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Abstract

This work presents novel geometric algorithms dealing with algebraic curves and surfaces
of arbitrary degree. These algorithms are exact and complete – they return the mathema-
tically true result for all input instances. Efficiency is achieved by cutting back expensive
symbolic computation and favoring combinatorial and adaptive numerical methods ins-
tead, without spoiling exactness in the overall result.

We present an algorithm for computing planar arrangements induced by real algebraic
curves. We show its efficiency both in theory by a complexity analysis, as well as in practice
by experimental comparison with related methods. For the latter, our solution has been
implemented in the context of the Cgal library. The results show that it constitutes the
best current exact implementation available for arrangements as well as for the related
problem of computing the topology of one algebraic curve. The algorithm is also applied
to related problems, such as arrangements of rotated curves, and arrangments embedded
on a parameterized surface.

In R3, we propose a new method to compute an isotopic triangulation of an algebraic
surface. This triangulation is based on a stratification of the surface, which reveals topo-
logical and geometric information. Our implementation is the first for this problem that
makes consequent use of numerical methods, and still yields the exact topology of the
surface.

The thesis is written in English.

Zusammenfassung

Diese Arbeit stellt neue Algorithmen für algebraische Kurven und Flächen von beliebigem
Grad vor. Diese Algorithmen liefern für alle Eingaben das mathematisch korrekte Ergebnis.
Wir erreichen Effizienz, indem wir aufwendige symbolische Berechnungen weitesgehend
vermeiden, und stattdessen kombinatorische und adaptive numerische Methoden einsetzen,
ohne die Exaktheit des Resultats zu zerstören.

Der Hauptbeitrag ist ein Algorithmus zur Berechnung von planaren Arrangements, die
durch reelle algebraische Kurven induziert sind. Wir weisen die Effizienz des Verfahrens
sowohl theoretisch durch eine Komplexitätsanalyse, als auch praktisch durch experimen-
telle Vergleiche nach. Dazu haben wir unser Verfahren im Rahmen der Softwarebibliothek
Cgal implementiert. Die Resultate belegen, dass wir die zur Zeit beste verfügbare ex-
akte Software bereitstellen. Der Algorithmus wird zur Arrangementberechnung rotierter
Kurven, oder für Arrangements auf parametrisierten Oberflächen eingesetzt.

Im R3 geben wir ein neues Verfahren zur Berechnung einer isotopen Triangulierung
einer algebraischen Oberfläche an. Diese Triangulierung basiert auf einer Stratifizierung
der Oberfläche, die topologische und geometrische Informationen berechnet. Unsere Im-
plementierung ist die erste für dieses Problem, welche numerische Methoden konsequent
einsetzt, und dennoch die exakte Topologie der Oberfläche liefert.

Diese Dissertation ist in englischer Sprache verfasst.
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Nobody untrained in geometry may enter my house!

Inscription over the door of Plato’s academy

1
Introduction

Computational geometry is a sub-discipline of algorithmics, dealing with problems that can
be expressed in geometric terms. Its popularity is mainly based on the wide applicability
of its results in several areas, for instance in computer aided design, computer graphics,
robotics, geographic information systems, and biology. Mostly, the input of geometric
algorithms consists of linear objects like points, lines, (hyper)planes, or polygons. The
advantages are clear: linear objects can be processed faster than non-linear ones and the
simpler structure eases the design of algorithms and their analysis. However, real problems
are often of a non-linear nature, and can only be modeled approximately by linear objects.
Designing algorithms that accept circles or circular arcs as input increases the accuracy,
but also might not suffice in all cases.

This work presents algorithms for geometric objects in two and three dimensions that
are defined by arbitrary algebraic equations. An algebraic curve in R2 is the set of solutions
of an equation f = 0, where f is some (integer or rational) polynomial in two variables.
This class of curves covers lines (defined by a linear equation) as well as circles (defined by
an equation of degree 2) as its simplest representatives. Analogously, an algebraic surface
is defined by F = 0, where F is a polynomial in three variables. The two main problems
addressed in this thesis are:

1. Given a set of planar algebraic curves C1, . . . , Cm, compute a geometric-topological
description of the arrangement induced by these curves. More precisely, compute a
doubly connected edge list (Dcel) that captures how the plane is decomposed by
C1, . . . , Cm into 0-, 1-, and 2-dimensional components, called vertices, edges, and
faces. See also Figure 1.1 (left).

2. Given an algebraic surface S, compute a geometric-topological description in terms
of a triangulation T . In particular, T and S should be isotopic (i.e., S can be trans-
formed continuously into T without topological changes). See also Figure 1.1 (right).

It is important to note that both algorithms realize non-continuous functions: small
changes in the input can lead to profound changes in the resulting combinatorial structure
(i.e., the Dcelor the triangular mesh). This is a characteristic property in geometric
computation and raises the question of robustness.
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Figure 1.1. On the left: An arrangement of three algebraic plane curves. On the right:
A triangulation of an algebraic surface called “tangle-cube”. Both pictures are produced
based on the algorithms presented in this thesis.

Geometric algorithms are often composed of a set of basic geometric predicates and
constructions, also called primitives. Two typical examples of such primitives are: Given
three points p, q, and r, determine whether the triangle pqr has clockwise or counterclock-
wise orientation, or is degenerated (if the points lie on a common line). Given two lines,
construct their intersection point. Correctness of an algorithm is usually proved under
the assumption that all primitives deliver the correct result. Moreover, many algorithms
assume a generic input. The precise meaning of genericity depends on the algorithm, but
a very common condition is that no three input points lie on the same line. The reason for
this assumption is mainly convenience since handling special cases makes the description
lengthy and complicates theoretical considerations.

When it comes to a concrete implementation of geometric algorithms, the question of
how to realize the geometric primitives arises. Note that already fairly simple predicates are
problematic: intersecting a line and a circle in general yields a point with irrational coordi-
nates, and it is non-trivial to represent and process such a point in subsequent predicates.
Evaluating all primitives using fixed-precision floating-point numbers seems appealing as
a way of circumventing this problem and doubtlessly works for many instances – but not
for all (Figure 1.2). The induced rounding errors can also have disastrous effects due to
the non-continuous nature of geometric algorithms (see above). It is not only that the
result might differ substantially from the exact solution – if conditionals inside the algo-
rithms depend on results of primitives, the wrong computation branch might be executed.
The effects are infinite loops or program crashes. Although such effects can be prevented
by modifying the algorithm, known methods only apply to specific problems and do not
extend to a general framework.

We will follow another approach: the Exact Geometric Computation paradigm (EGC
paradigm) . It simply states that the implementation of a geometric primitive is required to
deliver the mathematically correct result in all cases. It follows that a geometric algorithm
based on these primitives returns the mathematically correct result, which is clearly a
pleasant property for the user of such an algorithm. The drawback is the performance
penalty caused by the paradigm; even for linear objects, data types modeling arbitrary
rational numbers become necessary for the computation. Even worse, when dealing with
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Figure 1.2. Example for the instability of floating-point computations, taken
from [KMP+08]. Let q := (12, 12), r := (24, 24), and p := (0.5 + 2−64x, 0.5 + 2−64y).
The picture shows a 256 × 256 grid, where the pixel (x, y) is drawn red if the points
p, q, r are in clockwise orientation, blue if they are in counterclockwise orientation, and
green if they are colinear (this can be expressed as the sign of a determinant in the
coordinates of p, q, and r). On the left, we see the exact result, on the right, we see
the same when the geometric predicate is evaluated using long double in C++. Note
that not just the three points are wrongly assumed to be colinear (red and blue points
become green for floating-point arithmetic), but also the orientation changes completely
(red points become blue, and vice versa).

algebraic objects, one needs to represent and process algebraic numbers and polynomials
in an exact way. In particular, one has to compute the roots of uni- and multivariate
polynomial equations, which leads to the field of symbolic computation and computer
algebra.

1.1. Main contributions of this work

EGC solutions for geometric primitives in the plane are presented for the case of points and
segments defined by algebraic equations. Although the name “primitives” suggests that
the operations are rather simple, this is not at all the case. We reduce their realization to
the geometric-topological analysis of single curves and of pairs of curves (for the arrange-
ment problem), termed curve analysis [EKW07] [Ker06]1 and curve pair analysis [EK08a],
respectively. It is worth emphasizing that our solution works for curves of arbitrary degree
and covers all possible special cases. These analyses can be considered as special cases
of a cylindrical algebraic decomposition (cad) (see related work below). Readers unfamil-
iar with cads might imagine the curve analysis as an algorithm for topology computation,
which means computing an embedded straight-line graph that is isotopic to the curve (with
some additional geometric properties), and the curve pair analysis as a similar method for
the union of two curves.

The algorithmic goal for both types of analyses (as well as for the surface stratifica-
tion following below) is to keep the amount of costly symbolic computations as low as

1This algorithm was the subject of the master’s thesis of the author.
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possible. The EGC paradigm does not restrict our choice of methods inside a geometric
primitive – we can use any technique that works well, as long as it is guaranteed to produce
the exact overall result. We prefer to apply combinatorial and (validated) floating-point
methods because they are faster than symbolic computations. Some substeps can always
be performed approximately. If the analyzed object is “good-natured” (e.g., no singular
points, in generic position), even more approximate methods are applied successfully. This
is done adaptively, meaning the algorithm decides internally whether to apply symbolic or
non-symbolic methods. The effect is that the analysis works fast for simple examples and
spends more time only in the presence of complicated features.

The certainly most significant tool for practical efficiency is the bitstream-Descartes
method [Eig08] [MS09]. It computes the roots of a square-free polynomial with algebraic
coefficients only by approximating the coefficients. We present two generalizations of the
method that allow its application to non-square-free polynomials as well. These variations
have already been discussed in the author’s master’s thesis, but we give a more detailed
description in this thesis, including a complexity analysis, based on work by Mehlhorn and
Sagraloff [MS09].

We examine the asymptotical complexity of both the curve and curve pair analysis
in terms of bit complexity. The obtained bound is the same in both cases and matches
the currently best-known bound for topology computation of algebraic curves by Diochnos
et al. [DET07]. Their bound is achieved by a purely symbolic method; we obtain the
same result for an algorithm that is mainly based on isolating and refining real roots of
polynomial systems, which is widely acknowledged to be faster in practice. Also, the curve
analysis computes additional geometric information about the analyzed curve, which is
not the case for most other approaches that only compute the topology. Crucial for our
analysis is a novel result for the subproblem of approximating an algebraic number to a
given precision [Ker09b].

Our algorithms are implemented in C++ in the context of the Cgal library. We provide
experimental results of our approach and compare it with related algorithms for computing
curve topology and cads. The result is an overall satisfying performance, in some situa-
tions much better than other approaches, especially for curves with large coefficients. Also,
the adaptive behavior of our fast approximate methods can be observed in the experimen-
tal results. Furthermore, our approach outperforms existing arrangement algorithms for
restricted classes of algebraic curves, such as conics or rational functions, which are cur-
rently available in the Cgal library. We conclude that our design choice of cutting back
symbolic computations is successful and that our implementation is in a mature state.
An integration into a public release of Cgal is planned; in the meantime, we run a pub-
licly available web-server that allows the computation and exploration of arrangements of
algebraic curves interactively [EK08c].

We also implemented some variants of our arrangement algorithm. It is possible to ro-
tate algebraic curves to certain angles and compute the (exact) arrangement of those
rotated curves. Another generalization computes arrangements not in the plane, but
on a (parameterizable) surface embedded in R3, in particular on tori and Dupin cy-
clides [BK08] [BFH+09a]. Both approaches profit from the generic design of our software,
technically achieved by template code in C++, which allows combining it with other Cgal

packages. Currently ongoing work uses our software also for other problems than comput-
ing arrangements, such as computing Boolean set operations, or Voronoi diagrams of lines
in R3.



1.2. Related work 11

Last but not least, this thesis presents an algorithm to compute an isotopic triangu-
lation for an arbitrary algebraic surface [BKS09]. This is the first exact solution to this
problem that makes consequent use of (certified) numerical methods. It is based on a
stratification that decomposes the surface into vertices, edges, and patches [BKS08]. The
result of this decomposition is similar to a cad of the surface but with fewer cells. Again,
an implementation of the method has been done and shows the success of our algorithmic
design. The resulting triangulation has the same complexity as a cad ; an interesting ques-
tion is whether a less complex isotopic triangulation exists. We derive lower bounds for
the output graph in the topology computation for curves as well as for the triangulation
problem.

1.2. Related work

The foundations of computational geometry are covered by textbooks at the undergraduate
level [dBvKOS00] [PS85] [Meh84]; comprehensive collections have appeared in [GO97] [SU00].

Robustness problems using floating-point numbers instead of exact computation have
been known for a long time [For70], also in a geometric context; see [Hof89] for an early
survey. Kettner et al. [KMP+08] present several examples of what can go wrong and why.
Schirra [Sch00] and Yap [Yap97a] survey various approaches to cope with the pitfalls of
imprecise computations in geometry. For instance, one possibility is to maintain certain
topological properties during the algorithm, even if numerical computations would suggest
otherwise [Sug99], but this requires a re-design of each considered algorithm. Another
approach is to identify a set of axioms that a primitive has to satisfy in order to make the
overall algorithm correct and to choose a suitable precision for the execution [Sch93]. This
requires a separate analysis of each considered algorithm. A more recent technique is con-
trolled perturbation, where the input is perturbed slightly, such that degenerate situations
during the computation are prevented, and the exact result (for the perturbed input) can
be achieved by fixed floating-point computations. See [HS98] [Raa99] [FKMS05] [HL03] for
applications to specific problems; a general scheme handling a larger class of problems
has been presented in [MOS06]. Although a nearby solution is certainly sufficient in a lot
of applications, controlled perturbation techniques are inadequate if an exact solution is
required.

Our work concentrates on the exact geometric computation paradigm, made popular
by Yap [Yap97b]. Data types for modeling integers and rational numbers of arbitrary size
are indispensable for this approach; they are provided by several libraries, such as GMP,2

LEDA [MN00],3, and CORE [KLPY99]. Several techniques to evaluate primitives in an
exact and efficient way have been studied. The result of a geometric predicate often boils
down to the sign of a polynomial expression evaluated at the coordinates of the involved
points. Floating-point filters evaluate the expression with some fixed precision (usually
hardware precision) and if the result has a greater absolute value than the maximal error
caused by the computation, the sign is determined [MN00, §9.7] [FV96] [BEPP97]. For the
special case of integer coordinates, these methods can also serve as a zero test if the maxi-
mal error is smaller than 1. If the floating-point filter fails, one either uses exact arithmetic
to get the result or increases the precision and retries the approximate computation. This

2http://gmplib.org/
3http://www.algorithmic-solutions.com/

http://gmplib.org/
http://www.algorithmic-solutions.com/
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is called adaptive precision arithmetic [She96]. Closely related are the adaptive precision
methods based on interval arithmetic. We will introduce this concept in detail in Sec-
tion 2.5.4 and discuss references therein. All these techniques apply to predicates but not
to constructions; Funke and Mehlhorn [FM02] introduce a lazy-evaluation technique that
allows one to filter geometric constructions as well. The idea is to avoid the computation
of the explicit coordinates during the construction and to compute it afterwards only if
needed.

Non-linear computational geometry, especially with algebraic objects, has become an
active field of research during the past years. An IMA workshop in 2007 was dedicated
to this subject [EST09], bringing together the areas of computational geometry and (real)
algebraic geometry. Also, two EU-funded projects covered this topic; the first one, called
Effective Computational Geometry for Curves and Surfaces (ECG)4 ran from 2001–2004;
see [BT06] for a collection of results. The successor project Algorithms for Complex Shapes
with Certified Topology and Numerics5 (2004–2007) extended the success of the results,
as the name states, with a focus on certified computation. Our work is embedded in the
context of this project. Some of our results have been published in a preliminary form as
technical reports of the ACS project.

A big advantage of the EGC paradigm is its general approach that applies to any
geometric algorithm. Its success is documented by the popularity of the software libraries
LEDA6 (mostly for linear objects) and Cgal [CGA08]. The integration of non-linear
objects into Cgal was substantially brought forward by the two EU projects mentioned
above. During this period, the library EXACUS [BEH+05] for exact algorithms for curves
and surfaces was established at MPI,7 and its contents have been (and are still being)
merged into Cgal.

Computer algebra, or symbolic computation, is a discipline on the edge between math-
ematics and computer science that deals with algorithms for algebraically defined objects,
in particular, uni- and multivariate polynomials and algebraic numbers. An early collec-
tion of results in that area is [BCL82]; textbooks covering this area have been written by
Basu et al. [BPR06], Geddes et al. [GCL92], von zur Gathen and Gerhard [vzGG97], and
Yap [Yap00]. We will frequently cite these books in the algebraic parts of this thesis.

Symbolic methods can be avoided completely in geometric computations, in principle,
with constructive separation bounds: for an algebraic expression, say E, and an argument
p, one computes a value L such that either |E(p)| ≥ L, or E(p) = 0. Then, E(p) is
evaluated approximately using floating-point arithmetic until either its absolute value, plus
some error term, is smaller than L (and thus E(p) = 0), or it is guaranteed to be either
positive or negative. This idea seems to go back to Mignotte [Mig82]. Li and Yap [LY01]
and Burnikel et al. [BFM+01] give methods to construct such bounds, and the libraries
CORE (CORE::Expr) and LEDA (leda::real) provide data types to use such separation
bounds in practice. However, the derived lower bounds have to assume the worst case and
tend to be too pessimistic. Indeed, we observed that the use of these data types renders
our implementation impracticable even for medium-sized instances. Thus, our goal should
be stated more carefully: we want to reduce the number of symbolic computations in our
algorithms, but without applying constructive separation bounds.

4http://www-sop.inria.fr/prisme/ECG/
5http://acs.cs.rug.nl/index.php
6LEDA is not restricted to geometric algorithms but has a much larger scope; see [MN00]
7http://www.mpi-inf.mpg.de/projects/EXACUS/

http://www-sop.inria.fr/prisme/ECG/
http://acs.cs.rug.nl/index.php
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The cylindrical algebraic decomposition (cad) [Col75] [CJ98] is a data structure that
originates in quantifier elimination problems. For a set S of polynomials in d variables, it
constitutes a decomposition of Rd, such that each cell has invariant sign for each polyno-
mial in S. Moreover, the projection of two cells to Rd−1 by eliminating one variable either
yields the same region or two disjoint regions (hence the name “cylindrical”). Some (geo-
metric) applications of cads are mentioned in [Mis97]. Arnon et al. [ACM84a] presented
an algorithm to compute a cad in Rd. Their approach is purely symbolic, and numerical
methods have been proposed to speed up the algorithm [Str06] [CJK02] [Bro02]. These
optimizations work in a way similar to that of floating-point filters, meaning they try to
get the result using some fixed precision and fall back to the purely symbolic method in
case of failure. Together with a method to compute the adjacencies between cells of the
cad in R2 and R3 [ACM84b] [ACM88] [MC02], any such cad algorithm can be modified to
yield an EGC-implementation for curve and curve pair analysis and for the triangulation
of surfaces. Vice versa, our methods can also be seen as alternative variants for computing
cads, for the special cases of one or two curves or of one surface. Our methods profit from
fast numerical computations for any instance and never have to fall back to a completely
symbolic method – a main difference to all previous approaches. We will point out more
similarities and differences to cad approaches in the corresponding chapters.

Related work on arrangements is discussed in Chapter 3, and on stratifications and
triangulations in Chapter 6.

1.3. Outline

Chapter 2 continues with the mathematical foundations needed in this thesis: We introduce
algebraic curves and their most important geometric properties for our needs. Also, we
introduce the toolbox of algorithms dealing with polynomials and algebraic numbers, which
is used frequently in our algorithms. This part is relatively extensive since we establish
complexity bounds for all presented algorithms.

Chapters 3 and 4 describe our approach computing arrangements of algebraic curves.
We decided to split the treatment into an “algorithmic” and an “implementation” part:
Chapter 3 defines the set of primitives needed for arrangements, how they relate to curve
analysis and curve pair analysis, and contains a complete solution for both, including
a complexity analysis. However, several practical optimizations are not covered by the
treatment, in order not to make the description (and the analysis) too detailed. Chapter 4
explains these optimizations, describes the software design of our implementation, and
presents experimental results.

Some applications of the arrangement algorithm are discussed in Chapter 5: a web-
server to compute and explore arrangements interactively, a method to compute arrange-
ments of rotated curves, and an algorithm to compute arrangements on parameterizable
surfaces, exemplified with Dupin cyclides.

Chapter 6 discusses an approach for computing a stratification of an algebraic surface
and refines the derived decomposition into a triangulation of the surface. Some experi-
mental results are presented and lower and upper bounds on the output size of topology
computation are given for algebraic curves and surfaces.
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If in other sciences we should arrive at certainty without doubt and truth with-
out error, it behooves us to place the foundations of knowledge in mathematics.

Roger Bacon

2
Algebraic Foundations

In this chapter, we will establish the tools necessary to formulate the geometric algorithms
for algebraic curves and surface in the subsequent chapters. Not surprisingly, the number
of prerequisites is quite big, since algebraic objects are a very general class of geometric
objects, and non-trivial to work with. We mainly concentrate on algebraic curves in this
chapter, but many results extend directly to algebraic surfaces as well.

Before we start with algebraic objects, we introduce some notation from topology
(Section 2.1) that will be convenient in this thesis. Then, we introduce algebraic curves,
and summarize their main properties in Section 2.2. Subresultants and Sturm-Habicht
sequences, our main symbolic tools to investigate the geometry of algebraic curves, are the
subject of Section 2.3.

Afterwards, we turn to computational issues. First, we introduce algorithms for integer
polynomials in Section 2.4, for instance, basic arithmetic, computation of greatest common
divisors, root isolation, etc. In Section 2.5, we explain how to represent and work with
arbitrary algebraic numbers, for instance, how to compare them, or how to approximate
them to any precision. Finally, in Section 2.6, we rediscuss the root isolation (and the
root refinement) problem in the situation where a polynomial’s coefficients are given only
approximately.

For all algorithms in Sections 2.4–2.6, we give worst-case bounds for the number of
performed bit operations.

2.1. Topology

We will now establish some well-known concepts from topology. Although the material can
be covered in a more abstract way, we will only consider the case in which the underlying
space is Rd (and in fact, we only care about d = 2 and d = 3), equipped with the usual
Euclidean distance ‖p− q‖2 for two points p, q ∈ Rd.

Definition 2.1.1 (open set). A set S ⊂ Rd is open if for any s ∈ S, there exists a ball
{t ∈ Rd | ‖t− s‖2 < ε} of radius ε > 0 that is completely contained in S.
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For a subset X ⊂ Rd, a set S ⊂ X is open with respect to X, if there exists an open
set S0 ⊂ Rd such that S = S0 ∩X.

For instance, [0, 1
2) is an open set with respect to the unit interval [0, 1].

Definition 2.1.2 (continuous mapping). LetX,Y be two subsets of Rd. A map f : X → Y
is called continuous, if for any set M1 ⊂ Y that is open with respect to Y , there is a set
M2 ⊂ X open with respect to X such that f−1(M1) = M2.

An intuitive description is that for a continuous mapping, the preimage of an open set
is again open. But one should be careful about this description, since “open” relates to the
corresponding domain.

Definition 2.1.3 (homeomorphism). A map f : X → Y is called a homeomorphism, if it
is bijective, continuous, and the inverse map f−1 is also continuous. In this case the sets
X and Y are called homeomorphic.

The idea behind homeomorphic sets is that points are “separated” in X if and only if
they are “separated” in Y . We give the standard example of a non-homeomorphic map:
Let S1 be the unit circle and consider

f : [0, 2π)→ S1;x 7→ (cosx, sinx).

This map is bijective and continuous, but the inverse is not continuous. For instance,
consider the open set M1 := [0, π) with respect to [0, 2π). The preimage of the inverse
function on M1 is nothing but f(M1). This is the upper part of the circle, excluding the
point (−1, 0), and including (1, 0). Obviously, this is not an open set with respect to S1.
In fact, there is no homeomorphism between the two sets.

Definition 2.1.4 (connected set). Let X ⊂ Rd. X is connected if it cannot be decomposed
into two (or more) open sets with respect to X. A maximal connected set M ⊂ X is called
a connected component.

A homeomorphism f : X → Y maps connected components of X to connected compo-
nents of Y . However, the relations between connected components as embeddings into Rd

might change: The sets S1 ∪ {(0, 0)} and S1 ∪ {(0, 2)} are homeomorphic, but there is a
notable difference between them: In the former case the isolated point lies inside the circle
and in the latter it lies outside the circle. We consider this as a change in the topology
of the point set since, intuitively, we cannot transform the one set into the other without
moving the point over the circle. We next derive a formal concept that is stronger than
homeomorphism and formalizes this intuition.

Definition 2.1.5 (isotopic). Let X,Y ⊂ Rd. We say that X and Y are isotopic if there
exists a continuous map H : [0, 1]×X → Rd with the following properties:

1. For any t ∈ [0, 1], Ht(x) := H(t, x) is a homeomorphism between X and It := Ht(X),
the image of Ht.

2. H0( · ) = idX( · )
3. I1 := Y , which means that H1 is a homeomorphism of X and Y .

In this case, H is called an isotopy between X and Y .
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Note this additional requirement, compared to homeomorphic sets X and Y : Isotopic
sets must be “connected” by homeomorphism, which prevents the relative position of con-
nected components changing. As an example, consider again S1∪{(0, 0)} and S1∪{(0, 2)}.
They are not isotopic, because the isolated point either crosses the circle for some t ∈ [0, 1]
(which implies that Ht is not homeomorphism) or it “jumps” for some t ∈ [0, 1] (which
implies that H is not continuous).

We now provide some simple examples of isotopic sets.
• Translations: Let v ∈ Rd, and f : Rd → Rd, x 7→ x+ v. The sets X ⊂ Rd and f(X)

are isotopic. An isotopy is given by H(t, x) = x+ tv.
• Rotations: Let ϕ ∈ [0, 2π), and

f : R2 → R2,

(
x
y

)

7→
(

cosϕ sinϕ
− sinϕ cosϕ

)(
x
y

)

.

The sets X ⊂ R2 and f(X) are isotopic. An isotopy is given by

H





t
x
y



 7→
(

cos tϕ sin tϕ
− sin tϕ cos tϕ

)

.

• Shear transformations: Let s ∈ R, and

f : R2 → R2,

(
x
y

)

7→
(
x+ sy
y

)

.

The sets X ⊂ R2 and f(X) are isotopic. An isotopy is given by

H





t
x
y



 7→
(
x+ tsy

y

)

.

We will also need the notion of a simplicial complex.

Definition 2.1.6 (simplex). The k + 1 points p0, . . . , pk ∈ Rd are affinely independent if
the k vectors pi − p0, i = 1, . . . , k are linearly independent in Rd. It follows necessarily
that k ≤ d. A simplex σ of dimension k is the convex hull of k + 1 affinely independent
points p0, . . . , pk. We also say that p0, . . . , pk span σ. A subsimplex of σ in Rd is a simplex
spanned by a non-empty subset of {p0, . . . , pk}.

Definition 2.1.7 (simplicial complex). A simplical complex C is a set of simplices σ1, . . . , σs
such that each subcomplex τ of any σi is also in S, and such that for any pair of simplices,
σi ∩ σj is either empty or is a simplex in S. The dimension of a simplicial complex is
the maximal dimension of the contained simplices. The 0-dimensional simplices are called
vertices of the complex.

Often, abstract simplicial complexes are considered; they are not embedded into Eu-
clidean space. However, we will only consider embedded complexes and we will even
identify a complex and its induced point set, that is, S =

⋃s
i=1 σi.

Definition 2.1.8 ((stable) isocomplex). For a point set X ⊂ Rd, an isocomplex C is
a simplicial complex that is isotopic to X. It is called stable if there exists an isotopy
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H : [0, 1] × C → X such that H(t, v) = v for any t ∈ [0, 1] and for any vertex v of C. In
particular, vertices of C belong to X. If we do not force the stability condition, we talk
about a general isocomplex

In R3, an isocomplex is usually called a triangulation of the surface. This thesis contains
algorithms to compute stable isocomplexes for algebraic curves and surfaces.

2.2. Algebraic curves

We assume that the reader is familiar with basic algebraic concepts like domains, fields, and
polynomial rings. We only expose the theory of algebraic curves as much as we need it for
our results, and especially focus on (real) geometric aspects; for a much deeper introduction
to the material, consult the following textbooks [Wal50] [Gib98] [BK81]. Some of the facts
can be stated in a more general way (e.g., for arbitrary dimension), but we have tried
to keep them as close as possible to the concrete problems at hand. A large part of the
material has already appeared in [Ker06, §§2.1 and 2.2].

2.2.1. Basic definitions and notation

This section reminds the reader of basic definitions and results from algebra that are used
in this work. This material can be easily found in introductory textbooks on algebra (as
[Lan93] [Bos04] [Wol96] [vdW71]).

A domain D is a commutative ring with unity where ab = 0 implies that a or b is zero.
An element a ∈ D divides b ∈ D if there is an element c ∈ D such that ac = b. We also use
the notations that a is a divisor of b or that b is divisible by a. A unit in D is an element
that divides each element of the ring, or equivalently, an element that has a multiplicative
inverse. We call a ∈ D and b ∈ D associates if a = ub for a unit u ∈ D. An element a ∈ D
is irreducible if a = bc implies that b or c is a unit.

A domain D is called factorial if each a ∈ D can be, up to associates, factorized
uniquely into irreducible elements. For instance, Z is factorial and its irreducible elements
are the prime numbers. A factorial domain is also called a unique factorization domain,
or UFD, for short. In a UFD, the greatest common divisor gcd(a1, . . . , an) (with n ≥ 2)
is well-defined and unique up to associates.8

For a domain D, the polynomial ring D[t] in the indeterminate t consists of polynomials
f with f = 0 or f =

∑n
i=0 ait

i with ai ∈ D and an 6= 0. In the latter case, n is the degree
of f , or in short, deg f = n. We set deg(0) = −∞. For f 6= 0, a0, . . . , an are called the
coefficients of f , and we write coefi(f) := ai for i = 0, . . . , n, and coefi(f) = 0 for i > n.
an is the leading coefficient of f , an = lcf(f). The content of f ∈ D[t] is the gcd of its
coefficients, cont(f) := gcd(a0, . . . , an). A polynomial is called primitive if its content is 1.
The primitive part of a polynomial f is the polynomial pp(f) := f

contf ∈ D[t]. f is called

square-free if there exists no g ∈ D[t] with deg g ≥ 1 such that g2 divides f . A square-free
part f of f is a square-free polynomial dividing f with positive leading coefficient such
that any square-free polynomial that divides f also divides f .9

8This “up to associates” restriction can be relaxed easily by choosing a representative for each equiv-
alence class of associates. For instance, if D = Z, always choose the positive element, and if D = Q[t],
choose the element with leading coefficient one.

9As for the gcd, the square-free part can be made unique by choosing a suitable representative system.
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A famous lemma by Gauss states that if D is a UFD, then D[t] is also a UFD. Conse-
quently, the gcd is also well-defined for polynomials over a UFD. The derivative f ′ of f is
the polynomial f ′ =

∑n−1
i=0 (i+ 1)ai+1t

i. One can show that f ∈ D[t] is square-free if and
only if gcd(f, f ′) is a constant, which means of degree 0. Moreover, the square-free part of
f is given by f = f

gcd(f,f ′) , up to a constant factor.

The field of fractions Q of a domain D is the smallest field containing D.10 Elements
of Q can be expressed by fractions a

b with a, b ∈ D and b 6= 0. It is well known that a
polynomial in D[t] is irreducible as an element in Q[t] if and only if it is irreducible in
D[t]. Likewise, f ∈ D[t] is square-free if and only if it is square-free while considered as
an element of Q[t].

Let K ⊃ D be a field that contains D. A polynomial f ∈ D[t] induces a map K → K
by mapping x0 ∈ K to

∑n
i=0 aix

i
0 ∈ K. We denote the function value by f(x0). A root α

of f is an element such that f(α) = 0. The algebraic closure Q ⊃ Q is the smallest field
containing Q such that any polynomial f ∈ Q[t] (and thus any polynomial f ∈ D[t]) has
a root in Q. By the fundamental theorem of algebra, each polynomial f ∈ D[t] can be
written as

f = lcf(f)
m∏

i=1

(t− αi)ei

with αi ∈ Q and ei ≥ 1 such that
∑m

i=0 ei = n. The integer ei is called the multiplicity of
the root αi, mult(αi, f) = ei, and mult(x, f) = 0 if x is not a root of f . A root α is called
simple if its multiplicity is one, and multiple otherwise. For f, g ∈ D[t], their gcd over Q
equals their gcd over Q. Thus, f is square-free if and only if all its roots are simple. For
K ⊃ D, we call an element α ∈ K algebraic over D, if it is a root of a polynomial f ∈ D[t].
The algebraic element over Z are called the algebraic numbers.

A polynomial ring D[t1, . . . , td] with indeterminates t1, . . . , td(d ≥ 1) consists of ele-
ments of the form ∑

j1, . . . , jn ≥ 0
j1 + . . .+ jd ≤ n

a(j1,...,jd)t
j1
1 · · · t

jd
d

with a(j1,...,jd) ∈ D where at least one a(j1,...,jd) 6= 0 with j1 + . . . + jd = n. The a(j1,...,jd)

are the scalar coefficients, and the expressions tj11 · · · t
jd
d are the monomials of f . The total

degree deg f := degtot f of f is n. Obviously, these definitions generalize the definitions for
D[t] from above. We call polynomials with d = 1, 2, 3 univariate, bivariate and trivariate,
respectively. We also use the term multivariate for d > 1. Note that for a UFD D,
multivariate polynomial rings over D are also UFDs, again by Gauss’ lemma.

A multivariate polynomial f ∈ D[t1, . . . , td] has different interpretations. On the one
hand, it is a polynomial built of scalar coefficients in D and monomials, as just described.
On the other hand, it can be considered as a univariate polynomial in any ti, with coef-
ficients in the domain D[t1, . . . , ti−1, ti+1, . . . , td]. We denote by degti the degree of this

univariate polynomial in ti; clearly degti f ≤ degtot f . Also, we set ∂f
∂ti

for the derivative
f ′ as polynomial in ti. In this thesis, we will frequently use both interpretations; to avoid
misunderstandings, we will often use expressions like “the multivariate polynomial f ” or
f ∈ D[t1, . . . , td] for the multivariate interpretation, and “the polynomial f , considered as
a polynomial in ti”, or f ∈ D[t1, . . . , ti−1, ti+1, . . . , td][ti] for the univariate interpretation.

10More precisely: Any field that embeds D also embeds Q.
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2.2.2. Definition and properties of algebraic curves

Definition 2.2.1 (vanishing set). Let f ∈ K[x1, . . . , xn] be a polynomial, and K = R or
K = C. The vanishing set (also called zero set, or zero locus) of f in K is defined as

VK(f) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0}.

For convenience, we set V (f) := VR(f) and call it the vanishing set of f .

It is immediately apparent that

V (fg) = V (f) ∪ V (g) (2.1)

V (cf) = V (f) ∀c ∈ R \ {0}. (2.2)

Definition 2.2.2 (algebraic curve). A real planar algebraic curve, or just algebraic curve,
is the vanishing set of a non-zero bivariate polynomial f ∈ Z[x, y]. We also call V (f) the
curve induced by f , and say that f is the defining polynomial for V (f). We also say that
an algebraic curve V (f) is of degree n if degtot f = n. For α ∈ R, we call V (f(α, y)) the
fiber of f (or V (f)) at α.

Figure 2.1. The curves V (x2 + y2 − 1), V (2x4 + y4 − x3 + xy2), and a randomly
generated curve of degree 10.

Some examples for algebraic curves can be found in Figure 2.1. Note that different
polynomials might induce the same curve. In particular:

Proposition 2.2.3. Let f ∈ Z[x][y] and let f denote its square-free part. Then V (f) =
V (f).

The proposition shows that we can always assume that a curve is induced by a square-
free polynomial. In our algorithms, we will also demand squarefreeness of all input poly-
nomials (or alternatively, we initially compute the square-free part, as discussed in Sec-
tion 2.4.3).

We consider f as an element of Z[x][y], and decompose it into f = cont(f) · pp(f),
with the content cont(f) ∈ Z[x], and the coefficients of the primitive part pp(f) having
no common divisor. For further simplification, we assume that polynomials are primitive,
which means that cont(f) = 1. The primitive part of a curve is easy to compute (in
comparison with other operations) and the content of bivariate polynomials has a direct
geometric meaning.
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Definition 2.2.4 (vertical component). An algebraic curve has a vertical component if
there exist an α ∈ R and an open interval I ⊂ R such that α× I ⊂ V (f).

Lemma 2.2.5. If a curve f has a vertical component at α, then it contains the whole
vertical line x = α as a component, and x− α is a divisor of the content of f .

Proof. Consider the polynomial fα(y) = f(α, y) ∈ R[y]. If f has a vertical component at
α, fα has infinitely many roots, which is only possible if it is identically zero. Consequently,
f(α, β) = 0 for any β ∈ R, so the vertical line is contained. It follows that the irreducible
(x − α) divides f , and since it obviously cannot divide the primitive part, it divides the
content.

Vice versa, it is very easy to see that each real root of the content implies a vertical line
component of the curve at this position. Thus, when passing from a curve to its primitive
part, we simply remove the vertical components.

The theory of algebraic curves is further simplified if we assume that all curves are
irreducible. Indeed, according to (2.1), each curve can be decomposed into finitely many
irreducible curves. However, doing so in practice brings up the problem of efficient factor-
ization of a polynomial. Our methods do not demand irreducibility of the polynomials and
accordingly, we derive the theory for (square-free and primitive, but) reducible polynomials
as well.

Definition 2.2.6 (critical point). A point p ∈ R2 is called a critical point of an algebraic
curve f if f(p) = ∂f

∂y (p) = 0.

Equivalently, the critical points are the set V (f)∩V (∂f∂y ). Critical points have a direct
geometric meaning (Figure 2.2): The tangent of f at a point p is orthogonal to the gradient
vector (∂f∂x ,

∂f
∂y ). Thus, if a point is critical, its tangent is either vertical, or not uniquely

defined.

Definition 2.2.7 (singular point). A point p is singular for a curve f if f(p) = ∂f
∂x (p) =

∂f
∂y (p) = 0. In this case, we also call p a singularity. A point on f that is not singular is
called regular.

The following famous theorem shows that an algebraic curve can be locally parame-
terized by a univariate function around regular points. Although this holds true in more
general settings, we restrict ourselves to the case of bivariate polynomials. The stated
version is proved completely in [For05, §8] and [Kön93, §3.6]. See also [Lan68, §XVII.3]
and [Apo74, §13.4] for slightly weaker formulations.

Theorem 2.2.8 (implicit function theorem). Let f be a polynomial and p = (x0, y0).
If ∂f

∂y (p) 6= 0, there exist open neighborhoods V around x0, W around y0, and a C∞

function11 g : V → W such that, for all x ∈ V , y = g(x) is the unique solution in W for
f(x, y) = 0. Moreover, the derivative of g is given by:

g′(x) = −
∂f
∂x (x, g(x))
∂f
∂y (x, g(x))

11A C∞ function is a function that can be continuously differentiated arbitrarily often.
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Figure 2.2. A curve (in blue) and its derivative with respect to y (in brown). Note
that the intersections are exactly at those positions where the curve has vertical tangent
lines, or is singular.

Figure 2.3. Examples of critical points: (left to right) an ordinary x-extreme point, a
double point (self-intersection), a cusp, and a vertical inflection point. The first and the
last examples are regular points, whereas the self-intersection and the cusp are singular.

The implicit function theorem is the key ingredient for decomposing an algebraic curve
into a set of disjoint function graphs, and points in between.

Definition 2.2.9 (strongly critical x-coordinate). A value x0 ∈ R is called a strongly
critical x-coordinate if deg f(x0, y) < degy f(x, y) or if there exist some y0 ∈ R such that
(x0, y0) is critical.

Theorem 2.2.10 (delineability theorem). Let f ∈ Z[x, y] be square-freeand I ⊂ R be an
open interval not containing any strongly critical x-coordinate of f . Then, f is delineable
over I, which means that there exist C∞ functions g1, . . . , gm : I → R (with m ≥ 0) such
that:

• g1(x0) < . . . < gm(x0) for all x0 ∈ I
• V (f) ∩ (I × R) =

⋃m
i=1{(x, gi(x)) | x ∈ I}.

In other words, f decomposes over I into m disjoint function graphs.

For the proof, we need a bound on the size of roots of univariate polynomials. This
bound will also come in handy in other contexts.
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Figure 2.4. The curve V ((x− 1)y4 + y2 − x2) and its strongly critical x-coordinates.
The rightmost one is not caused by a critical point but because the degree drops for
x = 1. Note that the curve decomposes into disjoint function graphs between two
strongly critical x-coordinates.

Theorem 2.2.11. Let g =
∑n

i=0 ait
i with ai ∈ R, and let α ∈ C be a root of g. Then,

|α| ≤ 1 + max
i6=n
{ |ai||an|

}.

Proof. Let α be a root of g. Then,

|an||α|n ≤
n−1∑

i=0

|ai||α|i ≤ max
i=0,...,n−1

{|ai|}
n−1∑

i=0

|α|i = max
i=0,...,n−1

{|ai|}
|α|n − 1

|α| − 1

It follows that

|α| − 1 ≤ max
i=0,...,n−1

{ |ai||an|
} |α|

n − 1

|α|n
︸ ︷︷ ︸

≤1

.

Proof of Theorem 2.2.10. It is enough to prove the statement for any closed interval J ⊂ I.
Let J = [c, d] be such a closed interval. Then, V (f) is bounded inside J (i.e., the set
{y ∈ R | ∃(x, y) ∈ V (f) : x ∈ [c, d]} has a finite supremum and finite infimum) according
to Theorem 2.2.11, and so, V := V (f)∩ (J ×R) is a compact set. Since each point in V is
regular, applying Theorem 2.2.8 (implicit function theorem) for each point gives function
graphs inducing an open covering; we choose a finite subcover S1, . . . , SM of function
graphs. By construction

⋃M
i=0 Si = V .

The function graphs gi are now constructed as follows. Start with q := pi, the i-th
point in the fiber at c (c is the left endpoint of J). Choose some S of the finite subcover
that contains q. Since S is a function graph of a continuous function over an open interval,
there is some limit point q′ on its right side. Since f , considered as a function R2 → R,
is continuous as well, f(q′) = 0, so q′ is contained in another set S′ of the subcover. Set
q := q′ and S := S′ and continue the process until it yields a set S that contains a point
in the fiber at d (d is the right endpoint of J). This must eventually happen, since the
subcover is finite.
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Clearly, g1, . . . , gm thus obtained are C∞ functions, and they are disjoint since an
intersection would violate the implicit function theorem. Moreover, choosing any point
p ∈ V , the same construction as above performed on the left side yields one of the points
in the fiber at c on the same function graph. Thus, each point of V is covered by the
functions graphs of g1, . . . , gm.

2.2.3. Segmentation of algebraic curves

Theorem 2.2.10 proposes a decomposition of the curve into points on fibers of strongly
critical x-coordinates and disjoint function graphs in between. This is almost what we are
aiming for; however, it will be more convenient for us to work with objects that are closed
in R2. It is not hard to turn the decomposition from Theorem 2.2.10 into a segmentation
of the curve, defined as follows.

Definition 2.2.12 (x-monotone segment). An x-monotone segment s is the image of a
continuous function ϕ : I → R2 with I the open, half-open, or closed unit interval and
such that

• For t1 < t2 ∈ I, ϕ(t1) ≤ ϕ(t2) with respect to the lexicographic ordering in R2. In
particular, the segment is x-monotone.
• If 0 /∈ I, then limt→0 ϕ(t) /∈ R2, and if 1 /∈ I, then limt→1 ϕ(t) /∈ R2.

If 0 ∈ I, ϕ(0) is the left endpoint of the segment, if 1 ∈ I, ϕ(1) is the right endpoint of the
segment.

Definition 2.2.13 (segmentation). For an algebraic curve V (f), let C = {c1, . . . , cs} be
an (ordered) finite set containing all its strongly critical x-coordinates.

The segmentation of V (f) with respect to C is a set of x-monotone segments s1, . . . , sp
which satisfy the following properties

• s1 ∪ . . . ∪ sp = V (f)
• Each pair of segments intersects at most at the endpoints
• The x-range of a segment is an open, half-open, or closed interval whose boundaries

are either −∞ and c1, cs and +∞, or ci and ci+1 for 1 ≤ i ≤ s− 1.

A segmentation is cylindrical, which means that, the x-ranges of two segments either
are the same or have at most an endpoint in common. See Figure 2.5 for an example.
The general existence of such a segmentation follows from the next theorem, which shows
that the number of strongly critical x-coordinates is bounded. We shall also quantify the
number of required segments.

Theorem 2.2.14. If f is square-free with deg f = n, there are no more than n(n−1) many
strongly critical x-coordinates.

Proof. For the proof, we need to pass temporarily to the projective space P(C)2, which
consists of points (a : b : c) with either a, b ∈ C and c = 1, or a ∈ C, b = 1, and c = 0. C2

is embedded in P(C)2 via (a, b) 7→ (a : b : 1). (a : 1 : 0) is usually called a line at infinity.
For f =

∑
aijx

iyj of degree n, its homogenization is given by fh :=
∑
aijx

iyjzn−i−j . It
is easy to see that VC(f) ⊂ VP(C)(f

h), according to the canonical embedding from above.

By Bezout’s theorem (see [Wal50, III.3] [BK81, 6.1] [Gib98, 14.4]), two non-overlapping
curves, V (f) and V (g), have exactly deg f · deg g common points in P(C)2. So, V (f) and
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Figure 2.5. The segmentation of an algebraic curve. Each colored part corresponds to
a segment, and the black dots are the endpoints.

V (∂f∂y ) have at least n(n−1) common points. It is left to show that each strongly x-critical
coordinate is caused by such a common point.

Recall that there are two cases that cause a strongly critical x-coordinate. Either x0

has a critical point in its fiber or the y-degree of f drops when setting x = x0. For the
first case, if (x0, y0) is a critical point, then clearly, (x0 : y0 : 1) is a common point of V (f)
and V (∂f∂y ) in the projective plane. For the latter case, note that the y-degree drops if and
only if x0 is a root of the leading coefficient. Then (x0 : 1 : 0) is a point on the projective
curve VP(C)(f

h). But x0 is also a root of the leading coefficient of ∂f
∂y , thus, (x0 : 1 : 0) is

again a common point of the curves.

Corollary 2.2.15. For an algebraic curve induced by f ∈ Z[x, y] with deg f = n, and for
any choice C according to Definition 2.2.13, there exists a segmentation with respect to C
in no more than n3 x-monotone segments.

Proof. Partitioning the x-axis with respect to the strongly critical x-coordinates yields
n(n − 1) + 1 open intervals, where f is delineable according to Theorem 2.2.10. Each
function graph over such an interval is turned into an x-monotone segment by taking its
closure in R2. In this way, we get up to n x-monotone segments per interval, which yields
n3 − n2 + n segments.

The union of these segments does not yet cover V (f): there might be isolated points
on fibers, that is, with no further (real) point of V (f) in an open neighborhood. For
such points, we create degenerated segments whose image consists of a single point (note
that this is covered by our definition of x-monotone segments). Since such points are
clearly critical, there cannot be more than n(n − 1) of them, therefore, the total number
of segments is bounded by n3.

We have excluded vertical components in this part. However, the segmentation can
be extended to such curves in a straightforward way and it is not hard to show that
a segmentation with up to n3 segments also exists for non-primitive curves (consider a
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segmentation of the primitive part with respect to the strongly critical x-coordinates of
V (f), and add vertical segments on the suitable fibers).

We classify the possible segment types that can appear in the segmentation with respect
to C = {c1, . . . , cs}. There are two special segment types that we have already discussed,
namely degenerate segments for isolated points and vertical segments. Non-degenerate
and non-vertical segments are classified by their behavior at the curve ends, that is, their
left and right boundaries.

We restrict ourselves to the left boundary. Three types of curve ends can be classified:
1. If the segment has a left endpoint, the segment is called bounded on the left.
2. If the x-range of the segment is (−∞, c1] or (−∞, c1), the segment is called un-

bounded in the x-direction (on the left).
That leaves the third case where the x-range is bounded by some ci and ci+1, but the

left endpoint does not exist. It follows easily that any sequence of points approaching the
left boundary of s must be unbounded in the y-direction (otherwise, some subsequence of
points would converge to a finite y-coordinate, and the segment would have to converge to
the limit by continuity). Moreover, any such sequence must diverge to the same direction,
either to −∞ or to +∞ (otherwise, the segment would cross the x-axis infinitely many
times). Thus, the left end of the segment either diverges to (ci,−∞) or (ci,+∞). We call
the segment a vertically asymptotic arc (at its left end) for x = ci towards y = −∞, or
towards y = +∞, respectively. Indeed, the segment comes arbitrarily close to the vertical
line x = ci, but never reaches it.

Lemma 2.2.16. If there is a vertically asymptotic segment of V (f) for x = α (either at its
left or its right end), then α is a root of lcfy(f) ∈ R[x].

Proof. Let an(x), . . . , a0(x) denote, as usual, the coefficients of f ∈ Z[x][y]. Assume that
an(α) 6= 0. There is an interval I around α where an does not vanish. Set

α0 := min
x∈I
|an(x)|

α1 := max
x∈I,j=1,...,n

|ai(x)|

By Theorem 2.2.11, 1 + α1
α0

is an upper bound for all fiber points in the x-range I, thus,
V (f) is bounded in this x-range. This contradicts the fact that a segment diverges to
(α,±∞).

Summary

Algebraic curves are defined by the vanishing set of an equation in two variables. Of special
interest are their critical points, which means singularities or points with a vertical tangent
line. They induce a (cylindrical) segmentation of the curve into x-monotone segments and
will form the input segments of our arrangement algorithm.

2.3. (Sub)resultants and Sturm-Habicht sequences

We saw in the last section that critical points play an important role when decomposing
an algebraic curve into x-monotone parts. We will next introduce resultants, which are a
well-known tool in algebra for projecting the solutions of a polynomial system in a lower-
dimensional space. In particular, the resultant of f ∈ Z[x][y] and ∂f

∂y yields a univariate
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polynomial whose roots contain all strongly x-critical coordinates. Moreover, we discuss
subresultants, and the closely related Sturm-Habicht sequences, which generalize resultants
and give additional information about the fiber of critical x-coordinates.

2.3.1. Resultants

Consider two polynomials f, g ∈ D[t], where D is an arbitrary domain. Assume that
n := deg f ≥ deg g =: m. We want to answer the question of whether f and g have a
common factor, that is, whether deg(f, g) ≥ 1. The next well-known theorem reformulates
this question in terms of a linear combination of f and g.

Theorem 2.3.1. deg gcd(f, g) ≥ k if and only if there are polynomials u and v ∈ D[t] of
degree at most m− k and n− k, respectively, such that uf + vg = 0.

Proof. If h := gcd(f, g) has a degree of k, set u := g
h and v := −f

h . For the other direction,
assume that u and v exist as required. Then f divides vg. Since v is of degree at most
n − k, there must be a factor of f of degree at least k that also divides g, which proves
that gcd(f, g) ≥ k.

It follows that f and g have a common factor if and only if there are polynomials u
and v of degree m− 1 and n− 1, respectively, such that uf + vg = 0. This can be written
as a linear system of equations in the coefficients of f and g, and leads to the following
definition.

Definition 2.3.2 (Sylvester matrix). The Sylvester matrix of f =
∑n

i=0 ait
i and g =

∑m
i=0 bit

i is the following (n+m)× (n+m) matrix, composed of m rows of the coefficients
of f and n rows of the coefficients of g:

Syl(f, g) =













an . . . a0

. . .
. . .

an . . . a0

bm . . . b0
. . .

. . .

bm . . . b0

























m rows

n rows

Definition 2.3.3 (resultant). The resultant of f and g is defined as

res(f, g) := det (Syl(f, g)) ∈ D.
With the argument outlined above, we get

Corollary 2.3.4. The following conditions are equivalent
• res(f, g) = 0.
• deg gcd(f, g) ≥ 1.
• There exists a common root α of f and g in Q(D), the algebraic closure of the field

of fractions of D.

For the next theorem (see also [Yap00, §4.4, Lemma 4.9] [BPR06, §8.3.5]), note that a
homomorphism of domains ϕ : D → D′ induces a homomorphism D[t]→ D′[t] in a natural
way by mapping all the coefficients of the polynomial. We also denote the mapping of the
polynomial rings by ϕ.
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Theorem 2.3.5 (specialization property). Let ϕ : D → D′ be a homomorphism of domains
with lcf(f), lcf(g) /∈ kerϕ. Then,

ϕ(res(f, g)) = res(ϕ(f), ϕ(g)).

Proof. The map ϕ also induces a mapping of matrices over D to matrices over D′ by
mapping its coefficients. Since ϕ preserves the degree of f and g by assumption, it follows
that

ϕ(Syl(f, g)) = Syl(ϕ(f), ϕ(g)).

The determinant is a sum of products of the matrix entries, and thus,

ϕ(det Syl(f, g)) = detϕ(Syl(f, g)).

The following expression essentially states that the resultant of f and g is the product
of the roots of f , evaluated at g (or vice versa). See [BPR06, Thm.4.16] [Yap00, Thm.6.15]
for proofs.

Theorem 2.3.6. Let f = an
∏n
i=1(t− αi) and g = bm

∏m
j=1(t− βj) ∈ D[t]. Then,

res(f, g) = amn b
n
m

n∏

i=1

m∏

j=1

(αi − βj)

= amn

n∏

i=1

g(αi)

= (−1)nmbnm

m∏

j=1

f(βj).

We switch back to the case where f and g are bivariate integer polynomials. By
interpreting both as elements of Z[x][y], we can still talk about their Sylvester matrix,
whose entries are in Z[x], and about their resultant, which we denote by resy(f, g) ∈ Z[x].

Theorem 2.3.7. Let f, g ∈ Z[x, y] be coprime (i.e., deg gcd(f, g) = 0), and r := resy(f, g) ∈
Z[x]. Then r 6= 0, and the following two statements are equivalent:
• α is a root of r.
• deg f(α, y) < degy f(x, y) and deg g(α, y) < degy g(x, y), or there exist β ∈ Q such

that f(α, β) = 0 = g(α, β).

Proof. It is clear that r 6= 0 because f and g are coprime. Assume that r(α) = 0. If
deg f(α, y) = degy f(x, y), and deg g(α, y) = degy g(x, y), we can apply Theorem 2.3.5
using the substitution homomorphism x 7→ α and obtain

0 = r(α) = res(f(α, y), g(α, y)).

It follows from Corollary 2.3.4 that there exists some β ∈ Q with f(α, β) = g(α, β) = 0.
Vice versa, if deg f(α, y) < degy f(x, y) and deg g(α, y) < degy g(x, y), note that α is

both a root of lcfy(f) ∈ Z[x] and of lcfy(g) ∈ Z[x]. Laplace expansion in the first column
of the Sylvester matrix yields

r := resy(f, g) = lcfy(f) ·U + lcfy(g) ·V
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with some U, V ∈ Z[x]. It follows that r(α) = 0.

It remains the case that there exist β ∈ Q such that f(α, β) = 0 = g(α, β). If neither
f nor g drop their degree at α, r(α) = 0 again follows by the specialization property and
Corollary 2.3.4. However, it remains the case that exactly one of the polynomials drops
its degree. Note that res(f, g) = ±res(g, f), so w. l. o. g., assume that lcfy(g)(α) = 0, and
lcfy(f)(α) 6= 0. Let k be the degree of g(α, y). It follows that

r(α) = (det Syl(f, g))(α) = det(Syl(f, g)(α)),

where Syl(f, g)(α) means we apply the substitution homomorphism x → α to any entry
of Syl(f, g). This makes the first m− k entries of each row with g-coefficients vanish:

r(α) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an(α) . . . a0(α)
. . .

. . .

an(α) . . . a0(α)
0 . . . bk(α) . . . b0(α)

. . .
. . .

. . .

0 . . . bk(α) . . . b0(α)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= an(α)m−k ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an(α) . . . a0(α)
. . .

. . .

an(α) . . . a0(α)
bk(α) . . . b0(α)

. . .
. . .

bm(α) . . . b0(α)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣













k rows

n rows

= an(α)m−k · res(f(α, y), g(α, y)).

By Corollary 2.3.4, it follows that the second factor vanishes, and therefore, r(α) = 0.

We can immediately conclude that strongly critical x-coordinates are roots of a resul-
tant polynomial:

Corollary 2.3.8. Let α be a strongly critical x-coordinate of a curve V (f), with f a square-
free polynomial. Then, α is a root of resy(f,

∂f
∂y ).

Proof. First of all, note that resy(f,
∂f
∂y ) 6= 0 since f is square-free. Recall the definition

of strongly critical (Definition 2.2.9): If deg f(α, y) < degy f(x, y), also deg ∂f
∂y (α, y) <

degy
∂f
∂y (x, y), and the resultant vanishes. Otherwise, if there exists a critical point (α, β),

f(α, y) and ∂f
∂y (α, y) have a common root at β, so the resultant vanishes as well.

Note that, conversely, not every root of resy(f,
∂f
∂y ) is a strongly critical x-coordinate.

The reason is that, according to Theorem 2.3.7, the common root of f(α, y) and g(α, y)
might also be non-real. In other words, the complex algebraic curves VC(f) and VC(g)
intersect at a non-real point whose x-coordinate happens to be real.

Definition 2.3.9 (critical x-coordinate). Let f ∈ Z[x, y] be square-free, and α ∈ R. We
call α a critical x-coordinate if α is a root of resy(f,

∂f
∂y ).
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The considerations above demonstrate the usefulness of resultants for our computa-
tional purposes: They encode the x-coordinates of intersection points of two algebraic
curves, as well as the x-coordinates of critical points of an algebraic curve. Computing
the real roots of resultants, and of univariate polynomials in general, is the subject of
Section 2.4.4. Next, we study a generalization of the resultant that allows us to deduce
additional information about the fiber at critical x-coordinates.

2.3.2. Subresultants and the gcd

Recall the result of Theorem 2.3.1. So far, we have only applied it for the case where
k = 1. However, introducing the slightly more general subresultants, we can not only
identify critical x-coordinates, but also determine the degree of the gcd at these positions,
and even compute the gcd itself.

Definition 2.3.10 (Sylvester submatrix). The i-th Sylvester submatrix of f and g is defined
to be the following (n + m − 2i) × (n + m − i) matrix, composed of m − i rows of the
coefficients of f and n− i rows of the coefficients of g

Syli(f, g) =













an . . . a0

. . .
. . .

an . . . a0

bm . . . b0
. . .

. . .

bm . . . b0

























m− i rows

n− i rows

Syl0(f, g) coincides with the Sylvester matrix Syl(f, g). The subresultants of f and g
are defined by certain minors of the Sylvester submatrices.

Definition 2.3.11 (Mk,t minors). For any p × q-matrix B with p ≤ q, we define Mk,t(B)
with 1 ≤ k ≤ p and 0 ≤ t ≤ q − k to be the k × k minor of B extracted from the first k
rows of B, the first k− 1 columns of B, and the (k+ t)-th column of B. Mk,0(B) is called
the k-th leading principal minor of B.

Definition 2.3.12 (subresultants). For i ∈ {0, . . . ,m − 1}, set Si := Syli(f, g). The
subresultants of f and g are build out of minors of Si as follows:

1. The i-th (polynomial) subresultant of f and g is defined as the polynomial

Sresi(f, g) :=
i∑

j=0

Mn+m−2i,i−j(Si) · tj ∈ D[t].

2. The i-th principal subresultant coefficient (psc) is given by

sresi(f, g) := coefi(Sresi(f, g)) = Mn+m−2i,0(S).

Different from this notation, some authors blur the difference between polynomial and
principal subresultants, and call the psc’s subresultants. See [vzGL03] for an overview of
how the term “subresultants” is used in the literature.
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Note that Syli(f, g) can be interpreted as a multiplication matrix. With polynomials
u and v of degree m − i − 1 and n − i − 1, respectively, we can associate a coefficient
vector (um−i−1, . . . , u0, vn−i−1, . . . , v0) of dimension (n + m − 2i). Syli(f, g) can then be
interpreted as the matrix associated with the map (u, v) 7→ uf + vg. By considering the
first (n+m− 2i) rows and columns, we obtain:

Lemma 2.3.13. sresi(f, g) = 0 if and only if there exist non-zero ui, vi ∈ D[x] with
deg(ui) ≤ m− i− 1, deg(vi) ≤ n− i− 1 and deg(uif + vig) < i.

Consequently, the psc’s determine the degree of the gcd of f and g with the following
property [BPR06, Prop.4.24]:

Lemma 2.3.14.

deg(gcd(f, g)) = min {k ∈ {0, . . . ,m− 1} | sresk(f, g) 6= 0}
and deg(gcd(f, g)) = m if all psc’s are zero (this happens if and only if g divides f).

Proof. The statement is equivalent to

deg gcd(f, g) ≥ k if and only if sres0(f, g) = . . . = sresk−1(f, g) = 0.

Assume that h := gcd(f, g) is of degree at least k. Set u := g
h and v := −f

h . Then
uif + vig = 0, and deg u ≤ m − k and deg v ≤ n − k. It follows that the right-hand side
of Lemma 2.3.13 is satisfied for i = 0, . . . , k − 1. Thus, sres0(f, g) = . . . = sresk−1(f, g).

For the opposite direction, we use induction on k. For k = 1, if sres0(f, g) = res(f, g) =
0, then deg gcd(f, g) ≥ 1 by Corollary 2.3.4. Assume for any k > 1 that sres0(f, g) = . . . =
sresk−1(f, g) = 0. By induction hypothesis, deg(gcd(f, g)) ≥ k − 1. Since sresk−1(f, g) =
0, Lemma 2.3.13 implies the existence of uk−1 and vk−1 of degrees m − k and n − k,
respectively, such that deg(uk−1f + vk−1g) < k − 1. Since the gcd of f and g also divides
uk−1f+vk−1g and is of a degree of at least k−1, it follows that uk−1f+vk−1g = 0. Hence,
uk−1f = −vk−1g is a common multiple of f and g, of degree at most n+m− k. It follows
that the gcd of f and g has a degree of at least k.

Another well-known way to define subresultants is by the determinant.

Sresi(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an . . . . . . a2i−m+2 tm−i−1f
. . .

...
...

an . . . ai+1 f
bm . . . . . . b2i−n+2 tn−i−1g

. . .
...

...
bm . . . bi+1 g

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣













m− i rows

n− i rows

(2.3)

with aj = 0 = bj for negative indices j. The equivalence of both definitions is proven by
exploiting the linearity of the determinant in the last column (e.g., [BT71]).

On the other hand, Laplace expansion on the last column in (2.3) yields

Sresi(f, g) = uif + vig, where deg(ui) ≤ m− i− 1,deg(vi) ≤ n− i− 1. (2.4)

Set d := deg(gcd(f, g)). From Lemma 2.3.14, Sresd(f, g) is a polynomial of degree d and
by (2.4) it follows that Sresd(f, g) is a gcd of f and g.

The cofactors ui and vi in (2.4) can also be expressed as determinant of certain matrices.
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Definition 2.3.15 (subresultant cofactors). For i ∈ {0, . . . ,m}, define the subresultant
cofactors as

ui(f, g) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an . . . . . . a2i−m+2 tm−i−1

. . .
...

...
an . . . ai+1 1

bm . . . . . . b2i−n+2 0
. . .

...
...

bm . . . bi+1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

vi(f, g) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

an . . . . . . a2i−m+2 0
. . .

...
...

an . . . ai+1 0
bm . . . . . . b2i−n+2 tn−i−1

. . .
...

...
bm . . . bi+1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Clearly, deg ui ≤ m− i− 1 and deg vi ≤ n− i− 1.
The following simple lemma (compare [GVN02]) will play an important role in our

algorithm. If f and g share exactly one common root, this root can be expressed by a
rational expression in terms of subresultants.

Lemma 2.3.16. Let f, g ∈ R[t]. If f and g have exactly one common root β, which is of
multiplicity k, then β ∈ R, and, moreover,

β = − coefk−1(Sresk(f, g))

k · coefk(Sresk(f, g))
.

Proof. By assumption, gcd(f, g) = (t − β)k. Since gcd(f, g) ∈ R[t], it follows that β ∈
R. Moreover, from the above considerations, it is Sresk(f, g) = sresk(f, g)(t − β)k. By
comparing the coefficient of tk−1, we obtain

coefk−1(Sresk(f, g)) = −k · sresk(f, g)β.

The analogue of Theorem 2.3.5 also applies to subresultants (with the same proof):

Theorem 2.3.17 (specialization property for subresultants). Let ϕ : D → D′ be a ho-
momorphism of domains with lcf(f) and lcf(g) /∈ kerϕ. Then,

ϕ(Sresi(f, g)) = Sresi(ϕ(f), ϕ(g)).

In particular, for bivariate polynomials f, g ∈ Z[x][y], we can obtain Sresi(f(α, y), g(α, y))
by plugging α into Sresi(f, g), if α is neither a root of the leading coefficient of f nor of g,
(both considered to be polynomials in y).

Another important property of subresultants is the so-called structure theorem. In the
form that we present it, it appears for instance in [BPR06, Theorem 8.30] and [ADTGV04],
and goes back to Lickteig and Roy, according to a remark in [Duc00].

Let f, g ∈ D[t]. For shorter notation, we write Sresi for Sresi(f, g), and lcfSk :=
lcf(Sresk).

Theorem 2.3.18 (structure theorem). Let Sresd be of degree d and Sresd−1 be of degree
e ∈ {0, . . . , d− 1}. Let δ := d− 1− e. Then,

Sresd−2 = . . . = Srese+1 = 0

Srese =
lcfSδd−1Sresd−1

lcfSδd

Srese−1 =
rem(lcfSe · lcfSd−1Sresd,Sresd−1)

(−1)δlcfS2
d

.
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In particular, all divisions are exact over D.

Theorem 2.3.18 is an improved version of the classical structure theorem discovered by
Collins [Col67] and Brown and Traub [BT71]. In this form, it also appears in [Loo82b].

With the structure theorem, the close relation between subresultants and polynomial
remainder sequences is established.

Definition 2.3.19 (polynomial remainder sequences (prs)). For f, g ∈ D[t], a polynomial
remainder sequence of f and g is a sequence of polynomials S1, . . . , Sk with S1 = f and
S2 = g such that

aiSi−1 = QiSi + biSi+1

with ai ∈ D, bi ∈ D, Qi ∈ D[t], and degSi+1 < degSi for i = 2, . . . , k − 1, and

akSk−1 = QkSk

for ak ∈ D, Qk ∈ D[t].

Definition 2.3.20 (regular and defective subresultants). We call Sresi(f, g) regular, if its
degree is i, and defective otherwise.

Corollary 2.3.21. The sequence of polynomials starting with f and g followed by the
regular subresultants forms a polynomial remainder sequence.

This property of subresultants allows the application of fast methods for their com-
putation (Section 2.4.2). Furthermore, it allows counting the number of real roots of a
polynomial, as we describe next.

2.3.3. Real root counting

In this section, we define the Sturm-Habicht sequence of f which equals the subresultant
polynomials of f and its derivative f ′, up to certain sign changes. Sturm-Habicht sequences
and their relation to real root counting have been studied in [GVRLR98]. In [BPR06], the
signed subresultant sequence is introduced for the same purpose.12

Definition 2.3.22 (Sturm-Habicht sequence). Let δk := (−1)k(k+1)/2. For f as above and
k ∈ {0, . . . , n}, the k-th Sturm-Habicht polynomial of f is defined as

StHak(f) =







f if k = n

f ′ if k = n− 1

δn−k−1Sresk(f, f
′) if 0 ≤ k ≤ n− 2

The k-th principal Sturm-Habicht coefficient is defined as

sthak(f) :=

{

1 if k = n

coefk(StHak(f)) if k = 0, . . . , n− 1

12Both treatments consider the Sturm-Habicht sequence of f and g, which resembles a subresultant
sequence of f and f ′g. We only look at the special case of g = 1 here.
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We offer a motivation for the preceding definition. Assume for the moment that
f ∈ R[t]. Recall from the last section that the regular subresultants form a polynomial
remainder sequence. With Sturm’s Theorem (Theorem 2.3.25), one can count the number
of real roots of f inside any interval.

Definition 2.3.23 (Sturm sequence). A polynomial remainder sequence of f and f ′ is
called a Sturm sequence of f if, in any relation

aiSi−1 = QiSi + biSi+1,

it holds that sign(aibi) < 0.

Definition 2.3.24 (sign variations). For a sequence A := [a0, . . . , an] with ai ∈ R, the
number of sign variations, Var(A), is the number of pairs (ai, aj) with i < j such that
aiaj < 0 and ai+1 = . . . = aj−1 = 0.

Theorem 2.3.25 (Sturm’s theorem). Let S1, . . . , Sk be a Sturm sequence of f , and a, b ∈ R

with a < b. Then, the number of distinct real roots inside [a, b] is given by

Var(S1(a), . . . , Sk(a))−Var(S1(b), . . . , Sk(b)).

For proofs, see [Yap00, §7.2] or [BPR06, Thm. 2.50]. Since we are interested in the
total number of real roots, we essentially want to set a = −∞ and b = +∞. In this case,
it is enough to consider only the leading coefficients of the Sturm sequence.

Corollary 2.3.26. Let S1, . . . , Sk be a Sturm sequence of f and let s1, . . . , sk be their leading
coefficients. The total number of real roots of f is

k−1∑

i=1

εi, with εi =

{

0 if deg(Si+1)− deg(Si) is even

sign(si+1si) if deg(Si+1)− deg(Si) is odd

Proof. The sign of Si(x) for x → ±∞ is determined by the sign of its leading coefficient.
So, we can choose [a, b] so large that it contains all real roots of f , and additionally

sign(Si(b)) = si, sign(Si(a)) = (−1)degSisi.

According to Theorem 2.3.25, it holds that

#VR(f) = Var((−1)degS1s1
︸ ︷︷ ︸

=:t1

, . . . , (−1)degSksk
︸ ︷︷ ︸

=:tk

)−Var(s1, . . . , sk).

Consider two consecutive elements si and si+1 and the corresponding ti and ti+1. If the
degree difference is even, then there is a sign change from si to si+1 if and only if there is
a sign change from ti to ti+1, thus the difference cancels out, and εi is zero accordingly. If
the degree difference is odd, then there is a sign change form si to si+1 if and only if there
is no sign change from ti to ti+1. Thus, a sign change from si to si+1 counts as +1 in the
difference, and a non-sign-change from si to si+1 counts as −1.

