
Kernel Learning Approaches for
Image Classification

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr.rer.nat)

an der Naturwissenschaftlich-Technischen Fakultät I
der Universität des Saarlandes, Saarbrücken

vorgelegt von Dipl.-Inform.

Peter Vincent Gehler

10. Juni 2009

Tag des Kolloquiums:
20. November 2009

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Joachim Weickert

Prüfungsausschuss:
Prof. Joachim Weickert (Vorsitzender)
Prof. Matthias Hein (Berichterstattender)
Prof. Bernhard Schölkopf (Berichterstattender)
Dr. Matthias Seeger

Weiterer Berichterstattender:
Prof. Luc VanGool

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selb-
stständig und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe. Die aus anderen Quellen oder indirekt übernommenen Daten und
Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde
bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem
Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Tübingen, 10. Juni 2009

(Peter Vincent Gehler)

i

ii

Summary

This thesis extends the use of kernel learning techniques to specific problems
of image classification. Kernel learning is a paradigm in the field of machine
learning that generalizes the use of inner products to compute similarities be-
tween arbitrary objects. In image classification one aims to separate images
based on their visual content.

We address two important problems that arise in this context: learning with
weak label information and combination of heterogeneous data sources. The
contributions we report on are not unique to image classification, and apply
to a more general class of problems.

We study the problem of learning with label ambiguity in the multiple in-
stance learning framework. We discuss several different image classification
scenarios that arise in this context and argue that the standard multiple in-
stance learning requires a more detailed disambiguation. Finally we review
kernel learning approaches proposed for this problem and derive a more effi-
cient algorithm to solve them.

The multiple kernel learning framework is an approach to automatically
select kernel parameters. We extend it to its infinite limit and present an
algorithm to solve the resulting problem. This result is then applied in two
directions. We show how to learn kernels that adapt to the special structure of
images. Finally we compare different ways of combining image features for ob-
ject classification and present significant improvements compared to previous
methods.

iii

iv

Zusammenfassung

In dieser Dissertation verwenden wir Kernmethoden für spezielle Probleme der
Bildklassifikation. Kernmethoden generalisieren die Verwendung von inneren
Produkten zu Distanzen zwischen allgemeinen Objekten. Das Problem der
Bildklassifikation ist es, Bilder anhand des visuellen Inhaltes zu unterscheiden.

Wir beschäftigen uns mit zwei wichtigen Aspekten, die in diesem Prob-
lem auftreten: lernen mit mehrdeutiger Annotation und die Kombination von
verschiedenartigen Datenquellen. Unsere Ansätze sind nicht auf die Bildklas-
sifikation beschränkt und für einen grösseren Problemkreis verwendbar.

Mehrdeutige Annotationen sind ein inhärentes Problem der Bildklassifika-
tion. Wir diskutieren verschiedene Instanzen und schlagen eine neue Un-
terteilung in mehrere Szenarien vor. Danach stellen wir Kernmethoden für
dieses Problem vor und entwickeln einen Algorithmus, der diese effizient löst.

Mit der Methode der Kernkombination werden Kernfunktionen anhand von
Daten automatisch bestimmt. Wir generalisieren diesen Ansatz indem wir den
Suchraum auf kontinuierlich parametrisierte Kernklassen ausgedehnen. Diese
Methode wird in zwei verschiedenen Anwendungen eingesetzt. Wir betra-
chten spezifische Kerne für Bilddaten und lernen diese anhand von Beispie-
len. Schließlich vergleichen wir verschiedene Verfahren der Merkmalskombina-
tion und zeigen signifikante Verbesserungen im Bereich der Objekterkennung
gegenüber bestehenden Methoden.

v

vi

Contents

Summary ii

Zusammenfassung iv

Acknowledgement xi

1. Introduction 1
1.1. Contribution of this Thesis and Outline 4

1.1.1. Part I: Kernel Classifiers 5
1.1.2. Part II: Image Classification 6
1.1.3. Related Contributions 6

I. Kernel Classifiers 9

2. An Introduction to Kernel Learning Algorithms 11
2.1. Kernels . 12

2.1.1. Measuring Similarity with Kernels 12
2.1.2. Positive Definite Kernels 13
2.1.3. Constructing the Reproducing Kernel Hilbert Space . . . 15
2.1.4. Operations in RKHS . 17
2.1.5. Kernel Construction . 19
2.1.6. Examples of Kernels . 19

2.2. The Representer Theorem . 21
2.3. Learning with Kernels . 23

2.3.1. Support Vector Classification 24
2.3.2. Support Vector Regression 25
2.3.3. Gaussian Processes . 25
2.3.4. Structured Prediction using Kernels 27
2.3.5. Kernel Principal Component Analysis 29
2.3.6. Applications of Support Vector Algorithms 29

2.4. Conclusion . 30

3. Learning With Ambiguity 31
3.1. The Multiple Instance Learning Problem 33
3.2. Label Ambiguity . 34

3.2.1. Instance Scenario . 34

vii

Contents

3.2.2. Witness Scenario . 34
3.2.3. (Sub)Set Scenario . 35

3.3. SVM for Multiple Instance Learning 37
3.3.1. SVM for the Instance Scenario 37
3.3.2. SVM for the Witness Scenario 37

3.4. Optimization Strategies . 38
3.4.1. Alternation Algorithm 39
3.4.2. Deterministic Annealing 40
3.4.3. Deterministic Annealing for Instance-SVM 41
3.4.4. Deterministic Annealing for Witness-SVM 44

3.5. Experiments: Two dimensional toy dataset 45
3.6. A new objective function - ALP-SVM 48
3.7. Experiments: Benchmark MIL datasets 49
3.8. Conclusion . 51

4. Learning the Kernel Function 53
4.1. Parameter Selection for SVM 53

4.1.1. Cross Validation . 54
4.2. Multiple Kernel Learning . 54

4.2.1. Non-sparse Multiple Kernel Learning 57
4.3. Multiple Kernel Learning Algorithms 58

4.3.1. SimpleMKL . 58
4.3.2. SILP . 59

4.4. Infinite Kernel Learning . 60
4.4.1. Derivation . 61

4.5. Infinite Kernel Learning Algorithm 62
4.5.1. The Restricted Master Problem 63
4.5.2. The Subproblem . 63
4.5.3. Convergence . 66
4.5.4. Solving the subproblem 67
4.5.5. Implementation Details 68

4.6. Conclusion . 68

5. Empirical Evaluation of Kernel Combination Methods 71
5.1. Kernel Classes: Gaussian Kernels 71

5.1.1. Solving the subproblem 72
5.2. Toy Examples . 73

5.2.1. Chessboard Data . 73
5.3. Standard ML benchmark datasets 76

5.3.1. Experimental Setup . 76
5.3.2. Results . 77
5.3.3. Discussion . 77

5.4. Kernel Classes . 78
5.5. Conclusion . 79

viii

Contents

II. Image Classification 83

6. Optimizing Pre-processing Steps via Kernel Learning 85
6.1. Learning a Codebook of Visual Words 86

6.1.1. Bag-of-visual-words . 86
6.1.2. Codebook Kernels . 87
6.1.3. Benchmark Datasets . 88
6.1.4. Experimental Setup . 90
6.1.5. Results . 90
6.1.6. Discussion . 91

6.2. Learning the Optimal Spatial Layout 93
6.2.1. Spatial Kernels . 93
6.2.2. Benchmark Datasets . 95
6.2.3. Experimental Setup . 96
6.2.4. Results . 97
6.2.5. Discussion . 97

6.3. Conclusion . 100

7. Image Feature Combination for Multiclass Object Classification 103
7.1. Introduction . 103
7.2. Feature Combination Methods 104
7.3. Methods: Baselines . 106

7.3.1. Best Single Feature . 106
7.3.2. Averaging Kernels . 106
7.3.3. Product Kernels . 106

7.4. Methods: Multiple Kernel Learning 107
7.5. Methods: Boosting Approaches 107

7.5.1. LPBoost - Binary Classification 108
7.5.2. LPboost - Multiclass Variant: LP-β and LP-B 109
7.5.3. Column Generation Boosting for Mixtures of Kernels . . 111

7.6. The Oxford Flowers dataset . 111
7.6.1. Experimental Setup . 112
7.6.2. Results . 113
7.6.3. Discussion . 113
7.6.4. Learning With Uninformative Features 114

7.7. The Caltech Object Classification Datasets 115
7.7.1. Experimental Setup . 115
7.7.2. Image Descriptors . 116
7.7.3. Results and Discussion 117
7.7.4. Training Time Comparison 120

7.8. Conclusion . 121

Appendix 127
A. Notation . 127

ix

Contents

B. Multiple Kernel Learning Dual 128
C. Proof of Theorem 6 . 130

Bibliography 130

x

Acknowledgement

I was very fortunate to pursue my PhD studies in the Empirical Inference
group at the Max Planck Institute for Biological Cybernetics in Tübingen.
This place provides an excellent environment for curious driven research and
great possibilities for a graduate student to learn and grow. I had a great time.

First I would like to thank Bernhard Schölkopf for providing such an chal-
lenging and thriving lab, and granting the freedom and time for pursuing my
research. In the same respect I thank Sebastian Stark and Sabrina Nielebock
for their excellent job during the past years.

Thanks a lot to Matthias Hein, Bernhard Schölkopf, and Luc Van Gool for
agreeing to review this thesis.

Especially I thank Matthias Franz who took care of me in the very early days
of my PhD, and Max Welling for his support not only during the two research
stays at the University of Irvine. I am also deeply indebted to Andrew Blake,
Olivier Chapelle, Geoff Hinton, and Carsten Rother who gave advise and in-
spiration during the last years. Furthermore I thank my colleagues and friends
Jan Eichhorn, Sebastian Gerwinn, Wolf Kienzle, Malte Kuss, Christoph Lam-
pert, Sebastian Nowozin, Cheng Soon Ong, Gunnar Rätsch, Florian Steinke
and Christian Walder. It has been a pleasure and a lot of fun to work together
at the MPI. I would also like to thank the co-authors of my publications Alex
Holub, Tom Minka and Toby Sharp. I am very happy and grateful that I got
the chance to work together and learn from so many inspiring researchers.

Special thanks to Sebastian Nowozin and Christoph Lampert for proof read-
ing a draft of this thesis. The presentation benefited a lot from their valuable
comments.

During my PhD studies I was supported financially through several pro-
grams which I gratefully acknowledge. Most of the time I was member in the
EC project CLASS, IST 027978 and of the European Network of Excellence,
Pascal and Pascal-2. The NSF Grant No. 0447903 supported two research
stays at the UC Irvine and Microsoft Research an internship in Cambridge,
UK. The Max Planck Society funded my PhD and several visits of different
conferences.

My deepest thanks go to my family for their unconditional support: my
parents, brother and grandparents. Together with my friends they always
reminded me of the life beyond work. More than to anyone else I owe to the
love, inspiration and encouragement of my wife Barbara. You are the most
important part of my life.

xi

Contents

xii

1. Introduction

In this thesis we are concerned with the problem of visual image classification
by means of kernel learning algorithms. The goal of image classification is
to separate images according to their visual content into two or more disjoint
classes.

We will focus on the problems of visual object and scene classification as
specific instances from the general class of image classification problems. Our
analysis and methods are however not unique to these instances and may be
used in a more general context beyond image related problems. The topic
of this thesis lies in the intersection of computer vision and machine learning
research and we will report on advances in both directions.

Consider the images shown in Figure 1.1. All the images depict different
physical objects from the real world. Nevertheless some of the images can be
grouped together, since they show objects of the same type or in other words
from the same category. For example there are several images showing different
types of mountain bikes and all those images are considered to be of the same
class. Our goal is to build a system that analyzes the visual content of an
image and identifies the corresponding object category. The more general task
of image classification is the problem of finding a mapping from images to a
set of classes, not necessarily object categories.

The problem of single object classification we discuss in this thesis is a fun-
damental problem that many higher level tasks depend on. From a broader
perspective we are interested in more complex tasks like scene understanding
or object localization. Photographs of real world scenes usually contain many
different objects from various categories like those shown in Figure 1.2. 1 To
retrieve all possible object labels within such images generalizes the problem
definition to the multi-label case. Image understanding even requires reasoning
about the relations of the objects within the scene. Both scenarios crucially
depend on the ability to be able to identify single objects and should benefit
from advancements in this area.

The main challenge of object classification is the high variability of object
appearances. Appearance changes due to transformations such as pose varia-
tions, change of lightning conditions and scale changes all affect the represen-
tation of the image. While this poses a problem already for recognizing single

1Taken from labelme.csail.mit.edu

1

1. Introduction

Figure 1.1.: Several example images from the Caltech-256 dataset. The images
come with labels, the names of the categories that are shown are
mountain bike, elephant, frog, American flag, canoe, bath tub,
frisbee, motorbike, and tennis ball. In each single image there are
parts that might be considered instances of another category, like
the tires of the bikes. The object category we are interested is the
category corresponding to the shown object as indicated by the
category name.

specific instances, it is even harder when it comes to recognising entire classes
of object categories. In the latter case appearance variations also stems from
the variability of the instances within the classes. This intra-class variabil-
ity depends on the specific object class. For example images of tennis balls as
shown in Figure 1.1 show fewer appearance variations than images of non-rigid
deformable objects such as the animal images of elephants and frogs. Some
other classes like the mountain bikes and motor bikes are visually similar and
also share appearance variations.

This problem is typically addressed by means of image descriptors that are
designed to be invariant to the most dominant appearance changes. A simple
representation as a collection of raw pixel values on the other hand is highly
appearance dependent, and thus not robust enough for this task. There are

2

(a) (b)

Figure 1.2.: Two example images from the LabelMe dataset. Shown are two
pairs of images, left the original image and right color coded an
user annotation of objects within the images. Since there are many
different object instances present in the scene this is a multi-label
problem.

two criteria for the design of image descriptors. First, they should be general
enough to capture similarities between instances of the same category. Second,
they should be robust to aforementioned appearance changes of a single object.
In the last years, several different image descriptors have been developed that
are especially tailored to the task of object classification.

Image descriptors are typically limited in the sense that they make use of
specific single statistics of the images like color, texture or shape information.
This raises the problem that any single descriptor may not be sufficient to
characterize entire object categories. In that case it needs the combination of
several descriptors in order to derive discriminative decision rules. Different
categories will require different combination of descriptors to distinguish them
from others. Due to the large number of possible classes we need automatic
ways of finding such combinations. Manually tuning every single one of them
is infeasible.

As argued above, we are confronted with a scenario where manually de-
signing classification functions is not possible. This is because the underlying
principles of the data are far too complex to be codified. Therefore we adopt
a data centric view of the problem and apply techniques to learn classification
functions from an annotated set of example images.

A learning procedure typically involves the following two steps. First, a
model class of admissible functions has to be chosen. In a second step, a func-
tion from this model class is searched by minimization of an appropriate error
criterion. The latter step involves the incorporation of prior knowledge about
suitable functions, as well as making use of available observations in order to
estimate the quality of a function, for example its generalization abilities.

The utilization of learning techniques has been a recent trend in this subfield
of computer vision. As a consequence, a variety of databases of labeled train-
ing examples have been collected for this particular purpose. These dataset

3

1. Introduction

collections grew from a couple of images and a few object categories to impres-
sive sizes. At the time of writing, the largest freely available image database
for object classification2 contains more than 3 million images of about 5000
different categories that are organized in a semantic hierarchy. Since even for
this database the set of categories is by no means comprehensive, image col-
lections are likely to grow in size in the future. This in turn demands for large
scale machine learning techniques that are able to cope with this quantity of
data.

A problem with attaching single class labels to images, as it has been done
for those of Figure 1.1 is the following. Almost all images contain some back-
ground clutter. Although such context information might be helpful to classify
the images in a specific scenario, an ideal classification system should be invari-
ant to the environment an object is presented in. Since the label information
does not convey information about the spatial extend of the object, it remains
ambiguous. All that can be deduced is that some part of the image shows
the object of interest. An approach to resolve this problem would be to man-
ually provide segmentation masks as those in Figure 1.2. Since this requires
substantially more effort in terms of manual annotation, we are interested in
methods that are able to learn with weaker forms of annotations, like object
class information.

We approach the image classification problem by extending kernel learn-
ing algorithms. As we will see, techniques from this class offer a versatile
tool to approach all of the aforementioned problems: learning with ambigu-
ity (chapter 3), learning discriminative image representations (chapter 6) and
combination of different image descriptors (chapter 7).

1.1. Contribution of this Thesis and Outline

In the following we will outline the thesis and give an overview of the content
of the individual chapters and their contributions. Most of the work described
here has been published, and we include the citations to the corresponding
publications.

This thesis is divided into two parts. The first part is on the topic of machine
learning and more specifically about kernel learning algorithms. In particular
it includes an introduction, two contributions in this field and an empirical
evaluation of approaches that learn the kernel function from data. The second
part of the thesis is about the specific problem of image classification. Here
we demonstrate how the developments proposed in the first part can be put
into practice for this particular scenario. Hence the first part is more focused

2www.image-net.org

4

1.1. Contribution of this Thesis and Outline

on algorithmic and theoretical questions, while the second part is concerned
with practical problems, and as such, contains a larger experimental part.

Each chapter ends with a conclusion, summarizing the presented material.
The chapters relate to each other in the following way. All chapters build upon
the material presented in the introductory chapter 2. The techniques intro-
duced in chapter 4 are a pre-requisite for the chapters 5 to 7 that themselves
may be read separately.

1.1.1. Part I: Kernel Classifiers

The machine learning part begins with an introductory chapter about kernel
learning techniques in chapter 2. We introduce and review the main concepts
of kernel learning and in particular the framework of regularized risk minimiza-
tion. The most prominent algorithms for tasks like classification, regression
and structured output prediction are summarized in a dedicated section. A
version of this chapter appeared as a book chapter [Geh09b].

We then continue with chapter 3 with the topic of learning with in the pres-
ence of label ambiguity and weak label information. This is cast in the multiple
instance learning (MIL) framework. We discuss several scenarios of label am-
biguity and show how they relate to MIL. In particular we argue that multiple
instance learning as it has been used throughout the literature, is itself not
sufficiently well defined. We propose a disambiguation into several scenarios
and discuss them in detail. Finally we turn our attention to kernel learning
algorithm for this problem. These result in integer programming problems for
which heuristic algorithms have been proposed. We derive a homotopy method
to solve for better local minima of these non-convex problems and show em-
pirically that those solutions translate to improved performance on standard
datasets. The algorithmic part of this chapter appeared in [Geh07].

The topic of chapter 4 is on learning the kernel function itself from training
data. We propose with infinite kernel learning (IKL) a framework, in which
a kernel is estimated from a continuously parameterized set of kernel func-
tions. This generalizes the concept of previous work on multiple kernel learn-
ing (MKL). MKL was limited to combine finitely many kernels which we will
show how to overcome this restriction. We then derive and efficient algorithm
to solve the resulting optimization problem for both the finite and infinite case.

In chapter 5 we present an empirical evaluation of kernel combination al-
gorithms and compare them to the performance of a single kernel support
vector machine. This is the most complete evaluation of the different tech-
niques that has been published so far. While most recent developments in
this field concentrated on algorithmic issues we will show that in many cases
little or no performance gains can be expected. We present empirical evidence

5

1. Introduction

that in cases where kernel combination yields a superior performance our new
approach IKL significantly outperforms the finite version MKL. The content
of the two chapters 4 and 5 have been published in [Geh08a, Geh08b].

1.1.2. Part II: Image Classification

Chapter 6 demonstrates how the approaches of learning the kernel function
from data from chapter 4 can be used to improve the performances of im-
age classification systems. Typical image classification systems involve a long
pipeline of pre-processing steps and we show how this can be shorten in a
principled way. Pre-processing choices such as the spatial layout or code-
book representations of images are usually hand-tuned. We shift these design
choices into the kernel function and thus make them available to the optimiza-
tion problem. This work also appeared in [Geh09a].

In the last chapter 7 of this thesis we discuss the problem of combining
several image descriptors for the purpose of image classification. This part
has been published in [?]. As discussed earlier, an image can be represented
through a variety of appearance descriptors. Combinations of several descrip-
tors might be necessary to discriminate images from different classes. First
we reuse the earlier approaches of kernel learning and augment them with a
number of baseline comparisons. Inspired by the kernel combination approach
we derive a boosting based algorithm for this problem. We present empirical
results on challenging prominent benchmark datasets. Our approach consis-
tently outperforms all previous attempts that have been proposed so far. The-
ses state-of-the-art results supports our claim that feature combination is an
effective technique for the task of image classification and machine learning
provides efficient tools to accomplish this task.

1.1.3. Related Contributions

Not all of the work that has been published during my time as a PhD student
is contained in this thesis. In this section we briefly present the contributions
that are relevant to the main theme of the thesis. These address research
questions originating from the field of image classification, and computer vision
or machine learning in general.

The Rate Adapting Poisson Model

The dominant paradigm for modelling histogram data is the extraction of la-
tent semantic structure, often referred to as topics. Histogram representations
of data arises naturally in the fields of text processing and image classifica-
tion. We will see concrete examples of this type of representation for image
data in section 6.1. Latent variable models determine a mapping from count

6

1.1. Contribution of this Thesis and Outline

data to a compressed latent representation. This typically lower dimensional
representation can subsequently be used for retrieval and classification tasks.

In [Geh06b] we propose a probabilistic undirected graphical model that
yields a distributed latent representation. The undirected semantics of this
model has interesting consequences. Most importantly, the latent variables
are conditionally independent given the data, and vice versa. This is in stark
contrast to the marginal independence of the latent variables in directed mod-
els. The implication is that the mapping from input space to latent space is
given by a single matrix multiplication, possibly followed by a componentwise
nonlinearity. This comes with a problem at learning time, due to the pres-
ence of an intractable normalization constant that depends on the parameters.
We apply contrastive divergence to learn the parameters and show empirical
results on problems from text and image retrieval.

Color Constancy

Color constancy is the tendency to perceive surface color consistently, despite
variations in ambient illumination [Jam61]. Most generally, illumination vari-
ations occur both within scenes, and from scene to scene, and theories such
as the “Retinex” [Lan71] have been devised to explain color constancy under
such conditions.

In [Geh08c] we extend a Bayesian model for color constancy. We make the
common assumption that illumination within a given scene is approximately
uniform. In particular we report on three new results. Firstly we introduce
a new dataset consisting of 568 images, captured using a high-quality digital
SLR camera in RAW format, free of color correction. Secondly we examine the
fusion algorithm [Gij07] which has appeared to give performance better than
any individual greyworld algorithm. Using the new database we show that
the fused algorithm is after all not significantly better than the best greyworld
algorithm. Thirdly, we revisit the Bayesian approach of [Ros04] using the
new data-set. Where in [Ros04] training was based on illumination labels
that were only estimated, the new dataset provides more accurate illumination
labels. This makes it possible to learn more precise priors for illumination and
reflectance. Tests show that this leads to illuminant estimation for which the
improvement in accuracy is statistically significant, at least for outdoor images.
The newly trained Bayesian algorithm is shown also to perform significantly
better than the greyworld algorithms, even when the greyworld algorithms are
enhanced by inclusion of an illumination prior.

Gaussian Processes for Wiener Series Estimation

In its classical formulation, the estimation of the Wiener series assumes noise-
free measurements of the system outputs during system identification. This
assumption was also adopted in the kernel-based implicit estimation procedure

7

1. Introduction

described in [?]. For real, noise-contaminated data, the estimated Wiener series
will model both signal and noise of the training data which results in reduced
prediction performance on independent test sets. But even in the ideal case
of noise-free signals, Volterra and Wiener models typically show a reduced
generalisation performance as compared to other types of nonlinear models.
Roughly speaking, this is due to the ”explosiveness” of polynomial models:
for test inputs far outside the range of the training data, polynomial models
usually assign outputs with extremely high absolute values. This results in
a high sensitivity against outliers in the test data which in turn leads to a
reduced prediction performance.

In [Fra06, Geh06a] we address the generalisation problems of Volterra and
Wiener system models using two closely related frameworks: regularisation
and Gaussian processes. Regularisation is the standard approach in machine
learning to address the generalisation problem. The basic idea is to restrict
the possible solutions in a suitable manner that reflects the prior knowledge
of the experimenter about the different characteristics of the true signal and
the corrupting noise. We show how this train of thought can be adapted to
restrict our solutions not only to be smooth, but also to remain non-explosive
in the input domains that are relevant to the problem at hand.

8

Part I.

Kernel Classifiers

9

2. An Introduction to Kernel
Learning Algorithms

Algorithms that use positive definite kernels have considerably influenced the
field of machine learning, pattern recognition and related fields over the last
decade. For example the prominent Support Vector Machine has been ap-
plied with much success to a variety of tasks and nowadays belongs to the
standard toolbox of every practitioner. Besides their empirical success kernel
methods have a solid theoretical foundation and have also been studied in the
mathematics and statistics communities. In this chapter we will review the
basic mathematical concepts of kernel learning and introduce some prominent
algorithms. In contrast to the majority of work on Support Vector Learning
we will avoid using duality theory and will instead use the regularized risk
formulation as the underlying basis for the derivation.

For almost all problems in image processing, including visual object classi-
fication and detection, one is confronted with a variety of different problems,
some of which have already been described in the introduction. Image data
is inherently high dimensional, which is the main reason one usually resorts
to different feature representations rather than raw pixels for its represen-
tation. Furthermore, in almost all cases, there is only a limited amount of
labeled training data available. Algorithms have to account for noise in the
observations in a robust way. Image data may stem from different sources,
for example hyperspectral image data taken from satellites, which requires
methods of combining such information.

Kernel algorithms are suited to tackle such problems. With the design of
a kernel function it is possible to combine different feature entities, as well as
different feature dimensions and to account for high dimensional data. With
the framework of regularized risk minimization, kernel methods are efficient
even with small amount of training data and offer ways to incorporate un-
labeled examples through semi-supervised models. Such algorithms have al-
ready proven to be a valuable tool for image processing applications such
as image coding, image de-noising, image segmentation and image classifica-
tion [Geh09a, Kim05, CV07, Gri07, Bla08]. In the later chapters of this thesis
we will highlight the use of Support Vector Machines for the task of image
classification.

In this chapter we will introduce the basic concepts of kernel learning and

11

2. An Introduction to Kernel Learning Algorithms

some of its applications. This will lay the foundation for chapter 3 and 4 in
which we will describe ways of how to learn a kernel function from data in a
principled way and learn in the presence of ambiguity. The selection of topics
for this chapter is by no means comprehensive and is intended to provide a
self-contained exposition of the material. The main goal is to make the later
chapters accessible but to also review some of the widely used kernel learning
algorithms. More detailed introductions in the field which also covers the sta-
tistical background can be found in the articles [Sch02, Sha04, Hof08].

This chapter is divided into three sections. We start in Section 2.1 with a
basic introduction to the notion of kernels and introduce the reproducing kernel
Hilbert space. In Section 2.2 we state the representer theorem which serves as
the foundation of all of the formulations which are presented in the following
Section. Section 2.3 contains the most prominent kernel learning algorithms,
and includes a paragraph about their applications to various problems.

2.1. Kernels

2.1.1. Measuring Similarity with Kernels

Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X × Y . (2.1)

We will call xi the inputs which are taken from the nonempty set X and
yi ∈ Y the targets. The problem of learning is to use this data in order
to make statements about previously unseen elements x ∈ X . For example in
binary classification where the training data stems from two classes with labels
Y = {−1,+1} one aims to construct a function f : X → Y which assigns a
class label to each element of X . The function in which one is interested should
not be arbitrary but one which generalizes well. Loosely speaking, this entails
making few errors on unseen data from the same problem. In the classification
example this corresponds to making as few mistakes as possible when inferring
the class labels.

In order to enable generalization, we need to exploit the structure of the
training examples and in order to impose a structure we will need to define
a similarity between pairs of data points. The most general setting would be
to define such a similarity between pairs of inputs (x, y) including the targets.
For now we will restrict ourselves and only define similarities between inputs
x ∈ X and will refer to Section 2.3.4 for a generalization.

There is no other assumption about X other than it being a set and in
particular nothing has been said about its inputs being similar to each other.
Therefore we will first map the data into a space where we have a notion of

12

2.1. Kernels

similarity, namely a dot product space H, using a mapping

φ : X → H, x 7→ φ(x). (2.2)

The similarity between the elements in H can now be measured using its
associated inner product 〈·, ·〉H. For convenience we introduce the following
function which does exactly that

k : X × X → R, (x,x′) 7→ k(x,x′), (2.3)

which we require to satisfy for all x,x′ ∈ X

k(x,x′) = 〈φ(x), φ(x′)〉H . (2.4)

This function is called a kernel . The mapping φ is referred to as its feature map
and the space H as its feature space. Usually the kernel itself is parameterized
by some set of variables θ ∈ Θ. In these cases we will make the dependency of
the kernel on the parameters explicit, using the notation k(·, ·; θ). To simplify
the notation we will omit the parameters θ whenever possible, i.e. in those
cases where we refer to a general kernel function.

Although the construction of a kernel seems inconspicuous we will see that it
has far reaching consequences. Sometimes we will drop the subscript specifying
the origin of the dot product in these cases where it should be clear from the
context.

2.1.2. Positive Definite Kernels

The construction of the similarity measure as the dot product in some space H
is rather general. Different measures of similarity can be obtained by varying
the feature map φ. A particular simple case is when X itself is a dot product
space in which case one may choose φ to be the identity.

We will now show that the class of kernels that can be written in the form
of (2.4) coincide with the class of positive definite kernels. This yields a very
comfortable situation due to the following observation: algorithms which op-
erate on the data only in terms of a dot product can be used with any posi-
tive definite kernel by simply replacing 〈φ(x), φ(x′)〉H with kernel evaluations
k(x,x′). This is a technique also known as the kernel trick [Sch98]. Another
direct consequence is that for a positive definite kernel one does not need to
know the explicit form of the feature map since it is implicitly defined through
the kernel. We will even encounter examples where H is infinite dimensional
and thus replacing the dot product with the kernel function evaluation is cru-
cial in order to be able to numerically evaluate the dot product at all.

We need some definitions before we can state the equivalence between k(x,x′)
and 〈φ(x), φ(x′)〉H.

13

2. An Introduction to Kernel Learning Algorithms

Definition 2.1.1 (Gram matrix). Given a kernel K : X ×X → R and inputs
x1, . . . ,xn ∈ X . We call the n× n matrix K with entries

Kij = k(xi,xj) (2.5)

the Gram matrix or the kernel matrix of k with respect to x1, . . . ,xn.

Definition 2.1.2 (Positive definite matrix). A real symmetric n × n matrix
K is called positive definite if for all c1, . . . , cn ∈ R

n∑
i,j=1

cicjKij ≥ 0. (2.6)

If equality in (2.6) only occurs for c1 = . . . = cn = 0 then the matrix is called
strictly positive definite

A positive definite kernel is one which always produces a positive definite
Gram matrix for elements in X . More precisely:

Definition 2.1.3 (Positive definite kernel). If for all n ∈ N and for all
x1, . . . ,xn ∈ X the Gram matrix Kij = k(xi,xj) is positive definite, then
we call the kernel a positive definite kernel. Furthermore if for all n ∈ N and
distinct x1, . . . ,xn ∈ X the kernel k gives rise to a strictly positive definite
Gram matrix we will call it a strictly positive definite kernel.

Now we are ready to state one of the most important observations for kernel
methods. To this end we need to introduce the concept of a Hilbert space.
Recall that a Hilbert space H is a real (or complex valued) inner product
space which is completed by the inner product 〈·, ·〉H. Some simple examples
of Hilbert spaces are Rd and Cd.

Proposition 2.1.4. A function k : X ×X → R is a positive definite kernel if
and only if there exists a Hilbert space H and a feature map φ : X → H such
that for all x,x′ ∈ X we have k(x,x′) = 〈φ(x), φ(x′)〉H.

Proof. “⇐” Assume the kernel can be written in the form (2.4). It being
positive definite is a simple consequence of the bilinearity of the dot product
〈·, ·〉H

n∑
i,j=1

cicj〈φ(xi), φ(xj)〉H =

〈
n∑
i=1

ciφ(xi),
n∑
j=1

cjφ(xj)

〉
H

=

∥∥∥∥∥
n∑
i=1

ciφ(xi)

∥∥∥∥∥
2

H

≥ 0.

(2.7)
“⇒” In the next section 2.1.3 we will present how to construct, given a positive
definite kernel, and a Hilbert space along with a feature map φ with the desired
properties. This will conclude the proof.

14

2.1. Kernels

Due to this equivalence we will sometimes refer to a positive definite kernel
simply as a kernel . Although kernels compute dot products in some space H,
they should not be mistaken to be themselves dot products in the input space.
For example, they are not in general bilinear. However they share important
properties such as the Cauchy-Schwarz inequality.

Proposition 2.1.5 (Cauchy-Schwarz). If k is a positive definite kernel, and
x1,x2 ∈ X , then

k(x1,x2)2 ≤ k(x1,x1)k(x2,x2). (2.8)

Proof. Since k is positive definite, so is the 2×2 Gram matrix Kij = k(xi,xj).
Therefore the eigenvalues of K are non-negative as is its determinant. Writing
out the determinant completes the proof

0 ≤ det(K) = k(x1,x1)k(x2,x2)− k(x1,x2)2. (2.9)

2.1.3. Constructing the Reproducing Kernel Hilbert Space

Using positive definite kernels as building blocks we will now consider functions
which are linear combinations of kernel evaluations. This leads to the concept
of a reproducing kernel Hilbert space (RKHS). In the following we will present
a construction scheme for a fixed kernel k which will also conclude the proof
of Proposition 2.1.4. The main idea is to construct a Hilbert space whose
elements are functions. For a given kernel k we define the following set

F =

{
f(·) =

n∑
i=1

αik(·,xi); n ∈ N, αi ∈ R,xi ∈ X

}
⊆ RX , (2.10)

where the elements k(·,x) : X → R are functions, and k(·,x) itself is an
element in F . It is easy to see that this set can be turned into a vector space
if we endow it with the two operations of addition (f + g)(x) = f(x) + g(x)
as well as multiplication with a scalar (λf)(x) = λf(x), λ ∈ R. Now we define
an inner product between two elements of this space

f(·) =
n∑
i=1

αik(·,xi) and g(·) =
n′∑
j=1

βjk(·,x′j) (2.11)

with n, n′ ∈ N, αi, βj ∈ R,xi,x′j ∈ X , as

〈f, g〉F :=
n∑
i=1

n′∑
j=1

αiβjk(xi,x
′
j). (2.12)

15

2. An Introduction to Kernel Learning Algorithms

This is a well defined construction, i.e. it does not depend on the choice of
the expansion coefficients of f or g. To see this, note that we can also write
making use of the symmetry of the kernel

n′∑
j=1

βjf(x′j) = 〈f, g〉F =
n∑
i=1

αig(xi) (2.13)

where the left term does not depend on the expansion of f and the right term
does not depend on the expansion of g. From Eq. (2.13) we also see that 〈·, ·〉F
is bilinear. Furthermore it is symmetric and positive definite which follows
from the positive definiteness of the kernel k, since

〈f, f〉F =
n∑

i,j=1

αiαjk(xi,xj) ≥ 0 (2.14)

implies that for any functions f1, . . . , fp ∈ F and any coefficients c1, . . . , cp ∈ R
we have

p∑
i,j=1

cicj〈fi, fj〉F =

〈
p∑
i=1

cifi,

p∑
j=1

cjfj

〉
F

≥ 0. (2.15)

From the last equation we see that 〈·, ·〉F is a positive definite kernel defined
on a vector space of functions.

If we choose g(·) = k(·,x) it follows from the definition of the inner product
that

〈f, k(·,x)〉F =
n∑
i=1

αik(xi,x) = f(x), ∀x ∈ X (2.16)

and in particular
〈k(·,x), k(·,x′)〉F = k(x,x′). (2.17)

This property is known as the reproducing property of the kernel. A function
f can thus be represented as a linear function defined by an inner product in
the vector space F .

