazimization. Each kind can be easily transformed into the other because
of

min f(x) = —max{—f(x)}.

xeR” xeR”

Thus, we focus on minimization problems in this chapter. Obviously, every method can also
be applied to maximization problems.

Tt would be mathematically more precise to write infyern f(x) because the minimum does not have to
exist but the infimum always exists, e.g. if f — —oo0 we have infxer» f = —00. However, we follow the usual
notation. Such unpleasant behavior should be checked before an optimization algorithm is applied in practice.
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v

u Jocal minima ¢ global minima

Figure 2.1: Local and global minima. Note that we cannot guarantee the marked global minima
being indeed global on entire R because we do not know the function left and right of the shown part.

Definition 2.2.2. Letn € N and f : R" — R be a function that maps from R™ into R.

(a) Let F C R™, then the problem

min f(x) (22)

1s called a constrained global minimization problem.
(b) The region F is called the feasible region of the minimization problem.

(c) If F contains only a countable quantity of elements, problem (2.2) is called a discrete
(global) minimization problem.

Terms like local and global minimizer are analogously defined. If F is a connected region
— especially if it is innumerable — and the minimizer lies in the interior of F, then we can
still treat (2.2) as an unconstrained minimization problem. This allows us to apply methods
for unconstrained optimization to force fields in the next chapter, even though force field
functions are undefined when the energy tends to co.

Example 2.2.3.

(a) The problem

2

min 2% — 2> + sin(z%y)

(z,y)€R?

s a continuously differentiable global minimization problem.

(b) The problem

. 2 3 . 2
min x° — xy” + sin(x
L Y (z7y)
subject to x +y <1,

x—y>—1
1 a constrained global minimization problem. The feasible region is given by

F={(z,2) eR? |z +y<1l,x—y>—1}.
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(¢) The problem

. 2 3 . 2
min r° —xy° + sin(x
L y (z7y)
subject to x+y <1,
r—y 2 717

z,y € {0,1}

is a discrete minimization problem (in this case a so-called 0-1-problem). The feasible
region is given by

F={(z,2) €{0,1}* |z +y <Lz —y>-1}

The problem can also be denoted by

. 2 30 a2
min xr° —xy” + sin(x
(z,y)€{0,1}2 Y =)

subject to x+y <1,

z—y>—1

2.3 Local Minimization of Smooth Functions

In general, if no special class of functions is given, the only way to find out whether a point
x* is a local minimum is to examine all the points in its immediate vicinity and to check that
none of them has a lower function value. However, if the considered function f is smooth,
we have more efficient and practical ways to identify local minima. If f is twice continuously
differentiable, we may be able to identify a local minimizer by exploring its gradient V f and
the Hessian V2f.

2.3.1 Optimality Criteria

We only state here basic theorems for local optimization purposes. The proofs can be found
in any calculus textbook, see, e.g., [133].

The fundamental and central tool to study local minimizers of smooth functions is Taylor’s
Theorem.

Theorem 2.3.1. (Taylor’s Theorem)
Let f:R™ — R be continuously differentiable and p € R™. Then it holds

f(x+p) = f(x) + Vf(x+ap)'p, forsomea e (0,1).
Moreover, if f is twice continuously differentiable, we have that
1
Vi) = V()¢ [ VGt tp)p
0
and that

fx+p) = F(x) + V10D + 50" V2 f(x + ap)p,  for some a € (0,1).
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Necessary conditions for local optimality can be directly derived from Taylor’s Theorem.

Theorem 2.3.2. (First-Order Necessary Condition).
If x* is a local minimizer of f and there exists € > 0 with [ is continuously differentiable in
B (x*), then

Vf(x*) =0.

Note that in this case Vf = 0 is a necessary, but not sufficient condition, i.e. there may
be points x with Vf(x) = 0 but x is not a local minimizer of f.

Definition 2.3.3. Let f: R™ — R be continuously differentiable and x € R™ with

then we call x a stationary point (of f).
Considering second derivatives, we obtain the following necessary condition.

Theorem 2.3.4. (Second-Order Necessary Condition).
If x* is a local minimizer of f and there exists € > 0 with f is twice continuously differentiable
in Be(x*), then

VFx*)=0 and V2f(x*)=0.

Taylor’s Theorem can also be consulted to derive a sufficient condition.

Theorem 2.3.5. (Second-Order Sufficient Condition).
If x* is a local minimizer of f and there exists € > 0 with f is twice continuously differentiable
in B:(x*) and it holds

VFx*)=0 and Vf(x*) =0,

then x* is a strict local minimizer of f.

If the above sufficient condition holds, the corresponding minimizer x* is called strict, i.e.
there exists € > 0 with

f(x*) < f(x) forall x € Bo(x*)\{x"}.

Thus, this condition is stronger than the necessary conditions in a certain sense because it
guarantees the uniqueness of the local minimizer in an e-neighborhood. In addition, the
second-order sufficient conditions are not necessary:

Example 2.3.6. Consider f(x) = x*. Certainly, * = 0 is a strict local (and global in this
case) minimizer. However, V2f(0) = f”(0) = 0 and, hence, the Hessian matriz is not positive
definite, but semidefinite as required by Theorem 2.3.4.

2.3.2 Overview of Algorithms

Numerical local minimization algorithms proceed in an iterative fashion by trying to find
a new position x;41 based on data at the current point x; and, dependent on the kind of
algorithm, further information collected during the optimization process. As mentioned in
the previous chapter, the general approach to find local minima of smooth functions is to
start at a given position and to “walk downhill” until one of the above criteria is fulfilled.
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The start position of this process should be a reasonable estimate of the solution. In the case
of reoptimization of molecules in Section 3.1, the given conformation is such an estimation.
However, if no sensible information is given, we have to deal with the problem in a heuristic
manner as in Section 3.2.

There are two fundamental strategies for moving from the current point xj; to a new
iterate xj41: trust region approaches and line search-based algorithms.

2.3.2.1 Line Search Methods

Line search-based algorithms calculate in each step a search direction dj and start a line
search looking for the next local minimizer along this direction. Let f = f(x), f continuously
differentiable, be a scalar function of the vector x and xj; the current iterate at iteration k.
Then, a typical iteration of a line search-based minimization algorithm can be described as
follows:

1: Compute a search direction dj from current and/or collected data (di needs to be a
descent direction)

2: Compute the minimum of f from xj along dg, i.e.

\p = i d
k argrggf(xwr k)

3: Set
Xp+1 = Xk + Apdy.

The second step is called an ezact line search. Since the computation of the exact minimum
is expensive and unnecessary, inexact line searches are used in practice. Thus, the second and
third step are replaced by

2’: Compute A\; > 0 that yields an acceptable next iterate x; 1 = X + Apdy.

Widely used conditions for accepting an iterate [123] are the so-called strong Wolfe conditions

f(Xk—H) < f(Xk) + Oz)\ka(Xk)Tdk (23)
IV £ (xh11) " di| < BIVf(x)" i (2.4)

for accepting A, where 0 < o < % and a < 0 < 1. The first inequality ensures to be slightly
better than simply f(xxy11) < f(xx), which is crucial for the convergence theory behind
line search algorithms, see Dennis and Schnabel [84]. The second inequality is a curvature
condition [123]. This condition is important in quasi-Newton methods since it guarantees that
a positive definite quasi-Newton update is possible allowing the incorporation of current local
information into the approximated Hessian. See for example Dennis and Schnabel [84] and
Fletcher [49], see also Section 2.3.2.3. It is always possible to fulfill the second criterion if the
objective function is bounded from below and does not tend to —oco. For more information
the reader is referred to Dennis and Schnabel [84] and Moré and Thuente [123].

The strong Wolfe conditions have the advantage that by decreasing 8 we can directly
control the quality of the search by forcing the accepted x4 to lie closer to a local minimum
along di. This tuning is not possible using the regular (or weak) Wolfe conditions, which
only require

Vf(xpi1)'dr > BV f(xx) ' dy,
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instead of (2.4). Therefore, a step selection routine that enforces the strong Wolfe conditions
is of wider applicability.

Standard line search algorithms use a two stage strategy. In the first stage, a local min-
imizer is bracketed (extrapolation stage). In the second stage, the bracketing interval is
iteratively decreased until a suitable position can be found (interpolation stage). The next
trial step in each stage is estimated by interpolating given data and setting the trial step to
the minimizer of the interpolant. The common standard line search algorithms use quadratic
and cubic polynomial interpolation schemes discussed later. This is due to the simplicity of
the calculations and uniqueness of the interpolants. Note that the choice between possibilities
only serves to guarantee interpolation and extrapolation criteria. It is, however, usually not
utilized to adapt optimally to the behavior of the objective function in the region of interest.
If both, quadratic and cubic steps, fulfill the required interpolation and extrapolation criteria,
the cubic step is often taken since it additionally fulfills all derivative conditions. We give in
Section 3.1 details on our consensus line search method, which follows a novel approach to
adapt interpolants to the behavior of the objective function. We show that it is optimally
adapted to molecular potential energy functions and has the power to dramatically reduce
computational costs.

2.3.2.2 Trust-Region Methods

In this work, we focus on local optimization techniques in a molecular context and, to the
best of our knowledge, all current molecular minimization techniques use line search-based
approaches. The main reason for this is computational cost: large problem instances as they
occur in molecular structure optimization require the use of limited memory schemes that are
entirely unsuited for efficient trust region computation. In this case, trust region methods
also sometimes fail to incorporate local information about the objective function, potentially
resulting in degraded convergence behavior of the algorithm. Thus, we do not discuss trust-
region methods in this work. However, we sketch the basic ideas for completeness.

Such methods use information gathered about the objective function f to construct a
model function mj; whose behavior near the current point x; is similar to that of f. This
model my may not be a good approximation of f if a position x is far from x;. Thus, the
search for a minimizer of my, is restricted to some region around x;. The advantage is clearly
that a trust region approach makes further use of this n-dimensional model while a line search
only constructs one-dimensional models into the previously determined search direction. The
candidate step p is then found by approximately solving

min  mg(xg + p)
pPER™

subject to ||p|| < 0,

where 0 > 0 is the so-called trust region radius. If the candidate solution does not produce a
sufficient decrease in f, the usual approach is to conclude that the trust region is too large.
In this case, the region will be shrunk and the corresponding problem has to be (re)solved. If
the model my, perfectly fits the objective function f at the candidate solution, the region is
increased. For comprehensive treatment on trust-region methods, the reader may be referred
to Conn et al. [29].
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2.3.2.3 Search Directions for Line Search Methods

In this section, we sketch different approaches to calculate the search direction dj in (2.3)
and (2.4). We use these (or derived) schemes in Section 3.1 for the optimization of molecular
structures.

Steepest Descent. Mathematically, a direction d is a descent direction from x; if the
directional derivative of f at xj in direction d is negative, i.e.

Vf(x)7d < 0.

The most obvious search direction choice for a line search method is then the direction of
steepest descent. It is the direction along which the objective function f decreases most
rapidly for a given norm, i.e.
. T
min Vf(xg) d
deR” f( k)
subject to ||d|| = 1.

In I norm, this problem has the unique solution

1
4=
see for example Nocedal and Wright [133]. However, the convergence of a steepest descent
approach in practice is only linear and should be avoided in practice [84]. This approach
tends to circle round a local minimum and is, thus, excruciatingly slow on difficult problems.
However, the methods in the following sections use the steepest descent direction in the first
iteration when the whole optimization procedure starts. The advantage is clearly the low
computational costs and storage requirements are linear in the number of variables.

Newton’s Method. Another important search direction — perhaps the most important one
of all — is the Newton direction. Using Taylor’s Theorem 2.3.1 yields

Fp 4 d) ~ F(xi) + V F(x)Td + %dTV2f(xk)d — mg(d).

my is a quadratic model of f around xi. The Newton direction [84] is the minimizer of my.
If V2 f(x;) is positive definite, mj, has a unique minimizer and the Newton direction is given
by

d=—V?f(xx) ' VI(xp), (2.5)

which is a descent direction, since due to the positive definiteness of V2 f(x}) it follows
=V (k)T VEf (xk) TV F (x0) < 0,

However, if my is not convex, direction (2.5) does not have to be a descent direction. To
overcome this problem either V2 f(xz) 4+ uI, i > 0, is used in practice, where uI is a small
perturbation in a way that V2 f(xy)+ul = 0 [84], or trust-region methods, see Section 2.3.2.2,
are applied to the full (non-convex) model.

The disadvantages of Newton’s method are twofold: (1) the second derivatives have to
be computed, which may be expensive, and (2) they have to be stored, i.e. the storage
requirements are quadratic in the number of variables. Thus, methods have been developed
to overcome these problems.
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Quasi-Newton Procedures. An attempt to avoid second derivatives (but still with
quadratic storage requirements) are the widely used quasi-Newton methods. They form the
basis of limited memory methods we used in our study in Section 3.1. The model is still
quadratic, but an approximation By to the Hessian V2f(x}) is used instead of the exact
second derivatives. The matrix By is updated in every iteration of the local minimization
procedure based on the observation [133] that

V2 f (k1) (X1 — %) & V[ (x541) — VF(xx),

when x; and x;,; lie in a region near to a local minimum where V2f is positive definite.
Many approaches for unconstrained minimization update By, that (1) Bg4 is symmetric, (2)
it mimics this property, i.e.

Bryisk =y (2.6)

(the so-called secant equation), where

Sk = Xk+1 — Xk» yi = Vf(Xit1) — VF(x),

and (3) that
By > 0.

It is always possible [84] to update By in a way that By is positive definite if By itself is
positive definite and it holds
styk > 0. (2.7)

If condition (2.4) is fulfilled in a line search framework, see Section 2.3.2.1, the above condition
(2.7) is also fulfilled. Thus, in a line search context an update of By, is always possible, whereas
this might fail in a trust-region approach. One of the most popular update schemes is

BisisiBr  yryi

Bk+1 == Bk - ’

sIBisy, Vi Sk

the so-called BFGS formula, named after its inventors, Broyden, Fletcher, Goldfarb, and

Shanno. Typically, Bg is the identity matrix or any scaled version of it, see Liu and Nocedal

[110], and the search direction in the first iteration becomes the steepest descent direction.
A more modern approach are so-called shifted variable metric methods [180], which chose

B]ZI = CkI + Aka

where Ay is a symmetric positive semidefinite matrix and (i > 0 is the so-called shift param-
eter. Vléek and Luksan [180] give two update schemes for A where the scheme based on our
calculations in Section 3.1 is given by

yZAkyk> PrPL  PrYi Ak + Aryipi

A=A+ <Pk +
plyr ) plyk Py

with pr = sk — (k+1¥x and pg > 0 is a correction parameter. Viéek and Luksan [180] prove
that it is advantageous if the shift parameter satisfies

T

S

0 <1 < kTyk
Yi Yk
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and give several update schemes for (; and px. In our study in Section 3.1, we used the
recommended update

1— YL ALYk
=1
Ck YiBye  ylsy

= ——— and (g1 = :
G + Cht1 (sTyi)® Iyl
L+l = e
lyll*llskll

Shanno’s Conjugate Gradient Algorithm. Probably the oldest approach to avoid sec-
ond derivatives and the quadratic storage requirements are conjugate gradient algorithms
[50]. These methods are based on the concept of conjugate directions and the assumption of
a quadratic objective function. If the objective function is quadratic, then a conjugate gradi-
ent approach finds (in theory) the minimum in n steps, where n is the number of variables.
However, in practice we have to deal with roundoff errors of the floating point arithmetic
and the objective functions are not quadratic. Nevertheless, conjugate gradient methods are
commonly used in many applications. An interesting extension has been developed by Wa-
towich et al. [187] and is called Shanno’s Conjugate Gradient Algorithm. The basic idea is to
incorporate ideas for update schemes from quasi-Newton methods into a conjugate gradient
approach. The search direction is then calculated as follows:

T T T T
dypr = —by + %(X’f“)ak _ ((1 n akYk) s; Vif(Xk41) &y Vf(XkH)) i,

Pk

SL Yk S;;F}’k S;;FYk Sf)’k
where
T T T T
St Yt St Yk 28; Yk Yi Yk
a, = Vi — ye + ( - ) St (2.8)
yiye YLyt stye  ylye)
T T T T
St Yt s; Vf(Xk+1) 2s; Vf(xpt1)  ¥i Vf(Xkt1)
by = 7V f(Xk1) — 7 L R e sl L (2.9)
Yi ¥ Yi ¥t S; Yyt Yi ¥

After a certain number of steps a restart is performed. Here, ¢ is the index of the iteration
of the most recent restart. Since this interesting approach is known to perform very well on
molecular potential energy functions [187], we also included this approach in our set of tested
methods.

Limited-Memory Quasi-Newton Methods. The most modern approach are limited-
memory quasi-Newton methods. They are based on the aforementioned update schemes. In
the case of the BFGS method the matrix updates are stored separately (and not directly ap-
plied to By in each iteration), and when the available storage is used up, the oldest correction
is deleted to make space for the new one. To be exact, the pairs (s, yx) are stored (they are
the only required data for an update) until a fixed amount of storage would be exceeded and
in all subsequent iterations the oldest pair is deleted and the new one is inserted [132, 110].
Due to the Strang recurrences [116] the solution d of

Bid = —Vf(x;), ie d=-B;'Vf(x)

can be calculated only based on the stored vector pairs and without explicit knowledge of
B... Let us assume we have stored the recent m correction pairs, which we label for simplicity
(80,50),- -5 (Sm—1,Ym-1) and p; = ﬁ, then the following algorithm calculates d at the

current position xg:
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1. d « Vf(xk)
2. Fort=m-—1,...,0:
Q — pisde (store «)

d<—d—0&iyi
3. d—B;'d

4. Fori=0,...,m—1:
Bi — piy; d
d<—d+si(ai—ﬁi)

A very good choice for B 1is the scaled identity matrix

T
-1 _ Yi5k

0 1

vl
see Liu and Nocedal [110]. Note that the computation of d in this case needs only
2m(2n + 1) 4+ 3n multiplications and one division, and is, hence, very efficient.

Limited memory methods for the shifted variable metric method can be derived by the
update scheme given in the previous section about quasi-Newton methods and the choice

B! =¢I+U,U;L,

where the n x m matrix Uy is updated. Thus, the limited memory approximation UkUg
replaces Ag. With our previous notation the resulting update scheme is given by

T
PrYy, Uk
Uppr = Up— —2E 2
Yi Pk

Tu,ur'v

Pk T
yEpk Yi Pk
PRI F (i) 2

A ULV f (%) (12

where )\ is the solution (2.3), (2.4) of the most recent line search.

2.4 Local Minimization of Non-Smooth Functions

In Section 3.2, we consider a non-smooth scoring function. Thus, we have to deal with
that topic although the focus of this work is more on smooth functions, i.e., the functions
themselves are at least continuously differentiable?.

Functions of the non-smooth type may be non-smooth but continuous, see Figure 2.2,
or even discontinuous. It is not possible in general to identify a minimizer of a general
discontinuous function. If the function consists of smooth pieces (with discontinuities between
them), it may be possible to minimize each piece individually. If the function is continuous
everywhere but non-differentiable at certain points, we can

2Note that even in the case of the discrete optimization problems we consider in Chapter 4, the functions
themselves are smooth. The problems are continuous (and constrained) if we drop the integrality constraints.
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v

Figure 2.2: Non-smooth function with minimum at a kink.

(a) identify the solution by exploring subgradients, or generalized gradients>.

(b) force the function to be continuously differentiable by inserting transition patches be-
tween the smooth pieces, see Figure 2.3, if this is applicable, i.e. the non-differentiable
positions are known before optimization and can be efficiently caught during the op-
timization process. We choose this approach in Section 3.2 in order to apply the full
machinery of smooth optimization techniques while we do not substantially change the
results.

v

Figure 2.3: Added smooth transition patch between two differentiable pieces. The dashed line is
the original function, which has been modified (red solid line) in a d-neighborhood of the non-smooth
point x.

For more information about non-smooth optimization, the reader may be referred to Hiriart-
Urruty and Lemaréchal [77]. Note that if the function to be minimized does not have any
special property, but there are simple bound constraints on the variables, the approach de-
scribed in the next section may be worth being tried out finding global minimizers. However,
this approach may fail in practice due to too many “intermingled” terms in the objective
function resulting in a too high number of boxes to be considered.

3Subgradients are a generalization of the concept of gradients to the non-smooth case.
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2.5 Global Optimization in (General

As mentioned before, if the objective function does not have any special property, there is
no known method to determine global minima. We have to distinguish between the task of
finding positions as deep as possible (hopefully they are global minima) and proving that
positions we could identify are indeed global minima (or if they are not global the task is to
find (other) deeper positions).

The first task can be addressed with heuristics, e.g., monte-carlo based search, simulated
annealing, genetic algorithms, particle swarm, differential evolution, etc.. All of them profit
from efficient local optimization techniques as subroutines if the considered problems are
continuously differential. However, although we incorporate our techniques in heuristics in
Chapter 3 in the context of molecular docking, a survey of heuristics is beyond the scope of
this work. For a good overview of this topic the reader may be referred to Fuhrmann [53], a
detailed description can be found in Michalewicz and Fogel [117].

The proof of global optimality (and to identify deeper positions if the proof fails) can only
succeed in special cases. In the next section, we consider a special class of problems that
allow for efficient detection of global minima and the proof of global optimality.

The most general problems that can be solved, at least in theory, are problems without
special structure but with so-called “box-constraints” on every variable, i.e., there is a restric-
tion = € [a,b], a < b on every parameter 2.* The most general approaches for this kind of
problems are branch-and-bound algorithms using interval arithmetic [114]. It is interesting
to note that by interval arithmetic the global optimization problem can be seen as “solved”
when the objective function is twice continuously differentiable and only one parameter x
with = € [a,b], a < b is considered [193, 70, 69]. In other words, there exists an algorithm
for one-dimensional twice continuously differentiable problems under box-constraints, which
is successfull not only in theory but also in practice, see Hansen [70]. However, this does not
hold if more than one variable is involved or any other prerequisite is not fulfilled.

A typical branch-and-bound algorithm is given in Figure 2.4. The main prerequisite for
such an approach (as is for optimization in general) is that

i > mi ifSCx
min f(x) > min f(x) ifSC
holds. Certainly, this fact (with exact minima) does hold in general but any used estima-
tion approach has also to fulfill this fundamental principle, i.e. let est min be the estimated
minimum (an estimated lower bound) then the method to obtain this bound has to fulfill

est min f(x) > est min flx) ifSCA. (2.10)
Obviously, since every region is reduced by splitting and the bounds obtained become tighter
the branch-and-bound algorithm identifies global minima (if these minima are strict it returns
regions with only one element) and proves that they are global by discarding provably non-
optimum regions. This approach has to deal with many problems in practice. If there are
non-discrete global optima, this algorithm will never terminate because it tries to enumerate
an innumerable number of solutions. Even if there are only a finite number of solutions,

4In practice, numbers are represented by floating point numbers in a computer, which have only a limited
range. Thus, this restriction is more of theoretical interest. It may be sufficient to set, e.g., a = —10'° and
b=10".
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Figure 2.4: Typical branch-and-bound algorithm using heuristics to improve a pure branch-and-
bound procedure.
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the number of regions to be considered during the branch-process might be too many to be
stored. Nevertheless, this approach is in practical use and the most general way to look for
global minimizer.

The main problem is to calculate a lower bound on the objective function within a given
region (fulfilling 2.10). The most general approach is interval analysis and the subsequent
interval arithmetic [120]. We sketch the basic ideas in the following section. In Section 3.5,
we show how to find all solutions that models a backbone loop of a protein based on this
technique. It should be mentioned here that another related method is affine arithmetic [37],
which is often viewed as an improvement of interval arithmetic. However, the errors of affine
arithmetic are quadratic, whereas interval arithmetic errors are linear [165]. Thus, there is
usually a critical width for the input intervals beyond which affine arithmetic is not accurate
enough to be worth its added expense. We restrict ourself to interval arithmetic in this work.

2.5.1 Interval Arithmetic

R. E. Moore [120] derived an interval extension of Newton’s method and showed that in
a neighborhood of a simple root this extension converges quadratically to the root. Nickel
[130, 131] showed that the algorithm converges globally provided the derivative of the objective
function is non-zero in some interval containing the root. Hansen [68] extended the interval
analysis and developed a method that isolates and bounds all real roots of a continuously
differentiable function in a given interval. This method never fails to converge and led to the
algorithm for identifying all global minima of a function with one variable when the first and
the second derivatives have a finite number of isolated zeros [70]. In this section we give the
basic ideas behind interval arithmetic.

Classical arithmetic defines operations on individual numbers. Interval arithmetic defines
these operations on intervals in the sense that if op(I) = [a, b] for an interval I and an operator
op, it is guaranteed that it holds

a <min{op(z) | z € I} and b > max{op(z)|x € I},

see Figure 2.5. In this context, the basic operations on intervals [a, ], [¢, d] are given by

A

v

Figure 2.5: Example of interval arithmetic. The given function with the tightest lower and upper
bounds on the intervals (gray boxes).

e [a,b] + [e,d] = [a+ ¢, b+d],
o [a,b] —[c,d]=[a—d,b— (],
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e [a,b] - [c,d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}],

o = lmin {8 g 8 F) max {5 2} 100 ¢ fed)

Operations with scalars are defined by intervals with identical upper and lower bounds, e.g.
we have

a+la,b] =[a,a] + [a,b] = [a+a,a + ],

for a scalar @ € R. More complex functions can be evaluated by the chain rule, e.g. 22 —

2 - 2% can be evaluated by (z - ) — (2 ((x - x) - x)). Thus, the resulting interval is based
on an accumulation and evaluation of basic operations. Considering the case where 0 is
contained in the divisor interval leads to extended interval arithmetic [68]. Theoretically,
all primitive functions like sin, cos, exp, etc. can be extended to their interval equivalents
purely by performing the numerical algorithms that calculate their function values. However,
the bounds obtained this way are usually too inaccurate. For example, consider the square
function. We have
[_172}2 = [_172] ’ [_172] = [_274]7

where a rough estimation would lead to [0,4]. Thus, specialized versions for interval arithmetic
have been developed for all standard functions, which provide tighter bounds.

