
CGIS:

High-Level Data-Parallel

GPU Programming

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von
Diplom-Informatiker
Philipp Lucas

Saarbrücken
August 2007

Dekan: Prof. Dr.-Ing. Thorsten Herfet

Prüfungsausschuß: Prof. Dr. Raimund Seidel (Vorsitzender)
Prof. Dr. Reinhard Wilhelm (Gutachter)
Prof. Dr.-Ing. Philipp Slusallek (Gutachter)
Dr. Bodo Manthey (akademischer Mitarbeiter)

Tag des Kolloqiums: 08. Januar 2008

Hiermit versichere ich an Eides statt, daß ich die vorliegende Arbeit selbständig und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus an-
deren Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Saarbrücken, 27. 08. 2007

Abstract

In the last few years, PC technology underwent a paradigm shift. The current trend
leads aways from raising sequential performance to enhancing the available parallelism.
The rapid performance increase of Graphics Processing Units (GPUs) is a part of this
trend. However, it is difficult to harness the computational potential because for the
longest time GPUs could be directed only through graphics APIs and in low-level code.
The language CGIS has been developed to remedy this situation. CGIS is a data-parallel
programming language, which offers a high-level abstraction of GPUs, letting program-
mers use GPUs as co-processors for massively parallel algorithms. This work presents
the language and the compiler for CGIS in the context of general purpose programming
on GPUs (GPGPU).

iii

Zusammenfassung

Seit einigen Jahren zeichnet sich bei handelsüblichen PCs ein Trend weg von der Er-
höhung der sequentiellen Leistung hin zur Parallelverarbeitung ab. Ein Bestandteil
dieses Trends ist die rasche Leistungsentwicklung der Grafikkarten (GPUs), deren Re-
chenleistung die aktueller CPUs mittlerweile übertrifft. Es ist jedoch schwierig, diese
Leistung auch abzurufen, da diese Geräte lange Zeit nur hardwarenah und über Grafik-
APIs ansteuerbar waren. Um dies zu ändern, ist CGIS entwickelt worden, eine daten-
parallele Programmiersprache, die die GPUs abstrahiert und ihre Benutzung als Co-
Prozessoren für massiv-datenparallele Algorithmen ermöglicht. Diese Arbeit stellt die
Sprache und den Compiler im Kontext dieser Entwicklung vor.

iv

Extended Abstract

Recent years have witnessed a dramatic performance increase for ordinary PCs. The
execution units achieve higher throughput because of an increased core frequency. To
achieve a high degree of utilisation of these devices, CPUs employ more and more auxil-
iary units. Caches, branch prediction units and reordering logics take up large amounts
of transistors in modern CPUs.

But this trend is reaching its limits. Instead of only enhancing the execution of a se-
quential instruction stream, the number of parallel execution units is increased. Such
a development also takes place in another component of today’s PCs, in the graphics
hardware.

Current graphics processing units (GPUs) employ a multitude of parallel execution units.
The original application area of GPUs is the creation of realistic images. The algorithm
used for this purpose, rasterisation, is naturally parallel. Therefore, increasing the par-
allelism in execution units immediately translates to a higher performance for that pur-
pose.

Besides increasing the parallelism in GPUs, another development has set in, motivated
by the ever increasing demands of the content industry. In particular game development
depends on more and more realistic image synthesis, incorporating multiple effects such
as reflection, shadows or motions. To this end, GPUs have evolved from an implemen-
tation of a particular algorithm which could only be configured by changing particular
parameters into fully programmable processors. This ability is exploitable also for more
general applications (General Purpose Programming on GPUs; GPGPU). And indeed,
successes have been achieved even on early models of programmable graphics hardware:
GPUs can be used as co-processors to relieve the CPU of some computational tasks in
parallel algorithms.

But programming GPUs is not an easy task, especially for a purpose for which they were
not originally created. The hardware still is characterised by their legacy as a device to
compute images. For instance, GPU programs are severly restricted in memory accesses,
and the control flow capabilities were limited for a long time as well. But GPUs are still
suited very well for streaming algorithms, which read from one stream, perform the same
computation on all elements of that stream, and write into another stream. As it turns
out, surprisingly many algorithms can be cast favourably into this programming model.

The second obstacle for a widespread usage of GPUs as numerical co-processors lies in
inadequate abstraction. In principle, GPUs can be programmed only through graphics
APIs (OPENGL, DIRECTX). The programming model of these APIs does not form a nat-
ural abstraction for general purpose algorithms. The programmer is forced to express
a data-parallel algorithm in terms of the graphics paradigm, that is, in terms of colour-
ings of objects. Therefore, to really support GPGPU for non-specialist programmers,

v

Extended Abstract

programming languages have to achieve a high level of abstraction, completely relieving
the programmer from interacting with the graphics APIs.

To this end, several languages have been developed in the last few years. But as it
happens, most of these languages do not achieve both a high degree of abstraction and
a high resemblance to traditional programming languages. Therefore, in a concurrent
development, the programming language CGIS has been developed.

CGIS is an imperative, data-parallel programming language, offering a common abstrac-
tion for GPUs and SIMD capable CPUs. CGIS enables the programmer to express a
massively parallel algorithm naturally as a sequence of parallel executions of sequential
programs (also called kernels). This allows outsourcing a parallel part of an application
onto the GPU. The CGIS compiler processes the program code, outputting assembly code
for the GPU programs and C++ code to interact with the GPU through OPENGL. The
programmer interfaces with this generated code through a few easy API functions for
data exchange and for directing the execution of the co-program. It remains completely
hidden that the code is executed on the GPU. In fact, in the very same way can CGIS be
compiled into SIMD code, and that code is used in the very same way.

To achieve this, the CGIS compiler faces the common tasks of any compiler translating
from a high-level language into a low-level hardware language. However, differences
arise due to the peculiarities of the language and the target. On the positive side, the
compiler does not need extract the parallelism from the program text, as compilers for
traditional languages have to do: The parallelism is already inherent in the expression
of the algorithm as a CGIS program. Other differences result in the presence of vec-
torial types of small width both in the language and in the hardware. This raises new
optimisation opportunities and new pitfalls in compilation. Also, the restricted memory
access capabilities enforce an abstraction, which in turn necessitates a mechanism for
automatic data reordering.

By means of several applications, it was shown that CGIS does indeed enable appli-
cations to easily use GPUs as co-processors. It has been shown to offer a performance
increase for parallel algorithms with respect to modern CPUs. Therefore, CGIS may
serve to spread the usage of GPGPU and thereby enable programmers to harness the
power of GPUs for different purposes than computer games. It may also serve as one
point in the development of the grand unifying parallel programming language of the
future which is needed to uniformly use the emerging multi-core architectures.

This work starts with presenting the state of the art in programmable graphics hard-
ware. Afterwards, it presents various competing approaches for programming GPUs. In
detail, it defines the programming language CGIS and argues for its design. Then, it
presents the compiler and the runtime system. To demonstrate the usability of CGIS, it
lastly shows a variety of applications.

vi

Erweiterte Zusammenfassung

Durch den technologischen Fortschritt hat die Leistung der CPUs von handelsüblichen
PCs in den letzten Jahren einen rasanten Aufschwung genommen. Die Erhöhung der
Taktfrequenz bedeutet einen erhöhten Durchsatz der Rechenwerke, und immer größere
Teile einer CPU werden von Zwischenspeichern, Sprungvorhersageeinheiten oder Um-
ordnungslogik eingenommen, um die Auslastung der sequentiellen Einheiten zu er-
höhen.

Doch die Verbesserung der sequentiellen Leistung von Prozessoren stößt an ihre Gren-
zen. Mehr und mehr werden Fortschritte der Leistungsfähigkeit nicht durch Erhöhung
der Geschwindigkeit bei der Abarbeitung eines sequentiellen Instruktionsstromes er-
zielt, sondern durch Erhöhung der Anzahl der gleichzeitig eingesetzten Ausführungs-
einheiten. Diese Entwicklung findet auch in einem anderen Teil heutiger PCs statt,
nämlich bei den Grafikkarten.

Heutige Grafikkarten (Graphics Processing Units, GPUs) verfügen über eine Vielzahl
von parallel einsetzbaren Ausführungseinheiten. Der eigentliche Einsatzbereich von
GPUs ist die Erzeugung realistisch wirkender Bilder auf dem Bildschirm. Da der hier-
zu verwendete Algorithmus (Rasterisierung) von Grund auf parallel ist, konnte durch
eine Vervielfachung der Ausführungseinheiten sofort auch eine Erhöhung der Leistung
erzielt werden.

Die rasch steigenden Anforderungen insbesondere der Computerspiele-Industrie nach
noch realistischeren Darstellungen mit speziellen Effekten wie Spiegelung, Schatten-
wurf und Bewegungen führte zur Einführung der GPU-Programmierbarkeit. Anstatt
nur Konfigurationsparameter für einen vorgebenenen Algorithmus anbieten zu kön-
nen, sind heutige GPUs in der Lage, ganze Programme auszuführen. Es ist diese Pro-
grammierbarkeit, die auch für allgemeinere Anwendungen genutzt werden kann. Diese
Nutzung wird als GPGPU (General Purpose GPU Programming; allgemeine Program-
mierung von GPUs) bezeichnet. In der Tat sind bereits früh vielversprechende Resul-
tate erzielt worden, die belegten, daß GPUs nicht nur theoretisch, sondern auch in prak-
tischen Anwendungen eine höhere Leistung als CPUs erzielen können. GPUs können
als Koprozessoren für parallele Algorithmen Anwendung finden und die CPU entlasten.

Doch GPU-Programmierung ist keine leichte Aufgabe. Dies liegt an der Hardware selbst
und an den Abstrakionsmechanismen. Die Hardware ist durch Anpassung an ihre
primäre Nutzungsart gekennzeichnet, die Verwendung zur Bilderzeugung. Daher ist
der Zugriff auf globalen Speicher für GPU-Programme stark eingeschränkt, was in der
Programmierung ebenso Schwierigkeiten verursacht wie die lange Zeit massiv einge-
schränkten Kontrollflußoperationen. Tatsächlich eignen sich GPUs insbesondere für
Streaming-Algorithmen, die aus einem Datenstrom lesen, dieselbe Operation auf alle
Elemente anwenden und in einen anderen Strom hineinschreiben. Eine Vielzahl von
Algorithmen läßt sich in diesem Programmiermodell sinnvoll und effizient ausdrücken.

vii

Erweiterte Zusammenfassung

Das zweite Hindernis zur allgemeinen Nutzung von GPUs als Koprozessoren besteht in
der ungenügenden Abstraktion. GPUs sind prinzipiell nur über Grafik-APIs (OPENGL
oder DIRECTX) ansprechbar; dies ist keine natürliche Abstraktion für allgemeine An-
wendungen und zwingt die Programmierer dazu, numerische Algorithmen in das Grafik-
Programmiermodell zu zu überführen, also als Berechnungen der Farben virtueller Ob-
jekte auszudrücken. Um GPGPU einem weiteren Personenkreis zugänglich zu machen,
müssen geeignete Programmiersprachen vollkommen von der eigentlichen Hardware
abstrahieren und den Programmierer von der Beschäftigung mit den grafikbasierten
APIs befreien.

Zu diesem Zwecke sind in den letzten Jahren einige Sprachen entwickelt worden. Doch
diese Sprachen können die Anforderungen an Abstraktion der Hardware und gleichzei-
tige Ähnlichkeit zu herkömmlichen Programmiersprachen nicht voll erfüllen. Daher ist
die Programmiersprache CGIS entwickelt worden.

CGIS ist eine imperative, datenparallele Programmiersprache, die GPUs und die SIMD-
Einheiten von CPUs auf gemeinsame Weise abstrahiert. CGIS ermöglicht es dem Pro-
grammierer, einen massiv-parallelen Algorithmus in einer natürlichen Form als Folge
von parallelen Ausführungen sequentieller Prozeduren (Kernel) auszudrücken. Somit
kann die Funktionalität eines parallelen Teiles einer Anwendung auf die GPU ausge-
lagert werden. Der CGIS Compiler übersetzt den Programmcode dann in Assembler-
Code für die GPU und in C++-Code zur Steuerung der GPU über OPENGL und zur
Ankopplung an die Anwendung. Der Programmier interagiert mit diesem Code nur über
API-Funktionen, die zumDatenaustausch und zur Steuerung der Berechnungen dienen:
Die GPU selbst bleibt unsichtbar. Auf genau gleiche Weise kann das CGIS-Programm
auch für SIMD-fähige CPUs übersetzt und auf diesen ausgeführt werden.

Der CGIS-Compiler muss hierzu die üblichen Arbeiten eines Übersetzers von einer
Hochsprache in eine hardwarenahe Sprache ausführen. Es ergeben sich jedoch in der
Übersetzung auch einige Unterschiede zu normalen Compilern, sowohl aus der Spra-
che als auch aus der Zielarchitektur. Im Gegensatz zu herkömmlichen, sequentiellen
Programmiersprachen, die auf dem traditionellen Modell eines einzelnen Instruktions-
stromes beruhen, ist es nicht nötig, aus CGIS-Programmen den möglichen Parallelis-
mus mühsam zu extrahieren: Er ist bereits in der Darstellung des Algorithmus als
CGIS-Programm vorhanden. Der SIMD-Parallelismus, der durch die Existenz von vek-
toriellen Datentypen niedriger Länge zusätzlich zum Stream-Parallelismus vorhanden
ist, eröffnet weitere Möglichkeiten zur Optimierung und stellt weitere Herausforderun-
gen in der Übersetzung. Weitere Unterschiede ergeben sich durch die Einschränkung
von GPUs auf nur lesbaren und nur beschreibbaren Speicher, die einen Mechanismus
zur automatischen Datenumordnung erfordert.

Anhand einiger Anwendungen konnte gezeigt werden, daß CGIS in der Tat die Be-
nutzung von GPUs als Koprozessoren zur Leistungssteigerung bei parallelem Code ge-
genüber modernen CPUs ermöglicht. Dadurch kann CGIS als Ansatzpunkt dienen,
GPGPU eine weitere Verbreitung zu ermöglichen und somit die Leistungsfähigkeit von
GPUs für andere Anwendung als Spiele abzurufen. CGIS kann auch die zukünftigen
Entwicklungen von Programmiersprachen für die neuen Multicore-CPUs beeinflussen,
für die eine möglichst allgemeingültige Abstraktion notwendig ist.

In dieser Arbeit wird der Stand der Technik in bezug auf GPUs und ihre Program-
mierung dargelegt. Anschließend wird die Programmiersprache CGIS definiert und
es werden die Designentscheidungen begründet. Danach werden der Compiler und
das Laufzeitsystem für die GPU-Zielarchitekturen beschrieben. Zur Demonstration von
CGIS werden abschließend mehrere Applikationen getestet.

viii

Overview of Contents

I Introduction _ 1
I.1 The CGiS Project • 1
I.2 Outline of the Work • 4

II Graphics Processing Units _ 5
II.1 GPU Architecture • 5
II.2 Use of GPUs • 11
II.3 Programming GPUs • 13
II.4 Comparison with CPUs • 19
II.5 Future Architecture • 21
II.6 GPU Applications • 22
II.7 Summary and Outlook • 25

III GPU Programming Languages _ 27
III.1 GPU Programming Levels • 27
III.2 Shading Languages • 29
III.3 GPGPU Languages • 35
III.4 Other Languages • 45
III.5 Summary and Outlook • 50

IV CGiS _ 53
IV.1 Overall Design • 53
IV.2 Sequentialism: Kernels • 58
IV.3 Parallelism: Maps • 68
IV.4 Interfacing with the Outside • 78
IV.5 Example Program • 84
IV.6 Fitness for the Purpose • 85
IV.7 Summary and Outlook • 88

V The CGiS Compiler _ 89
V.1 Runtime System • 90
V.2 Internal Representation • 96
V.3 The Frontend: CGiS Code • 101
V.4 Code Generation • 111
V.5 The Backend: GPU Code • 118
V.6 Remaining System Parts • 129
V.7 Summary and Outlook • 132

VI Applications _ 133
VI.1 Basic Concepts • 133
VI.2 Sample Applications • 136
VI.3 Interpretation of the Results • 158
VI.4 Summary and Outlook • 159

VII Conclusion _ 169

ix

Table of Contents

Table of Contents _ xiii

List of Figures _ xvii

List of Programs _ xx

List of Tables _ xxi

I Introduction _ 1

I.1 The CGiS Project • 1
I.2 Outline of the Work • 4

II Graphics Processing Units _ 5

II.1 GPU Architecture • 5
II.1.a Rasterisation · 6

II.1.b Rasterisation Hardware · 7

II.1.c Technology · 9

II.2 Use of GPUs • 11
II.2.a Vendors · 11

II.2.b APIs · 12

II.3 Programming GPUs • 13
II.3.a Instruction Set · 13

II.3.b Memory Model · 17

II.3.c Streaming Computation · 18

II.4 Comparison with CPUs • 19
II.4.a Technology · 19

II.4.b Programmability · 21

II.5 Future Architecture • 21
II.6 GPU Applications • 22

II.6.a The Early Days of GPGPU · 22

II.6.b The Rise of GPGPU · 23

II.6.c Current State of GPGPU · 24

II.7 Summary and Outlook • 25

III GPU Programming Languages _ 27

III.1 GPU Programming Levels • 27
III.2 Shading Languages • 29

III.2.a Cg · 29

III.2.b HLSL · 32

III.2.c glslang · 33

xi

Table of Contents

III.2.d Shading Languages as Target Languages · 34

III.3 GPGPU Languages • 35
III.3.a Brook for GPUs · 35

III.3.b RapidMind · 39

III.3.c Accelerator · 43

III.4 Other Languages • 45
III.4.a CTM · 45

III.4.b CUDA · 45

III.5 Summary and Outlook • 50

IV CGiS _ 53

IV.1 Overall Design • 53
IV.1.a Design Ideas · 53

IV.1.b High-Level Overview · 55

IV.2 Sequentialism: Kernels • 58
IV.2.a Types · 58

IV.2.b Scalars · 60

IV.2.c Expressions · 62

IV.2.d Statements · 65

IV.3 Parallelism: Maps • 69
IV.3.a Streaming Computations · 69

IV.3.b Reduction · 73

IV.3.c Special Directives · 74

IV.3.d Semantics · 76

IV.4 Interfacing with the Outside • 78
IV.4.a Interfacing with the Application · 78

IV.4.b Interfacing with Other CGiS Programs · 80

IV.5 Example Program • 84
IV.6 Fitness for the Purpose • 86
IV.7 Summary and Outlook • 88

V The CGiS Compiler _ 89

V.1 Runtime System • 90
V.1.a Context · 90

V.1.b Data Storage · 92

V.1.c Directing the GPU · 93

V.1.d General Remarks · 96

V.2 Internal Representation • 96
V.2.a Operations · 97

V.2.b Registers · 98

V.2.c Functions · 99

V.2.d Output · 100

V.2.e Profiles · 100

V.3 The Frontend: CGiS Code • 101
V.3.a Parsing · 101

V.3.b Transformations · 103

V.3.c Optimisations · 107

V.4 Code Generation • 111
V.4.a Pattern Matching with OORS · 111

V.4.b Pattern Matching in cgisc · 113

V.4.c Control Flow · 116

V.5 The Backend: GPU Code • 118

xii

Table of Contents

V.5.a Texture Packing · 119

V.5.b Optimisations · 124

V.5.c Register Allocation · 125

V.6 Remaining System Parts • 129
V.6.a Internal Components · 129

V.6.b Other Parts of the System · 131

V.6.c Acknowledgements · 131

V.7 Summary and Outlook • 132

VI Applications _ 133

VI.1 Basic Concepts • 133
VI.2 Sample Applications • 136

VI.2.a Mandelbrot · 136

VI.2.b Life · 141

VI.2.c Demosaic · 144

VI.2.d Wave · 147

VI.2.e Skeleton · 149

VI.2.f RC5 · 152

VI.2.g Raycaster · 154

VI.3 Interpretation of the Results • 158
VI.4 Summary and Outlook • 159

VII Conclusion _ 169

Bibliography _ 175

Index _ 183

xiii

List of Figures

II.1 Projection of a scene onto a plane (uncomputerised version) 6

II.2 Covering and occlusion for geometric primitives 7

II.3 The rasterisation pipeline (fixed function) 7

II.4 Rasterisation and shading of a triangle 8

II.5 Texturing . 8

II.6 Bump mapping . 9

II.7 The rasterisation pipeline (programmable) 9

II.8 The rasterisation pipeline (as a general purpose device) 10

II.9 Masking and swizzling in an ADD-instruction operating on a 4-tuple . . 15

II.10 Stream programming . 18

II.11 Dice of Itanium 2 processors . 19

II.12 Schematic comparison of transistor usage in CPUs and GPUs 20

III.1 Using a GPU as a co-processor . 28

III.2 Working with BROOK . 38

IV.1 Using CGIS . 56

IV.2 Refraction . 85

V.1 Coverage of the CGIS system in Chapter V 90

V.2 Reduction schema . 95

V.3 Representing code in cgisc . 97

V.4 Two representations of the statement a = b+2*c; 97

V.5 Operands of internal operations . 98

V.6 Kinds of registers . 99

V.7 Functions in cgisc . 100

V.8 Subphases of the frontend . 102

V.9 Conditionals, real if-conversion, if-shadowing 104

V.10 Subphases of code generation . 112

V.11 Subphases of the backend . 119

xv

List of Figures

V.12 Live ranges and interference graph for Program V.24 126

V.13 A component colouring for Program V.24 127

V.14 Extract from a GDL graph . 130

VI.1 A Mandelbrot computation . 137

VI.2 Precision issues in Mandelbrot computation: CPU (left), GPU (right) . . 140

VI.3 Bayer RGB-pattern . 144

VI.4 Bayer patterned input to produce Figure VI.6 (detail) 145

VI.5 Reconstructing an image from a Bayer pattern 146

VI.6 Result of demosaicing a Bayer patterned image 148

VI.7 A drawing and its skeleton . 150

VI.8 Removing contour pixels in parallel or in sequential phases 150

VI.9 Ray Casting . 155

VI.10 Triangle lists for the voxels . 156

VI.11 Performance results for Mandelbrot (first test set) 161

VI.12 Performance results for Mandelbrot (second test set) 162

VI.13 Performance results for Life . 163

VI.14 Performance results for Demosaic . 164

VI.15 Data Transfer Times for Demosaic . 165

VI.16 Performance results for Wave . 166

VI.17 Performance results for Skeleton . 167

VI.18 Data Transfer Times for Skeleton . 168

Image attributions: Figure II.1 is taken from [D25]. Figure II.5 was produced by Mayang Murni
Adnin, http://mayang.com/textures/. Figure II.6 was produced by Paul Baker, http://
www.paulsprojects.net. Figure II.11 is taken from Microprocessor Report, January 19, 2005.
Figure II.12 is adapted from [N07a]. Figure VI.6 is taken from Kodak’s sample image set.

xvi

List of Programs

III.1 A simple CG program . 30

III.2 Structures and interfaces in CG . 31

III.3 A simple GLSLANG program . 33

III.4 A simple BROOK program . 36

III.5 CG code for Program III.4 . 36

III.6 Reduction in BROOK . 37

III.7 Random reads in BROOK . 38

III.8 A simple RAPIDMIND program . 40

III.9 Preprocessed code for the kernel from Program III.8 40

III.10 Control flow in RAPIDMIND . 41

III.11 Uniform parameters and random reads in RAPIDMIND 42

III.12 A blur filter in ACCELERATOR . 44

III.13 A simple CUDA program . 46

III.14 Bitonic merge sort in CUDA . 48

III.15 Assembly program for the kernel from Program III.13 49

IV.1 A simple CGIS program . 55

IV.2 Usage of the code generated for Program IV.1 57

IV.3 Stream of structs and struct of streams in CGIS 70

IV.4 Lookup in CGIS . 72

IV.5 Reduction in CGIS . 74

IV.6 Another reduction in CGIS . 75

IV.7 Game of Life in CGIS . 75

IV.8 Matrix algebra in CGIS . 76

IV.9 The header generated for Program IV.1 79

IV.10 Function templates and instantiations in CGIS 82

IV.11 Function declarations equivalent to Program IV.10 82

IV.12 Declaration of common streams in CGIS 83

IV.13 Wave propagation in CGIS: INTERFACE and CONTROL 86

xvii

List of Programs

IV.14 Wave propagation in CGIS: CODE . 87

V.1 Distributing data into textures . 92

V.2 A fragment of an execution function . 93

V.3 A show operation . 95

V.4 A trivial example using structs . 103

V.5 Representation of Program V.4 after struct splitting 104

V.6 Problems in if-shadowing . 105

V.7 Inlining . 107

V.8 Dead structure components . 108

V.9 Constant propagation . 109

V.10 Component based constant propagation 109

V.11 If-conversion on the GPU . 110

V.12 A skeleton of a vectorisation rule . 115

V.13 A skeleton of a peephole optimisation rule 116

V.14 A conditional in CGIS . 117

V.15 Program V.14 translated to NV40 code 117

V.16 A loop in CGIS . 117

V.17 Program V.16 translated to NV40 code 118

V.18 A simple function call . 118

V.19 Program V.18 translated to G80 code . 119

V.20 A program illustrating the need for global texture packing 120

V.21 Representation of Program V.20 with automatic copy kernels 121

V.22 Copy elimination on GPU code . 124

V.23 Component based dead code elimination 125

V.24 An example to demonstrate register colouring 125

V.25 Register colourings on Program V.24 . 126

V.26 Register allocation on GPUs for Program V.24 127

V.27 Superword level parallelism . 128

VI.1 Mandelbrot . 138

VI.2 Game of Life . 142

VI.3 Demosaic . 147

VI.4 RC5 . 153

xviii

List of Tables

II.1 DIRECTX and Pixel Shader versions . 12

IV.1 Precedences in CGIS . 62

IV.2 CGIS operators . 63

IV.3 Legend for Tables IV.2 and IV.4 . 63

IV.4 CGIS functions . 64

VI.1 Performance measurements of Mandelbrot (first set) 139

VI.2 Performance measurements of Mandelbrot (second set) 139

VI.3 Performance measurements of Mandelbrot on the 6800 140

VI.4 Performance measurements of Mandelbrot with CUDA 141

VI.5 Performance measurements of Life . 143

VI.6 Performance measurements of Demosaic 146

VI.7 Performance measurements of Demosaic on the 6800 148

VI.8 Performance measurements of Wave . 149

VI.9 Performance measurements of Skeleton 151

VI.10 Performance measurements of Skeleton with CUDA 152

VI.11 Performance measurements of RC5 . 154

xix

Acknowledgements

During the course of the CGIS project, I profited from the influences of or direct coop-
eration with various people. Reinhard Wilhelm gave me the opportunity to choose my
area of research and gave me enough leeway to conduct it on my own, as did Philipp
Slusallek; thanks to them for giving me this freedom. My partner in crime during the
ever-changing CGIS project was Nico Fritz; many thanks to him for patiently listening
to my lamentations about OPENGL, driver issues and the world in general, for talking
me out of some of my weirdest ideas, and for just being Nico. I shared my office with
Comrade Oleg Parshin for the past few years; thanks for contributing much to a plea-
surable time, for the traditional hot chocolate breaks and for being a good office mate
in general. Thanks also to Gernot Gebhard, who wrote early versions of some parts of
the compiler and handled the build system; thanks for that, for letting his 8600 serve a
noble goal, and for always being open to change OORS to my needs.

I was supported by a grant of the Deutsche Forschungsgemeinschaft during a part of my
work, and I am indepted to them for that.

Several people were of great help in the composition of this thesis. Eike Lang read
through the entire manuscript and saved the reader from a dangerous combination of
all too archaic phrasings and postmodern colloquialisms. Fritz Müller scrutinised the
description of CGIS, uncovering gaps which had to be filled.

I also thank my parents, Manfred and Ele, who gave me the freedom to decide which
way I wanted to go in life, and without whom none of this would have been possible.

I

Introduction

“Who are you?” said the Caterpillar.
That was not an encouraging
opening for a conversation.

L. CARROLL, Alice’s Adventures in Wonderland, 1865

I.1 The CGiS

Project

When a task is to be performed by a worker and the
time to complete the task is deemed unacceptably
long, two methods present itself: Working faster, or
spreading the task on more shoulders. The evolution
of PCs and their CPUs have followed the first model

for the longest time, but that model is rapidly facing fundamental difficulties. To keep
the execution units busy, modern chips employ ever larger caches to avoid accesses to
the slow main memory, and complicated logic for instruction reordering, speculative exe-
cutions and branch prediction tries to ensure keeping the execution units busy. Current
CPUs use a large amount of their transistors to enable a small amount of transistors to
do the actual work. Energy dissipation forms an additional, hard limit on the raw speed
of the processor.

Thus, concentrating on increasing the performance of a single processor on a sequential
instruction stream is slowly being neglected in favour of more parallelism [HP03]. This
has started on a low level with limited instruction level parallelism, has expanded to
narrow SIMD parallelism and is now including parallelism on the processor level even
in commodity PCs. Two-core products of Intel or AMD are standard for modern PCs,
with both vendors going for four-core systems. The Cell processor [IST05] offering eight
processing units is used in the PlayStation 3 gaming console.

Another component of PCs is featuring parallelism at its very heart: The Graphics Pro-
cessing Units (GPU). GPUs were originally created for a quite mundane and uniform
task: To transform descriptions of three-dimensional scenes into two-dimensional im-
ages. To this end, they implement a certain algorithm (rasterisation) in hardware. One
key aspect of this algorithm is that the computations for different parts of an image are

1

Chapter I. Introduction

independent of each other. That independence paved the way for a parallel implementa-
tion, and the most advanced GPUs indeed offer hundreds of execution units [A07b, N06].

But GPUs offer more than just a massively parallel implementation of a particular algo-
rithm. Consumers demand more and more realistic images from computer games, and
the gaming industry needs more power and flexibility to deliver that quality. To this end,
several phases of the rasterisation algorithm have become replaceable by user-supplied
programs. The expressibility of the instruction set as exposed to these programs has dra-
matically increased within the current decade: From simple register combinator stages
to a processor with integer and floating point types, supporting all usual arithmetical
instructions and dynamic control flow. This is exposed through standardised assembly
languages and widespread graphics APIs.

This combination of constraints—CPUs facing their limits, GPUs offering parallelism
and becoming programmable—gave rise to a completely new line of work: GPGPU,
General Purpose Programming on GPUs. Various general algorithms have been im-
plemented on GPUs, and GPUs could outperform CPUs on naturally parallel tasks. In
these early applications, the GPUs have had to be programmed on a very low level. Ven-
dor specific assembly languages or standardised assembly languages were the means to
express the sequential parts of the computation inside of kernels, each working on one
data element of a stream. The parallel computations of a multitude of concurrent kernels
on streams of data were then expressed with standard graphics API functions.

But programming GPUs on a low level is a daunting task. As always, programming in
assembly language is difficult, but GPUs pose the additional difficulty of having to cast
an algorithm into an unnatural programming model. With only graphics APIs available
to interact with GPUs, any computation has to be expressed in terms of the rasterisation
algorithm. The programmer is forced on a detour in order to exploit the architecture’s
computational power. For this reason, shading languages, which allow the programmer
to express the GPU kernel on a higher level, do not help much: They abstract away from
the assembly language, but not from the graphics heritage, i. e., not from the fundamen-
tal assumptions and metaphors of the graphics programming model.

Therefore, specialised GPGPU languages have been developed. They have been met
with great enthusiasm and form the base for a widespread success of GPGPU for non-
graphics specialists. By completely abstracting the target and presenting only some kind
of data-parallel hardware, they enable the programmer to concentrate on the algorithm
itself.

The present languages, although providing a big step forward from the early days of
GPGPU, may not present the definitive solution on the topic. Independently of these
approaches, the CGIS project has been devised as to provide a language which offers
an adequate abstraction of GPUs and other data-parallel architectures, hides the target
from the programmer, and yet offers such a performance that it becomes a valuable tool
for programmers seeking to outsource parallel computations to the GPU. CGIS seeks to
make GPUs attractive targets as co-processors in numerical applications. This entails
the following diffuse goals:

◮ CGIS shall be accessible to normal programmers.

◮ CGIS shall be executable on a wide range of targets.

◮ CGIS shall efficiently make use of the available resources.

2

I.1. The CGiS Project

We shall later (Section IV.1.a) break these goals down into smaller and more manageable
and measurable objectives.

Emerged from this project has the language CGIS. Its description and rationalisation
will form an important part of this thesis. CGIS is a data-parallel programming lan-
guage which allows the programmer to implement a data-parallel algorithm in a natural
way. It compiles down not only to GPU code, but also to SIMD code for modern CPUs,
thus offering a unified abstraction for these two diverse targets. Expectedly, the differ-
ent targets need quite different implementation strategies. This work is concerned only
with the GPU implementation; a later thesis [F08] shall present the efforts needed to
translate CGIS code into SIMD parallelism on CPUs.

The GPU compiler has many tasks to perform. Apart from the traditional transforma-
tions and optimisations which apply to GPUs in the same way as for traditional CPUs,
both the source language and the target architecture offer special features which have
to be catered for or may be exploited. A pertaining feature is the presence of narrow
vectorial data-types as basic types and SIMD operations on them. These operations pro-
vide an additional parallelism within the stream parallelism. Because the architecture
offers easy reordering of components and smooth switching between scalar and SIMD
computations, and because the language exposes these features to the programmer and
abstracts away from further differences for the sake of orthogonality, the compiler has to
work with subunits of the basic types and adjust the algorithms accordingly.

Other peculiarities of the target concern the memory model. Because of their heritage as
a hardware implementation of rasterisation, GPUs offer only a quite restricted memory
model. To GPU programs, the memory is divided into non-overlapping regions of arrays
of a primitive type with restrictions on readability or writeability. To offer an additional
abstraction which, on the one hand, helps the programmer to implement an algorithm in
a natural way, and, on the other hand, is still efficiently implementable, is a requirement
the language design and the compiler implementation have to meet.

Now all of this work would be of very limited use if CGIS were not to meet the goal which
was the very reason for its conception, namely to facilitate using GPUs as co-processors
for naturally parallel algorithms. As it turns out, CGIS does meet this goal. Several
data-parallel algorithms with a wide variety of characteristics have been implemented
in CGIS. They result in impressive speed-ups of up to a factor of 50, reinforcing the
usability of GPUs as co-processors.

All in all, CGIS is a language which can help the programmer to harness the power
of graphics hardware for purposes other than just gaming. It can pave the way to a
more widespread use of GPGPU, but it may also have a future for emerging parallel
architectures of CPUs. Recent architectural developments lead into the direction of
higher numbers of full processor cores, or to a merger of the GPU and CPU architec-
tures, featuring yet larger number of smaller processing units also on CPUs. Processors
such as the Cell processor or Niagara offer 8 cores with varying interdependence, and
proposals merging CPU and GPU will lead to yet more parallelism on the CPU chips
[IST05, S07b, I07, R07]. A unified model for programming the emerging multicore ar-
chitectures is a prerequisite for harnessing their power. CGIS can serve as an example
for a particular kind of abstraction; its ability to abstract away from the target and
compile down to GPU code and SIMD code shows that a unified abstraction mechanism
is possible, albeit for a restricted domain of naturally parallel, computationally dense
algorithms.

3

Chapter I. Introduction

I.2
Outline

of the Work

The remaining parts of this treatise are organ-
ised as follows. Chapter II presents the target
under consideration, the GPUs. We shall inves-
tigate their features and see how GPUs evolved
from their small beginnings into the powerful de-

vices they are today. That chapter also gives a short historical overview of GPGPU.
Chapter III presents a multitude of languages for GPU programming. First, a distinc-
tion between different classes of languages is developed, and it is argued that a GPGPU
language has to offer a certain level of abstraction. Then, the languages are described
and their strengths and weaknesses are worked out. In the end, it shall transpire that
these GPGPU languages are not the ideal tool for a widespread use of GPGPU. Chapter V
then presents CGIS. It opens up with breaking down the fundamental goals of CGIS into
a number of objectives pertaining to various parts of the CGIS system. This discussion
is followed by a description of the syntax and semantics of CGIS, during which the text
presents the rationale behind the decisions and argues for the language meeting its de-
sign goals. Chapter V presents the software components of the CGIS system. Among
these, the compiler stands out as the tool for translating the high-level description of an
algorithm into low-level graphics operations and assembly code. This translation needs
a number of common and unique transformations and offers opportunities for common
and unique optimisations as well. The runtime system directing the GPUs is also fea-
tured in this chapter. The chapter concludes with describing the other components of
the CGIS system, both the supportive components of the main compiler and the GPU
target, and the parts pertaining to other targets or written by other people. Chapter VI
concludes the description of the CGIS system by showing it in action. We shall see a
number of applications which have been implemented in CGIS. By way of comparison
with optimised CPU implementations, we shall see the strengths of CGIS for naturally
parallel algorithms and investigate the usability of CGIS for the stated purpose. As it
will turn out, CGIS shows to be a fine tool for GPGPU. Chapter VII forms the dual to this
chapter. It sums up the complete work and puts the achievements into the greater con-
text, and it presents an outlook into the future, outlining future developments regarding
CGIS and emerging technological trends.

4

II

Graphics Processing Units

The safest way, the straight and narrow
No confusion, no surprise
A. ELDRIGDE, Alice, 1982

II.1 GPU

Architecture

Starting from the earliest electronic computing
devices, a way to visually display data was im-
plemented. Even as early as in the 1960s, such
visualisation was aided by special hardware, to
relieve the main computational devices of that

burden. [MS68] is particularly interesting to our topic, for the authors report on a spe-
cial purpose display processor, that grew step-by-step into a general purpose computer
with special instructions for graphics. Back in these days, this meant that the hardware
grew from a device which could load coordinates into registers and perform a DISPLAY
operation, to a device capable of iterating over lists of coordinates, into a processor with
jumps and subroutines. Myer and Sutherland argue that such an evolution leads to
needlessly complicated devices which themselves need more specialised auxiliary pro-
cessors (a “wheel of reincarnation”), and they hope that their experience “may speed oth-
ers on toward ‘Nirvana’ ” — an aim which has not been achieved, because a very similar
development is happening just a few decades later in the consumer graphics market.

This chapter is devoted to explaining the current situation of consumer and professional
hardware for displaying graphics. This section explains rasterisation, both as an al-
gorithm and as the hardware implementation present in today’s GPUs. Sections II.2
and II.3 explain how these GPUs are programmed. This is compared to CPUs in Sec-
tion II.4. Section II.5 explains the likely development of GPUs in the near future. Sec-
tion II.6 presents an overview of GPGPU, and Section II.7 sums up and concludes this
chapter.

5

Chapter II. Graphics Processing Units

II.1.a Rasterisation

The purpose of graphics hardware can be summed up quite succinctly: computing a two-
dimensional view of a three-dimensional scene. This entails identification of visibility
and lighting with ad-hoc algorithms or simulations of physical properties. Various algo-
rithms differ not only in the computations taking place, but also in the particular choices
of input data.

The rasterisation algorithm takes as its input data a set of surfaces, specified by a ge-
ometry and defining points. A circle, for example, might be specified by its centre, its
orientation in space and its radius; or just by its centre and two points on the diameter.
A triangle may be specified by its three vertices. From a particular view point, these
objects are then projected onto a two-dimensional plane, making up the final image (Fig-
ure II.1). Said image consists of pixels: equilateral, solidly coloured, two-dimensional
building blocks of the image. By this projection it is also specified which pixels an object
covers. This particular computation is responsible for the name rasterisation.

Figure II.1 Projection of a scene onto a plane (uncomputerised version)

Because distinct points in the three-dimensional space might be projected onto the same
points in the two-dimensional plane, and because differing points might fall into the
same pixel1, the algorithm also has to compute the occlusion of objects. This is done by
regarding as visible a part of that object, of which the point projected onto the pixel lies
nearest to the view point (Figure II.2).

To compute the complete image, the colours of pixels have to be computed from the
specified colours of objects. This process is known as shading. In general, the colour
of a point of an object’s surface is interpolated in some way from colours specified on
some selected points of a surface and by projecting precomputed images (textures) onto
the object (see Section II.1.b for an example). This shading phase is independent from
the algorithm used to compute the visible points of objects. If visibility is computed
by another algorithm, such as ray tracing, a subsequent shading step still has to be
performed.

1Recall that pixels are two-dimensional, in contrast to ideal points.

6

II.1. GPU Architecture

Figure II.2 Covering and occlusion for geometric primitives

II.1.b Rasterisation Hardware

Since about 1999 (the NV10 architecture), graphics hardware has implemented the full
rasterisation algorithm including the coordinate transformations and lighting (T&L) in
specialised processing units. Figure II.3 gives a high-level overview of the graphics
pipeline employed in such devices.

Figure II.3 The rasterisation pipeline (fixed function)

Vertices

Transformation
and lighting

Rasterisation

Textures

Texturing
Visibility
test

Pixels

As input, the hardware receives the position of the vertices of triangles making up
the surface of the objects in the scene. These points are then projected onto a two-
dimensional plane: This phase is called transformation. Also, a basic lighting algorithm
might be run, which presupposes that light from a certain light source reaches an object.
The rasterisation phase then computes for each object the pixels which it covers. For
each pixel, a fragment is generated, which is then passed on to the further parts of the
pipeline. A fragment can be thought of as a pixel in the making. This fragment receives
interpolated values from the vertex inputs; for example, the coordinates of the three cor-
ners of a triangle are interpolated to make up the position values of the fragments. The
pipeline part upto the rasterisation is called the vertex pipeline, the remaining part is
the fragment pipeline.

The fragment pipeline is responsible for the shading. To this end, colours of pixels
are computed with a shading model such as Gouraud or Phong Shading [G71, P75,
SAGMRSTW05], and textures are applied to the object. A texture is a small picture
which gets spanned over the triangle. Figure II.4 gives an example of shading without
texturing, Figure II.5 explains texturing. The input attributes of the vertices (colours or
points on a texture image) are interpolated for the points of the objects and processed
with colouring or texturing. The end result is a specification of colour values for each

7

Chapter II. Graphics Processing Units

pixel, divided into its red, green and blue constituents and an alpha value which can be
used for transparency calculations.

To sum it up, the graphics pipeline receives as inputs sets of three-tuples of point coordi-
nates and attributes, which give rise to some number n of interpolated input-data, which
are computed upon, leading to m four-component colour values (m 6 n, for a fragment
may be occluded). The pixels are then stored in the framebuffer, which in traditional
applications is presented in a screen window.

Figure II.4 Rasterisation and shading of a triangle

(a) Input triangle (b) Fragments (c) Output pixels

Figure II.5 Texturing

(a) Texture (b) Surface (c) Result

In the last decade, a development set in which resulted in more complicated functionali-
ties implemented in the graphics pipeline. In particular, artists required more and more
intricate algorithms for the interaction between texturing and basic object shading, and
the graphics hardware was required to employ more complicated algorithms. For exam-
ple, bump mapping means using data stored in a texture not directly as an image, but
to interpret the values as normals of the points of the objects; these normals then govern
the colours applied to the object from a light source. With this trick, one can easily create
an illusion of higher scene complexity (Figure II.6).

In the end, the hardware and software were required to support a lot of closely related,
but differingmodels of texturing, and graphics APIs became cumbersome to use, offering
lots of similar, configurable functions for those tasks. Various versions of register com-
biners have been specified (for example, [N00]), which combine inputs such as colours,
normals and texture components arithmetically to produce the final output. With the
increasing power and complexity, a more traditional and more general way of specifying
algorithms became desirable.

Thus set in a development to make the hardware programmable. Instead of choosing
among a restricted set of algorithms and selecting values of certain parameters, or choos-

8

II.1. GPU Architecture

Figure II.6 Bump mapping

(a) Torus with shading (b) Torus with shading and bump mapping

ing inputs and operators of certain combination stages, programmers could now simu-
late desired effects using programmable processors. Figure II.7 gives an overview of this
programmable rasterisation pipeline; compare with Figure II.3. For example, the tex-
turing part is now replaced by a programmable fragment processor, which operates on
fragments and computes pixel colours using textures as arbitrary additional input.

Figure II.7 The rasterisation pipeline (programmable)

Vertices

Vertex
Processor

Rasterisation

Textures

Fragment
Processor

Visibility
test

Pixels

It is exactly this programmable pipeline which can be used for more general purpose pro-
gramming. In this view, the pipeline gets sets of three-tuples of various four-component
inputs, which give rise to a set of interpolated four-component intermediate values,
which get computed upon, leading to a set of four-component output values (Figure II.8).
The textures become simple random-access read-only arrays. Thus will we regard a
GPU in the remaining part of this document: Some device to compute upon streams of
four-component values and constant arrays.

The important point about this view is the mention of streams, and the underlying no-
tion of parallelism. This is the main power exhibited by GPUs, and the next section
investigates this aspect.

II.1.c Technology

The performance of GPUs follows from the rasterisation algorithm. To execute that
algorithm efficiently, GPUs need only quite simple execution units, but they can make
use of a lot of them by computing on various fragments in parallel. Therefore, GPUs
employ a large number of simple processing units.

9

Chapter II. Graphics Processing Units

Figure II.8 The rasterisation pipeline (as a general purpose device)

Input streams

Vertex
Processor

Spread and
interpolate

Input arrays

Fragment
Processor

Pass or
discard

Output stream

Common GPUs now feature several dozen SIMD (4-component) vector ALUs. For ex-
ample, the ATI Radeon X1950 has up to 48 pixel shader processors [A07c] and 8 vertex
shader processors; the NVIDIA GeForce 8800 features up to 128 single-float ALUs which
are dynamically dispatched among the vertex and pixel processors and among the vector
components, as are the 320 processing units of the Radeon HD 2900 [A07b, N06].

Although the vertex processor is also programmable, it is not traditionally used for
general purpose computations. In the early days of GPGPU programming, the vertex
processor was the only part capable of working on floating point numbers (Section II.6.a,
[THO02]). Some other features such as loops and conditionals also appeared first in
the vertex processor. However, subsequent advances down the graphics pipeline have
made GPGPU on the fragment processor possible, and therefore, GPGPU programs ran
exclusively on the fragment processor2, because this device offered a greater degree of
parallelism. Additionally, until very recently, the vertex processor had no access to the
texture memory, in which the main chunks of data reside. With the most recent tech-
nological advance of unified shading units which can be dynamically dispatched to any
abstract processing units, the processors are very similar at their cores: Their different
usages amount to additional, specific capabilities in the assembly languages on top of
the large, common set of capabilities.

The core speed of GPUs is less than that of contemporary CPUs (see also Section VI.1.)
Memory access is faster, however, because the electronic parameters are in favour of
the engineers: The position of all memory chips is predetermined, and the wire lines
are much shorter than on CPU motherboards. Thus, the interface to the memory chips
can be driven at a higher speed. Together with a higher bus width of 256 Bit or even
384 Bit, and specially selected memory chips capable of higher core speed, this amounts
to a bandwidth of more than 50 GByte/s even for middle-class GPUs, and more than
80 GByte/s for the top products [N06]. In contrast, even dual-channel DDR2-1066 mem-
ory offers no more than 17 GByte/s.

2Small parts have to be run on the vertex processor to set-up indices of streams and compute other interpo-
latable data. This vanishes compared to the computational effort spent in the fragment programs.

10

II.2. Use of GPUs

II.2
Use of

GPUs

The vendors ATI and NVIDIA will often be mentioned in
this text. This section describes the current state of avail-
ability of GPUs of various vendors, their standardisation
and the history of their development as far as necessary to
understand the following sections. Plans, projections and

speculations about the future shall be dealt with in Section II.5.

II.2.a Vendors

The world’s largest manufacturer of GPUs is Intel [P07]. Intel sells so-called embedded
(integrated) graphics devices: GPUs which are embedded into the mainboard chipset
responsible for I/O operations, such as communicating to the harddisks, the memory de-
vices or to add-on cards. Such devices are also manufactured by other vendors, such
as NVIDIA, ATI, VIA and SiS. These integrated devices are still sufficient for applica-
tions which are not extremely power-hungry; indeed, their practicability for day-to-day
business work is exactly what makes Intel so successful in the market.

But at any point in time, these embedded graphics devices are lacking in power com-
pared to contemporary dedicated (discrete) GPUs, which are plugged in to the standard
expansion slots of PCs. These dedicated GPUs are the devices driving forward the inno-
vation, and it is these GPUs which are used by gamers as well as users of professional
CAD or modelling applications. Indeed, GPUs for audiences seemingly so diverse as
gamers desiring higher frame-rates in first-person shooter games and architects longing
for a detailed and fluent presentation of their newest designs, are not so much different
on the hardware level. With the lines of so-called professional graphics cards FireGL and
Quadro produced by ATI and NVIDIA, the main difference between these versions of the
hardware and their gamer oriented counterparts lies in the software drivers. Whereas
it might be negligible for a computer game when a few trees in an outdoor scene are
displayed wrongly, this is unacceptable for a landscape architect. Thus, drivers are spe-
cially certified for specific software (versions). Also, the memory on professional GPUs is
sometimes larger or faster than on the consumer hardware.

All in all, standard dedicated GPUs are the main target for GPGPU in this work. It
is possible that applications would achieve a higher performance on professional GPUs,
but only for a tremendous price difference. It is certain that embedded GPUs are lacking
in performance compared to dedicated GPUs, but there is no fundamental difference
between those two kinds of GPUs: Embedded GPUs are mainly just equivalent to a
previous step on the evolutionary ladder of GPUs.

In other words, capabilities of a current generation of dedicated GPUs might be im-
plemented in the next generation of embedded GPUs. Sorting the multitude of chips
manufactured by the vendors with respect to their features into a few categories, or
generations, of chips, is common. Section II.2.b deals with identifying the hardware by
compatibility to specific software, yet of course the vendors themselves use generations
as codenames for a range of chips, just as is the case for CPUs. For example, the chips of
the NVIDIA’s GeForce 7x00 family have codenames in the range G7x (G70 for the origi-
nal 7800, G71 for the more advanced 7900, G72 for the lower-endian 7300,. . .), whereas
the GeForce 6x00 family has codenames in the range NV4x. Such family names are of-
ten used as placeholders to denote capabilities of hardware, such as “NV40 cards offer
control flow in the fragment processor”.

A note about nomenclature. Henceforth, the name GPU denotes the processing
device of the graphics hardware together with any memory associated with it. The name
CPU is used in the same way for the rest of the computer system. If the emphasis is on

11

Chapter II. Graphics Processing Units

the use of a GPU as a co-processor in a system, the term host is also used for the non-
GPU part of a system. Also, instead of texture or framebuffer, the terms input buffer or
output buffer are used, except for when the actual graphics meaning is in the foreground.

II.2.b APIs

Ensuring compatibility to existing software is a crucial step in designing new hardware.
Although gamers are quite willing to spend money on newer and faster graphics cards to
speed up their games, the market penetration of GPUs relies on being principally com-
patible to older software and to a wide range of games. Compatibility has two aspects:

◮ compatibility to previous generations of the same hardware family

◮ compatibility to other hardware families

Practically, both aspects are satisfied by a single notion of compatibility, namely compat-
ibility to programming interfaces. These interfaces, the two APIs used to programGPUs,
are Microsoft’s DIRECTX3 [M07a] and the committee-maintained OPENGL [SA06].