We still need to show definiteness of the inner product. Applying (2.16) and
the Cauchy-Schwarz inequality we obtain

|f(x)|2 = |〈k(·,x), f〉F |2 ≤ k(x,x) · 〈f, f〉F (2.18)

which proves that 〈f, f〉F = 0 ⇔ f = 0. The space we have constructed can
be completed by adding all limit points of sequences that are convergent in
the norm ‖f‖F =

√
〈f, f〉 which yields the Hilbert space H, see e.g. [Aro50]

for details.
Due to the property (2.16) this space is called a reproducing kernel Hilbert

space (RKHS) for k. The RKHS uniquely determines k and vice versa. This
is the statement of the following theorem.

16

2.1. Kernels

Theorem 2.1.6 (Moore-Aronszajn, see [Aro50]). To every positive definite
kernel k there exists a unique reproducing kernel Hilbert space H whose kernel
is k and vice versa.

Proof. Since we have already proved existence, uniqueness remains to be shown.
Let H′ be another Hilbert space for which k is the reproducing kernel. Then
for all x,x′ ∈ X

〈k(·,x), k(·,x′)〉H = k(x,x′) = 〈k(·,x), k(·,x′)〉H′ . (2.19)

Due to the linearity of the dot product and the uniqueness of the completion
it must hold H = H′. Now assume k, k′ ∈ H, K 6= K ′ are two different
reproducing kernels of H. Then there exists a x ∈ X for which

0 < ‖k(·,x)− k′(·,x)‖2
H = 〈k(·,x)− k′(·,x), k(·,x)− k′(·,x)〉H (2.20)

= 〈k(·,x), k(·,x)− k′(·,x)〉H − 〈k′(·,x), k(·,x)− k′(·,x)〉H = 0,(2.21)

which is a contradiction.

We have constructed a Hilbert space which can act as the feature space
of our kernel. The corresponding feature map for this space is the so-called
Aronszajn map

φ : X → RX ,x 7→ k(·,x). (2.22)

For this φ it is easy to see that the kernel k is indeed of the form (2.4). We
want to point out that although there exists a unique RKHS to each kernel
k, it might well be that there are other feature maps that result in a inner
product with the same value. If the two feature maps φ1, φ2 map into the
feature spaces H1, resp. H2 then it might be the case that

k(x,x′) = 〈φ1(x), φ1(x′)〉H1 = 〈φ2(x), φ2(x′)〉H2 , (2.23)

for all x,x′ ∈ X , and that does not necessarily imply that φ1 = φ2. For
our purposes however we can consider the two spaces identical, as we are
only interested in the kernel evaluation as the dot product and this remains
identical.

2.1.4. Operations in RKHS

We will turn our attention to some basic operations in the reproducing kernel
Hilbert space and show how they can be computed in terms of kernel function
evaluations. Although the space H can be very high dimensional or even
infinite dimensional, in some cases basic operations can still be computed.
Essentially this is the case whenever we can express its elements in terms of
kernel evaluations.

17

2. An Introduction to Kernel Learning Algorithms

Translation

A translation in feature space can be written as the modified feature map
φ̃(x) = φ(x) + Γ with Γ ∈ H. We expand the dot product for 〈φ̃(x), φ̃(x′)〉H
to write

〈φ(x) + Γ, φ(x′) + Γ〉 = 〈φ(x), φ(x′)〉+ 〈φ(x),Γ〉+ 〈Γ, φ(x′)〉+ 〈Γ,Γ〉. (2.24)

In general only the first term can be evaluated via the kernel function. But
if we restrict Γ to have an expansion Γ =

∑n
i=1 αik(·, xi), i.e. to lie in the

span of the functions φ(x1), . . . , φ(xn) ∈ H, we can calculate the translated
dot product

〈φ̃(x), φ̃(x′)〉 = k(x,x′) +
n∑
i=1

αik(x,xi) +
n∑
i=1

αik(x′,xi) +
n∑

i,j=1

αiαjk(xi,xj).

(2.25)

Centering

The translation operations allows us to center data x1, . . . ,xn ∈ X in the
feature space. The mean of the data is φµ = 1

n

∑n
i=1 φ(xi) and thus fulfills the

requirements for the translation element Γ. Applying (2.25) with Γ = −φµ
thus yields a feature map for which

0 =
1

n

n∑
i=1

φ̃(xi). (2.26)

Computing Distances

With the kernel corresponding to a dot product in a Hilbert Space H and thus
inducing a norm it is natural to ask if one can also compute the distances of
the images of the elements in X . Such a distance can be evaluated entirely in
terms of kernel evaluations as is evident from

d(x1,x2) = ‖φ(x1)− φ(x2)‖H =
√
k(x1,x1) + k(x2,x2)− 2k(x1,x2) (2.27)

for x1,x2 ∈ X and φ being the feature map for k. This is a very elegant way
to measure the dissimilarity between arbitrary objects, for example between
two graphs or two sentences.

Subspace Projections

For two points Ψ,Γ ∈ H the projection of Ψ onto the subspace spanned by Γ
is

Ψ′ =
〈Γ,Ψ〉H
‖Γ‖2

H
Γ. (2.28)

If we have a kernel expansion of the points Ψ,Γ, then we can compute the
projection Ψ′ and also express it in terms of kernel evaluations.

18

2.1. Kernels

2.1.5. Kernel Construction

The following proposition states some operations which preserve the positive
definiteness of kernels. These operations can be used to create new, possibly
complicated, kernels from existing ones.

Proposition 2.1.7. Let K1, K2, . . . be arbitrary positive definite kernels on
X × X , where X is a nonempty set. Then

(i) α1k1 + α2k2 is positive definite for α1, α2 ≥ 0.

(ii) If k(x,x′) := limn→∞Kn(x,x′) exists for all x,x′, then kK is positive
definite.

(iii) The pointwise product k1k2 is positive definite.

(iv) Assume for i = 1, 2, ki is a positive definite kernel on Xi × Xi, where Xi
is nonempty. The tensor product k1 ⊗ k2 and the direct sum k1 ⊕ k2 are
positive definite kernels on (X1 ×X2)× (X1 ×X2).

(v) The function k(x,x′) := f(x)f(x′) is a positive definite kernel for any
function f : X → R.

Proof. For proofs see [Ber84].

The first two statements of the last proposition state that the set of positive
definite kernels is a closed convex cone. Loosely speaking the operations of
(i)-(iv) are the only simple operations which preserve positive definiteness.
Without stating the result we mention that it is possible to fully characterize
the class of functions that preserve positive definiteness [Fit95, Hof08].

2.1.6. Examples of Kernels

With the closure properties of the last result we finally turn our view to some
concrete examples of kernel functions. We concentrate on the most prominent
ones and also introduce two kernels which have been used for several image
processing tasks. For a more general overview including examples of other data
structures such as graphs, trees, strings, etc. we refer to [Hof08, Sch02, Bak07,
Sha04]. At this point we will present some general kernels which operate on
real vector spaces. In the following chapters on image classification we will
introduce some more kernel functions which are especially suited for problems
in which the input elements themselves are either images or some kind of image
features.

19

2. An Introduction to Kernel Learning Algorithms

Linear Kernel

The most simple kernel is arguably the ordinary dot product in Rd. Functions
which are built upon this kernel are of the form

f(x) =
n∑
i=1

αi〈x,xi〉 = 〈x,
n∑
i=1

αixi〉 = 〈x,w〉, (2.29)

where we defined w =
∑n

i=1 αixi. Thus the RKHS of a linear kernel on Rd×Rd

can be identified with the span of all hyperplanes in Rd.

Polynomial Kernel

The homogeneous polynomial kernel k(x,x′; p) = 〈x,x′〉p is positive definite
for all p ∈ N as a direct consequence from proposition 2.1.7 (iii). This again
is an example where the input space X itself is a dot-product space. One can
take the corresponding feature space: it is of finite dimension and consists
of all monomials of degree p in the input coordinates. Another prominent
polynomial kernel is the inhomogeneous polynomial kernel which computes the
inner product of all monomials up to degree p: k(x,x′; {c, p}) = (〈x,x′〉+ c)p

Gaussian Kernel

From the Taylor series expansion of the exponential function ez =
∑∞

i=0
1
i!
zi

and proposition 2.1.7-(ii) we see that

k(x,x′; γ) = eγ〈x,x
′〉 (2.30)

is a positive definite kernel for all x,x′ ∈ Rd, γ ∈ R, γ ≥ 0. It follows immedi-
ately that the Gaussian function

e−γ‖x−x′‖2 = e−γ〈x,x〉e2γ〈x,x′〉e−γ〈x
′,x′〉 (2.31)

is a valid positive definite kernel. Furthermore we observe from the Taylor
series expansion that it is a polynomial kernel with infinite degree. The corre-
sponding Hilbert space is infinite dimensional and in fact it corresponds to a
mapping into C∞, the space of smooth functions.

χ2 Histogram Kernel

A common type of instances occurring in text and image processing problems
are aggregated representations such as histograms. We will discuss them in
greater detail in the context of image classification in Section 6.1.1. A promi-
nent kernel for comparing two histograms is the χ2 kernel . For two histograms
h,h′ of size d the χ2-distance is defined as

χ2(h,h′) =
d∑
i=1

(hi − h′i)
2

hi + h′i
, (2.32)

20

2.2. The Representer Theorem

where we used the convention x/0 := 0. It was shown in [Hei05] that the χ2

kernel of the form
k(h,h′; γ) = exp

(
−γχ2(h,h′)

)
(2.33)

is a positive definite kernel.

Set Kernels

So far we presented kernels for rather simple input spaces only. However
the power of kernel methods also stems from the fact that we can measure
similarity between possibly complex objects. Assume an input space being
the power set of some other set, e.g. X = 2K for some finite dictionary K.
A similarity on this space could for example be defined by just counting the
number of equal elements in the sets. The corresponding kernel for X,X ′ ∈ X
reads

k(X,X ′) =
∑
x∈X

∑
x′∈X

δ(x = x′), (2.34)

where we denote with

δ(x, x′) =

{
1 if x = x′

0 otherwise
(2.35)

the indicator function. We used upper case letters for the elements of X to
make explicit that those elements are in fact sets. This kernel is widely used
in text classification and is also referred to as the sparse vector kernel , see for
example [Joa98]. Consider a text being represented as the bag of words which
appear in the text. This kernel measures similarity between two texts by just
counting the number of common words.

A more general kernel can be defined on the same input set with the use of
a base kernel k0. It sums up the similarities between all elements in the two
sets

k(X,X ′; k0) =
∑
x∈X

∑
x′∈X

k0(x,x′). (2.36)

This is a kernel if and only if k0 itself is a kernel [Hau99].

2.2. The Representer Theorem

In the last section we introduced the RKHS H associated with a kernel k
serving as its inner product. Functions f ∈ H can be represented as linear
combinations of kernel expansions but have a possibly infinite number of ex-
pansion coefficients. The representer theorem [Kim71, Cox90] states that the
solutions of a large class of optimization problems are expressible by only a
finite number of kernel functions. We present a slightly more general version
of the theorem [Sch01].

21

2. An Introduction to Kernel Learning Algorithms

Theorem 2.2.1 (Representer Theorem). Let Ω : [0,∞) → R be a strictly
monotonic increasing function and L : (X × R2)

n → R ∪ {∞} be an arbitrary
loss function. Furthermore let H be a RKHS with reproducing kernel k. Each
minimizer f ∈ H of the regularized functional

Ω
(
‖f‖2

H
)

+ L ((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) (2.37)

admits a representation of the form

f(x) =
n∑
i=1

αik(x,xi), (2.38)

with αi ∈ R.

Proof. We decompose an element f ∈ H into the part f ‖ which is inside the
span of kernel functions k(·,x1), . . . , k(·,xn) and its orthogonal complement
f⊥ and show that the latter is always zero. We write

f(x) = f ‖(x) + f⊥(x) =
n∑
i=1

αik(x,xi) + f⊥(x) (2.39)

with αi ∈ R and 〈f⊥, k(·,xi)〉H = 0,∀i ∈ {1, . . . , n}. Using the reproducing
property of H we can write

f(x) = 〈f, k(·,x)〉H =
n∑
i=1

αik(x,xi) + 〈f⊥, k(·,x)〉H =
n∑
i=1

αik(x,xi). (2.40)

We thus see that the term f⊥ is irrelevant for the value of L in (2.37). Mak-
ing use of the fact that Ω is monotonically decreasing we get the following
inequality

Ω
(
‖f‖2

H
)

= Ω

∥∥∥∥∥
n∑
i=1

αik(·,xi)

∥∥∥∥∥
2

H

+ ‖f⊥‖2
H

 ≥ Ω

∥∥∥∥∥
n∑
i=1

αik(·,xi)

∥∥∥∥∥
2

H

 .

(2.41)
Thus for any fixed αi ∈ R the function Ω in (2.37) is minimized for f⊥ = 0.

This theorem has widespread implications. It tells us that whenever we can
formulate an objective function in form of (2.37) we can rest assured that the
solution can be expressed in terms of finitely many kernel evaluations. Even
if the function space is infinite dimensional, we only need to search for the n
expansion coefficients.

Monotonicity of Ω does not ensure a unique minimizer of (2.37), we have to
require convexity to prevent the possibility of several solutions. Indeed many
algorithms make use convex loss functions. The strictness of the monotonicity
of Ω can be discarded, but there might be minimizers of (2.37) which do not

22

2.3. Learning with Kernels

admit the form (2.38). However it still follows that there is at least one other
solution which is as good and which does admit the expansion form.

The minimizer of the regularized risk formulation should on one hand min-
imize the training error, as measured by the cost term L, and on the other
hand have a low norm. Since the function spaces are usually extremely rich,
for most problems there will be functions with incur no cost at all, for example
by just memorizing the examples. However such solutions will be arbitrarily
complex and therefore will not generalize well. The regularizer Ω can be un-
derstood as seeking to resolve this issue. Loosely speaking it can be seen as
favoring smooth functions, where smoothness is measured by the RKHS norm
‖ · ‖H (see [Sch02] for a detailed review of its regularization properties).

2.3. Learning with Kernels

With the ingredients of the last two sections we can now introduce some kernel
based learning algorithms. Given a training set of observations

(x1, y1), . . . , (xn, yn) ∈ X × Y (2.42)

we aim to find a function f : X → R which minimizes the empirical risk on this
dataset. For binary classification problems where Y = {−1,+1}, this can be
posed as the search for a function f : X → R which maximizes the agreement
between signf(x) and the label of the pattern y(x). We pose this search in the
regularized risk framework and search over functions f in the space H which
is implicitly defined by the kernel used to measure similarity between data
points. From the representer theorem we know that the only parameters we
have to search for are the coefficients of the kernel expansion. Since we search
for linear functions in the high, or even infinite dimensional space we will write
them also as f(x) = 〈w, φ(x)〉H or as an affine function f(x) = 〈w, φ(x)〉H+ b,
with w ∈ H and b ∈ R.

Minimizing the empirical risk with respect to the parameters (w, b) con-
fronts us with several problems. First, the minimization is a NP hard prob-
lem [Min69]. Even approximately minimizing the empirical risk is NP hard
not only for linear functions but also for other simple geometrical objects
such as spheres [BD00]. The optimal function, that is the indicator function
δ(f(x) 6= y), is discontinuous and even small changes in f may lead to large
changes in both empirical and expected risk.

In order to overcome the difficulties arising from the exact minimization of
the empirical risk, we will use the upper bound of the indicator function and
minimize the upper bound. This is not only computationally effective but has
also the benefit of yielding consistent estimators [Hof08].

23

2. An Introduction to Kernel Learning Algorithms

−1 0 1
0

1

2

3

4

5

6
Classification Loss Functions

x

L
(−

1
,x

)

0/1 Loss
Hinge loss
Quadratic loss

−1 0 1
0

0.5

1

1.5

2
Regression Loss Functions

x

L
(0

,x
)

ε insensitive loss

Quadratic loss

Figure 2.1.: Commonly used loss functions for classification (left) and regres-
sion (right) estimation. The 0-1 loss is positive for every element
for which the sign does not equal its label. It is discontinuous
and not convex. The Hinge and quadratic loss are convex ap-
proximations thereof. For regression estimation the ε insensitive
and quadratic loss are commonly used. Both are symmetric and
penalize the deviation from the true target value (in this case 0).

2.3.1. Support Vector Classification

Consider the problem of binary classification with input data

(x1, yn), . . . , (xn, yn) ⊂ X × {−1,+1}. (2.43)

We seek a function assigning to each point x ∈ X its corresponding label sign.
In order to achieve this we implement the search for f : X → R over the
function space H as the following regularized risk functional [Cor95, Vap95].

min
f∈H

1

2
‖f‖2

H + C
n∑
i=1

L(yi, f(xi)). (2.44)

The final classification function will then be obtained by taking sign(f(x)).
Typical choices for the loss function are L(y, t) = max{0, 1−yt}p with p = 1, 2.
For p = 1 the loss is usually referred to as the Hinge loss , for p = 2 as the
quadratic loss . Both are depicted in Figure 2.1 together with the indicator
function δ(y 6= f(x)) (also known as the 0-1 loss function) of which they are
both upper bounds. Note that the Hinge as well as the quadratic loss are
convex with respect to their second argument. It is due to this convexity that
the minimizer of (2.44) is unique. We have also introduced the regularization
parameter C ∈ R ∪ {∞} to the optimization problem in order to control the
trade-off between the smoothness of the function measured by ‖f‖H ans its
ability to explain the data correctly.

24

2.3. Learning with Kernels

We can set C =∞, in which case (2.44) is also referred to as the hard margin
SVM. With this choice we enforce the solution f to incur no loss at all [Vap63].
There might not be a solution to this problem because the function class H
may not contain a function that perfectly separates the data.

The SVM formulation (2.44) is a quadratic program (QP) and can thus be
solved efficiently [Boy04]. Several algorithmic strategies have been proposed
for this particular problem, see for example the SMO algorithm [Pla99]. For a
differentiable loss it is conceptually easiest to resort to simple gradient descent
techniques. A detailed analysis of a Newton optimization scheme can be found
in [Cha07].

2.3.2. Support Vector Regression

As the next example of kernel based learning algorithm we consider the task of
regression with target space Y ⊆ R. Again we use a regularized risk functional
and write

min
f∈H

1

2
‖f‖2

H + C
n∑
i=1

L(yi, f(xi)). (2.45)

Several loss functions can be used, for example the ε-insensitive loss Lε(y, t) =
max{0, |y−t|−ε} [Vap95, Vap97, Dru97] or the quadratic loss L(y, t) = (y−t)2

yielding penalized least squares regression [Hoe70, Tik63, Mor84, Wah90]. In
Figure 2.1 both loss functions are depicted. The representer theorem ensures
a finite representation of the optimal solution of (2.45). Plugging this into the
problem and for the special case of the quadratic loss, we obtain the following
closed form solution for the optimal parameters α∗, where we assume C > 0

α∗ = argmin
α∈Rn

1

2
α>Kα + C‖Kα− y‖2 (2.46)

=

(
K +

1

2C
I

)−1

y, (2.47)

with y = (y1, . . . , yn)>. Due to the structure of the solution this is also re-
ferred to as kernel ridge regression, the “ridge” 1/2C added to the kernel
matrix is a consequence of the regularizer. Using the shorthand Kx(·) =
(k(·,x1), . . . , k(·,xn))> the prediction function becomes

f(x) = Kx(x)>
(

K +
1

2C
I

)−1

y. (2.48)

2.3.3. Gaussian Processes

Another way of looking at the regression problem is from the viewpoint of
Gaussian Processes (GPs). Gaussian processes provide a probabilistic ap-

25

2. An Introduction to Kernel Learning Algorithms

proach for kernel learning and are not limited to regression. For a more general
overview of the GP framework we refer to [Mac98, Ras06].

A GP defines a distribution over functions f : X → R and is fully described
by a mean m : X → R and covariance function K : X × X → R

m(x) = E[f(x)], k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.49)

For notational simplicity we set m to be the zero function. Given a finite
collection of data x1, . . . ,xn we first compute its covariance matrix Kxx in the
same way as we did for the Gram matrix (2.5). The covariance matrix defines
a distribution over the vector of output values fx = (f(x1), . . . , f(xn))>

fx ∼ N (0,Kxx), (2.50)

which is a multivariate Gaussian distribution. Therefore the specification of
the covariance function implies the form of the distribution over the functions.
The role of the covariance for GPs is the same as the role of kernels we used
so far, both specify the notion of similarity. This is also the reason we choose
kK to denote both quantities.

Let us consider again the task of real-valued regression. Given training data
consisting of pairs of inputs (x1, y1), . . . , (xn, yn) the goal is to predict the out-
put value y∗ for a new test data point x∗. We will assume that the output
values we have access to are only noisy observations of the true underlying
function y = f(x) + ε. Furthermore we assume the noise to be additive in-
dependently identically Gaussian distributed with zero mean and variance σ.
For notational convenience we define the following vectors, using bold sym-
bols for vectorial variables; the stacked output values y = (y1, . . . , yn)>, the
covariance terms of the test point K∗ = (k(x∗,x1), . . . , k(x∗,xn))> as well as
K∗∗ = k(x∗,x∗). From the model assumption (2.50) we know that the output
values are distributed according to[

y
f(x∗)

]
∼ N

(
0,

(
(K + σ2I) K∗

K∗
> K∗∗

))
. (2.51)

The predictive equations for the Gaussian Process we are interested in are then
obtained by computing the conditional distribution

f(x∗)|y, {x1, . . . ,xn},x∗ ∼ N
(
K>∗ (K + σ2I)−1y,K∗∗ −K>∗ (K + σ2I)−1K∗

)
.

(2.52)
Comparing with (2.48) we observe that the GP mean predictor is exactly
the same solution we have obtained for Kernel Ridge Regression. The noise
variance term σ2 appeared as a regularization constant in the kernel ridge
regression case. Also note that we have witnessed yet another manifestation
of the representer theorem which we have not used explicitly. What differs to
Kernel Ridge Regression is that not only a mean prediction is defined but we
obtained a full distribution over the output values including an uncertainty of

26

2.3. Learning with Kernels

the prediction. Note however that the expression of the predictive variance
in (2.52) solely depends on the locations of the training points and not on
any training labels. Since usually some parameter selection process is used to
determine the kernel parameters the uncertainty term is not independent of
the training labels.

2.3.4. Structured Prediction using Kernels

So far we have considered only very simple target spaces Y , for example
Y = {−1,+1} and Y = R. This is however a very limited scenario as in
many tasks the objects of interest are more complex than being only binary
class membership. For example ranking a set of web-pages according to their
relevance for a given query is a task which is not easily expressible in the previ-
ously used framework. Making predictions about graph layouts, entire image
patches or multi-label problems are a few additional examples which call for a
more general framework.

We want to apply kernel methods to all problems of this type and the follow-
ing simple modification of the kernel function allows us to reuse the results we
have obtained so far [Alt04, Tso05, Cai04]. We extend the class of functions
to be of the form

f : X × Y → R, (x, y) 7→ f(x, y), (2.53)

i.e. they depend on elements of both input and target space. Since the predic-
tions we are interested in live in the space Y we will use the following prediction
rule

y∗(x) = argmax
y∈Y

f(x, y). (2.54)

Note that aside from this new prediction function little has changed from
the setup we have developed so far. We just extend the input space and
restricted the output space to always be R. The feature map is of the form
φ : X × Y → H, the corresponding kernel is the dot product in the RKHS H

k(x, y,x′, y′) = 〈φ(x, y), φ(x′, y′)〉H (2.55)

and the representer theorem ensures that the solutions of regularized risk func-
tionals can be expressed in terms of expansions around training data points.
The dependency of f on the target space provides the possibility to take its
structure into account.

The loss function can also encode the structure in the target set. In binary
classification there is no such structure beyond two elements being equal (be-
longing to the same class) or different (belonging to separate classes). Now
consider the task of retrieving a ranked list of websites given some text query.
Missing the most relevant website should incur a higher cost than missing the
10th most relevant website. This is encoded using a loss function of the type

27

2. An Introduction to Kernel Learning Algorithms

∆ : Y × Y → R+. We will think of ∆(y, y′) as the cost of predicting y′ where
it should have been y and therefore set ∆(y, y) = 0 ∀y ∈ Y . If the maxi-
mum of (2.54) is taken at the correct labeling, no cost is produced. However,
predicting a different y incurs a cost which depends on the similarity of the
true and the predicted output. This gives rise to the following regularized risk
formulation [Tso05]

min
f∈H

1

2
‖f‖2

H + C

n∑
i=1

max

{
0,max

y∈Y
(∆(yi, y)− (f(xi, yi)− f(xi, y)))

}
. (2.56)

This is a convex problem which requires the solving of the inner maximization
of (2.54). Since for many problems this can not be done efficiently, one can only
hope for approximate solutions. A standard way of solving the problem is by
dualizing the problem and using column-generation techniques [Het93, Ben00].

For the regularized risk formulation above the optimal function is of the
form

f (·, ·) =
n∑
i=1

∑
y∈Y

αiyk((·, ·), (xi, y)). (2.57)

We will outline only a few applications of this model and refer to [Bak07]
for a more detailed overview.

• The classical binary setup is recovered by simply setting φ(x, y) = yφ(x)
and ∆(y, y′) = δ(y = y′). The inner maximum reduces to
1 − 2yi

∑n
j=1 αjyjk(xi,xj) which (ignoring some offsets) yields exactly

the SVM optimization problem (2.44) with the Hinge loss.

• Multiclass classification [Cra00, Col02, All00, Rät03] can be cast in this
framework. Let C denote the number of classes. Then y ∈ {1, . . . , C}
and the loss function is a multicategory version of the 0− 1 loss, namely
∆(y, y′) = 1 − δ(y = y′). Corresponding kernels are typically chosen to
be δ(y = y′)k(x,x′).

• In the case of multi-label estimation one is interested to predict a set of
labels y ∈ 2{1,...,n} for each input point. This is described in [Eli02] where
a ranking scheme is devised such that f(x, i) > f(x, j) if the label i ∈ y
but j 6∈ y.

• In object localization one is interested in the extent of a visual object in
a given image. Most approaches aim to find a bounding box around this
object which is as tight as possible. The standard technique to do so is
to derive a classifier for this object class which subsequently is applied to
a number of regions in the test image, e.g. by means of a sliding window
approach [Lam08b]. In [Bla08] this problem is posed as a structured
regression problem. In their formulation, the extent of the bounding box
(its upper left and lower right coordinate) are predicted directly without
any detour of a specialized region classifier.

28

2.3. Learning with Kernels

2.3.5. Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a widely used algorithm with many
applications such as feature extraction, dimensionality reduction and data vi-
sualization. Its benefits include that it is easy to compute and easy to in-
terpret. Given some data x1, . . . ,xn, the PCA is an orthogonal projection of
these points onto their principal axes, which are those which minimize the
average projection cost measured as the squared distance between the points
and their projections. The PCA algorithm boils down to an eigenvalue de-
composition of the empirical covariance matrix of the data Cemp = Eemp[(x −
Eemp(x))(x − Eemp(x))>], i.e. solving the system of equations Cempvk = λkvk.
For d-dimensional data xi this problem can be solved in O(d3) time.

In [Sch98] this problem is posed in the feature space by simply replacing x
with φ(x). Since the empirical covariance lies in the span of {φ(x1), . . . , φ(xn)}
we can compute it in terms of kernel evaluations at the data points. For
notational convenience we assume that we already centered the data in the
feature space such that

∑n
i=1 φ(xi) = 0. Then we can write the eigenvalue

problem as

Cempvk =
1

n

n∑
i=1

φ(xi)φ(xi)
>vk = λkvk (2.58)

and thus we can see that the eigenvectors are of the form vk =
∑n

i=1 αkiφ(xi).
Resubstituting this into (2.58) we find that the coefficients α are easily com-
puted by the Eigenvalue problem

Kα = λα (2.59)

with K being the kernel matrix of the data. Having solved this eigenvalue
problem we can compute the projection of any point x onto the k-th principal
component of the data as 〈vk, φ(x)〉 =

∑n
i=1 αkik(x,xi).

Kernel PCA can be used as a pre-processing step for algorithms which are
not “kernelizable”, that is algorithms not based entirely on dot products.

2.3.6. Applications of Support Vector Algorithms

Probably much of the success of kernel based algorithms and the SVM and
SVR formulation in particular is due to the empirical success on diverse prac-
tical problems. Just to name a few we mention that SVMs were applied to
handwritten recognition [DeC02] and achieved the best classification scores
on the MNIST [LeC98] benchmark dataset. Visual object classification is an-
other task, e.g. [Bla08, Bla96, Cha99] and Chapter 7 of this thesis. Other
applications include Object Detection [Lam08a, Rom01], microarray process-
ing tasks [Bro00], text categorization [Dum98], ranking [Her00], novelty de-
tection [Hay01] and many more. Recently interdependent label problems have
been approached by SVMs [McC05, Tso05].

29

2. An Introduction to Kernel Learning Algorithms

Several authors applied kernel learning algorithms to image processing ap-
plications. In the later chapters of this thesis we will investigate in greater
details their use for visual object classification in particular. A good source for
an overview is [CV07] which includes applications for the classical problems in
image processing, namely image coding, image de-noising and image segmen-
tation. In [Kim05] image models based on Kernel PCA are proposed and it is
shown that they perform well on image de-noising and super-resolution tasks.

2.4. Conclusion

In this chapter we have introduced the most basic concepts of positive definite
kernels and presented some algorithms which build upon them. The main idea
is that positive definite kernels provide a measure of similarity between possibly
complex objects. With the regularized risk framework one can implement the
search over rich classes of functions and still obtain functions which can be
expressed in finitely many terms of kernel evaluations. Another benefit is that
this search can be made convex and thus can yield problems which not only
can be solved efficiently, but also guarantee global optimality.

30

3. Learning With Ambiguity

A typical assumption for building classification systems is the availability of
training data as pairs of instances and corresponding labels. The label infor-
mation is assumed to be precise in the sense that there is a one to one mapping
between the label and the training points. In the Multiple Instance Learning
(MIL) scenario this assumption is weakened and the correspondence between
label information and training points is ambiguous.

Problems in which label information is ambiguous arise naturally in image
classification. Consider the example image from the Caltech-101 dataset de-
picted in Figure 3.1 (input image). The label attached to this image is “Face”.
Although the face appears centered in the image it covers only a small fraction
of the entire image. Therefore the label information should be interpreted as:
“This image contains a face.” rather than “The entire image is an example of
a face image.”. In other words, all we know is that there exists an unknown
number of pixels in the image which belong to the shown face.

One might argue that with more label information provided from a user
this problem could be solved. Suppose we would have additional information
from a user who specified a bounding box around the face like the one in Fig-
ure 3.1(a). The problem of ambiguity remains. There is less clutter in this
image but from the viewpoint of being a discriminative example for the cate-
gory of faces, it is unclear whether or not choices (b) or (c) would have been
better exemplars. One could standardize the position of the bounding box,
e.g. specifying the location w.r.t. to the tip of the nose, but any convention is
likely to be suboptimal. In the ideal setting the problem of selecting the most
discriminative bounding boxes in the image is shifted to the learning algorithm
for two reasons: i) a label for a bag is cheaper to obtain and ii) even if a user
labeled all bounding boxes of an image it is unclear which of them to use for
training. This is exactly the setting that can be cast as a multiple instance
learning problem.

The MIL problem was first introduced in [Die97a] for the task of drug ac-
tivity prediction. Since then a number of different applications emerged in the
literature. Up to now the span of applications cover a variety of problems such
as identification of proteins [Tao04], content based image retrieval [Zha02], ob-
ject detection [Vio06], and prediction of failures in hard drives [Mur05].

In this chapter we report on two contributions. First we propose a disam-

31

3. Learning With Ambiguity

(input image) (a) (b)

(c) (d) (e) (f)

Figure 3.1.: An example image from the Caltech-101 dataset [FF04] (upper
left) and several (re-scaled) subwindows thereof. The available
label for this image is that it belongs to the category “Face”. Al-
though a face appears centered in the image it is unclear which
of the image yields the best training example. Should the sub-
windows (d) and (e) be labeled “face”, “non-face” or do they fall
into a “void” category? There is more than one face in the image,
(f) is a subwindow of (input image) found in the lower left of the
image on the board behind the person.

biguation of different scenarios that can arise within the MIL setting. Although
a large amount of prior work on the topic exists, most often they solve vari-
ations of the problem using the same name [Die97b, Wan02, Zha02, Gär02,
Tao04, Vio06, Ray05, Che06b]. We start with a formal definition and argue
that because of label ambiguity one has impose further assumptions to the
problem. This leads to different problems each of which requires especially
tailored methods to solve them. The second contribution is a new optimiza-
tion technique for the kernel based MIL approaches of [And03, Man05] and a
new formulation which overcomes shortcomings of those approaches, identified
on a set of benchmark datasets.

32

3.1. The Multiple Instance Learning Problem

3.1. The Multiple Instance Learning Problem

We begin with a formal definition of the multiple instance learning problem.
From here on we will denote with upper case letters, bags1 of elements and their
labels and instances with their corresponding labels with lower case letters.

Definition 3.1.1 (Multiple Instance Learning). Given a training set of n
elements {(Xi, Yi)}i=1,...,n, where each element consists of a bag of instances
Xi = {x1

i , . . . , x
mi
i }, x

j
i ∈ X and a label Yi ∈ {−1, 1}. With yji we denote

the label of the instance xji . We can make the following statements about the
instance labels yji :

Yi = 1 ⇒ ∃j0 ∈ {1, . . . ,mi} : yj0i = 1, (3.1)

Yi = −1 ⇒ ∀j ∈ {1, . . . ,mi} : yji = −1. (3.2)

The bag label information in MIL induces constraints on instance labels in
an asymmetric way. A negative labeled bag contains only instances to which
a negative label can be assigned to. On the other hand a positive bag label
only enforces that the bag contains at least one instance in the bag that can be
assigned to the positive class. We will refer to this instance as the witness of
the bag, since it is responsible for the positive label. There is no information
about the remaining points, they might even belong to neither the positive nor
the negative class. In general the instance labels are from the set {−1, 1, ?},
where the label ? can be though of as a void category.

We want to emphasize that one has to distinguish between the semantics of
bag and instance label and bear in mind that they have a different meaning,
e.g. “contains an positive example” versus “is the positive example”. We will
give some examples of this difference between bag and instance labels in the
following section.

There are two possible goals, either a classification function for the bags

f : 2X → {−1, 1}, f(X) 7→ Y (3.3)

or for the instances therein

f : X → {−1, 1}, f(x) 7→ y (3.4)

is sought. Which of the two cases apply depends on the actual problem which
is cast as a MIL problem. One can always design a classification function for
the instances and compute the bag label as the maximum label of all instances
therein.

1In the MIL literature some authors confuse the term bag as being a name chosen for this
particular problem. The bag which is referred to is the mathematical object, also known
as a multiset.

33

3. Learning With Ambiguity

3.2. Label Ambiguity

In order to select an appropriate method dealing with the ambiguity, further
assumptions about the generating process of the bags need to be made. We
differentiate between three different scenarios that arise due to a different inter-
pretation about the ambiguous labels of the instances in the positively labeled
bags.

3.2.1. Instance Scenario

The Instance Scenario states that to all of the instances x ∈ X one can
associate either a positive or a negative class label. In other words yji ∈
{−1, 1},∀i, j. While for all instances in negative bags the label information
is already specified, ambiguity remains about instances in the bags with a
positive label. Those can be elements of both negative and positive class, the
only further information available is that at least one of them comes from the
positive class.

Further information about the structure of the problem may be available.
For example it could be known that only a certain number of instances in each
positive labeled bag are from the positive class, say only one, or not more than
three.

Example: Names to Faces

A practical example for this scenario is the problem of assigning names to
faces in collection of user photographs. We aim to train a system that can
identify a certain person in an image. Assume that for all photographs of a
user a face detector retrieved all faces shown in the images. Providing the
information whether or not a certain person is shown in a single photo or even
a set of photos is of less effort than providing the exact one-to-one mapping of
names to faces. Thus we are confronted with an assignment problem during
training. If the user labeled a set of images as negative, that means he provided
the information the person is not shown in any of them, we have full label
information for all of the retrieved faces of these images. For positive labeled
sets we simply know that some of the retrieved faces are of the person in
question. Importantly, each single face can be assigned either to the positive
or the negative class.