A Sturm sequence for f is thus enough to count the number of real roots of f . But
does the Sturm-Habicht sequence of f always yield a Sturm sequence? The answer is no,
except in regular cases.
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Lemma 2.3.27. If all Sturm-Habicht polynomials are regular, this means deg StHai(f) = i
for all i = 0, . . . , n, then StHan(f), . . . ,StHa0(f) is a Sturm sequence.

Proof. We have already argued that the corresponding subresultant sequence forms a poly-
nomial remainder sequence, and by Theorem 2.3.18 (structure theorem), it holds that

sresd(f, f
′)2Sresd−2(f, f

′) = Q ·Sresd−1(f, f
′) + sresd−1(f, f

′)2Sresd(f, f
′).

Note that e = d − 1 and δ = 0 since all subresultants are regular. We can rewrite this
equality using the Sturm-Habicht polynomials:

(δn−d−1sthad(f))2δn−d+1
︸ ︷︷ ︸

=:a

StHad−2(f) = Q · δn−dStHad−1(f)+(δn−dsthad−1(f))2δn−d−1
︸ ︷︷ ︸

=:b

StHad(f).

To check the Sturm property, we evaluate the sign of a · b. Clearly, the quadratic factors
can be left out, so this product reduces to δn−d+1δn−d−1, and it is easily verified that
δℓ+1δℓ−1 = −1 for all ℓ ∈ Z.

As we have remarked, the regular Sturm-Habicht polynomials do not give a Sturm
sequence in general. Still, one can generalize Corollary 2.3.26 to count the total number of
real roots using the Sturm-Habicht sequence, even in presence of defective Sturm-Habicht
polynomials. The proof of this property is more involved [GVRLR98] [BPR06].

Definition 2.3.28 (root counting function). For a sequence I := (a0, . . . , an) of real num-
bers with a0 6= 0, define

C(I) =
s∑

i=1

εi

where s is the number of subsequences of I of the form

(a, 0, . . . , 0
︸ ︷︷ ︸

k

, b)

with a 6= 0, b 6= 0, k ≥ 0. For the i-th subsequence of I, define

εi :=

{

0 if k is odd,

(−1)k/2sign(ab) if k is even.

Theorem 2.3.29. For f ∈ R[x] with deg f = n, we have:

C(sthan(f), . . . , stha0(f)) = #{α ∈ R | f(α) = 0}.

In other words, the signs of the principal Sturm-Habicht coefficients determine the number
of distinct real roots of f .

By definition, the specialization property, as stated in Theorem 2.3.17, also holds for
Sturm-Habicht polynomials. Thus, by computing the principal Sturm-Habicht coefficients
of a bivariate polynomial f ∈ R[x][y], it is possible to determine the number of real roots
in any fiber f(α, y) by specializing the sequence for x = α. Interestingly, there is no need
to compute the full Sturm-Habicht sequence for that purpose; its principal coefficients
suffice. However, the most efficient known method to compute those principal coefficients
is by computing the whole Sturm-Habicht sequence (compare Section ??), thus, this fact
is currently not exploited.
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2.3.4. The intersection multiplicity of two curves

We briefly discuss the concept of intersection multiplicity of two curves V (f) and V (g),
and relate it to the resultant of f and g. For that, we consider the shear of a curve, which
we have already introduced in Section 2.1. It is nothing but a linear change of coordinates,
and corresponds to choosing a new vertical direction.

Definition 2.3.30 (shear transformation). For s ∈ Z, the shear of a curve with shear
factor s is defined as

Shsf := f(x+ sy, y).

If the shear factor is clear from the context, we omit it and only write Shf .

Considering the map

Shs : R2 → R2, (x, y) 7→ (x− sy, y),
one immediately observes that ShsV (f) = V (Shsf). Thus, two points p and q on Shsf
are covertical if their preimages p′ and q′ are lying on the same line of slope 1

s . In other
words, the vector (s, 1) in the original system is chosen as the vertical direction in the
transformed coordinate system.

Lemma 2.3.31. Let V (f) and V (g) be two curves without common components. Then,
there exists an s ∈ Z such that V (Shs(f)) and V (Shs(g)) do not have vertically asymptotic
arcs, and each intersection point of the curves has a different x-coordinate.

Proof. Consider Shs(f) as a polynomial in Z[s, x, y]. It follows directly that lcfy(Shs(f)) ∈
Z[s], and if s is chosen so that lcfy(Shs(f)) does not vanish, the curve does not have ver-
tically asymptotic arcs, according to Lemma 2.2.16. To exclude the presence of covertical
intersection points, consider all intersections of f and g. Clearly, sheared intersection
points under Shs( · ) are the intersection points of the sheared curve. Consider all lines
that pass through at least two intersection points. If s is chosen such that none of these
lines becomes vertical, all intersection points have a different x-coordinate (Figure 2.6).
After all, we have shown that only finitely many shear factors s violate the demanded
properties.
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Figure 2.6. Illustration of Lemma 2.3.31. On the right, the sheared curves with s = 1.

Curves that satisfy the above properties are sometimes said to be in generic position.
We will use this term later for a more restrictive set of conditions, and therefore avoid to
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use it in the current context. Roughly speaking, the intersection multiplicity of p is then
the multiplicity of the resultant at p in an appropriate direction.

Definition 2.3.32 (intersection multiplicity). For two curves f and g, let s be a shear
factor as in Lemma 2.3.31. Set

R := resy(Shs(f),Shs(g)).

Let p ∈ C2 be an intersection point of V (f) and V (g). Let α denote the x-coordinate of
its sheared image Shs(p). The intersection multiplicity at p is then defined as

mult(p; f, g) := mult(α,R).

For all non-intersection points, we set the intersection multiplicity to zero.

It can be shown that this definition is independent of the actual choice of s (as long as
it satisfies Lemma 2.3.31). This is non-trivial to show and requires deeper concepts of alge-
braic curves which are beyond the scope of this work. We refer the reader to Walker [Wal50,
§5], where the intersection multiplicity is defined differently, and the equivalence to our
definition is shown. A direct consequence of the given definition is also stated in [Wal50,
§5].

Lemma 2.3.33. Let α ∈ R such that deg f(α, y) = degy(f) and deg g(α, y) = degy(g). Set
R := resy(f, g). Then mult(α,R) equals the sum of all intersection multiplicities in the
complex fiber at α. In particular, if there is only one intersection point in the fiber, its
multiplicity is mult(α,R).

We are mainly interested in the intersection multiplicity at non-critical points of both
V (f) and V (g). By Theorem 2.2.8 (implicit function theorem), f can be written in the
form y = f̃(x) around such a point p = (x0, y0), and g can be written as y = g̃(x).

Lemma 2.3.34. mult(p; f, g) equals the minimal index k, such that

f̃ (k)(x0) 6= g̃(k)(x0)

Indeed, this result matches well the intuition behind intersection multiplicity: a simple
intersection point should be a point such that V (f) and V (g) have different slopes at
p, and the multiplicity should be higher, the more derivatives coincide. In [Wal50], a
generalization of this is taken as the definition of the intersection multiplicity. A third
(and also equivalent) definition can be found in [BPR06, p. 148], where the intersection
multiplicity is defined as the dimension of the localization at the intersection point.

Summary

The resultant of two bivariate polynomials is a suitable tool to represent the x-coordinates
of intersection points of the two induced algebraic curves. In particular, the resultant of f
and its derivative ∂f

∂y contains the strongly critical x-coordinates of V (f) as its roots. The
subresultants and Sturm-Habicht polynomials reveal further information about polynomi-
als of the form f(α, y), such as the degree of the gcd of two polynomials or the number of
real roots, counted without multiplicity. Moreover, after a possible change of coordinates,
resultants reveal the multiplicities of intersection points of two curves.
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Figure 2.7. Intersections of multiplicity one, two, and three (left to right)

2.4. Computation with polynomials

All information about an algebraic curve is contained in its defining bivariate polynomial.
Also, the critical x-coordinates of a curve with respect to one of its variables are encoded
in a univariate polynomial, namely the resultant of f and its derivative. It is not surprising
that our algorithms to deal with algebraic objects need a basic toolbox of operations dealing
with uni- and multivariate polynomials. In this section, we will introduce these methods
and analyze their complexity.

For the complexity analysis of algorithms manipulating algebraic objects (such as poly-
nomials over a domain D), the simplest measure is the arithmetic complexity, where
one just counts the number of operations in D. However, if D = Z, this measure does
not take into account the possible coefficient growth during the execution. Therefore, a
more refined complexity measure is the bit complexity, which counts the maximal num-
ber of bit operations performed in the algorithm. Obviously, this gives more meaningful
statements about the quality of algorithms dealing with integer polynomials.

Definition 2.4.1 (bitsize).
• The bitsize of an integer n 6= 0, Bit(n), is the number of bits needed to represent
n in the standard binary expansion. We set Bit(n) := ⌈log |n|⌉. Moreover, we set
Bit(0) = 1.
• The bitsize Bit(r) of a rational number r = a

b with a, b coprime is the number of bits
needed to represent r. We set Bit(r) = Bit(a) + Bit(b) = Θ(max{log |a|, log |b|})

Adding two integers of bitsize n obviously requires n + 1 bit operations. For the
multiplication, this depends on the chosen algorithm.

Definition 2.4.2 (cost of multiplication). For two integers of bitsize n, let M(n) denote
the bit complexity of a multiplication or division.

M(n) = O(n2) for classic (school) multiplication, M(n) = O(nlog(3)) for Karatsuba
multiplication [KO63], M(n) = O(n logn log logn) for Schönhage-Strassen multiplica-
tion [SS71], and M(n) = O(n logn2O(log∗ n)) using Fürer’s approach [Für07]. In any case,
M(n) = Ω(n), and so we have

M(n1) +M(n2) ≤M(n1 + n2).

The standard way to obtain the bit complexity of an algorithm is to analyze the arithmetic
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Algorithm 2.1. Univariate addition

Input: f, g ∈ Z[t] of magnitude (n, τ)
Output: f + g

1: procedure Add(f, g)
2: for j ∈ {0, . . . , n} do
3: cj ← coefj(f) + coefj(g)
4: end for
5: return

∑n
j=0 cjt

j

6: end procedure

complexity A and to bound the maximal size s of integers that occur in the algorithm.
Then, the bit complexity of the algorithm can simply be bounded by O(A ·M(s)). The
textbook [BPR06] also covers many aspects discussed in this section.

2.4.1. Basic arithmetic

As a warm up, we consider the complexity of adding, multiplying, and dividing two uni-
variate polynomials. For polynomial arithmetic, we will only use classical arithmetic; faster
methods are not considered in this thesis.13 [vzGG99] contains an extensive treatment of
asymptotically optimal algorithms.

In general, there are two natural parameters that affect the complexity of algorithms
for polynomials: the (total) degree and the size of the (scalar) coefficients. For a sim-
pler notation, the following definition will be convenient, both for uni- and multivariate
polynomials.

Definition 2.4.3 (magnitude of polynomials). We call a univariate or multivariate polyno-
mial f with integer or rational coefficients to be of magnitude (n, τ) if its total degree is at
most n, and if the maximal bitsize of its scalar coefficients is at most τ . If g is the resulting
polynomial of an algorithm whose input polynomials f1, . . . , fn are of magnitude (n, τ),
we say that g is of magnitude O(p(n, τ), q(n, τ)) for some functions p, q : N× N→ R+, if
deg g = O(p(n, τ)) and its maximal coefficient bitsize is O(q(n, τ)).

Theorem 2.4.4 (Basic Polynomial Arithmetic). Let f, g ∈ Z[t] of magnitude (n, τ).

• Computing f + g requires n + 1 additions in Z, the bit complexity is O(nτ), and
f + g is of magnitude (n, τ + 1)
• Computing fg requires O(n2) arithmetic operations in Z, the bit complexity is
O(n2M(τ + log n)), and fg is of magnitude O(n, τ + log n)

Proof. All results trivially follow by considering Algorithms 2.1 and 2.2.

Theorem 2.4.5 (Euclidean division for univariate polynomials). Let f, g ∈ Z[t] of mag-
nitude (n, τ). To compute q, r ∈ Z[t] such that f = qg + r with deg(r) < deg(g) requires
O(n2) arithmetic operations in Z. The bit complexity is O(n2M(nτ)), and q and r are of
magnitude O(n, nτ).

13Such fast methods would certainly improve some sub-algorithms, but not the asymptotic bounds of
the geometric algorithms that are our focus.
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Algorithm 2.2. Univariate multiplication

Input: f, g ∈ Z[t] of magnitude (n, τ)
Output: f · g
1: procedure Mult(f, g)
2: for k ∈ {0, . . . , 2n} do
3: ck ←

∑n
j=0 coefk−j(f)coefj(g)

4: end for
5: return

∑2n
k=0 ckt

k

6: end procedure

Algorithm 2.3. Univariate division with remainder

Input: f, g ∈ Z[t] of magnitude (n, τ)
Output: q, r ∈ Q[t] such that f = qg + r and deg r < deg g

1: procedure Euclidean_division(f, g)
2: p← deg f , q ← deg g
3: r ← f
4: for k = p, p− 1, . . . , q do

5: ck−q ← coefj(r)
bq

6: r ← r − ck−qtk−qg ⊲ Remove leading term
7: end for
8: return (

∑p−q
k=0 ckt

k, r)
9: end procedure

Proof. Considering Algorithm 2.3, the number of arithmetic operations easily follows: the
iteration is performed at most n times, and one subtraction plus one scalar multiplication
is performed in each iteration which has arithmetic complexity O(n). Note that the coef-
ficients of R increase in each iteration by at most τ which proves the statements about bit
complexity and magnitude of the output.

The quotient and the remainder of the Euclidean division can be of quite high com-
plexity. This bound can be reduced if g is actually a divisor of f . We use the following
measures for polynomials.

Definition 2.4.6 (p-norm). Let f =
∑n

i=0 ait
i with ai ∈ C. For 1 ≤ p <∞, the p-norm is

defined as

‖f‖p := p

√
√
√
√

n∑

i=0

|ai|p

and the ∞-norm as
‖f‖∞ := max

i=0,...,n
{|ai|}.

Definition 2.4.7 (Mahler measure). Let f(t) = an
∏n
i=0(t−αi) be a complex polynomial

of degree n. The Mahler measure of f is

Mea(f) := |an|
n∏

i=1

max{|αi|, 1}.
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The Mahler measure will be of prominent importance in this thesis. We remark that
it is multiplicative, which means that

Mea(fg) = Mea(f) ·Mea(g)

for non-constant polynomials.

Lemma 2.4.8. For any f ∈ C[t] of degree n,

‖f‖∞ ≤ ‖f‖1 ≤ 2nMea(f) ≤ 2n‖f‖2.

The first inequality is obvious. For a proof of the others, see [BPR06, Prop 10.8 and
Prop. 10.9] (The latter is also known as Landau’s inequality).

Lemma 2.4.9. Let f ∈ Z[t] be a polynomial of magnitude (n, τ) and let g ∈ Z[t] be a
polynomial that divides f over Z[t]. Then g is of magnitude O(n, n+ τ).

Proof. Obviously, deg g ≤ n. For the bitsize, note that Mea(g) ≤ Mea(f). It follows that

‖g‖∞ ≤ ‖g‖1 ≤ 2nMea(g) ≤ 2nMea(f) ≤ 2n
√
n+ 12τ .

The maximal bitsize of a coefficient of g is O(log ‖g‖∞) = O(n + τ + log n) = O(n + τ),
which proves the result.

Another basic algorithm is the evaluation of a polynomial at a given value. Let
q := c

d with c, d coprime and d > 0. We describe algorithms that compute, for a uni-
variate polynomial f ∈ Z[t], (ddeg f · f(q)) ∈ Z and for a bivariate polynomial f ∈ Z[x, y],
(ddegy f · f(x, q)) ∈ Z[x]. Note that in both cases, the initial power of d clears all denom-
inators, hence, the results remain integral objects. This will be convenient for us later,
and it does not make a significant difference because we will be only interested in the sign
of f(q) (for univariate polynomials) or the roots of the polynomial f(x, q) (for bivariate
polynomials). Both values are unaffected by multiplying with a (positive) scalar factor. In
Algorithm 2.4, we handle both the uni- and the bivariate cases at once.

Lemma 2.4.10 (polynomial evaluation, univariate case). Let f ∈ Z[t] be of magnitude
(n, τ), and q ∈ Q with Bit(q) = σ. Algorithm 2.4 computes dnf( cd) and requires O(n)
arithmetic operations in Z. The bit complexity is O(nM(τ + nσ)) and the result has a
bitsize of O(τ + nσ).

Proof. To show correctness of Algorithm 2.4, note that before the i + 1-th iteration (i =
0, . . . , n), the variable r in Algorithm 2.4 equals

r = apc
i + ap−1c

i−1d . . .+ ap−1d
i.

This proves that the overall result equals dnf( cd).

The number of arithmetic operations is clearly linear. For the bit complexity, we have
to study the bitsize of r in each iteration. Initially, its bitsize is τ . One can easily show by
induction that after the i-th iteration, its bitsize is bounded by iσ+ τ + i, which indicates
the bit complexity and the size of the output.
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Algorithm 2.4. Uni- and multivariate rational evaluation

Input: f =
∑n

i=0 aiy
i ∈ D[y], with D = Z or D = Z[x] of magnitude (n, τ), q = c

d ∈
Q, d > 0 with Bit(q) = σ
Output: dnf( cd)

1: procedure Eval(f, q)
2: r ← an, e← 1
3: for i = 1, . . . , n do
4: e← de
5: r ← c · r + e · an−i
6: end for
7: return r
8: end procedure

Lemma 2.4.11 (polynomial evaluation, bivariate case). Let f ∈ Z[x, y] be of magnitude
(n, τ), and q ∈ Q with Bit(q) = σ. Algorithm 2.4 computes dnf(x, cd) and requires O(n2)
arithmetic operations in Z. The bit complexity is O(n2M(τ + nσ)) and the resulting
polynomial is of magnitude O(n, τ + nσ).

Proof. The correctness follows as for the univariate case and the number of operations
over Z[x] is linear. Note that the only operations necessary in Z[x] are addition and scalar
multiplication, both of which only need O(n) operations. Thus the arithmetic complexity
is O(n2). The bound on the bitsizes follows with the same argument as for the univariate
case.

2.4.2. Computing subresultants

We look next at an efficient method for computing the subresultants of two polynomials f
and g, as defined in Section 2.3. The algorithm works by iterated divisions with remainder,
and thus resembles the Euclidean algorithm applied on f and g. We concentrate on this
technique since it provides the best known complexity bounds. However, we also note an
alternative approach that computes all subresultant coefficients by evaluating determinants
of suitable matrices. This alternative has been shown to be adequate for polynomial rings
with many indeterminates [Ker09a].

We first investigate the size of each subresultant coefficient. For the univariate case,
the bound simply follows from applying the Hadamard bound [BPR06, Prop.8.9][Yap00,
Lemma 6.27] [vzGG99, Thm.16.6] on the Sylvester submatrices.

Proposition 2.4.12. For f, g ∈ Z[t] of magnitude (n, τ), each coefficient of Sresi(f, g) is of
size O(n(τ + log n)).

For bivariate polynomials, the Hadamard bound can be applied as well. We cite [BPR06,
Prop. 8.11 and 8.12] in a simplified form.

Proposition 2.4.13. Let M be a d× d matrix where each entry is a univariate polynomial
in x of magnitude (n, τ). Then, detM is a univariate polynomial of magnitude (nd, (τ +
log d)d+ log(nd+ 1)).
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Algorithm 2.5. Subresultants by pseudo-remainder

Input: f, g ∈ D[t], n = deg f = 1 + deg g
Output: (Sresn−1(f, g), . . . ,Sres0(f, g))

1: procedure Subresultants(f, g)
2: d← n
3: Sd ← f, Sd−1 ← g, Se ← Sd−1

4: while Sd−1 6= 0 do
5: e← degSd−1, δ = d− e
6: if δ > 1 then
7: for i = 1, . . . , δ − 1 do Sd−1−i ← 0
8: end for

9: Se ← lcfδ
d−1Sresd−1

lcfδ
d

10: end if
11: Se−1 ← rem(lcfe · lcfd−1Sresd,Sresd−1)

(−1)δlcf2d
12: d← e
13: end while
14: for i = 1, . . . , e− 1 do Se ← 0
15: end for
16: return(Sn−1, . . . , S0)
17: end procedure

Applied to the situation of Sylvester matrices, we obtain:

Corollary 2.4.14. Let f, g ∈ Z[x, y] be polynomials of magnitude (n, τ). Then, Sresi(f, g) ∈
Z[x][y] has a y-degree of at most i, and each coefficient of Sresi(f, g) is a univariate poly-
nomial in x of magnitude O(n2, n(τ + log n)).

The structure theorem for subresultants (Theorem 2.3.18) leads to an algorithm to
compute the subresultants of f and g as set out in Algorithm 2.5. For simplicity, we restrict
its formulation to the case that deg f = 1 + deg g. See [BPR06, Alg. 8.21] and [Duc00] for
complete formulations.

Theorem 2.4.15. Computing the subresultants of two polynomials f, g ∈ D[t] with deg f =
n ≥ m = deg g requires O(nm) arithmetic operations in D.

See [BPR06, Alg. 8.19 and Alg. 8.21] for a proof. We can deduce the bit complexities for
univariate polynomials.

Theorem 2.4.16. Let f, g ∈ Z[t] with deg f = n ≥ m = deg g and all coefficients bounded
by 2τ . The bit complexity for computing the subresultants of f and g is O(nmM(n(log n+
τ))).

The bit complexity for bivariate polynomials also follows easily.

Theorem 2.4.17. Let f, g ∈ Z[x][y] both be of magnitude (n, τ). Then, the bit complexity
of computing the subresultants of f and g is

O(n6M(n(log n+ τ))).
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Proof. The number of arithmetic operations in Z[x] is bounded by O(n2) according to
Theorem 2.4.15. The subresultant polynomials as well as all intermediate results have
degree O(n2), and since each arithmetic operation is at most quadratic in its degree,
this gives in total O(n6) arithmetic operations over Z. The coefficient bitsize of each
subresultant is bounded by O(n(logn+ σ)), and this is also a bound for all intermediate
coefficients. The result follows.

Note that the intermediate results from Algorithm 2.5 are roughly three times as big as
the actual subresultant coefficients. Several authors have proposed optimizations in order
to reduce this swell-up [Duc00] [LRD00]. The approach presented by Ducos [Duc00] is
easy to implement and, according to our experience, the reduced coefficient growth has a
significant impact in the practical performance.

2.4.3. Computing the gcd and the square-free part

We have seen in Section 2.3 that Sresk(f, g) is a greatest common divisor of f and g for
some k = 0, . . . ,min{deg f,deg g}. We recall that computing “the” gcd of f and g requires
a choice of a representative system in order to make the gcd unique. In our applications,
however, we are basically interested in the roots of polynomials which obviously do not
change when multiplying a constant factor. Thus, what we actually need is the gcd up to
a constant factor and Sresk(f, g) would be a valid choice for that.

Still, the coefficient size of Sresk(f, g) is quite bad: By Proposition 2.4.12, it is of mag-
nitude O(n, n(logn+ τ)), but Lemma 2.4.9 shows that there is also a gcd with magnitude
(n, n+ τ). One solution would be to make Sresk(f, g) primitive, which yields the smallest
integer gcd with respect to bitsize, but this causes up to n integer gcd calculations in a
post-processing step. With the following lemma [BPR06, Alg.10.1] [GCL92, p.299], we can
efficiently find another gcd which has only up to τ more bits than the primitive part of
the gcd.

Lemma 2.4.18. Let f ∈ Z[t] be a polynomial of magnitude (n, τ), and g ∈ Z[t] such that
g divides f over Q[t], which means that there is a q ∈ Q[t] such that gq = f . Then, the

polynomial lcf(f)g
lcf(g) is in Z[t] and of magnitude O(n, n+ τ).

Proof. Define the primitive part of g, g := g
cont(g) . Obviously, g divides f over Q[t] as well.

We claim that g also divides f over Z[t]: Assume that g · q = f for some q ∈ Q[t]. There
is some c ∈ Q such that cq ∈ Z[t] and is primitive. Thus, the product gcq = cf ∈ Z[t] is
primitive.14 It follows that |c| = 1

cont(f) (otherwise, cf would not be primitive) and thus,

q ∈ Z[t].

Consequently, g divides f over Z[t] and is thus of magnitudeO(n, n+τ) by Lemma 2.4.9.

Furthermore, lcf(f) = d · lcf(g) for some d ∈ Z, and Bit(d) ≤ τ . It follows that lcf(f)g
lcf(g) =

dg ∈ Z[t], therefore, each coefficient of lcf(f)g
lcf(g) has at most τ more bits than the correspond-

ing coefficient of g. The result follows.

Theorem 2.4.19 (Univariate gcd computation). Computing a gcd of two polynomials
f, g ∈ Z[t] of magnitudes (n, τ) and (m,σ) with n ≥ m and τ ≥ σ requires O(nm)

14The fact that the product of primitive polynomials is primitive is known as Gauss’ lemma. See [Yap00,
Lemma 3.1] [vzGG99, Thm.6.6] [BPR06, Lemma 10.16] for proofs.



2.4. Computation with polynomials 45

Algorithm 2.6. gcd of integer polynomials

Input: f1, f2 ∈ Z[t]
Output: gcd(f1, f2) (up to a constant factor)

1: procedure gcd(f1, f2)
2: Compute the subresultants Sres0(f1, f2), . . . ,Sresℓ(f1, f2). ⊲
ℓ := min{deg f1,deg f − 2}

3: k ← min{j ≥ 0 | Sresj(f1, f2) 6= 0} ⊲ Sresk(f1, f2) is a gcd of f1 and f2

4: return lcf(f1)Sresk(f1,f2)
sresk(f1,f2) ⊲ sresk(f1, f2) = lcf(Sresk(f1, f2))

5: end procedure

arithmetic operations in Z. The bit complexity is O(nmM(n(τ + log n)). The resulting
gcd is of magnitude O(m,m+ τ).

Proof. Consider Algorithm 2.6. The subresultant computation is in the bounds of The-
orem 2.4.16. The additional normalization step requires another 2m arithmetic opera-
tions and the bounds on the bitsize remain the same. The resulting gcd has magnitude
O(m,m+ τ) according to Lemma 2.4.18.

One could replace lcf(f) by gcd(lcf(f), lcf(g)) in the last step of the algorithm to obtain
an even smaller return value.

We next consider the square-free part of a univariate polynomial. The square-free
part f of f is a square-free polynomial such that VC(f) = VC(f). In other words, if
f = lcf(f)

∏r
i=0(X − αi)

ei , the square-free part is, up to a constant factor, defined as
f =

∏r
i=0(X − αi). The non-uniqueness of the square-free part does not pose any prob-

lems for our applications. The square-free part of a polynomial will be of importance in
Section 2.4.4, where we discuss an efficient method to compute the real roots of a polyno-
mial.

Lemma 2.4.20. Let f ∈ Z[t] be of magnitude (n, τ), and g := gcd(f, f ′), as returned

by Algorithm 2.6. Then, lcf(f)f
g̃ ∈ Z[t] is the square-free part of f , and is of magnitude

O(n, n+ τ).

Proof. Let f = lcf(f)
∏r
i=0(X − αi)

ei , and let g be the gcd of f and f ′ returned by

Algorithm 2.6. We have g = lcf(g)
∏r
i=0(X − αi)ei−1, thus f

g is the square-free part of
f . Reconsider the proof of Lemma 2.4.18: We have shown that g = dg, where g is the
primitive part of g, and d is an integer that divides lcf(f). Thus, since g divides f over
Z[t], we have

lcf(f)f

g
=

lcf(f)

d
︸ ︷︷ ︸

∈Z

f

g
︸︷︷︸

∈Z[t]

.

The bitsize of the first factor is bounded by τ , and the magnitude of the second factor is
O(n, n+ τ) from Lemma 2.4.9.

Theorem 2.4.21 (univariate square-free part computation). Computing the square-free
part of a polynomial f ∈ Z[t] of magnitude (n, τ) requires O(n2) arithmetic operations in Z.
The bit complexity is O(n2M(τ + log n)). The resulting square-free part is of magnitude
O(n, n+ τ).
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Algorithm 2.7. Square-free part of integer polynomials

Input: f ∈ Z[t]
Output: Square-free part of f (up to a constant factor)

1: procedure square_free_part(f)
2: g ← gcd(f, f ′) ⊲ Algorithm 2.6

3: return lcf(f)f
g

4: end procedure

Proof. Consider Algorithm 2.7. Computing the derivative f ′ requires n−1 multiplications
in Z, and f ′ is of magnitude (n, τ + log n). Thus, Algorithm 2.6 is applied on polynomials
of magnitude (n, τ +logn), which yields O(n2) arithmetic operations and a bit complexity
of O(n2M(τ + log n)). The magnitude of the result follows from Lemma 2.4.20.

An alternative way to compute the square-free part is to consider the cofactors arising
in the subresultant sequence (Definition 2.3.15).

Lemma 2.4.22. For f ∈ D[t], let k = deg gcd(f, f ′) > 1. Then, vk−1(f, f
′) is the square-

free part of f .

Proof. Note that f has precisely n− k distinct complex roots. Since Sresk−1(f, f
′) = 0 by

the structure theorem (Theorem 2.3.18), it holds that

uk−1(f, f
′) · f + vk−1(f, f

′) · f ′ = 0

and deg vk−1(f, g) ≤ n − k. It follows that f divides the product vk−1(f, f
′) · f ′ and

vk−1(f, f
′) must contain each root of f at least once, which proves the theorem.

A related object is the square-free factorization of f .

Definition 2.4.23 (square-free factorization). A polynomial f ∈ D[t] can be decomposed
into

f =
m∏

i=0

f ii

where the fi’s are square-free and pairwise coprime. This decomposition is called square-
free factorization. Note that fi contains precisely the roots of f with multiplicity i.

Theorem 2.4.24. Algorithm 2.8 (see also [Yun76] [GCL92, Alg.8.2] [vzGG99, Alg. 14.21])
computes a square-free factorization of f ∈ Z[t] with O(n2) operations in Z.

See [vzGG99, Thm.14.23] for a proof. The correctness statement is also proved in [GCL92,
p.341]. The overhead of computing a square-free factorization does not change the (arith-
metic) complexity, compared to just computing the square-free part.

It is in practice advantageous to work with the square-free factorization instead of
using the square-free part, because the polynomial is split into smaller parts, which can
be processed faster in subsequent operations. However, it is mostly more convenient for
theoretical considerations to work with a single object, so we will use the square-free part
for the complexity analysis.
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Algorithm 2.8. Yun’s square-free factorization

Input: f ∈ Z[t] primitive
Output: Polynomials f1, . . . , fm (for some m > 0) such that f =

∏
f ii (up to constant

factor)

1: procedure square_free_factorization(f)
2: i← 1
3: c← gcd(f, f ′)
4: w ← f

c

5: y ← f ′

c
6: z ← y − w′

7: while z 6= 0 do
8: fi ← gcd(w, z)
9: i← i+ 1

10: w ← w
g

11: y ← z
g

12: z ← y − w′

13: end while
14: return(f1, . . . , fi−1, w)
15: end procedure

2.4.4. Root isolation

We turn to the problem of isolating the real roots of a real univariate polynomial.

Definition 2.4.25 (isolating interval). Let f ∈ R[x] and α ∈ R be a root of f . An interval
I is isolating for f and α if I ∩ V (f) = {α}.

The (real) root isolation problem to find disjoint isolating intervals for all real roots of
a real polynomial f ∈ R[t]. The general approach for this problem is as follows. Start with
an interval that is sufficiently large to contain all real roots of f . Then, start to subdivide
the interval into subintervals. Throw away intervals that provably do not contain a root.
Report intervals that provably contain exactly one root. Keep on subdividing intervals
that might contain more than one root.

Three classical approaches that use this scheme can be identified. The first one is based
on Sturm’s theorem (Theorem 2.3.25) to count the number of roots inside an interval. The
other two methods are both based on Descartes’ rule of signs (Theorem 2.4.26), but the two
methods differ in the way of subdividing intervals: the Descartes method always subdivides
at the midpoint, whereas the Continued Fraction approach uses a non-uniform scheme
based on the lower bounds for the positive real roots of polynomials. An experimental
comparison of various root solving techniques has been appeared recently [EHK+09].

We will focus on the Descartes method, whose modern formulation goes back to Collins
and Akritas [CA76].15 This introductory section clearly cannot cover all aspects of the

15We remark that the term “Descartes method” is not undisputed in the community. Akritas [Akr] advo-
cates the name “Vincent-Collins-Akritas (VCA) bisection method”, because he considers the contribution
of Vincent [Vin36] to be crucial for the method. We decided to use the term “Descartes method” anyway,
since Descartes’ rule of signs is undisputably the main tool needed for the algorithm. Note that we do not
use the term “Descartes’ method” (with apostrophe) since this would wrongly indicate the algorithm was
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topic; see Eigenwillig’s thesis [Eig08] for an excellent treatment of the Descartes method,
with complete historic references and discussions with alternative approaches.

The Descartes method is based on an upper bound for the positive real roots of a
polynomial.

Theorem 2.4.26 (Descartes’ rule of signs). Let f =
∑n

i=0 ait
i ∈ R[t] be a polynomial

of degree n. Then Var(a0, . . . , an), the number of sign variations (see Definition 2.3.24),
exceeds the number of positive real roots of f , counted with multiplicities, by a non-
negative even number.

In particular, if Var(a0, . . . , an) = 0, f has no positive real root, and if Var(a0, . . . , an) =
1, f has exactly one positive real root (which is of multiplicity one).

See, for instance, [Eig08, Theorem 2.2], [BPR06, Theorem 2.33], [CA76] for proofs. In this
form, the rule is only applicable for counting the roots inside the interval (0,∞). However,
it can be simply extended to count the roots of any open interval (c, d).

Proposition 2.4.27. For c, d ∈ R, c < d, consider the Möbius transformation

ϕc,d : (0,∞)→ (c, d), t 7→ ct+ d

t+ 1

and the polynomial
Tf,c,d(t) := (t+ 1)deg(f) · (f ◦ ϕc,d)(t).

Var(Tf,c,d) exceeds the number of real roots of f inside (c, d), counted with multiplicities,
by a non-negative even number.

Proof. ϕc,d is a bijection between the interval (c, d) and (0,∞), thus, the roots of f inside
(c, d) are in one-to-one correspondence to the positive real roots of Tf,c,d(t) (the initial
term (t+ 1)deg f is necessary to clear denominators). The result follows by Descartes’ rule
of signs.

For an interval I = (c, d), we write Var(f, I) instead of Var(Tf,c,d) for simplicity. The
Descartes method to isolate the roots inside some interval I is straightforward to formulate,
see Algorithm 2.9. Several things are noteworthy about this algorithm.
• The correctness of the Descartes method follows from Descartes’ rule of signs. That

is, the output list indeed only contains isolating intervals, and if the algorithm ter-
minates, it must necessarily return all real roots. However, we have no guarantee
so far that indeed each root is eventually encapsulated in an interval J such that
Var(f, J) = 1. On the contrary, if f has multiple roots inside I, the algorithm always
diverges, since Descartes’ rule of signs counts with multiplicities. We will show below
that the algorithm always terminates if all real roots of f inside I are simple.
• Typically, one is interested in all real roots of f . Thus, one needs to pass an initial

interval containing all real roots. This can be chosen using, for instance, Theo-
rem 2.2.11 . However, there exist much better root bounds for the practice. We
recommend to replace the bound of Theorem 2.2.11 by the Fujiwara bound

2 · max
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already foreseen by Descartes.
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Algorithm 2.9. The Descartes method

Input: f ∈ R[t], I ⊂ R

Output: Isolating intervals for all roots of f inside I

1: procedure Descartes(f, I)
2: Q← {I} ⊲ The queue of active intervals
3: while Q is not empty do
4: Let J = (c, d) be the first element of Q. Remove J from Q.
5: v ← Var(f, J)
6: if v = 0, do nothing
7: if v = 1, append I to the output list
8: if v>1 then
9: m← c+d

2
10: if f(m) = 0, append [m,m] to the output list
11: Append (c,m) and (m, d) to Q
12: end if
13: end while
14: end procedure

in a concrete implementation. A more in-depth discussion on root bounds, including
a proof that the Fujiwara bound is indeed a root bound, can be found in [Eig08,
§2.4].
• Each subdivision step halves the size of an interval, and the bitsize of the boundary

point of the interval also increases by one. Therefore, if the initial interval of the
form (−2τ , 2τ ) is chosen, one needs at most O(τ + ℓ) bits to represent an interval of
size 2−ℓ. Since there are 2τ+ℓ intervals of this size within (−2τ , 2τ ), this bound is
optimal.
• Different from other descriptions of the Descartes method, Algorithm 2.9 is designed

to always subdivide one of the largest active subintervals. This means that the sub-
division tree induced by the algorithm is traversed in a BFS-manner. This traversal
strategy looks arbitrary here but becomes crucial for the variants of the Descartes
method that cope with multiple roots in Section 2.6.2
• In an efficient implementation of the algorithm, carrying out the transformation

Tf,c,d (needed to compute Var(f, J)) from scratch in each iteration must be avoided.
Instead, with each interval J = (c, d) in the queue, the algorithm also stores a
transformed polynomial fJ(t) := f(c+ t(d− c)) such that the roots of fJ in the unit
interval correspond to the roots of f in J . In this way, Var(f, J) can be computed
for any subinterval by the transformation tnfJ(

1
t+1). The costs for this step are

dominated by the Taylor shift, that is, the expansion of g(x + 1) for a polynomial
g. Moreover, if J is subdivided into J1 and J2, the polynomials J1 and J2 are easily
computatble from fJ by

fJ1 = 2nfJ(t/2), fJ2 = fJ1(x+ 1).

Again, the costs are dominated by a Taylor shift. We refer the reader to [Eig08,
§3.2.4] for details.

Let us assume that f only has simple roots within the input interval I. The stan-
dard proof for the termination of Algorithm 2.9 is based on the two theorems, called the
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one-circle theorem and the two-circle theorem [Eig08, Prop. 2.33 and Prop. 2.34] [KM06]
[ESY08]. In [BPR06, Theorem 10.44], both results are combined into a “three-circle theo-
rem”.

Theorem 2.4.28. Let f be as above, and J = (c, d).

• One-circle Theorem: Let C be the (unique) open complex disc with diameter
d− c. If f has no root in C, then Var(f, J) = 0 (See the left of Figure 2.8).

• Two-circle Theorem: Let C1 and C2 be the open circles that circumscribe the two
equilateral triangles having cd as one side. If f has exactly one (simple) root in the
union C1 ∪ C2, then Var(f, J) = 1 (See the right of Figure 2.8).

c d c d

Figure 2.8. On the left: If the circle does not contain a root of f , then Var(f, I) = 0.
On the right: If the union of the circles contains exactly one root, then Var(f, I) = 1.

Both the one-circle and the two-circle theorems are subsumed in a more general result
that goes back to Obreshkoff [Obr03].

Definition 2.4.29 (Obreshkoff disc, Obreshkoff lens, Obreshkoff area). Let J = (c, d)
be an interval, and let ℓ denote the real line in the complex plane. For q = 0, . . . , n, the
Obreshkoff disc Cq ⊂ C is the unique disc with c and d at its boundary that makes an angle
of α := π

q+2 at d with ℓ and whose center is above ℓ. Likewise, Cq ⊂ C is the Obreshkoff
disc with the same properties but with its center below ℓ. The Obreshkoff lens Lq is the
interior of Cq ∩ Cq and the Obreshkoff area Aq is the interior of Cq ∪ Cq (Figure 2.9).

First of all, observe that Ln ⊂ . . . ⊂ L0 ⊂ A0 ⊂ . . . ⊂ An, so any Obreshkoff lens is
contained in any Obreshkoff area. Moreover, it is well known that for any point p on
the boundary of Cq, except c or d, the angle ∠cpd is the same (this is usually called the
inscribed angle theorem), and that this angle equals α = π

q+2 . It follows that for q = 0, the

Obreshkoff discs C0 and C0 coincide, and the Obreshkoff area A0 is precisely the disc in
the one-circle theorem. Moreover, for q = 1, it follows that α = 1

3π and thus, A1 coincides
with the region defined in the two-circle theorem.
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α := π
q+2

Cq

Lq

Cq

α

dc

p

Figure 2.9. The Obreshkoff disc Cq and the Obreshkoff lens Lq

Theorem 2.4.30 (Obreshkoff’s theorem). Let f ∈ R[t] be of degree n, and J = (c, d) be
an interval with Var(f, J) = v. If the Obreshkoff lens Ln−q contains at least q roots of f ,
counted with multiplicity, then v ≥ q. If the Obreshkoff area Aq contains at most q roots
of f , counted with multiplicities, then v ≤ q. In particular, if J contains exactly q roots
in Ln−q, and no further root in Aq \ Ln−q, then v = q.

As a consequence, we can state more informally that Var(f, J) counts at least all
roots that are contained in Ln, and it counts at most the roots that are contained in
An. Theorem 2.4.30 implies that if f has a multiple root of multiplicity q, the Descartes
method eventually counts exactly q for the interval containing the root (after sufficiently
many subdivisions). Although this does not avoid divergence in Algorithm 2.9, it is of
great importance later for our variants that cope with multiple roots.

We turn to the complexity analysis of the Descartes method. We do not give full details
for the analysis, but several results along the way will be useful in different contexts, thus
we sketch the main steps of the analysis. It is helpful to consider the subdivision process
as a tree that we refer to as the subdivision tree . The root of the tree is the input interval
I, the children of a node are those intervals that are appended to the queue. Thus, leaves
of the tree are those intervals J such that Var(f, J) ∈ {0, 1}.

A first important observation is that the subdivision tree has a width of at most
n = deg f on each level, by the following theorem [Sch34].

Theorem 2.4.31. Let J be an interval and J1, . . . , Jℓ a partition of J into ℓ subintervals.
Then,

Var(f, J) ≥
ℓ∑

i=0

Var(f, Ji).

An elementary way of proving this is to consider f with respect to the Bernstein basis,
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and exploiting the properties of the De Casteljau algorithm. Since we do not discuss these
concepts in detail, see [Eig08, Corollary 2.27] for a proof.

The crucial quantity that controls the depth of the subdivision tree is the separation
of the polynomial.

Definition 2.4.32 (separation). For f ∈ R[t] with at least two distinct roots, the separation
is defined as the minimal distance between any two distinct complex roots of f , that is,

sep(f) := min{|αi − αj | | αi, αj ∈ VC(f), αi 6= αj}.
For convenience, we define Lf := log 1

sep(f) .

Once the discs in the one-circle and two-circle theorems have a diameter smaller than
sep(f)/4, the subdivision stops. Consequently, the tree depth is bounded by O(τ + Lf ).

The following result allows us to bound the magnitude of the separation of a polynomial.
In this general form, it first appeared in [Eig08, Thm. 3.9].16

Theorem 2.4.33 (generalized Davenport-Mahler bound). Let f ∈ C[t] with n := deg f ≥
2 and exactly r ≤ n distinct complex roots V := {α1, . . . , αr}. Let G = (V,E) be a directed
graph on the roots such that:
• for every edge (α, β) ∈ E, it holds |α| ≤ |β|
• G is acyclic, and
• the in-degree of any node is at most 1.

In this situation

∏

(α,β)∈E
|α− β| ≥

√

|sresn−r(f, f ′)|
√

|lcf(f)|Mea(f)r−1
·
(√

3

r

)#E

·
(

1

r

)r/2

·
(

1√
3

)min{n,2n−2r}/3
.

As a corollary, we can bound Lf and thus, the depth of the subdivision tree.

Corollary 2.4.34. For f ∈ Z[t], which is not necessarily square-free, we have

Lf = log
1

sep(f)
= O(n(τ + logn)).

Proof. Consider a pair of roots (α, β) of f such that their distance equals the separation of
f . After a possible swap, the conditions of Theorem 2.4.33 are satisfied, and consequently,

log
1

|α− β| ≤ log

√

lcf(f)Mea(f)r−1

√

|sresn−r(f)|
+O(log r) +O(r log r) +O(n).

Since f has precisely r distinct complex roots, gcd(f, f ′) = m− r, thus, sresn−r(f, f ′) 6= 0.
Moreover, sresn−r(f, f ′) ∈ Z, since f is an integer polynomial. Therefore, we can bound
sresn−r(f, f ′) ≥ 1. It follows that

log
1

|α− β| = O(τ + n log Mea(f) + n logn).

By Lemma 2.4.8, it also follows that

log Mea(f) ≤ log ‖f‖2 ≤ log
√
n‖f‖∞ = O(τ + log n).

16Note that the description given in [Eig08] uses subdiscriminants, which are not discussed in this thesis.
However, we can use the identity |lcf(f) · sdisci(f, g)| = |sresi(f, g)| as proven in [BPR06, Prop.4.27] to
restate the formula in terms of subresultants.
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Still, it does not give optimal complexity to bound the tree size by multiplying maximal
depth with maximal width. By exploiting the Davenport-Mahler bound more carefully, an
improved estimation is possible.

Theorem 2.4.35 (Eigenwillig, Sharma, and Yap 2006). For a polynomial f ∈ Z[t] with
degree n and maximal bitsize τ , the size of the subdivision tree is bounded by O(n(τ +
log n)).

This shows that the subdivision tree is extremely sparse, since we have the same (asymp-
totic) bound for its depth as for its total size.

The idea of the proof is as follows: a node in the subdivision tree is called terminal if
both its children are leaves. For each terminal node, one can assign a unique pair of roots
of f that is responsible for the subdivision of the node. The depth of the terminal node in
the tree is determined by the distance of the roots. Finally, one can arrange the roots in a
way that the conditions of Theorem 2.4.33 are satisfied and bound the product of the root
distances (corresponding to the sum of the depth of the terminal nodes) with the same
complexity bounds as for the separation. See [ESY08] or [Eig08, §3.1.5 and §3.2.2] for the
complete description. For the final runtime analysis, the following operation is crucial.

Definition 2.4.36 (Taylor shift). For f ∈ Z[t], the Taylor shift is the operation that
computes the coefficients of f(t + 1) ∈ Z[t]. We denote by T (n, τ) the bit complexity to
perform a Taylor shift for a polynomial of magnitude (n, τ).

It is well known that T (n, τ) = O(n2(τ + n)) (e.g., [Joh91]). Such methods only
perform additions over Z and are usually called classical Taylor shifts. More sophisticated
approaches achieve a bound of T (n, τ) = O(M(n(n + τ) log n)) [vzGG97]. Such methods
are called (asymptotically) fast Taylor shifts.

Theorem 2.4.37. For a square-free polynomial f of magnitude (n, τ), and an initial interval
whose boundaries are of bitsize O(τ), the Descartes method isolates the real roots with
bit complexity O(n(τ + log n)T (n, n2(τ + logn))).

This bound can be achieved in the following way: The costs per node are dominated by
the computation of the Möbius transformation Tf,c,d. In turn, this cost is determined by
the cost of a Taylor shift (the other operations are easily shown to be of linear complexity).
With the bound on the tree size from Theorem 2.4.35, this yields O(T (n, σ)n(τ + logn))
bit operations in Z, where σ is an upper bound on the bitsizes during the algorithm.

The bitsize within a Taylor shift is determined by τ in the first step and grows by n
per subdivision level. Because the depth of the tree is bounded by O(n(τ + logn)), the
maximal bitsize is bounded by O(n2(τ + log n)). The analysis is worked out in detail in
[Eig08, §3.2.4].

For not-necessarily square-free polynomials, we can now prove the following theorem.

Theorem 2.4.38. Let f ∈ Z[t] be of magnitude (n, τ). Isolating all real roots of f can be
done with bit complexity O(n(n+ τ)T (n, n2(n+ τ))).

Proof. Consider Algorithm 2.10. Computing the square-free part has a bit complexity of
O(n3M(τ+log n)) = O(n3(τ+log n)2), according to Theorem 2.4.21, and f is of magnitude
O(n, n + τ). Applying the Descartes method for this polynomial has a bit complexity of
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Algorithm 2.10. Real root isolation

Input: f =
∑n

i=0 ait
i ∈ Z[t]

Output: Isolating intervals for all real roots of f

1: procedure Solve(f)
2: f ← square_free_part(f)
3: b← ⌈log |1 + maxi=0,...,n−1{ ai

an
}|⌉

4: I ← (−2b, 0) ⊲ I contains all negative roots of f
5: I−1 , . . . , I

−
r ← Descartes(f, I)

6: I ← (0, 2b) ⊲ I contains all positive roots of f
7: I+

1 , . . . , I
+
s ← Descartes(f, I)

8: if f(0)=0 then return I−1 , . . . , I
−
r , [0, 0], I+

1 , . . . , I
+
s

9: elsereturn I−1 , . . . , I
−
r , I

+
1 , . . . , I

+
s

10: end if
11: end procedure

O(n(n+ τ)T (n, n2(n+ τ))).

We now analyze another quantity, namely the bitsize of the returned intervals.

Definition 2.4.39 (standard interval). We call an interval I a standard interval if there
exists an integer ℓ ≥ 0 such that I can be written as I = ( a

2ℓ ,
a+1
2ℓ ) with ℓ ∈ Z. The bitsize

of a standard interval is given by Bit(I) := ℓ+ Bit(a).

Proposition 2.4.40. Let I = (c, d) be a standard interval with bitsize σ, and let m := c+d
2

be the midpoint of I. Then, both (c,m) and (m, d) are standard intervals with bitsize
σ + 2.

It follows that all intervals produced by Algorithm 2.10 are standard intervals, since the
initial intervals are chosen to be standard intervals (this is the reason why Algorithm 2.10
performs separate Descartes instances on the negative and the positive numbers).

Lemma 2.4.41. Let I be an isolating interval for f returned by Algorithm 2.10. Then
Bit(I) = O(τ + Lf ) = O(n(τ + log n)).

Proof. The bitsize of the initial interval is bounded by τ , and the interval passes through
up to Lf bisections until it is returned.

Summary

This section has dealt with fundamental algorithms for integer polynomials. Most impor-
tantly, we have learned about algorithms for computing the subresultant of polynomials,
the greatest common divisor, the square-free part, and last but not least, for isolating the
real roots of a polynomial.
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2.5. Computation with algebraic numbers

The Descartes method, explained in Section 2.4.4, allows us to compute isolating intervals
for the real roots of polynomials. Note that, in turn, any algebraic number α is uniquely
defined by a pair (f, I) where the defining polynomial f of α satisfies f(α) = 0 and where
I is an isolating interval for α and f . Throughout this thesis, we will represent algebraic
numbers by such pairs, and call (f, I) the isolating interval representation of α. This
representation of algebraic numbers appears in the literature for a long time [Loo82a]; the
perhaps more intuitive way of representing algebraic numbers by nested root-expressions
is known to be incomplete, meaning that such expressions cannot cover all real algebraic
numbers.

We emphasize that we do not require the defining polynomial f for α to be the minimal
polynomial mα of α, that is, we do not require irreducibility. Of course, f must be a
multiple of mα, and in a practical implementation, whenever f is known to factorize into
two factors f1 and f2, one should check whether α is a root of f1 or f2, and change its
representation with respect to the obtained smaller factor.

For all our algorithms, we require the isolating interval to be a standard interval.
Note that Algorithm 2.10 returns standard intervals. We will explore several methods
to compute with algebraic numbers in isolating interval representation: We show how the
isolating interval can be refined to arbitrarily small size (which is equivalent to numerically
approximating an algebraic number). We also discuss how to compare algebraic numbers in
this representation. Finally, we examine how to approximate g(α) (g being some univariate
polynomial) to any precision, and in particular, how to evaluate the sign of this expression.
For this last operation, we will need some basic properties of interval arithmetic.

2.5.1. Root refinement

We first look at the problem of refining an isolating interval. That is, if I is an isolating
interval for a root α of a square-free f , we want to compute an interval J ( I that contains
α. Also, the refinement method shall come with the property that width(J) ≤ c ·width(I)
with a constant c < 1, so that an iterated refinement process yields an isolating interval of
arbitrarily small size. In the following, we denote the width of an interval by w(I).

We consider two solutions to this problem. First, we talk about the well-known bisec-
tion, which halves the interval in every step. As a more sophisticated solution, we consider
the quadratic interval refinement method which is a hybrid of bisection and the secant
method.

Bisection. This is the simplest method for refining an isolating interval. Let (c, d) be
isolating for α, then f(c)f(d) < 0 since f is square-free. We compute f(m) with m :=
c+d
2 . If f(m) = 0, the root is computed explicitly (the best approximation one can get).

Otherwise, it is checked whether f(m)f(c) < 0. If so, (c,m) is chosen as the new isolating
interval, otherwise (m, d) is chosen. Clearly, this method halves the isolating interval in
each iteration. The complexity of one bisection step is determined by the evaluation of f
at m.

Proposition 2.5.1. Let f ∈ Z[t] be of magnitude (n, τ), and let I be an isolating standard
interval of bitsize σ. Using Algorithm 2.11, one bisection step requires O(n) arithmetic
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Algorithm 2.11. Bisection method

Input: f ∈ Z[t] square-free, I = (c, d) isolating
Output: J ⊂ I isolating

1: procedure Bisection(f, (c, d))
2: m← c+d

2
3: s← sign(f(m))
4: if s = 0, return [m,m]
5: if s = sign(f(c)), return (m, d) else return (c,m)
6: end procedure

Algorithm 2.12. Quadratic interval refinement

Input: f ∈ Z[t] square-free, I = (c, d) isolating, N = 22i ∈ N

Output: (J,N ′) with J isolating and N ′ ∈ N

1: procedure qir(f, I = (c, d), N)
2: if N = 2, return (Bisection(f, I),4).
3: w ← d−c

N

4: m′ ← c+ round(N f(c)
f(c)−f(d))w ⊲ m = c+ f(c)

f(c)−f(d)(c− d)
5: s← sign(f(m′))
6: if s = 0, return ([m′,m′],∞)
7: ifs = sign(f(c)) and sign(f(m′ + w)) = sign(f(d)), return ([m′,m′ + w], N2)
8: ifs = sign(f(d)) and sign(f(m′ − w)) = sign(f(c)), return ([m′ − w,m′], N2)
9: Otherwise, return (I,

√
N).

10: end procedure

operations in Z. The bit complexity is O(nM(τ + nσ)), and the resulting interval is a
standard interval of bitsize σ + 2.

Proof. The complexity bounds follow from Lemma 2.4.10 (univariate polynomial evalua-
tion), and the resulting interval is a standard interval of bitsize σ+2 by the same argument
as in Proposition 2.4.40.

Quadratic interval refinement (qir). Abbott [Abb06] has presented a method which can
be considered as a hybrid of bisection and the secant method, with eventual quadratic
convergence: Consider an isolating interval (c, d) for α and f of width δ. The idea is
as follows: the interval (c, d) is (conceptually) divided into N subintervals of size δ

N , for
some N ∈ N. The secant through the points (c, f(c)) and (d, f(d)) intersects the x-axis
once between c and d since f(c)f(d) < 0. Let m be the x-value of that intersection. It is
expected that m is close to α. Therefore, we look for the closest subdivision point m′ to m
and check whether one of the intervals incident to m′ has opposite signs at the boundaries.
If yes, we take the corresponding interval as the new isolating interval, and square N for
the next iteration. If no sign change was detected, N is set to

√
N for the next iteration,

and the isolating interval remains unchanged.

In our formulation of the algorithm, a call of the qir algorithm does not necessarily refine
an isolating interval. However, in this case, N is decreased as a side effect – considering
a sequence of qir calls, the method will refine the interval when N decreases to 2 at the
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latest (because a bisection step is performed in this case). Note that we implicitly assume
that the returned value of N is always passed in the next call of qir, and that a qir call
with N > 4 only takes place if a preceding qir call for

√
N succeeded.

m

m′

f

ℓ

m′ + w

α m

m′

ℓ

α

m′ − w

f

Figure 2.10. A successful (left), and a non-successful (right) qir call for N = 4.

Definition 2.5.2 (successful/failing qir call). A qir call (J,N2)←qir(f ,I,N1) succeeds if
J ( I, and it fails if J = I. Equivalently, the qir calls succeeds, if and only if N2 > N1.

Clearly, a successful qir call at least halves the interval; more precisely, a successful
qir call for N has the same effect as performing logN bisection steps. We show next that
one qir call (successful or not) is not more costly than one bisection regarding their bit
complexities.

Proposition 2.5.3. Let f ∈ Z[t] be of magnitude (n, τ), and let I be an isolating standard
interval of bitsize σ. Using Algorithm 2.12, one bisection step requires O(n) arithmetic
operations in Z. The bit complexity is O(nM(τ + nσ)).

Proof. The arithmetic complexity follows because one has to evaluate f at c, d, m′, and
m′±w, and perform another constant number of arithmetic operations. The bitsize of m′

and m′ ± w is bounded by O(σ + logN).

It is easy to see that logN ∈ O(σ), assuming that the qir is initially started with N = 4:
if a qir call with N > 4 subintervals is started, there must have been a successful qir call for√
N . Thus, the bitsize of either c or d must be at least log

√
N . So, σ ≥ log

√
N = 1

2 logN .
The bit complexity follows with Lemma 2.4.10 (univariate polynomial evaluation).

2.5.2. Strong root isolation

We have presented two ways to refine the isolating interval of an algebraic number. When
only considering one refinement step, it is not clear which method is preferable – bisection
halves the interval in each step; the qir method can refine much better in one step, but
there is also the possibility of failure.

In this section, which summarizes the results of [Ker09b], we argue that the qir method
is the superior choice for root refinement, if one considers a sequence of refinement steps.
For that, we look at a variant of the refinement problem, which we call strong root iso-
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Algorithm 2.13. Strong root isolation

Input: f ∈ Z[t] square-free, of magnitude (n, τ), ε > 0
Output: I1, . . . , Im isolating with w(Ii) < ε

1: procedure strong_isolate(f)
2: I1, . . . , Im ← Solve(f)
3: for k ∈ {1, . . . ,m} do
4: N ← 4
5: while w(Ii) > ε do (Ii, N)← qir(f, Ii, N)
6: end for
7: return I1, . . . , Im
8: end procedure

lation:17 Given some f ∈ Z[t] and ε > 0, compute isolating intervals for the roots of f ,
each of a width of less than ε. Note that a sequence of refinement steps is a more mean-
ingful scenario to look at than just one single refinement step, because one typically keeps
on refining the interval until a certain property of the algebraic number, for instance, its
(non-zero) sign, can be deduced (e.g., compare Algorithms 2.17 and 2.18).

Why do we consider all roots of a polynomial at once, instead of fixing one isolating
interval? The reason is that the analysis will depend on quantities like |α| or |f ′(α)|, and
considering all roots at once allows us to bound these quantities by algebraic expressions
like the Mahler measure of f , or the resultant of f and f ′. This will lead to an improved
complexity bound compared to the approach of fixing one interval, and multiply the bound
with n when considering all real roots.

Our algorithm for strong root isolation is so simple that we can state it right away –
isolate the real roots, and iteratively call the qir method for each interval until it is smaller
than ε. The pseudo-code is given in Algorithm 2.13.

The analysis of this algorithm requires more work and appears to be new in the form we
present it (in the abstract of the original poster [Abb06], it is only briefly sketched out that
quadratic convergence finally occurs). We decided to assume fast integer multiplication
for the analysis (and in fact, for the remainder of this thesis), which means that we set
M(n) = O(n logn2O(log∗ n)). For simplicity, we do not consider logarithmic factors in n
or τ in the analysis and write Õ to denote such a complexity bound. We also assume
fast Taylor shifts, which means that, we set T (n, τ) = Õ(nτ). There are two reasons
why this simplification is made: first of all, the expressions occurring in the complexity
bounds become hardly manageable when the cost of multiplication is left open. Secondly,
different choices of multiplication complexity lead to different analysis techniques to derive
an optimized bound; our method yields a good worst-case complexity assuming fast integer
arithmetic, but it would not be appropriate when assuming, for instance, classic arithmetic.

For convenience, we set Lε := log 1
ε . We will show the following statement. For a

polynomial of magnitude (n, τ), strong root isolation with f and ε has a bit complexity of

Õ
(
n4τ2 + n3Lε

)
.

To put this result into perspective, we first analyze the complexity of Algorithm 2.13, if
bisection was chosen instead of qir. Then, we need up to O(τ + Lε) bisections for each

17This term was introduced by Chee Yap, according to a remark by Vikram Sharma.
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interval. This causes an arithmetic complexity of O(n2(τ +Lε)) (one factor n comes from
the number of intervals, one from the cost of one bisection). During this process, the bitsize
σ of the intervals becomes as large as O(τ + Lε) as well. Thus, the bit complexity of all
refinement steps is O(n2(τ + Lε)M(n(τ + Lε))), according to Proposition 2.5.3. Adding
the cost of root isolation (Theorem 2.4.38), we obtain a total complexity of

O(T (n)n3τ2 + n2(τ + Lε)M(n(τ + Lε))) = Õ(n4τ2 + n3(τ + Lε)
2) = Õ(n4τ2 + n3L2

ε).

With the qir method, the quantity Lε only appears linearly in the bound.
The reader might wonder at this point why we are not using a more prominent al-

gorithm like the famous Newton’s method instead of the qir method. A problem with
Newton’s method lies in the choice of a starting value – an unfortunate choice leads to
a divergent sequence. A solution is to initially perform bisections to produce an interval
where convergence of Newton’s method is guaranteed, and then to switch to Newton it-
eration manually. However, this manual switch depends on theoretical worst-case bounds
for valid starting values of Newton’s method, thus more bisections than necessary are per-
formed in the average case. The qir method, in contrast, switches adaptively as soon as
possible, independently of the worst-case bounds that are introduced only for the analysis.

Dekker [Dek69] presented a method which, similarly to the qir, combines bisections
and the secant method. Brent [Bre73] combines Dekker’s method with inverse quadratic
interpolation. Superlinear convergence can also be guaranteed for this method. However,
a problem with Dekker’s approach is the growth in the bitsize of the iteration values – it
is unclear how to choose a suitable working precision in each substep to avoid too large
coefficients while still guaranteeing fast convergence. The same holds true for Brent’s
method, and additionally, an analysis seems to be even more involved since it adds even
more ingredients to Dekker’s method. The qir method guarantees a minimal growth in
the bitsizes, since all intervals are standard intervals; this means that the bitsize of the
boundaries is proportional to the interval width, which is the best one can hope for.

Definition 2.5.4 (qir sequence). Let α be a root of f for which Step 2 of Algorithm 2.13
returned the isolating interval I0. The qir sequence (s0, . . . , sn) for α, is defined as

s0 := (I0, 4) si := (Ii, Ni) := qir(f, Ii−1, Ni−1) for i ≥ 1

where In is the first index such that w(In) ≤ ε. We say that si−1
qir→ si succeeds if

qir(f, Ii−1, Ni−1) succeeds, and that si−1
qir→ si fails otherwise.

The key to the improvement when using qir instead of bisection is that the refinement
process develops quadratic convergence behavior, because from a certain point on, all qir
calls succeed. The quantity Mα as defined next will be important, because it constitutes
the bound for which quadratic convergence can be guaranteed.

Lemma 2.5.5. Let α ∈ C be a root of f , and let f be of magnitude (n, τ). We define

Mα :=
|f ′(α)|

2en32τ max{|α|, 1}n−1

(with e ≈ 2.71). It holds true that:

1. 0 < Mα ≤ 1
n
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2. Mα <
|f ′(α)|

2|f ′′(µ)| , if µ ∈ C such that |α− µ| < Mα.

Proof. We bound |f ′(α)| from above by

|f ′(α)| = |
n∑

i=1

iaiα
i−1| ≤ n2τ

n−1∑

i=0

max{|α|, 1}i ≤ n2τnmax{|α|, 1}n−1,

which proves the first claim. For the second, we bound |f ′′(µ)| from above:

|f ′′(µ)| = |
n∑

i=2

i(i− 1)aiµ
i−2|

≤ n22τ
n−2∑

i=0

max{|µ|, 1}i

≤ n22τ
n−2∑

i=0

((1 +Mα)max{|α|, 1})i

≤ n32τ (1 +Mα)n−2 max{|α|, 1}n−2

< n32τ (1 +
1

n
)n

︸ ︷︷ ︸

<e

max{|α|, 1}n−1.

This proves that
|f ′(α)|

2|f ′′(µ)| >
|f ′(α)|

2e ·n32τ max{|α|, 1}n−1
= Mα.

We can now split the qir sequence into two subsequences.

Definition 2.5.6 (initial/quadratic sequence). Let (s0, . . . , sn) be the qir sequence for α.

Let k be the minimal index such that sk = (Ik, Nk)
qir→ sk+1 succeeds, and w(Ik) ≤Mα. We

call the sequence (s0, . . . , sk) the initial sequence, and (sk, . . . , sp) the quadratic sequence.

In the next two subsections, we will bound the cost of the initial sequence and the
quadratic sequence separately.

Cost of the initial sequence

Regarding the complexity, we show that refining to width Mα using qir is at least not
worse than using bisections.

Lemma 2.5.7. Let I be an isolating interval for α, returned by Algorithm 2.10. The cost
of the initial sequence of α is bounded by

O(n(σ + log
1

Mα
)M(n(σ + log

1

Mα
))) = Õ(n2(τ + log

1

Mα
)2).

Proof. Let nq be the number of qir calls until I is refined such that w(I) < Mα. Likewise,
let nb be the number of bisections that are needed until the initial interval I is refined to
size Mα. Note that nb = O(σ + log 1

Mα
).

A successful qir call for some N = 22i
yields the same result as 2i bisections and

can only cause up to i + 1 subsequent failing qir calls before the next successful qir call.
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With that argument, it follows that nq ≤ 2nb, so the number of function calls is at most
doubled when qir is used instead of bisection. Consequently, the arithmetic complexity is
O(n(τ + log 1

Mα
)).

To bound the the bit complexity, let Ne be the value of N in the last qir call of
the initial sequence. Clearly, logNe ≤ 2nb, since otherwise, the preceding qir call would
have yielded as much accuracy as log

√
Ne > nb bisections and the method would have

terminated earlier. Hence, it follows that the width of the final interval is at least Mα

Ne
and

therefore, the interval boundaries have a bitsize of at most

log
Ne

Mα
≤ 2nb + log

1

Mα
= O(τ + log

1

Mα
).

Therefore, the bitsizes of the qir calls are bounded by O(n(τ + log 1
Mα

)), which proves the
claim.

It remains to bound the quantity log 1
Mα

. We do this simultaneously for all real roots
of the polynomial, according to the following theorem.

Theorem 2.5.8. Let α1, . . . , αm be the real roots of f . Then,

m∑

i=0

log
1

Mαi

= O(n(τ + log n)).

Proof. Recall that Mα < 1 for each root α, including the non-real roots, which we denote
by αm+1, . . . , αn. Therefore, log 1

Mα
> 0, and we can bound:

m∑

i=0

log
1

Mαi

≤
n∑

i=0

log
1

Mαi

= log

∏n
i=1 2e ·n32τ max{|αi|, 1}n−1

|∏n
i=1 f

′(αi)|

= n log(2e) + 3n logn+ nτ + (n− 1) log
n∏

i=1

max{|αi|, 1} − log |
n∏

i=1

f ′(αi)|.

The first product can be written in terms of the Mahler measure:

log
n∏

i=1

max{|αi|, 1} = log

(
1

|an|
Mea(f)

)

≤ log Mea(f) ≤ log(
√
n+ 1 · 2τ ) = O(logn+ τ).

For the second product, recall from Theorem 2.3.6 that the resultant of f and f ′ can be
expressed as

res(f, f ′) = an−1
n

n∏

i=1

f ′(αi).

Consequently,

− log |
n∏

i=1

f ′(αi)| = − log
|res(f, f ′)|
|an−1
n |

= log |an−1
n |−log | res(f, f ′)

︸ ︷︷ ︸

≥1

| < (n−1) log |an| = O(nτ).
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It follows that

m∑

i=0

log
1

Mαi

≤ n log 2e+ 3n logn+ nτ + (n− 1) log
n∏

i=1

max{|αi|, 1}
︸ ︷︷ ︸

=O(logn+τ)

− log |
n∏

i=1

f ′(αi)|
︸ ︷︷ ︸

=O(nτ)

= O(n(τ + log n)).

Corollary 2.5.9. The total computation cost for all initial sequences for α1, . . . , αs is

Õ(n4τ2).

Proof. Combining Lemma 2.5.7 and Theorem 2.5.8, we get total costs of

Õ(

s∑

i=1

n2(τ + log
1

Mαi

)2) = Õ(n3τ2 + n2(

s∑

i=1

log
1

Mαi

)2) = Õ(n4τ2).

Cost of the quadratic sequence

In the initial sequence, we have assumed that the qir sequence behaves roughly as the
bisection method does. However, as soon as the isolating interval becomes smaller than
Mα, we can prove that N is doubled in almost every step, and so, the precision of the
interval is basically doubled in each step. We start with a simple criterion to guarantee
success of a qir call.

Proposition 2.5.10. Let I = [c, d] be an isolating interval of α, with w(I) = δ, and consider

the qir call qir(f ,I,N) for some N . Let m := c + f(c)
f(c)−f(d)(c − d) as defined in the qir

method. If |m− α| < δ
2N , the qir call succeeds.

Proof. Let J be the subinterval that contains α, and J ′ be the subinterval that contains
m. If J = J ′, then one of the endpoints of J ′ is chosen as m′, so the qir call succeeds.
If J 6= J ′, they must be adjacent, since otherwise, |m − α| > δ

N . W. l. o. g., assume that
m < α, otherwise the argument is symmetric. It follows that m must be in the right half
of J , because otherwise |m − α| > δ

2N . Thus, m′ is chosen as the right endpoint of J ′,
which is the left endpoint of J . Therefore, the qir call succeeds.

We need to investigate the distance between the interpolation point m and the root
α. The next theorem shows that this distance depends quadratically on the width of the
isolating interval once it is smaller than Mα. A similar result can be used to show quadratic
convergence of Newton’s method [Yap00, §6.11].

Theorem 2.5.11. Let (c, d) be an isolating interval for α, and let δ := d− c be its width.

If δ < Mα, then |m− α| < δ2

2Mα
.