DIRECTX

DIRECTX is a monolithic standard by Microsoft solely for implementation in its Win-
dows operating system, both on PCs and on gaming consoles4. The ubiquity of Win-
dows makes DIRECTX the prime specification used for comparisons of capability; both
the main DIRECTX versions and the versions of the programming languages for GPUs
(Vertex Shader and Pixel Shader in Microsoft terminology; the term shader comes from
the graphics heritage, see Section II.1.a). Table II.1 gives an overview of the versions;
for example, a GPU might be called a “DX9-GPU” or to “support PS 2.0” to signify its
capabilites, without precluding the GPU’s use under OPENGL or in another operating
system.

Table II.1 DIRECTX and Pixel Shader versions
DIRECTX PS
8.0 1.1
8.1 1.4
9.0 2.0
9.0c 3.0
10.0 4.0

OPENGL

OPENGL strives to be platform independent, i. e., correct OPENGL programs should run
on a wide variety of operating systems and hardware; if the platform has the necessary
capabilities, of course. Furthermore, it is not controlled by a single software vendor, but
by a conglomerate of software and hardware vendors. Formerly known as Architectural
Review Board (ARB), in September 2006 it became a working group under the hood of
the Khronos Group. Khronos is focused on the development of free APIs for dynamic
media creation and acceleration in general.

3Specifically, we are talking about DIRECT3D,
4The ’X’ in DIRECTX gave rise to the ’X’ in Xbox.

12

II.3. Programming GPUs

In any case, the members of the OPENGL governing body support or need vastly differ-
ent characteristics of GPUs. Because of its very nature, the OPENGL standardisation
focuses on an easily specifiable and easily usable extensions mechanism [K07]. These
extensions are written and published by single vendors or by sets of vendors. GPU ven-
dors are then free to implement in their hardware and their software drivers facilities
to support those extensions and to advertise them to the outside. For example, there are
several NVIDIA extensions of register combiners, various ATI and NVIDIA extensions
for fragment programs, common extensions for programmability [O02a, O02b], and new
extensions for NVIDIA’s newest hardware generations [N07b, N07c].

Usage for GPGPU

Of course, GPGPU applications which should run on a non-Windows platform must use
OPENGL. On Windows systems, programmers have a choice between DIRECTX and
OPENGL, which can be made based on personal familiarity with the APIs, available
documentation and need for integration with existing software. But even on Windows,
the extension mechanism of OPENGL offers an incentive to use that API: Advances
in hardware are exposed to the programmer sometimes much earlier than under DI-
RECTX. For example, the advanced programmability features of NVIDIA’s G80 genera-
tion, the first DIRECTX 10 hardware, have been accessible starting with the advent of
the GeForce 8800 in Autumn 2006; yet DIRECTX 10 itself is available only on Windows
Vista, which was released later than the hardware. With the OPENGL extensions, on the
other hand, programmers could use the new features as early as the hardware arrived.

The API choice made by the authors of specific applications or languages will be men-
tioned in the relevant sections (Section II.6 and Chapter III). CGIS targets OPENGL
(core and extensions) because of the platform compatibility.

II.3
Programming

GPUs

The sheer number of ALUs is as indicative
of the usefulness of an architecture as is the
core frequency of the processing units – a bit,
but not much. Usefulness to a programmer
translates to power of the programming en-

vironment (programming language and runtime environment), and that, in turn, is de-
pendent on the fundamental capabilities of the underlying hardware.

This section describes the hardware capabilities as the foundation of the description of
programming languages in Chapter III. It is divided in sections on the computational
capabilities and on the memory subsystem.

II.3.a Instruction Set

When evaluating an instruction set, it is useful to divide it into data manipulation in-
structions and control flow instructions. We shall see that GPUs are limited in both areas
compared to CPUs, yet more so for the control flow instructions. This section further in-
vestigates other peculiarities of data manipulation instructions to explain to the reader
in more detail the state of the art, and to make easier the comparison with CPUs in
Section II.4. The syntax and terminology follow the OPENGL extensions [N07b, N07c].

13

Chapter II. Graphics Processing Units

Arithmetical Instructions

Apart from instructions which fetch data from the input buffers or write data into the
output buffers, all instructions work solely on registers. General registers are four-
component single-precision floating point registers. The components of these registers
are labelled either ’x’, ’y’, ’z’, ’w’; or ’r’, ’g’, ’b’, ’a’.5 Notational convention: For the rest
of this work, a notation of the kind [type][n] always denotes an n-component vector
type with components of type type, e. g., float3 is a vector of three float components.

Many arithmetical instructions work componentwise on those registers. For example,
the instruction ADD r1, r2, r3; adds the contents of the components of registers r2
and r3 and writes them into r1. Some complicated instructions take only one argument,
which then has to be selected6: SIN r1, r2.x; computes the sine of r2’s x-component
and writes it into all components of r1. GPUs feature also some vector-arithmetical
instructions, such as instructions computing the cross product or the inner product of
vectors.

To support the shading computations which to implement GPUs were created, the pro-
cessors feature a few instructions which are uncommon on CPUs. As a prime example
of the specificalities, consider the LIT instruction. As its input, it receives a four-vector
[x, y, _,w] (the third component is unused), and it computes the output [1.0, x, yw, 1.0]. For
GPGPU purposes, this instruction is rather unusable. On the other hand, an instruction
designed to interpolate the colours of a point on a vector between two coloured points is
very useful in practice: The LRP instruction, fed with inputs λ, a, b, computes λa+ (1−λ)b.
This instruction is expedient to implement guarded assignments, as will be shown in
Section V.3.b.

Masking and Swizzling

Masking and swizzling are two modifications to instructions which take advantage of
the vectorial capabilities of GPUs. These features form one of the advantages of GPUs’
instruction sets with respect to SIMD CPUs.

Masking entails precluding certain components of a vectorial result from being written
into of a target register. For example, the instruction MUL r1, r2, r3; performs a
componentwise multiplication of the registers r2 and r3 and writes the result into the
respective components of r1. MUL r1.xz, r2, r3; performs the same computation,
yet updates only the x and z components of r1. The contents of the y and w components
are unchanged. Masking is supported on all applicable GPU operations.

Swizzling specifies a reordering with possible replication of input registers. Compared
with the instruction MUL r1, r2, r3;, the instruction MUL r1, r2, r3.wzyx; uses
the components of r3 in reverse order, yet lets invariant the actual contents of r3. Spec-
ification of a single component is a necessary selection for scalar operations, but a repli-
cation of that component on vectorial operations. For example, SCS r1, r2.z; updates
r1 to [cos(z), sin(z),⊥,⊥] for z the z-component of r2: the SCS operation works only on a
single scalar value. On the other hand, ADD r1, r2.y, r3; is just a shorthand no-
tation for ADD r1, r2.yyyy, r3;, because ADD expects vectorial operands. Swizzling
and replication, too, are supported on all applicable GPU operations.

5This shows the heritage of the processors: The xyzw-notation denotes homogenous coordinates of points
in space, and the rgba-notation denotes the three colour components red, green and blue and an α-component
used for transparency calculations. Some languages also offer the component specification ’s’, ’t’, ’p’, ’q’, which
stems from texture lookup coordinate specifications. In this work, for simplicity only the xyzw family is used
to specify components except to note in Section IV.2 that CGIS also supports rgba.
6Selection is a form of the more general swizzling concept, explained later.

14

II.3. Programming GPUs

Figure II.9 shows masking and swizzling together. The specifications of masking and
swizzling are called masks and swizzle, respectively.7

Figure II.9Masking and swizzling in an ADD-instruction operating on a 4-tuple

ADD R.xz, S, T.wwzx;

R: S: T:

S.x+T.w

R.y

S.z+T.z

R.w

S.x

S.y

S.z

S.w

T.x

T.y

T.z

T.w

For implementation of high-level languages, one advantage of masking and swizzling
lies in the potential for a better register allocation, as explained in Section V.5.c. Briefly
speaking, multiple values might reside in one register, with instructions selecting val-
ues with swizzling and choosing those to be updated with masking. GPU languages also
expose swizzling and masking to the programmer; here it is unfortunate that two oper-
ators with a very different semantics have the same syntax. For GPGPU programming,
swizzles and masks can make possible tricks to avoid register transfers.

GPUs also support some other modifications of operands such as negation, and target
modifiers such as clamping the result to the range [0, 1].

Condition Codes

Modern GPUs have adopted another familiar feature of CPUs, but with a twist: the flag
register or condition code register. A condition code register consists of a number of flags
which are updated according to the result of a computation, and which can be tested in
several ways.

For example, a zero flag is set whenever the result of a computation is zero, and unset
otherwise. Other flags are set or unset depending on the sign of the result or on an
arithmetic overflow condition. In GPUs, these flags are not updated on every operation,
but operations can be marked to update the flags.

A traditional use for these flags is to implement conditional branching. For example, on
Intel CPUs a CMP a,b; instruction produces no arithmetical result, yet sets the flags
as though the operation SUB a,b; had been executed [I06a]. Branch operations then
make use of these flags: The JE instruction takes a branch if the zero flag is set, hence
executing a jump if the preceding comparison has found the operands to be equal.

This is the case also for GPUs. However, GPUs can mask other operations in much
the same way as explained for the static masks. That is, a condition code register also
has a number of components, which are set independently of each other. A subsequent
operation can then specify that its effects shall take place only for those components on
which the flags are set in a certain way.

This feature enables GPU programs to use guards of instructions, making possible a
technique called if-conversion. Section V.3.c, which is concerned with this technique,
provides more details about the condition code register and how it is written and read.

7Swizzling and masking in CGIS are a bit different from that, regarding these suffixes as type modifiers,
that is, properties of the operand and target, not of the operation (Section IV.2).

15

Chapter II. Graphics Processing Units

Precision

A perpetual problem for GPGPU computations is that of precision – both of actual hard-
ware precision and of precision assured by specifications and standards. In the early
days of programmable GPUs, the data used were fixed-point data with about a dozen
bits. Now, the GPUs feature floating-point data-types in 32-bit IEEE format [I85].8 How-
ever, the amount of bits used to store values does not tell much about the precision of
the computation on those values. [GST07] reports that the MAD instructions, which com-
putes a · b + c, uses rounding after the multiplication step on NVIDIA, yet performs the
full computation before rounding to 32 Bit on ATI. Such information is not part of the
specifications proper, but must be obtained case-by-case from vendors.

For applications content with lower precision data, it is possible to pack multiple values
of lower precision in a single 32-Bit register. The main use of this feature is not quite in
computation, but more in decreasing the number of memory accesses. This number can
be severely restricted, as will be explained in the next section.

The newest generation of GPUs features also integer registers and classical logical op-
erations [N07c]. Unfortunately, the instruction set of floating point operations has not
completely been extended to the integer operations. Some of the restrictions shall be
mentioned in Chapter V. For now it suffices to say that this extension, appearing at the
end of 2006 with the G80 GPUs, opens up a much larger world of computation to GPUs.

Control Flow

Loops and Conditionals. The qualitative characteristic of control flow has seen
a rapid advance in the last few years. The first control flow constructs allowed were
conditionals with constant conditions and loops with constant loop counts in the vertex
processor in VS 2.0. This does not seem particularly useful at first, but the constants
can be set by the application on the host before running the program. Indeed, constants
in GPU kernels are only constant for a particular run of a program, but need not be
constant across runs. Thus, these control flow constructs served as parameterisability
constructs. In this sense, this limited control flow illustrates the transition from param-
eterisable algorithms towards full programmability.

VS 2.x saw the introduction of data dependent break instructions, which could prema-
turely end loops. Pixel Shader got control flow instructions a little bit later than the
vertex shader. In the NVIDIA GPUs, the NV40 generation supported loops with speci-
fied upper bounds and data-dependent breaks; the G80 generation finally supports full
looping without prespecified maximal upper iteration bounds.

Subroutines. Whereas the aforementioned control flow constructs nowadays offer
the same power as their CPU counterparts, the situation is dire for subroutines. Basi-
cally, modern GPUs offer subroutine capabilities and support a call-return stack, yet no
parameter stack. Thus, the standard ways of parameter passing are not applicable here
[WM95]. This is an artefact of the restricted memory system, and therefore it shall be
explained in the following Section II.3.b.

Summary

In many cases, GPUs are on par with CPUs, and in some they even offer additional
capabilities, in particular with respect to vectorial instructions. They still lack in the
areas of precision and control flow. But looking back at the advances since 2000, one
cannot help but being amazed at the rapid advances of the development.
8Four of such components make up for a 128-bit vector register. Hence the advertisements of “full 128-bit

precision”.

16

II.3. Programming GPUs

II.3.b Memory Model

The discussion of the memorymodel is divided into two parts: Which parts of the memory
are visible, and how are they accessible?

Access

When looking at Figure II.7, it becomes immediately obvious that there is no read-write-
able memory. Indeed, whereas the host system can both write into and read from the
main memory areas shown in the diagrams, the input buffers (holding the textures)
and the output buffers (holding the framebuffer), a GPU program cannot. This is not
a limitation of the physical memory system on the chip: At the host’s bidding, access
directions of a memory block might be switched. There is no copying of data involved. In
contrast, the restriction is a logical and organisational one: With parallel computations,
accesses to memory remain well-defined only when none of the computations desires
to write into an area read by another computation. Assigning a chunk of memory a
complete no-read or no-write flag overcomes this problem.

Obviously, this poses a great number of difficulties. For example, an arbitrary parameter
stack for function calls cannot be implemented in main memory anymore. Also, any non-
destructive updates of data structures need to use a temporary copy memory to store the
outputs and subsequently copy them into the data structure.

Visibility

The main point regarding visibility is that a GPU program cannot chose which parts of
the GPU’s memory to see, the CPU has to do so. Input buffers and output buffers cannot
be swapped in or out of the GPU’s view by actions from the GPU itself. If the programmer
needs to change the memory configuration, the CPU has to wait for the GPU to finish its
computations, perform that change and let the GPU resume its computation.

But there are further restrictions, namely in number, shape and size of the memory
visible to a GPU. First of all, the input and output buffers are rectangular arrays. These
arrays must not overlap – if they did, usual aliasing problem could arise, which are
even more severe in parallel computations than in the sequential case. The number
of such arrays is restricted. For example, the NV30 generation could only write into a
single array (one buffer of the framebuffer). Later generations raised this restriction to
four or even eight arrays. The input arrays are also restricted in number, but not as
much: Hardware could make use of multiple input arrays (textures) since the advent of
multitexturing in the 1990s9. This is the main benefit for the data packing mentioned in
Section II.3.a: If only a lower precision is necessary, programs can output more values in
a single buffer than were possible with standard four-component vectors.

Another point about the chunks of memory having to be created and specified by the host
system is that the GPU cannot allocate memory on its own, not even inside some sort of
virtual memory space. This obviously precludes implementation of many standard data
structures, from linked lists over binary trees to dynamically growing arrays.

To programmers, this is a radical departure from the standard CPU memory model. It
might even be more restrictive than many of the instruction set restrictions. Indeed,
integer computations can be simulated, in certain ranges, with floating point computa-
tions; conditionals can be substituted by guarded computations; loops might be unrolled,
if small enough. Yet there is no substitution possible for sheer memory.

9ARB_multitexture was created in 1998 and promoted to core OPENGL 1.3 in 2001.

17

Chapter II. Graphics Processing Units

This, of course, pushes itself through to higher-level languages: Some restrictions can be
hidden from the programmer, others cannot. For example, a CGIS programmer can use
memory both for in- and output; the language semantics specifies sequentialisations for
those memory accesses, and the implementation ensures faithfulness to this semantics
by creating and updating copies of data as needed. The missing memory allocation can-
not be emulated, however, and thus such features – indeed, all pointers10 – are absent
from CGIS.

II.3.c Streaming Computation

The restrictions of the memory model are hard to come to terms with. However, parallel
computation with separated in- and output data is a quite well-known programming
paradigm, called stream programming [S97a]. Stream programming is a very old model
of computation; its roots go back to the 1960s: [B75] attributes the notion to [L68].

In the particular case of GPUs, the restrictions translate to a particular kind of stream
computing. In this model, a stream is a (usually large) uniform sequence of fundamental
elements. Streams are operated upon by kernels, instances of which are run in parallel
on each of the stream elements. Kernels output elements, which in turn form another
stream. Kernels might also get their inputs from several streams and output several
streams (Figure II.10). However, in the pure streaming model, there is still a bijection
between all involved streams and the kernels, e. g., no two kernels get the same stream
elements as inputs and all streams are consumed and produced completely.

Figure II.10 Stream programming

I1

I2

I3

kernel

O1

O2

Comparing Figures II.8 and II.10, the input arrays in Figure II.8 can function as streams.
But these arrays can in effect be additional input to the kernels, where a kernel can
access any element, indeed, an arbitrary number of elements, and elements may be
accessed by several kernels. That is, stream programming on GPUs supports lookup and
thereby gather operations. It does not, however, support a scatter operation, much to the
chagrin of programmers.11

Note that the uniformity constraint mentioned above holds only on the hardware level.
Obviously, algorithms might make use of non-elementary data structures as stream ele-
ments, and input data might naturally lie in a sparse or hierarchical format. These data
structures, however, have to be cast into hardware supported formats.12 Exactly this
mapping is often a major stumbling point when porting an algorithm to the GPU.

10Array indices are supported.
11Of course, there are ways to simulated scattering on GPUs. It is still not possible within the scope of a
single fragment program.
12For example, a stream of structures might be split into separate streams of elemental values, and hierar-
chical data structures are fed to the kernels as the random-read-access input arrays.

18

II.4. Comparison with CPUs

And such should be interpreted the term general purpose computation, when applied
to GPUs. General purpose computation does not mean to run a database application
or a web-browser, but it is firmly confined to the streaming model. Indeed, general
purpose means onlymore general computations than those employed in the rasterisation
algorithm (Section II.1.a).

II.4 Comparison

with CPUs

There are various motivations of using GPUs for
general purpose programs. GPUs might be bet-
ter suited to perform a computational task than
CPUs, or the direct coupling of visualisation and
computation might be attractive, or they might

be used just because they are there and an easily accessible additional computational
device.

Only in the first case GPUs are in direct competition with CPUs, yet a comparison is al-
ways instructive. The previous sections have described GPUs often in relation to CPUs,
and Section II.5 is concerned with the future of GPUs. The current section, now, de-
scribes the history of CPUs, the technological advantages and shortcomings of current
CPUs, and offers an outlook into the future.

II.4.a Technology

CPUs are optimised for high-performance on single threads of code. This is achieved
by increasing the speed of the execution units. The Pentium IV class CPUs have core
speeds of nearly 4GHz. Feeding these execution units, however, poses a difficult prob-
lem, in particular in face of data-dependencies. To this end, CPUs employ tricks such
as out-of-order execution, branch-prediction and especially large caches to ensure that
the execution units stay well-fed [HP03]. However, these techniques need quite a large
number of transistors; in effect, the real-estate of the chip is divided in an imbalanced
way: A large number of transistors is devoted to keeping a small number of transistors
productive. Figure II.11 shows actual processor dice.

Figure II.11 Dice of Itanium 2 processors

(a) Madison (b) Montecito

As explained in Section II.1.c, GPUs can use larger numbers of simpler execution units
for their standard operations. Figure II.12 (adapted from a GPU vendor’s brochure)

19

Chapter II. Graphics Processing Units

shows a very schematic view of this situation. Almost all transistors are devoted to
execution units. These units can be kept well-fed in typical graphics application, because
there are hardly any memory stalls: The sheer number of fragments13 to be computed
upon means that memory access can be masked by just working on another fragment
until the memory fetch returns. This is no problem because there are no inter-fragment
dependencies, as explained in Section II.1.a.

Figure II.12 Schematic comparison of transistor usage in CPUs and GPUs

Cache

Control
ALU ALU

ALU ALU

CPU GPU

This characteristic is, of course, useful only for specific classes of algorithms. Candidates
are mentioned at various places in this work, starting from next section. For now, it is
important to recognise the difference between CPUs and GPUs, and in particular, why
CPUs have faced problems getting faster for normal applications in the last years; In-
deed, as an Intel paper of 2003 observed, “graphics processors are getting faster at a
faster rate than general-purpose processors” [BHK03]. Increasing the power of GPUs
is to a large part a matter of more-of-the-same, in particular, more execution units. In-
creasing the power of CPUs entails also for some part more-of-the-same, but in particu-
lar, more caches to better exploit the existing execution units. For a large part, however,
more logic has to be employed, be it better branch prediction inside the CPU or static
scheduling by the compiler as for the Itanium architecture [I06b].

Current CPUs incorporate a multitude of cores on a single chip. That means that several
independent CPUs, possibly sharing caches, are built on a single die; Intel offers quad-
core Xeons, Sun is shipping an 8-core Niagara processor. To the outside, these devices
are still separate CPUs, of course. However, even CPU vendors are considering moving
to many-core architectures. The recently proposed Polaris chip of Intel features 80 cores
with 2 FPUs each [R07]. The Cell processor features Synergistic Processing Units (SPUs)
which lie between full-fledged CPUs and simple, specialised hardware in terms of pro-
grammability (“The intent of the SPU is to fill a void between general-purpose processors
and special-purpose hardware.”, [IST05]). With the recent acquirement of ATI, AMD
plans on merging GPU and CPU, providing specialised solutions for different needs: A
GPU-heavy chip will lend itself for graphics computations or other kinds of data-parallel
computations, a CPU-heavy chip lends itself to data-centric applications. These trends
show that upcoming generations of chips might benefit from the experiences in GPGPU,
both in designing languages and in creating applications.

All in all, we see that GPUs are currently a specialised architecture, drawing their per-
formance for certain algorithms exactly from that specialisation. In the future, the ar-

13NVIDIA: “thousands of independent, simultaneously executing threads” [N06].

20

II.5. Future Architecture

chitectural experiences gained from designing GPUs and GPU programs will very likely
flow back into the development of new CPU architectures.

II.4.b Programmability

Current CPUs offer a variety of SIMD extensions. The most popular extensions are
the extensions for CPUs of the x86 family: MMX, 3DNow!, and most importantly SSE
[I06a, A00]. SSE offers many arithmetical instructions on vectors, just like GPUs. How-
ever, even with their SIMD units, CPUs do not even come close to the number of arith-
metical units and to the degree of parallelism offered by GPUs, and of course the memory
bandwidth is not affected in any way by the presence of SIMD computational units. For a
SIMD capable CPU, the SIMD features are mostly an additional gimmick used to speed
up a sequential algorithm, whereas GPUs both require and support different program-
ming approaches. The main design foundation of floating-point units in the GPU is still
“many slow units”, not a few fast units.

CGIS can also be compiled into SIMD code, targeting either SSE2 extensions for x86
CPUs or the AltiVec extensions for PowerPC code [F06]. This lies out of the scope of this
thesis. For more details, consult [FLW07, F08].

II.5
Future

Architecture

The main driving force of GPUs are computer
games. Highly-powered, specially styled comput-
ers are the successors of the once-popular highly-
powered, customised cars in a certain demogra-
phy, and with gaming becoming more and more

mainstream also among well-paid employees, there is a constant demand on yet more
powerful high-end GPUs. In the mass market, a large part of the measurement of a
computer’s utility is given by its performance in games. Thus, it is essentially the com-
puter games industry driving the GPUmarket. GPUs sell (or don’t) by their performance
in only a selected few games and games-related benchmarks.

In contrast, GPGPU applications are a nice source of press releases and occasional ad-
miration, but not a main force behind hardware (and driver) development: Multigrid
solvers do not sell GPUs, and performance of a multigrid solver is a side-effect of per-
formance in first-person shooters. This has begun to change in the very recent past.
NVIDIA’s CUDA initiative [N07a] and ATI’s CTM [A06] are a big step in this direc-
tion, and GPGPU gets more mainstream attention [M04]. The recent merger of ATI into
AMD, which might lead the way for integrated CGPUs, is another sign that GPGPU will
get more attention by the manufacturers.

The remaining relatively-easy-to-remove obstacle for a more widespread success is the
lack of double-precision arithmetic. Native double-precision support would open up
GPUs to a huge range of scientific computations. The other obstacle, lack of global
read-write-memory, is unlikely to be removed in the future within the graphics APIs.
The design rationale for DIRECTX 10, which was developed by Microsoft in tight coop-
eration with the hardware vendors, argues that such a requirement was excluded for
performance reasons [B06]. However, the technology is accessible by other means, and
NVIDIA’s CUDA initiative (Section III.4.b) permits kernels to use shared read-write
memory. This, of course, requires synchronisation and communication mechanisms as
common in parallel programming.

In any case, the market penetration of GPUs is going to increase, and applications using
GPUs as auxiliary devices will be able to expect relatively highly-powered GPUs in all

21

Chapter II. Graphics Processing Units

PCs. The reason is not only games: Even in office PCs, eye-candy of the latest operating
systems and windowing systems plays a significant role in the decision process of select-
ing GPUs to buy. For Windows Vista with the Aero desktop interface, Microsoft requires
only an extremely modest 1 GHz processor, yet a DX 9-class GPU [M07b]. This means
that even business PCs are going to employ GPUs of relatively high power.

Thus, GPGPU is and will remain a worthwhile activity to contemplate, and GPGPU
languages, such as CGIS, will retain their use in the future, and might even increase
their importance.

II.6 GPU

Applications

Numerous algorithms have been implemented
on GPUs. Some applications were written in
the days of configurable texturing and blending,
others during the exiting days of early GPGPU,
and yet others in the current age of a well-es-

tablished trade. A few were written using the most basic graphics operations, some have
made use of abstracted, but low-level languages, others used high-level programming
systems.

This section is devoted to GPGPU applications past and present, to instil in the reader
a feeling for the possibilities and peculiarities of GPUs as targets for general purpose
calculations. It is not meant to be a comprehensive overview; for this, the reader is
referred to [OLGHKLP07]. Instead, it shall serve as an illustration of whence GPGPU
came and where it stands now.

II.6.a The Early Days of GPGPU

Even before the advent of programmable fragment processors, GPUs had been used for
general computations. Two applications shall illustrate this.

Computation with Multitexturing and Blending

[LM01] performmatrix-matrix multiplication on non-programmableGPUs. Considering
a multiplication AB = C, where we assume for simplicity A, B,C ∈ Rn×n, then each single
element ci, j for i, j ∈ {1, . . . , n} is defined as

ci, j =

n∑

µ=1

ai,µbµ, j.

The authors implement the addition operation with a standard feature of the graphics
pipeline: With a fragment incoming in the framebuffer at a position where a pixel is al-
ready present, blending computes the new colour as an operation of the fragments colour
and the present pixel colour. For the operation at hand, the framebuffer thus keeps the
temporary values at position (i, j), and each single result ai,µbµ, j is combined with an ad-
ditive blending onto the temporary value. The multiplication is performed with another
standard feature of GPUs, called multitexturing: To a single point, a multitude of tex-
tures could be specified, which are then catenated with a specified operation; in this case,
multiplication. This multiplication can be performed in parallel. Indeed, the algorithm
is a sequence (µ = 1 . . .n) of parallel computations (∀i, j.ci, j+ = ai,µbµ, j).

The greatest difficulty faced by the authors is the inadequate precision. At that time,
GPUs had only 8-Bit fixed-point formats for I/O. Internal precision was found by tests
to be 14-Bit or 16-Bit. Obviously, this is not enough for serious applications, and the
authors report scepticism whether GPUs will ever be really useful as auxiliary compu-
tational devices.

22

II.6. GPU Applications

Computation in the Vertex Processor

[THO02] employ the GPU for floating-point computations. Using DX8-class hardware,
they performed various performance tests on embarrassingly parallel work loads and
some more complicated examples. Although the vertex processor, which is used for com-
putations, works with full floating point precision, the results have to be passed through
the fragment processor and the framebuffer before being available for read-back by the
host system. This truncates the overall precision again to 8-Bit.

The precision problem notwithstanding, this paper showed the GPU’s “devastating effi-
ciency”. In particular, for embarrassingly parallel problems, the run time on the GPU
is much more robust to increase of work load size than the CPU, for the time to set up
the GPU and to transfer data dominates overall time.14 For a naïve matrix-matrix mul-
tiplication, the authors report a speed-up of 3.2 on a high-end GPU with respect to a
high-end CPU; other very promising results were achieved on a randomised 3-SAT.

In the end, the authors express a much more optimistic view of the future of GPGPU.
Apart from usual proposals for hardware development, they state a desire for a compiler
for GPUs to alleviate the programmers from coding in assembly language.

II.6.b The Rise of GPGPU

More and more complex applications emerged in the following years. Various applica-
tions from all kinds of areas have been implemented on GPUs. As an example of the
development in this age, this section mentions one representative of the area of render-
ing and one representative of raw-power linear algebra.

Global Illumination

[PDCJH03] is an example of the wide-spread use of GPUs for visualisation. Obviously,
creating images from scene descriptions is the main point of existence for GPUs, as
explained in Section II.1. However, there are several algorithms for this which are as
far away from rasterisation as database searches or sparse matrix multiplication. As
such, ray tracing (e. g., [P04]) is indeed a prime example of a GPGPU computation using
the integrated visualisation capabilities of GPUs. In the same way, this holds for photon
mapping, the topic of [PDCJH03].

Photon mapping is an algorithm for global illumination [G95]. Briefly speaking, photons
are sent from a light source, cast into a scene, and they hit objects. Upon a hit, this is
stored and another photon is sent again into the scene. In fact, the basic idea is very
similar to ray tracing, which traces photons backwards from the eye to compute what
can be seen in a specific view angle.

One of the main contributions of this paper is an implementation of a bitonic sort algo-
rithm.15 Many sorting algorithms need random writes, which cannot be performed on
GPUs (see Section II.3.b). Bitonic merge sort [B68] is a parallely implementable sort-
ing algorithm with fixed comparisons and swaps. The authors show its suitability for
implementation on GPUs.

This paper shows that even the desire for better image quality can lend itself to algo-
rithms implementable on GPUs, and that those algorithms can employ implementation
techniques suitable in an even more general sense in all kinds of GPGPU applications.

14The GPU is more scalable, in other words. Section VI.2 mentions similar results for CGIS applications.
15The scene is divided into cells, which may hold photons. The photons to be traced need to be sorted by cell
number.

23

Chapter II. Graphics Processing Units

Linear Algebra Operators

The authors of [KW03] see their work as a cornerstone of a future BLAS library [D02]
on GPUs. They point out that in contrast to previous work, which just implemented
some algorithms on GPUs, their goal is “to develop a generic framework that enables
the implementation of general numeric techniques for the solution of difference equa-
tions” – Thus, this is a step towards making GPUs a commodity for users of scientific
applications.

They work on DX9 hardware, an ATI Radeon 9800, which offers 32-Bit floating point I/O
and 24-Bit internal precision. They implement a layer of abstraction on top of the hard-
ware, which exposes vectors and matrices as C++ data types and functions performing
operators on such objects. In contrast to other approaches using the GPUs for operations
on dense matrices only, they also support sparse matrices. With these building blocks,
larger algorithms are quite easily implementable. Tests are performed for the conjugate
gradient method and the Gauss-Seidel method for solving a system of linear equations.

This is a representative of attempts to make GPUs more accessible to normal people
without the need to go down to the details of the graphics system, yet still offering as
much performance from the GPU as possible.

II.6.c Current State of GPGPU

The field of GPGPU has changed in the last years. In the beginning, it was exciting to
see algorithms ported to the new, strange target. With the initial stir settled down, new
work is approaching GPGPU from different angles.

On the one hand, much has been done so far, and therefore many tricks have been im-
plemented and published. Even if the source code is not available or not integratable in
one’s own framework, one can build on descriptions of previous work for several basic
techniques, and need not to reimplement some wheels over and over again.

On the other hand, new, higher-level languages such as Brook for GPUs (Section III.3.a
and [BFHSFHH04]) offer a level of abstraction not known or possible to achieve in the
early days. Obviously, true general purpose programming still is not possible, but the
amount of work done so far has made GPGPU a well established field. This is particu-
larly well visible in the development of conferences. Most early papers on GPGPU have
been published on graphics conferences, even though they actually had nothing to do
with graphics (e. g., [KW03]). Now, there are workshops and conference tracks devoted
to GPGPU alone (in 2006, in ICCS and at SC), where researchers can build upon a gen-
eral knowledge of graphics hardware and of GPGPU not present in other venues.

To provide a feeling for the recent trends, two papers shall be introduced.

Basic Computation

[GST07] investigate the possibility for floating point computation with higher precision
on GPUs. Recall that GPUs are still stuck with single-precision floats. By storing values
not in a single float register but components of it in two (one part with a lower exponent
and one part with a higher exponent), one can achieve a higher storage precision. To
perform computations on those values, they recall old techniques from the 60s, where
high-precision hardware was not wide-spread, and newer tricks from current multiple
precision or arbitrary precision libraries. With this, they give algorithms on how to
perform multiplications and additions on such values on GPUs.

24

II.7. Summary and Outlook

They make their case by investigating larger applications, where only small parts of the
computation are performed in higher precision arithmetics, whereas the most part is
done with standard single-precision values and operations. Experiments with an itera-
tive refinement scheme, where the GPU computes solutions to Ax = b in single-precision
and the CPU computes error correction in double precision, show that this way of mixed-
precision arithmetic leads to a stable and fast algorithm. In contrast to this, straightfor-
ward high-precision emulation on the GPU with its single-precision registers and oper-
ations was seen not to be competitive.

All in all, this paper shows two ways to cope with the problem of too small a precision on
GPUs. Depending on the actual needs, programmers may find one or the other helpful.

Data Abstraction

The GLIFT library [LKSSO06] provides a template-based data abstraction library for
GPUs. Users can specify physical memory data structures (modelled as textures) and
build from these virtual memory data structures. The library then generates address
translators which offer an abstract access to the underlying, basic physical data struc-
tures by means of the more abstract, virtual data structures. Kernels are written in a
shading language such as CG (Section III.2.a), which is extended to cope with the new
abstract, templatised data types.

In essence, GLIFT offers a solution for a very pressing problem, namely the mapping
from recursively defined data structures to the GPU world of textures. Its appeal to the
experienced C++ programmer is further enhanced by the STL-like notation. For exam-
ple, the CG kernels can syntactically work on data elements with an iterator notation.

Although GLIFT provides a very abstract view of the GPU and takes care of several cum-
bersome duties, it is not described in Chapter III, for it cannot be called a GPU language.
As the authors write: “The goal of Glift is to provide generic GPU data structures and
iterators, not provide a runtime GPU execution environment.” It is to be used along-
side with other languages such as CG, which can then benefit from the higher-level data
structures.

II.7 Summary

and Outlook

In this chapter, we have seen GPUs as targets
for general purpose computations. Based on the
history of GPUs, I have described their current
architecture and argued for their strengths and
weaknesses. A short overview of GPGPU has

provided, by way of example, a feeling for the current state of abstraction and of what
kind of help, what foundation to be used from previous work, is available to the program-
mer.

We have seen that from a curiosity, the field has risen to a well-established trade with
a wide range of published literature. But down to what level do potential users have
to go in order to exploit the performance? The code still has to be written somehow,
in a programming language. Thus, the next chapter investigates the current choices of
programming languages and argues for the development of another language, CGIS.

25

III

GPU Programming Languages

In gewissen Sprachen. . . ist Das,
was hier erreicht ist, nicht einmal zu wollen.

FRIEDRICH NIETZSCHE, Götzen-Dämmerung, 1889

Computer languages are a means to express an algorithm. Characteristics of a program-
ming language depend on the characteristics of the hardware as well as the character-
istics of the problems expected to be expressed in that language. For GPUs, a variety
of languages has been proposed and implemented, approaching the problem space from
different points of view and offering solutions on different levels of abstraction.

Therefore, before investigating the language CGIS in Chapter IV, the present chapter is
concerned with existing GPU languages – in a sense, it could very well just be called “Re-
lated Work”. Section III.1 describes the distinction between shading languages and gen-
eral purpose languages. These kinds of languages are in turn the topics of Sections III.2
and III.3. Section III.4 considers the hardware specific languages for ATI and NVIDIA
GPUs. Section III.5 sums up and concludes this chapter.

III.1 Levels ofAbstraction

GPU programming languages fall into two cat-
egories. Seemingly, shading languages could be
defined as those languages which are used for
shading computations (Section II.1.a): Comput-
ing the colours of pixels in images. General pur-

pose languages, on the other hand, support arbitrary computations. Again, general pur-
pose is just a qualifier laying out the difference to shading languages. As mentioned
before, general purpose computing on GPUs is not truly general purpose, because the
fundamental limitations of graphics hardware cannot be overcome. Thus, also so-called
general purpose programming languages need not provide support for implementing a
database system or porting NetHack.

However, a distinction along those terms proves not to be useful. General purpose algo-
rithms have been implemented on GPUs before the advent of general purpose languages.

27

Chapter III. GPU Programming Languages

The authors wrote the program in a shading language or in assembly language. Further-
more, some languages generally considered general purpose languages might be used for
classical shading purposes. Clearly, a distinction by the possible uses of languages does
not lead to an appropriate language classification.

Instead, it is instructive to consult Figure III.1, for it serves well to illustrate the classi-
fication of languages that shall be used in this work; a classification that very much fits
the pragmatical difference between shading languages and general-purpose languages.

Figure III.1 Using a GPU as a co-processor

CPU

input streams output streamsprogram
GPU:

push pullstart

Figure III.1 exemplifies the use of a GPU as a co-processor. In hardware terms, what
happens is that the CPU uploads the input streams (Section II.3.c) to the GPU, (up-
loads and) starts the GPU program, and downloads the output streams. Programming
language support is provided on two subsets of these actions:

◮ Shading languages target solely the program box, i. e., they provide a more abstract
way to write GPU programs.

◮ General purpose languages additionally deal with the push, pull and start arrows,
i. e., they completely abstract the GPU.

The difference made by that abstraction should not be underestimated. These three
arrows are all sequences of commands of graphics APIs. To implement those opera-
tions, programmers must learn to program a significant part of the graphics hardware
– indeed, the largest part – by functions of the graphics API and in terms of the raster-
isation algorithm. Clearly, that is not a satisfactory state of affairs. Certainly, one can
expect that to achieve high performance on a particular target, the programmer has to
have and to apply knowledge about that target. Going through the graphics API, how-
ever, poses an additional, administrative and terminological burden on the programmer.
Section V.1 talks about several issues in the implementation of CGIS, and this can give
a glimpse on what expects programmers striving to do this manually, although the pre-
sentation obviously will leave out much of the boring details. It suffices to say that this
task cannot be imposed on ordinary programmers if GPGPU is to go mainstream.

By this distinction, it becomes obvious that the languages with that high a level of ab-
straction as those termed general purpose languages are much better suited for being

28

III.2. Shading Languages

used as tools by general purpose programmers, and hence, the name fits the applicabil-
ity.

The preceeding discussion described the small focus of shading languages compared to
that of general purpose languages as a liability, but for the specific use of describing
shading programs (Section II.1.a), this is actually an asset: It means that the program-
mer can plug in these programs to ensure a greater flexibility in a particular part of
the graphics pipeline, while still taking advantage of high-performance-optimised fixed
function parts. In particular, such shaders are easily integrated into existing graphics
libraries. So, although shading languages can and should be criticised from the point of
GPGPU, they have their use, and they fill their role well.

III.2
Shading

Languages

Shading languages in general have been invented
and implemented on CPUs much earlier than the
advent of programmable GPUs. The language REN-
DERMAN [AG99] has long since been used to pro-
duce computer generated images. A complete ren-

dering pipeline can be specified in RENDERMAN, and in particular RENDERMAN fea-
tures a language for shaders. Animation films are usually rendered on large computer
farms, for rendering a single frame in the desired quality can take hours. Indeed, in-
teractive execution of RENDERMAN on graphics hardware is the Holy Grail of hardware
accelerated, programmable shading – and it remains as elusive as the mythical trinket,
so shading languages for GPUs have been designed with focus on the hardware rather
than the authors. In this section, the shading languages in the sense of Section III.1 are
considered: CG, HLSL and GLSLANG.

III.2.a Cg

CG [N05] is designed and developed by NVIDIA, but heralded as an open standard.
Indeed, it can target not only the NVIDIA-specific OPENGL extensions for programming,
but also the standardised assembly languages of DIRECTX and OPENGL (Section II.2.b).
The subsequent sections III.2.b and III.2.c will strongly build upon the description of
CG, because the languages are similar enough that a discussion can for a large part be
confined to an exhibition of differences.

CG offers two levels of program specification.

◮ CG proper is a programming language targeting vertex and fragment processors
separately.

◮ CGFX is a specification of state of the graphics pipeline, i. e., it includes programs
for the vertex and fragment processor, but also parameters of functions such as the
depth test (Section II.1.a) or blending (Section II.6.a).

We shall delve into these two levels one by one.

CG

Example. The programming language CG is a high-level, imperative language for
the vertex and the fragment processor of GPUs.1 “The Cg language is based on both the

1One can write a program for the vertex processor, and one can write a program for the fragment processor;
One cannot write a program for the vertex and the fragment processor.

29

Chapter III. GPU Programming Languages

syntax and the philosophy of C” [MGAK03]. Each kernel is written in a fairly standard
way, as we will see by an example.

Program III.1 shows a simple fragment program. It does nothing more than multiplying
the fragment-specific colour with a constant parameter and adding a texture. Instead of
investigating the program line-by-line, only the worthwhile details are to be considered;
for a detailed explanation of CG, the reader should consult the appropriate documenta-
tion [N05].

void fragmain(float4 col : COLOR, float2 tex : TEXCOORD,
out float4 pixel : COLOR,
uniform samplerRECT texture, uniform float factor){

float4 texel = texRECT(texture, fraginput.tex);
float4 fragcolor = fraginput.col;
pixel = fragcolor*factor + texel;

}

Program III.1: A simple CG program

Focusing on the body of procedure fragmain, we see an ordinary, imperative program-
ming language with a few uncommon constructs – and that is exactly what CG is, on this
level. By the keyword float4, vectorial datatypes are declared. They partake in usual
arithmetical operations specified by the familiar operator symbols. One such operation
involves the promotion of a scalar (factor) to a vector. The texRECT line is simply a
stream lookup function, specifying the stream and the position where to look.

The signature of fragmain presents us with the first peculiarities of CG. Note that a
particular parameter (pixel) is declared as having out flow, and that a binding specifi-
cation (: COLOR) is added to it. This specifies that parameter to hold the result value of
the fragment program, and additionally specifies whereto that result should be written
in terms of the graphics pipeline model (Section II.1.a). Other bindings are specified for
the parameters col and tex. These specify from which output of a vertex program the
values are received.2

From this short example, it becomes immediately obvious that CG is firmly rooted in the
graphics pipeline model. As mentioned at the end of Section III.1, this is not necessarily
a problem: Indeed, such a shader can be very easily plugged in to replace another, hand-
coded assembly shader or a parameterised, fixed-function texturing phase. In such cases,
programmers know their inputs and outputs and the locations of these parameters, so
that such a specification is merely an opportunity for specification. For non-graphics
programmers, however, it is a liability.

Profiles. CG supports several assembly language output formats. Both OPENGL and
DIRECTX are supported, and in OPENGL NVIDIA-specific extensions as well as the
standard assembly languages. The compilation of a CG program into the target language
can be performed off-line (the programmer runs the CG compiler on the source code and
works furtheron solely with the generated assembly code) and on-line, i. e., at runtime
of the application (the CG source code is passed to a function of the CG runtime system
which compiles the program). Even in the runtime case, however, CG is not compiled to
native code but to the API assembly languages [N06]. Obviously, some information is
lost in the translation from CG to the assembly language; some of this is retained when
translating at runtime, so that, for example, program parameters can be referred to by
their names and not by the registers specified by their bindings.

2These are the interpolated values of the vertex program’s computations on the vertex inputs.

30

III.2. Shading Languages

More details about the runtime can be found in the part about CGFX.

Features. As seen in the short example, CG programs are written either for the
fragment or for the vertex processor. Binding specifications link the vertex program’s
outputs to the fragment program’s inputs, and also link the vertex program’s inputs and
the fragment program’s outputs to the preceding respectively the following parts of the
graphics pipeline. Programs can work on program-constant parameters; these are the
uniform parameters of Program III.1. Those constants can be set by the host; thus, they
form a means of parameterisation.

Inside the programs, CG offers arithmetical operators on scalar datatypes, with a few
extensions and restrictions. For example, CG offers a fixed-point binary fraction type
and a half-precision type, but not necessarily integers. Vectorial datatypes are present
as well as small (upto 4 × 4) matrices and appropriate operations on them.

Control flow operations are supported as far as possible. The CG compiler can perform
if-conversion for architectures not supporting true conditionals. Standard iteration con-
structs can be compiled for architectures not supporting looping, if the loop can be un-
rolled completely at compile time. Functions are supported by inlining; of course, recur-
sion is not possible.

For advanced datatypes, CG offers structs and interfaces. A structmay havemem-
ber functions and can implement an interface. For example, in Program III.2, a Light
is declared as an interface, which can be implemented by any structure providing a func-
tion intensitywith the specified signature. The function fragaux uses a parameter of
such a type. This function is then called with a structure light of type Const_light,
which happens to implement the interface Light.

interface Light {
float intensity();

};

void fragaux(Light light, in float4 plain, out float4 mod){
mod = plain * light.intensity();

}

struct Const_Light : Light {
float intensity() { return 0.5; }

};

void fragmain(float4 col : COLOR, out float4 pixel : COLOR){
Const_Light light;
fragaux(light,col,pixel);

}

Program III.2: Structures and interfaces in CG

In such a way, a limited form of object-orientationmay be implemented. Advanced object-
oriented features such as real inheritance, combination, extension or implementation of
multiple interfaces are not supported.

Array types are also supported. Because of the memory restriction, arrays have to be
held in registers, and thus they cannot be very large. Pointers are not supported, along-
side with the address operator; Functions can output values via their parameters by the

31

Chapter III. GPU Programming Languages

out/inoutmodifiers. CG also features some predefined functions, such as trigonometric
functions or clamping.

CGFX

The effect framework3 CGFX is a specification format which holds GPU programs and
various additional information about the state of the graphics pipeline. Whereas CG
works on programs for the vertex and for the fragment processor separately, in CGFX
one can specify that two such programs belong together. It is also possible to set various
parameters of the graphics pipeline, such as the blending function, which specifies how
an incoming fragment is catenated with a pixel possibly already present in the output
buffer, or values of the constant input parameters (uniform in Program III.1).

This high-level specification format provides an overview of a desired program in its
context at a glance without the need to keep track of the statements in the host program
used to set up and manipulate the state. As such, it is quite helpful to the graphics
programmer.

Evaluation

CG’s main advantage is that of portability. With its various targets and its independence
from vendors and APIs, it can be regarded as something like a portable higher-level
assembly language. CG provides a definite step of abstraction over the bare assembly
language programming.

However, CG itself it just a shading language, in that it targets exclusively the processors
themselves without any further abstraction. Even CGFX is nothing more than a more
concise and readable version of the graphics state manipulation needed to run GPU
programs. As such, it is not suitable for general purpose programming as defined in this
work (Section III.1).

But it was never intended for CG to become a language with such a wider scope. NVIDIA
certainly intends CG to be used in GPGPU, but only as an efficient, yet readable language
to program the fragment processors, and of course, CG then can be used for GPGPU. In-
deed, CG was the first step of any kind above the bare assembly level for multi-platform
programming, and the comment “Cg is intended to be general-purpose..., rather than
application specific” from [MGAK03] should be read in this regard.

III.2.b HLSL

HLSL is Microsoft’s High-Level Shading Language [M07a, PM03]. HLSL and CG have
been constituted together, and thus most of what has been said for CG (Section III.2.a)
holds for HLSL as well; the differences in the language are relatively minor (such as the
interface feature not being present in HLSL). HLSL also has an effects framework
similar to CGFX. The main difference is not the language itself, but the pragmatical
difference of portability: HLSL is only available for DIRECTX. There it can target GPUs
of various generations using the pixel shader and vertex shader versions supported in
DIRECTX (Table II.1).

For purposes of GPGPU, the same applies as for CG, with the additional constraint of
being confined to DIRECTX and thus to Windows.

3Effect is used here in the sense of “effect applied in the synthesis of an image”.

32

III.2. Shading Languages

III.2.c glslang

The OpenGL Shading Language4 [K06] is the shading language which is part of the
OPENGL specification. On the level of single programs, it is again quite similar to CG
(Section III.2.a). Program III.3 shows the GLSLANG equivalent of Program III.1.

uniform sampler2D texture;
uniform float factor;

void main(){
vec4 texel = texture2D(texture, gl_TexCoord[0].xy);
vec4 fragcolor = gl_Color;
gl_FragColor = fragcolor*factor + texel;

}

Program III.3: A simple GLSLANG program

Note the use of predefined variable names such as gl_FragColor to achieve the effect
of CG’s binding specifications. Some other differences to CG are that GLSLANG does
not include fixed point datatypes and half-precision floats, yet does require support for
integers5, and that GLSLANG does not have the concept of interfaces. Additionally, hard-
ware limits and some parts of the state of the graphics pipeline are exposed to the pro-
grams with predefined names. For example, the constant gl_MaxDrawBuffers holds
the hardware-specific number of output buffers accessible to a fragment program, and
gl_ProjectionMatrix holds a matrix used in computing the projection from a three-
dimensional scene onto the two-dimensional plane (Section II.1.a).

In contrast to CG or HLSL, OPENGL provides only support for on-line compilation of
GLSLANG code into an opaque format. To use a GLSLANG program, the user has (among
many other things) to pass the source string to a function which returns a handle to
an opaque object representing the program. There is no assembly language stage which
could be inspected. GLSLANG also features a linking step: Vertex and fragment programs
may be specified in a multitude of files which are then combined into a single program6.

Older versions of the GLSLANG specifications [KBR04] had an issue list, keeping in tradi-
tion with OPENGL extensions, which brings to light several important points regarding
the abstraction. As far as capabilities are concerned, it had originally been planned that
GLSLANG would support programmable alpha blending (7) and read-access to the output
buffer (23); these capabilities have only afterwards been removed. Issue 52 raises the
very important point of virtualisation of resources. The policy on this is to distinguish
between resources which are “easy to count” (such as number of input buffers (texture
units)), and others. In the cases where it is reasonably clear to the user how many re-
sources are needed, he is responsible for getting by with them. In other cases (such as
length of the resulting GPU program), the implementation is responsible for virtuali-
sation. This virtualisation would entail a quite complex splitting of the program into

4The language is here referred to as GLSLANG. GLSL is also a common abbreviation.
5GLSLANG has a type int, but because of hardware restrictions it need not really be implemented as an

int: “At the hardware level, real integers would aid efficient implementation of loops and array indices, and
referencing texture units. However, there is no requirement that integers in the language map to an integer
type in hardware.” [K06]
6This results in a terminology of shader and program which lies across to the rest of this work. Briefly

speaking, to GLSLANG a shader is a an artifact written in GLSLANG which is to be compiled, and a program is
the object in OPENGL which is to be used. For simplicity, I ignore this terminology here, and speak of vertex
and fragment programs in the usual sense, whenever possible.