3.2.2. Witness Scenario

A second scenario is the following. Only some instances of a positive labeled
bag can be assigned a positive label. All other points in that bag are neither
from the positive nor the negative class. Here the instance labels take on values
in the set {−1, 1, ?}. The problem becomes the identification of a witness that

34

3.2. Label Ambiguity

is the cause for the bag label. Once this instance has been identified, all other
points should be ignored. The crucial difference to the instance assumption is
that not all instances can be assigned to a class.

Example: Visual Object Classification

The image classification problem shown in Figure 3.1 illustrates this scenario.
Suppose we try to use such image data to construct a object classifier. As
argued earlier we should interpret the label “Face” as the information of a
face being present somewhere in the image. It is reasonable to assume that
subwindows like (a),(b) or (c) are useful examples for this task, but it is unclear
which of them to use for training or whether it is better to use all of them.
Although the designer of the system has some idea about the object of interest,
it is a-priori unclear how much context around the object is needed for a robust
classification.

For subwindows like (d) and (e), those which show a part of the face, it is
not sensible to make a decision whether a face is shown, these examples are
neither in the background nor face class. The witness scenario deliberately
avoids assigning labels to all subwindows in the image. However there may be
more than a single witness per bag. For example in (input image) more than
one face is shown. The image patch (f) that is taken from the lower left of
(input image) also depicts a face.

For several image classification tasks it has observed that the context, e.g. the
region around the object of interest, can provide discriminative information.
In [Vio06] the problem of face detection in a video conferencing scenario is
described. They face the problem of having only low resolution images where
a head is less than 10 pixels wide and thus context is not only an additional
source of information, but indeed crucial to detect faces reliably. We want to
emphasize that the problem of choosing the correct amount of context is an
inherent problem for any visual object classification system. Any user provided
bounding box or segmentation is likely to be suboptimal. The ideal system
should be capable of selecting the most discriminative bounding box itself, and
also has the benefit of requiring an easier image labeling task.

3.2.3. (Sub)Set Scenario

The third scenario is that it is the collection of instances in a bag that consti-
tutes a positive bag label. One can think of the bag as a collection of parts,
where each part alone may be necessary but not sufficient for a positive bag
label. Additionally, bags may include parts that are not relevant to the bag
label at all. We refer to this specific problem as the Subset Scenario.

We make the following two observations. The subset scenario can be reduced
to the standard witness scenario of form 3.2.2 in the following way. For each
bag with a positive label an new bag is formed from the power set X ′i = 2Xi of

35

3. Learning With Ambiguity

Figure 3.2.: Two images from the VOC-2007 dataset with a segmentation
super-imposed. Each segment is regarded as a “superpixel” and
described separately. It takes several superpixels to described the
entire object. Note that for both images a subset of superpixels
exists that is almost perfectly aligned with the object (plus its
shadow).

all instances. With this transformation, one element of X ′i will be the witness
of the positive label. However, since the superset of Xi is of size 2mi , this
problem renders to be infeasible due to its high dimensionality.

Alternatively this problem could be regarded as a supervised classification
task, but on “bag-level”. Standard classification techniques can be reused to
classify a bags directly, e.g. by deriving kernels for bags instead of comparing
instances. Such an approach is proposed in [Gär02], where specific kernels for
the MIL problem are developed. Other approaches of this category are the
approaches of [Tao04, Che06a].

Example: Visual Object Classification

As argued earlier visual object classification is inherently a multiple instance
learning problem. Instead of searching for a single bounding box describing
the entirety of an object we could also aim to describe it as its collection of
parts. For example [Bur98] and later [Web00, Fer03] considered an object to
be composed of parts and shape, where parts correspond to image patches
and shape encodes geometry information. This representation is illustrated
in Figure 3.2, where two images are shown with super-imposed segmentation
obtained by normalized cuts [Shi00]. We refer to each segment as a superpixel
of the image and regard a superpixel as the instance, while the image is the bag
of superpixels. For both examples there exists a set of superpixel which almost
perfectly covers the object. The label of the image (car and motorbike) only
provides the information that a set of superpixels exists within the image whose
union shows the object. No information is available which of the superpixels
contains parts of the object, which yields a multiple instance problem with the

36

3.3. SVM for Multiple Instance Learning

set scenario.

3.3. SVM for Multiple Instance Learning

In the following we will show a way to adapt support vector learning to the
multiple instance learning problem. This requires the incorporation of the label
ambiguity into the algorithm, and we present ways to do so for the instance
and the witness scenario.

3.3.1. SVM for the Instance Scenario

In the instance scenario one is confronted with an assignment problem for in-
stances in the positive labeled bags. The first one to introduce SVM classifiers
to the MIL problem was [And03] who introduced the mi-SVM that we will
review in this section.

For each instance xji ∈ Xi in every training bag Xi we introduce a discrete
variable yji ∈ {−1, 1} to serve as its label. The objective is to optimize over this
new set of discrete variables jointly with the SVM parameters. The objective
function of mi-SVM is

min
f∈H,{yji }

1

2
‖f‖2

H + C
n∑
i=1

mi∑
j=1

L
(
yji , f(xji)

)
(3.5)

sb.t. yji ∈ {−1, 1}, ∀i = 1, . . . , n, j = 1 . . . ,mi, (3.6)

yji = −1, ∀i : Yi = −1, j = 1, . . . ,mi, (3.7)
mi∑
j=1

yji + 1

2
≥ 1, ∀i : Yi = 1. (3.8)

Note that two constraints (3.8) and (3.7) ensure label consistency with the
bag labels. Due to the presence of discrete variables yji this problem is an
integer program. We will defer optimization strategies for this formulation to
Section 3.4.

3.3.2. SVM for the Witness Scenario

Two SVM variants that are build for the witness scenario were originally
proposed in [And03] and [Man05]. We begin with the MI-SVM formula-
tion of [And03]. For positively labeled bag Xi we introduce a binary vector
si = (s1

i , . . . , s
mi
i) ∈ {0, 1}mi that encodes the selection of the witness in this

bag. For bags with a negative label we fix sji = 1, j = 1, . . . ,mi and require
for positive labeled bags that only one witness is selected

∑mi
j=1 s

j
i = 1. The

37

3. Learning With Ambiguity

optimization problem is

min
f∈H,s

1

2
‖f‖2

H + C

n∑
i=1

mi∑
j=1

sjiL
(
Yi, f(xji)

)
(3.9)

sb.t. sji ∈ {0, 1}, ∀i : Yi = 1, j = 1, . . . ,mi, (3.10)

sji = 1, ∀i : Yi = −1, j = 1, . . . ,mi, (3.11)
mi∑
j=1

sji = 1 ∀i : Yi = 1. (3.12)

This problem is an integer program due to discrete variables s. A slightly
different formulation was proposed in [Man05] under the name MICA,

min
f∈H,ν

1

2
‖f‖2

H + C
n∑
i=1

[
δ(Yi = 1)L

(
1,

mi∑
j=1

νji f(xji)

)
(3.13)

+δ(Yi = −1)

mi∑
j=1

L
(
−1, f(xji)

)]
(3.14)

sb.t. νi ∈ ∆mi i = 1, . . . , n, (3.15)

where we denote by ∆m the m dimensional simplex. MICA is not directly
identifying a single witness in the bag but a convex combination of all points in
a bag that acts as a witness. This removes the integer representation involved
in the MI-SVM at the expense of adding bilinear constraints to the program.

The solutions of MICA and MI-SVM differ only in the following case. At
the optimal solution consider the set Wi of indices from instances in bag Xi

that incur minimum loss

Wi =

{
argmin
i=1,...,mi

L(1, f(xji))

}
. (3.16)

For all bags Xi where there is only one such instance, i.e. |Wi| = 1 the solutions
to both formulations agree: sji = νji ,∀j = 1, . . . ,mi. Otherwise the objective
value of (3.9), resp. (3.13) could be lowered by changing sji , resp. νji to be 1
for j ∈ Wi. For the bags with |Wi| > 1 multiple equally good solutions exist.
Each of the elements Wi can be chosen as a witness sji and likewise all νi with∑

j∈Wi
νji = 1 have the same objective value. Hence it is only for those bags

that the solution of the two formulations differ and it depends on the algorithm
used which among the possible solutions is found.

3.4. Optimization Strategies

Most formulations proposed for multiple instance learning share the problem
of being combinatorial problems of the instance labels, including mi-SVM, MI-
SVM and MICA. In this section we will describe the strategies proposed in the

38

3.4. Optimization Strategies

original works which introduced the SVM formulations [And03, Man05] and
devise a deterministic annealing algorithm to solve for better local optima of
the problems.

3.4.1. Alternation Algorithm

Both the authors of the mi-SVM and MI-SVM [And03] and of MICA [Man05]
propose iterative algorithms to solve their formulations.

Solving the Instance SVM

The algorithm for solving the mi-SVM proposed in [And03] is summarized
in Algorithm 1. First, the instance labels are initialized with their bag label.
Now the following two steps are alternated until convergence. Using the current
assignment an SVM is trained and the resulting function is used to classify all
instances, thus determining their new values. If necessary, constraint (3.8) is
enforced by switching labels of the least negative instances in a bag for which
the constraint is violated.

This alternating algorithm was shown in [Che06c] to be an instance of a
Convex-Concave-Procedure [Yui02, An05] and thus is guaranteed to monoton-
ically decrease the objective function and converge to a local minima.

Algorithm 1 Alternation for mi-SVM

Input: Training data {(Xi, Yi)}i=1,...,n, Regularization parameter C > 0
Output: Local optimum (f,y)

1: yji ← Yi ∀i = 1 , . . . , n, j = 1, . . . ,mi.
2: while The assignments {yji } changed do
3: f ← SVM solution using labels {yji }.
4: yji ← signf(xji), ∀i : Yi = 1, j = 1, . . . ,mi

5: if constraint (3.8) violated then
6: j′i ← argmaxj=1,...,mi

f(xji), i : Yi = 1

7: y
j′i
i ← 1

8: end if
9: end while

10: return f,y

This optimization procedure initializes instance labels to be identical to the
bag label. We observed that for each iteration of this algorithm only few labels
are changed and the algorithm is biased toward solutions with a large number
of positive labeled points.

39

3. Learning With Ambiguity

Solving the Witness SVM

The suggested procedure to solve the MICA and MI-SVM is analogue to the
algorithm described above. For both MICA and MI-SVM the algorithm is
initialized using the mean of the instances in positive labeled bags as witnesses
of the bags. Subsequently the training of an SVM is alternated with the search
for the new witness. In the case of MI-SVM the instance with maximal function
value f(xji) is chosen and for MICA a linear program has to be solved to obtain
the new values of {νji }.

3.4.2. Deterministic Annealing

Deterministic annealing, e.g. [Ros98], is a special case of a homotopy method
and may be applied in a more general context than introduced here. Suppose
one is confronted with a non-convex optimization problem of the form

y∗ = argmin
y∈{0,1}n

F (y). (3.17)

Deterministic annealing finds a local minimum of this function as follows. The
discrete variables y are regarded as random binary variables with a probability
distributions from a space P . Instead of solving the optimization problem di-
rectly one searches for a distribution p ∈ P which minimizes the expected value
of F . By doing so, the optimization problem becomes continuous but is not
easier to solve. Therefore, an additional convex term is added to the objective
function: the entropy S of the distribution. The new problem becomes

p∗ = argmin
p∈P

Ep (F (y))− TS(p). (3.18)

The parameter T controls the trade-off between the expectation and the en-
tropy and is called the temperature of the problem.

As a first observation, note that the function F always has a (not necessarily
unique) global minimum due to the finiteness of the possible parameters y ∈
{0, 1}n. For T = 0 and P including all point-mass distributions over {0, 1}n
the global minimizer p∗ of the problem above will put all of its probability
mass on the global minimizers of F . Thus the new formulation preserves the
optimality of the original problem. If on the other hand T � 0 the entropy
term in (3.18) dominates the objective function and the problem will be solved
easily thanks to convexity.

A solution to (3.18) is found by solving a sequence of problems for values
of T0 > T1 > . . . > T∞ = 0, each of which is initialized at the solution
obtained by the previous one. This sequence of temperatures is referred to
as the annealing schedule. As T approaches zero, the influence of the entropy
term vanishes and the distribution will become more concentrated on a local
minimum of Ep[F]. In this case we can identify the discrete variables y from p∗.

40

3.4. Optimization Strategies

However, there is no guarantee for global optimality because there might not
be a path connecting the local minimizers for the chosen annealing schedule
to the global optimum of F .

3.4.3. Deterministic Annealing for Instance-SVM

The goal of the instance scenario based mi-SVM is to infer all missing labels of
the instances in positive labeled bags. Following the deterministic annealing
principle, we will regard the label yji of a instance xji ∈ Xi from a positive
labeled bag Yi = 1 as a binary random variable.

In principle our space of distributions P could consist of all possible dis-
tributions over yji . For simplicity we use as search space P the space of all
factorial distributions that can be written as

P (y) =
n∏
i=1

mi∏
j=1

P (yji). (3.19)

This class does include distributions which assign a non-zero probability to
configurations of instance labels that violate constraint (3.8). However this
fact does not pose a problem, if we can assure that at the last step of the
deterministic annealing algorithm a distribution is reached which ensures con-
sistency with the constraint. In other words, the final distribution p must
concentrate its mass on a valid distribution y of label assignments but the
path taken to this optimum does not need to satisfy consistency.

With pji we denote the probability P (yji = 1) and consequently we have
P (yji = −1) = (1− pji). One can think of the value of pji as the belief that the
instance xji belongs to the positive (instance) class. To simplify the notation
we will introduce but fix pji = 0 for all instances from negative labeled bags.
The entropy of the distribution (3.19) is

S(p) =
n∑
i=1

mi∑
j=1

(
pji log pji +

(
1− pji

)
log
(
1− pji

))
. (3.20)

In summary, we use all factorial distribution (3.19), apply the substitution
(3.18) to (3.5), and add the entropy term (3.20) to arrive at the minimization

41

3. Learning With Ambiguity

program

min
p,f∈H

1

2
‖f‖2

H + C

n∑
i=1

mi∑
j=1

[
pjiL

(
1, f(xji)

)
+
(
1− pji

)
L
(
−1, f(xji)

)]
(3.21)

+TS(p) (3.22)

sb.t.

mi∑
j=1

pji ≥ 1, i = 1, . . . , n, (3.23)

0 ≤ pji ≤ 1, i = 1, . . . , n, j = 1, . . . ,mi (3.24)

(3.25)

Iteratively solving (3.21)

The problem (3.21) needs to be solved for a sequence of decreasing tempera-
tures T . First we need to check whether the optimum point of this program
is a valid assignment of the instance labels. To see that this is the case, we
note that in the case of zero temperature T = 0 the entropy term vanishes.
For each instance xji the objective function is minimized by setting

pji =

{
1 L(−1, f(xji)) > L(1, f(xji))

0 L(−1, f(xji)) < L(1, f(xji))
. (3.26)

If with this choice constraint (3.23) is violated, the minimal objective is achieved
by setting pji = 1 for the instance with minimal loss L(1, f(xji)). Thus an op-
timal point is achieved for a distribution p that takes on only values 0 or
1.

For each new temperature T we start a search for the optimum solution using
the previously found point (f,p) and alternate between the updates of f and
p until we converge to the next local minimum. For fixed p the classification
function f can be found using any SVM solver. A simple way to do so is
to duplicate the instances from the positive labeled bags (one with a positive
label and one with a negative) and use two different costs for each instance,
namely Cpji and C(1− pji).

The optimal value of p can be found analytically for each new f . This can
be seen as follows. Let dji denote the difference of positive and negative loss
for instance xji

dji = L
(
1, f(xji)

)
− L

(
−1, f(xji)

)
. (3.27)

Since only parameters within one bag are coupled, one can optimize for each
bag separately. We denote the parameters in bag i with pi and write the

42

3.4. Optimization Strategies

Lagrangian with respect to this parameter

L(pi, λi) = C

mi∑
j=1

pjid
j
i (3.28)

+T

mi∑
j=1

(
pji log pji +

(
1− pji

)
log
(
1− pji

))
(3.29)

+λi

(
mi∑
j=1

pji − 1

)
. (3.30)

Taking the derivative w.r.t. pji and equating to zero yields the following ex-
pression for the optimal value

pji (λi) = σ

(
−Cdji + λi

T

)
, (3.31)

where σ(t) = (1 + exp(−t))−1 denotes the sigmoid function. We wrote p(λi)
to make explicit the dependency of the solution on the Lagrange multiplier.
Since σ(t) ∈ (0, 1), the solution always satisfies 0 ≤ pji ≤ 1.

To solve for pji one checks whether

mi∑
j=1

pji (0) ≥ 1, (3.32)

in which case the constraint is satisfied and thus the Lagrange multiplier λi = 0.
Otherwise we know that the constraint will be tight, that is

∑mi
j=1 p

j
i (λi) = 1

which implies

pji =
σ
(
−C
T
dji
)∑mi

j′=1 σ
(
−C
T
dj

′

i

) . (3.33)

The computation of p given the SVM parameters can thus be done very ef-
ficiently and only incurs marginal costs compared to the quadratic programs
one has to solve at each iteration.

The quadratic program can be initialized with the solution from the previous
iteration to speed up convergence. In our implementation we use Newton
optimization [Cha07] which most often only requires one additional step to
converge to a new solution after updating p.

In order to start with an easy convex program we have to choose T0 to
ensure that we start with high entropy distributions. We found that choosing
T0 = 10C is sufficient to ensure a high entropy and thus pji ≈ 0.5 for all
experiments. The final algorithm AL-SVM for solving (3.21) is summarized in
Algorithm 2.

43

3. Learning With Ambiguity

Algorithm 2 Deterministic Annealing for identifying all Labels (AL-SVM)

Input: Training data {(Xi, Yi)}i=1,...,n, Regularization parameter C > 0
Output: Local optimum (f,y)

1: Set pji ←

{
1
2

if Yi = 1

0 otherwise
.

2: Set T ← 10C {relatively high temperature}
3: while S(p) > ε do
4: while p changed do
5: f ← SVM solution using instances with cost Cpji and C(1− pji)
6: p← solve using Eq.(3.31)+(3.33)
7: end while
8: T ← T/1.5 {annealing schedule}
9: end while

10: y← p
11: return f,y

The alternating algorithm of Section 3.4.1 is equivalent to the deterministic
annealing algorithm if we initialize pji = (Yi + 1)/2, j = 1, . . . ,mi, and start
the annealing schedule with T0 ≈ 0. In the experiments we use T0 = 10−8 to
emulate his case.

3.4.4. Deterministic Annealing for Witness-SVM

We will now show how to use deterministic annealing for the SVMs implement-
ing the witness scenario. Again only variables within one bag are coupled and
we introduce a multinomial distribution for bag Xi: pi = (p1

i , . . . , p
mi
i) with∑mi

j=1 p
j
i = 1. The value pji is the probability that the instance j in bag i is the

witness of the bag label. For negative labeled bags we set pji = 1, effectively
treating them as bags with a single instance, and keep these values fixed. The
entropy of this distribution is

S(pi) =

mi∑
j=1

pji log pji . (3.34)

Applying the deterministic annealing principle to the objective function (3.9)
we arrive at the following problem

min
p,f∈H

1

2
‖f‖2

H + C
n∑
i=1

mi∑
j=1

pjiL
(
Yi, f(xji)

)
+ T

n∑
i=1

S(pi) (3.35)

sb.t.

mi∑
i=1

pji = 1, ∀i : Yi = 1, (3.36)

0 ≤ pji ≤ 1 i = 1, . . . , n, j = 1, . . . ,mi. (3.37)

44

3.5. Experiments: Two dimensional toy dataset

For each temperature T we solve iteratively by updating f and p to find the
next local minimum. The search for f reduces to a SVM problem with cost
Cpji for instance xji .

For a given f we find the update rule for p again by writing the Lagrangian
and equating to zero (see Eq. (3.28))

pji =
exp

(
−C
T
L(Yi, f(xji)

)∑mi
j′=1 exp

(
−C
T
L(Yi, f(xj

′

i)
) , (3.38)

Again the updates of pji can be computed with only little additional cost.

A high value of T enforces high entropy distributions and in this regime
pji ≈ 1/mi. The lower the value of T the more concentrated the distributions
will become and thus pji will be concentrated on instances which incur low cost.
In the extreme T → 0 only points with L(Yi, f(xji)) = 0 will have pji > 0, or if
all points in a bag have a positive cost the one with the least positive output
will be chosen as the witness of the bag label.

The latter case for T = 0 is exactly the same solution found by the alter-
nation algorithm proposed for MICA. This is seen by identifying pji = νji . We
are optimizing the same objective using deterministic annealing rather than
the alternating algorithm proposed in [Man05] and described in Section 3.4.1.
In the case of several equally good solutions for MICA the entropy term de-
termines the choice of the convex combinations, namely those concentrated on
one point only. Therefore the set of optimal points of MICA and MI-SVM are
identical.

Again T0 = 10C was used as a starting value for the temperature. The
complete algorithm is summarized in Algorithm 3.

3.5. Experiments: Two dimensional toy dataset

To compare the differences between the algorithm from [And03, Man05] and
the annealing algorithm, we conducted an experiment using synthetic 2D data.
In this way we control the fraction of instances with a positive label in the
positive labeled bags and therefore test the results for instance as well as for
bag accuracy. In the typical MIL scenario the assessment of the accuracy
obtained on individual instances is impossible due to the ambiguity of the
label information.

Experimental Setup

Ten different datasets were created by varying the fraction of positive labeled
points per bag over f = 0.1, 0.2, . . . , 1. A bag was generated in the follow-
ing way. The label Yi and the size mi were sampled uniform at random from

45

3. Learning With Ambiguity

Algorithm 3 Deterministic Annealing for identifying the Witness (AW-SVM)

Input: Training data {(Xi, Yi)}i=1,...,n, Regularization parameter C > 0
Output: Local optimum f,y

1: Set pji ←

{
1
mi

if Yi = 1

1 if Yi = −1

2: Initialize T ← 10C
3: while p changed in the inner loop do
4: while p changed do
5: f ← SVM solution using cost Cpji for instance xji
6: p← update according to Eq. (3.38)
7: end while
8: T ← T/1.5 {annealing schedule}
9: end while

10: yji ← 1 for all pji > ε and Yi = 1
11: f ← SVM solution using y
12: return f,y

{−1, 1} and {1, 2, . . . , 10} respectively. If the bag label is negative we sam-
pled mi instances uniformly from the black region (negative class) in the left-
most picture in Figure 3.3(a). A positive labeled bag consists of dfmie points
sampled uniformly from the white region (positive class) and the remaining
b(1− f)mic points from the negative class. For each fraction f we sampled 30
training and 100 test bags.

The hyperparameters were fixed to C = 100 and we used a Gaussian kernel
with bandwidth σ = 1. With this data we trained the AL-SVM and AW-SVM
with two different starting temperatures, T = 10−8 and T = 10C. 2

Results and Discussion

The averaged results over 50 independent runs are shown in the Figure 3.3(b)+(c).

The experiments reveal an important property of the algorithms. The first
observation is, that the formulation implementing the witness scenario per-
forms equally well whether or not the deterministic annealing algorithm is
used. For this dataset both methods seem not to be prone to local minima.
Due to the simple structure of the toy dataset it is more or less irrelevant
which instances are identified as the witness of positive labeled bags. As the
ambiguity decreases (f → 1), the bag accuracy increases while the instance
accuracy decreases. A decision surface is shown in Figure 3.3(d). The number
of positive instances is underestimated but all bags are correctly identified.

For the instance SVMs we observe the following. With only a low number

2Matlab code used for the experiments is available online at http://www.kyb.mpg.de/bs/
people/pgehler/mil/mil.html

46

3.5. Experiments: Two dimensional toy dataset

white − positive, black − negative

−2 0 2

−3

−2

−1

0

1

2

3 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

percent of positive labeled points in bags

E
rr

o
r

−
 a

v
e

ra
g

e
d

 o
v
e

r
5

0
 r

u
n

s

Bag Classification Error

AL−SVM : T=10C

AL−SVM : T=0

AW−SVM : T=10C

AW−SVM : T=0

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

percent of positives in bags

E
rr

o
r

−
 a

v
e

ra
g

e
d

 o
v
e

r
5

0
 r

u
n

s

Instance Classification Error

AL−SVM : T=10C

AL−SVM : T=0

AW−SVM : T=10C

AW−SVM : T=0

(a) (b) (c)

(d) f = 0.9 (e) f = 0.1 (f) f = 0.1

Figure 3.3.: A 2D toy dataset. (a) distribution of instance labels, instances in
the white region are labeled positive, instances of the black region
negative. (b)+(c) error rates for a varying number of positive la-
beled instances per positive bag. In (d)-(f) three different decision
functions of AW-SVM (d) and AL-SVM (e)+(f) are shown. The
dark area corresponds to the support of the negative class.

of true positive instances (f → 0) the mi-SVM yields very high error rates on
both bag- as well as instance-level. This is due to the fact that the initialization
(setting all instances of positive labeled bags to the positive class) creates a
bias towards solutions of a high number of instance labels. A decision function
is plotted in (e) and it can be seen that too many instances are classified to
be positive (white region). Using the annealing algorithm the opposite effect
appears, too few instances are labeled positive. This is illustrated in Figure 3.3
(f) where the dark region is dominant.

We conclude that both algorithms to solve the SVM implementing the in-
stance scenario come with a problem: the annealing scheme underestimates the
number of positive points, whereas the simple alternating steps overestimate
this number.

47

3. Learning With Ambiguity

3.6. A new objective function - ALP-SVM

The findings in the previous section raise the question of whether the objective
function of the mi-SVM Eq.(3.5) is suited for the MIL problem at all. The
problem of underestimating the number of positive labeled instances motivates
the following extension of the objective function. We include a term in the
objective function which penalizes a deviation from a pre-specified number of
positive points

min
f∈H,{yji }

1

2
‖f‖2

H + C

n∑
i=1

mi∑
j=1

L
(
yji , f(xji)

)
(3.39)

+D
n∑
i=1

(
mi∑
j=1

yji + 1

2
−mip

∗
i

)2

(3.40)

sb.t. yji ∈ {−1, 1}, (3.41)

yji = −1, ∀i : Yi = −1, (3.42)
mi∑
j=1

yji + 1

2
≥ 1, ∀i : Yi = 1. (3.43)

The difference to the mi-SVM formulation is the additional term (3.40). A
new hyperparameter p∗i can be used to control the expected number of posi-
tive labeled points per bag. Assignments {y1

i , . . . , y
mi
i } that deviate from this

fraction are penalized. For bags with a negative bag label we set p∗i = 0 be-
cause we know that there are no positive labeled points in these bags. This
way an over– and underestimation of the fraction of positive labeled points
per bag can be avoided, similar to a balancing constraint in semi-supervised
learning. A balancing constraint ensures that the fraction of positive to neg-
ative labeled points estimated on the unlabeled point set is the same as that
from the labeled training examples. In semi-supervised learning this quantity
can be estimated from the training set. This is not possible in a MIL scenario,
where there is ambiguity of the data and therefore no obvious way of how to
choose this value.

The value for p∗i can either be prefixed due to prior knowledge or be left
open as a hyperparameter estimated via cross validation. As the number of
parameters to be estimated scales with the number of positive bags we will
simplify by setting p∗i = p∗j ∀i, j : Yi = Yj.

The objective function (3.39) can be optimized using the deterministic an-
nealing algorithm with the only difference to (3.21) being the addition of the
term

D
n∑
i=1

(
mi∑
j=1

pji −mip
∗
i

)2

. (3.44)

48

3.7. Experiments: Benchmark MIL datasets

Name #Bags+ #Bags- #Inst+ #Inst- dim
Corel 100 100 651 660 143

Musk1 47 45 207 269 166
Musk2 39 63 1017 5581 166

Table 3.1.: Statistics of the benchmark datasets: number of positive labeled
bags #Bags+, negative labeled bags #Bags-, points in positive
bags (average) #Inst+ and points in negative bags #Inst- and the
dimension of the dataset

This changes the update rule for p. Again the parameters can be optimized
for each bag independently. For a fixed function f we solve (3.39) using the
conjugate gradient method3 while ignoring constraint (3.23). If a solution does
not satisfy (3.23), i.e. is outside the feasible region of ALP-SVM we know that
a solution of the constraint problem will lie on the simplex

∑mi
j=1 p

j
i = 1. In

this case (3.44) is simply a constant and thus the solution is the same as for
the AL-SVM.

To solve problem (3.39) one can use Algorithm (2) with the additional pa-
rameters D, p∗ and the new update rule of p in step 6.

3.7. Experiments: Benchmark MIL datasets

For a comparison of the proposed algorithms to those published in the litera-
ture and especially the SVM programs described above we conducted exper-
iments on some benchmark datasets for the MIL problem. We used the MUSK
and the COREL datasets (Elephant, Fox, Tiger) introduced in [And03].4 Statis-
tics of these datasets are shown in Table 3.1.

Experimental Setup

Again in a first set of experiments we compare deterministic annealing to the
alternation algorithm. We used T = 10−8 and initialized all instance labels to
their corresponding bag label to emulate the alternating algorithm.

The results published in [And03, Man05] were obtained using different regu-
larization functions Ω. To unify the presentation and to enable a compar-
ison between algorithms not design choices we use the formulation (2.44),
i.e. Ω(x) = x and the quadratic loss for the annealing algorithm.

A Gaussian kernel with the bandwidth set to the median of the pairwise
instance distances denoted by σemp is used for the first set of experiments.

3http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/
4http://www.cs.columbia.edu/~andrews/mil/datasets.html

49

3. Learning With Ambiguity

AL-SVM, T=0 AL-SVM, T=10C ALP-SVM, T=10C
err p̂ err p̂ err p̂

Musk1 14.3 100% 20.6 38% 14.3 99%
Elephant 24.0 91% 30.5 14% 16.5 58%
Fox 43.5 60% 38.5 16% 35.0 72%
Tiger 25.0 79% 30.5 19% 14.0 60%

Table 3.2.: Results on several benchmark datasets. Standard deviation of the
10x fold cross validation error is usually around 3.5%. Also shown
is the averaged error (err) and the fraction of instances per bag p̂
that are assigned positive labels.

The remaining hyperparameters were optimized using 10 fold cross validation.
We searched over the grid C ∈ {1, 10}, D ∈ {1, 10} and p∗ ∈ {0.1, .0.2, . . . , 1}.

Results and Discussion

Results are shown in Table 3.2. In addition to the cross validation error we also
report the average fraction of estimated positive instances in a positive bag p̂.
For this quantity there is no ground-truth value available, since labels are only
given for bags. On all dataset we observe the same behavior as in the 2D toy
example. Setting T = 0 leads to high values of p̂ while using the annealing
algorithm T = 10C yields to a low value of positive labeled instances p̂. The
ALP-SVM penalizes deviation from the pre-specified fraction p∗ and therefore
overcomes this problem by finding solutions which lie “in between”. Using
the new objective function we obtain better results on all COREL datasets.
For the MUSK1 dataset there was no better solution found than setting all
instance labels positive, a solution also found by the ALP-SVM.

A final set of experiments was done on all the datasets described above
as well as on MUSK2. We used the same grid of hyperparameters as in the
initial experiments but now also varied the width of the kernel bandwidth in
the interval σ ∈ {σemp, 2σemp, 0.5σemp}. Best performance was almost always
attained using σemp.

The final results together with those reported in [Zha02, Man05, And03] are
shown in Table 3.3. Note that the results obtained using MICA,MI-SVM and
AW-SVM on the one and mi-SVM and AL-SVM on the other hand despite
their similarity vary quite a bit. We therefore suspect that the datasets are
very sensitive to model selection.

The experiments show that deterministic annealing does not help for the
formulations identifying the witness. For the MUSK datasets it even worsens
the performance. However we have to emphasize that using deterministic an-
nealing one always achieves a lower value of the objective function (numbers

50

3.8. Conclusion

EM-DD MI-SVM MICA AW-SVM mi-SVM AL-SVM ALP-SVM
MUSK1 15.2 22.1 15.6 14.3 20.6 12.6 14.3 20.6 13.7 p̂ = 1
MUSK2 15.1 15.7 9.5 16.2 20.8 16.4 17.4 13.8 13.8 p̂ = 0.28
Elephant 21.7 18.6 17.5 18.0 19.0 17.8 20.5 29.0 16.5 p̂ = 0.58
Fox 43.9 42.2 38.0 36.5 37.0 41.8 36.5 37.0 34.0 p̂ = 0.71
Tiger 27.9 16.0 18.0 17.0 17.0 21.6 21.5 28.0 14.0 p̂ = 0.6

Table 3.3.: Results on several benchmark datasets. Left column in AW-SVM
and AL-SVM are results obtained with T0 = 10−8 ≈ 0, whereas the
right column states the result for T = 10C. The standard deviation
of the 10x fold error is usually around 3.5% for our experiments.
The published result for MICA was obtained using a `1 penalization
of the SVM parameters.

not reported here). The fact that a better local minimum does not translate
into better performance, indicates that the objective function is inadequate or
that the correct identification of the witness is not important to classify the
bag correctly.

The results of the ALP-SVM are promising. Using this formulation the un-
der/overestimation of p̂ is overcome and a better local minima of the objective
function also yields a better classification performance. In the direct compar-
ison with an annealed and non-annealed AL-SVM the cross validation error
is lower on all datasets. As the results using the ALP-SVM are better than
those from AW-SVM,MI-SVM and MICA (except MUSK2) it seems that the
latter methods make inefficient use of the available information by using only
one point per bag for building the decision function.

3.8. Conclusion

In this chapter we presented the multiple instance learning problem as a way
to learn from data with label ambiguity. We presented a number of image
classification problems that are naturally cast as a MIL problem. We argued
that the term multiple instance learning does not refer to a single well defined
scenario, but according to additional assumptions on the problem at hand can
result to three different settings.

The use of support vector machines for MIL has been proposed before [And03,
Man05] and in this chapter we derived a deterministic annealing algorithm for
these formulations. This algorithm consistently finds better local minima of
the objective functions. Furthermore we reported results which led to the
conclusion that the algorithm of the mi-SVM as presented in [And03] is only
applicable for problems with very little ambiguity. The deterministic annealing

51

3. Learning With Ambiguity

algorithm for the instance SVMs comes with the problem of under-estimating
the number of positive labeled points. These behaviors render both algorithms
inapplicable for a general class of datasets.

The formulation ALP-SVM introduced in this chapter overcomes this prob-
lem. This extension of the mi-SVM objective function opens up the possibility
to encode prior knowledge about the dataset in a principled way. The deter-
ministic annealing algorithm can be used to optimize the new objective func-
tion with similar computational cost as the AL-SVM. This new formulation
achieved the best published results on the COREL datasets.

52

4. Learning the Kernel Function

In the previous chapters we introduced the concept of learning with kernels
and presented some of the most prominent kernel learning algorithms. One
of the main advantages of these algorithms is that they can be used with any
positive definite kernel function. The choice of the kernel largely influences the
performance of the algorithm, and it is imperative to choose a suitable kernel
for a given learning task. Therefore the following question arises naturally and
is central to the use of kernel learning algorithms For a given task, what is the
best kernel function to choose? This is exactly the question we will discuss in
this chapter.

The question about an appropriate kernel is amongst the most important
ones for kernel learning algorithms and has consequently received much atten-
tion ever since these algorithms have been applied, e.g. [Cha02, Bou03, Cra03,
Cri02, Lan04, Gra03]. In this chapter we will review some of the approaches
which have been taken and in particular introduce the multiple kernel learn-
ing (MKL) framework for supervised learning in which the kernel function is
optimized over during the training phase of the algorithm. During training for
MKL a linear combination of so-called proposal kernels is sought which yields
the final kernel of the SVM classifier.