Using this arithmetic, branch-and-bound methods for either global optimization or solving
systems of equalities may be applied. However, due to the above mentioned problems in
practice we cannot assume that we obtain the desired results by applying such an approach.
“Intermingled” terms in the objective function are the main problem. If the terms are linear,
the bounds obtained are exact. Highly non-linear terms lead usually to very inaccurate
bounds (although these bounds are guaranteed lower and upper bounds) resulting in (too)
many splitting steps in a branch-and-bound framework. Imagine that if we have n parameters
and we want every parameter only to be splitted once, we have to consider 2" boxes, see Figure
2.6. For example, if our problem has only the modest number of 20 variables, we have to

A A

y y = |

v
v

z

Figure 2.6: Splitting of boxes. On the left two parameters each splitted once: 22 = 4 boxes. On the
right three parameters each splitted once: 23 = 8 boxes.

consider 220 = 1.048.576 boxes when every variable is splitted once. Certainly, there are
approaches to improve a primitive branch-and-bound approach, e.g. see [194, 195], but we
cannot expect them to be successful in general. Nevertheless, finding all solutions that models
a backbone loop of a protein is a task where interval arithmetic can be successfully applied,
see Section 3.5.
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2.6 Convex Optimization

The concept of convexity is fundamental in optimization. It implies that the problem is
benign in several respects. The term convex can be applied both to sets and to functions.

Definition 2.6.1. (a) A set S C R" is called convex if for any two points x1,x2 € S we
have
ax1+ (1 —a)xe €S forall a € [0,1].

(b) Let f : S — R be a function with domain S C R™. f is called convex if S is conver
and for any x1,xX € S it holds

flaxi + (1 —a)xz) < af(x1) + (1 — ) f(x2), for all a €]0,1].

(c) A function f is called concave if (—f) is convez.

Informally speaking, a set & is convex if the straight line segment connecting any two
points in S lies itself fully inside S. In other words, convex sets cannot have hollows and dips,
see Figure 2.7. Sets not fulfilling this condition are usually called non-convex, see Figure 2.8.

An analogous imagination of a convex function f is that f is convex if for any two points x;

Figure 2.7: Convex sets.

w<

Figure 2.8: Non-convex sets.

and x9 within its domain the graph of f lies below the straight line connecting (x1, f(x1)) to
(X2, f(x2)) in the space R"*! see Figure 2.9. Otherwise, the function is called non-conve,
see Figure 2.10.

Definition 2.6.2. Let f : F — R be a convex function and F a convex set, then the problem

;Ilégf(X) (2.11)

is called a convex (constrained global) minimization problem or conver program.
By the fact that the region
F={xeR"| fi(x)<0,i=1,...,m}

is convex if f; : R™ — R are convex functions, we have the more common representation:
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Figure 2.10: Non-convex functions.

Corollary 2.6.3. Let f; : R® — R be convex functions, i = 0,...,m, then the problem

min - fo(x) (2.12)

subject to  fi(x) <0, i=1,...,m
is a conver minimization problem (convex program).
The importance of convex optimization is given in the following theorem.

Theorem 2.6.4. Let f: S — R be a conver function. Then, any local minimizer x* of f is
a global minimizer of f. If, in addition, f is differentiable, then any stationary point x* is a
global minimizer of f.

Thus, looking for local minimizer — in fact, a local stationary point in the unconstrained
case — is sufficient to identify global minimizer in the case of convex optimization. Thus, the
simple strategy to start from somewhere (within the feasible region) and to walk downhill
(within the feasible region) until no further improvement can be achieved will lead to a global
minimum?®.

In general, any constrained convex program can be solved by (local) methods for con-
strained optimization problems. Usual approaches are augmented Lagrangian methods, see
[86] for a good survey, and filter approaches, see for example [181]. More efficient techniques

5In practice, numerical instabilities might lead to incorrect results.
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are so-called interior-point methods. These iterative algorithms converge to the solution out of
the interior of the feasible region and make use of the convexity of the problem [86]. However,
general constrained convex programs are beyond the scope of this work. In the subsequent
sections, we describe special classes of constrained convex problems that will be applied in
the following chapters.

2.6.1 Linear Programs

If all functions in (2.12) are linear, the resulting problem is called a linear program. In explicit
notation we have

min cix; + ... + ey
xcR™
s. t. anzi + ... + apxy < by,

Am1T1 + oo+ Gy < b,
with ¢;, a;, € R. Usually, linear programs are represented by matrix/vector notation:

Definition 2.6.5. (Linear Program)
Let b e R™, c € R, and A € R™™™, then the problem

min  c¢’'x
xcR™
s. t. Ax<Db

is called linear program (LP).

There are several methods to solve linear programs. To the best of our knowledge the
oldest approach is the so-called simplez algorithm of G. B. Dantzig [34], which led to a
“development stimulus” of linear programming in the 50s and 60s. Nowadays, this method is
widely used in practice. The idea of this algorithm is to make use of the fact that the feasible
set of a linear program is a polyhedron and can be sketched as follows:

(1) Find a corner in the feasible region.
(2) Walk along a descending edge (reduce c’x) to a neighboring corner.
(3) Repeat (2) until no descending edge can be found.

The simplex algorithm is the dominating method for solving integer linear programs, see
Section 2.7.1. Its approach allows easily for the incorporation of additional linear constraints
(“cutting planes”) during the optimization process.

Since 1984 another class of techniques for solving linear programs has been developed: the
so-called interior-point methods. As mentioned before, interior-point methods are a class of
techniques that can be applied to general convex optimization problems. The basic ideas can
be adapted to many problems, in this case to linear programs, making use of special properties
of each problem. They are based on non-linear programming techniques. In contrast to
the simplex method they do not work on the edges and corners of the feasible polyhedron;
they converge to the solution out of the interior of the feasible region. This approach to
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converge to the solution is usually based on an adapted Newton method for solving systems of
nonlinear equations. The advantage of interior-point methods is their guaranteed polynomial
run time. Due to Khachiyan [98] and its skillful rounding techniques, these methods do not
need an exponential number of calculations. This is also guaranteed in practice. However, the
disadvantage of this class of algorithms is their enormous storage requirements and the exact
calculations that have to be performed numerically stably. The accumulation of rounding
errors can lead to incorrect results. Certainly, this also holds true for the simplex algorithm
but its comparatively easy kind of calculations is less affected. For a survey on interior-point
methods in the context of semidefinite programming (an extension to linear programming in
a certain sense, see Section 2.6.3), the reader is referred to Todd [172] and Rurainski [150].

2.6.2 Quadratic Programs

If all functions in (2.12) are quadratic, the resulting problem is called a quadratic program.
Then, all functions can be represented by

1
filx) = ixTAix + biTx + ¢
with
A; eS" b; €eR”, andc; € R.

If A; is not positive semidefinite, the corresponding f; is not convex and, thus, solving a
quadratic program to global optimality in general can be hard. In fact, Pardalos and Vavasis
[138] have shown that quadratic programs are NP-hard, even when Ag has just one negative
eigenvalue and when the constraint functions f;, ¢ = 1,...,n are linear. See for example
Sherali and Tuncbilek [162] for an approach to deal with non-convex quadratic programs.
If all A; are positive semidefinite, the resulting quadratic program is a convex optimization
problem.

Convex quadratic programs with only linear constraints, i.e. f;, ¢ = 1,...,m are linear
or equivalently A; = 0, ¢ = 1,...,m, can be solved by the simplex method for quadratic
programming, see, e.g., [190, 155, 178|. Linear constraints are a prerequisite for the simplex
algorithm since it makes use of the polyhedron property of the feasible region as mention in
the previous section.

General convex quadratic programs can be solved by interior-point methods. Although
interior-point methods specialized to quadratic problems exist, each convex quadratic program
can be transformed into a semidefinite program, see next section, and can be solved by a
semidefinite program solver. Certainly, this software uses also an interior-point method. The
advantage is that some excellent semidefinite program solvers are freely available [21].

2.6.3 Semidefinite Programs

Semidefinite programs can be seen as a generalization of linear programs to matrix variables.
They are the most general kind of constrained optimization problems we consider in this work.
Among others, linear programs as well as convex quadratic programs can be formulated as
semidefinite programs, see Jarre and Stoer [86].

Definition 2.6.6. (Primal Semidefinite Program)
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Let A; €S i=1,...,m, C€S", and b= (by,...,by)T € R™. Then, we call the problem

min (C, X)

Xesn

s. t. <AZ,X>:bl, izl,...,m,
X>0

a semidefinite program in primal standard form.

Using techniques of convex duality, see Rockafellar [147], we obtain the dual of the above
primal problem.

Definition 2.6.7. (Dual Semidefinite Program)
Let A;€S", i=1,...,m, C€S", andb = (by,...,by)T € R™. Then, we call the problem

max bly
YER™
Zesn

s. t. iyiAi—i-Z:C,
=1

Z>0
a semidefinite program in dual standard form.

Primal and dual forms are connected by duality theory and can be transformed into each
other. Consequently, both formulations are valid for semidefinite program solvers. These
solvers use specialized interior-point methods to iteratively follow the so-called central path
and to converge to the solution, see, e.g., [21]. For a good survey on semidefinite programming
see for example Todd [172], Jarre and Stoer [86], and Rurainski [150]. Because of its relevance
in practice, we give exemplary a semidefinite programming formulation of a quadratically
constrained convex quadratic program.

Example 2.6.8. (Quadratically constrained convex quadratic program)
Let A; € R"*", b;,c; € R, and d; € R. In addition, let f; be

fz(X) = (AZX—Fbl)T(AlX—{—bZ) —CITX—di, 1=0,...,m,
then the convexr quadratic optimization problem
min fo(x)
subject to fi(x) <0, i=1,...,m

s equivalent to the semidefinite program

min ¢

xERM

teR

1 AUX + bO
. t. -
’ ((A0X+b0)T ch+d0 +t> ~— U,
>_ = DY
<(A1X+bZ)T C?X‘i'd@') =0, 1=1, ,m,

where 1 denotes the identity matriz. The necessary decompositions of the quadratic func-
tions can be obtained by singular value decompositions of the corresponding matrices. The
equivalence proof can be found in Rurainski [150].
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2.7 Discrete Optimization

If the feasible region of a optimization problem contains only a countable quantity of elements,
the problem is called a discrete optimization problem. Since there exists an isomorphism to a
subset of Z™ in this case, we restrict ourself to integer problems.

Definition 2.7.1. (Discrete Problems)

(a) If some conditions restrict all variables of an optimization problem to be integer, this
problem is called an integer (optimization) problem.

(b) If only a few variables are restricted to be integer, the problem is called a mized integer
(optimization) problem.

(¢) If some conditions restrict all variables to be only 0 or 1, this problem is called a 0-1
(optimization) problem.

If the feasible region of a discrete minimization problem contains only a finite modest
number of elements, we may test the values of the objective function at all these positions
and take the points with the minimum value. In this situation, such a problem might be
easier to solve than a continuous one where this approach is not possible. However, even if the
feasible region contains only a finite number of elements, the problem to only identify feasible
points can be NP-hard [104]. Furthermore, if there is an infinite number of feasible points,
this enumeration-and-test approach cannot succeed. If there are simple bounds (upper and
lower bounds) on every variable, we may apply the interval subdivision technique (with the
known difficulties) mentioned in Section 2.5, but in general no method exists to solve discrete
optimization problems without special properties. In the following sections, we describe two
common discrete optimization problems crucial for this work. For general discrete problems
the reader may be referred to Korte and Vygen [104], Cook et al. [30], Nemhauser and Wolsey
[128], Papadimitriou and Steiglitz [137], Schrijver [160], and Wolsey [191] for comprehensive
treatments of this subject.

2.7.1 Integer Linear Programs

Definition 2.7.2. (Integer Linear Program (ILP))
Let b € R™, ¢ € R™, and A € R™ ™, then the problem

min  c’x
xER™
s. t. Ax<b,

v, €4, 1=1,...,n
is called an integer linear program (ILP).

Integer linear programs are usually solved by Lagrange relaxation [104], branch-and-
bound, or branch-and-cut methods. The basic idea in a branch-and-bound and branch-
and-cut framework is to drop the integrality constraints and to solve the underlying LP
(LP-relaxation). If this solution is already integral, we have found the solution. Otherwise:
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(a) Branch-and-bound: If the problem could not yet be solved to integral optimality, a
branching step is performed: For example a variable with non-integral value, e.g., x; =
1.276, at the current solution is chosen and two subproblems are generated. The first
contains an additional integral upper bound on z;, in our example x; < 1, the second
an additional integral lower bound, here z; > 2. Both (sub)problems are solved. The
obtained values at the solution are lower bounds for the sought integral solution of
the original problem. To this end, a list of subproblems has to be stored during the
optimization process. If the solution of a subproblem is integral, it is stored if it is
the first integral feasible solution or its value is lower than any previous found integral
position. Non-integral solutions are lower bounds to the sought integral solution and,
thus, subproblems whose lower bound is higher than an already found integral solution
can be discarded. Finally, the original problem is solved if all appearing subproblems
are fully processed. More general branching strategies can be found in Schrijver [160].

(b) Cutting-plane approach: If the problem could not yet be solved to integral optimality, so-
called cutting planes (linear inequalities) are generated, which separate the non-integral
solution from the feasible integer positions, see Figure 2.11. These constraints are added
to the problem and the (new) problem is solved again. This approach is iterated until
no further cutting plane could be identified. See for example [137] for a good survey
about cutting planes.

Figure 2.11: Separation of a non-integral solution from the feasible integer positions by a cutting
plane. Grey: the feasible region; red ball: sought integer solution; red circle: non-integral LP solution;
—c: negative gradient of the objective function. The inequality a”’x < ag will be added to the
LP-relaxation.

A pure cutting-plane method does not have to find any integral solution of the problem. Thus,
the combination of both methods is widely used, i.e. use the cutting-plane method for each
subproblem of a branching step. Branch only if no valid cutting plane could be identified.
Methods following this combined approach are called branch-and-cut algorithms. A survey
on how ILPs can be solved via branch-and-cut can be found in Papadimitriou and Steiglitz
[137], Nemhauser and Wolsey [128], Korte and Vygen [104], see also Rurainski [149].

ILPs are an important class of problems for combinatorial optimization. In some cases,
the full problem description has an exponential number of constraint inequalities. This is the
case in Section 4.3, where we determine interesting subnetworks based on microarray data.
In this case, we start with a basic set of inequalities, solve this problem, identify violated
problem inequalities at this solution and add these constraints to the ILP. This process is
iterated until no further violated inequality could be identified and, hence, the problem is
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solved. Note that in the worst case all inequalities have to be added. Fortunately, this has
not been the case in our calculations.

2.7.2 Quadratic 0-1-Programs

Definition 2.7.3. (Quadratic 0-1-Program)

Let A € S and c € R™. The problem
min  x?Ax+c’x (2.13)
x€Rn?
s. t. x;€{0,1}, i=1,...,n

1s called a quadratic 0-1-program.

Quadratic 0-1 problems are another important class of discrete optimization problems.
We have to solve this kind of problem in Section 4.2, where the problem of selecting an
optimum subset out of a set of features based on a mutual information score is expressed
as quadratic 0-1-program. The usual approaches to address these problems are branch-and-
bound and branch-and-cut methods as they are sketched in the previous section. A summary
of theoretical properties of the cut polytope for this class of problems can be found in [42].

The subproblems arising in a branch-and-cut framework can be solved by, e.g., the simplex
method for quadratic programming [190, 155, 178], if the matrix A is positive semidefinite,
i.e. the objective function is convex, see Section 2.6.2. If the quadratic function is not convex,
the problem is known to be NP-hard. In fact, Pardalos et al. [138] have shown that this
kind of problem is NP-hard, even if A has just one negative eigenvalue. As a consequence, if
the quadratic function is not convex, the subproblems cannot be solved easily to guaranteed
global optimality [71, 177, 176]. Numerical methods that try to achieve only local optimality
are described in [60, 61, 59].

The key to solve (2.13) with arbitrary symmetric A is the observation that z; — 2? = 0
for z; € {0,1}, or equivalently, u; - ¥; — u; - 2 = 0 for all u; € R and z; € {0,1}. Thus, all
problems of the class . .

min - x (A — Diag(u))x + (c+u)'x (2.14)
s.t. 2, €{0,1}, i=1,...,n
with u € R", where Diag(u) denotes the matrix with u on its main diagonal and zero
off-diagonal entries, are equivalent to (2.13). The aim is to choose u in a way that (1)
A — Diag(u) > 0 (to ensure that efficient techniques are applicable) and (2) we obtain good
lower bounds for any relaxed version of (2.13). Higher lower bounds will improve the total run
time of a branch-and-bound or branch-and-cut approach since subproblems can be discarded
earlier. Certainly, it holds A — Diag(Amin(A)) = 0 where Diag(Amin(A)) denotes the matrix
with the minimum eigenvalue of A on its diagonal and zero off-diagonal entries, but prelim-
inary studies have shown that the obtained bounds with this approach are bad. Branching
can be very expensive in practice. Thus, it is crucial that we obtain the best existing lower
bound. In fact, we solve
_ : T : T
u= argmax min x (A —Diag(v))x+ (c+v)'x (2.15)
s. t. A —Diag(v) =0

to global optimality by semidefinite programming [19] as a preprocessing step. The following
theorem is central to this task. We present the proof here because it is omitted in [19].
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Theorem 2.7.4. Problem (2.15) is equivalent to the semidefinite program
max T (2.16)

ucR”
reR

— 1 T
s. t. <]» " 2(C +tll) ) E: 0
5(c+u) A — Diag(u)
Proof. Let U be
U— —r He+u)T '
$(c+u) A —Diag(u)
Since A — Diag(u) is a principal submatrix of U, we have
U-0 = A —Diag(u) >0
by Theorem A.13 in [150], see also Fact 8 in [172]. Let us assume now
A — Diag(u) >~ 0

and, hence, (2.15) has a unique minimum. (The case A — Diag(u) > 0 is covered by the fact
that the solution of a semidefinite program always lies on the boundary of the semidefinite
cone.) The minimizer x* of (2.15) fulfills

x* =

1
_i(A — Diag(u)) (¢ + u).
By inserting x* into (2.15), we obtain the value of (2.15) at x*

x*T(A — Diag(u))x* + (¢ + u)’x*

1 1
= Z(C +u)T(A — Diag(u)) "} (c +u) — i(c +u)T(A — Diag(u))"*(c + u)
1 T . ~1
= _Z(C +u)’ (A — Diag(u))” " (c + u).
We want to maximize this minimum. Thus, we maximize r € R with the constraint

—i(c +u)T (A — Diag(u))t(c+u) >r

or equivalently
1
—r— Z(C +u)T (A — Diag(u))~*(c +u) > 0. (%)
By the Schur complement, see Fact 11 in [172] or Theorem 1.18 in [150], it follows
(x) & Ux0.

Thus, the solution of (2.16) solves (2.15). The other way round, if u solves (2.15), we have
that

1
_Z(C +u)T(A — Diag(u))"*(c + u)
is at its maximum. Since (2.16) maximizes r, inequality (*) becomes to
1 1
_Z(C +uw)l(A - Diag(u))’li(c +u)=r

and r takes its maximum possible value. Hence, the solution of (2.15) solves (2.16). O
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After this preprocessing step, we solve the resulting convex problem by a quadratic integer
program solver via branch-and-cut. Note that u found in this preprocessing stage is the best
vector we can expect, because Poljak et al. [142] prove that the maximum lower bounds of
different types of relaxation are equal.



Chapter 3

Optimizing Molecular Structures

One of the most important problems arising in Computational Chemistry and Biology is the
optimization of molecular structures by minimization of empirical potential energy functions
(force fields). The applications stretch from (re)optimization of manually drawn molecules,
e.g. in a drug design framework, see Figure 3.1, to molecular docking purposes. To this end,

Figure 3.1: Optimizing a manually drawn molecule by “minimizing the structure” using a molecular
potential energy function.

the molecules, i.e. their atomic conformations and the physicochemical properties, must be
encoded as a set of real valued variables (parameters). The obvious way to represent the
spatial arrangement of a molecule is by defining the Cartesian coordinates of all its atoms as
well as a set of bonds that defines their interconnectivity. This parametrization is widely used
in practice. The next section uses this obvious parametrization where we present our method
to locally optimize molecular structures. This algorithm adapts optimally to the behavior of
the objective function in the region of interest during the optimization procedure. We show
that our approach is clearly superior to other commonly used standard methods.

For several applications in molecular modeling, like docking, it is reasonable to constrain
molecular flexibility by fixing bond angles and bond lengths and restricting torsional flexibility
to rotation around single bonds that connect rigid entities, like ring structures [15, 47, 124].
Alternatively to Cartesian coordinates, a molecule may be represented by its translation,
orientation, and a set of torsional angles, bond angles, and bond lengths (compact repre-
sentation) where such nonrelevant degrees of freedom can easily be frozen. However, this
parametrization has a major drawback: there is no orientational parametrization that is at
the same time minimal and free of singularities [159, 62]. In the course of optimization, a
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molecule can reach positions in which not all possible further alterations of its orientation are
achievable by variations of the orientational parameters. Thus, the optimization process may
get stuck at non-optimum positions. Therefore, the main challenge with respect to the com-
pact molecular representation is to find an orientational parametrization that is well suited
for the efficient gradient-based local optimization techniques we described in Section 2.3. In
Section 3.2, we present our method to overcome the problems with the compact molecular
representation and to efficiently apply gradient-based local optimization techniques.

We extend this approach to a ligand-receptor docking technique in Section 3.3. We com-
bine a multi-deme genetic algorithm with a Lamarckian genetic algorithm using our local
search method. We show that this method is clearly superior to commonly employed ap-
proaches.

However, while treating the ligand fully flexible with respect to its torsional angles, this
method still keeps the receptor fixed. We present our promising attempts to overcome this
strong assumption in Section 3.4. Our approach extents the ideas behind the flexibility
of the ligand (parametrization) to the receptor’s side chains. Furthermore, we introduce
limited backbone movement by interpolating between known extremal conformations. We
present our formulas in detail and give analytical derivatives, necessary for our gradient-
based optimization method. We show that our approach is able to dock ligands into regions
with highly flexible side chains on our test example, the Human Serum Albumin (HSA).
This protein is known for its promiscuity to bind different ligand species and, furthermore,
undergoes tremendous backbone movements upon binding to fatty acids. HSA is the most
abundant transport protein of the human blood plasma.

The last part of this chapter deals with our approach to allow a loop region of the receptor
to be fully flexible, i.e. not only limited movement is possible as in our previous study requiring
at least two different high resolution structures of the backbone, but all possible conformations
can be considered, see Section 3.5. To this end, we use the Go-Scheraga loop closure equations
and present our interval arithmetic based method to guarantee that we can calculate all
possible conformations. In this study, we chose the human 173-hydroxysteroid dehydrogenase
type 1 (178-HSD 1), which plays an important role in the development and proliferation of
breast cancer and other estrogen-dependent diseases. We show that our approach is able to
dock estradiol into the highly flexible loop region of 175-HSD 1, where other approaches failed
in our preliminary studies.

3.1 The Consensus Line Search Approach

The local optimization of molecular structures is a well understood and studied task in bioin-
formatics and computational chemistry. Solving this problem usually requires efficient local
minimization techniques, i.e. iterative two-step methods that search first for a descent direc-
tion and then try to estimate the step width as described in Section 2.3. In Section 2.3.2.1,
we showed the general procedure of a line search-based numerical local optimization method
and mentioned the so-called strong Wolfe conditions (2.3) and (2.4) for accepting an iterate.

To the best of our knowledge, all line search algorithms employed in molecular minimiza-
tion software use quadratic and cubic polynomial interpolation schemes to estimate the next
trial step. This is due to the simplicity of the calculations and uniqueness of the interpolants.
It is important to note that the choice between possibilities only serves to guarantee inter-
polation and extrapolation criteria. It is, however, usually not utilized to adapt optimally to
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the behavior of the objective function in the region of interest. If both, quadratic and cubic
steps, fulfill the required interpolation and extrapolation criteria, the cubic step is often taken
since it additionally fulfills all derivative conditions.

However, none of these choices is able to accurately represent the rational or exponential
behavior that often dominates force field based potential energy functions. To model this
effect, we adopt ideas of conic interpolation [36, 161, 20], i.e. an interpolation method using
the conic model function

aX? +b\+c¢
conic A) = 5
v () (dX+1)2
and rational interpolation
p)\2 +gr+T
rationa, A) =
Yrational(A) sA+1

Bjerstad and Nocedal [20] prove local convergence with Q-order equal 2 for one-dimensional
minimization based on the pure conic interpolation method, rendering the proposed interpo-
lation scheme an alternative to polynomial interpolation.

But conic and rational interpolation alone will not “globally” improve convergence: De-
pendent on the current position on the energy surface, polynomial, rational, or exponential
behavior may dominate the potential function. This motivates the idea to locally decide on
the most suitable interpolant based on the comparison of the interpolation results, see Fig-
ure 3.2. However, a naive approach — using multiple separate interpolation results — would
significantly increase the number of evaluations required.

In this section, we show how the decision for the most reliable interpolation can be made
with negligible computational overhead, see also Rurainski et al. [154]. We demonstrate that
the approach leads to substantially improved performance in comparison to two standard
line search algorithms on almost all test cases. We also show that the scheme can be easily
extended. For example, to handle the case of non-smooth functions (e.g. the famous Gehlhaar
scoring/energy function [56]) we have included two additional interpolating/approximating
schemes specially suited to this case: two side linear piecewise interpolations (derivative of
both sides and function values, the intersection of both interpolants is the sought minimizer if
there is any) and a four point quadratic least squares approximation (four collected function
values, the function is the quadratic least squares approximation). The user can choose which
of these functions to include into the set of interpolants.