Proof. Consider the Taylor expansion of f at α. For a given x, we have

f(x) = f ′(α)(x− α) +
1

2
f ′′(α̃)(x− α)2
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with some α̃ ∈ [x, α] or [α, x]. Thus, we have

|m− α|

=

∣
∣
∣
∣

f(d)(c− α)− f(c)(d− α)

f(d)− f(c)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(1
2f

′′(α̃1)(d− α)2 + f ′(α)(d− α))(c− α)− (1
2f

′′(α̃2)(c− α)2 − f ′(α)(c− α))(d− α)

f(d)− f(c)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
2(f ′′(α̃1)(d− α)2(c− α)− f ′′(α̃2)(c− α)2(d− α))

f(d)− f(c)

∣
∣
∣
∣
∣

=
1

2
|d− α||c− α||f

′′(α̃1)(d− α)− f ′′(α̃2)(c− α)

f(d)− f(c)
|

≤ 1

2
δ2 · |f

′′(α̃1)|(d− α) + |f ′′(α̃2)|(α− c)
f(d)− f(c)

≤ 1

2
max{|f ′′(α̃1)|, |f ′′(α̃2)|}δ2

(d− α) + (α− c)
f(d)− f(c)

=
max{|f ′′(α̃1)|, |f ′′(α̃2)|}δ2

2f ′(ν)

for some ν ∈ [c, d]. The Taylor expansion of f ′ yields

f ′(ν) = f ′(α) + f ′′(ν̃)(ν − α)

for some ν̃ ∈ [c, d]. Since δ ≤Mα, we have

|f ′′(ν̃)(ν − α)| ≤ |f ′′(ν̃)|Mα ≤
1

2
|f ′(α)|,

according to Lemma 2.5.5. Therefore, it holds that f ′(ν) > 1
2f

′(α), and it follows that

|m− α| ≤ max{|f ′′(α̃1)|, |f ′′(α̃2)|}δ2
|f ′(α)| ≤ δ2

2 |f ′(α)|
2max{|f ′′(α̃1)|,|f ′′(α̃2)|}

<
δ2

2Mα
.

We apply this theorem to the quadratic sequence.

Corollary 2.5.12. Let Ij be an isolating interval for α of width δj ≤ 1
Nj
Mα. Then, each

call of the qir sequence (Ij , Nj)
qir→ (Ij+1, Nj+1)

qir→ . . . succeeds.

Proof. We do induction on i. Assume (for i ≥ 0) that the first i calls succeeded. Then, it

is easily shown that δj+i := w(Ij+i) =
Njδj
Nj+i

< Mα

Nj+i
(by another induction, and exploiting

the fact that N2
j+i = Nj+i+1). Using Theorem 2.5.11, we have

|m− α| ≤ δ2j+i
1

2Mα
≤ δj+i

Mα

Nj+i

1

2Mα
=

1

2

δj+i
Nj+i

.

By Proposition 2.5.10, this is enough to guarantee success for the qir method.

Corollary 2.5.13. In the quadratic sequence, there is at most one failing qir call.
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Proof. Let (Ii, Ni)
qir→ (Ii+1, Ni+1) be the first failing qir call in the quadratic sequence.

Since the quadratic sequence starts with a successful qir call, the predecessor (Ii−1, Ni−1)
qir→

(Ii, Ni) is also part of the quadratic sequence and succeeds. Thus, we have the sequence

(Ii−1, Ni−1)
Sucess
qir→ (Ii, Ni)

Fail
qir→ (Ii+1, Ni+1)

qir→ . . . .

One observes that w(Ii+1) = w(Ii) = w(Ii−1)
Ni−1

≤ Mα

Ni−1
, and Ni+1 =

√
Ni =

√

N2
i−1 = Ni−1.

By Corollary 2.5.12, all further qir calls succeed.

If the quadratic sequence starts with a bisection (i.e., N = 2 initially), no failing qir
call occurs. Otherwise, the single failing step is due to the fact that the quadratic sequence
might start with a too big value of N , just because the algorithm was “too lucky” during
the initial sequence.

Let (Ii−1, Ni−1)
qir→ (Ii, Ni) be the failing qir call in the quadratic sequence. Since

w(Ii+k) = Niw(Ii)
Ni+k

by the proof of Corollary 2.5.13, it follows that

w(Ii+k+1) =
w(Ii+k)

2

Ni ·w(Ii)

for any k ≥ 0. This means that the interval width decreases quadratically in each step (up
to the constant Ni ·w(Ii)), which ultimately justifies the term “quadratic” in the quadratic
interval refinement method (the idea of our exposition has already been sketched out in
Abbott’s original work [Abb06]).

Lemma 2.5.14. The number of bit operations in the quadratic sequence of a root α is
bounded by

Õ(n2 logL(σ + log
1

Mα
) + n2L).

Proof. By Corollary 2.5.13, the quadratic sequence consists of at most logL+ 1 qir calls,
since N is doubled in each step, except the possible failing step. The bitsize in the first qir
call of the sequence is O(n(σ+log 1

Mα
)) and increases by at most 2i after the i-th iteration.

Therefore, the complexity of the quadratic sequence is given by

O

(
logL+1
∑

i=1

n ·M(n(σ + log
1

Mα
+ 2i))

)

= Õ

(

n2
logL+1
∑

i=1

σ + log
1

Mα
+ 2i

)

= Õ

(

n2 logL(σ + log
1

Mα
) + n2

logL+1
∑

i=1

2i)

)

= Õ(n2 logL(σ + log
1

Mα
) + n2L).

Corollary 2.5.15. The total cost of all quadratic sequences for the real roots α1, . . . , αs of
f is bounded by

Õ(n3σ logL+ n3L).

Proof. We combine Lemma 2.5.14 and Theorem 2.5.8 to obtain

s∑

i=1

Õ(n2 logL(σ + log
1

Mα
) + n2L) = Õ(n3σ logL+ n2 logL

s∑

i=1

log
1

Mα
︸ ︷︷ ︸

=O(n(σ+logn))

+n3L).
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Algorithm 2.14. Finding intermediate values

Input: f ∈ Z[t] square-free, of magnitude (n, τ)
Output: q0, . . . , qm ∈ Q such that each interval (qi, qi+1) contains precisely one root of
f .

1: procedure intermediate(f)
2: I1, . . . , Im ← Solve(f)
3: q0 ← −2τ+1, qm ← 2τ+1

4: for k ∈ {1, . . . ,m− 1} do
5: while Ii and Ii+1 have a common endpoint, do refine both intervals using qir

6: di ← right endpoint of Ii, ci+1 ← left endpoint of Ii+1

7: qi ← di+ci+1

2
8: end for
9: return q0, . . . , qm

10: end procedure

We now can finally prove the main result:

Theorem 2.5.16 (strong root isolation). Assuming fast integer arithmetic and fast Taylor
shifts, the strong root isolation problem for f (square-free) and ε has a bit complexity of

Õ(n4τ2 + n3Lε)

with Lε = log 1
ε .

Proof. The costs are determined by the sum of
1. the real root isolation which is Õ(n4τ2) (Theorem 2.4.38),
2. the cost of the initial sequence which is Õ(n4τ2) (Corollary 2.5.9), and
3. the cost of the quadratic sequence which is Õ(n3 logLτ + n3L) (Corollary 2.5.15).

We have to argue why the term n3τ logL never becomes dominant, and can thus be
removed. If p4σ2 were dominated by p3σ logL, logL would dominate pσ, and in particular
L would dominate 2σ. If also p3L were dominated by p3σ logL, then L

logL would be

dominated by σ, and so L would be dominated by σ1+γ for any γ > 0.

We will use Theorem 2.5.16 frequently in this work since we will need close approxi-
mations of algebraic numbers in numerous situations. As a first application, consider the
following problem. For a (square-free) polynomial f , we want to find intermediate values
for the roots, which means that if the real roots are α1, . . . , αm, then we want to find
q0, . . . , qm ∈ Q such that q0 < α1 < q1 < . . . < αm < qm. In most cases, such intermediate
values can be computed from the output of the Descartes method; if Ii = (ci, di) and

Ii+1 = (ci+1, di+1) are consecutive isolating intervals, then qi can be set to di+ci+1

2 . But
what if Ii = [c, c], and Ii+1 = (c, d)? Then, Ii+1 must be refined until its left boundary
changes.

Theorem 2.5.17. The bit complexity of Algorithm 2.14 is bounded by

Õ(n4τ2).

All intermediate values have a maximum bitsize of O(τ + Lf ) = O(n(τ + log n)), and the
first and the last intermediate values each have a bitsize of O(τ).
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Proof. Set ε := sep(f)/4. The isolating intervals do no longer touch at their boundaries
when all of them are refined to width ε at the latest. In this situation, Algorithm 2.14 will
compute the intermediate value. Refining all intervals to size ε has bit complexity

Õ(n4τ2 + n3(Lε + τ logLε))

and by the fact that Lε = 2 + Lf = O(n(τ + log n)), this simplifies to O(n4τ2).

The proof has shown more. Refining all isolating intervals of the polynomial to the
size of its separation bound is asymptotically not more expensive than the root isolation
itself. This appears surprising, and strongly depends on the quadratic convergence of the
qir method – if bisection were used, the refinements would increase the complexity.

The assumption that all intervals are refined to width sep(f)/4 is made only for the
worst-case analysis. Note that Algorithm 2.14 does not ,in general, require this; it ter-
minates as soon as no intervals share an endpoint, which can happen much more quickly.
In this sense, the algorithm is adaptive to the given problem, and does not depend on
worst-case bounds of the root separation. This property is characteristic for all algorithms
that will follow in this chapter.

2.5.3. Comparing algebraic numbers

The next problem we look at is comparing two algebraic numbers α = (f1, I1) and β =
(f2, I2), both in isolating interval representation (specifically, both f1 and f2 are square-
free). We use a two-step approach for this. First, we check for equality by computing
gcd(f1, f2), and checking whether a sign change in I1∩ I2 occurs. If α and β are not equal,
both isolating intervals are refined until disjointness in the second step.

Theorem 2.5.18. Algorithm 2.15 correctly compares algebraic numbers. For f1, f2 of mag-
nitude (n, τ), the procedure equal has a bit complexity of Õ(n3(n+τ)). dist_compare

and compare are of bit complexity Õ(n4τ2).

Proof. We argue first about the correctness of the procedure Equal. Assume that α =
β. Then, α is also a root of h = gcd(f1, f2), the gcd of the defining polynomials (see
Algorithm 2.15), and the interval I1 ∩ I2 is isolating for α (because an additional root
would violate the assumption that I1 and I2 are isolating). Thus, since h is square-free
as well, the sign at the interval boundaries differs. Vice versa, if the sign differs, then f1

and f2 have (at least) one common root in I1 ∩ I2 and this is only possible if α = β. The
correctness of the procedures dist_compare and compare is obvious.

For the bit complexity of equal, note that the gcd computation is within O(n2M(n(τ+
log n))) = Õ(n3τ) according to Theorem 2.4.19, and h is of magnitude (n, n+ τ). h is now
evaluated at the interval boundaries of I, which are of bitsize O(n(τ + log n)) = Õ(nτ).
This requires another Õ(n3τ) bit operations according to Lemma 2.4.10 (evaluation of
univariate polynomials).

For the bit complexity of dist_compare, consider the separation of f1f2. As before,
it holds that

Lfg =
1

sep(f1 · f2)
= O(2n(2τ + log 2n)) = O(n(τ + log n)).
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Algorithm 2.15. Comparing algebraic numbers

Input: (f1, I1), (f2, I2) with f1, f2 ∈ Z[t] square-free and of magnitude (n, τ), I1 isolating
interval for α ∈ R, I2 for β ∈ R

Output: α = β

1: procedure equal((f1, I1), (f2, I2))
2: I ← I1 ∩ I2
3: ifI = ∅ return false
4: h← gcd(f1, f2)
5: ifI = [c, c] return h(c) = 0 ⊲ Otherwise, I=[c, d]
6: return sign h(c) · sign h(d) < 0
7: end procedure

Input: α = (f1, I1), β = (f2, I2) as above, α 6= β
Output: α < β (LESS) or α > β (GREATER)

1: procedure dist_compare((f1, I1), (f2, I2))
2: while I1 ∩ I2 6= ∅ do
3: refine I1 and I2 using qir

4: end while
5: if I1 < I2 return LESS else return GREATER
6: end procedure

Input: α = (f1, I1), β = (f2, I2) as above
Output: α < β (LESS) or α = β (EQUAL) or α > β (GREATER)

1: procedure compare((f1, I1), (f2, I2))
2: ifEqual((f1, I1), (f2, I2)), return EQUAL
3: else return dist_compare((f1, I1), (f2, I2))
4: end procedure

Once both intervals are refined to size 1
4sep(f1f2), they must be disjoint, and the bit

complexity of this step is bounded by Õ(n4τ2) by Theorem 2.5.16. The bit complexity of
compare follows immediately.

As we can see from the proof, the (theoretical) bottleneck in the comparison method
is the refinement step for non-equal algebraic numbers. If we instead compare all roots
of two square-free polynomials f1 and f2, we obtain the same asymptotic bound. By
comparing all roots, we understand that the isolating intervals of two polynomials f1 and
f2 are merged into one sorted list of isolating intervals. This could also be done by real root
isolation for f · g, but Algorithm 2.16 is faster in practice, and computes the additional
information whether a root belongs to f1, to f2, or to both.

Theorem 2.5.19. Algorithm 2.16 merges the roots of f1 and f2 within bit complexity
Õ(n4τ2).

Proof. The initial calls of solve have a bit complexity of Õ(n4τ2). The only crucial
operations afterwards are the (up to) m1 + m2 ≤ 2n calls of compare: Calling equal

so often yields at most Õ(n4τ) operations, which matches the complexity bound. During
the dist_compare calls, each interval of f1 and of f2 is refined to a maximal precision
of Lfg = O(n(τ + log n)) with the same argument as in the proof of Theorem 2.5.18, and
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Algorithm 2.16. Merging algebraic numbers

Input: f1, f2 ∈ Z[t] square-free and of magnitude (n, τ)
Output: A list of pairs (I1, b1), . . . , (Is, bs), where I1, . . . , Is are disjoint isolating intervals
for all roots of fg, and bi ∈ {FIRST,SECOND,BOTH} is a flag denoting whether the root
in II is a root of f1 (FIRST), a root of f2 (SECOND), or of both (BOTH)

1: procedure merge_roots(f1, f2)

2: I
(1)
1 , . . . , I

(1)
m1 ← Solve(f1) ⊲ m1 is the number of real roots of f1

3: I
(2)
1 , . . . , I

(2)
m2 ← Solve(f2) ⊲ m2 is the number of real roots of f2

4: i1 ← 1, i2 ← 1, j ← 1
5: while i1 6= m1 or i2 6= m2 do

6: s←Compare((f1, I
(1)
i1

), (f2, I
(2)
i2

))

7: if s = LESS, Jj ← (I
(1)
i1
, F IRST ), i1 ← i1 + 1

8: if s = GREATER, Jj ← (I
(2)
i2
, SECOND), i2 ← i2 + 1

9: if s = EQUAL, Jj ← (I
(1)
i1
, BOTH), i1 ← i1 + 1, i2 ← i2 + 1

10: end while
11: return J0, . . . , Jj
12: end procedure

refining all isolating intervals to this bound can be done with Õ(n4τ2) bit operations using
Theorem 2.5.16.

2.5.4. Interval arithmetic

The reader might wonder why we so far have not discussed basic arithmetic operations
for algebraic numbers, such as addition or multiplication. Indeed, it is well known that
if α and β are algebraic, both their sum and their product are algebraic. There are also
algorithms known for constructing polynomials that contain the sum or the product as one
of their roots (e.g., [Loo82a] [Yap00, Lemma 6.16]). This construction requires resultant
computations and is known to be expensive in practice. Moreover, in our applications, we
will not need to compute an isolating interval representation of a sum, or a product, of
algebraic numbers – what we will need, however, are approximated sums and products.

For that, we employ the well-known technique of interval arithmetic. There are several
textbooks dedicated to this discipline [Moo79] [AH83], applications in computer graph-
ics [SF91] and in cad computation [CJK02] have been already considered. The methods
that we require are very elementary and should be understandable without further knowl-
edge of that area.

We define the addition, multiplication, and division of intervals. We restrict our discus-
sion to closed intervals in this treatment; for interval arithmetic on (half-)open intervals,
one can simply pass to their closure.

[a, b]⊕ [c, d] = [a+ c, b+ d]

[a, b]⊖ [c, d] = [a− d, b− c]
[a, b]⊙ [c, d] = [min{ac, bc, ad, bf},max{ac, bc, ad, bd}]

[a, b]⊘ [c, d] = [min{a
c
,
b

c
,
a

d
,
b

d
},max{a

c
,
b

c
,
a

d
,
b

d
}]
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The division rule requires that 0 /∈ [c, d]. Operations with real numbers are possible simply
by interpreting r ∈ R as the interval [r, r]. It is not hard to verify that, for any intervals I
and J , {i + j | i ∈ I, j ∈ J} = I ⊕ J , and the same holds for subtraction, multiplication,
and division. However, the distributive law does not hold for intervals – it only holds that
A ⊙ (B ⊕ C) ⊂ (A ⊙ B) ⊕ (A ⊙ C). The reason is that when evaluating the right-hand
side of the expression, both occurrences of A are treated separately, which means that the
interval arithmetic does not capture the dependency between sub-expressions. Therefore,
we have to specify an evaluation method for polynomial evaluation at an interval. For
f =

∑n
i=0 ait

i, we define

2f(I) = a0 + I(a1 + I(a2 + . . . (an−1 + Ian) · · · ).
This evaluation method is also called the Horner scheme. The image of f at I is contained
in 2f(I), although the interval arithmetic might considerably overestimate the image.
Moreover, if we consider a sequence of intervals I0 ⊃ I1 ⊃ . . . with widths converging to
zero, then the width of the sequence 2f(I0) ⊃ 2f(I1) ⊃ . . . converges to zero as well. The
next lemma quantifies this convergence for the case of an integer polynomial f .

Lemma 2.5.20. Let f =
∑n

i=0 ait
i of magnitude (n, τ), and I be an interval of width

0 < ε < 2. Then, for each α ∈ I and each y ∈ 2f(I), we have

|y − f(α)| ≤ 2nε2τ max{1, |α|}n−1.

Proof. Fix some y ∈ 2f(I). There exist values ν1, . . . , νn ∈ [− ε
2 ,

ε
2 ] such that

y = a0 + (α+ ν1) · (a1 + (α+ ν2) · (a2 + . . .) + (α+ νn) · an) . . .)
Through induction on n, for n = 1, we have |y − f(α)| = ν1a1 ≤ ε2τ , and the claim is
satisfied. For n > 1, we write

f(α) = a0 + α · f̃(α), y = a0 + (α+ ν1)ỹ

with f̃ =
∑n−1

i=0 ai+1t
i and ỹ ∈ 2f̃(I). So, we now have

|y − f(α)| = |ν1ỹ + α(ỹ − f̃(α))|.
Since

|ỹ| ≤ |a1|+ (|α|+ |ν2|) · (|a2|+ . . .) + (|α|+ |νn|) · |an|) . . .)

≤ 2τ
n−1∑

i=0

(|α|+ ε

2
)i

≤ 2τ
n−1∑

i=0

(2 max{|α|, 1})i

≤ 2τ2n max{|α|, 1}n−1,

it follows together with the induction hypothesis that

|y − f(α)| = |ν1ỹ + α(ỹ − f̃(α))|
≤ ε

2
2τ2n max{|α|, 1}n−1 + α

(

2n
ε

2
2τ max{1, |α|}n−2

)

≤ ε

2
2τ max{|α|, 1}n−1 (2n + 2n)

≤ ε

2
2τ max{|α|, 1}n−12n+1.
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Algorithm 2.17. Approximating f(α)

Input: δ > 0, f ∈ Z[t], and α = (g, I)
Output: An interval J containing f(α) with w(J) < δ

1: procedure approx_eval(f, (g, I), δ)
2: J ← 2f(I)
3: while w(J) ≥ δ do
4: Refine I using qir

5: J ← 2f(I)
6: end while
7: return J
8: end procedure

We turn to the complexity of interval arithmetic. Assume that the bitsize of all interval
boundaries is bounded by σ. The basic arithmetic interval operations yield the same bit
complexity as the same operations on integers of bitsize σ, up to a constant factor. The
same is true when evaluating a polynomial at an interval.

With these basic properties of interval arithmetic in mind, we can look at further
algorithms for algebraic numbers. Consider the following problem: Given δ > 0, f ∈ Z[t],
and some algebraic number α ∈ R in isolating interval representation (g, I), the goal is to
compute an interval J containing f(α), such that w(J) ≤ δ.

The solution is absolutely straightforward, following the techniques just dicussed: com-
pute J := 2f(I). If its width is greater than δ, refine I and start over, otherwise, return
J (Algorithm 2.17). The complexity statement for Algorithm 2.17, although not hard to
derive, appears in a quite complicated form because we do not assume here that f and
g are of the same magnitude. In our later application, the magnitude of g will be larger
than that of f , and it will yield more precise bounds if these parameters are distinguished.
Furthermore, we analyze the case that Algorithm 2.17 is applied for each root of g, since
the same bound is obtained in this situation as for a single root.

Theorem 2.5.21. Let f be of magnitude (n, τ) and g of magnitude (n′, τ ′) with n ≤ n′

and τ ≤ τ ′. Set Lδ = log 1
δ . Then, Algorithm 2.17, applied to all real roots of g runs in a

total bit complexity of

Õ(n′4τ ′2 + n′3(Lδ + τ ′n)).

Proof. Let I be the isolating interval of some real root α of g. Note first that if I is refined
to size

ε := 2
δ

2n+12τ max{1, |α|}n−1
,

the distance of y ∈ 2f(I) to f(α) is bounded by

|y − f(α)| ≤ 1

2
δ

using Lemma 2.5.20, and by the triangle inequality, w(2f(I)) ≤ δ holds.

Thus, I must be refined to precision ε. Note that

Lε = Õ(Lδ + n+ τ + nτ ′) = Õ(Lδ + nτ ′)
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(|α| ∈ O(τ ′), because it is a root of g). Refining all I’s to size ε takes

Õ(n′4τ ′2 + n′3Lε)

= Õ(n′4τ ′2 + n′3(Lδ + nτ ′))

bit operations by Theorem 2.5.16 (strong root isolation), which is the desired bound.
We have to argue why the evaluations J ← 2f(I) do not increase the complexity. For

that, we have to recall the internals of the quadratic interval refinement method. In each
step, g is evaluated at the interval boundaries of I, so each such step is at least as costly as
such an evaluation. We have argued above that an interval evaluation is as costly as the
evaluation of one of its boundaries. Since f is of smaller magnitude than g, it follows that
this evaluation is not more costly than the preceding qir call. There only remains the initial
interval evaluation to perform, but this step is dominated by the overall complexity.

We further generalize the result just obtained. Assume that we do not just approximate
one polynomial f at the roots of g, but a whole sequence f1, . . . , fk. In this case, the
bound from the theorem above could just be multiplied by k to obtain a lower bound. It
is not surprising that we can do better, since the bottleneck in the above analysis is to
approximate the αi to sufficient precision. Clearly, this is not done k times from scratch
when considering several polynomials.

Theorem 2.5.22. Let f1, . . . , fk be of magnitude (n, τ) and g of magnitude (n′, τ ′) with
n ≤ n′ and τ ≤ τ ′. Set Lδ = log 1

δ . Then, Algorithm 2.17, applied to all real roots of g,
runs in total bit complexity

Õ(n′4τ ′2 + n′3(Lδ + τ ′n) + kn′2n(Lδ + τ ′n)).

Proof. The previous proof shows that, once α is refined to precision ε, w(2f(α)) ≤ δ for
any f of magnitude (n, τ). Thus, we still need not more than Õ(n′4τ ′2 +n′3(Lδ +nτ ′)) bit
operations for the refinements. The additional summand kn′2n(Lδ + nτ ′) arises because
one initially has to compute kn′2 interval evaluations, and the bitsizes of the interval
boundaries are bounded by Lε = Õ(Lδ + nτ ′).

We next discuss a related problem: Given f ∈ Z[t], and α ∈ R as before, evaluate the
sign of f(α). The solution is similar to the comparison of algebraic numbers. First, we
check whether α is a root of f by considering the gcd of f and g (where g is the defining
polynomial of α). If α is not a root, we simply refine its isolating interval until 0 /∈ 2f(I)
(Algorithm 2.18).

In the complexity analysis, we again bound the time needed to compute the signs of
f(α) for all real roots of g. For this application, we assume for simplicity that f and g are
of the same magnitude (since this will also be the case in our applications).

Theorem 2.5.23. Let f and g be of magnitude (n, τ). Computing the sign of f(α) for
each α ∈ V (g), using Algorithm 2.18, has a bit complexity of

Õ(n4(n+ τ2)).

Proof. The first part of Algorithm 2.18, concerning the gcd and its evaluation has a bit
complexity of Õ(n3τ) per call by the same analysis as for Algorithm 2.15 (Equal). Doing
this for all (up to n) real roots of g requires Õ(n4τ) bit operations in total.
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Algorithm 2.18. Sign of f(α)

Input: f ∈ Z[t], and α = (g, I)
Output: The sign of f(α) (1,-1, or 0)

1: procedure sign(f, (g, I))
2: h← gcd(f, g)
3: if I = [c, c] and h(c) = 0 return 0
4: if I = [c, d] and h(c)h(d) < 0 return 0 ⊲ Otherwise, f(α) 6= 0
5: while 0 ∈ 2f(I) do
6: Refine I using qir

7: end while
8: return sign(I) ⊲ sign(I) = the sign of any value in I
9: end procedure

It remains to bound the cost of the refinement loop for each α. As before, we can
concentrate on the qir calls, because we charge the cost for an interval evaluation to the
cost of the preceding qir call.

Fix some root α of g with f(α) 6= 0, and let Iα be its isolating interval. Define

δα :=
|f(α)|

2n+12τ max{1, |α|}n .

A simple estimation shows that δα < 1 for all α ∈ C. If w(Iα) < δα, it follows from
Lemma 2.5.20 that for all y ∈ Iα

|y − f(α)| ≤ |f(α)|
2 max{1, |α|} ≤

|f(α)|
2

,

and thus 0 /∈ Iα.

The remainder of the proof works as follows. We will show below that

∑

α∈VR(g)\VR(f)

log
1

δα
= O(n(n+ τ)).

It follows that log 1
δα

= O(n(n + τ)) for every single root as well. Consequently, there is
some width ε with Lε = O(n(n+ τ)) that is sufficient for each α, and refining the isolating
intervals to size ε requires

Õ(n4τ2 + n3(n(n+ τ))) = Õ(n4(τ2 + n))

bit operations, with Theorem 2.5.16, which proves our claim.

It is left to show that

∑

α∈VR(g)\VR(f)

log
1

δα
= O(n(n+ τ)).

Note first that instead of talking about all roots of g that are not roots of f , we can also
talk about the roots of g̃ := g

gcd(f,g) ∈ Z[t]. The proof is almost analogous to that of



2.5. Computation with algebraic numbers 73

Theorem 2.5.8: Since δα ≤ 1 for all α ∈ C, we can replace VR(g̃) by VC(g̃) in the sum, and
we obtain

∑

α∈VR(g̃)

log
1

δα
≤

∑

α∈VC(g̃)

log
1

mα

≤
∑

α∈VC(g̃)

log
2n+22τ max{1, |α|}n

|f(α)|

≤ n(n+ 2) + nτ + n log
∏

α∈VC(g̃

max{1, |α|}+ log
∏

α∈VC(g̃

1

|f(α)|

= n(n+ 2) + nτ + n log
Mea(g̃)

lcf(g̃)
+ log

lcf(f)n

res(f, g̃)
.

In the last step, we have used Theorem 2.3.6. Noting that lcf(g̃) and res(f, g̃) ∈ Z, this
further simplifies to

≤ n(n+ 2) + nτ + n log Mea(g̃) + n log lcf(f).

Since g̃ is of magnitude (n, n + τ), log Mea(g̃) = O(n + τ), and log lcf(f) = O(τ). Thus,
the sum is bounded by O(n(n+ τ)) as required.

Again, we generalize the analysis to the case of more than one polynomial. Assume
that a sequence of polynomials f1, . . . , fk, all of magnitude (n, τ), is evaluated at the real
roots α1, . . . , αs of another polynomial. A complexity of Õ(kn4(n + τ2)) is immediately
obvious, but we can do better.

Theorem 2.5.24. Let f1, . . . , fk and g be of magnitude (n, τ). Computing the signs of
f1(α), . . . , fk(α) for each α ∈ V (g) using Algorithm 2.18 has a bit complexity of

Õ(kn4(n+ τ) + n4(n+ τ2)).

Proof. Computing the k gcd’s of g with the fi’s is in Õ(kn3τ), so this step is covered by the
bit complexity. The proof of the preceding theorem has shown that, when each isolating
interval is refined to a fixed ε with Lε = O(n(n+ τ)), the sign of f(α) can be determined
for any f of magnitude (n, τ). Thus, the bitsize of the intervals in the algorithm is bounded
by O(n(n+ τ)).

For each pair of the up to kn many pairs (fi, αj), we have to perform two initial
evaluations (to check for zero), plus one initial interval arithmetic evaluation (to ob-
tain 2f(I)). Because the interval boundaries are in O(n(n + τ)), these steps are in
O(kn ·nM(n2(n+ τ))) = Õ(kn4(n+ τ)).

The cost of the qir loop is bounded by Õ(n4(τ2 + n)) as before, since the additional
interval arithmetic steps can be charged to the qir calls. Summing up both quantities
yields the result.

Summary

Isolating intervals, as returned by the Descartes method, allow the representation of arbi-
trary algebraic numbers, and processing such numbers in an efficient way is possible. We
have seen how to approximate algebraic numbers using the quadratic interval refinement
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method. Based on this, we have described adaptive algorithms to, for instance, compare
algebraic numbers, evaluate the sign of an algebraic number α, or approximate g(α). In
all cases, considering all roots associated with α (instead of concentrating on a single root)
allowed us to derive better worst-case bounds for the computation.

2.6. Computation with polynomials with bitstream coefficients

So far, we have mainly assumed the input polynomials of our algorithms to have integer
coefficients. The Descartes method (Section 2.4.4) is not in principle restricted to integer
coefficients, but can be applied to any polynomial with real number coefficients as long as
the arithmetic operations can be performed in an exact way (Algorithm 2.9). However, the
cost of such exact arithmetic can render the practical root isolation infeasible, for instance,
when coefficients are arbitrary algebraic numbers, or when dealing with very big integer
coefficients. For polynomials with transcendental coefficients, it is not even known how
the required operations can be performed in an exact manner.

To overcome these problems, a variant of the Descartes method has been proposed that
works only by approximating the polynomial’s coefficients by floating-point numbers. More
precisely, for any polynomial coefficient a ∈ R and any precision p ∈ Z, an integer m must
be returned such that |m− a2p| ≤ 1. If this operation is supported for the coefficients, we
call them to be in bitstream representation [Eig08, Def 3.35], which captures the intuition
that arbitrary many bits of the coefficients can be obtained, but one can never decide
whether all remaining bits are zero. We emphasize, however, that the name “bitstream”
does not imply that the returned approximation coincides with the first p bits of the exact
binary representation of the real number. To give an example, if a = 0.01101 (in binary
representation), it is legal that the bitstreams 1, 10, 011, 0110 are returned for p = 1, 2, 3, 4,
respectively.

The variant of the Descartes method that works with coefficients in bitstream rep-
resentation is called the bitstream-Descartes method. A bitstream constitutes a slight
perturbation of the coefficient, and thus, by bitstreaming all coefficients, one obtains a
slightly perturbed polynomial f̃ . The idea is that the isolating intervals for f̃ remain
isolating for f (possibly with a small extension), since the roots of a polynomial depend
continuously on its coefficients.

Despite this understandable argument, several difficulties arise when designing an ef-
ficient and reliable root isolator. Most of them boil down to the (exact) zero test that
is simply unavailable when working with coefficient approximations. That means, for in-
stance, that Step 10 of Algorithm 2.9 (where f(m) = 0 is checked for the bisection midpoint
of an interval) cannot be decided just by looking at approximations, regardless of the pre-
cision. Another challenge for the algorithm is to adaptively choose a sufficient working
precision, since an a priori worst-case bound usually overestimates the needed precision
considerably. Still, such a bound will be necessary for a complexity analysis.

Two different approaches have been presented recently. The first one is mainly worked
out by Eigenwillig [Eig08, EKK+05]. Its idea is to conceptually consider all polynomials
within a given approximation precision, explicitly coping with the uncertainty in the num-
ber of sign variations of f . He can show that the computation path of the exact polynomial
can be followed, assuming that the polynomial is sufficiently large at its subdivision points.
A randomized choice of the subdivision points (instead of always cutting in the middle as
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in the usual Descartes method) ensures this property with high probability, if the precision
was high enough.

A deterministic variant is presented by Mehlhorn and Sagraloff [MS09]. Therein, one
chooses a concrete approximation f̃ of f (with rational coefficients) and applies a slight
variant of Algorithm 2.9. Upon succeeding, the isolating intervals of f̃ are slightly enlarged
to both sides, such that the extended interval is also isolating for f . If the intervals for f̃
become too small during the Descartes method, the precision is increased (the meaning of
“small” depends on the chosen precision).

In the following, we will not just apply the bitstream-Descartes version to polynomials
with algebraic number coefficients but we will additionally discuss variants of the algo-
rithm that work for non-square-free polynomials, using additional knowledge of the input
polynomial (Section 2.6.2). To be able to describe those variants, we need to describe one
of the bitstream variants in more detail. We have decided to use the variant by Mehlhorn
and Sagraloff for our theoretical description for the following reasons.

• Their variant seems conceptually simpler since it always talks about one particular
approximation of the polynomial instead of considering all possible approximation
at the same time.
• It can be formulated completely in power basis, whereas Eigenwillig’s version needs

an initial conversion into the Bernstein basis. Although this conversion is not too
complicated, from neither a theoretical nor a practical point of view, it still requires
a substantial body of additional concepts.
• One of the variants for polynomials with multiple roots that will be discussed, the

m-k-bitstream-Descartes variant, has already been analyzed completely in [MS09]
in the context of the deterministic variant. In [Eig08], a similar analysis has been
started but is not complete. Nertheless, some of the results therein are of great
significance also within this thesis and will be cited at the appropriate position.

Despite these arguments in favor of the deterministic approach, the randomized algorithm
also has an advantage: a complete implementation has been provided by Eigenwillig. Such
an implementation for the deterministic Descartes method is missing. Thus, we are in the
somewhat uncomfortable situation in which we use one variant for theoretical considera-
tions, but the other for the implementation. Still, we believe that the complexity bounds
derived for the deterministic version also remain valid for the randomized approach (this
has been proven for the square-free version at least), and in turn, that an implementation of
the deterministic algorithm should show a similar performance compared to Eigenwillig’s
implementation (first experiments with a prototypical deterministic isolator back up this
guess).

2.6.1. The bitstream-Descartes method for square-free polynomials

We (briefly) discuss the Deterministic bitstream-Descartes method. The results of this
section are a summary of [MS09]. As we have mentioned, the intuition behind the method
is that the roots of a polynomial continuously depend on its coefficients. The next theorem,
attributed to Schönhage [Sch85], gives a quantified version of this statement (we state a
slightly weaker form adapted to our situation).

Theorem 2.6.1 (Schönhage). Let f be a polynomial of degree n with roots α1, . . . , αn ∈ C

such that |αi| < 3
4 . Let µ ≤ 2−7n and f∗ be a polynomial of degree n with complex roots
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α∗
1, . . . , α

∗
n such that

‖f − f∗‖1 < µ‖f‖1.

Then, up to a permutation of the α∗
i ’s, it holds that

|αi − α∗
i | < 9 n

√
µ.

In particular, all roots of f∗ are in the complex unit circle.

For a given f of degree n, fix some µ < 2−7n, and consider any approximation poly-
nomial f∗ as in Theorem 2.6.1. The principal idea is to apply the Descartes method on
f∗, and to extend the isolating intervals to each side by 9 n

√
µ to obtain isolating intervals

for f , but several problem arise here:

• Real roots of f can turn into non-real roots of f∗, and vice versa.
• The extension of the isolating intervals might lead to an overlap of isolating intervals.
• The approximation f∗ is not always square-free, and the Descartes method might

diverge.

To avoid real roots becoming non-real (and vice versa) when going from f∗ to f , we define
something like a “safety margin”: whenever the subdivision stops for some interval I, we
must ensure that a stripe of the form I × [−ih, ih] (with i being the complex unit, and
h > 0) is free of non-real roots. To avoid overlapping intervals, we must ensure that
isolating intervals have a distance of at least 18 n

√
µ. The third problem will be solved by

the final algorithm more or less automatically, thus we skip its discussion for now.

We introduce a slightly adapted Descartes test that helps to overcome the first two
problems. For any interval I = (c, d), define the extended interval I+ := (c− 2(d− c), d+
2(d − c)). I+ is five times as big as I, and has I at its center. Moreover, we define
v := Var(f∗, I) as in Section 2.4.4, and v+ := Var(f∗, I+). Clearly, v+ ≥ v.

Lemma 2.6.2. If v+ ≤ 1, there is no non-real root in the region I × [−2iw(I)
n , 2iw(I)

n ].

Proof. Since v+ ≤ 1, we can use the contraposition of the first part of Theorem 2.4.30
(Obreshkoff’s Theorem) It follows that the Obreshkoff lens Ln−2 contains less than two
roots, and thus no non-real roots. Consider the following picture.
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Ln−2

2w(I) c d

h

Note that α = π
2n follows by the inscribed angle theorem (see the remark after Defini-

tion 2.4.29). We can thus bound

h = 2w(I) tan(
π

2n
) ≥ 2w(I)

n

(using tan(cπ2 ) ≥ c for 0 < c < 1).
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Algorithm 2.19. The Descartes method with expanded intervals

Input: f∗ ∈ R[t] with all roots in the complex unit circle
Output: Isolating intervals for all real roots of f∗

1: procedure Descartes_extended(f∗)
2: Q← {(0, 1)}
3: while Q is not empty do
4: Let J = (c, d) be the first element of Q. Remove J from Q.
5: v+ ← Var(f∗, J+) ⊲ J+ = (c− 2(d− c), d+ 2(d− c))
6: if v+ > 1 then
7: m← c+d

2
8: if f(m) = 0 then append [m,m] to the output list
9: end if

10: Append (c,m) and (m, d) to Q
11: else
12: v ← Var(f∗, J)
13: if v = 0 then do nothing
14: end if
15: if v = 1 then append I to the output list
16: end if
17: end if
18: end while
19: end procedure

Algorithm 2.19 defines the new version of the Descartes method. Intervals are always
subdivided as long as v+ > 1. Once v+ ≤ 1, the interval is removed from the queue, and
in the case where v = 1, it is added to the output list.

It is not hard to see that Algorithm 2.19 terminates if f∗ is square-free, because the
one-circle and two-circle theorems also apply eventually for the extended intervals I+.
If the intervals do not become too small during the subdivision, we can even deduce the
isolating intervals of f .

Theorem 2.6.3. Let f, µ, f∗ be chosen according to Theorem 2.6.1. Assume that Algo-
rithm 2.19 returns the isolating intervals I1, . . . , Im, with Ij = (cj , dj) (or Ij = [cj , dj ]
with cj = dj) Also, assume that no interval of size less than 9n n

√
µ is produced during the

subdivision. Then, f has the same number of real roots as f∗, and the intervals I ′1, . . . , I
′
m

with I ′j = (cj − 9 n
√
µ, dj + 9 n

√
µ) are isolating intervals for f .

Proof. First, we argue that any pair of isolating intervals of f∗ has at least a distance of
18 n
√
µ. For two roots α and β with α < β, let I be the interval that contains α, and let J

be the one that contains β (if I is a singleton interval, choose instead the interval that has
α as its left boundary for I). W. l. o. g., w(I) ≥ w(J). Since Var(f∗, I+) = 1, β /∈ I+, and
J is disjoint from I+. Therefore, the distance between I and J (i.e., the minimal distance
of an element in I to an element in J) is at least 2w(I) ≥ 18 n

√
µ. The same argument also

shows that distance between any pair of real roots is more than 18 n
√
µ.

The above argument shows that the extended intervals I ′1, . . . , I
′
m are disjoint. Using

Lemma 2.6.2 on each interval with Var(f∗, I+) ≤ 1, we see that each complex root of f∗
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has a imaginary part of more than 2w(I)
n > 2

9n n
√
µ

n = 18 n
√
µ. That implies that no non-real

root of f∗ can correspond to a real root of f . Also, vice versa, a real root of f∗ cannot
transform into a non-real root of f . Assuming some root α of f∗ does so, another root
of f∗ would turn into its complex conjugate. Since α has a distance of at least 18 n

√
µ to

all other roots (real or non-real), and the roots cannot move more than 9 n
√
µ according to

Theorem 2.6.1, this is impossible. This shows that each I ′j contains precisely one real root
of f .

If we can ensure that Algorithm 2.19 does not produce an interval of length smaller
than 9n n

√
µ, the roots of f can be isolated just by looking at its approximation f∗. Not

surprisingly, this condition will be satisfied for a small enough µ. To quantify a sufficient
value of µ, we define, for a polynomial g =

∏m
i=0(t− αi)ei ,

s(g) := min{min{|αi − αj | | αi, αj ∈ R},min{Im(αi) | αi /∈ R}},

where Im(c) denotes the imaginary part of a complex number. Note the small difference
compared to the related sep(f) (Definition 2.4.32); the distance between complex roots is
not taken into account in s(g). If f , µ, and f∗ are chosen as in Theorem 2.6.1 (Schönhage’s
Theorem), it directly follows that |s(f) − s(f∗)| < 18 n

√
µ. Moreover, Algorithm 2.19

applied to g does not ever subdivide an interval I of size s(g)
5 , because for such intervals,

w(I+) ≤ s(g) and thus, Var(g, I+) ∈ {0, 1} (because either the one-circle or the two-circle
theorem applies).

Lemma 2.6.4. Let f , µ and f∗ be as before. If

µ ≤ min

{

2−7n,

(
s(f)

63n

)n}

,

Algorithm 2.19 applied on f∗ does not produce an interval of size smaller than 9n n
√
µ.

Proof. The condition µ ≤
(
s(f)
63n

)n
is equivalent to s(f) ≥ 63n n

√
µ. Thus we can estimate

s(f∗) ≥ s(f)− 18 n
√
µ ≥ 63n n

√
µ− 18 n

√
µ ≥ 45n n

√
µ.

Since no interval of size smaller than s(f∗)
5 is subdivided, this implies that no interval

becomes smaller than 9n n
√
µ.

We formulate the complete bitstream-Descartes method next. So far, our considera-
tions have only applied to polynomials with roots in the unit circle, but this is simply a
matter of scaling: by an initial transformation t 7→ 4B(t − 1

2), where B is a root bound
according to Theorem 2.2.11, all roots are inside a complex disc centered at (1

2 , 0) of radius
1
4 . The transformed polynomial has bitstream coefficients as well.

We set µ := 2−7n. For µ, we compute an approximation f∗ of f as follows. For a
coefficient ai of f , we compute an approximation a∗i of f∗ with |ai − a∗i | ≤

µ‖f‖1

n+2 . The f∗

thus obtained has the property that

‖f − f∗‖1 ≤ (n+ 1)‖f − f∗‖∞ ≤ (n+ 1)
µ‖f‖1
n+ 2

< µ‖f‖1,

so f∗ is a polynomial with the properties of Theorem 2.6.1 (Schönhage’s Theorem). Al-
gorithm 2.19 is applied to f∗, but it is interrupted as soon as an interval of size smaller
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Algorithm 2.20. The (deterministic) bitstream-Descartes method

Input: f ∈ R[t] Output: Isolating intervals for all real roots of f

1: procedure bitstream_Descartes(f)
2: f ← f(4B(t− 1

2))
3: µ← 2−7n

4: while true do
5: Approximate each coefficient of f by µ‖p‖1

n+2 ; f∗

6: Descartes_extended(f∗)
7: if interval of size smaller than 9n n

√
µ is produced then µ← µ2

8: else return 4B(I ′1 − 1
2), . . . , 4B(I ′m − 1

2) with I ′1, . . . , I
′
m as defined in Theo-

rem 2.6.3
9: end if

10: end while
11: end procedure

than 9n n
√
µ is produced, and µ is squared in this case. If no such interval is produced, the

returned isolating intervals are extended on both sides by 9 n
√
µ to obtain isolating intervals

for f . See Algorithm 2.20 for pseudo-code.18

Note that an unfortunate choice of f∗ might yield the application of Algorithm 2.19 to
a non-square-free polynomial, which leads to divergence. Therefore, it is important that
the execution of Algorithm 2.19 be interrupted as soon as an interval of size less than
9n n
√
µ is detected; it is not enough to wait for its termination and check the isolating

intervals afterwards.

The complexity analysis works in a way similar to that of the integer Descartes method,
by bounding the subdivision tree of the method, and exploiting Lemma 2.6.4 to bound
the bitsize of the approximation polynomial. We state the bound established in [MS09],
assuming asymptotically fast Taylor shifts

Theorem 2.6.5. Let f =
∑
ait

i ∈ R[t] be a square-free polynomial with |lcf(f)| ≥ 1 and
|ai| < 2τ−1 for all i. The bit complexity of Algorithm 2.20 is

Õ

(

n3

(

τ + log
1

sep(f)

)2
)

.

The coefficients of f need to be approximated with O(n(logn+ τ + log 1
sep(f))) bits after

the binary point.

Compared to [MS09], we also replaced s(f) by sep(f) in Theorem 2.6.5. This is done
for later convenience, but requires a justification.

Lemma 2.6.6. For a square-free polynomial f , sep(f) ≤ 2s(f)

Proof. Assume that sep(f) > 2s(f). This implies that there is some non-real root α with

an imaginary part smaller than sep(f)
2 . This is already a contradiction, since its distance

to the complex conjugate (which is also a root) is smaller than sep(f).

18Of course ‖f‖1 cannot be known exactly and must be bounded from above in the algorithm
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2.6.2. Variants of the bitstream-Descartes method

A crucial prerequisite of the Descartes and bitstream-Descartes methods was the square-
freeness of the input polynomials. The termination condition for the Descartes method
does not apply anymore for a multiple real root. Also, applying the bitstream-Descartes
method appears hopeless, since a double root might turn into a pair of non-real roots, no
matter how closely we approximate the exact polynomial.

Still, we will frequently face non-square-free polynomials and we want to treat them
using the bitstream-Descartes method. To give a motivation, consider an algebraic curve
V (f) with a defining bivariate integer polynomial f . We have discussed critical x-coordinates
of V (f), which are algebraic numbers in general. Let α be such a value. A crucial opera-
tion in our arrangement algorithm will be to compute the fiber of f at α. The polynomial
f(α, y) has algebraic coefficients; we wish to apply the bitstream-Descartes method to it
instead of the usual Descartes method to avoid symbolic computations. However, f(α, y)
has multiple roots since α is a critical x-coordinate.

What can be done for non-square-free polynomials? One possible way out is to com-
pute its square-free part initially, and apply Algorithm 2.20 to it. But this has several
disadvantages. First of all, computing the square-free part can be a costly operation for
polynomials with algebraic coefficients, and the coefficients of the square-free part might
be considerably more complicated. Another issue is that, depending on the coefficient type
of the polynomial, computing a gcd, and thus the square-free part, might be impossible.

We take a different approach. The overall idea is that some additional information
about the polynomial is accessible from a different source. This information usually arises
out of symbolic computations, but they are less costly than computing the square-free part.
Then, the bitstream-Descartes method is applied to the (non-square-free) polynomial, but
with a modified termination condition. We describe two variants of this approach. Both
might appear somewhat artificial upon first reading – their design is strongly coupled to
our algorithm for the analysis of algebraic curves, which follows in Section 3.2. Still, we
decided to discuss them already in this chapter, because they are, after all, root isolation
algorithms, and might be useful in other applications as well.

m-k-bitstream-Descartes

Given f ∈ R[t], not necessarily square-free, assume that we additionally know the quanti-
ties:

m := # {α ∈ R | f(α) = 0}
k := deg gcd(f, f ′).

We describe a method, called m-k-bitstream-Descartes method to isolate the real roots of f .
As with the usual bitstream-Descartes method, we will only use coefficient approximations
of f . There is no global success guaranteed for the algorithm – it might fail in certain
situations. However, we will prove that it always terminates and, if f has at most one
multiple root over C, the algorithm never fails, which means that the isolating intervals
have been computed.

The algorithm was first described in the author’s Master’s thesis [Ker06], and has
been used to compute the geometric-topological analysis of curves [EKW07] and sur-
faces [BKS08]. In [MS09], the deterministic version of it has been discussed, and a com-
plexity analysis has been provided.
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For a simplified introduction, we assume for the moment that the input polynomial
f is given by exact integer coefficients so that the exact sign variation of an interval can
be obtained. In this case, the algorithm is relatively straightforward to formulate. Apply
the Descartes method (Algorithm 2.9) on the non-square-free f . If, during the execution,
there are already m−1 intervals in the output list (i.e., intervals with sign variation 1) and
the queue of active intervals Q contains only one remaining interval, then this last interval
is appended to the output list, and the method stops by returning the output list (we call
this termination condition the m-case, or success condition). If, during the subdivision, all
intervals in the queue have a sign variation of less than k + 1, the method is interrupted
and returns a failure indicator (we call this the k-case or failure condition).

This method always terminates: Because of Theorem 2.4.30 (Obreshkoff’s Theoerem),
each root of f is eventually contained in an interval whose sign variation equals the mul-
tiplicity of the root. Assume that the subdivision is in this state. We distinguish two
cases. If f has at most one multiple root over R, the success condition is clearly satisfied,
and the algorithm terminates. If f has more multiple roots, each of them has a multi-
plicity of less than k + 1 because each multiple root α contributes mult(α, f) − 1 ≥ 1 to
k = deg gcd(f, f ′). Thus, in this case, the failure condition is satisfied. Note that in this
argument, we heavily rely on the fact that the subdivision tree is explored in a BFS-like
manner; using a DFS strategy would lead to infinite refinement in the presence of multiple
roots.

Observe that if f has exactly one multiple root α over C, the failure condition is never
satisfied, because in this case α ∈ R, and mult(α, f) = k + 1, thus there is always one
interval that counts k + 1.19 It follows that, indeed, the method is always successful for
polynomials with only one multiple complex root.

What are the problems when transporting this idea into the bitstream framework?
A multiple root of f (say, of multiplicity ℓ) transforms into up to ℓ roots of f∗, real or
non-real, simple or multiple. Still, all these roots are in a 9 n

√
µ neighborhood around the

multiple root of f , and if the intervals are sufficiently large, all roots of f∗ arising from the
multiple root are counted.

Definition 2.6.7 (long interval). An interval is called long if its width is at least 18n n
√
µ.

Theorem 2.6.8. For a long interval I with midpoint mI , it holds that

# of roots of f in Uw(I)/2n(I) ≤ Var(f∗, I+) ≤ # of roots of f in U6nw(I)(mI).

Proof. See [MS09, Theorem 14].

Thus, for a long interval I containing a root of f of multiplicity ℓ, Var(f∗, I+) ≥ ℓ, so
we can not “lose” a multiple root of f when subdividing with respect to f∗, even if all roots
become non-real. The next lemma states that simple roots of f are basically detected as
in the square-free case.

Lemma 2.6.9. Let I be a long interval with Var(f∗, I+) = Var(f∗, I) = 1. Then I ′ (as
defined in Theorem 2.6.3) is an isolating interval for a root of f .

Proof. See [MS09, Lemma 15].

19We leave out the easy-to-handle special case where the multiple root is hit by some subdivision point.
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These two results already recommend the bitstream version of the m-k-Descartes
method. We approximate f by f∗, with respect to some approximation parameter µ,
and subdivide the unit interval in the same manner as in Algorithm 2.20. An isolating
interval I is identified if both I and I+ have sign variation 1. Moreover, we consider all
active intervals (i.e., those intervals I with Var(f∗, I+) > 1). If all these intervals show
a sign variation of k or less, a failure indicator is returned (the k-case). Otherwise, let
J denote the convex hull of all active intervals, that is, the smallest interval containing
all active intervals. J is known to contain all multiple real roots of f , according to The-
orem 2.6.8. If exactly m − 1 simple roots with isolating intervals I ′1, . . . , I

′
m−1 of f have

been detected, and J is disjoint from each I ′j , then J is known to be isolating, because the
total number of roots is known to be m (the m-case). Once the subdivision produces an
interval of width less than 18n n

√
µ, µ is squared, and the subdivision process restarts with

an improved approximation polynomial f∗.
A special treatment is required if f∗ vanishes at a subdivision point. It is not clear a

priori whether such a root of f∗ corresponds to a simple or multiple root of f . However,
it is known to correspond to a simple root if both the left and right neighboring intervals
Iℓ and Ir satisfy Var(f∗, I+

ℓ ) = 1 = Var(f∗, I+
r ) ([MS09, Lemma 15]). Thus, the algorithm

stores the vanishing subdivision points separately, and if such a subdivision point m has
no adjacent active interval, [m− 9 n

√
µ,m+ 9 n

√
µ] is added to the list of isolating intervals

for the simple roots.

The pseudo-code formulation is given in Algorithm 2.21 (see also [MS09, Alg.4] for
an alternative formulation). We introduce a flag CHECK in the interval queue Q. We
maintain the invariant that whenever CHECK is the first element in the queue, all further
elements are intervals of same length. In this situation, we check whether the intervals
have become short (then, we increase the precision and restart), or whether the m-case is
satisfied (then, we return isolating intervals), or whether the k-case is satisfied (then, we
return a failure indicator). Apart from that, the subdivision scheme is analogous to the
square-free case.

It is immediately apparent that a failure of the algorithm implies that f has more
than one multiple root. Indeed, if no active interval has a sign variation of k + 1, then
no root of multiplicity k + 1 exists and thus, f has at least two multiple roots. Also, if
intervals I ′1, . . . , I

′
m are returned, each interval is isolating and disjointness is enforced by

the algorithm, thus they form valid isolating intervals for the roots of f .

It is not clear yet that the algorithm always terminates. However, it appears quite
intuitive: Once µ is sufficiently small, the complex roots of f will not affect the sign
variation numbers, if intervals are of size ≈ 18n n

√
µ. Thus, in this situation, for each

interval I, the multiplicity of the real roots contained in I+ will be counted. Thus, either
the k-case will be detected, or J will only consist of the interval containing the multiple
root, plus some adjacent intervals, and will be disjoint from any other isolating interval.
The next theorem quantifies this intuition.

Theorem 2.6.10. Algorithm 2.21 terminates for

µ ≤ min

{(
s(f)

72 · 25n2

)n

, 2−7n

}

.

Proof. See [MS09, Theorem 17].
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Algorithm 2.21. The (deterministic) m-k-bitstream-Descartes method

Input: F ∈ R[t], m = # of real roots of f , k = deg gcd(f, f ′)
Output: Isolating intervals for all real roots of F , or a failure indicator

1: procedure m_k_bitstream_Descartes(F,m, k)
2: f ← F (4B(t− 1

2)) ⊲ Scaling
3: µ← 2−7n

4: Approximate each coefficient of f by µ‖p‖1

n+2 ; f∗

5: O∗ ← ∅;CO∗ ← ∅ ⊲ Isolating intervals and candidate output list
6: Q← {CHECK, (0, 1)} ⊲ interval queue, CHECK is a special flag
7: while true do
8: I ← first element of Q. Remove I from Q
9: if I = CHECK then ⊲ all intervals in A have same length

10: If intervals in Q are short, set µ← µ2 and goto 4
11: for [p, p] ∈ CO∗ do ⊲ Check singleton intervals for simpleness
12: if no interval in Q has p as boundary, move [p, p] from CO∗ to O∗

13: end for
14: if Var(f∗, I+) for all I ∈ Q, return a failure indicator ⊲ the k-case
15: J ← the convex hull of all intervals in Q.
16: if O∗ contains exactly m−1 intervals I1, . . . , Im−1 and J is disjoint from all

Ij then, return 4B(I ′1 − 1
2), . . . , 4B(I ′m−1 − 1

2), 4B(J − 1
2) ⊲ the m-case

17: end if
18: Append CHECK at the end of Q
19: else ⊲ I = (c, d) is an interval
20: if Var(f∗, I+) > 1 then
21: m← c+d

2
22: if f(m) = 0, append [m,m] to CO∗

23: Append (c,m) and (m, d) to Q
24: else if Var(f∗, J) = 1, append I to O∗

25: end if
26: end if
27: end while
28: end procedure

This bound is the essential ingredient for the complexity analysis of Algorithm 2.21,
which works analogously to the square-free case (Algorithm 2.20). The simple idea is
that both methods produce exactly the same subdivision tree for any fixed approximation
parameter µ. One obtains (again assuming asymptotically fast Taylor shifts):

Theorem 2.6.11. Let f =
∑
ait

i ∈ R[t] be a polynomial with |lcf(f)| ≥ 1, and |ai| < 2τ−1

for all i. In case of both success and failure, the bit complexity of Algorithm 2.20 is

Õ

(

n3

(

τ + log
1

sep(f)

)2
)

.

The coefficients of f need to be approximated with O(n(τ+log 1
sep(f))) bits after the binary

point.
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We remark that the costs for obtaining the approximation polynomial, that is, for
approximating the coefficients of the bitstream polynomial f , is not counted by Theo-
rem 2.6.11. For a concrete application, it must be analyzed separately to find out how
costly it is to get O(n(τ + log 1

sep(f))) bits of each coefficient.

Oracle-bitstream-Descartes

So far, we have not been able to isolate the real roots of (bitstream) polynomials with more
than one multiple root. The m-k-Descartes method terminates with a failure in this case.
We present yet another subdivision method that works for any case, but that also requires
more precomputed information about the polynomial. The requirements of the method
are quite specialized, and adapted to a situation arising during the topological analysis of
an algebraic curve (see Section 3.2.3).

For simplicity, we first look at an integer polynomial f ∈ Z[x] again. f might have an
arbitrary number of multiple roots, and our method will compute isolating intervals for its
real roots, (without making f square-free beforehand). As additional input, it requires a
triple (m, oS , s) satisfying the following properties

• m is the total number of real roots (as in the m-k-Descartes method)
• Let S ⊂ V (f) be a subset of the real roots of f . oS is a function (we call it oracle)

that maps an interval I ⊂ R to a Boolean b ∈ {0, 1} and indicates whether I contains
at least one root in S.
• s is the number of elements in S
• All roots of f that are not in S have odd multiplicity

Less technically, we have s special roots of f (which form the set S), and we have an oracle
oS that tells us whether an interval contains a special root. All non-special roots must be
of odd multiplicity.

How does this input help to isolate the roots? Assume first that s = m. Then,
the method is trivial. Just subdivide until m disjoint intervals are found for which the
oracle oS returns 1. At the other extreme, assume that s = 0. Then all roots must be
of odd multiplicity, and the method is also simple: Subdivide until m disjoint intervals
with odd sign variation are detected. Such intervals must contain a real root according
Theorem 2.4.26 (Descartes’ rule of signs).

In general, the method works as follows. Start the subdivision, as usual, and during
the execution check each interval using the oracle oS for the presence of a special root.
Stop the subdivision if there are precisely s disjoint intervals containing special roots and
further (m−s) disjoint intervals that all have an odd sign variation. Returns those special
and odd intervals as isolating intervals.

It should not be hard to see that this method works correctly, assuming that the input
has the postulated requirements. Also, observe that the method returns as soon as the
algorithm has computed a collection of isolating intervals for the real roots of f (this is
not the case for the usual Descartes method, because an isolating interval might be further
refined due to non-real roots close that are close to the real interval).

How to transfer this into the bitstream model? The basic structure of the bitstream
version is the same as in the bitstream-Descartes, or the m-k-bitstream-Descartes case.
We subdivide the unit interval with respect to a (scaled) approximation polynomial f∗

with approximation parameter µ, and proceed as long as all intervals are long, that is, of a
width of at least 18n n

√
µ. During the subdivision, we maintain a set of active intervals. As
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before, an active interval I is defined by Var(f∗, I+) > 1. Along the way, we also detect
simple intervals, that is, intervals satisfying Var(f∗, I) = Var(f∗, I+) = 1 which are stored,
but no longer subdivided. Moreover, f∗ might vanish at subdivision points. We call an
interval interesting if it is simple, active, or adjacent to a vanishing subdivision point.

The interesting intervals decompose into connected components in the obvious way (to
be precise, we have to take the closure of each interesting interval, i.e., we look at [c, d]
instead of (c, d)). We call these components clusters. Obviously, each cluster is an interval
again, and no root of f∗ lies at the boundary of a cluster. We assign the variation vJ for
each cluster J as follows. Let I1, . . . , Id be the interesting intervals belonging to J , and
p1, . . . , pd−1 the interior boundary points. Then

vJ :=
∑

k=1,...,d

Var(f∗, Ik) +
∑

k=1,...,d−1

mult(f∗, pi).

We stop the subdivision if some interval is subdivided to size smaller than 18n n
√
µ (in

this case, µ is squared and the method is repeated with a better f∗), or if the following
success conditions are both satisfied:

1. There are exactly s clusters for which oS returns 1 (i.e., the special roots are disjoint)
2. There are exactly (m− s) clusters with odd variation vJ for which oS returns 0

In this case, the s special clusters and the remaining (m− s) odd clusters, all extended by
9 n
√
µ to both sides,20 are returned as isolating intervals.

Lemma 2.6.12. If vJ is odd for a cluster J , then J ′, the extension of J by 9 n
√
µ to both

sides, contains a real root of f .

Proof. Since vJ is odd, f∗ has an odd number of real roots inside J (counted with multi-
plicity). When transforming from f∗ to f , real roots stay real or can only become complex
pairwisely (and vice versa). Note that J has a distance of at least 18n n

√
µ > 18 n

√
µ from

any other cluster because at least one non-interesting interval must separate them and
each considered interval is long. Therefore, roots within J cannot pair with roots from
different clusters when transforming f∗ to f . Hence, the parity of the number of real roots
remains the same. For that reason, at least one root of f∗ remains real, and it can only
move up to 9 n

√
µ away from J .

Lemma 2.6.13. If the success condition from above is satisfied with J1, . . . , Js special
clusters, and Js+1, . . . , Jm odd non-special clusters, then the extended intervals J ′

1, . . . , J
′
m

(by 9 n
√
µ to both sides) are disjoint, isolating intervals of f .

Proof. With the same argument as before, the extended intervals are disjoint, because
different clusters have a distance of at least 18 n

√
µ from each other. Moreover, each special

cluster contains a root of f , by the properties of oS , and each non-special odd cluster
contains a root by the previous lemma. Thus, we found m disjoint isolating intervals.

Note that more clusters might exist when the success condition is met, and yet real
roots of f∗ might be contained therein. However, it is certain that those are caused by
non-real roots of f and thus do not have to be further considered.

20The extension of the clusters is not always necessary. One only has to extend non-special clusters that
consist only of a simple interval. Still, we extend all clusters for simplicity.
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Algorithm 2.22. The (deterministic) oracle-bitstream-Descartes method

Input: F ∈ R[t], m = # of real roots of f , oS to identify special roots, s =
#ofspecialroots
Output: Isolating intervals for all real roots of F

1: procedure oracle_bitstream_Descartes(F,m, oS, s)
2: f ← F (4B(t− 1

2)) ⊲ Scaling
3: µ← 2−7n

4: Approximate each coefficient of f by µ‖p‖1

n+2 ; f∗

5: O∗ ← ∅;CO∗ ← ∅
6: Q← {CHECK, (0, 1)} ⊲ interval queue, CHECK is a special flag
7: while true do
8: I ← first element of Q. Remove I from Q
9: if I = CHECK then ⊲ all intervals in A have same length

10: If intervals in Q are short, set µ← µ2 and goto 4
11: Form disjoint clusters J1, . . . , Jk with respect to Q ∪O∗

12: if oS(Ji) = 1 for s clusters Ji1 , . . . , Jis and oS(Ji) = 0∧ vJi
is odd for m− s

clusters Jis+1 , . . . , Jim then
13: return 4B(J ′

i1
− 1

2), . . . , 4B(J ′
im
− 1

2) as isolating intervals
14: end if
15: Append CHECK at the end of Q
16: else ⊲ I = (c, d) is an interval
17: if Var(f∗, I+) > 1 then
18: m← c+d

2
19: if f(m) = 0, append [m,m] to CO∗

20: Append (c,m) and (m, d) to Q
21: end if
22: if Var(f∗, J) = 1 = Var(f∗, I+), append I to O∗

23: if Var(f∗, J) = 0 and Var(f∗, I+) = 1 and I has a boundary point in CO∗,
append I to O∗

24: end if
25: end while
26: end procedure

The pseudo-code for the oracle-bitstream-Descartes method is given in Algorithm 2.22.
As for the m-k-bitstream-Descartes method, a special flag CHECK is stored in the interval
queue. It is ensured in that way that the termination condition is checked whenever all
active intervals have the same width. The set O∗ does not only store isolating intervals
for simple roots, as in the m-k-case, but also non-active intervals that have a root of f∗ as
one of its endpoints.

We have already argued above that the returned intervals are correct if the success
condition is met. We have to argue that this condition will always be met for a good
enough approximation. We can use the same bound as in the m-k-Descartes case. We
define the threshold µ0 to be

µ0 := min

{(
s(f)

72 · 25n2

)n

, 2−7n

}
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We will see that the algorithm computes isolating intervals for any µ ≤ µ0. What is the
motivation for defining the threshold µ like this? We call an interval I almost short, if
L0 ≤ w(I) < 4L0 with L0 := 18n n

√
µ. If µ < µ0, it follows that 4L0 · 6n ≤ s(f)

4 , so

I ⊆ U6nw(I)(mI) ⊆ Us(f)/4(mI)

with mI the midpoint of I for any almost short interval I. In this situation, we have that

Theorem 2.6.14. Let µ ≤ µ0, and let I be almost short. If Us(f)/4(mI) contains a root of
f of multiplicity k, Var(f∗, I+) ≤ k. If it does not contain any root, Var(f∗, I+) = 0.

Proof. This is a direct consequence of Theorem 2.6.8 and of the choice of µ0.

If follows that if µ ≤ µ0, and I is almost short with Var(f∗, I+) 6= 0, we can assign to
I a unique real root α of f that causes the counting. We say that I is triggered by α.

Lemma 2.6.15. Let I1 and I2 be two interesting intervals triggered by two different roots
α1 and α2 of f . Furthermore, for i = 1, 2, let L0 ≤ w(Ii) < 4L0, if Ii is active, and let
I1 and I2 be of same size, if both are active. In this case, I1 and I2 are not adjacent and
have a distance of at least L0 from each other.

Proof. To distinguish cases, we first let both I1 and I2 be non-active. Since I1 is interesting,
Var(f∗, I+

1 ) = 1, and either Var(f∗, I1) = 1 or f∗ vanishes at a boundary. Thus, f∗ has a
root in the closure of I1. The same holds for I2. W. l. o. g., let w(I1) ≥ w(I2). If I1 and I2
are adjacent, I2 ⊂ I+

1 , thus Var(f∗, I+
1 ) ≥ 2, which is a contradiction.

Let I2 be active, thus L0 ≤ w(I2) < 4L0 by assumption. If w(I1) > w(I2), I1 is not
active by assumption, and is at least twice as large as I2. If they are adjacent, it follows
that I+

2 ⊂ I+
1 and thus Var(f∗, I+

1 ) ≥ Var(f∗, I+
2 ) ≥ 2, which contradicts the fact that I1

is not active.

It remains the case that I2 is active, and w(I1) = w(I2). Assume for a contradiction
that I1 and I2 are adjacent. Then, their midpoints have a distance of at most 4L0 =
72n n
√
µ ≤ s(f)

25 . The same bound holds for the width of I1 and I2. By triangle inequality,
|α1 − α2 ≤ 3

25s(f), s(f), which is clearly a constradiction.

This proves that at least one cluster exists for each root of f . We only have to argue
that each root of odd multiplicity causes a cluster J with odd variation vJ .

Lemma 2.6.16. Let µ ≤ µ0 as before, and let α be a root of f with odd multiplicity. Then,
there exists a cluster J of almost short intervals triggered by α such that vJ is odd, and
J ′ (the extension of J by 9 n

√
µ to both sides) contains α.

Proof. If α is a simple root of f , it follows easily that the cluster triggered by α is unique,
and consists either of one interval (if the corresponding root of f∗ is in the interior of some
subdivision interval), or of two intervals (if the root of f∗ is hit by a subdivision point).
In both cases, vJ = 1, and J ′ contains α.

Let α be a multiple root of odd multiplicity ℓ, and let I be the interesting interval that
contains α. Clearly, Var(f∗, I+) = ℓ, thus I lies within some cluster triggered by α. Let
α∗

1, . . . , α
∗
k denote the real roots of f∗ that originate from α; the sum of their multiplicities

must be odd as well. Those roots can only be contained in I itself, at the boundaries of I,
or in adjacent intervals. If an adjacent interval contains one of the α∗

i ’s, it is interesting,
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and if a boundary contains one of these roots, the adjacent interval is interesting as well.
Thus, the cluster J around I counts all roots α∗

j in its variation vJ . Moreover, there cannot
be any further roots of f∗ in the cluster J , since this would imply that some interval in
the cluster is triggered by another root of f which contradicts Lemma 2.6.15. Thus, vJ is
odd and J ′ ⊃ J contains α.

The complexity analysis is analogous to the m-k-bitstream-Descartes case. Again, for
a concrete µ, Algorithm 2.22 produces the same subdivision tree as the square-free version,
and the same threshold on µ is used as in the m-k-version:

Theorem 2.6.17. Let f =
∑
ait

i ∈ R[t] be a polynomial with |lcf(f)| ≥ 1 and |ai| < 2τ−1

for all i. The bit complexity of Algorithm 2.20 is

Õ

(

n3

(

τ + log
1

sep(f)

)2
)

.

The coefficients of f need to be approximated with O(n(τ+log 1
sep(f))) bits after the binary

point.

Note that the cost for obtaining the coefficients is again not accounted here. Addition-
ally, the costs to evaluate the “oracle” oS are not considered here, and have to be analyzed
separately in the concrete application.

2.6.3. Root refinement

We revisit the problem of finding an isolating interval of width ε (strong root isolation, see
Section 2.5.2) in the case of a bitstream polynomial f . We consider two different scenarios:
first, we consider the complexity of refining all real roots of f to width ε (in analogy to
Section 2.5.2). Second, we analyze the problem when refining only a subset of the roots
of f .

Our methods will especially apply for all variants of the Descartes method for bitstream
polynomials, that is, the usual bitstream-Descartes method for square-free polynomials
(Algorithm 2.20), the m-k-bitstream-Descartes method (Algorithm 2.21), and the oracle-
bitstream-Descartes method (Algorithm 2.22).

Assume that an additional ε is given and that it is required that isolating intervals are
of a width of at most ε. All three versions of the bitstream-Descartes method can be easily
modified for this situation. The only differences are: intervals that are known to contain a
simple root (formally, where Var(f∗, I) = Var(f∗, I+) = 1) are further refined, and, if any
of the algorithms reaches a state where it would return isolating intervals, it additionally
checks whether all returned intervals are of a size of at most ε, and if any of them is still
too large, it keeps on subdividing

Looking at the square-free case first, it is not hard to prove a threshold on µ for which
intervals of size ε can be guaranteed.

Lemma 2.6.18. Let ε′ := ε
4B , where B is the root bound used in the bitstream-Descartes

method (Algorithm 2.20). If the method is modified as explained above, and

µ ≤ min

{

2−7n,

(
s(f)

63n

)n

,

(
ε′

72n

)n}

,
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isolating intervals of size ε are produced.