33

Chapter III. GPU Programming Languages

various parts with the associate state management to store and pass temporary param-
eters, or the emulation of the GPU on the host system. Similarly, issue 38 decrees that
texture accesses on the vertex processor should be allowed, even though hardware need
not support this.

Newer version of the specification have another issue list with different content. In
[SA06], the ruling of Issue 52 has been renderedmore precisely as such: “A shader should
not fail to compile... due to lack of instruction space or lack of temporary variables.
Implementations should ensure that all valid shaders... may be successfully compiled,
linked and executed.”

All in all, we see that GLSLANG strives to offer more transparency (virtualisation of re-
sources) at the expense of control (assembly language output). But the opacity of the
results of compilation and the linking process together also offer more opportunities for
optimisation to the runtime system. For example, just as an emulation of texture access
in the vertex shader entails pushing these accesses down the pipeline to the fragment
program level, it might be conceivable that an implementation detects that a particu-
lar computation in the fragment program is constant across fragments, and thus lifts
it to the vertex level. Other optimisations involving the linking of vertex and fragment
programs are possible, for example cross-program dead-code elimination. Indeed, be-
cause the driver has the complete control over the programs, it can use the most detailed
knowledge about all of the GPU, the programs and the current state of the graphics
system in its compilation process. This is obviously not at all possible when compiling
off-line or even on-line down to an assembly language: Information about the program
gets lost during translation, and there is no information available about the program’s
running context. Thus, the opacity approach of GLSLANG is also a source of potential for
higher performance.

III.2.d Shading Languages as Target Languages

We have seen several shading languages so far. As has been argued in Section III.1,
shading languages are not the right tool for GPGPU; there needs to be a language on a
higher level.

The next section evaluates those GPGPU languages, and argues for the need for CGIS,
which shall be described in Chapter IV. However, a shading language could be used
as the target of a GPGPU language. Indeed, BROOK (Section III.3.a) employs CG and
HLSL as target languages. In this sense, a shading language can play the role of a
portable intermediate language. CGIS does not use shading languages in this way, and
this section explains the reasons for this.

◮ HLSL: Section II.2.b explained why CGIS targets OPENGL. Due to the restriction
of HLSL to DIRECTX, it is not a possible target language.

◮ CG: When the work on CGIS started, the CG compiler produced unacceptable code.
On the one hand, this is a problem in terms of performance: When a program uses
more instructions than another program, it might take a longer time to execute.
But more importantly, increasing the length of a program or the number of registers
might effect its runnability, because it might just get over the static hardware limit.
For this reason, CG was not adopted as the target language for CGIS.7

7This has changed in the last years. Nowadays, the CG compiler produces high-quality code.

34

III.3. GPGPU Languages

◮ GLSLANG: A very viable option as a target language would be GLSLANG, in par-
ticular because of its tight integration into the OPENGL system. However, it was
exactly this integration which resulted in GLSLANG not being chosen for CGIS:
Because of the opacity and the virtualisation, an inspection of the generated code
is not possible. This prevents reasoning about the performance of the generated
code, because it is not clear whether a poor performance is resulting from poorly
generated GLSLANG code, or a poor processing of the GLSLANG code.

Some other points are applicable to all languages. For one, CGIS is also an experimen-
tation on GPU capabilities and on compiler techniques for GPUs. Thus, the more control
the CGIS compiler has on the result, the better. Additionally, the internal representa-
tion of CGIS is based on sequences of primitive instructions (Section V.2), as needed for
program analysis (Section V.6.a). Retranslating this pseudo-assembly language into a
standard imperative language would result in highly atypical code. Thus, it is unclear
whether the full optimisation potential provided by the shading language compiler could
be realised.

For a similar discussion on a yet lower level of abstraction, see Section III.4.a.

III.3
GPGPU

Languages

GPGPU languages target the GPU as a whole sys-
tem offering computational resources available to
data-parallel programs. To this end, they abstract
away from the graphics heritage of GPUs. On the
one hand, this increases the accessibility of GPUs

to non-graphics specialists. On the other hand, with the GPU being hidden from access
by the programmer, the compiler must ensure that performance-enhancing features are
used effectively, lest the programmer be forced to fall back to lower-level languages for
performance-critical code.

III.3.a Brook for GPUs

The stream computing language BROOK was developed as part of the Merrimac project
for stream computing in general, not only on GPUs [BFHSFHH04, DHEKLAJKDGB03].
As one possible target architecture, it supports GPUs of various kinds. The system for
GPGPU programming, “BROOK for GPUs”, is called BROOK for short, just like in the
rest of this work.

Writing BROOK Programs

BROOK is implemented as an extension of C with embedded kernels. The user writes C-
code to declare streams, CG/HLSL-code to declare kernels and function calls to a runtime
library to direct the execution of the program. Program III.4 shows an example. This is
a complete BROOK program (assuming the data initialisation part in the “. . . ” is added)
– no further actions are necessary to direct the GPU.

Let us start the investigation of this program by focusing, for the moment, on the high-
level instructions to create streams with data and to execute a program, not caring about
whence the program comes. That is, we investigate the main function for now.

We see the declaration of data streams using angular brackets. They use the data type
float4, which is simply a struct with four float components. By the library function
streamRead, these streams are then filled with the contents of input arrays. The call

35

Chapter III. GPU Programming Languages

kernel void add(float4 IN1<>, float4 IN2<>, out float4 OUT<>){
OUT = IN1+IN2;

}

void init_arrays(float4[], float4[]) {...}

int main(int,char**){
float4 in_array1[256], in_array2[256], out_array[256];
float4 in_stream1<256>, in_stream2<256>, out_stream<256>;

init_arrays(in_array1, in_array2);

streamRead(in_stream1,in_array1),streamRead(in_stream2,in_array2);

add(in_stream1,in_stream2,out_stream);

streamWrite(out_stream,out_array);
}

Program III.4: A simple BROOK program

to the add function executes a kernel with these three streams, and the subsequent call
to streamWrite copies the contents of one stream into an array. It is obvious that the
target is totally opaque. The user programs only in terms of streams and kernels.

void add (float4 IN1, float4 IN2, out float4 OUT){
OUT = IN1 + IN2;

}
void main (uniform _stype2 _tex_IN1 : register (s0),

float2 _tex_IN1_pos : TEXCOORD0,
uniform _stype2 _tex_IN2 : register (s1),
float2 _tex_IN2_pos : TEXCOORD1,
out float4 __output_0 : COLOR0,
uniform float4 __workspace : register (c0)) {

float4 IN1;
float4 IN2;
float4 OUT;
IN1 = __fetch_float4(_tex_IN1, _tex_IN1_pos);
IN2 = __fetch_float4(_tex_IN2, _tex_IN2_pos);
add(IN1, IN2, OUT);
__output_0 = OUT;

}

Program III.5: CG code for Program III.4

The kernel, add, is defined in the same source file. Prefixed with kernel, it defines
essentially a CG/HLSL8 function with a bit of added concepts for data exchange. For ex-
ample, the signature operates not in terms of stream elements, but in terms of streams
as a whole; nevertheless, the CG kernel sees only the single elements, of course. Pro-

8For simplicity, only CG is mentioned in the subsequent examples, because in principle CG could also take
on the role of HLSL, but not vice versa.

36

III.3. GPGPU Languages

gram III.5 presents a section of the generated code; the complete program also includes
a number of auxiliary library functions, only one of which is used here. It can be seen that
the kernel itself is faithfully translated into CG. It is called from a function which only
takes care of the data input and output: The function __fetch_float4 is one of those
library functions, which does nothing more than a texture lookup like in Program III.1.

reduce void sum(float IN_STREAM<>, reduce float OUT_SCALAR<>) {
OUT_SCALAR+=IN_STREAM;

}

int main(int,char**) {
float in_array[256];
float in_stream<256>;
int i;
float result;

for(i=0; i<256; ++i) in_array[i] = (float)(i);
streamRead(in_stream,in_array);

sum(in_stream,result);
}

Program III.6: Reduction in BROOK

The high-level approach is of particular importance in more complicated situations. For
example, Program III.6 shows how to implement reduction in brook: All elements of the
specified stream are added into one scalar. On a GPU, this has to be implemented in a
multitude of passes, because a single kernel cannot necessarily fetch all input elements
to add them in one step. This is completely hidden by the high-level specification in
BROOK.

BROOK also offers random-reads, where a stream is regarded as an array, as seen in
Program III.7. Scattering can be simulated on the CPU.

Using BROOK Programs

The general usage of BROOK is depicted in Figure III.2. There, solid lines denote in- and
output, dotted lines denote linkage. The filled rectangular nodes are user supplied code,
the filled oval nodes are part of BROOK, the CG compiler is not part of the system and
the lower chunk is generated by BROOK.

A BROOK source file is compiled as follows. First, a modified C-Parser9 parses the in-
put file, separating code which is subject to further modification by BROOK and code
that can be passed on unchanged to a later C++-compiler. The BROOK-part of the C-
code is then transformed into C++-code, which expands the shorthand declaration in
the BROOK code. For example, float in_stream<256>; becomes ::brook::stream
in_stream(::brook::getStreamType((float*)0),256,-1);. If we compare the
original Program III.4 and the generated Program III.5, we see that the kernels get mod-
ified, too, before being passed to the CG compiler. The resulting assembler code is stored
as a string in the final C++ code. With some auxiliary code, the whole output is written
into a single C++-file.

9This limitation to C entails the old-school type casts and the variable declarations at the beginning of
blocks which were necessary in the examples.

37

Chapter III. GPU Programming Languages

kernel void get(float POS_STREAM<>, float INPUT[57],
out float OUT_STREAM<>){

OUT_STREAM = INPUT[POS_STREAM.x];
}

int main(int,char**){
float pos_array[256], out_array[256];
float pos_stream<256>, out_stream<256>;
float in_array[57], in_stream<57>;
int i;

for(i=0; i<256; ++i) pos_array[i] = (float)((3*i)%57);
for(i=0; i<57; ++i) in_array[i] = (float)-i;
streamRead(pos_stream,pos_array);
streamRead(in_stream,in_array);

get(pos_stream,in_stream,out_stream);
streamWrite(out_stream,out_array);

}

Program III.7: Random reads in BROOK

This file is then linked to the BROOK runtime system and to the rest of the application.
At execution time, the generated functions upload the data to the GPU using the runtime
system, direct the execution of the GPU programs and download the data. The GPU is
abstracted away completely.

The user can choose among a variety of targets at execution time. Supported are the GPU
via both DIRECTX and OPENGL, the CPU and ATI-GPUs via CTM (Section III.4.a). The
choice is made by setting an environment variable or by calling a choice function in the
library. In any case, the rest of the program is not affected by the choice.

Figure III.2Working with BROOK

BROOK code

BROOK
compiler

CG
compiler

auxilliary
code

C++
user code GPU code

BROOK
runtime

application

38

III.3. GPGPU Languages

Evaluation

BROOK is, as it will turn out, quite similar to CGIS. As such, several of CGIS’ charac-
teristics are present also in BROOK. Differences lie in the capabilities of the abstraction
and the compilation (that is, externally visible differences) and in the compilation pro-
cess (internal differences).

For GPGPU programming, BROOK is a big step forward compared to shading languages.
With the targets completely abstracted away, one of the main goals of high-level GPU
programming is reached. BROOK has several features to abstract away from the hard-
ware. For example, it is possible to align streams of differing sizes. Also, if the output
capabilities of a GPU are too restricted to implement a particular kernel, the compiler
issues a multipass rendering, where the targets are written one-by-one. This is a kind
of abstraction which would not be possible on CG alone. However, in some cases, the
abstraction is not adequate. This entails streams of int types, and also the syntax of the
kernels itself. Relying on the CG compiler means, on the one hand, to be disburdened
from implementation decisions, but it also means that the language syntax is largely
fixed. Section IV.2 shows the additional possibilities that present itself when a designer
has full control over the input language.

All in all, BROOK today is a very viable choice for GPGPU work.

III.3.b RapidMind

SH [MQP02] is ametaprogramming language. Programs are not specified in textual form
to be read by a compiler. Instead, a C++ program calls library functions which perform
the actions usually done by a compiler frontend, such as generating the abstract syntax
tree, building a symbol table or type checking [WM95]. By using the C++ facilities of
object hierarchies and operator overloading, the syntax of those function calls is quite
close to the syntax one would usually use in writing a program.

The development of SH itself has ceased. In 2004, a newly formed company, Serious
Hack, took care of SH. Serious Hack has since been renamed to RapidMind, and the
newer versions of SH are also known as RAPIDMIND. In this work, the name RAPID-
MIND will be used for the current state of the system.

Basic Usage

RAPIDMIND is best described by example. Program III.8 specifies a sample program
adding the contents of two streams (just like Program III.4). It is instructive to start its
discussion with the function mkkern, which creates and returns a kernel.

Its use seems obvious from the syntax: A program is defined, enclosed in RM_BEGIN and
RM_END markers, which takes two four-component-float elements as its input, one such
element as its output, and adds the input elements into the output element. A program
object representing this is created and returned.

But how is this host system code translated into a GPU program? After preprocessing,
the code in Program III.9 is created, which sheds some light into how the code is com-
piled. At execution time of the function mkkern, RM_BEGIN is a call to a library function
creating a new program object. The creation of the object in_el1 of type In<Value4f>
(the call of its C++ constructor) actually adds this object to the syntax table of the current
program. The expression in_el1+in_el2 is a call to the function operator+() of the
object in_el1 with argument in_el2, and this operator function then adds an addition
expression to the syntax tree of the program. Likewise action happens for the call to

39

Chapter III. GPU Programming Languages

static Program mkkern(){
Program kernel = RM_BEGIN {

In<Value4f> in_el1, in_el2;
Out<Value4f> out_el;
out_el = in_el1+in_el2;

} RM_END;
return kernel;

}

int main(int,char**){
init();

Array<1,Value4f> in_stream1(256),in_stream2(256),out_stream(256);

float* const in_array1 = in_stream1.write_data();
float* const in_array2 = in_stream2.write_data();
for(int i=0; i<4*256; ++i) in_array1[i] = 4-i, in_array2[i]=i;

Program kernel = mkkern();
out_stream = kernel(in_stream1, in_stream2);

const float* const out_array = out_stream.read_data();
}

Program III.8: A simple RAPIDMIND program

Program kernel = ::rapidmind::begin_program("stream"); {{{{{{ {
In<Value4f> in_el1, in_el2;
Out<Value4f> out_el;
out_el = in_el1+in_el2;

} }}}}}} ::rapidmind::end_program();;

Program III.9: Preprocessed code for the kernel from Program III.8

operator=(). Then, the program is ended; at this time, the program is completed and
the library could compile it into target code.

This shows the main paradigm of RAPIDMIND: “C++ is effectively a macro language
for the RapidMind Development Platform” [R06]. This peculiarity is responsible for the
greatest assets of RAPIDMIND, and also for its problems.

Directing our attention now to the main function of Program III.8, we see how to use the
kernel. The library is initialised, and then three 1-dimensional streams with float4
elements are created. The function write_data returns a pointer to the contents of the
stream which can be used to transfer data to a stream. In effect, the user gets a chunk
of memory, and the RAPIDMIND system is then responsible to update the contents of the
stream (which is stored, for example, on the GPU) with the user supplied data as soon as
it is needed. The kernel is then executed by using it in an assignment operation.10 The
output data are then accessed by getting a pointer to them with a call to the function
read_data.

10It is not executed by the expression kernel(in_stream1, in_stream2); see the later explanation of
partial evaluation.

40

III.3. GPGPU Languages

Programming Kernels

The usage of C++ operators to create operations in the target program might lead to the
wrong assumption that the same holds also for statements. But consider, for example,
the statement for(i=0; i<10; ++i) a=a+b;. At runtime of the C++-program, this
statement would result just in 10 calls to the functions operator+() and operator=();
in effect, to the library it is indistinguishable from the complete unrolling of the loop
on the C++-level. The same holds for other control flow constructs: An if-statement
is not performed per-kernel on the kernel-data, but once in the data space of the host
program. Thus, to the kernel programs, C++ control flow statements are static, not
dynamic. To express control flow in the kernels, special macros are used again. For
example, Program III.10 shows how to express the statement above in terms of kernel-
level control flow, and how this is actually preprocessed into functions manipulating the
syntax tree accordingly.11

// Written by the user:
RM_FOR(i=0.0f, i<10.0f, i+=1) {

a=a+in_el1;
} RM_ENDFOR;

// Actual calls at runtime (simplified):
internal_for(

push_arg_queue() &&
push_arg() &&
process_arg(i=0.0f, 0) &&
push_arg() &&
process_arg(i<10.0f, 0) &&
push_arg() &&
process_arg(i+=1, 0)

);
{ a=a+in_el1; }
end_for();

Program III.10: Control flow in RAPIDMIND

For arithmetic computations, RAPIDMIND offers the usual assortment of types and op-
erations, with familiar caveats; for example, double and int types are implemented as
float on GPUs, and CPUs implement half-precision floats as single-precision floats. In
addition to the familiar vector-types of up to four components, RAPIDMIND can operate
likewise on vector-types of arbitrary length; such vectors are then internally split up into
smaller vectors which can be handled by the hardware, and operations on such vectors
are split accordingly. A library for arithmetical, trigonometrical and other helpful func-
tions common to GPU programmers is also available. These functions are implemented
by native instructions where possible and computed by more primitive instructions oth-
erwise. Swizzling and masking are also supported, which have to use an idiosyncratic
syntax to fit in the operator-overloading setup.

It is obvious from the examples III.8 and III.9, that inside a kernel also objects declared
outside of a kernel can be used. This is in fact a meaningful operation: Objects defined
outside of a kernel and used inside of it are passed as constant parameters to the ker-

11Only the actually executed function calls are displayed. The preprocessed code is larger to accommodate
for immediate mode, which is explained later.

41

Chapter III. GPU Programming Languages

nel. In a similar way, random stream lookups can be performed (Program III.11). The
runtime system takes care of transferring the input data to the GPU when necessary.

Array<1,Value4f> lookup(256);
Value1f constant(5); // Externally defined, thus constant input.
Program kernel = RM_BEGIN {

In<Value1f> index;
Out<Value4f> result;
colour = lookup[index] * constant;

} RM_END;

Program III.11: Uniform parameters and random reads in RAPIDMIND

Indeed, the primitive types and operations need not be used solely in kernels. One can
declare and use Value4f objects anywhere in a program: This is called immediate mode
of execution, in contrast to the retained mode in kernel specifications. Used in this way,
RAPIDMIND is a vector/matrix library.

Advanced Features

RAPIDMIND offers other interesting features. For example, it is easily possible to ex-
press strided or continuous sub-streams of streams, and the effect of access outside of
array bounds can be specified in a way common to GPU programmers. But of particular
interest are partial evaluation of programs and shader algebra, both of which operate on
the program objects.

Looking back at Program III.8, we see that the kernel had been executed by the line
out_stream = kernel(in_stream1, in_stream2);. As we recall, the expression
kernel(in_stream1, in_stream2) is actually a call to the function operator()()
of a program object. As it happens, this operator function does not actually execute
the program, but just binds a parameter, returning another program with the bound
parameter. This makes possible partial evaluation. For example, kernel(in_stream1)
is a program in which the first parameter is bound to a particular stream. This program
can be used in other contexts to bind various streams to the second parameter. Actual
execution of the program takes place only when the result is actually used.12

Shader algebra [MTPCM04] provides a means to combine kernels. For example, suppose
there are kernels p and q which use ip, iq input streams and write into op, oq output
streams. One can combine these two kernels into one kernel s, which performs both
computations of p and q independently, reading from ip + iq streams and writing into
op + oq streams. If op = iq, then one can also combine p and q by catenation into a kernel
s stemming from the sequential execution of p and q, where q reads the output of q. It is
important to note that because the programs are not actually compiled into target code
at this point, the compiler might make use of cross-kernel optimisations. For example, if,
p and q happen to have common code, classical common subexpression elimination can
remove this.

RAPIDMIND supplies the user with a library of small kernels called nibbles to perform
various simple, but useful tasks. For example, a nibble might duplicate an input or
discard one of a number of inputs, or it might perform a simple arithmetical operation
on its inputs. These nibbles can then be used to compose a larger program much in the
same way primitive NAND or fan-out gates are used to create electronic circuits.

12The shown example of partial evaluation uses tight binding, where the stream is bound by value. Binding
by reference, loose binding, is also possible.

42

III.3. GPGPU Languages

As targets, RAPIDMIND supports GPUs via GLSLANG (Section III.2.c) and the Cell pro-
cessor. It is possible to explicitly write shaders for one of the GPU’s processors to facili-
tate RAPIDMIND’s use in classical graphics processing. The runtime system can trans-
parently chose the target on which to perform a computation, but it can also be specified
by the user.

Evaluation

RAPIDMIND is supported by the company RAPIDMIND and accompanied by an excellent
documentation.

The meta-programming nature of RAPIDMIND is its biggest asset. The ability to ma-
nipulate programs via shader algebras can make for a very elegant way of expressing
algorithms. One is reminded of functional programming languages, where the data flow
from one part of the algorithm to another is specified by plugging in functions as ar-
guments to other functions and catenating functions in various ways. That the code is
compiled after manipulation, offers additional opportunities for optimisation, as men-
tioned above. Another strong point of RAPIDMIND is the targeting of the Cell processor.

But the very nature that makes RAPIDMIND so expressive is actually quite different to
what programmers are used to. Functional programming is certainly a very elegant way
of programming, but nearly all programmers are much more familiar with imperative
programming using functional abstractions. The embedding is a further hurdle for ac-
cessibility, because keeping track of whether one currently programs in immediate mode
or in retained mode is not something that programmers are used to. A clearer separation
of concerns would be helpful to programmers.

Also, because the programs are compiled during the run time of the application, the
usual problems of dynamic type checking apply here, too—The C++ compiler can check
only so much, and whether the streams which happen to be passed to the kernels have
the correct type can in principle not be checked at compile time. Other problems, such as
automatic backend selection choosing an incapable backend or some crashes, are almost
certainly due to the tested beta version of RAPIDMIND. The full version of RAPIDMIND
has just recently been released.

All in all, RAPIDMIND is a beautiful way of programming GPUs, but it is not for the faint
of heart.

III.3.c Accelerator

The ACCELERATOR system [TPO06] is specifically designed as a GPGPU language. Tech-
nically, it bears most similarities to RAPIDMIND, in that GPU code is specified using
operator overloading, this time in C#. The main difference is that the primitive object of
operation is not the element, but the stream.

ACCELERATOR introduces four “parallel array” datatypes to C#: Arrays of floats, float4s,
integers and bools. These are the only types allowed in ACCELERATOR algorithms: The
other classical vector types such as float3 or multi-component bools are not supported.
This holds likewise for struct types. An elementwise computation on these types is spec-
ified by using the appropriate operator on the streams. For example, if A and B are
two parallel arrays, then C=A+B; creates a new parallel array C, which results from the
elementwise addition performed on A and B. ACCELERATOR supports other operations
such as reductions, replication or transposition on arrays, which are needed to perform
advanced address calculations. For example, a gather operation on a stream A is per-
formed by creating an index stream I and using a library function for gathering: After

43

Chapter III. GPU Programming Languages

executing R=Gather(A,I);, the array R is the elementwise result of the lookup opera-
tion with I in the fixed array A.

The code is quite succinct for small examples, but can get complicated in presence of
address translations. For example, the code for a blur operation is presented in Pro-
gram III.12 (slightly modified from [TPO06]). To access the positions adjacent to an
element in one direction for the two dimensions13, the array is shifted. The shifted array
is then multiplied by a scalar, which translates to an elementwise multiplication by a
constant. The resulting array is then subject to an addition operation with the array
accumulator, which again is an element-wise operation.

FPA image; // The image to be blurred; a FloatParallelArray
FPA accumulator; // The resulting image.
float weights[]; // Some weights used in the computation.
...
for(int i=0; i<weights.Length; ++i){

int[] shift = new int { 0,i };
accumulator += PA.Shift(image,shift) * weights[i];

}
for(int i=0; i<weights.Length; ++i){

int[] shift = new int { i,0 };
accumulator += PA.Shift(image,shift) * weights[i];

}

Program III.12: A blur filter in ACCELERATOR

This is quite a different view of the GPUs. In most abstractions, kernels are specified
in terms of elements, and operations are performed componentwise across all element
components. In ACCELERATOR, kernels are specified in terms of streams, and operations
are performed elementwise across all stream elements.

Technically, ACCELERATOR is compiled during the application’s execution time just like
RAPIDMIND. ACCELERATOR keeps track of the desired operations and arranges them
into kernels which can be performed on a GPU. This compilation is performed whenever
an operation needs to be done on a CPU or when data is read back from the parallel
arrays into standard C# arrays to be operated upon in standard code.

All in all, ACCELERATOR does indeed completely abstract the GPU and as such is usable
for GPGPU. It has some limitations, though. Its confinement to DIRECTX means that
it is limited to the Windows operating system. That streams may consist only of a very
limited number of primitive types is also unfortunate. Certainly, a 3-ints-stream is not
commonly used, but it would not hurt to support it, when one already has float4-arrays.
Furthermore, in contrast to RAPIDMIND, ACCELERATOR does not offer kernel level con-
trol flow statements. (As mentioned in Section III.3.b, host language level control flow
statements are static with respect to the kernel code.) Because of these restrictions,
ACCELERATOR is a less useful choice for GPGPU.

13The original code does indeed not use negative offsets.

44

III.4. Other Languages

III.4 OtherLanguages

This section deals with the hardware-specific sys-
tems CUDA by NVIDIA and CTM by ATI. They
lie in stark contrast to every language considered
so far, because they are not an abstraction of the
graphics pipeline. Instead, they regard the GPU as

that as what GPGPU programmers like to see it: Just some processing device. Thus,
they form a radically different class of languages than both shading languages and the
GPGPU languages investigated so far. However, they are very different from each other,
too.

III.4.a CTM

ATI’s CTM initiative [A06] follows a completely different approach than that promoted
so far for GPGPU. Instead of abstracting the GPU, and thus enabling programmers to
program the device as though it were just an ordinary co-processor, it lays bare the pro-
cessing elements themselves, and thus presents the GPU as it is. Hence stems the name
of the system: Close To the Metal (CTM). CTM is the name of the main processing device;
here, it is used interchangeably also for the language.

The reference manual [A06] describes the various processors of the CTM, the classes of
instructions, the instructions themselves and the methods of scheduling and synchroni-
sation. It is, in fact, an assembly language manual for that particular class of GPUs.
This should not be confused with the assembly languages in OPENGL or DIRECTX (Sec-
tion II.2.b): The API-assembly languages are themselves abstractions over the actual
operations supported by the hardware. It is the responsibility of the graphics driver to
translate the high-level assembly instructions into hardware-specific assembly instruc-
tions. For this section, and the rest of this thesis, “assembly language” always means
API-assembly language.

Obviously, on this low a level, CTM is unusable as a GPGPU language. The better
control over the target carries a large cost in the form of hindrances of lowest-level
programming—“Close to the metal”, just as advertised.

However, CTM is a very viable choice as a target language for high-level GPGPU lan-
guages; or at least as one of multiple possible target languages, because CTM is specific
to ATI. Indeed, BROOK (Section III.3.a) supports CTM as one of its targets. Used in this
way, there is to consider a trade-off between CTM and assembly languages: Assembly
language programs need to pass through the additional layers of the graphics driver, yet
are subject to probably good optimisers translating to CTM (or a language on a similar
level); with CTM, the compiler writer has not only the opportunity, but also the duty
to go down to the very lowest level. In fact, choosing between CTM and assembly lan-
guage entails answering to mostly the same questions as for choosing between assembly
language and a shading language (Section III.2.d).

Even when not used directly as a target language, reading the description of CTM can
offer insight into the inner workings of the GPU; its use in higher-level instruction selec-
tions and scheduling is doubtful however, because the process of converting an assembly
language program to CTM level is not known.

III.4.b CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s GPGPU programming envi-
ronment [N07a]. Introduced in 2006 much to the surprise of everyone in the field, it
also offers unfiltered access to the hardware. In contrast to CTM, it works on a higher

45

Chapter III. GPU Programming Languages

level of abstraction. The general level of programming is about the same as for BROOK
(Section III.3.a).

To a programmer, the main difference of CUDA with respect to other GPGPU languages
lies in the memory access; in terms of what is possible, of what needs to be considered
and of how it can be expressed. The programmer now has knowledge about the memory
hierarchy (including caches) and the scheduling of execution threads onto processing
units, and he specifies their usages in a relatively high-level language.

Basic Usage

For simplicity, CUDA shall be introduced with a pure streaming example.

__global__ static void
add(float* in_stream1, float* in_stream2, float* out_stream){
const int pos = threadIdx.x;
out_stream[pos] = in_stream1[pos]+in_stream2[pos];

}

int main(int,char**){
float in_array1[256], in_array2[256], out_array[256];
for(int i=0; i<256; ++i) in_array1[i] = 4-(in_array2[i]=2-i);

const size_t size = 256*sizeof(float);
float *in_stream1, *in_stream2, *out_stream;

cudaMalloc((void**)&in_stream1,size);
cudaMalloc((void**)&in_stream2,size);
cudaMalloc((void**)&out_stream,size);
cudaMemcpy(in_stream1,in_array1,size,cudaMemcpyHostToDevice);
cudaMemcpy(in_stream2,in_array2,size,cudaMemcpyHostToDevice);

add<<<1,256,0>>>(in_stream1,in_stream2,out_stream);

cudaMemcpy(out_array,out_stream,size,cudaMemcpyDeviceToHost);

cudaFree(in_stream1), cudaFree(in_stream2), cudaFree(out_stream);
}

Program III.13: A simple CUDA program

Program III.13 is the equivalent of Programs III.4 and III.8.14 It does not use the ad-
vanced features of CUDA, but it serves to illustrate the basic programmingmodel. It can
be seen that, just like in BROOK (Section III.3.a), the kernel code is written in specially
designated functions together with the main code. A compiler then separates those two
parts, working on them independently. In CUDA, the identifier __global__ designates
a function as a GPU kernel, callable from the CPU.

The kernel add is written from the viewpoint of a single stream element, yet it does not
see only a single element: All streams are accessible to it. In the primitive example at

14The underlying architecture natively works on scalars instead of vectors. Former architectures worked in
a 3+ 1 or 2+ 2 model: Two instructions of up to the specified operand size could be executed in parallel, but not
more instructions, even if they made use of less components in total. Such a consideration is not necessary on
the G80. Therefore, the example here uses plain float as the basic type.

46

III.4. Other Languages

hand, a kernel needs just to fetch one particular element from each of two streams and
write the result into the corresponding position in a third stream. This is being done
by using the familiar array syntax with the complete streams, using the position as an
index.

Looking now at the main function, we observe first a few functions to allocate memory
on the GPU and to transfer data to and fro. GPU memory is represented in CUDA as C-
pointers; it is, of course, not possible for the host program to access directly the memory
behind those pointers.

The call to the add function passes in the three allocated streams; this is similar to
the BROOK model. The call gets three other parameters, however. Here, the first two
parameters specify the kernel to be run in 1 · 256 instances (threads). In this case, this
corresponds to the size of the streams, but in general it is completely independent from
it. Besides the raw number of threads, the parameters also specify a topology, and the
third parameter specifies block-shared storage; both features are described below.

To stress the important difference: CUDA does not run multiple instances of a pro-
gram on corresponding elements of streams—It runs multiple instance of a program
on streams. Thus, the CUDA model is much more general than the streaming program-
ming model, where access patterns not corresponding to the streaming model have to be
expressed in an unnatural way. Scattering lies totally across the streaming model and is
usually not expressible at all, yet there is no problem for CUDA.

Threads and Memory

The distribution of the threads can be viewed from a hardware perspective and from
a software perspective. Fortunately, because CUDA has been designed for a specific
hardware, these perspectives are not too far apart. Nevertheless, because this chapter
is devoted to discussing the programmability as exposed to a programmer, the reader is
referred to [N07a] for a detailed discussion about the mappings from the logical features
onto the hardware components.

Each independently executing instance of a kernel is a thread. Threads constitute
blocks. Threads within a common block have access to common shared memory, which
will henceforth be called block-shared memory, to avoid confusion about where it is
shared. Also, threads within a block can be synchronised with a barrier synchronisa-
tion. The blocks themselves constitute a grid. There is no synchronisation or shared
memory between blocks in a grid. All threads inside a grid are required to execute the
same program (statically speaking).

In Program III.13, the call add<<<1,256,0>>> specifies that the threads shall be ex-
ecuted in 1 block comprising 256 threads and 0 bytes of block-shared memory.15 The
predefined variable threadIdx used in the add kernel holds for each thread its id in
its block. Each block is restricted to 512 threads16; the number of blocks per grid is
restricted to 216·3, which is no real restriction for all practical purposes.

Program III.14 (taken from the CUDA SDK distribution) gives an example of shared
memory usage. An array is held in global memory and sorted by bitonic merge sort
[B68]. To remove the need to constantly access global memory, the array to be sorted
is stored in block-shared memory. Each thread is responsible for copying the element

15This call specifies a linear arrangement of threads in blocks and blocks in grids; a two-dimensional or
three-dimensional arrangement were also possible.
16For this reason, Program III.13 did not use the full 1024 threads which would have been necessary for full
equivalence to the former examples.

47

Chapter III. GPU Programming Languages

__device__ inline void
swap(int& a, int& b){ int tmp = a; a = b; b = tmp; }

__global__ static void bitonicSort(int* values){
extern __shared__ int shared[]; // Block-shared memory.

const int pos = threadIdx.x;
shared[pos] = values[pos]; // Copy into shared memory.
__syncthreads();

// Go through all phases of bitonic-merge sort.
for(int k = 2; k <= 512; k *= 2) {

for(int j = k/2; j>0; j /= 2) {
// Compare and maybe swap two elements in shared memory.
int ixj = pos ^ j;
if(ixj>pos) {

if((tid & k) == 0){
if(shared[pos] > shared[ixj])
swap(shared[pos], shared[ixj]);

} else {
if (shared[pos] < shared[ixj])
swap(shared[pos], shared[ixj]);

}
}
__syncthreads();

}
}

values[tid] = shared[tid]; // Copy from shared memory.
}
...
// Called by:
bitonicSort<<<1, 512, 512*sizeof(int)>>>(stream);

Program III.14: Bitonic merge sort in CUDA

at a particular position into block-shared memory at the beginning of the algorithm,
and back to global memory at the end. To ensure that all elements are in place at the
beginning and that all swaps of a particular phase have been performed before the next
phase begins, a barrier synchronisation mechanism is employed.

The line extern __shared__ int shared[]; declares the size of the block-shared
memory space. The host is responsible for ensuring that enough space for all such arrays
is available. Therefore the call specifies the amount of memory to be used by shared.17

A GPU-local function is declared by the qualifier __device__. Similar qualifiers can be
used to specify accessibility and visibility of variables for the GPU or CPU.

17The amount is not specific to be used by a particular array but the amount is reserved for all. In fact,
all arrays start at the same address in GPU memory (requiring a bit of address juggling to ensure they keep
separated), so a separation could not be enforced anyway.

48

III.4. Other Languages

Kernel Programming

Inside a kernel, most features from C can be used. In particular, pointer juggling and
looping are not restricted. Function calls are possible, but no recursion. Data can be de-
clared as usual, but memory allocation and variables with static lifetime are disallowed.

CUDA supports char, short, int and long as signed and unsigned integral datatypes
and float.18 These types are supported in vectors of maximal length 4. Structs are
possible as usual.

CUDA implements a number of the standard library functions of C, as far as they are
concerned with arithmetic, and a few functions inherited from GPU usage.

Runtime Library

CUDA supports two API levels. The examples so far have used the CUDA runtime
level. This is a level of auxiliary C functions using the lower level functions of the CUDA
driver API. This is because the NVIDIA compiler which separates the GPU code from the
CPU code and compiles the GPU code into binary images, outputs C code loading those
images with the CUDA runtime API. Using the CUDA driver API, specifying execution
configurations and loading program images is a bit more cumbersome, but one does not
rely on the generated CPU code.

On a level on top of CUDA proper, NVIDIA provides two libraries for fast-fourier trans-
formation and linear algebra. They are modelled after popular CPU libraries (FFTW
and BLAS) for easier transitioning.

It is possible to map certain buffers from OPENGL and DIRECTX into the CUDA mem-
ory space to facilitate CUDA’s use for visualisation.

Other Notable Features

Assembly. Since the release of the 1.0 version, the CUDA system is accessible also
from an assembly level [N07d]. This is the same level that is the output of the CUDA
compiler. For example, Program III.15 shows the assembly language that is visible when
inspecting the intermediate files generated for Program III.13.

cvt.u32.u16 $r1, %tid.x; # Compute
mul.lo.u32 $r2, $r1, 4; # offset.
ld.param.u32 $r3, %parm_in_stream1; # Fetch
add.u32 $r4, $r3, $r2; # first
ld.global.f32 $f1, [$r4+0]; # element.
ld.param.u32 $r5, %parm_in_stream2; # Fetch
add.u32 $r6, $r5, $r2; # second
ld.global.f32 $f2, [$r6+0]; # element.
add.f32 $f3, $f1, $f2; # Add elements.
ld.param.u32 $r7, %parm_out_stream; # Store
add.u32 $r8, $r7, $r2; # output
st.global.f32 [$r8+0], $f3; # element.

Program III.15: Assembly program for the kernel from Program III.13

That assembly level is actually also a virtual machine. There is still an translation step
from the PTX virtual machine level to the actual GPU instruction set. The PTX system

18Internally, the integer operations work on 32-Bit values.

49

Chapter III. GPU Programming Languages

is extremely new and hardly tested with arbitrary inputs, that is, with inputs different
from the patterns created by the CUDA compiler.

Debugging. A debugging mode emulates the GPU for a CUDA program. Because
debugging facilities on the device itself are not available, a CPU-based emulation with
the usual debugging support from IDEs and access to host-base output channels is the
best way to catch logical errors in the code.19

Programmability. Despite expressing program code on a higher level than the oper-
ations of the bare machine, a detailed knowledge of the architecture is necessary for high
performance. This applies mostly to the memory distribution and access. The CUDA
documentation details the partitioning of shared memory into banks and which access
patterns introduce bank conflicts, and it mentions rules for how to make the most of the
cache of constants. To get the best possible performance from the target, the memory ac-
cess patterns of the threads and their arrangement into blocks and has to be taken into
account early in the design of the algorithm. Section VI.2.a shows the effects of mapping
threads onto blocks on the execution times.

Evaluation

CUDA is the best one can get for a truly general purpose languages for NVIDIA GPUs.
It does not spare one from the hardware peculiarities of the target, but offers a high-level
abstraction (as high-level as C, anyway). To enable compatibility with future generations
of hardware, the assembly code files can be fed to the CUDA system instead of the
binary images. Drivers for future GPUs might then translate the code into code for
the then-current architecture. Thus, even though CUDA remains tied to the NVIDIA
platform, there seems to be no particular need to recompile CUDA code whenever a new
generation arrives. In this way, CUDA offers a usability common in CPU languages.

All in all, CUDA has to be considered the best system for GPGPU work on NVIDIA
CPUs, because it offers the full flexibility of the hardware while not dragging down the
user to the bare machine level.

III.5 Summaryand Outlook

In this chapter, we have seen the different lan-
guages at the disposal of prospective GPGPU
programmers, and we have investigated their
peculiarities and usabilities. As was argued,
programming in a shading language is not an

alternative to be considered. Of the hardware specific languages, CUDA is the best al-
ternative, for it offers more than CTM while demanding less. However, in both cases
one is restricted to a particular brand of targets. The GPGPU languages RAPIDMIND,
ACCELERATOR and BROOK are viable choices for programmers desiring a high level of
abstraction and not being tied to a specific hardware vendor, though ACCELERATOR is
tied to a particular operating system. RAPIDMIND is a system with many virtues but
stranger than necessary to ordinary programmers. BROOK, however, offers an accessible
programming model, and thus it deserves attention by the programmers.

As a language, BROOK leaves not much to be desired. The language CGIS, described
in the next chapter, offers a very similar programming model and a similar level of ab-
straction. The differences between BROOK and CGIS either lie on a technical level or
19Obviously, not all kinds of errors can be caught: in presence of a race condition, an emulation need not
deliver the same result as a native execution, for example.

50

III.5. Summary and Outlook

are stemming from technical differences. In particular, that CGIS compiles its kernel
language down to the assembly language level, but BROOK passes the kernels through
to CG, is the origin of many a subtle or obvious difference, as shall be investigated in
Chapter IV on CGIS and Chapter V on the CGIS compiler.

51

IV

CGiS

It is my firm belief that all successful languages are grown
and not merely designed from first principles.

B. STROUSTRUP, The Design and Evolution of C++, 1994

This chapter is concerned with an explanation of CGIS. This entails describing its syn-
tax and semantics, the usage of the generated code and the runtime facilities. It also
implies a discussion of the usability of CGIS, and the fitness for data-parallel GPU pro-
gramming; the examination concerning this is interspersed with the description of the
language, to achieve high spatial locality of the discussion.

Section IV.1 gives a high-level overview of the language, both regarding the design goals
and the actual result. Sections IV.2–IV.4 describe the parts of the language with increas-
ing scope, from a single kernel in Section IV.2 over data-parallel computations in Sec-
tion IV.3 to interfacing with the outside in Section IV.4. Section IV.5 presents a larger
program, so that the reader can more easily develop a feeling for the language. Sec-
tion IV.6 subsumes the argumentation about whether or not CGIS attains its goals, and
Section IV.7 sums up and concludes this chapter.

IV.1 OverallDesign

CGIS is a high-level, data-parallel stream program-
ming language in the sense of Section II.3.c, specif-
ically designed for general-purpose computations on
graphics hardware. The present section is concerned
first with a high-level overview of CGIS’ goals in Sec-

tion IV.1.a and a high-level overview of CGIS programs in Section IV.1.b. After this
section, the reader should have an idea about how CGIS programs look like and, in part,
why they do so; both aspects are deepened in the next sections.

IV.1.a Design Ideas

I briefly sketch the ideas which have been underlying the design and evolution of CGIS.
These ideas are in turn consequences of the grand goals of CGIS as mentioned in the
introduction (Chapter I), the ambitions CGIS strives to fulfil in the end:

53

Chapter IV. CGiS

◮ CGIS shall be accessible to normal programmers.

◮ CGIS shall be executable on a wide range of targets.

◮ CGIS shall efficiently make use of the available resources.

These diffuse goals can be broken down into individual objectives as follows.

◮ Familiarity: The language must follow syntactic and semantic traditions from
usual (i. e., imperative) CPU programming languages.

◮ Readability: A program’s purpose and working must be understandable from the
program text. Information has to be localised to confine effects, in particular in
case of parallelism. Terseness has to be sacrificed for verbosity, if necessary.

◮ Abstraction: The target has to be virtualised as much as possible. The user does
not need not to know on which of several possible targets a program eventually
runs, neither at programming time nor at execution time.

◮ Compatibility: A program should be compilable to a range of targets. Implementa-
tion should rely on widely supported standards instead of confining the user to a
certain platform.

◮ Adaptability: CGIS must be fit for the future. It must be possible to adapt the
compiler to upcoming architectures as easily as reasonably possible.

◮ Efficiency: CGIS programs should run fast; in particular, there should be an incen-
tive to program in CGIS instead of standard CPU code, for appropriate algorithms.

◮ Controllability: Advanced programmers should be able to exploit hardware capa-
bilities by optional features not of relevance to the normal programmer. Also, ad-
vanced programmers should be able to direct the compiler’s optimisation by pro-
viding user knowledge about the application to the compiler.

◮ Visualisability: For GPUs, an integrated visualisation mechanism and the abil-
ity to use computed results in other parts of the graphics pipeline leads to CGIS’
usability in scientific visualisation.

Obviously, some of these objectives are connected. For example, compatibility and adapt-
ability are two different subaspects of retargetability; Readability and familiarity are
not the same, but go together; Abstraction is a necessary prerequisite for familiarity,
but also plays a role for compatibility. Balancing those user-oriented aspects against the
more target-oriented aspects of efficiency and controllability is an important part in the
design of the CGIS system. For example, virtualisation is not always possible. Here,
CGIS follows the general guideline that those aspects are virtualised where virtualisa-
tion might reasonably help implementing a program which would otherwise be unable to
be implemented on a given target, but which the user would still want to use in a high-
level language (e. g., relatively many outputs of GPU programs); but it does not provide
features for which an emulation would be prohibitively expensive, so that nobody would
use them anyway (e. g., recursion).

54

IV.1. Overall Design

IV.1.b High-Level Overview

In this section, CGIS is described by an example. It shall be explained how to write a
CGIS program and how to use it.

CGIS Programs

A CGIS source file is divided into three parts. Program IV.1 shows the stream addition
example; refer to Chapter III for the same example in various other languages.

PROGRAM add;

INTERFACE
extern in float4 in_stream1<256>;
extern in float4 in_stream2<256>;
extern out float4 out_stream<256>;

CODE
procedure main(in float4 in1, in float4 in2, out float4 result){

result = in1 + in2;
}

CONTROL
forall(in1 in in_stream1, in2 in in_stream2, result in out_stream)

main(in1,in2,result);

Program IV.1: A simple CGIS program

Immediately, the three-fold sectioning becomes obvious. The purposes of these sections
is as follows.

◮ The INTERFACE section declares the data which are operated upon. It also specifies
the interface to the outside world, to the application.

◮ The CODE section declares all kernels.

◮ The CONTROL section declares a sequence of parallel executions, invoking the ker-
nels from CODE with data from INTERFACE.

So let us investigate these sections in Program IV.1 one by one.

In the INTERFACE section, three streams are declared. Besides an element-type and a
size, they have a visibility specifier extern and a data-flow specifier in or out.

In the CODE section, a single kernel called main is declared. It works on single elements,
which are passed to and fro by parameters. In the body, the desired operation is specified
in a standard, C-like way.

The CONTROL section consists of a forall loop, which specifies a parallel application
of a kernel on all elements of a stream. In other words, it is a classical parallel map
operation. The body of this loop specifies which kernel to execute with arguments of
which streams, again by using the familiar call syntax of Pascal or C.

So we have seen how to specify a data-parallel computation on some data. Even before
delving into the details, the basic structure of CGIS should be clear. Now we shall see
whence come the data and how the computation is performed.

55

Chapter IV. CGiS

Using CGIS Programs

Figure IV.1 shows the general usage pattern of CGIS. Solid lines denote in- and out-
put, dotted lines denote linkage. The filled rectangular nodes are user supplied code;
Program IV.1 corresponds to the “CGIS source” node. The filled oval nodes are part of
CGIS, and the other code components are generated by the CGIS compiler.

Figure IV.1 Using CGIS

CGIS source CGIS compiler

GPU code

C++ code CGIS runtimeapplication

As can be seen, the main application interacts only with the generated, abstract data
interface in the C++ code. Indeed, it is completely invisible on which target the generated
program runs. In particular, the application can switch between code compiled for the
GPU and code compiled for another target (SIMD-CPUs, see Section V.6.a), or between
codes for various generations of GPUs. For our example, interfacing with the generated
code would be achieved as in Program IV.2.1

We observe the general usage pattern of CGIS:

(1) Initialise the system.

(2) Register the input data.

(3) Execute the program.

(4) Fetch the output data.

(5) Cleanup the system.

It is obvious that this pattern is completely abstracting away the target; in fact, for the
SIMD-CPU target (Section V.6.a), exactly the same operations using the same functions
have to be performed. The only piece of code indicating that the program is to be run on a
GPU is during the initialisation process, where a symbolic constant CGiS_GPU is sent to
the runtime; and this has to be done precisely because the rest of the code is oblivious to
the target, and the CGIS runtime needs to know which of the possibly multiple targets
to initialise.

Without going too much into detail about Programs IV.1 and IV.2, the reader probably
agrees that this snippet does not offend the principles of familiarity, readability and
abstraction: It is a verbose, but clear way to specify a streaming computation which
happens to be performed on a piece of hardware designed to compute colours of triangles.
Whether these principles are honoured in general, is a subject of the remaining sections
of this chapter.

1Program IV.2 corresponds to a part of the “application” node in Figure IV.1; specifically to that part forming
one end of the line connecting the node to the generated “C++ code” node.

56

IV.1. Overall Design

int main(){
float4 in_array1[256], in_array2[256], out_array[256];
... // Initialise input arrays.

// Initialise system.
CGiS_program* const prog = get_CGiS_program(CGiS_GPU);
register_program_add(prog);
prog->init_all();
setup_init_add();

// Data interface.
set_data_add(CGiS_add_in_stream1,in_array1);
set_data_add(CGiS_add_in_stream2,in_array2);
set_data_add(CGiS_add_out_stream,out_array);
setup_data_add();

// Perform computation.
execute_add();
get_data_add(CGiS_add_out_stream);

// Cleanup.
cleanup_stream();
delete prog;

}

Program IV.2: Usage of the code generated for Program IV.1

Notation

In the following discussion, we shall adopt the following notation.

Fragments of CGIS’ grammar describe various portions of the CGIS syntax. To this end,
we employ a BNF notation, using the following convention:

◮ A grammar rule always has the form NAME ::= α where NAME is a non-terminal
symbol and α is formed as a sequence of terminal and non-terminal symbols with a
few operations, as explained in this list.

◮ Nonterminal symbols are WRITTEN LIKE THIS, terminal symbols are written
like this.

◮ The operators used are:

⊲ The operator [·]?, specifying that its content is optional.

⊲ The operator [·]+
$
, specifying that its content occurs at least once, but possibly

multiple times. Multiple occurrences are separated by a $, if this symbol is
specified. (For example, [α]+, is a comma separated list of α.)

⊲ The operator [·]∗
$
, specifying that its content may occur, and if it occurs, it may

do so multiple times. Multiple occurrences are separated by a $, if this symbol
is specified. ([·]∗ is a shorthand notation for [[·]+]?.)

⊲ The operator [·1|·2], which specifies that exactly one of its cases ·1 or ·2 has to
be used. It may have more than two cases: [·1| ·2 | . . . |·n] is a shorthand notation

57

Chapter IV. CGiS

for [·1|[·2|[. . . |·n] . . .]]. When a complete right side is a list of alternatives, the
enclosing [] brackets may be left out.

Note that the grammar serves only to illustrate the syntax of CGIS. In some cases, it
has been simplified for ease of exposition, and it includes at times forward references. It
is also by far not the actual LALR(1) grammar used in the parser.

In some examples, we shall make use of variables called vec2 or vec3a or the like; these
are always variables of basic type float and the specified width.

As mentioned before, rationalisation of CGIS’ design is interspersed with its description.
Such paragraphs are specially marked. . .