The main contribution of this chapter is the generalization of MKL to the
infinite case. This will allow us to design algorithms which can choose a kernel
function automatically from very general classes of kernels, e.g. all Gaussian
kernels with positive definite covariance matrices and all convex combinations
thereof. There are several advantages of our approach, namely ease-of-use,
interpretability, and the possibility to discover structure in the data which may
otherwise be unknown to the user. A similar generalization was independently
derived in [Arg06, Özö08]. An empirical evaluation of the methods introduced
here is presented in Chapter 5.

4.1. Parameter Selection for SVM

There are two ingredients that have to be specified prior to SVM training:
the strength of regularization and the function space to search over. In the
formulation we have presented in Section 2.3.1 the amount of regularization is
controlled by the scalar variable C ∈ R+. The second ingredient is the space of

53

4. Learning the Kernel Function

admissible functions H, and as already discussed in Chapter 2, it is implicitly
defined through the choice of a positive definite kernel k(·, ·; θ). The problem
of parameter selection for support vector machines thus amounts to finding
appropriate choices C and θ. Since with θ we define both the type and the
parameters of the kernel, e.g. Gaussian and its width, we will speak of the
problem of kernel selection and parameter selection interchangeably.

Ideally the parameters θ and C are chosen such that the resulting classifi-
cation function yields a low generalization error. Since in training we usually
are given a finite set of samples, the generalization error has to be estimated
and parameters have to be set according to these estimates.

4.1.1. Cross Validation

The technique of cross validation (CV) is arguably the most common way to
select hyper-parameters in model selection [Koh95]. In N -fold cross validation
the available data S = {(x1, y1), . . . , (xn, yn)} is partitioned into N disjoint
sets S1, . . . ,SN of approximately equal size, also called validation sets. The
model is then trained N times, each time using the remaining data S \ Sk as
training data and measuring the performance on the corresponding validation
set Sk. The cross validation estimate is the mean of the performances on all
validation sets. If each set Sk is of size n′, then the cross validation estimate is
an unbiased estimator of the expected performance of the model trained with
n − n′ training examples. In the limit one can choose N = n, in which case
one also speaks of the leave-one-out-estimate. The collection of predictions on
the validation sets are referred to as the cross validation scores.

The main problem of the cross validation technique is the necessity of re-
training the model N times for each possible parameter. For models which are
expensive to train this might already pose a serious problem. This situation
becomes even worse if models are parameterized by a number of parameters
since exploring combinations is often impractical. The number of training pro-
cedures involved scales exponentially with the numbers of parameters to be set.
Consider the case of a model with three free parameters. If for each parameter
there are ten possible values, one already has to compare 103 models, each of
which needs to be trained N times in order to estimate its cross validation
error.

4.2. Multiple Kernel Learning

In multiple kernel learning one follows a different route to select kernel parame-
ters for SVM classifiers. Two main ideas have lead to this development [Lan04].
The first idea is to parameterize the kernel function as a linear combination of
positive definite kernels. The kernel parameters to be chosen are the mixing

54

4.2. Multiple Kernel Learning

coefficients of this linear combination rather than the kernel parameters itself.
Secondly, the coefficients of this linear combination are optimized over during
the training phase of the algorithm using an extended version of the SVM
objective function.

Assume for a given problem one already has available a finite set of kernels

k(·, ·; θ), θ ∈ Θ (4.1)

to choose from. Instead of selecting exactly one kernel among them using
some scoring function like the cross validation estimate, one rather introduces
a more general kernel, parameterized in the following way

k(·, ·; {dθ; θ ∈ Θ}) =
∑
θ∈Θ

dθk(·, ·; θ), dθ ∈ R. (4.2)

It is important to note that not all possible choices of the kernel parameters
{dθ; θ ∈ Θ} yield a positive definite kernel. Restricting the parameter range
of dθ to the positive orthant, dθ ∈ R+ ensures, according to property 2.1.7,
a positive definite kernel. In the remainder of this chapter we will make use
of this constraint and therefore only consider positive linear combinations of
kernel functions.

One can regard the new kernel of the form (4.2) simply as a differently pa-
rameterized one, with the “original” kernel parameters θ being replaced with
the mixing coefficients dθ. The kernel class is also enlarged since all linear com-
binations of proposal kernels are now included. However one still is confronted
with the problem of parameter selection for which one could resort to estima-
tors as discussed in [Cha02] or cross validation over a set of mixing coefficients.

The approach of combining multiple kernels offers the flexibility of combining
several heterogeneous data sources in a single framework. In Chapter 6 and
Chapter 7 we will show how this property can be exploited for the task of
image classification. In image classification each image is represented by a
variety of different feature descriptors, each of them characterizing different
aspects of the image, like color or texture. With MKL it is possible to combine
these aspects in a joint model. Another property accounted to MKL is its
interpretability [Son06, Var07, Kum07]. After MKL training the final mixing
coefficients can be inspected and may reveal properties of the problem at hand.

MKL Objective Function

In the framework of multiple kernel learning the coefficients dθ are optimized
jointly with the other parameters function, namely α and b. This is imple-
mented in the following way. Each kernel in the set Θ corresponds to one

55

4. Learning the Kernel Function

feature space Hθ and one feature mapping φθ : X → Hθ. Thus the hyper-
planes in this space are of the form 〈wθ, φθ(·)〉Hθ . The function which is seeked
in multiple kernel learning is a linear combination thereof and thus of the form

f(x) =
∑
θ∈Θ

dθ 〈wθ, φθ(x)〉Hθ + b, (4.3)

where we have added an offset b to the function. According to the representer
theorem we know that for minima of a regularized risk formulation there is an
equivalent formulation in terms of kernel expansions of the form

f(x) =
n∑
i=1

αi
∑
θ∈Θ

dθk(x, xi; θ) + b. (4.4)

So far there is no difference to the ordinary SVM problem, all we did was to
re-parameterize the kernel function. The question of how to select the mixing
weights dθ is still to be addressed.

For notational convenience we use the shorthand notation

d =
(
dθ1 , . . . , dθ|Θ|

)
(4.5)

and define the simplex

∆ (Θ) =

{
d

∣∣∣∣∣∑
θ∈Θ

dθ = 1, dθ ≥ 0, θ ∈ Θ

}
. (4.6)

We pose the multiple kernel learning objective function in the regularized
risk framework (2.37). The kernel parameters d enter the objective function
both in the loss and regularization term

min
{wθ;θ∈Θ},b,d

1

2

∑
θ∈Θ

dθ‖wθ‖2 + C

n∑
i=1

L

(
yi,
∑
θ∈Θ

dθ 〈wθ, φθ(xi)〉Hθ + b

)
(4.7)

sb.t. d ∈ ∆(Θ) (4.8)

The only difference to the standard SVM problem is that we choose a different
regularization function Ω(f) = 1

2

∑
θ∈Θ dθ‖wθ‖2 which weights the influence of

the individual functions with their mixing coefficients. This choice of regular-
ization was used in [Zie07] and was also shown to be equivalent with

Ω(f) =
1

2

(∑
θ∈Θ

dθ‖wθ‖

)2

(4.9)

used in [Bac04, Son06].

56

4.2. Multiple Kernel Learning

Due to the product terms between the primal variables dθ and wθ this prob-
lem is not convex. In [Zie07] it is noted that the simple substitution vθ = dθwθ
(see [Boy04, Section 4.1.3]) yields an equivalent convex minimization problem,
provided the loss function L is convex. Therefore efficient convex minimization
techniques can be applied to solve it, and global optimality is guaranteed. The
resulting problem in primal form reads

min
{vθ;θ∈Θ},b,d

1

2

∑
θ∈Θ

1

dθ
‖vθ‖2 + C

n∑
i=1

L

(
yi,
∑
θ∈Θ

〈vθ, φθ(xi)〉Hθ + b

)
(4.10)

sb.t. d ∈ ∆(Θ). (4.11)

4.2.1. Non-sparse Multiple Kernel Learning

The formulation introduced so far promotes sparsity of the selected kernels as
a consequence of the `1 constraint of the mixing coefficients. This choice is not
crucial to the method and in fact can be replaced using other regularizers for
the variables dθ or just restricting them to yield a positive definite kernel. The
latter choice was the original proposal in [Lan04] but has the downside that
it turns the problem into a semi-definite program (SDP) for which the best
known algorithms scale in the order of O(n6).

In [Klo08] the simplex constraint is replaced with the unit ball

B (Θ) =

{
d

∣∣∣∣∣∑
θ∈Θ

d2
θ ≤ 1, dθ ≥ 0, θ ∈ Θ

}
(4.12)

which results in a program of the form

min
{vθ;θ∈Θ},b,d

1

2

∑
θ∈Θ

1

dθ
‖vθ‖2 + C

n∑
i=1

L(yi, f(xi)) (4.13)

sb.t. d ∈ B(Θ), (4.14)

with f as in (4.10). This modification has the following effect. Instead of
a sparse solution at the optimum all weights dθ will be non-zero. It can be
shown that the program is equivalent if constraint (4.14) is replaced by

d ∈ ∂B(Θ), (4.15)

that is d is an element of the boundary of the unit ball only. The latter
constraint would render the problem not convex.

Since we constrain the coefficients with the `2 norm we refer to this formu-
lation as the `2-MKL and the simplex MKL of the last section as the `1-MKL.
The difference between the `1-MKL and the `2-MKL formulation can be under-
stood as two different ways to express prior knowledge about the set of kernels
Θ. If we believe that only a few of them are suitable, i.e. the set of kernels

57

4. Learning the Kernel Function

Θ contains a large number of uninformative kernels, the `1-MKL should be
chosen. If on the other hand all of the possible choices of kernel parameters
are reasonable one can use the `2 formulation to include them all but let the
algorithm adjust the ratios between them.

4.3. Multiple Kernel Learning Algorithms

In this section we will review two algorithms devised to solve the multiple
kernel learning formulation. Both make use of standard SVM solvers as a
subroutine.

4.3.1. SimpleMKL

Both the problem (4.10) as well as (4.13) are jointly convex in both d and the
SVM parameters for convex loss functions L. For every possible fixed choice of
d the problem reduces to the standard SVM problem with the kernel defined
by this particular mixing coefficients. This suggest a very simple optimization
procedure using gradient descent methods [Cha02, Rak08]. Minimization is
split into two parts, an inner part which corresponds to the SVM optimization
given a fixed choice of d and an outer minimization of the mixing coefficients
d fixing the SVM parameters. To this end we introduce a function g which
corresponds to the optimal SVM objective value for a given parameterization
d of the kernel

g(d) = min
{vθ;θ∈Θ},b

{
1

2

∑
θ∈Θ

1

dθ
‖vθ‖2 + C

n∑
i=1

L

(
yi,
∑
θ∈Θ

〈vθ, φθ(xi)〉Hθ + b

)}
.

(4.16)
One can evaluate g using any SVM solver and the progress in the last years has
lead to the development of several efficient SVM solvers [Joa99, Pla99, Cha01].
The remaining step is the minimization of g with respect to the admissible
range of d. Thus problem (4.10) (or (4.13))can be equivalently written as

min
d

g(d) (4.17)

sb.t. d ∈ ∆(Θ) (or d ∈ B(Θ)). (4.18)

This can be solved using a gradient descent scheme. Although this includes
derivatives of the SVM parameters with respect to the mixing coefficients, it
can be shown that these derivatives vanish at the maximal points (α∗, b∗) of
g, namely ∂α

∂dθ
(α∗) = 0 and ∂b

∂dθ
(b∗) = 0. Therefore the derivative is easily

computed, using the expression for vθ in (B-9), which becomes

∂g

∂dθ
= −1

2

n∑
i=1

n∑
j=1

α∗iα
∗
jyiyjk(xi, xj; θ). (4.19)

58

4.3. Multiple Kernel Learning Algorithms

This can be efficiently computed once the variables α, b are known. This gradi-
ent descent algorithm is also known as SimpleMKL [Rak08]. It is summarized
in Algorithm 4.

Algorithm 4 SimpleMKL

Input: Regularization parameter C > 0, Kernel set Θ, Training set S
Output: Parameters α, b,d

1: dθ ← 1/|Θ|,∀θ ∈ Θ
2: while Stopping criterion not met do
3: (α, b)← SVM solution using k(·, ·) =

∑
θ∈Θ dθk(·.·; θ) (SVM solver)

4: Update d, e.g. using a gradient step
5: end while

A variant of SimpleMKL is to use second order information in the gradient
descent step [Cha08]. This involves the inversion of a matrix of the size nsv×
nsv with nsv being the number of support vectors at the current optimal
solution of g(d). This might already be available as a by-product of the SVM
algorithm, e.g. [Cha07] but in any case it is not more expensive to compute
than the SVM solution itself.

4.3.2. SILP

Another algorithm specifically designed for MKL optimization is the Semi-
Infinite-Linear-Programming (SILP) approach of [Son06]. It is possible to
reformulate the problem (4.10) into

max
γ,d

γ (4.20)

sb.t. γ ∈ R, (4.21)

d ∈ ∆(Θ), (4.22)∑
θ∈Θ

dθSθ(α) ≥ γ, ∀α ∈ Z, (4.23)

Z =

{
α ∈ Rn

∣∣∣∣∣0 ≤ αi ≤ C,
n∑
i=1

αiyi = 0

}
, (4.24)

where the function Sθ is defined as

Sθ(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj; θ)−
n∑
i=1

αi. (4.25)

Note that this is a linear program (LP) for γ and d that are only linearly
constrained. There are an infinite number of constraints (4.23) which have
to be satisfied at the optimal solution. Each α ∈ Z corresponds to one such

59

4. Learning the Kernel Function

constraint. This problem can be solved by delayed constraint generation using
the following simple alternating scheme. For any finite number of constraints
α0, α1, . . . , αt, the problem can be solved for (γ,d) using a linear program
solver. This finite version is also referred to as the restricted master problem.
Now the subproblem has to be solved: Given the current estimate of γ,d find
the maximum violating constraint, namely

α∗ = argmax
α∈Z

γ −
∑
θ∈Θ

dθSθ(α). (4.26)

Recalling the definition of S this is recognized as solving a SVM with a kernel
as in (4.2). In [Son06] a variant of this algorithm is proposed that avoids
the optimization of the SVM up to a high precision at intermediate steps and
also removes inactive constraints during the course of the computation. In
Algorithm 5 we state the simpler algorithm we presented in this section.

Algorithm 5 SILP for MKL

Input: Regularization parameter C > 0, Kernel set Θ, Training set S
Output: Parameters α, b,d

1: dθ ← 1/|Θ|,∀θ ∈ Θ
2: (α0, b0)← SVM solution with d
3: t← 0
4: while Stopping criterion not met do
5: (dt, γt)← solution of (4.20) using the constraint set {α0, . . . , αt}
6: αt+1 ← solution of (4.26)
7: if

∑
θ∈Θ d

t
θSθ(α

t+1) ≥ γt then
8: break
9: end if

10: t← t+ 1
11: end while

The algorithm iterates between solving an SVM (line 5) and a linear program
(line 6) until the stopping criterion is met, e.g. decrease of the objective value.

4.4. Infinite Kernel Learning

So far we have considered MKL as the problem of learning the linear combi-
nation of a finite number of proposal kernels. In the following we will show
that the limitation to optimize only over a finite number of proposal kernels
is not necessary and that it is possible to optimize over a possibly infinite set
of kernels. We will call this formulation infinite kernel learning (IKL). The
problem remains convex, but the algorithm we devise to solve it involves the
maximization of a non-convex problem. We will argue that this should not

60

4.4. Infinite Kernel Learning

be considered a disadvantage compared to MKL. There, the non-convexity of
the problem was concealed using a pre-selection of finitely many parameters.
Optimizing over a continuously parameterized set of kernels opens up several
possibilities and benefits which we will discuss in more details in chapter 5 and
6.

4.4.1. Derivation

Instead of only finite kernel parameter sets Θ, we allow sets of infinite size,
e.g. the class of Gaussian kernels that is continuously parameterized by the
covariance matrix. To distinguish between these two cases we will use from
now on the notation Θf whenever the set of parameters is finite and denote
with Θ sets of arbitrary size, including finite and infinite sets.

The primal formulation of the MKL problem (4.10) serves as the starting
point of our derivation. Given the set Θ of proposal kernels we seek the finite
subset Θf ⊂ Θ thereof that yields the lowest objective value. We write the
following optimization problem

(IKL-primal) inf
Θf⊂Θ

min
d,{vθ;θ∈Θf},b

∑
θ∈Θf

1

dθ
‖vθ‖2 + C

n∑
i=1

L (yi, f(xi))(4.27)

sb.t. d ∈ ∆(Θf). (4.28)

The infimum can be replaced with a minimum operation, or in other words,
the optimal solution of (IKL-primal) is always achieved with a finite number
of nonzero dθ. To see this we dualize the problem.1 The final problem in dual
form is

(IKL-dual-1) sup
Θf⊂Θ

max
α,λ

n∑
i=1

αi − λ (4.29)

sb.t. α ∈ Rn, λ ∈ R, (4.30)

0 ≤ αi ≤ C, i = 1, . . . , n, (4.31)

T (θ;α) ≤ λ, ∀θ ∈ Θf , (4.32)

where we defined

T (θ;α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj; θ) (4.33)

for easier reference. The variable λ is the Lagrange multiplier of the equality
constraint

∑
θ∈Θf

dθ = 1.

We note that if some point (α∗, λ∗) satisfies condition (4.32) for all θ ∈ Θ
then it also satisfies the condition for all finite subsets Θf thereof. Thus we

1The derivation can be found in the Appendix B.

61

4. Learning the Kernel Function

omit the supremum of (IKL-dual-1) and extend the program to the following
semi-infinite program

(IKL-dual) max
α,λ

n∑
i=1

αi − λ (4.34)

sb.t. α ∈ Rn, (4.35)

λ ∈ R, (4.36)

0 ≤ αi ≤ C, i = 1, . . . , n, (4.37)

T (θ;α) ≤ λ, ∀θ ∈ Θ. (4.38)

Note that there are as many constraints (4.38) as there are kernel parameters
in the set Θ, which might be infinitely many.

To show equivalence between both programs it remains to prove that any
optimal point of (IKL-dual) is also optimal for (IKL-dual-1). In other words
one can construct a finite set Θf for the solution of (IKL-dual) which is also
optimal for (IKL-dual-1). This is exactly the statement of the following theo-
rem.

Theorem 4.4.1. [Het93, Theorem 4.2] Let v(P) denote the value of pro-
gram P. If for all θ ∈ Θ, Θ compact, and for all α ∈ [0, C]n we have T (θ;α) <
∞, then there exists a finite set Θf ⊂ Θ for which the optimum of (IKL-dual-1)
is taken and v(IKL-dual-1) = v(IKL-dual).

A proof of this theorem is given in [?, Theorem 2.1]. In particular the
previous theorem states that at the optimum of (4.34) only a finite number of
dθ are non-zero. This ensures that the optimal kernel can be represented with
finitely many elements. The final function is thus always of the following form

f(x) = b+
n∑
i=1

yiαi
∑

θ∈Θ:dθ>0

dθk(x, xi; θ). (4.39)

The derivation of the IKL problem including the statement about finiteness
of the global solution relies on the constraint d ∈ ∆(Θ) which enforces sparsity
of the mixing coefficients. We presented a non-sparse version of MKL in Sec-
tion 4.2.1 replacing this constraint with d ∈ B(Θ). Although exchanging the
constraints removes the desirable property of a finite global solution it would
still be possible to approximately solve the resulting problem.

4.5. Infinite Kernel Learning Algorithm

The dual form (4.34) of the problem is a semi-infinite program and suggests
a delayed constraint generation approach to solve it. Each kernel parameter
of the set Θ defines one linear constraint (4.38) of the problem and thus the

62

4.5. Infinite Kernel Learning Algorithm

constraint generation turns into a search for the next kernel to include. Starting
with a finite constraint set Θ0 ⊂ Θ ones reiterates between the restricted
master problem, that is the search for optimal α, b, λ and the subproblem, a
search for violated constraints indexed by θ which are subsequently included in
Θt ⊂ Θt+1 ⊂ Θ. This should not be confused with the SILP algorithm, where
the constraints are defined by the dual variables α and not by the kernel
parameters.

The final algorithm for IKL is summarized in Algorithm 6. We will first
discuss the two main ingredients of the algorithm and postpone a statement
about its convergence to Section 4.5.3.

Algorithm 6 Infinite Kernel Learning

Input: Regularization parameter C > 0, Kernel set Θ, Training set S
Output: Parameters α, b, dθ

1: Select any θ0 ∈ Θ and set Θ0 = {θ0}
2: t← 0
3: loop
4: (α, b, dθ, λ)← MKL solution with Θt {Solve restricted master problem}
5: θt+1 ← argmaxθ∈Θ T (θ;α) {Solve subproblem}
6: if T (θt+1;α) ≤ λ then
7: break
8: end if
9: Θt+1 = Θt ∪ {θt+1}

10: t← t+ 1
11: end loop

4.5.1. The Restricted Master Problem

The restricted master problem in line 4 reduces to a standard MKL problem
with the set of constraints as possible kernel parameters. Therefore any MKL
algorithm like SILP or SimpleMKL can be used to solve it. Since the parameter
λ is the Lagrange multiplier of the equality constraint

∑
θ∈Θt

dθ = 1 (or the
equivalent condition of the non-sparse formulation) this parameters is already
available as a by-product of the MKL solution.

4.5.2. The Subproblem

Essential to the approach of infinite kernel learning is to solve the subproblem
of the problem, which corresponds to finding violated constraints. Therefore
we state the problem explicitly.

63

4. Learning the Kernel Function

Problem 1 (IKL-Subproblem). Given the parameters 0 ≤ αi ≤ C and train-
ing points {xi, yi}, i = 1, . . . , n, solve

θ′ = argmax
θ∈Θ

T (θ;α) = argmax
θ∈Θ

1

2

n∑
i,j=1

αiαjyiyjk(xi, xj; θ). (4.40)

With T (θ;α) we have an analytic score which guides the selection of kernels.
Note that it is equivalent to the negative gradient of g (4.19).

The subproblem function T can be interpreted as follows. On the one hand
there is the outer product of the labels yy> which we will refer to as the label
matrix . On the other hand the α re-weighted kernel matrix αα> ∗Kθ, where
∗ denotes elementwise multiplication. We use the following inner product
between Gram matrices

〈K1, K2〉F =
m∑

i,j=1

K1(xi, xj)K2(xi, xj)

so we can recognize the subproblem as an alignment problem between two
matrices

T (θ;α) =
1

2

〈
yy>, αα> ∗Kθ

〉
F
. (4.41)

There is a high alignment if the α re-weighted Gram matrix is of a similar
structure as the label matrix. Since the label matrix can be understood as the
optimal Gram matrix, achieving a high alignment with it is desirable. The
re-weighting ensures that the alignment is only measured for support vectors,
since for all non-support vectors the coefficient αi = 0. This makes intuitive
sense: all points which are no support vectors are already classified correctly,
adapting the kernel for them will not change the loss function for those points.

There is no general recipe to solve the subproblem since it depends on the
kernel class Θ. In particular the problem is not convex and therefore in general
a global optimum of the function T is hard to find. Some general approaches
on how to solve the subproblem or how to find local maxima are discussed in
greater detail in Section 4.5.4.

For the case of a finite set of kernel parameters Θ the subproblem is easy to
solve since one can visit each single parameter in turn and check whether the
constraint (4.38) is satisfied. Due to this observation it is evident that the IKL
algorithm can also be considered as a new algorithm to solve MKL. Especially
for the case of very many kernels it is beneficial since only a small working
set of kernel matrices needs to be considered at each step, i.e. the restricted
master problem is easier to solve due to a fewer number of variables to solve for.

64

4.5. Infinite Kernel Learning Algorithm

Comparison of MKL and IKL

Let us reconsider how MKL can be understood in this framework. In MKL a
finite number of kernels have to be preselected prior to training. Since the set of
kernels remains fixed during the course of the algorithm, the MKL performance
depends on whether or not discriminative kernels have been chosen by the user.
The pre-selection step circumvents the non-convex subproblem and renders the
whole MKL formulation to be a convex problem. Although the IKL problem
is also convex problem, it requires to solve a non-convex subproblem to solve
it.

There are two possible scenarios for kernel combination methods. If the
approach of learning a kernel during training is chosen because one is unsure
about a good kernel, or one has reason to believe that a combination of kernels
is beneficial, the subproblem can be used to exploit structure of the kernel class
in a principled way. It provides an analytic measure which is amendable to
optimization. For some problems at hand a finite set of kernels could be chosen
on purpose in order to express prior knowledge. In this case the selection of
kernels acts as a regularization of the function space.

We will demonstrate in the experimental validation presented in Chapter 5
that in cases where linear combination of kernels are beneficial for classification,
the MKL solution is always outperformed by IKL.

Related Work

Maximizing the alignment between the Gram and the label matrix has been
proposed before, usually as a pre-processing step for kernel machines. In [Cri02]
a normalized version of the above alignment was introduced as Kernel Target
Alignment (KTA). In our notation it reads

(KTA) AKTA(Kθ,yy>) =
〈Kθ,yy>〉F
n
√
〈Kθ, Kθ〉F

. (4.42)

In [Cri02] a concentration inequality for this sample-based alignment is pre-
sented, stating that it is not too dependent on the training set S. Furthermore
it is possible to upper bound the generalization error of a Parzen window clas-
sifier in terms of KTA. It is concluded that for high KTA one may expect good
generalizations and some empirical evidence for this is presented.

The KTA measures the cosine of the angle between the two bi-dimensional
vectors yy> and Kθ and is thus invariant to a rescaling of the kernel function.
This suggests to normalize the kernels by restricting the class to

k′(·, ·, ; θ) =
k(·, ·; θ)√
〈Kθ, Kθ〉F

. (4.43)

With this substitution, the subproblem turns into KTA possibly at the expense
of a more difficult subproblem. Note that

√
〈Kθ, Kθ〉F is simply a scalar

65

4. Learning the Kernel Function

depending on θ and the training data, and thus the normalized kernel is again
a kernel.

Other work on kernel alignments include [Bar05] where Kernel Polariza-
tion (KP) is proposed which simply omits the normalization term of KTA
AKP(S,Kθ,yy>) = n−2〈Kθ,yy>〉F . This is equivalent to the subproblem for
constant α = 1/n.

An unnormalized version of the alignment was also used in [Cra03] to adapt
a kernel matrix by explicitly maximizing the alignment in a boosting scheme.
The kernels are chosen using the inner product as above, the αiαj terms turn
into a weight corresponding to the difficulty predicting whether the points
xi and xj have the same label or not. They restrict the kernel set to outer
products and show that solving the weighted alignment turns into a generalized
eigenvector problem.

4.5.3. Convergence

We can make the following statement, on the convergence of Algorithm 6 which
depends on whether the subproblem can be solved for global optima.

Theorem 4.5.1. [Het93, Theorem 7.2] If the subproblem can be solved,
Algorithm 6 either stops after a finite number of iterations, or has at least one
point of accumulation and each one of these points solve (IKL-dual).

Proof. See Appendix C.

Although Theorem 4.4.1 guarantees the existence of a finite subset of con-
straints Θf , binding at the optimum of (IKL-dual), there is no guarantee that
Algorithm 6 will identify this set. But if the algorithm terminates after a
finite number of steps (and the subproblem can be solved) it reached global
optimality. Each strictly violated constraint with θ ∈ Θ corresponds to a pri-
mal descend direction in dθ. Therefore, if θ is added to the finite set of kernels
and the problem is resolved with this new constraint included, the objective
function is guaranteed to decrease. To ensure global optimality at some so-
lution one has to guarantee that no further descend direction exists. This is
equivalent to be able to solve the subproblem.

An important observation is that all intermediate solutions of the algo-
rithm are primal feasible. Therefore even if the subproblem can not be solved,
i.e. only local maxima of the function T can be found with no guarantee of
global optimality, the algorithm always produces a valid classification function.

For the `2-MKL variant no finite optimal solution exists. However the same
argument as mentioned above still holds. At each iteration the inclusion of ker-
nels θ ∈ Θ will decrease the objective function. Instead of having to pre-select
a finite subset of kernels beforehand one can instead search for the steepest
descent direction using the subproblem and impose a termination criterion,
e.g. decrease of the objective function. This will guarantee a better or equal

66

4.5. Infinite Kernel Learning Algorithm

solution in terms of the objective value, than if the kernel set is restricted to
a finite subset of kernels Θf ⊂ Θ.

4.5.4. Solving the subproblem

The IKL algorithm is suited for any class of parameterized kernel families for
which a way to solve the subproblem or at least local minima can be found. In
the following we discuss several optimization strategies which could be pursued
to tackle this problem. In Section 5.1.1 the following optimization techniques
are applied to the class of Gaussian kernels.

Gradient Ascent

For cases of continuously parameterized kernel functions which are differen-
tiable with respect to their parameter a simple method to solve for local max-
ima are gradient ascent techniques. In each iteration of the IKL algorithm a
search may be initialized in multiple points, and a gradient ascent search is
started. This will result in a number of local maxima from which the highest
is returned. There is no guarantee for finding the global optimum.

Branch-And-Bound

The Branch-And-Bound algorithm is a general technique to find optimal solu-
tions of optimization problems. It involves the following two steps:

1. partition the space of parameters recursively (branching step);

2. make statements that hold for an entire partition (bounding step).

We want to find maxima of the function T (·;α) on the set Θ. Therefore we
need a partition operation that splits a given set Θ0 ⊆ Θ into a number of
partitions Θ1

0 ∪ . . . ∪ Θm
0 = Θ0. This depends on the parameterization of the

problem, e.g. splitting intervals of parameters.
The second ingredient is a bounding function that upper bounds the value

of the true function T on a partition Θ0 ⊆ Θ. This upper bound T̂ must fulfill

max
θ∈Θ0

T (θ) ≤ T̂ (Θ0), ∀Θ0 ⊆ Θ. (4.44)

If for some θ∗ ∈ Θ \ Θ0 we have T̂ (Θ0) ≤ T (θ∗), the whole partition Θ0 can
be discarded from the search space. Otherwise Θ0 is partitioned again and
recursively searched over.

The efficiency of Branch-And-Bound depends on the tightness of the bound
T̂ . Loose bounds incur many splits and thus require many iterations of the
algorithm.

67

4. Learning the Kernel Function

Global Optimization

In general one can borrow techniques from the field of Global Optimiza-
tion [Hor96]. Besides the aforementioned strategies methods like homotopy
methods [Ros98], Difference of Convex functions (DC) [Yui02, An05] or Lip-
schitz optimization are possible candidates. The latter requires Lipschitz-
continuous kernels, those which satisfy

|k(x, x′; θ1)− k(x, x′; θ2)| ≤ L|θ1 − θ2|, ∀x, x′ ∈ X (4.45)

for some constant L > 0. Due to efficiency reasons current Lipschitz solvers
can be applied to problems up to approximately 20 variables only.

4.5.5. Implementation Details

In practice we make several modifications to Algorithm 6.

Multiple pricing: At each iteration of the algorithm the subproblem solver
returns a set of violating constraints instead only the most active to speed up
convergence. In the experiments up to five violating constraints are seeked.

Working set: Coefficients dθ which became zero are pruned out. For the
final solution the corresponding constraints are inserted again in the problem
to check whether they remain inactive. Other working set methods could be
employed.

Warm starts: Both the restricted master problem as well as the subproblem
calls are initialized at the previously solution which speeds up their conver-
gence.
An implementation of the algorithm using a combination of Coin-IPopt-3.3.5
[Wäc06] and the libSVM package [Cha01] is available under the GPL licence
at http://www.mloss.org/software/view/174/. This also includes a MKL
algorithm and the implementation of several subproblem solvers for differen-
tiable kernel classes.

4.6. Conclusion

Learning or estimating a suitable kernel from empirical data is one of the
biggest challenges in the field of kernel learning algorithms. It is among those
which have considerable impact on real world problems and enhance the us-
ability of kernel learning algorithms especially to users which are not experts in
this field. In this chapter we have reported on some progress in this direction.

In particular we focused on the approach to linear combination of kernels.
This problem was originally posed as multiple kernel learning problem [Lan04]

68

4.6. Conclusion

although earlier approaches with similar scope exists [Cha02]. The main con-
tribution reported on here is the generalization of the MKL approach to its
infinite limit. This generalization is direct in the sense that there is no disad-
vantage to MKL.

With the infinite kernel learning framework it is possible to optimize over
large classes of kernels without need for pre-selection. In particular the struc-
ture of kernel classes can be exploited to efficiently traverse the space of kernels
which enables a principled way for kernel selection. This can be exploited in
two ways. On the one hand it may lead to algorithms which are more easy to
use. For practitioners the choice of the kernel function is sometimes regarded
as a burden rather than a degree of freedom. On the other hand it allows
interpretability of the resulting classification function. For MKL one can only
discover structure within the data one has already encoded in the pre-selected
kernels. Using IKL with much enriched kernel classes it is possible to discover
structure beyond this selection.

69

4. Learning the Kernel Function

70

5. Empirical Evaluation of Kernel
Combination Methods

In the last chapter we presented the multiple kernel learning formulation and
generalized it to the case of linearly combining an infinite number of kernels.
In this chapter we concentrate on the experimental comparison of these ap-
proaches. The goal is twofold. With a first set of experiments on artificial
toy data we will provide an intuition about the IKL algorithm. A second
set of experiments is conducted using a variety of standard machine learning
benchmark datasets that have been used to compare different classification
methods [Rät01]. In particular there are two questions we try to answer:

• Does the increased flexibility of linearly combining kernels instead of
choosing only a single one lead to overfitting?

• Both Cross Validation as well as MKL/IKL can be understood as esti-
mators for the kernel hyper-parameters. How do they compare?

In Section 5.2 we discuss the IKL algorithm in more detail by means of simple
toy datasets. The main experimental part is then presented in section 5.3 after
which we conclude with a Discussion. Before we start we will introduce the
kernel classes which are used throughout the experiments presented in this
Chapter.

5.1. Kernel Classes: Gaussian Kernels

We build on the Gaussian kernel described in Section 2.1.6. In total we use
three different variants, which differ in the number of parameters to set. Let
us write the kernel function as

k(x, x′; {σd}Dd=1) = exp

(
−

D∑
d=1

σd(xd − x′d)2

)
, (5.1)

where σd ≥ 0 is the bandwidth for the d’th dimension of the data. For the
first class we restrict all bandwidths to be identical, i.e. σ1 = σ2 = . . . = σD
and refer to this class as (single). This is a standard choice for building SVM
classifiers which treats each feature dimension as being equally important. The
second kernel class consists of those Gaussian kernels which ignore all but one

71

5. Empirical Evaluation of Kernel Combination Methods

feature dimension of the data. In this case we set σd > 0 and σd′ 6=d = 0. We
use the name (separate) to refer to this class of kernels. The last class is the
most general one and includes the two previous classes as special cases. The
class (product) consists of all kernels with non-negative diagonal covariance
matrix, i.e. σd ≥ 0, d = 1, . . . , D.

There is a varying number of free parameters for the three classes. For
(single) only one free parameter has to be set, for (separate) one has two pa-
rameters (index d and value of σd) while for (product) D parameters need to
be specified. This turns the subproblem of the IKL algorithm into a D di-
mensional non-convex optimization problem. However the class (product) is
too large to compute Cross Validation estimates for a reasonable number of
parameter choices and thus it is crucial to exploit the structure of this dataset
in order to efficiently search over it.

5.1.1. Solving the subproblem

To solve the subproblem we use i) for one dimensional subproblem functions
the branch-and-bound algorithm and ii) for all other subproblems a Newton
method. The concepts of both algorithms are introduced in 4.5.4, here we will
described their application to the special case of Gaussian kernels.