Proof. It follows from Lemma 2.6.4 that isolating intervals are computed for such a choice
of µ. The subdivision reaches a situation where the interval widths are between 18n n

√
µ

and 36n n
√
µ. In this situation, each isolating interval satisfies

w(I) ≤ 36n n
√
µ ≤ 36n

ε′

72n
≤ ε′

2
.

Furthermore, 9 n
√
µ < ε′

4 , and so, when extending I by 9 n
√
µ on both sides, the resulting

interval I ′ is of width less than ε′. This interval is now scaled by 4B such that its width
increases by the same factor and thus, the scaled interval has size less than ε.

For the variants dealing with multiple roots, there is one complication in the analysis.
Isolating intervals for non-simple roots are formed by unions of subdivision intervals (recall
the clusters in the oracle method) and thus, isolating intervals might be larger than the
smallest possible long interval with respect to the current approximation value µ. However,
as we show next, it cannot be much larger than that.

Lemma 2.6.19. Let f∗ be a µ-approximation of f with

µ ≤ µ0 := min

{(
s(f)

72 · 25n2

)n

, 2−7n

}

,

let L0 = 18n n
√
µ, and let all subdivision intervals be of the same size and almost short.

Then, each cluster of interesting intervals is of a size of at most 32L0.

Proof. We are in the situation to apply Theorem 2.6.14. Each interval I with Var(f∗, I+) ≥
1 is triggered by a unique real root α that is in a distance of at most s(f)

4 from the interval
midpoint mI .

Assume that I is an interesting interval within the cluster for α and |mI − α| > 14L0,
thus, there are at least three almost short intervals between mI and α. All roots of f∗

that arise out of α are either contained in the same interval or in a neighboring interval.
Thus, none of them can move into the complex circle with diameter I+. This contradicts
the assumption that α triggers the interval I. It follows that the midpoint of each interval
in the cluster has a distance of at most 14L0 from α. Thus, the cluster can not expand
more than 16L0 to either side, that yields 32L0 in total.

The same proof shows that in the m-k-bitstream-Descartes method, the convex hull J
of all active intervals is bounded by 32L0 for µ ≤ µ0.

Lemma 2.6.20. Let ε′ := ε
4B , where B is the root bound used in the m-k-bitstream-

Descartes method (Algorithm 2.21) and in the oracle-bitstream-Descartes method (Algo-
rithm 2.22). If the methods are modified as explained above, and

µ ≤ min

{

2−7n,

(
s(f)

72 · 25n2

)n

,

(
ε′

64 · 36n

)n}

,

isolating intervals of size ε are produced.
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Proof. The proof is analogous to the square-free case. It follows by Lemma 2.6.4 that
isolating intervals are computed for such a choice of µ (or, for the m-k-bitstream-Descartes
method, a failure has been reported). The subdivision reaches a situation where the
interval widths are between 18n n

√
µ and 36n n

√
µ. In this situation, each isolating interval

satisfies

w(J) ≤ 32 · 36n n
√
µ ≤ ε′

2
.

Furthermore, 9 n
√
µ < ε′

4 , and so, when extending I by 9 n
√
µ on both sides, the resulting

interval I ′ is of a width less than ε′. This interval is now scaled by 4B such that its width
increases by the same factor and thus, the scaled interval has a size less than ε.

Theorem 2.6.21. Let ε > 0, let f =
∑
ait

i ∈ R[t] be a polynomial with |lcf(f)| ≥ 1, and
let |ai| < 2τ−1 for all i. The bit complexity of computing isolating intervals of width at
most ε using an adaption of Algorithm 2.20, 2.21, or of 2.22 is

Õ

(

n3

(

τ + log
1

sep(f)
+ log

1

ε

)2
)

.

The coefficients of f need to be approximated with O(n(τ + log 1
sep(f) + log 1

ε )) bits after
the binary point.

Proof. We can mainly use the same complexity analysis as in [MS09]. For a concrete µ, the
size of the subdivision tree is easily seen to be O(n log 1

18 n
√
µ) = O( 1

µ), similar to [MS09,

Lemma 12]. Furthermore, f∗ has coefficients of a bitsize of at most O(nτ + log 1
µ), and

in each node of the tree, the bitsize grows by n bits. This yields a maximal bitsize of
O(nτ + log 1

µ) and with Õ(n) arithmetic operations per node, one obtains

Õ(log
1

µ
n(nτ + log

1

µ
)) (2.5)

as the cost for a particular µ. The iteration ends for log 1
µ = O(n(log n+ τ + log 1

sep(f) +

log 1
ε )). The result follows by substituting this equation into (2.5).

If we do not want to refine all roots to width ε but only a selection of k roots, the
complexity basically decreases from Õ(n3 · · · ) to Õ(kn2 · · · ). The algorithmic approach
suggests itself: refine each of the k isolating intervals until they are of size smaller ε.
However, there is a slight complication: it might happen that an isolating interval (formed
by a cluster or a convex hull of active intervals) splits into several parts after further
subdivision. This can happen if some active interval in the cluster also counts roots of f∗

that arise from non-real roots of f . (our assumption that each cluster is triggered by a
unique root of f is only used for the worst-case analysis – practically, the algorithm might
terminate with some µ > µ0, for which this property is not guaranteed). In this case, one
has to simultaneously refine all active parts until all parts that were caused by non-real
roots of f finally vanish.

Considering the complexity analysis of the isolation process, we bound its complexity
by assuming that µ reaches a value where each active interval is triggered by a real root
of f . Thus, if we initially assume this complexity for root isolation, we can assume that
all occurrences of such split events of isolating intervals are already accounted for by this
bound.
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Theorem 2.6.22. Let f be a polynomial with roots α1, . . . , αs, and ε > 0. To compute
isolating intervals of width of at most ε for a selection of k real roots of f requires

Õ

(

n3

(

τ + log
1

sep(f)

)2

+ kn2

(

log
1

ε

)2
)

.

The coefficients of f need to be approximated with O(n(τ + log 1
sep(f) + log 1

ε )) bits after
the binary point.

Proof. The isolation of the roots determines the cost of the first summand. The subsequent
refinement of k roots causes up to k log 1

ε additional leaves. Because the arithmetic costs

per node are Õ(n), and the maximal bitsize is bounded by n(τ + log 1
sep(f) + log 1

ε ), the
result follows.

2.6.4. Multiplicity of an isolating interval

We have learned about isolation and refinement techniques for polynomials with multiple
roots. Do these methods also provide information about the multiplicities of the roots
they compute? The answer is yes, partially. We can easily assign a multiplicity to each
isolating interval which forms an upper bound for the multiplicity of the unique contained
root. We will also see that, for a sufficiently good approximation, this multiplicity will
correspond to the exact multiplicity of the root.

The isolating intervals that are returned by any of our bitstream-Descartes variants are
always extensions by 9 n

√
µ on both sides of an interval J . There are several possibilities

for J :
• J is an interval for which Var(f∗, J) = 1 and Var(f∗, J+) = 1, thus, it corresponds

to a simple root. Consequently, we set mJ := 1.
• J is a cluster consisting of several subdivision intervals I1, . . . , It with respect to an

approximation polynomial f∗. In this case, set mJ := maxj=1,...,t Var(f∗, I+
j ).

• J is the convex hull of all active intervals I1, . . . , Ik. In this case again, set mJ :=
maxj=1,...,t Var(f∗, I+

j ).

Lemma 2.6.23. Let α be the root of f represented by the isolating interval I ′, and let m
denote its multiplicity. Then mI′ ≥ m.

Proof. The statement is trivial for simple isolating intervals, thus, we assume that I is
formed by the union (or convex hull) of active intervals in the subdivision. There is some
active subdivision interval Iα contained in I which contains α. From Theorem 2.6.8,
Var(f∗, I+

α ) ≥ m, and thus mI′ ≥ m follows.

Lemma 2.6.24. Let

µ ≤ µ0 := min

{(
s(f)

72 · 25n2

)n

, 2−7n

}

,

and let f∗ approximate f accordingly. Assume that J ′ is an isolating interval such that J
is formed by intervals of width of at most 4L0 = 72 n

√
µ. Then mI′ = m.

Proof. If µ is that small, we have seen that each active interval Ij of J is triggered by some
real root α of f and thus, Var(f∗, I+

j ) can count at most the multiplicity of the root that
triggered Ij . Since all sub-intervals of J are triggered by α, it follows that mJ ′ ≤ m.
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Lemma 2.6.25. Let f be a polynomial whose roots are isolated and refined by any of the
bitstream-Descartes variants. After

Õ

(

n3

(

τ + log
1

sep(f)

)2
)

bit operations, the multiplicity of each isolating interval corresponds to the multiplicity of
the contained root of f .

Proof. This is clear by the bound on µ given in the previous lemma.

Note that we do not aim for an algorithm that actually returns the multiplicity of any
roots (it even appears impossible to write down such an algorithm without further knowl-
edge about the polynomial, because a lower bound of the separation of f is required).
Instead, we will design an algorithm that refines all isolating intervals in a loop whose
termination condition depends on the multiplicities. It is guaranteed that the loop termi-
nates at the latest when the correct multiplicity is counted in all intervals. Lemma 2.6.25
allows us to bound the worst-case cost of such a loop.

Summary

The bitstream-Descartes method allows us to isolate the real roots of a polynomial whose
coefficients are of arbitrary nature. They only need to be approximable to arbitrary preci-
sion. This allows us, for instance, to compute the fiber of a bivariate polynomial f(x, y),
at a non-critical x-coordinate α. Variants of the algorithm even render possible the isola-
tion of polynomials with multiple roots, assuming the knowledge of additional information
about the polynomial. The intervals thus obtained can also be refined to arbitrarily small
size by further subdivision with increased precision.
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Arithmetique! Algebre! Géometrie! Trinité grandiose! Triangle lumineux!
Celui qui ne vous a pas connues est un insensé!
(Arithmetic! Algebra! Geometry! Grandiose trinity! Luminous triangle! Who-
ever has not known you is without sense!)

Comte de Lautréamont

3
Arrangements of Algebraic Plane Curves

We turn to the first main result of this thesis. For a set of algebraic curves, we aim for an
algorithm to compute the arrangement induced by these curves.

Definition (arrangement). Given a set of input objects s1, . . . , sn ⊂ R2, define for p ∈ R2

the set o(p) := {si | p ∈ si}. The (planar) arrangement A(s1, . . . , sn) is the subdivision of
the plane into connected point sets with invariant o(p). The components (or cells) of an
arrangement of dimension 0, 1, and 2 are called vertices, edges, and faces, respectively.

If the input objects are algebraic curves, a point p belongs to a face if and only if
o(p) = ∅. If the input curves are non-overlapping, that is, each pair of curves intersects in
finitely many points, a point p belongs to an edge if and only if |o(p)| = 1.

We show how to implement the basic geometric operations on points and segments
needed by the generalized version of the sweep-line method of Bentley and Ottmann [BO79]
to compute the arrangement of segments of algebraic curves of arbitrary degree. Our
approach produces the exact result in all cases, including all degeneracies, following the
EGC paradigm, but we also aim for efficiency, using a judicious combination of symbolic
and adaptive-precision numeric computations.

We realize the geometric primitives by reducing them to two types of a geometric-
topological analysis: the curve analysis computes the fiber of a curve at critical positions
and the connections between points on different fibers. Its output yields a segmentation of
the curve, as defined in Definition 2.2.13. The curve pair analysis computes the intersection
points of two curves and the vertical ordering of the fiber points at critical positions. These
analyses are closely related to the cylindrical algebraic decomposition of R2 with respect
to one curve or two curves (see Section 1.2).

A well-known problem in real algebraic geometry is the topology computation of an
algebraic curve. The goal is to compute an embedded straight-line graph G which is
isotopic (Definition 2.1.5) to the curve (equivalently, to compute an isocomplex for the
curve; compare Definition 2.1.8). The curve analysis constitutes a solution to this problem,
but it computes more than “just” the topology. Geometric information on the curve is also
available (for instance, the position of critical points), and the curve can be approximated to
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any precision, which is not true for most algorithms that compute the topology of curves.
The output can be considered as a stable isocomplex for the input curve, according to
Definition 2.1.8.

A complete complexity analysis of both the curve analysis and curve pair analysis is
given. For integer curves of degree n, whose coefficients are of a bitsize of at most 2τ , we
prove a complexity bound of

Õ(n10(n+ τ)2).

This matches the best bound on topology computation that is currently known. There-
fore, we show that our algorithmic approach does not worsen the complexity. although it
mainly relies on the isolation and refinement of algebraic numbers to reduces the amount
of symbolic computations and although additional geometric information is computed,

We implemented our algorithm and compared it to other approaches for computing
cads and topology. All details concerning the implementation and the experiments are
discussed in Chapter 4.

Our algorithm also accepts segments of algebraic curves as input instead of whole
curves. However, in this chapter, we will concentrate on complete curves as input for
simplicity. We assume that the input curves are given in implicit form, that is, by their
defining bivariate polynomial.

Related work: Arrangements are ubiquitous in computational geometry, and certainly
one of the best studied objects in the area. See the survey articles [AS00] [Hal97] for
a comprehensive overview of theoretical results, and of various applications in robotics,
molecular modeling, geometric optimization, and many more.

EGC algorithms for special cases of algebraic curve have been extensively consid-
ered. Sweep-line-based implementations exist for circular arcs [DFMT02] [WZ06], con-
ics [WZ06] [EKP+04], and Bezier curves [HW07]. Also, other special cases such as quartic
curves [CGV07] and non-singular curves of any degree [KCMK00] [Wol03] have been con-
sidered. The strategy of reducing arrangement computation to the analysis of curves
and curve pairs has already been presented in [EKSW06] and analyses for the case of
cubic curves are provided. This approach was implemented as part of the EXACUS li-
brary [BEH+05]. Later on, the same strategy was succesfully applied to compute arrange-
ments of other curve types in EXACUS: conics ([BEH+02] discusses an older version) and
projections of quadric intersections [BHK+05].

For the general case, Milenkovic and Sacks [MS07] compute an approximate solution
and prove, under certain assumptions about the underlying numerical solver, that there
exists a perturbation of the input which realizes the computed arrangement. Alberti et
al. [AMW08] give a solution that can handle both implicitly represented curves and para-
metric curves whereas our approach is restricted to implicitly defined curves.21 Their
approach is based on subdivision and computes the correct arrangement under the as-
sumption of a certified multivariate root solver. This root solver has to perform symbolic
computations, and thus, their approach suffers from the same practical limitations as ours
for high degrees. Also, no certified implementation of their algorithm is currently provided,
and a complexity analysis is missing.

21Parametric curves can, however, be turned into implicit curves by a technique called implicitiza-

tion [CLO97, §3].
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Computing the topology of a curve is a well-studied problem. Many approaches [BPR06,
§11.6] [DET09] [SW05] [GVN02] [GVEK96] [BPR06, §11.6] apply a shear transformation
(compare Definition 2.3.30) to arrive at an isotopic curve in generic position , which is
easier to handle. Other approaches preserve more geometric information on the curve;
see [CLP+09] [Hon96], and the approaches for computing a cad (with adjacency informa-
tion) from Section 1.2. Almost all of the mentioned algorithms work by first determining
the critical positions (either of the sheared or the original curve) – often called the pro-
jection step, and subsequently computing the fiber at critical positions – often called the
lifting step). The recent approach by Cheng et al. [CLP+09] is an exception. It first
identifies isolating boxes for the critical points of the curve, using a symbolic root solving
technique called rational univariate representation [Rou99], and then subdivides the plane
away from these boxes. In this way, the approach avoids computing complete fibers and
is less vulnerable to degenerate situations that arise from the choice of the coordinate
system, such as covertical critical points. We will compare our approach with theirs in
the experimental section. Another subdivision algorithm by Burr et al. [BCGY08] avoids
the use of root solvers completely: They first isolate the singular points of the curve using
the so-called evaluation bound, and then compute a mesh outside the singular regions,
using a variant of the algorithm by Plantinga and Vegter [PV07]. This approach seems
promising, as it is well-suited for topology computation within a certain range, and it
removes the bottleneck of all prior approaches; the symbolic computation of the critical
points; however, their algorithm uses a worst-case lower-bound of the evaluation bound,
which can highly overestimate the required precision to isolate the singular points (similar
to the constructive separation bounds discussed in Section 1.2). As long as theoretical and
experimental results on the method are missing, it is difficult to judge the quality of the
algorithm.

The time complexity for topology computation has also been studied for several ap-
proaches. For a curve of magnitude (n, τ), we set N := max{n, τ}. Arnon and Mc-
Callum [AM88] gave the first polynomial bound of O(N30). Gonzalez-Vega and Ka-
houi [GVEK96] improved this to Õ(N16) (with classical arithmetic), and Basu et al. [BPR06,
§11.6] prove Õ(N14). The best known bound has been given by Diochnos et al. [DET09],
namely Õ(N12). Their approach is purely symbolic and makes extensive use of the Sturm
sequence in various substeps. We will be able to prove the same bound for our approach,
although our algorithm is also focused on practical efficiency. Cheng et al. [CLP+09] state
a complexity of Õ(N26) for their method.

Outline of this chapter. The Bentley-Ottmann sweep-line algorithm and its geometric
primitives are explained in Section 3.1, as well as the reduction from the primitives to
curve analysis and curve pair analysis. The algorithms to provide these analyses are then
described in detail in Section 3.2 (one curve) and in Section 3.3 (curve pairs), as well
as their respective complexity analyses. For both methods, we heavily use the algebraic
concepts and algorithms provided in Chapter 2.

3.1. Arrangements by sweeping

We first describe the data structure that stores the output of our algorithm: the doubly-
connected edge list (Section 3.1.1). Then, we discuss the Bentley-Ottmann sweep-line
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algorithm for general x-monotone segments (Section 3.1.2) and introduce the set of re-
quired geometric primitives. In Section 3.1.3, we explain how points and segments on
algebraic curves can be represented, and finally in Section 3.1.4, we show how the ge-
ometric primitives of the sweep reduce to the analysis of single curves and of pairs of
curves.

3.1.1. The doubly-connected edge list (Dcel)

We present the doubly-connected edge list, Dcel for short, our data structure to represent,
query, and manipulate planar arrangements. Since its combinatorial aspects are not the
focus of this work, we only state its main characteristics for context. A discussion of the
data structure at the undergraduate level can be found in [dBvKOS00, §2.2]. Full details
are provided in [Ber08] and [KC08].

A Dcel stores three types of records, namely vertices, halfedges, and faces. A halfedge
represents a directed edge connecting two vertices. There always exists a twin halfedge that
points in the other direction. Thus, vertices, twin pairs of halfedges, and faces represent 0-,
1-, and 2-dimensional cells of the subdivision, respectively. The Dcel contains methods
to iterate through the list of vertices, the list of halfedges, and the list of faces. Each cell
has additional data that relates it topologically to the other cells of the subdivision.

Halfedge: Each halfedge stores a pointer twin to its twin, a pointer source to its source
vertex, a pointer face to the (unique) face that is adjacent to the halfedge and a
pointer next to the next halfedge that is adjacent to the same face.

Vertex: Each vertex v stores a pointer halfedge whose source vertex is v. If no such
halfedge exists, v stores a pointer face for its surrounding face.

Face: Each face f stores a pointer outer to a halfedge that is part of the bounding cycle
of the face.22 Moreover, it stores two lists for holes in the face, that is, connected
components in its interior. The first list stores pointers to isolated vertices. The
second stores pointers to halfedges whose face pointer points to f , and such that
each halfedge lies on a disjoint cycle that bounds a hole inside f .

Besides the described data, vertices, halfedges and faces can also be equipped with
additional data fields. For instance, it might be useful to store the coordinates of a vertex,
or sample points of (half)edges to provide more geometric information about the Dcel.

3.1.2. The Bentley-Ottmann sweep-line algorithm

We revise the well-known sweep-line algorithm to compute arrangements of linear or curved
segments. It was first presented by Bentley and Ottmann [BO79]; a detailed report on its
implementation in the LEDA library (for line segments) can be found in [MN00, §10.7].

The sweep-line algorithm requires its input to be decomposed into x-monotone seg-
ments as defined in Definition 2.2.12. Note that this definition allows vertical segments,
unbounded segments, and isolated points as sweepable segments. Such special situations
must be handled by a complete approach, but we assume for simplicity in our explanation
that segments are bounded and non-vertical.

Conceptually, the sweep-line algorithm sweeps the plane with a vertical line ℓ from left
to right and records features of the arrangement as ℓ passes over event points, that is,

22By using the next pointer of halfedges, the whole cycle is accessible.
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Figure 3.1. On the left: Schematic view of a Dcel vertex v0, having an additional
data field for its geometric embedding in R2. The halfedges with source vertex v0
are denoted by e1, . . . , e4. Assume that halfedge(v0) = e1. To iterate through the
halfedges starting in v0, one repeatedly calls next(twin(e)), starting with e1. Note
that this indeed yields the sequence e1, e2, e3, e4.
On the right: Schematic view of a complete Dcel structure. We have outer(f1) =
e1, and the bounding cycle can be traversed by repeatedly calling next(e), starting with
e1. Moreover, f1 has a list v1, v2 of isolating vertices (v3 is not inside f1 but appears in
the isolating list of f2) and a list of halfedges e2, e3 denoting the inner bounding cycles.

points at which segments start, intersect, or end. For that, the algorithm processes event
points in lexicographic order and maintains the following invariant: On the left of ℓ, the
arrangement has already been constructed. On ℓ, we store in a structure called the status
line23 a sorted sequence of intersections with segments. The half-plane right of ℓ is yet
unexplored. The event queue24 stores, in lexicographic order, some of the future event
points; at least those at which segments start, end, or segments adjacent on the sweep
line intersect. In particular, the next event point is always contained in the event queue.
Processing it requires updating the status line, which means remvoing segments ending at
the event, changing the order of segments intersecting in the event, and adding segments
starting at the event. Moreover, the Dcel structure must be updated.

The sweep-line procedure is summarized in Algorithm 3.1. It does not directly compute
the arrangement A(s1, . . . , sn) but only lists all event points and the segments involved in
each event. However, the creation of a Dcel structure becomes relatively straightforward
when all event points are known (this can be done, for instance, by a second sweep through
the plane, or by integrating the necessary steps directly into Algorithm 3.1). We omit
further details of this step. Instead, we describe in more detail how an event point is
processed during the sweep; see Algorithm 3.2. The realizations of the single steps reduces
to a few geometric predicates and constructions:

Compare_xy: Given points p and q, compare them lexicographically (required, e.g.,
when adding points into the event queue).

Compare_y_at_x: Given a segment s and a point p within the x-range of s, deter-

23also called Y-structure
24also called X-structure
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s1

s2

c1

c2

c3

s4

s5

s3

Figure 3.2. On the left: When the sweep-line is at the dashed position, the status line
is the ordered list s4, s1, s2, s3. The event queue contains at least the endpoints of s5,
the right endpoints of s1, . . . , s4, and the intersection points c1 and c2 in lexicographic
order. The intersection point c3 might or might not be contained in the event queue,
since s3 and s4 are not adjacent in the status line.
On the right: The resulting Dcel produced by the sweep-line algorithm. Intersection
vertices are drawn in red.

Algorithm 3.1. Bentley-Ottmann sweep-line algorithm

Input: x-monotone segments s1, . . . , sn
Output: A sequence of elements ((p1, S1), . . . , (pk, Sk)), where p1, . . . , pk are the event
points with respect to s1, . . . , sn in lexicographic order, and Si is the set of segments
involved in the event pi.

1: procedure Sweep(s1, . . . , sn)
2: Initialize an empty status line, and an empty output list
3: Initialize the event queue by adding all endpoints of s1, . . . , sn in lexicographic

order
4: while the event queue is not empty do
5: Pop the next event e from the event queue
6: Process_event(e) ⊲ This updates status line, event queue, and output list
7: end while
8: end procedure

mine whether p lies above, on, or below s (required, e.g., for determining involved
segments).

Compare_to_right: Given two segments s1 and s2 and an intersection point p, deter-
mine the y-order of the segments immediately right of p (required, e.g., for adding
segments to the status line).

Intersections: Given two (non-overlapping) segments s1 and s2, compute all intersection
points in their interior.

Providing this small set of functionality for a certain class of segments, the sweep-line
algorithm works generically for such segments, without further adaptions. If the specified
class of input curves has non-x-monotone elements, an additional primitive is required
(Figure 3.3).

Make_x-monotone: Given a curve, decompose it into finitely many x-monotone seg-
ments (which are disjoint in their interior)
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Algorithm 3.2. Handling of event point

Input: Event point e
Output: None, but the method updates event queue, status line and output list

1: procedure Process_event(e)
2: Find the segments on the status line that are involved in the event
3: Remove ending segments from status line
4: Reorder the remaining segments on the status line according to their vertical or-

dering immediately right of the event
5: Add starting segments to the status line
6: Add intersections of newly adjacent segments to the event queue
7: Append e, and the set of involved segments, into the output list
8: end procedure
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Figure 3.3. The curve, consisting of an ellipse and an intersecting circle, can be
decomposed into 8 x-monotone segments s1, . . . , s8.

Reconsider step 4 of Algorithm 3.2. Assume that k segments are intersecting in the
event point p, and that p is in the interior of all segments. This step is trivial for linear
segments, since the order of the segments is just reversed when passing p. For curved
segments, however, it seems like O(k log k) calls of Compare_to_right are necessary to
reorder them. But we can do better, at least for algebraic segments: Using the pairwise
intersection multiplicities (Definition 2.3.32) of the segments, it is possible to reorder them
in O(k); see [BK07] for details. We therefore introduce an additional geometric primitive:

Intersection_multiplicity: Given two segments s1 and s2, and an intersection point p
in their interior, compute the intersection multiplicity of s1 and s2 at p.

We have left out vertical and unbounded segments so far, but their treatment can be
integrated in the above algorithm. For vertical segments, the status line can be extended
such that it does not only store segments currently intersecting the sweep-line, but also
segments currently overlapping it. Unbounded segments can be conceptually clipped by a
bounding box, which can either be explicit or symbolic. Because of these special kinds of
segments, the set of geometric primitives needs to be extended slightly; for instance, one
has to compare unbounded segments “at infinity”. The additional primitives do not pose
any fundamental problem, and make the description more lengthy; therefore, we leave out
the complete description here; see [BFH+07] for a full list of requirements.
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3.1.3. Representation of points and segments

In computational geometry, points are usually represented explicitly by their Cartesian
coordinates. For exact computation with linear objects, it is mostly sufficient to represent
those coordinates by a data type that models the rational numbers. We have already seen
that this cannot suffice for the case of algebraic curves, because the critical points are
algebraic numbers, and thus, irrational in general. We have discussed the isolating interval
representation of algebraic numbers (Section 2.5) and several algorithms for computing
with such numbers. We choose such isolating intervals to represent the x-coordinate of a
point in R2. For y-coordinates of points on a curve, we could in principle use the same
representation. However, due to our projection-based approach, such an representation
is not directly available, and its computation involves more symbolic computations that
we want to avoid. We use a more indirect representation of y-coordinates that contains
enough information for our purposes.

Definition 3.1.1 (representation of points). A point p = (α, β) on a curve V (f) with
f ∈ Z[x, y] is represented by a triple (α, f, J), where α is represented by a pair (r, I)
(r ∈ Z[t] is the defining polynomial and is the I isolating interval for α and r), and J is an
isolating interval for β and f(α, y) ∈ R[y] (i.e., J contains β and no other root of f(α, y)).

An equivalent formulation is to represent p as the unique solution of the triangular
system of equations

r(x) = 0

f(x, y) = 0

inside the box I × J . Note that this identifies the point uniquely, and by refining both I
and J , one can approximate p to an arbitrary precision.

Once we have defined how to store points on a curve, (bounded) x-monotone segments
(which are parts of an algebraic curve) become relatively straightforward. They are repre-
sented by their endpoints and by some integer i denoting that the segment is, immediately
to the right-hand side of its left endpoint, the i-th segment of f from below. However, we
will restrict ourselves to segments with x-ranges where the supporting curve is delineable
(compare Theorem 2.2.10). That means that if the segment started as the i-th segment
from below, it remains the i-th segment of f until it reaches the right endpoint. We call i
the arc number of the segment.

Definition 3.1.2 (representation of segments). Let s be an x-monotone segment of V (f)
with x-range I = [xℓ, xr], such that f is delineable over I. Then, s is be uniquely repre-
sented by the quadruple (p, q, f, i), where p and q are representations of the left and right
endpoint of s, f ∈ Z[x, y] is the defining polynomial of the curve s belongs to, and the arc
number i ∈ N denotes that s is the i-th segment of f over I.

Restriction to segments with a constant arc number as above results in cutting segments
“unnecessarily” whenever the segment encounters a critical point of f in its fiber. For
instance, in Figure 3.4, we count 14 segments in total, although the scenery could also be
described by 8 x-monotone segments. Still, such a representation simplifies the realization
of the required geometric primitives. For a slim representation of the arrangement, a
post-processing step could remove unnecessary cuts afterwards.
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P=(I2,f,J1) Q=(I3,f,J2)

R

S

s1=(R,S,f,4)

s2=(S,Q,f,2)

Figure 3.4. Illustration of the representation of points and segments. Note that for
P and Q, the isolating boxes are also depicted in gray.

What about unbounded segments? In principle, the same representation can be chosen
– we only have to introduce symbolic endpoints at infinity. We distinguish several cases.
Recall from Section 2.2.3 that unbounded segments are either unbounded in x-direction,
or they are vertically asymptotic segments.

• If the left end of the segment is unbounded in x-direction, its left endpoint is set
to the symbolic value −∞. If its right end is unbounded in x-direction, its right
endpoint is set to +∞.
• If a segment’s end is vertically asymptotic (on either side) for x = α, then the

corresponding endpoint of the segment is set to the symbolic value (α,+∞), or
(α,−∞), depending on whether the segment goes towards +∞ or −∞.
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P:=(x0,+∞)

Q:=(x1,-∞)

s1:=(-∞,P,f,1)

s2:=(P,Q,f,1)

R
s3:=(R,+∞,f,1)

s4:=(R,+∞,f,2)

Figure 3.5. Representation of unbounded segments

Although all segments that are unbounded in x-direction formally have the same left
(right) endpoint, one should not interpret this as an “intersection at infinity” in some
projective or compactified sense.
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3.1.4. Curve analysis and curve pair analysis

We turn to the realization of the required geometric primitives for the sweep-line algorithm,
as listed in Section 3.1.2, in the case of algebraic segments represented as above. We
start with the discussion of the Make_x_monotone primitive, that is, a curve shall be
decomposed into x-monotone segments. There is no unique choice for such a segmentation;
we fix the following standard segmentation.

Definition 3.1.3 (standard segmentation). Let f ∈ Z[x, y] be square-free and C :=
{α1, . . . , αs} be the critical x-coordinates of V (f) (Definition 2.3.9). The standard seg-
mentation is the segmentation (Definition 2.2.13) of V (f) with respect to C.

In other words, the standard segmentation of V (f) is the set of x-monotone segments,
induced by the connected components of

V (f) \
⋃

i=1,...,s

Pi,

where Pi := V (f(αi, y)) is the fiber of V (pp(f)) (pp(f) is the primitive part of f) at αi.
The x-range of each segment is either a singleton, or an open, half-open, or closed interval
formed by two consecutive elements of the sequence {−∞, α1, . . . , αs,+∞}. Recall from
Corollary 2.2.15 that the number of segments is bounded by n3.

Having fixed a segmentation, we can define the number of branches of a point on the
curve, in a combinatorial way.

Definition 3.1.4 (branch numbers). Let f ∈ Z[x, y] be square-freeand p ∈ V (f). The
branch numbers (ℓ, r) ∈ N × N of p in f are defined as follows. If p lies in the interior
of some segment, then (ℓ, r) := (1, 1). Otherwise, set ℓ to the number of non-vertical
segments in the standard segmentation whose right endpoint is p and set r to the number
of non-vertical segments whose left endpoint is p.

The branch numbers are actually independent of the chosen segmentation. They can
also be defined analytically as the number of disjoint paths (either from the left- or right-
hand side) converging to the point p.
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Figure 3.6. Points with branch numbers (5, 3), (2, 0), and (1, 1) (from left to right)

Lemma 3.1.5. The branch numbers of a non-singular point are either (1, 1) or (2, 0) or
(0, 2). The branch numbers of a non-critical point are (1, 1).

Proof. Around a non-singular point, the curve can be parameterized as a function graph,
in x or in y, by Theorem 2.2.8 (implicit function theorem). Thus, it has precisely two
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adjacent segments. If the point is non-critical, the curve is parameterizable in x, so one
segment is on the left and one segment is on the right.

The fibers Pi, as defined in Definition 3.1.3, are crucial for computing the standard
segmentation. We will store these fibers together with the branch numbers of the points
in the fiber and some additional information in a so-called f -stack.

Definition 3.1.6 (f-stack). Let f ∈ Z[x, y] be square-free, and let pp(f) denote its primi-
tive part. For an algebraic number α, the f -stack at α contains the following data:

is_vertical : A flag to denote whether V (f) has a vertical line at α.
fiber : A list p1, . . . , pm of points representing the fiber of pp(f) at α.
branch_numbers : A list of pairs (ℓ1, r1), . . . , (ℓm, rm), where (ℓi, ri) are the branch

numbers for pi.
Vertical_asymptotes : A quadruple of integers (ℓ−, ℓ+, r−, r+), where ℓ− is the number

of segments in the standard segmentation whose right endpoint is (α,−∞), in other
words, the number of segments that have x = α as a vertical asymptote and approach
it from the left and towards −∞. Likewise, ℓ+ is the number of segments with
right endpoint (α,+∞), r− with left endpoint (α,−∞), and r+ with right endpoint
(α,+∞).

Definition 3.1.7 (curve analysis). Given f ∈ Z[x, y] is square-free, a curve analysis of
V (f) is an object that provides the following operations:

Critical_positions : Returns the list α1, . . . , αs of critical x-coordinates of V (f) (in
isolating interval representation).

Stack_at_x : For any algebraic number α ∈ R, return the f -stack at α.

At non-critical x-coordinates, the f -stack computation basically reduces to the com-
putation of the fiber, since all other data is immediate (no vertical line, no vertical asymp-
totes, all branch numbers are (1, 1)). We use the term “computing a curve analysis” for
computing the critical x-coordinates α1, . . . , αs, and obtaining the f -stack for each αi.

Having f -stacks for the critical positions, computing the standard segmentation, and
consequently the Make_x_monotone primitive is a straightforward task, by iteration
through the critical x-coordinates and constructing the x-monotone segments between
consecutive critical x-coordinates. Such a construction is exemplified in Figure 3.8.

The complete algorithm also has to deal with special cases such as vertical segments
and isolated points. Their treatment is straightforward: for any critical x-coordinate with a
vertical component, we additionally construct vertical segments between consecutive fiber
points. If a critical x-coordinate has no vertical component but a fiber point with branch
numbers (0, 0), it is an isolated vertex and we produce a degenerated segment for it. We
skip the (quite lengthy) formal description in pseudo-code for the Make_x_monotone
primitive.

Let us turn to the remaining primitives. We will reduce their realization to a data
structure called curve pair analysis that we define next.

Definition 3.1.8 (critical x-coordinate for a curve pair). Let f, g ∈ Z[x, y]. We call α a
critical x-coordinate for the curve pair (V (f), V (g)) if α is critical for V (f) or V (g), or α
is a root of res(f, g)
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Figure 3.7. On the left: Illustration of an f -stack. The fiber is represented by the se-
quence (J1, . . . , J4) and the branch numbers by the sequence (1, 1), (2, 0), (2, 2), (1, 1).
The vertical asymptote numbers are (1, 0, 1, 2) in this case.
On the right: Illustration of the full curve analysis. An f -stack at each critical x-
coordinate is given.

Definition 3.1.9 (fg-stack). For two curves V (f) and V (g), and α ∈ R algebraic, the
fg-stack at α is a string with letters “f”, “g” and “i” that represents the vertical ordering
of the two curves along the vertical line x = α. More precisely, the string determines in
which order the points in the fiber of f(α, y) and g(α, y) are met when the vertical line is
traversed upwards. “f” stands for a point on V (f), “g” for a point on V (g), and “i” stands
for an intersection point.

Definition 3.1.10 (curve pair analysis). Given that f, g ∈ Z[x, y] are square-free and
coprime (i.e., deg gcd(f, g) = 0), a curve pair analysis of (V (f), V (g)) is an object that
provides the following operations:

Critical_positions : Returns the list α1, . . . , αs of critical x-coordinates for the curve
pair (V (f), V (g)).

Intermediate positions : Returns a list q0, . . . , qs of algebraic numbers such that qi−1 <
αi < qi for i = 1, . . . , s.

Stack_at_x : For any algebraic number α ∈ R, returns the fg-stack at α.
Intersection_multiplicity : Returns the intersection multiplicity (Definition 2.3.32).

of intersection points that lie in the interior of the involved segments (compare the
right of Figure 3.10).

The curve pair analysis is restricted to coprime curve pairs. If the two curves have a
common component V (h) (with h = gcd(f, g)), one can instead consider the three curves
V (fh), V ( gh), and V (h) that induce the same arrangement as the curve pair and that are
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Figure 3.8. For the left-hand stack, we produce a sequence whose i-th en-
try contains either the isolating interval that contains the left endpoint of the i-th
segment or −∞/+∞ for vertically asymptotic segments. In the example, this se-
quence is (−∞, J1, J1, J3). The same is done for the right-hand side; one obtains
(J4, J4,+∞,+∞). Both sequences can be obtained combinatorially by the available
information in the f -stacks. They are of the same size and directly yield the left and
right endpoints for all segments between the critical x-coordinates.

pairwise coprime.

Note that the fg-stack is a purely combinatorial object (a string) and does not change
in the interval between two critical x-coordinates. Therefore, computing the fg-stack
for each critical x-coordinate, and for one representative point between two critical x-
coordinates gives complete topological information about the curve pair. Geometric data
about the curve pair can be obtained in combination with the curve analysis objects of the
corresponding curves.

With a curve pair analysis at hand, all geometric primitives of the sweep-line algorithm
are directly realizable:

Compare_xy : We have two points p = (α, f, I) and q = (β, g, J) and want to compare
them lexicographically. Let p be the i-th point in the fiber of f at α, and let q be
the j-th point in the fiber of g at α. Note that i and j are easily computable using
the f -stack (and the g-stack) at α, and one can even store these indices within the
representation of the point when crating it.
First, we compare α and β using Algorithm 2.15 and this already yields the result
except when α equals β. If f = g, the result is given by simply comparing i and
j consider the fg-stack of (V (f), V (g)) that is part of their curve pair analysis and
check whether the i-th occurrence of “f” in the stack comes before, after, or at the
same time as the j-th occurrence of “g” (where we count “i” as an occurrence of both
“f” and “g”).

Compare_y_at_x : We have a point p = (α, f, I) and a segment s = (q1, q2, g, j) with
α in the x-range of s and want to check whether p is above, on, or below s. If α is
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Figure 3.9. Critical x-coordinates of a curve pair.

on the boundary of the x-range of s, compare p with q1 or q2. If α is in the interior
of the x-range, define q := (α, g, J), which is the point on s that is covertical to p.
Call Compare_xy on p and q to get the result.

Compare_to_right : Given two segments s = (p1, q1, f, i) and t = (p2, q2, g, j) and
some intersection point p with x-coordinate α, we want to determine the order of
s1 and s2 on the right of p. Since an intersection takes places at α, it must be a
critical x-coordinate for the curve pair (V (f), V (g)). Let β denote the intermediate
position of the curve pair to the right of α. Define the points p := (β, f, I) on s and
q := (β, g, J) on t and call Compare_xy for p and q.

Intersections : Given two distinct segments s = (p1, q1, f, i) and t = (p2, q2, g, j), we
want to find all intersections in their interior. If f = g, there is no such intersection.
Otherwise, let J denote the common x-range. If J = ∅, there is no intersection.
Otherwise, consider the curve pair analysis of f and g. For each critical fg-stack
within the x-range J , run through its intersection points and check for each such
point p whether it lies on s and on t, using the Compare_y_at_x predicate. (if
an intersection at a stack is found, one can proceed with the next stack).

Intersection_multiplicity : This information is directly stored in the curve pair anal-
ysis for any intersection point p in the interior of two segments.

With this approach, we reduced all geometric primitives to the curve analysis and the
curve pair analysis. These objects deal with algebraic curves as a whole instead of x-
monotone segments as defined in the sweep-line algorithm. This abstraction reflects the
fact that algebraic computations on curves (in particular, finding their intersection points)
are intrinsically global methods. This means that finding intersections of two segments in
a certified way is not a significantly harder problem than finding all intersections of the
two curves they belong to.

Summary

The Bentley-Ottmann sweep-line algorithm computes arrangements for arbitrary types of
inputs; one “only” has to provide a rather small set of geometric primitives for the given
curve type of points and segments. Using a suitable representation of such points and
segments, all these primitives can be reduced to queries on two special data structures,
called curve analysis and curve pair analysis.
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Figure 3.10. On the left: Illustration of the curve pair analysis. The numbers at the
intersection points denote the intersection multiplicity.
On the right: Note that it is not required to compute the intersection multiplicity of
the left intersection, since it is not in the interior of all involved segments.

3.2. Algorithm for curve analysis

We continue with the algorithm for analyzing a single curve, as defined in Definition 3.1.7.
The approach (with minor modifications) was the subject of the author’s Master’s the-
sis [Ker06]; see [EKW07] for a condensed version. Different from those works, we will
analyze the asymptotic bit complexity of the algorithm.

We have mentioned that many related approaches initially bring a curve into a generic
position to compute its topology. Although our approach deviates from this strategy,
genericity is also an important concept for our analysis. The exact definition of genericity
varies slightly among the approaches, we formally define its meaning in the context of this
work.

Definition 3.2.1 (generic position). A V (f) with f ∈ Z[x, y] with n = degtot(f) is in
generic position, or just generic, if for any α ∈ R, deg f(α, y) = n and f(α, y) has at most
one multiple root over C (which is necessarily real, since complex roots appear in pairs of
complex conjugates).

Not being generic depends on the chosen coordinate system (i.e., the chosen vertical
direction) rather than on the curve itself – in a different coordinate system, the curve might
be in generic position. Geometrically, a generic curve has no vertical line component, no
vertical asymptotic arcs, and no two critical points that are covertical. This can be used
for faster lifting methods in the algorithm. In particular, for curves in generic position, the
m-k-bitstream-Descartes method (Algorithm 2.6.2) can be applied to compute the fiber.
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A generic position is achieved by the shear transformation (Definition 2.3.30) of a curve
that chooses a new vertical direction

Shs(f) := f(x+ sy, y)

and the corresponding map

Shs : R2 → R2, (x, y) 7→ (x− sy, y).
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Figure 3.11. On the left: This curve is not in generic position because it has two
singular points p1 and p2 with the same x-coordinate. On the right: After a shear,
the curve is in generic position.

Considering a sheared curve is sufficient for topology computation , but not for our
purposes – we want to represent all curves, and their analyses, in a predefined coor-
dinate system. The reason is that we aim for an arrangement computation of curves
V (f1), . . . , V (fn); we first had to find a coordinate system that is suitable for all input
curves (and all curve pairs as well), if the analyses were only performed in some sheared
coordinate system.

Here is a rough overview of our algorithm for the curve analysis. It consists of two parts:
The first part is an analysis in the predefined coordinate system; it always succeeds if the
curve is already in generic position, but might reject a curve in non-generic position. If the
direct method rejects V (f), we change coordinates randomly and analyze the sheared curve
until it succeeds. Afterwards, the result of the analysis in the changed coordinates needs
to be transformed back into the original coordinate system. This is achieved by the second
part of our algorithm; a method of analysis in the original system that always succeeds, but
depends on information from a successful direct analysis in a different coordinate system.

What are the advantages of this approach? First of all, by passing to a sheared curve,
we can make use of the m-k-bitstream-Descartes method for any instance, thus, a fallback
to a purely symbolic method, as in many other approaches in cad computation, is never
necessary. With the second part of our algorithm, we are still able to deduce the geometric
information of the curve analysis; this is the first approach with such a back-transformation
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step. Also, we exploit the fact that the m-k-bitstream-Descartes detects unfortunate sit-
uations (e.g., covertical critical points) by itself; a certified precomputation of a generic
direction, which would cause more symbolic computation, is prevented by a randomized
choice of the shear factors.

We further proceed in this section as follows. We first investigate the direct approach
in Section 3.2.1. Then, we describe how f -stacks at intermediate positions between critical
x-coordinates can be computed additionally, without spoiling the complexity of the overall
algorithm in Section 3.2.2. This substep is needed particularly in the indirect approach,
which is the subject of Section 3.2.3. Finally, we discuss how to compute additional
information not covered by the curve analysis, in Section 3.2.4.

3.2.1. The direct approach

For simplicity, we assume that the input curve f is primitive, that is, without vertical
line components. Non-primitive curves are simple to handle, as we discuss subsequently
in Section 3.2.4. We first try to analyze the curve directly in the predefined coordinate
system, hence the name “direct method”. We identify four phases of the direct method:

1. Projection: Computes the critical x-coordinates α1, . . . , αs by isolating the real
roots of the resultant res(f, ∂f∂y ).

2. Symbolic precomputation: Computes some partial information about the poly-
nomials f(αi, y) for i = 1, . . . , s by exploiting the Sturm-Habicht coefficients of f .

3. Fiber construction: Computes the fiber of f at each αi by using the m-k-bitstream-
Descartes method.

4. Branch numbers: Computes the branch numbers of each fiber point over any αi.

The second and the third steps might fail during their execution for non-generic curves, in
which case the algorithm rejects the curve. Still, the approach might also get along with
non-generic curves. We now describe each step of the algorithm; owing to our detailed
description of algebraic tools in Chapter 2, this mainly reduces to assembling several
subroutines.

Projection: We compute the sequence of principal Sturm-Habicht coefficients (Defin-
tion 2.3.22) sthan(f), . . . , stha0(f) of our input polynomial f . Recall that those are, up to
sign, equal to the principal subresultant coefficients of f and its derivative ∂f

∂y . Thus, we
compute them by Algorithm 2.5 (subresultants by pseudo-remainder). Also, recall that,
by definition, the polynomial stha0(f) equals, up to sign, the resultant res(f, ∂f∂y ). We can
thus isolate its real roots α1, . . . , αs using Algorithm 2.10 (real root isolation).

Symbolic precomputation: From the previous step, the critical x-coordinates as well
as the principal Sturm-Habicht coefficients are known. Proceed as follows for α1, . . . , αs:
Compute the sign of lcfy(αi) (Algorithm 2.18); if the sign is zero, reject the curve. Oth-
erwise, it is ensured that degy f = deg f(αi, y); this means, in particular, that the curve
has no vertically asymptotic arcs; we fill the corresponding entries in the f -stack by ze-
roes. Moreover, the specialization property (Theorem 2.3.17) is applicable. This means
that sthan(f)(αi), . . . , stha0(f)(αi) are the principal Sturm-Habicht coefficients of f(αi, y).
We compute the sign of each principal Sturm-Habicht coefficient sthaj(f)(αi) using Al-
gorithm 2.18. Their sign sequence reveals the numbers mi := #{β ∈ R | f(αi, β) = 0}
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(Theorem 2.3.29) and ki := deg gcd(f(αi, y), f
′(αi, y)) (Lemma 2.3.14) that will be used

in the subsequent phase.

Fiber construction: We apply the m-k-bitstream-Descartes method (Algorithm 2.21) on
each polynomial f(αi, y), with the additional input mi and ki . If it fails for any instance,
the curve is rejected. In the successful case, isolating intervals βi,1, . . . , βi,mi

are returned
and one among them, say βi,ci , is distinguished from the others, since it is the only interval
that might contain a multiple root. The fiber of f at αi is stored in the f -stack by
constructing points (αi, f, βi,j) for j = 1, . . . ,mi.

Branch numbers: We compute rational intermediate values q0, . . . , qs with qi−1 < αi <
qi, using Algorithm 2.14. Again, we compute for each qi the signs of the principal Sturm-
Habicht coefficients (using Algorithm 2.4) and use these signs to compute ti, the number of
points in the fiber of V (f) at qi. For a fixed αi, let βi,1, . . . , βi,mi

be its fiber. For all fiber
points except the distinguished one (see the previous step), we set the branch numbers to
(1, 1). The branch numbers of the distinguished one are set to (ti−1−mi + 1, ti−mi + 1).

We have to argue why this branch number assignment is doing the correct thing. We
have the following geometric situation. We have mi fiber points, and there are in total
ti−1 segments approaching from the left-hand side, and ti segments approaching form the
right-hand side. Note that none of these segments is a vertically asymptotic arc (this has
been excluded in the second step of the method), thus each segment has to end in one
of the fiber points. On the other hand, Lemma 3.1.5 shows that each fiber point, except
the distinguished one βi,ci , consumes exactly one segment from each of the left and right.
Hence, the distinguished fiber point has to absorb all remaining segments, and there are
precisely ti−1 −mi + 1 segments on the left-hand side and ti −mi + 1 on the right-hand
side. Note that this simple argument relies heavily on the absence of vertically asymptotic
arcs as well as on the property that there is at most one critical point of f in the fiber.
The complete method is summarized in Algorithm 3.3.

Theorem 3.2.2. If V (f) is in generic position, Algorithm 3.3 computes the curve analysis
of V (f).

Proof. The correctness of the algorithm follows directly by the correctness of its subrou-
tines. We only have to argue why a curve in generic position is never rejected. Note that
a curve can be rejected in only two substeps of the algorithm. The first possibility is that
lcfy(f)(αi) = 0, which implies that deg f(αi, y) < degy f(x, y) ≤ degtot f(x, y), which is
only possible for non-generic curves. The second possibility is that the m-k-bitstream-
Descartes method fails, which is only possible if f(αi, y) has at least two complex multiple
roots (Section 2.6.2). Again, this is impossible for generic curves.

Our next goal is the complexity analysis of Algorithm 3.3. We will prove the following
result.

Theorem 3.2.3. For a square-free bivariate polynomial f of magnitude (n, τ), Algorithm 3.3
requires

Õ(n10(n+ τ)2)

bit operations (both in case of success and failure).
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Algorithm 3.3. Curve analysis, direct method

Input: f ∈ Z[x, y] square-free, without vertical line component
Output: The critical x-coordinates of f , and an f -stack for each critical x-coordinate, or
a flag REJECT that denotes that the curve has been rejected

1: procedure CA_direct(f)
2: Compute the principal Sturm-Habicht coefficients of f
3: α1, . . . , αs ←Solve(stha0(f))
4: for i = 1, . . . , s do
5: if lcfy(f)(αi) = 0 then return REJECT

6: For each j = 0, . . . , n− 1, compute sign(sthaj(f)(αi))
7: Compute mi := #{β ∈ R | f(αi, β) = 0} and ki := deg gcd(f(αi, y), f

′(αi, y))
8: βi,1, . . . , βi,mi

← m_k_bitstream_Descartes(f(αi),mi, ki). Let βi,ci be
the distinguished output interval. If a failure occurs, return REJECT

9: end for
10: q0, . . . , qs ←Intermediate(stha0(f))
11: For each i = 0, . . . n− 1 and each j = 0, . . . s, compute sign(sthai(f)(qj))
12: Compute ti := #{β | f(qi, β) = 0}
13: For each i ∈ {1, . . . , s} and each j ∈ {1, . . . ,mi} \ {ci}, set the branch numbers for

(αi, f, βi,j) to (1, 1).
14: For each i ∈ {1, . . . , s}, set the branch numbers of (αi, f, βi,ci) to (ti−1−mi+1, ti−

mi + 1).
15: end procedure

To prove this result, we consider the four phases of the algorithm separately.

Projection: Computing the principal Sturm-Habicht coefficients requires Õ(n7τ) bit op-
erations (Theorem 2.4.17). Note that each principal Sturm-Habicht coefficient is of mag-
nitude (n2, n(τ + logn)). In particular, the resultant of f and ∂f

∂y is of this magnitude.
For isolating its real roots, its square-free part r ∈ Z[x] must be computed (as a substep
within Algorithm 2.10). From Theorem 2.4.21, r has degree p ∈ O(n2) and a maximal
bitsize of σ ∈ O(n(n+ τ)). Isolating its real roots requires Õ(p4σ2) = Õ(n10(n+ τ)2) bit
operations, according to Theorem 2.4.37.

Symbolic precomputation: Computing sign(lcfy(f)(αi)) for each critical x-coordinate α
requires Õ(p4(p + σ)2) = Õ(n10(n + τ)2) bit operations, according to Theorem 2.5.23 (of
course, a better bound could be achieved here, since lcfy(f) is only of magnitude (n, τ)).
Secondly, we have to evaluate all the signs of sthaj(f)(αi). Since all sthaj(α) are of
magnitude (p, σ), we can apply Theorem 2.5.24, and achieve a complexity of

Õ(np4(p+ σ) + p4(p+ σ)2) = Õ(n10(n+ τ)2)

also for this step.

Fiber construction: Let fi denote the polynomial f(αi, y), and let 2τi be an upper bound
for the absolute value of any coefficient of fi. According to Theorem 2.6.11, the bit
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complexity of the m-k-bitstream-Descartes method is

O

(

n3

(

log n+ τi + log
1

sep(fi)

)2
)

,

and O(n(τi + log 1
sep(fi)

)) bits of each coefficient are required. Thus, we have to bound the

values τi and log 1
sep(fi)

in terms of n and τ . As usual, we bound their sum when adding
up over all roots of r. The first one is relatively simple.

Lemma 3.2.4.
s∑

i=1

τi = O(n2(τ + n))

Proof. For a univariate polynomial g of magnitude (n, τ), we have for any α ∈ R |g(α)| ≤
(n+1)2τ max{1, |α|}n. Since each coefficient of f ∈ Z[x][y] is of that magnitude, it follows
that τi is bounded by

τi ≤ log(n+ 1) + τ + n log max{1, |αi|}.

Summing over all τi yields

s∑

i=1

τi ≤ n2 log(n+ 1) + n2τ + n log
s∏

i=1

max{1, |αi|}.

Since α1, . . . , αs are roots of r (the square-free part of stha0(f)), it holds that

s∏

i=1

max{1, |αi|} ≤
1

lcf(r)
Mea(r) ≤ Mea(r)

and since r is of magnitude (n2, n(n+ τ)), Mea(r) = O(n(n+ τ)).

For the bound on the sum of the separations, we can resort to a result by Eigen-
willig [Eig08, Prop. 3.73].

Lemma 3.2.5.
s∑

i=0

log
1

sep(fi)
= O(n3(n+ τ))

The proof of Lemma 3.2.5 exploits the generalized form of the Davenport-Mahler bound
as given in Theorem 2.4.33. It is mostly analogous to the proof of Lemma 3.2.7 that is
given later.

With these two estimates, we can bound the bit complexity of the m-k-bitstream-
Descartes instances by

s∑

i=0

O(n3(log n+ τi + log
1

sep(fi)
)2) = Õ

(

n3(
s∑

i=0

τi)
2 + n3(

s∑

i=0

log
1

sep(fi)
)2

)

= Õ(n3(n2(n+ τ))2 + n3(n3(n+ τ))2)

= Õ(n9(n+ τ)2).
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Furthermore, we have to estimate the costs for obtaining O(n(τi + log 1
sep(fi)

)) bits of each

coefficient. Let a0, . . . , an ∈ Z[x] denote the coefficients of f ∈ Z[x][y]. For each α1, . . . , αs,
we need up to O(n(τi+log 1

sep(fi)
)) = (n4(n+τ)) bits for each aj(αi), j = 0, . . . , n (actually,

we only need that many bits in total for all αi, but we do not use this). This is exactly the
situation where Theorem 2.5.22 is applicable; with the notation of that theorem, n′ ← n2,
τ ′ ← n(n+ τ), k ← n, and Lδ ← n4(n+ τ). Thus, we obtain an upper bound of

Õ(n8 + n2(n+ τ)2 + n6(n4(n+ τ) + n2(n+ τ))) = Õ(n10(n+ τ)).

Branch numbers: Theorem 2.5.17 proves a bit complexity of Õ(p4σ2) = Õ(n10(n+ τ)2)
to find the intermediate values q0, . . . , qn. Each qi has a bitsize of O(p(σ + log p)) =
O(n3(n+ τ)). We have to evaluate each stha0(f), . . . , sthan(f) at each qi, which makes up
to O(np) = O(n3) evaluations, and each of them has a bit complexity of O(pM(ppτ)) =
Õ(n7(n+τ)). This makes Õ(n10(n+τ)) bit operations in total for this step. The assignment
of the branch numbers itself has negligible complexity.

We have shown that bit complexity of the direct curve analysis is bounded by Õ(n10(n+
τ)). If the returned value is a failure indicator, the curve is not in generic position, and
we have to switch to the method for non-generic curves.

3.2.2. Intermediate stacks

Before we discuss the general approach, we need to establish an important sub-operation.
Assume that the f -stacks for the critical x-coordinates are known already. In numerous
situations, we need the knowledge of intermediate stacks, that is, some f -stack between
two consecutive f -stacks at critical x-coordinates, and some f -stack at the left or right of
any critical x-coordinate.
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Figure 3.12. The critical f -stacks of a curve (dashed lines), and a collection of
intermediate stacks (dotted).

The straightforward approach is to choose rational intermediate values q0, . . . , qn using
Algorithm 2.14 and apply the Descartes method (Algorithm 2.9) on each f(qi, y) (note
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that this polynomial is square-free, since qi is not critical). However, we fail to show a
satisfying bit complexity for this approach.

Lemma 3.2.6. Computing intermediate stacks using the intermediate values from Algo-
rithm 2.14 has a bit complexity of

Õ(n12(n+ τ)2).

Proof. Each intermediate value qi has a bitsize of O(n3(n+ τ)), and one can see that the
sum of their bitsizes is bounded by O(n3(n+ τ)) as well: The bitsize of each intermediate
value can be bounded by O(log 1

|αi−αi+1|), where αi and αi+1 are the two neighboring

roots. The bound on the sum follows directly from Theorem 2.4.33 (generalized Davenport-
Mahler bound). Let bi denote the bitsize of qi, then the polynomial f(qi, y) is of magnitude
(n, τ + nbi)) and the bit complexity of all Descartes instances is bounded by

Õ(
∑

n4(τ + nbi)
2) = Õ(n4

∑

(τ + nbi)
2) = Õ(n4(n2τ + n

∑

bi)
2) = Õ(n12(n+ τ)2).

There is a gap of Õ(n2) compared to the complexity of the curve analysis. Although
this theoretic result is by no means observable in the practical performance of the algorithm
(see Chapter 4), we have to look for an alternative solution that is asymptotically no worse
than the curve analysis itself. The crucial weakness in the algorithm above is that there is
no algebraic relation between the intermediate values. Rolle’s theorem states that between
two critical x-coordinates, there is always a root of the derivative of stha0(f). We will use
selected roots of this derivative as intermediate values instead, because we can apply the
following lemma in this situation.

Lemma 3.2.7. Let f be of magnitude (n, τ). Let β1, . . . , βs be roots of a polynomial
r∗ ∈ Z[x] of magnitude (n′, τ ′) with n′ = O(n2) and τ ′ = O(n(n + τ)) such that V (f) is
non-critical for any βi. Set fβi

:= f(βi, y), and let si be the root separation of fβi
. Then

it holds that
s∑

i=0

log
1

si
= O(n3(τ + n)).

Proof. Set R := resy(f,
∂f
∂y ). First of all, we can assume w. l. o. g. that r∗ is coprime to R.

Otherwise, consider the polynomial r∗∗ := r∗

gcd(R,r∗) . Each βi is also a root of r∗∗, and r∗∗

is still of the same magnitude.
From now, the proof is almost completely analogous to [Eig08, Prop. 3.73], under

slightly simplified assumptions. Using the Davenport-Mahler bound (Theorem 2.4.33),
one can see that

log
1

si
≤ − log

√

|res(fβi
, f ′βi

)|
√

lcf(fβi
)Mea(fβi

)n−1
+O(n logn).

For all complex roots of r∗ that are not among the β1, . . . , βs, we apply the Davenport-
Mahler bound on the empty set to obtain

0 ≤ − log

√

|res(fβi
, f ′βi

)|
√

lcf(|fβi
|)Mea(fβi

)n−1
+O(n logn).



3.2. Algorithm for curve analysis 115

Let β1, . . . , βq denote all (complex) roots of r∗. We can write

s∑

i=0

log
1

si
=

q
∑

i=0

− log

√

|res(fβi
, f ′βi

)|
√

lcf(|fβi
|)Mea(fβi

)n−1
+O(n3 log n)

= O(n3 logn)− 1

2
log |

q
∏

i=1

res(fβi
, f ′βi

)|+ (n− 1) log

q
∏

i=1

Mea(fβi
) +

1

2
(n− 1) log

q
∏

i=1

|lcf(fβi
)|.

We bound each product separately by O(n3(n+ τ)). For the first, note that res(fβi
, f ′βi

) =
R(βi) by Theorem 2.3.5 (specialization property) and since R and r∗ are coprime, none of
the res(fβi

, f ′βi
) are zero. Consequently, using Theorem 2.3.6, we get

|
q
∏

i=1

R(βi)| = | res(R, r∗)

lcf(r∗)n(n−1)
|

and since res(R, r∗) ∈ Z, it follows that

−1

2
log |

q
∏

i=1

res(fβi
, f ′βi

)| ≤ log | 1
∏q
i=1 res(fβi

, f ′βi
)
| ≤ log | lcf(r

∗)n(n−1)

res(R, r∗)
| ≤ n2 log |lcf(r∗)|

and the bound of O(n3(n+ τ)) is satisfied, since r∗ has coefficients of bitsize O(n(n+ τ))
by assumption.

Likewise, since the Mahler measure is multiplicative, we can write

q
∏

i=1

Mea(fβi
) = Mea(

q
∏

i=1

fβi
) =

Mea(resx(f, r
∗))

|lcf(r∗)n| ≤ Mea(resx(f, r
∗)) ≤

√

n2 + 1‖resx(f, r∗)‖∞.

Thus, we have to analyze the coefficient size of resx(f, r
∗). The Sylvester matrix of f and

r∗ has up to n2 rows with coefficients of f and n rows with coefficient of r∗. Therefore,
the coefficients of resx(f, r

∗) cannot be larger than

n2τ + n ·n(n+ τ) + log(n2 + n) = O(n2(n+ τ)).

Consequently, (n− 1) log Mea(resx(f, r
∗)) = O(n3(n+ τ).

For the third product, we proceed similarly. Since lcf(fβi
) = lcfy(f)(βi), it follows that

1

2
(n− 1) log

q
∏

i=1

|lcf(fβi
)| ≤ n log |res(lcf(f), r∗)

lcf(r∗)n
| ≤ n log |res(lcf(f), r∗)|

and by the same argument as above, log |res(lcf(f), r∗)| = O(n2(n+ τ)), which proves the
theorem.

To compute the intermediate stacks, we proceed by computing the real roots of the
derivative R′ and selecting one such root for an interval between two consecutive critical x-
coordinates (this requires the comparison of algebraic numbers; Algorithm 2.16 applied on
R and R′ produces an ordered list of the roots of f and f ′ in such a way that this selection
can be made with one iteration through the list). For the leftmost and rightmost interme-
diate stacks, we pick β0 := −2τ+1 and βn := 2τ+1, respectively (compare Algorithm 2.14).
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Algorithm 3.4. Constructing intermediate stacks

Input: f ∈ Z[x, y] square-free, f -stacks for each critical x-coordinate
Output: f -stacks at intermediate values β0, . . . , βs. that the curve has been rejected

1: procedure Intermediate_stacks(f)
2: R←square-free part of resy(f,

∂f
∂y )

3: Call merge_roots(R,R′). Pick βi for i = 1, . . . , s− 1 such that αi < βi < αi+1.
4: For each i = 0, . . . , s, call bitstream_Descartes(fβi

)
5: σ ← log ‖R‖∞
6: β0 ← −2σ+1, βn ← 2σ+1

7: Call Descartes(fβi
) for i ∈ {0, s}

8: Construct an f -stack at βi (for i = 0, . . . , s) based on the fiber computed by the
(bitstream-)Descartes method.

9: end procedure

Once the intermediate values β0, . . . , βn are computed, we apply the bitstream-Descartes
method (Algorithm 2.20) on each f(βi, y) to construct the fiber. All other data in the f -
stack is immediately clear (no asymptotic segments, no vertical component, and all branch
numbers are (1, 1)).

Theorem 3.2.8. Computing intermediate stacks using Algorithm 3.4 has a bit complexity
of Õ(n10(n+ τ)2).

Proof. Both R and R′ are of magnitude (n2, n(n + τ)). Thus, merging the roots (Step 3
of Algorithm 3.4 has a complexity of Õ(n10(n+ τ)2) (Theorem 2.5.19). Picking the roots
is just a combinatorial iteration over the result and requires no expensive operation.

The bitstream-Descartes instances can be bounded using Lemma 3.2.7. Since all
β1, . . . , βs−1 are roots of R′, we have

n−1∑

i=1

log
1

sep(f(βi, y))
= O(n3(n+ τ)).

Therefore, we can proceed analogously to the analysis of the fiber construction in the direct
approach of the curve analysis and obtain Õ(n10(n+ τ)2) again.

Finally, we have to consider the leftmost and rightmost intermediate stacks. We restrict
ourselves to the leftmost one; the rightmost is analogous. The magnitude of f(β0, y) ∈ Z[y]
is (n, n2(n+τ)), since β0 has a bitsize of σ = O(n(n+τ)). Therefore, the Descartes method
has a bit complexity of Õ(n8(n+ τ)2).

In Algorithm 3.3 for the (direct) curve analysis, steps 10 to 12 can be replaced by Algo-
rithm 3.4 – the number of points in the intermediate fibers is determined in both variants.
Furthermore, computing the intermediate stacks reveals more geometric information, since
a sample point in the interior of each x-monotone segments is computed as well.

3.2.3. The approach for non-generic curves

We assume that the direct analysis (Algorithm 3.3) reported a failure indicator because
the curve has a vertically asymptotic arc, or the m-k-bitstream-Descartes method failed
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for some critical x-coordinate α. Still, we can assume that the critical x-coordinates of
the curve have been computed in the projection step, but we need to come up with the
f -stacks using a different method.

Analysis in a sheared system:

We start by applying a shear transformation on the curve V (f) (Definition 2.3.30) with
shear factor s, to obtain Shfs and the curve ShV (fs). On the sheared curve, we apply the
direct approach (Algorithm 3.3) to analyze the curve in a sheared coordinate system. If
this steps fails, a new shear factor s is chosen, and the analysis is repeated.

We have to specify how to choose the shear factors. Our choice will show that the
loop terminates after a constant number of chosen shear factors in expectancy. First, we
argue that there are not too many “bad” shear factors, that is, values s ∈ R such that
Shsf is not in generic position. We mention it does not suffice to exclude all directions
that make a line joining two critical points of V (f) vertical (such an argument was used in
Lemma 2.3.31). This argument implies that critical points remain critical after applying
a shear. However, this is only true for singular points. Non-singular critical points always
become non-critical when shearing with a non-zero shear factor.

A geometric concept related to non-generic curves is the double tangent; indeed, if
a line in R2 is tangential in at least two different points of the curve, the corresponding
direction, chosen as the vertical direction, leads to a non-generic curve. A geometrical
argument that only finitely many such directions exist can be found in [Ker06, Appendix
A]. The proof uses dualizations of curves, and does not directly lead to an upper bound
on the number of bad shear factors. Because we need such an upper bound, we use an
algebraic proof [BPR06, Prop. 11.23].

Lemma 3.2.9. Let f be square-free of total degree n, and let S denote a variable. Define

F (S, x, y) := ShS(f) = f(x+ Sy, y)

D(S, x) := resy(F,
∂F

∂y
)

∆(S) := min
k

{

sresk(D,
∂D

∂x
) | sresk(D,

∂D

∂x
) 6= 0

}

.

If a curve V (Shs(f)) (with s ∈ R) is not in generic position, then s is a root of lcfy(F ) ∈
Z[S] or of ∆ ∈ Z[S].

Proof. Instead of a complete formal proof that requires additional algebraic machinery (a
proof that uses Puiseux series can be found in [BPR06, Prop. 11.23]), we offer an intuitive
argument. Assume that Shs(f) is not in generic position and that (lcfy(F ))(s, x, y) 6= 0
(this means that Shs(f) has cyn with c ∈ R as its leading term, and thus has no vertical
asymptotic segments). Note that D(S, x) defines an algebraic curve and has the property
that, for a given s, D(s, x) ∈ R[x] has as roots the critical x-coordinates of the curve
F (s, x, y) = Shs(f) (by the specialization property). Since Shs(f) is not generic, the
number of distinct (complex) critical x-coordinates decreases at s because two critical
points become covertical (formally, showing this is the hardest part of the proof). But
the number of distinct critical x-coordinates is determined by the index of the first non-
vanishing subresultant coefficient of D(s, x) and its derivative. Thus, if this quantity
decreases, ∆ must necessarily vanish.
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We can now bound the maximal number of bad shear factors. The polynomial lcfy(F )
has up to n real roots. D is a bivariate polynomial of a degree of up to n2 as a resultant
of a polynomial of degree n. ∆ is a subresultant coefficient of D, with respect to X, and
of degree at most (n2)2 = n4. Hence,

Corollary 3.2.10. A curve f of degree n has at most n4 + n bad shear factors.

Algorithmically, we proceed as follows: Integers from the range {1, . . . , 2(n4 + n)} are
chosen randomly as the shear factor until the analysis for the sheared curves succeeds. By
our choice of the range, at least half of the shear factors in the range yield a generic curve.
Thus, the expected number of tries until we find a successful shear factor is bounded by

n4+n∑

i=1

i

2i
<

∞∑

i=1

i

2i
= 2.

It is not hard to see that Shsf is of magnitude (n, τ + log n + n log s). For our choice of
s as above, the coefficient bitsize is thus O(τ + n logn) = Õ(τ + n). It follows that, in
Õ-notation, the complexity of the direct curve analysis does not increase, and since we
expect only 2 executions of the curve analysis until success, we have the following result.

Lemma 3.2.11. Computing a curve analysis for some sheared curve Shs(f) with some shear
factor s ∈ {1, . . . , 2(n4 + n)} has an expected worst-case complexity of Õ(n10(n+ τ)2).

We note that this is already sufficient to prove that the topology computation for a
curve V (f) has the same complexity, since the curve analysis of a sheared version of V (f)
is sufficient to determine an isocomplex. However, to provide the curve analysis for the
original curve, we need to do more.

Shearing back:

We assume from now on that Sh(f) := Shs(f) has been analyzed. We exploit the infor-
mation provided by that sheared analysis to construct the f -stacks of the original system.
The main complication is that critical points of V (f) do not need to be critical points of
V (Sh(f)) (and vice versa). Our strategy is to detect critical points of f in the sheared
system. More precisely, we can restrict the search for critical points to a simpler-to-handle
subclass by the following definition.