Rationale: . . . like this.

IV.2
Sequentialism:

Kernels

In this section we investigate the syntax and
semantics of kernels. We do so in a purely se-
quential way, that is, a kernel is considered
in isolation. It receives inputs from some-
where and produces outputs which go some-

where; this in-/output facility, that is, the interaction with the global data and thereby
with other kernels, is covered in Section IV.3. Thus, a kernel operates solely on stream
elements. These objects shall henceforth be known as scalars: A scalar is anything which
is not a stream. (Thus, vectorial values such as float4 are scalars, whereas a stream
consisting of two float elements is not.)

In the end of this section, the operations gather, lookup and writeback are consid-
ered, in preparation of Section IV.2.d; these are the only statements considered here
which can introduce cross-kernel dependencies.

For the most part, the syntax and semantics are very similar to that of C. Thus, there is
no formal definition of the semantics. Instead, I list the rules of the language in English
prose, appealing to the reader’s familiarity with imperative languages in general and C
in particular. The differences of CGIS to C will receive special attention, of course, and
it is these differences which will account for most of the explanations in the rationale
sections.

IV.2.a Types

Predefined Types

CGIS offers floating point, boolean and signed and unsigned integer types in widths of
1–4, as well as user-defined types:

TYPE ::= ID | int | int2 | int3 | int4 | uint | uint2 | uint3 | uint4
| float | float2 | float3 | float4 | bool | bool2 | bool3 | bool4

All values of such a type are called scalars, as mentioned before. Values of the types int,
uint, bool or float are called primitive (scalars), values of the multiple-component
integral or floating point types are called vectorial scalars or vectors. The component
type is always called the base type: float is the base type of float2.

Rationale: CGIS does not support pointer types. For lack of dynamically allocated data,
memory chunks are always represented as arrays and accessed with numerical indices.
It is also not necessary to use pointers to get procedure outputs, because CGIS supports
call-by-value-result semantics [S99] (Section IV.2.c).

58

IV.2. Sequentialism: Kernels

User-defined Types

Record types can be defined in the INTERFACE section with C-like notation:

TYPEDEF ::= struct { [COMPDEF]+, } ID ;
COMPDEF ::= TYPE [ID]+, ;

Rationale: Structs are an extremely useful way of structuring information, in particular
when they are used for interfacing with the application. Because CGIS performs texture
packing on its own (Section V.5.a), structs can indeed be used in this way, and thus
it is worthwhile to include them.2 Were structs only be used inside CGIS programs,
their usage would be extremely limited. Indeed, in this case CGIS might not even had
supported structs.

Representation

CGIS does not specify a precision or a width for the scalar data types, nor does it specify
a relation between the sizes of the types. The following requirements and notes apply,
though:

◮ Integral types can be emulated by floating point types. If so, operations are made
on values as though they were floating point values, and afterwards the value is
rounded towards −∞. In presence of such an emulation, bit-operations are unde-
fined. If they are not emulated, then signed integral types are represented in a
two’s complement notation.

◮ There is no specification about internal precision of floating point types. Also, ad-
herence to the full IEEE standard [I85] or presence of denormalised values or in-
finities are not required.

In short, CGIS stays close to the hardware’s capabilities in representing arithmetical
types. Except for the emulation as noted, the values are always represented by their
natural counterparts in hardware. The user has to consider this in particular in the
case of bit-manipulations (which may not be possible on some targets) and of floating-
point computations resulting in values which are not representable (which may result in
special values (e. g., NaN or ∞) or may lead to undefined results).

Rationale:

◮ It is not possible to give more precise statements about representation or accuracy,
because the capabilities of the hardware are too diverse. By specifying what is
emulated and the manner in which it is, and that everything else is mapped onto
their respective hardware counterparts, the programmer however can deduct what
to expect from the hardware specification.

◮ Emulation of bit-operations on integral types with floating point types is some-
where between cumbersome and impossible. In particular, when the precise range
of representable values is not known, operations such as rotation could not be im-
plemented at all. That emulation of integral values is present at all is a matter of
convenience: It saves the programmer from performing manual truncation opera-
tions when he would perform the emulation manually for such values stored in a
CGISfloat variable.

2OPENGL allows only textures of primitive types.

59

Chapter IV. CGiS

Conversion

There are two kinds of implicit conversion between types. On the one hand, primitive
values can take on the role of vectorial values in many operations, as defined in Sec-
tion IV.2.c, by being treated as a vector with the primitive value in all its components.
For example, if vec1 contains a 4 and vec2 a [−2, 0], then vec1+vec2 equals [2, 4]. This
is called elemental intrinsic overloading [TL00]. On the other hand, the usual conver-
sions among signed and unsigned integer types and between integral and floating point
types are performed, along this line:

uint −→ int −→ float

Such a conversion is always performed with available hardware instructions.3 Conver-
sion to a specific type can be done by assigning an expression to a variable of that type,
as usual. Conversion from float towards an integral type rounds towards −∞.

Rationale:

◮ Arithmetical values are considered different from boolean values. This is in con-
trast to C/C++: There, an arithmetical value can be used in place of a boolean value
(bool or _bool), where the truth value is determined as · , 0; and a boolean value
can be cast to arithmetical values, where true means 1 and false means 0. The
former convention merely saves very few key-strokes, and the latter is used only
very sparingly; both, however, can lead to confusion on the reader’s part. Thus, this
conversion has been sacrificed for increased readability.

◮ There are no explicit type conversions. This is simply not necessary: Because the
only conversions are among arithmetical types, and because there is no overload-
ing, the necessary conversions are always clear. In particular, there is no need of
pointer castings, because CGIS has no pointers. In contrast to the different worlds
of boolean and of arithmetical values, a conversion among different arithmetical
types cannot lead to confusion, so it is no problem to have it performed in an im-
plicit way.

IV.2.b Scalars

Constants

CGIS supports constants of all predefined types. Vectorial constants are declared by an
array-like notation using []. A one-component vector [n] is equivalent to n.

CONSTANT ::= BOOLCONST | CONNUM | VECCONST
BOOLCONST ::= true | false
VECCONST ::= [CONNUM] |

[CONNUM ,CONNUM] |
[CONNUM ,CONNUM ,CONNUM] |
[CONNUM ,CONNUM ,CONNUM ,CONNUM]

3The official specification of the G80 architecture does not allow a type-correct transfer between signed and
unsigned integral registers [N07c]. However, the same document states that “in practice” such a conversion
can be done losslessly for representable values (see Section V.3.a). Although the correct functioning is not
guaranteed by the specification text itself, it can be regarded as a secure conversion.

60

IV.2. Sequentialism: Kernels

CONNUM is a constant number, specified as a compile-time constant expression over con-
stant numerals. The numbers are specified as decimal values (in which case they have
type int), in hexadecimal notation (type uint) or in floating point notation (type float).
The usual type conversion rules are applied. For example, [1+3,2.0] is a constant of
type float2.

Variables

Variables are declared in the usual way with optional initialisers for primitive values or
initialiser list for structs.

VARDECL ::= TYPE [VARDECL1]+, ;
VARDECL1 ::= ID [= VARINIT]?

VARINIT ::= EXPR | { [EXPR]+, }

CGIS’ scoping rules are familiar to C programmers:

◮ Variable declarations can be placed anywhere a statement could stand.

◮ The scope of a variable spans from the point of its declaration until the end of
the block in which it is declared, where blocks are, as usual, delimited by { }
(Section IV.2.d).

◮ Variables declared in an outer scope are visible in all inner scopes. Declaring a
variable with the same name as a visible variable is an error. Thus, shadowing is
not possible.

Note that on this level, CGIS has no concept of global data. When a programmer desires
a kernel to access global data, the data has to be passed explicitly to the kernel as a
parameter, effectively creating a local name for it.

Rationale: Amain design principle of CGIS is that the scope of a single kernel is limited,
and that the interaction with other kernels or parallel executions of the same kernel
have to be made explicit. Thus, the need to explicitly create a local name for global data
makes it clear to the programmer what side-effects a kernel could have (or its absence
of side-effects), and what dependencies would be introduced by the execution of different
kernels (or the absence of such dependencies).

Variables with a lifetime longer than the execution time of a kernel (variables declared
with the static modifier in C) are not supported in CGIS.

Rationale: If a kernel would run only on a particular stream input, static variables
could be implemented as a stream of data aligned with the given input. But a problem
arises if a kernel is run on streams of different dimensions or size: If a variable has a
lifetime spanning from one execution to another, there would have to be a way to create
a mapping from kernel executions in one parallel map operation onto kernel executions
in another parallel map operation. A sensible way to define this when the shape of the
streams is different does not present itself. Irrespective of the implementation, it were a
case of local computations with global effects.

61

Chapter IV. CGiS

IV.2.c Expressions

CGIS features a variety of arithmetical operations. Some of them are represented by
operator symbols, others by operator keywords, and others as function symbols. Swizzles
are among CGIS’ peculiarities.

EXPR ::= UNEXP | BINEXP | TEREXP | FUNCEXP | PRIMEXP | (EXPR)
UNEXP ::= [~| - | not] EXPR
BINEXP ::= EXPR BINOP EXPR
BINOP ::= AROP | LOGOP | RELOP
AROP ::= + | - | * | / | # | \| | | ^| & | max | min | << | >> | <<< | >>>

LOGOP ::= and | or
RELOP ::= == | != | < | > | <= | >=
TEREXP ::= EXPR ? EXPR : EXPR

FUNCEXP :: PREFUNC (EXPR)
PREFUNC ::= COMPFUNC | HORFUNC

COMPFUNC ::= sin | cos | tan | exp | ln | exp2 | ld | exp | sqrt | abs | flr | frc
HORFUNC ::= hand | hor
PRIMEXP ::= CONSTANT | ID | ID . SWIZZLE

An identifier is either a variable name or a structure name using the . syntax to access
structure components.

Rationale: Function calls are not expressions, but statements (Section IV.2.d). This is
because user-defined CGIS procedures do not return values in the way of mathemati-
cal functions or functions in certain programming languages, but pass values solely in
reference parameters.

Table IV.1 shows the precedence of the operators.

Table IV.1 Precedences in CGIS
(highest)

Swizzles, functions, unary -
* / # \
+ -

<< >> <<< >>>
< <= => >
== !=
max min
not ~

&
^
|

and
or
?:

(lowest)

62

IV.2. Sequentialism: Kernels

Operators

Table IV.2 CGIS operators

Operator Source Comp.? Target
+ - * / max min arith � arith

| & ^~ integral � integral
float3 float3
\ arith arith1

<< >> <<< >>> integral + uint � integral
and or not logical � logical

< > != == <= >= arith � logical
?: bool +any any

Most operations work on values of all possible width, and their result is the component-
wise application. For example, [1.0,2.0] / [4.0, 0.5] would produce the value
[0.25,4.0]. This holds for those operators which are marked with a � in the column
“Comp.?” in Table IV.2, which also specifies the operand and target types. The meaning
of the type specifiers is given in Table IV.3.

Table IV.3 Legend for Tables IV.2 and IV.4

arith Integral and floating point types of all widths are al-
lowed, or the same type is produced.

integral Integral types of all widths are allowed, or the same
type is produced.

floating Floating point types of all widths are allowed, or the
same type is produced.

logical Logical types of all widths are allowed, or a logical
type with the same width as the input type is pro-
duced.

arith1
(\ only)

The dot product produces an arithmetical type of the
same kind as the input and with width 1.

bool +any, any
(?: only)

The ternary conditional operator gets a boolean con-
dition as an input and any kind of operands as the
choice values (using standard type conversion). The
result is one of the choice values.

integral+uint The binary operators get one integral type of any
width and one uint as inputs.

unsigned arith
(abs only)

The same type as the input type is produced, except
that integers become unsigned integers.

boolean Any boolean value is allowed as input.

Most operands are familiar from mathematical notation or from standard programming
languages, though a few deserve explanation.

◮ The right-shift operator >> performs an arithmetic shift, that is, for signed integer
types it shifts in copies of the left-most bit. In addition to the shift operators, CGIS
supports bit rotation operators <<< and >>>.

◮ # performs an arithmetic cross product between vectors:

[ax, ay, az]#[bx, by, bz] = [aybz − azby, azbx − axbz, axby − aybx].

63

Chapter IV. CGiS

\ performs an inner product between vectors, e. g:

[ax, ay, az]\[bx, by, bz] = axbx + ayby + azbz.

It degenerates to a simple multiplication for values of width 1.

Rationale:

◮ CGIS uses the names and and or instead of && and ||more familiar to C program-
mers to signify that they may be evaluated fully. This does not make a difference
in the semantics, because the operands of such operators cannot have side-effects
(all side-effects are confined to statements in CGIS). For uniformity, the logical
not-operator has then also be named not instead of !.

◮ Cross product and dot product are useful in geometric transformations and there-
fore familiar to GPU programmers. They are also, in part, supported in hardware.
Rotation operators are supported on some CPU targets [F06] and are useful for cer-
tain algorithms (see the RC5 example in Section VI.2.f). Their exposure in CGIS
alleviates the programmer from simulating them with shifts and bit-masks, and
alleviates the compiler from reconstructing the intent from that code [FLW07].

Predefined Functions

For certain arithmetic operations, CGIS features predefined operators which are used
in a way similar to function calls in C. Table IV.4 shows their types; see Table IV.3
for an explanation of the types. Again, most functions are familiar, but a few deserve
explanation.

◮ The functions hand and hor are horizontal boolean operations, computing a sort of
inner product with ∧ respectively ∨.

◮ The functions exp2 and ld compute exponentiation of respectively logarithm to
base 2.

Table IV.4 CGIS functions
Operator Source Comp.? Target

sin cos tan exp exp2 ln ld sqrt flr frc floating � floating
abs arith � unsigned arith

hand hor boolean bool

Rationale:

◮ One could add a plethora of trigonometric functions as reserved words to CGIS;
it was a conscious design choice not to do so. The reason is that GPUs do not of-
fer other functions as native operations. Functions have to be approximated, for
example by the first few terms of the Taylor series. But the desired precision of
the approximation depends highly on the application; therefore, it is likely that for
different applications with different ranges of input the user would desire differ-
ent implementations, such as an approximation with more or less summands or a
lookup table. Therefore, sample implementations are better provided as a CGIS
library, where they can be used, but need not, instead of as predefined names clut-
tering up the namespace.

64

IV.2. Sequentialism: Kernels

◮ Exponentiation and logarithm to base 2 are available because all GPU generations
support this. GPUs do not support exp or ln functions, but these come up too often
and are derived too easily from ld and exp2 (ln a = log2 a · ln 2, ea

= 2a/ ln 2) not to
include them as keywords.

Swizzles

CGIS supports the masks and swizzles from the GPU world (Section II.3.a). Their
semantics are similar to that of GPUs, but not equal. Masks are considered in Sec-
tion IV.2.d.

Swizzling allows the user to construct a new value from the components of an existing
value. The components are specified using either the xyzw- or the rgba-syntax. The
resulting values have the same base type as the operand, and the width as specified by
the components. For example, suppose the contents of vec3 are [1, 2, 3].

◮ vec3.x is a float with value 1.

◮ vec3.yy is a float2 with value [2, 2].

◮ vec3.w is not valid, because vec3 does not have a w-component.

◮ [0,4].y is not valid, because constants cannot be swizzled.

◮ vec3.rggb is a float4 with value [1, 2, 2, 3].

◮ vec3.rx is not valid, because the component notations have been mixed.

◮ vec3.xyzzy is not valid, because CGIS does not support vectors with a width
larger than 4.

◮ vec1.x is not valid, because vec1 is a primitive scalar.

Rationale: This syntax lies in contrast to GPUs, which always require a swizzle to have
width 1 or width 4. This is unintuitive; thus, CGIS models swizzling as a general way for
arbitrary selection, rearrangement and replication. The GPU programmer has to take
special care only in the case of a swizzle with width 2 or 3, because for width 1 and 4 the
semantics happen to be the same as in GPUs. Constants cannot be swizzled because the
programmer can as well write them in the correct order.

IV.2.d Statements

CGIS supports the following statements. For the most part, their semantics are as usual;
explanations will concentrate solely on CGIS’ idiosyncracies.

STMT := CALL | COND | LOOP | BLOCK | COMMASTMT | DATAACCESS
CALL ::= ID ([ID]+,) ;
COND ::= if (EXPR) STMT [else STMT]?

LOOP ::= FOR | WHILE | DO
FOR ::= for (EXPR ; EXPR ; EXPR) STMT

WHILE ::= while (EXPR) STMT
DO ::= do STMT while (EXPR)

BLOCK ::= { [STMT]∗}
COMMASTMT ::= [COMMASTMT , ASSIGN | ASSIGN] ;

ASSIGN ::= ID [[.|:] MASK]? [= | += | -= | *= | /=] EXPR

65

Chapter IV. CGiS

Masking

Masking allows the user to guard some components of an assignment target. This can be
done either statically, using a component mask, or dynamically, using a boolean value.
These operations have slightly different semantics.

First, we turn to statical masking. This is specified in the same way as swizzling, but
components must not be present multiple times, and the order must be preserved. The
effect of a statical mask is to change the lvalue and its type to a subvalue.

◮ vec3.xz = vec2; is a valid assignment, updating the x- and z-components of
vec3 while leaving invariant the y-component.

◮ vec2.x = vec3; is an invalid assignment, because a float3 cannot be assigned
to a float.

◮ vec3.xy = f; is a valid assignment, because a scalar gets automatically pro-
moted to a vector of the necessary size (here, width 2).

◮ vec3.zz = vec2; is an invalid assignment, because replications are not allowed
in masks.

◮ vec3.zx = vec2; is an invalid assignment, because reordering is not allowed in
masks.

◮ vec4.xy = vec4.yx; exchanges the first two components of vec4.

◮ vec1a.x = vec1b; is not valid, because vec1a is a primitive scalar.

Rationale:

◮ Masking uses nearly the same syntax as swizzling, because this makes the concept
easier to understand. On GPUs, masking is not an operation on a value, but a
property of the assignment: The type of the left-hand side stays the same, just
some components are blocked in being written (Section II.3.a). The change was
done to make masking easier to read: The length of the mask locally determines
the width of the type of the lvalue and thus of the possible rvalues.

◮ Masking does not allow replication for the obvious reason that it would be unclear
which value gets written eventually. Masking does not allow reordering, because
this might confuse the user, in particular those used to the GPU assembly seman-
tics; and in contrast to the change in typing to the GPU world, reordering can easily
be recreated by swizzling the right-hand side.

Dynamicalmasking is a form of guarded assignment. Instead of a fixed mask, a boolean
vector (a guard) is appended to the target variable. A result is passed through exactly for
those components for which the component in the guard is true. This form of masking
does not change the type of the target, because it is dynamic: Dynamic masking is an
attribute of an operation. For this reason, it uses a very similar, but not exactly equal
syntax as static masking. Again, let us turn to a few examples, using b3, a vector of type
bool3 with content [true,false,true].

◮ vec3a:b3 = vec3b; is a valid assignment, updating the x- and z-components of
vec3a by the x- and z-components of vec3b.

66

IV.2. Sequentialism: Kernels

◮ vec3:b3 = vec2; is not a valid assignment, because the static types of vec3 and
vec2 do not match.4

◮ vec2:b3 = vec2; is not a valid assignment, because the static types of vec2 and
b3 do not match.

◮ vec3:b3 = vec2.xyx; is a valid assignment, updating x- and z-components of
vec3 with the value of vec2.x.

◮ vec1a:b = vec1b; for a boolb is a valid assignment, because this is simply
if(b) vec1a = vec1b;.5

Both cases of masking are only allowed in =-assignments.

Rationale:

◮ In the case of dynamical masking, the semantics of this in an operator-assignment
such as += would not be obvious; thus, it is not allowed. In case of a static mask, it
is also interpreted as a swizzle, i. e., a.xy += vec2; is a.xy = a.xy+vec2;.

◮ Three different mechanisms use a very similar syntax: Component selection in
structs, swizzling and masking. For static masks, swizzling and component selec-
tion, the .-syntax has long since been established. Except in the rare cases of a
user declaring a struct with a component x, where a .x modifier may look like
struct component selection or swizzling/masking, it is obvious what kind of opera-
tion is specified; therefore, there is no harm in using the established syntax (albeit,
as mentioned before, the semantics are slightly different).

Things are not so clear for the dynamic masks, and I have pondered several other
possibilities. As it is a property of the assignment, the mask could be appended
to the assignment operator: vec3a =.b3 vec3b;. This, however, looks very ugly,
and it is just a strange syntactic feature for a language to have subscripts on op-
erator symbols. Thus, this method was discarded. CG uses the ?:-operator for
component-wise selection: vec3a = (b3)?vec3b:vec3a;. In CGIS, the seman-
tics of the ?:-operator is more like that of the if-statement, which takes only a
single boolean value for a common choice.

A more viable way of expressing dynamic masking would be a guard syntax on the
whole assignment: [b3] vec3a = vec3b;. However, this conflicts with another
syntactic feature (in this case, vector constants also using square brackets), and
whatever symbol one might use for guarding, confusion might not be much less
than when using the masking syntax. The .-syntax of static masking might be
even worse, for the semantics are different for equal syntax. Also, were the .-
syntax used, a boolean vector called xyz or the like would introduce ambiguities in
the grammar. So, in the end I decided on the :-syntax, to emphasise the parallels to
static masking and yet contrast it. This is also exemplified by the name “dynamic
masking”, in contrast to “guarding”.

Control Flow

The control flow statements of CGIS are pretty familiar to anyone used to C. The for
loop also allows variable declarations in the initialiser part, which are regarded as in
the scope of the loop. The only peculiarity of control flow in CGIS is that procedure calls

4Compare with the valid vec3.xz = vec2;.
5Compare with the invalid vec1a.x = vec1b;.

67

Chapter IV. CGiS

are only possible as statements, not as expressions. Also, because of lack of hardware
support, CGIS does not support recursive calls.

Section V.4.c explains how the CGIS compiler copes with control flow in CGIS programs
on hardware not supporting such.

Random Reads and Writes

CGIS supports the following explicit data access statements inside kernels. Recall that
we assume for now to already have declared the kernel parameters.

DATACCESS ::= GATHER | LOOKUP | WRITEBACK
GATHER ::= gather ID : [RELPOS]+, ;
LOOKUP ::= lookup ID : [ABSPOS]+, ;

WRITEBACK ::= writeback ID : [ABSPOS]+, ;
RELPOS ::= ID < INTCONST [, INTCONST]?>
ABSPOS ::= ID < ID [, ID]?>

They are subject to two placement constraints. First, the statements inside a procedure
always have to follow a specific order: gather before lookup before other statements be-
fore writeback. Second, gather can only occur in procedures called from the CONTROL
section, not in procedures called from other procedures.

Their semantics is as follows.

◮ Random reads can be performed with lookup statements. A statement of the form
lookup S: a<p1>, b<p2>; performs two lookups into stream S at positions p1
and p2 and stores the results in variables a respectively b. S, p1 and p2 have to be
procedure parameters, because no other values could have been computed by then.

◮ Random writes can be performed with writeback statements. Their semantics
is completely dual to lookup statements, except for the fact that the positions
need not be procedure parameters. Thus, the effect of a statement of the form
writeback S: a<p1>, b<p2>; is to write the values of a and b into stream S at
positions p1 respectively p2. If p1 equals p2, the behaviour is undefined.

◮ The semantics of gather will be explained in Section IV.3.a, for it is necessary to
know the iteration paradigm of CGIS to understand gather.

Section IV.3 also explains how random accesses can be allowed in the presence of parallel
execution.

Rationale:

◮ Free gathers (reads from arbitrary locations) and scatters (writes into arbitrary
locations) are very useful operations in many algorithms. Unfortunately, GPUs
cannot perform scatters at the level targeted by CGIS. However, the CUDA ap-
proach shows that GPUs can, in principle, support scatters; thus, the language
CGIS provides the writeback statement. Also, SIMD-CPUs, the other target of
CGIS, do not have a problem with scatters.

◮ The requirement on the ordering is merely a help to the user to structure the algo-
rithm more along the streaming paradigm. Internally, the lookup and writeback
operations of called procedures are inlined, and do end up among other statements.

68

IV.3. Parallelism: Maps

IV.3
Parallelism:

Maps

Section IV.2 described the kernels. In this section,
we regard the kernels as given and consider the
computation of a multitude of kernels. This entails
specifying the sections INTERFACE and CONTROL,
and the kernel declaration syntax inside the CODE

section. Again, the semantics is given, for the most part, in plain prose. But specifying
exactly when reads into streams occur and when contents are considered to be updated
might be confusing, especially to a programmer not used to parallel computations with
concurring accesses to common data. Thus, a formal definition of data accesses by an
implicit sequentialisation is essential for a well-defined and understandable parallel se-
mantics, and the end of this section presents such a semantics.

IV.3.a Streaming Computations

At first, we concentrate on plain streaming computations. Recall from Program IV.1 that
streams are declared in the INTERFACE section and that a forall loop in the CONTROL
section specifies the parallel operation on elements of streams. The following grammar
specifies the INTERFACE section. A few symbols are not expanded into their productions
here, because they are not used until later parts of this section.

INTERFACE ::= INTERFACE [GLOBAL]+

GLOBAL ::= GSTREAM | GSCALAR | TYPEDEF
GSTREAM ::= ACCESS TYPE ID STREAMSIZE [STREAMSPEC]? ;

STREAMSIZE ::= < [ID |INTCONST] [, [ID |INTCONST]]? >
GSCALAR ::= ACCESS TYPE ID ;
ACCESS ::= intern | extern FLOWSPEC

FLOWSPEC ::= in | out | inout

The following grammar shows how to use these global data in the CONTROL section;
again, some symbols are expanded later.

CONTROL ::= CONTROL [CONTSTMT]+

CONTSTMT ::= FORALL | SHOW | INTRINSIC
FORALL ::= forall ([ID in ID]+,) PARBODY

PARBODY ::= CALL | { [CALL]+ }

And finally, we turn our attention to the declaration of kernels in the CODE section.

CODE ::= CODE [[PROC | TEMPLATE | INSTANCE]]∗

PROC ::= procedure ID ([PARDECL]+,) { [STMT]∗ }
PARDECL ::= REDFLOW TYPE ID [STREAMPAR]?

REDFLOW ::= FLOWSPEC | reduce
STREAMPAR ::= < _ [, _]? >

The general usage of CGIS for streaming computations is as follows:

(1) Declare the streams in the INTERFACE section.

(2) Write a forall loop in the CONTROL section, declaring iterators on those streams.

(3) Write a procedure call to a procedure in the CODE section, passing it those iterators.

69

Chapter IV. CGiS

The net effect of this is that the procedure specified in the call can be executed in paral-
lel on all elements of the corresponding streams. Armed with this grammar fragment,
Program IV.1 becomes even more clear.

Let us look at the parts of the specification one-by-one, starting from the declarations of
the global data. Data are either extern or intern. This concerns their visibility to the
application, not to the CGIS program: intern data are completely local to the CGIS
program, extern data are somehow also used by the application. The exact manner of
this usage depends on the flow specifier: Data with in flow is set by the application, data
with out flow is read by the application, for inout, both holds.

Notation: Unless explicitly stated otherwise, when this text speaks of “in/out flow”, it
means any flow comprising the in/out flow; that is, anything mentioned about in/out
flow also holds for inout flow.

The flow modifier on global data also governs accessibility of the CGIS program: Data
without out flow cannot be written, data without in flow cannot be read. Data with
visibility intern can be written and read. When passing an iterator to a procedure, the
flows must match: An iterator can be passed to a parameter with in flow only if the
stream itself has in flow.

One can pass components of streams of structs again with the . component selectors.
This allows the programmer to switch freely between a stream of structs and a struct of
streams. Program IV.3 shows an example for this: The stream Points has elements of
type point_t. To the procedure main, only the coord-components of these elements get
passed. Thus, Points is a stream of structs as visible to the outside and the CONTROL
section, but it can be accessed as though it were a struct of streams.

PROGRAM struct_test;

INTERFACE
struct { float cx, cy; } coord_t;
struct { coord_t coord; float3 value; } point_t;

extern in point_t unipoint;
extern in point_t Points<16>;
extern out float floats<16>;

CODE
procedure main(in coord_t c1, in coord_t c2, out float f){

f = c1.cx*(c2.cy+1.0+c2.cx)+c1.cy;
}

CONTROL
forall(a in Points, b in floats)

main(a.coord, unipoint.coord, b);

Program IV.3: Stream of structs and struct of streams in CGIS

Iterators are the most natural parameter passing mechanism to streaming kernels; in
fact, it is the defining characteristic. But in addition to iterators, other values can be
passed to the procedures in CGIS. Let us look first at scalar parameters.

◮ The index operators can be specified on iterators in a call. They pass to the kernels
the index of the current element, starting from 0. That is, if a stream with size 256

70

IV.3. Parallelism: Maps

gets iterated upon by iterator i, the parameter indexX(i) passes to the kernel
responsible for computing at position ι a ι, for ι ∈ {0, . . . , 255}. The equivalently
defined operators indexY and indexXY are only allowed for iterators iterating
over two-dimensional streams.

◮ Scalar values from the INTERFACE section can also be passed to kernels. This
mechanism, which amounts to uniform parameters in some other GPU languages,
can be used for parameterisation, and in general whenever some input data is
constant across all stream elements. Like in streams, the programmer can pass
selected components of structs (Program IV.3).

In both cases, the procedure parameter must not have out flow.

Rationale:

◮ The iterators are syntactic sugar: One could equally well just use the stream as the
parameter of a call as in BROOK (Program III.4). From the parameter of the called
procedure it can be inferred whether a stream shall be passed or an iteration is
desired. But it has to be inferred, and that goes against the principle of readability.
With the explicit iterator syntax, it becomes obvious.

◮ Global scalar parameters have to be explicitly passed to the kernels to localise a
computation’s input state, again.

With the iterator mechanism covered, the semantics of the gather operations can be
explained easily. Let i be an iterator to stream S passed to parameter p of a kernel.
Then, the statement gather p: shifted<x,y>; declares the input shifted to be
read from the stream S. The position is determined by the position of i (the result that
would be returned by the index operators) with offsets x and y. Thus, gathering with off-
set 0 or (0, 0) is disallowed. (The effects of gathers to out-of-bounds indices are explained
later.)

For example, in Program IV.1, the procedure main receives a parameter in1 which is
passed from an iterator in1 iterating over in_stream1. Two gather statements with
offsets -1 and 1 would declare fetches to the neighbouring two elements of in_stream1.

Note that at the declaration of the procedure, scalar parameters are just some parame-
ters with a flow specification; it matters not whether they come from an iterator, a global
scalar or an index operator. In fact, the same procedure can be called multiple times
with different kinds of values passed to the same parameters. The only restriction is
that gather can be performed only on parameters being called with iterators.

Rationale: CGIS uses a uniform syntax for vastly different kinds of inputs (uniform
scalars, stream elements and index parameters) because, to the kernel, these elements
actually are the same: Scalar parameters with a certain type and a certain data-flow
specifier. The only difference is that only stream element parameters can be subject to
gather operations. It is the compiler’s duty to take care of the different meanings in
different contexts.

Kernels can also be passed streams. These are used for table lookups and for writeback
operations. The stream parameters have no explicit size, just an explicit dimension.
They can get passed any stream of the correct dimension. Program IV.4 shows this in a
small example. Regarding the flow, the same conditions as for iterators apply: lookup
can be performed only on streams with in flow, writeback only on streams with out
flow.

71

Chapter IV. CGiS

PROGRAM table;

INTERFACE
extern in float values<256>;
extern in float indices<16>;
extern out float results<16>;

CODE
procedure table_lookup(in float whole<_>,

in float position, out float value){
lookup whole: desired<position>;
value = abs(desired);

}

CONTROL
forall(s in indices, r in results)

table_lookup(values,s,r);

Program IV.4: Lookup in CGIS

To ensure a correct semantics of kernels in presence of multiple kinds of reads and
writes, the following requirements and specifications are made.

◮ A stream must not be iterated upon more than once in one forall loop. It also
must not get passed more than once as a stream parameter in the same procedure
call.

◮ A stream which is iterated upon can be passed as a stream parameter. If so, all
reads from the stream via gather, lookup or through in iterators occur before
all writes via writeback or out iterators. A stream which gets passed as an out
stream, that is, which might be the subject of a writeback, must not be iterated
upon with an iterator that gets passed to an out parameter.

◮ When a stream does not get passed as a stream, all reads via the iterator or gather
occur before all writes via the iterator.

◮ Multiple writes to the same location of a stream with writeback result in unde-
fined behaviour.

Rationale: One could adopt the convention that the result of multiple iterations or other
practicalities resulting in the potential of multiple writes is implementation-dependent
or undefined, understanding that a programmer might know how on a particular target
the accesses happen to get scheduled. This would not be useful in the long run, however,
because one has no control over the sequences of data access and the scheduling of the
GPU kernels in general. It might be the case that on a certain configuration of hard-
ware and driver race conditions resolve in a predictable way, but in the very next driver
version the situation may be different again. Thus, CGIS does not allow this at all.

Some other notes about calling streaming kernels:

◮ There is no type conversion at procedure calls: The types of the variables in the call
and the parameters have to match exactly.

72

IV.3. Parallelism: Maps

◮ To enable correct correlation between elements of various kernels, the sizes and
dimensions of all streams used in the same forall loop must be equal. If the sizes
are not statically specified, then the runtime systems checks for this (Section IV.4).

◮ It is possible to have multiple calls in the body of a forall loop. This is equivalent
to a sequence of forall loops, each having one of the calls.

◮ Reads outside the bounds of streams are allowed and result in clamping to the
borders. For example, consider a stream with dimension 1 and size 256. A lookup
at position p < 0 would always return the value at position 0, and a lookup at
p > 255 would return the value at position 255. The same holds for a gather with
out-of-bound accesses.

Rationale: Having a fixed semantics for out-of-bounds accesses is highly desirable. In
particular, whereas for lookup operations the programmer can check dynamically in
the program whether an access would lie outside the range of the stream, this is not
possible for gather. In fact, any gather operation specifies an out-of-bounds access for
at least one invocation of the kernel. Clamping mode provides the most easily under-
standable such specification. It conceptually comes for free on GPUs:6 This behaviour is
one possible behaviour of specifying out-of-bounds accesses to textures.7 Another alter-
native would be wrapping: For a stream with size 256, an access to position p would be
performed at position p mod 256. I decided against this semantics: By the very nature of
gathering operations, the user wants to access the neighbourhood of an element; a model
which is better covered by the clamping semantics. To get the wrapping behaviour in a
lookup, the operation mod can easily be performed by the user himself.

IV.3.b Reduction

A reduction operation performs a specific binary operation on all elements of a stream.
Thus, a stream gets reduced to a scalar; hence the name. Reduction corresponds to fold
operations in functional languages [T99]. For example, Program IV.5 shows a reduc-
tion operation: All elements of a stream are reduced by the add operation into a scalar,
computing the sum of all elements.

That a kernel specifies a reduction operation, is specified by the presence of a param-
eter declared with reduce instead of a normal flow specification. This is a parameter
representing the temporary value of the sum. The call to the reduction procedure uses
the familiar iterator syntax to pass iterators of the stream which is to be reduced to the
reduction procedure. The procedure itself works only on the particular element, that
is, each kernel conceptually is responsible only for updating the part of the reduction
corresponding to its particular element.

Reduction is implemented in a parallel divide-and-conquer strategy (see also Figure V.2
in Section V.1.c). For example, to sum up the elements in a stream of 16 elements, one
first performs 8 parallel reductions, each computing the sum of 2 elements. This results
in a stream of 8 elements, which is subjected to 4 parallel reductions. The next step

6The clamping has to be performed somewhere inside the system, so it certainly adds some computational
burden. It is unclear where and how the clamping is performed, and it can be assumed that the implementation
is specialised and efficient. The CUDA backend (Section III.4.b) does not benefit from the automatic clamping
and therefore has to create appropriate instructions in the kernel for itself.
7It does, of course, not come free on CPUs; in fact, a naïve implementation which performs security checks

for every access can make the performance go downhill pretty fast. But to not look out for out-of-bounds
accesses would lead to immediate disaster. And if one does a check anyway, it is not much more expensive to
provide a graceful, specified semantics instead of securely returning an arbitrary value.

73

Chapter IV. CGiS

PROGRAM compute_sum;

INTERFACE
extern in float to_reduce2d<SIZEX,SIZEY>;
extern out float reduced;

CODE
procedure sum_up(in float data, reduce float s){

s = s+data;
}

CONTROL
forall(source in to_reduce2d)

sum_up(source,reduced);

Program IV.5: Reduction in CGIS

performs two reductions, and the last step returns the final value. For this operation
to produce the same value as a sequential fold, the reduction procedure has to be as-
sociative. It is impossible to check this in a compiler; the user is solely responsible for
assuring associativity.

Rationale: Reduction procedures and streaming procedures specify two vastly differing
models of computation, yet they are programmed using nearly the same syntax. This is
possible and useful, because the scope of each kernel is the same in each case, namely
one element.

Reduction procedures are severely restricted: They get passed only the iterator to the
reduction stream and the reduction parameter, and they can perform only basic opera-
tions on the data. The programmer has to ensure that the operation is associative and
that there are no persisting manipulations on the iterator value.

For example, a reduction as in Program IV.6 is allowed: In this example, a float4 is
interpreted as a 2 × 2-matrix, and the reduction computes a matrix multiplication.

IV.3.c Special Directives

CGIS supports intrinsics, which are special functions used on streams, that is, in the
CONTROL section. On the one hand, a show statement allows for easy visualisation. On
the other hand, special statements for multiplication of matrices with matrices or vectors
cater to this need, which comes up quite often in numerical application

The following grammar shows the productions for the up to now unspecified nonterminal
symbols.

SHOW ::= show (ID) ;
INTRINSIC ::= [matvecmul | matmatmul] (ID , ID , ID)

STREAMSPEC ::= : [POSSPEC | MVSPEC]
POSSPEC ::= [packing (INTCONST)]? POSITION
MVSPEC ::= matrix | vector

74

IV.3. Parallelism: Maps

PROGRAM red_matmul;

INTERFACE
extern in float4 to_reduce<16>;
extern out float4 reduced;

CODE
procedure matmul(in float4 data, reduce float4 s){

float2 line1 = data.xy, line2 = data.zw;
float2 column1 = s.xz, column2 = s.yw;

float4 new_matrix;
new_matrix.x = line1 \ column1, new_matrix.y = line1 \ column2;
new_matrix.z = line2 \ column1, new_matrix.w = line2 \ column2;
s = new_matrix;

}

CONTROL
forall(I in to_reduce) matmul(I,reduced);

Program IV.6: Another reduction in CGIS

Visualisation

With the statement show(stream);, the contents of a stream can be displayed on the
screen. The elements of the stream are treated as pixel colours for this operation and
are displayed on a black background. For example, consider a simulation of the game of
life [G70] (see also Section VI.2.b): Program IV.7. In a forall loop, the next simulation
state is computed in parallel across all cells. The state is held in a numerical stream,
where each cell is represented as a 1 (living) or 0 (dead). The procedure iterate (not
shown in the example) computes for each cell the number of its neighbours and whether
it itself should be alive in the next state (be born/stay alive) or dead (die/remain dead).

PROGRAM life;

INTERFACE
extern inout float field<512,1024> : B;

CODE
procedure iterate(inout float element, in float2 index)

... // Body omitted.

CONTROL
forall(float e in field) iterate(e,indexXY(e));
show(field);

Program IV.7: Game of Life in CGIS

Note that the declaration of the state stream field includes a packing specifier (the
POSITION in the grammar). For visualisation, CGIS needs to know which colours to
use. In this case, the specification states that the state should be visualised with blue
colour; the colour specification follows the general RGB pattern for red, green and blue.

75

Chapter IV. CGiS

The background colour is fixed at black. There may be only one show statement in a
single program.

Matrix Algebra

CGIS also supports intrinsic functions for matrix-matrix multiplication and matrix-
vector-multiplication. These intrinsics, matmatmul and matvecmul, are specified in
place of a forall loop. Program IV.8 shows a matrix-vector-multiplication. Note that
these operations require the matrices and vectors to use a specific format for data pack-
ing. To this end, they are declared with the special packing modifiers matrix and
vector in the INTERFACE section. This does not preclude their usage as streams in any
other parts of CGIS: A programmight fill a vector with normal streaming operations, let
it then partake in a matrix multiplication, and perform a reduction on its components
afterwards.

PROGRAM Matrix;

INTERFACE
extern in float A<Ax,Ay> : matrix;
extern in float Vin<Ax> : vector;
extern out float Vout<Ay> : vector;

CODE

CONTROL
matvecmul(A,Vin,Vout);

Program IV.8: Matrix algebra in CGIS

IV.3.d Semantics

Now it is time to formally specify the sequentialisation of data accesses and updates. To
this end, we define the basic objects of our consideration as follows.

V is the space of variable names. D is the domain of primitive values. D is not specified
further; it consists simply of all possible values of the primitive types such as float4
or uint and of the user-defined structs. A state consists of an evaluation of the scalar
variables, which is a function V → D, and an evaluation of the indexed streams, which
is a function V → Z → D (stream to element index to element value). The state space,
then, is defined as

[V → D] × [V → Z→ D].

Note that we consider only one-dimensional streams for simplicity; this is no loss of gen-
erality, because a two-dimensional stream of size X×Y is isomorphic to a one-dimensional
stream of size XY, with appropriate translation of indexes and index shifts; the extension
of the semantics is straight-forward.

A CONTROL section consists of multiple forall loops or intrinsics. The effect of show
statements and matrix intrinsics on the state is obvious, so we concentrate on forall
loops. As mentioned before, a forall loop with multiple calls in its body is syntactic
sugar on multiple forall loops. Therefore, without loss of generality, we consider only a
single forall loop with a single call.

76

IV.3. Parallelism: Maps

We regard a kernel as a function ϕ taking scalars and streams as an input and providing
values of scalars and of streams at specific positions as an output:

D × . . . ×D
︸ ︷︷ ︸

scalar inputs

× [Z→ D] × . . . × [Z→ D]
︸ ︷︷ ︸

stream inputs

→ [V → D]
︸ ︷︷ ︸

scalar outputs

× [V → (Z ×D)]
︸ ︷︷ ︸

stream outputs

.

The scalar inputs stand for all scalar in parameters, whether they come from iterators,
global scalars, index operators or shifts. The stream inputs are all streams passed with
in flow; a kernel operates on them with lookup operations. The output is the effect on
iterators or reduction parameters and the effect on streams written to with a writeback
operation.

Now let us consider the invocation of a streaming kernel fwith its semantical function ϕ.
The function call shall be

f(i1,...,in, c1,...,cp, index(i), U1,...,Uq, o1,...,om, V1,...,Vr),

where

◮ the i are iterators to streams I1, . . . , In passed to in parameters;

◮ the o are iterators to streams O1, . . . ,Om passed to out parameters;

◮ the c are scalars c1, . . . , cp;

◮ the U are streams U1, . . . ,Uq passed to in parameters;

◮ the V are streams V1, . . . ,Vr passed to out parameters;

◮ f has shifted parameters, which are computed from the input iterators iσ1 , . . . , iσd

with offsets δ1, . . . , δd.

Note that because all streams are one-dimensional, we can, without loss of generality,
assume that there is exactly one index operator, and that the shift displacement can
be specified as a single scalar. Also note that we have split inout parameters in two
parameters having solely in respectively out flow to ease the exposition.

The effect of a kernel on the streams at a particular point ι with current state (S 1, S 2)
can be expressed by the function

ϕ′ = λι.ϕ(S 2(I1)(ι), . . . , S 2(In)(ι), S 1(c1), . . . , S 1(cp), ι,

S 2(U1), . . . , S 2(Uq), S 2(Iσ1)(ι + δ1), . . . , S 2(Iσd)(ι + δd)).

Then, a call transforms the state space (S 1, S 2) 7→ (S 1, S
′
2), where S ′2 is defined as follows:

S ′2 = λS .

λn.π1(ϕ′(n))(S) S ∈ {O1, . . . ,Om}

λn.π2(π2(ϕ′(n′))(S)) S ∈ {V1, . . . ,Vr}

λn.S 2(S)(n) otherwise,

where n′ is the solution of π1(π2(ϕ′(·))(S)) = n.

πρ is the projection on the ρth component. When n′ is used (in presence of output streams)
but not well-defined, then S ′2 is not defined. The global scalars (S 1) are not affected.

77

Chapter IV. CGiS

The second method of calling kernels is per reduction. This is actually much easier if we
have the function ϕ, as per our assumption. So, consider f being called with an iterator
to stream I and scalar value s. Then, the call transforms (S 1, S 2) 7→ (S ′1, S 2), where

S ′1 = λv.

ϕ(I) v = s

S 1(v) otherwise.

This section should havemade precise that fluffy prose describing the data access seman-
tics of CGIS: All inputs are evaluated, the kernel gets only scalar values and streams,
and in the end the kernel outputs get fed one-by-one into the new streams. The imple-
mentation notes in Section V.1 describe how this is assured.

IV.4 Interfacing withthe Outside

We have seen in the preceding sections how
a single CGIS program works on streams.
But CGIS programs do not stand in isola-
tion: The whole reason for CGIS is to be
used in conjunction with a larger applica-

tion. So this is one kind of interfacing with which we shall deal here, in Section IV.4.a.
Additionally, the principles of modular design apply to CGIS programs in the same way
they do for any other program. Therefore, a way to structure larger CGIS program into
smaller programs and libraries is needed. Section IV.4.b discusses CGIS’ facilities for
interaction of multiple CGIS programs.

IV.4.a Interfacing with the Application

Recall Program IV.2 and the subsequent discussion. Five tasks are necessary for inter-
facing with a generated CGIS program:

(1) Initialise the system.

(a) Decide on a target.

(b) Setup variant sizes.

(c) Register all programs with the runtime.

(d) Initialise the runtime.

(e) Initialise the programs.

(2) Register the input data.

(a) Setup pointers to the streams.

(b) Setup data for the streams.

(3) Execute the program.

(4) Fetch the output data.

(5) Cleanup the system.

Not all these steps are needed for a single computation. Initialisation and cleanup need
to be done only once, and there can be multiple executions per data transfer.

We cover these steps one by one. All procedures used are declared in a header file which
has to be included in the application. The contents of the header for Program IV.1 are
displayed in Program IV.9.

78

IV.4. Interfacing with the Outside

#ifndef HEADER_add
#define HEADER_add
#include "cgis_main.h" // A header defining CGiS_program.
typedef enum { CGiS_alldata_add,

CGiS_add_in_stream1,CGiS_add_in_stream2,CGiS_add_out_stream
} CGiS_data_add;

bool register_program_add(CGiS_program* program);
bool setup_init_add();
typedef enum { } CGiS_size_add;
bool setup_size_add(CGiS_size_add type, size_t size);
bool set_data_add(CGiS_data_add tex, void* data);
bool get_data_add(CGiS_data_add kind);
bool setup_data_add();
bool execute_add();
bool run_add();
bool set_texture_add(CGiS_data_add tex, unsigned int texname);
bool get_texture_add(CGiS_data_add what, unsigned int* retval);
bool cleanup_add();
#endif

Program IV.9: The header generated for Program IV.1

(1) CGIS has the concept of program objects in the application which hold state pertain-
ing to multiple CGIS programs. For example, the runtime has to allocate enough
space for all CGIS programs taking part in an application to avoid costly realloca-
tion or data transfer during the execution time. (This description is intentionally
vague to spare the reader, for now, the details of the OPENGL implementation. The
following discussion in this section also does not go too deeply into the details for the
same reason. The exact purpose of the program object and the exact actions of the
other procedures will become clear in Section V.1.) To this end, the programmer has
to code the following steps.

(a) Initialise a program object by calling the library function get_CGiS_program
with a target identifier of CGiS_SIMD or CGiS_GPU. The SIMD identifier is for
programs running on the SSE or AltiVec extensions of CPUs; because processors
do not support both, a single identifier poses no disambiguation problems.8

The return value of this function is a pointer to an interface object. This object
has a few virtual functions which give information about the current target or
can aid in debugging.

(b) The sizes of the variant streams have to be specified. This is not necessary for the
example program, because it used fixed size streams. In other cases, the function
setup_size_NAME has to be called with an enumerant for the size to be specified
and the actual size.

(c) All CGIS programs have to register themselves with the program object. This is
done by calling the function register_program_NAMEwith the program object.

(d) The method init_all of the program object initialises the runtime. For exam-
ple, the GPU version allocates space, and it opens a window for programs using

8The SIMD target is out of the scope of this work. It is described in detail, together with the associated
work on the language and the compiler, in [F08].

79

Chapter IV. CGiS

the show statement. This function also checks that streams which have been
inferred by the compiler to have the same size actually do get assigned the same
size.

(e) The function setup_init_NAME then has to be called for all CGIS programs.
One of the purposes of this function is to assemble the GPU programs and to
transfer them to the GPU.

(2) Then, the data has to be specified. First, pointers to all external data have to be
presented to the programs with calls to the function set_data_NAME. Second, a
separate call to the function setup_data_NAME ends this process and declares the
data as ready for transfer to the GPU. The other function set_texture_NAMEwill be
discussed in Section IV.4.b, which covers the interaction of multiple CGIS programs

(3) The execution takes place with a simple call to the function execute_NAME. All
changes of kernels, upload and download of data and setting of graphics state are
performed in this generated function.

(4) Data is downloaded onto the CPU with a call to get_data_NAME. This works similar
to data setup with set_data_NAME. The download function does not need a pointer,
though, because it has been specified in the set-function. Likewise, the function
get_texture_NAME is covered in Section IV.4.b.

(5) The internal data of the runtime system and the handles to the OPENGL context are
freed by calling the procedure cleanup_NAME.

To further ease the interfacing, the programmer can download all output data by passing
the constant CGiS_alldata_NAME to the function get_data_NAME, and anything from
setup_data_NAME through to get_data_NAME is subsumed by run_NAME.

We observe a couple of points. First of all, the target is completely hidden. This is one of
the main objectives of CGIS: To hide from the programmer where the data-parallel code
is executed. Second, the generated code is easily usable. The programmer can interact
with the generated code by a few, easily learnable functions. The initialisation steps
might seem cumbersome at first, but the various calls are necessary to pass information
to and fro among multiple CGIS programs. The main code, however, comprises only
pointer store- and fetch-functions and the triggering of the execution. Interfacing with
the GPU is as easy as interfacing with any other kind of library facility.

IV.4.b Interfacing with Other CGiS Programs

There are various reasons for a larger project to be split into a multitude of CGIS pro-
grams. For one, a natural division might present itself; one program might be respon-
sible for computing a simulation, and another one for computing and displaying an ap-
propriate visualisation. Also, a larger task might have to be split into multiple CGIS
programs because CPU interaction is required at certain steps. For example, an itera-
tive procedure has to be applied until some error condition falls under a threshold, and
then the result is subject to further computations. This cannot be expressed in pure
CGIS, for it entails looping on a yet larger scope: a sequential, data-dependent loop over
forall loops. Thus, the task has to be split into one program for the iteration and one
for the subsequent work. In the end, in both cases a way to transfer data from one CGIS
program to another is needed.