Gradient Ascent

We employ the Newton method for maximizing the subproblem function. The
derivative of the subproblem w.r.t. to the kernel parameters is easily calculated
to be

∂T

∂σd
= −1

2

n∑
i=1

n∑
j=1

(xid − xjd)2αiαjyiyjk(xi, xj; θ), (5.2)

where xid denotes the d’the component of the instance xi. The calculation of
the second derivative is analog.

We initialize the search in multiple starting points and perform a gradient
ascent. During the course of the algorithm all previously identified violating
constraints are added to the set of starting points. This worked very well in
practice and is used the IKL-experiments with a more than one dimensional
subproblem.

Branch-And-Bound

For the Branch-And-Bound algorithm 4.5.4 we need to the specify an upper
bound T̂ on the subproblem function together with a strategy for partitioning
the sets of parameters.

For the case of Gaussian kernels the set of kernel parameters to search over
is some interval σ ∈ [σmin, σmax]. At each step of the algorithm we partition a

72

5.2. Toy Examples

set [θ, θ̄] into two sets [θ, θ′] and [θ′, θ̄], where θ′ ∈ [θ, θ̄]. The multi-dimensional
search is analogous, there a partitioning is achieved by splitting only one di-
mension.

We define σd(Θ), σd(Θ) to be the minimum (resp. maximum) value for the
d’th component in the set Θ

σd(Θ) = argmin
σ∈Θ

σd (5.3)

σd(Θ) = argmax
σ∈Θ

σd, (5.4)

and the upper bound T̂

T̂ (θ;α)
def
=

∑
yi=yj

αiαj exp

(
−

D∑
d=1

σd(Θ)(xid − xjd)2

)
(5.5)

−
∑
yi 6=yj

αiαj exp

(
−

D∑
d=1

σd(Θ)(xid − xjd)2

)
(5.6)

The subproblem function can be bounded from above fullfilling the require-
ment (4.44)

T (θ;α) ≤ T̂ (Θ, α). (5.7)

This bound turns out to be very loose resulting in a time consuming search
and hence branch-and-bound could only be used for one dimensional sub-
problems only. The advantage is that it guarantees global optimality of the
solution.

5.2. Toy Examples

All experiments in this section are conducted on artificially created data with
the purpose of: 1. highlighting the benefit of learning with continuously param-
eterized classes of kernels and 2. illustrate the execution of the IKL algorithm.

5.2.1. Chessboard Data

We begin with a binary classification example. The kernel class used for this
experiment are the Gaussian kernels of class (product) described in Section 5.1.
A total of 300 training points are sampled from a two dimensional chessboard
pattern as shown in Figure 5.1(a). Eighteen noise dimensions sampled from a
normal distribution are added to form a 20 dimensional feature vector. Both
classes are equally likely and are indicated by different color and marker in the
figure. This data is normalized to zero mean and unit variance.

73

5. Empirical Evaluation of Kernel Combination Methods

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

chessboard training data

Dimension 1

D
im

e
n
s
io

n
 2

(a) (b)

Figure 5.1.: Chessboard toy example, (a) distribution of training data in the
first two dimensions, (b) resulting classification function of the
IKL classifier. The IKL algorithm chooses chooses only two ker-
nels (5.8) and (5.9) which correctly model the data while ignoring
the noise dimensions.

Note that the chessboard pattern was created with two columns and four
rows such that the optimal bandwidths of a Gaussian kernel are different for
these two dimension. For the remaining 18 noise dimensions the ideal band-
widths are zero since there is no information contained in them. The class
(product) is flexible enough to model all feature dimensions separately.

Now the IKL algorithm is started using some initial kernel which is not the
“correct” one. In Figure 5.2 two slices of the subproblem function T are shown.
In (a) the scaling parameters of the two signal dimensions σ1 and σ2 are plot-
ted against the objective value and in (b) σ1 is plotted against a scaling factor
of a noise dimension σ3. In both cases we set all other scaling factors to zero.
The hyperplane associated with the Lagrange multiplier λ ≈ 62 is also shown
in the plot. All parameters with function values above this hyperplane are
violating constraints and thus their inclusion will decrease the objective. The
plot of Figure 5.2(a) includes the “ideal” set of parameters for the problem
and indeed the objective function takes a maximum at this point. Note that
in Figure 5.2(b) the scale on the z-axis is different from the one in plot (a), the
subproblem function T takes much lower values and thus the decrease of the
IKL objective function is also lower if those constraints are included. It can
also be seen in (b) that the objective function is much more dependent on the
value of σ1 than it is on the scaling factor σ3.

In the course of the IKL algorithm the signal dimensions are identified au-
tomatically and the following two kernels are selected which achieve a perfect

74

5.2. Toy Examples

0
1

2
3

4

0

1

2

3

4
0

500

1000

1500

σ
1

Two signal dimensions

σ
2

O
b

je
c
ti
v
e

 v
a

lu
e

0

2

4

0

1

2

3

4
20

40

60

80

100

σ
1

Signal versus noise dimension

σ
3

O
b

je
ct

iv
e

 v
a

lu
e

(a) (b)

Figure 5.2.: Two projections of the 20 dimensional IKL subproblem function
for the chessboard toy example. (a) IKL subproblem in the first
iteration for the two signal dimensions (σ1 and σ2), (b) for one sig-
nal σ1 and one noise σ3 dimension. The hyperplane corresponding
to the Lagrange multiplier λ ≈ 62 is also shown (note a differ-
ent scaling of the two plots). Inclusion of kernels with parameters
with an objective value higher than this value will decrease the
IKL objective function. Any subproblem solver should find local
maxima of this function.

accuracy on a held out test set

dθ1 = 0.98, θ1 = (1.1, 3.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . , 0) (5.8)

dθ2 = 0.02, θ2 = (0, 0, 0, 0, 0, 0, 0, 2.1, 0, 0.2, 0, . . . , 0). (5.9)

The resulting decision boundary for the first two dimensions is plotted in Fig-
ure 5.1 (b). Support vectors are marked with cyan rings in this plot. The
first kernel is modeling only the two signal dimensions while ignoring all noise
dimensions. Scaling factors are such that they are as large as possible since
those correspond to a smooth function while not making training errors.

To achieve the same result with an SVM or MKL learner one would have
to cross-validate over different scaling factors for each dimension or guess the
correct scalings for the proposal kernels. Cross validation over the same kernel
class (product) is prohibitive due to the large number of kernels parameters.

75

5. Empirical Evaluation of Kernel Combination Methods

5.3. Standard ML benchmark datasets

Up to now and to the best of our knowledge there is no extensive compari-
son between properly tuned SVM classifiers and those which linearly combine
multiple kernels. In this section we will fill this gap. Furthermore we want to
investigate whether IKL as the limit of MKL improves the performance, leads
to overfitting or gives qualitatively the same results. In total we compare three
different methods

1. SVM using kernel class (single),

2. MKL using kernel classes (single) and (separate),

3. IKL using kernel classes (single) and (product).

5.3.1. Experimental Setup

Thirteen different binary datasets with up to 100 independent splits (the
datasets ”image” and ”splice” are split only 20 times) and the very same experi-
mental setup from [Rät01] are used. With five fold CV on the first five splits the
hyper-parameters of the methods are determined and subsequently applied to
obtain the results on all splits. Parameters to be set with are the regularizer C
for all methods and the kernel k(·, ·; θ) for SVM. The following parameters are
considered for all thirteen datasets
σ−1 ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50, 75, 100, 125, 150}. The regularization con-
stant is selected from the values C ∈ {10−2, 10−1, . . . , 103}.

Five more multiclass datasets were taken from [Dua05] which are split 20
times into training and test data. On each split we use five fold CV to deter-
mine the hyper-parameters which are the used to learn a final classifier. Mul-
ticlass decisions are resolved in a one-versus-rest scheme. The tested kernel
parameters are σ−1 ∈ {0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} and the regularization
constant is chosen among C ∈ {10−2, 10−1, . . . , 104}. All data was scaled to
have zero mean and unit variance.

The amount of free parameters was varied using the three different classes
as described in Section 5.1. For (single) we compared all three methods: SVM,
MKL and IKL. For SVM one single kernel is selected using the Cross Validation
estimate. For MKL we constructed as proposal kernels all kernel matrices with
the kernel parameter in the range as described above. For IKL we allowed for
all kernels with σ ∈ [0, 30]. This range includes the finite choices of kernel
parameters but we assured that restricting the admissible range to σ−1 ∈
[1, 150] (resp. σ−1 ∈ [0.5, 20]) does not change the results.

For the class (separate) all (single) kernels are used and additionally we
applied the same range of kernel parameters to every dimension separately.

76

5.3. Standard ML benchmark datasets

This yields a total of 13(D + 1) proposal kernels for a D dimensional dataset.
Finally for (products) we allow all kernels with parameters in σd ∈ [0, 30]. The
corresponding subproblem is D dimensional.

As a subproblem solver for the IKL algorithm we used the Branch-And-
Bound technique for class (single) to assure a global optima (up to a precision
of 10−3). For the other two classes we used the MKL parameters as starting
points for a gradient ascent search in each iteration. For these two classes
a global optimum can not be guaranteed. Therefore we used the following
two stopping criteria. Either no violating constraint was found during the
subproblem phase or the change of improvement in terms of the relative change
of the objective function falls below 0.01%.

5.3.2. Results

he results are shown in Table 5.2 and Table 5.3. The four missing values in
Table 5.3 correspond to experiments which were computationally too expen-
sive to compute. Even for the results reported here several millions of SVM
trainings were performed.

5.3.3. Discussion

We can draw several conclusions from the results. Comparing only the three
results obtained with the class (single) we see that the SVM almost always
yields to better results than MKL or IKL. We test the difference of the methods
with a paired t-test and find that only on the datasets Ringnorm, Titanic and
Waveform the SVM method is outperformed by IKL.The added flexibility of
MKL and IKL to combine more than one kernel seems to be of little use
with the possible exception of ABE (Table 5.3). For this kernel class the
parameter space is sampled densely enough such that the best kernel parameter
for the SVM is well enough approximated. The results indicate that the Cross
Validation estimate is a more reliable estimator to select kernel parameter than
the objective problems of MKL or IKL.

Adding the flexibility to model each dimension separately using class (sep-
arate) yields better results only on the datasets Splice, SEG and ABE.

The most general setting (products) results in some impressive gains in per-
formance for Image, Splice and SEG, even improving over the MKL-(separate)
results. In these cases the possibility to model correlations between different
dimensions explicitly yields more discriminative kernels. For the remaining
datasets there either is no discriminative structure in subsets of the feature
dimensions or the IKL subproblem solver was unable to identify those.

For some datasets we observe worse results which are possibly due to over-
fitting behavior: Heart, Ringnorm, Twonorm and WAV.

77

5. Empirical Evaluation of Kernel Combination Methods

For the practitioner there are thus two methods to choose from: SVM be-
cause it is much faster to train than the other two methods and shows good
performance, or IKL because the enlarged kernel class might lead to a signif-
icant performance increase. For all those cases where linear combinations of
kernels improved the performance IKL outperformed the MKL results using
the enlarged kernel class (product).

Dataset #dim #train #test
Banana 2 400 4900
Breast-cancer 9 200 77
Diabetes 8 468 300
Flare-Solar 9 666 400
German 20 700 300
Heart 13 170 100
Image 18 130 1010
Ringnorm 20 400 7000
Splice 60 1000 2175
Thyroid 5 140 75
Titanic 3 150 2051
Twonorm 20 400 7000
Waveform 21 400 4600

Table 5.1.: Statistics of the benchmark classification datasets used for the ex-
periments. Given are the name of the datasets, the dimensionality
(#dim) of the instances and the number of training (#train) as
well as test (#test) examples.

5.4. Kernel Classes

In this section we briefly mention some other interesting kernel classes which
can be used in the IKL framework.

Polynomial kernels (c.f. Section 2.1.6) are commonly used in kernel classi-
fiers and can be equipped with a weighting factor 1/σd for each feature dimen-
sion of the data

k(x, x′; {σd}Dd=1, p) =

(
1 +

D∑
d=1

xdx
′
d

σ2
d

)p

. (5.10)

As for the Gaussian kernels a gradient ascent method can be used to solve the
corresponding D dimensional subproblem for σ. The degree parameter would
have to be searched over in a separate step.

78

5.5. Conclusion

Dimensionality reduction or whitening vectorial data using a linear trans-
formation A such as the commonly used Principal Component Analysis (PCA)
can be turned into a kernel parameter for any kernel k by using proposal kernels
of the form k(x, x′;A) = k(Ax,Ax′). In the case the kernel k is differentiable
with respect to the parameter A we can use gradient based methods to solve
the subproblem. To choose a number of sensible kernel parameters from this
set might pose a difficult problem to the designer of the kernels. In those cases
it is imperative to have an analytic score to search over this space efficiently.

Product Kernels provide a very flexible class of kernels. We consider those
of the form

k(x, x′; γ1, . . . γK) =
K∏
k=1

exp (−γkdk(x, x′)) , (5.11)

with some distance functions dk : X × X → R+. The Gaussian kernel used
for the previous experiments is a member of this class with dk being the Eu-
clidean distance. By setting γk = 0 the distance or features dk can be ignored
altogether. A kernel of this type recently won the PASCAL VOC 2007 classi-
fication challenge [Eve07].

A blend between the χ2 and Gauss kernel which are commonly used kernels
for image classification methods. With the following parameterization we can
“blend” between them

k(x, x′; q) = exp

(
−

d∑
i=1

(xi + x′i)
q(xi − x′i)2

)
. (5.12)

The choice q = −1 corresponds to the χ2 kernel and q = 0 to the Gaussian
kernel. Note that the search for q is only 1-dimensional and the kernel function
is differentiable with respect to q.

5.5. Conclusion

The experiments show that only limited performance gains can be expected
using a linear combination of different kernel functions on standard benchmark
datasets. In total we found that for four out of 19 different datasets the
classification performance improves if the kernel classes is extended and a linear
combination is sought using the IKL/MKL framework.

For the four datasets where a linear combination improves performance the
IKL algorithm found better solutions than the MKL approach. This is not
surprising since the kernel classes available to the IKL algorithm are much
larger and thus more likely to contain well adapted kernels for the problem.
Because in the IKL algorithms the kernels are chosen during the training phase

79

5. Empirical Evaluation of Kernel Combination Methods

of the algorithm and not prior to training, the structure of the kernel class can
be exploited.

For most datasets we found with both the multiple and infinite kernel learn-
ing framework it is possible to automatically select among a large class of kernel
functions those which achieve a good performance. We believe that such ap-
proaches can be used to assist designers of classification functions in selecting
appropriate kernel parameters. This can be used to reduce the amount of
prior knowledge needed to design good classification functions and especially
inexperienced users may benefit from this feature.

In the next chapter we turn our attention to the special case of classifying
image data and propose kernel classes which model the special structure of
images. The kernel learning algorithms will be used to select appropriate
kernels among these classes.

80

5.5. Conclusion

(s
in

g
le

)
(s

e
p

a
ra

te
)

(p
ro

d
u

ct
s)

S
V

M
M

K
L

IK
L

M
K

L
IK

L
D

at
as

et
er

r
er

r
#

k
er

r
#

k
er

r
#

k
er

r
#

k
B

an
an

a
1
0
.5
±

0
.5

1
0
.5
±

0
.5

1.
0

1
0
.6
±

0
.5

6.
6

1
0
.5
±

0
.5

1.
0

10
.7
±

0.
5

3.
7

B
re

as
t-

ca
n

ce
r

2
5
.9
±

4
.3

27
.9
±

4.
0

2.
3

26
.9
±

4.
7

2.
2

26
.7
±

4.
2

4.
5

2
5
.7
±

4
.1

16
.1

D
ia

b
et

is
2
3
.2
±

1
.6

24
.2
±

1.
9

2.
8

23
.9
±

1.
6

3.
1

24
.5
±

1.
6

4.
0

24
.3
±

1.
8

22
.3

F
la

re
-S

ol
ar

3
2
.4
±

1
.7

35
.1
±

1.
7

1.
9

34
.9
±

1.
8

3.
3

34
.3
±

2.
1

2.
9

3
2
.8
±

1
.9

2.
6

G
er

m
an

2
3
.7
±

2
.1

25
.3
±

2.
3

2.
0

25
.1
±

2.
5

3.
2

25
.1
±

2.
2

8.
3

24
.6
±

2.
4

46
.1

H
ea

rt
1
5
.2
±

3
.1

16
.4
±

3.
3

1.
0

17
.0
±

3.
2

2.
7

16
.7
±

4.
1

9.
0

20
.1
±

3.
6

28
.2

Im
ag

e
3.

0
±

0.
6

3.
3
±

0.
7

1.
0

3.
5
±

0.
6

6.
2

3.
0
±

0.
6

1.
6

1
.4
±

0
.3

27
.1

R
in

gn
or

m
1.

6
±

0.
1

1.
6
±

0.
1

1.
0

1
.5
±

0
.1

5.
3

1.
7
±

0.
1

2.
6

2.
1
±

0.
2

16
.3

S
p

li
ce

10
.6
±

0.
7

11
.1
±

0.
7

2.
0

11
.0
±

0.
8

2.
4

6.
0
±

0.
4

24
.1

3
.1
±

0
.3

72
.8

T
h
y
ro

id
4
.0
±

2
.2

4.
7
±

2.
1

1.
0

3
.5
±

2
.1

3.
2

4.
7
±

2.
1

1.
0

4.
1
±

2.
0

12
.7

T
it

an
ic

22
.9
±

1.
2

2
2
.4
±

1
.0

1.
1

2
2
.5
±

1
.1

3.
8

22
.4
±

1.
0

1.
9

2
2
.4
±

1
.1

5.
2

T
w

on
or

m
2
.5
±

0
.1

2
.5
±

0
.1

2.
0

2
.5
±

0
.2

1.
3

2
.5
±

0
.1

3.
8

3.
8
±

0.
4

36
.2

W
av

ef
or

m
10

.1
±

0.
5

9
.9
±

0
.4

2.
9

9
.8
±

0
.4

3.
0

10
.2
±

0.
4

9.
7

11
.4
±

0.
6

33
.7

T
ab

le
5.

2.
:

T
es

t
er

ro
r

(e
rr

)
an

d
n
u
m

b
er

of
se

le
ct

ed
ke

rn
el

s
(#

k
)

on
se

ve
ra

l
tw

o
cl

as
s

d
at

as
et

s
av

er
ag

ed
ov

er
10

0
(2

0)
ru

n
s.

In
b

ol
d

fa
ce

ar
e

th
os

e
re

su
lt

s
w

h
ic

h
ar

e
n
ot

st
at

is
ti

ca
ll
y

in
d
is

ti
n
gu

is
h
ab

le
fr

om
th

e
b

es
t

re
su

lt
u
si

n
g

a
p
ai

re
d

t-
te

st
.

81

5. Empirical Evaluation of Kernel Combination Methods

statistics
(sin

g
le

)
(se

p
a
ra

te
)

(p
ro

d
u

cts)
S

V
M

M
K

L
IK

L
M

K
L

IK
L

D
ataset

#
d

im
#

train
#

test
#

cl
err

err
#

k
err

#
k

err
#

k
err

#
k

W
A

V
21

300
4700

3
15.6

±
1.2

15.5
±

0.6
2.7

15.8
±

0.7
2.1

16.4
±

1.7
13.6

18.0
±

1.0
35.1

S
E

G
17

500
1810

7
6.5
±

1.0
6.8
±

0.9
2.8

6.9
±

0.9
3.7

5.0
±

0.7
8.4

3.0
±

0.5
18.0

A
B

E
16

560
1763

3
1.1
±

0.3
0.8
±

0.3
2.5

0.8
±

0.3
3.0

0.7
±

0.3
11.3

0.7
±

0.2
33.8

S
A

T
36

1500
4935

6
10.4

±
0.4

10.2
±

0.3
3.6

10.1
±

0.4
4.0

n
/a

n
/a

D
N

A
181

500
2686

3
7.7
±

0.7
7.8
±

0.7
1.4

7.7
±

0.8
2.0

n
/a

n
/a

T
ab

le
5.3.:

S
tatistics

an
d

error
rates

for
th

e
fi
ve

d
atasets

from
[D

u
a05].

T
h
e

resu
lts

are
averaged

over
20

in
d
ep

en
d
en

t
sp

lits
of

th
e

availab
le

d
ata.

A
lso

p
lotted

are
th

e
average

n
u
m

b
er

of
selected

kern
els

(#
k
).

In
th

e
fi
fth

colu
m

n
th

e
n
u
m

b
er

of
classes

(#
cl)

of
th

e
d
ataset

is
given

.
M

u
lticlass

d
ecision

s
are

resolved
in

a
on

e-versu
s-rest

sch
em

e.

82

Part II.

Image Classification

83

6. Optimizing Pre-processing
Steps via Kernel Learning

In the previous chapters we have introduced kernel classifiers and developed
ways to perform automatic kernel selection. In the remainder of this thesis
we will discuss how kernel methods can be used for classifying images. We
consider image classification as a standard multiclass classification problem,
for which the training data are pairs of images and corresponding labels.

The possibility to formalize a notion of similarity between complicated ob-
jects, such as images, through the construction of a kernel function has received
much attention in the field of image classification and consequently led to
the design of specifically tailored kernel functions, e.g. [Rub00, Laz06, Gra07,
Ved08]. In this chapter we show how kernel design for standard computer
vision problems can be done with the kernel learning approach introduced in
chapter 4.

The typical procedure of building a classification function for computer vi-
sion systems from data can be split into two parts: the pre-processing pipeline
and the search for the classification function itself.

A pre-processing pipeline may include many different steps and each single
one influences the overall classification function. For visual object classifica-
tion there are a number of typical pre-processing steps. These include the
choice of type and number of features to be extracted from each image, its
transformation to aggregated representations such as histograms and possible
normalizations of the latter. The main problem is that the effect of a single
choice somewhere along the pipeline on the final classification function is a
priori unclear. Most often the only way to quantify its effect is to compare all
possible choices.

This is sub-optimal however. Ideally one would like to place a suitable prior
over parameter choices and allowing the learning algorithm to freely optimize
the quality of the classification function over all parameter settings.

To get closer to this goal, we propose to apply the following simple paradigm
when building classification systems. Instead of choosing parameters of pre-
processing steps beforehand we turn them into parameters of the kernel func-
tion and thus make them available to the kernel learning algorithm. In partic-
ular we follow the same line of thinking which was proposed in the previous
chapters. Instead of using only one parameterizable kernel, we use general

85

6. Optimizing Pre-processing Steps via Kernel Learning

classes of kernels from which the best kernel is chosen. This is implemented
using the technique of MKL with sparsity enforcing priors over the weights
(Section 4.2) as well as its non-sparse counterpart (Section 4.2.1).

Pre-processing choices are included into the kernel design and thus are avail-
able to the objective function. Optimizing kernel parameters corresponds to
optimizing the pre-processing parameters. This allows a principled selection
of the various parameters involved in the system.

We will focus on two important problems reoccurring in many computer
vision systems and demonstrate how to apply the approach:

1. How to compare various kinds of local features extracted from image
patches?

2. How to take into account spatial relationship of image features?

Experiments are presented for both scenarios, learning the optimal codebook
for a bag-of-visual-words representation in Section 6.1 and learning the spa-
tial configuration of a spatial kernel function in Section 6.2. We show that
the learning-based system consistently outperforms previous approaches on a
number of benchmark datasets.

6.1. Learning a Codebook of Visual Words

Finding a discriminative image representation is the key challenge for most
image classification tasks. A common approach is to represent an image as
a collection of local feature descriptors [Mik05a], evaluated at some keypoints
of the image [Now06, Mik05b]. This is motivated through the intuition that
images depicting the same object or scene do share certain localized parts with
similar statistics. Such a collection of image descriptors could be used either
by itself or be further transformed into a fixed length representation such as
a histogram. Using such a “bag-of-visual-words” representation has become
standard practice for many computer vision tasks. The benefit of using a his-
togram representation is that it converts sets of arbitrary many elements to a
fixed length feature descriptor and does not require methods to compare bags
of instances.

6.1.1. Bag-of-visual-words

The usual procedure to obtain the bag-of-visual-words representation is as fol-
lows. In a first step some keypoints in the image plane are generated at which
local image descriptors are subsequently computed. This can be realized by
so called interest point detectors [Mik05b] that identify stable patterns. That

86

6.1. Learning a Codebook of Visual Words

are those points in the image which are detected even after image transfor-
mations like rotation or viewpoint change. A conceptually simpler method is
to generate keypoints using a regular grid placed on the image which is also
referred to as dense sampling. At each such keypoint an image descriptor is
extracted, e.g. a SIFT descriptor [Low99]. A detailed comparison of several
different image descriptors can be found in [Mik05a], however the design of
efficient and discriminative image descriptors remains an open research topic.

Now a codebook of size K with elements of the same feature space is cre-
ated, e.g. using a k-means clustering algorithm. All feature descriptors of an
image are vector-quantized into the codebook, which yield a histogram rep-
resentation. This non-linear pre-processing step involves different choices to
be made: Which is the best codebook for a given task? How should quanti-
zation be performed? Should the resulting representation be normalized and
if so, how? Many recent works have addressed these problems and proposed
different solutions [Now06, Laz07, vG08].

6.1.2. Codebook Kernels

The common part of all approaches making use of bag-of-visual-words repre-
sentations is the use of a classification function (most often an SVM) after
application of the pre-processing pipeline. The approach we advocate here is
to start with this function directly and design kernels which correspond to
the different choices one could have made beforehand. It is hard to a priori
distinguish between discriminative and not-so-discriminative codebooks and
therefore we explicitly avoid to do so. We regard the codebooks themselves as
free parameters that are available to the learning algorithm to optimize.

We design proposal kernels in the following way. Let X,X ′ be bags of D-
dimensional image features, e.g. 128 dimensional SIFT features. Each bag
might contain a different number of feature descriptors. They are quantized to
a histogram representation using a codebook C with K codewords by means
of a nearest-neighbor quantization function

qC : 2RD → RK
+ (6.1)

mapping sets of features into a histogram representation using C. We regard
each possible choice of a codebook as a parameter of the kernel. The proposal
kernels are χ2-kernels of the form

k(X,X ′; {γ2, C}) = exp
(
−γ2χ2(qC(X), qC(X

′))
)
, (6.2)

where χ2 : RK × RK → R denotes the χ2 distance function introduced in
Section 2.1.6. We refer to this kernel as a codebook kernel due to its dependency
of a codebook. We could jointly optimize over γ2 but for simplicity fix γ2 to
be the reciprocal of the median of all pairwise training distances. The only
parameter left in the problem is the codebook C.

87

6. Optimizing Pre-processing Steps via Kernel Learning

A linear combination of kernels which correspond to different codebooks
can also be understood as a soft quantization step. In a soft quantization
each image descriptor is mapped into a vector with continuous values rather
than a binary one. The value in each bin depends on the distance of the
image descriptor to the prototype of the bin. The final histogram for an image
is obtained by summing the vectors of all the image descriptors as done for
hard quantization. Therefore the position of an image in the feature space is
described more precisely since it is measured with respect to multiple points.

Learning with Codebook Kernels

Learning a linear combination of the codebook kernels using IKL involves the
maximization of the subproblem T (C;α) over the set of all possible codebooks.
Since this is difficult we aim for an approximation and optimize T (C;α) by eval-
uating it at many different codebooks. A codebook is generated by randomly
sampling feature vectors from the training set that are subsequently used as
prototypes used for the quantization step.

6.1.3. Benchmark Datasets

We test our approach of learning the codebook on four standard datasets.
Some sample images from these datasets are shown in Figure 6.1. We continue
with a more detailed description of the datasets. The first three contain images
of textures, whereas the last one is a benchmark dataset for object detection.

Brodatz

The Brodatz [Cen] dataset1 contains 112 textures images, one per class. These
images were subdivided into thirds horizontally and vertically to produce 9
images per class.

KTH-TIPS

The KTH-TIPS [Fri04] dataset2 of textures contains 810 images from ten dif-
ferent categories: aluminum, brown bread, corduroy, cotton, cracker, linen,
orange peel, sandpaper, sponge and styrofoam. For each category 81 images
are available that are recorded at nine different scales.

UIUCTex

The UIUCTex dataset [Laz05]3, consists of 40 images per class of 25 textures
distorted by significant viewpoint changes and some non-rigid deformations.

1http://www.cipr.rpi.edu/resource/stills/brodatz.html
2http://www.nada.kth.se/cvap/databases/kth-tips/documentation.html
3http://www-cvr.ai.uiuc.edu/ponce_grp/data/index.html

88

6.1. Learning a Codebook of Visual Words

Brodatz

styrofoam brown bread cracker cotton
KTH-TIPS

pebbles plaid bark water
UIUCTex

bike person person cars
TU-Graz

Figure 6.1.: Four example images from each of the datasets used for code-
book learning experiments. All datasets are multiclass, see text
for details.

Graz-02

The Graz dataset [Ope06]4 was designed for benchmarking object classification
algorithms. It contains three different object classes, bikes, persons, cars, and
one background class. The background images are taken at similar locations
but do not depict any of the aforementioned objects. Without the background
class the dataset consists of 1096 images that are equally divided into the three
categories.

4http://www.emt.tugraz.at/~pinz/data/GRAZ_02/

89

6. Optimizing Pre-processing Steps via Kernel Learning

6.1.4. Experimental Setup

We extract PCA-SIFT [Ke04] feature descriptors from the images using a dense
grid of points. The radius of the patches we use for feature extraction is varied
over 4 different scales (8 to 50 pixels for the UIUCTex images and 4 to 16 pixels
for the others). This resulted in the following numbers of features per image
for the datasets: Brodatz 1764 features, KTH-TIPS 1600, Graz-02 3072 and
UIUCTex 1976 features. The PCA-SIFT features are 36 dimensional and all
images within one dataset yield the same number of feature descriptors since
they are all of the same size.

Each dataset is split 25 times into half, where one half is used for training
and the other half for testing. The first five splits are used for model selection:
we choose the regularization constant C from the range 10−2, 10−1, . . . , 103

which gives the best performance on those five splits. This choice for the
hyperparameter is subsequently applied to all 25 splits of the data to obtain
the reported result. We resolve multiclass decisions by using one-versus-rest
classifiers. We use three different codebook sizes K ∈ {100, 300, 1000}.

As a baseline we implemented a SVM classifier using a single codebook only.
Empirically we found that it is the classification performance does not depend
on whether the codebook used for this experiment is created using a k-means
clustering of training features or created by sampling the prototypes at random
from the pool of all training features. This finding is consistent with a result
reported in [Now06].

All other methods have access to multiple codebooks. In summary we com-
pare the following four different models

1. SVM using a single codebook kernel;

2. SVM using an average of multiple codebook kernels with uniform weights
(dθ = 1/|Θ|);

3. `1 MKL learning of the weights;

4. `2 MKL learning of the weights.

6.1.5. Results

The results of the experiments are shown in Figure 6.2 and Table 6.1. For
all plots in the figure the size of the codebook is color coded. A solid line
represents the results obtained using a single codebook only. The dashed lines
are the results of averaging a different number of codebook kernels but without
applying any learning procedure. The results using learning are depicted as a
circle for the `2 results and as a star for the `1 results. They are plotted at
the position on the x-axis which corresponds to the number of positive mixing
weights dθ. This corresponds to the number of selected codebook kernels.

90

6.1. Learning a Codebook of Visual Words

50 100 150 200 250

8

10

12

14

16

18

20

Codebooks

M
u

lt
ic

la
s
s
 E

rr
o

r
%

Brodatz

K = 10

K = 50

K = 300

K = 1000

50 100 150 200 250
8

9

10

11

12

13

14

15

Codebooks

M
u

lt
ic

la
s
s
 E

rr
o

r
%

KTH TIPS

K = 10

K = 50

K = 300

K = 1000

50 100 150 200 250
5

10

15

Codebooks

M
u

lt
ic

la
s
s
 E

rr
o

r
%

UIUCTex

K = 10

K = 50

K = 300

K = 1000

50 100 150 200 250
18

20

22

24

26

28

30

Codebooks

M
u

lt
ic

la
s
s
 E

rr
o

r
%

TU−Graz

K = 10

K = 50

K = 300

K = 1000

Figure 6.2.: Error rates as function of the number of codebooks on four
datasets. The solid line corresponds the result obtained using a
single codebook, dashed are results averaging over multiple code-
books. The circle (and stars) correspond to the `2-MKL (and
`1-MKL) results using all kernels. The MKL results are plotted
at the position of the x-axis which corresponds to the number of
selected kernels.

6.1.6. Discussion

From the results we learn the following.

1. Using many codebooks and simply averaging the resulting Gram matrices
consistently improves the performance with respect to using only a single
codebook (dashed versus solid lines). This holds for all codebook sizes.

2. Using `2-MKL learning does not significantly improve the result over a
simple averaging step but leads to similar results (circles versus dashed
lines).

3. The `1-MKL yields competitive results for the datasets UIUCTex and
TU-Graz (stars). This is achieved with only a small number of codebooks
which is of advantage at test time.

91

6. Optimizing Pre-processing Steps via Kernel Learning

Single Average `1-MKL `2-MKL
Dataset K err err #k err #k err #k

Brodatz 10 46.3 ± 1.8 11.4 ± 1.6 250 13.4 ± 1.8 11.9 11.1 ± 1.4 250
Brodatz 300 14.4 ± 1.1 9.2 ± 1.6 250 9.8 ± 1.2 6.6 9.0 ± 1.8 250
Brodatz 1000 11.1 ± 1.5 9.1 ± 1.3 250 9.7 ± 1.5 5.1 8.9 ± 1.2 250

KTH-TIPS 10 33.4 ± 4.5 8.0 ± 2.5 250 10.4 ± 2.3 28.2 8.3 ± 1.6 250
KTH-TIPS 300 13.0 ± 2.2 8.5 ± 2.0 250 8.8 ± 2.6 13.0 8.5 ± 2.4 250
KTH-TIPS 1000 11.3 ± 2.2 9.6 ± 2.0 250 9.8 ± 2.1 9.3 9.7 ± 2.2 250
UIUCTex 10 36.4 ± 2.4 6.1 ± 1.0 250 7.3 ± 1.2 20.9 6.2 ± 1.1 250
UIUCTex 300 10.1 ± 1.1 5.8 ± 0.8 250 5.9 ± 0.8 9.7 5.9 ± 0.9 250
UIUCTex 1000 8.7 ± 1.0 6.3 ± 0.8 250 6.6 ± 1.0 7.7 6.3 ± 1.1 250
TU-Graz 10 39.8 ± 3.1 24.2 ± 2.2 250 25.0 ± 2.2 47.3 24.0 ± 2.3 250
TU-Graz 300 24.7 ± 1.8 19.8 ± 2.0 250 20.2 ± 1.8 23.2 19.5 ± 2.0 250
TU-Graz 1000 22.7 ± 2.5 19.2 ± 1.8 250 19.3 ± 1.8 15.4 18.9 ± 1.6 250

Table 6.1.: Classification error (err) and number of selected kernels (#k) for
the datasets Brodatz, KTH-TIPS, UIUCTex and Graz-02. We
compare four methods: single codebook with SVM, averaging of
different codebook kernels, and learning the weights using `1 and
`2-MKL. All results are averaged over 25 runs for each of which
the data is split into 50% training and 50% test images. The best
result for each dataset is printed in boldface.

4. The `1-MKL solution is much better than just averaging a comparative
random number of codebooks (stars versus dashed lines). Thus `1-MKL
learning is able to find a more discriminative codebook and is advanta-
geous over random sampling the same number of codebooks.

A notable result is that even using a small codebook with only 10 elements
yields competitive performance on KTH-TIPS and UIUCTex. We checked that
there is no further performance gain in averaging over even more codebooks,
the results level out at 250 codebooks.

The hard quantization step using the function qC in Equation (6.1) is not the
only applicable choice. Different quantization schemes are applicable, like the
soft quantization mentioned above. For example in [vG08] different types of
soft quantization with different normalization based on uncertainty or plausi-
bility have been proposed and were compared to each other. In our framework
we do not pick one soft quantization and normalization beforehand but offer
all of them to the learning algorithm.