Definition 3.2.12 (event point). A point p ∈ V (f) is an event point of V (f) if its branch
numbers are not equal to (1, 1).

Note that an event point is always critical, but the converse is not true; for instance,
a vertical cusp is critical but its branch numbers are (1, 1).

From now on, we will frequently use the following notation. Points on V (f) will be
denoted by p or q, whereas points on the sheared curve V (Sh(f)) are denoted by p∗ and
q∗. We also call p∗ = Sh(p) the sheared image of p, or just the shear of p, and we call p in
this situation the sheared preimage of p∗.

We first outline the workflow of the backshear process:

1. In the first step, we detect the sheared images E∗ := {p∗1, . . . , p∗t } of the event points
of V (f). Note that V (Shs(f)) \ E∗ induces a decomposition into a collection of
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p3

p2

p1

p4 p5

p6

p7

p∗2

p∗1

p∗3 p∗4 p∗5

p∗6

p∗7

Figure 3.13. On the left: A (non-generic) curve and its event points.
On the right: Its sheared curve (with shear factor 2) and the sheared event points.
Note that all p∗i except p∗3 are non-critical points of the sheared curve.

(not x-monotone) segments s∗1, . . . , s
∗
u and that the corresponding preimage segments

s1, . . . , su are x-monotone segments of V (f).
2. As the second step, we compute the endpoints of each s∗i . This is simple, since we

can exploit the curve analysis of the sheared curve.
3. In the third step, we compute the endpoints of each si. For that, it is enough to

compute the preimage of each sheared event point and the (formal) preimage of each
unbounded curve end of the sheared curve.

4. Knowing the endpoints of each si and the coordinates of each event point, we finally
construct the f -stacks, using the oracle-bitstream-Descartes method (Section 2.6.2).

Critical points of V (f) are defined as intersections of the curves V (f) and V (∂f∂y ). Thus,
their sheared images are the intersection points of the sheared curves V (Sh(f)) and
V (Sh(∂f∂y )). Therefore, to detect critical points in the sheared system, we can concen-
trate on the x-coordinates which are roots of

Rev := resy(Sh(f),Sh(
∂f

∂y
)).

Note the subtle difference to the resultant

Rsh := resy(Sh(f),
∂(Sh(f))

∂y
)

whose roots correspond to the critical x-coordinates of the sheared curve.

We identify the event points as follows. We first create the f -stack of V (Sh(f)) for
any root of Rev and of Rsh, and also intermediate stacks with respect to these f -stacks
(Algorithm 3.4). Next, we iterate through all fiber points in all f -stacks over a root of
Rev; let p∗ denote the current point, and p its sheared preimage. We want to determine
whether p is an event point or not. Let (ℓ, r) denote the branch numbers of p∗. If ℓ+r 6= 2,
it follows that the branch numbers of p do not add up to 2 as well and thus, p is clearly
an event point. Otherwise, if ℓ + r = 2, there are precisely two segments adjacent to p∗.
We use the intermediate stacks to find sample points q∗1 and q∗2 on both segments. In this
situation, we have the following lemma.
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Lemma 3.2.13. The point p∗ is the shear of an event point if and only if sign((Sh∂f∂y )(q
∗
1)) 6=

sign((Sh∂f∂y )(q
∗
2)).

Proof. Notice that (Sh∂f∂y )(q
∗
i ) = ∂f

∂y (qi). We let qi = (ai, bi) and observe that ∂f
∂y (qi) =

f(ai, y)
′(bi). Hence it suffices to show in the original system that p is an event point if and

only if sign(f(a1, y)
′(b1)) 6= sign(f(a2, y)

′(b2)). The plane decomposes into the curve f = 0
and into regions that are positive (f > 0) or negative (f < 0). Consider the x-monotone
segments σi of f that connect p to qi, i = 1, 2.

If σ1, σ2 extend to different sides of p, then p is not an event point, and σ := σ1 ∪ σ2

is x-monotone and separates two regions. W. l. o. g. let the region below σ be negative. A
vertical upward ray at x = ai leaves this region at the simple root bi of f(ai, y), so the
region above σ is positive, and f(ai, y)

′(bi) > 0 for both i (Figure 3.14, left).

If σ1, σ2 extend to the same side of p, then p is an event point, and w. l. o. g., there is
a negative region above σ1 and below σ2. An upward vertical ray at x = a1 enters this
negative region at the simple root b1 of f(a1, y), hence f(a1, y)

′(b1) < 0. A similar ray at
x = a2 leaves this negative region at b2, hence f(a2, y)

′(b2) > 0 (Figure 3.14, right).

q1

q2

σ1 σ2

f > 0
f > 0

f < 0

σ1

σ2

q2

q1

f < 0

Figure 3.14. Illustration of the proof of Lemma 3.2.13.

Note that we can use this simple criterion only because we restricted the search to
sheared event points. Detecting sheared critical points instead would be more involved.

The sign of (Sh∂f∂y )(q
∗
i ) can be computed using a two-dimensional analogon of Algo-

rithm 2.18 (sign of f(α)). For both the x- and y-coordinate of q∗i , we know isolating
intervals that can be refined up to any precision. Thus, we can compute arbitrarily small
boxes that contain the point q∗i , using interval arithmetic. For the evaluation of a bivari-
ate polynomial g =

∑n
i=0 ai(x)y

i ∈ Z[x][y] at a box B := Ix × Iy we define the evaluation
function as follows:

2g(B) := 2a0(Ix) + Iy(2a1(Ix) + Iy(2a2(Ix) + . . . (2an−1(Ix) + Iy2an(Ix)) . . .).

The result is a real interval that contains the actual value g(q∗i ). We evaluate 2Sh∂f∂y (B). If
zero is not contained in the result, the sign is determined, otherwise, the box is refined (by
refining x- and y-coordinates). Note that this eventually happens, since the box converges
to q∗i , consequently, the value 2Sh∂f∂y (B) converges to Sh∂f∂y (q

∗
i ) 6= 0.
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After having identified the sheared event points, we construct a set of segments s∗1, . . . , s
∗
u

on V (Sh(f)), not necessarily x-monotone, whose endpoints are sheared event points or sym-
bolic points at infinity. In fact, we are only interested in the endpoints of every segment
here. It is a simple combinatorial task to construct these segments by a simple traversal of
the segmentation of V (Sh(f)) with respect to all roots of Rev and Rsh. Let si := Sh−s(s∗i )
denote the preimage of such a segment. By construction, si is an x-monotone segment
of V (f) (otherwise, it would have an event point in its interior). We aim for computing
the endpoints of each si and thus, we have to explicitly compute the preimage of each
sheared event point and each unbounded curve end. We will call s1, . . . , su event-bounded
segments, and likewise, s∗1, . . . , s

∗
u sheared event-bounded segments in the following de-

scription.

Let p∗ denote a fixed sheared event point. As its sheared preimage p is an event point
and thus critical, it is an element of a fiber of a critical x-coordinate of V (f). We next
determine in which fiber it is contained. For that, we use interval arithmetic. Approximate
p∗ by an axis-aligned box B (given by the isolating intervals for the x- and y-coordinates)
and explicitly perform the transformation Sh−s on B. This yields a parallelogram PB, and
its x-range covers at least one critical x-coordinate of V (f). Retry with a refined box B
until the x-range of PB covers exactly one critical x-coordinate α. The event point p is
then contained in the fiber of α, or in other words, the x-coordinate of p is α (see also
Figure 3.15)
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Sh−sB

shear back

αi−1 αi αi+1

refine

Figure 3.15. Above, the box of the event point contains three critical x-values in its
x-range. After one more refinement, it only contains αi, so the x-value of the event
point must be αi.

In fact, the explicit shear of the box B into PB is only needed conceptually since the
x-range of PB can be read off immediately from the coordinates of B. Let (xℓ, yℓ) and
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(xr, yr) denote the lower-left and upper-right corners of B. Then, the x-range of PB is
[xℓ + syℓ, xr + syr] (assuming that s ≥ 0). Thus, the algorithm simplifies to: Refine B
until [xℓ + syℓ, xr + syr] contains precisely one critical x-coordinate of V (f).

After the critical x-coordinate of the event point has been computed, we already know
isolating and refineable intervals for its x- and y-coordinates. For the latter, we can simply
use the y-interval of the sheared image, because the y-coordinate is invariant under the
shear transformation.

The next task is to compute the preimage of unbounded curve ends. What do we mean
by this? Let s∗ be a sheared event-bounded segment with a (symbolic) infinite endpoint
p∗. Since we excluded vertically asymptotic arcs in the sheared curve, either p∗ = −∞ or
p∗ = ∞, which means that the segment is unbounded in the x-direction. When we shear
back the segment s∗, its preimage s is unbounded as well, and has a formal endpoint.
Thus, it makes sense to talk about the preimage p of p∗.

We exploit the fact that a vertically asymptotic segment with endpoint (α,±∞) is only
possible if α is a root of the leading coefficient lcfy(f) of f , considered as a polynomial
in y. So, let ϕ1, . . . , ϕt denote the real roots of lcfy(f) (they form a subset of the critical
x-coordinates). Our goal is to construct 2t + 2 unbounded regions, called buckets, that
isolate the formal endpoints +∞,−∞, and (ϕi,±∞) from each other for i = 1, . . . , t.

These buckets are constructed as follows. We compute rational intermediate values
that separate the ϕi’s from each other. For technical reasons, we need two intermediate
values between ϕi and ϕi+1 instead of a single one. This requires a simple adaption of
Algorithm 2.14 (to be precise, replace Step 3 of the algorithm by q0,1 ← −2τ+2, q0,2 ←
−2τ+1, qm,1 ← 2τ+1, qm,2 ← 2τ+2, and replace Step 7 by qi,1 ← 3ci+di

4 , qi,2 ← ci+3di

4 ). Let
q0,1, q0,2, . . . , qn,1, qn,2 be the result.

We define a box B containing all fiber points over any of those intermediate values
(Figure 3.16). Observe the following properties. The vertical lines x = qi,j decompose
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Figure 3.16. The box B, and the vertical lines at the intermediate positions (dotted
lines) decompose the region outside B into full buckets (shaded blue) and empty buckets
(shaded red).

R2 \ B into several unbounded regions (buckets), one that is unbounded on the left-hand
side, one that is unbounded on the right-hand side, and several vertically unbounded



3.2. Algorithm for curve analysis 123

regions. Moreover, the formal endpoints −∞,+∞, (ϕi,±∞) are “strongly” isolated by
these buckets, which means that each of them is contained in a different bucket, and for
two buckets containing such formal endpoints, there is always an empty bucket in between
(because we have chosen two intermediate values). We also call buckets that contain a
formal endpoint full buckets, in contrast to the empty buckets in between (Figure 3.16).
Observe also that no segment of V (f) ever changes from one bucket to another without
passing through B. This is simply by construction, as a change of buckets would cause a
fiber point over some intermediate value qi,j outside B, which is impossible.

How does this lead to a method for finding the formal endpoints of unbounded seg-
ments? We pick x-coordinates xℓ, xr in the sheared coordinate system, such that the
interval [xℓ, xr] covers all critical x-coordinates of the sheared curve and the whole x-range
of the sheared box Sh(B), with B as defined above. We compute the fiber points at xℓ, and
xr of ShV (f) by isolating the real roots of Sh(f)(xℓ, y) and Sh(f)(xr, y), letting q∗1, . . . , q

∗
m

denote all the fiber points. Each q∗i represents an infinite endpoint of an unbounded seg-
ment, and since Sh(f) has no vertically asymptotic arc, each infinite endpoint is covered
by some q∗i . Each q∗i is sheared back, with the same method as the event points, and it is
determined in which buckets the preimage qi can be contained. As soon as only one full
bucket is left as an option, we set the endpoint of the corresponding segment of V (f) to
the unique formal endpoint that is contained in this full bucket. Fugure 3.17 depicts an
example.
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Figure 3.17. On the stack of Sh(f) at xℓ, the lower point has the preimage −∞,
since its backsheared box only touches the leftmost full bucket. Likewise, the upper
point at xℓ has preimage (ϕ2,+∞). For xr, the lower point has preimage +∞. The
backsheared box of the upper point still overlaps with two full buckets, thus, further
refinements are needed to deduce its preimage.

Why is this correct? Note that each q∗i is outside the sheared box, thus, its preimage
is outside B. Moreover, the whole infinite part of the sheared segment, starting at q∗i , is
outside the sheared box. Thus, the infinite part of the unsheared segment cannot enter
the box anymore and is thus dedicated to the bucket in which qi is contained. Its behavior
at infinity is determined by the bucket of qi. Clearly, this bucket must be a full bucket,
since the segment must converge to one of the formal endpoints.

We remark that the use of empty buckets is only required for the complexity bound –
in fact, the same algorithm also works when only choosing one intermediate value, which
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leads to full buckets only, which are adjacent to each other.

With the previous two operations on (sheared) event points and on unbounded seg-
ments, we know the endpoints of all event-bounded segments of V (f). This information
is sufficient to compute the f -stacks, as we show next. First of all, note that the vertical
asymptote numbers (ℓ−, ℓ+, r−, r+) are easily deducible by counting how many event-
bounded segments have (αi,−∞) as their right endpoint, how many have (αi,+∞) as
their right endpoint, and so on.

The next step is to construct the f -stack at αi. For this, we aim to apply the oracle-
Bitstream-Descartes method (Section 2.6.2). Note its prerequisites. We need to know
the total number of fiber points m at αi. This is done simply by adding the number of
event points at αi (this counts endpoints of segments) and the number of event-bounded
segments whose x-range has αi in its interior (this count the number of segments “passing”
the fiber). Furthermore, for a set C of distinguished roots, we need to know its number c,
and an “oracle” oS to decide whether an interval contains a root of C or not. We set C to
be the set of event points at αi. Their number is known and moreover, since each event
point’s y-coordinate is refineable to arbitrary precision, one can decide for any interval
whether it contains an event point. The last prerequisite is that all roots not in C have
odd multiplicity.

Lemma 3.2.14. Let (α, β) be a non-event point of V (f). Then, β is a root of f(α, y) with
odd multiplicity.

Proof. By using the same argument as in the proof of Lemma 3.2.13, the function f(α, y)
changes its sign at the root β (Figure 3.14 (left)).

After all, we can apply the oracle-Bitstream-Descartes method to isolate the real roots
at αi. The last data to assign are the branch numbers for each point in the fiber. For
non-event points, they are (1, 1) by definition. For event points, we count the number
of event-bounded segments that have the corresponding event point as its left or right
endpoint.

Algorithm 3.6 wraps up the backshear phase. We remark that the backshear routine
can also be interpreted as follows. Given a curve analysis of V (f) and some s ∈ Z, compute
the curve analysis of Shs(V (f)). Our concrete backshear transformation would then be
an application of this algorithm for the parameters (Shs(f),−s). This is important for
practical reasons, since this transformation is faster than a completely new analysis from
scratch, and it cannot fail.

We turn to the complexity analysis of Algorithm 3.5. First of all, we need a lemma on
bivariate interval arithmetic that generalizes the univariate case in Lemma 2.5.20.

Lemma 3.2.15. Let g =
∑q

i=0 ai(x)y
i ∈ Z[x][y] with each ai ∈ Z[x] of magnitude (p, τ).

Let B = Ix × Iy be an axis-aligned box, with both w(Ix,y) < ε < 1, containing a point
(α, β). For each y0 ∈ 2g(B), we have

|y0 − g(α, β)| ≤ ε2τ2p+q+3 max{1, |α|}p−1 max{1, |β|}q.
Proof. We do an induction on q. For q = 0, the statement reduces to the univariate
case and follows from Lemma 2.5.20. Assume that the statement holds for polynomials of
degree q − 1. We write

g(α, β) = a0(α) + βg̃(α, β)
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Algorithm 3.5. Backshear process

Input: f ∈ Z[x, y] with critical x-coordinates α1, . . . , αs, s > 0, and a curve analysis for
Sh(f) := Shs(f).
Output: f -stacks of V (f) for each αi

1: procedure Backshear(f, s,Sh(f))

2: Rsh ←square-free part of resy(Sh(f), ∂Sh(f)
∂y )

3: Rev ←square-free part of resy(Sh(f),Sh(∂f∂y ))
4: Call merge_roots(Rsh, Rev).
5: Construct intermediate stacks with respect to the roots of Rsh ·Rev

6: Compute sign(Sh∂f∂y (q
∗)) for any intermediate fiber point q∗.

7: Identify sheared event points; E∗

8: Determine the sheared preimage of each element of E∗

9: Compute stacks at intermediate values with respect to the roots of lcfy(f) and
construct a box B containing all their fiber points.

10: Compute the fiber of Sh(f) at x-coordinates xℓ and xr at the left (right) of the
x-range of Sh(B), and of each critical x-coordinate of Sh(f) ; U∗

11: Determine the bucket of each sheared preimage in U∗ to determine the formal
endpoint of unbounded segments of f

12: Construct the list of event-bounded segments of f
13: Determine the number of vertical asymptotes, and the number of fiber points of

each f -stack
14: Apply the oracle_Descartes on each f(αi, y)
15: Assign branch numbers to each fiber point
16: end procedure

with g̃ =
∑q−1

i=0 ai+1(x)y
i, and

y0 = ã0 + (β + ν)ỹ0

with ã0 ∈ 2a0(Ix), ν ∈ [−ε, ε], and ỹ0 ∈ 2g̃(B). Then, it follows that

|y0 − g(α, β)|
≤ |a0(α)− ã0|+ |νỹ0 + β(ỹ0 − g̃(α, β))|
IA
≤ ε2τ2p max{1, |α|}p−1 + ε|ỹ0|+ βε2τ2p+q+2 max{1, |α|}p−1 max{1, |β|}q−1.

Note that with ãi ∈ 2ai(Ix),

|ỹ0| ≤ |ã1|+ (|β|+ |ν1|)(|ã2|+ (|β|+ |ν2|)(|ã3|+ . . . (| ˜aq−1|+ β + |νq|ãq) . . .)

≤ ( max
i=1,...,q

|ãi|)
q−1
∑

i=0

(|β|+ ε)i

≤ ( max
i=1,...,q

|ãi|)
q−1
∑

i=0

(2 max{1, |β|})i

≤ ( max
i=1,...,q

|ãi|)2q max{1, |β|}q−1
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and maxi=1,...,q |ãi| ≤ 2τ2p+1 max{1, |α|}p by a similar argument. Thus,

|y0 − g(α, β)| ≤ ε2τ2p max{1, |α|}p−1 + ε|ỹ|+ βε2τ2p+q+2 max{1, |α|}p−1 max{1, |β|}q−1

≤ ε2τ max{1, |α|}p−1 max{1, |β|}q (2p + 2p+1+q + 2p+q+2)
︸ ︷︷ ︸

≤2p+q+3

.

Corollary 3.2.16. In the situation of Lemma 3.2.15, if

ε < mα,β :=
|g(α, β)|

2p+q+42τ max{1, |α|}p−1 max{1, |β|}q ,

then, 0 /∈ 2g(B).

Proof. If ε < mα,β , it follows from Lemma 3.2.15 that for each y0 ∈ 2g(B)

|y0 − g(α, β)| ≤ |g(α, β)|
2

,

thus, 0 /∈ 2g(B).

We start with the complexity analysis of the backshear algorithm. We will eventually
show that its worst-case bit complexity is bounded by

Õ(n10(n+ τ)2),

which we will prove by proceeding step by step through Algorithm 3.5. The first lines (2-5)
are similar to the direct method. Since both Rev and Rsh are of magnitude (n2, n(n+ τ)),
all these steps are bounded by Õ(n10(n+τ)2). The first hard part is step 6, where we need
to determine the sign of Sh(∂f∂y ) for any point (αi, βi,j), where α1, . . . , αs are the chosen
intermediate values and βi,1, βi,mi

are the fiber points of Sh(f)(αi, y). By Corollary 3.2.16,
this requires refining the box of (αi, βi,j) to a minimal side length of

mαi,βi,j
:=

|Sh(∂f∂y )(αi, βi,j)|
22n+42τ max{1, |αi|}n−1 max{1, |βi,j |}n

.

This means that the x- and y-coordinates of (αi, βi,j) must be refined to mαi,βi,j
. Note

that all αi are roots of the polynomial R′ := (Rev ·Rsh)
′ and that this polynomial is of

magnitude O(n2, n(n+ τ)).

Lemma 3.2.17.
∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

log
1

mα,β
= O(n3(n+ τ))

Proof.

∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

log
1

mα,β
≤

∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

log
22n+42τ max{1, |α|}n max{1, |β|}n

Sh(∂f∂y )(α, β)

≤ O(n3(n+ τ)) +
∑

α

∑

β

n log max{1, |α|}+
∑

α

∑

β

n log max{1, |β|}+
∑

α

∑

β

1

Sh(∂f∂y )(α, β)
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We show that each of the summands is bounded by O(n3(n+ τ)). For the first summand

∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

n log max{1, |α|}

≤ n2
∑

α∈V (R′)

log max{1, |α|}

≤ n2 log Mea(R′) = O(n3(n+ τ)).

In the second summand, we exploit the multiplicativity of the Mahler measure to obtain

∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

n log max{1, |β|} ≤ n
∑

α∈V (R′)

log
Mea(Sh(f)(α, y))

lcf(Sh(f)(α, y))

≤ n log
Mea

∏

α∈V (R′) Sh(f)(α, y)
∏

α∈V (R′) lcf(Sh(f)(α, y))
≤ n log

Mea resx(Sh(f),R′)
lcf(R′)n

res(lcfy(Sh(f)),R′)
lcf(R′)n

≤ n log Mea(resx(Sh(f), R′)) + n log lcf(R′)n.

And by the same argument as in Lemma 3.2.7, log Mea(resx(Sh(f), R′)) = O(n2(n+ τ)).
Finally, we need to bound the last summand:

∑

α∈V (R′)

∑

β∈V (Sh(f)(α,y))

log
1

Sh(∂f∂y )(α, β)
=

∑

α∈V (R′)

log
∏

β∈V (Sh(f)(α,y))

1

Sh(∂f∂y )(α, y)

=
∑

α∈V (R′)

log
lcf(Sh(f)(α, y))n

res(Sh(f)(α, y),Sh(∂f∂y )(α, y))

= n log
∏

α∈V (R′)

lcf(Sh(f)(α, y))− log
∏

α∈V (R′)

res(Sh(f)(α, y),Sh(
∂f

∂y
)(α, y))

= n
res(lcfy(Sh(f)), R′)

lcf(R′)n
− log

∏

α∈V (R′)

Rev(α)

≤ n · res(lcfy(Sh(f)), R′)− log
res(Rev, R

′)

lcf(R′)n2

≤ n · res(lcfy(Sh(f)), R′) + n2 log lcf(R′) = O(n3(n+ τ)).

We use this lemma to bound the cost of Step 6 of Algorithm 3.5. We can assume that,
within Õ(n10(n+τ)2) bit operations, the x-coordinates of each root of R′ are refined to an
interval width of O(n4(n+τ)) (strong root isolation, Theorem 2.5.16); this suffices to make
all x-coordinates small. It remains to consider the y-coordinates. For each α ∈ V (R′), set
mα := min{mα,β | β ∈ V (Sh(f)(α, y)). If all intervals of the fiber of Sh(f) over α are
refined to a width of mα, then clearly all signs can be determined. By Theorem 2.6.21
(Refinement of isolating intervals for bitstream polynomials), this requires

Õ(n3(τα + log
1

sep(Sh(f)(α, y))
+ log

1

mα
))2

bit operations, where 2τα is an upper bound on the coefficients of Sh(f)(α, y). Similar
to the direct case of the curve analysis,

∑

α τα = O(n2(n + τ)),
∑

α log 1
sep(Sh(f)(α,y)) =



128 Arrangements of Algebraic Plane Curves

O(n3(n + τ)) by Lemma 3.2.7, and
∑

α log 1
mα

= O(n3(n + τ)) by Lemma 3.2.17. Thus,

we arrive at Õ(n9(n+ τ)2) bit operations when considering all critical x-coordinates.

We continue with the next steps of Algorithm 3.5. Identifying the sheared event points
based on the computed signs works completely combinatorially using Lemma 3.2.13. The
next step is to compute the x-coordinate of each preimage of a sheared event point.

Lemma 3.2.18. Let p∗ be a sheared event point with isolating box B = Ix × Iy. Let R be

the resultant of f and ∂f
∂y . The sheared preimage p of p∗ has x-coordinate α, which is a

root of R. If w(Ix) <
sep(R)

2 and w(Iy) <
sep(R)

2s , then the x-range of Shs(B) is an isolating
interval for α and R.

Proof. The x-coordinate of p is a root of R since event points are critical points. Let
Ix = (xℓ, xr) and Iy = (yℓ, yr). The x-range of Shs(B) is given by (xℓ + syℓ, xr + syr) and
thus, the width is xr − xℓ + s(yr − yℓ) = w(Ix) + sw(Iy) < sep(r). Since α is contained in
the x-range, no other root of r is contained; hence, the x-range is an isolating interval.

Since log 1
sep(R) = O(n3(n + τ)) and log s = O(logn), we need for each sheared event

point O(n3(n+τ)) bits of precision in its x-coordinate, and O(n3 logn(n+τ)) = Õ(n3(n+
τ)) bits for the y-coordinate. Again, applying Theorem 2.5.16 (strong root isolation), even
O(n4(n+τ)) bits of approximation can be obtained for each root of Rev in Õ(n10(n+τ)2).
For the y-coordinates, we need Õ(n3(n + τ)) bits per (sheared) event point. We apply
Theorem 2.6.22. The isolation of all fibers at roots of Rev has already been bounded. It
remains to further isolate up to n2 sheared event points, which corresponds to the second
terms of the bound in Theorem 2.6.22, and gives a bound of Õ(n10(n+τ)2) bit operations.

We next look at Step 9, where a box is computed containing all fiber points of interme-
diate stacks with respect to lcfy(f). Note that computing the intermediate x-coordinates
requires only O(n4τ2) bit operations, since lcfy(f) is of magnitude (n, τ) and each inter-
mediate value is of bitsize O(n(τ + logn)) (Theorem 2.5.17). Recall from the description
of the method for unbounded segments that we need two intermediate stacks between two
roots, but this does not affect the complexity. After all, there are up to 2n + 2 fibers to
compute and each polynomial f(ϕ, y) with ϕ some intermediate value has a magnitude
of (n, n2(τ + logn)). This yields a total complexity of Õ(n9τ2) to obtain all intermediate
stacks. We have to bound the size of the obtained box B. The maximal and minimal
points in a fiber are bounded in their bitsize by O(n2(τ + log n)) (the coefficient size of
f(ϕ, y)), thus, the whole box is bounded in the y-direction by 2cn

2(τ+log n) with some con-
stant c, and in the x-direction by 2c

′n(τ+log n). This implies that the x-range of the sheared
box is of magnitude O(n2(τ + log n)) and thus, xℓ and xr chosen by the algorithm are
also of this magnitude. To construct the fiber at these positions requires Õ(n10τ2) bit
operations using the Descartes method, since f(xℓ, y) and f(xr, y) are both of magnitude
(n, n3(τ + log n)).

For each fiber point, we compute the (full) bucket in which its preimage is contained.
In this step, we exploit the fact that we have chosen two intermediate values between
consecutive critical x-coordinates. Since both intermediate values are of bitsize of at most
O(n(τ + log n)) (Theorem 2.5.17), any empty bucket has a width of at least Ω( 1

n(τ+log n)).

Therefore, we need, for each fiber point over xℓ or xr, O(n logn(τ + logn)) = Õ(nτ) bits
for the y-coordinate. By Theorem 2.5.16 (strong root isolation), this is not more expensive
than the root isolation itself, and therefore bounded by Õ(n10τ2).
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Algorithm 3.6. Curve analysis

Input: f ∈ Z[x, y] square-free
Output: curve analysis of V (f)

1: procedure curve_analysis(f)
2: Call ca_direct(f). If successful, return
3: while true do
4: Choose s ∈ {1, . . . , 2(n4 + n)} at random
5: Call ca_direct(Shs(f))
6: If successful, call Backshear(f, s,Shs(f)) and return
7: end while
8: end procedure

Computing the event-bounded segments out of the information obtained so far is a
simple combinatorial task and requires basically no arithmetic operations. As the next step,
we apply the oracle-Bitstream-Descartes method on each fiber. Since the same complexity
bound as for the m-k-bitstream-Descartes algorithm holds, this again requires Õ(n10(n+
τ)2) bit operations. It also requires up to O(n4(n + τ)) bits per x-coordinate, which can
be computed by the same number of bit operations. Finally, we have to take the cost
of the “oracle steps” into account. To check whether an interval during the subdivision
contains an event point, it is enough to refine the y-coordinate of each sheared event point
to width sep(f(αi, y)). Since log 1

sep(f(αi,y))
= O(n3(n + τ)), this requires Õ(n8(n + τ)2)

bit operations per (sheared) event point (Theorem 2.6.22), and thus Õ(n10(n + τ)2) in
total. The branch numbers can be assigned after a single iteration through the set of
event-bounded segments.

In summary, we have seen that each step in the backshear process is bounded by
Õ(n10(n + τ)2). We can finally combine all ingredients into a complete curve analysis
algorithm. See Algorithm 3.6. Its expected worst-case complexity is bounded by Õ(n10(n+
τ)2), as follows from Lemma 3.2.11 and by the complexity of the backshear procedure.

3.2.4. Computing additional information

We have so far concentrated on the minimal requirements for a curve analysis in order
to provide the Make_x_monotone primitive. Several extension are possible if more
information is required.

Curves with vertical components This is not really an extension, but a special case
that was not handled before. We have assumed throughout the last section that f had
no vertical line as a component. Let us now assume that f has a vertical line component.
Then, f , considered as a polynomial in y, decomposes into a primitive part pp(f), and
its content cont(f) ∈ Z[x]. The latter curve consists of the vertical components of f
(Lemma 2.2.5); let ϕ1, . . . , ϕs denote the real roots of cont(f). We apply the curve analysis
algorithm to pp(f), but we extend the critical x-coordinates of it by ϕ1, . . . , ϕs, thus we
create an f -stack at each position of a vertical line. After the curve analysis has been
computed, we iterate through the ϕi’s and set the is_vertical flag for each such f -stack.
It is easily seen that the total complexity bound is not increased by these operations.
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Horizontal asymptotes So far, unbounded segments have been grouped into the following
types (compare page 26): segments with curve ends at x = −∞ or x = +∞ denoting
segments that are unbounded in their x-coordinate, and segments with curve ends of type
x = (αi,−∞) and x = (αi,+∞), where αi is a critical x-coordinate (or, more precisely, a
root of lcfy(f)). The latter segments are asymptotically converging towards the vertical
line x = αi.

For the former type of segment, we can introduce a further distinction: segments
unbounded in their x-coordinate can either be unbounded in their y-coordinate as well
(then, they diverge to one of the four “corner points” (±∞,±∞) of R2). Or, they have
a horizontal asymptote y = βi. Sometimes, it is useful to distinguish these cases. For
instance, if the arrangement represents curves in a parametric space on a torus or cylinder,
the lines x = −∞ and x = +∞ are glued together; for that reason, one needs additional
information where the curve “hits” the lines at infinity (we give an application for this in
Chapter 5).

Such information is computed via a simplified version of the approach to detect vertical
asymptotes. Note that a horizontal line y = ϕ can only be a horizontal asymptote for V (f)
if ϕ is a root of lcfx(f). Thus, let ϕ1, . . . , ϕt be roots of lcfx(f). We compute, as in the
vertical case, two intermediate values for each pair of consecutive roots (and additionally,
two intermediate values between −∞ and ϕ1 and between ϕt and +∞). This induces
2t+2 horizontal stripes: two extremal unbounded stripes, and “empty” intermediate stripes
alternating with stripes that contains a horizontal line y = ϕj . For each unbounded
segment towards x = ±∞, it is enough to determine the stripe it is eventually contained
in to determine its type.

For that, choose the rational value xℓ (xr) on the left (right) of each critical x-
coordinate, and on the left (right) of any intersection of V (f) with one of the horizon-
tal lines bounding one of the stripes just defined. In other words, in the fiber of V (f)
over xℓ (xr), each point belongs to a unbounded segment with formal endpoint x = −∞
(x = +∞), and the segment cannot change its stripe anymore when running further to-
wards its infinite endpoint. Thus, it is enough to determine the stripe in which each fiber
point is contained in order to determine the type of the corresponding unbounded segment
(Figure 3.18).

The complexity of this step is determined with the same methods as for the vertical case.
The bitsize of each intermediate value is bounded by O(n(τ+logn)). Thus, all intersections
with V (f) are contained in an x-range whose boundaries are of bitsize O(n2(τ + logn)).
It follows that xℓ and xr are of bitsize O(n2(τ + log n)), and to determine the stripe
of each fiber point, it is necessary to refine all roots to a precision ε such that log 1

ε =
O(n2(τ + logn)). This is because when refined to this precision, no isolating interval can
cover more than one non-empty stripe. Using Theorem 2.5.16 (strong root isolation), this
requires Õ(n8(n + τ)2) bit operations. The preceding computation of xℓ and xr required
up to 2n applications of Theorem 2.2.11, which requires O(nτ) arithmetic operations. This
is clearly negligible.

Singular point detection The curve analysis has computed fibers for each critical x-
coordinate of the curve, that is, for each x-coordinate where critical (and thus singular)
points may arise. However, it does not give the definite answer to the question of whether a
certain point is critical/singular or not. So far, we only have the following partial answers:

• If a point does not belong to a critical f -stack, it is not critical.
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−∞1

−∞2

−∞3

−∞4

(−∞, +∞)

(−∞,−∞)

(−∞, β4)

(−∞, β2)

(−∞, β1)

(−∞, β3)

Figure 3.18. On the left: The dashed horizontal lines are chosen with respect to
the roots of the leading coefficient lcfx(f) (blue points). The extreme values xℓ and
xr (dashed vertical lines) are chosen on the left/right of any critical point of the curve
(green points), and any intersection with an intermediate line (red points).
On the right: The isolating intervals in the fiber of xℓ. Each overlaps with a unique
blue region, which determines the endpoint of the segment.

• If a point has branch numbers different from (1, 1), it is critical. If it has branch
numbers that do not sum to 2, it is singular.
• If a point has a y-coordinate such that the m-k-bitstream-Descartes, or the oracle-

bitstream-Descartes method identified it as a simple root, it is not critical.

The last item states that if the fiber has been constructed by the m-k-bitstream-Descartes
method, all points except the distinguished one in the fiber (the one that might contain a
multiple root) are non-critical and thus non-singular. Still, there is no guarantee that the
distinguished root is really multiple. For instance, it might be the case that the critical
x-coordinate is caused by a complex critical point with a real x-coordinate, thus, all real
roots are simple and there is a pair of complex conjugate roots close to a real root such
that the sign variation in the isolating interval of this root is increased.

Moreover, even if the root is multiple, there remains the question of whether it is
singular or not. See Figure 3.19 for examples.

��
��
��

��
��
��

Figure 3.19. On the left: In both cases, the branch numbers are (0, 2), and the
multiplicity of the isolating interval is at least 2. However, the left point is singular,
whereas the right one is regular.
On the right: In all three cases, the branch numbers are (1, 1), and the multiplicity of
the isolating interval is at least 3. But only the middle point among the three is regular.
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We present an extension that allows setting a flag for each fiber point to denote whether
a point is singular or not. The method will be based on the previous results of the analysis,
but it also introduces more symbolic computations in the algorithm and might considerably
worsen the practical performance (although the “partial answers” in the enumeration above
already determine the flag in most instances).

Recall Lemma 2.3.16. If two polynomials g1 and g2 have exactly one common root of
multiplicity k, then this root is given by

β = − coefk−1(Sresk(g1, g2))

k · coefk(Sresk,k(g1, g2))
.

We apply this result in the context of a polynomial f(α, y) ∈ R[y], with α a critical x-
coordinate. Let k := gcd(f(α, y), f ′(α, y)). We do not know whether there is exactly one
multiple root of f(α, y), that is, exactly one common root of f(α, y) and ∂f

∂y (α, y) = f ′(α, y).
Let us set

p(x) := −coefk−1(Sresk(f,
∂f

∂y
))

q(x) := k · coefk(Sresk,k(f,
∂f

∂y
)).

Note that q(α) 6= 0, since sresk(α) is the first non-vanishing subresultant at α (Lemma 2.3.14).
A simple consequence of Lemma 2.3.16 is the following:

Lemma 3.2.19. If f is in generic position and α is a critical x-coordinate, then (α, p(α)
q(α) )

is the unique critical point in the fiber at α.

Moreover, we can check whether (α, p(α)
q(α) ) is a critical point, and whether it is singular,

as follows.

Lemma 3.2.20. Let p, q be defined as above. For g ∈ Z[x, y], define

H(k)
g (x) := q(x)degy(g)g(x,

p(x)

q(x)
) ∈ Z[x].

Then, for any critical x-coordinates, it holds that:

1. If H
(k)
f (α) = H

(k)
∂f
∂y

(α) = 0, then (α, p(α)
q(α) ) is a critical point of V (f).

2. In this situation, H ∂f
∂x

(α) = 0, if and only if (α, p(α)
q(α) ) is a singular point of V (f).

3. Otherwise, if Hk
f (α) 6= 0 or H ∂f

∂y

(α) 6= 0, then V (f) is not in generic position.

Proof. This all follows simply by the fact that H
(k)
g (α) = 0 if and only if (α, p(α)

q(α) ) is a

point on V (g).

The directly preceding lemma proposes the following algorithm. We first adapt the
direct method of the curve analysis algorithm. Assume that the fiber over α (a critical
x-coordinate) has been computed using the m-k-bitstream-Descartes method. Then, all
fiber points except the distinguished one are non-critical. We check whether Hk

f (α) = 0

and whether Hk
∂f
∂y

(α) = 0. If not, the method fails (and a shear transformation is applied).

If both vanish, there is a real critical point at α and thus, the distinguished fiber point
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must be critical. We additionally check whether H ∂f
∂x

(α) = 0 and set its singular flag

depending on the result.

So far, we have only mentioned the direct case. If the curve analysis must be performed
in a sheared coordinate system, the singular flags are set for the sheared curve. Slightly
redefining the term “event point”, all singular points are also labeled as event points.
The backshear process is performed as before, and each event point of V (f) inherits its
singularity flag from its sheared image (note that being singular is a property that is
invariant under shearing).

How costly are these steps? First of all, we have to bound the magnitude of H
(k)
g .

Assume that g is of magnitude (n, τ), and p and q are of magnitude (n2, n(n+ τ)). Then,

it is not hard to see that the degree of H
(k)
g is bounded by n3. To bound the bitsize, note

that H
(k)
g can be written as the sum

H(k)
g =

∑

i,j

ai,jx
ip(x)jq(x)degy(f)−j .

We consider H
(k)
g as a polynomial in the formal coefficients ai,j and the coefficients of p

and q. Note that, when fully expanded, p(x)j and q(x)degy(f)−j have up to n2n summands.
In total, this gives n4n+2 formal summands. Each coefficient is bounded in its bitsize by
O(n2(n+ τ)), and when adding up to n4n+2 such coefficients, this yields a maximal bitsize

of O(n2(n+ τ) + n log n) = O(n2(n+ τ)). Thus, H
(k)
g is of magnitude (n3, n2(n+ τ)).

To check whether H
(k)
g (α) = 0, we compute gcd(H

(k)
g , r), where r is the square-free

part of stha0(f), and evaluate the gcd at the boundaries of the isolating intervals of α
(compare Algorithm 2.15). Computing this gcd requires up to

O(n5M(n3 ·n2(n+ τ))) = O(n10(n+ τ))

bit operations (Theorem 2.4.19), and the resulting gcd is of magnitude (n2, n(n+ τ)). The

gcd computation has to be done at most n times (once for each H
(k)
g with k = 1, . . . , n),

thus, all gcd computations are bounded by

Õ(n11(n+ τ)) = Õ(n10(n+ τ)2).

For the evaluation of the gcd at the interval boundaries, recall that each boundary is of
bitsize O(n3(n+τ)); thus, the evaluation of one point has a bit complexity of Õ(n7(n+τ)).
Doing this for each critical x-coordinate results in a bit complexity of Õ(n9(n+ τ)).

After all, we have shown that checking for singular values does not increase the total
complexity. Also, the fact that the algorithm becomes slightly more restrictive (i.e., might
reject more curves) does not affect the worst-case bound, since curves in generic position
are still accepted by the algorithm. But again, we emphasize that the practical performance
might well be affected by this optional step, because the whole operation is purely symbolic.

The method actually computes more information: when the (modified) direct analysis
has been successful, it also verifies for each distinguished point that it is indeed critical (but
it still does not decide whether the curve is in generic position). However, if a shear has
been performed, this is no longer true, since being critical is not invariant under shearing.
The simplest way to distinguish critical from non-critical points for general curves seems
to be to apply a curve pair analysis to V (f) and V (∂f∂y ) and to label the intersection points
as critical points of V (f). The details of the curve pair analysis will be the subject of the
next section.
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Summary

The curve analysis provides information about an algebraic curve at its critical fibers. This
induces a decomposition of the curve into x-monotone segments and allows approximating
any point of the curve to arbitrary precision. We have presented an algorithm that com-
bines symbolic computations with faster numerical methods and have derived a worst-case
bound that matches state-of-the-art solutions to this problem.

3.3. Algorithm for curve pair analysis

Let f, g ∈ Z[x, y] be fixed in this section, and assume that they are square-free and coprime.
Recall the definition of a curve pair analysis (Definition 3.1.10) of (V (f), V (g)). For any

critical x-coordinate of the curve pair (i.e., a critical x-coordinate for a single curve or a
root of res(f, g)) and any intermediate value between consecutive critical x-coordinates,
we compute an fg-stack which captures the vertical ordering of the fiber points of V (f)
and V (g) at the current position. Moreover, for each intersection point that is neither at a
critical x-coordinate of V (f) nor of V (g), we have to determine the intersection multiplicity.

In what follows, we assume that the curve analyses of the single curves V (f) and V (g)
have been computed and are available during the algorithm. The algorithm uses quite a
similar method to that of the curve analysis. We identify three main phases, which are
sketched next. Detailed descriptions follow in the subsequent sections.

Pre-stack phase First, the critical x-coordinates and suitable intermediate values are
computed. The fg-stacks for x-coordinates without potential intersection point are easy
to compute. For x-coordinates where intersections are possible, a structure called a pre-
stack is computed which contains a preliminary ordering of the fiber points of f and g.

Definition 3.3.1 (pre-stack). For a curve pair (V (f), V (g)) and some α ∈ R, a pre-stack
at α is a sequence of entries “f”, “g”, and “p”, that represents the vertical ordering of the
fiber points of V (f) and V (g). “f” stands for a fiber point of V (f), “g” for a fiber point of
V (g), and “p” stands for a pair of fiber points, one from V (f) and one from V (g). This
pair can either stand for an intersection of V (f) and V (g) or it can represent a sequence
“fg” or “gf” in the fiber. In the latter cases, we call the pair a fake pair.

Obviously, to produce the final fg-stack for α, we have to identify the fake pairs of the
pre-stack, and replace them by appropriate subsequences (See also Figure 3.20).

Direct analysis An attempt is made to turn pre-stacks into valid fg-stacks by a “direct”
analysis. Some exact information on each critical fiber is computed using symbolic com-
putations. This is enough to identify intersections in the interior of segments of V (f) and
V (g) and to deduce their intersection multiplicity. At the remaining fibers, we try to reduce
the number of pairs in the pre-stack to exactly one remaining pair, called the candidate
pair, and it is ultimately ensured that this candidate pair is indeed an intersection.

Similar to the direct approach for one curve, the approach described might fail on
several occasions. If this happens, a sheared version of the curve pair must be used (see
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f

g

Figure 3.20. Illustration of a pre-stack. From bottom to top, it is defined by the
string “fppfg”. By looking at the picture, the fg-stack would be “fifgfg”, thus, the first
pair is an intersection point, but the second is a fake pair.

next paragraph). But at least the direct analysis will always work if the curve pair is in
generic position.

Definition 3.3.2 (generic position of a curve pair). The curve pair (V (f), V (g)) is in
generic position if V (fg) is in generic position.

Analysis via a shear If the direct approach fails, a shear factor s is chosen at random,
and the sheared curve pair V (Shs(f),Shs(g)) is analyzed by the direct method. In the
event of failure, s is rechosen until the method succeeds.

If successful, all intersection points of V (Shs(f)) and V (Shs(g)) are approximable. By
shearing back each intersection point, we can assign it to a unique pair in some pre-stack
of the original curve pair. This reveals which pairs are intersections and which are not.
The fake pairs can then be resolved (Figure 3.21).

There is one complication in this backshear process, namely that the multiplicity of
intersection points in the interior of segments might remain unknown. In this case, one
has to choose another shear factor to compute this multiplicity.

3.3.1. Details of the pre-stack computation

Projection phase The critical x-coordinates of the curve pair are given by the union of
the roots of

rf := resy(f,
∂f

∂y
) rg := resy(g,

∂g

∂y
) rfg := resy(f, g).

By two applications of Algorithm 2.16 (merge_roots), we produce the sequence of
critical x-coordinates and can determine for each of them whether they belong to rf , rg,
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Figure 3.21. Illustration of the backshear process. On the left, we see pre-stacks
of the original curve – pairs are drawn in pink (thicker). On the right, we see the
sheared curves. Shearing back its two intersection points yields the pairs that contain
intersection points – the other two pairs must be fake pairs.

or rfg. We call critical x-coordinates which are not roots of rfg one-curve-critical, roots of
rfg which are neither roots of rf nor of rg curve-pair-critical, and roots of both rfg and of
rf · rg fully critical. See also Figure 3.22.
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Figure 3.22. From left to right, the critical x-coordinates of the curve pair are: one-
curve-critical, one-curve-critical, curve-pair-critical, fully critical, fully critical, curve-
pair-critical, and one-curve-critical.

Intermediate values are computed similarly to the one-curve case. We isolate the real
roots of (rf · rg · rfg)′ and pick intermediate values between consecutive roots (compare
Section 3.2.2).

fg-stack creation without intersections For each α that is either one-curve-critical or
an intermediate x-coordinate, fetch the f -stack and the g-stack at α (they are either com-
puted already or can be obtained easily from the curve analysis by creating an additional
intermediate stack). Refine the isolating intervals for the y-coordinates, both for V (f) and
V (g), until they are all pairwise disjoint from each other. The order of the refined intervals
then determines the fg-stack.
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Algorithm 3.7. Pre-stack Computation

Input: f, g ∈ Z[x, y] square-free and coprime
Output: Critical x-coordinates and intermediate values for the curve pair (V (f), V (g)),
fg-stacks for all intermediate values and one-curve-critical x-coordinates

1: procedure pre_stack(f, g)
2: rf ← resy(f,

∂f
∂y ), rg ← resy(g,

∂g
∂y ), rfg ← resy(f, g)

3: Merge the roots of rf , rg and rfg into one sequence α1, . . . , αs
4: Compute intermediate values γ0, . . . , γs
5: For each γi, and each αj that is not a root of rfg, compute the fg-stack by refining

the isolating intervals of the f -stacks and g-stacks to disjointness
6: For each αi that is root of rfg, compute a pre-stack by refining the isolating intervals

of the f -stacks and g-stacks until each interval overlaps with at most a single other
7: end procedure

Pre-stack computation For each α that is a root of rfg, fetch the f -stack and the g-
stack at α. Refine the isolating intervals for the y-coordinates until each interval for a fiber
point of V (f) overlaps with at most one interval for a fiber point of V (g), and vice versa.
This induces the pre-stack at α in a direct way: intervals for fiber points in V (f) that are
isolated from any interval of V (g) are represented by “f”, isolated intervals for fiber points
of V (g) are represented by “g”, and pairs of isolating intervals are represented by “p”. Note
that if we knew which pairs were fake pairs, we could easily split them by further refining
the involved intervals to disjointness, and we would be done. But we do not know yet
which pairs are fake.

3.3.2. Details of the direct analysis

Symbolic precomputation For each curve-pair-critical value and each fully-critical value
α we require that deg f(α, y) = degy f and that deg g(α, y) = degy g, in other words, no
real root of rfg must be a root of lcfy(f)lcfy(g). If this is not satisfied, the direct analysis
fails (and we pass to phase three explained below). For each root α of rfg, we compute
kα := deg(gcd(f(α, y), g(α, y))) using the principal subresultant coefficients of f and g
(Lemma 2.3.14). We will write k := kα for convenience, if it is clear which α is meant.
Moreover, we compute µα := mult(α, rfg), the multiplicity of α as a root of the resultant.
This can be done using the square-free factorization of rfg (Algorithm 2.8).

If kα > 1 for any curve-pair-critical x-coordinate α, the direct method fails, and we
pass to phase three.

Splitting fake pairs Fix some curve-pair-critical x-coordinate α. We have ensured that
kα = 1. It follows that there is exactly one intersection point of V (f) and V (g) at x = α,
and it must be real. Moreover, its intersection multiplicity is equal to µα (Theorem 2.3.33).
Therefore, we can simply proceed as follows. We repeatedly loop through all pairs of the
pre-stack and refine both intervals. If a pair is split in this step, that is, the intervals of the
pair become disjoint, the entry “p” in the pre-stack is replaced by “fg” or “gf”, depending
on their order. This is done until all pairs except one have been split. The last remaining
pair is relabeled as an intersection point and its intersection multiplicity is set to µα.

Alternatively, let α be some fully-critical value. The method just described cannot work
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here, since we cannot require that kα = 1 (even if the curve pair is in generic position).
Therefore, we do not know the number of intersection points at α. We need to compute
additional information to ensure termination in the presence of several intersection points.
Consider a pair (I, J) of the pre-stack, consisting of an isolating interval I for a root of
f(α, y) and an isolating interval J for a root of g(α, y). Recall from Section 2.6.4 that both
I and J have a multiplicity mI and mJ that yield an upper bound for the multiplicity of
the contained root with respect to the corresponding polynomial. We set the multiplicity
m(I,J) of the pair (I, J) to m(I,J) := min{mI ,mJ}.

Lemma 3.3.3. Let k := gcd(f(α, y), g(α, y)). If the curve pair is in generic position, there
is always a pair at α with multiplicity k.

Proof. If the curve pair is generic, it follows that there is only one intersection point at α,
let β denote its y-coordinate. Then gcd(f(α, y), g(α, y)) = (y − β)k, thus, β is a root of
multiplicity of at least k for both f and g. It follows directly that m(I,J) ≥ k.

We repeatedly loop through all pairs of the pre-stack and refine both intervals. If a
pair is split in this step, that is, the intervals of the pair become disjoint, the entry “p” in
the pre-stack is replaced by “fg” or “gf”, depending on their order. Otherwise, we update
the multiplicity of the pair.

There are two termination conditions. First, if each pair in the pre-stack has a mul-
tiplicity of less than k, the direct method fails. Second, if only one pair remains in the
pre-stack, this last pair is labeled as the candidate pair, and we proceed with the next
α. Note that the latter condition will eventually happen if the curve pair is in generic
position.

Checking the candidate pair Consider some fully-critical x-coordinate α and assume
that (I, J) is the candidate pair. We know that there is at most one intersection, and
if there is one, it must be represented by the candidate pair. But there is no guarantee
that the candidate is indeed an intersection. A cheap argument to get a certified positive
answer follows

Lemma 3.3.4. If kα is odd or µα is odd, then the candidate is an intersection point.

Proof. If kα is odd, the gcd of f(α, y) and g(α, y) has a real root, thus, there is a real
intersection in the fiber. If µα = mult(α, rfg) is odd, the intersection multiplicities sum to
an odd number, according to Lemma 2.3.33. Since each pair of complex conjugate non-real
intersection points must have the same intersection multiplicity (because of symmetry),
there must be a real intersection as well.

If both kα and µα are even, we try to ensure the presence of an intersection symbolically,
using the same method as for detecting singular points in the curve analysis (Section 3.2.4).
Set k := kα and define

p(x) := −coefk−1(Sresk(f, g))

q(x) := k · coefk(Sresk,k(f, g))

and

H
(k)
f (x) := q(x)degy(f)f(x,

p(x)

q(x)
) ∈ Z[x]



3.3. Algorithm for curve pair analysis 139

�
�
�

�
�
�

�
�
�

�
�
�

Figure 3.23. On the left, we see the curves V (y − x2) and V (y + x2). For α = 0,
kα = 1 and µα = 2. On the right, we see V (y(x − y)(x + y)) and V (x − y2). Here,
kα = 2 and µα = 3.

Hk
g is defined analogously. We check if Hk

f (α) = 0 = Hk
g (α). If so, we have proven

that (α, p(α)
q(α) ) is a real intersection point of f and g, thus, the candidate represents this

intersection point. If Hk
f (α) 6= 0 or Hk

g (α) 6= 0, the direct method fails (note that it might
still be possible that the curves intersect).

If no failure occurs, we have computed fg-stacks for each critical x-coordinate, and
intermediate values in-between, and we know the intersection multiplicity for each in-
tersection in the interior of segments. It should be clear by the explanations that the
computed information indeed is correct in all cases. Still, we have to argue why the direct
method is successful for curve pairs in generic position.

Lemma 3.3.5. If the curve pair is in generic position, the direct method does not return
a failure.

Proof. We look at those substeps where a failure can occur, and rule out that this happens
for a generic curve pair. First, a failure can happen if a root of rfg is also a root of
lcfy(f) · lcfy(g) = lcfy(fg). If fg is generic, its leading coefficient cannot have any real
root, so this condition can never be satisfied.

For curve-pair-critical x-coordinates α meaning α is a root of rfg but neither a root of
rf nor rg, a failure is reported if kα = gcd(f(α, y), g(α, y)) > 1. Since α is not a root of rf
or rg, f(α, y) and g(α, y) only have simple roots. If fg is generic, there is only one multiple
root of fg at α. That means that exactly one root of f(α, y) and of g(α, y) coincide, and
thus, kα = 1.

Another possibility for a failure arises during the elimination of the pairs of a fully-
critical x-coordinate α, if the multiplicity of each pair falls below kα. If fg is generic, there
is always one pair that contains the intersection point (α, β) and since gcd(f(α, y), g(α, y)) =
(y − β)kα , β is a root of multiplicity of at least kα for both f(α, y) and g(α, y). It follows
that the multiplicity of the isolating interval for β is at least kα for both f(α, y) and g(α, y).
Therefore, the multiplicity of the pair for β is at least kα.

Finally, the last possibility for a failure is when we detect thatHk
f (α) 6= 0 orHk

g (α) 6= 0.
If fg is generic, it follows that there exists only one common complex root of f and g at
α. Thus, Lemma 2.3.16 is applicable and it follows that p(α)

q(α) is a common root of f(α, y)

and g(α, y). Therefore, Hk
f (α) = 0 = Hk

g (α).
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Algorithm 3.8. Curve Pair Analysis, direct approach

Input: f, g ∈ Z[x, y] square-free and coprime
Output: Curve pair Analysis for (V (f), V (g)), or a flag REJECT that denotes that the
direct analysis could not be performed

1: procedure cpa_direct(f, g)
2: Call pre_stack(f, g) ⊲ rf , rg, rfg as before
3: If for any α ∈ V (rfg), lcfy(f)(α) = 0 or lcfy(g)(α) = 0, return REJECT

4: For each α ∈ V (rfg), compute kα := deg gcd(f(α, y), g(α, y)) and µα :=
mult(α, rfg).

5: If for any α ∈ V (rfg) that is not in V (rf ) and not in V (rg), kα 6= 1, return REJECT

6: For each α ∈ V (rfg), refine the isolating intervals of the pre-stacks, and assign the
minimum of the multiplicities of two paired intervals as the multiplicity of the pair. If
the maximal multiplicity over all pairs falls below k, return REJECT. Stop as soon as
only one pair remains.

7: If kα is odd, or mα is odd, label the last pair as intersection.
8: Otherwise, check whether Hk

f (α) = 0 = Hk
g (α). If so, label the last pair as inter-

section. Otherwise, return REJECT.
9: If kα = 1, set the multiplicity of the unique intersection point at α to µα

10: end procedure

We emphasize that if the direct method succeeds, there is no guarantee that the curve
pair has been in generic position. Consequently, the preented method does not definitely
decide whether a curve pair is generic.

3.3.3. Details of the analysis via a shear

Sheared Analysis The principal idea is as in the one-curve case. We choose a random
shear factor s from an integer range where at least half of the possible values lead to a
successful analysis. Recall from Corollary 3.2.10 that there are at most n4 + n bad shear
factors for a curve of degree n. As the product fg is of a degree of at most 2n, there are
at most 16n4 + 2n bad shears for the curve pair. For technical reasons that become clear
later on, there are additionally 2n2 bad directions. Thus, we randomly pick a shear factor
from the set {1, . . . , 32n4 + 4n2 + 4n}, compute the curve analysis of both V (Shs(f)) and
V (Shs(g)), and compute the curve pair analysis of (V (Shs(f)), V (Shs(g))) with the direct
approach. If this fails, a new shear factor is chosen.

Backshear process This substep is much simpler than the analogue for the one-curve
case. The reason is that intersection points of f and g are invariant under shearing, that
is, p is an intersection of V (f) and V (g) if and only if Sh(p) is an intersection of V (Sh(f))
and V (Sh(g)). Moreover, the intersection multiplicity remains invariant.

For the original curve pair, we have already computed a collection of pre-stacks. In
the sheared system, we have full fg-stacks and thus, know all intersections of the sheared
curves. We iterate through these intersection points, letting p∗ denote a fixed intersection of
V (Sh(f)) and V (Sh(g)). We approximate p∗ by a box (with rational corners) and explicitly
shear back the box into the original system, using the inverse shear transformation Sh−s( · ).
In this way, we can determine the pair that contains p, the preimage of p∗ (simply by
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refining the box until its preimage only overlaps with a single pair – note that a pair
can also be interpreted as a box in R2). This pair is marked as an intersection and its
intersection multiplicity is set to the intersection multiplicity of the sheared intersection,
if that multiplicity is known. After having done this for each sheared intersection, we
know that all remaining unmarked pairs are fake pairs, and they are split by refining the
isolating intervals to disjointness.

The method described indeed computes the correct fg-stacks in all cases, but we need
an additional postcondition: The intersection multiplicity for intersection points at curve-
pair-critical x-coordinates must be determined. It might happen that the algorithm above
does not set them properly, even if the curve pair was in generic position. The reason
is that intersections at curve-pair-critical x-coordinates might turn into intersections at
fully-critical x-coordinates under shearing. If the sheared curve pair is generic, this can
only happen if an intersection point becomes critical with respect to a single curve.

Lemma 3.3.6. If s is chosen such that (V (Shs(f)), V (Shs(g))) is generic, and additionally,
no intersection point of regular points of V (Shs(f)) and V (Shs(g)) has a vertical tangent
line, the method just described succeeds in computing the fg-stacks and in determining
the intersection multiplicities for intersections in the interior of segments.

Proof. We have argued that the fg-stacks are computed properly if the curve pair is
generic. If the extra condition of the lemma is also satisfied, it follows that no intersection
between regular points involves a critical point of a single sheared curve and there cannot
be a covertical critical point of a single sheared curve, since the sheared curve pair would
not be generic anymore. Hence all such intersections take place at curve-pair-critical x-
coordinates and their intersection multiplicities are computed. Since intersections in the
interior of segments are, in particular, intersections of regular points, their multiplicity is
computed during the backshear step of the algorithm.

Corollary 3.3.7. There are at most 16n4 + 2n2 + 2n shear factors for which the analysis of
the curve pair (V (f), V (g)) using V (Shs(f)) and V (Shs(g)) is not successful.

Proof. There are at most 16n4 + 2n shear factors that bring the curve pair into a non-
generic position. Additionally, there are up to n2 intersection points, and for each of them,
one has to rule out that one of the two involved tangent lines becomes vertical. Thus, one
has to exclude 2 directions per intersection.

This causes termination of the algorithm since s is chosen from the range 1, . . . , 32n4 +
4n2 + 4n that contains good choices for the shear factor. More precisely, at least every
second choice in the range is good and the expected worst-case number of iterations in the
sheared method is 2.

3.3.4. Complexity analysis

We turn to the complexity analysis of the presented curve pair analysis algorithm. We
will show that for two bivariate polynomials (square-free and coprime), both of magnitude
(n, τ), the worst-case bit complexity is

Õ(n10(n+ τ)2),

which equals the complexity of the one-curve analysis.
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Algorithm 3.9. Curve pair analysis, shear approach

Input: f, g ∈ Z[x, y] square-free and coprime, pre-stacks for each critical x-coordinate,
shear factor s ∈ Z

Output: fg-stacks for critical x-coordinates, or a flag REJECT that denotes that the
analysis with shear factor s could not be performed

1: procedure cpa_shear(f, g, s)
2: Call pre_stack(f, g)
3: Call cpa_direct(Shs(f),Shs(g)) ⊲ This might cause a REJECT

4: Iterate through all intersection points of the sheared curve pair. Approximate
each such point p∗ by a box. Shear back the box to determine the unique pair of
(V (f), V (g)) that contains the preimage p. Mark this pair as an intersection, and
assign its multiplicity to that of p∗.

5: For all unmarked pairs in the pre-stacks of (V (f), V (g)), refine the involved intervals
to disjointness.

6: If for any α ∈ V (rfg) that is not a root of V (rf ) and not of V (rg), the multiplicity
of any intersection in the fiber is not set, return REJECT

7: end procedure

Algorithm 3.10. Curve Pair Analysis

Input: f, g ∈ Z[x, y] square-free and coprime
Output: The curve pair analysis of (V (f), V (g))

1: procedure curve_pair_analysis(f, g)
2: Call cpa_direct(f, g). On success, return
3: n← max{deg f,deg g}
4: while true do
5: Choose s ∈ {1, . . . , 32n4 + 4n2 + 4n} uniformly at random
6: Call cpa_shear(f, g, s). On success, return
7: end while
8: end procedure

To derive this complexity bound, we will analyze the algorithm step by step. For many
substeps, we can simply refer to analogous steps in the one-curve case for a more compact
description.

Complexity of pre-stack computation Finding and merging the critical x-coordinates
and computing the intermediate x-coordinates requires Õ(n10(n + τ)2) bit operations,
analogous to the projection phase in the curve analysis.

For α ∈ R, define sepα := sep((f · g)(α, y)) . If all isolating intervals of fiber points of
f(α, y) and g(α, y) are refined to a width of sepα

4 , then no interval of f overlaps with any
interval of g, except where the two fiber points form an intersection.

Thus, to construct non-intersection fg-stacks and pre-stacks, we have to isolate the
real roots of f(α, y) and of g(α, y) to a width of at most sepα for any α ∈ V (rfrgrfg)
and for any α ∈ V ((rfrgrfg)

′). By Theorem 2.6.21, this requires Õ(n3(τ + log 1
sepα

)2) bit
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operations for each α. Since

∑

α∈V (rf rgrfg)

log
1

sepα
= O(n3(n+ τ))

by Lemma 3.2.5, and

∑

α∈V ((rf rgrfg)′)

log
1

sepα
= O(n3(n+ τ))

by Lemma 3.2.7, we arrive at a bit complexity of Õ(n9(n + τ)2) for this step. Thereby,
the roots of rfrgrfg and its derivative have to be approximated to a precision of at most
O(n4(n+τ)), the costs for that are bounded by O(n10(n+τ)), according to Theorem 2.5.16.

Complexity of the direct analysis In the symbolic precomputation, we have to compute
kα for each critical α which requires evaluating the principal subresultant coefficients of
f and g. Analogous to the one-curve case, this can be bounded by Õ(n10(n + τ)2) using
Theorem 2.5.24. Computing µα is dominated by computing the square-free factorization
of rfg, which is not more expensive than computing its square-free part.

The next step is the refinement of intervals that form a pair, until all pairs except
one are split, or until the multiplicity of each pair falls below kα. If there is only one
intersection at the fiber, this will be detected at the latest when all intervals are refined to
a width of sepα

4 . On the other hand, Lemma 2.6.23 tells us that the multiplicities are set
correctly when the precision in the bitstream-Descartes methods is smaller than

µ0 = min

{(
s(f)

72 · 25n2

)n

, 2−7n

}

,

thus, if there is more than one intersection, this will eventually be detected for such a
precision. In any case, after

Õ(n3(τ + log
1

sep(f(α, y))
+ log

1

sep(g(α, y))
+ log

1

sepα
)2)

bit operations, a decision will have been made. Since the sum of the separations is again
bounded by O(n3(n+τ)) for all three summands, it follows that after a total running time
of Õ(n9(n+ τ)2), either each pre-stack has been reduced to one pair or a failure has been
reported.

The last step is to verify the existence of a candidate, in case the previous step was
successful. For that step, we can use the same complexity analysis as in Section 3.2.4 for
the singular point detection: the polynomial Hk

f is of magnitude (n3, n2(n+ τ)). Testing

Hk
f (α) = 0 for all α ∈ V (rfg) requires Õ(n10(n + τ)) operations, and doing so for each

k = 0, . . . , n gives Õ(n11(n+ τ)) = Õ(n10(n+ τ)2).

Complexity of the analysis with a shear Shearing the curve pair changes the bitsizes of
the polynomial coefficients only by a polynomial factor in s. Because s = O(logn), the
analysis of a sheared curve pair is not more expensive than for the unsheared curve pair
(in Õ-notation). The expected number of such sheared pair analyses until we arrive at a
generic position for which the analysis works is two.
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It remains to bound the backshear process. This is analogous to the one-curve analysis.
Each sheared intersection point has to be refined to O(n3(n+ τ)) bits precision, until the
x-coordinate of its preimage can be determined. If its y-coordinate is refined to a width
of sepα

4 , where α is the x-coordinate of the preimage, then the pair which the intersection
belongs to is uniquely determined. But sepα = O(n3(n+ τ)) (since the sum over all sepα’s
is bounded by this quantity), so it suffices to refine the x- and y-coordinates of each sheared
intersection point to O(n3(n+ τ)) bits. This requires Õ(n10(n+ τ)2) bit operations, as in
the case of sheared event points in the one-curve case.

Splitting the fake pairs in the final step again requires refining each isolating interval
to a width of sepα

4 in the worst case; the complexity for this has already been analyzed.

After all, we conclude that all substeps of the curve analysis algorithm are dominated
by

Õ(n10(n+ τ)2)

as claimed at the beginning of this section.

3.3.5. The complexity of the sweep-line algorithm

With the complexity bounds for curve analysis and curve pair analysis, we derive a worst-
case bit-complexity bound for the sweep-line algorithm applied to algebraic curves. We
assume that our input objects are polynomials f1, . . . , fm, all of magnitude (n, τ), and
pairwise coprime. We will prove that the dominant operation is the computation of the
m(m−1)

2 curve pair analyses.

Theorem 3.3.8. The arrangement induced by V (f1), . . . , V (fm) can be computed with

Õ(m2n10(n+ τ)2)

bit operations.

Proof. We assume that a curve analysis for each V (fi), and a curve pair analysis for
each pair (V (fi), V (fj)) is available. Computing them can be done within the required
complexity bound, according to the complexity results of this chapter. The remainder of
this proof shows that the sweep-line method itself does not increase the complexity.

The sweep-line algorithm for linear segments has a complexity of O((s + I)(log s)),
where s is the number of segments and I is the number of intersection points ([dBvKOS00,
§2.2], [MN00, §10.7]). The geometric primitives in the algorithm are assumed to have
constant running time for linear segments. Thus, introducing an upper bound P for the
cost of one evaluation of a geometric primitive, we immediately obtain O(P (s+ I)(log s))
as an upper bound for the sweep-line algorithm in the curved case.25

We have to give upper bounds for s, I, and P . By Corollary 2.2.15, the maximal number
of segments of a curve is n3, so s ≤ mn3. Since two curves intersect in up to n2 many points,
it holds that I = O(n2m2). For P , reconsider the realization of the geometric primitives at
the end of Section 3.1.4. The most expensive one is the intersections primitive, where we
have to go through the O(n2) intersection points of the curve pair, and compare the points

25When switching from the linear to the curved case, the reordering of segments at intersection points
becomes more complicated. However, thanks to our knowledge of intersection multiplicities, we can
use [BK07] to get a running time proportional to the number of involved segments, just as in the lin-
ear case.
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with the involved segments by calling Compare_y_at_x. It is not hard to see that each
such call is linear in the number of points in the fg-stack at the intersection point, if the
curve pair analysis is known. Accordingly, as a rough estimate, we can bound P = O(n3).
Therefore, we get a total complexity of O(n3(n3m + n2m2) log nm) = Õ(mn5(n + m))
for sweep-line algorithm itself, which is clearly dominated by the cost of the curve pair
analyses.

The complexity bound for linear segments depends adaptively on the number of ac-
tual intersection points, whereas the bound for algebraic segments just derived does not.
We lose this property because we assume that each curve pair must be analyzed during
the algorithm. When considering complete curves, this assumption is not unrealistic; for
instance, if all curves have odd degree, each pair of curves has a real intersection point
(except for degenerate examples), and a curve pair analysis is necessary to compute this
intersection point. Still, if we restrict the arrangement to a subset of the input segments,
this may not longer be the case.

Corollary 3.3.9. Let f1, . . . , fm be as above. Consider a subset S of the up to mn3 x-
monotone segments induced by the curves V (f1), . . . , V (fm). Let C be the number of
curve pair analyses that are triggered to compute the arrangement. The complexity is
then bounded by

Õ((m+ C)n10(n+ τ)2).

Proof. We still have to perform m curve analyses (for each curve), and C curve pair
analyses, which exactly matches the complexity bound.

The sweep-line algorithm has the same complexity as before, namely O(P (s+I) log s).
Now, s ∈ O(n3m), I ∈ O(n2C), and P ∈ O(n3). This yields O(n3(n3m+ n2C) log nm) =
Õ(n6(m+ C)), which is again clearly dominated by the complexity bound.

This bound depends on the rather abstract quantity C. When is a curve pair analysis of
(V (f), V (g)) “triggered” by the algorithm? Of course, this happens when a primitive that
involves V (f) and V (g) is called. This happens as soon as a segment of V (f) and a segment
of V (g) become neighbors on the status line (the sweep-line). For practical purposes, it is
desirable to decrease the number of triggered curve pair analyses as much as possible. A
simple method to avoid curve pair analyses in practice is discussed in Section 4.2.3.

Summary

The curve pair analysis is the main tool to compute the vertical ordering of two curves
at any fiber and, in particular, to compute their intersections. An algorithm that shows
the same complexity bound as the curve analysis has been presented. With that, we can
derive the first known complexity bound for exact arrangements of arbitrary algebraic
plane curves.
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Programming without an overall architecture or design in mind is like exploring
a cave with only a flashlight: You don’t know where you’ve been, you don’t
know where you’re going, and you don’t know quite where you are.