Also, filtering out common code into libraries is a well-established principle of program
design. An interface between CGIS programs provides library support on streams; CGIS
also provides library support on scalars, that is, libraries of CODE functions.

80

IV.4. Interfacing with the Outside

These two issues require syntactic support in the CGIS language. Because syntactically
kernel libraries need a strict subset of the features for cross-program data transfer, this
shall be discussed first.

CGIS also provides a way to use the data computed in a CGIS program in other graphics
applications. As it happens, this uses the same features as shared streams, and therefore
it is explained last.

Textual Inclusion

With the directive import "FILE"; the user specifies that a certain chunk of text has
to be textually included at this position in the source file. That is, the contents of the
specified file are parsed as though they were present at the position of the import state-
ment. Thus, all names defined in the file can be used as though they were declared in
the importing file.

The import statement can be placed in the CODE section (on the same level as procedure
declarations) or in the INTERFACE section (on the same level as data declarations). In the
first case, it provides a way to include library kernel procedures into a CGIS program.
For example, a library of trigonometric functions might be specified in such a file and
provide its functions to all files including it. In the second case, common streams can be
declared in an imported file which then gets used by all CGIS programsworking on these
streams. Although it is not strictly necessary to use import in these cases, it makes life
much simpler; see below.

Rationale: Using #include would have been more familiar to the C-programmer, but
this preprocessor notation would stick out in CGIS. The import statement is more in
line with the rest of the CGIS syntax. It is not unfamiliar to most programmers, because
statements such as import or a similar use are well-established in other programming
languages [CT98, T99, E04].

Templates

CGIS also features a template mechanism for generic procedures. The hitherto unspec-
ified parts of the grammar are as follows.

TEMPLATE ::= template TYPETEMPS ([PARDECL]+,) { [STMT]∗ }
INSTANCE ::= instance ID TYPEINSTS ID ;
TYPETEMPS ::= < ID [ID]+, >

TYPEINSTST ::= < TYPE [TYPE]+, >

The semantics of the templates and instantiations is pretty straightforward. A template
declaration is exactly the same as a procedure declaration, only that some types are
unspecified. These types are declared as type variables in the template declaration. A
template instantiation is performed by declaring a procedure to be a particular instance
of a template, assigning actual types to the formal types. The resulting procedure is then
usable in the same way as when it would have been declared normally.

Program IV.10 shows an example for this. It starts with a template of a procedure with
one type variable, T. The template is called get_something, and it is, in effect, a generic
stream lookup procedure. The type variable T is used in the code in place of actual
types. In the instantiations below the template, the type variable T gets assigned the
type float for get_float and int3 for get_int3. At this point, the template gets

81

Chapter IV. CGiS

template<T> get_something(in float coord, in T A<_>, out T o){
lookup A: retval<coord>;
o = retval;

}

instance get_something<float> get_float;
instance get_something<int3> get_int3;

Program IV.10: Function templates and instantiations in CGIS

procedure get_float(in float coord, in float A<_>, out float o){
lookup A: retval<coord>;
o = retval;

}

procedure get_int3(in float coord, in int3 A<_>, out int3 o){
lookup A: retval<coord>;
o = retval;

}

Program IV.11: Function declarations equivalent to Program IV.10

instantiated with the types and the procedure is checked with respect to the assigned
types. The net result is the same as would result from Program IV.11.

Program IV.11 is more pure in the sense that all data accesses become explicit, whereas
Program IV.10 alleviates the programmer from the burden to write essentially the same
code over and over again.

Rationale:

◮ Genericity is in general a worthwhile feature. With procedure templates, the pro-
grammer can increase the reusability of a library, and in general factor duplicate
code into common declarations. The only question is whether to use a type inference
mechanism [T99] or explicit instantiation. Type inference would be very easy in
CGIS, because all types are known statically and CGIS requires exact type match-
ing in procedure calls. But in line with the rest of the language, CGIS requires
explicit instantiation, to make the code more readable: Again, all information to
understand the instance is in one place.

◮ The angular brackets for templates were modelled after C++ templates [S97b].
Confusion with the stream size use of angular bracket seems unlikely.

Shared Streams

Different programs sharing streams poses the problem of transferring information about
data location and alignment between programs. For example, a raycaster implemented
in CGIS consists of several programs which all work on a particular action to be per-
formed on rays: One is responsible for tracing a ray through a scene, another one for
computing intersections with objects, another one for computing the final colours, and
so on; Section VI.2.g presents the raycaster in more detail. But all these programs need
common streams. Data has to be passed to and fro between these programs. It would
be prohibitively expensive to pass the actual data over the CPU, that is, to download the

82

IV.4. Interfacing with the Outside

data from one program and pass it over to the next program: Data transfer times would
dwarf all possible performance gains. In terms of CPU programming languages, what
one desires is to pass a reference or a pointer to the data.

For GPU programs, the streams are stored in textures. Thus, passing a pointer entails
passing some identifier to the texture in which the stream happens to reside. And this is
exactly what CGIS does: The function get_texture_NAME gets such an id from one pro-
gram and the function set_texture_NAME passes this id to another program. However,
the different programs also need to use the same texture packing. To ensure this, the
position specifiers (Section IV.3.c) are employed again, but this time with an additional
packing id.

extern inout float3 directions<PICX,PICY> : packing(1) RGB;
extern inout float states<PICX,PICY> : packing(1) A;
extern inout float current_tri<PICX,PICY> : packing(2) R;
extern inout float2 current_t<PICX,PICY> : packing(2) GB;

Program IV.12: Declaration of common streams in CGIS

For example, consider the fragment of common stream declaration for the raycaster in
Program IV.12. It declares a variety of streams with an extended packing specification: In
addition to the position specifiers such as RGB or A (Section IV.3.a), a packing id is used.
This is a numerical id which simply identifies streams that shall be packed together in
the same texture.9 In this example, the streams directions and states are specified
to reside in one texture, and streams current_tri and current_t are specified to
reside together in the a different texture. All programs using these streams include them
with the import directive: import "streams.cgish"; in the INTERFACE section.

The contents of the streams are specified in the usual way by one program; for our
example, let this be the program init. Then, the GPU pointer (the texture) is passed to
other programs by the [s|g]et_texture_NAME functions:

unsigned int initdirs;
get_texture_init(CGiS_init_directions, &initdirs);
set_texture_raycaster(CGiS_raycaster_directions, initdirs);
set_texture_traverse(CGiS_traverse_directions, initdirs);

Now the texture is also known in the programs raycaster and traverse, and so these
programs can exchange data through those streams without holding it in separate, local
copies or using the CPU.

Rationale: It might concern the reader that suddenly a programmer seems to be forced
to deal with textures, although CGIS should abstract from the hardware. But in reality,
the user does nothing more than specifying a data layout; the packing specifier plays
the role of padding or alignment directives in CPU programming languages. This, in
turn, always must be specified in situations where a consumer of data might expect the
data in another layout than the producer of data. The reason why this is the case in
CGIS is an optimisation process explained in Section V.5.a which performs automatic
data layout specific to a single CGIS program.

9This is not the texture id. The scope of the packing specifier is a CGIS file: For the same stream different
packing specifiers can be used in different files without harm. For correct data exchange, the only thing that
matters is that streams which have equal packing specifiers in one file also have equal packing specifiers in
any other file. Obviously, to minimise confusion it is best to use the same specifier in all files; and this, in turn,
is guaranteed by specifying the streams in a separate file and including this file with the import statement.

83

Chapter IV. CGiS

External Visualisation

The identifier one gets when performing the get_texture_NAME function is actually
a standard OPENGL texture id. The CGIS implementation makes sure that, when it
is requested by the application, it holds the desired data and is free to be bound as an
OPENGL texture in arbitrary applications. Thus, the programmer can use the textures
in more advanced visualisations, for example, to use the image in a larger scene or to
distort it and map it on a surface. Obviously, it is forbidden to modify the contents of a
texture.

This feature enables CGIS programs to be used as procedural textures. A procedural
texture (a texture which is not prespecified, but generated at run time) is a common use
of fragment programs in graphics applications. CGIS programs can be used for this, but
also as a plug-in in scientific visualisations, where the interfacing requires more than
just a plain 2d-visualisation as is possible with the show statement.

IV.5
Example

Program

As an example of CGIS code, we finally look at a larger
program which uses most of CGIS’ features. This way,
we can see CGIS in the context of a larger example,
which will certainly make its constructs clearer. Also,
it serves as a general example of how CGIS programs

look like. For a more detailed explanation, consult [G05].

The task to implement is the following: Let there be a container filled with a liquid and
with an image on the bottom. The liquid gets distorted and waves are engendered. These
waves propagate over the surface, interacting which each other, getting reflected by the
container’s brink and withering with time. Compute those propagation, the refraction of
the image and display it. For example, Figure IV.2 shows an image with distortion (the
caustics are part of the image).

Program IV.13 shows the data used in this program and the general sequence of compu-
tation for one time step of the simulation. The kernels are listed in Program IV.14. We
observe the following sequence of computations taking place:

(1) First, the program computes the propagation of waves. To this end, it takes the
last state and computes from them the general propagation of the waves. For this,
it takes into account a damping factor which specifies how fast the waves should
whither. For computing the reflection at the borders, the kernel gets as inputs also
the position of its element (the index operators) and the dimension of the container
(WIDTH, HEIGHT).

(2) Then, given the then current state of simulation, the refraction of light is computed,
by two separate kernels for each dimension.10 As input, they get the refractive index
of the liquid.

(3) Then, the final image is computed from the distortion and the original image sup-
posed to lie on the bottom of the container. A show statement visualises this on the
screen.

10In reality, it is one parameterisable kernel, see Program IV.14.

84

IV.6. Fitness for the Purpose

Figure IV.2 Refraction

In this sequence, we see several features of CGIS: Sequences of parallel streaming com-
putations; passing of stream iterators, global scalars and index operators; passing of
streams for lookup purposes; visualisation. We also see in the INTERFACE section the
declaration of all global data. The streams have not a specified size: The application sets
SIZEX and SIZEY at runtime. The streams LAST and CURRENT have a packing specifier,
because the application needs to switch those two streams after each time step.

Now we briefly consider the kernels, listed in Program IV.14. The file util.cgish,
which is imported by Program IV.14, contains the procedure clamp(inout float3 x),
clamping the input to the range [0, 1] (0 max (1 min x)), that is, computing

λx.

1 x > 1

0 x < 0

x otherwise

For a detailed explanation of the CODE section, the reader should consult [G05]. Here,
upon inspection we can see the following features in action: Multiple streaming ker-
nels called from different contexts; lookups with relative addresses via gather on it-
erators, to get access to the height field around a specific point; lookups with absolute
addresses via lookup on parameter streams, to compute the distorted image from the
original image; passing of element indexes; control flow; procedure calls inside of CODE
(refractionX and refractionX to refractionXY); library support via import.

The reader can observe that the subtasks of the simulation naturally map to CGIS
constructs. The abstraction of CGIS allows to express the algorithm in a concise, yet
readable way. As we shall see in Section VI.2.d, the generated code is also fast. Thus,
this wave propagation example can serve as a convenient example to illustrate CGIS’
strengths.

85

Chapter IV. CGiS

PROGRAM viswave;

INTERFACE
extern inout float LAST<SIZEX,SIZEY> : packing (1) A;
extern in float CURRENT<SIZEX,SIZEY> : packing (2) A;
extern in float RINDEX, DAMPING, WIDTH, HEIGHT;
intern float X<SIZEX,SIZEY> : packing(4) R;
intern float Y<SIZEX,SIZEY> : packing(4) G;
extern in float3 TEXTURE<SIZEX,SIZEY>;
extern out float3 IMAGE<SIZEX,SIZEY> : RGB;

CODE
// See Program IV.14.

CONTROL
forall(last in LAST, current in CURRENT)

propagate(last,current, indexX(last),indexY(last), DAMPING,WIDTH,HEIGHT);

forall(x in X, y in Y, height in CURRENT){
refractionX(RINDEX, x, height, indexX(height), WIDTH);
refractionY(RINDEX, y, height, indexY(height), HEIGHT);

}

forall(pixel in IMAGE, height in CURRENT, x in X, y in Y)
render(TEXTURE, pixel, height, x, y);

show(IMAGE);

Program IV.13: Wave propagation in CGIS: INTERFACE and CONTROL

IV.6 Fitness forthe Purpose

During the course of this chapter, rationales al-
luded to various causes for the choice of language
features. After having seen these specifics, let us
now review the objectives stated in Section IV.1 of
CGIS as a whole. A couple of these objectives can

be evaluated from the description of the language alone, but for some the evaluation has
to be deferred to future chapters. Adaptability and compatibility are features of the inner
workings of the compiler, and thus they are the topic of Chapter V. Controllability also
happens to be more at home in that chapter, for it is there that the additional possibili-
ties for giving information to the compiler (hints, in CGIS’ terminology) will be covered.
Efficiency is the topic of Chapter VI, where several applications will be presented.

The objective of abstraction surely is achieved. The target of the execution of a CGIS
program is completely hidden, both when writing the program and when executing it.
The user has at his disposal a truly general purpose, data-parallel language, which can
be used to implement general purpose, data-parallel algorithms. However, to achieve the
objective of visualisation, CGIS offers the show statement and the opportunity to read
stream contents as standard OPENGL textures. Thus, both those programmers who
want just a general data-parallel language and those who regard CGIS as a language
aiding in a greater visualisation can supply their wants in CGIS.

Familiarity is achieved by basing CGIS on standard imperative languages, borrowing
features from C and PASCAL. Familiarity has been sacrificed in a few cases because of
hardware limitations. Recursion or dynamic memory allocation would not be possible
to implement on the hardware. Likewise, a very precise statement regarding data type

86

IV.6. Fitness for the Purpose

procedure propagate(inout float last, in float cur, in float x, in float y,
in float damping, in float width, in float height){

gather cur: t<0,-1>, l<-1,0>, r<1,0>, b<0,1>, tl<-1,-1>, tr<1,-1>,
bl<-1,1>, br<1,1>, tt<0,-2>, ll<-2,0>, rr<2,0>, bb<0,2>;

if((x<2.0) or (y<2.0) or (x>=width-2.0) or (y>=height-2.0)) last = 0;
else last = damping*(((t+l+b+r+tl+tr+bl+br+tt+ll+rr+bb)*0.1667)-last);

}

procedure refractionXY(inout float wpos,in float w,in float wh,in float th,
in float rindex, in float current){

... // Compute refraction at specified point.
}

procedure refractionX(in float rindex, inout float xpos, in float current,
in float x, in float width){

gather current: left<-1,0>;
refractionXY(xpos,x,width,left,rindex,current);

}

procedure refractionY(in float rindex, inout float ypos, in float current,
in float y, in float height){

gather current: top<0,-1>;
refractionXY(ypos,y,height,top,rindex,current);

}

import "util.cgish";

procedure render(in float3 image<_,_>, out float3 pixel, in float current,
in float x, in float y){

lookup image: colour<x, y>;
float3 unclamped = colour+0.25*current;
pixel = clamp(unclamped);

}

Program IV.14: Wave propagation in CGIS: CODE

representation is not possible. CGIS here appeals to the programmer’s understanding
that just like the GPU’s peculiarities result in some advantages, they do not come for
free.

Some other constraints on familiarity have been made to increase readability. For ex-
ample, the programmer may not pass a variable multiple times to output variables of
a procedure, effectively prohibiting aliasing; implicit type conversions are present, but
only in specific cases; interactions between multiple instantiations of a single kernel are
confined to specific parts of a source file. As Bjarne Stroustrup said: “C makes it easy
to shoot yourself in the foot; C++ makes it harder, but when you do it blows your whole
leg off.” [S07a]; CGIS tries to hide the foot and makes it impossible to shoot it, while
retaining its use as a means of transportation in the restricted setting of a GPU stream
programming language. It strives to have a clean design, where as well as possible the
meaning of arbitrary chunks of code can be understood without referring to too much
context.

So, from these points of view, CGIS can be said to have met its goals with respect to
the user-oriented features. It is instructive to compare CGIS now with the languages in
Section III.3. Obviously, CGIS bears the most similarity to BROOK; RAPIDMIND and

87

Chapter IV. CGiS

ACCELERATOR are too different in their programming models for a meaningful compar-
ison. The model of BROOK is very similar to that of CGIS,11 and therefore a comparison
can lay out some differences on the outside.

For example, CGIS can switch seamlessly between streams-of-structs and structs-of-
streams. CGIS also supports automatic data layout: Whereas BROOK works around
output restrictions with multipass rendering, CGIS uses adaptive data layout and data
reordering operations so as not to redo executions. Whereas CGIS allows loop splitting
and special operator symbols, BROOK uses what CG has to offer. Integer streams did
not work in the latest tests, whereas CGIS with is dependence just on generating code
for assembly language itself could implement the integral types and operators by going
down to assembly level; and BROOK does not automatically work around the hard loop
iteration limits by nesting loops as cgisc does. Another distinction between BROOK
and CGIS is the higher level control flow. Whereas in CGIS the whole of the algorithm
to be implemented on the co-processor is neatly implemented in a single language in a
separate source file, the programmer of a BROOK version has to write some the parallel
parts of the algorithm (corresponding to CONTROL in CGIS) in C-code. Thus, CGIS offers
a cleaner differentiation between the various targets.

On other levels, BROOK offers a higher abstraction and more possibilities than CGIS.
This concerns, for example, mechanisms to realign streams of different sizes or to reduce
a stream into a smaller stream instead of a singular value. The dependence on CG can
also be seen as a positive feature, because the CG compiler implements an important
part in the generation of the eventual code, namely the generation of the low-level code.
Therefore, a large part of the transformations and optimisations as presented in Chap-
ter V are not needed in BROOK; from the standpoint of the compiler implementor, that
is an advantage.

All in all, CGIS and BROOK offer largely similar solutions for a common problem, with
both sides being offering higher comfortability in one or the other area. But apart from
that, the two systems are very different internally, but quite similar to the programmer.
The differences are mostly concerned with the implementation, with the different levels
on which the compilers work and the affected algorithms.

IV.7 Summaryand Outlook

We have seen in this chapter the explanation
of CGIS, the language. In a sequence of exhi-
bitions with increasingly larger scope, all fea-
tures of the CGIS language were mentioned.
By way of an example, most features have been

shown in context. We have seen the goals CGIS strives to fulfil and argued for the
achievement of some of them: those which were concerned with the language itself, in
particular familiarity, readability, visualisability and abstraction. The rest of the CGIS
system has to be presented in the next chapters, and it has to be evaluated with respect
to the remaining goals. This exposition starts in Chapter V with the compiler itself and
the runtime system of CGIS.

11That two of four independently developed models happen to be very similar can be seen as an argument
for the strength of said model.

88

V

The CGiS Compiler

optimism: n.
What a programmer is full of after fixing the last bug

and before discovering the next last bug.
E. S. RAYMOND, The Jargon File, 2003

This chapter describes the CGIS system. It can be divided coarsely into three parts:

◮ The actual compiler, cgisc, with all auxiliary libraries and tools;

◮ the runtime system;

◮ the infrastructure, such as the build system, tests and documentation.

All those parts are covered in this chapter.

The CGIS compiler has three different kinds of backends, resulting in three different
runtimes and different sets of analyses, transformations and generators:

(1) The GPU backend, targeting NV30, NV40 and G80 GPUs;

(2) The CUDA backend, targeting CUDA;

(3) The SIMD backend, targeting AltiVec and SSE CPUs.

For the most part of this chapter, only (1) is of concern, as it is the central part of my
work; (2), although interesting in its own right, is implemented merely as an auxiliary
feature for the evaluation of (1), and thus described as such. (3) is the work of Nicolas
Fritz [F08, FLW07]. (2) and (3) are shortly presented in Section V.6.a.

The main component of the system, and thus the main topic of this chapter, is cgisc.
However, it is instructive to start the discussion at the end of the compilation process,
namely at the runtime system and the generated code. This is the topic of Section V.1.
When this is covered, the choices for the compiler’s internals become more clear, and the
objectives of the transformation phases are more easily motivated. Section V.2 then cov-
ers the internal representation of the compiler. This entails the intermediate language

89

Chapter V. The CGiS Compiler

and other internal objects, and how this is transformed into the textual representation
of C++ and GPU code. The proper compilation is then the topic of the next three sec-
tions. Section V.3 covers everything related solely to CGIS code, from parsing it into the
intermediate representation onto analyses and transformations on the code; Section V.4
covers the generation of intermediate GPU code from the CGIS code; and Section V.5
covers analyses and transformations on the GPU code. Section V.6 describes everything
else relevant to the compiler system; the CUDA and the SIMD backend, auxiliary com-
ponents and a list of contributors to the software. Section V.7 sums up and concludes
this chapter.

Figure V.1 Coverage of the CGIS system in Chapter V

Frontend
V.3

Code gen.
V.4

Backend
V.5

Runtime
V.1

IR: V.2

Package: V.6

Figure V.1 provides an overview of the structure of the system and its coverage in this
chapter. Arrows denote information flow between the compiler’s phases, the dotted line
is a dependency of separate components. More detailed phase diagrams will be presented
in Sections V.3–V.5.

Hints. Throughout this chapter, a concept called hints will be discussed. A hint is a
directive to the compiler annotating the source code with additional information, such
as upper iteration bounds on loops or information regarding the use of external streams.
These hints are part of the CGIS grammar, but have not been introduced in Chapter IV,
because they cannot be appreciated without knowing the reasons for their very existence.
Hints are explained in more detail at their first occurrence, in Section V.1.c, and used
freely afterwards.

V.1
Runtime

System

This section describes the runtime system of CGIS for
GPUs. This is defined as everything happening be-
hind the scenes when the programmer uses one of the
abstract access functions. These functions were first
mentioned in Section IV.1.b and explained more thor-

oughly in Section IV.4.a. The discussion entails both the CGIS library with which the
programmer has to link and the generated code itself using this library.

Instead of proceeding function by function, the description is divided into topical units.
Section V.1.a describes the facilities to create the OPENGL context and allocate mem-
ory. Section V.1.b considers the handling of stream data, and Section V.1.c considers the
handling of GPU programs. Final remarks are presented in Section V.1.d.

V.1.a Context

The generated code can be regarded as a translator from certain high-level operations to
the low-level OPENGL operations. To ensure correct operation of this abstraction layer,
the code needs to store information both about the application and about the OPENGL

90

V.1. Runtime System

state. This is called the context of the generated program. This information is divided
into two parts:

◮ common information needed by all CGIS programs

◮ specific information needed by a single CGIS program

For example, when a multitude of CGIS programs work together, they have to share a
single handle to the OPENGL driver, but each program needs to access only the GPU
kernels generated for its specific CGIS program.

Among the specific data, the program uses the following types of objects:

◮ a pointer to the current context, encapsulating the common data

◮ texture objects, encapsulating OPENGL textures, and copies of scalar data

◮ kernel objects, encapsulating GPU programs

◮ sizes of streams and their positions in textures

◮ pointers into the application’s memory

Most specific data are covered in the subsequent sections.

In CGIS terminology, the common information is called context. It is stored in an object
of type CGiS_OpenGL_program. As the name suggests, there are other such objects
available, namely those of type CGiS_SIMD_program and CGiS_CUDA_program. Both
are derived from the superclass CGiS_program, and that is all the user needs to know.
The function get_CGiS_program returns a pointer to an object of type CGiS_program,
which happens to belong to one of the subclasses, as indicated by a function argument.

To set up the system and start interfacing with the OPENGL driver, the context opens a
window with function calls to the windowing system’s primitive interface functions. This
window is, in general, invisible, because all rendering is done into off-screen memory
buffers. In case of programs using the show statement, however, it opens a visible win-
dow. The processing of setting up the window and creating the offscreen buffers is highly
dependent on the windowing system. The codes for Windows and X are completely differ-
ent. This is the only such place, however; as soon as the contexts are created, any other
operation uses standard OPENGL functions, either core functions or extension function-
alities [K07]. These are independent of the windowing system or operating system. As
such, the runtime can work on any system which features a Windows or X windowing
interface; that is, on any current system. The X-part of the system has been tested only
on Linux; it is very unlikely that it should not run on other X-based systems, provided
the hardware is supported.1 Note that the generated code is still independent of the sys-
tem; the user need not compile a CGIS program several times for various systems, he
only has to compile the generated C++ program for each system (as he must do anyway).

The cleanup function frees the storage allocated in the host memory for texture rear-
rangement. It also deallocates some OPENGL resources, reclaiming memory used by
the driver. The complete OPENGL context is cleared by deleting the object of class
CGiS_OpenGL_program.

1Currently, NVIDIA supports also Solaris, FreeBSD and MacOS X.

91

Chapter V. The CGiS Compiler

V.1.b Data Storage

CGIS streams are held in OPENGL textures. Considering external streams, all of the
following information needs to be present.

◮ sizes of the streams

◮ space to hold the streams for reordering

◮ information about which stream sizes should agree

◮ pointer to the streams’ positions in the application’s memory

◮ information about the type of the data

As an example, let us consider the tasks to be performed for a stream declared as extern
inout float2 Stream<SIZE>;.

The size, as it is unspecified, has to be set by the application; it is stored in an in-
ternal variable IStream_size0. Because the stream is one-dimensional, the variable
IStream_size1 is fixed at 1. When the pointer to the input data is provided, the code
as displayed in Program V.1 is executed. The pointer is stored, for it has to be used again
to transfer the data back into the application’s memory. The memory to hold the texture
data is allocated, if necessary, and the input data are then distributed into this memory.
Where the data is going to reside is specified by a location specification; in this case, it is
to reside in the yz-components of texture 2.

static const location_t locs_Stream[2] = { {2,1},{2,2} };

bool set_data_NAME(const CGiS_data_NAME tex, void* const data){
switch(tex){

case CGiS_NAME_Stream:
textures[2].maybe_alloc();
textures[2].number_null();
Texture::distribute_float2_elements(static_cast<const float2*>(data),

locs_Stream,textures,IStream_size0,IStream_size1);
outpointer_Stream = static_cast<float2*>(data);
break;

...
}

}

Program V.1: Distributing data into textures

The function setup_data_NAME calls library functions to create the necessary memory
on the GPU and to upload the textures thereto. The function get_data_NAME works
very similar to set_data_NAME, only in the other direction. Instead of possibly allocat-
ing memory on the GPU, it first possibly has to download the texture into CPU memory,
and then it constitutes the application’s stream from the textures.

The reordering presented here is not necessary in all cases. When the data layout as
expected by the kernels is the same as the natural array layout of the application (Sec-
tion V.5.a), the distribution and constitution phases are omitted.

92

V.1. Runtime System

V.1.c Directing the GPU

The function execute_NAME is the translation of the the CONTROL section of a CGIS file.
Just as the CONTROL section can be broken down into independent sequences of forall
loops with a single call each (Section IV.3.d), the same holds for the actual execution.
Thus, we consider here only one such call.

// forall loop 2 (id=1):
// Call to kernel test_cross.
program->attach_FBO(); // (1)
program->texture_to_renderbuffer(0,&(textures[5])); // (1)
program->draw_to_buffers(1,true); // (2)
textures[2].hook_texture(GL_TEXTURE_RECTANGLE_NV,0); // (3)
textures[3].hook_texture(GL_TEXTURE_RECTANGLE_NV,1); // (3)
program->run_program(TC_RECT,test_cross_PSkernel,"test_cross_PSkernel",

NULL,buffer_size_x,buffer_size_y, 0,0,
buffer_size_x,buffer_size_y); // (4)

glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,GL_COLOR_ATTACHMENT0_EXT+0,
GL_TEXTURE_RECTANGLE_NV,0,0); // (6)

program->detach_FBO(); // (6)

Program V.2: A fragment of an execution function

Program V.2 presents a fragment of code corresponding to one such call. The general
sequence of events is as follows:

(1) If a program can render its output in a texture, attach the texture as an output buffer.

(2) Notify the OPENGL runtime of the number of output buffers desired by the program
to execute.

(3) Hook the textures holding the input data to texture stages.

(4) Run the program on specific ranges of the input and output buffers and with specific
scalar inputs.

(5) Copy data from output buffers into textures.

(6) If a texture had been attached as an output buffer, remove the attachment.

All calls other than glFramebufferTexture2DEXT are functions of the CGIS runtime.

Inputs and Outputs

Considering first the attaching of input and output data, we have to keep in mind that
GPUs do not support read-write memory (Section II.3.b). Thus, if a texture is needed
as an input buffer (3), it cannot be contemporaneously bound as an output buffer (see
Section V.5.a for binding considerations). In these cases, the program writes into a tem-
porary output buffer (2) and copies the data from this buffer into the texture (5).2 In the
example of Program V.2, it so happens that the output textures and the input textures
are disjoint. Thus, the output texture is attached as an output buffer (1, 2) and later
detached (6).

In all aspects of memory management, texture packing has to be considered, in partic-
ular its relations with textures bound as framebuffers. Suppose a program writes into

2This copy operation takes place solely in the GPU memory, without using the host memory.

93

Chapter V. The CGiS Compiler

a stream A which happens to reside in the same texture as a stream B. Unfortunately,
when binding a texture as an output buffer, its contents become undefined. Therefore,
when writing only into the components for stream A, there is no guarantee that the com-
ponents for stream B are unaffected. Thus, cgisc introduces compensation copies, that
is, instructions which copy the data for stream B into the correct places in the output
buffer. Hence, the texture has to be bound as an input texture, even when the CGIS
kernel itself does not need data from that texture.

This problem is aggravated in the presence of external streams (Section IV.4.b), where
the compiler cannot ensure that a texture is not used by multiple streams. To this end,
CGIS uses a hint. A hint is an annotation by the programmer serving at least one of the
following purposes:

(a) to direct a compiler optimisation into a particular direction, when the programmer
believes a heuristic to need aid;

(b) to assert a certain condition on input data.

A hint always has the following form:

HINT ::= #HINT ([HINTEL]+,)
HINTEL ::= [ID :]? ID [= INTCONST]?

A hint thus contains only a simple keyword, or a keyword together with a number, op-
tionally prefixed with a profile identifier. The profile identifier specifies that a particular
hint should be in effect only for a specific profile.

In the case at hand, the hint no_texture_reuse ensures that no texture is used for
other streams in external programs.

Scalar inputs are sent to the program via a CPU pointer upon invocation of the program
(NULL in (4) in Program V.2). The library function run_program, which is responsible for
the execution of the program, supplies it with these data via GPU program parameters
(see the following section).

The functions get_texture_NAME and set_texture_NAME simply return respectively
set the OPENGL id of the texture associated with the referred stream. As specified in
the semantics (Section IV.4.b), the user is responsible for not changing the contents or
any attributes of the texture.

Programs

The actual task of run_program is to upload the kernel to the GPU, feed it with the
coordinates necessary to fetch its input data and write its output data, and start it. Also,
it passes the raw index information through to the kernels, so that they can implement
the index operators and shift operations. These tasks are executing on the upper part of
the graphics pipeline (Section II.1.a): A vertex program transforms the coordinates into
a format suitable for the GPU to compute the output positions, and the rasterisation
creates the fragments with data interpolated from the vertex program’s outputs.

The coordinates are quite straight-forward in a classical streaming computation, where
the streams are aligned and the coordinates span the entire data range. For reduction
computations, the coordinates have to be computed differently. To see why, recall that
a reduction is performed recursively by catenating any two adjacent pixels. Figure V.2
shows schematically how (intermediate) output values stem from the catenation of two

94

V.1. Runtime System

Figure V.2 Reduction schema

0 1 2 3 4 5 6

0 1 2 3

0 1

0

◦ ◦ ◦

◦ ◦

◦

(intermediate) input values, or from an unmodified value, in case of an odd number of
elements (see the first element in the top row).

The function run_program also provides debugging facilities, such as outputting the
computed coordinates, the number of written pixels (with a GPU feature called occlusion
query), or the actual output of the computation. Its use for uniform scalar parameters
has already been mentioned.

The kernels for intrinsics (Section IV.3.c) are defined in the runtime library. Apart from
that, the implementation of intrinsics uses the same features and infrastructure as nor-
mal kernels.

Visualisation

The visualisation works much in the same way as the execution of a normal streaming.
In fact, it is a standard program execution, but in another context. To this end, the
program has to temporarily switch to the visible window, adjust the state accordingly
and then switch back afterwards. Program V.3 gives an example for this.

// show 1 (id=1):
// Switch to on-screen window:
common_VS->dehook();
twindow->switch_to_window();
twindow->setup2D();
common_VS->hook();
// Render IMAGE:
textures[4].hook_texture(GL_TEXTURE_RECTANGLE_NV,0);
program->run_program(TC_RECT,Visualise_IMAGE_PSkernel,"vis_shader",

NULL,textures[4].size_x(),textures[4].size_y(), 0,0,
textures[4].size_x(),textures[4].size_y(), true);

// Switch to off-screen buffer:
common_VS->dehook();
twindow->switch_to_pbuffer(tbuffer);
twindow->setup2D();
common_VS->hook();

Program V.3: A show operation

95

Chapter V. The CGiS Compiler

V.1.d General Remarks

As has been shown in the preceding sections, quite a lot is going on behind the scenes.
The code examples show only the generated code, to show the reader on a relatively high
level what is going on; most of the real work is done in the library functions using a va-
riety of OPENGL operations. Indeed, the problem in implementing a GPGPU program
by hand lies not so much in the principle sequence of operations, but more in the quan-
tity of different OPENGL operations which have to be used to implement even a simple
example.

Portions of the pipeline touched by GPGPU include:

◮ context creation and management, for different windowing systems

◮ program composition

◮ shader creation and management

◮ texture management, including data upload and download

◮ framebuffer management, including renderbuffers and read-backs

◮ execution of programs, including managing the data buffers and uniform data

This alone suffices to demonstrate the value of GPGPU languages vs. shading languages,
and as such strengthens the claims of Section III.1.

V.2
Internal

Representation

This section deals with the internal repre-
sentation of the code. Here, we shall see
how the instructions and their operands are
represented, and how they form larger con-
trol flow representations, finally making up

whole programs. Of course, it is not the intent to present the complete data structures.
Instead, the representation is exhibited only as far as necessary to get an overview of
the whole and to understand the remaining sections.

The internal representation is designed as an object-oriented class hierarchy. Portions
of the hierarchy are used in the discussion to show the interrelation between the various
components. For these diagrams, the same holds as for the grammar fragments in Chap-
ter IV: They are intended for exhibitory purposes and might leave out details which are
irrelevant to the discussion at hand.3 The intent of the diagrams is to make clear the
internal workings, after all, and not to drown the reader in abundance of minuteness.

In these diagrams, dotted arrows denote an “is-a” relation; for example, in Figure V.3,
a CirGPUOperation is a a CirOperation, just like a CirCGiSOperation is. Solid
arrows denote an “association” relation, to be mademore precise in the respective figure’s
explanation.4

Figure V.3 graphically represents the main classes used to store the code internally. The
associations are of different cardinality and organisation:

3As a non-trivial example, parts of a subhierarchy may be left out for good or expanded later, and in general
everything which is used solely in the CUDA-part or the SIMD-part of the compiler is deferred.
4The prefix Cir stands for CGIS intermediate representation. The prefix I stands for internal and denotes

objects which are going to get an own representation in the output program.

96

V.2. Internal Representation

Figure V.3 Representing code in cgisc

CirProgram IProgram

CirCGiSFunction

CirFunction

IFPkernel

CirBlock CirBlock

CirCGiSOperation

CirOperation

CirGPUOperation

◮ A program has a set of functions.

◮ A function has a directed graph of blocks.

◮ A block has a sequential list of instructions.

V.2.a Operations

It is often customary to represent expressions as a tree or a DAG of operations in a
stage of the compiler [M97]. For example, Figure V.4 shows two ways to represent the
assignment statement a = b+2*c;: (a) shows a tree representation, (b) shows the rep-
resentation of cgisc. The representation as a sequence of instructions results from the
need of the program analysis tool PAG (Section V.6.a).

Figure V.4 Two representations of the statement a = b+2*c;

a

=

b

+

2

*
c

MUL t1, 2,c;
ADD t2, b,t1;
ASSIGN a, t2;

(a) (b)

Figure V.5 shows an extract of the class hierarchy of the operands used by the internal
instructions. A few points warrant mentioning.

◮ A CirSingular is a CGIS variable which is not an iterator or a stream.

◮ Something inheriting from CirConstant is not a variable with a constant value,
but a proper constant. That is, if constant propagation (Section V.3.c) deems a
variable to be constant, it is not flagged as such in the operation but replaced by
a object of type CirConstant. In general, constants can take the place of any
operand in any operation.

97

Chapter V. The CGiS Compiler

Figure V.5 Operands of internal operations

CirOperand

CirCGiSOperand CirGPUOperand

CirSingular CirCGiSConst

CirConstant

CirGPUConst CirSymReg

◮ GPU operations work on registers. Thus, a variable on the GPU side is called a
symbolic register, or symreg for short. An actual register, or actreg for short, is
then a proper hardware register.

GPU operations can use a variety of modifiers to change their workings. Among them,
swizzling and masking are of particular importance. Thus, a CirGPUOperation has
some properties specifying the swizzles for its operands and the mask for its target, if
applicable.

The hierarchy of operations is split quite broadly; in addition to the standard arith-
metical operations, there are a number of specialised operations. For example, an op-
eration of type CirCGiSDynMask is solely responsible for the dynamic mask opera-
tions, and a CirCGiSIndex fetches the index of elements. These operations are di-
rect consequences of particular CGIS features. Other specialised operations stem from
particular transformations of the internal representations. For example, instructions
of kind CirCGiSGuardedAss and CirCGiSSetGuard get generated by if-shadowing
(Section V.3.b), whereas a CirCGiSDataComp is a compensation copy (Sections V.1.c
and V.5.a). Thus, the operations are on a variety of levels. The procedure of mapping
them to the primitive hardware operations is explained in Section V.4.

V.2.b Registers

Regarding the GPU registers, Figure V.5 presents one of the white lies of these diagrams;
Figure V.6 shows the actual hierarchy of registers. The actregs correspond to the four
parts of registers which may occur as operands in operations (see also Section V.1):

◮ ITempReg are typed, general purpose, read/write registers. These are the main
work registers of the kernels.

◮ ITexCoord are the registers in which the fragment program receives input from
the vertex program. Through these registers, the index information provided in
the program call is received. They are also used in implementing the base offset for
gather operations.

◮ IFPPar are the registers which receive the uniform parameters, which are set be-
fore the execution of a program.

◮ IColReg are the registers holding the outputs of the program. These are the values
which are written at the positions specified by vertex program, which gets, in turn,
its inputs from the position values at the invocation of the program.

98

V.2. Internal Representation

Figure V.6 Kinds of registers

CirReg

CirSymReg IActReg

ITempReg ITexCoord

IFPPar IColReg

It is important to note that the actual registers have no knowledge about the outside of
a kernel. To a fragment program, they are simply some registers without any special
properties except some restrictions on their flow (for example, the input register cannot
be written to).5 It is the runtime which has to ensure that these registers are linked to
the correct hooks in the rest of the system. For example, a fragment program writes only
to a colour register bound to a particular stage, and it is oblivious to which texture is
currently bound to that stage or at which position it is going to write. That a write to
result.color[1].yz arrives where it should, is the responsibility of the runtime sys-
tem, that is, the binding is performed at execution time. The runtime system performs
the necessary operations based on the location variables of the streams (Section V.1.b)
and the binding specifications of the kernels (Section V.1.c).

The operations in cgisc work solely on symregs, which in turn have a position some-
where in an actreg. Section V.5.c shows how this is handled in the register allocation,
particularly in the presence of vectorisation. In general, this builds on the fact that the
fundamental unit of values in CGIS is not the variable or register, but the component
of a variable or register. A symreg or actreg is merely a composition of several such
components as specified by a CGIS source operation or needed by a hardware operation.

V.2.c Functions

The operations and operands are sequentially stored in blocks, and the blocks together
form a control flow graph in a classical way. This graph, in turn, is the essence of a
CirFunction, and thereby of a CirCGiSFunction or an IFPkernel. They are in turn
assembled into a program according to the control flow structure of the forall in the
CONTROL section.

Figure V.7 shows the interrelationships between the various internal structures (com-
pare with Figure V.3). Functions have a one-to-one correspondence with kernels, and in
general the same control flow (block) structure. The high-level control flow structure is
formed by the sequence of forall loops, represented as the CirForall objects. They
all call a function and note the necessary mappings between actual parameters of the
call and formal parameters of the function. There is no one-to-one correspondency be-
tween operations, of course; a CirCGiSOperation can be implemented by more than
one CirGPUOperation, or several can be implemented by one (see Section V.4.b for the
generation and Section V.5 for further transformations).

5Therefore each is an IActReg to the program and the instructions.

99

Chapter V. The CGiS Compiler

Figure V.7 Functions in cgisc

CirProgram IProgram

CirForall CirCGiSFunction IFPkernel

CirBlock CirBlock

CirCGiSOperation CirGPUOperation

V.2.d Output

When all code has been generated and the internal representation of the final code has
been created, what remains is to create the textual representation of the code. That is, a
mapping from the data as represented in this section into the textual C++ and GPU code
in Section V.1 has to be created. Fortunately, this is quite straight-forward, because this
activity essentially is compositional.

For example, a CirShowForall has an operation to write the necessary code for its
execution into the execute_NAME function. This in turn is achieved by calling appropri-
ate methods of the function calls and textures to output their representations; but the
code for one forall loop is independent of the code for other forall loops.6 A similar
argument can be made for all other internal structures resulting in an external repre-
sentation, from the textures to the kernels, which serialise their control flow graph into
the sequential instruction stream in GPU assembly language.

To facilitate debugging and understanding the compiler’s output, automatically gener-
ated comments are sprinkled throughout the generated program, but most importantly
in the GPU code. As examining assembler output can be a tiresome task, comments
which mention what the compiler desired a particular instruction sequence to do can
tremendously aid in determining why that sequence does not what the programmer de-
sires to be done.

V.2.e Profiles

Capabilities of various targets are separated through profiles. A profile is one of three
things:

(1) a target specified on the command line of the compiler, instructing cgisc for which
architecture it should compile a CGIS program;

(2) a variable defining what code paths the compiler should take during code generation;

(3) an object carrying certain numeric attributes of a target.

6The output codes for the representations of loops are independent. Of course, to actually arrive at the in-
ternal representations involves arguing about larger part of the program: This internal step of code generation
is not compositional.

100

V.3. The Frontend: CGiS Code

(1) determines (2). Profiles as internal objects in the sense of (3) are relevant only for
the various GPU architectures, where they hold information such as whether the ar-
chitecture supports branches, how much data it can output per kernel or the identifi-
cation string of the assembly language program. For the GPU architectures, the code
generation process is in general the same sequence of transformations and generations,
governed by profile data. This localisation of differences is one aspect of retargetability.

For GPU architectures in contrast to the SIMD and CUDA targets (Section V.6.b), the
code generation follows their own paths, partially using common functions such as func-
tions for if-conversion or inlining (Section V.3.b). SSE and AltiVec backends can use a
common infrastructure, but the capabilities of these targets are largely the same and
only the syntax of the actual output instructions is different.

V.3
The Frontend:

CGiS Code

This section is concerned with the internal
representation of the CGIS source code and
the operations on it. First, we shall see how
CGIS creates the internal structures during
parsing. Then we shall cover the transforma-

tions of these structures. This description is divided into two parts: One part on the
transformations which are necessary to implement CGIS on (particular generations of)
GPUs, and one part on general optimisations which may help the performance and are
not mandatory.

The general structure of these phases is presented in Figure V.8.

V.3.a Parsing

CGIS input is parsed by a classical flex/bison [LMB92] combination. The intermediate
representation, that is, the control flow graph and its contents, are built during parsing.
This stage also performs type checking and, if necessary, inserts type casting operations;
this ensures that all subsequent phases need not worry about type correctness of the
considered operations.

Also during parsing, structs are split into their components. Suppose a struct is defined
and used as in Program V.4. During parsing, each operation on a struct is split into a
multitude of operations on the components. The end result looks like in Program V.5.

Not only does this simplify the rest of the compiler, because henceforth all values to be
considered have a primitive type. It also makes it easy to regard a stream-of-structs
as a struct-of-streams. Recall Program IV.3 for an example; in terms of Program V.4,
the programmer could very well iterate over the stream X.Cy with the familiar struct
component notation. Internally, the components form streams in their own right anyway,
so all that is needed is to provide the appropriate syntax to allow exploitation of this fact.

Arithmetical expressions are generated instruction by instruction. Recall that an expres-
sion is not represented as a tree of operations and operands, but as a linear sequence of
operations (Figure V.4). The intermediate values are explicitly represented as temporary
variables. Also, the workings are mostly independent of the final target; for example,
even when a particular vector operation (e. g., sin) cannot be implemented on a com-
plete vector, the operation receives the vector as a target, and it is the responsibility of
later phases to break up the operation into the componentwise operations (Section V.4).
On this level, swizzles are separate operations; the GPU targets can later incorporate
them into other arithmetical operations (Section V.5.b).

101

Chapter V. The CGiS Compiler

Figure V.8 Subphases of the frontend

Program text

Parsing

Constant folding/propagation

Call context decollation

Inlining

Dead parameter elimination

If-conversion/Shadowing

CirCGiSFunction, CirCGiSOperation

Type change operations are handled differently by the parser depending on the target
and one of three different modes of operations in cgisc:

◮ int can be processed adequately on int-hardware. The parser inserts operations
to change the types according to the rules of CGIS (Section IV.2.a). Also, signed
and unsigned integer types are different and treated as such. This is the imple-
mentation method on the G80.

◮ int can be treated as float. In this case, simply all occurences of an int key-
word are treated as a float keyword, except for in external streams. In the
streams, we have to retain the original type information, because the user will,
after all, submit the streams in int format. This affects only the data transfer
phases: The generated code must include appropriate type conversion operations.
This is the standard implementation method on older hardware. It is exact as long
as the values can be represented in the mantissa of 32-Bit floating point numbers,
only primitive operations are used and integer division does not produce remain-
ders.

◮ int can be simulated on float-only hardware. Basically, an int is treated as a
float with a fractional part of 0. All computations are performed using floating
point operations, because the hardware does not allow any other kinds of opera-
tions. Then, the results are truncated to simulate a conversion to integers. For

102

V.3. The Frontend: CGiS Code

PROGRAM struct_extern;

INTERFACE
struct {

float Cx, Cy;
} coord_t;

extern in coord_t X<16>;
extern out coord_t A<16>;

CODE
procedure f(in coord_t x, out coord_t a){

coord_t coord = x;
coord.Cx = 5;
a = coord;

}

CONTROL
forall(fx in X, fa in A) f(fx,fa);

Program V.4: A trivial example using structs

basic operations among integers, the only difference to the previous approach is
rounding after division.

Simulating int on float is only optional behaviour for older hardware. It can support
only few cases of real integral operations. Simulating operations depending on the bit-
patterns (such as the binary bitwise operations & and |) by arithmetical operations on
floating point values is in general not possible.

As far as signed and unsigned operands are concerned, cgisc uses the unspecified, but
almost certainly secure7 way of just using the values interchangeably (Section IV.2.a).

V.3.b Transformations

This section concerns various transformations on CGIS code. Its contents differ from
those in Section V.3.c in that the transformations in this section are necessary for imple-
mentation, whereas the optimisations in Section V.3.c are optional. Some operations on
CGIS code fall into both categories, depending on the target. This shall be explained as
we go along.

If-Shadowing

When implementing conditionals, there are basically two choices. They can be imple-
mented as a traditional conditional change of control flow, or using a technique called
if-conversion [AK02]. By if-conversion, control flow changes are eliminated for the cost
of additional instructions; that is, the conditional is translated from a control flow diver-
gence to a data operation. This is usually done to improve performance, but for GPUs,
its uses are more drastic.
7Issue 6 of [N07c]: “This specification says if a value is read a [sic!] signed integer, but was written as an

unsigned integer, the value returned is undefined. However, signed and unsigned integers are interchangeable
in practice”.

103

Chapter V. The CGiS Compiler

PROGRAM struct_extern;

INTERFACE
extern in float X$Cx<16>;
extern in float X$Cy<16>;
extern out float A$Cx<16>;
extern out float A$Cy<16>;

CODE
procedure f(in float x$Cx, in float x$Cy,

out float a$Cx, out float a$Cy){
float coord$Cx = x$Cx, coord$Cy = x$Cy;
coord$Cx = 5;
a$Cx = coord$Cx, a$Cy = coord$Cy;

}

CONTROL
forall(fx$Cx in X$Cx, fx$Cy in X$Cy, fa$Cx in A$Cx, fa$Cy in A$Cy)

f(fxCx,fxCy,faCx,faCy);

Program V.5: Representation of Program V.4 after struct splitting

Figure V.9 Conditionals, real if-conversion, if-shadowing

if(b>0)

a = 1; x = 2*c;

. . .

g1 = b>0;
g2 = !g1;
[if g1] a = 1;
[if g2] x = 2*c;
...

g1 = b>0;
g2 = !g1;
a’ = 1;
[if g1] a = a’;
x’ = 2*c;
[if g2] x = x’;
...

(a) Conditional
control-flow

(b) If-conversion (c) If-shadowing

Figure V.9.b shows the output of if-conversion when fed with the input of Figure V.9.a.
The bracketed condition is to signify that a particular statement has an effect only if that
condition holds. Thus, the statement is guarded by a condition, by a guard. Whereas in
Figure V.9.a the difference between the statements to be executed in one case or the
other is implemented by branching the control flow to one or to the other statement, in
Figure V.9.b all statements are visited. Which statements actually produce an effect is
determined by the guards.

There is a trade-off to consider in whether or not to use if-conversion. This tradeoff is
a matter of optimisation, and thus the topic of Section V.3.c. Here we are concerned
with implementing conditionals on hardware which does not support proper control flow,
which means on the NV30 generation. Unfortunately, this hardware also does not sup-
port guarded instructions, rendering the fall-back to if-conversion impossible.

With this resort closed, there needs to be another way to implement either conditionals
or guards. Without any means of data-dependent control flow, the only possibility is to
simulate the guards somehow. Here, the LRP instruction (Section II.3.a) comes to the
rescue. LRP takes the three arguments λ, x, y and computes λx + (1 − λ)y. Now suppose

104

V.3. The Frontend: CGiS Code

the instruction [if g] a = b+c; shall be implemented. Furthermore, suppose that
register Rg holds a 1 if the guard g is true, and a 0 otherwise. Then, the statement can
be implemented by the code sequence

ADD Rtemp, Rb,Rc; LRP Ra, Rg,Rtemp,Ra;.

In this way, the LRP instruction can be used as a guarded assignment.8

Thus, if-conversion as in Figure V.9.b could be implemented. But to avoid having to fol-
low every single computation in a branch with an appropriately guarded assignment,
instead the whole computation of a branch is performed on temporary values, and after-
wards guarded assignments are used to conditionally transfer the values into the correct
registers. This procedure, called if-shadowing, is illustrated in Figure V.9.c.