92

6.2. Learning the Optimal Spatial Layout

L = 0 L = 1 L = 2

Figure 6.3.: Schematic illustration of the spatial pyramid scheme. The original
image (left) from the Graz-02 dataset and the decomposition into
the first two levels of the spatial pyramid (middle and right). For
each cell of the pyramid a separate histogram is computed.

6.2. Learning the Optimal Spatial Layout

Kernels making use of spatial information of the image are an instructive
example of how special structure of the data can be used for kernel design. The
idea behind a spatial kernel is very simple and dates back to local receptive
fields of neural networks. Instead of comparing two images in its entirety only
those features that fall into a certain subwindow are compared, e.g. all those
of the upper half. To use this idea for kernel functions was first suggested
for handwritten digit classification in [Sch97] in combination with polynomial
kernels.

In this section we will present how the spatial kernel design can be guided
by using a kernel learning approach.

6.2.1. Spatial Kernels

In the following we will discuss the main ideas behind spatial kernels and then
show how our paradigm can be applied to this class of kernels.

Spatial Pyramid Kernel

The spatial pyramid match kernel was developed in [Laz06] as a spatial variant
of the so called pyramid match kernel [Gra07]. It gained some attention after
excellent performance on the standard Caltech datasets were reported making
use of this kernel [Laz06, Gri07]5. Both kernels fall into the larger class of
kernels comparing probability distributions [Hei05].

The spatial pyramid scheme is implemented as follows. We subdivide the
image into L different levels of a pyramid, enumerated by l = 0, 1, . . . , L − 1.

5In [Var07, Bos07b] even better results were reported but were found to be wrong due to
errors in the experimental setup, cf. Section 7.1.

93

6. Optimizing Pre-processing Steps via Kernel Learning

The level l corresponds to a 2l×2l equally spaced grid on the image plane, and
thus consists of 4l non overlapping cells of equal size. Level 0 of the pyramid
is the image itself. This procedure is also illustrated in Figure 6.3. In this
construction higher levels of the pyramid correspond to a finer griding of the
image. We build a histogram for each cell in a level l individually which results
in 4l histograms for this level. All histograms of one level are concatenated for
a final representation yielding a feature vector of dimension 4lK.

The spatial pyramid kernel compares two images by measuring the similarity
between the concatenated histograms for each level individually and linearly
combining them as

k(x, x′; {θl, dl}L−1
l=0) =

L−1∑
l=0

dlkl(x, x
′; θl), (6.3)

with kl being the kernel comparing the images x and x′ only through level
l. The authors of [Laz06] propose weighting coefficients dl = 2−(L−l) with L
being the maximum level, usually around 3. This choice gives more importance
to the finer levels of the pyramid. Although good results are reported using
the spatial pyramid kernel, the natural question arises whether or not the
pyramidal representation of the image is the best for a given task and if the
intuition behind the choice of dk is justified. In the following we will address
these two questions.

A General Class of Spatial Kernels

Instead of pre-choosing the spatial layout and its combination weights we will
move these design choices into the learning problem. To this end we propose
the following class of spatial kernels. By B we denote a box in the image
plane defined in relative coordinates, such that its specification is independent
of the actual size of the image. With χ2

B(x, x′) we denote the χ2-distance
comparing two images represented by a collection of local features, taking into
account only features which fall into the box B. Our proposal kernels are of
the following form

k(x, x′; {γ2, B}) = exp
(
−γ2χ2

B(x, x′)
)
. (6.4)

For the experiments the parameter γ2 is again chosen as the reciprocal of
the median of the pairwise distances.

During `1-MKL learning we have to maximize the function T (B;α) over
all possible boxes. This could be done by the efficient subwindow search
method [Lam08b] using a branch-and-bound algorithm ensuring global op-
timality. For simplicity we resort to approximate optimization by evaluating
T at many samples. In order to do so, a box is sampled uniformly from the
set of all boxes which fall entirely in the image. This distribution favors small
boxes as in the pyramid construction. In the upper left picture of Figure 6.7

94

6.2. Learning the Optimal Spatial Layout

ant binocular camera dolphin chandelier crocodile

chair pizza scissors flamingo gramophone kangaroo

laptop emu ferry sea horse strawberry wrench

Figure 6.4.: 18 example images from the Caltech-101 dataset. In total there
are 102 different classes of object categories.

we plotted 1000 randomly sampled boxes on top of each other. Points in the
middle of an image appear in more boxes than points at the boundary. In the
pyramidal representation every pixel coordinate falls into the same number of
boxes, thus the corresponding picture would be all-white.

6.2.2. Benchmark Datasets

To test the effectiveness of our paradigm, we re-implemented and augmented
the experiments of [Laz06]. Experiments were carried out on two datasets,
the Scene-13 dataset [Li05]6 consisting of thirteen different scene types like
kitchen, landscape, urban, etc. shown in Table 6.5 and the prominent Caltech-
101 [FF04]7 dataset. The latter consists of 101 classes, with the number of
training images per class ranging from 31 to 800. Some sample images are
shown in Figure 6.4.

We seek to demonstrate how the spatial layout can be optimized over in our
framework and are not aiming to compete with the state-of-the-art methods
for this dataset. In order to obtain competitive results with the best reported
Caltech-101 results, e.g. [Gri07, Pin08] one would at least need to integrate

6http://visionlab.ece.uiuc.edu/datasets.html
7http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

95

6. Optimizing Pre-processing Steps via Kernel Learning

CALsuburb kitchen bedroom livingroom PARoffice

MITinsidecity MITstreet MITtallbuilding MIThighway MITcoast

MITforest MITmountain MITopencountry

Figure 6.5.: Example images from the Scene-13 dataset, one image per
category

more feature cues such as color information. This will be the topic of the next
chapter where we will show how to combine different features to increase the
classification performance for this particular dataset.

The Scene-13 dataset is split 10 times using 100 images of each category
as training and the rest as testing images. Following common practice for
the Caltech-101 dataset we used conducted two experiments using 15 and 30
training images per category and the remaining ones for testing. We report
the multiclass error that is obtained by averaging the per class recall rates to
not over-emphasize categories with a large number of images. The multiclass
error errmc is the average

errmc =
1

C

C∑
c=1

err(c), (6.5)

where

err(c) =
true positives in class c

elements in class c
. (6.6)

The results are averaged over five independent splits of the data.

6.2.3. Experimental Setup

SIFT features of 128 dimensions are extracted densely from the image us-
ing every 10th pixel at four different scales with the radii 4, 8, 12 and 16.

96

6.2. Learning the Optimal Spatial Layout

Subsequently the features are quantized to a codebook of size K = 300 (and
additionally K = 1000 for the experiments on Scene-13). The codebook size is
kept fix in order to eliminate the relative influence of this choice in the results.
For the Caltech-101 experiments the regularizer was set to C = 1000.8 For the
Scene-13 dataset we perform model selection to choose C ∈ {0.1, 1, 10, 100}
using five-fold cross validation on the training set only. As before, a one-versus-
rest scheme is used to resolve multiclass decisions.

Three different spatial layouts were used for the experiments

1. a pyramidal representation using concatenated histograms within the
levels (marked “Levels” in Table 6.2 and 6.3);

2. using all cells of the pyramid as bounding boxes B for the spatial ker-
nel (6.4) (“Cells”);

3. randomly sampling bounding boxes as described above.

6.2.4. Results

In Figure 6.6 the performance of the different approaches is plotted as a func-
tion of the number of available proposal kernels. Solid lines correspond to
results making use of randomly sampled boxes to generate the proposal ker-
nels and dashed lines to those using the pyramidal representation. The red line
depicts the `1-MKL results, but additionally we plotted the result obtained by
using all subwindow kernels (125 for Scene-13 and 1000 for Caltech-101) at the
position of the x-axis corresponding to thee number of selected kernels.

The raw numbers of the experiments are shown in the Tables 6.2 and 6.3.

6.2.5. Discussion

From the results we can draw the following conclusions.

1. On both datasets, the use of randomly sampled boxes outperforms the
pyramid layout using both fixed and learned mixing coefficients. This
improvement is substantial for the Caltech-101 indicating that the pyra-
midal layout that has been used so far is not well suited for this kind of
image data.

2. For the Scene-13 dataset the `1-MKL performs better, on the Caltech
dataset the `2-MKL gives better results. This is presumably due to the
fact that the Caltech images depict the objects in the center of the image
and thus the average of all bounding boxes (Figure 6.7, upper left) is a
more suitable prior of the discriminative regions in the image.

8The authors of [Laz06] did not report this parameter, but since our results are in accor-
dance with theirs, this seems to be a fair choice and enables comparison.

97

6. Optimizing Pre-processing Steps via Kernel Learning

20 40 60 80 100 120
18

20

22

24

26

28

30

subwindows

M
u

lt
ic

la
s
s
 E

rr
o

r
%

Scene 13, K=300

l1−MKL

l2−MKL

averaged

1/(2
L−l

)

20 40 60 80 100 120
18

20

22

24

26

28

30

subwindows

M
u

lt
ic

la
s
s
 E

rr
o

r
%

Scene 13, K=1000

l1−MKL

l2−MKL

averaged

1/(2
L−l

)

10
1

10
2

10
3

40

45

50

55

subwindows

M
u

lt
ic

la
s
s
 E

rr
o

r
%

Caltech−101 #(training points)=15

l1−MKL

l2−MKL

averaged

1/(2
L−l

)

10
1

10
2

30

35

40

45

50

subwindows

M
u
lt
ic

la
s
s
 E

rr
o
r

%

Caltech−101 #(training points)=30

l1−MKL

l2−MKL

averaged

1/(2
L−l

)

Figure 6.6.: Results of the classification task on the Scene-13 dataset (upper)
and Caltech-101 (lower) using 15/30 training images. The dashed
lines correspond to the best result obtained using a pyramidal rep-
resentation. The solid lines are results from averaging and learning
using randomly sampled boxes. Additionally we plot the `1-MKL
result at the position of the x-axis corresponding to the number
of selected kernels. (Thus the rightmost value of the solid red line
coincides with the red star marker.)

3. Learning using `2-MKL improves over simple averaging, but averaging is
a competitive baseline.

4. The choice dl = 2−(L−l) yields good performance but an averaging is
equally good.

For the Caltech-101 dataset the best stated result in [Laz06] is 35.4% misclas-
sification error using 30 training points (picking the best obtained test error
a-posteriori). We record 36.9% for our re-implementation of their method us-
ing a pyramidal layout with the choice of dl = 2−(L−l) but only 33.5% for
randomly sampled subwindows and `2-MKL optimization.
Five spatial layouts found by the `1-MKL algorithm for the Scene-13 dataset

are shown in Figure 6.7(b)-(f) again by plotting the participating bounding

98

6.2. Learning the Optimal Spatial Layout

1000 subwindows livingroom 27 subwindows MITcoast 19 subwindows

(a) (b) (c)
MITtallbuilding 19 subwindows bedroom 26 subwindows CALsuburb 15 subwindows

(d) (e) (f)

Figure 6.7.: The upper left image (a) depicts 1000 randomly sampled boxes
plotted on top of each other with equal weights. The other five
images (b)-(f) show the learned spatial configuration for different
classes of the Scene-13 dataset. Each one outperforms the pyra-
midal representation for both levels and cells.

boxes on top of each other. All of the configurations shown in this plot out-
perform the pyramidal representation, no matter if the weights are set a priori
or learnt. For the livingroom and bedroom classes many small subwindows
which are approximately uniformly distributed over the image are identified
to be discriminative. Conversely for the classes MITcoast, MITtallbuilding
and CALsuburb, very large boxes are selected for the final kernel. Here, large
regions are to be compared for good results whereas images of bedrooms and
livingrooms consist of many small details. We are cautious to not over-interpret
the resulting spatial layout but it is evident from the plot that for different
classes different configurations are identified.

In summary, the experiments demonstrate that we can learn a mixture of
kernels, each of which has access to only a limited part of the image. This
overcomes the fixed-grid limitation of the standard spatial pyramid kernel and
improves classification performance on both datasets. Although the choice of
a pyramidal scheme for image kernels is intuitively appealing it is nevertheless

99

6. Optimizing Pre-processing Steps via Kernel Learning

arbitrary.

6.3. Conclusion

The goal of this chapter was to demonstrate that arbitrary design choices
should be avoided when it is possible to optimize over them.

We proposed to view parameters of the pre-processing pipeline as kernel
parameters and offer them to a learning algorithm. In particular we focused
on two important problems of image classification systems. The demonstrated
benefit is two-fold,

• we are relieved from making manual parameter choices;

• the resulting classification functions perform better.

For the practitioner the experimental results give some general insights on
what can be expected to work: if many different but equally plausible pre-
processing choices exist, then a simple averaging gives competitive results; we
have seen this behavior for the codebook learning experiments. If on the other
hand it is expected that only few of many possible pre-processing choices are
effective, then MKL/IKL can identify the best ones and there is no need for
manual pre-selection; this has been observed on the spatial layout learning
experiment and the Scene-13 dataset.

We believe the proposed methodology has applications in all high-level com-
puter vision tasks where machine learning methods are used successfully.

100

6.3. Conclusion

S
in

gl
e

S
V

M
A

ve
ra

ge
2−

(L
−
l)

` 1
-M

K
L

` 2
-M

K
L

L
ev

el
L

ev
el

s
L

ev
el

s
C

el
ls

L
ev

el
s

C
el

ls
L

ev
el

s
C

el
ls

L
ev

el
s

C
el

ls

0
(1
×

1)
26

.1
±

1.
0

-
-

-
-

-
-

-
-

1
(2
×

2)
22

.0
±

0.
5

21
.3
±

0.
6

21
.2
±

0.
9

21
.1
±

0.
7

21
.6
±

0.
9

21
.3
±

0.
6

21
.0
±

0.
5

20
.9
±

0.
7

21
.2
±

0.
9

2
(4
×

4)
20

.9
±

0.
6

19
.8
±

0.
5

19
.8
±

0.
5

19
.7
±

0.
6

20
.3
±

0.
6

19
.7
±

0.
5

20
.3
±

0.
7

19
.7
±

0.
6

19
.6
±

0.
6

3
(8
×

8)
22

.6
±

1.
0

19
.5
±

0.
5

20
.7
±

1.
0

19
.8
±

0.
6

21
.4
±

0.
7

19
.7
±

0.
4

20
.3
±

0.
3

19
.5
±

0.
4

20
.4
±

0.
8

12
5

ra
n

d
om

w
in

.
-

20
.6
±

0.
9

-
1
9
.0
±

0
.8

(2
1

k
e
rn

e
ls

)
20

.3
±

0.
9

T
ab

le
6.

2.
:

E
rr

or
ra

te
s

on
th

e
S
ce

n
e-

13
d
at

as
et

av
er

ag
ed

ov
er

10
sp

li
ts

.
W

e
u
se

d
d
iff

er
en

t
p
y
ra

m
id

al
se

tu
p
s,

ei
th

er
(L

ev
el

s)
co

n
ca

te
n
at

in
g

al
l

ce
ll

h
is

to
gr

am
s

of
on

e
le

ve
l

or
(C

el
ls

)
u
si

n
g

ea
ch

si
n
gl

e
p
y
ra

m
id

ce
ll

as
on

e
ke

rn
el

.
T

h
e

la
st

ro
w

gi
ve

s
th

e
re

su
lt

w
h
en

u
si

n
g

ra
n
d
om

su
b
w

in
d
ow

s
fo

r
th

e
la

yo
u
t.

101

6. Optimizing Pre-processing Steps via Kernel Learning

S
in

gle
S
V

M
A

verage
2
−

(L
−
l)

`
1 -M

K
L

`
2 -M

K
L

L
evel

L
evels

L
evels

C
ells

L
evels

C
ells

L
evels

C
ells

L
evels

C
ells

15 tr.pts.

0
(1
×

1)
59.0

±
0.5

-
-

-
-

-
-

-
-

1
(2
×

2)
51.2

±
0.5

51.5
±

0.6
50.4

±
0.4

50.8
±

0.6
50.5

±
0.4

51.1
±

0.4
50.7

±
0.6

51.0
±

0.6
50.4

±
0.5

2
(4
×

4)
45.9

±
0.6

47.8
±

0.6
45.3

±
0.4

46.1
±

0.8
45.4

±
0.4

46.0
±

0.6
45.8

±
0.5

47.0
±

0.7
45.0

±
0.4

3
(8
×

8)
47.8

±
0.7

46.7
±

0.7
46.8

±
0.5

45.6
±

0.8
47.8

±
0.7

47.8
±

0.7
48.4

±
0.7

46.2
±

1.0
46.1

±
0.5

1000
ran

d
om

w
in

.
-

4
1
.6±

0
.3

-
44.6

±
0.7

(24.2
kern

els)
4
1
.4±

0
.7

30 tr.pts.

0
(1
×

1)
52.9

±
1.0

-
-

-
-

-
-

-
-

1
(2
×

2)
43.8

±
0.6

43.8
±

0.6
42.6±

0.5
43.0

±
0.7

42.9
±

0.5
43.7

±
0.7

43.2
±

0.4
43.1

±
0.6

42.7
±

0.7
2

(4
×

4)
37.7

±
1.0

39.5
±

0.5
37.1

±
0.7

37.5
±

0.6
37.0

±
0.8

37.8
±

0.8
37.0

±
0.8

38.6
±

0.5
36.6

±
0.7

3
(8
×

8)
39.2

±
1.7

37.9
±

0.4
37.8

±
0.9

36.9
±

1.3
38.8

±
1.2

38.7
±

1.1
38.2

±
0.8

37.4
±

0.5
37.1

±
1.1

100
ran

d
om

w
in

.
-

3
4
.3
±

0
.7

-
36.2

±
0.6

(21.3
kern

els)
3
4
.1
±

0
.7

T
ab

le
6.3.:

A
s

in
T

ab
le

6.2
b
u
t

for
th

e
C

altech
-101

d
ataset

u
sin

g
15

an
d

30
train

in
g

p
oin

ts.
A

ll
resu

lts
are

averaged
over

5
d
iff

eren
t

sp
lits

of
th

e
d
ata.

102

7. Image Feature Combination for
Multiclass Object Classification

7.1. Introduction

In this chapter we address the problem of object category classification by
combining multiple diverse feature types. For a given test image the classifier
has to decide which class the image belongs to. This problem is challenging
because the instances belonging to the same class usually have high intra-class
variability.

To overcome the problem of variability, one strategy is to design feature
descriptors which are highly invariant to the variations present within the
classes. Invariance is an improvement, but not all of the feature descriptors will
have the same discriminative power for all classes. For example, features based
on color information might perform well when classifying flowers of different
types, whereas a classifier for cars should be invariant to the actual color of
the car. Therefore it is widely accepted that, instead of using a single feature
type for all classes it is better to adaptively combine a set of diverse and
complementary features – such as features based on color, shape and texture
information – in order to discriminate each class best from all other classes.

Finding these feature combinations is a recent trend in class-level object
recognition and image classification. One popular method in computer vision
to tackle this problem is MKL. In the application of MKL to object classifica-
tion, the approach can be seen to linearly combine similarity functions between
images such that the combined similarity function yields improved classifica-
tion performance [Kum07, Lin07, Var07]. 1

In Section 7.2 we give a general overview of the addressed problem. The

1In the recent years the MKL based method of combining different features was believed
to be a very powerful technique after excellent results (up to 98.1% for Caltech-101)
have been reported using this method [Var07, Bos07a, Bos07b, Bos08]. It was also seen
as the winner of the Caltech-256 object classification challenge [cal07]. In the course
of our experimentation we failed to reproduce those results and subsequently found
severe errors in the experimental setup used to obtain the results claimed in those works.
Test label information was available already during the training time of the algorithms.
The authors acknowledged the fact that errors occurred which positively benefited the
reported classification accuracy. In this work we deliberately will not compare against
these published results since the errors render the them incorrect.

103

7. Image Feature Combination for Multiclass Object Classification

Sections 7.3-7.5 describes several combination approaches. Experiments are
presented in Section 7.6 and 7.7. We conclude in Section 7.8.

7.2. Feature Combination Methods

We begin with a formal definition of the problem we address in this chapter.

Definition 7.2.1 (Feature Combination Problem). Given a training set
{(xi, yi)}i=1,...,n of n instances consisting of an image xi ∈ X and a class label
yi ∈ {1, . . . , C}, and given a set of F image features fm : X → Rdm, m =
1, . . . , F where dm denotes the dimensionality of the m’th feature descriptor,
the problem of learning a classification function y : X → {1, . . . , C} from the
features and training set is called feature combination problem.

A typical example of such a feature fm would be a bag-of-visual-words his-
togram of the image as introduced in Section 6.1.1. Then, the corresponding
dimensionality dm would be the codebook size used for the vector quantization
step.

In the following, we will use the name feature combination method for all
methods which address the feature combination problem.

The feature combination problem is a special case of multiclass classification.
Since the main topic of this thesis are kernel methods we will address the
problem of learning a multiclass classifier from training data by means of kernel
classifiers. As described earlier, kernel methods make use of kernel functions
defining a measure of similarity between pairs of instances. In the context of
feature combination it is useful to associate a kernel to each image feature as
follows. For a kernel function k between real vectors we define the short-hand
notation

km(x, x′) = k(fm(x), fm(x′)), (7.1)

such that the image kernel

km : X × X → R (7.2)

only considers similarity with respect to image feature fm. If the image feature
is specific to a certain aspect, say, it only considers texture information, then
the kernel measures similarity only with regard to this aspect. The subscript
m of the kernel can be understood as indexing into the set of features.

In the following, for notational convenience, we will denote the kernel re-
sponse of the m’th feature for a given sample x ∈ X to all training samples xi,
i = 1, . . . , n as Km(x) ∈ Rn with

Km(x) = [km(x, x1), km(x, x2), . . . , km(x, xn)]T .

In case x is the i’th training sample, i.e. x = xi, then Km(x) is simply the i’th
column of the m’th kernel matrix.

104

7.2. Feature Combination Methods

N
am

e
T

es
t-

ti
m

e
fu

n
ct

io
n

C
o
effi

ci
en

ts
T

ra
in

in
g

P
ar

am
et

er
s

R
ef

er
en

ce
s

A
ve

ra
gi

n
g
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

[α
> c

(1 F

∑ F m
=

1
K
m

(x
)) +

b c
]

α
∈

R
C×

n
(α
,b

) c
,

in
d
.

C
b
∈

R
C

P
ro

d
u
ct

y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

[α
> c

(∏ F m
=

1
K
m

(x
)) 1/F

+
b c

]
α
∈

R
C×

n
(α
,b

) c
,

in
d
.

C
b
∈

R
C

M
K

L
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

∑ F m
=

1
β
c m

(α> cK
m

(x
)

+
b c
)

β
∈

R
C×

F
(α

c
,b
c
,β

c
) c

C
[B

ac
04

,
S
on

06
,

V
ar

07
]

α
∈

R
C×

n
in

d
.

b
∈

R
C

M
C

-M
K

L
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

∑ F m
=

1
β
c m

(α> cK
m

(x
)

+
b c
)

β
∈

R
C×

F
((
α
,b
,β

) c
)

C
[Z

ie
07

]
α
∈

R
C×

n
jo

in
tl

y
b
∈

R
C

C
G

-B
o
os

t
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

[∑ F m
=

1
α
> c,
m
K
m

(x
)

+
b c

]
α
∈

R
C×

F
×
n

(α
,b

) c
,

in
d
.

C
[B

i0
4]

b
∈

R
C

L
P

-β
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

∑ F m
=

1
β
m

(α> c,m
K
m

(x
)

+
b c
,m

)
β
∈

R
F

1.
(α
,b

) c
,

in
d

1.
C
m

[D
em

02
]

α
∈

R
C×

F
×
n

2.
β

,
jo

in
tl

y
2.
ν
∈

(0
,1

)
b
∈

R
C×

F

L
P

-B
y
(x

)
=

ar
gm

ax
c=

1
,.
..
,C

∑ F m
=

1
B
c m

(α> c,m
K
m

(x
)

+
b c
,m

)B
∈

R
F
×
C

1.
(α
,b

) c
,

in
d

1.
C
m

,
[D

em
02

]
α
∈

R
C×

F
×
n

2.
B

,
jo

in
tl

y
2.
ν
∈

(0
,1

)
b
∈

R
C×

F

T
ab

le
7.

1.
:

C
om

p
ar

is
on

of
m

u
lt

ic
la

ss
le

ar
n
in

g
ap

p
ro

ac
h
es

to
th

e
fe

at
u
re

co
m

b
in

at
io

n
p
ro

b
le

m
in

im
ag

e
an

d
ob

je
ct

cl
as

si
fi
-

ca
ti

on
.

In
th

e
co

lu
m

n
“T

ra
in

in
g”

it
is

al
so

n
ot

ed
w

h
ic

h
p
ar

am
et

er
s

ar
e

tr
ai

n
ed

in
d
ep

en
d
en

tl
y

(i
n
d
.)

w
.r

.t
.

to
cl

as
se

s
c

an
d

w
h
ic

h
ar

e
tr

ai
n
ed

jo
in

tl
y.

T
h
e

m
et

h
o
d
s

L
P

-β
an

d
L

P
-B

ar
e

tr
ai

n
ed

in
tw

o
se

p
ar

at
e

st
ag

es
,

w
h
ic

h
is

d
en

ot
ed

b
y

1.
an

d
2.

In
p
ri

n
ci

p
le

on
e

ca
n

se
le

ct
a

re
gu

la
ri

za
ti

on
co

n
st

an
t
C

fo
r

ea
ch

cl
as

s
se

p
ar

at
el

y.
W

e
u
se

d
on

ly
on

e
va

lu
e

of
C

fo
r

al
l

cl
as

se
s

jo
in

tl
y.

105

7. Image Feature Combination for Multiclass Object Classification

Feature selection as kernel selection In this chapter we study kernel classi-
fiers that aim to combine several kernels into a single model. Since we associate
image features with kernel functions, kernel combination/selection translates
naturally into feature combination/selection.

In the following we will present several methods in a unified setting along
with their training procedures. An overview of the different methods in their
multiclass variant can also be found in the Table 7.1.

7.3. Methods: Baselines

We include three simple baseline methods, both of which combine kernels in a
pre-defined deterministic way to form a new kernel that is subsequently used
for SVM training.

7.3.1. Best Single Feature

A conceptually simple approach is the use of Cross Validation to select a single
kernel from the set {k1, . . . , kF}. Every feature combination method should be
able to outperform this baseline method or at least match its performance if
a single feature is sufficient for good classification.

7.3.2. Averaging Kernels

Arguably the simplest method to combine several kernels is to average them.
We define the kernel function

k∗(x, x′) =
1

F

F∑
m=1

km(x, x′), (7.3)

which is subsequently used in a support vector machine (SVM).

Training The only free parameters are the SVM parameters. We use CV to
estimate the best regularization constant. A multiclass variant is built using
a one-versus-rest scheme.

7.3.3. Product Kernels

The next baseline method we consider is to combine several kernel by multi-
plication. All F kernels we use are of the form km(x, x′) = exp(−γmdm(x, x′))
and we use

k∗(x, x′) =
F∏

m=1

exp
(
−γm
F
dm(x, x′)

)
(7.4)

as the single kernel in a SVM.

106

7.4. Methods: Multiple Kernel Learning

Training Same as for averaging.

7.4. Methods: Multiple Kernel Learning

In MKL the kernel combination is a part of the optimization problem. This
method was already introduced in depth in Chapter 4 and we just recall the
that the final decision function of MKL is of the following form

FMKL(x) = sign

(
F∑

m=1

βm
(
Km(x)Tα + b

))
. (7.5)

A slightly different variant of the multiple kernel learning objective (4.10)
has been proposed in [Var07] specifically for the task of feature combination.
We also implemented this variant but found that for all experiments the results
using either variant do not differ. Therefore we omitted the presentation of
these results, they can be regarded as equal to the ones obtained using the
previously used MKL solution.

Training The only free parameter in the MKL approaches provided that the
proposal kernels are pre-selected is the regularization constant C, which is cho-
sen using CV. A multiclass decision is resolved with a one-versus-rest scheme.
The final decision function is also shown in Table 7.1. All one-versus-rest
classifiers can be trained in parallel.

Multiclass MKL For strongly unbalanced datasets a MKL classifier trained
as a multiclass classifier might be preferable over the one-versus-rest setup. The
authors of [Zie07] derive such a MC-MKL formulation in which all parameters
for all classes are trained jointly. Due to performance issues this approach
renders infeasible for the large scale experiments presented here. 2.

7.5. Methods: Boosting Approaches

As last class of feature combination methods we look at boosting approaches
and in particular propose two more methods which are inspired by the MKL
decision function. All methods in this section are, as MKL, based on mixtures
of kernels. We start with the presentation of the binary classifier in 7.5.1 and
generalize it to the multiclass case in Section 7.5.2.

2Personal communications with the authors of [Zie07].

107

7. Image Feature Combination for Multiclass Object Classification

7.5.1. LPBoost - Binary Classification

With the mixing coefficients βm summing to one, the binary MKL decision
function is a convex linear combination of the real valued outputs of F SVMs
fm(x) = Km(x)Tα+ b. Furthermore we observe that all of the SVMs included
in the sum share the same parameter set {α, b}. Having noted this, MKL can
be understood as a restricted version of the following more general form

F (x) = sign

(
F∑

m=1

βmfm(x)

)
, (7.6)

where fm(x) are some real valued functions, not necessarily support vector
machines and not necessarily trained jointly. In Boosting terminology the fm
are known as weak learners.

This observation leads naturally to the following model. We use the kernels
km,m = 1, . . . , F to train separate SVMs fm, resulting in different parameter
sets {αm, bm}. Subsequently we optimize over β = {β1, . . . , βF} in a second
step. Each individual function fm is not restricted to share the parameters but
can be trained independently to yield maximal generalization. The details of
this two-step learning procedure are given in Section 7.5.2.

The possibility of unconstraining the SVM parameters α does not enhance
the space of possible decision functions. A resulting decision function of form
(7.6) is a convex combination of several hyperplanes and thus itself again a
hyperplane. If it were the optimal one for the MKL problem it could, due
to the representer theorem, be represented as a combination of the kernel
evaluations using only n training points.

A benefit of training the parameters in a two stage process is that with only
F mixing coefficients to optimize over in the second step, a true multiclass
formulation becomes feasible. The downside of the approach is that it is more
demanding in terms of training data.

Problem formulation We propose to learn all parameters of the model in
two separate steps. In the first step the functions fm are trained individually.
Subsequently we optimize over β using the following linear program (LP),
which is equivalent to ν-LPBoost [Dem02]

min
β,ξ

−ρ+
1

νn

n∑
i=1

ξi (7.7)

sb.t. yi

F∑
m=1

βmfm(xi) + ξi ≥ ρ, i = 1, . . . , n, (7.8)

F∑
m=1

βm = 1, βm ≥ 0, m = 1, . . . , F, (7.9)

ξi ≥ 0, i = 1, . . . , n, (7.10)

108

7.5. Methods: Boosting Approaches

with {ξ1, . . . , ξn} being slack variables. The equivalence to LPBoost can be
seen by considering the hypothesis space to be the finite set of functions
{f1, f2, . . . , fF}. The problem can easily be solved using standard linear pro-
gramming solvers. Due to the special coupled structure in the dense constraint
matrix, we found interior-point based solvers to be consistently faster than
simplex based method.3 There is only one hyper-parameter ν in the problem
which trades the smoothness of the resulting function with the hinge loss on
the points, analogously to the SVM regularization parameter C.

7.5.2. LPboost - Multiclass Variant: LP-β and LP-B

It is straightforward to derive a multiclass version of Problem (7.7). In the
multiclass case with C classes, the functions fm are no longer real-valued but
map into a C dimensional space fm(x) → RC. The c’th output of fm(x) will
be denoted by fm,c(x).

We consider two possible variations of learning mixing weights. The first,
termed LP-β uses a single vector β for all classes. This β defines a combination
that works well for all classes jointly. Alternatively each class can have its
own weight vector over the features, in which case there is a weight matrix
B ∈ RF×C, we name this method LP-B.

LP-β.

The decision rule of LP-β can be found in Table 7.1. All parameters of the
decision functions fm, e.g. (αm, bm) for all classes and features are determined
in a first step. The mixing coefficients β are learned by the following multiclass
extension of LPBoost.

min
β,ξ,ρ

−ρ+
1

νn

n∑
i=1

ξi (7.11)

sb.t.
F∑

m=1

βmfm,yi(xi)− argmax
yj 6=yi

F∑
m=1

βmfm,yj(xi)

+ξi ≥ ρ, i = 1, . . . , n, (7.12)
F∑

m=1

βm = 1, βm ≥ 0, m = 1, . . . , F, (7.13)

ξi ≥ 0, i = 1, . . . , n. (7.14)

Since we only optimize over C parameters, learning them in such a true mul-
ticlass formulation is feasible.

A benefit of this method is that β is sparse on the level of the features. This
means features for which βm = 0 need not be computed for the final decision

3We use the MOSEK interior-point solver, see http://www.mosek.com/.

109

7. Image Feature Combination for Multiclass Object Classification

function, which is of advantage at test time. Although the MKL solution is
sparse for every class separately, it may not be sparse jointly in a one-versus-
rest MKL setup. In the experiments we observed that almost always every
feature is selected at least once, making its computation necessary also during
test time.

LP-B

In this second variant each class is assigned its own weight vector resulting
in a F × C weighting matrix B. The coefficient Bc

m is the mixing coefficient
for the m’th feature response for class c. The decision rule is shown in Table
7.1. The corresponding learning problem extends the Hinge loss in (7.12) to
the multiclass Hinge loss originally proposed by [Wes99] for support vector
machines. This formulation reads

min
B,ξ,ρ

−ρ+
1

νn

n∑
i=1

ξi (7.15)

sb.t.
F∑

m=1

Byi
mfm,yi(xi)−

F∑
m=1

Byj
mfm,yj(xi)

+ξi ≥ ρ, i = 1, . . . , n, yj 6= yi, (7.16)
F∑

m=1

Bc
m = 1, m = 1, . . . , F, (7.17)

Bc
m ≥ 0, m = 1, . . . , F, c = 1, . . . , C, (7.18)

ξi ≥ 0, i = 1, . . . , n. (7.19)

Note that this is still a linear programming problem, but more expensive to
solve than LP-β due to the increased number of parameters.

Training

The training procedures for LP-β and LP-B are analogous. Ideally we have
enough data to adjust fm and β on independent sets. If this is not the case,
we use the following two-stage scheme to avoid biased estimates.

1. First we perform model selection using 5 fold CV to select the best hyper-
parameters for each fm individually (in our case fm are SVMs and we
need to select C). With this choice of hyperparameters we train for each
of the five cross validation split a function f im, i = 1, . . . , 5 on the training
set solely for the purpose of computing the outputs on the validation set
of that split. The cross-validation scores is the union all those outputs.
This results in a prediction for each training point using a classifier which
was not trained using that point (but on 80% of the training data). For
each feature we train a final function fm using the entire training data.
At this point the only hyper-parameter left is ν.

110

7.6. The Oxford Flowers dataset

2. We estimate the hyperparameter ν as well as the mixing coefficients
using only the cross-validation scores. We perform CV to select the best
parameter ν and subsequently train the final combination β. Afterwards,
the cross-validation scores can be discarded.

The main concern using this training scheme, is that the generated training
data for LP-β training stems not from the classifiers fm,m = 1, . . . , F that are
later used in the combination but are the cross-validation scores. Therefore we
have to make the assumption that the functions f im and fm are not too different.
This is reasonable since the functions f im used to produce the training data for
LP-β are trained on 80% of the training data. The experiments validate this
assumption as we do not observe overfitting for the LP-β model. We want to
emphasize that the entire procedure uses training data only.

The LP-B results tend to be worse compared to LP-β (see Results section),
so fitting its C×F instead of F parameters seems to demand for more training
data or its objective function is not suited for this problem.