Danny Thorpe

4
Implementation of Arrangements of

Algebraic Plane Curves

The algorithms from the previous chapter solve the problem of computing the arrangement
of algebraic curves, with a complexity bound that is currently the best available. However,
an “efficient” algorithm should also show a satisfactory practical performance. In order
to verify the practical efficiency of our approach, we have implemented both the curve
analysis and the curve pair analysis, as described in Chapter 3. Nevertheless, we slightly
deviate from the description in several places, and this is described in Section 4.1. One
reason is that tuning sub-operations in the algorithm may drastically improve the practical
running time of the algorithm but make the analysis much harder without improving the
overall bound. As an example of that, we mention the usage of modular methods in our
algorithm. A second reason is that explaining the algorithm in full detail from scratch
makes it very difficult to follow the overall structure. Hence, we aimed for a “minimal”
version in Chapter 3 that still captures the esence of our implementation, and postponed
the optimized method for several special situations to this chapter.

The implementation of curve and curve pair analysis (with variations) is embedded into
the context of the Cgal library. In fact, the layered approach for arrangement computation
(reduce the sweep-line algorithm to the implementation of geometric primitives; reduce
the geometric predicates to the implementation of curve analysis and curve pair analysis)
can be modelled into software by defining proper concepts and models. We will briefly
introduce Cgaland describe the software framework used in Section 4.2. Finally, we
measure the practical performance of the arrangement algorithm via extensive experiments
in Section 4.3

4.1. Implementation of curve and curve pair analysis

We discuss several differences between the theoretical formulation and its practical imple-
mentation. (Almost) all these changes are guided by the aim of practical optimization.
They are mainly independent of each other; some optimizations can be switched on or off
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in our implementation using appropriate compiler flags.

4.1.1. Intermediate stacks revisited

Certainly one of the most striking differences between the theoretical formulation and
its practical implementation is how intermediate stacks are obtained. Recall that we
stated in Section 3.2.2 that when choosing rational intermediate values between critical
x-coordinates of a curve, we were only able to show a complexity bound of Õ(n12(n+τ)2),
which is much worse than the rest of the curve analysis algorithm. Therefore, we switched
to the strategy of selecting roots of the derivative of the resultant polynomial instead, for
which we were able to use the same techniques as for the critical x-coordinates in the
analysis.

In the implementation, we stick to the theoretically inferior method of choosing rational
x-coordinates (of possibly small bitsize) as intermediate values. In fact, our experiments
have shown that the computation time of the intermediate stacks is never a dominant
factor off the algorithm (for the curve analysis, it takes <1% in all cases). We believe
that the inferior worst-case behavior is an artefact of the analysis and that especially the
separation at such an intermediate fiber is highly overestimated, although we failed to
show an improved bound.

Because introducing the derivative of the resultant in the algorithm in practice causes
more non-trivial computations (isolating the roots, merging them with the resultant roots),
we claim that using rational intermediates indeed improves the practical performance,
without having actually implemented the alternative.

4.1.2. The implementation of the bitstream-Descartes method

We already mentioned in Section 2.6 that there are two versions of the bitstream-Descartes
method known in the literature. For theoretical considerations, we have chosen to discuss
the approach by Mehlhorn and Sagraloff [MS09] because the results about runtime com-
plexity follow in a more direct way. However, no C++ implementation of their algorithm
is currently available. Instead, we use the approach of Eigenwillig [Eig08] for our im-
plementation. Eigenwillig provides a bitstream_tree class, which mainly represents the
subdivision tree for a bitstream polynomial f and assigns a set of possible sign variations
to each interval in the subdivision (recall that Eigenwillig’s approach considers all approx-
imations of f at once; therefore, it returns a set of sign variations). This tree can be
explored to any depth; the precision of the bitstream coefficients is controlled internally
and is adaptively increased when the tree is explored deeper; see [Eig08] for details. Us-
ing this trees allows the convenient realization of all variants of the bitstream-Descartes
method and further refinements of isolating intervals, introduced in Section 2.6.

4.1.3. Faster methods for simple resultants roots

Our algorithms for the curve analysis and curve pair analysis are designed with the goal
in mind of reducing symbolic computations to a minimum, and replacing them by fast
but certified methods. We can further decrease the amount of symbolic operations by
introducing a special treatment for simple resultant roots, that is, roots of multiplicity
one. This holds true for both the curve and curve pair analyses, although the ways of
exploiting the simpleness of a resultant root are quite different. Therefore, we treat both



4.1. Implementation of curve and curve pair analysis 149

cases separately. The situation of simple resultant roots appears quite frequently, also for
highly degenerate curves and curve pairs. Therefore, the presented optimizations have a
high impact in practice.

Simple resultant roots in curve analysis: We use the following lemma from Wolpert [Wol,
§4.1.1].

Lemma 4.1.1. Let (α, β) be an intersection point of V (f) and V (g). Then α is a multiple
root of resy(f, g) if and only if

(
∂f

∂x
· ∂g
∂y
− ∂f

∂y
· ∂g
∂x

)(α, β) · sres1(f, g)(α) = 0.

Consider a simple root α of resy(f,
∂f
∂y ) that is not a root of lcfy(f). First of all,

there is exactly one critical point in the fiber over α. From Lemma 4.1.1, it also follows
that sres1(f,

∂f
∂y )(α) 6= 0, thus, kα := deg gcd(f, ∂f∂y ) = 1 by Lemma 2.3.14. Moreover,

Lemma 4.1.1 reveals that

(
∂f

∂x
· ∂f
∂yy

)(α, β) 6= 0,

and so, (α, β) is not singular (since ∂f
∂x does not vanish), and x-extreme (since ∂f

∂yy (α, β)
does not vanish). This implies that the stack at α consists of exactly one non-singular
x-extreme point and a certain number of regular points. Thus, the number of fiber points
in the left neighboring and right neighboring intermediate stacks differ by exactly two; let
these numbers be denoted by m− 1 and m+ 1, respectively. Then, the fiber over α must
consist of precisely m points.

To summarize, for simple resultant roots, we can deduce kα = 1 directly, and mα, the
number of fiber points, is easily computable by looking at the number of fiber points in the
adjacent intermediate stacks. This means that we do not have to evaluate the principal
Sturm-Habicht coefficients at α, as it is formulated in Step 6 of Algorithm 3.3, in order to
get the input for the m-k-bitstream-Descartes algorithm. This further reduces the amount
of symbolic computations in this particular situation.

Simple resultant roots in curve pair analysis: Let µα be the multiplicity of α in res(f, g).
We assume that µα ∈ {0, 1}. The case µα = 0 is of interest for curve pairs, because we also
need the fg-stacks at one-curve-critical x-coordinates. We assume that all intermediate
stacks of the curve pair (V (f), V (g)) are already available. We first discuss two examples
to demonstrate the principal idea, and then give the complete description at the end of
the paragraph.

Assume first that µα = 1 and that α is neither critical for V (f) nor V (g). This means
that all fiber points have branch numbers (1, 1). Also, there is precisely one intersection
point and as it is a simple one; the involved segments have to change sides. In this situation,
we can produce the fg-stack without producing the f -stack or the g-stack at α (as it was
proposed in Algorithm 3.7). Instead, we are comparing the arc pattern at the left and
right neighboring intermediate fg-stacks, as exemplified in Figure 4.1.

Assume now that µα = 0. Recall that Algorithm 3.7 proposes obtaining the fg-stack by
getting the f -stack and the g-stack at α and refining the isolating intervals to disjointness
(Step 5). This is certainly a correct and fairly simple way of obtaining the stack, but it
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f

g

α

Figure 4.1. The left intermediate fg-stack is “gfggfgfg”, and the right intermediate
stack is “gfggffgg”. The fiber points must be connected according to the dashed lines,
thus, one can observe that the fg-stack at α is “gfggfig”.

has a hidden drawback. For instance, if α is a critical x-coordinate for V (f), but not for
V (g), the g-stack at α does not exist yet and must first be produced using the bitstream-
Descartes method. Also, if f(α, y) and g(α, y) have a bad separation, a lot of refinement is
necessary in practice in order to separate the isolating intervals. Thus, the goal is to avoid
the creation of the g-stack entirely, if possible, and to avoid as much as possible refinement
until disjointness.

The idea is to combine the knowledge from the left and right neighboring intermediate
stacks with the branch numbers of each fiber point at α to deduce the fg-stack at α
without further refining. In Figure 4.2, we provide an example where this is possible.

The two examples given above were rather well-behaved. If µα = 1, the situation
can also be more complicated; for instance, the curves might intersect at an x-extremal
(but non-singular) point of V (f). Also, there might be an arbitrary number of covertical
singularities of either curve or vertically asymptotic arcs towards α. Also for µα = 0, the
example from above is not general enough. For instance, if V (f) has an isolated point at
α, we cannot deduce the fg-stack at α without computing the fiber of V (g) at α.

The general algorithm works both for µα = 0 and µα = 1: For V (f), we know the
number of points in the fiber at α (either because an f -stack is available or because it is
the same as for the neighboring intermediate stacks); same for V (g). Let f1, . . . , fm1 and
g1, . . . , gm2 denote these fiber points at α, sorted from the bottom upwards. We want to
merge these two sequences, which means that we iterate through both lists and find the
minimum of fi and gj in each step until the end of both lists is reached. The fg-stack at
α is initialized with an empty string and is built up during the merge.

For each fi and each gj , we know which arcs at the left and right neighboring interme-
diate stacks are connected with it (again, either by the f -stack at α or because the branch
numbers are all (1, 1) if no f -stack is available). For a concrete fi and gj , we call them



4.1. Implementation of curve and curve pair analysis 151
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Figure 4.2. Assume α is a critical x-coordinate of V (f), not of V (g). We know the
fg-stacks at the left and right and the branch numbers of V (f) at α (left picture). The
center picture translates this combinatorial information into a geometric picture. The
red points must be connected by x-monotone segments which are neither intersecting
each other nor intersecting V (f). Thus, only connections as depicted on the right are
possible and thus, the fg-stack is “fgfgfgf”.

involved arcs, and their bottom-upward ordering induces an involved arc pattern on the
left and on the right. Both arc patterns involved are substrings of the fg-stacks at the
corresponding intermediate positions.

There are three possible cases. First, the involved arcs might show one of the intersec-
tion patterns, which is “f” on the left and “gfg” on the right, or “fg” on the left and “gf” on
the right (or any analogous pattern with “g” and “f”, or “left” and “right” interchanged –
see also the left of Figure 4.3). In such cases, we have found an intersection of V (f) and
V (g). We add “i” to the fg-stack at α and pass to the next fi and gj .

If no intersection pattern has been recognized, fi 6= gj (no intersection). Thus, we have
to determine which point comes first in the vertical ordering. If the involved arc pattern
on the left (or on the right) contains both an “f” and a “g”, the first entry in the involved
arc pattern determines the minimum. Thus, if the corresponding arc pattern starts with
“f”, we add “f” to the fg-stack and pass to the next fi (leaving gj unchanged for the next
iteration). If it starts with “g”, we add “g” to the fg-stack and pass to the next gj .

It remains the case that the involved arc patterns do not determine the minimal point
(this happens, for instance, if fi is an isolating point, or if fi and gj are both x-extreme
but their segments lie on different sides – see the right of Figure 4.3). In this case, we
construct the f -stack and the g-stack at α, if they do not exist yet, and refine the isolating
intervals of fi and gj to disjointness.

To summarize, we have derived a method to compute fg-stacks at critical x-coordinates
α with µα ≤ 1. The method is guaranteed to work for any α (no failure) no matter what
the level of degeneracy of a single curve at α. In contrast to the general method, we avoid
to evaluate the principal subresultant coefficients at α. In many cases, we do not even have
to construct an f -stack at the critical position (what we always need are f -stack, g-stack,
and fg-stack at intermediate positions between critical x-coordinates, but by Section 4.1.1
this is expected to be cheap in practice).
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f

g

f

g

α α

Figure 4.3. On the left: the two intersection patterns. On the right: two examples
of where the f -stack and the g-stack are necessary.

These ideas can also be used as an additional filter in another step of the curve pair
analysis algorithm. For µα > 1, recall the general strategy to construct an fg-stack. We
compute a pre-stack, identify a candidate intersection point, and verify that the candidate
is an intersection. The verification step first checks whether kα or µα is odd (Lemma 3.3.4),
and if not, tests for an intersection symbolically. We introduce another filter between these
two steps: if kα and µα are both even, we look at the arc pattern involved, both on the
left and on the right. If any of these contains a substring of the form “fgif” or “gfig” with
i ≥ 1 (where “fi” denotes the concatenation of i “f” ’s), the candidate is an intersection
point. The reason is that one segment of the one curve, say V (f), is sandwiched between
two segments of V (g), so they have to intersect at α.

4.1.4. Avoiding a shear for a non-generic curve

Recall the high-level strategy of our curve analysis: Try a direct analysis first, perform
an analysis of a sheared curve in case of a failure, and finally shear back into the original
system. We have shown that the complexity does not increase by analyzing a sheared
curve instead. However, shearing has a bad effect on the practical performance, since the
coefficient size grows considerably (this is hidden in Õ-notation). Also, a shear destroys
the sparseness of polynomials and results in more symbolic computations in the algorithm
(besides the resultant in the original system, two resultants in the sheared system are
needed also). After all, shearing should be avoided as much as possible. Already our
algorithm is guided by this thought, since it first tries a direct approach in the original
system (and does not initially shear to bring the curve into a possibly generic position).

In Algorithm 3.3, we pass to a sheared curve as soon as we detect a root of the leading
coefficient of f ∈ Z[x][y], due to potential vertically asymptotic arcs. We show that
sometimes such a shear can be avoided, based on the following observation.

Lemma 4.1.2. Let f ∈ Z[x][y] with degy(f) = n and coefficients an, . . . , a0 ∈ Z[x]. Let α

be a simple root of lcfy(f) = an(x) and also a simple root of R := resy(f,
∂f
∂y ). Then, the

fiber of V (f) at α consists only of non-critical points, in other words, f(α, y) is square-
free. Moreover, there is exactly one vertically asymptotic segment sℓ on the left and exactly
one vertically asymptotic segment sr on the right. If a′n(α) · an−1(α) < 0, sℓ diverges to



4.1. Implementation of curve and curve pair analysis 153

(α,−∞) and sr diverges to (α,+∞). Otherwise, if a′n(α) · an−1(α) > 0, sℓ diverges to
(α,+∞) and sr diverges to (α,−∞).

Proof. For the fact that f(α, y) is square-free, we give an intuitive argument. Assume
that there is a critical point p at α. Consider a small perturbation of the coefficients
of f that leaves the leading coefficient untouched. The perturbed curve has a (complex)
critical point close to p, at an x-coordinate α′ ∈ C. Thus, the perturbed curve has critical
x-coordinates at α and α′. By continuity, R must have at least a double root at α, which
contradicts the assumptions.

We next argue that there is exactly one vertically asymptotic arc each of the left and
right. Consider f∗ := ynf(x, 1

y ). Then (α, 0) is a point on V (f∗), and any segment that
enters (α, 0) corresponds to a vertically asymptotic segment of V (f) (Figure 4.4). It is
enough to show that (α, 0) is a non-critical point of f∗.

Note that an−1(α) 6= 0, because otherwise, it can be easily seen that α is a multiple
root of R (the first two columns of the Sylvester matrix would vanish). Therefore,

∂f∗

∂y
(α, 0) = an−1(α) 6= 0.

Moreover,
∂f∗

∂x
(α, 0) = a′n(α) 6= 0,

because α is a simple root of an. Therefore, (α, 0) is indeed non-critical. Moreover, since
both partial derivatives do not vanish, V (f∗) crosses the x-axis at (α, 0). This implies that
one of the asymptotic arcs goes to −∞ and the other goes to +∞ (just consider the back
transformation which maps (x, y) to (x, 1

y )). The curve changes from y < 0 to y > 0 if

and only if the gradient vector (a′n(α), an−1(α)) lies in the second or fourth quadrant of
the coordinate system, which is exactly the case when a′n(α) · an−1(α) < 0.

Figure 4.4. On the left: The curve V (((x−1)y3 +(x+1)y2−1)(x2 +y2−3)),which
has a vertical asymptote at x = 1 (dashed). On the right: The curve V (f∗). Note that
the point (1, 0) is an element of V (f∗), and the gradient points into the first quadrant.
Indeed, the gradient of (1, 0) in f∗ is (1, 1).

How can we use this in the curve analysis algorithm? Whenever we encounter an
α that satisfies the prerequisites of Lemma 4.1.2, we apply the (square-free) bitstream-
Descartes method on α to construct the fiber (and all branch numbers are set to (1, 1)).
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The number of vertical asymptotes (compare Definition 3.1.6) are set either to (1, 0, 0, 1)
if a′n(α) · an−1(α) < 0, or to (0, 1, 1, 0) otherwise.

We sketch a further approach to avoid shearing.26 The idea is to compute a possible set
of isolating intervals for the fiber at α and to verify these intervals by finding a segment
of the curve that enters each interval. The method that we describe only works in the
absence of isolated vertices – it does not terminate otherwise. Also, the method is not
implemented; we mention it anyway because it might be extendible to an efficient method
that works without shearing.

Let α be a critical x-coordinate of V (f). As before, we compute m, the number
of fiber points over α, using the principal Sturm-Habicht coefficients. Next, we start
the bitstream-Descartes subdivision – we do not give full details here, but similarly to
the oracle-bitstream-Descartes method, we identify clusters that constitute candidates for
isolating intervals. Once we find m disjoint clusters I1, . . . , Im, we take them as candidates
for isolating intervals. We choose rational intermediate values q0, . . . , qm that separate the
clusters from each other, and from −∞ and +∞, which means that q0 < I1 < q1 < . . . <
Im < qm. Next, we pick an x-interval [c, d] containing α such that V (f) does not intersect
any horizontal line y = qi over any point in [c, d]. This interval is found as follows: Let
[c, d] be the isolating interval of α. Evaluate 2f([c, d], qi) using interval arithmetic, for any
i = 0, . . . ,m. If any of the intervals contains zero, refine the interval. Otherwise, [c, d] has
the desired property.

We compute the fiber of V (f) at c and d. If any fiber point at c or d lies between
qi−1 and qi, it is certified that the interval Ii contains a root (because the segment must
cross the fiber x = α, but it cannot cross the lines y = qi−1 and q = qi). If all intervals
can be certified in this way, they are indeed isolating intervals. Otherwise, if some interval
has not been certified, we throw it away and subdivide the remaining intervals until m
disjoint intervals show up again (in this last step, we require that no isolated vertices are
present, since we might potentially remove an isolating interval). See also Figure 4.5 for
an example.

We remark that this method already provides enough information to compute the
whole f -stack, in the case of success. The branch numbers are determined by the number
of fiber points at c and d within the corresponding region [qi−1, qi], and even the number
of vertically asymptotic arcs is immediately apparent, by the number of fiber points in the
regions (−∞, q0) and (qm,+∞).

Finally, we wish to mention that we are aware of a method of extending this approach
to curves with isolated vertices. The idea is mainly to isolate the roots in the complex
fiber at α. We skip further descriptions because this is work in progress, and we are far
from an efficient implementation yet.

4.1.5. The choice of the shear factors

In the preceding section, we considered how to avoid shearing. Still, degenerate situations
require a change of coordinates. In such cases, we try to reduce the coefficient swell-up
and the number of anaylses of sheared curves.

The first question in this context is how to choose the shear factors in practice. Algo-
rithms 3.6 and 3.10 propose picking a random integer from a range {1, . . . ,maxs}, where

26Michael Sagraloff, personal communication.
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α α c dα

Figure 4.5. Assume that m = 3 and that the three intervals on the left picture are
computed as clusters, at some stage in the subdivision. We choose rational intermediate
values (middle picture) and compute c and d such that the curve (dashed) does not
intersect any intermediate line in [c, d]. We see that the upper two intervals are certified
to contain a root, but the lower one is not. Thus, the algorithm would further subdivide
the upper two intervals until one of them is split into two.

maxs = O(n4). This bound was obtained by counting the number of possible “bad” shear
factors for a given curve or curve pair. However, it is very unlikely that all such bad shear
factors are integer values. In practice, a small integer will put the curve (pair) into a
generic position, except for ill-conditioned examples. A small shear factor has computa-
tional advantages since the swell-up of the coefficients is reduced.

We have implemented the following strategy to pick random shear factors. We set
maxs := 8, and start with the range {1, . . . ,maxs}. We pick shear factors at random,
counting the number of shear factors used so far. Whenever this number exceeds maxs/2,
we double maxs. Although this does not theoretically guarantee a constant expected num-
ber of shear transformations needed during the analysis, it is guaranteed that eventually a
good s will be found, and small shear factors are more likely to achieve this than big ones
by this strategy.

We turn to a related problem. Assume that an arrangement of m curves is computed,
and each curve passes through the two common points (α, β1) and (α, β2). This means
that each curve pair is analyzed using a sheared transformation of both curves. If a random
shear factor is chosen separately for each curve pair, this might lead to more analyses of
sheared curves than actually necessary (if m≫ 8, it is likely that each curve is sheared by
any shear factor s = 1, . . . , 8 during the algorithm).

To overcome such problems, all curves and curve pairs initially agree on a unique
(infinite) list of shear factors (s1, s2, . . .) that is built according to the strategy above.
When a curve or a curve pair is not in generic position, the curves are sheared by shear
factor s1, then by s2, and so on until the analysis is successful. In that way, a few
transformations per curve will usually suffice.
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4.1.6. Modular methods

A last, but certainly not least, optimization involves the use of modular methods in the
algorithm. Most importantly, we use a modular algorithm to compute the greatest common
divisor of integer polynomials, described in [HH09], instead of Algorithm 2.6. Implementing
the gcd with a modular algorithm has a tremendous effect on practical efficiency, especially
for higher degrees. This has already been demonstrated in [Ker06], where the gcd algorithm
from the NTL27 has been used.

Another optimization is entailed by modular filters. Remember that the curve analysis
expects a square-free polynomial as input and the curve pair analysis requires coprime
polynomials. In most cases, these requirements are satisfied and we aim for a quick ver-
ification. For that, the gcd of the two polynomials (or in the one-curve case, the gcd of
the polynomial and its derivative) is computed in the domain Zp[x, y], where p is some
prime number. If their gcd is a constant in Zp[x, y], it is certified that it is also a constant
in Z[x, y]. If, however, the degree is larger, no definite statement can be made, and the
algorithm passes to exact computation over Z[x, y].

A further use of modular methods appears when symbolically checking for an intersec-
tion point in the curve pair analysis (page 138), as well as for the optional computation of
the singular flag in Section 3.2.4. In both cases, we compute a polynomial

H
(k)
f (x) := q(x)degy(f)f(x,

p(x)

q(x)
) ∈ Z[x]

and check whether it vanishes at some α. The computation of the polynomial H
(k)
f is

expensive – however, because we only checked whether it vanishes at α afterwards, we do
not have to compute it completely. With R being the defining polynomial for α, we can

instead compute H
(k)
f in the ring Z[x]/R which limits the degree of Hk

f (but increases the
coefficient sizes). We observed a significant speed-up when working in this modular ring
(which is not necessarily a domain because R is not assumed to be irreducible).

Summary

The algorithms for curve analysis (Algorithm 3.6) and curve pair analysis (Algorithm 3.10)
can be tuned at numerous places in order to speed up their practical performance. In
particular, we have presented methods to handle simple resultant roots more efficiently
and methods to avoid curves having to be sheared in some situations. Also, using a
common order of shear factors for all curves, and the use of modular arithmetic results in
significant speed-ups.

4.2. Software design in Cgal

Cgal [CGA08], the Computational Geometry Algorithms Library, is the state of the art
in implementing geometric algorithms. While in the past the major focus of the library
was on linear geometry, its developers decided to direct more of the project’s attention to
non-linear geometry [EKP+04] [PT08], and our work can be seen as a contribution to this.

27http://www.shoup.net/ntl/
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The Cgal library follows the generic programming paradigm. This allows the exchange
of types, that is, an algorithm (or data structure) can be parameterized by any type as
long as this type fulfills a certain set of requirements. Such a set of requirements is called
a concept. A data type that meets the requirements of a concept is called a model of
this concept. For readers unfamiliar with generic programming, the following analogue
from mathematics should be useful: a group is a concept and a ring is a refined concept
of group. A specific ring, for instance, Z, is a model of the concept ring. In C++ code,
types and algorithms can be written in a generic way by class templates whose template
arguments are certain concepts, and models for these concepts are instantiations of these
template parameters.

Algorithms in Cgal are usually parameterized by a traits class, also called a kernel.28

A traits class encapsulates the basic geometric types (and the operations on them) that are
expected by a combinatorial algorithm. A good example for that is a geometric algorithm,
whose traits class defines the input objects the algorithm is running on and the geometric
primitives that are needed to process the objects. Of course, a traits class can itself depend
on other primitives, which are composed in another traits class.

The kernels that we provide all follow the exact geometric computation paradigm
(EGC paradigm), presented in the introduction of this thesis (page 8): Each geometric
predicate must compute the mathematically correct result in all cases. Hence, a (complete)
combinatorial algorithm based on these predicates always computes the correct solution.
Clearly, we need adequate number types, modelling integers and rationals of arbitrary size
to ensure exactness for all input curves.

4.2.1. Arrangements of algebraic curves in Cgal

We make the rather abstract terms like kernel, concept and model concrete by explaining
the relevant software classes to realize arrangements induced by arbitrary algebraic plane
curves. Most of the new classes presented have a prototypical status and their integration
into the Cgal library is ongoing work; for instance, the latest Cgal release, 3.4, contains
support for polynomials [Hem08], which is essential for our contribution. Release 3.5, which
is currently in preparation, will contain the concepts and models for Algebraic_kernel_1
and Algebraic_kernel_2 as described below.

Omitting some template parameters that are irrelevant for our considerations, the
arrangement computation for algebraic curves is realized by the following hierarchy of
template classes:29

• template<class ArrangementTraits_2> class Arrangement_2;

• template<class CurveAnalysisTraits_2> class Curved_kernel_via_analysis_2;

• template<class AlgebraicKernel_1> class Algebraic_kernel_2;

• template<class Coefficient> class Algebraic_kernel_1;

In this list, an instantiation of each class is a valid template argument of the class in the
preceding line. For instance, Curved_kernel_via_analysis_2 is a model of the concept
ArrangementTraits_2. We sketch the content and the function of each class next. We
will see that the presented hierarchy precisely corresponds to the different layers in the
arrangement algorithm as described in Chapter 3.

28These two terms have slightly different meanings. A traits class is usually stateless, whereas a
kernel is allowed to store member variables. This distinction is not important for our considerations.

29 Note the naming convention for NameOfTheConcept_d and Name_of_a_class_d.
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Arrangement_2 is part of the Cgal package with the same name [WFZH08] [WFZH07].
It allows, for instance, the construction of planar arrangements using a sweep-line algorithm
(as described in Section 3.1.2) or incremental construction. The package also contains
manipulation methods like insertion and deletion, and a method to compute the overlay
of two arrangements (Section 4.2.4). Its template argument ArrangementTraits_2 defines
the relevant geometric types (Curve_2 for curves/segments, X_monotone_curve_2 for x-
monotone curves/segments, Point_2 for points), and operations on them, which are needed
for the construction and maintenance of arrangements. Essentially, these operations are
the geometric primitives needed by the generic sweep-line algorithm, as listed on page 97.

Curved_kernel_via_analysis_2 [BE08] implements those types and operations on
these types, again in a generic way; the concrete realization depends on the template
argument CurveAnalysisTraits_2; a model of this concepts is required to provide a curve
type and must be able to analyze curves of this type, and pairs of them, as defined in
Section 3.1.4.30 With such analyses at hand, the realization of the operations required by
the ArrangementTraits_2 concept is done as described on page 105.

Algebraic_kernel_2 [EK08b] contains, as its main ingredient for our purpose, the
curve analysis and curve pair analysis methods for arbitrary algebraic curves, as described
in Sections 3.2 and 3.3, with the modifications described in Section 4.1. Moreover, the class
is a model of the AlgebraicKernel_2 concept [BHKT07], which encapsulates basic func-
tionality for polynomials in two variables. The template argument AlgebraicKernel_1

provides basic operations for univariate polynomials needed during the analysis and also
implicitly determines the coefficient type of the polynomials.

Regarding the software part, the Algebraic_kernel_2 class is the main contribution
of the author of this thesis. Therefore, its internals will be specified in more detail in
Section 4.2.2.

Algebraic_kernel_1 [HL07] implements basic functionality for univariate polynomials
(Section 2.4) and algebraic numbers (Section 2.5), such as square-free factorization, real
root solving, and comparison of roots. One typically uses a coefficient type that mod-
els Z, for instance, leda::integer31 or CORE::BigInt [KLPY99]. However, other types
for computationally more demanding domains are possible. We discuss one example in
Section 5.2, where we consider arrangements of rotated algebraic curves.

The hierarchical structure of the presented class design allows the easy exchange of
data types or complete layers while leaving the other layers intact. We have already men-
tioned that coefficient types beyond integers can be handled by the algebraic kernels. As
another example, replacing the refinement method of algebraic numbers (currently, we use
quadratic interval refinement as explained in Section 2.5.1) is simply the task of replacing
the Algebraic_kernel_1 model (or more precisely, just a functor therein). Even a more
efficient method of analyzing curves and curve pairs would profit from the design, since
the translation into geometric predicates, as done by the Curved_kernel_via_analysis_2,
would remain valid as long as the new improved analyses are provided by a model of the
CurveAnalysisTraits_2 concept.

30The concept does not require that the curve type models algebraic curves all requirements can be
reformulated using non-algebraic terms. However, since algebraic curves are the only instantiation so far,
we skip a detailed discussion of this aspect.

31http://www.algorithmic-solutions.com/leda/
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4.2.2. A closer look at the Algebraic_kernel_2 class

We give some details about the Algebraic_kernel_2 class, that is, about the requirements
of the associated concept AlgebraicKernel_2 and the implementation. Compared to the
version discussed in the technical report [EK08b], the interface to the user has esentially
remained unchanged, but the internal design has changed. Despite our goal of illuminat-
ing the class, we aim for a concise description; therefore, this treatment should not be
understood as a manual for the Algebraic_kernel_2 class.

The AlgebraicKernel_2 concept A model for the concept AlgebraicKernel_2 has to
provide the following types and functors:32

• Coefficient: A number type that models the scalar coefficients of bivariate poly-
nomials.
• Polynomial_2: A type that models bivariate polynomials over the scalar type Coefficient.
• Algebraic_real_2: A type that models points with algebraic coordinates.
• Solve_2: A functor that computes for two bivariate polynomials f and g a list of

solutions for the system (f = 0, g = 0) (in geometric language: a list of intersection
points of V (f) and V (g)).
• Is_square_free_2, Make_square_free_2, Is_coprime_2, Make_coprime_2,

Square_free_factorization_2: Functors for checking for squarefreeness, for check-
ing for coprimality, for decomposing two polynomials into a common part, and two
coprime polynomials. and for computing the square-free part, for computing the
square-free factorization.
• Sign_at_2: A functor to compute the sign of f(α), where f is of type Polynomial_2,

and α is of type Algebraic_real_2.
• Get_x_2, Get_y_2, Approximate_absolute_x_2, Approximate_absolute_y_2,

Approximate_relative_x_2, Approximate_relative_y_2: Functors to obtain the
x- or y-coordinate of a point exactly, and to get a lower or upper bound of the x- or
y-coordinates with respect to a certain absolute or relative precision.
• Compare_xy_2, Compare_x_2, Compare_y_2: Functors to compare two points (lex-

icographically), and to compare their x- or y-coordinates.

Our model Algebraic_kernel_2 additionally contains models for two concepts which
are required by the CurveAnalysisTraits_2 concept. The concept CurveAnalysis_2

reflects exactly what we have defined in Definition 3.1.7:

• Constructor: A curve analysis must be constructible from a bivariate polynomial.
• Status_line_1: A type that models f -stacks. It must be a model of the concept
CurveAnalysis_2::StatusLine_1. Without giving formal details, this concept re-
flects the content of an f -stack as defined in Definition 3.1.6. Thus, it has methods to
ask whether there is a vertical line, to get the fiber points at the f -stack as objects of
type Algebraic_real_2, to obtain the branch numbers of each point, and to obtain
the number of vertically asymptotic arcs on either side.
• number_of_status_lines_with_event(): A function that returns the number of

critical x-coordinates of the curve.
• status_line_at_event(i): Returns the Status_line_1-object for the i-th critical
x-coordinate.

32A functor is an object that defines operator(), thus, it is something like an object that can be used
as a function.
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• status_line_at_interval(i): Returns the Status_line_1-object for the i-th in-
termediate value.
• status_line_at_exact_x(x): Returns the Status_line_1-object at the x-coordinate x.

Similarly, the CurvePairAnalysis_2 concept reflects Definition 3.1.10:

• Constructor: A curve pair analysis must be constructible from a pair of bivariate
polynomials.
• curve_analysis(c): For c ∈ {1, 2}, returns the Curve_analysis_2 object for the
c-th curve of the curve pair.
• Status_line_1: A type that models fg-stacks. It must be a model of the concept
CurvePairAnalysis_2::StatusLine_1. Without giving formal details, this concept
reflects the content of a fg-stack as defined in Definition 3.1.9. Thus it has methods
to ask whether the i-th fiber point is a point of V (f), of V (g), or of both, and to
get the intersection multiplicity of intersection points (if the intersection is in the
interior of segments).
• number_of_status_lines_with_event(): A function that returns the number of

critical x-coordinates of the curve pair.
• event_of_curve_analysis(i,c): Returns an integer j ≥ −1 that denotes that the
i-th critical x-coordinate of the curve pair is the j-th critical x-coordinate of the
curve c; j = −1 denotes that the x-coordinate is not critical for the single curve.
• status_line_at_event(i): Returns the Status_line_1-object for the i-th critical
x-coordinate.
• status_line_at_interval(i): Returns the Status_line_1-object for the i-th in-

termediate value.
• status_line_at_exact_x(x): Returns the Status_line_1-object at the x-coordinate x.

Implementation: The core of the Algebraic_kernel_2 is formed by the two classes
Curve_analysis_2 and Curve_pair_analysis_2. Their realization is based on the al-
gorithms presented in this thesis. Concerning the storage of data, both for curves and
curve paris, the critical x-coordinates (together with additional information (e.g., their
multiplicity) are stored in an std::vector. Other std::vectors store the (rational) inter-
mediate values and the principal Sturm-Habicht coefficients, or the principal subresultant
coefficients, according to the case.

The classes differ slightly in how they store their stacks: Curve_analysis_2 maintains
an std::map that maps algebraic numbers (of type Algebraic_real_1) to f -stacks (of
type Status_line_1. If the f -stack for some α has not been constructed yet, it is created
and stored in the map. In this way, the curve analysis caches all f -stacks that have been
constructed so far.

In the Curve_pair_analysis_2, there are only vectors that store an fg-stack for each
critical and intermediate x-coordinate. If one asks for an fg-stack at some α where no
fg-stack exists, the object determines which interval between two critical x-coordinates
contains α and returns the fg-stack of the appropriate intermediate position. Note that
the only information in the fg-stack is the vertical ordering of the points, which does not
change inside an intermediate interval.

Both Curve_analysis_2 and Curve_pair_analysis_2 use a lazy evaluation technique.
This means that all operations of the analysis are delayed as much as possible. The
computation of the critical x-coordinates, the principal Sturm-Habicht coefficients, and
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the f -stacks are triggered only on demand. To give an example, consider the polynomial
f = (x2 + y2 − 1)((x+ 1)2 + 4(y − 1)2 − 4) (Figure 4.6), and the following code.

Curve_analysis_2 ca(f);

int n = ca.number_of_status_lines_with_event();

for(int i=0;i<n;i++) {

ca.status_line_at_event(i);

}

0 1 2 3

Figure 4.6. The curve V (f), and its critical x-coordinates, numbered starting with 0.

In the first line, the curve analysis object is created. The only operation that is triggered
is the storage of f as defining polynomial within the curve analysis object. In the second
line, we ask for the number of critical x-coordinates. This triggers the computation of the
resultant and the isolation of its real roots (and the computation of their multiplicities).
For i = 0, we encounter a critical x-coordinate that is a simple resultant root. Thus, the
simple method of Section 4.1.3 is applied. For i = 1, we ask for the status line at the
second critical x-coordinate. This is not a simple root of the resultant, so we require the
principal Sturm-Habicht coefficients to compute m and k for this step, in order to apply the
m-k-bitstream-Descartes method. For i = 3, the m-k-bitstream-Descartes method fails.
Therefore, the algorithm switches to a sheared system for the analysis in this situation.

The previous example demonstrated the advantage of the lazy evaluation strategy: if
the f -stack at the rightmost critical x-coordinate is never queried, the curve analysis gets
through without shearing the curve, although it is not in generic position. This is especially
useful if one is only interested in certain parts of the curve, for instance, when computing
the arrangement inside a predefined box. Also, the analogous technique for curve pairs
(which is also implemented) is useful in the Intersections predicate: for that, one only
considers the fg-stack in the common x-range of the involved segments.

In this context, we mention a further optimization step that is implemented as an op-
tional feature. In Cgal, we currently use the algorithm by Ducos [Duc00] for computing
the subresultants; If only the resultant is required, faster methods can be applied. For
instance, the computer algebra system MAPLE (Version 11) uses modular methods for
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computing the resultant of bivariate polynomials with high degrees (see MAPLE’s docu-
mentation of the resultant function). Indeed, this method is much faster than Ducos’
subresultant algorithm. Also, an improved resultant algorithm based on interpolation has
recently been implemented in Cgal by Michael Hemmer.

These faster resultant methods lead to the following strategy (which was already im-
plicitly assumed in the example above). When computing the critical x-coordinate, we
compute the resultant by a (relatively) fast method. As long as f -stacks of simple re-
sultant roots are considered, there is no need to compute the principal Sturm-Habicht
coefficients because the improved methods for simple resultant roots, presented in Sec-
tion 4.1.3, do not require them. In particular, for curves only with simple resultant roots,
we avoid computing them completely. However, if the Sturm-Habicht sequence must be
computed, the resultant is computed once more as a by-product, so the initial resultant
computation is a pure overhead.

We call this strategy the resultant-first strategy. Whether it should be used or not
in the algorithm clearly depends on the expected input. If one considers many curves
without singular points, it is likely that Sturm-Habicht computations can be avoided, so it
is recommended to apply the strategy. It might also be useful if only small x-ranges of each
curve are considered. However, if the input curves have singularities, and their complete
analysis is computed, the resultant-first strategy will worsen the overall performance.

The Algebraic_kernel_2 contains as its main data structure two caches that store all
curve analyses (curve_cache) and all curve pair analyses (curve_pair_cache) that have
so far been computed. For this purpose, the kernel contains functors Construct_curve_2
and Construct_curve_pair_2 which search for the desired curve or curve pair analysis
in the corresponding cache and trigger the analysis only if it was not found. To avoid
unnecessary analyses, all curves are first canonicalized, that is, their defining polynomials
are made primitive with respect to their scalar coefficients and are forced to have a positive
leading coefficient.

Most of the operations of Algebraic_kernel_2 can be realized directly by considering
the curve analysis or curve pair analysis of the curves involved. For instance, Solve_2
for two polynomials f and g is realized in the following way. Construct the curve pair
analysis of V (f) and V (g) (using the cache), iterate through the fg-stacks and return all
intersection points. As another example, we consider Sign_at_2 for f ∈ Z[x, y] and p ∈ R2.
We first check whether f(p) = 0. For that, note that p is represented by a triple (α, f, J),
where α is the x-coordinate of p, and J is an isolating for g(α, y) (recall the representation
of points from Section 3.1.3). We construct the curve pair of V (f) and V (g) and check
whether p is among the intersection points. If so, we return 0 as sign. Otherwise, we
approximate p by a box and evaluate f at this box using interval arithmetic, until 0 is not
contained in the resulting interval, so that the sign of f(p) can be determined.

The only operations of Algebraic_kernel_2 that do not follow (quite) directly from
the analyses are Get_y_2 and Compare_y_2. The former method returns the y-coordinate
of a point in an isolating interval representation, which is not available directly by our
representation (it is available only as an isolating interval of a polynomial f(α, y) with
algebraic α). The latter operation requires checking y-coordinates for equality, which in
turn requires an isolating interval representation if the points are at different x-coordinates.
Thus, for a point p represented by (α, f, I), we need to compute an isolating interval
representation (g, J).
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This is done as follows: Assume that V (f) has no vertical line components, otherwise,
pass to its primitive part. We look up the branch numbers of p in the curve V (f). If they
do not sum to 2, p is singular, and its y-coordinate is a root of R := resx(f,

∂f
∂y ). Otherwise,

p is still an intersection point of V (f) and V (R), where R is the defining equation of α
(note that V (R) is a union of vertical lines, one for each root of R ∈ Z[x]). Thus, the
y-coordinate is a root of resx(f,R). In either case, we found a defining polynomial g for
the y-coordinate of p.

To find the isolating interval, we isolate the real roots of g and refine the y-coordinate
of p until its interval only overlaps with one of the isolating intervals of g. Then the
corresponding interval can be chosen as the isolating interval for the y-coordinate.

We recommend using the methods Get_y_2 and Compare_y_2 carefully, because the
representation of y-coordinates in an isolating interval representation does not really fit
our projection-based framework. Thus, these methods cause a serious overhead due to ad-
ditional symbolic computations – in particular, the computation of resx(f,R) is extremely
expensive, because R is itself a resultant polynomial of roughly quadratic degree compared
to deg f . Fortunately, computing arrangements of arbitrary algebraic curves is possible
without the usage of the functions Get_y_2 and Compare_y_2.

As a final remark, we do not claim that our implementation of Solve_2 is optimal for
the problem of solving a bivariate system in general: For finding the intersection points of
two algebraic curves, it is certainly not the best solution to analyze each single curve first
and perform a curve pair analysis afterwards. However, the additional cost of performing
a curve analysis for each occurring curve might amortize when a curve is intersected with
many other curves. This is particularly the case when arrangements of algebraic curves
are computed.

4.2.3. Filtered kernels

Despite all our optimization efforts, computing a curve pair analysis remains a time-
consuming task, that our Algebraic_kernel_2 engages in extensively. In some situations,
a simpler method might also be successful. For instance, reconsider the Sign_at_2 functor,
where we compute sign(f(p)) for f ∈ Z[x, y] and p = (α, g, I). Instead of starting with
computing the curve pair analysis of V (f) and V (g) to check for equality, we could first
approximate p by a box B (whose side length is determined by a fixed threshold), and
evaluate 2f(B). If 0 is not contained, we have computed the sign without computing a
curve pair analysis (of course, if f(α) = 0, there is no way to prevent its computation,
no matter what threshold is chosen). The same idea can be applied to the Compare_xy_2

and the Compare_y_2 predicates. We provide a class Filtered_algebraic_kernel_2 that
realizes these filtered operations (currently with a threshold of 1

100).

The same idea is also applicable for the Curved_kernel_via_analysis_2. One of
its most important functionalities is the Intersections operation, which computes all
intersection points in the interior of two segments. The hope is to quickly decide cases
where the segments do not intersect at all, without querying the curve pair analysis of
the curves involved. For that, each segment is approximated by a region that contains the
whole segment, and the empty set is returned as the set of intersection points if the regions
of two segments are disjoint. This avoids the curve pair analysis, at least if two segments
are well separated from each other.
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In our current preliminary implementation, we take the simplest possible region to
bound a segment: an axis aligned bounding box. For this purpose, we have to identify
the y-extremal points of the curve on the segment, which requires an additional curve pair
analysis of V (f) and V (∂f∂x ). This increases the running time, but has to be done only
once per curve, and should amortize at least when considering a lot of curve pairs. Some
experimental studies are reported in [Ker08]. Besides simple optimizations as described in
Figure 4.7, improvements are certainly achievable by closer approximations of segments.
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Figure 4.7. Consider the red and blue segments on the left. Their bounding boxes in-
tersect each other, therefore, the filtered intersection predicate does not give an answer.
However, both segments can be trimmed to the common x-range for the intersection
test (on the right). After that, their bounding boxes are disjoint, thus, the segments
do not intersect.

4.2.4. Overlays of arrangements

The ability to compute overlays of arrangements is not quite a feature of our implementa-
tion, but rather a consequence of it. Still, we will need overlays in several applications in
the subsequent chapters. Let us first define what we mean by an overlay.

Definition 4.2.1 (overlay). Let the arrangement A1 be induced by the segments s
(1)
1 , . . . , s

(1)
m1 ,

and the arrangement A2 be induced by the segments s
(2)
1 , . . . , s

(2)
m2 . The overlay O of A1

and A2 is the arrangement induced by s
(1)
1 , . . . , s

(1)
m1 , s

(2)
1 , . . . , s

(2)
m2 .

Observe that each cell of the overlay can be expressed by the intersection of a cell of A1 with
a cell of A2. The sweep-line algorithm presented in [dBvKOS00] to compute overlays in the
linear case generalizes to curved segments, and the same geometric predicates as for the
arrangement computation are required. The Arrangement_2 package of Cgal provides a
generic algorithm for computing overlays, relying on a model of the ArrangementTraits_2
concept [WFZH08]. Therefore, our software framework can be used to compute overlays
of arrangements induced by algebraic segments.

A cell of a Cgal arrangement can store additional data associated with the cell. The
question is what data should be assigned to the cells of the overlay. An OverlayTraits_2

concept that requires functions for this purposes is specified; it is passed as template
parameter to the overlay computation. A model of this concept defines a function that
takes a cell c1 of A1, and a cell c2 of A2 as arguments, and assigns the correct data to the
cell of the overlay that is the intersection of c1 and c2. Using that mechanism, we can also
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assume w. l. o. g. that each cell in the overlay stores the cells c1 of A1 and c2 of A2 that it
originates from.

Summary

The layered approach for computing arrangements of algebraic curves described in Chap-
ter 3 is reflected in our software design, which has been implemented in the context of
the Cgal library. In particular, the curve analysis and curve pair analysis form the two
workhorses of the class Algebraic_kernel_2, which realizes basic algebraic operations
on bivariate polynomials. Our flexible software design, based on template code, allows
us to apply the code also to the arrangement of rotated curves, and arrangements on
parametrizable surfaces, as we will describe in Chapter 5.

4.3. Experiments

All our experiments are performed on an Intel Core 2 dual core, clocked with 2 Ghz
each, with 3 GB of RAM and 6 MB of cache. The workstation is running under Debian
GNU/Linux 5.0.2 (lenny), with kernel version 2.6. Our software currently does not benefit
from having several processors, although many steps of the algorithm are well-suited for
parallel computation.

We compiled our programs with the GNU g++ compiler, version 4.1. For the underly-
ing Cgal library, we used public release 3.4.Cgal supports several third-party libraries;
we used Boost 1.39,33 GMP 4.2,34 and LEDA 6.2.1. We compiled our programs with
the compiler option “-O3 -DNDEBUG”, and also used the resultant-first strategy (Sec-
tion 4.2.2) in all instances. We tested both with the number types provided by CORE
(which is part of the Cgal release) and by LEDA. Because the CORE types (which are
based on GMP) showed a better general behavior, we only display the results obtained
using CORE in the following experiments.

4.3.1. The case of one curve

There is an enormous diversity of algebraic curves. Therefore, it is already difficult to
define a set of meaningful test instances. We mention several parameters that have an
influence on the running time of our algorithm:

• The degree and coefficient bitsize of the curve.
• The number of critical positions (because more critical values lead to more lifting

steps).
• The presence of singularities (because they trigger the computation of subresultants

and computing stacks at singular positions requires more symbolic computations).
• The presence of covertical critical points (because they trigger a shear) and of vertical

asymptotic arcs (because they might trigger a shear).

We consider five different families of curves (see also Figure 4.8):

1. Fix two integers n and c, and choose f as a (dense) polynomial of degree n, with
each coefficient a random integer in the range [−2c−1 + 1, 2c−1]. This is the common
way of producing “random curves”. Such curves are the simplest instances for given

33http://www.boost.org/
34http://gmplib.org/

http://www.boost.org/
http://gmplib.org/
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Figure 4.8. Plots of curves of type rand(11,50), inter(10), trans(7,25) (upper row,
left to right) , res(3,3,8), and param(6,16) (lower row, left to right)

degree and bitsize, because in general, they do not have singular points, are in generic
position, and have few real segments. We will denote such curves by rand(n,c).

2. Fix a degree n, and a 2n × 2n integer grid in R2 with points (i, j), with −n + 1 ≤
i, j ≤ n. Choose 1

2n(n+ 3) grid points randomly, and construct a curve of degree n
that goes through all these grid points. The curve obtained is still regular in general.
Due to the interpolation, it consists of many more (real) segments, and also the
coefficient size increases with the degree. We denote such curves by inter(n).
Why do we choose exactly 1

2n(n + 3) interpolation points? Note that 1
2n(n + 3) =

(
n+2

2

)
− 1 and that a general polynomial of degree n has exactly

(
n+2

2

)
coefficients.

Forcing a point to lie on the curve is a linear condition on the coefficients; imposing
(
n+2

2

)
− 1 such conditions, the curve still has (at least) one degree of freedom, and

therefore, there exists a non-zero polynomial that satisfies all these equations. This
shows that an interpolated curve of this form always exists.

3. For n and c, choose a g(x, y) as in 1, and consider the curve defined by f(x, y) =
g(x, y)g(x, y + 1). The effect is that all critical points of V (g) appear in covertical
pairs, so V (f) is not in generic position. We denote such curves by trans(n,c). Note
that f is of magnitude (2n, 2c).

4. Fix degrees n1, n2, and a bitsize c, and construct two trivariate polynomials F1, F2 ∈
Z[x, y, z] with degFi = ni, analogous to 1. Then, define f(x, y) := resz(F1, F2).
Geometrically, this is the intersection curve of two algebraic surfaces, projected onto
the xy-plane. The polynomial is of degree n1 ·n2 and its coefficients are upper
bounded by (c+log(n1 +n2))(n1 +n2)+2 log(2(n1 +n2)+1) [BPR06, Prop.8.12]. In
general, f contains singular points [McC99] but it is in generic position. We denote
such curves by res(n1,n2,c).

5. For n and c, construct a polynomial F ∈ Z[x, y, z] as in 4, and homogenize it, that is,
multiply each monomial by some wk (with w as a new indeterminate), such that each
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monomial has the same degree. The homogenized polynomial F̂ is then evaluated at






2u(1− v2)
4uv

(1− u2)(1 + v2)
(1 + u2)(1 + v2)







with u, v as new indeterminates. The result is a polynomial f ∈ Z[u, v]. Geometri-
cally, this curve expresses the intersection of the surface defined by F with the unit
sphere, in a certain parameter space of the unit sphere. Such curves in general have
no singularities, but many (horizontal and vertical) asymptotic arcs. We denote such
curves by param(n,c).

We have written a test program based on the curve analysis algorithm from the previous
chapter and the optimizations presented in this chapter. It computes all f -stacks at critical
x-coordinates, and for intermediate stacks in between, and refines the y-interval of each
stack point to a width of less than 1

100 . We refer to this program by the name CA.35

We compared CA with two other programs that compute a similar output using dis-
tinct methods. Brown’s cad2d is an optimized version of QEPCAD-B36 (Version 1.50) for
computing a cylindrical algebraic decomposition (cad) in the plane. It is written in C++.
Its advantage over the more general QEPCAD-B is that it uses floating-point methods in the
lifting step to simplify calculations in favorable situations. Brown describes such optimiza-
tions in [Bro02]. cad2d is able to produce cads for an arbitrary number of curves, but we
restrict ourselved to one curve for the comparison with our method.

We run cad2d with support of the Singular library37 (version 3.1.0) and SACLIB (ver-
sion 2.2.0). By default, cad2d does not compute the adjacencies of the cad. This com-
putation, however, can be forced by a subsequent call of the closure2d command, which
computes adjacencies as the first step.38 Also, we called cad2d with option +N10000000

since it runs out of memory with the default settings for some instances.
Additionally, we tested the MAPLE implementation of isotop [CLP+09], which is

available online.39 It is based on the MAPLE package RS to solve non-linear systems
of equations using the rational univariate representation (RUR). The implementation of
isotop comes with two versions of computing isolating boxes from the RUR, one fast but
unreliably, using RS, and one slower but stable “self-made” version (controlled by the flag
Compute2DboxeswithRS). Following the advice of the authors,40 we tried both options and
observed a small speed-up when using RS (<5%), but the algorithm sometimes seems to
enter an infinite loop because it does not finish for hours. For that reason, and because
the version not using RS in this step is always exact, all our runtimes relate to the version
with the flag set to false.

There are MAPLE implementations of other methods to compute the topology avail-
able: top by Gonzalez-Vega and Necula [GVN02], and insulate [SW05] by Seidel and
Wolpert. Previous test runs [Ker06] [EKW07] [CLP+09] have already shown that they

35The “traditional” name AlciX, as used in [Ker06] [EKW07] [EK08a] [CLP+09] stood for “Algebraic
curves in EXACUS”, but since the code has moved from the Exacus library into an experimental Cgal

package, the original name no longer makes sense.
36http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
37http://www.singular.uni-kl.de/
38We thank Christopher Brown for this advice.
39http://webloria.loria.fr/equipes/vegas/isotop/
40We thank Marc Pouget for his comments.

http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://www.singular.uni-kl.de/
http://webloria.loria.fr/equipes/vegas/isotop/
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Curve CA res solve lift cad2d isotop

rand(8,50) 0.08 41% 12% 44% 0.14 0.94
rand(11,50) 0.29 57% 12% 29% 0.59 5.92
rand(14,50) 0.95 63% 13% 22% 2.27 27.7
rand(17,50) 2.98 64% 17% 17% 4.42 85.64
rand(20,50) 7.33 72% 17% 10% 13.29 ∗300.57
rand(23,50) 17.82 74% 17% 7% 19.13 –
rand(26,50) 36.19 80% 14% 5% 35.49 –

rand(10,64) 0.20 55% 12% 31% 0.42 4.65
rand(10,256) 0.73 76% 10% 12% 2.71 43.52
rand(10,1024) 4.80 90% 4% 4% 38.26 623.47
rand(10,4096) 36.26 97% 1% 0% – –
rand(10,16384) 224.20 96% 1% 1% – –

Table 4.1. Benchmark results for random curves (timings in seconds). isotop returned
with an error for one of the instances of rand(20,50) – the running time is the mean of
the other four instances.

perform, in general, worse than CA and isotop, thus, we decided to leave them out of our
experiments.

Besides the total running time of CA, isotop, and cad2d, we also measured the timings
for several substeps of CA. We considered the time to compute (sub)resultants and Sturm-
Habicht sequences of the curve and of all sheared curves that must be considered during
the algorithm (the results are in the colum “res”) and also the time to isolate the roots
of resultants, which means computing its square-free factorization and applying the root
isolation algorithm to it (column “solve”). Also, we give the time to construct the f -stacks
at critical x-coordinates. This contains the symbolic precomputation of the values m and
k per stack, and the application of the m-k-bitstream-Descartes method, for the original
and all sheared curves (column “lift”). The timings are given by their percentage with
respect to the total running time. We also measured the time for the intermediate stacks,
but this was less than 1% in every example considered. For all test instances, we created
five examples (and the same set of curves was used for each program). The timings listed
are the mean of those test runs.

Table 4.1 shows the results for random curves. We first observe that the symbolic
computations in our curve analysis become the crucial operation when the degree increases,
and especially when the coefficient size increases. We can observe that CA and cad2d are
roughly equally fast for increasing degrees, and both are much faster than isotop for
moderate bitsizes. The reason is probably that both CA and cad2d are optimized for non-
singular curves (for CA, we use the resultant-first strategy and the optimization for simple
resultant roots as explained in Section 4.1.3), whereas isotop solves the system f = ∂f

∂y = 0
symbolically as its first step for any (singular or regular) instance.

For increasing coefficient sizes, we see that CA is much faster than both cad2d and
isotop. Moreover, the latter two approches do not even compute a result for big coefficient
sizes: cad2d reports “Prime list exhausted”, denoting that the interally stored list of primes
was not sufficient to perform a modular computation during the algorithm. isotop prints
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Curve bitsize CA res solve lift cad2d isotop

inter(6) 64 0.09 12% 7% 72% 0.10 0.43
inter(8) 153 0.34 25% 15% 55% 1.05 4.58
inter(10) 312 1.44 47% 15% 35% 8.82 50.69
inter(12) 527 6.74 60% 17% 21% 78.34 485.75
inter(14) 847 28.98 71% 17% 10% 471.46 –
inter(16) 1252 104.66 75% 17% 7% – –

Table 4.2. Benchmark result for randomly interpolated curves.

Curve CA res solve lift cad2d isotop

trans(5,25) 1.22 46% 27% 26% 26.12 1.07
trans(6,25) 3.77 58% 26% 14% 54.12 2.44
trans(7,25) 10.70 69% 21% 8% 190.21 ∗6.49
trans(8,25) 27.16 76% 17% 5% – 14.23
trans(9,25) 65.12 82% 13% 3% – 35.65
trans(10,25) 147.19 86% 10% 2% – 69.74

Table 4.3. Benchmark results for random non-generic curves. For one of the instances
in trans(7,25), isotop returned an error.

out a MAPLE error message within the Groebner basis computation (after more than one
hour of computation). In cad2d, we also observed some “outliers” for feasible examples,
where the performance was more than 10 times worse than in “typical” cases.

We cannot give an algorithmic argument for the success of CA – we believe that the
stable and efficient number type support in Cgal for arbitrarily-sized integers leads to
these good results, whereas the other algorithms just might not have been designed for
such cases.41

The comparison results for randomly interpolated curves (Table 4.2) give a similar
result – for increasing degree (which implies an increasing bitsize), CA performs much
better than isotop and cad2d. It is still remarkable that the difference between the
methods is already observable for instances with relatively moderate bitsizes. It can be
concluded that the case of many critical points is handled better by CA than by the other
two approaches.

For curves of type trans(n,c), we observe that isotop is slighly faster than CA, roughly
by a factor of 2. This result is expected, because CA has to perform a shear for such
curves and performs the analysis in a different coordinate system. Moreover, the curve in
general contains self-intersections. In contrast, isotop is unaffected by the coverticalness
of critical points. cad2d is much slower in such instances. The reason is that the optimized
lifting procedure is not applied in the presence of covertical critical points.42 Thus, the

41Marc Pouget (one of the authors of isotop) mentioned in private communication that his group is
aware of the problem, and they are planning to optimize their algorithm for big coefficient sizes in a later
release.

42cad2d factorizes the input as its first step and thereby obtains two polynomials for which the opti-
mization would be applicable. However, according to [Bro02], the purely symbolic method is used if the
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Curve CA res solve lift cad2d isotop

res(2,3,8) 0.05 23% 32% 39% 0.06 0.21
res(3,3,8) 0.30 38% 30% 29% 2.23 0.89
res(3,4,8) 1.58 64% 27% 8% 87.94 3.15
res(3,5,8) 8.15 76% 18% 4% – 9.49
res(4,5,8) 77.84 89% 9% 1% – 54.81
res(5,5,8) 481.60 93% 5% 0% – 275.79

Table 4.4. Benchmark results for random singular curves.

Curve CA res solve lift cad2d isotop∗

param(2,16) 0.03 10% 19% 63% 0.04 0.15
param(4,16) 0.32 37% 25% 36% 0.17 1.79
param(6,16) 2.57 65% 18% 16% 1.17 30.26
param(8,16) 7.96 27% 37% 35% 9.85 403.69
param(10,16) 27.18 39% 36% 23% 30.68 –

Table 4.5. Benchmark results for random curves induced by the intersection of a
random surface with the unit sphere. isotop returned an error for some instances; we
report the average time for the working examples.

method falls back on a completely symbolic method in this case. For degrees greater than
7, it either runs out of memory or it quits with the error message “Prime list exhausted”.

For singular curves, we get similar results as for non-generic ones (Table 4.4). isotop

and CA show a similar behavior, with an advantage to isotop for higher degrees. Again,
the subresultant computation, triggered by the occurence of singular points, results in
more symbolic computations in CA than in regular examples (note also that the relative
amount of symbolic computation increases for higher degrees). Compared to that, cad2d
is much slower, because its optimizations do not apply in the presence of singular points.

Table 4.5 shows the set of parameter curves for which cad2d and CA show similar
performance; isotop is much slower than both (and returns an error in some instances).
Once more, the reason lies in the optimized handling of simple resultant roots, both for CA
and cad2d, because this optimizations also apply in the presence of vertically asymptotic
arcs (Section 4.1.4).

As a result of our comparison, we can report that our implementation CA is currently
the most stable approach among the three tested algorithms tested. It returns the result
much faster than the others, especially for higher coefficient sizes, and in other cases, it is at
least not too far away from the optimal choice. Compared to cad2d, this is not a surprising
result, since cad2d only speeds up the cad computation for simple examples, whereas our
approach uses fast adaptive-precision techniques in each instance, and never falls back
on pure symbolic computations. We do not deduce from the results, however, that the
projection approach used in CA is, in principle, superior to the subdivision approach used in
isotop. A more mature implementation of their algorithm (and of the underlying MAPLE

x-coordinate is a root of more than one factor of the input.
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package RS to solve non-linear systems) might arrive at similar, if not better, performance
results. Moreover, pure subdivision algorithm that do not use symbolic computations at
all [BCGY08] constitute a promising alternative. More experiments are certainly needed
when mature implementations for such techniques are available.

4.3.2. The case of several curves

We turn to the arrangement computation of algebraic curves. Besides the influential
factors mentioned above that affect the performance (such as degree, bitsize, presence of
singularities, etc.), we have an additional parameter, namely the number of input curves.
We split the total runtime into six independent quantities:

• res: Time for computing (sub)resultants and Sturm-Habicht sequences of one curve
and of curve pairs.
• solve: Time for the square-free factorization of resultants and the isolation of the

real roots, for both single curves and for curve pairs.
• lift: Time to produce f -stacks of curves and fg-stacks of curve pairs at critical

positions.
• inter: Time to produce intermediate f -stacks of curves and intermediate fg-stacks

of curve pairs.
• compare: Time to compare the x-coordinates of points during the sweep-line algo-

rithm (this is called for whenever event points are inserted into the event queue).
• decompose: Time to compute the square-free part of input curves, and to decom-

pose a curve pair into a common part and two coprime remainder curves. Note
that all our input arrangements consist of square-free and pairwise coprime curves.
Therefore, we can switch off this computation (and our implementation provides a
compiler flag for that), but we decided to keep it in order to show its cost.

Recall that all our test for the curve analysis has been performed on five randomly
generated curves of certain types. We compute the arrangement induced by those five
curves together (Table 4.6).

We observe that the behavior for high degrees and high coefficient sizes is similar
to the one-curve case: The symbolic computations become the dominant factor in the
computations; note that not just the column labeled “res”, but also the column “decompose”
performs such symbolic computations.

In the column labeled “ca”, we also denote the time to compute the curve analysis of
the input instances. Clearly, this operation must be executed before the sweep starts in
order to obtain x-monotone segments. As we have to perform five curve analyses, and up
to
(
5
2

)
= 10 curve pair analyses, we expect the total running time to be roughly three times

as big as the time for the curve analysis, assuming that a curve pair analysis is roughly
as expensive as a curve analysis. We see that most examples match this rule of thumb,
except the inter( · ) arrangements which are much worse. This is because they are in some
sense the worst possible instances for our arrangement algorithm: recall that they were
created by interpolating points on a 2n × 2n integer grid. Considering a curve pair, it
is likely that intersections take place in grid points, and it may also happen that some
intersections are covertical. Thus, the curve pair must be sheared. The effect is that grid
points are mapped to grid points in the sheared system, and it is not unlikely that other
intersection points become covertical, especially if the shear factor is small. Recall from
Section 4.1.5 that we prefer to choose small shear factors in the beginning, thus, a lot of
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Curves #segs #(V,E,F) ca total res solve lift inter comp. decomp.

rand(8,50) 56 (78,120,44) 0.34 1.34 43% 12% 10% 7% 1% 23%
rand(12,50) 98 (152,230,79) 2.26 10.60 41% 10% 6% 4% 2% 30%
rand(14,50) 98 (154,234,81) 4.63 23.75 42% 10% 4% 2% 2% 33%
rand(17,50) 149 (198,273,78) 14.72 73.54 43% 10% 3% 2% 2% 34%
rand(20,50) 102 (164,238,76) 36.31 185.04 47% 8% 1% 0% 2% 34%
rand(23,50) 153 (216, 297, 82) 86.89 461.98 46% 9% 1% 1% 2% 32%
rand(26,50) 142 (200, 282, 84) 182.01 1032.48 45% 8% 0% 1% 1% 36%

rand(10,64) 82 (122,194,74) 0.98 4.50 44% 12% 6% 5% 1% 25%
rand(10,256) 80 (124,180,57) 3.54 13.90 72% 9% 2% 2% 1% 8%
rand(10,1024) 86 (134,190,57) 23.88 89.94 87% 3% 1% 1% 1% 1%
rand(10,4096) 34 (66,114,49) 180.94 688.98 92% 1% 0% 0% 1% 0%
rand(10,16384) 88 (146,224,80) 1119.00 4480.92 85% 1% 0% 2% 2% 0%

inter(6) 248 (410,605,196) 0.32 2.99 15% 15% 42% 19% 1% 2%
inter(8) 506 (823,1175,353) 1.48 22.87 29% 21% 36% 7% 1% 1%
inter(10) 904 (1367,1864,498) 6.80 167.23 47% 17% 25% 4% 1% 0%
inter(12) 1546 (2223,2945,724) 33.05 1753.54 65% 13% 15% 1% 1% 0%
inter(14) 2286 (3096,3963,868) 143.67 9285.85 76% 9% 9% 1% 0% 0%
inter(16) 3228 (4275,5382,1108) 521.87 65363.00 78% 6% 10% 2% 0% 0%

trans(5,25) 218 (370,598,229) 5.88 21.07 36% 24% 33% 5% 0% 5%
trans(6,25) 200 (290,444,155) 19.84 52.89 53% 23% 20% 2% 0% 6%
trans(7,25) 226 (334,506,173) 55.10 140.89 61% 19% 17% 1% 0% 5%
trans(8,25) 188 (290,460,171) 139.65 329.66 69% 16% 12% 0% 0% 5%
trans(9,25) 310 (418,606,189) 337.42 760.61 74% 13% 11% 0% 0% 4%
trans(10,25) 220 (328,508,181) 768.99 1610.92 76% 11% 11% 0% 0% 4%

res(2,3,8) 70 (86,118,37) 0.18 0.49 30% 20% 17% 14% 0% 13%
res(3,3,8) 199 (232,313,96) 1.41 3.66 32% 19% 15% 8% 1% 16%
res(3,4,8) 126 (146,174,45) 7.57 16.07 49% 18% 5% 1% 0% 20%
res(3,5,8) 301 (366,461,116) 40.61 75.65 56% 15% 4% 1% 1% 15%
res(4,5,8) 287 (354,452,126) 383.30 594.56 70% 9% 1% 0% 1% 10%
res(5,5,8) 542 (588,713,155) 2399.05 3223.24 80% 7% 0% 0% 0% 7%

param(2,16) 58 (70,98,29) 0.13 0.24 13% 21% 38% 10% 0% 11%
param(4,16) 120 (148,200,54) 1.46 3.34 24% 18% 14% 5% 0% 35%
param(6,16) 130 (180,258,79) 12.24 39.83 29% 11% 4% 1% 0% 51%
param(8,16) 552 (726,932,210) 38.99 228.39 15% 14% 5% 1% 3% 51%
param(10,16) 552 (726,940,216) 132.88 977.00 17% 11% 2% 1% 5% 45%

Table 4.6. Benchmark results for various arrangments of 5 curves of a certain type.
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#Curves #segs #(V,E,F) ca total res solve lift inter comp. decomp. per vertex

10 116 (314,552,239) 0.63 5.34 40% 10% 4% 9% 5% 26% 17032
20 228 (1066,1976,911) 1.36 21.15 40% 11% 2% 7% 7% 28% 19847
30 292 (1782,3396,1615) 1.88 44.56 41% 10% 1% 5% 7% 30% 25009
40 504 (3718,7080,3363) 2.82 82.54 39% 10% 1% 5% 8% 29% 22201
50 684 (6462,12448,5987) 3.59 135.94 37% 10% 1% 5% 10% 28% 21037
60 684 (7554,14636,7083) 4.11 177.04 39% 10% 1% 5% 10% 29% 23436
70 896 (11504,22368,10865) 4.86 253.95 38% 10% 0% 5% 11% 28% 22075
80 948 (13084,25552,12469) 5.53 318.27 39% 10% 0% 4% 10% 29% 24325
90 1042 (17644,34570,16927) 6.14 410.31 38% 10% 0% 4% 11% 29% 23254
100 1090 (21088,41462,20375) 6.65 509.34 38% 10% 0% 4% 11% 29% 24153

Table 4.7. Benchmark results for m curves of type rand(8,50).

shear transformation will be necessary to put each curve pair into a generic position.

All examples in Table 4.6 are restricted to five curves. We fix a degree of 8 and a bit size
of 50 and construct arrangements ofm randomly generated curves (Table 4.7). The relative
running times of the subroutines remain rather stable when the number of curves increases.
Again, the symbolic computations contribute the major part of the running time. Also, the
relative cost of the curve analyses becomes smaller, clearly because the number of curve
pair analyses grows quadratically with the number of curves. Arrangements of considerable
size arise from these instances; in the last column, we show how many microseconds are
spent per output vertex on average. This number is basically constant. Indeed, this
matches the complexity bound of the sweep-line algorithm, which is (up to a logarithmic
factor) linear in the number of output nodes, assuming that all geometric primitives take
a constant time to evaluate.

We also tested our implementation on arrangements of restricted classes of curves,
which are available in the Cgal library. For circles and circular arcs, Cgal provides a
model for the ArrangementTraits_2 concept, called Arr_circle_segment_traits_2. We
created m circles, each represented by a triple (i, j, r) ∈ {1, . . . ,m}3 chosen uniformly at
random, where (i, j) is the center of the circle and r is its radius (Table 4.8). Again,
the distribution of the total time to the subroutines is more or less independent of the
number of input circles. The influence of symbolic computations is smaller than for the
previous instances, because circles are simpler to handle symbolically then curves of degree
8. Again, the costs per node are roughly constant. Observe that the last example produces
an arrangement of more than two million cells.

We observe that the Cgal implementation is faster than our approach, roughly by a
factor of 6 . This appears plausible because a specialized implementation for certain types
of curves should perform better than a more general approach. We have not particularly
optimized our code for the case of many curves with low degrees (we were more focussed
on curves with higher degrees).