To complete the implementation, a little bit more work has to be done. Consider the
program fragments of Program V.6. In (a), we see two if-statements subject to if-
shadowing. In (b), we see the naïve application of the algorithm, with the obvious mean-
ing of the registers and [if c] standing for guarding. Unfortunately, the translation is
not correct: Both fragments read from an uninitialised shadow register.

if(c)
a = a+2;

if(c)
b.x = b.x+3,
b = b+4;

a’ = a’+2;
[if c] a = a’;

b’.x = b’.x+3;
b’ = b’+4;

[if c] b = b’;

(a) Two CGIS branches (b) Wrong if-shadowing
a’ = a+2;

[if c] a = a’;

b’.x = b.x+3;
b’ = b’+4;

[if c] b = b’;

a’ = a;
a’ = a’+2;

[if c] a = a’;

b’ = b;
b’.x = b’.x+3;
b’ = b’+4;

[if c] b = b’;

(c) After renaming (d) After initialisation

Program V.6: Problems in if-shadowing

In the first case, this can be remedied by renaming the first operand to the true operand,
as displayed in (c). But in the second case, this would also lead to wrong code: Ob-
serve in (c) how the second operation reads from a shadow register of which only the
x-component is defined. To enable the correct working of the code, either the other com-
ponents have to be initialised correctly, or the ADD operation would have to be split into
two, one of which reads from the shadow register, and the other one reads from the
original register.

This approach surely seems elegant, but is not feasible in the case of horizontal op-
erations. Therefore, cgisc copies the outer value into the shadow register before the

8Luckily, we have at least the LRP instruction; otherwise, simulation would remain possible, but get quite
intricate [R97, IMR83].

105

Chapter V. The CGiS Compiler

guarded assignments, as displayed in part (d) of Program V.6. It transpires that both
shadowings now do not change the semantics.

All in all, the complete algorithm works as follows. A variable used inside a branch
which is also visible in the outer scope shall be called outer variable here.

(1) Create guard variables for the branches, which hold 1/0 depending on the result of
evaluating the condition.

(2) In each branch, replace all occurrences of visible outer variables with fresh shadow
variables. (We do not need to shadow variables declared in the branch.)

(3) At the beginning of each branch, introduce initialisation operations for the shadows
of outer variables which are read (even if only in part) before written inside the
branch.

(4) At the end of each branch, introduce guarded assignments from the shadow variables
to the outer variables.

(5) Place the two branches sequentially after another.

For nested conditionals, point (1) in this list has to be modified slightly to also take the
outer conditional into account.

As a final note, we turn back to Program V.6.d. In the upper example, it seems at first
glance that the initialisation is superfluous. At second glance, that remains so, but
a later stage (the copy-elimination stage, see Section V.3.c) removes this unnecessary
assignment and transforms that code into that of Program V.6.c (top).

Inlining

Another optimisation which can be used to increase performance in customary systems,
but is a necessary prerequisite for implementation on non-recent GPUs, is inlining. In-
lining means to replace the invocation of a procedure with its body, ensuring that the
operations work on the correct variables.

For example, consider Program V.7. Procedure main1 calls procedure f once. By some
mechanism peculiar to the hardware (Section V.4.c), the actual in values are passed to
the procedure parameters, the control is transfered to the called procedure, and after-
wards the out values are passed to the actual variables and control flow returns to after
the function call. This is not possible on architectures not providing said mechanisms.

Procedure main2 shows a procedure equivalent to main1, where the called procedure f is
inlined. Observe the statements of f appearing with the variables of the main procedure.

The cursory explanation is already nearly a complete specification of the actual working.
Consider a call of function f from m.

(1) Transfer the control flow graph of f into the one of m, replacing the function call
statement.

(2) Introduce assignments before and after the code of f, to simulate parameter transfer.

Again, a mechanism traditionally used to improve performance has to be employed to
ensure implementability. Section V.3.c talks about inlining in the established sense of
performance optimisations.

106

V.3. The Frontend: CGiS Code

procedure f(in float i, out float o){
if(i>0) o = 0;
else o = i;

}

procedure main1(in float a, out float b){
float temp;
f(a,temp);
b = 2*temp;

}

procedure main2(in float a, out float b){
float temp;
float i = a, o;
if(i>0) o = 0;
else o = i;
temp = o;
b = 2*temp;

}

Program V.7: Inlining

Call Context Decollating

Recall that inside of a kernel, reads from and writes to global memory use static array
identifiers (Section V.2.b).9 It is the responsibility of the runtime system to map the
actual arrays to these identifiers.

This cannot be ensured in all cases, when a kernel is invoked frommultiple call contexts,
that is, with different sets of actual parameters. Suppose, for example, that a kernel
writes into two streams A and B. If they reside in the same texture, the kernel needs
to use the same identifier for both (write into different components of the same frame-
buffer); if not, it needs to use different identifiers (write into components of different
framebuffers) (Section V.5.a). More profoundly, several kinds of data may be passed to
an input parameter: A stream iterator involves a memory lookup, a scalar parameter in-
volves fetching a global program parameter and an index operator involves fetching the
interpolated data from the vertex shader. Thus, a single implementation would not work
in all contexts. Therefore, the call contexts are decollated: A function called multiple
times in different contexts is cloned for each context. After decollation, code generation
can be performed specific to each call context.

V.3.c Optimisations

Two classical program transformations are employed in the front end, namely limited
forms of dead code elimination and constant propagation.

Dead Parameter Elimination

Dead code elimination [AK02] (see also Section V.5.b) is the process of removing compu-
tations which do not influence the result of a program. These are all computations which
influence the values of variables visible to the outside, that is, of all out variables. These

9That is, they read from a fixed texture stage and write into a fixed renderbuffer.

107

Chapter V. The CGiS Compiler

entail both the arithmetical instructions which compute the actual value (data depen-
dencies) and instructions which determine the control flow, that is, which arithmetical
instructions do take part in the computation (control dependencies).

Dead code turns up most often as a result of optimisations, not in the actual code written
by a programmer [M97]. For this reason, cgisc does not implement full dead code
elimination on the CGIS level.10 In the front end, only dead parameters are eliminated.
These can turn up in particular when structures are passed to functions.

PROGRAM struct_partly;

INTERFACE
struct {

float4 c1, c2;
} struct_t;

extern in struct_t SIN<8>;
extern out struct_t SOUT<8>;

CODE
procedure main(in struct_t s_in, out struct_t s_out){

s_out.c1 = s_in.c1, s_out.c2 = s_in.c1;
}

CONTROL
forall(a in SIN, b in SOUT) main(a,b);

Program V.8: Dead structure components

Consider Program V.8. The programmer writes the code as working on values of type
struct_t, but it uses only one component of parameter s_in. Because structs are split
in the frontend, this actually means that one float4 parameter s_in$c2 is unused.

The dead parameter elimination phase notes that this (component) parameter is not
used in the procedure and eliminates it from the call. This means that the generated
code need not hook the texture holding that component as an input to the kernel.

Dead parameter elimination is implemented simply by scanning the instruction stream
for any kinds of usage of the parameter. This covers all realistic cases of dead parameters
and does not need a full data flow analysis.

Constant Propagation and Folding

Constant folding is the process of evaluating computations on constant values at compile
time. This can turn up, for example, when the programmer breaks up a constant in parts
for better readability:

int size = 1+32; // Base + #rounds

A situation coming up more often is that of type conversions: The propagation of the
integer constant to a float constant in float f2 = f1+1; is also a constant compu-
tation.
10A later phase implements dead code elimination on the level of GPU instructions (Section V.5.b) after other
optimisation and transformation phases.

108

V.3. The Frontend: CGiS Code

Constant propagation is the process of propagating a constant assignment to a variable
through the uses of this variable. Program V.9 shows an example for this. The procedure
func actually computes b = 7.8/(a+13.3);, and that is the computation resulting
from constant propagation.

PROGRAM const_prop;

INTERFACE
extern in float in_single<16>;
extern out float d1<16>;

CODE
procedure func(in float a, out float b){

float x = 5.5;
float y = 7.8;
float c = a+(x+y);
c = y/c;
b = c;

}

CONTROL
forall(a_in in in_single, a1 in d1) func4(a_in,a1);

Program V.9: Constant propagation

Constant folding is implemented within the parser while building the internal represen-
tation. Constant propagation (including additional constant folding) is implemented as
a separate phase using a forward data flow analysis [M97].

Because of the component based nature of the computations, the analysis tracks the con-
stancy and values of individual components of vectorial values. For example, considering
the procedure in Program V.10, the value xy is only partially constant, which has to be
taken into account for the propagation.

procedure fold(in float a, out float o){
float2 xy = a;
xy.x = 8;
float xc = xy.x;
float yc = xy.y;
o = xc+yc; // 8+a.

}

Program V.10: Component based constant propagation

If-Conversion

In Section V.3.b, we have briefly seen introduced the concept of if-conversion. For im-
plementation on the NV30 architecture, the related concept of if-shadowing had to be
used, but later architectures allow real if-conversion. That means that instructions can
be amended with a modifier stating that it is to take effect only if a certain condition
register has a specific flag set. Figure V.9 shows this in a schematic way on CGIS code.
The actual implementation on the GPU is exemplified by Program V.11. As usual, it is

109

Chapter V. The CGiS Compiler

assumed that the value of the condition is present in the form of a 1 or 0 standing for
true respectively false.

if(b>0.0) c=3.0;
else c=4.0;

Suppose Rb holds 1/0 for b/!b.
MOVC DUMMY, Rb;
MOV Rc(NE), 3;
MOV Rc(EQ), 4;

(a) CGIS code (b) Translation with if-conversion

Program V.11: If-conversion on the GPU

To understand this, some facts about the condition registers on GPUs have to be noted
(see also Section II.3.a). The MOVC instruction moves the value of condition b into a
dummy register. The value of that dummy register is unimportant, it matters only that
during this process of the condition code register is set. For our concerns, the important
thing is the zero flag, which is set for those components for which the condition is equal to
0. Because of the use of replication of a single condition, this means that all components
are then set or unset according to the condition. To use this, the MOV inside the branch
is marked as using the condition code register. The (NE)modifier means that it updates
exactly those components for which the zero flag is not set, which is, of course, exactly
what we want to do.11 Then, the same operation is applied to the else branch, resulting
in a neatly if-conversioned conditional. In this particular case we can use the dual to
the (NE)modifier: (EQ) updates only those components for which the zero flag is set. In
case there had been operations modifying the condition code registers before (i. e., nested
conditionals), the flag register would have had to be reinitialised with Rb.

This shows how cgisc can perform if-conversion. It remains to be seen when it should
do so. In contrast to if-shadowing, which is a replacement for conditionals on incapable
hardware (Section V.3.b), condition code registers are available on the same hardware
that would also support proper conditionals. Clearly, the benefits of using one or the
other implementation have to be compared.

On the one hand, a branching control flow can lead to problems. When a branch predic-
tion unit mispredicts a branch, the wrong instructions are fetched, and their speculative
executions have to be rescinded [HP03]. This is a problem in classical CPUs. In GPUs,
control flow deviations lead to a severe problem for the SIMD based hardware. SIMD
here means not the vectorial instruction, but the fact that instructions on vectors are
processed in batches; that is, a set of fragments is divided into subsets for which the
same instruction has to be executed. For example, on the G70 architecture, the minimal
size of those subsets is 880 fragments [N06]. Thus, a branch where one path is taken
by 400 fragments T and another one by 300 fragments F, needs to be executed in two
batches. In the first batch, the T -branch would be executed for all 800 pixels, discarding
the computation for the F pixels; in the second batch, the opposite would happen. On
the G80 hardware, the granularity is going down to 32 pixels, which ameliorates the
problem.

Nevertheless, tests have shown that on the NV40 architecture, true branches are always
at least as fast as converted branches. Thus, per default, branches are not converted

11This is a simplified version. Actual code would employ additional static masking to cope for the fact that
multiple values are present in a physical register (Section V.5.c). An instruction which uses both the condition
code register and a static mask writes only into those components unlocked by both kinds of restrictions (they
are subject to an ∧, not a ∨).

110

V.4. Code Generation

on that profile. On the G80 architectures, converted branches are (very slightly) faster
if the branch bodies are short. The heuristic uses a threshold of 5 instructions: Larger
branches are kept, smaller branches are subject to if conversion. However, again the
programmer can use hints to overrule that decision. When used at the beginning of a
condition body, the hint force_conversion specifies that it should use if-conversion,
and no_conversion specifies that the implementation should use proper conditionals.
Recall that hints may be prefixed with a profile specifier to restrict their applicability to
cater for differences such as the mentioned behavioural change from NV40 to G80.

General remarks. After the presented operations and transformations, the CGIS
code has been transformed in such a form that it can structurally be implemented on
graphics hardware. This concerns mainly the control flow capabilities and workarounds
for restrictions of these. The next sections are concerned with translating that code
into a form suitable for the hardware regarding instructions (Section V.4) and data (Sec-
tion V.5).

V.4 Code

Generation

The generation of GPU code works as a mapping
from CGIS instructions (Section V.2.a) onto prim-
itive GPU operations. Thus, it performs the tasks
of instruction selection and instruction ordering si-
multaneously. Figure V.10 shows the subphases of

code generation. The result is a correct implementation of the kernel currently under
consideration. It is amenable to further modifications in later stages of the compiler; see
Section V.5 for more on this.

There are a multitude of targets to consider. On the one hand, cgisc targets several
GPUs. The CUDA backend needs a quite different kind of code generation, and the
SIMD backend another one, in turn. A generational approach to code generation, that
is, a code generator generator, is indispensable for a readable and extensible specification
of code generation.

To this end, cgisc employs the pattern matching system OORS. OORS was developed
for cgisc to express code generation and optimisation, but it is a general code genera-
tor generator and optimiser generator [G06, GL07]. Section V.4.a introduces the OORS
system as a whole, and Section V.4.b describes how OORS is employed in cgisc. That
section also explains some of the more interesting features of the translation process.
Section V.4.c is concerned with the translation of control flow.

V.4.a Pattern Matching with OORS

In the most general sense, OORS is a pattern matcher, which receives as its input a string
of attributed elements and creates as its output a string of attributed elements. This is
performed first by searching for patterns in the source string. A pattern is a possibly non-
contiguous sequence of elements with specific attributes. Second, the matched pattern
gives rise to some new elements with attributes dependent on the actual elements and
attributes of the matched pattern. These then get inserted into the output string. The
matching process is successful if every element in the input string is matched exactly
once.

For its use in code generation, this amounts to receiving a sequence of operations and
creating another sequence of operations. As a trivial example, we might want to create

111

Chapter V. The CGiS Compiler

Figure V.10 Subphases of code generation

CirCGiSFunction, CirCGiSOperation

Generate kernels

Pattern matching

IFPkernel, CirGPUOperation

assembly code for an addition with a constant. In this setting, the operation a = b+2;
should give rise to ADD Ra, Rb,2;, where Ra and Rb are the registers for a respectively
b. Symbolically, this would mean:

(1) In the input sequence, search for an occurrence of the pattern ?1 = ?2+?3; (the
element), where ?1 and ?2 are variables and ?3 is a constant (the attributes).

(2) Create a new element ADD !1, !2,!3;, where !1 and !2 are the registers for the
variables ?1 respectively ?2, and !3 =?3.

(3) In the output stream, insert that instruction at the position corresponding to the
position of the instruction in the input stream.

Obviously, a one-to-one correspondence is not particularly interesting. The beauty of
the approach comes from two features: On the one hand, matching and replacement
rules might be more complicated, allowing for code generation in a realistic manner; on
the other hand, rules and sets of rules can be defined using inheritance relations with
specialisations, so that multitarget backends can be implemented with relatively small
effort.

As an example of the first property, consider the case where one target instruction can
implement a multitude of source instructions. For example, the target hardware might
support a multiply-add-operation. In OORS terms, the search pattern would be repre-
sented as [A = B*C; ... X = A+D;], that is, two instructions with particular at-
tributes. The ellipsis (a wildcard) mentions that the operations need not be adjacent:
The replacement rule will match both instructions, and the generated instructions will
be inserted sequentially at the position corresponding to the position of the first matched
instruction. In this case, the generated instruction sequence would consist of a single in-
struction: [MAD RX, RB,RC,RD;], where the R? are the registers corresponding to the
variables.

Obviously, the presence of the ellipsis, that is, of other interjacent instructions, can lead
to problems, if the matching is performed in a naïve way. For example, were the se-
quence A = B*C; D = A+1; X = A+D; matched by the rule, the order of the latter
two computations would effectively be turned around. This is prevented by what OORS
calls implicit conditions, which ensure that in presence of a reordering of instructions,

112

V.4. Code Generation

this cannot affect the semantics; when it would, the pattern cannot be matched. Basi-
cally, the implicit condition is a hand-written check which investigates the operands and
targets of the instructions and checks for data dependencies. This check is automatically
called for any search pattern featuring a wildcard.

It is obvious that with more complicated rules, a single string might be matched in sev-
eral ways. To this end, OORS rules have a cost, and thematcher performs those matchings
with the best overall cost. This can be done either in a greedy way, where at each step
the locally best match is detected, or in a global matching approach which detects the
matching with the overall least cost.

As an example of the second important OORS feature, the inheritance mechanism, con-
sider the task of writing code generators for different, but similar architectures. This
is the case, for example, for the various GPU generations. To enable easy retarget-
ing, matching rules are organised in sets called profiles, following the nomenclature for
CGIS’ targets. Profiles can inherit from another profile, overriding certain rules, omit-
ting others and adding some. For example, the backends for NV30, NV40 and G80 GPUs
are quite similar, but different in their support for loops. The NV30 does not offer any
control flow instructions. The NV40 backend adds to the NV30 backend instructions for
looping with predefined upper bounds. The G80 has deprecated these instructions, so
these rules are removed again for the G80 backend, and other rules targeting the G80
instructions are added.

Apart from the code generation method, OORS also supports code optimisation. This fol-
lows the same basic usage model as in the generation mode: Rules are specified with
patterns on elements and attributes, which give rise to other elements and attributes.
The difference to the generation mode is that the optimisation mode operates on one
string instead of between two strings. That is, an existing string is matched and trans-
formed, and this process is repeated until no further matchings are possible. For code
optimisation, this amounts to classical peephole optimisation.

Much more information about OORS including its precise syntax, a formal and a readable
description of its algorithm and several examples, is available in [G06]. OORS is available
as open source software.

V.4.b Pattern Matching in cgisc

For the task at hand, code generation in cgisc, the input to OORS is the sequence of
CirCGiSOperation objects in a block of a procedure, and the output is a sequence
of CirGPUOperation objects in the corresponding block of the corresponding kernel.
Therefore, before the pattern matching process starts, the control flow graph of the
CirCGiSFunction is copied into the IFPkernel. The pattern matcher normally runs
in local, greedy matching mode, because the global matching mode takes too long to ex-
ecute for little gain, if any; if so desired, the user can turn on global matching with a
command line switch.

Many arithmetical instructions can be translated in a straightforward way. For exam-
ple, an addition a = b+c; creates symbolic registers for all variables and issues an
instruction ADD Ra, Rb,Rc;. At this point the compiler is neither interested in nor
knowledgeable about the actual registers, that is, about the allocation of the symregs
into the actregs (Sections V.2.b and V.5.c). However, it is vital to know the width of the
operands, because not all operations can be translated as such.

113

Chapter V. The CGiS Compiler

For example, some operations, such as LN2 computing logarithm to base 2, are natively
available only for single components. An operation a = ln2(b); for a vectorial b there-
fore has to be translated into a sequence of single-component operations like

LN2 a.x, b.x; ... LN2 a.w, b.w;.

Such a pattern turns up oftentimes, also as a subpattern of larger translations. For
example, a = ln(b); is translated into a sequence of scalar LN2 instructions for the
components of b, which is then subject to a vectorial multiplication with the constant
ln 2 (log2 b · ln 2 = ln b). The replacement pattern can turn out to be highly complex; for
example, a left rotation is translated using the identity

x <<< y = (x<<(y&31)) | (x>>(32-(y&31))),

where the << and >> have to be issued componentwise, and the other GPU operations
can be vectorial.

Other operations have to be translated by a multitude of rules, depending on specific
conditions. Consider the seemingly simple dot product b\c. If b and c have width 3 or
width 4, this can be implemented by the special operations DP3 and DP4. For width 2,
later GPUs support a DP2 operation, but on the NV30 it has to be implemented by sep-
arate multiplications and an addition. For width 1, the dot product degenerates into a
simple multiplication. And this all is irrelevant for integers, which are not supported by
any of the DPn instructions, necessitating a sequence of MUL and MAD operations.

While this might sound daunting at first, it actually shows how to localise issues of
hardware differences. For example, a general rule for binary vectorial operations can
cope with the dot product in general. The NV30 overrides this rule for two-component
operands, and the G80 provides special rules for integer operands. Thus, a large part
of the instruction selection process can be retained; rules have to be amended with spe-
cial conditions if they are to be restricted, and new rules for new features have to be
introduced.

Now, it is worthwhile to look at a few specific rules to illustrate certain aspects of the
compilation. Program V.12 shows a fragment of the translation rules in a very simplified
form. The merging rules are responsible for vectorisation. Two statements of the form
a1 = b1+c1; ... a2 = b2+c2; can be executed in parallel, if the operands ai etc.
fit into one register each. Section V.5.c explains in more detail how this is finally imple-
mented; the rule in Program V.12 simply shows in general how the opportunities for this
optimisation are found.

The search pattern searches for two possibly vectorisable operations. OORS uses the $-
notation familiar from YACC and similar tools, where $$ represents the current item
(here: operation) and $1, $2 etc. represent the items in order of their appearance in
a rule (counting search and replacement patterns together). The condition checks the
side conditions for this optimisation. For example, it would not be possible to vectorise
the sequence a1 = b1+c1; a2 = b2+7;, because the right operand is constant in one
operation and a variable in the other one. The implicit condition (Section V.4.a) already
ensures that the rule is matched only when there are no dependencies requiring that
the latter matched operation cannot be lifted in front of that sequence. The replace pat-
tern then generates a CirGPUOperation for the two CirCGiSOperation,merging the
operands and the targets into one special vector register. (Refer to Section V.5.c on how
this is used later in the code generation process.) The rule is flagged with a certain in-
teger constant, which is OORS’ way of marking a rule as optional: It is activated only

114

V.4. Code Generation

rule merge_un : (8){
search: [CirCGiSBinOp(is_vector_arith($$->opcode()),

*,
CirCGiSBinOp(is_vector_arith($$->opcode())

]
condition: {

// The operations must have equal opcodes...
// ... and equal constancy.
// The registers must not already be wrapped...
// ... they must have the same base type...
// ... they must not be the same...
// ... they must not be at a fixed position.
// We must have space for wrapping.

}
replace: [CirGPUBinOp(

to_gpu($1->opcode()),
new CirWrapperReg($1->operand1()->symreg(),

$3->operand1()->symreg())
new CirWrapperReg($1->operand2()->symreg(),

$3->operand2()->symreg())
new CirWrapperReg($1->target()->symreg(),

$3->target()->symreg())
)

]
}

Program V.12: A skeleton of a vectorisation rule

conditionally, in this case when the user switches on the optimisations by a command
line flag of the compiler. The reason for that is that opportunities for this optimisa-
tions present itself only seldomly in CGIS code; vectorisable code tends to be expressed
already in vectorised form thanks to CGIS’ appropriate vectorial types, and occasional
superword level parallelism has no effect on the actual execution time, but introduces
additional burdens on the compiler by constricting register placement. This wrapping
were more useful when extracting parallelism out of sequential code; the CGIS syntax is
already too advanced for that.

Just as an example of an optimisation rule, Program V.13 presents a rule which merges
multiplication and addition into a multiply-and-add operation. It is presented here to
complete the treatment of pattern matching in cgisc although this optimisation is exe-
cuted much later, not in the current phase.

The search pattern looks for two instructions to merge which have to be set up in such a
way that the operands align and the target of the multiplication is overwritten. The con-
dition ensures, together with the implicit condition, that the reordering of the addition
does not change the semantics of the code. The cost is negative, because the number of
operations is removed.

The replacement pattern shows exactly one instruction. The OORS semantics mean that
this instruction is generated and takes the place of the first matched instruction. The
instructions of the search pattern could be marked in the search pattern to be kept, but
as they are not, and because they do not turn up in the replacement pattern with the
$-syntax, they get deleted from the instruction stream.

115

Chapter V. The CGiS Compiler

rule mad {
search: [CirGPUBinOp($$->opcode() == OP_GPU_MUL),

*,
CirGPUBinOp($$->opcode() == OP_GPU_ADD &&

(op_is_reg($$->operand1(),$1->target()) ||
op_is_reg($$->operand2(),$1->target())) &&

($$->operand1()!=$$->operand2()) &&
$$->target() == $1->target())

]
condition: {

// The operations must not be differently guarded...
// ... and have to use the full registers.
}

cost: { return -1; }
replace: [CirGPUTerOp(OP_GPU_MAD, $1->operand1(), $1->operand2(),

$3->operand2(), $3->target()]
// Copying of masking, negation and guarding omitted.

}

Program V.13: A skeleton of a peephole optimisation rule

V.4.c Control Flow

As has been said, the OORS pattern matcher works solely on the level of basic blocks.
Control flow issues come into effect, however, because the generated instructions need
to incorporate the GPU instructions for control flow. The final code is, after all, just a
linerisation of the representations of the instructions inside the blocks (Section V.2.d).
Thus, high-level pseudo-instructions for control flow are inserted into the stream of
CirCGiSOperation of the branch and merge blocks. These are then matched and trans-
lated into the appropriate CirGPUOperation objects.

Note that at this point only those control flow constructs are present which are actually
available on the hardware. That is, all decisions about how to implement conditionals
and whether functions must be inlined have already been taken before (Section V.3).

True Conditionals

Native conditionals are expressed by special pseudo-instructions which mark the begin-
nings of the two branches and the end of the complete conditional. That is, one does not
generate labels to jump to, but the assembler generates the jumps based on the direc-
tives.

Which of the two branches to jump to is based on the contents of a condition code reg-
ister, much in the same way as guarded instructions; see Section V.3.c. There it is also
explained how a condition is used to a set or unset a condition code register.

Conditions themselves are represented as float values of 1 or 0, as this is what certain
set-on-condition operations on float return.

Programs V.14 and V.15 give a symbolic view of the translation of a conditional into GPU
code. The IF instruction receives as an argument the condition flag determining which
of the two branches to follow. Program V.14 shows the source code; observe the hint to
enforce translation into a true conditional (Section V.3.c).

116

V.4. Code Generation

if(a<1.0) #HINT(no_conversion)
e = 0.5;

else
e = -0.5;

Program V.14: A conditional in CGIS

SLT Rcond, Ra,1; # Evaluate condition.
MOVC Rcond, Rcond; # Set or unset condition code.
IF NE; # Start true branch.
MOV Re, 0.5;
ELSE; # End true branch, start false branch.
MOV Re, -0.5;
ENDIF; # End false branch.

Program V.15: Program V.14 translated to NV40 code

Loops

Loops, just like conditionals, are implemented by enclosing the body with special loop
begin and loop end markers. The loop condition is implemented by a data-dependent
break instruction just after the formal loop start (in while loops) or at the end (in do
loops).

The looping is implemented with different mechanisms dependent on the hardware. In
the NV40 hardware, GPU loops need to be issued with a fixed number of iterations.
This number must not be larger then 256. Obviously, both of these conditions are rather
harsh. Fortunately, there is a data-dependent break instruction, and loops can be nested.
Thus, these restrictions can be virtualised in CGIS: consider a hardware with maximally
l loop iterations. A loop with maximally n iterations for n > l is implemented as a two-
layered loop nest, where the outer loop is issued with an iteration number of l and the
outer loop with an iteration number of ⌈n/l⌉. A data-dependent break instruction is used
to break out of the loop, enabling dynamic (and divergent) loops.

The compiler does not perform a sophisticated analysis to compute the maximal iteration
number. Instead, the user can add a hint to a loop specifying this number. If none is
given, l2 is assumed.12 This is particularly useful if the number is assured to be less
than l, because then only one GPU loop suffices. Program V.16 shows such a hint in the
CGIS program. Program V.17 shows the implementation with a NV40 style loop.

for(int i=from_to.x; i<from_to.y; i=i+1)
#HINT(max_count=64)
{

temp=temp+i;
}

Program V.16: A loop in CGIS

12The maximal number l2 of iterations is not a real restriction because the hardware such restricted also has
constraints on dynamical instruction count.

117

Chapter V. The CGiS Compiler

MOV Ri, Rfrom_to_x; # Initialise loop.
REP {64}; # Start loop.
SLT Rcond, Ri,Rfrom_to.y; # Evaluate condition.
MOVC Rcond, Rcond; # Set or unset condition code.
BRK (EQ); # Exit if condition false.
ADD Rtemp, Rtemp,Ri; # Loop body.
ADD Ri, Ri,1; # Loop iteration.
ENDREP; # End of loop.

Program V.17: Program V.16 translated to NV40 code

Function Calls

In absence of a parameter stack, procedure parameters have to be passed in registers.
To this end, the subprocedures work on their own sets of registers. For each call context,
the parameters are passed to these registers, the control flow is transfered to the sub-
procedure, and afterwards the values of the formal output parameters are passed into
the actual parameters.

Programs V.18 shows a simple example. Note the hint for function help: To guide the
compiler in much the same way as for if-conversion (Section V.3.b), hints can declare
whether a function should be inlined (force_inline) or not (never_inline), assum-
ing an architecture allows the choice. Per default, all procedures are inlined.

Program V.19 shows the relevant fragment for this program symbolically. Observe how
the subprocedure entry point is identified by a label, and the entry point of the main
program is identified by the reserved label main.

procedure help(in float i, out float o)
#HINT(never_inline)
{

o = 2.0*i;
}

procedure f(in float i1, out float o1){
float f1t1, f1t2;
help(i1,f1t1);
help(f1t1,f1t2);
o1 = f1t2+1;

}

Program V.18: A simple function call

V.5
The Backend:

GPU Code

When the code has been generated in a sym-
bolic form, the work is far from being finished.
Although the instruction selection process is,
by and large, finished, almost all relevant de-
cisions regarding the data still remain. This

holds inside kernels and concerns mainly the allocation of symregs to actregs, that is,
the mapping of values to registers. It also holds with respect to the outside world, that

118

V.5. The Backend: GPU Code

help:
MUL Ro_help, 2,Ri_help; // Procedure body of help.
RET;

main:
MOV Ri_help, Ri1_f; // Prologue.
CAL help; // Call.
MOV Rf1t1_f, Ro_help; // Epilogue.
MOV Ri_help, Rf1t1_f; // Prologue.
CAL help; // Call.
MOV Rf1t2_f, Ro_help; // Epilogue.
ADD Ro1_f, Rf1t2_f,1; // Statement of f.

Program V.19: Program V.18 translated to G80 code

is, concerning the input and output of data: Recall that we have free reign over the data
placements.

There are also other, more classical optimisations to be done on the GPU code; in par-
ticular, copy propagation and dead code elimination (Section V.5.b) can profit from the
swizzling and masking features of GPUs. Figure V.11 gives an overview of the structure
of the backend.

Figure V.11 Subphases of the backend

IFPkernel, CirGPUOperation

Texture packing

Data linking

Copy propagation

Dead code elimination

Register allocation

IFPkernel, CirGPUOperation

V.5.a Texture Packing

We have now arrived at a point where the kernels have been created in a symbolic form.
The next task is to compute the mapping of streams into textures. We shall call this

119

Chapter V. The CGiS Compiler

phase (texture) packing.

The number of input stages and especially of output buffers is limited. The more press-
ing parameter is the number of output buffers, which is merely 1 in older generations,
changed to 4 later, and is at most 8 in recent hardware. Each output buffer can hold
up to 4 components. Packing has to take that restriction into account and to create a
packing which is implementable on the hardware of choice.

First, let us fix a few constraints on the program and the data to be able to explain the
algorithm more easily.

Preliminary Considerations

Program V.20 shows that the packing choice cannot be made locally. Suppose we are
working on an architecture with only one output buffer. Each procedure can make do
with a particular mapping of the X-streams into textures, but there is no way to create a
packing satisfying both calls.

PROGRAM copykern;

INTERFACE
extern in float A<16>;
extern out float2 X1<16>;
extern out float2 X2<16>;
extern out float2 X3<16>;

CODE
procedure f(in float i, out float2 o1, out float2 o2){ ... }

procedure g(in float i, out float2 o1, out float2 o2){ ... }

CONTROL
forall(a in A, x1 in X1, x2 in X2) f(a, x1,x2);
forall(a in A, x1 in X1, x3 in X3) g(a, x1,x3);

Program V.20: A program illustrating the need for global texture packing

To remedy this, cgisc introduce copy kernels. A copy kernel is a small CGIS procedure
which takes inputs from some textures, reorders them in some way, and outputs them
into other textures. For example, suppose in Program V.20 we have a mapping of A in one
texture, X1 and X2 in another one, and X3 in another one. cgisc would then introduce
copy kernels after procedure g. That procedure would write into temporary space, and
the copy kernels would then reorder the temporary data into the correct textures.

Program V.21 shows a representation of how such a copying might look like. After g has
written into temporary space, texture 2 (comprising X1 and X2) gets updated with the
new X1 (in iterator t1) and the unchanged X2 (in iterator x2), and texture 3 (holding X3)
gets updated through iterator t2.

Such copy kernels are introduced whenever a texture packing satisfying all kernels can-
not be found. In this case, the best packing (with respect to the yet to be mentioned
heuristics) of those needing the least number of copy kernels is chosen, and the appropri-
ate copy kernels are inserted in those place where the hardware framebuffer restrictions
demand so. Therefore, we may assume without loss of generality in the discussion of the
heuristics that the hardware can implement the selected mapping.

120

V.5. The Backend: GPU Code

PROGRAM copykern;

INTERFACE
extern in float A<16>;
extern out float2 X1<16> : packing(1) : RG;
extern out float2 X2<16> : packing(1) : BA,
extern out float2 X3<16> : packing(2) : RG;
intern float2 Tg1<16>;
intern float2 Tg2<16>;

CODE
procedure f(in float i, out float2 o1, out float2 o2){ ... }

procedure g(in float i, out float2 o1, out float2 o2){ ... }
procedure copy_g1(in float2 i1, in float2 i2,

out float2 o1, out float2 o2){
o1 = i1; o2 = i2;

}
procedure copy_g1(in float2 i1, out float2 o1){

o1 = i1;
}

CONTROL
forall(a in A, x1 in X1, x2 in X2) f(a, x1,x2);
forall(a in A, x1 in X1, x3 in X3, t1 in Tg1, t2 in Tg2, x2 in X2){

g(a, t1,t2);
copy_g1(t1,x2, x1,x2);
copy_g2(t2, x3);

}

Program V.21: Representation of Program V.20 with automatic copy kernels

Another point of interest is the call context decollation which was mentioned in Sec-
tion V.3.b. To reduce the dependencies on texture packing, procedures are cloned for
each call context, and the packing choices are therefore more localised; otherwise, dif-
ferent streams (from different call contexts) would have to be packed in the same way to
have compatible data accesses. Thus, again without loss of generality we may assume
that each user-specified procedure is called exactly once with one set of streams passed
through iterators to the function parameters.

Global and Local Considerations

With the specified setting, we can investigate the actual packing process. Several ques-
tions come to mind:

(1) What parts of the code generation and the runtime workings are affected by the
packing?

(2) Which characteristics of packings are desirable in these parts?

(3) How do we select a desirable packing?

121

Chapter V. The CGiS Compiler

We start with the investigation of (1) and (2) together. (3) is implemented with a simple
generate-and-visit method which is explained afterwards.

Texture packing has the following consequences.

(a) It determines the number of input and output stages and thereby the number of
memory accesses in a kernel.

(b) It determines whether a kernel can use framebuffer objects (FBOs), a method to di-
rectly write into texture space, or whether it needs to write into the general-purpose
framebuffer and afterwards copy into the texture memory.13

(c) It governs whether input data received by the API functions need to be reordered or
can be uploaded in a whole chunk as a texture.

(d) It might waste space when a texture for n components per element is used only by
m < n components per element.

Of these considerations, (c) is of particular importance. Suppose a texture holds two
streams A and B of type float in components x and y, respectively. First of all, this
means that the elements of the CPU arrays have to be reordered into this interleaved
ordering, putting an additional burden on the data transfer times. Second, consider a
kernel which reads from stream A and writes into B. Because a texture cannot be bound
both as an input buffer and an output buffer (via the FBO method), we have to write into
the temporary framebuffer and afterwards copy the data back into the texture ((5) in the
example in Section V.1.c). For this to work, we have to introduce compensation copies.
Because we cannot selectively update only the y components of the texture, we have to
introduce an operation into the kernel which is solely responsible to copy the values of
the A stream. These operations are called compensation copies. In this case, they do not
cause much harm, because the stream A is read anyway. However, for the same reason of
the non-selective upgrading, we have to introduce compensation copies even if the kernel
only writes into B and would not normally read from A; and this, in turn, means that the
texture must be bound as an input buffer and thus we cannot use FBOs. So, all in all,
reorderings should be avoided.

After this global consideration, let us now focus our attention to single kernels. The
implementation favours FBOs, as they have been found in general to provide (minor)
speed advantages above copy-to-textures. Again, this was found to depend on the driver
version. Therefore, the user can again guide the heuristics by providing a hint: Pro-
viding the hint no_FBO to a procedure (between parameter list and body) disables the
generation of FBO code for that procedure.

With respect to single kernels, we can argue about the badness of a partitioning for that
particular kernel, which is a representation of the burden faced in implementing that
kernel with that packing. Let π be any packing, and k be any kernel. We assume that π
is a valid packing for that kernel, meaning that k can be implemented with that packing.
Let I be the set of textures used for inputs, and O the set of textures used for outputs.
Then, the local badness is defined as

b(π, k) = 50 · |I ∩ O| + (|I| + |O|).

In effect, this just means that badnesses compare first with respect to the necessary
number of texture copies (needed when a texture is used both for input and output) and
secondary with respect to the necessary texture stages and buffers.

13This is something different than the copy kernels (Section V.1.c).

122

V.5. The Backend: GPU Code

In all that we have to consider compensation copies. There are two sources of compen-
sation copies. In general, compensation copies must be introduced if a texture is only
partially written, that is, if only one stream in a texture is being written. That is defi-
nitely the case when the packing has decided to pack several streams into one texture;
but it may be the case if the texture in question is an external texture and we do not
know whether other streams are present in there used by other programs. Therefore, if
the user does not supply the hint no_texture_reuse (Section V.1.c), the algorithm has
to consider the worst case and issue compensation copies.

Computing a Packing

When considering the global badness of a packing, the reordering costs come into effect.
For a packing π, let ω(π) be the number of components which have to be reordered. For
example, if a struct with four components resides suitably aligned in the same texture,
then ω(π) = 0. If a single component lies in another texture, then all components have to
be part of the reordering, and thus ω(π) = 4.

Conceptually, the packing algorithm works as follows.

(1) Create valid partitionings of streams into textures, that is, packings which do not
violate size or type constraints or the user specifications. This is done with an algo-
rithm from [H63, K05].

(2) Check the partitionings against all kernels.

◮ If a partitioning π is valid for all kernels ki, let b(π, ki) be the associated bad-
nesses. The global badness is then B(π) = 1000 ∗ ω(π) + maxi b(π, ki). We keep the
mapping with minimal B(π).

◮ If a partitioning is not valid for a number v of kernels, and we have not found
a valid mapping or a mapping violating a smaller number of kernels, we record
the bad mapping. Again, we keep the mapping π with minimal B(π).

(3) If we have found any valid mapping, this is the resulting packing.

(4) Otherwise, take the recorded best invalid mapping, create appropriate copy kernels
and take that as the resulting packing.

All in all, this means that the packings are compared first and foremost with respect to
their reordering costs, and only secondary with respect to their effects on kernels.

After the compiler has created the texture packing, the necessary information is stored
in the forall loops: which textures to hook to which input phases and to which output
buffers, what kinds of copies to issue and what FBOs to use.

Linking

The linking phase concludes the texture packing process. This phase inserts the inserts
the location information about the data into the in- and output instructions inside the
kernels. This entails the following activities:

◮ creating the compensation copy instructions

◮ patching the information about where to fetch data and whereto to write data into
the instructions

◮ precolouring the symregs used in texture fetch instructions

The precolouring phase will be used in the register allocation process, to be explained in
Section V.5.c.

123

Chapter V. The CGiS Compiler

V.5.b Optimisations

Peephole Optimisations

A few peephole optimisations have been implemented with OORS. The MAD rule of Sec-
tion V.4.b is one example for this. There are also some other rules which can perform
constant folding or merge the setting of a condition code register with the computation
of the boolean value. Most optimisations on GPU code in cgisc, however, are formu-
lated as a data-flow analysis working on the control flow graph and with worklists of
instructions; casting these into the pattern matching syntax of OORS is possible, but not
useful.

Copy Elimination

Copy elimination is the process of removing superfluous assignments [M97]. It consists
of copy propagation, which propagates the source of an assignment to replace the usage
of that assignment’s target, and the elimination of the then useless assignments. The
elimination is done by standard dead code elimination and thus is the subject of the
following section.

MOV R2, R1;
MOV R3, R2.x;
MOV R4, -R2;
ADD R5, R3,R4;

ADD R5, R1.x,-R1;

(a) Before copy elimination (b) After copy elimination

Program V.22: Copy elimination on GPU code

Copy propagation is an interesting topic in GPU assembly code generation, because the
operations support various modifiers on their operands. In cgisc, both swizzling and
negation are taken into account. Program V.22 shows the result of copy elimination (as-
suming that there are no further uses of registers R2, R3 and R4). Eliminating the move
from R1 into R2 is standard for copy elimination. To include the swizzling (here: repli-
cation) and the negation as operand modifiers into an arbitrary operation is a feature of
the GPU assembly language.

Copy propagation is implemented as a forward data flow analysis. It works in much the
same way as constant propagation on CGIS code, except for the fact that negation and
swizzling have to be carried on as well.

Dead Code Elimination

Liveness analysis is a prerequisite for register allocation. As mentioned in Section V.2.b,
the fundamental unit of computation in CGIS is the component, not the value. Thus,
a liveness analysis has to work on components of symregs instead of symregs. That
and the handling of guarded statements are the only differences to standard liveness
analyses [NNH99].

More importantly, the liveness analysis is followed by dead code elimination. Only sel-
domly does a programmer write really dead code, that is, code which is never executed
or does not contribute to the externally visible result. More often, dead code comes

124

V.5. The Backend: GPU Code

up during a particular optimisation. As an example, the first three instructions of Pro-
gram V.22.a become dead after copy propagation, if there are no uses of R2, R3 or R4 later
on. Thus, dead code elimination removes these instruction, resulting in Program V.22.b.

Dead code elimination is implemented as a backward data flow analysis. It eliminates
dead code by removing instructions and by inserting masks and For example, consider
the transformation in Program V.23. For ease of exposition, we assume the registers
have width 2. Part (a) shows that a vectorial value is only partially overwritten. Part (b)
shows the result of component based dead code elimination.

MUL R1, R2,R3; MUL R1.y, R2.y,R3.y;
MOV R1.x, 0; MOV R1.x, 0;

(a) Before dead code elimination (b) After dead code elimination

Program V.23: Component based dead code elimination

V.5.c Register Allocation

Any compiler outputting assembly code in the end has to perform some sort of register
allocation. In this phase, the scant physical resources available to store intermediate
values are designated to hold the operands of the instructions in the intermediate repre-
sentation [WM95]. In cgisc, these operands are the symregs, and they are going to be
mapped onto actregs (Section V.2).

Standard Graph Colouring

in(a);
b ← a/2;
c ← a+b;
d ← c*b;
out(d);

Program V.24: An example to demonstrate register colouring

A standard approach based on graph colouring [C82] has to be modified in the setting
of CGIS on GPUs. To see this, we recall the graph colouring approach, using as an
example some code for a conventional imperative language. Program V.24 presents a
small sequence of code with symbolic registers. The task is now to map these symbolic
registers onto actual registers.

For example, one could produce a mapping with only two registers, assigning a and
b to register R1, and c and d to register R2. The resulting code is presented in Pro-
gram V.25.a. The alert reader immediately observes that this code actually computes
the wrong function: (a

2 +
a
2) · a

2 instead of (a + a
2) · a

2 . This is because the symregs a and
b have been assigned to the same actual register. Thus, the addition instruction gets as
input operands twice the same register, which is holding solely b at that moment. Pro-
gram V.25.b, on the other hand, presents a correct implementation, as is easily verified.
The underlying mapping, here, maps a, c and d to R1, and b to R2.

To automatically compute such a colouring, a two-step approach is used. First, the live
ranges of variables are computed. A live range of a variable is the collection of the points
in an execution of a program where that particular variable is live. That liveness is

125

Chapter V. The CGiS Compiler

in(R1);
R1 ←R1/2;
R2 ←R1+R1;
R2 ←R2*R1;
out(R2);

in(R1);
R2 ←R1/2;
R1 ←R1+R2;
R1 ←R1*R2;
out(R1);

(a) A wrong colouring (b) A correct colouring

Program V.25: Register colourings on Program V.24

defined as the existence of an execution path14 from that point onwards to the end of
the execution, on which the current value of the variable is read. In other words, the
variable might be read from before it is being written to. Figure V.12.a shows the live
ranges for our straightforward, sequential example.

Figure V.12 Live ranges and interference graph for Program V.24

in(a);
b ← a/2;
c ← a+b;
d ← c*b;
out(d);

a

bc
d

a b

c d

(a) Live ranges (b) Interferences

In a second step, the overlapping15 live ranges are considered. Variables cannot be held
in the same register, if their live ranges interfere. Figure V.12.b presents a graph of
the live ranges, displayed as nodes, with the interferences displayed as edges between
the nodes. Register allocation, then, corresponds to graph colouring: The nodes of the
graph have to be assigned colours, such that no incident nodes receive the same colour.
Interpreting a colour as a particular physical register, the colouring restriction and the
structure of the graph ensure that no two interfering (adjacent) values get assigned the
same register (colour). In our example, one could assign the colour blue to nodes a and
d, green to b and red to c. A minimal colouring would use two colours; assigning one
colour to b and another one to a, c and d would correspond to the register allocation of
Program V.25.b.

Componentwise Colouring

The general colouring algorithm has to be modified for register allocation in cgisc. The
reason is the peculiarity of the representation and implementation of vectorial values.

◮ CGIS supports vectorial scalars of various widths and primitive scalars. That is,
the length of the CGIS types can be smaller than the width of the native registers.

◮ GPUs support swizzling and masking (the kind of Section II.3.a, not the CGIS kind
of Sections IV.2.c and IV.2.d). By this, the components of actual register components
partaking in an operation can be chosen freely, although the number of registers is
fixed.

14We are considering only static paths.
15Overlapping live ranges are also called intersecting.

126

V.5. The Backend: GPU Code

A further point stems from the texture packing of CGIS/cgisc.

◮ Texture fetches, that is, array loads, do not support swizzling on the memory. Thus,
input data have fixed components, but not fixed registers.

All in all, the only sensible way of allocating registers is to perform it component-based.
This is done on both ends of the allocation algorithm:

◮ The subjects of colourings are the components. That is, not a single float2 gets
allocated, but each of the components gets allocated separately.

◮ The logical components get assigned two colours. One colour stands for the ac-
tual register, the second one for the component. To ensure a correct colouring, two
interfering components must differ in at least one colour.

Consider a colouring of Program V.24. We assume hereby that all values are of type
float2. Figure V.13 shows such a colouring. Here, the two way colouring is be repre-
sented by a square, in which subsquares (representing the components) are filled with
specific colours (representing the registers). In this case, we can make do with one colour,
that is, with one single register: Because of the componentwise allocation, the register
can hold two float2 values at the same time.

Figure V.13 A component colouring for Program V.24

a b

c d

Program V.26 shows in symbolic form how that program might be translated into GPU
code. (Note: For ease of exposition, this program uses the swizzle and mask syntax
of CGIS, not that of GPUs16. To the reader of Chapter IV, it is familiar, and to the
uninitiated, it is more accessible than the GPU notation.) We observe how a single
register is sufficient to hold two small values.

IN R.xy, [a];
DIV R.zw, R.xy,2;
ADD R.xy, R.xy,R.zw;
MUL R.yz, R.xy,R.zw;
OUT [d], R.yz;

Program V.26: Register allocation on GPUs for Program V.24

16For the curious, the real GPU code would look like this: TEX R.xy, ...; MUL R.zw, R.xxxy,
0.5; ADD R.xy, R.xyxx, R.zwxx; MUL R.xz, R.xxyx, R.xzwx; MOV outcolor.yz, R;. Note the
fill components on the right sides to align the swizzled components with the masked components on the left
site.

127

Chapter V. The CGiS Compiler

Superword Level Parallelism

So far, we have seen that it is possible to hold multiple symregs in a single actreg. But
the power of the two-colour-approach ranges further. Consider Program V.27.a, which
performs two multiplications. The values are considered to be of type float.

x_scaled ← x*3;
y_scaled ← y*3;

MUL C1.x, C2.x,3;
MUL C3.x, C4.x,3;

MUL R1.xy, R2.xy,3;

(a) Two float multiplica-
tions

(b) Two multiplications on
float components

(c) One multiplication on
float2 components

Program V.27: Superword level parallelism

Program V.27.b shows a schematic translation into GPU code. The Ci are some com-
ponents arising from colouring. But this translation is wasteful: We employ two four-
component multiplications, while with masking rejecting all but two float multiplica-
tions. But both multiplications can be performed in a single instruction, as shown in
Program V.27.c. This assumes that x and y are allocated to the xy-components of regis-
ter R2, and x_scaled and y_scaled are allocated to the xy-components of register R1.
In other words, it supposes that in the colouring, for each of the two pairs, both elements
share the same register colour and have differing component colours.

This can be enforced in the register allocation by glue edges. If cgisc were to encounter
the situation of Program V.27.a, two separate actions would take place: Modifying the
instructions to work in parallel on the different values, and ensuring that this is actually
possible by guiding the register allocation.

First, two wrapper registerswould be created (Program V.12). Wrapper registers work as
a container for symregs. A CirWrapperReg is a subclass of a CirSymReg, and therefore
can be used as an operand in GPU operations. In this case, a wrapper register com-
prising the symregs x and y would be created, and another one for the target symregs.
These would then be an operand and the target for a new multiplication instructions.
Symbolically, it could be written as MUL {x_scaled,y_scaled}, {x,y},3;.

Second, glue edges are drawn between the symregs in a single wrapper register. The
register colouring phase then makes sure that symregs connected by a glue edge get the
same register colour. In this way, glue edges lead to Superword Level Parallelism [LA00].