3.1.1 The Line Search Procedure

Recalling the task of a line search from Section 2.3.2.1, where we drop the iteration subscript k
in order to simplify the notation and use the objective function f, the current position x, and
the current search direction d, the problem addressed by a line search can be seen as a one-
dimensional approximative minimization problem with the objective function ¢ : R>g — R
with

d(A) = f(x+ Ad), (3.1)

The derivative of ¢ is then given by

¢'(\) = (Vf(x+Ad)"d
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Figure 3.2: Searching the next local minimum on an energy surface by our consensus approach. This
graphical abstract appeared on the cover of the Journal of Computational Chemistry, Vol 30, July 15,
2009.

and the strong Wolfe conditions become

$(A) < 6(0) + ar'(0) (3.2)
|/ (N)] < Bl¢'(0)]. 3.3

Finding points that fulfill the strong Wolfe conditions does require not only points close to
a local minimum (fulfilling condition (3.3)) but also satisfying sufficient decrease (condition
(3.2)). Line search methods often choose to use the auxiliary function

P(A) == ¢(A) — (0) — aAd'(0) (3-4)

instead of ¢ if problems with insufficient decrease occur: A local minimum of 5 always
corresponds to a point that fulfills conditions (3.2) and (3.3) for the function ¢.

Theorem 3.1.1. Let ¢ : R>o — R with ¢/(0) < 0 denote the one dimensional objective
function defined in (3.1) and ¢ the auziliary function defined in (3.4). Then it holds

(a) ¢'(0) <0

(b) any local minimizer \* of 5 identified by the two stage bracketing approach fulfills the
convergence criteria (3.2) and (3.3).
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Proof. (a) Using the definition (3.4) of ¢ yields
¢/(0) = ¢/(0) — a¢/(0) = (1 - a)¢/(0) <0
since 0 < o < 3 and ¢/(0) < 0, see Section 2.3.2.1.

(b) Let A* be a minimizer of ¢, then we have

¢'(\") = ¢'(\") — ag/(0) = 0.

It follows
6" (A7) = a]¢'(0)]
and hence with 0 < a < (3

|6/ ()] < Bl (0)],
i.e. A* fulfills the curvature criterion (3.3). Finally, we have (from (3.4))

$(0) =0

and the update procedure looking for a minimizer guarantees to find a point A\* whose
function value is less than or at least equal to the initial value, i.e.

P(A) < ¢(0) = 0.

Thus, it follows
$(A") < ¢(0) + ad(0)A"
and condition (3.2) is fulfilled. O

By merely minimizing a one-dimensional function, either gfg or ¢, we can always guarantee
the strong Wolfe conditions. How to minimize such a function in practice will be discussed
in the following. To simplify notation, we will from now on refer to the objective function by
¢ always.

All existing inexact line search algorithms perform the minimization by using interpolation
schemes and setting the next trial step to the minimizer of the current interpolant. The best
known approaches are two-stage bracketing algorithms. In the first stage, a point that fulfills
criteria (3.2) and (3.3) is bracketed (in an ideal case a minimum) by moving or enlarging an
interval, say I, until it can be ensured that a suitable point lies within /. From a mathematical
point of view, this is an extrapolation stage where increasing steps are performed and [ is
updated dependent on these steps and local information of ¢. In the second stage, the size of
I is iteratively decreased until a A € I could be found that fulfills (3.2) and (3.3). This second
stage can be seen as an interpolation stage. The main reason for the good performance of the
two-stage bracketing approach in practice is its provable convergence, while non-bracketing
methods cannot guarantee convergence. Therefore, in this work we are focusing on two stage
approaches only.

When the line search starts, we do not yet have an initial trial step that will become the
upper bound of the initial interval I. The standard choice for this initial estimate in the
context of (quasi-)Newton methods is A = 1. This means our first trial step is a full step
as recommended by the convergence theory behind Newton methods [84]. However, other
choices for initial estimates have been proposed in the literature [36, 50, 133]. Since (quasi-)
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Figure 3.3: The general scheme of a (bracketing) line search algorithm.

Newton methods are the most efficient approaches, we focus on these algorithms. Thus, A =1
is a suitable initial estimate widely used in practice. In summary, the general scheme of a line
search algorithm is given in Figure 3.3. Note that the initial choice I = [0, 0] is legitimate.

In a two stage (bracketing) approach, different functions are computed, which interpolate
the data at the bounds of I. Afterwards, one bound is replaced (update of I) by the new
trial step (minimum of the interpolant). The choice of interpolating functions in common
line search algorithms is only driven by the idea of using functions, which provide steps in
the right direction, i.e., its minimizer lies right of I in the first (bracketing) stage (to ensure
extrapolation) and inside of I in the second stage (to ensure reduction of the size of I'). In the
case, when more than one interpolating function provide suitable steps (say quadratic and
cubic), there are two common choices how to proceed:

(A) If there are functions not fulfilling all interpolation conditions, the function that satisfies
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most of the conditions is chosen, e.g., cubic interpolation is preferred to quadratic
interpolation.

(B) The function, which provides a step closest to the bound of I with the lower energy
value, is chosen.

Thus, existing two-stage bracketing algorithms discard local behavior of the objective func-
tion.

3.1.2 The New Approach

In this section, we describe our consensus line search approach that utilizes the local behavior
of the objective function in order to accelerate the optimization process, see also Rurainski
et al. [154].

As stated before, the interval I is updated by replacing one bound with the minimizer
of the chosen interpolant. While other line search approaches discard old data, we propose
to store the knowledge about the behavior of the objective function at the replaced bound
of I, i.e. the bound itself (denoted by A1) and the energy value at this bound (denoted by
Getrl = O(Aetr1)). We call these data control data. Whenever I is updated, we replace the
control data with the values at the replaced bound. In summary, our approach stores two
additional floating point numbers in comparison to standard line search methods. We use
these data to decide which interpolating function might provide the most reliable result.

Calculation of )\

We use five different interpolation schemes that model the typical behavior of potential molec-
ular energy functions: (1) conic, (2) rational, (3) cubic, (4) quadratic based on two energy
values and one derivative, and (5) quadratic based on two derivatives and one energy value.
We denote the interpolants behind these schemes with tconic, Yrational; Peubic, Yquadratics and
Ysecant ,» T€Spectively. At each step, the different interpolation schemes need to be fitted to the
available data using the interpolation criteria. For rational and conic functions, however, this
fit is not unique but only one of the possible solutions has a minimum.

At any given step, some of the interpolants might violate certain consistency criteria.
If such a violation is detected, we filter out the corresponding interpolant. The filtering
procedure will be described in the following section.

The obvious approach for choosing the best of the remaining schemes would be to compare
the minimizer of all appropriate interpolants with the function values at the minimizing
positions. This, however, would result in additional energy evaluations. Instead, we first
choose the interpolant, say ¢, which best fits the control data, i.e.

) = arg r%in{\ws()\ctrl) — Petrl| : s appropriate}. (3.5)

where s € {conic, rational, cubic, quadratic, secant}, and the best candidate A for the next
update of I is then calculated via

A= argming(y)

assuming {/; represents best the local behavior of ¢ in the current region.



42 CHAPTER 3. OPTIMIZING MOLECULAR STRUCTURES

The consistency criteria mentioned above are required to guarantee two different proper-
ties. First, we need to ensure that the interpolant leads to extrapolation in the extrapolation
stage and vice versa. This is a standard requirement of line search approaches, see for exam-
ple Moré and Thuente [123]. In some cases this can be decided based on interpolant values
and derivatives. Second, in contrast to established line search approaches, we introduce an
additional criterion that guarantees the presence of inflection points if this can be inferred
from the function values. The full case differentiation used by our approach is given in Figure
3.4, where I := [Ajo, Aup)-

(@ (b) © (d (e
¢ ¢ ;9 ¢ ¢

N N N N .

Figure 3.4: The five different cases for interpolation/update procedures. Points: given values. Solid
lines: given tangents (derivatives). Dotted lines: assumed curve progression of ¢. (a) ¢(Aio) < ¢(Aup),
minimum bracketed, ¢'(Aio) - ¢'(Ayp) > 0, ¢ must have an inflection point, sensible interpolations:
conic, rational, cubic. (b) ¢(Ao) < ¢(Ayp), minimum bracketed, ¢'(Aio) - ¢’ (Aup) < 0, sensible inter-
polations: conic, rational, cubic, quadratic (two derivatives), quadratic (one derivative, two values).
(€) d(Mo) > d(Aup), @' (Ao) - ¢’ (Aup) < 0, minimum bracketed, sensible interpolations: conic, ra-
tional, cubic, quadratic (two derivatives). (d) ¢(Aio) > d(Aup), |¢ (Mo)| > [¢'(Aup)|, minimum not
necessarily bracketed, sensible interpolations: conic, rational, cubic, quadratic (two derivatives). (e)
d(Ao) > o(Aup), 1@ (Aio)| < |¢'(Ayp)|, minimum not necessarily bracketed, sensible interpolations:
conic, rational, cubic.

Even though the efficient filtering described in the last section removes the substantial
amount of inconsistencies the resulting A might still be inappropriate, e.g. it might fall out of
the interval of interest I. If such a violation is detected, the next best interpolant is tested
until either a suitable step can be identified or all interpolation schemes have failed.

In the latter case, we proceed by an “increasing extrapolation strategy” in the first stage,
ie. Ni=0 - Ayp, 0 := & - Oprev (the previous extrapolation factor), £ > 1. In the second stage
we proceed by a bisection step. This calculation of the next trial step A is given in Figure
3.5. It is worth noting that none of the safeguard cases have occurred in our molecular test
runs.

Our experiments indicate that control data should be updated in every step. This typically
results in control steps very close to the current interval I. Thus, the decision whether poly-
nomial or exponential behavior dominates ¢ is very reliable. At the start of the optimization,
where we do not have control data, we use the standard choice (B).

Update of [

Once we have calculated a new trial step that does not yet lead to convergence, we have to
update the current interval I. Some update schemes have been proposed in the literature, see,
e.g., Moré and Thuente [123] and Al-Baali and Fletcher [3]. We decided to use the update
rules of Moré and Thuente, as these rules guarantee that the interval always contains an
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v

acceptable point.!

!'Note that the original scheme uses relative steps, i.e. the bounds of I can be switched. This results in an
additional case differentiation when our next A is computed. Thus, we avoid relative steps.
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In the initial step, where A\,, = 0, we simply store the initial data. In the subsequent
steps, we have to distinguish five cases that are shown in Figure 3.4. The first three cases
in Figure 3.4 correspond to the standard update scheme of Moré and Thuente [123]. The
update scheme for these cases is shown in Figure 3.6. In the last two cases, we modify the

Update of I

O(r) > (M) >—
no

update control | | update control
data with data data with data
at i, ati,,

v v
replace data replace data
at A,, with new at A, with new
data at A data at A

return

Figure 3.6: The Consensus Approach: Update of I in interpolation stage, cases (a), (b), and (c) of
Figure 3.4. Replacing data means replace the position, the energy value and the derivative at that
position.

scheme of Moré and Thuente. Our observations on molecular energy functions have shown
that in these cases the deeper minimum is usually located to the right of I. Thus, we move
I instead of increasing it (see Figure 3.7). This replacement yielded improved convergence in
our experiments.

Use of 5

Whenever insufficient decrease was detected the auxiliary function 5 can be employed in
several ways. Moré and Thuente [123] use ¢ only in the first stage of the algorithm. They
argue that the interpolation schemes might work better on the unmodified function ¢ and
they prove that employing ¢ in the second stage is not required to achieve convergence.
Our experiments, however, revealed that whenever ¢ was used for bracketing using it for
interpolation as well improves convergence. Consequentely, we use ¢ whenever we detect
insufficient decrease independent of the current stage. Similarly, data from ¢ and ¢ should
not be mixed during the interpolation process.

3.1.3 Comparison to Other Line Search Methods

The consensus line search approach has been implemented in C++ using the C++ software
library BALL [101, 102, 76]. We used GNU g++, version 4.2.3, with -O2 optimization flag.
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Figure 3.7: The Consensus Approach: Update of I in extrapolation stage, cases (d) and (e) of Figure
3.4. Replacing data means replace position, the energy value and the derivative at that position.

All test runs were performed on an Intel Core2 processor (2.0 GHz, 2GByte RAM), Linux,
kernel 2.6.24.

In order to approve that our approach is highly efficient, we included all possible inter-
polants in all test runs, even though the functions for the non-smooth case are expected to be
useless for molecular potentials and rather expensive to evaluate (note that the least squares
solution requires a singular value decomposition). We compared the performance of our line
search method to two standard line search approaches: the algorithm of Moré and Thuente
[123] (MT line search) and the method of Wright and Nocedal [133] (WN line search).

The first algorithm has been widely used on many kinds of optimization problems and is
widely accepted as the one of the best line search algorithms currently known. It has been
used in chemistry, see for example Xie and Schlick [192] and Schlick and Fogelson [157, 158],
as well as on mathematical test problems, see for example Gilbert and Nocedal [57] and Liu
and Nocedal [110]. The original Fortran implementation of Moré and Thuente can be found
in MINPACK-2 [122, 9]. In order the combine Fortran code with BALL, we used the tool
f2¢ [48] to convert the Fortran code to plain C and adapted the resulting code to BALL’s
data structures. In order to ensure that we did not modify performance and accuracy of the
algorithm with this conversion, we compared the results of our implementation to the results
published by Moré and Thuente [123] on their test functions. As shown in Table 3.1 the
results are completely equivalent. We also compared the performance of our method and the
second line search approach on these test functions. Although our interpolations have not
been designed for these kinds of functions but rather for molecular functions, our method
performed better in 13 of 24 test runs and performed slightly worse in 6 runs compared
to the algorithm of Moré and Thuente [123]. We do not report run times here because all
test runs finished nearly instantly. Since for the method of Wright and Nocedal [133] no
suitable implementation seems to be available, we implemented the algorithm from scratch.
Our implementation closely follows the recommendations made in Wright and Nocedal [133],
in particular Chapter 3 of line searches. Table 3.1 shows that this algorithm is inferior to
our method and the method of Moré and Thuente [123] on these test functions. This is due
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d Thuente [123] with varying

parameters and initial step sizes. Note: these functions do not have a unique position satisfying the

é an
convergence criteria. As in the original publication we use these functions only as a benchmark for

3

Performance on artificial test problems taken from Mor

Table 3.1

finding fast one acceptable position, i.e. criteria (3.2) and (3.3) are fulfilled. Additionally, we verify

that our (f2c’d) reimplementation of the line search of Moré and Thuente indeed yields the same results
as their reference implementation. m = number of steps each process took to find an acceptable point,

¢ and

,

initial step size, ¢’ = derivative at the found position, MTIlit = results published in Mor

Thuente [123] (reference implementation, double precision, IPX Sparcstation), MT = results of our

o =

(f2c’d) reimplementation of the line search of Moré and Thuente, WN = line search of Wright and

(proposed) consensus line search, x = not able to find a suitable position within 20

iterations. Bold letters: CLS is superior to MT and WN.

Nocedal, CLS
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to their highly non-polynomial numerical behavior combined with the start positions: The
strictly polynomial interpolation and the update strategy tends to under/overestimate the
steps. This, however, does not hold in general for molecular potential energy functions.

3.1.4 Results

As we describe in Section 2.3, the line search is only a part of a larger optimization package.
Hence, to test the performance of our method we combined our line search approach with the
search direction determining methods presented in Section 2.3.2.3:

(a) L-BFGS method [132] based on the Strang recurrences with two different parameter
settings (number m of stored vector pairs).

(b) Improved version of L-BFGS proposed by Al-Baali [2] with two different parameter
settings, where we used only the newest vector pair as update for the initial estimation?.

(c) Shifted limited-memory variable metric method of Vléek and Luksan [180] in the rec-
ommended variant 2 with the ratio of shift parameters as correction parameter.?

(d) Shanno derived method proposed in Watowitch et al. [187].

The combination of different parameter settings and optimization algorithms leads to total
of six different optimization schemes that have been combined with the three considered line
search schemes, our consensus line search as well as the two alternative approaches.

All minimization algorithms used the standard convergence criteria, i.e. convergence of a
minimization run was assumed if either

RMS(VE(x)) < €

or
|E(xi) — E(xi-1)|
max{l, |E(X,L)|} < V emachlnev

where we set € = 1072, €machine is the double precision machine epsilon (on our machine
V/€machine ~ 1.49 - 10_8)7 and RMS denotes the root mean square. All line searches used the
standard parameters that were shown to be optimal in the case of the L-BFGS method by
Baysal, Meirovitch, and Navon [16], i.e. « = 107* in (2.3) and 8 = 0.25 in (2.4).

The tests that have been carried out simulated two different application scenarios: The
optimization of experimentally derived molecular structures and the reconstruction of strongly
perturbed small molecules.

?Baysal, Meirovitch, and Navon [16] reported that m is typically 3 < m < 7, where taking m > 7 does
not improve the performance. Thus, we tested both L-BFGS methods with the standard choice m = 5 and a
choice out of this range, we tested m = 8.

3To the best of our knowledge, these methods have not yet been used on molecular potential energy
functions. We set the number of columns of the iteratively updated matrix U to 10.
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3.1.4.1 Optimization of Experimentally Derived Structures

The first scenario has been designed to reduce the number of test cases where different algo-
rithms converge into different minima, the so-called multiple minima problem of molecular
potential energy functions. Since the total energy of a molecule depends on atom-atom in-
teractions, the number of possible low-energy configurations can grow exponentially with the
number of atoms and has been estimated by Hoare [78] to be on the order of O(exp(n?))
for an n-atom molecule. Thus, we restricted our test runs to molecules with rather small
number of atoms in order to obtain comparable results. We searched the Protein Data Base
(PDB) [18] for NMR derived structures with at most about 300 atoms that include all hy-
drogen positions. As the objective function, we chose the AMBER force field [189] and the
Merck Molecular Force Field (MMFF94) [63, 64, 65, 66, 67]. To avoid artificial minima, we
deactivated all cutoffs for nonbonded interactions and used the distance dependent dielectric
constant. All other options were set to their default values.

Finally, we performed test runs with: (1) Chignolin[80] (PDB-ID: luao, 138 atoms), (2) so-
lution structure of HP7[8] (PDB-ID: 2evq, 197 atoms), (3) structure of Methionine-Enkephalin
in fast tumbling DMPC/DHPC bicelles[113] (PDB-ID: 1plw, 75 atoms), (4) solution structure
of CM15 in DPC micelles[145] (PDB-ID: 2jmy, 282 atoms), and (5) Trp-Cage Miniprotein
Construct TC5b[127] (PDB-ID: 112y, 304 atoms). Off the multiple models contained in the
PDB files, we always chose the first one.

Table 3.2 presents the results of our test runs, i.e. the energy value (f) at the found
minimum in kJ/mol, the number of function/gradient evaluations (eval), and the total time
for each test run in seconds. Considering the total number of evaluations, our line search
algorithm shows the best performance in 53 out of 60 test cases. Unfortunately, not all
of these cases are comparable due to the multiple minima problem of molecular potential
energy functions. To cope with this problem, we consider the results of two minimizers to be
comparable if the all-atoms root mean square deviation of the respective structures is below
a rather restrictive value of 0.5 A. Otherwise, we assume that the minimizers converged to
different minima. If two or more results in a box of Table 3.2 are not comparable, we present
the values in this box in small italic letters. In summary, Table 3.2 contains 52 comparable
test cases.

Table 3.2 shows that our consensus line search reduced the total number of function/-
gradient evaluations down to 47.7% (down to 85% on average). Our algorithm led to the
lowest number of evaluations in 46 of 52 comparable test examples. Note that the total time
obviously correlates with the number of function/gradient evaluations and, hence, in these
cases our algorithm also led to the lowest total time. The improvements in total time of our
method are not affected by our decision to include all possible interpolation schemes. It is
interesting to note that the Shanno derived method [187] (CG deriv.) showed competitive
performance using the proposed line search.

The method of Wright and Nocedal [133] performed better than the approach of Moré
and Thuente [123] in some cases while not being competitive on the artificial test problems in
Table 3.1 as mentioned before. Considering the start points, the test examples are constructed
with the aim that all polynomial interpolation schemes significantly under- or overestimate
the real function in the first steps. In the case of our molecular test runs, the line search
algorithms are provided with well scaled initial steps by the search direction determining
algorithm and this problem vanishes.
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CLS is superior to MT and WN.
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3.1.4.2 Reconstruction of Strongly Perturbed Molecules

For the reconstruction of strongly perturbed molecules, the second test scenario, we chose the
test suite for the Merck Molecular Force Field (MMFF94) [63, 64, 65, 66, 67]. We randomized
these structures by adding a random displacement up to 2 A to every atom and optimized
them using the Merck Molecular Force Field. We used electrostatics with constant dielectric
since the 760 molecules of this test suite have originally been optimized (by a non-local monte
carlo like approach using this setting). Since we employed a pure local minimization method,
we cannot expect to reconstruct all molecules due to the large number of local minima.
Nevertheless, all algorithms could reconstruct 542 molecules with deviation less than 0.5
A. Moreover, for 654 test cases all algorithms converged to the same local minimum and,
hence, these cases can be used for evaluating performance. The results are shown in Table
3.3, which presents the total number of function/gradient evaluations and the total time in
seconds. Again, we used the six standard optimization techniques combined with our line
search, the line search of More and Thuente, and the method of Write and Nocedal. In all
cases our line search produced the lowest run times and the smallest number of function

evaluations.
MT WN CLS
eval time eval time eval time
L-BFGS, m =5 193,835 69.66 209,524 72.83 186,539 65.20
L-BFGS, m =8 184,148 66.40 195,726 68.99 179,038 63.68

L-BFGS m =5, imp. 186,925 66.37 200,564 70.58 183,492 64.44
L-BFGS m =8, imp. 178,506  63.61 188,181 66.92 174,680 60.91
SLVMM VAR2 259,687  94.98 302,600 108.17 256,513 92.05
CG deriv. 364,323 131.88 429,100 147.96 273,418 94.52

Table 3.3: Performance of structure reconstruction runs. eval = total number of function and
gradient evaluations to optimize all 654 comparable test examples, time = total time in seconds for
all reconstructions, MT = line search of Moré and Thuente, WN = line search of Wright and Nocedal,
CLS = (proposed) consensus line search. Bold letters: CLS is superior to MT and WN.

3.1.5 Conclusion

Our consensus approach allows the line search procedure to adapt locally to qualitatively dif-
ferent kinds of behavior of the objective function. This is particularly useful in computational
chemistry where the molecular potential energies exhibit both polynomial and rational /expo-
nential behavior. To guarantee high efficiency of the method the choice of the most reliable
interpolant is made without additional function evaluations, thus, incurring only negligible
computational overhead. We have tested our method in different scenarios: established, syn-
thetic test problems from the line search literature, the optimization of experimentally derived
structures, and the reconstruction of strongly perturbed molecules. Our test runs have shown
that the consensus approach can significantly reduce the number of function/gradient evalu-
ations and consequently the total run time. While the method of Moré and Thuente [123],
in particular, is very powerful and lives up to its good reputation, our consensus approach
performs even better in most cases. In addition, in the few cases where it did not yield the
lowest run time the algorithm never performed significantly worse than the fastest choice.
Replacing a standard line search method with the new algorithm reduced the total number
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of function/gradient evaluations down to 47.7% (down to 85% on average). Our results, thus,
show that the proposed algorithm is a promising alternative to standard line search algorithms.

In the next section, we incorporate our line search method into our novel approach for
gradient-based local optimization of flexible ligands and, finally, in the subsequent sections,
into our docking approach for flexible ligand-receptor docking.

3.2 Gradient-Based Local Optimization of Flexible Ligands

Ligand-receptor docking is a key task in the drug development process. Although there exist
many different algorithms and programs, the problem is far from being solved. In general, the
complexity of the task rises with increasing flexibility of the molecules [103]. The aim is to
find an energetically favorable conformation of ligand and receptor in complex. The binding
free energy is approximated by a force-field or knowledge based potential energy function.
Hence, the task of finding the best conformation is an optimization problem: Find the best
position on the energy landscape.

The conformational sampling necessitates the knowledge of the ligand’s and receptor’s
atoms and some representation thereof. The obvious way to represent the spatial arrange-
ment of a ligand molecule while sampling the conformational space is using the Cartesian
coordinates of all its atoms as well as a set of bonds that defines their interconnectivity. The
drawback of this method is the high number of degrees of freedom (DOFSs), which frustrates
many methods in molecular modeling when applied to larger structures, e.g. proteins.

Alternatively, a molecule may be represented by its translation, orientation, and a set
of torsional angles, bond angles, and bond lengths resulting in a similar number of DOFs.
This representation has the advantage that nonrelevant degrees of freedom can be frozen.
For several applications in molecular modeling, like docking, it is reasonable to constrain
molecular flexibility by fixing bond angles and bond lengths and restricting torsional flexibility
to rotation around single bonds that connect rigid entities, like ring structures [15, 47, 124].
In this section, we use this compact representation where the number of degrees of freedom is
significantly reduced while it is possible to rapidly convert from the compact to the Cartesian
representation. However, the efficient local optimization techniques described in Section 2.3
require the computation of derivatives. Furthermore, they are sensitive to singularities, like a
loss of DOF's, or to nonminimal parametrizations. Therefore, the main challenge with respect
to the compact molecular representation is to find an orientational parametrization that is
well suited for gradient optimization.

In Cartesian space, the orientation of a body can be represented in different ways. Using
the well-known Euler angle representation resulting in a straightforward calculation of the
gradient has the disadvantage of the so called gimbal lock phenomenon [188], that is the loss
of DOFs. Generally speaking, this means that in the course of an optimization, a molecule can
reach positions in which not all possible further alterations of its orientation are achievable
by variations of the three Euler angles. Thus, the unit quaternion, which avoids gimbal lock
singularities, has become a quasi standard for orientations [95]. However, because the unit
quaternion space is only a subset of R* with three DOFs, direct optimization of the four
interdependent unit quaternion values is awkward [159].