Additionally, traits classes are available in the Cgal library for (bounded) arcs of con-

ics (Arr_conic_traits_2) and rational functions of the form y = p(x)
q(x) with p, q univariate

polynomials (Arr_rational_arc_traits_2). Both classes of curves can be handled with
our implementation as well (for the latter, the defining polynomial of the curve is just
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#Circles #(V,E,F) CGAL CA res solve lift inter comp. decomp. per vertex

100 (5459, 10726, 5269) 0.63 4.44 25% 7% 8% 25% 7% 13% 813
200 (24268, 48142, 23877) 3.00 18.67 21% 6% 9% 20% 12% 14% 769
300 (52594, 104597, 52005) 6.81 40.11 23% 6% 7% 18% 13% 15% 762
400 (85081, 169374, 84295) 11.39 64.60 22% 6% 8% 17% 14% 15% 759
500 (134984, 268973, 133991) 18.66 101.96 22% 6% 7% 16% 15% 15% 755
600 (192640, 384084, 191447) 27.21 144.63 22% 6% 7% 15% 16% 15% 750
700 (260519, 519651, 259134) 37.31 196.53 22% 6% 7% 14% 17% 15% 754
800 (338786, 675986, 337202) 50.31 256.11 22% 6% 7% 14% 17% 15% 755
900 (440708, 879619, 438914) 65.15 331.82 22% 6% 7% 13% 18% 15% 752
1000 (548041, 1094088, 546050) 82.01 412.14 22% 6% 7% 13% 18% 16% 752

Table 4.8. Benchmark results for m circles with center on an m×m grid and random
(integer) radius between 1 and m.

#Ellipses #(V,E,F) CGAL CA res solve lift inter comp. decomp. per vertex

10 (66, 112, 49) 15.00 0.12 29% 3% 13% 23% 3% 13% 1818
30 (538, 1016, 480) 57.04 0.56 20% 9% 12% 32% 8% 9% 1040
50 (1556, 3012, 1458) 110.27 1.49 19% 8% 10% 27% 11% 15% 961
70 (2900, 5660, 2762) 172.17 2.79 18% 7% 8% 27% 13% 14% 962
90 (4656, 9132, 4478) 238.27 4.43 22% 8% 9% 24% 12% 14% 951
200 (23744, 47088, 23346) 816.71 21.71 20% 8% 7% 21% 18% 13% 914
300 (49898, 99196, 49301) 1514.33 45.59 20% 8% 6% 20% 20% 13% 913
400 (96502, 192204, 95704) 2620.06 88.64 20% 8% 6% 18% 22% 13% 918

Table 4.9. Benchmark results for m random ellipses.

y · q(x) − p(x)). We compared our implementation with the conic traits class43 by com-
puting arrangements of random ellipses with 30-bit coefficients. We also compared it with
rational curves, by fixing degree n and bitsize τ , choosing p and q as random univariate
polynomials of magnitude (n, τ) (in an analogue way as for rand(n,τ)), and computing
the arrangement of m such curves. Because this traits class supports unbounded segments,
we simply take the arrangement induced by the complete curves.

We display the results in Tables 4.9 and 4.10. The first result is that our code is faster
for ellipses than the conic-specific code. We concur with Ron Wein’s remark that the conic
traits class has not been improved for a long time and thus, one might not consider it to
be optimized code. Nevertheless, we believe that it is the internal use of the data type
CORE::Expr (and thus, the usage of constructive separation bounds) which slows down the
current Cgal traits class, despite possible optimizations.

The same is true for the comparison of rational functions. For fixed degree and bitsize,
and an increasing number of curves, our approach is faster roughly by a constant factor,
which becomes larger for higher degrees. If we fix the number of curves, we see that
function of higher degree are handled much more efficiently. Again, we claim that the
Cgal implementation suffers from the use of constructive separation bounds, which makes
it become particularly slow for higher degrees.

43We thank Ron Wein for answering our questions regarding this traits class.
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(n, τ,m) #(V,E,F) CGAL CA res solve lift inter comp. decomp. per vertex

(2,16,10) (98, 220, 123) 0.18 0.1 3% 11% 14% 40% 0% 14% 1102
(2,16,40) (1836, 3766, 1931) 3.18 1.2 11% 9% 8% 24% 17% 10% 657
(2,16,70) (5066, 10298, 5233) 8.36 3.44 13% 8% 8% 23% 18% 13% 679
(2,16,100) (8918, 18056, 9139) 13.67 6.04 16% 9% 6% 19% 19% 14% 677

(6,16,10) (114, 254, 141) 1.56 0.23 20% 17% 12% 20% 8% 6% 2035
(6,16,40) (2074, 4266, 2193) 27.11 2.65 21% 12% 7% 18% 19% 10% 1278
(6,16,70) (7020, 14238, 7219) 94.78 8.47 19% 11% 4% 17% 23% 11% 1206
(6,16,100) (13124, 26534, 13411) 169.95 16.48 20% 12% 5% 16% 25% 11% 1256

(3,16,20) (422, 890, 469) 1.28 0.43 20% 17% 6% 20% 10% 14% 1033
(7,16,20) (594, 1242, 649) 12.95 0.81 21% 9% 5% 18% 20% 12% 1367
(11,16,20) (616, 1292, 677) 36.19 1.45 28% 15% 5% 19% 15% 7% 2357
(15,16,20) (676, 1418, 743) 101.87 2.05 29% 14% 5% 18% 14% 8% 3041

Table 4.10. Benchmark results for m random rational functions of magnitude (n, τ).

After all, we take these comparisons as a proof of the maturation of our implemen-
tation (although further improvements are certainly possible), and as a proof of success
for our principal approach of replacing symbolic computations by numerical ones as much
as possible (but without using constructive separation bounds). Indeed, we yield an gen-
eral and efficient algorithm for arrangement computation, that even outperforms existing
implementations for restricted subclasses of algebraic curves.

We compared our implementation with other arrangement algorithms as well. In what
follows, we report on our experience

cad2d As already mentioned, cad2d computes the cad for an arbitrary number of curves,
thus, its result can be considered as an arrangement. However, the constructed cad is
a much more complicated structure than the arrangement: at any critical x-coordinate,
each input curve is stacked (i.e., its fiber is computed) and those fiber points are refined to
disjointness (the output resembles a curve analysis of the union of all curves). In contrast,
our algorithm always considers only two curves at once; for that reason, a comparison is
not fair for a large number of input curves. In [EK08a], both approaches are compared
for at most three input curves. The results affirm the results obtained for the one curve
analysis, namely that cad2d has problems with singular curves, high coefficients, and also
tangential intersections.

CubiX A library closely related to ours is CubiX, part of the Exacus library [EKSW06],
which was also designed at MPI. It computes arrangements of algebraic curves of degrees
up to 3. The algorithmic framework is basically the same as that of our approach, unless
that the methods for curve analysis and curve pair analysis are specialized variants for
bounded degrees. In [EK08a], it was stated that Cubix and AlciX (a preliminary version
of our implementation) showed roughly the same performance for cubic curves. We were
not able to replicate those experiments for this thesis, because CubiX is no longer supported
by our working group (partially because the general method presented here renders the
cubic approach deprecated), and it was not possible to run Cubix on the platform where
the benchmarks were performed.
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Axel The Axel library44 also offers an algorithm to compute arrangements. However,
according to the authors, their method is currently only parameterized with an inexact
solver and thus, does not return a certified answer.45 Therefore, a comparison would only
be of limited expressiveness, because we would be comparing an exact method with an
approximate one. Moreover, we had problems running a stable version of Axel on our
Linux workstation; the newest version is currently only available for Mac OS.

44http://axel.inria.fr/
45We thank Bernard Mourrain for this remark.

http://axel.inria.fr/
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Es ist nicht genug, zu wissen, man muß auch anwenden; es ist nicht genug, zu
wollen, man muß auch tun.
(In the end we retain from our studies only that which we practically apply.)

Johann Wolfgang von Goethe

5
Applications of Algebraic Arrangements

In this chapter, we consider several direct, and less direct generalizations regarding the
arrangement algorithm (Chapter 3) and its software representation (Chapter 4).

In particular, we present a web application to visualize arrangements computed by our
implementation (Section 5.1), we show how our software design can be extended to rotated
algebraic curves (Section 5.2), and how it supports the computation of arrangements on
orientable manifolds such as tori (Section 5.3). We sketch further work in progress, which
is also based on the arrangement algorithm, in Section 5.4. Finally, another application,
the exact topological analysis of algebraic surfaces, is treated in Chapter 6 separately.

5.1. A web application for visualizing algebraic arrangements

A natural second step after computing an arrangement in the plane is to provide an
accurate picture of it, such that the user can explore its features visually. The goal is to
bring together our algorithm with an exact visualization method for algebraic segments,
and provide the result to a broader community via the World Wide Web. A video, together
with an extended abstract presenting these results has appeared in [EK08c].

Emeliyanenko et al. [EBS09] describe an exact method for drawing x-monotone seg-
ments of algebraic plane curves. Given such a segment s, it begins with some so-called
seed point in the interior of the segment. The segment is then traced in each direction
towards its endpoints. The next pixel is determined by considering the box containing
the current pixel and its 8 adjacent neighbors; in the best case, the curves intersects this
box excalty twice, and the pixel where it leaves the box is taken as the next pixel. If the
curve intersects the box boundary more than twice (because of other segments close-by, or
because the segment reenters the box), local subdivision is performed to decrease the pixel
size, eventually arriving at a definite answer. The method makes use of several interval
arithmetic techniques , and adaptive precision methods. We refer to [EBS09] and [Eme07]
for technical details. Once again, we underline that the method presented is a local draw-
ing method that handles x-monotone segments separately. Therefore, it is also suitable to
plot arrangements defined by x-monotone segments.



178 Applications of Algebraic Arrangements

We run a public web server (http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi)
to compute, visualize, and explore algebraic arrangements. The client sends the defining
polynomials of the algebraic curves to our webserver. The server then computes the com-
binatorial arrangement description, and the image (in png format). Both are sent to the
client who displays the result in the web browser using Flash.46 With this architecture,
the user is not burdened with installing additional software to use the application.

Figure 5.1. A screenshot of the webpage. In the bottom text field, the user types
the defining polynomials. On the right, the arrangement information like the number of
vertices, edges, and faces, and geometric information on every component is displayed.
In the middle, the arrangement is visualized and can be explored via the buttons on the
left of the plot.

We point out that we provide more output than “just” a reliable plot of the arrangement
(which could possibly be rendered more quickly). Instead, the user has control over the
arrangement structure and can explore the arrangement visually through the following
interface.

: zoom in by a factor of 2

: zoom out by a factor of 2

: reset to default zoom

: focus on point – click the curve plot to center at a special point

: focus on region – hold mouse button and select the area of interest

: feature selection mode

46http://www.macromedia.com/software/flash/about/

http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi
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Some of these features were used to produce Figure 5.2. However, a much more vivid
introduction to the capabilities of the webpage is given in the video [EK08c], which is
available from the homepage of the author.

Figure 5.2. From Figure 5.1, we zoomed into some part of the arrangement. Also,
we selected three arcs which are rasterized separately from the list on the right, and
form a boundary cycle for a face of the arrangement.

Summary

The web application allows the user to use our algorithm directly, without a complicated
initial installation process. Besides the fact that it is a good demonstration of our work,
we believe that it might be a useful tool for educational purposes, or in situations where an
unreliable plot might just not suffice. The gallery on the webpage shows several examples
where the default plotting routine in MAPLE produces wrong pictures. In fact, the exact
visualizer has become an indispensable debugging tool for the analysis of algebraic surfaces,
as described in Section 6.

5.2. Arrangements of rotated curves

Our generic software design as presented on page 157 allows –in principle – instantiations
of the algebraic kernels (uni- and bivariate) for types other than integer coefficients.47

Nevertheless, the actual adaption to other number types is a non-trivial issue, since the

47We do not count curves with rational coefficients as a real generalization, since one can just clear
denominators to get an integral curve.
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underlying algebraic tools like square-free factorization, subresultant computations, and
refinement of algebraic numbers have to be provided in a generic but still efficient form.

We next describe how the extension to more complicated domains allows the exact com-
putation of arrangements of rotated algebraic curves. More precisely, curves defined by
integer coefficients can be rotated by an angle that is constructible by compass and straight-
edge. This yields curves whoses defining polynomial has coefficients in a domain that in-
cludes nested square roots of integers. This work constitutes a generalization of [BCW07],
who considered the same setup for conics.

Moreover, we have implemented a certified version of an approximation approach. This
means that for any angle ϕ (in radian measure) and any precision ε, we compute the exact
rotation of the curve by an angle ϕ′ such that |ϕ − ϕ′| < ε. Thus “approximation” only
means approximating the angle – the actual rotation is still performed in an exact manner
and thus, the rotated curve is guaranteed to have the same topology as the original one. We
obtain the approximated angle by deriving a certified version of the algorithm presented
in [CDR92].

From a mathematical point of view, the rotation of an algebraic curve is not very
complicated: let V (f) be an algebraic curve and let ϕ denote the rotation angle; then the
curve rotated counterclockwise by ϕ around the origin can be expressed as V (frot), where

frot(x, y) = f(cos(ϕ)x+ sin(ϕ)y,− sin(ϕ)x+ cos(ϕ)y). (5.1)

In general, the coefficients of frot involve trigonometric functions and therefore, the
resulting curve is not algebraic. Hence, we estimate that an exact and efficient algorithm
dealing with general rotated curves is currently out of reach, if realizable at all. For that
reason, we restrict the problem to certain well-behaved angles and to an approximation
approach. We give some details about both methods in the following two subsections and
also report on some benchmarks results we obtained when comparing the exact and the
approximate approaches.

5.2.1. Rotation by exact angles

We exploit the fact that the sine and cosine of certain angles can be represented by square
root expressions. This is possible if and only if the angle is constructible with compass
and straightedge. The following well-known result characterizes all possibilities.

Theorem 5.2.1 (Gauss). An angle α is constructible with compass and straightedge if and
only if α = c · 360

2kp1···ps
where c, k, s ∈ N and p1, . . . , ps are distinct Fermat primes , that is,

primes of the form 22m
+ 1,m ≥ 0.

We can use the following exact angles in our implementation.

• sin 45◦ =
√

2

2
, cos 45◦ =

√
2

2
∈ Q[
√

2]

• sin 30◦ = 1

2
, cos 30◦ =

√
3

2
∈ Q[

√
3]

• sin 18◦ = 1

4

(√
5− 1

)
, cos 18◦ = 1

4

√

10 + 2
√

5 ∈ Q[
√

5,
√

10 + 2
√

5]

• sin 15◦ = 1

4

(√
6−
√

2
)
, cos 15◦ = 1

4

(√
2 +
√

6
)
∈ Q[
√

2,
√

3]

• sin 9◦ = 1

16

(

(
√

10−
√

2)
√
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√

5 + 2
√

10 + 2
√

2
)

cos 9◦ = 1

16

(
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√

2−
√

10)
√

10 + 2
√

5 + 2
√
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√

2
)

∈ Q[
√
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√

5,
√

10 + 2
√

5]
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• sin 6◦ = 1

16

(

(
√

3−
√

15)
√

10 + 2
√

5 + 2 + 2
√

5
)

cos 6◦ = 1
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(

(
√

5− 1)
√

10 + 2
√

5 + 2
√

3 + 2
√
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∈ Q[
√
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√
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5]

• sin 3◦ = 1

16

(√
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√
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√

10 +
√

30 + (
√

2 +
√

6)
√

10 + 2
√

5
)

cos 3◦ = 1
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(
√

2 +
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√
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√

5 +
√

2−
√
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Note how the domain for the sine and cosine becomes more complicated for smaller angles.
By the addition theorems

sin(α+ β) = cosα sinβ + sinα cosβ

cos(α+ β) = cosα cosβ − sinα sinβ,

and it follows that the sine and cosine of multiples of an angle remain in the same domain
as well, and that they are easily computable.

We now enable algebraic kernels for all coefficient domains defined in the above enumer-
ation. For that, we make use of Cgal’s Sqrt_extension class (contained in the package
Number_types [HHK+08]). It is a template class with two parameters: Sqrt_extension<A,B>

represents all numbers of type a1 + a2 ·
√
b, where a1, a2 ∈ A and b ∈ B. A problem lies

in the interoperability of such numbers; for instance,
√

2 and
√

3 are both representable
by Sqrt_extension<I,I> (where I is a type representing Z), but

√
2 +
√

3 is no longer
of this type. Avoiding such unpleasant behavior requires us to fix the root expression for
each Sqrt_extension during the computation; in other words, Sqrt_extension<I,I> can
only be used to model Z[

√
a] for a fixed a ∈ Z.

However, the type can be cascaded to model more demanding domains. For instance,
to realize the domain Z[

√
2,
√

3], as in the example above, one can use the type

Sqrt_extension<Sqrt_extension<I,I>,I>.

This represents numbers of type c1 + c2
√
b1, where c1 and c2 are again square root expres-

sions of type a1 + a2

√
b2. Note that there is an outer root b1 and an inner root b2 for the

type; if all instances get consistent outer and inner roots (for instance b1 = 2, b2 = 3, or
vice versa), then the domain Z[

√
2,
√

3] can be modeled in this way.

It is worth mentioning that algebraic computations like (modular) gcd or subresultant
computations have been provided for arbitrarily cascaded Sqrt_extension types. For
gcd computations, this constituted a non-trivial research topic; see the work by Hemmer
and Hülse [HH09]. This approach “only” computes the gcd up to a constant factor, and
so, derived objects like the content of a bivariate polynomial, or the square-free part of
a univariate polynomial are also only known up to a constant. This does not pose any
theoretical difficulties in our algebraic kernel (since we are only interested in the roots of
such polynomials), but it underlines that some efforts were required to extend the software
to more general domains.

Let us go back to the original problem of computing the rotation of a curve. Fix a base
angle ϕ ∈ {3◦, 6◦, 9◦, 15◦, 18◦, 30◦, 45◦}. Choose D such that sinϕ and cosϕ ∈ D, and model

D by a proper instantiation of Sqrt_extension; for instance, D = Q[
√

5,
√

10 + 2
√

5] (for
angle 18◦) is modelled by

Sqrt_extension< Sqrt_extension<Q,I>, Sqrt_extension<I,I> >



182 Applications of Algebraic Arrangements

where Q models rational numbers, and I models integers. In the same way, we can model

DZ = Z[
√

5,
√

10 + 2
√

5], by replacing Q with I. For a multiple α of ϕ and f ∈ Z[x, y], the
rotated polynomial frot is an element of DZ[x, y]. frot is computed by looking up sinα and
cosα in a hard-coded list, substituting (cos(α)x+sin(α)y) for x and (− sin(α)x+cos(α)y)
for y, and finally clearing the denominators.

Next, we introduce the new template class Rotated_algebraic_kernel_2 for rotated
curves. Its main functionality is based on the class template Algebraic_kernel_2 instan-
tiated with a suitable coefficient type. A single instantiation is dedicated to a fixed base
angle, given by a template parameter. We provide specializations for every integer angle
constructible with compass and straightedge, that is, 45◦, 30◦, 18◦, 15◦, 9◦, 6◦, and 3◦.
For convenience, we added some types and methods: Recall that the Algebraic_kernel_2
contains a functor Construct_curve_2 to construct a curve analysis object out of a defin-
ing equation. Rotated_algebraic_kernel_2 extends this functor by a new construction
method for rotated curves:

struct Construct_curve_analysis_2 {

...

Curve_analysis_2 operator()

(const Unrotated_polynomial_2& f, const Angle& angle) const;

};

The functor rotates the curve f by angle and analyzes the rotated curve (the two types
Unrotated_polynomial_2 and Angle are introduced in the rotated kernel, with the obvious
meaning).

The ability of our generic algebraic kernel to handle square root numbers can serve
applications other than rotating curves. For instance, our kernel enables the computation of
arrangements on surfaces whose parameterizations involve algebraic coefficients [DHPS07].
Also, our method to stratify and triangulate an algebraic surface as presented in Chapter 6
comes into reach for surfaces with square root coefficients (a prominent example for this
is Boy’s surface48).

5.2.2. Rotations by approximate angles

We begin with the exact definition of the problem: Given some angle ϕ and some precision
p ∈ Z, find rational values s′ and c′ such that s′ = sinϕ′ and c′ = cosϕ′ for some ϕ′ with
|ϕ′ − ϕ| < 2p. In addition, the values s′ and c′ should be as small as possible (in terms of
their bitsize), because their bitsize affects the bitsize of frot as defined in (5.1).

We recall the approach of Canny et al. [CDR92] to solve this problem. Their algorithm
relies on Pythagorean triples and approximations by continued fractions. Here is their
solution: Write c′ = a

d and s′ = b
d with common denominator d. Since c′2 + s′2 = 1, a, b,

and d form a Pythagorean triple. Such triples are generated as: a = n2 −m2, b = 2nm
and c = n2 +m2, where n,m ∈ N. Thus, by choosing t′ := n

m arbitrarily, we obtain

s′ =
2mn

n2 +m2
=

2

t′ + 1
t′

and c′ =
n2 −m2

n2 +m2
=
t′ − 1

t′

t′ + 1
t′
.

48http://mathworld.wolfram.com/BoySurface.html

http://mathworld.wolfram.com/BoySurface.html
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How to choose t′ such that s′ and c′ are good approximations of sinϕ and cosϕ? For that,
consider the value t ∈ R that precisely yields sinϕ and cosϕ, which is

t =
1

sinϕ
+

√

1

sin2 ϕ
− 1.

In general, this is an irrational number. However, the idea is to approximate t by a
sequence of rational values until the arcussine of s′ has a distance of at most 2p from ϕ.
For that approximation, a continued fraction expansion of t is computed by a Euclidean-like
scheme, which produces much smaller results compared to a bisection approach. Canny
et al. also propose some optimizations to get even slightly smaller values of c′ and s′, but
they report only marginal improvements. Thus, we only consider the approach summarized
in Algorithm 5.1.

Algorithm 5.1. Approximate rotation, non-certified version

1: procedure Rotate_approx(ϕ, p)
2: s← sin( ϕπ180) ⊲ Converted angle to radian measure first

3: t← 1
s +

√
1
s2
− 1

4: e0 ← t, p0 ← 0, q0 ← 1, e1 ← −1, p1 ← 1, q1 ← 0
5: repeat
6: r ← ⌊ e0e1 ⌋
7: e∗0 ← e0, p

∗
0 ← p0, q

∗
0 ← q0 ⊲ temporarily stored

8: e0 ← e1, p0 ← p1, q0 ← q1
9: e1 ← e∗0 − re1, p1 ← p∗0 − rp1, q1 ← q∗0 − rq1

10: t′ ← p1
q1 ⊲ t′ approximates t

11: s′ ← 2
t′+ 1

t′
⊲ s′ approximates s

12: until | arcsin(s′)180
π − ϕ| < 2p ⊲ Convert angle into degree measure

13: c′ ← t′− 1
t′

t′+ 1
t′

14: return (s′, c′)
15: end procedure

When Algorithm 5.1 is executed with double precision (or with any other fixed preci-
sion), it is not guaranteed that the computed rotation angle is indeed at a distance of at
most 2p from the input angle, due to possible rounding errors. We use an adaptive pre-
cision technique and interval arithmetic to certify the termination condition of the loop
in Algorithm 5.1. The value of t is computed approximately, before the loop starts. We
do not bound the distance from the computed value t̃ to the exact t, but it is guaranteed
that this distance converges to zero as the precision increases. In the loop, the value of
t′ approximates t̃, instead of t itself. The arcussine computation and the check for the
termination condition is performed with interval arithmetic. However, we need a second
termination condition in case the current precision is not sufficient to find a “good” rota-
tion. If so, the rational t′ will finally be equal to t̃ since the continued fraction sequence of
a rational value is finite and t̃ is rational. In this case, we increase the precision, recompute
t̃, and restart the loop.

Algorithm 5.2 summarizes our certified approach. The suboperations π, sin, arcsin,
and sqrt are performed using interval arithmetic. They all receive a second parameter p
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and return an interval with width less than 2p containing the exact value of the operation.
How to obtain such intervals is explained in Appendix A. In addition, we use a method
χ(I) that chooses some element of an interval (e.g., the midpoint).

Algorithm 5.2. Approximate rotation, certified version

1: procedure Rotate_approx_certified(ϕ, p)
2: prec← 16 ⊲ working precision
3: pi← π(prec) ⊲ pi approximates π

4: s̃← χ(sin(ϕ ·χ(pi)
180 , prec))

5: t̃← 1
s̃ + χ(sqrt( 1

s̃2
− 1, prec))

6: e0 ← t̃, p0 ← 0, q0 ← 1, e1 ← −1, p1 ← 1, q1 ← 0
7: repeat
8: r ← ⌊ e0e1 ⌋
9: e∗0 ← e0, p

∗
0 ← p0, q

∗
0 ← q0

10: e0 ← e1, p0 ← p1, q0 ← q1
11: e1 ← e∗0 − re1, p1 ← p∗0 − rp1, q1 ← q∗0 − rq1
12: t′ ← p1

q1 ⊲ t′ approximates t̃

13: if t′ = t̃ then prec← 2prec; goto 3; end if
14: s′ ← 2

t+ 1
t

⊲ s′ approximates s̃

15: until | arcsin(s′, prec)180
pi − ϕ| < 2p ⊲ Interval arithmetic

16: c′ ← t′− 1
t′

t′+ 1
t′

17: return (s′, c′)
18: end procedure

Our actual implementation differs in two ways from the description of Algorithm 5.2.
First, if the interval (ϕ − 2p−1, ϕ + 2p−1) contains a multiple of 90◦, sine and cosine are
immediately set to 0 and ±1 (depending on the angle). Also, steps 2-15 are not performed
for ϕ itself but for a corresponding angle ϕ′ between 0◦ and 45◦. The sine and cosine of ϕ
can be reduced to the sine and cosine of ϕ′. To give an example, sin(289◦) = − cos(19◦) and
cos(289◦) = sin(19◦), so the sine and cosine of 289◦ can be reduced to the sine and cosine
of 19◦. The underlying trigonometric functions have been implemented internally. By
the optimization just mentioned, all trigonometric functions are called with an argument
between 0 and π

4 . This allows a slightly improved computation. Details are explained in
Appendix A. It is not within the scope of this work to implement them in the best possible
way — the efficient computation of trigonometric functions is a research topic in its own.
Mainly, our goal here is to have a generic and certified implementation for these functions.
We are not aware of an existing state-of-the-art implementation that combines efficiency
with these two properties.

To construct curves rotated by approximate angles, we provided an additional functor
in the Algebraic_kernel_2. It receives an unrotated polynomial f , a rotation angle ϕ,
and an approximation precision p as parameters, and constructs the curve induced by f
after (exactly) rotating it by an angle ϕ′, such that |ϕ′ − ϕ| < 2p.

Compare the pros and cons of the approximation approach, with those of the exact
approach in Section 5.2.1. Because the coefficients of the rotated curve remain rationals
(or integers, after clearing denominators), arbitrary rotations are possible, instead of being
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fixed at predeterminate multiples of a base angle as in the exact approach. However, the
price to pay is that the angle (not the rotation) is approximated. This might lead to a
wrong topology in an arrangement of rotated curves, for instance, if two (exactly) rotated
curves intersected tangentially.

Figure 5.3. The arrangement of 36 rotations of the curve V (2x4 + y4 − x3 + xy2),
each rotation being by a multiple of 10◦. The approximate approach is used to produce
the picture (the visualizing algorithm described in Section 5.1 is currently limited to
integer coefficients).

We remark that the Kernel_23 package of Cgal contains a function with the name
rational_rotation_approximation that is also based on the approach [BFG+08]. That
method differs from ours in that that it gives approximation guarantees for the computed
sine value instead of the rotation angle.

5.2.3. Experimental results

We have experimentally compared both the exact and the approximate approach on the
same machine and the same setup as in Section 4.3. Table 5.1 shows the time spent
for a curve analysis of rotated curves for random curves of type rand(n,c) (as defined
in Section 4.3). Each curve was rotated by 30◦. In order to show the overhead due to
more complicated coefficient types, the computation was performed with base angles of
30◦, 15◦, 6◦ and 3◦. We compared the results with the approximate approach. Although
Algorithm 5.2 cannot be considered optimized since it currently uses rather naive algo-
rithms to approximate trigonometric functions, the time needed to compute the defining
polynomial of a rotated curve was negligible in all instances tested.

One can observe that smaller base angles lead to a significant performance loss in the
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Exact Approximate

Curve 30◦ 15◦ 6◦ 3◦ 10 bits 40 bits 70 bits 100 bits

rand(6,50) 0.12 0.2 0.3 0.56 0.04 0.11 0.6 0.82
rand(9,50) 0.7 1.21 1.52 2.97 0.33 0.86 2.09 3.15
rand(12,50) 2.78 4.64 5.34 10.19 1.95 5.97 12.22 19.54
rand(15,50) 9.33 14.74 15.64 28.2 8.71 28.02 57.17 91.38
rand(18,50) 28.66 40.52 41.02 66.82 30.53 99.82 202.2 325.2

rand(10,64) 1.16 1.85 2.29 4.29 0.64 1.78 3.87 5.99
rand(10,128) 2.04 2.85 3.32 5.58 0.88 2.12 4.26 6.43
rand(10,256) 4.26 4.97 5.39 7.62 1.39 2.8 5.05 7.42
rand(10,512) 9.57 10.69 11.12 13.38 2.62 4.33 6.92 9.46
rand(10,1024) 28.5 29.65 30.06 32.9 5.92 8.07 11.12 14.28

Table 5.1. Benchmark results for random curves rotated by 30◦. On the left, we used
the exact approach using different base angles. On the right, we used the approximate
approach using different approximation qualities.

exact method due to working with a more complicated coefficient type. On the other
hand, the approximate approach clearly suffers when improving the quality of the ap-
proximations. Moreover, the exact approach has a significant advantage for high degree
curves. The reason is that for τ being the bitsize of the sine and cosine approximations, the
coefficient size of the rotated curve is increased by O(nτ), where n is the degree of the poly-
nomial. Of course, this has a considerable effect in the subsequent algebraic computations.
In particular, the bitsize of the resultant increases by Õ(n2τ).

In contrast, the approximate approach is less vulnerable to high coefficient sizes in the
input polynomials, as the second part of Table 5.1 shows.

degree 6 degree 12
45◦ 30◦ 18◦ 15◦ 45◦ 30◦ 18◦ 15◦

exact 1.66 2.15 19.88 7.02 53.19 61.11 1385.05 267.17
approx. prec. 10 0.69 0.71 0.68 0.68 39.53 38.15 37.62 35.89
approx. prec. 40 1.23 1.27 1.25 1.28 114.29 115.32 114.48 116.78
approx. prec. 70 2.10 2.10 2.26 2.23 216.18 219.07 237.64 227.41
approx. prec. 100 3.12 3.19 3.18 3.07 359.80 356.49 365.64 349.07

Table 5.2. Running times (in seconds) for rotated arrangements of 5 curves of type
rand(10,50).

We also computed the arrangement of rotated curves. We consider five fixed random
curves of type rand(10,50). Table 5.2 shows the time to compute an arrangement of these
curves, rotated by a given angle. In this case, we did not consider the time for computing
the approximate angle in the timings. The performance of the approximation approach is
roughly the same for all angles – not surprisingly, since all those arrangements are expected
to be equally difficult. The rotation by 18◦ shows the worst performance with the exact
approach. We think that this is due to the complicated coefficient type involving nested
square root expressions used in this case. Compared to the approximate approach, we
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observe that for angles 45◦ and 30◦, the exact computation is competitive even for rather
coarse approximations, and it becomes more competitive at higher degrees.

Summary

Owing to the careful generic design of our algebraic kernel, the analysis of rotated curves
and computing their arrangement is possible with the same code as that for unrotated
curves. Exact rotations are possible if the rotation angles are confined to multiples of a
common base angle. A performance penalty is measurable for small base angles, which is
no surprise because of the more complicated computation domain. Still, we have demon-
strated that rahter complicated arrangements are computable and that the exact approach
is sometimes even competitive with the approximation approach, which rotates by an ap-
proximate angle.

5.3. Arrangements on tori and Dupin cyclides

Let S be a surface, with or without boundary, and consider a set of curves c1, . . . , cm on
S. These curves decompose the surface into connected regions; thus, the arrangements on
S induced by c1, . . . , cm can be defined in just the same way as in the plane. On orientable
manifolds,49 such arrangements are also representable via a Dcel structure. Recently, the
Arrangement_2 package of Cgal has been extended to the Arrangement_on_surface_2

package that allows one to construct and maintain arrangements on parameterized sur-
faces embedded in R3 [BFH+07] [BFH+09b]. Applications of this package are discussed
in [BFH+09a]: a distinguished usecase are arrangements of great circles on a sphere. They
lead to applications like the Minkowski sum of convex polyhedra, the (upper or lower)
envelope of surfaces, and Voronoi diagrams on spheres. We also refer to [FSH08] for a
video presentation of these applications.

Beyond great circles on spheres, the framework can also be used for more general
curves on more complicated surfaces. Consider the following setup: Let S be a fixed
reference surface and let {S1, . . . , Sn} be other algebraic surfaces (of arbitrary degree) not
overlapping with S. The intersection S ∩ Si then defines a curve on S, and the set of all
such intersection curves induces an arrangement on S.

This problem has been considered for various choices of reference surfaces: The case of
elliptic quadrics, that is, ellipsoids, elliptic paraboloids, and elliptic cylinders (Figure 5.4)
has been considered by Berberich et al. [BFH+07]. Their solution exploits the relative
simplicity of the underlying reference surface (mainly, that such surfaces are quadrics
which have an upper part and a lower part).

We will consider another reference surface, namely the case of a ring Dupin cyclide,
which is the generalization of a torus [BK08] [BFH+09a] [Ber08, §4.6]. To compute arrange-
ments on such a cyclide, we represent the intersection curves as algebraic curves in the
parameter space R2 and compute their arrangement using the method for planar curves.
Curves with high degrees arise naturally with this approach. For instance, the projection
of the intersection curve of two tori already is of total degree 16.

In principle, the approach that we present is not restricted to Dupin cyclides but can
be used for any reference surface that allows a rational parameterization (in particular,

49 Intuitively, a surface is orientable if it has two distinct sides. The most famous example of a non-
orientable surface is a Möbius strip.
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Figure 5.4. Ellipsoid, elliptic paraboloid, and elliptic cylinder (left to right)

the elliptic quadric case could also be solved by this approach). One “just” has to take into
account the special topology of the reference surface when constructing the Dcel structure
for the arrangement. This is a non-trivial issue for the Dupin cyclide, as we will see in
Section 5.3.3. Also, we remark that the degrees of the algebraic curves in the parameter
space constitute the limit of the practical usability of the approach.

We continue as follows in the rest of this section: The Cgal package to compute
arrangements on surfaces is presented in Section 5.3.1. Some facts about Dupin cyclides
are collected in Section 5.3.2. Then, we will describe our approach in Section 5.3.3 and
report on some experimental results in Section 5.3.4.

5.3.1. The Arrangements_on_surface_2 framework

Cgal’s Arrangements_on_surface_2 package provides an arrangement class that can be
used to construct, maintain, overlay, and query two-dimensional arrangements on a para-
metric surface. By “parametric surface”, we mean a surface S that can be parameterized
by a rectangular parameter space, which means that there exists a surjective continuous
mapping

PS : [u0, u1]× [v0, v1]→ S,

with u0, u1, v0, v1 as either real values or ±∞. Moreover, PS must be one-to-one in the
interior of the parameter space. The boundary consists of a rectangle; each side is called
a boundary side. At each boundary side, the following special features can occur:

1. Contraction: All points of the boundary side are mapped to the same point of S.
2. Identification: Each point of the boundary side is mapped to the same point as

the corresponding point on the opposite boundary side.
The contractions and identifications on the boundaries determine the topological type of
the surface. For instance, a sphere (and an ellipsoid) have contractions at the top and
bottom boundaries, and an identification at the left and right boundaries. A cylinder only
has an identification at the left and right boundaries, and a torus and a Dupin cyclide
have identifications on the left and right boundaries as well as on the top and bottom
boundaries.50

To compute arrangements, the framework conceptually performs a sweep in the pa-
rameter space, that is, a line u = u0 is swept to the right through the parameter space.
The actual sweep-“line” is the image of u = u0 on the surface S under PS . The correct

50The framework does not support inverse identifications, appearing, for instance, in a Möbius strip.
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intuition for a sphere is to sweep with a meridian that rotates around the sphere. For a
torus, the intuition is to sweep with a circle along the tube of the torus.

While sweeping, the Dcel structure is built up, similar to the case of planar arrange-
ments. However, special diligence is needed for several reasons. First of all, only one Dcel

vertex must be created for all points at a contracted boundary side, and only one Dcel

vertex must be created for each pair of points at identified boundary sides. Moreover,
detecting boundary cycles of Dcel faces becomes more complicated than in the plane.
For instance, the Jordan curve theorem does not hold on a torus, which means that a
closed cycle does not necessarily split one face into two faces. One has to cope with such
peculiarities for the given topological type of the reference surface.

The Arrangement_on_surface_2 package tackles these problems by the following mod-
ular framework. Models of two concepts must be provided as template parameters.

GeometryTraits: A proper instantiation for this parameter has to be a model of
Cgal’s ArrangementTraits_2 concept (page 157). To repeat its main characteristics,
it defines the types Curve_2, X_monotone_curve_2, and Point_2 and also some oper-
ations on them: Curves are split into x-monotone subcurves, points can be compared
lexicographically, and the intersections of x-monotone curves are computed (as described
on page 97).

TopologyTraits: An instantiation of this class is responsible for construct a Dcel

structure that is consistent with respect to the topology of the reference surface. In par-
ticular, this means correctly creating and maintaining Dcel vertices at the boundary,
according to identifications and contractions, and also keeping a consistent face structure
whenever a loop is closed. For further reading about the internals of the package, we refer
the reader to [BFH+07] [BFH+09b].

5.3.2. Dupin cyclides

Dupin introduced cyclides as surfaces whose lines of curvature are all circles [Dup22].
Later, the term “cyclide” was used for quartic surfaces with the circle at infinity as double
curve [For12]; Dupin’s cyclides have been called Dupin cyclides instead. In this work, we
only consider Dupin cyclides and use the term cyclide according to Dupin’s definition for
shorter notation. Dupin cyclides are the generalization of the “natural” geometric surfaces
like planes, cylinders, cones, spheres, and tori, what makes them useful for applications in
solid modeling; compare [CDH89] [Pra90] [Boe90] [Joh93] [Pra95]. Most of the material in
this section appears more detailed in [Büh95, § 1].

Maybe the most intuitive way of constructing a (Dupin) cyclide goes back to Maxwell;
we cite it from Boehm [Boe90]:

Let a sufficiently long string be fastened at one end to one focus f of an
ellipse, let the string be kept always tight while sliding smoothly over the ellipse,
then the other end z sweeps out the whole surface of a cyclide Z.

Note that choosing a circle in this construction yields a torus. We will assume that the
cyclide is in a standard position and orientation, that is, the chosen base ellipse is defined
by

(x/a)2 + (y/b)2 = 1, a ≥ b > 0.

The cyclide is defined uniquely by a, b, and a parameter µ that is the length of the string
minus a. However, the cyclide can have self-intersections. We define c =

√
a2 − b2, which
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is the distance between the focus and the center of the ellipse. If c < µ ≤ a, we get a ring
cyclide which is a surface without self-intersections. Otherwise, we get either a so-called
horned cyclide (for 0 < µ ≤ c), or a spindle cyclide (for µ > a); cf. [Bez07]. We can only
handle ring cyclides in our algorithm, so we always assume that c < µ ≤ a is satisfied.
Figure 5.5 shows two examples.

Figure 5.5. On the left: cyclide with a = 2, b = 2, µ = 1. On the right: cyclide with
a=13, b = 12, µ = 11 and its cut circles.

A parameterization of the cyclide goes back to Forsyth [For12]. He also gave the
following two alternatives for an implicit equation of the cyclide:

(x2 + y2 + z2 − µ2 + b2)2 = 4(ax− cµ)2 + 4b2y2

(x2 + y2 + z2 − µ2 − b2)2 = 4(cx− aµ)2 − 4b2z2.

With these equations, it is easy to prove [Joh93] that the intersection of the cyclide with
the plane y = 0 consists of the two circles:

(x+ a)2 + z2 = (µ+ c)2 (5.2)

(x− a)2 + z2 = (µ− c)2, (5.3)

and the intersection with z = 0 are the two circles

(x+ c)2 + y2 = (a+ µ)2 (5.4)

(x− c)2 + y2 = (a− µ)2. (5.5)

In the case of a ring cyclide, the interiors of (5.2) and (5.3) are always disjoint, and the
circle (5.5) is contained in the interior of (5.4).

The parameterization of the cyclide is given by

(
ϕ
ψ

)

7→






µ(c−a cosϕ cosψ)+b2 cosϕ
a−c cosϕ cosψ
b(a−µ cosψ) sinϕ
a−c cosϕ cosψ
b(c cosϕ−µ) sinψ
a−c cosϕ cosψ






with ϕ,ψ ∈ [−π, π]. We investigate which portion of the cyclide is parameterized at the
boundaries of the parameter space:
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Lemma 5.3.1. If ϕ = π or (ϕ = −π) is fixed, the parameterization above yields the
circle (x + a)2 + z2 = (µ + c)2. If ψ = π (or ψ = −π) is fixed, it yields the circle
(x + c)2 + y2 = (a + µ)2. We call these circles the tube circle and the outer circle,
respectively.

Proof. Fix ϕ = π. This yields the parameterization

ψ 7→






µ(c+a cosψ)−b2
a+c cosψ

0
−b(c+µ) sinψ
a+ccosψ






Since the denominator does not vanish, this parameterizes a closed path in the plane
y = 0, so it must be one of the circles (5.2) or (5.3) By setting ψ = π, we get the point
(−µ−c−a, 0, 0), so it must be circle (5.2). The same argument can be used for ψ = π.

The tube circle and the outer circle meet at the point p := (−µ− c− a, 0, 0). We call
this point the pole of the cyclide. Our application needs a rational parameterization of
the cyclide without trigonometric functions. We use the standard trick to get rid of these
functions (cf. [Gal01]): Using the identities

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2

,

we set u := tan ϕ
2 , v := tan ψ

2 . This yields

P : R2 → R3,

(
u
v

)

7→







µ(c(1+u2)(1+v2)−a(1−v2)(1−u2))+b2(1−u2)(1+v2)
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2u(a(1+v2)−µ(1−v2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)

2v(c(1−u2)−µ(1+u2))b
a(1+u2)(1+v2)−c(1−u2)(1−v2)






.

The image of P is the cyclide without the tube circle and the outer circle. By setting
ϕ = π (or ψ = π) and applying the same trick, we also obtain rational parameterizations
of the tube circle (or the outer circle). Of course, we also get them by taking the limit of
P when u→∞ (v →∞).

Intuitively, this parameterization cuts the cyclide along the outer circle and the tube
circle, and “rolls out” the cyclide to the plane. Therefore, we call the outer circle and the
tube circle the cut circles of the cyclide.

We also use the homogeneous parameterization of the cyclide, where the denominator
is written as a separate variable:

P̂ : R2 → R4,

(
u
v

)

7→







µ(c(1 + u2)(1 + v2)− a(1− u2)(1− v2)) + b2(1− u2)(1 + v2)
2u(a(1 + v2)− µ(1− v2))b
2v(c(1− u2)− µ(1 + u2))b

a(1 + u2)(1 + v2)− c(1− u2)(1− v2)






.

Here are the homogeneous parameterization for the tube circle

P̂ T : R→ R4, v 7→







µ(c(1 + v2) + a(1− v2))− b2(1 + v2)
0

−2v(c+ µ)b
a(1 + v2) + c(1− v2)






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and the outer circle

P̂O : R→ R4, u 7→







µ(c(1 + u2) + a(1− u2)) + b2(1− u2)
2u(a+ µ)b

0
a(1 + u2) + c(1− u2)






.

We will also use the following homogeneous representation of the pole. Note that p̂ indeed
represents p, since b2 = a2 − c2:

p̂ :=







−µ(a− c)− b2
0
0

a− c






.

5.3.3. Our implementation

GeometryTraits: We aim to represent the curves on the cyclide as algebraic curves in
parameter space, and compute the arrangement of these plane curves. Let P denote
the parameterization of the cyclide. Consider a surface of degree n, implicitly defined
by F =

∑

i,j,k aijkx
iyjzk ∈ Z[x, y, z], and let F̂ =

∑

i,j,k aijkx
iyjzkwn−i−j−k denote its

homogenization.

Lemma 5.3.2. The vanishing set of f := F̂ (P̂ (u, v)) ∈ Z[u, v] parameterizes the intersec-
tion points of F with the cyclide away from the cut circles.

Proof. By definition, the vanishing set of F (P (u, v)) in R2 defines the intersection curve
of F and P away from the image of the boundary, which are exactly the cut circles. On
the other hand, F (P (u, v)) = 0 if and only if f = F̂ (P̂ (u, v)) = 0.

Given algebraic surfaces V (F1), . . . , V (Fm) with Fi ∈ Z[x, y, z] (of arbitrary degree),
Lemma 5.3.2 yields polynomials f1, . . . , fm whose vanishing sets are the intersection curves
with the cyclide in its parameter space. Thus, to compute their arrangement on the cyclide,
we can simply use our model for the ArrangementTraits_2 concept for arbitrary algebraic
plane curves, as described in Chapters 3 and 4. Figure 5.6 shows an example of such an
arrangement. This already answers the question about the GeometryTraits_2 model, as
described in Section 5.3.1.

We point out that, although representing the intersection curves explicitly in parameter
space seems to be the most natural approach for performing a sweep in the parameter space,
the cyclide is actually the first case of a reference surface where this approach is taken.
For the case of great circles on the sphere, one can exploit the fact that great circles are
defined by a plane through the origin, and deduce the geometric predicates directly from
the planes. For elliptic quadrics, the sweep is also only simulated by projecting all curves
to the plane and deducing the predicates from the arrangement in the projection. We refer
the reader to [BFH+09a] for any more details.

Note that the degree of the intersection surfaces V (F1), . . . , V (Fm) is, in principle, not
restricted. However, the curves fi are of bi-degree up to (2 · degFi, 2 · degFi)),

51 which
limits the usability of our implementation for surfaces of high degrees.

51A different parameterization of the cyclide might lead to curves fi of smaller (bi)-degree, We are
neither aware of a better parameterization, nor of a result that proves optimality of the chosen P̂ .
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Figure 5.6. Cut-out of an arrangement in the parameter space of a cyclide, induced
by 5 intersecting surfaces of degree 3.

TopologyTraits: We need a special treatment for unbounded segments in the parameter
space. They correspond to segments on the cyclide that intersect the cut circles. Recall
that in the plane, we compute a formal endpoint for each unbounded segment which
is either one of the four combinations (±∞,±∞), or some point (α,±∞), or some point
(±∞, β) (for this last case, we need to extend the curve analysis by the method of detecting
horizontal asymptotic arcs, as explained on page 129).

One can verify that P (α,+∞) = P (α,−∞) = PO(α) and P (+∞, β) = P (−∞, β) =
PT (β), where PO and PT are the parameterizations of the outer circle and the tube
circle, respectively. Moreover, P (±∞,±∞) = p. The strategy for unbounded segments
is thus as follows: We maintain two sequences of Dcel vertices that store the already
created vertices for points of the form (α,±∞) and (±∞, β). The sequences are called
the u-sequence and the v-sequence. Each vertex knows the u- (or v-)coordinate that it is
assigned to. Whenever an unbounded segment with formal endpoint (α,±∞) or (±∞, β)
appears during the arrangement construction, we check whether a Dcel vertex for this
point already exists in the u- or v-sequence. If yes, the existing Dcel vertex is used,
otherwise, a new Dcel vertex is created at this position. For the pole, we can proceed in
a similar way, considering unbounded segments with formal endpoint (±∞,±∞).

This strategy, in particular, handles the identification of opposite boundary sides, be-
cause it does not distinguish between (α,+∞) and (α,−∞) (and the same for (±∞, β)).
However, only considering the unbounded segments from the interior of the parameter
space does not always suffice to construct the correct arrangement on the cyclide. We give
two examples:

• Assume that one of the surfaces touches the cyclide at a point on a cut circle (and that
this point is not part of any other surface of the input). In this case, the arrangement
should have an isolated vertex at this position. However, in the parameter space,
this isolated point lies at infinity and is simply not detected when only processing
the arrangement induced by V (f1), . . . , V (fm), since no segment is adjacent to it.
• Assume that one of the surfaces intersects the cyclide in a whole cut circle. This

means that there is a vertical (or horizontal) line at infinity in the parameter space.
By only considering the arrangement V (f1), . . . , V (fm), this line is not detected and
Dcel edges between the vertices at infinity are not created.
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It is relatively simple to extend the algorithm so that these special cases are also
correctly handled. However, these cases cannot be covered by the current design of the
Arrangement_on_surface_2 package and are thus not implemented. The integration is
planned for a future release.

The strategy is as follows: For a surface V (Fi) of total degree n, we consider F̂i(P̂O(u)) =
coef(fi, v, 2n). If this is zero, the whole outer circle is in the intersection, and we store this
information for a post-processing step. Otherwise, if coef(fi, v, 2n) is a univariate polyno-
mial, we isolate its real roots. Each such root α corresponds to an intersection of V (Fi) and
S at the outer circle; we add a Dcel vertex representing (α,±∞) to the u-sequence (this
ensures that we do not forget any isolated vertex at infinity). For the tube circle PT , we
proceed analogously. Moreover, if F̂i(p̂) = coef(coef(fi, v, 2n), u, 2n) = 0, we add a Dcel

vertex for the pole, if one does not yet exist. Then, we sweep the arrangement induced by
V (f1), . . . , V (fm) as before, with the special treatment for unbounded segments. After the
arrangement has been built up, we deal with possible lines at infinity. If coef(fi, v, 2n) = 0
for any i ∈ {1, . . . ,m}, we create edges between two consecutive Dcel vertices in the
(sorted) u-sequence, and connect the first and last elements in the u-sequence with the
pole vertex. We proceed analogously for the v-sequence, in case that coef(fi, u, 2n) = 0
for any i ∈ {1, . . . ,m}.

We have only considered the handling of Dcel vertices and edges so far. We also have
to consider the problem of maintaining faces. In the Dcel construction, faces must be
updated whenever an edge insertion closes a loop. Let us concentrate on the case in which
the closed loop does not intersect the outer bounding cycle of the face F it was contained
in. In the plane, it is rather clear what happens in this case: A hole H of F is created
that has the loop as its outer bounding cycle. On surfaces with one pair of identification
lines, like the sphere, there is no canonical choice of “interior”, and one has some freedom
to define what should be understood as a “hole”. Depending on this choice, a closed loop
might split a face into two faces, and none of them can be considered to be a hole of the
other.

For our case of a cyclide, there is even a third possible situation after closing a loop,
namely that the face might not split at all, because the Jordan curve theorem does not
hold on the cyclide. This happens as soon as the first non-contractible loop is closed (which
means that the loop that cannot be contracted to a single point). In this situation, the
loop does not split a face, but any additional loops will (since otherwise, the genus would
be two or more).

One can show that a loop is non-contractible if it intersects one line of identification
(top/bottom or left/right) an odd number of times. This helps to distinguish the third
case from the former two. Further cases require a more elaborate case distinction, and
depend on the strategy of how to define holes on a surface. We refer the reader to [Ber08,
§4.4.3] for a complete description.

5.3.4. Experimental results

We take randomly generated surfaces (by randomly choosing coefficients) and compute the
arrangement induced by them on the torus defined by the parameters a = 2, b = 2, µ =
1. Our implementation is capable of handling other cyclides, also those not in standard
position and orientation.
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Instance onCylide param planar non-opt

(2,16,10) 1.23 0.03 1.21 2.17
(3,16,10) 6.03 0.32 5.73 9.83
(4,16,10) 26.55 2.46 23.63 37.47
(5,16,10) 91.05 13.53 78.24 136.18
(6,16,10) 273.45 56.87 218.53 385.32

(3,32,10) 7.34 0.48 6.83 12.56
(3,64,10) 9.58 1.00 8.69 16.93
(3,128,10) 16.24 2.66 13.54 29.57
(3,256,10) 32.39 8.13 24.20 61.28
(3,512,10) 74.97 24.35 49.12 147.96
(3,1024,10) 183.11 71.32 111.93 382.21

(3,16,20) 23.52 0.68 22.96 31.09
(3,16,40) 94.09 1.30 92.93 109.65
(3,16,60) 209.17 1.94 206.62 232.10
(3,16,80) 370.43 2.57 367.12 401.08
(3,16,100) 571.38 3.25 568.61 611.07

Table 5.3. Benchmark results for random curves. (n, c,m) stands for m surfaces of
degree n, and each coefficient randomly from the range [−2c−1 + 1, 2c−1].

In Table 5.3, we list the total running times for computing the arrangement on the
torus (column “onCyclide”) and the time spent computing the defining polynomials of the
intersection curves in the parameter space (Column “param”). The time for computing the
planar arrangment induced by these curves in the unbounded plane is also listed (column
“planar”). Finally, we give the computation time for the case in which the optimization of
Section 4.1.4 is switched off, which means that a curve analysis is done in a sheared system
as soon as a vertical asymptotic arc is detected.

We can observe that the total time for computing the arrangement on the surface equals
the time to get the bivariate polynomials plus the time to compute their arrangment in
R2.52 Computing the defining polynomials in parameter space becomes non-negligible for
higher degrees and coefficients. One could reduce this effect, since this part is currently
implemented with a rather adhoc solution. Still, the main result of our experiments is
that the additonal topological overhead of being on a cyclide instead of in the plane does
not affect the performance of the implementation. This result remains true for other base
cyclides, and still holds true if one forces degeneracies in the arrangement. We refer the
reader to [BK08] [BFH+09a] for more detailed experimental results.

The last column shows the success of the additional optimization for simple asymptotic
arcs as presented in Section 4.1.4. Since practically all curves in parameter space have such
vertical asymptotes, the effect becomes particularly visible in this setting. The additional
time is spent completely in the analyses of the single curves.

52The running times in each column have been measured using different test runs. Due to randomization
in the algorithm (and also due to the limited precision of time measurements), the timings do not always
match perfectly.
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Summary

Owing to our generic software design, our arrangement algorithm can be combined with the
new Arrangement_on_surface_2 package. This yields arrangements on parameterizable
surfaces, by reusing the same code as that for the planar case. We have presented the
solution for the currently most challenging case, that being arrangements on ring Dupin
cyclides.

5.4. Further applications

We present two more applications that use our framework for algebraic curves. Both are
currently works in progress, and further underline the usefulness of the software that we
provide with the algebraic kernel.

5.4.1. Boolean set operations on curved polygons

It is well-known that computing overlays of arrangements (Section 4.2.4) directly yields
Boolean set operations (union, intersection, symmetric difference, etc.) of polygonal
bounded regions [dBvKOS00, §2]: Given two polygonally bounded sets P and Q, rep-
resented as arrangements, we want to compute a Boolean set operation (e.g., their inter-
section). Each cell of the arrangement gets a flag whether it belongs to the set or not.
When computing the overlay O of P and Q, each of its cells originates as an intersection
of a cell cP of P with a cell cQ of Q. The flag of the cell in the overlay is computed by
applying the corresponding Boolean operation (e.g., ∧ in case of intersection) on the flags
of cP and cQ. The result of the set operation is the union of all cells where the flag is set.
Since our software is able to compute algebraic segments and arrangements as well as their
overlay, there is no algorithmic obstacle realizing Boolean set operations for sets bounded
by algebraic segments.

Cgal offers suitable and convenient data types to realize such Boolean set opera-
tions. The class template General_polygon_set_2 internally defines types Polygon_2

and Polygon_with_holes_2, which model polygons whose boundaries are x-monotone
segments. The type of these segments is controlled by the traits class that is passed to
the General_polygon_set_2 as the template argument; this traits class also must pro-
vide basic geometric operations on such segments. The requirements are composed into a
concept called GeneralPolygonSetTraits_2. In fact, the Curve_kernel_via_analysis_2
that we provide is a model of this concept. The only additional requirement compared
to the ArrangementTraits_2 concept is that segments must have a direction in order to
determine which side of the segment is inside the polygon and which one is outside.

With a proper instantiation of General_polygon_set_2, we can use the internally
defined polygon types to apply the Cgal functions intersection, join, complement,
and symmetric_difference that allow the corresponding set operations. Eric Berberich
has recently completed a first example that computes the intersection of two “algebraic”
polygons. We believe that there are no difficulties left on the algorithmic side, but we are
still aiming for a demo program with a graphical user interface in the future.
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5.4.2. Voronoi diagrams of lines in R3

This is current work in progress by Dan Halperin, Michael Hemmer, and Ophir Setter.53

For completeness, we define what is understood by a Voronoi diagram.

Definition 5.4.1 (Voronoi diagram). For a set of m objects (called sites) o1, . . . , om in Rn,
and p ∈ Rn arbitrary, define

c(p) := {oi | i ∈ {1, . . . , n} ∧ ∀ j ∈ {1, . . . , n} : ‖p− oi‖2 ≤ ‖p− oj‖2}

to be the set of closest sites to p. The Voronoi diagram is the subdivision of Rn into
maximally connected regions such that all points in a region have the same closest sites.
The set of the subdivision that contains oi is called the Voronoi cell of oi.

The classical case is the one where the sites are points in the plane. Then, the induced
Voronoi diagram is an arrangement of line segments. The reason is just that the bisector
of two sites (the set of points that have the same distance to both sites) is a line in R2. The
trisectors (the set of points that have the same distance to three sites) are consequently
single points, the intersections of two bisectors.

For lines in R3, the situation is more complicated. A bisector is defined by a hyperbolic
paraboloid, that is, an algebraic surface of degree 2. Trisectors are the intersections of two
such surfaces, namely algebraic space curves of a degree of up to 4. Halperin et al. compute
a representation of each Voronoi cell separately. Consider a cylinder around a site. Each
point p on the cylinder defines a unique ray starting at the site and orthogonal to it.
Assigning to p the first bi- or trisector that is hit by that ray induces an arrangement
on the cylinder (this is also called the lower envelope of the line) that represents the
Voronoi cell. This arrangement can be obtained by projecting the trisectors, which leads
to algebraic curves on the cylinder.

Instead of working directly with the cylinder, the authors choose a projection plane that
touches it, and project the trisectors to this plane. The advantage is that the degrees of
the projected trisectors are of degree at most 8. Their arrangement can again be computed
with our algebraic kernel. Further details are skipped here, but we observe that algebraic
curves of high degrees arise quite directly, even when considering linear input objects.

53The author thanks all three for making their current status of research available.
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I believe in the third dimension but not in the other two.

James Parry

6
Stratification and Triangulation of

Algebraic Surfaces

Let us now transfer our ideas from R2 to R3 and discuss the analogue of the curve analysis
(Section 3.2) for algebraic surfaces of arbitrary degree: recall that the curve analysis can be
seen as a method to “discretize” an algebraic curve, that is, to compute an embedded graph
isotopic to the curve. For the case of algebraic surfaces, this corresponds to a piecewise
linear mesh isotopic to the surface. We will compute such a triangular mesh, with the
extra property that all vertices of the mesh are lying on the surface, and arbitrarily close
approximations are possible.

The results presented in this chapter have appeared in [BKS09]. Parts of it have also
been covered in [BKS08] and in [Ber08, §5]. We proceed in two steps. First, we compute
a cell decomposition of the surface, called stratification of the surface (see [BPR06, §5.5]
and compare also the similar notion of a CW-complex [Mas67] [Bre95]):

Definition (stratification). Let S be a surface. A stratification of S is a decomposition of
S into cells such that:

• each cell is a smooth subvariety of S of dimension 0, 1, or 2.

• it has the boundary property, that is, the boundary of a cell is given by a union of
other cells.

The cells of a stratification are also called strata.

The stratification that we compute has the additional property that each cell is xy-
monotone, which means that any vertical ray hits a cell at most once (except for vertical
strata), and the xy-ranges of two cells either coincide or are completely disjoint. This
yields a cylindrical stratification, and is the analogue of the segmentation of algebraic
curves discussed in Section 2.2.3. Apart from the decomposition, we also compute how the
cells are connected, that is, we compute the boundary of each cell.

One well-known example of such a stratification is induced by the cylindrical algebraic
decomposition ,with respect to the surface, of R3. Our solution consists of only O(n5)
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cells (with n being the degree of the surface), whereas the worst-case complexity of a cad
is O(n7). This improvement is due to the fact that we first project the critical points of
the surface into the xy-plane, as in the classic cad algorithm does, but we do not apply
the cad scheme recursively, and instead restrict to the planar arrangement induced by
the projection, It is also possible to refine the decomposition into simply connected cells
without increasing the asymptotic complexity of the decomposition.

The stratification algorithm essentially uses the same toolbox of computational meth-
ods as the curve analysis algorithm from Section 3.6 does; for instance, resultants for the
projection from R3 to R2, the bitstream-Descartes method (and its m-k extension) to com-
pute the fiber at points in the xy-plane, and interval arithmetic, for example during the
adjacency step to compute the cell connections. It should be clear at this point that we
aim for an exact result in all cases, and our algorithmic design is guided by the idea of
avoiding expensive symbolic computation as much as possible.

Despite all these similarities to the curve analysis, the stratification algorithm is far
from being “analogous” to the curve case. A main difference is that the stratification is
computed without shearing the surface, even in degenerate examples. One reason is that
the scheme of shearing, analyzing the sheared objects, and finally shearing back seems not
to be easily transferable from curves to surfaces. Also, we have mentioned the general
disadvantages of shearing, particularly in Section 4.1.4. However, we pay a price to avoid
to shearing, since we have to deal with any kind of degenerate situation in the original
system. The most difficult degeneracy to handle are surfaces with vertical line components,
mainly because they lead to a fiber with infinitely many points at some position. For planar
curves, such lines can be factorized out and treated separately (Section 3.2.4), but algebraic
surfaces might support such lines even if they are irreducible.

The stratification reveals topological information about the surface, but it does not give
the complete topology in the sense that a simplicial complex isotopic to the surface is not
immediately deducible. Therefore, we have to turn the stratification into a triangulation
in a second step. This requires computing the cad of the surface with its adjacency infor-
mation, which is an easy task using the adjacency information of the stratification. The
triangulation consists of up to O(n7) cells. For unbounded surfaces, a three-dimensional
axis-aligned bounding box which contains all relevant features of the surface is computed
first, and the triangulation is restricted to this box.54

EGC implementations of both the stratification algorithm and the triangulation algo-
rithm are provided. They both make extensive use of the ability to compute and manipu-
late arrangements of curves with arbitrary degree, using the Algebraic_kernel_2 package
presented in Section 4.2.1. For a surface of degree n, the degree of the projected curves
under consideration grows to n(n−1), which in practice restricts the algorithm to surfaces
of small degree. However, as we demonstrate, interesting surfaces from algebraic geometry
can be analyzed with our approach.

As mentioned, our triangulation consists of O(n7) cells and constitutes a stable isocom-
plex for the surface. By a simple post-processing step, we can obtain a general isocomplex
for the surfaces that has complexity of O(n5), the same as for our stratification. We also
discuss whether the topology of the surface can be described with fewer triangles. We con-
struct an example surface, for which Ω(n4) triangles are necessary for a stable isocomplex.
In the general case, Ω(n3) triangles are necessary in the worst case. For curves, we can

54The algorithm would also support computing the triangulation in a user-defined box.
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prove tight bounds for the same problem.

Related work The problem of topology computation for algebraic plane curves has been
extensively studied; see the related work section of Chapter 3 for an overview. Exact
methods for the case of space curves [Kah08] [DMR08] [AS05] [GLMT05] have also been
considered.

On the problem of topology computation for algebraic surfaces, two principle ap-
proaches can be distinguished: one is to consider level curves of the surface for cer-
tain critical values and to connect the components of these levels in order to obtain
a topological description of the surface; see the recent work of Alberti et al. [AMT09]
(also in [BCSM+06]), Fortuna et al. [FGL04] [FGPT03] (for non-singular curves) and Al-
cázar et al. [ASS07] (where the connection step is missing). The other approach is to
project the critical points of the surface to the plane, obtaining the silhouette curve. The
topology is then deduced by lifting the arrangement cells induced by the silhouette. We
are following this strategy; see also Cheng et al. [CGL05] and the articles about cad below.

The tools to compute a surface’s topology are similar in all approaches mentioned:
each one needs to compute the topology of algebraic plane curves to analyze either the
level curves or the silhouette. Additionally, critical points of the surface, or at least their
projections, must be identified, which is usually done by resultant calculus or Groebner
bases. Most algorithms, for example, [AMT09] [FGL04] [FGPT03] [CGL05], apply a linear
(topology-preserving) transformation to obtain a generic (or at least normal) position that
simplifies the computation. As already said, we decided not to allow such a transformation
in our algorithm in order to also preserve geometric properties of the surface.

None of the articles [AMT09] [FGL04] [FGPT03] [ASS07] [CGL05] reports on the practi-
cal performance of their algorithms; if implementations are mentioned at all,55 they mainly
propose carrying out the calculations symbolically, or leaving the concrete implementation
of certain substeps open.

We have already mentioned in Section 1.2 that computing a cad with adjacency infor-
mation is closely related to our problem. Some ideas behind our algorithm have already
appeared in similar form in this context: Improvements to the projection step reduce the
number of polynomials considered in the cad [Bro01] [McC98], and cells in the cad are
combined into clusters to reduce the complexity [Arn88]. We discuss the similarities and
differences with the appropriate references when we discuss the algorithm in detail.

Outline of this chapter We first investigate the stratification algorithm, namely, what
sort of arrangement is computed in the projection plane (Section 6.1), how to obtain the
fiber of any cell in the arrangement (Section 6.2), and how to compute the adjacencies be-
tween the cells (Section 6.3). Then, we turn to the triangulation of surfaces (Section 6.4),
and discuss the case of compact surfaces first (Section 6.4.1), and the general case subse-
quently (Section 6.4.2). Experimental results are presented in Section 6.5. Finally, we give
lower and upper bounds on the output complexity of isocomplex computations, stable or
general, in Section 6.6.

55Complete implementations have been presented for subclasses of surfaces, such as intersections of
quadrics [BHK+05] and meshes of non-singular surfaces [PV07].
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6.1. The n-k-arrangement

An algebraic surface is the vanishing set of a trivariate polynomial f ∈ Z[x, y, z]. In
what follows, we always write S := V (f) with f ∈ Z[x, y, z] for an algebraic surface of
degree n, and we set nz := degz(f). We henceforth assume that f is a square-free and
primitive polynomial, that is, S contains no irreducible component twice, and has no two-
dimensional vertical component. The treatment of non-primitive polynomials consists of
a separate analysis of the primitive part and the vertical part, similar to the vertical line
case for algebraic curves.

We will first compute an arrangement in R2, called the n-k-arrangement, containing
certain information about the z-fiber V (f(α, β, z)) at a point (α, β) ∈ R2. To define the
arrangement, we need the following definition:

Definition 6.1.1 (local degree, local gcd degree, local real degree). For p = (α, β) ∈ R2,
we write fp := f(α, β, z) ∈ R[z] and

np = deg(fp)

kp = degz(gcd(fp, f
′
p))

mp = #{z0 ∈ R | fp(z0) = 0}

where np is called the local degree, kp the local gcd degree, and mp the local real degree.

Definition 6.1.2 (n-k-invariance). A connected set C is n-k-invariant if there exist num-
bers nC and kC such that for each p ∈ C the local degree is nC , and the local gcd degree
is kC .

Definition 6.1.3 (n-k-arrangement). An n-k-arrangement is an arrangement where each
cell is n-k-invariant.

In his seminal paper about cylindrical algebraic decomposition, Collins [Col75] has
proved that f is delineable over any n-k-invariant set, that is, that the (real) lift over the
set is the union of m disjoint function graphs. We state a slightly weaker version of his
theorem (note also that it generalizes Theorem 2.2.10 (Delineability Theorem) ):

Theorem 6.1.4. Let C be an n-k-invariant set. Then, each p ∈ C has the same local real
degree mC . Moreover, for each i = 0, . . . ,mC , the i-th lift

C(i) := {(px, py, zi) ∈ C × R | zi is the i-th distinct root of p’s z-fiber}

over C is connected.

Proof. Over an n-k-invariant set, the number of distinct complex roots is constantly nC −
kC . The roots of f(p, z) continuously depend on p, thus, in an open neighborhood of any
point of C, the imaginary roots stay imaginary. As the total number of roots is preserved
and an imaginary root only appears together with its complex conjugate, the real roots
also remain real; see [Col75, Thm. 1] for more details.

The next construction also appears in Collins’ work [Col75, Thm. 4].
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Definition 6.1.5 (truncation). For f =
∑nz

i=0 ai(x, y)z
i ∈ Z[x, y, z], we denote the trun-

cated polynomial of degree j by

fj :=

j
∑

i=0

ai(x, y)z
i ∈ Z[x, y, z]

for j = 0, . . . , n.

Theorem 6.1.6. For each algebraic surface S, there exists an n-k-arrangement.

Proof. We give a constructive proof. Let p be an arbitrary point in the plane and f =
∑nz

i=0 ai(x, y)z
i. The local degree of f at p simply depends on the “coefficient polynomials”

an, . . . , a0 ∈ R[x, y] by

np = deg fp = max
i=0,...,nz

{i | ai(p) 6= 0}.

In the same way, the local gcd degree depends on the principal Sturm-Habicht coefficients
sthai(fnp) ∈ R[x, y] by

kp = deg gcd(fp, f
′
p) = min

i=0,...,Nz

{i | sthai(fnp)(p) 6= 0}

(this follows from Lemma 2.3.14 and the specialization property (Theorem 2.3.17)). The
ai’s and sthai(fnp)’s define plane curves αi = V (ai) and σj,i = V (sthai(fj)), respectively,
of a degree of at most n(n− 1). The values np and kp are determined by the curves that p
is part of. It follows that the arrangement induced by αnz , . . . , α0 and for all j = 1, . . . , nz,
σj,0, . . . , σj,j has only n-k-invariant cells.

The proof presents a way to compute an n-k-arrangement for a surface. However, the
resulting arrangement consists of many more cells than actually necessary – we aim for an
n-k-arrangement consisting of fewer cells:

Definition 6.1.7 (silhouette). The silhouette ΓS of S is defined by stha0(f) = resz(f,
∂f
∂z ) ∈

Z[x, y].

Lemma 6.1.8. For any point, (np, kp) = (nz, 0) if and only if p is not on ΓS . As a
consequence, all edges and vertices of an n-k-arrangement away from ΓS can be merged
with their adjacent faces to an n-k-invariant face.

Proof. Using [BPR06, Prop. 4.27], we have resz(f,
∂f
∂z ) = anzdisc(f) where disc(f) denotes

the discriminant of f . Clearly, np = nz for a point p if and only if anz(p) 6= 0. From the
definition of the discriminant, kp = 0 for a regular point p if and only if disc(f)(p) 6= 0.