As it happens, the same mechanism used for this superword level parallelism is also
used to ensure that the components of a single symreg get allocated into a single actreg:
All components of a single vectorial scalar also receive glue edges among each other.
Strictly speaking, it is not necessary to use a single physical register for all components:
If a programmer defines a variable of type float2 and never uses together the x and
the y component as an operand, then these components do not need to reside in the
same register. However, if these components would never get used together anyway,
the programmer would quite certainly not have used a float2 to hold the data. In a
two-component struct, which would be the right tool for that job, the components are al-
located separately. Thus, the compiler silently assumes that by using a vectorial type the
programmer intends to use it as such, and inserts appropriate glue edges automatically.

This is also the reason for the limited use of synthesised superword level parallelism in
practice, as alluded to in Section V.4.b: The programmer expresses the program already
in appropriate SIMD form, thus the possible SIMD parallelism is obvious.

128

V.6. Remaining System Parts

Colouring

When starting the colouring phase, glue edges hold together symreg components for
which superword level parallelism can be exploited, and interference edges denote sym-
reg components which have to be coloured with different colours. It is necessary, how-
ever, to also start with a precolouring for input data. This is because reordering (swiz-
zling) is not possible in texture fetches: When a float stream has been decided to reside
in the z-component of a texture, then the texture fetch can save the value only in the z-
component of a register. Therefore, input data start the colouring phase with one of the
two colours, the component colour, already fixed.

V.6
Remaining

System Parts

The preceding sections focused on the compila-
tion of CGIS code into GPU code and the execu-
tion of the generated code. This section sums up
the other parts of the system. This entails men-
tioning the other parts of the compiler proper,

and a discussion of the other software provided in the system.

The complete package of the system is built using an autoconf [G07a] based system
under Unix and solution files for Microsoft Visual Studio 2003 under Windows. Provided
that the compilation system is set up correctly, the user can compile the complete system
including tests with the tip of a finger. Third party utilities such as YACC or the OORS
compiler are neededwhen the programmer changes the relevant source files. The CUDA
runtime needs the CUDA toolkit and SDK.

V.6.a Internal Components

General Remarks

The complete CGIS system offers a multitude of debugging and inspection facilities.
To aid during development, additional debugging information about almost everything
done during the compilation can be output. Information about the current state of the
program (for example, before and after some source transformations) can also be output
in GDL [A07a] form, aiding in debugging. Figure V.14 shows an extract of such a GDL
graph.

CUDA

A small CUDA backend exists solely for testing purposes. This backend does not cur-
rently support full CGIS: Most importantly, reductions are not supported. The main use
of the CUDA backend is to arrive at CUDA code from the same source code by essen-
tially the same compiler. By comparing the performance differences one can get an idea
of were the problems in the restriction to the OPENGL model lie. Section VI.2.a uses the
CUDA backend for a performance comparison.

The code generation for CUDA is radically different to that of GPU code. CUDA employs
its own parser and code generator, that is, the abstraction level of cgisc’s output lies
more on par with C. In this sense, the CUDA backend is comparable to the CG output of
BROOK.

This abstraction means that the compiler is freed from many considerations. For exam-
ple, register allocation is a non-issue, because it is handled in the later phases by the

129

Chapter V. The CGiS Compiler

Figure V.14 Extract from a GDL graph

(a) Control flow overview (b) Detailed view of annotated instructions

CUDA compiler. Also, whereas the GPU backend has to implement computations which
are not directly supported in the GPU instruction set by sequences of native instructions
on registers, the CUDA backend can simply output a call to a library function. A library
header file included with the CGISCUDA runtime library provides CUDA implementa-
tions for these functions, e. g., rotation operators and vectorial operations such as cross
and dot products.

All in all, the CUDA target is a completely different issue than the standard OPENGL
GPU target. That the output code lies on a much higher level of abstraction means that
the code generation phase is much shorter; and the high-level CUDA API makes sure
that also the runtime support has much fewer issues to face than the OPENGL runtime.
Many experiences in the GPU backend of cgisc cannot (or: need not) be productively
used in the CUDA backend.

SIMD CPUs

Besides the GPU runtimes, CGIS also targets SIMD CPUs. Both the SSE family of
extensions for Intel and AMDCPUs [I06a] and the AltiVec extensions for PowerPC CPUs
[F06, FLW07] can be targeted.

For a large part of its operations, the SIMD compiler can use the compiler code presented
in this chapter. However, optimising output for SIMD CPUs entails a different set of op-
timisations and transformations. For example, obviously the SIMD compiler does not
have to care about the packing of data into textures. It also outputs C-intrinsics for the
operations, avoiding the need for register allocation. On the other hand, the input code

130

V.6. Remaining System Parts

needs to undergo transformations to keep the SIMD units occupied in a data-parallel
fashion. In particular, a transformation called kernel-flattening translates the SPMD
parallelism presented by parallel execution of kernels (that is, a forall loop) into SIMD
parallelism on vectors. This means a transformation of task parallelism (multiple ele-
ments are operated upon in parallel), as it is expressed in CGIS and used in the GPU
compiler, into data parallelism. The runtime system also has different tasks to perform.
It does not have to cope with a graphics pipeline model of the target, but has the oppor-
tunity to schedule iterations and to reorder data as such to maximise the usage of caches
in streaming memory accesses and gathers.

A backend for the CELL processor [IST05] is currently under development. This will
introduce task parallelism on top of the AltiVec data parallelism. It is also planned to
use the program analysis tool PAG [AMW95] for various of the data flow analyses which
have been implemented by hand so far. The PAG-analyses can then replace the hand-
written analyses, as they will be more powerful and general. For example, PAG is able to
carry data information across procedure calls, in contrast to the hand-written analyses;
in general, they are probably easier writable than hand-written analyses, in particular
in presence of guarding, masking and swizzling. Ultimately, PAG shall replace the hand-
written code, for it allows a robust framework for general program analyses. The PAG
compatibility is also the main reason for the internal representation of the CGIS code in
the way of sequences of CirOperation (Section V.2.c, Figure V.7).

V.6.b Other Parts of the System

A few auxiliary libraries are part of the CGIS system. These entail a debugging output
library and the handling of command line parameters. A more important component is
libbmp, a library designed to manipulate images. This library is used extensively in
many tests (Section VI.2) to transform data in a specific way or to provide default CPU
implementations against which the CGIS code can be measured.

To test CGIS in larger contexts, several complete sample implementations have been
written in CGIS. For example, the wave propagation example of Section IV.5 belongs to
these. These program are designed to show CGIS’ performance or to demonstrate other
points in CGIS. Chapter VI is solely concerned with these implementations.

V.6.c Acknowledgements

The autoconf build system was created and is maintained by Gernot Gebhard, who also is
responsible for some parts of the auxiliary libraries. He also wrote an early version of the
OORS pattern matcher grammar by translating my hand-written code generator into the
OORS syntax and an early version of the parsing code. Nicolas Fritz is responsible for the
SIMD part of CGIS. This entails the code transformation and generation phases used in
creating SIMD code, and the runtime library. Fritz also is creating the CELL backend,
the connection to PAG and PAG analyses. The GPU runtime library uses the open source
library GLEE [W06] written by Ben Woodhouse to load the OPENGL extensions, that is,
to provide the prototypes for the extension functions and the symbolic constants and to
initialise the function pointers.

131

Chapter V. The CGiS Compiler

V.7 Summary

and Outlook

This chapter has presented the CGIS software
package. This entailed the compiler, the run-
time library and supportive components. We
have seen how the compiler parses, analyses
and transforms the CGIS code, how it gener-

ates GPU code, and how it further analyses and transforms this code. We have also seen
the runtime support and seen what happens behind the scenes of the API functions. Fi-
nally, we have taken a quick tour of the other components of the CGIS package. Let us
now take a brief look at some of the goals CGIS strives to fulfil (Section IV.1.a).

Compatibility is achieved by basing the runtime system on cross-platform standards.
OPENGL is available for all relevant platforms, that is, for all platforms supporting
the hardware itself. Compatibility to legacy hardware has been achieved by program
transformations to cater for control flow restrictions and by introducing the concepts of
texture packing and copy kernels. These features also make up a part of abstraction.

Adaptability is a purely internal feature. It is not visible to the outside and of no concern
to the user. Internally, adaptability has been achieved foremost by the pattern match-
ing code generator. The adaptability has already been tested during the development
of cgisc, because the G80 generation of hardware introduced several new capabilities.
Of particular importance were integer types and operations. Because new instructions
have been introduced and not all retained instructions have been orthogonally extended
to integer types, the code generation process had to be modified quite extensively. As
far as possible, though, the changes could be localised, and the inheritance and selective
overriding features of OORS were useful in confining the necessary changes in the code
generation phase to small portions.17 Other adaptability features concern the quantita-
tive characteristics of GPUs which are abstracted in profile characteristics.

The SIMD code generation, which is out of the scope of this work, can also make use of
the CGIS infrastructure of the compiler. It completely diverges at the pattern match-
ing time. This is as far as commonalities can be abstracted. Future developments will
provide an additional opportunity to test the claim of adaptability.

This concludes the description of the system. We have seen a description of the language
and a description of how it is implemented. What remains now is to see all of these
parts in action: Descriptions of whole programs using CGIS to implement data-parallel
algorithms and evaluations of their performances. This is the topic of the following
chapter.

17Other parts of the software had to undergo more drastic revisions, as should be expected upon introduction
of a new basic type.

132

VI

Applications

If such claims sound too good to be true,
keep in mind that they were made by TEX’s designer,

on a day when TEX happened to be working,
so the statements may be biased; but read on anyway.

D. E. KNUTH, The TEXbook, 1984

In the last Chapters, we have seen some of the design goals of CGIS investigated. This
chapter presents a number of applications written in CGIS. The goals of this chapter are
manifold; in general they can be summed up as “establishing that programming CGIS
is worthwhile”, particularly amounting to efficiency. Therewith, this chapter concludes
the detailed discussion of the CGIS system.

Section VI.1 starts with a preliminary discussion about the efficiency of GPU programs:
What do we mean by this, and how can it be measured? Section VI.2 forms the heart of
this chapter, describing in detail various applications and their implementations. Their
performances are evaluated according to various metrics, and we shall investigate the
results for other information. Section VI.3 recapitulates the performance results and
puts them into a larger context, arguing for why CGIS achieves its goals. Section VI.4
sums up and concludes this chapter.

VI.1
Basic

Concepts

When evaluating the efficiency of the CGIS system,
we have to make certain decisions on the overall
scope and manner of evaluation. On an absolute
level, it has to be decided what to measure. Abso-
lute measurements are meaningless without com-

parison to existing references; thus, we have to establish against which competitive
implementations to contend. Also, the battlefield has to be fixed, that is, where the
measurements take place. In this setting, this amounts to a choice of hardware, oper-
ating system and hardware driver and their versions. This section explains the various
options in these three dimensions and the choices taken in performing the evaluations
later on.

133

Chapter VI. Applications

For efficiency, the main factor to measure is the execution time. But which execution
time has to be measured? First, let us fix some nomenclature. The various “short-ids”
are used in tables and figures.

◮ The time to initialise the OPENGL system is called initialisation time, with the
short id init.

◮ The time to upload data and to download data is called transfer time, with the short
id data.

◮ The time to execute the program, including all internal data copies, is called execu-
tion time, with the short id exe.

◮ The sum of transfer time and execution time is called run time, with the short id
run.

◮ The sum of run time and initialisation time is called overall time, with the short id
overall.

Note that there are some problems associated with the measurements of these API func-
tions. OPENGL functions are in general asynchronous, meaning that they may return
control flow to the caller before all the work has been done. The GPU might still be
working on the commands, or the commands may even still be stored in a command re-
ordering buffer in the driver. Thus, simply measuring the execution times of OPENGL
functions is not advisable. For example, in some cases I have experienced that the ex-
ecution of a program does not actually take place until a read operation tries to down-
load its results. This means that with a naïve measurement of the function calls, the
execute_NAME function would account only for some command buffer changes inside
the driver, whereas the get_data_NAME function does all the work.

Thus, for a precise measurement, the driver has to be forced to execute all commands in
its buffer before a timing measurement is taken;1 but this negates all the optimisations
which would be in place had the driver retained the opportunity to reorder or cluster
operations in the way that it was actually designed for. Thus, it has to be kept in mind
that adding up initialisation, transfer and execution times might lead to a different re-
sult than measuring the overall time when OPENGL is left to its own. But in the tests,
the differences between measuring run time as one function or divided into its three
components were not significant; in particular, the interpretation of the results does not
change due to the detailed timing measurements.

These timings already provide some information taken by themselves. Execution times
for various sizes of the data load tell how well the GPU scales to increasing load. The
ratio of transfer time to run time gives insight on where the bottleneck in the implemen-
tation lies. The ratio of run time to overall time also gives information about the scaling
of the implementation.

Which of these timings to chose for comparison with other implementation depends on
the second choice of the evaluation: against what to compare these absolute measures to
arrive at a meaningful relative metric. The most obvious choice for comparison is a CPU
implementation, because the main usage of CGIS is to outsource computations from

1OPENGL offer two functions: glFlush orders the command buffer to be submitted to the GPU, glFinish
additionally returns only after all commands have completed execution. Thus, glFinish is what has to be
called to ensure that all computations had taken place.

134

VI.1. Basic Concepts

the CPU. The CPU implementation can be either a hand-written, cache-conscious, fine-
tuned version, possibly using SIMD-intrinsics and inline assembly; or standard C++-
code, compiled by a modern, optimising compiler. For the tests, the latter alternative
was chosen, because it is the standard usage model of C++.

Having fixed that, run time and, to a lesser extent, overall time are the importantmetrics
to discuss in this context. Run time measures the costs of one-shot outsourcing, without
amortisation over a sequence of programs. Overall time adds the constant initialisation
costs, which are relevant only if the application really runs only a single program once.
Execution time is useful to compare differences in scalability; as we shall see, cache
effects on the CPU can prevent it from scaling as well as a GPU.

As a secondary choice, some examples have been implemented in CUDA. CUDA offers a
state-of-the-art exploitation of GPUs, and in this way we can see how much we are losing
by having to go through the OPENGL programming metaphor.

The third dimension is formed by the systems on which the measurements take place.
On the one hand, having a number of different GPUs opens up the possibility to compare
between them, and maybe argue about what algorithms can benefit from what GPUs.
On the other hand, the GPUs should be rather advanced in order to enable arguments
about the state-of-the-art. In the end, this amounts to a comparison within NVIDIA’s
G80 family. (This also is a prerequisite for CUDA.) The following three GPUs have been
elected to partake in the comparisons.

GPU proc. speed2 memory bandwidth
GeForce 8600 GT 32 1.18GHz 256MB 22.4MB/s
GeForce 8800 GTS 96 1.20GHz 640MB 64.0MB/s
GeForce 8800 GTX 128 1.35GHz 768MB 86.4MB/s

For short, these GPUs are called 8600, (8800) GTS and (8800) GTX, respectively.

All three GPUs were tested in different base systems. The text will argue about the
differences this is likely to make. The software was largely fixed: All systems were
running under a recent Linux system with the newest driver version (100.14.11), and
all programs have been compiled with -O2 by GCC. Having different versions of these
software programs would be a potential major source of superficial differences between
different systems; in particular, different driver versions can make more of a difference
than the hardware itself.3

The actual systems were the following:

◮ The 8600 resides in a system with Intel Core 2 Duo E6700 CPU, 2.66GHz, FSB
266MHz, with 2GB DDR2 RAM, Kernel 2.6.21.5 (Ubuntu 7.10) with GCC 4.1.3.

◮ The 8800 GTS resides in a system with AMD Athlon 64 X2 CPU, 2.4GHz, FSB
200MHz, with 2GB DDR RAM, Kernel 2.6.18.8 (openSUSE 10.2) with GCC 4.1.2.

◮ The 8800 GTX resides in a system with Intel Core 2 Duo E6300 CPU, 1.86GHz,
FSB 266MHz, with 2GB DDR2 RAM, Kernel 2.6.21.1 (Ubuntu 7.04) with GCC
4.0.3.

2The given speed is that of the processing units.
3The driver issue will be treated in more detail in Section VI.2.f.

135

Chapter VI. Applications

To show that CGIS also works on older hardware and to compare the performances of
different generations of GPUs, some tests also have been made on an NV40-class GPU:

GPU pipelines speed memory bandwidth
GeForce 6800 GT 16 0.35GHz 256MB 32.0MB/s

This GPU was tested in the AMD system which also harboured the GTS. Some tests
have been prohibitively slow on that GPU; there, no measurements have been included.

Concerning CUDA, the tests could not be run under the same systems as the other tests.
The driver available under Linux sometimes showed irregular patterns in the times for
certain functions. Thus, the tests have been performed on a later driver version, which
unfortunately is available only under Windows. (A driver bug also prevented the tests of
RC5 under Linux (Section VI.2.f).)

VI.2
Sample

Applications

To test the CGIS language and the CGIS sys-
tem, a variety of real-world tasks have been
implemented on GPUs. This section explains
some of them to point out strengths and weak-
nesses of CGIS’ handling of the GPU, and in

particular the chosen abstraction. To this end, the algorithms are quite varied in nature.
Although all inherently parallel (to facilitate an implementation in the CGIS model),
they differ on points such as density of computation, memory access pattern and extra-
GPU control flow. In all cases, the CPU implementations have been written in a normal,
yet performance-conscious way. This means that they have been implemented in stan-
dard, sequential C code, but sometimes not exactly implementing the CGIS algorithm,
if that would have been unreasonable for a CPU implementation. For example, the CPU
implementation of life works on char data instead of floating point data. The sections on
the various applications make clear any changes on the algorithm provoked by this.

So as not to disrupt the flow of the text, a number of performance graphics have been
deferred to the end of this chapter.

VI.2.a Mandelbrot

The fascinatingMandelbrot Set [W05] has mesmerised countless spectators by its sheer
beauty, yet it is defined in a very simple and abstract way.

Algorithm and Implementation

Let c ∈ C. The sequence (zc
n)n∈N0 is defined as zc

0 = c and ∀n ∈ N.zc
n = (zc

n−1)2
+ c. The

Mandelbrot Set is defined as M := C\{c ∈ C : limn→∞ |zc
n| = ∞}. For computing the familiar

picture for some Z ⊂ C, the recurrence zc
n = (zc

n−1)2
+ z is computed for each z ∈ Z until

either

◮ |zc
n| > 2 for some n, or

◮ a prespecified maximal iteration count is reached.

136

VI.2. Sample Applications

Figure VI.1 A Mandelbrot computation

This is implemented in a program we shall refer to simply as Mandelbrot. Colours are
assigned to the points depending on the outcome of this process.

Figure VI.1 shows an example output. For this particular picture, the plane was set to
Z = {(x, y) : x ∈ [0.27525, 0.28371], y ∈ [−0.6101,−0.6015]}, and the threshold iteration count
is 500. This is also the setting used for one performance test.

Program VI.1 shows the CGIS implementation of the complete iteration. For each point,
the recurrence is computed until one of the break conditions is fulfilled. The maximal
iteration count is provided as a uniform parameter. Because it is settable by the user at
execution time, hints cannot be used. The computed value is stored in a variable which
is later used to compute the image.

Note that there is a potentially huge number of computations in a very tight loop per
element. Memory transfer is minimal: The initial values zc

0 are transfered to the GPU,
each element computes solely on these zc

0 and writes back the iteration count or a sentinel
value, and that value is read back. As far as the control flow is concerned, because of the
fractal nature of the Mandelbrot set, the number of iterations needed in neighbouring
elements may be equal in some regions and extremely diverse in other regions.

The OPENGL driver reports the following numbers of native instructions for Mandel-
brot: 24 arithmetical and 2 texture instructions.

To sum it up, the exampleMandelbrot possesses the following characteristics.

◮ high arithmetical density per element

◮ large amount of GPU work between CPU–GPU data transfers

◮ pure streaming memory accesses

137

Chapter VI. Applications

PROGRAM mandelbrot;

INTERFACE
extern in float RE<SIZEX,SIZEY>;
extern in float IM<SIZEX,SIZEY>;
extern out float OUT<SIZEX,SIZEY>;
extern in float max_;

CODE
procedure mandelbrot(out float point, in float re, in float im,

in float max_){
point = -1;
float tempx=re, tempy=im;

int round=0;

while(round<max_){
float temp = tempx;
tempx = tempx*tempx - tempy*tempy + re;
tempy = 2*temp*tempy+im;

if(tempx*tempx + tempy*tempy >= 4){
point = round+1; round = max_;

} else round = round+1;
}

}

CONTROL
forall(point in OUT, re in RE, im in IM)

mandelbrot(point, re,im, max_);

Program VI.1: Mandelbrot

Performance

Tables VI.1 and VI.2 show the performance of the algorithm on varying resolutions (data
sizes) for the three systems. Figures VI.11 and VI.12 show the same data graphically.
The first test case consists of the aforementioned subset of the plane visualised in Fig-
ure VI.1. The second test case is a deeper computation, involving up to 5000 iterations
in the plane Z = {(x, y) : x ∈ [0.324505, 0.32451], y ∈ [−0.048551,−0.048555]}.

As this is the first example application, the figures are discussed in detail; subsequent
discussions can then concentrate on the peculiarities. Consider first Figure VI.12.a. It
presents the raw performance data for the three G80-class GPUs. The X-Axis denotes
increasingly larger data size, doubling at each step. The Y-Axis denotes the overall time
for the GPU in milliseconds. For each size, we see three bars, each one corresponding
to one GPU. Each bar is divided into a lower part which denotes the largely invariant
initialisation time, and an upper part which denotes the run time. It can be seen easily
that the performance of the three kinds of GPUs neatly follows the order of their hard-
ware capabilities, with the 8800 GTS leading over the relatively small 8600 by a large
margin, and the high-end 8800 GTX outpacing the GTS. Also, we see that in this case,
the initialisation time is a significant factor for the smallest data sizes, but gets dwarfed

138

VI.2. Sample Applications

Table VI.1 Performance measurements of Mandelbrot (first set)
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
320 × 240 37 30 3 7 140 24 4 7 53 28 2 7
453 × 339 68 26 4 9 283 24 7 8 101 28 4 7
640 × 480 135 27 6 15 582 24 14 10 204 28 9 9
905 × 607 273 30 13 24 1177 24 28 13 404 29 18 11

1280 × 960 552 29 25 38 2297 25 56 20 810 30 35 16

Table VI.2 Performance measurements of Mandelbrot (second set)
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
320 × 240 246 27 3 31 391 24 4 15 364 28 3 12
453 × 339 494 27 4 56 768 24 7 22 716 28 4 17
640 × 480 990 28 6 105 1519 24 14 37 1437 28 9 28
905 × 607 1977 29 13 198 3088 24 28 66 2865 29 18 47
1280 × 960 3950 29 25 371 6127 25 56 122 5731 29 35 83

pretty soon when the data size is approaching larger dimensions.

Subfigure VI.12.b presents the execution time relative to the time for the smallest data
size. The logarithmic scale means that an ideal scaling would lead to a straight 45° line.
In this particular cases, the workload in the higher dimensions is not exactly a multiple
of the workloads in lower dimension: Because of the very nature of fractals, the frac-
tion of pixels for which the highest iteration count has to be reached can vary strongly
with the chosen points, and these depend on the resolution. Other tests will show more
reasonable results.

Subfigure VI.12.c compares the run time and overall time of the GPU with the execution
time of the CPU in the same system. This is devised to demonstrate the usefulness of
outsourcing the computation to the GPU. We observe several key points. First, even the
lowly 8600 outperforms the CPU by a factor of 5–10. This is even though that system
happens to combine both the most powerful CPU in our tests and the least powerful
GPU. The relative performance gap increases to nearly 50 for the run time on the largest
data set on the 8800 GTX. Second, the benefit increases with increasing data size. As
a third and last point, we see that including the initialisation time in the comparison
makes for a substantial difference only for the 8800s, because there the run time takes
up a smaller part of the overall time.

Figure VI.11 and Table VI.1 tell a similar story for the other test set. Here, the actual ex-
ecution time is much smaller than for the second test set, and therefore the transfer time
takes up a larger part of the run time. This is the reason for the relatively poor perfor-
mance of the GTS, which suffers from a generally slow system; this will be investigated
in more detail in Section VI.2.c.

Other Considerations

Truth to be told, the Mandelbrot set exhibits one problem of contemporary GPUs, namely
that of precision. The x86 floating-point architecture internally works on a higher preci-
sion than the 32-Bit of single-precision floats. Thus, for some pictures which represent a
very narrow subset of C, the CPU produces a sharper result: Intermediate values which
fall together in single-precision float can be distinguished with the higher bits of the

139

Chapter VI. Applications

internal registers. The effect of this can be observed in the second test set4. That exam-
ple uses a very narrow subset of the plane and 5000 iterations. Figure VI.2 consists of
two halves merged together: The left half is computed on the CPU, the right half on the
GPU. In the right half, more artifacts are visible than in the left half. If GCC is forced to
single-precision arithmetic by the option -ffloat-store, the higher-precision register
value are moved into memory after each intermediate step. This also results in a slightly
less crisp picture, which means that the precision is probably to blame for the difference
in the computation.

Figure VI.2 Precision issues in Mandelbrot computation: CPU (left), GPU (right)

The Mandelbrot computation also lends itself to implementation on the older NV40 ar-
chitecture. The program runs unmodified on the architecture, it just has to be compiled
with the appropriate profile. Table VI.3 shows the relevant entries for the first test set
on that architecture. We see a main difference in the execution time: The 6800 takes
significantly longer to execute the program than all G80 GPUs (as expected). Still, it
is faster than the CPU implementations, even though the GPU is already a few years
outdated.

Table VI.3 Performance measurements of Mandelbrot on the 6800
size init data exe

320 × 240 39 4 52
453 × 339 39 7 72
640 × 480 39 12 114
905 × 607 39 26 185

1280 × 960 41 48 312

4This is the reason for why there are two test sets for Mandelbrot.

140

VI.2. Sample Applications

Another interesting performance comparison is with the CUDA system. Tests have
been performed with the CUDA code generated by cgisc. Consider Table VI.4. As
mentioned before, the tests had to be run under the Windows system, which had quite
large initialisation times. That notwithstanding, we can compare the runtimes of the
two test sets.

Table VI.4 Performance measurements of Mandelbrot with CUDA
size init run CUDA

320 × 240 160 12 16
453 × 339 168 12 47
640 × 480 156 31 15
905 × 607 164 40 125

1280 × 960 164 71 46

size init run CUDA
320 × 240 164 27 31
453 × 339 168 27 328
640 × 480 156 63 47
905 × 607 160 98 1188
1280 × 960 156 188 140

First test set Second test set

Only the 8800 GTS on Windows has been tested.

As expected, the CUDA version performs better than the GPU version. But let us in-
vestigate the issue further. The two drops in performance of the CUDA version in the
second and fourth size are a result of the division of elements into blocks and threads
(Section III.4.b). For the other sizes, a neat division is possible (e. g., 640 × 480 in 20 × 30
blocks with 32 × 16 threads); thus, a block can be filled with the maximal number of
512 threads, or something close to it. For odd sizes such as 453, the implementation
issues only 1 thread per block. The performance results clearly show the effect of that:
Performance with CUDA is only possible with a carefully selected mapping of threads
into blocks.

If we disregard these mapping artifacts as not relevant to the performance comparison,
we can see by comparison of the two test cases and by investigating the increasing sizes,
that the performance advantage of the CUDA version is comparatively higher for lighter
work loads (first case) than for heavy loads (second case); this suggests that the issue is
not in the generated code, but more in the fact that the handling of the GPU is hindered
by the OPENGL programming model.

VI.2.b Life

Martin Conway’s Game of Life [G70] (Life, for short; see also Section IV.3.c)) is, semanti-
cally speaking, a simulation of birth and death of a population, as provoked by a sustain-
able density of individual entities in available space and adequate populational support
for reproduction. Syntactically speaking, it is a two-dimensional cellular automaton with
two states per cell and a state transition function defined by the states of a cell itself and
of its eight neighbours.

Algorithm and Implementation

The rules of the game are as follows. At the beginning, a n×m array of cells is initialised
with living cells (state s0

i, j = 1) and dead cells (state s0
i, j = 0). Given the states of the cells

at time step σ, the states at step σ + 1 are defined as

∀i ∈ {1, . . . , n}.∀ j ∈ {1, . . . ,m}.sσ+1
i, j =

1 sσi, j = 1 ∧ ξσi, j ∈ {2, 3}

1 sσi, j = 0 ∧ ξσi, j = 3

0 otherwise

141

Chapter VI. Applications

where ξσi, j, the neighbourhood of point (i, j) at time step σ, is defined as

ξσi, j =
∑

i′∈{−1,0,1}
j′∈{−1,0,1}
i′,0∨ j′,0

sσi+i′ , j+ j′ ;

here we let sσi+i′ , j+ j′ = 0 for indices out of range.

In other words, a living cell stays alive if it has two or three neighbours, otherwise it
dies; a dead cell comes alive it it has three neighbours, otherwise it stays dead; and the
surroundings of the game board are assumed to be a dead zone.

PROGRAM life;

INTERFACE
#HINT(no_texture_reuse)

extern inout float field<SIZE,SIZE> : packing (1) G;
extern in float size_minus_one;

CODE
procedure iterate(inout float element, in float2 index,

in float size_minus_one){
gather element: tl<-1,-1>, t<0,-1>, tr<1,-1>, l<-1,0>, r<1,0>,

dl<-1,1>, d<0,1>, dr<1,1>;
float sum=0;
if(index.y>0){

if(index.x>0) sum+=tl;
sum+=+t;
if(index.x<size_minus_one) sum+=+tr;

}
if(index.x>0) sum+=l;
if(index.x<size_minus_one) sum+=r;
if(index.y<size_minus_one){

if(index.x>0) sum+=dl;
sum+=d;
if(index.x<size_minus_one) sum+=dr;

}

if(sum>3 or (sum+element<3)) element = 0;
else element = 1;

}

CONTROL
forall(e in field) iterate(e,indexXY(e),size_minus_one);
show(field);

Program VI.2: Game of Life

A complete CGIS implementation of a single time step is shown in Program VI.2. Cells
are modelled as float elements with value 0 or 1. Observe the explicit boundary checks:
The general rule that lookups are clamped onto the range of the stream is not useful here,
because lookups into the outside have to be regarded as returning a 0. Thus, the GPU

142

VI.2. Sample Applications

implementation does not get the boundary check for free, that is, the CPU is not at an ad-
vantage here.5 Also note that the procedure iterate uses the convenient inout flow of
the state variable: This means that the new states have to be written into another field,
and that the contents of this field are then copied into the real state field. This would
be absolutely unreasonable to do on the CPU: Thus, the CPU implementation performs
a simple pointer switch between input and output fields. Also, representing a living or
dead cell with a float variable would be unnatural on CPUs. Therefore, the algorithm
is implemented also with int and char datatypes; highest CPU performance is achieved
with char, and thus this type is used for the performance comparisons. As a final note,
the complete simulation is implemented as a tight iteration over execute_life()with-
out any other functions: The initial state is uploaded once, then thousands of iterations
may follow, and then the final state is downloaded.

For the performance tests, a start position is subjected to 500 iterations.

The OPENGL driver reports the following numbers of native instructions for Life: 56 arith-
metical and 9 texture instructions.

To sum it up, the example Life possesses the following characteristics.

◮ very light arithmetical density per element (few computations per memory accesses
per element)

◮ huge amount of GPU work between CPU–GPU data transfers

◮ data copying (inout buffers require mirror-copy algorithm)

◮ additional boundary checks on the GPU

◮ larger element size than on the CPU (float vs. char)

Performance

Table VI.5 Performance measurements of Life
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
256 × 256 281 57 3 190 570 43 9 91 559 53 4 76
362 × 362 573 61 8 353 957 47 15 152 1147 58 11 115
512 × 512 1362 57 15 680 2386 47 74 271 2377 57 26 195
724 × 724 2717 67 35 1339 4654 45 80 514 4944 62 49 363

1024 × 1024 5640 79 77 2585 34825 53 302 994 23449 67 164 682

Table VI.5 and Figure VI.13 show the relevant performance data. Figure VI.13.b shows
that the computation scales very well to larger sizes: We see a slightly super-linear scal-
ing, which will become the pattern for all tests. This is likely to be due to the GPUs
being able to hold a large number of computations in flight when they are waiting for the
memory (Section II.4.a): With more computations waiting to be scheduled, more laten-
cies can be hidden, whereas CPUs can only have a very limited number of instructions
waiting for data in flight.

Figure VI.13.c presents us with a mixed effect. On the one hand, the 8600 system per-
forms relatively weak, gaining only a moderate speed-up of about 100%, whereas the

5Of course, the boundary check is only conceptually free on the GPU. That is, in actuality the GPU is here at
a disadvantage, because it uses both the clamping specified by the OPENGL setting and then the conditionals
to disregard some values.

143

Chapter VI. Applications

8800s outperform their CPUs by a factor of 5–10 on suitable sizes. This is less due to
the relatively weak 8600 GPU, but more to the by far superior CPU in that system. Also,
that system does not show the curious effect for the largest data size: The relative ad-
vantage of the 8800s to their CPUs skyrockets from around 10 to the high 20s. This is
likely due to cache effects on the CPUs: 2 arrays of 1024 · 1024 chars6 fit into the 2MB
L2-Cache of the 8600 system, but get evicted in each iteration from a 1MB cache. That
effect is pronounced here because the algorithm iterates over the whole array multiple
times.

All in all, here we see another algorithm which can beneficially be implemented in CGIS
on GPUs. This time, the high memory bandwidth is of particular importance. And to top
it of, the GPU implementation visualises the simulation, too.

VI.2.c Demosaic

Most digital cameras do not record full colour information per pixel. Instead, the sensor
array receives the light filtered by a Bayer Pattern, so that each sensor records only one
colour component. Figure VI.3 displays that pattern. Because human eyes are more
sensitive to variations in green light than in red or blue light, half of the sensors record
green information and only a quarter each record red or blue information.

Figure VI.3 Bayer RGB-pattern

R G R G R G

G B G B G B

R G R G R G

G B G B G B

R G R G R G

G B G B G B

For example, Figure VI.4 shows a part of a bird’s eye area with green feathers (the left
parrot in Figure VI.6). The sensor values are mapped to grey scale, with white represent-
ing high intensity at that point and for that colour. Observe how in the whitish eyeball
all colours are set with relatively high and uniform intensity; in the green feathers, the
green pixels are set to high intensity, the blue pixels to moderate intensity, and there is
almost no red component.

Algorithm and Implementation

There exist various algorithms to reconstruct the complete image information from this
pattern. Because of the mosaic-like nature of the Bayer pattern, this phase is called
demosaicing. The algorithm implemented in our example Demosaic is that of [MHC04];
it is visualised in Figure VI.5.

Consider a blue sensor and its neighbourhood (displayed at the top). To compute the
complete RGB information for the corresponding pixel, the algorithm gathers informa-
tion from the neighbourhood in a certain way (displayed at the bottom). Obviously, there
is no processing needed for the blue component, which has been recorded faithfully. To
reconstruct the red and green information, the algorithm takes into account two kinds
of information:
6Recall that the CPU implementation uses char instead of float as the base type.

144

VI.2. Sample Applications

Figure VI.4 Bayer patterned input to produce Figure VI.6 (detail)

(1) the bilinear interpolation of the desired colour in the nearest neighbours recording
that colour, and

(2) the colour gradient of the pixel’s own colour with respect to its nearest neighbours.

The results of the bilinear interpolation and the gradient are then weighted with certain
factors which have been experimentally established as producing a high image quality
[MHC04].

The CGIS program implementing that algorithm is shown in Program VI.3.

The final result of that transformation is a fully coloured image, for example, Figure VI.6.

The OPENGL driver reports the following numbers of native instructions for Demosaic:
73 arithmetical and 14 texture instructions.

To sum it up, the example Demosaic possesses the following characteristics.

◮ moderate number of arithmetical operations per element

◮ large number of gathers per element

◮ overall small amount of computation for the whole algorithm

Performance

Demosaic follows a natural streaming paradigm and should therefore be efficiently ex-
ecutable on GPUs. But is it worth it, considering the other costs of outsourcing the
computation to the GPU?

The performance figures in Table VI.6 and Figure VI.14 tell us that it is not worth it.
Consider Figure VI.14.c. We see that only in the GTX system for a large data set the
run time approaches that of the CPU, but it does so from above: In no test case is the

145

Chapter VI. Applications

Figure VI.5 Reconstructing an image from a Bayer pattern

B

R G R

B G B G B

R G R

B

red:

− 3
2

2 2

− 3
2 6 − 3

2

2 2

− 3
2

green:

−1

2

−1 2 4 2 −1

2

−1

blue:

1

Table VI.6 Performance measurements of Demosaic
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
384 × 256 4 27 5 9 6 25 9 12 6 31 6 12
384 × 512 8 30 9 10 13 24 18 14 12 31 13 14
768 × 512 16 30 17 12 26 25 35 16 24 32 24 16

1536 × 512 32 27 34 16 50 25 71 22 48 32 49 19
1536 × 1024 64 29 69 26 99 25 140 35 97 33 96 28

use of the GPU beneficial. Also, Figure VI.14.a paints a curious picture of the relative
performances: the 8600 system suddenly is the fastest one.

Figure VI.15 tells us the reason for this effect. Figure VI.15.a shows the run time of
Demosaic broken down into execution time and transfer time. We see that the bulk of
the run time is taken for data transfers. Figure VI.15.b strengthens that point, plotting
the ratio of transfer time in run time. Figure VI.15.c gives the absolute transfer times
logarithmically scaled. We see that run time is completely dominated by the transfer
times, and that therefore the bottleneck lies in the CPU part of the system: The CPU is
not able to feed the data fast enough the exploit the GPU’s power; a power that can be
deduced from the execution times in Table VI.6.

We also see in Table VI.14 that the execution times itself hardly change with increasing
data size: a low base cost is increased to at most less than thrice for 16-times the data
size.

All in all, Demosaic is a prime example for the fact that even such a naturally parallel
algorithm cannot currently be efficiently implemented on the GPU as a co-processor. The
raw execution times show that the GPU is faster than the CPU, but the overhead in the
co-processor use case is too high to make the GPU profitably usable. Demosaic becomes
worthwhile if more computations are performed on a particular image instead of just the
demosaicing, compensating the overhead.

146

VI.2. Sample Applications

PROGRAM demosaic;

INTERFACE
extern in float mosaic<SIZEX,SIZEY>;
extern out float3 picture<SIZEX,SIZEY>;

CODE
procedure demosaic(in float plain, out float3 colour,

in float posx, in float posy){
... // gather neighbourhood as per Figure VI.5
float3 retval;
int ixi = posx, iyi = posy;
bool nred_row = (iyi&1)>0, blue_col = (ixi&1)>0;

if(not (nred_row xor blue_col)){ // red or blue position
float gradient = plain - (rr+uu+dd+ll)*0.25;
float primary = (r+u+d+l)*0.25 + 0.5*gradient; // alpha
float secondary = (ul+ur+dr+dl)*0.25 + 0.75*gradient; // gamma

retval.g=primary;
if(nred_row) { retval.b=plain; retval.r=secondary; } // blue
else { retval.r=plain; retval.b=secondary; } // red

} else { // similar code for the two kinds of green sensors
}
colour = 0 max (1 min retval);

}

CONTROL
forall(pixel in picture, plain in mosaic)

demosaic(plain,pixel,indexX(plain),indexY(plain));

Program VI.3: Demosaic

Other Considerations

Demosaic also works on the NV40 architecture, with a slight modification. The G80
version (Program VI.3) uses a bitmask on an integer to check whether an index is odd or
even. On the NV40, this has to be replaced with a floating point modulo operation.

Table VI.7 shows the performance of Demosaic on the 6800. Similarly to the Mandelbrot
case, we see an expected decrease of performance, but not as high as for Mandelbrot.
Again, the execution times increases moderately from a larger base. For so few opera-
tions, the smaller power of the 6800 does not carry much weight.

VI.2.d Wave

Wave propagation is a classical algorithm for a physical simulation, where the main rea-
son for implementation lies in the visualisation. Section IV.5 already introduced and
explained the program Wave, so what remains here is to explain the performance char-
acteristics.

147

Chapter VI. Applications

Figure VI.6 Result of demosaicing a Bayer patterned image

Table VI.7 Performance measurements of Demosaic on the 6800
size init data exe

384 × 256 40 7 83
384 × 512 40 15 87
768 × 512 40 28 93

1536 × 512 40 57 104
1536 × 1024 41 112 127

Implementation

It can be seen that the procedure propagate uses several memory lookups for only a
small amount of computation, whereas the refraction procedure and thus its callers
have a relatively large amount of computation per memory access. The final render pro-
cedure introduces an arbitrary lookup. Also note that, just like for the CPU in the Life ex-
ample (Section VI.2.b), here the GPU version uses pointer switching instead of data copy-
ing to advance from one time step to the next. So the directing loop on the CPU works by
calling execute_wave followed by get_texture_wave and set_texture_wave calls
to switch the textures.

The tests have been performed with 75 iterations.

The OPENGL driver reports the following numbers of native instructions for Wave:

◮ For propagate: 42 arithmetical and 14 texture instructions.

◮ For the two refraction procedures: 63 arithmetical and 3 texture instructions
each.

148

VI.2. Sample Applications

◮ For render: 6 arithmetical and 4 texture instructions.

To sum it up, the exampleWave possesses the following characteristics.

◮ very light to medium arithmetical density per element, depending on the kernel

◮ huge amount of GPU work between CPU–GPU data transfers

◮ texture switching instead of data copying

◮ additional boundary checks on the GPU

◮ arbitrary lookup operations and some gather operations

Performance

Table VI.8 Performance measurements of Wave
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
256 × 256 2305 27 4 143 2617 24 12 131 3361 31 7 112
256 × 512 4490 31 11 260 5848 24 25 242 6590 32 16 193
512 × 512 8434 27 21 493 12178 25 48 448 13018 32 32 352

512 × 1024 16242 28 44 954 23859 25 94 880 27812 32 61 674
1024 × 1024 35371 28 89 1888 45919 25 188 1703 56970 33 119 1334

Table VI.8 and Figure VI.16 hold the performance data for Wave. We see again that
the 8800s have advantages over the 8600, and that the GPU implementations scale very
well. The advantage over the CPUs, as depictured in Figure VI.16.c, is glaring. Again,
we see the power of GPUs increase through repetition of computation.

VI.2.e Skeleton

Skeletonisation is the process of deducing the underlying core structure from a bitmap
image by stripping away unneccesary information. For example, consider a line with
a width of various pixels. When we are caring only for the basic information “a line
from here to there” (e. g., in character recognition), then the width of the line may be
disregarded. So to speak, it is stripped from its outside pixels, so that only a skeleton
remains.

Figure VI.7 shows an examples of this. A hand-drawn picture7 in (a) is transformed by a
skeleton algorithm into the picture in (b). The basic structure is retained in the skeleton,
and the jiggles and overhangs become more pronounced.

Algorithm and Implementation

[BFRR01] cites several algorithms for skeletonisation. The test Skeleton implements the
algorithm from [SR71], which works in several, iterated phases.

(1) Find out which pixels form the contour of the image and remove them, by performing
each of the following substeps in parallel:

(a) check for pixels lying on the bottom contour,

7It is intentionally not geometrically precise in order to give rise to a more interesting output image.

149

Chapter VI. Applications

Figure VI.7 A drawing and its skeleton

(a) Input drawing (b) Output skeleton

(b) check for pixels lying on the top contour,

(c) check for pixels lying on the left contour,

(d) check for pixels lying on the right contour.

(2) Have any pixels been removed in step (1)? If so, repeat it, otherwise end the algo-
rithm.

It is not possible to just check for the contour of the drawing in step (1), because contour
pixels may form a skeleton of an image after all. Consider Figure VI.8.a. All pixels lie on
the outside of the drawing, but removing all of them yields the result of Figure VI.8.b:
The drawing has vanished completely. Removing the outer pixels in separate phases, as
hinted in Figure VI.8.c, retains a single pixel.

Figure VI.8 Removing contour pixels in parallel or in sequential phases

1 1

2

(a) Input drawing (b) Result after removing
all contour pixels

(c) Result after removing
contour pixels one-by-one

The heart of the algorithm lies in the detection of when a pixel forms part of the contour
of the image. This is established by pattern recognition of the pixel’s 3×3-neighbourhood.
The algorithm does not directly search for a set of patterns in the neighbourhood, but
instead classifies the patterns and the neighbourhood according to some conditions. The
complete process is too complicated to be explained here; it suffices to say that it employs
large boolean expressions and numerous conditionals. The interested reader is referred
to the explanation in [BFRR01] for more details.

The picture has to be updated after each substep. On the CPU, this can be done either
during the iteration (using a separate array and pointer switching) or afterwards (with
a memcpy from an accumulator array). Tests have shown that the deferred memcpy is
more performant, so that is used in the tests.

150

VI.2. Sample Applications

The second phase of the algorithm, the termination check, is a classical reduction oper-
ation. Phase (1) records for each pixel whether it has been changed (set to white), and
Phase (2) performs an ∨-reduction over this information. On the CPU, this reduction is
done on the fly by updating a single boolean variable, so step (2) consists simply of the
check of a single variable.

In the tests, the images have been created in such a way that the algorithm takes the
same number of iterations (11) to converge in each case. Therefore, the workload truly
scales with image size.

The OPENGL driver reports the following numbers of native instructions for Skeleton:

◮ For initialisation of the output array: 2 arithmetical and 1 texture instruction.

◮ For each of the four subphases: 77 arithmetical and 11 texture instructions.

◮ For the reduction computation: 15 arithmetical and 2 texture instructions.

To sum it up, the example Skeleton possesses the following characteristics.

◮ reduction on the GPU, none on the CPU

◮ large amount of computation for memory access

◮ boolean computations with shortcut evaluation on CPU, floating point computation
on GPU

◮ explicit memory management on the CPU, implicit management on the GPU

Performance

Table VI.9 Performance measurements of Skeleton
8600 8800 GTS 8800 GTX

size CPU init data exe CPU init data exe CPU init data exe
320 × 256 71 30 7 70 110 26 17 100 118 33 11 76
320 × 512 160 28 18 123 226 25 39 166 252 33 23 123
640 × 512 322 32 34 227 579 26 112 298 510 33 53 211

640 × 1024 666 28 75 433 1162 26 278 564 1073 34 115 385
1280 × 1024 1435 29 152 851 2489 27 641 1073 2421 36 256 734

Table VI.9 and Figure VI.17 show the performance results for Skeleton. A couple of
things stand out. Just like in Demosaic, the GTS shows the worst performance. And just
like in Demosaic, this is because of increased data transfer times on that architecture
(Figures VI.15 and VI.18). These times have also improved with a later driver version
(which is, again, only available under Windows right now), so that these huge times
should not be seen as normal. In any case, despite the high amount of data transfer, the
implementation is still worthwhile for larger image sizes.

Other Considerations

In the particular case of this reduction, CUDA offers another possibility to dramatically
speed-up the process. In the reduction, the only information that matters is whether
any pixel had been changed. A complete reduction of the stream is overkill. Therefore,
a hand written CUDA program works in another way: A kernel is run in parallel on all

151

Chapter VI. Applications

elements, and all threads write into one, shared stream variable. Then, the CPU need to
download only that single variable and check it.

Obviously, that process loses some information. Whereas in the full reduction case, we
know exactly how many pixels have been changed, that is not known in the CUDA
implementation. Yet again, the information we get is sufficient for the purposes of the
Skeleton algorithm.

Table VI.10 Performance measurements of Skeleton with CUDA
size init run CUDA

320 × 256 169 96 47
320 × 512 185 174 65
640 × 512 169 333 106

640 × 1024 174 690 172
1280 × 1024 172 1510 359

Only the 8800 GTS on Windows has been tested.

Table VI.10 shows the results for this, different, algorithm. Clearly, the CUDA imple-
mentation outpaces the GPU implementation. This shows that when carefully tailoring
an algorithm to the CUDA programming model, one can achieve yet higher performance
than what is achievable in any kind of GPU programming.

VI.2.f RC5

RC5 [R94] is a widely used block encryption algorithm. A sequence of bytes is divided
into 64-Bit sized blocks which are then encrypted independent of each other. That inde-
pendency is what makes RC5 suitable for implementation in CGIS. In contrast to such
block ciphers, stream ciphers encrypt a stream of data in small blocks sequentially: The
encryption of a byte in a string depends on the string prefix. Thus, stream ciphers are
not suitable for implementation in CGIS, despite the name.

Because RC5 depends on bit-operations, it can be implemented only on G80 class GPUs.
Unfortunately, tests have shown that the latest Linux driver does not correctly imple-
ment the read-back from integer textures into the host memory. A newer driver version
fixes this problem, but at the time of writing, that version is only available on Windows.
Therefore, tests were performed only on the Windows system with Microsoft’s Visual
C++ on the GTS.

Algorithm and Implementation

A block cypher encrypts the blocks in an input stream independent of each other; there-
fore, it suffices to explain the algorithm on a single block. We divide the block into two
32-Bit values A and B. That block is then encrypted with a uniform key over a number of
rounds; here, we chose 31 rounds. The key then consists of 64 values of 32 Bit, held in
the array S. The following pseudo-code describes the algorithm [BR96]:

A = A + S[0];
B = B + S[1];
for (i = 1 ; i <= 31 ; i++) {

A = A ^ B; A = ROTL(A, B) + S[2*i];
B = B ^ A; B = ROTL(B, A) + S[(2*i)+1];

}

152

VI.2. Sample Applications

Program VI.4 presents the CGIS implementation. Observe how rotation is expressed
with a natural operator symbol. Although rotation has to be simulated with a sequence of
shifts and masks on GPUs, some CPUs [F06] support native rotation. On these targets,
the compiler can easily exploit the available instructions instead of having to reconstruct
the programmer’s intents from low-level C-like code (idiom recognition [RWP05]).

PROGRAM RC5uint;

INTERFACE
extern in uint2 S<32>; // 31 rounds.
extern in uint4 ABs<SIZEX,SIZEY>; // The stream to be encrypted.
extern out uint4 outABs<SIZEX,SIZEY>; // The output.

CODE
procedure get_S01(in uint2 S<_>, in uint where, out uint2 s){

lookup S: temp<where>;
s = temp;

}

procedure encrypt(in uint4 AB, in uintb S<_>, out uintt outAB){
uint2 S01;
uint i = 0;
get_S01(S,i,S01); // Get at 0, S[0] and S[1].

uint2 AA = AB.xz+S01.x; // Encrypt two blocks at once.
uint2 BB = AB.yw+S01.y;

while(i<31){
i+=1;
get_S01(S,constant,S01); // Get at S[2*i] and S[2*i+1].
AA = ((AA^BB)<<<BB) + S01.x;
BB = ((BB^AA)<<<AA) + S01.y;

}

outAB.xz = AA;
outAB.yw = BB;

}

CONTROL
forall(AB in ABs, outAB in outABs) encrypt(AB,S,outAB);

Program VI.4: RC5

The stream is described as an uint4 stream. To the application programmer, it is of
no concern in which chunks a stream of uint data is processed; for the description of
the algorithm in CGIS, it opens the possibility to express the inner loop as working
on two blocks at once. It becomes obvious how the vector syntax of CGIS, masking and
swizzling operators and automatic scalar promotion work together neatly to allow a tight
description of this workings in a familiar notation.