7.5.3. Column Generation Boosting for Mixtures of Kernels

A different variant of the Boosting technique that is based on the same obser-
vation from 7.5.1 was proposed in [Bi04]. Instead of maintaining the separation
between the SVM parameters (α, b) and mixing coefficients β the authors pro-
pose to solve

min
αm

1

2

F∑
m=1

αTmαm + C
n∑
i=1

L

(
yi, b+

F∑
m=1

Km(xi)
Tαm

)
. (7.20)

This formulation can be understood as training a SVM with a linear kernel
with the kernel evaluations at the training points as features.4 This method is
referred to as CG-Boost in the experiments.

Training Since the formulation reduces to a linear SVM the only free param-
eter is again the regularization parameter C, which is selected using CV. We
experimented with different loss functions L and found that logistic loss

L(y, x) = log (1 + exp(−yf(x))) (7.21)

yields best results while assuring good convergence of the algorithm.

7.6. The Oxford Flowers dataset

In this section we present results on the Oxford flowers dataset [Nil06]. This
dataset consists of images depicting flowers. In total there are 17 different

4Implemented using liblinear-1.33, a standard solver for linear SVM.

111

7. Image Feature Combination for Multiclass Object Classification

Figure 7.1.: 15 example images from five categories of the Oxford Flowers
dataset. Images in the same column are from the same class.

types of flowers with 80 images per category. Example images are shown in
Figure 7.1. The task is to classify the images into the different flower types.

The dataset comes with three predefined splits into test (17 × 20 images),
train (17 × 40 images) and validation set (17 × 20 images). Furthermore the
authors of [Nil08] provide seven precomputed distance matrices online on their
website5 and those matrices are used for the experiments presented here. Each
matrix is computed using a different feature type, namely clustered HSV values
(HSV), SIFT features on the foreground region (siftint), SIFT features on
the foreground boundary (siftbdy) and three matrices derived from colour,
shape and texture vocabularies. Since we are interested in the combination
of different features rather than feature design we refer to [Nil06, Nil08] for
details on the image features.

7.6.1. Experimental Setup

We first compare the overall performance of all models presented in this chap-
ter. To this end we use the predefined splits for training and model selection.
The regularization parameter is selected from the range
C ∈ {0.01,0.1,1,10,100,1000}. For LP-β and LP-B the regularization parame-
ter ν ∈ {0.05, 0.1, . . . , 0.95} of the second stage is also selected on the valida-

5http://www.robots.ox.ac.uk/~vgg/research/flowers/index.html

112

7.6. The Oxford Flowers dataset

Single features Combination methods
Feature Accuracy Time Method Accuracy Time
Colour 60.9 ± 2.1 3 product 85.5 ± 1.2 2
Shape 70.2 ± 1.3 4 averaging 84.9 ± 1.9 10
Texture 63.7 ± 2.7 3 CG-Boost 84.8 ± 2.2 1225
HOG 58.5 ± 4.5 4 MKL (SILP) 85.2 ± 1.5 97
HSV 61.3 ± 0.7 3 MKL (Simple) 85.2 ± 1.5 152
siftint 70.6 ± 1.6 4 LP-β 85.5 ± 3.0 80
siftbdy 59.4 ± 3.3 5 LP-B 85.4 ± 2.4 98

Table 7.2.: Mean accuracy for all methods on the Oxford Flowers dataset using
the predefined splits [Nil08]. Also plotted is the total time for model
selection, training and testing in seconds. The simple product and
averaging combination methods are orders of magnitude faster than
learning based methods.

tion set, using the procedure described in Section 7.5.2. Kernel functions are
computed as

km(x, x′;σm) = exp

(
− 1

σm
dm(x, x′)

)
(7.22)

with dm being one of the pre-computed distances and σ fixed to the median of
the pairwise distances. This leads to a total of seven different kernel functions.

7.6.2. Results

The results are shown in Table 7.2, with results using a SVM with a single
kernel only are shown in the left, and combination methods in the right column.
Since all classes have the same number of test images we report the accuracy
as the number of correctly classified examples divided by the number of all
examples. The accuracies for different features vary from 58.5 to 70.6, while
the combination results are approximately the same. Also shown is the total
time in seconds, needed for model selection, training and testing the methods.
The regular SVM and baseline methods are orders of magnitude faster than
the other combination methods.

7.6.3. Discussion

From the results we can draw several conclusions. All feature combination
methods dramatically improve the classification performance, a finding consis-
tent with [Nil08]. These results clearly indicate that a combination of image
features is advantageous over using single specialized features only. The best
single feature achieves an accuracy of about 71%, while every combination
methods yields to about 85%.

113

7. Image Feature Combination for Multiclass Object Classification

01 5 10 25 50
45

50

55

60

65

70

75

80

85

90

no. noise features added

a
c
c
u

ra
c
y

Performance with added noise features

product

average

CG−Boost

MKL

LP−β

LP−B

Table 7.3.: Accuracy of the different methods while adding more noise features
to the proposal set. All learning based combination methods are
robust to the inclusion of noise features, while baseline techniques
are not.

Having said this, we note that the baselines (single) and (product) that
are almost always left out in comparisons (e.g. [Nil08, Var07, Rak08, Son06,
Kum07]) yield equally good results but are magnitudes faster than any other
combination method. For example the entire time needed to perform model
selection plus final training of the classifier using a SVM with an averaged
kernel takes only 10 seconds compared to approximately 100 seconds needed
for MKL and LP-β training.

Many authors have argued that the mixing coefficients of the MKL solution
are interpretable [Nil08, Nil06, Var07, Son06]. They are usually interpreted as
the influence of the features on a particular class. While this may be intuitive
for the case of binary classification, in a multiclass setting this reasoning is mis-
leading. One could equally plausible argue, that, due to the same result of the
averaging baseline with the MKL classifier, all features are equally important
for the multiclass decision.

7.6.4. Learning With Uninformative Features

In a second experiment we will highlight the benefit of using a learning ap-
proach for feature combination over the baseline methods. Additional to the
seven discriminative features we add non-discriminative features by generat-

114

7.7. The Caltech Object Classification Datasets

ing random vectors from a three dimensional normal distribution. A Gaussian
kernel is computed on these noise features and included into the set of kernels.
Now the same experiment as before is repeated. In Figure 7.3 we plot the
performance of the models against the number of added noise kernels.

The baselines incorporate all features with the same importance and subse-
quently their performance drops severely. Among the learning methods MKL
and LP-β turn out to be very robust to uninformative features, while the
CG-Boosting approach slowly decays in performance.

This experiment highlights a feature of MKL, namely that it is able to se-
lect kernels out of a large class of potentially un-informative ones, e.g. wrong
kernel parameters. However this is exactly not the scenario typically encoun-
tered in object classification, where each feature on its own is designed to be
discriminative.

7.7. The Caltech Object Classification Datasets

For the second set of experiments we use the well known Caltech datasets [FF04,
Gri07] which have become the standard benchmark for visual object classifi-
cation besides the Pascal VOC dataset [Eve07]. The Caltech-101 dataset was
already introduced in the last chapter and some example images are shown in
Figure 6.4.

7.7.1. Experimental Setup

We follow the experimental setup proposed by the designers of the datasets.
The performance is measured as the mean prediction rate over all classes. We
compute the per class error err(c) as in (6.5) and the multiclass accuracy accmc
with

accmc = 1− 1

C

C∑
c=1

err(c). (7.23)

This balances the influence of categories with a large number of test examples.
The total number of images available in Caltech-101 is 9144 with 102 categories
while Caltech-256 consists of 30607 images in 257 categories. The 30 largest
categories of Caltech-101 are also part of the Caltech-256 dataset.

While the minimum number of images in one class of the Caltech-101 dataset
is 31, making it possible to use only 30 training images per class while retaining
images to test on, the smallest category of Caltech-256 consists of 80 images.
We report results using all 102 classes of the Caltech-101 dataset averaged over
five splits and for 256 classes of the Caltech-256 dataset, excluding its clutter
category, on a single split.

The number of training images for the Caltech-101 experiments are 5, 10, 15,
20, 25, 30 images per category for training and up to 50 images per category

115

7. Image Feature Combination for Multiclass Object Classification

for testing. For the Caltech-256 dataset 25 images per class are used for testing
testing and 5, 10, 15, 20, 25, 30, 40, 50 images per class for training.

All participating kernels are of the form as in (7.22) with σ again fixed to
the reciprocal of the median of all pairwise distances. The features used to
compute the distances are described in more detail in Section 7.7.2.

The LP methods require training in two stages. In a first step separate SVMs
are trained using each feature type individually. To this end we cross validate
on the training set the hyper-parameter C from the set
{0.1, 1, 10, 50, 100, 500, 1000}. For the LP ν is selected in the range of 0.05
to 0.95 in steps of 0.05. Values around 0.8 are typically selected. For MKL we
tried a number of regularization constants and chose C = 1000 which yields
best results. This choice is in accordance to many results published in the
literature [Var07, Laz06].

7.7.2. Image Descriptors

In the following we briefly describe the features that were used for the ex-
periments. For all but the V1S+ features we also compute spatial pyramid
variants in the same manner as outlined in Section 6.2.1.

PHOG Shape Descriptor

Shape is modeled using the PHOG descriptor proposed in [Bos07a]. The de-
scriptor is a histogram of oriented (Shp360) or unoriented (Shp180) gradients
computed on the output of a Canny edge detector. The oriented histogram
Shp360 contains 40 bins, the unoriented Shp180 20 bins yielding a total of 2×4
kernels (L=3). The χ2 distance is used to compute histogram similarity.

Appearance Descriptor

Appearance information is modeled using SIFT descriptors [Low99] which are
computed on a regular grid on the image with a spacing of 10 pixels and
for the four different radii r = 4, 8, 12, 16. The descriptors are subsequently
quantized into a vocabulary of visual words that is generated by k-means
clustering. We use four variants of this feature type: two codebook sizes (300
and 1000 prototypes) and grey image descriptors (128 dims) as well as HSV-
SIFT (3*128=384dims)). HSV-SIFT are computed by concatenation of SIFT
descriptors computed separately on the hue, saturation and value channels of
the color images. RGB color images were converted to gray-scale using the
transformation I = 0.3R+0.59G+0.11B, where I denotes the intensity of the
gray level image.

With a pyramid representation (L = 3) this adds to a total of 4× 4 kernels
again using the χ2 distance.

116

7.7. The Caltech Object Classification Datasets

In the last chapter, Section 6.2 we identified a kernel particular well suited
for the Caltech datasets. This kernel was constructed by averaging over many
kernels of the form (6.4) with bounding boxes B drawn at random. 6 Here
we will use an average over 100 randomly sampled subwindows and refer to
the final averaged kernel as the subwindow kernel. Although learning the
mixing weights with `2 MKL instead of taking the average was shown to be
slightly advantageous we chose the conceptually simpler averaging step as a
compromise of performance and speed.

Region Covariance

In [Tuz07] it is proposed to use the covariances of simple per-pixel features as
robust and discriminative statistics for human detection. We use the tangent-
space projected features. We use the Euclidean distance and a pyramid rep-
resentation which yields 3 kernels (L=2).

Local Binary Patterns

The authors of [Oja02] argue to use locally binary pattern (LBP) features,
retaining the classification performance of textons for texture classification
while being much faster and simpler to extract. We use histograms of uniform
rotation-invariant LBP8,1-features and create 3 kernels (L=2) with the χ2-
distance.

V1S+

In [Pin08] a population of locally normalized, thresholded Gabor functions
spanning a range of orientations and spatial frequencies are derived and ad-
vocated as particular simple features. Image features are compared using the
Euclidean distance of features on the entire image (L = 0). This results in one
kernel.

7.7.3. Results and Discussion

We distinguish two different settings for the experiments: combining kernels
based on very similar features, i.e. different levels of a pyramid and combining
diverse features e.g. different types of image features. Additionally we will
compare our results to the best published results in the literature.

Combining Similar Features

In Figure 7.2 results are shown for combining the four kernels of the spatial
pyramid using SIFT (a) or PHOG (b) features. We plot the performance

6The distribution is shown in 6.7(a).

117

7. Image Feature Combination for Multiclass Object Classification

5 10 15 20 25 30
−6

−4

−2

0

2

#training examples

a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 i
n

 %

SIFT − grey − K=300 (4 kernels)

best feature

product

average

CG−boost

MKL

LP−β

LP−B

5 10 15 20 25 30
−6

−4

−2

0

2

#training examples

a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 i
n

 %

PHOG: Angle−360,40 bins (4 kernels)

best feature

product

average

CG−boost

MKL

LP−β

LP−B

(a) (b)

5 10 15 20 25 30
−4

−2

0

2

4

6

8

10

#training examples

a
c
c
u

ra
c
y
 d

if
fe

re
n

c
e

 i
n

 %

Pyramid Level 2 kernels (8 kernels)

best feature

product

average

CG−boost

MKL

LP−β

LP−B

5 10 15 20 25 30
40

50

60

70

80

#training examples

a
c
c
u
ra

c
y

Caltech−101 (39 kernels)

best feature

product

average

MKL

LP−β

LP−B

(c) (d)

Figure 7.2.: Multiclass accuracy of different combination methods on the
Caltech-101 dataset. In (a),(b) and (c) the performance differ-
ence with respect to the best single feature identified via CV is
plotted. Shown are: in (a)+(b) results combining four kernels of
a spatial pyramid using the same image feature type (SIFT or
PHOG). (c) combining eight kernels of different image features.
(d) comparison of methods using a total of 39 kernels.

difference with respect to the best single kernel which is selected using Cross
Validation.

All models yield similar results but several observations can be made.

• When combining pyramid kernels of SIFT features, MKL and CGBoost
are outperformed by the baseline methods average and product and even
yield worse results than using a single kernel alone (Figure 7.2(a)). For
combination of PHOG pyramid kernels the baseline results are worse
than CGBoost or MKL.

118

7.7. The Caltech Object Classification Datasets

5 10 15 20 25 30
10

20

30

40

50

60

70

80

#training examples

a
c
c
u

ra
c
y

Caltech101 comparison to literature

Zhang, Berg, Maire and Malik (CVPR06)

Lazebnik, Schmid and Ponce (CVPR06)

Wang, Zhang and Fei−Fei (CVPR06)

Grauman and Darrell (ICCV05)

Mutch and Lowe (CVPR06)

Pinto, Cox and DiCarlo (PLOS08)

Griffin, Holub and Perona (TR06)

LP−β (this work)

10 20 30 40 50

20

30

40

50

#training examples

a
c
c
u
ra

c
y

Caltech−256 (39 kernels)

best feature

product

average

MKL

LP−β

LP−B

Griffin, Holub and Perona (TR06)

Pinto, Cox and DiCarlo (PLOS08)

(a) (b)

Figure 7.3.: Comparing the results to the best ones reported in the literature
for Caltech-101 (a) and Caltech-256 (b). LP-β is found to out-
perform all previously published methods by about 10%. Some
numbers have been estimated from plots, see Table 7.5 for the
exact numbers.

• LP-β yields the best results for both combinations if trained with more
than five examples per category.

Combining Diverse Features

Figure 7.2(c) shows the result of combining 8 kernels corresponding to different
image features. Of every feature descriptor described previously we use the
kernel of Level 2. These are more diverse than combining kernels derived from
levels of the same pyramid. We make the following observations.

• All feature combinations yield a significant improvement over the result
using the single best kernel (best feature).

• Among the learning based method LP-β performs best.

• CG-Boost and MKL are outperformed by the baseline methods.

In the next experiment we aim for maximal performance on the Caltech
datasets using a total of 39 different kernels. In addition to the kernels from
Section 7.7.2 we include the products of the pyramid levels for each feature
resulting in an additional 7 kernels. Furthermore we use two subwindow kernels
with SIFT and HSV-SIFTs (codebooksize K = 1000). The result is shown in
Figure 7.2(d).

The best single feature, estimated using Cross Validation, among the 39
different kernels are the V1S+ features. We find the same qualitative result as

119

7. Image Feature Combination for Multiclass Object Classification

before. The LPBoosting techniques yield best performance while the baselines
and MKL are comparable. As mentioned already, LP-β identifies a sparse
solution on the level of the features. For Caltech-101 with 30 training examples
per class 7 out of 39 features are selected:. The LP-B approach consistently
gives worse results than its restricted version LP-β.

Comparison to Literature

In Figure 7.3(a) we compare LP-β as the best method to state-of-the-art results
for the Caltech datasets published in the literature [Gra05, Laz06, Zha06,
Wan06, Mut06, Gri07, Pin08]. Compared to these results, the methods in
this chapter like MKL and the baselines, yield a better performance. This
is due to the use of very discriminative features, whereas some results from
the literature are obtained using a single image feature only. This is a clear
indication that the features employed for the experiments are very compatible
and feature combination methods are powerful tools for this dataset.

The results for Caltech-256 are shown in Figure 7.3(b) with LP-β achieving
a more than 10% improvement over the best published results [Gri07, Pin08].
Using 30 training images the final classifier is a linear combination of 15 indi-
vidual one-versus-rest SVMs, thus a sparse number of feature is selected among
the proposed ones.

For the best result using the LP-β method we plot confusion matrices in
Figure 7.4 and a list of the accuracies attained on the tested object categories
in Figure 7.5 and Figure 7.6. A trend which can be observed from the latter
two plots is that rigid categories like motorbikes, scissors, minaret are among
the easier categories while object categories consisting of animal images like
crocodile, octopus, beaver, ant are the ones with the lowest accuracy. This is
most probably because of a higher intra-class variability of the animal pictures.

7.7.4. Training Time Comparison

We compare the runtime performance of the different methods in terms of a
single run to train the model. The numbers are based on using 15 training
examples per class, which adds to a total of 1530 for Caltech-101 (and 3840
for Caltech-256).

The required training time for an entire one-versus-rest SVM multiclass
classifier using a single kernel is about 5s (50s for Caltech-256). Estimating
the 39 coefficients of β takes 60s (8.5m) and for B 935s (4.9h). Thus a single
run of LP-β requires about 6×39×5s+60s ≈ 21m (6×39×50s+8.5m≈ 3.4h)
which includes the computation of the CV output (5×39 SVMs) and the final
weak classifiers (39 SVMs). These numbers are comparable to MKL training
which takes about 23m (5h) for all classes. All implementations can most likely
be optimized.

120

7.8. Conclusion

class nr

c
la

s
s
 n

r

Confusion Matrix

20 40 60 80 100

20

40

60

80

100 0

0.2

0.4

0.6

0.8

1

class nr

c
la

s
s
 n

r

Confusion Matrix

50 100 150 200 250

50

100

150

200

250 0

0.2

0.4

0.6

0.8

1

Caltech-101 Caltech-256

Figure 7.4.: Confusion matrices for the Caltech-101 (left) and Caltech-256
(right) dataset. Shown are the results obtained using 30 (resp.50)
training images per class.

The combined time for training LP-β are higher since we perform model
selection, whereas for MKL we fixed the hyper-parameter beforehand. The
training time for the baseline methods are orders of magnitudes faster. For a
good performance at test time one has to reduce the amount of kernel evalu-
ations and more importantly the amount of image features which have to be
computed for each single image. LP-β is advantageous over the other methods
in the last respect since it selects a sparse number of image features which
work well for all classes simultaneously.

7.8. Conclusion

In this chapter we studied several methods for combining multiple image fea-
tures for visual object classification systems. We interpreted the MKL decision
function as a convex combination of SVMs and inspired by this proposed for-
mulations based on the Linear Programming Boosting. These are different
to CG-Boost [Dem02], in that they maintain two distinct sets of parameters
which are optimized separately in two separate steps.

In order to enable efficient training we derived a two step training procedure
that works well in practice. This two step training procedure arguably is less
principled than a joint optimization. However in practice this seems not to be
a problem and works well even in the case of few training examples. Due to
the two training stages most of the training, e.g. training the SVMs, can be
parallelized.

We found that the LP-β approach consistently outperforms all other con-

121

7. Image Feature Combination for Multiclass Object Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
octopus

BACKGROUND_Google
wild_cat

cougar_body
beaver

crocodile
sea_horse

crayfish
barrel

ant
ibis

platypus
crab

flamingo
brontosaurus

starfish
llama
lotus

kangaroo
scorpion

anchor
butterfly

emu
cannon

crocodile_head
helicopter

ceiling_fan
binocular

pigeon
camera

elephant
dolphin

water_lilly
lobster

bass
chair

gerenuk
nautilus

gramophone
mandolin

cup
umbrella

wrench
ketch

schooner
bonsai
mayfly

snoopy
strawberry

lamp
watch
rhino

stegosaurus
buddha

ewer
hawksbill

cougar_face
soccer_ball

brain
chandelier
wheelchair

dragonfly
panda

joshua_tree
electric_guitar

pyramid
tick

euphonium
headphone
hedgehog
dalmatian

ferry
stapler

pagoda
rooster

dollar_bill
pizza

airplanes
Faces_easy
grand_piano

menorah
windsor_chair

yin_yang
stop_sign

laptop
sunflower
accordion
car_side

cellphone
Faces

flamingo_head
garfield

inline_skate
Leopards

metronome
minaret

Motorbikes
okapi

revolver
saxophone

scissors
trilobite

accuracy

c
la

s
s
 n

a
m

e

Figure 7.5.: Accuracy of LP-β using 30 training images on the Caltech-101
dataset. Shown is the per class accuracy (diagonal of the confusion
matrix, acc(c) = 1 − err(c)) as bars, sorted in descending order.
The final multiclass accuracy is the average and depicted by a solid
blue line.

sidered methods and obtain the best results published up-to-date. On both
Caltech datasets we observe an more than 10% improved performance over the
best published result.

An interesting fact is that LP-β was found to yield better results than the
best participating weak learner. This is in general not true for the other combi-
nation methods. Therefore we expect even better performance if we train with

122

7.8. Conclusion

more image features or include other classification functions. Adding more
learners comes with a reasonable additional cost since it only scales linearly in
F , while any trained weak learners can be reused.

Most results in this chapter turn out to be disadvantageous for MKL. The
baseline methods yield competitive results and outperform MKL on several
setups. This is due to the fact that the available kernels on their own are
already discriminative. In the presence of uninformative kernels MKL and the
LPBoosting techniques are able to identify a discriminative set of kernels and
maintain good performance. However we want to stress that this is exactly
not the typical scenario in multiclass object classification where designers of
image features strive to make their features as expressible as possible and tune
for optimal performance.

We conclude with the observation that MKL might have been overestimated
in the past, due to non reproducible results reported in [Var07]. The baseline
methods “average” and “product” should be considered as its canonical com-
petitors and included in any study using MKL. With LP-β we derived a method
that yields better performance, is equally fast and leads to sparse multiclass
object classification systems.

123

7. Image Feature Combination for Multiclass Object Classification

M
eth

o
d

1
3

5
10

15
20

25
30

Z
h

an
g,

B
erg,

M
aire

an
d

M
alik

(C
V

P
R

06)[Z
h

a06]
22
∗

-
46
∗

54.8
∗

59.1
61.6

∗
-

66.2
L

azeb
n

ik
,

S
ch

m
id

an
d

P
on

ce
(C

V
P

R
06)[L

az06]
-

-
-

-
56.4

-
-

64.6±
0.8

W
an

g,
Z

h
an

g
an

d
F

ei-F
ei

(C
V

P
R

06)[W
an

06]
-

-
19.5

∗
-

44.5
∗

50
∗

56
∗

63
G

rau
m

an
an

d
D

arrell
(IC

C
V

05)[G
ra05]

18
∗

28
∗

34.8
∗

44
∗

50
53.5

∗
55.5

∗
58.2

M
u

tch
an

d
L

ow
e

(C
V

P
R

06)[M
u

t06]
-

-
-

-
51

-
-

56
P

in
to,

C
ox

an
d

D
iC

arlo
(P

L
O

S
08)[P

in
08]

2
4

3
9
.8

47.9
56.8

61.44
-

-
67.36

G
riffi

n
,

H
olu

b
an

d
P

eron
a

(T
R

07)[G
ri07]

-
-

44.2
∗

54.2
∗

59.4
∗

63.3
∗

65.8
∗

67.6±
1.4

L
P

-β
-

-
5
4
.6
±

0
.4

6
5
.0
±

1
.2

7
0
.0
±

1
.0

7
3
.4
±

0
.4

7
5
.5
±

0
.6

7
7
.7
±

0
.3

T
ab

le
7.4.:

C
lassifi

cation
p

erform
an

ce
on

th
e

C
altech

-101
d
ataset

for
d
iff

eren
t

state-of-th
e

art
m

eth
o
d
s

from
th

e
literatu

re.
T

h
ese

n
u
m

b
ers

h
ave

b
een

u
sed

to
create

th
e

F
igu

re
7.3

(a)
(an

d
p
art

of
(b

)).
S
om

e
resu

lts
fou

n
d

in
th

e
literatu

re
h
ad

to
b

e
estim

ated
from

p
lots

an
d

are
m

arked
w

ith
a

star.

124

7.8. Conclusion

M
et

h
o
d

5
10

15
20

25
30

40
50

B
es

t
F

ea
tu

re
18

.4
23

.7
28

.4
30

.7
32

.8
34

.6
37

.3
39

.8
P

ro
d
u
ct

19
.7

28
.0

32
.6

35
.6

38
.4

40
.7

43
.3

45
.3

A
ve

ra
ge

20
.6

28
.7

33
.4

36
.2

39
.1

41
.5

44
.4

47
.0

M
K

L
17

.7
25

.6
30

.6
33

.7
34

.8
35

.6
L

P
-β

16
.7

3
0
.4

3
4
.2

4
0
.6

4
2
.8

4
5
.8

4
8
.9

5
0
.8

L
P

-B
2
0
.8

29
.6

33
.5

38
.1

40
.1

P
in

to
,

C
ox

an
d

D
iC

ar
lo

[P
in

08
]

-
-

24
-

-
-

-
-

G
ri

ffi
n
,

H
ol

u
b

an
d

P
er

on
a

[G
ri

07
]

18
.7

4±
0.

5
25

.0
1±

0.
5

28
.4
∗

31
.3

1±
0.

7
33

.2
∗

34
.2
±

0.
2

36
.8
∗

39
.0
±

0.
5

T
ab

le
7.

5.
:

R
es

u
lt

s
on

C
al

te
ch

-2
56

.
T

h
e

b
es

t
se

le
ct

ed
si

n
gl

e
ke

rn
el

is
th

e
su

b
w

in
d
ow

ke
rn

el
on

S
IF

T
(K

=
10

00
)

fe
at

u
re

s.
A

ll
re

su
lt

s
ar

e
ob

ta
in

ed
u
si

n
g

al
l

25
6

ca
te

go
ri

es
le

av
in

g
ou

t
on

ly
25

7.
cl

u
tt

er
.

N
u
m

b
er

s
es

ti
m

at
ed

fr
om

p
lo

ts
ar

e
m

ar
ke

d
w

it
h

a
st

ar
.

R
es

u
lt

s
of

[P
in

08
]

ar
e

ob
ta

in
ed

on
th

e
fi
rs

t
25

0
ca

te
go

ri
es

on
ly

an
d

sh
ou

ld
b

e
sl

ig
h
tl

y
h
ig

h
er

w
h
en

te
st

ed
on

al
l

25
6

ca
te

go
ri

es
si

n
ce

th
e

la
st

6
cl

as
se

s
ar

e
th

e
“e

as
ie

st
”

in
th

e
d
at

as
et

.

125

7. Image Feature Combination for Multiclass Object Classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
iguana

skateboard−−−−−−−−−−−−−
soda−can

mailbox−−−−−−−−−−−−−
bear

canoe−−−−−−−−−−−−−
drinking−straw

goat−−−−−−−−−−−−−
horse

hot−dog−−−−−−−−−−−−−
kayak

ladder−−−−−−−−−−−−−
rifle

snail−−−−−−−−−−−−−
coffin

duck−−−−−−−−−−−−−
grasshopper

mushroom−−−−−−−−−−−−−
dog

frog−−−−−−−−−−−−−
golf−ball

goose−−−−−−−−−−−−−
praying−mantis

spoon−−−−−−−−−−−−−
sushi

sword−−−−−−−−−−−−−
birdbath

camel−−−−−−−−−−−−−
conch

fire−hydrant−−−−−−−−−−−−−
goldfish

knife−−−−−−−−−−−−−
people

raccoon−−−−−−−−−−−−−
screwdriver

snake−−−−−−−−−−−−−
yo−yo

greyhound−−−−−−−−−−−−−
basketball−hoop

cactus−−−−−−−−−−−−−
cannon

dice−−−−−−−−−−−−−
dumb−bell

fighter−jet−−−−−−−−−−−−−
ice−cream−cone

mussels−−−−−−−−−−−−−
octopus

paperclip−−−−−−−−−−−−−
playing−card

pram−−−−−−−−−−−−−
sneaker

syringe−−−−−−−−−−−−−
tuning−fork

wheelbarrow−−−−−−−−−−−−−
chimp

flashlight−−−−−−−−−−−−−
giraffe

light−house−−−−−−−−−−−−−
minotaur

penguin−−−−−−−−−−−−−
soccer−ball

socks−−−−−−−−−−−−−
xylophone

baseball−bat−−−−−−−−−−−−−
bat

blimp−−−−−−−−−−−−−
computer−mouse

crab−101−−−−−−−−−−−−−
doorknob

fire−extinguisher−−−−−−−−−−−−−
harmonica

horseshoe−crab−−−−−−−−−−−−−
superman

traffic−light−−−−−−−−−−−−−
tricycle

gas−pump−−−−−−−−−−−−−
hammock

joy−stick−−−−−−−−−−−−−
llama−101

radio−telescope−−−−−−−−−−−−−
spider

tambourine−−−−−−−−−−−−−
bowling−pin

boxing−glove−−−−−−−−−−−−−
car−tire

covered−wagon−−−−−−−−−−−−−
harpsichord

hot−air−balloon−−−−−−−−−−−−−
picnic−table

smokestack−−−−−−−−−−−−−
unicorn

centipede−−−−−−−−−−−−−
computer−keyboard

fried−egg−−−−−−−−−−−−−
frying−pan

ibis−101−−−−−−−−−−−−−
iris

microscope−−−−−−−−−−−−−
owl

roulette−wheel−−−−−−−−−−−−−
spaghetti

swan−−−−−−−−−−−−−
teddy−bear

tennis−racket−−−−−−−−−−−−−
triceratops

watermelon−−−−−−−−−−−−−
windmill

wine−bottle−−−−−−−−−−−−−
toad

billiards−−−−−−−−−−−−−
coffee−mug

electric−guitar−101−−−−−−−−−−−−−
floppy−disk

human−skeleton−−−−−−−−−−−−−
jesus−christ

kangaroo−101−−−−−−−−−−−−−
mattress

necktie−−−−−−−−−−−−−
ostrich

porcupine−−−−−−−−−−−−−
toaster

welding−mask−−−−−−−−−−−−−
bathtub

bowling−ball−−−−−−−−−−−−−
butterfly

cd−−−−−−−−−−−−−
chopsticks

cockroach−−−−−−−−−−−−−
dolphin−101

elk−−−−−−−−−−−−−
gorilla

palm−pilot−−−−−−−−−−−−−
rotary−phone

theodolite−−−−−−−−−−−−−
beer−mug

bulldozer−−−−−−−−−−−−−
calculator

cormorant−−−−−−−−−−−−−
cowboy−hat

hot−tub−−−−−−−−−−−−−
mandolin

mountain−bike−−−−−−−−−−−−−
refrigerator

segway−−−−−−−−−−−−−
snowmobile

speed−boat−−−−−−−−−−−−−
starfish−101

top−hat−−−−−−−−−−−−−
yarmulke

baseball−glove−−−−−−−−−−−−−
computer−monitor

frisbee−−−−−−−−−−−−−
hamburger

head−phones−−−−−−−−−−−−−
helicopter−101

hummingbird−−−−−−−−−−−−−
lathe

lightbulb−−−−−−−−−−−−−
megaphone

minaret−−−−−−−−−−−−−
pez−dispenser

saddle−−−−−−−−−−−−−
skunk

stirrups−−−−−−−−−−−−−
tennis−ball

tombstone−−−−−−−−−−−−−
treadmill

t−shirt−−−−−−−−−−−−−
umbrella−101

tennis−shoes−−−−−−−−−−−−−
ak47

backpack−−−−−−−−−−−−−
breadmaker

cake−−−−−−−−−−−−−
harp

ipod−−−−−−−−−−−−−
scorpion−101

stained−glass−−−−−−−−−−−−−
tripod

washing−machine−−−−−−−−−−−−−
binoculars

eiffel−tower−−−−−−−−−−−−−
fern

fire−truck−−−−−−−−−−−−−
galaxy

grapes−−−−−−−−−−−−−
hourglass

house−fly−−−−−−−−−−−−−
laptop−101

sextant−−−−−−−−−−−−−
skyscraper

teapot−−−−−−−−−−−−−
tomato

vcr−−−−−−−−−−−−−
boom−box

buddha−101−−−−−−−−−−−−−
cereal−box

comet−−−−−−−−−−−−−
diamond−ring

elephant−101−−−−−−−−−−−−−
eyeglasses

football−helmet−−−−−−−−−−−−−
hawksbill−101

microwave−−−−−−−−−−−−−
pci−card

pyramid−−−−−−−−−−−−−
telephone−box

touring−bike−−−−−−−−−−−−−
cartman

coin−−−−−−−−−−−−−
fireworks

hibiscus−−−−−−−−−−−−−
killer−whale

lightning−−−−−−−−−−−−−
paper−shredder

revolver−101−−−−−−−−−−−−−
tweezer

chess−board−−−−−−−−−−−−−
license−plate

photocopier−−−−−−−−−−−−−
school−bus

sheet−music−−−−−−−−−−−−−
steering−wheel

waterfall−−−−−−−−−−−−−
zebra

brain−101−−−−−−−−−−−−−
chandelier−101

desk−globe−−−−−−−−−−−−−
french−horn

grand−piano−101−−−−−−−−−−−−−
guitar−pick

palm−tree−−−−−−−−−−−−−
saturn

video−projector−−−−−−−−−−−−−
american−flag

ewer−101−−−−−−−−−−−−−
golden−gate−bridge

homer−simpson−−−−−−−−−−−−−
mars

menorah−101−−−−−−−−−−−−−
self−propelled−lawn−mower

teepee−−−−−−−−−−−−−
tennis−court

trilobite−101−−−−−−−−−−−−−
watch−101

ketch−101−−−−−−−−−−−−−
swiss−army−knife

bonsai−101−−−−−−−−−−−−−
tower−pisa

leopards−101−−−−−−−−−−−−−
motorbikes−101

rainbow−−−−−−−−−−−−−
sunflower−101

airplanes−101−−−−−−−−−−−−−
car−side−101

faces−easy−101−−−−−−−−−−−−−

accuracy

c
la

s
s
 n

a
m

e

Figure 7.6.: Same as Figure 7.5 but for Caltech-256 using a LP-β classifier
trained with 50 images per class. The solid blue line denotes the
multiclass error. Categories containing rigid objects yield higher
accuracy, especially the categories also used in Caltech-101 are
amongst the “easiest”.