In this section, we present a novel method [54] for energy minimization of molecular
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complexes with special attention to gradient-based optimization of the molecules orientation.
We use the exponential mapping [62], which transforms a vector in R? to the unit quaternion
space. Although this representation is not free of singularities, they can be avoided with only
negligible additional computational cost allowing for the application of most gradient-based
local optimization algorithms. We demonstrate that an L-BFGS approach is, in our modified
version, optimally suited and highly efficient for the given task. Furthermore, we show that
negligible straightforward modifications of a continuous but not differentiable function are
sufficient to apply our optimization algorithm successfully. To compare the gradient-based
optimization of the exponential map representation to the method of Solis and Wets [164]
that operates directly on the four quaternion values, we minimized the energy of seven ligands
with increasing complexity in the presence of their corresponding receptors. As an example
for energy functions without a continuous derivative, we used the piecewise linear Gehlhaar
scoring function [56], which was repeatedly employed for molecular docking [179, 81, 170]. Our
novel method shows better performance in all test cases. Especially the energetically more
favorable conformations — found already after a few iterations — render the new approach a
valuable tool for molecular optimization.

3.2.1 Molecular Representation

The conformation and position of a molecule in space is uniquely defined by the Cartesian
coordinates of its atoms. Often the complete molecular flexibility is abandoned in favor of
a reduced set of parameters that is required for representing a molecule. Like many other
applications [124, 88, 173] we use translation, orientation, and a set of flexible torsional
angles that connect rigid compounds. Thus, we need three real values for the translation
(tz,ty,t-), one real value for each flexible torsional angle (¢1,...,¢y), and a unit quaternion
composed of four real values (g1, q2, 3, q4) for the molecules orientation. A parameter vector
x = (tg, ty, t2,q1,92,q3,q4, 1, ..., ¢n) is converted into a molecular conformation by a series
of transformations. In the first step, all flexible torsional angles are processed. Because in
our case such a rotatable bond is guaranteed not to be part of a ring, it divides the molecule
in two substructures. The part containing fewer atoms is rotated while the other one remains
stationary, see Figure 3.8. This procedure is applied to all flexible torsional angles. In the
next step, the whole molecule is rotated. To this end, the origin is defined by the average
position of all atoms that were not rotated in the first step thus defining a form of molecular
centroid. In other implementations the rotation origin is intuitively placed onto the geometric
center of the ligand, but this method complicates the computation of the gradient. In the
last step, the molecule is moved according to the three translational parameters.

CR, C“R,

2RSS

(:(1)1{3 C(3)R2 (:(5)113

Figure 3.8: Example for rotatable bonds and molecular centroid with R being arbitrary heavy atoms.
If bond CM - C®?) is rotated, only atoms R connected to C") are moved. If bond C - C®) is rotated,
CW and atoms R connected to CY) and C?) are moved. Due to symmetry, the same holds true for
the other two bonds with other indices. This means C(?), C(®) and C™* are never moved and, hence,
define the molecular centroid.
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3.2.2 Gehlhaar Scoring Function

A scoring function in ligand-receptor docking is expected to meet multiple requirements. In
the first place the scoring function should allow to differentiate native binding poses from
decoy structures. Secondly, the score should approximate the binding free energy. Further-
more, it ought to be efficiently computable. We chose the Gehlhaar function [56] mainly for
the following reasons: ease of implementation, sufficient correlation of the root mean square
deviation (RMSD), less frustrated energy landscape compared to other scoring functions, and
finally as a test case for an inherently not continuously differentiable function. It must be
noted that the Gehlhaar score cannot be used to estimate the binding free energy. The for-
mula for the score E is composed of one bonded term for the torsional potential Fio, and one
nonbonded term Fp,;; for a kind of van der Waals interaction

E= Etor + Epair-

For the computation of Epair, the Gehlhaar scoring function distinguishes only four atom
types: nonpolar, hydrogen-bond-donor, hydrogen-bond-acceptor, and both-acceptor-and--
donor. The interaction between any of these atom types results in two types of non-bonded
interaction, namely steric and hydrogen bond contributions, see Table 3.4.

Atom type Donor Acceptor Both Nonpolar

Donor Steric HB HB Steric
Acceptor HB Steric HB Steric
Both HB HB HB Steric
Nonpolar Steric Steric Steric Steric

Table 3.4: Atom Types for Nonbonded Interactions

A B C D E F
Steric 34 A 36A 45A 55A -04 200
HB 23A 26A 31A 34A 20 200

Table 3.5: Parameter Set for Nonbonded Steric and Hydrogen-Bonding Potentials.

Both interaction types are calculated by an interval piecewise linear function f of the pair-
wise atom distance d;; of atoms ¢ and j, with each type having different function parameters,
see Table 3.5 and Figure 3.9,

Epair = Z f(dlj)
i#]
This function is obviously not continuously differentiable. Thus, we added a quadratic tran-
sition function in an interval of 0.02 A length at each junction of the original linear segments,
see Figure 2. These functions are uniquely defined by their interpolation conditions.

The term for the torsional energy FEio is similar to that of other scoring functions, but

restricted to sp® — sp? and sp? — sp® bonds:

Etor =A- (1 + cos(n : ¢ - (Z)O))
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Energy
Energy

v

0 t t g T ) T
\_/ d A d
E+t N

Figure 3.9: The left picture shows the original piecewise linear pairwise potential function used
for nonbonded interactions. The right picture illustrates the modifications (solid line) applied to the
original function (dashed line) to produce a continuously differentiable function.

with A = 3.0, n = 3, ¢ = 7 for sp> — sp® bonds, and A = 1.5, n = 6, ¢g = 0 for sp? —
sp? bonds. The original Gehlhaar function provides a separate energy term for the internal
nonbonded interaction of the ligand by assigning a penalty of 10* if two ligand atoms that do
not share a bond come closer than 2.35 A. This kind of energy calculation is entirely unsuited
for the computation of a gradient, because it is highly noncontinuous. To circumvent this
problem, we use the same term for internal ligand-ligand interactions as for ligand-receptor
interactions.

3.2.3 Gradient Computation and Exponential Mapping

The application of a gradient-based optimizer requires the derivatives of the underlying energy
or scoring function E with respect to the parameter vector x. The Gehlhaar function [56]
consists of a pairwise term Ep,i, and a torsional term Fi,,. Thus, the gradient g is given by

L aiE . aEpair + aE‘tor
8= 5x ~ ox ox

The gradient of Fio, can be easily computed and affects only torsional parameters ¢1, ..., ¢,

8E‘tor a
=—(A-(1+cos(n-¢— =-n-A-sin(n-¢— ¢g).

St = 5 (A (Lt cos(n -6 — ) (n- 6~ o)
To calculate the derivatives for the pairwise interactions Ep,ir, we first compute the gradient
g; for each atom i. This is the sum of all derivatives of pairwise interactions that an atom
participates in with v; being the position vector of atom 7 and v; being the position vector
of the interacting atom j

Mapping the gradient g; of an atom ¢ with position v; to an arbitrary parameter r requires
the derivative of v; with respect to r. dv; represents the tangential movement of atom 7 when
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r varies by an infinitesimal amount and can now be used to calculate the derivative of Epai

with respect to r
8Epair o 8VZ' T
= > ( 8T> gi. (3.6)

i

In the following, we will use Equation (3.6) to calculate the derivatives of E with respect to
specific parameters.

3.2.3.1 Translational Gradient

Calculating 0v; with respect to a translational parameter ¢ is straight forward because any
change in t translates v; linearly. Thus, for any translational parameter ¢, Equation (3.6) can
be reduced to

aE’pair
= (1,0,0)-> g
atx ( g ) - g’La

aE‘pauir
= (0,1,0)-> g
8ty ( s Ly ) . i,

8EpaLir
= (0,0,1)- i
ot (0,0,1) Ez g

3.2.3.2 Torsional Gradient

The rapid computation of the torsional gradient has been the subject of numerous scientific
studies [1]. If atoms k and j are connected by a rotatable bond and atom ¢ is moved by rotating
this bond, see Figure (3.10a), the derivative of v; with respect to a torsional parameter ¢
can be calculated by

~ = (v — V) X (vi = vy). (3.7)

Inserting (3.7) in (3.6) yields

8E air
Wik N z; (vie = vj) x (vi = v;)) g

3.2.3.3 Orientational Gradient

The most challenging part is the computation of the orientational gradient, because, up to
now, there is no minimal representation that does not inherit some kind of singularity, e.g.
loss of DOFs. Representing the orientation (three DOFs) by a unit quaternion does not
include such a singularity, but the independent optimization of its four values is undesirable
[159]. This is caused by the unit quaternions representing only a subset of the entire four-
dimensional quaternion space. To alleviate this problem, we use exponential mapping [62] to
map a point p = (p1, p2,p3) from parameter space R3 to ¢ in the unit quaternion space S3:

(0,0,0,1) if p=1(0,0,0)

q=(q1,92,93,q4) = { [ . .
{(sm(;upu)'g,cos(;||p||)) otherwise
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Figure 3.10: Mapping of nonbonded gradient to (a) torsional and (b) orientational parameter. Please

note that in Figure (b), g;’? is first calculated using v, and then translated to v;.
J

This enables us to compute the derivative T; of the corresponding rotation matrix R,

_OR

T, = —
J 517]"

for each of the three orientation parameters p; [62] that can now be used to calculate the

gradient 657;‘"‘” For a detailed description of the computation of T;, please refer to the
J

publication by Grassia [62]. For each evaluation of the objective function, the orientational

parameter p is mapped to a unit quaternion ¢, which is then converted to a rotation matrix

R that defines the molecular orientation

G+é - -4 2(es—an) 2(q1q3 + q2q4)
R=| 2(qu+ep) E-d+d-4 2(pu-—ae)
2(q2q4 — q143) 20quqe +q3q4) G — @B — G +aq;

Let v} be the position of an arbitrary atom 7 and v; the position of the atom after the rotation
by R, see Figure 3.10b),

v; = Rv,.
Then we have 5
V; ’
=TV,
6]9]' Vi
Again inserting into Equation (3.6) yields
OFpai .
apw => (T;v) g, j=1,2,3.
Dj

3

As mentioned earlier, no method for a minimal parametrization of the orientation is free
of singularities. This also holds for exponential mapping, where singularities arise if the
length of the orientational parameter vector p approaches 27. All parameter vectors p with
Ilp|| = n- 27, n € Zs( are mapped to the quaternion ¢ = (0,0,0,—1). For these parameter

vectors, all gradients g;; point into the same direction, reducing the number of DOFs to

one. Fortunately, all possible orientations can be denoted by parameters within a shell of 7
around the origin in R3. Thus, we only need to take care that the optimization algorithm
stays within this shell.
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3.2.4 Gradient-Based Local Optimization

In Section 2.3.2, we presented current up-to-date local optimization methods. In this study,
we chose the limited memory variant of the BFGS quasi-Newton method (L-BFGS) based on
the Strang recurrences described in Section 2.3.2.3. This line search based approach can be
easily extended to fulfill our rotational condition. In fact, our line search in Section 3.1 is a
two stage bracketing approach and, thus, ideally suited to introduce an upper bound on the
step size. If the bracketing interval is newly determined, the update procedure just has to
ensure to stay within the safe region. Let eri be the orientational parameters of the current
position x; on F and diri the corresponding orientational parameters of the current search
direction dj, then the approximative line search problem

Ak := arg min F(xy + Ady)
A>0

is restricted to 3
I + Medg < S

This ensures that we always stay in a region far away from the singularity 27. After the line
search has finished, in a usual quasi-Newton method the current iteration would terminate
yielding Xj := xp + A\pdy as the next iterate x;11. In our case, however, we have to avoid
the orientational singularity. Our modified line search ensures that we are in a region where
the orientational derivatives are usable but possibly tending to the singularity. Thus, we

reparameterize the orientational part eri of x, if

o =

27 o
(1 - r&oriu) X
k

Because this is an equivalent orientation [62] (but with better derivatives), this replacement
is a reparametrization from a geometric point of view. From a mathematical point of view,
this is a well-defined jump on E. In theory, the Euler angle representation could also be
dynamically reparameterized to avoid the gimbal lock phenomenon. However, in our case the
reparametrization means only to scale the orientational parameters, whereas the similar oper-
ation on Euler angles implies a sequence of inverse trigonometric functions [163] to determine
the new parameters. Finally, the current iteration finishes by returning X; as the next iterate

via replacing &zri by*

X

3.2.5 Solis and Wets Optimization Method

We compared our method to the approach of Solis and Wets [164], which is widely used for
molecular docking purposes. This local search method is a stochastic heuristic for continuous
parameter spaces. Its primal purpose is the optimization of functions that do not provide gra-
dient information, e.g. the AUTODOCK scoring function [124]. For our comparison, we closely
followed the version of AUTODOCK 3.1 with the only alterations being due to adjustments to
the BALL [101, 102, 76] environment. The basic algorithm starts with a random search step

4We choose 7 because the derivatives in this region are excellent, while all possible orientations are still
representable.
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and generally follows this direction with random movements as long as the objective function
keeps improving. Continued improvements lead to an expansion of the random search steps,
whereas continued failing narrows the search. The algorithm iterates until either a maximum
number of function evaluations is reached or convergence is established by the random step
width falling below a certain threshold value.

3.2.6 Comparison of Optimization Methods

The entire code that was used in this work for the modeling of molecules, scoring functions,
etc. was generated using the BALL library [101, 102, 76].

To test our method on different molecules with varying complexity, we selected seven
different ligand-receptor complexes from the Protein Data Base (PDB) [18]. The set of ligands
consisted of simple as well as of more complex molecules, see Table 3.6.

Our method  Solis and Wets
PDBID Ref. nrb/nha Einitial Efinal Nev Efinal Nev

1FDS 23] 0/20 2325 504 9.80 -12.35 39.41
1IFMO  [126] 2/19 2957 -56.62 21.89  0.46 46.63
2MCP  [136]  3/11 199.2 -30.8 16.77 -11.76 29.06
IDWD  [14] 8/37 71413 -68.86 34.06 8848 48.40
IHPV  [99] 9/35  627.3 -75.13 3597 107.57 69.86
2R04 [13]  10/25 770.66 -19.8 62.50 230.70 51.37
IHTF  [87]  12/41 693.27 -65.93 38.89 117.36 58.17

Table 3.6: Comparison of our method to Solis and Wets in terms of average initial Fi,itia and final
score Fgna and average number of function evaluations ne,; the number of rotatable bonds = nyp;
number of heavy atoms = ny,.

To produce random starting positions, we uniformly randomized each ligands orientation
and conformation as well as its translation within a cube of edge length 6 A focused on the
geometric center of the ligands reported binding site. Then, we used both methods to optimize
each prepared ligand (start conformation) 500 times. We recorded for each minimization the
best score and the number of function evaluations required to attain a score of 1.0 worse
than the best score. This threshold value was selected to account for the inherently different
stopping criteria of both methods. For the method of Solis and Wets we partially retained
the stopping criterion of the autodock implementation, that is the falling below a defined step
width while we dismissed the maximum number of iterations. This means that, other than in
AUTODOCK, the approach of Solis and Wets is always allowed to explore the scoring function
to the local minimum. Our method used the following standard stopping criterion [192], i.e.,
convergence is assumed if in iteration k

lg(er)ll < gL+ [E(xk)])

holds® for Eg = 107%. However, the compact representation of the molecules has the side

5Note that this criterion is numerically motivated and considers typical terms of molecular potential energy
functions. It takes the combined calculation of function value and gradient into account. If E evaluates to a
value different from zero, it is very likely that numerical instabilities prevent gradient values close to zero even
if we are close to a local optimum.



3.2. GRADIENT-BASED LOCAL OPTIMIZATION OF FLEXIBLE LIGANDS 59

effect, especially with increasing flexibility, that small changes of some parameters cause
large alterations of the energy value. This effect is still intensified for the gradient and might
lead to many iterations around the position of interest without substantially improving the
molecular structure. Hence, we used a second stopping criterion, derived from the idea behind
the criterion of the method of Solis and Wets combined with an energy criterion that cannot
be satisfied if we are too far away from the minimum: Convergence is also assumed if the
steps fall below a relative step size and the energy values do not significantly alter any more,
ie. if
(1 + [|xx])

ka — Xk—l” < \/€E1700

and

|E(xk) — E(xk-1)| < ep(l+|E(xx)])

hold for e = 1078.

3.2.7 Results

Table 3.6 shows the average Gehlhaar-score Fg,a of 500 minimization runs together with the
average number of evaluations ne, required to reach a function value at most 1.0 worse than
the final score. The number of rotatable bonds corresponds roughly to the complexity of the
optimization problem while the average energy before optimization indicates that generally
the ligand has multiple van der Waals clashes at the random initial position. The results
show that, on average, the score of our method is well below 0 for all ligands. This means
that it generally resolves all van der Waals clashes and moves the molecule in a way that
it is able to form multiple interactions. Even for more complex ligands, representing more
difficult optimization problems, the average score does not deteriorate and seems to be roughly
corresponding to the number of heavy atoms. As expected, more complex ligands require more
function evaluations to reach the local minimum. In contrast to that, the method of Solis
and Wets is able to resolve van der Waals clashes only for simple ligands with both average
score and average number of function evaluations being considerably worse compared to our
method. As ligands get more complex, the approach of Solis and Wets fails to resolve van
der Waals clashes and the scores decline considerably.

There seems to be one outlier, 2R04, for which the results are worse then expected. This
is caused by the particular morphology of the binding pocket, which forms a longish tube
inside the receptor and is located relatively near to the receptor surface. Thus, the likewise
elongated ligand can be trapped with one part being situated in the binding pocket and the
other outside the receptor while the center is penetrating the protein producing multiple van
der Waals clashes. Figure 3.11 illustrates the performance difference of both methods and
the non-deterministic character of the approach of Solis and Wets for IDWD. In this case, all
minimization runs started from the same initial position. Our method always converged to a
score of -108.49 (solid line) while the best result out of 100 Solis and Wets minimizations was
-69.50 (dashed line). On average, the approach of Solis and Wets reached a value of 76.74
(the dotted line shows a typical minimization). The method of Solis and Wets required 149
function evaluations to produce its best results, a value that was reached by our method with
only 17 function evaluations.



60 CHAPTER 3. OPTIMIZING MOLECULAR STRUCTURES

700
600
500
400 H

300

score

200

100

-100

_200 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

objective function evaluations

v

Figure 3.11: Comparison of one deterministic minimization of our method (red solid line) to two
different minimizations of Solis and Wets from the same initial position (PDB ID 1DWD). The green
dashed line is the best result of the approach of Solis and Wets out of 100 minimizations.

3.2.8 Conclusion

When performing docking calculations, the atom positions of the ligand are often described
using a compact representation, which allows for reducing the DOFs, e.g., by fixing bond
lengths. In some cases, the energy or scoring function is continuous and differentiable, which
is a prerequisite for the usage of gradient-based algorithms for structure optimization. Despite
the advantages of these algorithms, stochastic methods like the approach by Solis and Wets
are employed, because the computation of the orientational gradient is difficult. Here, we
demonstrated how to solve this issue by using the exponential map to transform a vector in
R3 to the unit quaternion space and by avoiding the arising singularities. Thus, gradient-
based optimization of molecules represented by translation, orientation, and torsional angles
is possible employing any continuously differentiable scoring function.

However, our approach is not confined to continuously differentiable objective functions.
For energy or scoring functions, which are continuous and not differentiable at a finite number
of points, the gradient may be computed by introducing a patch function at the junction of two
adjacent continuously differentiable segments of the original objective function. In general, a
cubic patch function should meet the requirements to adequately interpolate between the two
segments. An example for such a piecewise linear potential function is the Gehlhaar scoring
function, which was repeatedly employed in protein-ligand docking studies [56, 179, 81, 170].
For this function, a quadratic patch function was sufficient for a smooth transition between
adjacent linear portions.

Our approach outperformed the widely employed stochastic Solis and Wets algorithm even
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for relatively simple optimization problems with few DOFs. The difference in performance
became even more substantial with increasing complexity of the optimization problem. For
molecules with many rotatable bonds, the approach of Solis and Wets is not able to determine
search directions, which are as promising as the directions calculated by the gradient-based
approach. The repeated failing to improve the score leads to permanently decreasing step sizes
and finally to the abortion of the optimization possibly without having located a minimum
in the energy hypersurface.

In contrast, the internal search direction calculation of our approach is very efficient due to
the use of the exponential map and the adoption of the L-BFGS method. The only noticeable
additional costs concern the calculation of the gradient of the scoring function. However, in
the case of our tested function, the evaluation of the energy value can be extended to compute
the gradient efficiently. These additional operations appear to be negligible in comparison to
the high number of exploratory energy evaluations of the approach of Solis and Wets. Finally,
because of the use of derivative information the proposed method reaches usually significantly
deeper energy values in fewer steps than the Solis and Wets algorithm.

3.3 Extension to Ligand-Receptor Docking

In the previous section, we presented details of our method for the local optimization of
flexible ligands using our compact representation. Here, we extend this part to a full docking
approach for ligand-receptor docking where the ligand is fully flexible with respect to torsional
angles and the receptor is still kept rigid. We integrate our approach into a Lamarckian genetic
algorithm and combine this method with a multi-deme genetic algorithm [55]. Using the Astex
diverse set, we show that our approach leads to substantially higher docking precision and
shorter running times in comparison to genetic algorithms using conventional non-gradient
local optimization. This difference in performance rises with increasing complexity (higher
flexibility) of the ligands. In summary, the results indicate that our method is superior to
other Lamarckian genetic algorithms, which employ the commonly used stochastic algorithm
of Solis and Wets for local optimization.

3.3.1 Implemented Search Heuristics

In this section, we describe briefly our approach and the algorithms and techniques to which
we compared our new method and give the parameter settings we tested. Details can be
found in Fuhrmann [53].

A genetic algorithm [79] (GA) closely follows the principles of Darwinian evolutionary
theory, in particular, natural selection and reproduction. It applies a set of genetic operations
to a population of solution candidates (individuals) of an optimization problem, iteratively
producing better results. The algorithm starts by creating an initial random population of
fixed size. Afterwards, the objective function is evaluated for each individual to calculate its
fitness score. Individuals with the worst scores are discarded, while the remaining solution
candidates may create progeny. Mutations modify existing individuals, new individuals are
produced by mating. However, mutations are not applied to several top ranked individuals,
which is called elitism. When the population has grown again to the fixed size, this procedure
of discarding, creating progeny, mutation, and mating is iterated until a convergence criterion
is met. Genetic algorithms are widely used for ligand-receptor docking [135, 90, 28, 168].
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Variants of the genetic algorithm are used in well-known docking suites like AUTODOCK [124,
82] and FITTED [31].

Two general modifications are known to influence the behavior of a genetic algorithm. In
the first variant, the so called Lamarckian genetic algorithm (LGA) [72], a dedicated local
search procedure is applied to improve the fitness of existing individuals. This variant has
been popularized for ligand-receptor docking by AUTODOCK [124]. In the second variant, the
so called multi-deme genetic algorithm (MDGA) [26], two or more populations evolve inde-
pendently, while there is a limited migration between them, increasing the genetic diversity
of a population and in turn facilitating breaking out of local minima. This approach has been
employed successfully for the superimposition of flexible molecules [89] and flexible ligand-
receptor docking in the program GoLD [88]. Finally, combining both modifications leads to
the multi-deme Lamarckian genetic algorithm (MDLGA), which forms the basis of our hybrid
method.

3.3.1.1 The Lamarckian Genetic Algorithm

In order to compare our novel approach to a genetic algorithm similar to the one used in
the well-known docking suite AUTODOCK [124, 82], we implemented a Lamarckian genetic
algorithm (LGA) employing the local search method of Solis and Wets [164], see the previous
section, to which we compared our local search procedure. Our implementation closely follows
the version of AUTODOCK 3.1, making adaptations where necessary due to using the C++
environment of BALL [101, 102, 76].

In each iteration the fitness of all individuals was assessed and only the top 50% of the
individuals were allowed to create progeny to replenish the genetic pool, while the other 50%
of the population were discarded. Selection of the survivors for mating was based on the
rank-order of the individuals. The probability for random mutation was the same for all
individuals except for the fittest individual, which was protected from mutation. Finally, a
randomly chosen individual, which was not subject to local optimization in previous iterations,
was optimized using the method of Solis and Wets.

3.3.1.2 The Multi-Deme Lamarckian Genetic Algorithm

To ensure that our approach is not only superior because we use a multi-deme genetic al-
gorithm variant in contrast to the above mentioned standard variant, we also expanded the
ordinary LGA to a multi-deme Lamarckian genetic algorithm (MDLGA) using the same local
search method of Solis and Wets [164]. As for the ordinary LGA, we adapted the population
size for best results. The MDLGA uses five island populations, which evolve similar to the
single populations in the LGA. In addition, starting after 20 iterations we allow for migration
to occur every 4 iterations. For the migration operations, the populations are rank-ordered
according to the fitness of their best individuals. Migration is allowed only if the least fittest
population has converged, that is if the difference between the scores of the fittest and the
least fittest individuals is below a threshold value of 0.1. Migration is then performed by
replacing the least fittest individual with the information of the fittest individual from the
fittest population.
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3.3.1.3 The New Hybrid Method

Our new hybrid method follows the tradition of evolutionary algorithms for molecular docking
purposes. It consists of a MDLGA and our numerical gradient-based local optimization
approach, which is called by the MDLGA for (re)optimization of the calculated conformations.
Figure 3.12 shows the basic schedule of our hybrid search heuristic.

random
initial
populations

R —

local
optimization

B S—

calculate
fitness
score

stop replenish
criterion selection populations mutation

by mating

Figure 3.12: Flowchart of our hybrid search heuristic. The algorithm is based on a multi-deme
Lamarckian genetic algorithm and employs our novel gradient-based optimization method for the
local optimization of individuals.

3.3.2 Comparison of Search Heuristics

To compare the performance of our new hybrid method to the non-gradient-based search
heuristics, we chose the Astex [73] diverse set for flexible ligand-receptor docking. This
test set consists of 85 high resolution structures of protein-ligand complexes with all ligands
featuring drug-like properties.

We implemented four different MDLGAs with gradient based optimization: smallOne and
largeOne optimize one individual per iteration and population, whereas smallAll and largeAll
optimize all individuals. Furthermore, smallOne and smallAll have smaller populations than
largeOne and largeAll. The maximum number of iterations for our local search was set to 50.
Table 3.7 lists the parameters used in this study for all tested genetic algorithm.