The OPENGL driver reports the following numbers of native instructions for RC5: 44 arith-
metical and 3 texture instructions.

153

Chapter VI. Applications

To sum it up, the example RC5 possesses the following characteristics:

◮ small loops per element

◮ integer computations on CPU and GPU

◮ no special operator support both on CPU and GPU

Performance

Table VI.11 shows the performance measurements of RC5. As mentioned before, driver
issues confined the test to Windows. This is unfortunate because the initialisation time
is much higher on Windows than under Linux, as are the data reorganisation times. But
still, despite the larger initialisation times, the GPU beats the CPU. In particular, the
actual execution time increases only slightly from its socket and really scales from the
midsized test size on. This shows that the integer capabilities of the G80 GPUs have not
been included in vain.

Table VI.11 Performance measurements of RC5
size CPU init data exe
220 94 164 19 16
221 203 156 62 16
222 406 163 116 31
223 804 163 226 51
224 1625 187 472 94

Only the 8800 GTS on Windows has been tested.

VI.2.g Raycaster

Ray tracing is a method to generate a two-dimensional image from a three-dimensional
scene description, just as rasterisation (Section II.1.a). Whereas the scope of rasterisa-
tion is only determining visibility, raytracing is an approach which incorporates visibility,
lighting, reflection and refraction in one algorithm [G02]. The subset of ray tracing only
concerned with determining visibility is called ray casting, and a Raycaster is a sample
application of CGIS.

The two approaches ray casting and rasterisation are radically distinct:

◮ Rasterisation: For each object, find where it maps to on the projection plane. For
each point on the plane, discard all objects mapped to it except for the nearest one.

◮ Ray casting: For each point in the plane, find the nearest object which is mapped
to it.

Algorithm

Figure VI.9 presents a conceptional overview of the ray casting paradigm. A view point,
the desired view plane (shown from the side) and the desired image resolution (the sub-
division of the view plane) define eye rays. An eye ray r corresponds to a particular pixel
p on the view plane and is defined as the ray from the eye o through this point into the
scene space. A given ray r(τ) = o + τ · s (with slope s = ‖p − o‖) has intersection points
r(τ1), . . . , r(τn) (hit points) with objects in the scene, and the colour at p is defined to be
the colour of the object intersected with minimal τi.

This immediately raises several questions:

154

VI.2. Sample Applications

Figure VI.9 Ray Casting

(1) For a given ray and a given object, how to efficiently compute the intersection?

(2) For a given ray, how to determine which objects are candidates for intersection and
which do not need to be subjected to test (1)?

(3) For a given ray and an intersection at offset τ∗, how to efficiently determine whether
another intersectable object might have an intersection point at offset τ < τ∗?

Question (1) is orthogonal to (2) and (3). Efficient ray-object-intersection tests have been
a long-time subject of research and optimisation. One of the benefits of ray tracing with
respect to rasterisation as performed by graphics hardware is that ray tracing can cope
with any kinds of objects, whereas rasterisation hardware is limited to triangles. But
obviously, efficient intersection tests are possible only for very regular structures. Thus,
many application restrict the data structures to triangles, too, as we do in our tests
[MT97].

Questions (2) and (3) concern the data storage format. A naïve implementation with a
flat storage format of just all triangles would have to test all rays against all triangles
and discard all intersections except for the nearest one. To avoid this, the space is par-
titioned in some way, and rays are tested against a sequence of subsets of the triangles
until an intersection point has been found for one subset. More concretely speaking, let
the scene space be divided into non-overlapping volumes B1, . . . , Bβ; the way of division is
of no concern at the moment, as is the shape of of the Bi or their (non-)uniformity.8 For
each Bi, we have a list O1, . . . ,Oωi of objects which intersect with Bi, that is, those objects
which reside at least in part in the volume Bi. Determining the nearest intersection point
of the ray r(τ) = o + τs then works as follows.

(1) Find the first volume which lies on the path of r. Let this be Bi and let the interval of
the ray lying in Bi be [τmin, τmax].

(2) For all O1, . . . ,Oωi , test for intersection with the ray. Discard all intersections which
lie outside of [τmin. .τmax], i. e., outside of Bi.

(3) If there are intersections in Bi, determine the nearest one, and finish.

8We assume that the shapes are convex, though.

155

Chapter VI. Applications

(4) Otherwise, find the next volume Bi′ on the way of the ray, that is, the volume contain-
ing o + (τ + ε)s. Compute τmin and τmax anew with respect to Bi′ , and proceed at (2).

The key to efficient ray tracing is how to organise the Bi. Methods to do this abound
[G02]; Most current ray tracers work on hierarchical data structures organised in some
form of trees. Unfortunately, tree traversal is in general a recursive procedure and re-
quires a stack for implementation [EVG04]. Other methods omit the stack altogether,
by adding links between the nodes of the tree connecting adjacent volumes directly
[PGSS07, HSHH07].

However, tree traversal and linked data structures do not really map very well to the
stream-based CGIS programming model. For this reason, the CGIS algorithm uses
a uniform grid as its data structure. The scene space is divided into a grid of uniform
blocks with dimension x×y×z.9 Then, traversing this grid with a ray is a simple operation:
It entails only a three-dimensional extension of the two-dimensional Bresenham line
drawing algorithm [B65] to three dimensions.

Implementation

The Raycaster is implemented as a multitude of CGIS programs, communicating which
each other through shared textures.

The grid is represented as a list of voxels, rectangular blocks of space. Each voxel carries
a list of triangle ids. These triangle id lists are concatenated into a large list, separated
by −1, and the voxel stream carries an index into that list to the start of that voxel’s
triangle list. Figure VI.10 shows this graphically.

Figure VI.10 Triangle lists for the voxels

0 4

0 4 7 −1 1 −1 9 . . .

Voxels:

Triangle lists:

[0, 1, 1] [0, 1, 1] [0, 1, 1] . . .

[0, 0, 1] [0, 0, 1] [0, 0, 1]

[0, 0, 0] [0, 0, 0] [0, 0, 0]

Coordinate lists:

Each triangle is represented by several values:

◮ its three corners (also depicted in Figure VI.10)

◮ its normal

◮ its material (an id)

9x, y and z may be different.

156

VI.2. Sample Applications

Each material, in turn, simply corresponds to a colour, also by way of an indirection
table.

A ray is represented by several values; some of these are not obvious right now but shall
become clear from the description of the algorithm.

◮ its direction (the slope s in the ray equation)

◮ the current voxel (an id)

◮ the interval of the ray present in the current voxel (τmin and τmax)

◮ the slope counter to check in which dimension to traverse next [B65]

◮ the index in the voxel’s triangle list which it is currently intersecting

◮ the current hit point (offset and object id)

◮ its state (traverse, intersect or done)

◮ the final colour at the hit point

To explain the algorithm, first we concentrate on a single ray.

(1) In the beginning, the ray is in the intersect state and ready to intersect with the
triangles of the start voxel.

(2) The ray fetches its offset into the triangle list, and then fetches the triangle id from
the triangle list.

◮ Assuming that the id is not −1, the ray then fetches the coordinates of the tri-
angle. It tests for intersection with the triangle. If an intersection is found, it
checks for whether it is within the current bounds of the voxel, and whether it
is nearer than a previously recorded hit point. If so, the hit point is updated. In
any case, the index into the triangle list is increased.

◮ If the id is −1, the ray checks whether a hit has been recorded so far. If so, the
state is set to done, otherwise to traverse.

(3) If the state is traverse, advance the ray by checking and updating the slope counter.

◮ If the ray would traverse out of the scene bounds, set the state to done.

◮ Otherwise, update τmin and τmax, the slope counter, and the current voxel. Fetch
the start of the voxel’s triangle list and set the triangle index. Set the state to
intersect.

(4) If the state is done, terminate, otherwise go to Step (2).

After a ray has been processed fully, a separate shading step takes the id of the trian-
gle which was hit, fetches its material, fetches the material’s colour, and modifies this
according to ambient lighting.

This algorithm is implemented in CGIS by holding all ray’s information in streams. The
programs corresponding to steps (2) and (3) are run in parallel for all stream elements
(that is, for all rays), but only those rays which are currently in the corresponding state
partake in the computation. Step (4) is a reduction over all rays, checking for whether

157

Chapter VI. Applications

all rays are in state done: The computation has to proceed for as long as at least one ray
has not finished iterations. The shading step then is performed in parallel for all rays.

Obviously, in general scenes have more triangles than voxels, so more rays should be
in state intersect than in state traverse. Therefore, the main iteration loop runs the
intersection program multiple times before running the traversal program. Also, the
termination checks are costly, and therefore are executed very infrequently. Still, this
does not help the fact that not all rays are active during each program execution. This is
a general problem with algorithms with such a divergent control flow.

The OPENGL driver reports the following numbers of native instructions for raycaster:

◮ The initialisation of the data is implemented with two programs with 46 arithmeti-
cal and 2 texture instructions.

◮ Step (2) is implemented with a program with 96 arithmetical and 11 texture in-
structions.

◮ Step (3) is implemented with two programs with 157 native and 11 texture instruc-
tions.

◮ Step (4) is implemented as a streaming program with 7 arithmetical and 1 texture
instructions and a reduction program with 15 arithmetical and 2 texture instruc-
tions.

◮ The shading is implemented with a program with 31 arithmetical and 5 texture
instructions.

The Raycaster can be implemented in CGIS. This shows that, in principle, even large
programs with pointer-based data structures can be implemented in CGIS. However, fol-
lowing multiple levels of indirections through various streams is not an algorithm which
really fits into the CGIS programming or implementationmodel. Also, the highly diverse
control flow with its division into multiple programs does not cater to high-performing
code. In this area, a CUDA implementation with a flat memory addressing model and
suitable allocation on the blocks (Section III.4.b) offers more control than the restricted
CGIS model can provide. The CUDA implementation of [PGSS07] implements the com-
plete algorithm within a single kernel.

VI.3
Interpretation

of the Results

We have seen several examples of parallel al-
gorithms implemented in CGIS. Their perfor-
mance has been evaluated in the sections de-
voted to the examples, but it is instructive to
look at the examples as a whole. This section

discusses the performance results with respect to the goal of efficiency.

In all cases, the execution time of the CGIS code on the G80s outperforms the CPU
code. This shows the great potential of GPGPU programming, and the use of CGIS in
particular. Obviously, the examples have been chosen in such a way that they can be
implemented efficiently; but the characteristics of the examples are quite diverse, in-
volving pure streaming code, gatherings or random lookups; low or high arithmetical
density; internal iterations, diverging control flow and straight line code; external iter-
ations or once-running examples; stream computations and reductions; explicit memory
management, implicit copying, distinction between input and output streams; integer

158

VI.4. Summary and Outlook

and floating point computations; visualisation. Therefore, these algorithms may serve
as representatives to show both the power of GPGPU and of CGIS. The performance dif-
ference between GPU and CPU inside the systems was different for the various systems,
which is understandable, given that the poorest GPU is in the strongest host system.
Nevertheless, even in these cases the performance advantage held.

When turning from execution time to run time, the world is still quite rosy. Demosaic
loses its appeal due to the data transfer costs, which are not amortised across the simple
execution. It suffers from being an isolated application with neither post- not prepro-
cessing by other GPU programs nor any kind of iteration, which would amortise the
outsourcing costs. Outsourcing to the GPU is worthwhile in cases where there is a large
number of computations per element. In the case of Skeleton, Wave and Life, this is
achieved by the iterative nature of these algorithm. Mandelbrot and RC5 employ an
inner loop per element to end up with a large number of operations.

We have also seen tests of some applications on the older NV40 architecture. This was
possible with only minor modifications to compensate for the NV40’s lack of integer sup-
port, if any were needed at all. In some cases (Life and Wave), the GPU was too slow to
be seriously considered a target for today’s workloads. In Mandelbrot, however, even the
NV40 could beat a modern CPU. Finally, the RC5 example showed the power of integer
operations on GPUs, and thus another reason to focus on current generation hardware.

Some of the pertaining pitfalls of GPGPU have been shown, too. In the Mandelbrot
application, we have seen that precision issues can lead to a noticeable degradation of
output quality (Figure VI.2), and thus to usability of GPUs as a whole. This is not
a CGIS issue, but inherent in the GPUs architecture. That particular issue did not
come up in the other tests, though. Another issue, namely that of dependence on the
driver, has also arisen in the tests. The RC5 example could not be tested on the same
platform as the other examples, because the driver produced an erroneous result. During
development, performance differences between different driver versions also inhibited a
stable development of the compiler.

Some CUDA implementations have shown the power of more directly accessing the GPU.
Performance could be gained by bypassing the OPENGL metaphor, but more importantly
by implementing an algorithm for Skeleton which would just not have been possible to
implement in a standard GPGPU programmingmodel. The next chapter will investigate
this as a part of the future language design issues.

We have also seen the influence of the host system on GPGPU performance. Of particular
interest in this regard are the data transfer times. At times, they made the system with
the less powerful GPU more attractive because the better GPUs could not use their full
potential in slower host systems.

All in all, the goal of efficiency surely is achieved.

VI.4 Summaryand Outlook

This chapter concludes the description of CGIS.
The preceding chapters have explained CGIS,
its heritage and its goals, its pragmatics and
its implementation. In this chapter, we have
finally seen CGIS in action. It has transpired

that using CGIS is indeed beneficial in certain situation; thus, a main point has been
achieved.

159

Chapter VI. Applications

The following, final chapter builds upon all that we have seen so far from CGIS. With the
performance evaluation done, we can sum up the worth of CGIS today as a language for
GPGPU. We shall also investigate what other information we have gathered from these
sample implementations that can guide the future development of CGIS, like languages
and GPGPU.

160

VI.4. Summary and Outlook

Figure VI.11 Performance results for Mandelbrot (first test set)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

320*240 453*339 640*480 905*607 1280*960

m
s

Image size

Overall Time for Mandelbrot

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

 8

320*240 453*339 640*480 905*607 1280*960

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 3
20

*2
40

Image size

Relative Execution Times for Mandelbrot

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 0

 5

 10

 15

 20

 25

 30

 35

320*240 453*339 640*480 905*607 1280*960

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Mandelbrot Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU

161

Chapter VI. Applications

Figure VI.12 Performance results for Mandelbrot (second test set)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

320*240 453*339 640*480 905*607 1280*960

m
s

Image size

Overall Time for Mandelbrot

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

 8

 16

320*240 453*339 640*480 905*607 1280*960

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 3
20

*2
40

Image size

Relative Execution Times for Mandelbrot

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

320*240 453*339 640*480 905*607 1280*960

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Mandelbrot Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU

162

VI.4. Summary and Outlook

Figure VI.13 Performance results for Life

 0

 500

 1000

 1500

 2000

 2500

 3000

256*256 362*362 512*512 724*724 1024*1024

m
s

Image size

Overall Time for Life

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

 8

 16

256*256 362*362 512*512 724*724 1024*1024

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 2
56

*2
56

Image size

Relative Execution Times for Life

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 0

 5

 10

 15

 20

 25

 30

256*256 362*362 512*512 724*724 1024*1024

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Life Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU with char data

163

Chapter VI. Applications

Figure VI.14 Performance results for Demosaic

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

384*256 384*512 768*512 1536*512 1536*1024

m
s

Image size

Overall Time for Demosaic

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

384*256 384*512 768*512 1536*512 1536*1024

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 3
84

*2
56

Image size

Relative Execution Times for Demosaic

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

384*256 384*512 768*512 1536*512 1536*1024

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Demosaic Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU

164

VI.4. Summary and Outlook

Figure VI.15 Data Transfer Times for Demosaic

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

384*256 384*512 768*512 1536*512 1536*1024

m
s

Image size

Absolute Data Transfer Times for Demosaic

8600 exe
8600 data

8800 GTS exe
8800 GTS data
8800 GTX exe

8800 GTX data

(a) Execution time and transfer time of the various GPUs

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

384*256 384*512 768*512 1536*512 1536*1024

fa
ct

or

Image size

Relative Data Transfer Times for Demosaic

8600 rel. load
8800 GTS rel. load
8800 GTX rel. load

(b) Transfer times relative to run times

 4

 8

 16

 32

 64

 128

 256

384*256 384*512 768*512 1536*512 1536*1024

m
s

Image size

Absolute Data Transfer Times for Demosaic

8600 abs. data
8800 GTS abs. data
8800 GTX abs. data

(b) Absolut transfer times

165

Chapter VI. Applications

Figure VI.16 Performance results for Wave

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

256*256 256*512 512*512 512*1024 1024*1024

m
s

Image size

Overall Time for Wave

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

 8

 16

256*256 256*512 512*512 512*1024 1024*1024

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 2
56

*2
56

Image size

Relative Execution Times for Wave

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 10

 15

 20

 25

 30

 35

 40

256*256 256*512 512*512 512*1024 1024*1024

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Wave Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU

166

VI.4. Summary and Outlook

Figure VI.17 Performance results for Skeleton

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

320*256 320*512 640*512 640*1024 1280*1024

m
s

Image size

Overall Time for Skeleton

8600 run
8600 init

8800 GTS run
8800 GTS init
8800 GTX run
8800 GTX init

(a) Absolute performance of the various GPUs

 1

 2

 4

 8

 16

320*256 320*512 640*512 640*1024 1280*1024

fa
ct

or
 w

ith
 r

es
pe

ct
 to

 3
20

*2
56

Image size

Relative Execution Times for Skeleton

8600 exe
8800 GTS exe
8800 GTX exe

(b) Execution time scaled by data size

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

320*256 320*512 640*512 640*1024 1280*1024

fa
ct

or
 C

P
U

/G
P

U

Image size

Run Times for Skeleton Reciprocal Relative to CPU

8600 overall
8800 GTS overall
8800 GTX overall

8600 run
8800 GTS run
8800 GTX run

(c) Performance relative to CPU

167

Chapter VI. Applications

Figure VI.18 Data Transfer Times for Skeleton

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

320*256 320*512 640*512 640*1024 1280*1024

m
s

Image size

Absolute Data Transfer Times for Skeleton

8600 exe
8600 data

8800 GTS exe
8800 GTS data
8800 GTX exe

8800 GTX data

(a) Execution time and transfer time of the various GPUs

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

320*256 320*512 640*512 640*1024 1280*1024

fa
ct

or

Image size

Relative Data Transfer Times for Skeleton

8600 rel. load
8800 GTS rel. load
8800 GTX rel. load

(b) Transfer times relative to run times

 4

 8

 16

 32

 64

 128

 256

 512

 1024

320*256 320*512 640*512 640*1024 1280*1024

m
s

Image size

Absolute Data Transfer Times for Skeleton

8600 abs. data
8800 GTS abs. data
8800 GTX abs. data

(b) Absolut transfer times

168

VII

Conclusion

To conclude this part of our subject
it only remains to state summarily the general conclusions

to which our enquiries have thus far conducted us.
J. G. FRAZER, The Golden Bough, 1922

The final words have been said about CGIS. Now, it is time to recap the achievements
and put them into a greater context.

First, I briefly recapitulate what has been presented in this work.

◮ Chapter II described the state of the art in GPU technology. The capabilities of
current GPUs have been presented and compared with current CPUs. We have
also seen the current low-level interface to GPUs and a short history of the art of
GPGPU.

◮ Chapter III presented various approaches to abstract GPU programming. We have
seen various shading languages, GPGPU languages and hardware dependent lan-
guages, and investigated them for their virtues and shortcomings.

◮ Chapter IV presented the full description of the CGIS language and the CGIS API.
The design decisions have been substantiated by arguing about the reasons for
them and by weighting possible alternative approaches. CGIS has been contrasted
to other approaches.

◮ Chapter V described the CGIS compiler, its usage and the runtime system. The
compiler’s inner workings, its data structures and algorithms have been explained.
The various compiler phases were mentioned; Transformations, optimisations and
implementation methods have been presented, some of them traditional, some in-
duced by the peculiarities of the target or the language.

◮ Chapter VI presented several applications which have been implemented in CGIS.
A sample of applications of various kinds and with a variety of characteristics has
been described. We have seen their performance, compared them to CPU imple-
mentations, and argued about the reasons for particular performances. Impedi-
ments to high performance have been identified and mentioned.

169

Chapter VII. Conclusion

Looking back, what was the main point of this work; what is the essence of it, and what
are its main contributions?

The contribution of this work is the design of the data-parallel programming language
CGIS and its implementation on GPUs. The CGIS system has been designed to meet a
number of objectives (Section IV.1.a).

◮ Familiarity: The CGIS programming languages achieves familiarity to traditional
programming languages by dividing an algorithm into its sequential constituents
and a parallel layer on top of them. Sequential and parallel parts are neatly sep-
arated. The syntax and semantics of the sequential kernels resemble standard
imperative languages such as C or Pascal. CGIS features cautious extensions of
syntax and semantics to cope with vectorial data types and the restrictions of the
target.

◮ Readability: While still retaining familiarity, CGIS achieves high readability both
by extending and by restricting traditional syntactical and semantical features. In
particular, a clear distinction of global and local data, clear and precise informa-
tion flow between them and the avoidance of interdependencies between parallel
computations result in a well-defined and easily understandable semantics. This
is of great importance in parallel computations. Within kernels, scalar operations
have been lifted to vectorial operations in an orthogonal way. Syntax and semantics
localise cause and effect of computation and try to make the program text unam-
biguously readable.

◮ Abstraction: Abstraction is a prerequisite for several other goals. For one thing,
abstraction means to disburden the programmer from unintuitive restrictions of
the hardware. This can be seen in the orthogonal vectorial and scalar operations
inside kernels and in the memory access mechanisms. Thus, abstraction is a key
contribution towards readability and familiarity. Furthermore, abstraction is a key
component in the technical basis of cgisc. Only by abstracting the hardware it is
possible to retarget the language quickly to different architectures. In particular,
the programmer is freed from interacting with graphics APIs and uses the GPU
just as a numerical co-processor to which a parallel computation is outsourced.
The highest abstraction, of course, is the unifying abstraction of GPUs and SIMD-
CPUs. This is an abstraction of paradigms for parallel computing: CGIS programs
describe independent, data-parallel computations on primitive values, and the com-
piler translates these into parallel executions of kernels on locally-SIMD-targets
(GPU) or sequential executions of cross-kernel-SIMD-parallelism on small-scale
SIMD targets (CPU)..

◮ Compatibility: CGIS is available for several targets. A key component to this end
is the choice of OPENGL and standardised assembly languages as the target plat-
form. The dependencies on operating system and windowing system are confined
to the CGIS runtime library. Other features necessary for compatibility are the
transformations to cope with restrictions on memory access and control flow. This
is a kind of compatibility with respect to various generations of similar hardware.

◮ Adaptability: During the course of this project, new architectures kept being cre-
ated. Obviously, new characteristics require new considerations. For example, the
inclusion of native integral types with the G80 generation lead to a host of changes
to language, compiler and runtime system. For a large part, though, everything
that could be kept in common for the various targets is internally abstracted away.

170

The pattern matching code generation system plays an important role in this, be-
cause it allows to localise changes to code generation to its smallest constituents,
while keeping the main part of the code generation static. Thus, cgisc has passed
this test.

◮ Efficiency: The efficiency of CGIS has been proven through a variety of applica-
tions. Naturally parallel algorithms can be efficiently implemented through CGIS
on GPUs, and this lead to large, sometimes huge, performance benefits. It has
been shown that the time spent to transfer data to the GPU and back again can
render outsourcing unattractive. This happens when the actual computation takes
so little time even on the CPU that the performance gain vanishes compared to the
additional cost of transferring the data. For many algorithms, however, including
data transfer times and even one-time setup costs still shows a considerable perfor-
mance increase over contemporary CPUs. Efficiency has been thoroughly proven.

◮ Controllability: Programmers can direct the compiler by a variety of means. Hints
let the programmer guide the code generation and optimisation process. This is a
way to provide additional information about the algorithm to the compiler, and to
adapt the code to characteristics of a particular hardware platform’s combination
of CPU and GPU. Also, packing specifiers enable programmers to dictate the data
layout, offering further capabilities for performance increases and of interfacing
with other data producers and consumers.

◮ Visualisability: CGIS offers a primitive, integrated visualisation for simulations
implemented in CGIS. Applications desiring a more flexible access to the data can
manipulate the data inside the GPU memory, thus offering a way to plug CGIS
into existing visualisation environments.

All in all, CGIS meets its stated goals.

The means wherewith this is achieved is the CGIS compiler, cgisc, and the runtime
system. CGIS is compiled down to the common assembly languages of OPENGL instead
of leaving the actual code generation to a third-party compiler. This has detriments,
in that it is not possible to benefit from vendor-optimised code generation tools, but it
paves the way for the higher-level abstraction and preserves independence. Also, it is an
exercise in adapting traditional code generation and optimisation algorithms to the new
setting.

The CGIS compiler, cgisc, employs a variety of optimisations. Some of them are just
standard transformations based on data flow analyses, such as constant propagation or
dead code elimination. In a few cases, we have seen the demand for a modification of the
traditional algorithms to cope with the characteristics of the language and the target.

A recurring theme was basing the algorithms on components of larger vectorial types.
This was provoked by CGIS’ capabilities in swizzling operands and masking targets and
by the hardware’s capabilities and requirements for these modifiers. Resulting from
this were a more dense register allocation and more fine-grained data-flow analyses and
optimisations in familiar fields such as dead code elimination.

Another problem to be tackled was the handling of data in streams. The hardware’s
restriction of memory accesses to non-overlapping arrays of primitive types and read-
only/write-only memory formed one boundary of this optimisation. The desire for ab-
straction by offering streams of structs and smooth transition to structs of streams and

171

Chapter VII. Conclusion

by offering a semantically strict implementation of read-write streams necessitated data
packing and reordering algorithms.

The compiler cgisc is also the first real-life software implementing the OORS system.
This device proved to be a useful tool in the code generation process. The experiences
in cgisc and the needs of the compiler lead to changes in OORS, further enhancing its
capabilities and usability.

CGIS and cgisc certainly are important developments and useful tools for a particu-
lar goal. As it happens, they are not the only tools developed for these purposes. Of
particular importance in the related work is BROOK. Concurrently and independently
developed, BROOK today presents a viable choice for GPGPU. It offers a similar view on
GPUs and thus a similar abstraction. (This can be seen as an additional indication for
the viability of the model.)

As mentioned in Section IV.6, the CGIS programming model allows for a cleaner separa-
tion of CPU and GPU work. By expressing the whole sub-algorithm to be implemented
on the parallel target in a single language in a single source file, the programmer has a
better overview over the algorithm than in the mixed kernel/C model of BROOK. Other
benefits of CGIS’ choice on syntax and semantics for single kernels and their parallel ex-
ecutions have been mentioned in Section IV.6. All in all, the CGIS model does not offer
a fundamentally new approach to GPGPU, but higher comfortability for certain tasks.

And what remains to be done in the future? What are the key points for future advances
in the computing environments and in CGIS?

Let us first consider GPUs and GPGPU. At all times, the development of CGIS has
been hampered by driver problems. Curious performance changes from one version to
the next, and not completely implemented specifications are a continuous problem for
GPGPU, not only for CGIS. Vendor initiatives such as CUDA provide a much more
restricted set of functions to access GPUs detached from graphics APIs, and a more
usual abstraction than these APIs. The abstraction mechanisms of CUDA also remedy
one of the problems present in customary GPGPU languages. If it just comes to GPU
programming on NVIDIA GPUs, compiling from CGIS to CUDA certainly offers less of
an advantage than compiling to OPENGL in the pre-CUDA GPGPU world.

The GPU backend will be developed further. It is likely that a more detailed knowl-
edge about quantitative characteristics of GPUs can lead to better optimisations. A first
step in this direction would be to perform tests on ATI GPUs, which also in the most
recent generation offer a unified shading model. A further, perhaps much deeper change
presents itself in the future with the upcoming OPENGL 3.0, which will offer a quite
radical update getting rid of legacy features: “Get back to the bare metal” [G07b]. The
official presentation of OPENGL 3.0 is scheduled for end of September 2007.

But the future of CGIS is going to lie not solely in the area of GPGPU, just as it is
not only a GPGPU language. A key feature of CGIS is the abstraction of a range of
completely different target platforms. The explicit parallelism and the restriction of
global data to bounded arrays and singulars result in a common, unified abstraction.
Starting from this high-level algorithm representation, transformations can create code
which efficiently runs on one of a variety of targets. Although the actual platforms of
GPUs and SIMD CPUs are radically different, CGIS programs form a common starting
point from which a reasonable implementation can be derived.

It is this versatility which enables CGIS to give an impact on future developments.
With future CPU architectures incorporating more cores and a convergence of GPUs

172

and CPUs on a single chip [I07, H07, S07b], a unified abstraction mechanism is the
only way to handle the increasing complexity of the emerging architectures. CGIS offers
such an abstraction mechanism. Practically speaking, its use for efficient implementa-
tions on GPUs and on SIMD CPUs has been shown in this work and in [FLW07]. From
a broader design perspective, it shows how to arrive at two quite different approaches
to parallelism from a common language. At its very heart, CGIS simply prescribes a
programming model of a multitude of independent, sequential computations with (stati-
cal) uniform instruction stream. It shows its roots as a GPGPU language evidently, but
just by the specification of parallelism on multiple levels, also SIMD CPUs can be ex-
ploited. These two levels of parallelism in CGIS (SIMD parallelism on vectorial types
inside procedures, SPMD parallelism with forall loops) are beneficially transformed
into target-specific parallelism. This shows that just by an appropriate specification of
logical parallelism, quite different kinds of physical parallelism can be exploited.

Just like CGIS was not simply an extension of an existing, sequential language but was
implemented as a new language to better express the key features of parallelism and
data dependencies, the languages arising in the next years might not directly build upon
CGIS. But the experiences gathered in designing and implementing CGIS form a good
starting point for future developments. CGIS might play its part as a precursor for the
unified, parallel languages of the future.

173

Bibliography

[A00] AMD. 3DNow! Technology Manual, March 2000.

[A06] AMD. ATI CTM Guide, 2006.

[A07a] AbsInt. Graph Description Language in a Nutshell.
http://www.aisee.com/gdl/nutshell/, 2007.

[A07b] AMD. ATI Radeon HD 2900 Series – GPU Specifications.
http://ati.amd.com/products/Radeonhd2900/specs.html, August
2007.

[A07c] ATI. Radeon X1950 Graphics Technology – GPU Specifications.
http://ati.amd.com/products/RadeonX1950/specs.html, 2007.

[AG99] Anthony A. Apodaca, Larry Gritz. Advanced RenderMan. Morgan
Kaufmann, 1999.

[AK02] Randy Allen, Ken Kennedy. Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2002.

[AMW95] Martin Alt, Florian Martin, Reinhard Wilhelm. Generating Analyzers with
PAG. Technical Report A10/95, Universität des Saarlandes, 1995.

[B65] J. E. Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM
Systems Journal, 4(1):25–30, 1965.

[B68] Kenneth E. Batcher. Sorting Networks and their Applications. In
Proceedings of AFIPS Spring Joint Computing Conference, pages 307–314,
1968.

[B75] W. H. Burge. Stream Processing Functions. IBM Journal of Research and
Development, pages 12–25, January 1975.

[B06] David Blythe. The Direct3D 10 System. In Proceedings of SIGGRAPH 2006,
pages 724–734, 2006.

[BFHSFHH04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, Pat Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. In Proceedings of SIGGRAPH,
pages 777–786, 2004.

[BFRR01] Thomas Bräunl, Stefan Feyrer, Wolfgang Rapf, Michael Reinhardt. Parallel
Image Processing. Springer-Verlag, 2001.

175

Bibliography

[BHK03] Mauricio Breternitz Jr., Herbert Hum, Sanjeev Kumar. Compilation,
Architectural Support, and Evaluation of SIMD Graphics Pipeline Programs
on a General-Purpose CPU. In Proceedings of the 12th International
Conference on Parallel Architecture and Compilation Techniques 2003

(PACT’03), 2003.

[BR96] R. Baldwin, Ronald L. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms. RFC 2040, 1996.

[C82] Gregory J. Chaitin. Register Allocation and Spilling via Graph Coloring.
SIGPLAN Notices, 17(6):98–105, June 1982. Reprinted as [C04].

[C04] Gregory J. Chaitin. Register Allocation and Spilling via Graph Coloring.
SIGPLAN Notices, 39(4):66–74, April 2004. Reprinted version of [C82].

[CT98] Tom Christiansen, Nathan Torlington. Perl Cookbook. O’Reilly, 1998.

[D25] Albrecht Dürer. Underweysung der messung mit dem zirckel und richtscheyt
(German). Hieronymus Andreae, 1525.

[D02] Jack Dongarra. Basic Linear Algebra Subprograms Technical Forum
Standard. International Journal of High Performance Applications and
Supercomputing, 16(1/2):1–111/115–199, 2002.

[DHEKLAJKDGB03] William J. Dally, Patrick Hanrahan, Mattan Erez, Timothy J.
Knight, François Labonté, Jung-Ho Ahn, Nuwan Jayasena, Ujval J. Kapasi,
Abhishek Das, Jayanth Gummaraju, Ian Buck. Merrimac: Supercomputing
with Streams. In Proceedings of the International Conference on
Supercomputing 2003 (SC’03), November 2003.

[E03] Wolfgang F. Engel, editor. Shader X2: Tips & Tricks with DirectX.
Wordware Publishing, 2003.

[E04] Bruce Eckel. Thinking in Java (4rd ed.). Prentice Hall, 2004.

[EVG04] Manfred Ernst, Christian Vogelgsang, Günther Greiner. Stack
Implementation on Programmable Graphics Hardware. In Bernd Girod,
Hans-Peter Seidel, Marcus Magnor, editors, Proceedings of the 9th
International Workshop “Vision, Modeling, and Visualization” (VMV’04),
pages 255–262, 2004.

[F06] Freescale. AltiVec Technology Programming Environments Manual (Rev. 3),
April 2006.

[F08] Nicolas Fritz. Exploiting SIMD Parallelism with the CGiS Compiler
Framework. PhD thesis, Universität des Saarlandes, 2008. To appear.

[FLW07] Nicolas Fritz, Philipp Lucas, Reinhard Wilhelm. Exploiting SIMD
Parallelism with the CGiS Compiler Framework. In Vikram Adve,
María Jesús Garzarán, Paul Petersen, editors, Proceedings of the 20th
International Workshop on Languages and Compilers for Parallel Computing

(LCPC’07), LNCS. Springer-Verlag, October 2007.

[G70] Martin Gardner. The Fantastic Combinations of John Conway’s new
Solitaire Game “life”. Scientific American, pages 120–123, October 1970.

[G71] Henri Gouraut. Continuous Shading of Curved Surfaces. IEEE
Transactions on Computers, 20(6):623–629, June 1971.

176

Bibliography

[G95] Andrew S. Glassner. Principles of Digital Image Synthesis 2. Morgan
Kaufmann, 1995.

[G02] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Morgan
Kaufmann, 2002.

[G05] Gernot Gebhard. CGiS Implementations. Fortgeschrittenenpraktikum
(German), Universität des Saarlandes, April 2005.

[G06] Gernot Gebhard. A Pattern Matcher Generator for Retargetable Code
Generation and Optimisation. Diplomarbeit, Universität des Saarlandes,
2006.

[G07a] GNU. Autoconf. http://www.gnu.org/software/autoconf/, 2007.

[G07b] Michael Gold. OpenGL 3 Overview. Presentation at Siggraph, August 2007.

[GL07] Gernot Gebhard, Philipp Lucas. OORS: An Object-Oriented Rewrite
System. Computer Science and Information Systems (ComSIS), 4(2):1–26,
December 2007.

[GST07] Daniel Göddeke, Robert Strzodka, Stefan Turek. Performance and Accuracy
of Hardware-Oriented Native-, Emulated- and Mixed-Precision Solvers in
FEM Simulations. International Journal of Parallel, Emergent and
Distributed Systems, 22(4):221–256, January 2007.

[H63] George Hutchinson. Partitioning Algorithms for Finite Sets.
Communications of the ACM, 6:613–614, October 1963.

[H07] Phil Hester. Presentation at AMD Technology Analyst Day, July 2007.

[HP03] John L. Hennessy, David Patterson. Computer Architecture: A Quantitative
Approach (3rd edition). Morgan Kaufmann, 2003.

[HSHH07] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, Pat Hanrahan.
Interactive k-D Tree GPU Raytracing. In Proceedings of I3D, pages 167–174,
2007.

[I85] IEEE. Standard for Binary Floating-Point Arithmetic. Standard 754-1985,
1985.

[I06a] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
November 2006. 5 volumes.

[I06b] Intel. Intel Itanium Architecture Software Developer’s Manual, January
2006. 3 volumes.

[I07] Intel. Intel Provides Details On New Products, Initiatives For
Higher-Performing, More Efficient Computers. http://www.intel.com/
pressroom/archive/releases/20070416comp_b.htm, April 2007.

[IMR83] Oscar H. Ibarra, Shlomo Moran, Louis E. Rosier. On the Control Power of
Integer Division. Theoretical Computer Science, 24(1):35–52, 1983.

[IST05] IBM, SCEI, Toshiba. Cell Broadband Engine Architecture, 2005.

[K05] Donald E. Knuth. The Art of Computer Programming, Vol. 4, Fascicle 3.
Addison-Wesley, 2005.

177

Bibliography

[K06] John Kessenich. The OpenGL Shading Language, Version 1.20, September
2006.

[K07] Khronos. OpenGL Extension Registry.
http://www.opengl.org/registry/, August 2007.

[KBR04] John Kessenich, Dave Baldwin, Randi Rost. The OpenGL Shading
Language, Version 1.10, April 2004.

[KW03] Jens Krüger, Rüdiger Westermann. Linear Algebra Operators for GPU
Implementation of Numerical Algorithms. In Proceedings of SIGGRAPH,
pages 908–916, 2003.

[L68] P. J. Landin. A Correspondence Between ALGOL 60 and Church’s
Lambda-notations. Communications of the ACM, 8(2/3):89–101, 158–167,
1968.

[LA00] Samuel Larsen, Saman Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings of the
SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’00), June 2000.

[LKSSO06] Aaron E. Lefohn, Joe Kniss, Robert Strzodka, Shubhabrata Sengupta,
John D. Owens. Glift: Generic, Efficient, Random-Access GPU Data
Structures. ACM Transactions on Graphics, 25(1):60–99, 2006.

[LM01] E. Scott Larsen, David McAllister. Fast Matrix Multiplies using Graphics
Hardware. In Proceedings on the ACM/IEEE Conference on
Supercomputing, 2001.

[LMB92] John R. Levine, Tony Mason, Doug Brown. lex & yacc (2nd edition).
O’Reilly, 1992.

[M97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[M04] Michael Macedonia. The GPU Enters Computing’s Mainstream. Computer,
36(10):106–108, October 2004.

[M07a] Microsoft. DirectX Resource Center.
http://msdn.microsoft.com/directx, August 2007.

[M07b] Microsoft. Windows Vista Enterprise Hardware Planning Guidance. http:
//technet.microsoft.com/en-us/windowsvista/aa905075.aspx,
August 2007.

[MGAK03] William R. Mark, R. Steven Glanville, Kurt Akeley, Mark J. Kilgard. Cg: A
System for Programming Graphics Hardware in a C-like Language. In
Proceedings of SIGGRAPH, pages 896–907, 2003.

[MHC04] Henrique S. Malvar, Li-wei He, Ross Cutler. High Quality Linear
Interpolation for Demosaicing of Bayer-Patterned Color Images. In
Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing (ICASSP’04), 2004.

[MQP02] Michael D. McCool, Zheng Qin, Tiberiu S. Popa. Shader Metaprogramming.
In Proceedings of the Eurographics Workshop on Graphics Hardware. ACM,
2002. Revised version.

178

Bibliography

[MS68] T. H. Myer, I. E. Sutherland. On the Design of Display Processors.
Communications of the ACM, 11(6):410–414, June 1968.

[MT97] Tomas Möller, Ben Trumbore. Fast, Minimum Storage Ray-Triangle
Intersection. Journal of Graphics Tools, 2(1):21–28, 1997.

[MTPCM04] Michael McCool, Stefanus Du Toit, Tiberiu S. Popa, Bryan Chan, Kevin
Moule. Shader Algebra. In Proceedings of SIGGRAPH, pages 787–795,
2004.

[N00] NVIDIA. NV_register_combiners. OpenGL Extension 191, 2000.

[N05] NVIDIA. Cg Toolkit User’s Manual, Release 1.5, September 2005.

[N06] NVIDIA. GeForce 8800 Architecture Overview. Technical Report
TB-02787-001_v1.0, NVIDIA, November 2006.

[N07a] NVIDIA. CUDA Programming Guide Version 1.0, June 2007.

[N07b] NVIDIA. NV_fragment_program4. OpenGL Extension 335, 2007.

[N07c] NVIDIA. NV_gpu_program4. OpenGL Extension 322, 2007.

[N07d] NVIDIA. PTX ISA Version 1.0, June 2007.

[NNH99] Flemming Nielson, Hanne Riis Nielson, Chris Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[O02a] OpenGL ARB. ARB_fragment_program. OpenGL ARB Extension 27, 2002.

[O02b] OpenGL ARB. ARB_vertex_program. OpenGL ARB Extension 26, 2002.

[OLGHKLP07] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E. Lefohn, Timothy J. Purcell. A Survey of General-Purpose
Computation on Graphics Hardware. Computer Graphics Forum,
26(1):80–113, March 2007.

[P75] Bui Tuong Phong. Illumination for Computer Generated Pictures.
Communications of the ACM, 18:311–317, June 1975.

[P04] Timothy John Purcell. Ray Tracing on a Stream Processor. PhD thesis,
Stanford University, March 2004.

[P07] Matthias Parbel. Nvidia rückt dichter an die Spitze des Grafikchipmarktes
(German). http://www.heise.de/newsticker/meldung/93543, July
2007.

[PDCJH03] Timothy John Purcell, Craig Donner, Mika Cammarano, Henrik Wann
Jensen, Pat Hanrahan. Photon Mapping on Programmable Graphics
Hardware. In Proceedings of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 41–50, 2003.

[PGSS07] Stefan Popov, Johannes Günther, Hans-Peter Seidel, Philipp Slusallek.
Stackless KD-Tree Traversal for High Performance GPU Ray Tracing. In
Proceedings of Eurographics, 2007.

[PM03] Craig Peeper, Jason L. Mitchell. Introduction to the DirectX 9 High-Level
Shader Language. In Engel [E03].

179

Bibliography

[R94] Ronald L. Rivest. The RC5 Encryption Algorithm. In Proceedings of the
Leuven Workshop on Fast Software Encryption, pages 86–96, 1994. Revised
version of 1997.

[R97] Raúl Rojas. How to Make Konrad Zuse’s Z3 a Universal Computer. IEEE
Annals of the History of Computing, 20(3):51–54, 1997.

[R06] RapidMind. RapidMind Development Platform Reference Manual, October
2006.

[R07] Justin R. Rattner. Tera-scale Computing – A Parallel Path to the Future.
http://softwarecommunity.intel.com/articles/eng/1275.htm,
May 2007.

[RWP05] Gang Ren, Peng Wu, David Padua. An Empirical Study on the Vectorization
of Multimedia Applications for Multimedia Extensions. In Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’05), page 89b, 2005.

[S97a] Robert Stephens. A Survey of Stream Processing. Acta Informatica,
34(7):491–541, 1997.

[S97b] Bjarne Stroustrup. The C++ Programming Language (3rd edition).
Addison-Wesley, 1997.

[S99] Robert W. Sebesta. Concepts of Programming Languages (4th ed.). Addison
Wesley Longman, 1999.

[S07a] Bjarne Stroustrup. Bjarne Stroustrup’s FAQ.
http://www.research.att.com/~bs/bs_faq.html, April 2007.

[S07b] Sun Microsystems. UltraSPARC T2 Processor. http://sun.com/t2,
August 2007.

[SA06] Mark Segal, Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 2.1), July 2006.

[SAGMRSTW05] Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R.
Marschner, Erik Reinhard, Kelvin Sung, William B. Thompson, Peter
Willemsen. Fundamentals of Computer Graphics, 2nd Edition. A K Peters,
2005.

[SR71] R. Stefanelli, Azriel Rosenfeld. Some Parallel Thinning Algorithms for
Digital Pictures. Journal of the ACM, 18(2):255–264, 1971.

[T99] Simon Thompson. Haskell. The Craft Of Functional Programming.
International Computer Science Series. Addison-Wesley, 2nd edition, 1999.

[THO02] Chris J. Thompson, Sahngyun Hahn, Mark Oskin. Using Modern Graphics
Architectures for General-Purpose Computing: A Framework and Analysis.
In Proceedings of the 35th IEEE/ACM International Symposium on
Microarchitecture (MICRO’35), pages 306–317. IEEE, 2002.

[TL00] Claes Thornberg, Björn Lisper. Elemental Function Overloading in
Explicitly Typed Languages. In Markus Mohnen, Pieter Koopman, editors,
Proceedings of the 12th International Workshop of Implementation of

Functional Languages, pages 31–46, September 2000.

180

Bibliography

[TPO06] David Tarditi, Sidd Puri, Jose Oglesby. Accelerator: Using Data Parallelism
to Program GPUs for General-Purpose Uses. In Proceedings of the Twelfth
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS XII), pages 325–335, 2006.

[W05] Eric W. Weisstein. Mandelbrot Set.
http://mathworld.wolfram.com/MandelbrotSet.html, November
2005.

[W06] Ben Woodhouse. GLee 5.21. http://elf-stone.com/glee.php,
November 2006.

[WM95] Reinhard Wilhelm, Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

181

Index

Entries written in bold represent more
important sources of information for the
particular entry.

Accelerator: 43, 44, 50, 87
actreg: 97;
→ CGiS–registers

APIs: 8, 12, 21, 28;
→ DirectX, OpenGL
CGiS:→ CGiS–API

ATM: 21

Brook: 24, 35–39, 45, 46, 50, 71, 87, 88,
129, 172

call context decollating: 106, 107
Cg: 29–31, 32, 33, 35, 36, 39
CgFX: 29, 32
CGiS: 2, 17, 39, 50, 53–88, 170
API: 55, 56, 78–80, 83, 84, 91
applications: 3
CODE: 55
compilation phases: 90, 101, 111, 118
Compiler: 96–132
CONTROL: 55
control flow: 67
data access: 68, 71, 73
expressions: 61–65
formal semantics: 76, 77
functions: 64, 65
gather: 68, 71, 73, 142, 145, 149, 150
global data: 61, 71, 82, 83
goals: 2, 53, 54, 85–87, 132, 133, 158,
159, 170, 171

hint: 94
hints: 110, 116–118, 122
import: 81
index: 70
INTERFACE: 55
internal representation: 96–101
intrinsics: 74–76
kernel: 55, 58–68, 73, 74
lookup: 68, 71, 73, 149
masks: 65–67, 98, 126

operators: 62–64, 152
parallelism: 55, 68–77
parsing: 101–103
precision: 59
profiles: 100, 101
program layout: 55
reduction: 73, 74
registers: 97–99, 118
runtime: 90–96
scalar: 58, 60, 61
scalars: 71
semantics: 58–84
sequential: 55, 58–68
show: 74, 75, 84
SIMD:→ SIMD–CGiS
statements: 65–68
streaming: 69–73
streams: 82
struct: 59, 70, 101
swizzles: 65–67, 98, 101, 126, 153
syntax: 56–83
templates: 81, 82
test systems: 133–136
texture packing: → texture packing
types: 58–60, 63, 72, 81, 101, 103, 126,
132

variables: 61
visualisation: 74, 75, 84
writeback: 68, 71

CGiS registers: 125–128
cgisc: → CGiS–Compiler
constant folding: 108, 109
constant propagation: 108, 109
copy elimination: 106, 124
CTM: 38, 45, 50
CUDA: 21, 45–49, 50, 129, 130, 135, 136,

140, 141, 151, 152, 172
assembly: 49
block: 47
grid: 47
PTX: 49
thread: 47

dead code elimination: 107, 108, 124, 125

183

Index

demosaic: 144–147
DirectX: 12, 13, 21, 29, 30, 32, 38, 44, 49

fragment: 7
fragment processor: 8, 10, 16;
→ GPUs–programmability

fragment shader: 12;
→ fragment processor

framebuffer: 8, 11, 17

Game of Life: → life
GDL: 129
glslang: 32–34
GPGPU: 2, 5, 11, 20–25
GPGPU languages: 2, 27–29, 35–50
GPUs: 1, 11
control flow: 16
embedded vs. discrete: 11
hardware: 6–10, 19
history: 5, 11, 16, 17, 21–23, 113
masks: 126
memory: 10, 17
nomenclature: 11
precision: 16, 22–25, 139
programming: 13–18, 27–29
quantitative: 1, 9, 10, 19, 110, 172
swizzles: 126

graphics pipeline: 7–9
graphics processing unit: → GPUs

HLSL: 32, 33, 35, 36
host: 11

if-conversion: 15, 103, 109, 110, 116
if-shadowing: 103–106
inlining: 106
Itanium: 19

kernel: 2, 18, 94;
→ procedure
CGiS:→ CGiS–kernel

life: 74, 141–144

mandelbrot: 136–141
masking: 14, 15
CGiS:→ CGiS–masks

Merrimac: 35
metaprogramming: 39

OORS: 111–113
CGiS: 113–118, 132

OpenGL: 12, 13, 29, 30, 32–34, 38, 49, 134,
135, 172

CGiS: 13, 84, 86, 90–96, 132
driver: 11, 91, 122, 135, 136, 141, 151,

152, 154, 159
shading language: → glslang

PAG: 97, 131
peephole optimisations: 124
pixel: 6, 7
pixel shader: → fragment processor
PTX: → CUDA–PTX

RapidMind: 39–42, 50, 87
rasterisation: 1, 3, 6–8
ray tracing: 23, 154–158
rc5: 152–154
reduction: 37, 94, 150, 151, 158
register allocation: 125–128
RenderMan: 29

Sh: → RapidMind
shading: 6–8
shading languages: 2, 27–35
intermediate languages: 34–38

SIMD
CGiS: 58, 60, 63, 128, 153
CPU: 1, 2, 14, 21, 130, 131, 170, 172
GPU: 9, 13–15, 170

skeleton: 149–152
streaming: 9, 18
superword level parallelism: 114, 128
swizzling: 14, 15
CGiS:→ CGiS–swizzles

symreg: 97;
→ CGiS–registers

texture: 9, 11, 17, 83, 91–93, 127
texture packing: 59, 75, 83, 119–123
texturing: 6–8

vertex processor: 8, 10, 16;
→ GPUs–programmability

vertex shader: 12;
→ vertex processor

wave: 84, 85, 147–149

184