126

Appendix

A. Notation

Symbol Description

SVM support vector machine
MKL multiple kernel learning
IKL infinite kernel learning
MIL multiple instance learning
X ,Y input/output space
(x, y) pair of training example and label
k(·, ·′; θ) kernel function parameterized by θ
K,x matrices and vectors
f ∈ H function in reproducing kernel Hilbert space
〈·, ·〉H inner product in H
Kx or Km row of the Kernel Matrix
i = 1, . . . , n number of instances
j = 1, . . . ,mi number of instances in Bag Xi

j = 1, . . . , d number of input dimensions
m = 1, . . . ,M number of kernels
m = 1, . . . , F number of features
c = 1, . . . , C number of classes
Θ set of kernel parameters
Θf set of kernel parameters with finite size
L loss function
L Lagrangian
Ω regularization operator

127

Appendix

B. Multiple Kernel Learning Dual

For easier reference we restate the primal formulation of the multiple kernel
learning formulation (4.27) using the Hinge loss and the regularizer Ω(f) =∑

θ∈Θ dθ‖wθ‖2. The convex problem (using the substitution vθ = dθwθ) is

min
vθ,b,dθ

1

2

∑
θ∈Θ

1

dθ
‖vθ‖2 + C

n∑
i=1

ξi (B-1)

sb.t.
∑
θ∈Θ

〈vθ, xi〉+ b ≥ 1− ξi, i = 1, . . . , n, (B-2)

ξi ≥ 0, i = 1, . . . , n, (B-3)

dθ ≥ 0, θ ∈ Θ, (B-4)∑
θ∈Θ

dθ = 1. (B-5)

We write the Lagrangian of this problem

L(vθ, b, dθ, ξ, α, σ) =
1

2

∑
θ∈Θ

1

dθ
‖vθ‖2 + C

n∑
i=1

ξi + λ

(∑
θ∈Θ

dθ − 1

)
(B-6)

−
∑
θ∈Θ

δθdθ −
n∑
i=1

ηiξi (B-7)

−
n∑
i=1

αi

(
yi

(∑
θ∈Θ

〈vθ, φθ(xi)〉+ b

)
+ ξi − 1

)
(B-8)

and take the derivatives with respect to the primal variables,

∂L
∂dθ

= − 1

2d2
θ

‖vθ‖2 + λ− δθ, (B-9)

∂L
∂vθ

=
1

dθ
vθ −

n∑
i=1

αiyiφθ(xi), (B-10)

∂L
∂b

= −
n∑
i=1

αiyi, (B-11)

∂L
∂ξi

= C − αi − ηi. (B-12)

Resubstituting and imposing non-negativity on the Lagrange multipliers cor-
responding to an inequality constraint, we arrive at the dual problem with a

128

B. Multiple Kernel Learning Dual

particularly simple form

max
α,λ

n∑
i=1

αi − λ (B-13)

sb.t. α ∈ Rn, (B-14)

λ ∈ R, (B-15)

0 ≤ αi ≤ C, i = 1, . . . , n, (B-16)
n∑
i=1

αiyi = 0, (B-17)

1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj; θ) ≤ λ, ∀θ ∈ Θ. (B-18)

129

Appendix

C. Proof of Theorem 6

In this Section we present the proof of Theorem 4.5.1.

Theorem C.1. [Het93, Theorem 7.2] If the subproblem can be solved,
Algorithm 6 either stops after a finite number of iterations, or has at least one
point of accumulation and each one of these points solve (IKL-dual).

Proof. First we note that since αi, i = 1, . . . , n can take on values only in the
compact set αi ∈ [0, C], a point of accumulation always exists. Assume w.l.o.g.

that αt
t→∞→ ᾱ. It remains to show that ᾱ solves the problem. For notational

convenience we use denote by

v(α) = max
θ∈Θ

T (θ;α)− λ, (C-1)

the maximum of the subproblem function. Assume that ᾱ is not a feasible
points, i.e. it does violate a constraint

v(ᾱ) = max
θ∈Θ

T (θ; ᾱ)− λ > 0. (C-2)

Suppose at iteration t of the algorithm we have identified θt as the maximal
violating constraint, which implies

T (θt;αt)− λ > 0 and T (θt;αt) ≥ T (θ;αt) ∀θ ∈ Θ. (C-3)

Now we have

v(ᾱ) = v(αt) + v(ᾱ)− v(αt) (C-4)

= T (θt;αt)− λ+ v(ᾱ)− v(αt) (C-5)

≤
(
T (θt;αt)− T (θt; ᾱ)

)
+
(
v(ᾱ)− v(αt)

)
, (C-6)

where we used the fact that T (θt; ᾱ) − λ ≤ 0, since θt is a constraint that is
satisfied for ᾱ. Both T and v are continuous and therefore the right hand side
can be made arbitrarily small. This contradicts the assumption v(ᾱ) > 0.

130

Bibliography

[All00] Allwein, E. L., Schapire, R. E., and Singer, Y. Reducing multiclass to
binary: a unifying approach for margin classifiers. In P. Langley, ed.,
Proceedings of the 16th International Conference on Machine Learning
(ICML), vol. 17, pages 9–16. Morgan Kaufmann, San Francisco, CA,
2000.

[Alt04] Altun, Y., Smola, A. J., and Hofmann, T. Exponential Families for
Conditional Random Fields. In Proceedings of the 20th Conference
Uncertainty in AI (UAI). AUAI Press, Arlington, Virginia, 2004.

[An05] An, L. T. H. and Tao, P. D. The DC (Difference of Convex Functions)
Programming and DCA Revisited with DC Models of Real World
Nonconvex Optimization Problems. Annals of Operations Research,
vol. 133:23–46, 2005.

[And03] Andrews, S., Tsochantaridis, I., and Hofmann, T. Support Vector
Machines for Multiple-Instance Learning. In S. Becker, S. Thrun,
and K. Obermayer, eds., Advances in Neural Information Processing
Systems 15, pages 561–568. MIT Press, Cambridge, MA, 2003.

[Arg06] Argyriou, A., Hauser, R., Micchelli, C. A., and Pontil, M. A DC-
programming algorithm for kernel selection. In W. W. Cohen and
A. Moore, eds., Proceedings of the 23rd International Conference on
Machine Learning (ICML), vol. 148 of ACM International Conference
Proceeding Series, pages 41–48. ACM, New York, NY, USA, 6 2006.

[Aro50] Aronszajn, N. Theory of reproducing kernels. Trans. Amer. Math.
Soc., vol. 68:337–404, 1950.

[Bac04] Bach, F. R., Lanckriet, G. R. G., and Jordan, M. I. Multiple kernel
learning, conic duality, and the SMO algorithm. In C. E. Brodley, ed.,
Proceedings of the 21st International Conference on Machine Learning
(ICML), vol. 69, page 6. ACM, 7 2004.

[Bak07] Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., et al.
Predicting Structured Data. MIT Press, Cambridge, Massachusetts,
2007.

[Bar05] Baram, Y. Learning by Kernel Polarization. Neural Computation,
vol. 17(6):1264–1275, 2005.

131

Bibliography

[BD00] Ben-David, S., Eiron, N., and Long, P. M. On the Difficulty of Ap-
proximately Maximizing Agreements. In Proc. 13th Annu. Conference
on Comput. Learning Theory, pages 266–274. Morgan Kaufmann, San
Francisco, 2000.

[Ben00] Bennett, K. P., Demiriz, A., and Shawe-Taylor, J. A Column Gener-
ation Algorithm for Boosting. In P. Langley, ed., Proceedings of the
16th International Conference on Machine Learning (ICML), vol. 17,
pages 65–72. Morgan Kaufmann, San Francisco, CA, 2000.

[Ber84] Berg, C., Christensen, J. P. R., and Ressel, P. Harmonic Analysis on
Semigroups. Springer, New York, 1984.

[Bi04] Bi, J., Zhang, T., and Bennett, K. P. Column-generation boosting
methods for mixture of kernels. In KDD. 2004.

[Bla96] Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V., et al.
Comparison of view-based object recognition algorithms using realistic
3D models. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen,
and B. Sendhoff, eds., Artificial Neural Networks ICANN’96, vol. 1112
of Lecture Notes in Comput. Sci., pages 251–256. Springer-Verlag,
Berlin, 1996.

[Bla08] Blaschko, M. B. and Lampert, C. H. Learning to Localize Objects
with Structured Output Regression. In D. A. Forsyth, P. H. Torr, and
A. Zisserman, eds., Proceedings of the 10th European Conference on
Computer Vision (ECCV), pages 2–15. Springer, Berlin, Germany, 10
2008.

[Bos07a] Bosch, A., Zisserman, A., and Muñoz, X. Image Classification using
Random Forests and Ferns. In Proceedings of the 11th International
Conference on Computer Vision, (ICCV). IEEE Computer Society,
10 2007.

[Bos07b] Bosch, A., Zisserman, A., and Muñoz, X. Representing shape with
a spatial pyramid kernel. In CIVR ’07: Proceedings of the 6th ACM
international conference on Image and video retrieval, pages 401–408.
2007.

[Bos08] Bosch, A., Zisserman, A., and Muñoz, X. Image Classification Us-
ing ROIs and Multiple Kernel Learning. International Journal of
Computer Vision, 2008. (submitted June 2008), http://eia.udg.

es/~aboschr/Publicacions/bosch08a_preliminary.pdf.

[Bou03] Bousquet, O. and Herrmann, D. On the Complexity of Learning
the Kernel Matrix. In S. Becker, S. Thrun, and K. Obermayer, eds.,

132

Bibliography

Advances in Neural Information Processing Systems 15. MIT Press,
Cambridge, MA, 2003.

[Boy04] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge
University Press, Cambridge, England, 2004.

[Bro00] Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., et al.
Knowledge-based analysis of microarray gene expression data by using
support vector machines. Proc. Natl. Acad. Sci., vol. 97:262–267, 2000.

[Bur98] Burl, M. C., Weber, M., and Perona, P. A Probabilistic Approach to
Object Recognition Using Local Photometry and Global Geometry.
In Proceedings of the 5th European Conference on Computer Vision
(ECCV), vol. 2 of Lecture Notes in Computer Science, pages 628–641.
Springer, London, UK, 1998.

[Cai04] Cai, L. and Hofmann, T. Hierarchical Document Categorization with
Support Vector Machines. In Proceedings of the Thirteenth ACM
conference on Information and knowledge management, pages 78–87.
ACM Press, New York, NY, USA, 2004.

[cal07] Caltech-256 classification challenge, 2007. Challenge website: http:

//www.vision.caltech.edu/CaltechChallenge2007/.

[Cen] Center for Image Processing Research, Rensselaer Polytechnic In-
stitute. Brodatz dataset of textures. http://www.cipr.rpi.edu/

resource/stills/brodatz.html.

[Cha99] Chapelle, O., Haffner, P., and Vapnik, V. SVMs for histogram-
based image classification. IEEE Transactions on Neural Networks,
vol. 10(5):1055–1064, 1999.

[Cha01] Chang, C.-C. and Lin, C.-J. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm.

[Cha02] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing
Multiple Parameters for Support Vector Machines. Machine Learning,
vol. 46(1-3):131–159, 2002.

[Cha07] Chapelle, O. Training a Support Vector Machine in the Primal. Neural
Computation, vol. 19(5):1155–1178, 03 2007.

[Cha08] Chapelle, O. and Rakotomamonjy, A. Second order optimization of
kernel parameters. In Proceedings of the NIPS Workshop on Kernel
Learning: Automatic Selection of Optimal Kernels (LK ASOK 2008).
12 2008.

133

Bibliography

[Che06a] Chen, A. Fast Kernel Density Independent Component Analysis.
In Proceedings of 6th international conference on ICA and BSS, vol.
3889 of Lecture Notes in Computer Science, pages 24– 31. Springer,
Heidelberg, 2006.

[Che06b] Chen, Y., Bi, J., and Wang, J. Z. MILES: Multiple-Instance Learn-
ing via Embedded Instance Selection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28(12), 2006.

[Che06c] Cheung, P.-M. and Kwok, J. T. A regularization framework for
multiple-instance learning. In W. W. Cohen and A. Moore, eds., Pro-
ceedings of the 23rd International Conference on Machine Learning
(ICML), vol. 148 of ACM International Conference Proceeding Series,
pages 193–200. ACM, New York, NY, USA, 6 2006.

[Col02] Collins, M. Discriminative training methods for Hidden Markov Mod-
els. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, vol. 10, pages 1–8. Association for Computa-
tional Linguistics, Morristown, NJ, USA, 2002.

[Cor95] Cortes, C. and Vapnik, V. Support Vector Networks. Machine Learn-
ing, vol. 20(3):273–297, 1995.

[Cox90] Cox, D. D. and O’Sullivan, F. Asymptotic Analysis of Penal-
ized Likelihood and Related Estimators. The Annals of Statistics,
vol. 18(4):1676–1695, 1990.

[Cra00] Crammer, K. and Singer, Y. On the Learnability and Design of Output
Codes for Multiclass Problems. In N. Cesa-Bianchi and S. Goldman,
eds., Proc. Annual Conf. Computational Learning Theory, pages 35–
46. Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[Cra03] Crammer, K., Keshet, J., and Singer, Y. Kernel Design Using Boost-
ing. In S. Becker, S. Thrun, and K. Obermayer, eds., Advances in
Neural Information Processing Systems 15, pages 537–544. MIT Press,
Cambridge, MA, 2003.

[Cri02] Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J.
On Kernel-Target Alignment. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, eds., Advances in Neural Information Processing Sys-
tems 14, pages 367–373. MIT Press, Cambridge, MA, 2002.

[CV07] Camps-Valls, G., Rojo-Álvarez, J. L., and Mart́ınez-Ramón, M. Ker-
nel Methods in Bioengineering, Signal and Image Processing. Idea
Group, 2007.

134

Bibliography

[DeC02] DeCoste, D. and Schölkopf, B. Training invariant support vector
machines. Machine Learning, vol. 46:161–190, 2002.

[Dem02] Demiriz, A., Bennett, K. P., and Shawe-Taylor, J. Linear Program-
ming Boosting via Column Generation. Journal of Machine Learning
Research, vol. 46:225–254, 2002.

[Die97a] Dietterich, T. G. Machine Learning Research: Four Current Direc-
tions. AI Magazine, vol. 18(4):97–136, 1997.

[Die97b] Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. Solving
the Multiple Instance Problem with Axis-Parallel Rectangles. Artif.
Intell., vol. 89(1-2):31–71, 1997.

[Dru97] Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., and Vapnik,
V. Support vector regression machines. In M. C. Mozer, M. I. Jor-
dan, and T. Petsche, eds., Advances in Neural Information Processing
Systems 9, pages 155–161. MIT Press, Cambridge, MA, 1997.

[Dua05] Duan, K.-B. and Keerthi, S. S. Which Is the Best Multiclass SVM
Method? An Empirical Study. In Multiple Classifier Systems, vol.
3541 of Lecture Notes in Computer Science, pages 278–285. 2005.

[Dum98] Dumais, S. Using SVMs for Text Categorization. IEEE Intelligent
Systems, vol. 13(4):18–28, 1998. In: M. A. Hearst, B. Schölkopf, S.
Dumais, E. Osuna, and J. Platt: Trends and Controversies - Support
Vector Machines.

[Eli02] Elisseeff, A. and Weston, J. A kernel method for multi-labeled clas-
sification. In T. G. Dietterich, S. Becker, and Z. Ghahramani, eds.,
Advances in Neural Information Processing Systems 14, pages 681–
687. MIT Press, Cambridge, MA, 2002.

[Eve07] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. The PASCAL Visual Object Classes Challenge 2007
(VOC2007). http://www.pascal-network.org/challenges/VOC/

voc2007/workshop/index.html, 2007.

[Fer03] Fergus, R., Perona, P., and Zisserman, A. Object Class Recognition
by Unsupervised Scale-Invariant Learning. In Proceedings of the 2003
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 264–271. IEEE Computer Society, 6 2003.

[FF04] Fei-Fei, L., Fergus, R., and Perona, P. Learning Generative Visual
Models from Few Training Examples: An Incremental Bayesian Ap-
proach Tested on 101 Object Categories. In CVPRW ’04: Proceedings
of the 2004 Conference on Computer Vision and Pattern Recognition

135

Bibliography

Workshop (CVPRW’04) Volume 12, page 178. IEEE Computer Soci-
ety, Washington, DC, USA, 2004.

[Fit95] FitzGerald, C. H., Micchelli, C. A., and Pinkus, A. Functions that pre-
serve families of positive semidefinite matrices. Linear Algebra Appl.,
vol. 221:83–102, 1995.

[Fra06] Franz, M. O. and Gehler, P. V. How to choose the covariance for
Gaussian process regression independently of the basis. In Work-
shop Gaussian Processes in Practice 2006. videolectures.net, Scotts-
dale, AZ, USA, 06 2006.

[Fri04] Fritz, M., Hayman, E., Caputo, B., and Eklundh, J.-O. http://www.
nada.kth.se/cvap/databases/kth-tips/documentation.html,
2004.

[Gär02] Gärtner, T., Flach, P. A., Kowalczyk, A., and Smola, A. J. Multi-
Instance Kernels. In C. Sammut and A. G. Hoffmann, eds., Pro-
ceedings of the 19th International Conference on Machine Learning
(ICML), pages 179–186. Morgan Kaufmann, 7 2002.

[Geh06a] Gehler, P. V. and Franz, M. Implicit Wiener Series, Part II: Regu-
larised estimation. Tech. Rep. 148, Max Planck Institute for Biological
Cybernetics, 11 2006.

[Geh06b] Gehler, P. V., Holub, A. D., and Welling, M. The Rate Adapting
Poisson Model for Information Retrieval and Object Recognition. In
W. W. Cohen and A. Moore, eds., Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), vol. 148 of ACM In-
ternational Conference Proceeding Series. ACM, New York, NY, USA,
6 2006.

[Geh07] Gehler, P. V. and Chapelle, O. Deterministic Annealing for Multiple
Instance Learning. In M. Meila and X. Shen, eds., Proceedings of the
11th International Conference on Artificial Intelligence and Statistics
(AISTATS). Microtome, Brookline, MA, USA, 03 2007.

[Geh08a] Gehler, P. V. and Nowozin, S. Infinite Kernel Learning. Tech. Rep.
178, Max-Planck Institute for Biological Cybernetics, 10 2008.

[Geh08b] Gehler, P. V. and Nowozin, S. Infinite Kernel Learning. In Proceed-
ings of the NIPS Workshop on Kernel Learning: Automatic Selection
of Optimal Kernels (LK ASOK 2008). 12 2008.

[Geh08c] Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
Bayesian Color Constancy Revisited. In Proceedings of the 2008 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE Computer Society, 06 2008.

136

Bibliography

[Geh09a] Gehler, P. V. and Nowozin, S. Let the Kernel Figure it Out: Princi-
pled Learning of Pre-processing for Kernel Classifiers. In Proceedings
of the 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, 06 2009.

[Geh09b] Gehler, P. V. and Schölkopf, B. An Introduction to Kernel Learning
Algorithms, chap. 2, pages 39–60. John Wiley and Sons, 2009.

[Gij07] Gijsenij, A. and Gevers, T. Color Constancy using Natural Image
Statistics. In Proceedings of the 2007 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Minneapolis, USA, 6 2007.

[Gra03] Grandvalet, Y. and Canu, S. Adaptive Scaling for Feature Selection
in SVMs. In S. Becker, S. Thrun, and K. Obermayer, eds., Advances
in Neural Information Processing Systems 15. MIT Press, Cambridge,
MA, 2003.

[Gra05] Grauman, K. and Darrell, T. The Pyramid Match Kernel: Discrimina-
tive Classification with Sets of Image Features. In Proceedings of the
10th International Conference on Computer Vision, (ICCV). IEEE
Computer Society, 2005.

[Gra07] Grauman, K. and Darrell, T. The Pyramid Match Kernel: Efficient
Learning with Sets of Features. Journal of Machine Learning Re-
search, pages 725–760, 2007.

[Gri07] Griffin, G., Holub, A., and Perona, P. Caltech-256 Object Category
Dataset. Tech. Rep. 7694, California Institute of Technology, 2007.

[Hau99] Haussler, D. Convolutional Kernels on Discrete Structures. Tech. Rep.
UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz,
1999.

[Hay01] Hayton, P., Schölkopf, B., Tarassenko, L., and Anuzis, P. Support
vector novelty detection applied to jet engine vibration spectra. In
T. K. Leen, T. G. Dietterich, and V. Tresp, eds., Advances in Neu-
ral Information Processing Systems 13, pages 946–952. MIT Press,
Cambridge, MA, 2001.

[Hei05] Hein, M. and Bousquet, O. Hilbertian metrics and positive definite
kernels on probability measures. In Z. Ghahramani and R. Cowell,
eds., Proceedings of the 10th International Conference on Artificial
Intelligence and Statistics (AISTATS), vol. 10. 2005.

[Her00] Herbrich, R., Graepel, T., and Obermayer, K. Large margin rank
boundaries for ordinal regression. In A. J. Smola, P. L. Bartlett,

137

Bibliography

B. Schölkopf, and D. Schuurmans, eds., Advances in Large Margin
Classifiers, pages 115–132. MIT Press, Cambridge, MA, 2000.

[Het93] Hettich, R. and Kortanek, K. O. Semi-infinite programming: theory,
methods, and applications. SIAM Rev., vol. 35(3):380–429, 1993.

[Hoe70] Hoerl, A. E. and Kennard, R. W. Ridge regression: biased estimation
for nonorthogonal problems. Technometrics, vol. 12:55–67, 1970.

[Hof08] Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel Methods in
Machine Learning. Annals of Statistics, vol. 36:1171–1220, 6 2008.

[Hor96] Horst, R. and Tuy, H. Global Optimization. Springer-Verlag, Berlin,
3 edn., 1996.

[Jam61] Jameson, D. and Hurvich, L. Complexities of perceived brightness.
Science, vol. 133:174–179, 1961.

[Joa98] Joachims, T. Text Categorization with Support Vector Machines:
Learning with Many Relevant Features. In Proceedings of the European
Conference on Machine Learning, pages 137–142. Springer, Berlin,
1998.

[Joa99] Joachims, T. Making Large-Scale SVM Learning Practical. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, eds., Advances in Ker-
nel Methods - -Support Vector Learning, pages 169–184. MIT Press,
Cambridge, MA, 1999.

[Ke04] Ke, Y. and Sukthankar, R. PCA-SIFT: a more distinctive represen-
tation for local image descriptors. In Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR), vol. 2, pages 506–513. IEEE Computer Society, 2004.

[Kim71] Kimeldorf, G. S. and Wahba, G. Some results on Tchebycheffian
spline functions. J. Math. Anal. Appl., vol. 33:82–95, 1971.

[Kim05] Kim, K. I., Franz, M. O., and Schölkopf, B. Iterative Kernel Princi-
pal Component Analysis for Image Modeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27(9):1351–1366, 09
2005.

[Klo08] Kloft, M., Brefeld, U., Laskov, P., and Sonnenburg, S. Non-sparse
Multiple Kernel Learning. In Proceedings of the NIPS Workshop on
Kernel Learning: Automatic Selection of Optimal Kernels (LK ASOK
2008). 12 2008.

138

Bibliography

[Koh95] Kohavi, R. A study of Cross validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the International
Joint Conference on Neural Networks. 1995.

[Kum07] Kumar, A. and Sminchisescu, C. Support Kernel Machines for Ob-
ject Recognition. In Proceedings of the 11th International Conference
on Computer Vision, (ICCV). IEEE Computer Society, 10 2007.

[Lam08a] Lampert, C. and Blaschko, M. B. A Multiple Kernel Learning Ap-
proach to Joint Multi-Class Object Detection. In G. Rigoll, ed., 30th
Annual Symposium of the German Association for Pattern Recogni-
tion, pages 31–40. Springer, Berlin, Germany, 2008.

[Lam08b] Lampert, C. H., Blaschko, M. B., and Hofmann, T. Beyond Sliding
Windows: Object Localization by Efficient Subwindow Search. In Pro-
ceedings of the 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–8. IEEE Computer
Society, 06 2008.

[Lan71] Land, E. and McCann, J. Lightness and retinex theory. Journal of
the Optical Society of America, vol. 61:1–11, 1971.

[Lan04] Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and
Jordan, M. I. Learning the Kernel Matrix with Semidefinite Program-
ming. Journal of Machine Learning Research, vol. 5:27–72, 2004.

[Laz05] Lazebnik, S., Schmid, C., and Ponce, J. A Sparse Texture Repre-
sentation Using Local Affine Regions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27(8):1265–1278, 2005.

[Laz06] Lazebnik, S., Schmid, C., and Ponce, J. Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Categories.
In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2169–2178.
IEEE Computer Society, 2006.

[Laz07] Lazebnik, S. and Raginsky, M. Learning Nearest-Neighbor Quantizers
from Labeled Data by Information Loss Minimization. In M. Meila
and X. Shen, eds., Proceedings of the 11th International Conference on
Artificial Intelligence and Statistics (AISTATS). Microtome, Brook-
line, MA, USA, 03 2007.

[LeC98] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEE,
vol. 86(11):2278–2324, November 1998.

139

Bibliography

[Li05] Li, F.-F. and Perona, P. A Bayesian Hierarchical Model for Learning
Natural Scene Categories. In Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 524–531. IEEE Computer Society, 2005.

[Lin07] Lin, Y.-Y., Liu, T.-L., and Fuh, C.-S. Local Ensemble Kernel Learn-
ing for Object Category Recognition. In Proceedings of the 11th Inter-
national Conference on Computer Vision, (ICCV). IEEE Computer
Society, 10 2007.

[Low99] Lowe, D. Object recognition from local scale-invariant features. In
Proceedings of the 7th International Conference on Computer Vision,
(ICCV), pages 1150–1157. IEEE Computer Society, 1999.

[Mac98] MacKay, D. J. C. Introduction to Gaussian Processes. In C. M.
Bishop, ed., Neural Networks and Machine Learning, pages 133–165.
Springer, Berlin, 1998.

[Man05] Mangasarian, O. L. and Wild, E. W. Multiple Instance Classification
via Successive Linear Programming. Tech. Rep. 05-02, Data Mining
Institute, University of Wisconsin, 2005.

[McC05] McCallum, A., Bellare, K., and Pereira, F. A Conditional Random
Field for Discriminatively-trained Finite-state String Edit Distance.
In Proceedings of the 21st Conference Uncertainty in AI (UAI), page
388. AUAI Press, Arlington, Virginia, 2005.

[Mik05a] Mikolajczyk, K. and Schmid, C. A Performance Evaluation of Local
Descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27(10):1615–1630, 2005.

[Mik05b] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas,
J., et al. A Comparison of Affine Region Detectors. International
Journal of Computer Vision, vol. 65(1-2):43–72, 2005.

[Min69] Minsky, M. and Papert, S. Perceptrons: An Introduction To Compu-
tational Geometry. MIT Press, Cambridge, MA, 1969.

[Mor84] Morozov, V. A. Methods for Solving Incorrectly Posed Problems.
Springer-Verlag, New York, 1984.

[Mur05] Murray, J. F., Hughes, G. F., and Kreutz-Delgado, K. Ma-
chine Learning Methods for Predicting Failures in Hard Drives: A
Multiple-Instance Application. Journal of Machine Learning Re-
search, vol. 6:783–816, 2005.

140

Bibliography

[Mut06] Mutch, J. and Lowe, D. G. Multiclass Object Recognition with
Sparse, Localized Features. In Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 11–18. IEEE Computer Society, 2006.

[Nil06] Nilsback, M.-E. and Zisserman, A. A Visual Vocabulary for Flower
Classification. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1447–1454. IEEE Computer Society, 2006.

[Nil08] Nilsback, M.-E. and Zisserman, A. Automated flower classification
over a large number of classes. In Proceedings of the Indian Conference
on Computer Vision, Graphics and Image Processing. Dec 2008.

[Now06] Nowak, E., Jurie, F., and Triggs, B. Sampling strategies for bag-of-
features image classification. In A. Leonardis, H. Bischof, and A. Pinz,
eds., Proceedings of the 9th European Conference on Computer Vision
(ECCV), Lecture Notes in Computer Science. Springer, 2006.

[Oja02] Ojala, T., Pietikäinen, M., and Mäenpää, T. Multiresolution Gray-
Scale and Rotation Invariant Texture Classification with Local Binary
Patterns. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24(7):971–987, Jul. 2002.

[Ope06] Opelt, A., Fussenegger, M., and Auer, P. Generic Object Recognition
with Boosting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28(3):416–431, 2006.

[Özö08] Özög̃ür-Akyüz, S. and Weber, G. W. Learning with Infinitely Many
Kernels via Semi-Infinite Programming. In Proceedings of Euro mini
conference on ”Continuous Optimization and Knowledge Based Tech-
nologies”. 2008.

[Pin08] Pinto, N., Cox, D. D., and Dicarlo, J. J. Why is Real-World Visual Ob-
ject Recognition Hard? PLoS Computational Biology, vol. 4(1):e27+,
January 2008.

[Pla99] Platt, J. Fast Training of Support Vector Machines using Sequential
Minimal Optimization. In B. Schölkopf, C. J. C. Burges, and A. J.
Smola, eds., Advances in Kernel Methods - -Support Vector Learning,
pages 185–208. MIT Press, Cambridge, MA, 1999.

[Rak08] Rakotomamonjy, A., Bach, F., Grandvalet, Y., and Canu, S. Sim-
pleMKL. Journal of Machine Learning Research, vol. 9:2491–2521,
November 2008.

141

Bibliography

[Ras06] Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for
Machine Learning. MIT Press, Cambridge, MA, 2006.

[Rät01] Rätsch, G. Robust Boosting via Convex Optimization: Theory and
Applications. Ph.D. thesis, University of Potsdam, 2001.

[Rät03] Rätsch, G., Mika, S., and Smola, A. J. Adapting Codes and Em-
beddings for Polychotomies. In S. T. S. Becker and K. Obermayer,
eds., Advances in Neural Information Processing Systems 15, pages
513–520. MIT Press, Cambridge, MA, 2003.

[Ray05] Ray, S. and Craven, M. Supervised versus multiple instance learning:
an empirical comparison. In L. D. Raedt and S. Wrobel, eds., Pro-
ceedings of the 22nd International Conference on Machine Learning
(ICML), vol. 119, pages 697–704. ACM, 8 2005.

[Rom01] Romdhani, S., Torr, P., Schölkopf, B., and Blake, A. Fast face detec-
tion, using a sequential reduced support vector evaluation. In Proceed-
ings of the 8th International Conference on Computer Vision, (ICCV).
IEEE Computer Society, Los Alamitos, CA, 2001.

[Ros98] Rose, K. Deterministic annealing for clustering, compression, classifi-
cation, regression, and related optimization problems. In Proceedings
of IEEE, vol. 86, pages 2210–2239. 1998.

[Ros04] Rosenberg, C., Minka, T., and Ladsariya, A. Bayesian Color Con-
stancy with Non-Gaussian Models. In S. Thrun, L. Saul, and
B. Schölkopf, eds., Advances in Neural Information Processing Sys-
tems 16. MIT Press, Cambridge, MA, 2004.

[Rub00] Rubner, Y., Tomasi, C., and Guibas, L. J. The Earth Mover’s Dis-
tance as a Metric for Image Retrieval. International Journal of Com-
puter Vision, vol. 40(2):99–121, 2000.

[Sch97] Schölkopf, B. Support Vector Learning. R. Oldenbourg Verlag, Mu-
nich, 1997. Download: http://www.kernel-machines.org.

[Sch98] Schölkopf, B., Smola, A. J., and Müller, K.-R. Nonlinear com-
ponent analysis as a kernel Eigenvalue problem. Neural Comput.,
vol. 10:1299–1319, 1998.

[Sch01] Schölkopf, B., Herbrich, R., and Smola, A. J. A Generalized Repre-
senter Theorem. In D. P. Helmbold and B. Williamson, eds., Proc.
Annual Conf. Computational Learning Theory, no. 2111 in Lecture
Notes in Comput. Sci., pages 416–426. Springer-Verlag, London, UK,
2001.

142

Bibliography

[Sch02] Schölkopf, B. and Smola, A. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[Sha04] Shawe-Taylor, J. and Cristianini, N. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, Cambridge, UK, 2004.

[Shi00] Shi, J. and Malik, J. Normalized Cuts and Image Segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22(8):888–905, 2000.

[Son06] Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. Large Scale
Multiple Kernel Learning. Journal of Machine Learning Research,
2006.

[Tao04] Tao, Q., Scott, S., Vinodchandran, N. V., and Osugi, T. T. SVM-
based generalized multiple-instance learning via approximate box
counting. In C. E. Brodley, ed., Proceedings of the 21st International
Conference on Machine Learning (ICML), vol. 69, page 101. ACM, 7
2004.

[Tik63] Tikhonov, A. N. Solution of incorrectly formulated problems and the
regularization method. Soviet Math. Dokl., vol. 4:1035–1038, 1963.

[Tso05] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large
Margin Methods for Structured and Interdependent Output Variables.
Journal of Machine Learning Research, vol. 6:1453–1484, 2005.

[Tuz07] Tuzel, O., Porikli, F., and Meer, P. Human Detection via Classi-
fication on Riemannian Manifolds. In Proceedings of the 2007 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE Computer Society, Minneapolis, USA, 6 2007.

[Vap63] Vapnik, V. and Lerner, A. Pattern Recognition using Generalized
Portrait Method. Autom. Remote Control, vol. 24:774–780, 1963.

[Vap95] Vapnik, V. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[Vap97] Vapnik, V., Golowich, S., and Smola, A. J. Support vector method for
function approximation, regression estimation, and signal processing.
In M. C. Mozer, M. I. Jordan, and T. Petsche, eds., Advances in
Neural Information Processing Systems 9, pages 281–287. MIT Press,
Cambridge, MA, 1997.

[Var07] Varma, M. and Ray, D. Learning The Discriminative Power-Invariance
Trade-Off. In Proceedings of the 11th International Conference on
Computer Vision, (ICCV). IEEE Computer Society, 10 2007.

143

Bibliography

[Ved08] Vedaldi, A. and Soatto, S. Relaxed Matching Kernels for Object
Recognition. In Proceedings of the 2008 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, 06 2008.

[vG08] van Gemert, J., Geusebroek, J.-M., Veenman, C. J., and Smeulders,
A. W. M. Kernel Codebooks for Scene Categorization. In D. A.
Forsyth, P. H. Torr, and A. Zisserman, eds., Proceedings of the 10th
European Conference on Computer Vision (ECCV), pages 696–709.
Springer, Berlin, Germany, 10 2008.

[Vio06] Viola, P., Platt, J., and Zhang, C. Multiple Instance Boosting for Ob-
ject Detection. In Y. Weiss, B. Schölkopf, and J. Platt, eds., Advances
in Neural Information Processing Systems 18, pages 1417–1424. MIT
Press, Cambridge, MA, 2006.

[Wäc06] Wächter, A. and Biegler, L. T. On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear Pro-
gramming. Mathematical Programming, vol. 106(1):25–57, 2006.

[Wah90] Wahba, G. Spline Models for Observational Data, vol. 59 of CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM,
Philadelphia, 1990.

[Wan02] Wang, J. and Zucker, J.-D. Solving the Multiple-Instance Problem:
A Lazy Learning Approach. In C. Sammut and A. G. Hoffmann, eds.,
Proceedings of the 19th International Conference on Machine Learning
(ICML), pages 1119–1126. Morgan Kaufmann, 7 2002.

[Wan06] Wang, G., Zhang, Y., and Fei-Fei, L. Using dependent regions for
object categorization in a generative framework. In Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, 2006.

[Web00] Weber, M., Welling, M., and Perona, P. Towards automatic discovery
of object categories. In Proceedings of the 2000 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR),
pages 101–108. IEEE Computer Society, 2000.

[Wes99] Weston, J. and Watkins, C. Support vector machines for multi-class
pattern recognition. In ESANN, pages 219–224. 1999.

[Yui02] Yuille, A. L. and Rangarajan, A. The Concave-Convex Procedure. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, eds., Advances in
Neural Information Processing Systems 14. MIT Press, Cambridge,
MA, 2002.

144

Bibliography

[Zha02] Zhang, Q., Goldman, S. A., Yu, W., and Fritts, J. Content-Based
Image Retrieval Using Multiple-Instance Learning. In C. Sammut
and A. G. Hoffmann, eds., Proceedings of the 19th International Con-
ference on Machine Learning (ICML), pages 682–689. Morgan Kauf-
mann, 7 2002.

[Zha06] Zhang, H., Berg, A. C., Maire, M., and Malik, J. SVM-KNN: Discrim-
inative Nearest Neighbor Classification for Visual Category Recogni-
tion. In Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2126–
2136. IEEE Computer Society, 2006.

[Zie07] Zien, A. and Ong, C. S. Multiclass Multiple Kernel Learning. In
Z. Ghahramani, ed., Proceedings of the 24th International Conference
on Machine Learning (ICML), vol. 227 of ACM International Confer-
ence Proceeding Series. ACM, 6 2007.

145