For each optimization method and for each ligand of the Astex data set, we performed
300 docking runs. For this purpose, we defined a translation box with an edge length of 10
A centered on the reported binding site. Before each docking run, the ligands position and
orientation was randomized. To compare the running time, we applied the same stopping
criterion for all methods: The algorithm stopped when the best score had not improved for
a given number of function evaluations. This maximum number of function evaluations per
run was calculated as a linear function of the number of rotatable bonds in the ligand being
docked and was between 3000 and 5000.
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search number of initial population survivors elitism mutation individuals

heuristic ~ populations population size rate optimized
LGA 1 100 200 100 1 0.05 1
MDLGA ) 20 40 20 1 0.05 1
smallOne 5 5 10 ) 1 0.05 1
smallAll ) ) 10 ) 1 0.05 5
largeOne 5 10 20 10 1 0.05 1
largeAll 5 10 20 10 1 0.05 5

Table 3.7: Parameters for the genetic algorithms implemented in this study. LGA: Lamarckian
genetic algorithm using the Solis and Wets minimizer; MDLGA: LGA using multiple populations;
smallOne/largeOne: MDLGA with small/large population size using gradient based local search op-
timizing a single individual only; smallAll/largeAll: same as smallOne/largeOne but optimizing all
individuals. Note that the values for multi-deme algorithms are given per population, e.g. the MDLGA
features an overall number of individuals of 5 x 40 = 200.

For the evaluation, we recorded the best score and the total number of scoring func-
tion evaluations for each docking run. For each complex, we also recorded the energetically
best binding pose found in all our docking runs (including docking results from preliminary
studies). We call this position the target binding pose in the following and define a hit as
a ligand position featuring a root mean square deviation (RMSD) smaller than 2 A to the
corresponding target binding pose. In addition, we divided the complexes into sets

Si . = {complex where: | < number of rotatable bonds of ligand < u}

containing ligands with a similar degree of difficulty. In this study, we used three sets Sp 3,
Sa7, Sg,11-

To compare the search methods in terms of their ability to find the presumed global
optimum, we calculated the average number of hits, the average mean score, and the average
best score for each algorithm a and each set \S;,,. The average number of hits was computed

by .
Zjesl,u Ha (])
|Sl,u’ ’

where H,(j) is the number of hits for complex j divided by the total number of docking runs
Emaz (in our case kpq, = 300). The average mean score was computed by

kma$ -
2 ieSy 2okt Ealds k)
kma$|sl7u’ ’

where F,(j, k) is the score for complex j and docking run k. Finally, the average best score
was calculated by

e Sy, MINk=1,... koo { Ea(d; K)}
|Sl,u| ‘
To assess the reliability of the results, we defined a saturation measure. If h is the number of
hits, then we define saturation as the number of hits in the h top ranked results divided by
h. For example, if a meta-heuristic produced ten hits in one docking experiment and out of
the ten top-ranked results, three were hits, the algorithm achieved a saturation of 0.3.
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For a more in-depth comparison of the search heuristics, we also computed the normalized
number of hits ﬁa and the normalized ratio Ra between H, and the number of function
evaluations F, for each algorithm a as follows: Let T'(7) be the set of complexes with i € Z
rotatable bonds of the ligand. Then, H, is calculated for each set by

ZjET(i) Ha(])

Ha(d) = maXaEA{ZjeT(i) Ha(j)}

Let H,(7) be the total number of hits and let Fy,(j) be the total number of function evaluations
performed by algorithm a in all docking runs with complex j, then the ratio between H,(j)
and Fy(j) is given by

ZjeT(i) Ha(])

ZjeT(i) Fa(j) .

Finally, the normalized Ry is simply given by:

Ry (i) ==

Ry (i)
maxaea{Ra(i)}

Ra(i) =

The statistical significance of differences between the search heuristics was assessed using the
Mann-Whitney test as implemented in R, a system for statistical computation and graphics
[169].

3.3.3 Results

The results for the new gradient-based search heuristics and for the non-gradient-based heuris-
tics are summarized in Table 3.8. We divided the test set into three classes, namely ligands
of low (0-3 flexible torsional angles, n = 40), medium (4-7 flexible torsional angles, n = 37)
and high (more than 7 torsional angles, n = 8) complexity. In general, the gradient-based
methods have a higher chance to find the target binding pose than the non-gradient-based
methods, that is they produce more hits than LGA and MDLGA. This difference is even
more pronounced for ligands of high complexity for which the LGA fails almost completely.
A similar trend is observed for the average mean scores, where LGA and MDLGA give worse
results than the gradient-based search heuristics. Statistical analysis of the differences in the
number of hits confirmed this observation. For ligands with less than 8 rotatable bonds, the
search algorithms fall into four distinct “groups” (p < 0.05). LGA and MDLGA each form
a group of their own, while the other two groups contain smallOne/largeOne and smallAl-
1/largeAll, respectively. However, for ligands with more than 7 rotatable bonds (n = 8),
the distinction between these groups becomes blurred except for LGA, for which results still
differs significantly from all other heuristics.

The average best scores for ligands with few rotatable bonds are comparable for all meth-
ods and this finding seems to hold for ligands of medium complexity, too. For ligands of high
complexity, the performance of the non-gradient search methods deteriorates severely. In
contrast, the gradient-based methods, with the exception of largeOne, deliver consistent re-
sults. Additionally, the gradient-based heuristics require fewer function evaluations than the
non-gradient-based methods before meeting the stop criterion. However, this gap decreases
as ligands get more complex and the gradient-based methods perform more local search steps.
Statistical analysis of the number of function evaluations for few rotatable bonds shows the
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#rot. bonds name ¢ hits ¢ mean ¢ best ¢ function ¢ saturation
(# ligands) (%] score  score eval.
LGA 21.8 =777 -99.7 8424 0.87
MDLGA  46.6 -89.1 -99.8 14360 0.87
0-3 smallOne  60.0 -92.6 -99.7 5657 0.93
(n = 40) largeOne  63.9 -92.7 -99.7 6178 0.89
smallAll  78.7 -96.6 -99.6 6720 0.94
largeAll 84.8 -97.0 -99.6 7369 0.94
LGA 4.9 -84.8 -116.6 11792 0.61
MDLGA 154 -98.4 -122.3 20275 0.55
4-7 smallOne  26.7 -105.2 -123.6 9620 0.70
(n=137) largeOne  25.1  -101.9 -123.1 10105 0.63
smallAll  39.7 -110.2 -123.5 11698 0.72
largeAll 47.2  -109.5 -123.3 12497 0.71
LGA 0.1 -89.0 -124.7 15055 -
MDLGA 3.8 -106.9  -147.7 26048 0.42
811 smallOne 8.2 -123.8 -156.4 13533 0.44
(n=8) largeOne 5.1 -112.9  -153.6 13498 0.43
smallAll  13.5  -130.1 -156.1 15728 0.43
largeAll 21.6 -130.6 -156.4 18354 0.52

Table 3.8: Comparison of meta-heuristics in terms of average number of hits, average mean and best
score, average number of function evaluations as well as saturation. The results are partitioned for
small, medium and large number of flexible torsional angles. Bold letters indicate best results for each
column and category.

same groupings as observed for the number of hits (p < 0.05): (1) LGA, (2) MDLGA, (3)
smallOne/largeOne, (4) smallAll/largeAll. For ligands with more than three rotatable bonds,
it is not possible to classify LGA into a single group anymore. However, the differences
between the groups MDLGA, smallOne/largeOne, and smallAll/largeAll are still significant.

As for the saturation, the gradient-based methods optimizing all individuals have a higher
chance to rank hits higher than the other search heuristics. For the gradient-based methods
optimizing just a single individual per population and iteration, the one featuring a smaller
population seems to produce slightly better results. Figure 3.13a displays the chance to
find the target binding pose relative to the best performing search heuristic. Obviously, the
gradient-based methods are always well above their competitors, and again, the difference
becomes larger as the complexity of the ligands increases. Nonetheless, the MDLGA produces
a considerably higher number of hits than the LGA and seems to perform quite well.

When evaluating the number of hits per number of function evaluations, the difference
between the gradient-based and the non-gradient-based genetic algorithms is even more pro-
nounced, while the differences between the search heuristics using the same approach for local
optimization are less marked, see Figure 3.13b. Here, LGA and MDLGA show a similar pro-
file. Thus, the higher number of hits found by the MDLGA is counter-balanced by a higher
number of function evaluations and hence a longer run-time of the search algorithm.
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Figure 3.13: Comparison of the various genetic algorithms with respect to (a) the normalized number
of hits and (b) the normalized number of hits per number of function evaluations. The best performing
method was used for normalizing the values of all other methods.

3.3.4 Conclusion

Our results strongly indicate that population based search heuristics benefit from incorporat-
ing a gradient based search method. Regardless of the complexity of the ligand, the gradient-
based methods deliver better results with fewer iterations. For ligands of high complexity,
the performance of non-gradient procedures breaks down, while gradient-based methods are
still feasible.

The advantage of the new hybrid method can be exemplified by the direct compari-
son between the MDLGA and smallOne, which both perform local optimization of a single
individual. Although MDLGA features a much larger total population of 200 individuals
than smallOne (50 individuals), the gradient-based search heuristic produces more hits while
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Figure 3.14: Different genetic individuals during the docking process. This picture is the graphical
abstract of our publication [55] in the Journal of Computational Chemistry.

performing much fewer iterations (approximately 50%) than MDLGA — irrespective of the
number of rotatable bonds.

A simple stochastic calculation may help to underline the improvement. The probability
pr to find at least a single hit after r docking runs is given by

=g h—i
total — It —
pp=1— Lo 2" 3.8
" =0 Ttotal — ¢ ( )

where 7iota1 is the total number of docking runs and A is the number of hits. Thus, if we
want to achieve a 99% chance to find the target binding pose at least once, we have to find
min{r | p, > 0.99}. The enhancement of using the gradient-based approach may be shown
by inserting the appropriate figures into Equation (3.8). For example, for ligands of high
complexity, we have ryga1 = fligands - kpqe = 2400 and h = 90 for MDLGA, whereas h = 518
for largeAll. We easily see that we must perform at least 118 docking experiments with
MDLGA, but only 19 with largeAll. If we take into account that largeAll also requires fewer
function evaluations, we gain an almost tenfold speedup.

The improvement in performance indicates that a higher number of degrees of freedom
may be studied during docking. Thus, our method may facilitate docking of highly flexible
ligands or to incorporate protein flexibility in the docking algorithm (e.g. in cross docking).

We also tried to answer the question of how many individuals should be locally opti-
mized. Both heuristics that optimized all individuals (smallAll, largeAll) performed slightly
better than those performing local search for only one individual per population and itera-
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tion (smallOne, largeOne). This finding is supported by the fact that smallOne performed
better than largeOne: smallOne dedicates a larger fraction of its function evaluations to
the gradient-based local search procedure than largeOne. Despite the advances in molecular
docking presented in this work, there is no guarantee that any however sophisticated search
algorithm will identify the native binding pose correctly. The performance of finding a true
hit depends directly on the quality of the scoring or energy function. Especially when using
an unsuited scoring function, the probability of finding a hit is small and even if the native
binding pose is reconstructed by chance, it is very improbable that this result is top-ranked.

3.4 Receptor Flexibility in Ligand-Receptor Docking

In the previous section the receptor was rigid, which is a widely used assumption in ligand-
receptor docking. However, this is a strong assumption. Not only side chains may fold down
during the docking process. Different backbone conformations of the same protein in the
PDB [18] show that the backbone plays an important role in some cases. The assumption of
a rigid backbone does not hold in general.

In this section, we present our approach to incorporate receptor flexibility into our docking
method. In general, our gradient-based local search method is independent of the used meta-
heuristic. For this study, we replaced the genetic algorithm by a differential evolution approach
[166]. The intention was a comparison of the docking performance between genetic algorithms
and differential evolution. The results are beyond the scope of this work and can be found in
Fuhrmann [53]. In this study of Schackmann [156], see also Rurainski et al. [152], we chose
the Human Serum Albumin (HSA), which is the most abundant transport protein of the
human blood plasma. It is known for its promiscuity to bind different ligand species and it
is one of the most extensively studied proteins. Thus, many high-resolution structure entries
are available in the PDB providing a good basis for intense investigations of conformational
changes. Finally, the fact that HSA undergoes tremendous backbone movements upon binding
to fatty acids, facilitating enormous topological and structural changes over the whole protein,
renders this molecule to an ideal candidate for our study.

3.4.1 Differential Evolution

Since we do not focus on meta-heuristics in this work, we only sketch the main ideas behind
differential evolution (DE). Details can be found in, e.g., Rurainski et al. [152], Schackmann
[156], and Fuhrmann [53].

DE is strongly related to genetic algorithms (GA) and differs mainly in two points. First,
in a GA a certain proportion of the population is discarded, where DE replaces only existing
individuals by better ones. Second, the procedure of creating new individuals by existing
ones is more complex than the mating process in a GA, see Figure 3.15. Two individuals are
selected and the difference between them is computed. Multiplied by a weighting factor the
result is then added to a third individual. The obtained vector is called trial vector. Finally,
DE chooses another individual, the so called base vector, and performs a crossover operation
by randomly blending elements of the base and trial vector. This outcome replaces the base
vector only if it features a better score. All individuals appearing in this DE approach are
optimized by our local search procedure of Section 3.2.
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Figure 3.15: Basic illustration of the differential evolution optimization procedure introduced by
Storn [166]. Start with the random selection of four individuals. Addition of the weighted difference
of two members to the base vector delivers a new mutant vector. After crossover of mutant and target
vector, the resulting trial vector replaces the target vector if it achieves a better score.

3.4.2 Side Chain Flexibility

A widely used approach is the application of a rotamer library. Such libraries contain discrete
sets of the most frequently occuring torsional angles in preselected sets of crystal structures
for each rotamer. Thus, sampling becomes a combinatorial task: Find the best scoring
conformation among the discrete set of angles. Unfortunately, in preliminary studies we
identified proteins whose crystal structure could not be reproduced using, e.g., Dunbrack’s
backbone-dependent rotamer library [46]. Furthermore, the idea behind our gradient-based
docking approach is to consider all possible conformations and not only discrete ones. A
natural idea is then to use the same approach for side chains as we employed for the ligand’s
flexibility, i.e. we have one parameter per rotatable bond in our optimization problem.

In our definition, a bond always subdivides a molecule into two atom sets (S7 and S3) and
the bond is only accepted as rotatable if S; and Sy contain at least two heavy atoms. This
restriction is due to the fact that hydrogen positions are not explicitly contributing to the
scoring function and sets containing only one heavy atom are therefore rotationally invariant
with respect to the bond. In contrast to ligand movements, where the part with fewer atoms
is rotated in practice, our implementation for side chains ensures that the backbone structure
is preserved. Table 3.9 shows how many degrees of freedom (number of rotatable bonds) the
essential amino acids possess [156].

3.4.3 Backbone Flexibility

The main idea of our approach is to use two extreme backbone conformations of the same
protein, obtained from the PDB [18], and to interpolate the residue positions. To be more
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Name DOFs | Name DOFs | Name DOFs | Name DOFs
Ala 0 Gln 3 Leu 2 Ser 1
Arg 5 Glu 3 Lys 4 Thr 1
Asp 2 Gly 0 Met 3 Trp 2
Asn 2 His 2 Phe 2 Tyr 2
Cys 1 Ile 3 Pro 0 Val 1

Table 3.9: List of flexible torsion angles of essential amino acids. The degrees of freedom (DOFs) are
equal to the number of rotatable bonds and the number of variables introduced in the optimization
problem for the given residue.

exact, we need a smooth path starting from one position ending at the other position for
each residue. Other approaches [115] use linear interpolation. This is certainly the best way
for the translational part of the parameters. However, the orientational part suffers from
unphysical states and unfavorable conformations during the “morphing process”. To avoid
this unrealistic behavior, our novel approach uses spherical linear extrapolation (SLERP)
[163] for the rotational component, where we interpolate between the two empirical states
via moves on the four-dimensional quaternion space. In summary, we obtain one additional
parameter ¢t € [0, 1] for each residue, which shifts the backbone atoms from the first position
(t = 0) to the end position (t = 1) on a continuously differentiable path. These parameters
are finally added to the optimization problem.

3.4.3.1 Backbone Transformation

First, we have to chose one of the given extreme conformations as start position. Afterwards,
we have to determine an optimum transformation (translation and orientation) from this
position to the other one using the backbone atoms. Finally, we have to create a smooth path
from the identity (start position) to the determined optimum transformation (end position).

The optimum transformation for the translational part is straightforward. A small calcu-
lation shows that two point sets can only have minimum root mean square deviation (RMSD)
if they have identical geometric centers. Thus, we have only to ensure that the atoms of both
conformations have the same geometric centers after the transformation.

The rotational component is the challenging part. We follow the work of Coutsias et
al. [33] for using quaternions to calculate the RMSD between two point sets. This study is
strongly related to Kabsch’s algorithm [91, 92] for computing the optimum rotation matrix R
incorporating singular value decomposition of a spatial correlation matrix between a pair of
point sets. Despite its popularity, this parametrization of the orientational part of the overall
transformation suffers from singularities of the Euler angle parametrization and can violate
the chirality of a solid object, whereas our constrained quaternion parametrization does not.

Let v; be the positions of backbone atoms of conformation V' at ¢ = 0 and w; those of
conformation W. By the approach of Coutsias et al. [33] we obtain a unit quaternion gopt,
which represents the optimum rotation to map v; onto w;, @ = 1,...,N. Thus, gop is the
final quaternion, whereas the identity quaternion go = (0,0,0,1)7 is the start quaternion.
Using spherical linear extrapolation we obtain a smooth quaternion path between o and gops
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with parameter ¢
sin((1 —t)p) sin(to)
t) .=
q( ) Sln(g) q0 + Sln(g) qopta

where p is computed as the angle subtended by the arc, so that cos(g) = qOT Qopt- Let gz(t),

Qy(t)v qz(t), and gqy(t) be the components of g(t), i.e. q(t) = (qgc(t)aQy(t)aQZ(t)aQw(t))Ta then
the corresponding rotation matrix R(¢) is given by

1- 2((Qy(t))2 + (QZ(t))Q) 2(Qw(t)Qy(t) - q,z(t Qw(t ) Q(QZ(t)Qx(t) + Qy(t)Qw(t))
R(t) = | 2(q0(t)ay(t) + ¢=(H)qw(t)) 1 —2((a=(1))* + (a:(1))?)  2(ay(t)g=(t) — @z(t)qu(t)) | ,
2(Qz (t)%c(t) - Qy(t)Qw(t)) 2(Qy(t)<h (t) + qyc(t)QuJ (t)) 1- 2((Q:Jc(t))2 + (qy(t))2)
yielding the smooth path v;(t) of each v;
Vi(t) = R(t)(vi — 9\/) + Oy + t(@w — 9\/), (3.9)

where 6y and 6y are the geometric centers of V and W

1 & 1 &
9‘/: N;Vi, HW:NZWZ

i=1
3.4.3.2 Gradient of Backbone Transformation

For the incorporation of the obtained smooth path into our gradient-based local search
method, we use the chain rule to calculate the derivative for the parameter ¢t. The formula
for the translational part is obvious

d d

%vi(t) = %(R(t)(vi —Ov) + 0y +t(0w — b))
_ %(R(t)(vi —00)) + (Ow — Oy).

For the orientational part we first compute the gradient V() considering its components
qyc(t)> Qy(t)v QZ(t)a and Qw(t)

L) -
Va(t) = 1 cos(t - z

)+ da(
— o ;:qygt) (3.10)
¢ - (cos(t - ¢)) - qu(t) — cos((1 —t) - ¢),

with ¢ = cos™'(qw(t)). R(t) can be seen as mapping that maps ¢(t) into R?. Thus the
resulting Jacobian is given by

0 —4q,(t) —4q.(t) 0
2qy(t)  2q:(t)  —2quw(t) —2q:(?)
2¢:(t)  2quw(t)  2gs(t)  2qy(t)
2qy(t)  2q:(t)  2qu(t)  2¢.(?)
JR(Q(t)) = _4qgc(t) 0 —4q, (t) 0 . (3.11)
_2(]11) (t) 2q,z (t) 2Qy (t) _2(]1 (t)
2QZ (t) _2Qw (t) ZQy (t) _ZQy (t)
2qu( 2¢:(t)  2qy(t)  2q.(t)

t) y
—4q.(t)  —4qy(t) 0 0
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Using the Projection
Sz Sy S
P=|10 0 0 s s, s, 0 0 0], (3.12)
0 0 0 0 0 0 sz sy s

where v; — Oy = (s, 5y, 5,), finally leads to the Jacobian matrix of v;(t):
Jv,(t) =P - JIr(q(t)) - Va(t) + (Bw — Ov). (3.13)

The overall gradient entry g; of parameter ¢ is the sum of all atom wise contributions. Thus,
we finally calculate

N
g = J.(t)"f; (3.14)
=1

with N being the number of heavy atoms moved by the transformation and f; being the force
vector acting on atom ¢ at position v;(t).

3.4.4 Results

Our approach has been implemented in C++ using the BALL framework [101, 102, 76]. In
order to find good parameters for our final test runs, we first carried out several docking
runs with reduced flexibility. In the first scenario only the ligand was flexible as in Section
3.3, in the second scenario additionally the side chains were allowed to move. The resulting
parameters should reasonably balance the probability of finding low RMSD hits (saturation)
and a feasible runtime for a single docking study. In particular, the size of the genetic pool
was varied during testing as well as the number of allowed iterations for our gradient-based
optimization method. We found that the approach reached its allowed iteration boundary
for at most 20% of all observed optimizations in test scenarios. As a result of our tests, we
came up with the specification of limiting the pool size to 100 individuals and the iteration
boundary to 100 optimization steps. The known drawback of our model is that with more
flexibility the runtimes increase. Our approach that only keeps the ligand flexible took only
a few minutes on a Dual-Core AMD Opteron Processor 2222 for 300 docking runs. Our new
approach took about 60 hours to produce 50 results for the smallest ligand (B3I) and about
300 hours to produce the same amount of docked results for the most complex ligand (IDB).
One reason for these runtimes is the immense number of pair interactions to be calculated for
the Gehlhaar scoring function [56]. Another reason is that for the above presented flexible
setup for IDB, our algorithm had to scope with 89 degrees of freedom. Nevertheless, our
approach was able to reproduce the reference position with an RMSD of 2.07 A.

In order to overcome the known limitations of the Gehlhaar function to accurately estimate
the binding-free energy of a complex, we rescored the results using X-Score [184, 185, 186, 183].
We used the Merck Molecular Force Field (MMFF94) [63, 64, 65, 66, 67] and performed
structure optimizations to provide X-Score with valid hydrogen geometries. However, the ap-
plication of the semi-empirical consensus X-Score for reranking did not improve the results.
Geometry optimization of the hydrogen atoms with MMFF94 showed slightly improved re-
sults. Nevertheless, in conclusion, we have to admit that neither the Gehlhaar scoring nor
X-Score are able to assess the structural situation sufficiently. In future work, the imple-
mentation of other scoring functions is needed to guide the optimization process to a higher
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rate of low RMSD hits. Nonetheless, the application has generally shown to be able to cope
successfully with the tremendous amount of degrees of freedom (more than 79) in each of our
validation setups, even if the scores are not reflecting this. Table 3.10 shows our results.

Ligand #RBs  Hits DOFs  Best 0 TopScore
(<34 RMSD RMSD RMSD
B3I 1 0 79 3.11 5.4 3.92
AZQ 3 3 81 2.2 6.08 6.75
WRS 4 0 82 3.43 6.24 6.33
P17 ) 2 83 2.09 6.04 2.09
IDB 11 1 89 2.07 9.1 8.77

Table 3.10: Fully flexible docking runs. The receptor was 1BM0O (PDB ID) with 34 flexible residues
in the setup. The genetic pool always consisted of 100 individuals. 100 docking runs were performed.
We give the name of the docked ligand as PDB ID, the number of flexible torsional angles inside
the ligand (RBs), the number of calculated structures that differ from the reference structures by an
RMSD of less than 3 A, the number of variables (degrees of freedom, DOFs), the best RMSD, the
mean RMSD, and the RMSD of the best scored structure.

3.4.5 Conclusion

Our results show that our method to support limited backbone flexibility is a promising
approach for ligand-receptor docking. However, according to our investigations the main
problem seems to be the scoring function and no longer the method to find favorable con-
formations. The development of better scoring functions is not subject of this thesis, but
will be the next step to improve our results in the future. Such a simple function like the
Gehlhaar scoring function [56] seems not to be capable for penalizing unrealistic conforma-
tions, when side chains are flexible. In many resulting structures, we found that side chains
obviously interact nearly perfectly with each other but the remaining space between them
was too small for the ligand. To be more precise, the ligand could not be positioned between
the side chains because the scoring function favored perfect interactions of the side chains.
In these situations, a simple weighting of ligand-receptor interactions and receptor-receptor
interactions may alleviate these problems. Future investigations will provide more insight.

3.5 Backbone Flexibility in Ligand-Receptor Docking

The study in the previous section achieves backbone flexibility by interpolating between
(known) extreme conformations. Here, we allow a loop region to be fully flexible, see Ru-
rainski et al. [151] and Roth [148]. We show that the Go-Scheraga ring closure equations
combined with our interval arithmetic based approach to calculate guaranteed all solutions of
the occurring equations is able to identify promising loop/ligand complexes in our test runs.
In fact, we were able to dock ligands into a highly flexible loop region, where other approaches
failed in preliminary studies. In an outer loop a Monte Carlo approach randomizes “free”
parameters, i.e. parameters that do not mathematically depend on each other, e.g., torsion
angles at both endpoints of the loop. Our approach then calculates all closed loop conforma-
tions, i.e. it determines all different values for the remaining dependent parameters in a way
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that the loop is closed. Afterwards, the method introduced in Section 3.4 with the Gehlhaar
scoring function [56] is used to dock the fully flexible ligand with the receptor, where side
chains are flexible, but the backbone is now kept rigid.

In the study of Roth [148], see also Rurainski et al. [151], we chose the human 17[-
hydroxysteroid dehydrogenase type 1 (175-HSD 1), which was first described over 50 years
ago by Engler and Langer in 1958 [109, 108]. Much research has been done in the last decades
resulting in the determination of function, amino acid sequence and overall structure of this
protein. Playing a central role in the development and proliferation of breast cancer and
other estrogen-dependent diseases, 175-HDS 1 presents itself as a promising target for drug
development [74]. While several putative inhibitors of this enzyme have been studied during
the last decades, up to now no clinical trial has been performed and no final drug has been
released yet [143].

3.5.1 Go-Scheraga Ring Closure Equations

For the loop closure in polypeptides, Go and Scheraga [58] published an approach in 1970.
Essentially, they presented how the problem of finding the parameters of a closed loop given
both endpoints can be reduced to an equation in one variable. All other unknown parameters
can be calculated using the solution. In order to solve the central equation they used the
best available method when they published their work: Newton’s method. Since this is only
a local search method, they may have sampled the search space by providing different equally
distributed start positions. Thus, there is no guarantee to find all solutions and, most likely,
many function and derivative evaluations had to be performed. Our interval arithmetic based
approach presented in the next section guarantees to identify all solutions of this equation.
In our test runs, all results were obtained nearly instantly. In this section, we give the ideas
behind the loop closure equations and state the resulting formulas.

The original work of Go and Scheraga [58] had to be modified due to a change in IUPAC
conventions concerning torsion angles in 1970, resulting in dihedral angles being assigned
values between -180° and 180° rather than between 0° and 360°, to provide information
about the angle’s direction. In addition, the original approach assumes fixed coordinates
of backbone atoms: they provide the ideal theoretical positions of the backbone atoms in
the corresponding coordinate system, see Tables 3.11 and 3.12. However, it might not be
possible to obtain exact loop closure in reality using these values due to slightly perturbed
coordinates in the PDB file. Thus, we calculated these values from the respective coordinate
of the backbone atoms in the original conformation of the loop. The obtained coordinates
differ slightly from the proposed ones.

atom X y Z
Cy 0.000 0.000 0.000
Cg 1.530 0.000 0.000
N;y1  2.067 1.206 0.000
¢ 3.519  1.436  0.000

Table 3.11: Cartesian coordinates of atoms in local coordinate system 2i in A.

Go and Scheraga determine torsion angles that are needed to connect the two known
endpoints of the loop by mathematical equations. Keeping bond lengths and bond angles
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atom X vy V7

N; 0.000 0.000 0.000
Cy 1.470  0.000 0.000
C! 1.980 1.443 0.000

Table 3.12: Cartesian coordinates of atoms in local coordinate system 2i — 1 in A.

fixed for n torsion angles results in n — 6 independent and six dependent dihedrals, the latter
ones to be calculated based on the values assigned to the former ones, due to six degrees
of freedom necessary for the calculations, as we show below. Five dependent torsion angles
can be computed using the value of the remaining dependent one, which has to be calculated
by solving the central equation and is assumed to be known for the moment. Free torsion
angles (w;) of the loop are described by local coordinate systems as shown in Figure 3.16, also
indicating how bond lengths (p;) and bond angles (6;) are defined. Additionally, the backbone
atoms are given with their individual names. A given point in space can be represented by

Y;
Yo
pi—.l. .
c)@&—FE
-2 ®;,

Figure 3.16: Definition of local coordinate systems in the Go-Scheraga equations.

position vectors r; and r;_; with respect to the ith and (i — 1)th coordinate system, where
we use the original notation of Go and Scheraga. Thus, their relation can be described by

ri-1 =T, 1Rir; + pi—1,

cosf;_1 —sinf;_1 O
Tz‘_l = sin 0@’—1 COSs Gi_l 0 s
0 0 1
and
1 0 0
R, = |0 cosw; —sinw; |. (3.15)

0 sinw; cosw;

Hence, we can express the endpoint of the loop in the coordinate system of the starting point
and vice versa by successive coordinate transformations. Six torsion angles as free variables
correspond to three needed amino acid residues, each including two dihedrals, namely ¢ and
1, to perform loop closure. Go and Scheraga use three vectors to describe the transformation
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between the loop’s endpoints: s points from the first endpoint to the second, u is the direction
of the x-axis of the second endpoint’s coordinate system to the first endpoint’s coordinate
system, and v is the corresponding direction of the y-axis. Using unit vectors we have

uTuzl,
vTv:l,
'v=0

Let e; and eg be unit vectors in x and y direction, then we can calculate the three vectors s,
u, and v,, which express the relative position and orientation of the nth coordinate system
with respect to coordinate system 0, by

sn =Ppo+ ToRip1 + ToR1T1Ropa + - - -+ ToR1T1Ry - - - T\, 2R, —1Pn—1, (3.16)
u, = ToR{T1Ry---T,, 2R, 1T, 1R,eq,
vp = ToR1TiRy--- Ty 2Ry, 1Ty 1Ry e0.

If the (n — 6) independent variables are arbitrarily chosen as w; to wy,_¢, Equations (3.17) to
(3.19) have to be solved for the dependent ones.

S = Pn-6T
Th-6Rn—5Pn—5+
Th-6Rn—5Tn—5Rn—aPn—a+
Ty 6Rn—5Tn5Rn—4ThnyRy_3pn—3+
Th-6Rn—5Tn5Rn-a4TrnaRy 3Ty 3Rn_opn—2+
T, ¢Rp_5Th_sRp_4TH 4R, 3T, 3R, 2T, 2R, _1Pn-1 (3.17)
— Tu 6Rn5Tn sRnaTnsRn 3T sRnoTp oRp 1 Tu1Rper  (3.18)
v = Tn 6Ro5Tn sRnaTpsRn 3T sRnoTn oRp 1Tu1Rpes  (3.19)

Hence, we can express s, u, and v in terms of the n — 6 independent variables, where s is the
position vector of the origin of the nth coordinate system with respect to the (n — 6)th one.

s = RT. LRI
(sn —po— ToR1p1 — - = ToRy -+ - T, _sRy—7pn—7) (3.20)
= R.T, ;- R{'T; uy,
R T, ' R, v,

These equations apply to torsion angles of arbitrary chain molecules. If we consider a polypep-
tide chain with different torsion angles ¢ and v, we have to change Equation (3.15) into

1 0 0
Roit1 =Ry, 47 = [0 cos(¢ip1+7) —sin(¢ir1 +7)
0 sin(¢it1 +m)  cos(giy1 + )

and
1 0 0

Roi = Ry, 12 = [ 0 cos(¢; +2m) —sin(¢; + 27)
0 sin(y; +2m)  cos(¢; + 2m)
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In the following we assume the independent torsional angles to be given and s being calculated
by using Equations (3.16) and (3.20), respectively. Thus, a part of the loop is already given
by the independent torsional angles, i.e. we have a new “endpoint”, and we are faced with the
task to determine the remaining six dependent parameters to “close” the loop. For notational
simplicity, we call these remaining variables wi to wg from now on.

To derive the central equation, we assume the torsional angle w; = ¢; to be given for the
moment. For brevity, we introduce vectors qg to qz, where

Pi
qi =Tipic1+pPi=|0i | . (3.21)
0

Following Go and Scheraga, the vector r is needed for the calculation of the torsion angles ws
to wg, where wo = Y1, w3 = o, Wy = Y2, ws = ¢3, and wg = Y3

r=T 'R, T;'(s—qo) =

ISEENS

According to [58], necessary and sufficient conditions for the existence of a value for wy are

lanll = lazll < fIr]l < flawll + llaz| (3.22)

and

pr(llrll* = llaul® = lla2l®) + o1 v/((anll + a2l = e (e ll2 — (el — lla2l)?)

<z <
2[|au ||
prlllel® + lanl® = llazl®) + o1/ ((lanll + llazlD? = (e[ Urll2 — (lawll — laz])?) (3.23)
5 : .
2[|au ]
If these inequalities are fulfilled, we have
yv £ 2/ IRE = a2 =
coswg = 2 = 22 ,
(3.24)
: 2 F /el =2 —~°
sinwy =
i el =2
where ) ) )
_ el =Nl = llga|l* = 21z
g1
The cosine of wy can be calculated by
coswy — p2cosfs — (x — p1) 90892 —(y— al)sin92’ (3.25)
09 sin 03
which gives only a valid result, if
_1§pQCOSt93—(w—p1)COS(92—(’y—O'1)Sin(92Sl (3.26)

g9 sin 93
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holds, since otherwise the arc cosine would not be defined. If that holds true, we have

_ _ _ _ 3 2
Sinws = 41— (p2cosbs — (x — p1) Cf)S Oy — (v — 01) sin 2) , (3.27)
(o9 sin f3)?

where the signs are independent of the signs in Equation (3.24). Go and Scheraga use then
a vector

r—p gz
qs3 = Y — 01 = | qy
=V r)? — 22 — 42 4=

whose z-component’s sign is interdependent with those in Equation (3.24). This means that
if the upper (lower) sign is taken in one equation, the upper (lower) has to be chosen in the
other two equations. Then, ws can be determined by

(p2sinfs + o2 coswy cosb3) - (—qy sin by + g, cos b)) + 02¢, sinwy
(—gz sin by + gy cos 02)% + ¢2
(p2sin 3 + o9 coswy cos 03)q, — (—qy sinba + gy cos b2)oa sinwy
(—qz sin Oy + gy cos 2)% + ¢2 '

coswsg = ,

(3.28)

sinws =

Because of the signs in Equations (3.24) and (3.27), there exist two solutions for wy in general
and analogously for wy. Since both groups of signs are independent as mentioned above, this
yields four sets of solutions for wy and wy, for given s and wq, affecting as well the values of
w3, ws, and wg. Using Equations (3.17) and (3.21) we have

s =qo + ToRg 1 T1Ry; 12791 + ToRy, 17 T1Ry 127 ToRgy 1 TRy, 1272, (3.29)

which can be solved utilizing the values of ws to wy in terms of wi. The result allows for the
analytical determination of

f(gf)l) = uTToR(z,l_i_ﬂ—TlRwl+27TT2R¢2+7FT3R¢2+27|—T461 — COS 05, (330)

where e; is the unit vector in x-direction. The roots of f are valid values for w;, which can
in turn be used to calculate values of wy to wy. Thus, the central equation is

f(¢1) =0 (3.31)

and finding all roots of f is the central task in the next section. Finally, using all obtained
values so far ws and wg can be determined by

cos 05

—1p-1 —lp-1 m-lp-1 “1p-1 m-1._ [
Ty Ry 0. Ts Ry T Ry o, TR, LT u= | sins cosws
sin 05 sin wx

and

0

—1p—1 —1p—1 —1p—1 —1p—1 —1p—1 1.
T, R(bSJﬂrT4 Rw2+27rT3 I{¢2+7TT2 Rw1+27rT1 1%¢)1+7FT0 vV = c.oswg
S111 We
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3.5.2 Determination of w;

We used Maple™ to express each of the above mentioned Equations (3.24), (3.25), (3.27), and
(3.28) as a function of wi. The resulting terms took several pages. Maple™ is a commercial
computer algebra system developed and maintained by Waterloo Maple Inc.. It has the
capability to produce C source code, which can be used in our C++ implementation. In
theory, the equation

f(¢1) =0

can be solved by a nested intervals approach using interval arithmetic as we described in
Section 2.5.1, see also Figure 3.17. The initial interval is [—m, ], i.e. the whole range of

add initial range

['T[/ TE]
to parameter
interval pool

return

take parameter
interval
[a,b]

from pool
.~ -

v
evaluate
[c,d] = f([a,b])
by interval
arithmetic

discard
[a,0]

EEEEEE—S——
A )

add
[a, (a+b)/2] and
[(a+b)/2, b]
to pool

store midpoint
of [a,b]
as solution

Figure 3.17: General scheme of nested intervals. The obtained solutions are closer than § to a root.

¢1. However, the obtained bounds using the produced code and replacing all arithmetic op-
erations by interval operations are not tight enough for determining all roots within a few
iterations. Thus, parts of the code have been manually replaced by specialized interval func-
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tions, which provide tighter bounds. For example, all occurrences of “x*x” have been replaced
by “sqr(x)”, which computes the interval square function and, e.g., prevents negative lower
bounds, see Section 2.5.1.

Another observation is that not only real solutions of Equation (3.31) exist but also
complex ones. However, we are only interested in the discrete real solutions. Considering
the above derivation we see that all numbers occurring during the calculation have to be real
for practical reasons. Thus, we can discard an interval if during the computation complex
numbers would occur on the whole interval, i.e. inequalities (3.22), (3.23), or (3.26) do not
hold. If only a part of the interval to be used for such a range check violates the corresponding
inequality, we have to intersect this interval with the allowed range during the computation in
order to proceed without complex interval arithmetic, still guaranteeing to find all solutions.
For example, if interval calculations yield

p2cosfz — (x — pr)cosbly — (v —o1)sinfy _21 ¢
09 sin 03 N 2

then inequality (3.26) is violated by a part of £. We have to intersect £ with the allowed range
and to proceed with
1
=-1,=1|.
¢ = |-1.4]

The resulting procedure is able to identify efficiently all real solutions of Equation (3.31).
This has to be done for all four combinations of signs in Equations (3.24) and (3.27) to obtain
all possible loop conformations given the n — 6 independent variables.

Note that other interval approaches exist like the interval Newton method, see e.g. Hansen
[68], which use interval derivatives and are, thus, superior to our derivative free approach in
theory. However, beside the fact that the derivative is much more complex (yielding more
imprecise bounds) the aforementioned approach cannot deal with complex numbers. Applying
the interval Newton method would require to avoid complex interval arithmetic with range
checking and interval intersection as we have shown above, which are entirely unsuited for
this algorithm. It might be possible to adapt the method for our problem, but it is not
necessary in practice. The limiting factor for the total run time is not the solution process
for wy (within milliseconds, finishes nearly instantly) but the differential evolution algorithm
with scoring function evaluations afterwards.

3.5.3 Results

Our approach has been implemented in C++ using the BALL framework [101, 102, 76].
In this study, we applied our method to human 178-hydroxysteroid dehydrogenase type 1
(176-HSD 1) for which the protein data bank holds several structure files that have been
determined at varying solutions, including different ligands and cofactors, some additionally
containing single residue mutations. The loop region of 1746-HSD 1 is flexible. Thus, many
structures do not incorporate this region. However, our approach needs at least one original
loop conformation to calculate the initial vectors and matrices in order to guarantee that
a closed loop is mathematically possible as described in Section 3.5.1. Hence, the docking
experiments were performed on PDB structures 1FDT conformation A, 1IFDT conformation
B and 1I5R. The structure of 1I5R has been chosen due to its similarity to 1QYV, which
does not contain the product of the enzymatic reaction but no loop structure as well. 1I5R



82 CHAPTER 3. OPTIMIZING MOLECULAR STRUCTURES

1FDT, conf. A 1FDT, conf. B 1I5R

2 times 850 runs 1900 runs 3000 runs 1900 runs 3000 runs
2d 18h 53m  3d 8h 3m  4d 12h 39m 16d 20h 29m 4d 19h 39m 14d 23h 31m
4.721/min  5.650/min  3.431/min 8.089/min 3.652/min 7.190/min

Prol87-Pro200 His189-Ser199 Prol87-Pro200

Table 3.13: Runtimes and mean values of the performed docking experiments.

was mapped to 1IFDT in order to obtain comparable results. While all docking runs were
performed on the original loop of 173-HSD 1, different loop lengths have been chosen, to allow
for additional flexibility, especially in the start and end regions of the considered sequence.
The complete loop region, showing the short (blue) and extended part (red) is:

Glyl186 Prol87 Vall88 His189 Thr190 Alal91 Phel92 Met193
Glul94 Lys195 Vall96 Leul97 Gly198 Ser199 Pro200 Glu201

Our docking experiments have shown that the resulting energies of the extended loops were
slightly lower than the energies of the shorter loops, resulting from the possibility to move
more freely due to additional degrees of freedom.

Estradiol was used as ligand in the docking runs, the cofactor has not been considered in
this study [148]. The runtimes (AMD Opteron 3GHz) and the average number of docking
runs are given in Table 3.13. Apart from a few cases where the ligand is considerably moved
from its original position or it is flipped upside down, the majority of the calculated complexes
shows only small changes in ligand position and orientation, the respective loop conformation
being the main contributor to the resulting energy of the complex. The stability of the ligand
position in combination with the realistic loop conformations calculated during optimization
renders our current implementation a promising basis for fully flexible ligand-receptor docking.
Figure 3.18 shows the best results in terms of the energy values, i.e. the shown complexes are
the results with the lowest energy in the corresponding docking runs. They substantiate our
good results against the background that, as mentioned in the previous section, the Gehlhaar
scoring function does not assess the structural situation sufficiently. Thus, it is surprising
that these excellent complexes are the best scoring ones.

3.5.4 Conclusion

In preliminary studies, different approaches to perform flexible docking with 173-hydroxy-
steroid dehydrogenase type 1 were tried out. Precalculated torsion angles, as provided by,
e.g., Dunbrack’s backbone-dependent rotamer library [46], were found not to reflect the situ-
ation of this special enzyme. Furthermore, self-organizing molecular field analysis (SOMFA)
[146], a 3D-QSAR approach, did not improve the results of our docking algorithm of Section
3.3, where originally the backbone is kept rigid. Our results show that the Go-Scheraga equa-
tions with our interval arithmetic based solution approach combined with our gradient-based
optimization method is able to overcome these problems with 175-HSD 1 and to dock lig-
ands into highly flexible loop regions. Although we applied our approach only to this specific
enzyme in our study, our method is not restricted to the loop region of any protein nor to
176-HSD 1. It works on any polypeptide chain, provided the studied part does not contain
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Figure 3.18: Best resulting complexes of our docking runs in terms of energy values. Original
complexes are colored green, calculated complexes are colored blue. From upper left to lower right:
1FDT conf. A pass 1, IFDT conf. A pass 2, 1IFDT conf. B 1900 runs, 1IFDT conf. B 3000 runs, 1I5R
1900 runs, 1I5R 3000 runs. The figures are based on [148]. Please note that in case of 1IFDT conf. A
pass 2 the calculated loop region matches perfectly the crystallized one.
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gaps. Hence, it would be possible in theory to apply our method to a complete protein se-
quence and let it fold, based on its original conformation. In the future we will investigate the
performance of our approach on other hard docking tasks, where especially loop flexibility is
the main reason for the failure of other algorithms.



Chapter 4

Discrete Optimization

In this chapter, we focus on discrete problems in bioinformatics and how to solve them. We
start in Section 4.1 with the bond order assignment problem for molecular structures. Bond
order information can often not be directly inferred from the available experimental data.
Even important molecular databases, like the Cambridge Structural Database [6] and the
Protein Data Bank (PDB) [18, 17], are known to contain erroneous data for connectivity
and bond order information [106] or to omit them entirely. For nucleic acids and proteins
bond orders can easily obtained due to their building block nature, but this does not hold
for other kinds of molecules like ligands. Furthermore, it is not practicable to assign bond
orders manually for, e.g., virtual screening purposes, where thousands of molecules are to
be considered. Hence, automated bond order assingment is often a fundamental task for
the work with molecules. We present our novel linear 0-1-programming formulation for the
efficient computation of all optimal and suboptimal bond order assignments based on the
penalty table of Wang et al. [182]. We show that our approach outperforms not only the
original method of Wang et al. [182], but also commonly used software for determining bond
orders on our test set considering all results. The test set consists of 761 thoroughly prepared
drug like molecules that were originally used for the validation of the Merck Molecular Force
Field (MMFF94).

In the following section, we address the task of feature subset selection based on our
second order mutual information criterion. In machine learning, the problem of supervised
classification is concerned with using labeled examples to induce a model that classifies objects
into a finite set of known classes. Avoiding irrelevant or redundant features is important
because they may have a negative effect on the accuracy of the classifier. Copious classification
tasks occur in bioinformatics. The examples stretch from distinguishing cancer tissues from
normal tissues [7] to splice site prediction [38]. In this work, we present our filter method for
feature subset selection, where our criterion is mathematically well motivated and, in contrast
to other methods, exactly solved by quadratic 0-1-programming. In the validation runs, our
method could achieve in 18 out of 21 test scenarios the best classification accuracies.

In the last section, we present a novel linear 0-1-programming based branch-and-cut ap-
proach for the detection of deregulated subgraphs within regulatory networks using expression
profiles. The vision implicated by the proposed connectivity model is to identify — besides
the most deregulated components — the root node that may represent a key player in the
pathogenic process. This key player may be responsible for the observed differences between
the investigated conditions and may serve as a potential target for therapy purposes. To this
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Figure 4.1: Bond order assignment. Connectivity information is symbolized by single bonds on the
left.

end, we identify subgraphs with an explicit root node, i.e. all other vertices are reachable from
this special node in the directed subgraph. To demonstrate the capabilities of our algorithm,
we analyzed expression profiles from nonmalignant primary mammary epithelial cells derived
from BRCA1 mutation carriers and epithelial cells without BRCA1 mutation. Our results
suggest that oxidative stress plays an important role in epithelial cells with BRCA1 mutations
that may contribute to the later development of breast cancer.

4.1 Bond Order Assignment by Linear 0-1-Programming

Copious applications in bioinformatics and computational biology process molecular struc-
tures. Thus, not only reliable atomic coordinates are essential for the corresponding algo-
rithms, but also correct bond order information. For example, we made the acquaintance
of such applications in the previous chapter. Bonds do not only define the connectivity of
atoms in a molecule, but also specify structural aspects like rotatability of individual groups.
Unfortunately, bond order information can often not be directly inferred from the available
experimental data and are inextricably linked with the atoms’ charges. Even important
molecular databases, like the Cambridge Structural Database [6] and the Protein Data Bank
(PDB) [18, 17], are known to contain erroneous data for connectivity and bond order infor-
mation [106] or to omit them entirely. For nucleic acids and proteins bond orders can easily
obtained due to their building block nature, e.g. our biochemical algorithms library (BALL)
[101, 102, 76] contains routines and a database for assigning the information of interest. How-
ever, this does not hold for other kinds of molecules like ligands. Very different strategies
have been developed and applied to derive bond order information, most of them relying on
the correctness of the atom coordinates.

Historically the first approach has been to overcome these problems by hand curation
which, certainly, does not scale well to large numbers of molecules, but provides most probably
the highest reliability. Early automated methods rely on the correctness of atomic coordinates
and focus on reference bond lengths and valence angles [10]. Other algorithms [75] consider
additionally functional group detection and further molecular features like hybridization states
and charges [175, 196]. Main disadvantages are not only their heuristic nature but also the
dependence on the correctness of atomic coordinates, which is not given, e.g., in a molecular
modeling environment with manually drawn molecules. Labute [106] proposed recently to
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represent the addressed task as a maximum weighted matching problem for nonbipartite
graphs and used an exact approach to solve it. Froeyen and Herdewijn [52] presented an
integer linear program for generating valid Lewis structures (electron dot structures) with
minimal formal charge on each atom.

The recent work of Wang et al. [182] deals with the problem in an elegant way: a chemi-
cally motivated, expert generated penalty function is used to score bond order assignments.
Regrettably, in the provided source code the penalty function is hard coded, but in principle
this approach is a good choice when the bond order assignment process has to be tuned for
special kinds of molecules. The scoring function can be adapted to, e.g., highly charged atoms
in a series of experimental derived molecules while the algorithm to find the solution is not
affected. Wang et al. [182] optimized this scoring function heuristically. This procedure has
two drawbacks: the score of the resulting assignments is not guaranteed to be optimal and
the algorithm provides only one solution while there can be more than one assignment with
optimal score. Recently [41], we proposed two approaches that solve the problem to global
optimality. Here, we present our novel linear 0-1-programming formulation for efficient com-
putation of all optimal and suboptimal bond order assignments and show that our approach
does not only outperform the original heuristic approach of Wang et al. but also commonly
used software for determining bond orders on our test set. It consists of 761 thoroughly pre-
pared drug like molecules that were originally used for the validation of the Merck Molecular
Force Field (MMFF94), see also [40].

4.1.1 The Scoring Function of Wang et al.

The idea behind the scoring function of Wang et al. [182] is to penalize unlikely bond orders,
prevent impossible orders, and support frequent assignments. To this end, a score is assigned
to every atom type depending on the orders of its bonds to its neighbors. In other words, its
atomic valence is defined as the sum over all bond orders bo of all bonds connected to the

atom under consideration
con

av = E bo;,
i=1

where con denotes the number of bonded atoms. Finding the most probable consistent bond
order assignment for a given molecule is then addressed by minimizing the total penalty score

n
tps = Z aps;,
j=1

where n denotes the number of atoms and aps; is the penalty score that is assigned to atom j.
The penalty scores are stored in a penalty table that uses a rule-based atom type classification,
see Table 4.1.

4.1.2 Linear 0-1-Program

While in Wang et al. [182] minimization proceeds in a heuristic and greedy manner with the
aforementioned drawbacks, our new approach solves the problem to global optimality with
the techniques mentioned in Section 2.7.1. Let P be the penalty table. We use the following
notations:

o A is the set of all atoms of the molecule under consideration.
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No. Atom type av) avl av2 av3d avd avb av6 av7
15 HF,CLBrl 64 0 64

6 Cin C=N-R 0 1 32

7 C(X1) 10 32

8 Cin COO~ 32 0 32

9 C 64 32 0 32 64

10 Si 0

11 N(X1) in N=N=R 0 0

12 N(X1) 30 32

13 N(X2) in N=N=R 10

14 N(X2) 4 0 2

15 N(X3) in nitro 64 32 0 32

16 N(X3) in pyridine-1-oxide, etc. 1 0

17 N(X3) 32 0 1 2

18 N(X4) 64 0 64

19  O(X1) in pyridine-1-oxide, etc. 0 1

20 O(X1) 1 0 64

21 O(X2) 32 0 64

22 P(X1) 2 0 32

23 P(X2) 4 0 2

24 P(X3) 32 0 1 2

25  P(X4) is bonded to two O(X1) or S(X1) 32 0 32
26  P(X4) is bonded to three O(X1) or S(X1) 32 0
27 P(X4) 64 1 0 32

28  S(X1) in pyridine-1-thiol anion, etc. 0 1

20 S(X1) 2 0 64

30 S(X2) 32 0 32 1

31 S(X3) 1 0 2 2

32 S(X4) is bonded to two O(X1) or S(X1) 0 32
33 S(X4) is bonded to three O(X1) or S(X1) 32 0
34  S(X4) is bonded to four O(X1) or S(X1) 32 0
35 S(X4) 4 2 0

Table 4.1: Atomic penalty scores for different atom types according to Wang et al. [182]. In the
atom type column, X1-X4 denotes that the number of bonded atoms is 14, av0-av7 stands for

atomic valences 0—7. Empty table entries symbolize forbidden valences.
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e B(a) is the set of bonds of atom a € A and B denotes the set of all bonds of the
molecule.

e V(a) C Z>¢ contains the possible valences of atom a € A according to penalty table P.
e P(a,v) is the entry of P for atom a € A and valence v € V(a).

Our approach uses two different classes of variables. For each bond b € B we introduce
variables xp 1,...,%5, € {0,1}, where p is the maximum bond order considered!. In other
words, xp 1 equals 1 iff the order of bond b is k. For all atoms a € A corresponding possible
valences v € V(a), we introduce choice variables y,, € {0,1}. Each y,, symbolizes whether
the corresponding penalty P(a,v) is chosen or not, i.e. penalty P(a,v) contributes to the
score iff yq,, = 1. Thus, the objective function of our score minimization problem can be
formulated as a linear function in y with penalty prefactors

H;inz Z P(avv)'ya,v-

a€AveV(a)

To ensure that each atom is assigned exactly one valence state, we add the additional con-

straints
Z Yav = 1
veV (a)

for all a € A. In addition, we have to ensure that the sum of its bond orders equals its chosen
valence. These constraints can be formulated as

1
Z Yaw - UV = Z be,k'k;

veV(a) beB(a) k=1

for all @ € A, because both sides evaluate to the chosen valence. The uniqueness of an order
assignment is guaranteed by constraints

0
D ak =1
k=1

for all b € B. The advantage of binary variables in contrast to integer variables is that after
obtaining a single solution S for the bond order assignment problem, we can prohibit this
concrete solution by adding the constraint

be,S(b) <|B[-1, (4.1)
beB

where S(b) denotes the order of bond b in the solution S to be forbidden. Solving the total
system again will yield another, perhaps also optimal solution or one of the “best suboptimal”
solutions. In summary, the score minimization problem can be formulated as the following

Tn the following, we will set x to 3, allowing single, double, and triple bonds.



90 CHAPTER 4. DISCRETE OPTIMIZATION

linear 0-1-program

1)1{1’1;1 Z Z P<avv)'ya,v

a€AveV (a)
m
s.t. Z Yapw V= Z Z“Tb:k -k Va € A,

veV (a) beB(a) k=1

Z Yap =1 Va € A,
veV(a)

i
be,k =1 Vb € B,
k=1
Yaw € {0,1} Va € A, Yv € V(a),
l‘bJﬂE{O,l} Vk:L...,,U,,VbEB.

As mentioned in Section 2.7.1, several strategies can be chosen to solve our linear 0-1-program
to provable global optimality. We employed CPLEX in this work, a commercial linear and
quadratic integer solver. It is interesting to note that the penalties in Table 4.1 (almost) all
can be expressed as powers of two and as such led to short computation times. Still, the
problem itself is NP complete [137]. However, in many test cases the solution of the relaxed
linear program, i.e. the above program without the 0-1-constraints, has been integral and,
hence, a solution of the original problem (obtained without any branching). In other cases,
the solution of the linear program has been almost integral, leading to only a few branching
steps. Thus, our approach is well suited for obtaining one optimal bond order assignment. By
adding constraints (4.1), we obtain all optimal and suboptimal solutions. It is interesting to
note that CPLEX provides a so-called “repair heuristic” and techniques to obtain a feasible
solution for the new problem based on the solution of the old problem. In other words, adding
a constraint (4.1) does not require to solve the derived problem from scratch, but CPLEX
is able to perform a warm start and only a few iterates lead to a globally optimal solution
anew. Thus, all optimal and suboptimal solutions can be enumerated efficiently.

4.1.3 Results

The entire code that was used in this work for the modeling of atoms, bonds, and molecules
was generated using the C++ library BALL [101, 102, 76]. We employed CPLEX?, version
11.1.1, as solver in this work. We chose to compare our approach to the implementation of
Wang et al. [182], called Antechamber, as well as to widely used software like OpenBabel?,
version 2.2.0, and I-interpret* [196], version 1.0. OpenBabel is an open source software
originally intended for the conversion between different molecular file formats and has to,
hence, due to the lack of bond order information in some file standards, add and assign bonds
and bond orders. I-interpret relies, like OpenBabel, on correct bond lengths, hybridization
states, etc. and has been recently developed. Regrettably, we were not able to initialize
the bond order assignment process of OpenBabel and I-interpret without deleting all bond
information from the tested molecules, i.e. both algorithms had to detect where bonds are and

2http://wuw-01.ibm.com/software/integration/optimization/cplex/
3http://openbabel .org
‘http://www.sioc-ccbg.ac.cn/software/I-interpret/
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where not. Fortunately, both products were able on our test set, the MMFF94 validation suite
[63, 64, 65, 66, 67], to reconstruct (most) bonds. To be exact, OpenBabel failed to detect the
connectivity information of 1 molecule, I-interpret went wrong on 6 of 761 molecules of the
MMEFF94 validation suite. Both numbers are, fortunately, substantially small in contrast to
the 761 molecules tested in our validation runs. Thus, the comparability between the different
algorithms is ensured. The MMFF94 validation suite consists of 761 thoroughly prepared drug
like molecules with well defined distances, bond angles, etc.. Hence, the comparison of our
approach to OpenBabel and I-interpret is legitimate, since both methods strongly rely on
correct bond angles and lengths. In our test runs, we used the penalty Table 4.1 as defined in
Wang et al. [182]. Certainly, it is solver dependent which solution is returned if more than one
global optimum solution exist. Therefore, we calculated all optimal solutions and compared
which coincides with the original bond orders. Table 4.2 shows our results. It must be noted
that Antechamber returned non-optimal solutions in 6 cases and is not able to produce more
than one solution. Additionally, OpenBabel and I-interpret can calculate only one bond order
assignment due to their approach.

Method Reference is No Solution  Connectivity
1st solution optimal not determined
Antechamber 282 (37.05%) 282 (37.05%) 18 (2.36%) -
OpenBabel 509 (66.87%) 509 (66.87%) 0 1 (0.13%)
Linterpret 546 (71.75%) 546 (71.75%) 0 6 (0.79%)
Our method 409 (53.75%) 600 (78.84%) 4 (0.53%) -

Table 4.2: Performance of the original Antechamber implementation, OpenBabel, I-interpret, and
our linear 0-1-programming formulation on the MMFF94 validation suite. The second column denotes
the number of molecules for which the algorithm returns the original bond order assignment as first
solution. The third column denotes the number of cases, where the reference bond order assignment
was within the solutions with minimal total penalty score. The fourth column denotes the number of
molecules for which no solution was found. The last column gives the number of molecules for which
the original connectivity information could not be achieved, see text.

As shown in Table 4.2, I-interpret is a very promising tool for assigning bond orders.
It could even slightly outperform the widely used OpenBabel. Both methods are clearly
superior considering only the first solutions obtained by our approach. However, the test
set contains many (kekulized) ring structures where a unique bond order assignment does
not exist. Thus, we have to compare the results to all optimal solutions and find that the
successive enumeration leads to a success rate of 78.84%. Our method is able to significantly
reproduce more molecules of the MMFF94 validation suite than the other approaches. Table
4.3 gives information about how many correct bond order assignments occurred with the
number of their solution. For example, in 409 cases the first calculated solution led to correct
assignments. If the first solution has not been the reference assignment, in 142 cases the
second computed solution succeeded, etc.. In summary, we only needed to calculate up to 8
solutions in order to obtain a success rate of 78.84%.

Obviously, the quality of the penalty table, e.g. the definition of the atom classes, their al-
lowed valence states, and the choice of the valence state’s penalties have a significant influence
on the performance of our method. Table 4.2 shows that the current penalty table does not
cover all molecules in the MMFF94 validation suite — for four molecules some of the required
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Solution returned 1st 2nd 3rd 4th 5th 6th &th
No. of correct bond order ass. 409 142 21 19 3 4 2

Table 4.3: Number of correct bond order assignments with the returned solutions, e.g. in 142 cases
the second solution has been the reference assignment.

atom classes are missing. It is important to note that the difference to the Antechamber
bailing out rate is a result of the heuristic nature of the optimization proposed in Wang et
al. [182].

4.1.4 Conclusion

Our method improves considerably upon earlier approximate solution schemes (Antechamber)
by guaranteeing optimality. Our results are surprising in comparison to OpenBabel and I-
interpret. Both approaches strongly rely on bond lengths and angles and, thus, should be
optimally suited for our test set, the MMFF94 validation suite.

Due to our work, the limiting factor is no longer the algorithm to find an assignment but
the scoring function behind. Wang et al. have introduced atom types and penalty scores for
each type. New atom types and adapted scores may further improve the results [39]. However,
the development of such scoring functions is beyond the scope of this work. Most probably,
the best results will be achieved with specialized scores for certain classes of molecules.

4.2 Optimal Feature Selection

Discriminant analysis is widely used in bioinformatics, such as distinguishing cancer tissues
from normal tissues [7] or one cancer subtype vs another [5], predicting protein fold or super-
family from its sequence [85, 43], etc.. Avoiding irrelevant or redundant features is important
because they may have a negative effect on the accuracy of the classifier. Many features may
introduce noise without carrying information about the class labels. Thus, crucial for these
classification tasks is feature selection. Instead of using all available features, only a subset is
employed for the classification. Feature selection is accompanied by several advantages: (1)
reduction of overfitting of the used learning methods and, hence, improvement of the classi-
fication accuracy, (2) the obtained features are more interpretable that can help identifying
and monitoring the target diseases or function types, and, finally, (3) dimension reduction
decreases the computational costs for the classification algorithms.

Feature selection methods can be classified into two types, wrappers and filters [35, 100].
In wrapper type methods, feature selection is “wrapped” around a learning method. Often, a
set with very small number of non-redundant features can be obtained [100], which gives high
accuracy, because the characteristics of the features match well with the characteristics of
the learning method. However, wrapper methods have one major drawback: computational
costs. They typically require extensive calculations to select the best features.

The second class of algorithms, filters, is classifier independent, as filters are not dedicated
to a specific type of classification method. Essentially, they are a kind of data preprocessing
which selects features based on intrinsic characteristics determining their discriminant capa-
bilities with regard to the class labels. The main advantage over wrappers is that they do not
need to use the classification algorithm for their selection and are usually computationally
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cheaper. Here, we present our filter method that uses second order information [153], see
Section 4.2.1, while other methods strongly rely only on first order information, see Sections
4.2.2 to 4.2.4. Furthermore, our criterion is mathematically well motivated and, in contrast
to other methods, exactly solved by quadratic 0-1-programming, see also Section 2.7.2, and
not approximated.

4.2.1 Second Order Mutual Information Criterion

The “best” feature subset often means a minimal classification error. In an unsupervised
situation where the classifiers are not specified, minimal errors usually require the maximal
statistical dependency of the class labels on the features and vice versa. This is usually
characterized in terms of correlation or mutual information, which is a widely used measure
for the dependency between random variables. It is defined as

I(a;b) = H(a) + H(b) — H(a,b),

where H(a) is the entropy of a. In terms of mutual information we can express the problem
of finding a feature subset S = {x1,...,X;,} with m features, which have maximal statistical
dependency on the class labels y by

max [(S;y)
s. t.|S|=m.

Obviously, for m = 1 the solution is the feature j that maximizes I(x;;y). We have

1(S;y) :% > I(xiy) + (m_ll)(m) D I(xiylx;)
i=1 1/ j+#i
+ % Z I(xisy|xj,xi) + -+ L ZI(XiSY\S\{Xi})-
(m 2)(2) - m —
],
itk

All approaches we present in the subsequent sections approximate I(.S,y) only by first order
information, i.e. I(x;;y), all remaining terms are neglected. Here, we present our approach
to use second order information.

Theorem 4.2.1. It holds

m m—1

1 1

I(S;Y):TZI((Xiﬂxj);y)"i_Z m Z I(Xkrﬂ;y’xklw"?xkr)‘
( ) i<j r=2 (m—r)(r) . klik]-c2<mkﬁ

r+1 i1=1,..., r

Proof. We have

I(S;y) = I(x1;y) + I((x1,%2);y) — I(x1;y) + -+ 1(S;y) = I((X1,- -, Xm-1);¥)
=I(x1;y) + I(x2;y|x1) + I(x3;y|x1%x2) + - + I (X3 Y[X1, - -+ s Xn—1)-
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Reordering and counting the terms I(x;;y) yield

I(S;y) = I((x1,%2);y) + I((x1,%2,%3);¥) — I((x1,%X2);y) + -+~
e+ I(Syy) = I(x1, -+ oy Xm—1)3Y)
= I((x1,x2);y) + I(x3;y|x1,%x2) + - - + I (X3 Y|X1, - -, Xin—1).

The choice of the sequence of random variables is arbitrary. Thus, we can average over all
possible permutations of x1, ..., x,,. We have for k variables (7;) different possibilities because
we do not consider the order of the random variables. We can choose among all remaining
(m—Fk) random variables. Thus, the number of possibilities of the term I(xy, ,,: ¥|Xk;, - - -, Xx,.)
is given by (m —r)(). O

Based on the above observation we propose to maximize

max > T((xi,%7);¥) (42)

XX €s
i#]

s. t. |S| =m,

where we use second order information. We solve (4.2) to provable global optimality by
modeling the problem as quadratic 0-1-program and with the techniques described in Section
2.7.2. We introduce binary 0-1 decision variables x; for each feature x; meaning feature x; is
selected iff x; = 1. Thus, with

0 LI((x1,%2);y) 21 (1, x0);y)
A | 21((1x2)5y) ' . .

SI((x1,%,);y) - SI((%n-1,%2); ) 0
problem (4.2) is equivalent to the quadratic 0-1-program

min — x? Ax (4.3)

X

n

s. t. le =1m,
i=1

T; € {O, 1}.

The matrix —A is obviously not positive semidefinite. Thus, we have to perform the semidef-
inite preprocessing described in Section 2.7.2. Afterwards, we use CPLEX®, version 11.1.1,
as solver for the convexified quadratic 0-1-program. It is interesting to note that if we sample
m, we do not need to solve (4.3) for every m from scratch. The (convexified) objective func-
tion does not change when m has another value. Furthermore, CPLEX provides a so-called
“repair heuristic” and techniques to obtain a feasible solution for the new problem based on
the solution of the old problem. In other words, if m is changed in (4.3), the derived problem
does not have to be solved from scratch. CPLEX is able to perform a warm start.

Shttp://www-01.ibm.com/software/integration/optimization/cplex/
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4.2.2 Max-Relevance and Min-Redundancy Criterion

The approach of Peng et al. [140] is to maximize the relevance while minimizing the redun-
dancy. Let S be the feature set with m features x; (to be determined) and y the class labels.
Maximum relevance is according to Peng et al. [140] a first order criterion

1
max — Z I(x;;y)
x; €S

s. t. |[S] =m.

Since it is likely that features selected according to this criterion could have rich redundancy,
i.e. the dependency among these features could be large, they further give the minimal re-

dundancy criterion®
) 1
x; €8 x;€S5
xi¢x7~
s. t. |S| =m,

and combine both to their max-relevance and min-redundancy criterion

max % Z I(x;;y) — m(;_” Z Z I(xi;%x5) (4.5)

X, €S X;ES x;j€8
xi;éxj

s. t. |[S] =m.

They give an incremental search method to find near optimal features. Let X be the set of
all features. Based on the set S,,—1 of m — 1 already selected features, they choose the mth
feature by determining

max I(xjy) — —— Z I(x;5%;)

(EX\Sm_ m—1
% \ m—t xiESmfl

4.2.3 Globally Optimal Max-Relevance-Min-Redundancy

Peng et al. [140] give only an incremental approach for finding near optimal feature sets.
However, we can solve the optimization problem (4.5) exactly by quadratic 0-1-programming
similar to our approach in Section 4.2.1. We introduce binary 0-1 decision variables x; for
every feature x; meaning feature x; is selected iff x; = 1. Thus, with

S T S
A= _%ﬁl(xﬁxﬁ
o . ~h T ix)
*§ml(xl;xn) *§ml(xn71;xn) (Xn§Y)

SPlease note that we corrected an obvious mistake in [140], because minimizing the entropy of a feature is
useless.
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problem (4.5) is equivalent to the quadratic 0-1-program

min — x? Ax
X

n

s. t. le =1m,
i=1

z; € {0,1},

which can be solved by the semidefinite convexification approach in Section 2.7.2 followed
by a branch-and-cut method. Please note that the computational advantages of our method
do not hold in this case if m is sampled. Changing m means modifying A and, thus, the
semidefinite program solver has to be called once m is changed. Finally, CPLEX cannot
perform a warm start but has to solve each problem from scratch.

4.2.4 The Conditional Mutual Information Method

Fleuret [51] proposes a feature selection method based on the conditional mutual information

I(X;YZ) = I((X, 2);Y) = I(Z;Y)
= H(X,Z)+H(Y) - H(X,Y,Z)— H(Z) - HY)+ H(Y, Z)
= H(X,Z)—- H(X,Y,Z)— H(Z)+ H(Y, Z).

The main goal of his feature selection is to select a small subset of features that carries as
much information as possible. His approach deals with the tradeoff between individual power
and independence by comparing each new feature with the ones already picked. He assumes
a feature x’ is good only if I(y;x'|x) is large for every x already picked. In other words, x’
is good only if it carries information about y, and if this information has not been caught by
any of the x already picked. Let X be the set of all features. Based on the set S,,,—1 of m —1
already selected features x; he proposed to choose the mth feature by

max min I(y;x;|x; 4.6
eppx | min (¥5xilx;) |, (4.6)
where the first feature is chosen by

I(y:x;).
max (y;xi)

In his work [51], he focuses on binary features and shows how this can be exploited for a very
efficient implementation. However, on his homepage we could find an erratum that admits
that in his implementation not (4.6) is used but

i I 1 X5 ), i 1 s Xq | X4 . 4.7
e [mm{ (v;xi) i (y;x \X;)H (4.7)

For our test runs we implemented (4.6) as well as (4.7).

4.2.5 Class Prediction Methods

All presented feature selection methods do not convolve with specific classifiers. In this
section, we give a short survey of the classifiers we tested and our improvements for parameter
optimization.
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4.2.5.1 Naive-Bayes Classifier

The Naive Bayes (NB) [119] is one of the earliest classifiers. The idea is to apply Bayes rule
under the assumption that the features are independent of each other, given the target classes.
Let s = (s1,...,5m) be a sample of m features, then the posterior probability that s belongs
to class ¢, is

m
plex |'s) o< []p(si | en), (4.8)
i=1
where p(s; | ¢) is the conditional probability table (or densities) learned from examples in
the training process. In order to assign a sample s to a class, this classifier evaluates Formula
(4.8) for all possible class labels and returns the label with the highest probability. Although
there exist many examples where the independence assumption fails, NB shows classification
results comparable to other more sophisticated classifiers on many real data sets [119].

4.2.5.2 Support Vector Machine

Support vector machines (SVMs) have been developed by Cortes and Vapnik [32] for binary
classification. Basically, SVMs look for the optimal separating hyperplane between the two
classes by maximizing the so-called margin between the closest points of each class, see Figure
4.2. The points on the boundaries are called support vectors, and the middle of the margin is
the optimal separating hyperplane. If both classes are not separable, soft margin techniques
are applied, i.e. data points on the “wrong” side of the discriminant margin are allowed
by additional variables that measure the degree of misclassification. The influence of allowed
misclassification can be adjusted by a parameter C. The training of a SVM consists of finding
the optimal hyperplane. Data points are classified afterwards by evaluating on which side the
points are located. We used 1ibsvm [27], which also supports multi-class classification using
a one-against-one technique by fitting all binary subclassifiers and finding the correct class
by a voting mechanism.

This original optimal hyperplane algorithm is a linear classifier. In 1992, Boser et al. [22]
suggested a way to create non-linear classifiers by applying the kernel trick to maximum-
margin hyperplanes. In the resulting algorithm, every occurring dot product xiij is replaced
by a non-linear kernel function k(x;,x;). This allows the algorithm to find the optimal
separating hyperplane in a transformed feature space. The embedding function may be highly
non-linear and the transformed space high dimensional. Hence, the classifier may be non-
linear in the original space. In this work, we used the linear kernel

k(xi,x;) = x; %;
and the Gaussian radial basis function (RBF)
k(xi,x7) = exp (=7 - [|xi — x5) .

Before training and classifying with a SVM it is not known a-priori which values of the
above mentioned parameters C' and v are the best for the classification problem and, hence,
some kind of model selection (parameter search) has to be done. To avoid overfitting, our
parameter optimization approach is a cross-validation procedure. The authors of libsvm
recommend a grid search on C' and ~. They found that trying exponential growing sequences
of C' and v is a practical method to identify good parameters, e.g. C = 275,273 ... 213,
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Figure 4.2: Classification by separating hyperplane. Depicted is the linear separable case.

=271 2713 23 As they recommend, we first use a coarse grid and after identifying a
“better” region a finer grid search on that region is performed. However, each cross-validation
run is expensive. Thus, we improved the grid search approach by a concave overestimater
approach.

Certainly, we want to maximize the accuracy or — equivalently — to minimize (-accuracy).
The concave overestimator for the accuracy is equivalent to the convex underestimator for (-
accuracy). The semidefinite underestimater approach is a technique for the (heuristic) global
minimization of an unknown function f. A quadratic function

1
q(x) = ixTAX +blx+c
is constructed, which systematically underestimates known positions, i.e.

q(xi) < f(xi) (4.9)

i = 1,...,m for all m positions where f(x;) is already known, see Figure 4.3. The idea is
to force A to be positive definite and, hence, ¢ is a convex function. The minimum of ¢
is then used as new trial position. The aim is to choose ¢ in a way that ¢ is a very tight
underestimator. To be more precise it is chosen in a way that

m

Z(f(xi) — q(xq))

i=1
is minimal, subject to Inequalities (4.9) and
A >0,
which is achieved by solving a semidefinite program, i.e.

A'~0
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v

Figure 4.3: Quadratic underestimater (dashed line) of given function values (black circles).

and using afterwards
A=A"+¢I,

where € > 0 is a lower bound of the smallest eigenvalue of A. Our SDP formulation is quite
similar to that of Paschalidis et al. [139] and Marcia et al. [112] but we do not set explicit
bounds on b and ¢, and we force A to be positive definite. We introduce vectors b™, b~ > 0,
scalars ¢, ¢~ > 0 satisfying b = b™ — b~ and ¢ = ¢* — ¢, and slack variables s; with
si = f(xi) —q(xi),

1=1,...,m. Since

x!] Ax; = <xiXiT, A) = <XZ'X,LT, Al +eI) = <xixiT,A’> + ex?x;,
where (C,D) = vec(C)vec(D) and vec(C) is the “vectorization” of a matrix C, we have
constraints

1 _ _ 1
si = f(xi) — 3 <xixiT,A’> — (b =b )% — (¢t —¢7) - §ExlTxi,
Sj > O,
1 =1,...,m and we want to minimize
S;.
i=1
Note that in our case bt = (b5, b3)", b~ = (b, b5)7, and x; = (24,0, )" since we only

want to optimize two variables C' and 7 (in case of the Gaussian radial basis kernel, only C
in case of the linear kernel). Using the block diagonal matrices

S1

Sm
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0
1 = 1,...,m, where 1; denotes that all entries corresponding to si,...,s,, in X are zero
except for s; where the entry is one, and the values

1
bi = f(Xz) — §€XZTX7;,

we have a semidefinite program in primal standard form
min (C, X)
Xesn
s t. (AL, X)=0b;, i=1,...,m,
X >0.

In summary, after a grid search in the current region we used this approach to calculate
a further trial position (minimum of ¢). While not substantially increasing the total run
time (the semidefinite programs are solved very fast by the software library CSDP [21]), our
approach may be able to save cross-validation runs.

4.2.6 Results

We used libsvm [27] for the support vector machines, CSDP [21] as semidefinite program
solver, and CPLEX" as solver for the convexified quadratic 0-1-program. The remaining
routines and methods have been implemented from scratch in C and C++. Since most of
the necessary calculations are independent, our implementation has been parallelized where
possible. The parameter optimization process for the support vector machines has been
parallelized using Intel® Threading Building Blocks®, which is a library that offers a rich and

"http://www-01.ibm.com/software/integration/optimization/cplex/
8http://www.threadingbuildingblocks.org
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complete approach to expressing parallelism in a C4++ program. Thus, the cross-validation
runs for parameter optimization used all 4 cores of our Intel Core2 Quad, 2.83GHz. The
task of generating the matrices in (4.3) means essentially counting the number of occurrences
for the probabilities. This can be parallelized in short threads, but there are many of them.
Thus, we decided to employ GPU computing and used NVIDIA’s Compute Unified Device
Architecture (CUDA)Y. This way, the generation time of a 700 x 700 test matrix could be
reduced from about 15 minutes (serial, not optimized, CPU) to 14 seconds on our NVIDIA
GeForce 9800 GT with identical results. Furthermore, we implemented the Naive Bayes
classifier in a highly parallel variant using CUDA.

We compared the different methods on publically available data sets from the UCI machine
learning repository'?. Some data sets provide separate trainings and test data. If this has been
the case, we used them as in the repository. For data sets without test data, we evaluated the
approaches by 10-fold cross-validation. If data has not been categorical, we preprocessed them
with a binning procedure with bin size (number of samples)%. Thus, the mutual information
could be estimated by counting on the categorical data. We used the following data sets:

e Soybean (large) [118] with 35 categorical attributes and 307 instances. This data set
contains trainings and test data.

e Molecular Biology (Splice-junction Gene Sequences) [134] with 60 categorical attributes
and 3190 instances.

e Breast Cancer Wisconsin (Original) [111] with 10 integer attributes and 699 instances.

e Synthetic Control Chart Time Series Data Set [141] with 60 real attributes and 600
instances.

e MONK’s Problems [171] with 6 categorical attributes and 432 instances. This data set
consists of three different classification problems, each with trainings and test data, and
was the basis of a first international comparison of learning algorithms.

In summary, we evaluated and compared the feature subset selection approaches on 21 test
scenarios: 7 data sets with 3 classifiers each (SVM with linear kernel, SVM with RBF kernel,
and NB classifier). Figures A.1 to A.21 in Appendix A show our classification results.

Our method could achieve in 8 scenarios a better classification accuracy than all other
methods. In the remaining 13 scenarios, the best accuracy could be accomplished in 10 cases
together with other approaches. In summary, the results show that our method led to a
total of 18 cases out of 21 scenarios where the best classification accuracy could be achieved.
Another observation is that the approach of Peng et al. [140] lives up to its good reputation.
It is interesting to note that the results of their iterative calculation process often coincides
with our globally optimal solutions. Where this has not been the case, i.e. synthetic and
breast cancer data sets, we cannot uniquely decide which results are better and which worse.

4.2.7 Conclusion

We developed a mathematically motivated second order criterion for the feature subset selec-
tion task, which we solved to global optimality by semidefinite convexification and a branch-
and-cut procedure. Our approach could achieve the highest classification accuracy in 18 of

“http://www.nvidia.com/object/cuda_home.html
Ohttp://archive.ics.uci.edu/ml/
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21 test scenarios, which could not be accomplished by other tested methods, rendering our
method an alternative to well established filter methods. The additional computational ex-
penditure of our approach has been compensated by a highly parallel implementation, which
uses multi-core CPUs as well as GPU computing to achieve acceptable run times (maximum
a few seconds for one fixed subset size). However, the major drawback of our approach are
the quadratic storage needs for the corresponding matrices. Nevertheless, our good results
show that using more memory might be more worth in comparison to the enormous com-
putational costs of wrapper approaches. Future investigation, also on other data sets, will
show whether an extended criterion, e.g. reduction of redundancy by a weighted criterion,
can further improve our results.

Moreover, we solved optimally the maximal relevance minimal redundancy criterion of
Peng et al. [140]. Certainly, their criterion is powerful, in particular when considering that
we have the guarantee of optimality. However, the results of their incremental approach are
very close to the optimal solutions. On average, our computationally more expensive globally
optimal solutions seem not to be worth being preferred to the original incremental approach
of Peng et al. [140]. Both methods, however, could not achieve the highest classification
accuracy in such a substantial number of cases as our mathematically motivated second order
method in our validation runs.

4.3 Determining Deregulated Subgraphs in Regulatory Net-
works

In the last decade, microarray-based gene expression profiles have become a central data
resource to study deregulated molecular processes caused by diseases. Initially, microarray
studies focused on single differentially expressed genes. Later, Gene Set Analysis (GSA)
and related approaches were taking into account that genes do not act individually but in a
coordinated fashion [121, 44, 4]. The disadvantage of this type of methods is that they can only
reveal the enrichment of genes in predefined gene sets, e.g., canonical biological pathways. In
recent years, the research focus has shifted toward analysis methods that integrate topological
data mirroring the biological dependencies and interactions between the involved genes or
proteins. In general, these graph-based approaches use scoring functions that assign scores or
weights to the nodes or/and edges and make strong efforts to identify high-scoring pathways
or subgraphs. A seminal work in this area is the paper of Ideker et al. who proposed a
method for the detection of active subgraphs by devising a scoring function and a heuristic
approach for detecting these subgraphs [83]. Other groups reported similar methods, which
are all based on scoring networks given experimental data [144, 25, 125]. In 2008, Ulitsky
and coworkers presented an algorithm for detecting disease-specific deregulated pathways by
using clinical expression profiles [174]. However, the abovementioned approaches focused on
protein-protein interaction (PPI) networks (undirected graphs) and used heuristics to find the
subgraphs. Dittrich et al. devised the first approach to solve the maximal-scoring subgraph
problem optimally by Integer Linear Programming (ILP) in the context of undirected PPI
networks [45]. Considering regulatory networks, Keller et al. [96] recently proposed a dynamic
programming algorithm to identify deregulated paths of a certain length relying on standard
Gene Set Enrichment Analysis (GSEA) [121, 107, 97].

Here, we do not consider single deregulated paths, but subnetworks or subgraphs and
present a novel branch-and-cut based approach for the determination of deregulated sub-
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graphs in regulatory networks. Given a regulatory network and node scores indicating the
deregulation of the corresponding genes, our approach identifies the heaviest connected sub-
network of size k, i.e. the most deregulated subnetwork with the highest sum of node scores.
Here, we define a subgraph GG as connected if it contains at least one root node v, from which
all other nodes in G are reachable, i.e., for each node v in G, a path from v, to v consisting
only of nodes in G exists. The vision implicated by the proposed connectivity model is to
identify — besides the most deregulated components — the root node that may represent a key
player in the pathogenic process. This key player may be responsible for the observed dif-
ferences between the investigated conditions and may serve as a potential target for therapy
purposes.

We applied our algorithm to gene expression profiles of nonmalignant mammary epithe-
lial cells from BRCA1 mutation carriers and non BRCA1 mutation carriers [24] to explore
the effect of the mutations on the regulatory processes and to gain new insights how these
mutations may contribute to the development of breast cancer.

4.3.1 Linear 0-1-Program

The problem of finding a connected subgraph of size k that maximizes the sum of the scores is
formulated as an Integer Linear Program (ILP) and then solved by a branch-and-cut approach.
Here, we define a subgraph G as connected if it contains at least one root node v, from which
all other nodes in GG are reachable, i.e., for each node v in G, a path from v, to v consisting
only of nodes in G exists. We assign a score (absolute value of the corresponding real data if
available) to every node in the network. Since not all nodes or gene identifier of the network
are also available on the microarray chip, we cannot assign a calculated score to every node
of the regulatory network. Missing scores are set to zero.

Our ILP formulation uses two kinds of variables for each node i: z; and y;. The vari-
ables x; € {0,1} determine whether their corresponding nodes are contained in the subgraph
(z; =1) or not (x; = 0). Each variable y; € {0,1} indicates that its corresponding node 7 is
the root node (y; = 1) or not (y; = 0). Let s; be the score of node i then the optimization
problem can be formulated as

m&x XZ: S;%j5.

The constraint that the subgraph has a predefined size of k nodes, is given by
i
We ensure that we obtain one root node by

Zyi =1
i

The inequalities

v < x; forall i

guarantee that a designated root node is also chosen. All remaining constraints concern the
connectivity of the desired subgraph. Let In(7) be the set of indices of the predecessors of
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node ¢, i.e. there exists an in-edge into node %, then we ensure that a chosen node has either
a predecessor or it is the designated root node by

Ti— Y — Z x; <0 for all i.
j€In(i)

Unfortunately, this kind of constraints is also fulfilled in cycles since every node in a cycle
has a predecessor. Hence, a subgraph generated by the above constraints alone may have
disconnected cycles. Let C be the indices of a cycle and analogously In(C) the set of indices
of nodes which share an in-edge into this cycle, then the extension of the above constraint to
the cycle C is given by

:Ui—Zyj— Z z; <0 forallieC. (4.10)
jec jemn(C)

In theory, the complete description of our optimization problem as given above requires a
constraint for every cycle, resulting in millions of inequalities of type (4.10) for the considered
problem instances. In practice, branch-and-cut algorithms start with a basic set of constraints,
solve the relaxed underlying LP problem, and check if the result violates constraints. If so,
the violated constraints are added and the solver is restarted. As our set of basic cycle
constraints, we only consider cycles with two or three nodes. In order to identify violated
constraints, we implemented an efficient algorithm that searches in given LP solutions for
cycles that do not satisfy inequalities of type (4.10). These inequalities will be added to
the constraint set. This procedure is iterated until either we obtain an optimal subgraph,
i.e an integer solution without violated constraints, or we have a non-integral solution, but
we cannot identify further violated constraints. In the latter case, we perform a branching
step. In this study, we used the branch-and-cut framework of CPLEX! version 11.110,
with the “traditional mixed integer search method”. This commercial library provides the
possibility to branch using automatically detected favorable strategies. We used CPLEX’s
default settings. For a detailed survey of branch-and-cut algorithms, the interested reader is
referred to Nemhauser [128] and Schrijver [160].

Our reference implementation is a single thread application, i.e. we could further speed up
the solution process by parallelization techniques. However, all calculations finished within
a few minutes on an Intel Xeon CPU, 2.5GHz. Thus, we did not incorporate advanced
programming methods.

4.3.2 Microarray Data and Scored List Generation

To evaluate our method, we generated scored gene lists from different microarray expression
profiles. For each of these data sets, we performed a normalization of the arrays if necessary.
If log transformed data was given, we computed for each transcript the fold difference of the
mean of the sample data versus the mean of the reference data. Since we can only map NCBI
Gene IDs to the network nodes, the microarray transcript IDs are converted to this identifier
type. The resulting list contains for each gene on the microarray a score that mirrors the
deregulation of the gene under the considered conditions.

"http://www-01.ibm.com/software/integration/optimization/cplex/
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4.3.3 Statistical Methods and Gene Sets for Validation

For testing the significance of a computed subgraph of size k£ and root node v,., we carried out
1000 permutation tests where we permuted the scores of the network nodes and computed
the best subgraph of size k with root v.. The p-value was calculated as the number of
permutations reaching an equal or better score than our original subgraph rooted in v, divided
by the total number of permutations.

To compare our method to the results of standard gene set analysis methods, we analyzed
the input lists sorted by their score with standard unweighted gene set enrichment analysis
(GSEA) using GeneTrail [11, 97]. Amongst other functional categories already provided by
GeneTrail, we also analyzed the curated gene set “c2.all.v2.5.symbols.gmt” from the Molecular
Signatures Database (MSigDB) [167], which contains additional gene sets from online pathway
databases, publications in PubMed, and knowledge of domain experts. Furthermore, we
performed an over-representation analysis (ORA) with GeneTrail of the nodes/genes of the
deregulated subgraph as test set and the genes of the regulatory graph as reference set.

4.3.4 Results

The input of our algorithm consists of a regulatory network and a list of genes that are scored
according to their deregulation. In this work, the underlying regulatory network was taken
from the KEGG database [93]. Since KEGG pathways also contain nodes for protein families,
we transformed the original KEGG pathways by splitting the nodes of protein families into
their components.

The second necessary input for our algorithm is a list of scored genes. These scores can
be derived, e.g., from expression experiments. In brief, if we want to compare the differences
in expression of two conditions, we compute for each transcript on the microarray a score
that mirrors the difference between the considered states. In general, we can use any measure
that is also applied for finding differentially expressed genes as, e.g., the fold change. In an
additional step, the transcript IDs are converted to gene identifiers. The resulting list contains
for each gene on the microarray a score that mirrors the deregulation of the gene under the
considered conditions, i.e., the higher the expression difference between the two considered
states, the larger the score of a gene.

Before the computation, the genes of the list have to be mapped to the network nodes.
Since not all nodes or gene identifier of the network are also available on the microarray, we
cannot assign a calculated score to every node of the regulatory network. Missing scores are
assumed to be zero. In our tests, about an eighth of all nodes had a zero score.

Given this input, our ILP-based algorithm computes the most deregulated connected
subnetwork of size k, i.e. the subgraph with the highest sum of node scores. It is rooted in a
special node v, from which all other nodes in the computed subnetwork are reachable. The
results can be visualized in the Biological Network Analyzer (BiNA) [105], which is a Java
application suited for the visualization of metabolic and regulatory networks.

We downloaded and analyzed the GSE13671 data set from GEO. The GSE13671 set con-
tains expression data from nonmalignant primary mammary epithelial cells with and without
BRCA1 mutations and was published in a study of Burga et al. [24]. We computed the fold
difference for the mean of the BRCA1 mutation carriers against the mean of non mutation
carriers given the normalized and log transformed expression values. The Affymetrix chip
IDs were mapped to NCBI Gene IDs and the resulting list containing genes and correspond-
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ing expression values served as input for our algorithm. To explore the stability of the core
components in this case, we computed the most deregulated subgraphs for different subgraph
sizes ranging from 10 to 25 nodes as in the first example.

Figure 4.4 shows the best subgraph for 25 nodes and, additionally, the remaining nodes
of the union graph as isolated vertices. Figure 4.4 also reveals that the complete union
graph is very compact (only 34 vertices for the most deregulated subgraphs consisting of
10-25 nodes), which means that the most deregulated part of the network seems to be stable.
The core components occurring in all of these subgraphs are the path EGLN3 (PHD3) —
EPAS1 (HIF-2a) — VEGF — KDR (VEGFR2) with the designated root node EGLN3 and,
more downstream located, the subgraph rooted in MAPK13 consisting of the genes TP53,
DDIT3, RRM2, and GADDA45B. It is interesting to note that the root node is very stable,
i.e. independent of the size of the subgraph, EGLN3 is always the designated root node.

When performing an ORA for the genes of the subgraph of size 25 as test set and the genes
of the regulatory network as reference set, we find many pathways significantly enriched that
are associated with cancer, e.g., the KEGG pathways: “VEGF signaling pathway”, “MAPK
signaling pathway”, “Focal adhesion”, “ErbB signaling pathway”, and the “p53 signaling
pathway”. These pathways have in common that they influence crucial cell processes as
proliferation, differentiation, cell motility, and survival. Furthermore, we can confirm the
results of Burga et al. [24], since the genes of the detected subgraph are also enriched in
the EGF pathway (MSigDB), as well as in the GO terms cell cycle and cell cycle arrest.
Interestingly, we also find pathways or categories significantly enriched that are associated
with hypoxia and oxidative stress, as e.g. “Hypoxia review”, “Hypoxia normal up”’, and
“Oxstress breastca up” from MSigDB.

To compare the results of our algorithm to a standard gene set enrichment analysis,
we subjected the input list containing the genes sorted by the absolute values of their fold
differences to the GSEA variant implemented in GeneTrail. The analysis revealed many sig-
nificantly deregulated pathways (p-value < 0.05, FDR adjusted), amongst others the KEGG
pathways “cell cycle”, “DNA replication”, and “missmatch repair”. When regarding the
MSigDB gene sets, we find the breast cancer related categories “BRCA ER neg”, “BRCA ER
pos”, “Breast cancer estrogen signaling”, and “Breast ductal carcinoma genes”, as well as the
hypoxia related category “Hypoxia reg up” significantly deregulated. Interestingly, in this
analysis neither the pb3 signaling pathway nor the EGF signaling pathway was significantly
deregulated.

Since a complete discussion about our results from a biological point of view is beyond
the scope of this work, the interested reader may be referred to Backes et al. [12].

4.3.5 Conclusion

Our approach is able to identify deregulated connected subgraphs in a directed regulatory
network. The optimization approach can be combined with every node-based scoring function
that is suitable to measure the deregulation of the corresponding genes or proteins. In this
study, we used the regulatory network from KEGG. However, we can apply the method to
any type of biological network, with slight modifications even to protein-protein interaction
networks or a combination of regulatory and protein-protein interaction networks.

The identification of patterns of pathway deregulation is a crucial task in differential
network analysis. Moreover, the determination of the initiators of the observed differences
between the investigated conditions is a major challenge. With our connectivity model we
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do not only identify the most deregulated subgraph, but also a root node, which may be
one of the key players for the deregulation. We applied our method to expression profiles
of nonmalignant primary mammary epithelial cells (PMECs) isolated from BRCA1 mutation
carriers and women without BRCA1 mutations. BRCA1 germline mutations are associated
with a predisposition for developing breast cancer.

In [12], we show that the nonmalignant mammary epithelial cells with BRCA1 mutations
exhibit many properties that are known from breast cancer. Our study indicates that the cells
are in a stressful state potentially originated from the processes involved in the regulation
of long-term oxidative stress. Moreover, it seems that it is a very thin line between a can-
cerous outcome and non-cancerous phenotype for BRCA1 mutated mammary epithelial cells
considering the accumulated deregulation affecting multiple signaling pathways visible in our
computed subgraphs. Although a GSEA also reported hypoxia as significant finding, this cat-
egory was one of some hundred significant categories. Thus, we had missed this information
most probably, while our approach led definitely to this result.

With our approach the most deregulated part of a network can be visualized and experts
can directly grasp the processes involved in the deregulation. Although the interpretation
is not always straightforward, our approach is at least a very powerful complement to the
standard gene set and single gene analysis methods for microarray data. Furthermore, we
showed that the application of our algorithm to already published data can yield new insights.
As expression data and network data are still growing, methods as our ILP-based algorithm
will be valuable to detect deregulated subgraphs in different conditions and help contribute
to a better understanding of diseases.



Chapter 5

Summary and Outlook

Many computational tasks can be formulated as optimization problems. Optimization is also
a core task in bioinformatics. In this work, we addressed optimization problems that are
central in bioinformatics.

We improved current computational approaches for local optimization in the context of
molecular potential energy functions. We presented a novel and efficient algorithm to find the
next local optimum into a given direction on a molecular potential energy function. This task
arises as a subproblem of many local optimization methods. We presented a new consensus
like approach that can be easily adapted to the local behavior of objective functions, while
it does not require additional function evaluations, imposing only negligible computational
overhead. Replacing a standard line search method with the new algorithm reduced the
number of function/gradient evaluations in our test runs down to 47.7% (down to 85% on
average).

Furthermore, we dealt with the parametrization problem in the context of molecular
representations. Our approach to parameterize a ligand uses a compact representation to
reduce the number of variables. However, due to the well-known singularity problem of
orientational parameters, the optimization process in ligand-receptor docking may get stuck at
non-optimum positions. We showed that our method avoids this problem by computationally
efficient reparametrization and enables gradient-based optimization of molecular complexes
using the compact molecular representation. We gave details on the incorporation of our
orientational parametrization into the local optimization procedure and showed, especially,
that our line search method is well suited for this task. Our approach was clearly superior
to the stochastic method of Solis and Wets in our test runs. This fact became even more
substantial when we considered ligands of increasing complexity.

Then, we extended this local optimization procedure to a ligand-receptor docking ap-
proach. We presented a so-called Lamarckian genetic algorithm, a heuristic for providing the
local optimization procedure with different start positions. We showed that this combined
approach is clearly superior to other approaches employing a stochastic local optimization
method. The new algorithm features shorter run times and gives substantially better results,
especially with increasing complexity of the ligands. In our validation runs, we gained an up
to tenfold speedup in comparison to other tested methods. Thus, it may be used to dock
ligands with many rotatable bonds with high efficiency.

While the ligand was fully flexible! in the aforementioned docking method, the receptor

In terms of the compact representation.
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was kept rigid. We then further incorporated side chain flexibility of the receptor with the
same parametrization as we introduced for the ligand. Additionally, we achieved limited
backbone movement by interpolating between two extremal conformations using spherical
linear extrapolation and gave details on how the resulting gradient can be calculated. This
approach enables application of the whole range of gradient-based optimization methods
to flexible ligand-receptor docking when two or more extremal backbone conformations are
known. In our study, we chose human serum albumin (HSA), which is the most abundant
transport protein of the human blood plasma. It is known for its promiscuity to bind different
ligand species, and it is one of the most extensively studied proteins. The fact that HSA
undergoes tremendous backbone movements upon binding to fatty acids, facilitating enormous
topological and structural changes over the whole protein, rendered this molecule to an ideal
candidate for our study. According to our results, this approach is very promising for flexible
ligand-receptor docking.

However, the aforementioned approach needs known extremal backbone conformations
for the interpolation. In general, we cannot assume that all necessary conformations can be
obtained by interpolation between already known structures. Hence, we extended our method
and allowed a loop region to be fully flexible. We dealt with the modification of backbone
torsion angles for flexible docking using global optimization techniques. The special challenge
was to calculate “real” conformations, i.e. the obtained loops must start and end at given
positions. In 1970, Go and Scheraga published equations whose solutions represent the loop
closure in polypeptides. They addressed the problem of solving these equations with Newton’s
method. Since this is only a local search method, they may have sampled the search space by
providing different equally distributed start positions. Thus, there is no guarantee to find all
solutions and, most probably, many function and derivative evaluations had to be performed.
We presented a new method to find all possible conformations using interval arithmetic. In
our test runs, all results were obtained nearly instantly. For this study, we chose the human
175-hydroxysteroid dehydrogenase type 1 (175-HSD 1). In preliminary studies, different
approaches to perform flexible docking with 178-HSD 1 failed because of the high flexibility
of the loop region. This algorithm reliably found alternative conformations and was able to
identify promising loop/ligand complexes of the studied example in our test runs.

The last part of this work dealt with global optimization. We described the bond order
assignment problem for molecular structures. Bond order information can often not be di-
rectly inferred from the available experimental data. Even important molecular databases,
like the Cambridge Structural Database [6] and the Protein Data Bank (PDB) [18, 17], are
known to contain erroneous data for connectivity and bond order information [106] or to
omit them entirely. For nucleic acids and proteins bond orders can easily be obtained due to
their building block nature, but this does not hold for other kinds of molecules like ligands.
Furthermore, it is not practicable to assign bond orders manually for, e.g., virtual screening
purposes, where thousands of molecules are to be considered. Hence, automated bond order
assingment is often a fundamental task for the work with molecules. In the past, very dif-
ferent strategies were applied to derive bond order information, most of them relying on the
correctness of the atom coordinates. We extended an ansatz proposed by Wang et al. that
assigns heuristic molecular penalty scores solely based on connectivity information and tries
to heuristically approximate its optimum. This procedure has two drawbacks: the scores of
the resulting assignments are not guaranteed to be optimal and the algorithm provides only
one solution while there can be more than one assignment with optimal score. In this work,
we presented our novel linear 0-1-programming formulation for the very efficient computation
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of all optimal and suboptimal bond order assignments. Our approach did not only outper-
form the original heuristic approach of Wang et al., but also commonly used software for
determining bond orders on our test set considering all optimal results. This set consisted of
761 thoroughly prepared drug like molecules that were originally used for the validation of
the Merck Molecular Force Field (MMFF94).

Furthermore, we addressed the task of selecting a subset of a given set of features based
on mutual information. In machine learning, the problem of supervised classification is to
induce a model that classifies objects into a finite set of known classes using labeled examples.
Copious classification tasks occur in bioinformatics, such as distinguishing cancer tissues from
normal tissues [7] or one cancer subtype vs another [5], predicting protein fold or super-
family from its sequence [85, 43], etc.. Avoiding irrelevant or redundant features is important
because they may have a negative effect on the accuracy of the classifier. Instead of using all
available features, only a subset is employed for classification tasks mainly with the following
aims: (1) reduction of overfitting of the used learning methods and, hence, improvement of
the classification accuracy, (2) the obtained features are more interpretable that can help
identifying and monitoring the target diseases or function types, and, finally, (3) dimension
reduction decreases the computational costs for the classification algorithms. The prevalent
methods are filter approaches and wrapper type methods. The last-named methods are
computationally very expensive in comparison to filters. In this work, we presented our
filter method that uses second order information while other methods strongly rely only on
first order information. Additionally, our criterion is mathematically well motivated and, in
contrast to other methods, exactly solved by quadratic 0-1-programming. In the validation
runs, our method achieved in 18 out of 21 test scenarios the best classification accuracies.

Finally, we presented our novel branch-and-cut approach for the determination of dereg-
ulated subgraphs in regulatory networks using expression profiles. Our method assesses the
subnetworks by the sum of their participating vertex scores. Each score indicates the deregu-
lation of the corresponding gene. The vision implicated by the proposed connectivity model
is to identify — besides the most deregulated components — the root node that may represent
a key player in the pathogenic process. This key player may be responsible for the observed
differences between the investigated conditions and may serve as a potential target for therapy
purposes. To demonstrate the capabilities of our algorithm, we analyzed expression profiles
from nonmalignant primary mammary epithelial cells derived from BRCA1 mutation carriers
and epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays
an important role in epithelial cells with BRCA1 mutations that may contribute to the later
development of breast cancer. It is important to note that the application of our algorithm
to already published data could yield new insights. As expression data and network data are
still growing, methods as our algorithm will be valuable to detect deregulated subgraphs in
different conditions and help contribute to a better understanding of diseases.

We do not claim that the methods and approaches presented in this work render the
addressed problems negligible. We intend to further improve these techniques. Here, we give
a short outlook for future plans:

e Our line search approach strongly depends on suitable interpolants reflecting the lo-
cal behavior of the objective function. Future investigations will show whether other
interpolation schemes are even better suited for molecular potential energy functions.

e Our general docking approach may be improved by using other, maybe better suited
heuristics to provide our local optimization techniques with starting positions.
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Our approach for loop modeling is a monte-carlo like procedure, i.e. the loop is (ran-
domly) modeled and kept rigid when the ligand is docked. Future versions may incor-
porate directly the loop parameters into the docking algorithm without an outer monte
carlo loop.

Our bond order assignment approach can be improved by defining other scoring func-
tions better suited for special classes of molecules.

Our mathematically motivated criterion for the selection of a subset of features may be
changed to, e.g., incorporate also the reduction of redundancy.

The determination of deregulated subgraphs in regulatory networks strongly depends
on good cuts (inequalities) that can be identified during the optimization process. In-
vestigations will show whether we can identify other classes of inequalities helpful to
solve the problems more efficiently.

There is plenty of room for improvements but the presented techniques are a good basis for
further development. Our results show that we could achieve substantial improvements on
many bioinformatical tasks.



Appendix A
Feature Subset Selection Validation

Runs

Here, we present the results of our feature subset selection validation runs, see Section 4.2,
where we use the abbreviations: SOC = our second order condition, see Section 4.2.1, glob.
opt. MRMR = our globally optimal solution of the criterion in Peng et al. [140], see Section

4.2.3, MRMR = approach of Peng et al., see Section 4.2.2, CMIM (ori.) = method proposed
by Fleuret in [51], and CMIM (err.) = method of Fleuret in his erratum (as used in his
implementation).
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Figure A.2: Classification results of Soybean (large) data set. Classifier: SVM (RBF kernel).

90 T

80 T

70 1

dzzaa.

60 T

accuracy in %

50 T

poid '

Seeraaag,

v

15 20 30 35
subset size
CMIM

(err)
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