Having any n-k-arrangement, we can turn it into a minimal n-k-arrangement by a post-
processing step (we assume that each arrangement cell C stores the numbers nC and kC as
data): Remove all edges and vertices away from ΓS , and remove vertices on ΓS that have
exactly two adjacent edges if both edges have the same local degree and local gcd degree
as the vertex. Merge the adjacent edges in this case. We next present an algorithm that
integrates this post-processing step in the arrangement computation, in order to lower the
size of the intermediate arrangements in the algorithm. The main tool is the computation
of overlays (Section 4.2.4). We start by computing the arrangement A defined by only
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the silhouette ΓS . Each face get the values (n, 0) according to Lemma 6.1.8. We first
decompose A such that each cell has an invariant local degree. To do so, repeat the
following steps for j = nz, . . . , 0: Overlay A with the arrangement of the curve αj ; the
result is A′. Remove vertices and edges of A′ that lie on a face of A. Also, remove all
vertices of A′ that lie on an edge of A whose local degree has already been set. For each
cell that lies on a face of αj , and whose degree is not set yet, set its local degree to j. Set
A ← A′ and proceed with the next iteration. At the end, set the local degree of all cells
which are not yet set to −∞, since above these cells, S is vertical.

Next, we further decompose A into n-k-invariant cells. For that, we iterate over the
degrees and overlay with the corresponding principal Sturm-Habicht coefficient curves σj,i.
Repeat for j = nz, . . . , 1: Repeat for k = 0, . . . , j − 1: Overlay A with the arrangement
of σj,k; the result is A′. Remove vertices and edges of A′ that lie on a face of A. Remove
all vertices of A′ that lie on an edge of A whose local gcd degree has already been set, or
whose local degree does not equal j. For each cell of A that lies on a face of σj,k, whose
local degree is j, and whose local gcd degree is not yet set, set the local gcd degree to k.
Set A← A′ and proceed with the next iteration.

We mention the obvious optimization that for the local gcd degree, one has only to
consider those degrees that appear as the local degree of at least one cell. Also, one can
stop the inner iteration over the k’s as soon as all cells of degree j know their local gcd
degree.

The n-k-arrangement computed by the above algorithm will be called AS from now
on. It basically consists of the overlay of the leading coefficient curve and the discriminant
curve of f (compare Lemma 6.1.8). From the overlay with the remaining α’s and σj,i’s,
the local degree and the local gcd degree is assigned to each cell of AS . We point out
that the edges of AS do not necessarily correspond to x-monotone segments of the curve.
In fact, it is even possible that an edge forms a loop, and hence has no endpoint. This
is not a problem theoretically, and we can also model such n-k-edges in practice by a
data type that stores a sequence of (adjacent) x-monotone segments. We remark that
similar ideas have been introduced to reduce the number of cells of a cad. Arnon [Arn88]
has proposed merging sign-invariant cells of a cad, but our notion of n-k-invariance is a
strictly weaker condition and thus produces larger cells. Moreover, Brown [Bro01], based
on work by McCallum [McC98], has shown that considering the leading coefficient and the
discriminant are sufficient to ensure delineability. So, the consideration of the non-leading
coefficients and the principal Sturm-Habicht coefficients is not necessary to ensure the
statement of Theorem 6.1.4. Still, knowledge about the local degree and local gcd degree
of each cell of AS allows the application of fast methods in the lifting step, as we discuss
in Section 6.2.

The complexity of our n-k-arrangement AS is not greater than that of ΓS .

Theorem 6.1.9. The number of cells of AS is O(n4).

Proof. Since arrangements induce planar graphs, it is enough to count vertices. The sil-
houette ΓS is of degree O(n2), so it has, by Bézout’s theorem, O(n4) critical points. We
have to show that the subdivision with respect to the remaining curves in the algorithm
does not introduce more than O(n4) new vertices.

Consider the decomposition of ΓS into irreducible components ΓS,i with degree νi, and
fix one γ = ΓS,i of degree ν. During the algorithm, new vertices for γ (that are not removed
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in the same iteration) are introduced in only two iteration steps:

• first, when a coefficient curve αj does not contain the whole curve γ. This intro-
duces at most ν ·n many vertices. All further coefficient curves αn−1, . . . , α0 do not
introduce new vertices on γ, since the local degree of all edges for γ is set to n.
• second, new vertices are introduced when a Sturm-Habicht polynomial sthak(fj) does

not contain the whole curve γ. This introduces at most ν ·n2 many new vertices.
All further Sturm-Habicht curves sthak−1(fj), . . . , stha0(fj) do not introduce new
vertices on γ, since the local gcd degree of all edges for γ is set to k.

After all, each ΓS,i gets at most O(νi ·n2) new vertices, and the νi sum up to n2.

For each cell C of AS , we pick a sample point that we denote by pC . If C is a face, we
can choose pC to be rational. If C is an edge, we can choose the x-coordinate of pC to be
rational (or the y-coordinate, if the edge is vertical).

Extracting simply connected cells Sometimes it might be advantageous to achieve a
decomposition into simply connected cells (i.e., each loop in a cell is contractible to a
point). Our decomposition AS does not have this property. We next propose an algorithm
that transforms AS into a decomposition of simply connected cells.

Figure 6.1. Obtaining simply connected cells for AS by breaking one-dimensional circles and
adding vertical arcs (dashed). Each final face is simply connected.

Only one- and two-dimensional cells of AS can be non-simply connected. Consider the
planar embedded graph G induced by AS by mapping its 0-dimensional cells to nodes and
its 1-dimensional connected cells to edges. Simple connectivity for 1-dimensional cells is
achieved by adding an additional vertex to each cyclic edge; see the squared vertices in
Figure 6.1.

To prevent non-simply connected faces, we apply the following algorithm: while G
contains a bounded connected component, choose such a component, and connect its y-
minimal point downwards using a vertical arc (dashed) until it reaches another component
of G (if this does not happen, the arc goes to −∞). Observe that each such arc either
merges two connected components or renders one of them unbounded. Thus, the algorithm
terminates, and produces a graph without bounded connected components.

The computed graph induces a refined arrangement A
′
S of AS . The newly added cells

inherit the n-k-properties of the cell in which they are included. For the thus refined A
′
S ,

we claim:
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Proposition 6.1.10. Each cell of A
′
S is simply connected, and its number of cells is O(N4).

Proof. Assume for the sake of a contradiction that there is a cell C of A
′
S that is not

simply connected. Clearly, C cannot be 1-dimensional because we split all cycles. So,
assume that C is a face. Since it is not simply connected, there is a cycle that is not
contractible. Hence, its interior contains a connected component, which must be bounded.
That contradicts the fact that there is no bounded connected component.

For the complexity statement, observe that we introduce at most one edge and two
vertices, and split at most one face for each connected component. Since the number of
connected components is not greater than the number of faces, we add at most 4 cells for
each face of AS . This proves that we do not increase the complexity.

We mention that this refinement into simply connected cells has not yet been integrated
into our implementation that we present in Section 6.5.

Summary

The n-k-arrangement yields a cylindrical decomposition of an algebraic surface into delin-
eable parts. Furthermore, certain information as the local degree and local gcd degree of
each cell of the arrangement is gathered. This information is useful for building up the
stratification.

6.2. Z-fibers and cell decomposition

We have computed a planar decomposition AS in the previous step where each cell is
delineable. That means that lifting a cell yields mC disjoint parts of the surface. These
parts will form the cells of our stratification. However, mC is not known yet. Moreover,
we aim for a sample point of each stratum to represent it. Thus, we want to compute the
z-fibers at the sample points of AS .

Definition 6.2.1 (z-fiber). The z-fiber of a point p := (px, py) ∈ R2 is

Zp := {γ ∈ R | f(px, py, γ) = 0}.

Note that the fiber can be equal to R, in the case where S contains the whole vertical
line ℓp := p × R. We aim for a method to compute the z-fiber for an arbitrary point p
with algebraic coordinates in the plane, that is, isolate the real roots of the polynomial
fp := f(px, py, z) ∈ R[z]. As in the planar case, computational difficulties arise because fp
might have algebraic coefficients and because fp might have multiple roots. However, the
n-k-arrangement reveals the local degree and the local gcd degree at each point, and we
will use this information in our method.

In the simplest case, kp, the local gcd degree, is zero, which means that fp is square-free.
In that case, we apply the bitstream-Descartes method (Algorithm 2.20) on fp.

Otherwise, if kp > 0, we try to use them-k-bitstream-Descartes method (Algorithm 2.21).
For that, we need to compute mp, the number of points in the fiber. This is done
using the suitable Sturm-Habicht sequence , namely stha0(fnp), . . . , sthanp(fnp), the se-
quence of principal Sturm-Habicht coefficients of the truncation of f with degree np. By
the specialization property (Theorem 2.3.17), and by the counting property of princi-
pal Sturm-Habicht coefficients (Theorem 2.3.29), it is enough to evaluate the signs of
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stha0(fnp), . . . , sthanp(fnp) at p to get the number of roots in the z-fiber. Note that, for
this operation, we can simply apply the functor Sign_at_2 of the Algebraic_kernel_2

class (Section 4.2.2). This nicely demonstrates the reusability of the functions provided
by our algebraic kernel. If the m-k-bitstream-Descartes method is successful, the fiber is
computed.

If the method fails, we compute the square-free part f∗p of fp and apply the bitstream-
Descartes method on f∗p . To get the square-free part, we compute the cofactors of the
Sturm-Habicht polynomials stha0(fnp), . . . , sthanp(fnp); their sequence contains the square-
free part as shown in Lemma 2.4.22. In our implementation, we use the algorithm presented
in [BPR06, Alg.8.22] to compute the cofactors.

The reader might remember our discussion in Section 2.6.2 about the disadvantages of
taking the square-free part for root isolation: it might be considerably more complicated
than the original polynomial itself, and even its computation is involved for polynomial
with algebraic coefficients. Both arguments remain valid, but their practical effect is
limited for the surface case – since our approach is restricted to surfaces of small degree
(typically, surfaces of a degree of at most 5 are feasible in practice), computing the Sturm-
Habicht coefficients with cofactors is not too expensive, and the root isolation can cope
with the square-free part, since the polynomial degree is small enough. The analysis of
the silhouette curve remains the bottleneck in the computation, which is for instance of
degree 20 for a surface of degree 5.

We define the stratification of S, at least for the case where all z-fibers are finite.

Definition 6.2.2. Let S be a surface without vertical component, AS the n-k-arrangement
as in Definition 6.1, and mC the local real degree of a cell C ∈ AS . The stratification ΩS

is defined as

ΩS :=
⋃

C∈As




⋃

i=1,...,mC

{C(i)}



 .

We represent each cell of ΩS by a sample point, obtained by lifting the sample point
of its projected cell in AS .

Corollary 6.2.3. For a surface of degree n without a vertical line, the number of cells in
ΩS is O(n5).

Proof. Each z-fiber has up to n points, and the complexity of AS is O(n4).

This means that we achieve a topological description of the surface using O(n5) sample
points. This is less compared to cad, which consists of Θ(n7) cells in the worst case, due to
its vertical decomposition strategy in the plane. However, it also provides less topological
information – in particular, edges cannot always be replaced by straight-lines without
changing the topology.

Clearly, one obtains a decomposition into simply-connected cells when making all cells
of AS simply-connected, as described in the previous section.

In Section 6.3.3, we extend ΩS to surfaces with vertical lines; the extension still keeps
the same worst-case complexity of O(n5).
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Summary

Using the information collected in the n-k-arrangement, we can use the bitstream-Descartes
method to compute the lift of each cell in the n-k-arrangement. Using the m-k-bitstream-
Descartes method, many z-fibers can be computed quickly, and the computation of the
square-free part is only needed in degenerate situations.

6.3. Cell adjacencies

According to Definition 6, a stratification fulfills the boundary property, that is, the bound-
ary of each cell should be the union of other cells. Equivalently, for any two cells M1,M2

with dimM1 < dimM2, we must have M1 ∩M2 = ∅ or M1 ⊂ M2. In the latter case
we call M1 and M2 adjacent. Then the adjacency relation of such a pair can be checked
at an arbitrary point p ∈ M1, that is, the two cells are adjacent if and only if p ∈ M2.
Theorem 6.3.1 shows that in the case of a surface S which contains no vertical line, the
decomposition ΩS given in Definition 6.2.2 already has this boundary property, thus, ΩS

is indeed a stratification.

Theorem 6.3.1. Let M1,M2 ∈ ΩS with dimM1 < dimM2 and C1, C2 ∈ AS be their
corresponding projections onto the plane. If C1 has local degree nC1 6= −∞ and M1∩M2 6=
∅, then M1 = M2 ∩ (C1 × R).

Proof. We assume that C1 and C2 are adjacent in R2, otherwise the statement is trivial. Let
M2 be the j0-th lift of C2 and p = (p∗, z0) ∈M2∩(C1×R) be an arbitrary point, contained

in a lift C
(i0)
1 of C1. For the lifts p∗(i) of p∗ we choose a box neighborhood Bp∗ of p∗ and

also disjoint boxes B1, . . . , BmC1
lying above Bp∗ with Bi = Bp∗×

[

p∗(i) − δ, p∗(i) + δ
]

and

a δ > 0. We can assume that Bp∗ and δ are chosen such that the i-th lift of C1 ∩ Bp∗ is
contained in Bi. For Bp∗ small enough, it follows that the j0-th lift of Bp∗ ∩ C2 is also
contained in Bi0 because p ∈ Bi0 ∩M2. As a direct consequence ((Bp∗ ∩ C1) × R) ∩M2

is the i0-th lift of (Bp∗ ∩ C1). Now, for any two points p∗1 and p∗2 on C1, there exists a
compact path Σ on C1 that connects them. Then we consider an open covering of Σ with
local neighborhoods Bp′ , p

′ ∈ Γ such that ((Bp′ ∩ C1) × R) ∩M2 is the ip′-th lift of C1.
Then from restricting our analysis to a finite partial covering, it follows that ip′ = i0 for

all p′, thus, C
(i0)
1 = M2 ∩ (C1 × R). Now M1 ∩M2 6= ∅ exactly if M1 = C

(i0)
1 .

6.3.1. Edge-face adjacencies

Let E be an edge of AS , and let F denote an adjacent face in the arrangement AS . We
want to compute the adjacencies between cells above E and cells above F . It suffices to
restrict to the lifts of the sample point pE = (px, py) ∈ E and to find out their adjacencies
to the lifted surface patches of F . Recall that pE is chosen such that px (or py, for vertical
segments) is rational. If the local degree over p is nz and the z-fiber over p has been
computed using the m-k-bitstream-Descartes method (compare Section 6.2), adjacencies
are computed similarly to the branch number computation in the curve analysis, described
in Section 3.2.1: All roots but one of fp are simple and the cells over E to which they
belong have precisely one adjacent surface patch over F . The remaining surface patches
must be adjacent to the distinguished root that is returned by the m-k-bitstream-Descartes
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method.
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f (px, y, z)

p = (px, py)

q = (qx, qy)
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Figure 6.2. On the left: The general method for edge-face adjacencies. On the right:
Illustration of the filter for vertex-edge adjacencies.

If fp was not isolated using the m-k-bitstream-Descartes method, the treatment is the
same as in [ACM88]. We choose a rational sample point q = (qx, qy) for F with qx = px,
and consider the planar curve f |x=px := f(px, y, z) ∈ Q[y, z]. The i-th lift F (i) of F is
adjacent to the j-th lift E(j) of E if and only if there is a segment of the curve V (f |x=px)
connecting the i-th point over qy with the j-th point over py. Clearly, our curve analysis
algorithm is used to compute the adjacency information for V (f |x=px) (Figure 6.2 (left)).

6.3.2. Adjacencies of a vertex

We consider a vertex p56 whose z-fiber is finite, let (px, py, z1), . . . , (px, py, zm) denote the
points in its z-fiber.

If np = nz, and p’s z-fiber has been constructed using the m-k-bitstream-Descartes
method, the adjacencies are computed as described in Section 6.3.1. Second, adjacencies
between p and an edge E can often be derived by a transitivity argument from the com-
bination of adjacencies of E with its adjacent faces F1 and F2, and the adjacencies of F1

and F2 to p (compare the picture on the right of Figure 6.2). We skip further details of
this simple argument.

If none of these simple methods applies, choose rational intermediate values q0, . . . , qm
such that qi−1 < zi < qi for all i = 1, . . . ,m. The planes z = qi divide the real space in
m+ 2 buckets that separate the fiber points zi.

Definition 6.3.2 (bucket-faithful). Let C ∈ AS be adjacent to p. A point p′ on C is
bucket-faithful if there exists a path from p′ to p on C such that on that path, each cell
C(i) ∈ ΩS over C remains in the same bucket.

With a bucket-faithful point p′ on C, the adjacencies of cells over C with cells over
p follow by considering the z-fiber of p′: if the i-th point over p′ lies in the bucket of zj ,
then the cells C(i) and p(j) are adjacent. Furthermore, points over p′ that lie in either
the bottom-most or top-most bucket belong to asymptotic components, that is, they are
unbounded in the z-direction.

56We identify the vertex of the n-k-arrangement, and the point in R2 that it represents
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It is easy to prove by an ε-argument that a bucket-faithful point p′ exists for each cell
C adjacent to p. However, we want to prevent p′ being too close to p, because this results
in a bad separation of the roots of fp′ and thus slows down the computation of the z-fiber
of p′.

Observe that p′ on C is bucket-faithful if and only if there is a path from p′ to p on
C that does not intersect any of the bucket curves defined by f(x, y, qi) ∈ Q[x, y]. We
first compute a bucket box around p that contains no point of any of the bucket curves
(depicted on the left of Figure 6.3, the bucket curves are drawn as dashed lines). This
is easily done with interval arithmetic: Use approximations of p to evaluate f(px, py, qi)
for all i = 0, . . . ,m until no resulting interval contains zero. The final approximation of p
defines the bucket box.

In the second step, we compute bucket-faithful points inside the bucket box for each
adjacent n-k-invariant cell (note that not each point inside the bucket box is bucket-
faithful). For each adjacent edge, choose an arbitrary sample point, and shrink the box
until all these points are outside the box (depicted in the middle of Figure 6.3). After
that, each cell has a bucket-faithful point on the box boundary. Compute all intersection
points of AS with the box boundary.

Follow each edge E starting in p until it crosses the box boundary. The intersection
point is bucket-faithful for E. For a face F , consider the edge E ∈ AS that precedes F
in counterclockwise order around p. Let p′′ be the bucket-faithful point of E on the box
boundary. Let p′ be a point on the box boundary between p′′ and the next intersection of
the box’s boundary with AS in clockwise order. p′ is a bucket-faithful point on F . The
rightmost picture of Figure 6.3 shows the bucket-faithful points of the working example.

Figure 6.3. Finding bucket-faithful points: finding an initial box not containing any
dashed curve (left), shrinking the box such that sample points are outside (middle),
determining bucket-faithful points on the box boundary (right).

The method described has not covered the special case of an isolated vertex p. In this
case, we compute the intersections of AS with the vertical line x = px, and choose an
intermediate value between py and the next intersection point above.

Our method for vertex adjacencies has a similar basic idea as the local box algorithm by
Collins and McCallum [MC02] for cads. Still, there are some differences: our construction
of the “local box” (which we call the bucket box) is more efficient since it only involves
interval arithmetic. Also, we have to handle adjacent components that are not x-monotone,
which complicates the computation of bucket-faithful points. Moreover, their local box
algorithm requires irreducible polynomials as input, which implies a preceding factorization
step.
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6.3.3. Vertical lines

In the special case where S contains a vertical line ℓp, the lift F (i) of a face F ∈ AS ,
adjacent to p in AS , is, in general, no longer adjacent to exactly one lift of p, which means
that the boundary property is no longer satisfied if we take the whole vertical line as one
cell in the decomposition. The next theorem shows, however, that F (i) is adjacent to a
connected set p× I(F (i)) on ℓp, that is, a single point, a line segment, a ray, or ℓp.

Theorem 6.3.3. Let S contain the vertical line ℓp and F ∈ AS be a face, which is adjacent
to p. Then for any surface patch F (j) (the j-th lift of F ) there exists an interval I(F (j)) ⊂ R,

such that p× I(F (j)) = F (j) ∩ ℓp.

Proof. Given two points (p, z0), (p, z1) ∈ F (j) ∩ ℓp, z0 < z1, on the vertical line, there exist
corresponding continuous paths Σl ⊂ F (j) with (p, zl) ∈ Σl for l = 0, 1. Now let (p, z∗) be
an arbitrary point in between (p, z0) and (p, z1). Restricting our considerations to (end-
)parts of Σl we can assume that for every point (ql, zql) ∈ Σl, we have zq0 < z∗ and zq1 > z∗.
We now consider the projection Σ∗

l ⊂ F of Σl onto the plane. We further denote Bε as
the open disc with radius ε and center p. Then from the definition of F , the existence of
an ε0 > 0 such that Σε := ∂Bε ∩F is connected for all ε < ε0 follows. Then, Σε intersects

Σ∗
0 as well as Σ∗

1, and because of continuity, the j-th lift Σ
(j)
ε ⊂ F (j) of Σε contains a point

sε with z-coordinate z∗. It also follows that F (j) contains an arc of the z∗-level curve of
S, which passes the point (p, z∗). Hence, we must have (p, z∗) ∈ F (j) ∩ ℓp.

Theorem 6.3.3 suggests that when there are vertical lines, we still have to decompose
them into segments to obtain a decomposition ΩS of S that fulfills the boundary property.
If we knew

Z ′
p :=

⋃

C∈AS\{p}:p∈C




⋃

i=1,...,mC

{zA|zA is an endpoint of ℓp ∩ C(i)}



 ,

which is the union of all endpoints of intervals I(F (i)) and all z-values of endpoints (over
p) of lifted arcs in AS adjacent to p, we would simply subdivide the vertical line at these
positions in order to satisfy the boundary property.

What we compute is a set Z∗
p that is a superset of Z ′

p. We state the main theorem
without proof in this work, and refer the reader to [BKS09] for a geometric intuition of
how to get to this theorem, and for a proof of it.

Theorem 6.3.4. Let

r(x, z) := resy(f, fy) = (x− px)i0 r̃(x, z),
h(x, z) := resy(f, resz(f, fz)) = (x− px)k0 h̃(x, z)

with the following definitions of exponents

i0 := max{i : (x− px)i|r(x, z)},

j0 := min{j :
∂jf

∂yj
(px, py, z) 6≡ 0}

k0 := max{k : (x− px)k|h(x, z)}.
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Then Z∗
p := {z|r̃(px, z) = 0 ∨ ∂j0f

∂yj0
(px, py, z) = 0 ∨ h̃(px, z) = 0} contains all points of Z ′

p.

As a consequence of Theorem 6.3.4, we can define our stratification ΩS in general.

Definition 6.3.5 (stratification, general case). Let S be a surface with corresponding
n-k-arrangement AS . Let V be the set of vertices in AS whose lifts are vertical lines. For
p ∈ V , let ωp denote the partition of ℓp into elements of Z∗

p and their induced intervals of
R. We define

ΩS :=
⋃

C∈As\V




⋃

i=1,...,mC

{C(i)}



 ∪
⋃

p∈V
ωp.

By construction of Z∗
p , ΩS has the boundary property. We can also show that vertical

lines do not increase the complexity.

Theorem 6.3.6. The number of cells of ΩS is O(n5).

Proof. Using Corollary 6.2.3, it remains to be shown that the decomposition of the vertical
lines do not introduce more than O(n5) cells. The number of vertices with vertical lines
is in O(n2). For a fixed p, the set Z∗

p is the union of the roots of three polynomials in z
(compare Theorem 6.3.4), whose degree is at most n3.

Adjacencies for vertical line cells: We need to compute how the points and vertical
segments on a vertical line are connected to their neighborhood. Let p denote a vertex
in AS having a vertical line. We proceed similarly to Section 6.3.2 by defining bucket
values qi and bucket curves V (f(x, z, qi) for each intermediate value between elements of
Z∗
p . There is a complication here, because all bucket curves now are intersecting p, and we

cannot build a bucket box like before using interval arithmetic. Instead, we compute the
overlay of AS with all bucket curves, and build a box around p that does not contain an
intersection of AS with any bucket curve, except at p itself (Figure 6.4 (left)).

For the sample points of edges from AS , we further proceed as in Section 6.3.2. Choose
points at each adjacent cell of AS and shrink the box until they are outside of it. Af-
terwards, traverse the edges starting at p and choose the first box intersection as the
sample point for the edge (Figure 6.4 (right)). This point is bucket-faithful (recall Defini-
tion 6.3.2) and reveals the adjacencies between the lifted cells over the edge with the cells
at the vertical line, which is correct due to the construction of Z∗

p .

For an adjacent face F , we first compute which patches F (j) over F are adjacent to
whole vertical segments. Each such vertical segment contains one of the bucket values qi.
Thus, a patch over F that is adjacent to an interval causes an arc of the bucket curve
for qi that lies in F and ends in p. We proceed as follows. Iterate over the arcs of all
bucket curves in F that leave p. Let qi be the bucket value of the bucket curve under
consideration. Choose a sample point on the bucket curve (inside the bucket box), build
the z-fiber over it, and determine which patch F (j) has the z-coordinate qi. Mark this
patch as adjacent to the vertical segment containing qi, and also to the two endpoints of
the segment.

Finally, when all patches adjacent to an interval are detected, consider the remaining
patches. They are adjacent to some zero-dimensional cell over p. Choose a bucket-faithful
point for the face (analogously to Section 6.3.2) and determine the buckets which the
remaining patches belong to.
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Figure 6.4. Finding bucket-faithful points in the vertical case.

Summary

The adjacency computation nicely summarizes our overall strategy of avoiding costly com-
putations: We try to get the adjacency information combinatorially (by exploiting the
output information of the m-k-bitstream-Descartes method), and only fall back to more
complicated method if necessary. Simple cases (edge-face adjacencies) can be solved us-
ing efficient methods (curve analysis of a slice curve f(q, y, z) with q ∈ Q). Adjacencies
for vertices are also solved combintatorially (by a transistivity argument) in good-natured
cases. Only if this is impossible, more expensive methods are used. Even in this case, we
can apply, at least partially, fast approximate methods (interval arithemtic).

6.4. Triangulation

We describe in this section how the stratification ΩS , in combination with its adjacency
information, leads to an exact triangulation TS , that is, an isocomplex for the surface
(Definition 2.1.8). Our solution even yields a stable isocomplex, meaning the vertices of
the resulting complex do not move during the isotopic transformation. This also preserves
some geometric structure of the surface, since each vertex of the triangulation is a point
on the surface.

The basic idea for the triangulation is as follows: The n-k-arrangement AS of the
surface S is transformed into an isotopic straight-line arrangement (for that, edges of AS

must be further subdivided), and this arrangement is refined to a planar triangulation.
By the adjacency information of S, a triangulation of the surface is computed by lifting
the triangles of the planar triangulation. We can show that this triangulation is isotopic
to S, by constructing a stratification of S whose faces are pseudo-triangles that are in an
one-to-one correspondence with the triangles of S.

A straightforward way to achieve a planar triangulation as above is to refine AS into
a cad of the plane. We note that the idea of using a cad to triangulate surfaces has been
described already in [BPR06] in a more abstract context (compare Theorem 5.43 therein).
The theoretical results in this section can be seen as a simplification of their result in three
dimensions and for a single surface.

As before, we require the surface equation to be square-free and primitive. Additionally,
our triangulation method does not apply to surfaces having vertical line components. In
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this special case, we have to make use of a linear coordinate transformation, such that
the surface has no vertical line with respect to the new coordinates. A discussion of this
vertical line case can be found in [BKS09].

6.4.1. Triangulation of compact surfaces

Let us start with a compact (thus bounded) surface S, whose silhouette is bounded as well.
On the left of Figure 6.5, we see the projected arrangement AS for the standard torus, our
working example for this paragraph. It contains only two edges and three faces.
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Figure 6.5. The silhouette of the torus.

To triangulate S, we first blow up AS to a cad.

Definition 6.4.1 (cad -stack). Let A be an arrangement and x0 ∈ R. Let (x0, y1), . . . , (x0, ym)
with y1 < . . . < ym be the set of all points in the fiber of x0 that are either vertices or
lie on an edge of A. Let q1, . . . , qm − 1 be rational values such that yi < qi < yi+1 for
i = 1, . . . ,m− 1. The cad-stack at x0 for A is the point set

{(x0, y1), (x0, q1), . . . , (x0, ym−1), (x0, qm−1), (x0, ym)}.

The usual definition of a (cad -)stack in cylindrical algebraic decomposition also contains
rational sample points below y1 and above ym. For simplicity, we do not consider them,
since the lifts of these points are all empty for a compact surface. Compared to the f -stacks
of the silhouette (Definition 3.1.6), the cad -stack only contains additional intermediate
points between two fiber points. Since we are basically talking about the same object, we
simplify the notation and talk about stacks instead of cad -stacks.

We perform a curve analysis of the silhouette curve, that is, we create (cad -)stacks
for the critical x-coordinates of the curve and also for intermediate x-coordinates between
two consecutive critical x-coordinates. The result is a collection of critical stacks and
intermediate stacks, and it induces an arrangement that refines AS . We call it Cad

(2)
S

(Figure 6.5 (middle)). The lifts of all components of Cad
(2)
S induce another stratification

of S, which we call Cad
(3)
S .

Lemma 6.4.2. Cad
(2)
S has O(n6) cells and Cad

(3)
S has O(n7) cells.

Proof. AS has up to O(n4) vertices (Theorem 6.1.9). Each stack contains up to O(n2)

points. This makes O(n6) vertices at critical positions for Cad
(2)
S ; the intermediate stacks
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only double the number of vertices. Since there are up to n lifts over each cell, Cad
(3)
S has

O(n7) cells.

For a formal definition of the triangulation to be computed, and for the proof that it
will indeed be isotopic to S, we next construct a further refined cell decomposition, such
that all faces are pseudo-triangles. To compute the triangulation, it is not necessary to

perform this construction. In our algorithm, only Cad
(2)
S is computed and the triangulation

is constructed immediately from it, exploiting the adjacency information in 2D and 3D of
the stratification ΩS .

In each critical stack of Cad
(2)
S , we insert vertical straight line edges for consecutive

points on the stack. This subdivides the bounded faces into pseudo-polygons. Each such
pseudo-polygon contains precisely one non-silhouette point of an intermediate stack in its
interior, which we call the center of the pseudo-polygon (Figure 6.5 (right)).

Now, for each pseudo-polygon, we insert vertical edges connecting the center v with
its lower and upper neighbor on the intermediate stack. Towards all other stack points
on the boundary of the pseudo-polygon, we insert x-monotone continuous edges that do
not cross each other within the pseudo-polygon. These edges must be lower and upper
bounded by the function graphs of the lower and upper boundary segments of the pseudo-
polygon. Let ϕ1 and ϕ2 : [−1, 1] → R denote the corresponding functions. We can
assume that both ϕ1 and ϕ2 meet the intermediate stack of the center at 0. Let y0 be
the y-coordinate of the center. Then, for each each point p on the right boundary of
the pseudo-polygon, there exists a parameter λp ∈ [0, 1] such that γp : [0, 1] → R, t 7→
y0 − ϕ1(0) + ϕ1(t) + λpt(ϕ2(t) − ϕ1(t)) connects the center with the boundary point. It
is easy to verify that the function graphs are indeed disjoint and bounded by ϕ1 and ϕ2.
For the left boundary, we proceed analogously (Figure 6.6 (left)).
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Figure 6.6. The silhouette of the torus (continued).

Because we start with an arrangement Cad
(2)
S , consisting of algebraic segments only,

the inserted edges are also algebraic. We call the resulting arrangement PT
(2)
S (Figure 6.6

(middle)). The lifts of all cells define another stratification for S, called PT
(3)
S .
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Lemma 6.4.3. PT
(2)
S has O(n6) cells and PT

(3)
S has O(n7) cells.

Proof. Comparing the complexities of Cad
(2)
S and PT

(2)
S , we note that PT

(2)
S contains

additional O(n6) vertical edges (between consecutive points on the same stack), and up to
O(n6) additional non-vertical edges (each vertex at a critical stack gets up to two additional

incident edges). Thus, the complexity of PT
(2)
S equals the complexity of Cad

(2)
S , and the

same holds for PT
(3)
S and Cad

(3)
S .

Each 2-dimensional cell of PT
(2)
S is a pseudo-triangle, thus, it can be represented by its

adjacent three vertices. Note that each pseudo-triangle has at least one adjacent vertex
that lies in a face of the original arrangement AS (i.e., it does not lie on the silhouette).
Finally, we define the triangulation TS of S: each patch (i.e., a 2-dimensional cell) of

PT
(3)
S is adjacent to three vertices. The triangulation T

(3)
S consists of the union of triangles

spanned by these vertex-triples, that is, each “pseudo-triangular” patch is replaced by the
actual triangle, defined by the three adjacent vertices.

Theorem 6.4.4. S is isotopic to T
(3)
S .

Proof. We continuously and bijectively transform S into T
(3)
S in R3. We proceed in

two steps. First, we look at the arrangement PT
(2)
S . As mentioned, PT

(2)
S is a pseudo-

triangulation of R2. Let T
(2)
S be the arrangement induced by PT

(2)
S that replaces each

curved segment by a straight line (Figure 6.6 (right)). It is not difficult to construct

an isotopic map from R2 to itself that maps vertices, edges, and faces of PT
(2)
S to ver-

tices, edges, and faces of T
(2)
S . For that, we define an isotopy H. Fix a point (x0, y0)

in R2. If x0 is a stack coordinate, we set H((x0, y0), t) = (x0, y0) for each t ∈ [0, 1]. If

(x0, y0) lies on an edge of PT
(2)
S , T

(2)
S has a unique (straight) edge with the same two

endpoints; let (x0, y1) denote the covertical point of that straight edge. Then, we define

H((x0, y0), t) := (x0, (1 − t)y0 + ty1). Finally, if (x0, y0) lies on a face of PT
(2)
S , consider

the edge e1 that bounds the face from above, and the edge e2 that bounds the face from
below.57 Let (x0, y

+
0 ) denote the covertical point on e1, and (x0, y

−
0 ) denote the one on e2.

Furthermore, let (x0, y
+
1 ) denote the covertical point on the edge of T

(2)
S that corresponds

to e1, and let (x0, y
−
1 ) denote the covertical point on the edge of T

(2)
S that corresponds to

e2. Define

H((x0, y0), t) :=

(

x0, (1− t)y0 + t

(
y0 − y−0
y+
0 − y−0

y+
1 +

y+
0 − y0

y+
0 − y−0

y−1

))

.

Observe that H( · , 1) maps the vertical segment {x0}× (y−0 , y
+
0 ) onto the vertical segment

{x0} × (y−1 , y
+
1 ). One can see that H defines a homeomorphism for each t, therefore, it

is an isotopy. We remark that the intermediate stacks in our construction are essential
for that property, since otherwise, two distinct curved edges can be mapped to the same
straight-line edge, thus H( · , 1) would not be bijective.

The transformation can be extended to R3 by leaving the z-coordinate unchanged. It

maps S to an isotopic surface S′ and the stratification PT
(3)
S induces a stratification PT

(3)
S′

of S′. By construction, the cells of PT
(3)
S′ are lifts of T

(2)
S with respect to S′.

57The treatment can be extended to unbounded faces as well, but we will skip the details for brevity
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In a second step, S′ is transformed into T
(3)
S . Again, it is not difficult to see that one can

define an isotopy from S′ to T
(3)
S : A one-dimensional cell of PT

(3)
S′ that connects two vertices

v and w is transformed to the straight edge from v to w, a two-dimensional cell adjacent
to u, v, and w is transformed to the triangle spanned by u, v, and w. Note that this
transformation only changes the z-coordinates of points, thus, the projection of each cell

of T
(3)
S is a cell of T

(2)
S . Two distinct cells C1, C2 ∈ PT

(3)
S′ with d = dimC1 ∩ C2 are mapped

onto cells CT1 , C
T
2 ∈ T

(3)
S of the same dimension, respectively, such that d = dimCT1 ∩ CT2 .

This is a direct consequence of our decomposition of the plane, which guarantees that each
pseudo-triangle contains at least one vertex that is non-critical and each edge connecting
two critical points is part of the silhouette curve. Thus two two-dimensional cells (edges) of

PT
(3)
S′ cannot be mapped to the same triangle (or edge, according to the case) of T

(3)
S .

To summarize the subsection, here is a high-level description of our algorithm to com-
pute TS . We will skip more details for the sake of simplicity.

1. Compute the arrangement AS and the stratification ΩS .

2. Compute the critical and intermediate stacks of AS to obtain Cad
(2)
S .

3. Compute the list of pseudo-triangles of PT
(2)
S . This can be done combinatorially

using the adjacency information of Cad
(2)
S ; an explicit construction of PT

(2)
S is not

necessary.

4. Lift each vertex of Cad
(2)
S (see Section 6.2). The lifts define the vertices of Cad

(3)
S ,

which are the same as the vertices of TS .
5. For each pseudo-triangle of PT

(2)
S , consider its lifts. For each lift, compute the three

adjacent vertices of Cad
(3)
S using the adjacency information of cells (Section 6.3).

Add the triangle spanned by these three vertices to the output list.

Finally, the list of all computed triangles defines the triangulation TS .

6.4.2. Triangulation of general surfaces

Consider a surface S that is (possibly) unbounded. Clearly, if S is unbounded, it is not
possible to produce an isotopic mesh with (finite) triangles. Instead, the triangulation of
S is restricted to a (finite) bounding box B that is big enough to contain all “relevant
features” of S. By “big enough”, we mean that B should contain all bounded cells of
ΩS . Note that, in particular, no vertex of ΩS is outside the box and, if S is compact, its
bounding box contains the whole surface.

The following theorem shows how a bounding box can be computed with algebraic
methods. However, since the computation of the boundaries involves quite expensive
operations, we subsequently propose an alternative geometric approach for computing a
bounding box by an adaptive method.

Theorem 6.4.5. Let S be a surface with equation f and a projected silhouette curve with
equation Γ. For shorter notation, set fx := ∂f

∂x and define fy, fz,Γx,Γy in the same way.
Define Cx := {x ∈ R | ∃y ∈ R : Γ(x, y) = 0 ∧ Γy(x, y) = 0}, Cy := {y ∈ R | ∃x ∈ R :
Γ(x, y) = 0 ∧ Γx(x, y) = 0}, and

Cz := {z ∈ R | ∃x, y ∈ R : f(x, y, z) = 0 ∧ Γ(x, y) = 0 ∧ (fxΓx + fyΓy)(x, y, z) = 0} ∪
{z ∈ R | ∃x, y ∈ R : f(x, y, z) = 0 ∧ fx(x, y, z) = 0 ∧ fy(x, y, z) = 0}.
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Let B be a box containing all vertices of ΩS and all points of the set Cx×Cy ×Cz. Then,
B is a bounding box for S.

Proof. Let c be a bounded cell of ΩS . Clearly, if c is a vertex, it is contained in B, so let
it be an edge or a face. Let B′ be the projection of B onto the xy-plane, and c′ be the
projection of c onto the xy-plane. Note that c′ is a cell of AS by definition of ΩS .

We show first that c′ is inside B′. It is enough to show this for edges, because for faces,
we consider the outer boundary cycle, and if each edge of that cycle is inside B′, the face
must be contained as well. So let c′ be an edge. Note that the edge is part of the silhouette
curve Γ. Consider a point on the closure of the edge with maximal x-coordinate. Either
this point is at the boundary and is thus a vertex, or it is a point in the interior of the
edge. In the latter case, it is a local maximum of the silhouette in the x-direction and thus
in Cx. In any case, the point with maximal x-coordinate is contained in B. The same
argument holds for a point with minimal x-coordinate, and it follows that the whole edge
runs inside the x-range of B′. The analogous argument holds for the y-coordinate. Hence,
c′ is completely inside B′.

It remains for us to show that the z-range of c runs inside the z-range of B. For that,
assume first that c is an edge, and let p denote a point on the closure of c with maximal z-
coordinate. Either p is at the boundary of c and is thus a vertex of ΩS , or it is in the interior
of c. If p is in the interior of c, consider a C∞-parameterization ϕ(t) = (x(t), y(t), z(t)) of c
with ϕ(t0) = p. Since c is on the surface, it is f ◦ϕ(t) = 0 for all t, hence (∇f ◦ϕ) ·ϕ′(t) = 0
as well. Since p is a local maximum in z, we have z′(t0) = 0. Furthermore, x′(t0) = Γx(p)
and y′(t0) = Γy(p) holds, thus,

(fx(p), fy(p), fz(p))





Γx(p)
Γy(p)

0



 = 0.

In other words, (fxΓx + fyΓy)(p) = 0, thus p is in Cz. For points with minimal z-
coordinates, the same argument is valid, so the z-range of c is indeed contained in the
z-range of B.

There remains the case of c being a face. Let p be a point on the closure with maximal
z-coordinate. If p is at the boundary of c, it is either a vertex or a bounded edge, and
since they are contained completely in B, p is also in B. So, let p be in the interior of the
face. Since it is a local maximum, its tangent plane is a parallel of the xy-plane. Thus,
both fx and fy vanish at p, hence, p is in Cz. The same holds for a point with minimal
z-coordinate, thus, the z-range of c is contained in B.

We next turn to the alternative iterative approach. Consider the arrangement AS .
Note that for its computation, all edges have been decomposed into x-monotone segments
internally, thus, the set Cx (or a superset of it) is already available. We choose a range
rx := [x0, x1] containing all points of Cx.

For the y-coordinates, we pick a sample point for each edge of AS . We choose a range
ry := [y0, y1] that contains all y-coordinates of the vertices and the y-coordinates of the
sample points. We overlay AS with the horizontal lines y = y0 and y = y1. This may cause
edges of AS to split. Then, each edge of the overlaid arrangement is either completely inside
the y-range ry, or completely outside. If any edge outside ry is bounded, an insufficiently
large interval ry was chosen, so we enlarge it and retry. An example of such a situation



6.4. Triangulation 219

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

Figure 6.7. Such situations (bounded edges outside the y-range; bounded patches
outside the z-range) must be excluded to obtain a correct bounding box.

is depicted on the left of Figure 6.7; observe the red “cap” that leaves the y-range at the
top boundary. Otherwise, if all edges outside ry are unbounded, we are done. Note that
it is easy to determine whether an edge is unbounded by checking its two endpoints for
finiteness.

For the z-coordinate, we pick sample points for each edge and for each face of AS . We
compute the z-fiber for each vertex and each of those sample points, and choose a range
rz := [z0, z1] containing all z-coordinates of the z-fibers. We overlay AS with the curves
f(x, y, z0) and f(x, y, z1). This may cause edges and faces of AS to split. We call the
overlaid arrangement A

′
S ; the lifts of its cells induce a stratification Ω′

S of S. Each cell of
Ω′
S is completely inside the z-range rz or completely outside. If any cell of Ω′

S is outside rz
and bounded, an insufficiently large rz was chosen, so we enlarge it and retry. On the right
of Figure 6.7, there is a situation where this happens; observe the red “cap” that leaves
the z-range at the top boundary. Otherwise, if all cells outside rz are bounded, we are
done. Note that, again, it easy to determine whether a cell of Ω′

S is bounded by checking
its adjacent vertices for finiteness.

By construction, the box B := [x0, x1] × [y0, y1] × [z0, z1] is a bounding box. We now
explain how to triangulate S inside that box. Overlay AS with the vertical lines x = x0,
x = x1, with the horizontal lines y = y0, y = y1, and the curves f(x, y, z0) and f(x, y, z1).
Throw away any component that is outside the box [x0, x1] × [y0, y1] (Figure 6.8 (left)).
Create a stack at each x-critical coordinate of the overlaid arrangement, that is, at each
x-coordinate of a vertex. Also, create an intermediate stack between two critical stacks.

This results in an arrangement Cad
′(2)
S .

From this point onwards, we proceed as in the case of compact surfaces. The arrange-

ment Cad
′(2)
S is decomposed into pseudo-triangles (as depicted on the right of Figure 6.8).

Each pseudo-triangle has several lifts on the surface. Note that a lifted pseudo-triangle is
either completely inside B or completely above B, or completely below B. If it is inside
B, we add the triangle defined by the three adjacent vertices to TS , otherwise, we ignore
the triangle. After doing so for each pseudo-triangle, the set of triangles TS triangulates
S inside B.
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Figure 6.8. The projection phase in the unbounded case.

Summary

By extending the stratification into a cad of the surface (with adjacency information), an
isotopic triangulation of the surface can be computed. The amount of additional com-
putations is quite low, but the complexity of the decomposition increases from O(n5) to
O(n7). Unbounded surfaces can be triangulated within a bounding box that is computed
adaptively.

6.5. Implementation and experiments

6.5.1. Stratification

Our stratification algorithm is transformed into a fully working C++-implementation based
on Cgal. Algebraic surfaces are represented by the class template Algebraic_surface_3.
To construct and refine the n-k-arrangement for a surface S, we rely on the software frame-
work presented in Section 4.2 of this thesis. We have seen that, for technical reasons, curves
are split into x-monotone subcurves. Our traversal combines them to maximal n-k-constant
paths. We make extensive use of advanced operations on arrangements provided by the
corresponding Cgal package. For example, we attach a collection of information (e.g.,
nC and kC) to each Dcelcomponent. In combination with Cgal’s overlay mechanism,
the computation of AS can be implemented as explained in Section 6.1. Additionally, the
construction of z-fibers, as presented in Section 6.2, benefits from the precomputed param-
eters nC and kC for each cell. This avoids repeating costly tests; for example, whether a
point lies on some curve. We also follow the scheme of lazy-evaluation (compare page 160),
for example, the sample point for a cell and its z-fiber is only computed on demand and
then cached.

We briefly mention that our design of implementation decouples combinatorial and
generic tasks from surface-specific ones using the generic programming paradigm. In par-
ticular, three operations that follow our algorithmic description are expected from a sup-
ported surface. First, the decomposition of the polynomials resz(f,

∂f
∂z ), ai, and sthai(fn)

into square-free factors and construct corresponding curve instances. Second, the con-
struction of a z-fiber for given p with respect to a surface, knowing np and kp. Third,
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Instance degx,y,z |ΩS | (V,E,F) total proj stacks adj unfiltered

whitney-umbrella (2,1,2) 9 (1,4,4) 0.02 16% 33% 33% 0.02
cayley-cubic (2,2,2) 22 (3,10,8) 0.45 42% 23% 29% 0.50
steiner-roman-surface (2,2,2) 27 (5,12,8) 0.24 11% 31% 53% 0.26
comlumpius (3,3,3) 38 (5,11,7) 0.88 75% 8% 6% 1.34
bohemian-dome (4,4,4) 61 (7,20,14) 1.34 16% 9% 72% 1.85
chair (4,4,4) 31 (4,9,7) 2.23 84% 3% 10% 3.59
chub-surface (4,4,4) 52 (8,8,6) 0.45 23% 7% 64% 0.41
tangle-cube (4,4,4) 28 (0,6,7) 0.44 60% 12% 23% 0.78
tetrahedral-skeleton (4,4,4) 26 (5,12,8) 0.75 21% 12% 64% 0.82
dupin-cyclide (4,4,4) 10 (3,4,4) 0.15 60% 26% 7% 0.26
seahorse (4,6,3) 14 (2,6,5) 4.55 1% 89% 8% 4.52
star (6,6,6) 5 (1,1,2) 5.04 98% 0% 0% 20.00
sweet (6,6,6) 9 (1,2,3) 1.17 89% 9% 0% 2.81
hunt (6,6,6) 15 (3,2,3) 1.30 84% 9% 6% –
spiky (6,9,6) 13 (1,8,8) 0.50 39% 17% 42% 0.62
zipf (6,6,6) 5 (1,1,2) 0.32 93% 4% 1% 0.28
C8 (8,8,8) 496 (40,48,26) 25.02 62% 7% 28% 22.18
rand-3 (3,3,3) 15 (2,3,3) 0.12 43% 16% 10% 0.22
rand-4 (4,4,4) 64 (7,14,8) 3.40 82% 4% 8% 5.20
rand-5 (5,5,5) 154 (16,24,10) 140.64 97% 1% 0% 345.49
interpolated-3 (3,3,3) 23 (4,6,3) 0.24 65% 11% 8% 0.46
interpolated-4 (4,4,4) 66 (10,16,7) 24.24 96% 1% 1% 48.27
projected-4d (4,4,4) 34 (4,12,9) 8.96 95% 1% 2% 14.96

Table 6.1. Complexity and running times (in seconds) of the stratification algorithm for a
selection of surfaces.

for two adjacent cells of AS , the computation of their lifted adjacencies (see Section 6.3
for details). We plan to augment our implementation for multiple surfaces. A generic
framework for this task has already been established in [BS08].

Experiments:

We run experiments on our implementation using well-known examples from alge-
braic geometry.58. These surfaces cover many possible geometric features of surfaces; for
instance, Steiner-roman and Cayley-cubic contain a vertical line component. We also con-
structed surfaces with random coefficients and surfaces of degree 3 and 4 by interpolation
of randomly chosen sample points. A final example is a projection of the intersection of
two random quadrics in 4D into the three-dimensional space. All experiments are executed
on the same benchmark machine as all previous experiments.

Table 6.1 states the size of the n-k-arrangement AS , the total number of cells in ΩS ,
and the running times obtained for a selection of tested surfaces. It is expected that (some)
surfaces do not show any n-k-vertex (e.g., tangle-cube), or n-k-edge (e.g., xy-functional
surfaces) at all. We also list the relative timings to compute the n-k-arrangement (proj),
to compute z-stacks at sample points (stacks), and to compute the adjacencies between
cells (adj). Our implementation allows switching off the m-k-bitstream-Descartes method
in the z-stack computation step (in this case, the square-free part is computed for each

58 Subsets of the tested example surfaces are provided courtesy by the AIM@SHAPE Shape Repository
of INRIA, by www.singsurf.org, by www.freigeist.cc, and by [PV07]

www.singsurf.org
www.freigeist.cc
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non-square-free polynomial). The total running time for this is also given (unfiltered).

We observe that the construction of AS is the bottleneck in many examples. In partic-
ular, when considering randomly generated surfaces, this computation limits the usability
for higher degrees. This is no surprise, since we have to analyze plane algebraic curves of
degrees of up to n(n − 1). To prove the benefit of our approximative and combinatorial
methods, we compare the total running time with the unfiltered approach. Often, the
lifting and the adjacency computation become significantly slower without that filtering
step (star, rand-5) – for the hunt surface, the unfiltered version did not terminate even
after several hours.59 Some surfaces are even faster with the unfiltered version (C8, chub).
This is simply because they are in a degenerate situation where the m-k filter fails in most
situations.

6.5.2. Triangulation

We have a preliminary implementation to compute a triangulation of a surfaces within
a bounding box.60 This bounding box must be defined by the user – our ideas from
Section 6.4.2 to obtain a box adaptively have not been implementated yet.

The current implementation supports the refinement of the triangulation of AS , and
in that way, of the lifted triangulation of the surface (controlled by a parameter). This
makes it possible to triangulate the surface into few triangles (to represent its topology)
as well as to compaute a close geometric approximation to get topologically reliable and
accurate plots (Figure 6.9). The output of the algorithm is simply a collection of index
triples, where each index represents a point in space. We admit that some special cases
(for instance, 1-dimensional components of a surface) are not yet covered, so we do not
call our implementation of the triangulation complete in its current state.

Regarding the performance, we observed that when we compute an isotopic trian-
gulation with as few triangles as possible, the costs are dominated by the costs of the
stratification. Indeed, almost all information of the cad in the projection plane is already
computed during the stratification, it only remains to compute the intermediate points
on the stacks and lift them; these steps are negligible, at least if they are not performed
too often. If the number of triangles increases, however, the high number of stacks and
intermediate steps increasingly influences the practical performance. We remark that the
computation of many lifts would be a perfect scenario for parallel computations, as stacks
can be computed independently from each other.

Summary

We provide the first complete EGC-implementation to compute a stratification of an al-
gebraic surface and we have extended the implementation to compute an isotopic triangu-
lation. Because there is no comparable implementation available that returns a certified
output, we have shown that the stratification (and triangulation) of several reference sur-
faces from algebraic geometry, including all sorts of degeneracies, can be computed quite
fast. As for the case of algebraic curves, a comparison with a certified method that is
based on subdividing the space would be interesting for the future.

59We admit that this might also be caused by a bug in the code.
60The code is currently maintained and extended by Pavel Emeliyanenko and is based on an earlier

version by the author of this thesis.
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Figure 6.9. Triangulations of the tangle cube, the C8 surface, and the columpius
surface.

6.6. Bounds for the size of isocomplexes

As the final subject of this thesis, we turn to the following question (more precisely, four
questions): How many vertices are needed to define a stable/general isocomplex for an
algebraic curve/surface of degree n? This thesis has described algorithms for stable iso-
complexes for curves and surfaces. Indeed, the curve analysis implicitly defines a stable
isocomplex: one that has an f -stack at all critical x-coordinates, intermediate values in
between, and segments between stacks that can be isotopically transformed to straight-line
segments. At most O(n3) vertices are produced by the curve analyis algorithm. We will
show that this bound is tight, which means that there are curves of degree n such that
a stable isocomplex must consist of Ω(n3) vertices. This is somewhat surprising, because
the stack-based approach produces a lot of unnecessary vertices due to coverticalness to a
critical point. If we relax the requirement of being stable, we can give a simple algorithm
that produces an isocomplex with O(n2) vertices only, which is also tight,

For surfaces, our results give differing lower and upper bounds: In this chapter, we
have derived an O(n7) stable triangulation, which is the best upper bound we are aware
of. We construct a family of surfaces for which we can prove a lower bound of Ω(n4)
vertices for any stable isocomplex. In the general case, we can prove a lower bound of
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Ω(n3) and an upper bound of O(n5). An extended abstract of the results in this section
appears in [KS09].

6.6.1. General isocomplexes

We first look at general (or not-necessarily stable) isocomplexes, that is, ones where we
are allowed to move vertices under the isotopy. Let us look first at the planar case. So,
let Cf := V (f) be a curve of degree n. We know already that Cf can have up to O(n2)
many critical points, but not every critical point has to be represented by a vertex in the
isocomplex: the neighborhood of regular x-extreme points and even singular points with
two adjacent segments can be isotopically transformed into a straight-line. However, if
a singular point is isolated, or has more than two adjacent segments, its image in the
isocomplex must be a vertex.

For the lower bound of Ω(n2) vertices, it is enough to construct a curve with many self-
intersections. The simplest approach is to choose n lines in the plane in generic position,
which means that no two of them are parallel, and no three of them meet at a common
point. The union of these lines defines a curve of degree n, and the number of self-
intersections is obviously

(
n
2

)
= Θ(n2). Thus, any isocomplex for this curve requires at

least Ω(n2) vertices.

For surfaces, a lower bound of Ω(n3) vertices is obtained in a similar way. Consider
n planes in generic position: each triple meets at a unique point, and this point must
appear as a vertex in the isocomplex, because its local topology is different from any
neighboring point. There are

(
n
3

)
such points, and consequently, at least Ω(n3) vertices in

the isocomplex.

We turn to the upper bounds. In the planar case, we show how the output of the curve
analysis (or equivalently, of the cad of one curve) can be simplified such that the resulting
graph is of complexity O(n2). The output of the curve analysis yields O(n3) points on
the fibers of critical x-coordinates and at intermediate positions in between. Recall the
definition of an event point (Definition 3.2.12) as a point whose branch numbers are not
(1, 1). For any non-event point at a fiber, the predecessor is the (unique) point on the
left-neighboring fiber that is connected to it. A non-event point is called a transit point,
if its predecessor is a non-event point as well. The simple idea is to arrange sequences of
consecutive transit points on the same horizontal line while keeping the vertical ordering
of the fiber points of one x-coordinate intact.

In detail, the algorithm can be formulated as follows. Iterate through the stacks (critical
and intermediate) from the left to right. On the first stack, set the y-coordinate of the
i-th fiber point (counted from below) to i, such that the stack points have y-coordinates
0, 1, . . . ,m (this makes sure that all vertices will have rational coordinates in the end).
For the i-th stack with i > 1, consider the transit points first. Let p be such a transit
point, and pre(p) be its predecessor in the (i − 1)-th stack. Set the y-coordinate of p to
the same value as the y-coordinate of pre(p) (the segment connecting them is horizontal).
Insert the non-transit points such that the final stack has the correct vertical ordering (see
Figure 6.10 for an illustration of the algorithm). In a final step, remove all vertices that
have only two adjacent horizontal edges, and merge the two edges into one.

Why does the described algorithm produce O(n2) vertices? Observe that the resulting
graph has vertices only at event points, and at stack points that are adjacent to event
points. Since event points are critical, there are at most n2 of them. It suffices to count
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Figure 6.10. The top picture shows the original stacks (transit points in blue); the
bottom picture shows the simplified graph.

the number of fiber points connected to event points. This is the same as counting the
number of incident branches for each event point.

Lemma 6.6.1. For an event point p, we set bp to the sum of its branch numbers. The sum
of the bp’s for all event points is bounded by 4n2.

Proof. It is enough to argue that the intersection multiplicity (Definition 2.3.32) of V (r)
and V ( ∂r∂y ) at an event point p with bp = 2kp is at least kp − 1: Because the sum of the

intersection multiplicities is bounded by n2, it then follows with P the set of all event
points that

∑

p∈P
bp = 2

∑

p∈P
(kp − 1) + 2#P ≤ 4n2.

Consider a singular point p with bp = 2k. W. l. o. g., we can assume that p is the
origin, that none of the branches is vertical, and that there is no covertical singularity
(otherwise, we can translate and rotate the curves, which leaves the branch numbers and
the intersection multiplicities the same). It is not difficult to see that 0 is a root of f(0, y)
of multiplicity at least k: There are at least k branches of the curve approaching the origin
from the same side, say from the right. Then, f(ε, y) has k roots that converge to 0 when
ε approaches 0, and by continuity reasons, 0 is a k-fold root of f(0, y). For that reason, 0
is also a (k − 1)-fold root of f ′(0, y).
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By that argument, we can write f and ∂f
∂y in the following way:

f(x, y) = xf1(x, y) + ykf2(x, y),
∂f

∂y
(x, y) = xf3(x, y) + yk−1f4(x, y)

Considering the Sylvester matrix of f and ∂f
∂y , we observe that any non-zero entry in its

last (k − 1) columns contains a factor x. Hence, we can factor out a factor of x in each of
these columns, which yields a factor of xk−1 in the resultant.

It follows that we produce indeed O(n2) many vertices in the algorithm. We turn to the
surface case, and build an O(n5) triangulation. We start as we did for the triangulation
algorithm described in this chapter, that is, we construct the silhouette and perform a
curve analysis on it, which yields O(n6) many vertices. Next, we apply the simplification
on the silhouette. This yields an isotopic straight-line graph with a reduced complexity of
O(n4). Let H denote the isotopy between them. We compute a trapezoidal map of the
graph [dBvKOS00], that is, we draw a vertical line from each vertex to the next upper and
lower neighbors. Then, for each trapezoid obtained (or triangle, in a degenerate case), we
pick a point in its interior and connect it to any vertex at the boundary (there are at most 4
such vertices). These steps clearly do not increase the asymptotic complexity of the graph
and we obtain a triangulation of the silhouette with O(n4) vertices. This triangulation
can be lifted to a triangulation of the surface just by exploiting the adjacency information
from the corresponding z-stacks. Since there are up to n lifts per vertex, we obtain a
triangulation with up to O(n5) vertices.

We were not able to close the gap between the lower and upper bounds in the surface
case. The natural idea of proceeding in analogy to the simplification in R2, that is, by
performing a plane sweep in R3, and connecting “transit edges” by horizontal surface
patches seems not to work out. The problem is that two patches can change their vertical
ordering without intersecting each other. For curves, this is impossible, and this is a crucial
property for obtaining an O(n2) isocomplex. Still, we believe that our upper bound of
O(n5) triangles is not optimal. A more economical triangulation should be achievable by
a method that is not based on projection and lifting.

6.6.2. Stable isocomplexes

For stable isocomplexes, the upper bounds of O(n3) (for curves) and O(n7) (for surfaces)
follow from the results of this thesis (and also from cad algorithms). We seek lower bounds.

We first describe the construction idea for curves (the idea for surfaces is similar).
Assume that the unit circle is part of the curve. A stable isocomplex for the curve has
to contain a cycle with points on the unit circle. If additionally, isolated points inside the
unit circle and close to its boundary belong to the curve, this cycle is forced to also include
those points. Indeed, we can define a set of Θ(n2) isolated points such that the cycle of
the unit circle consists of Ω(n2) vertices, see Figure 6.11 for an illustration. Performing
the same construction not just for the unit circle, but for Θ(n) concentric circles, all with
radius close to one, yields Ω(n3) vertices for the isocomplex.

The main question is how to force isolated points at fixed positions to be part of the
curve (or the surface). The next theorem states that one can freely pick Θ(n2) arbitrary
small regions in R2 (Θ(n3) in R3) and always finds a curve (or surface) of degree n that
contains an isolated point in any of those regions.
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Theorem 6.6.2. For d, n ∈ N, set c :=
(⌊n/2⌋+d

d

)
− d. Then, for any ε > 0, and any set of

points p1, . . . , pc ∈ Qd, there exists a hypersurface C ⊂ Rd of degree n such that for any
pi, C contains an isolated point p′i ∈ Rd with ‖pi − p′i‖2 < ε.

Proof. W. l. o. g., we assume that n is even. The idea is to construct d polynomials
f1, . . . , fd of degree n/2 that all interpolate the points p1, . . . , pc, and to consider the
curve defined by f := f2

1 + . . . + f2
d . Obviously, deg f ≤ n, and V (f) has isolated points

exactly at the intersection points of V (f1) ∩ . . . ∩ V (fd). We have to prove that f1, . . . , fd
can be chosen such that they intersect only in a finite number of points.

First of all, almost all choices of d hypersurfaces of degree n
2 yield a zero-dimensional

common intersection: consider the coefficients of the polynomials as indeterminates, then
the (multivariate) resultant R [CLO05] with respect to any variable, say x1, is a polynomial
in x1 that does not vanish completely. This means that for almost any choice of coefficients,
the concrete set of polynomials will only have finitely many common intersections.

We next fix c points p′1, . . . , p
′
c in Cd with yet indeterminate coordinates. We force d

hypersurfaces, with indeterminate coefficients to pass through them. As a consequence,
each coefficient can be re-expressed in dependency of the coordinates of the p′i, plus addi-
tional degrees of freedom. The same also holds true for the resultant polynomial R. The
statement of the theorem follows, if we can prove that the resultant polynomial does not
vanish identically for all choices of p′1, . . . , p

′
c, because this already implies that it does not

vanish identically for almost all choices of p′1, . . . , p
′
c.

The degree of R is (n/2)d. Choose d hypersurfaces f1, . . . , fd, such that the leading
term of R does not vanish. Then, there exist (n/2)d intersection points in the projective
space P(Cd), and we can w. l. o. g. assume that all these points actually lie in the affine
space Cd. It is a simple proof that (n/2)d ≥ c for all n, d ∈ N (by induction on d). So, we
can pick c of the common intersection points as points p′1, . . . , p

′
c from above, and set the

other degrees of freedom such that we obtain f1, . . . , fd. With this choice, the resultant
does not vanish, thus, it defines a lower-dimensional vaariety in Cd. It follows that the
resultant does not vanish for almost any choice of base points p′1, . . . , p

′
c.

Thus, for given points p1, . . . , pc ∈ Qd, we find points p′1, . . . , p
′
c in an ε-ball around

them such that there are hypersurfaces f1, . . . , fd interpolating them and such that the
resultant of f1, . . . , fd does not vanish completely. It remains to argue that p′1, . . . , p

′
c can

be chosen with real coordinates, but this follows immediately, since otherwise, the resultant
variety would contain an open ball of Rd, and consequently, it would contain the whole
Rd, which is impossible.

Let us apply this theorem in the plane. Consider the unit circle, called s. The isocom-
plex for s is determined by a sequence of points on the circle. We cut out c′ :=

(
n/4+2

2

)
− 2

disjoint regions of the unit disc, by intersecting the disc with lines. We place a disc of
size ε in each of the regions and force an isolated point of the curve to lie inside each disc
(Figure 6.11). By the above theorem, this is possible using an algebraic curve of degree
n/2.

We can observe that the isotpoic cycle of the unit circle contains a vertex in each of
the regions. Obviously, if there is no such vertex, the cycle misses the region completely,
so the isolated point is outside the cycle, but that contradicts the properties of a stable
isocomplex. This means that at least c′ = Ω(n2) vertices are placed on the unit circle.

Finally, we take a collection of n/4 concentric circles, instead of the unit circle, such
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Figure 6.11. To contain points in the blue discs, a vertex must be placed in each of
the regions cut out by the dashed lines.

that the lines chosen as in Figure 6.11 still cut out c′ disjoint regions for any of the circles.
This is clearly possible, if all concentric circles have radius close enough to 1. The argument
from above now works separately for each of the circles, thus, each one is divided into Ω(n2)
line segments under the isotopy.

To summarize, the final curve consists of two components: one curve of degree n/2 that
forces the isolated singularities in the regions, and a collection of n/4 circles (of degree
n/2). The union is of degree n, and any stable isocomplex requires Ω(n3) line segments
(and vertices) in total.

The reader might object to the fact that the constructed curve is reducible, but irre-
ducibility can be achieved as well by slightly changing the construction. Construct two
distinct (irreducible) curves that contain the same set of isolated points; let g1 and g2
denote their defining polynomials. Now, consider n/2 circles with radius close to one, just
as before. Let C1, . . . , Cn/2 denote them, sorted by increasing radius. Let V (f1) be the
curve defined by the union of the circles with odd index, and V (f2) the curve defined by
the even circles. In other words, any ray from the origin meets the circles of f1 and f2 in
an alternating sequence.

Define f := f1g1 + f2g2. In general, this is an irreducible curve. We have to argue why
this curve still yields Ω(n3) line segments in a stable isocomplex. For that, consider a ray
starting in the origin. This ray intersects each circle exactly once. Let s1, . . . , sn/2 be the
signs of f at the intersection points. It is not difficult to see that this sign sequence is si = 1
if i = 2, 3 mod 4, and s1 = −1 otherwise (Figure 6.12). Thus, f must have a circular
component in the annulus between Ci and Ci+1 for i = 1, 3 mod 4, and the isocomplexes
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of these n/4 circular components each have to introduce at least Ω(n2) vertices, by the
same argument as for the concentric circles.

<0

=0

>0

=0

<0

=0

<0

=0

>0

=0
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<0

<0 >0 >0 <0 <0<0

Figure 6.12. Illustration of an irreducible worst-case construction. Let V (f1) be
defined by the blue circles, and V (f2) by the red circles. For any ray from the origin, f1

changes its sign whenever passing a point of V (f1), and the same holds for f2 (denoted
by the blue and red rays on the right-hand side). Since f = f1g1 + f2g2, and because
g1, g2 ≥ 0, the sign of f at an intersection with a circle is determined by the sum of f1

and f2. Therefore, we must have circular components of f in every second annulus.

The construction for surfaces is completely analogous. We consider the unit sphere
and choose c′ :=

(
n/4+3

3

)
− 3 = Θ(n3) disjoint regions by intersecting the unit ball with

planes. Inside each region, we place a small ball, and force an isolated point in the ball;
these isolated points can be chosen to lie on an algebraic surface of degree n/2. By the
same argument as in 2D, a vertex on the unit sphere must be placed in each region. This
yields Ω(n3) regions for the sphere and, choosing n/4 concentric spheres, we obtain at least
Ω(n4) vertices in total.

Summary

We have analyzed the complexity of (stable) isocomplexes for algebraic curves and surfaces.
For algebraic curves, we were able to give tight bounds: Θ(n2) simplices are necessary and
sufficient for general isocomplexes (in the worst case); for the stable case, Θ(n3) is tight.
For surfaces, we only know that Ω(n3) simplices are necessary and O(n5) are sufficient in
the general case. In the stable case, the bounds are Ω(n4) and O(n7).
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cylindrical algebraic decomposition, 13, 93,

167, 175, 199

Davenport-Mahler bound, 52, 112, 114
dcel, 96, 187, 189, 193
defining polynomial

of a curve, 20, 94
of a root, 55, 100, 156

degree
local, 202
local gcd, 202
local real, 202
of a polynomial, 18

delineability, 22, 25, 100, 202
derivative, 19, 114
Descartes method, 47–54

complexity analysis, 51–54
subdivision tree, 49, 51, 79, 81

Descartes’ rule of signs, 48, 84
divisor, 18
domain, 18
Ducos’ algorithm, 44
Dupin cyclide, 187, 189–192

EGC paradigm, 8, 93, 157, 200
Euclidean division, 39
event point, 118, 133, 224
event queue, 97, 171
event-bounded segments, 121, 124

f -stack, see stack, of one curve
factorial domain, 18
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fast integer multiplication, 38, 58
Fermat prime, 180
fg-stack, see stack, of a curve pair
field of fractions, 19
Fujiwara bound, 48
fully critical, 136
functor, 159

Gauss’ lemma, 19, 44
generic position, 95, 107, 133

of a curve pair, 135, 139
generic programing paradigm, 157, 220
geometric primitives, 8, 97, 105, 144, 157,

158
greatest common divisor, 18

cofactor, 32
of polynomials, 30–33, 156

homogenization, 166, 192
Horner scheme, 69

implicit function theorem, 21, 37, 102
inscibed angle theorem, 50, 76
intersection multiplicity, 37, 104, 134, 225
interval

active, 82, 85
almost short, 87, 89
interesting, 85, 89
isolating, 47, 55, 100
standard, 54

interval arithmetic, 68–70, 120, 124, 177, 183,
210

irreducible, 18, 21, 55, 200
isocomplex, 17, 93, 118

stable, 17
isotopic, 16, 93, 199, 213

Jordan curve theorem, 189

Landau’s inequality, 41
lazy evaluation, 160, 220

Möbius strip, 187
Möbius transformation, 48
magnitude of polynomial, 39
Mahler measure, 40, 58, 61, 112, 115, 127
minimal polynomial, 55
Minkowski sum, 187
model, 157, 189

modular filter, 156
multiple root, 19
multiplicity, 19, 91
multivariate polynomial, 19

Newton’s method, 59
number of sign variations, 34, 76

Õ-notation, 58, 152
Obreshkoff, 50

area, 50
disc, 50
lens, 50, 76
theorem, 51, 76, 81

one-circle theorem, 50, 77
one-curve-critical, 136, 149
overlay, 164, 218

polynomial evaluation, 41
polynomial remainder sequence (prs), 33
pre-stack, 134
primitive part, 18, 102, 129
primitive polynomial, 18, 202
psc, see subresultant, principal coefficient

Rational univariate representation, 167
regular point, 21, 149
resultant, 27, 58, 61, 109, 211
resultant-first strategy, 162, 165
Rolle’s theorem, 114
root bound, 22, 48

Schönhage’s Theorem, 75
segment of an algebraic curve, 94, 100
segmentation, 24, 93, 102, 199
separation, 52, 66, 78, 142
shear transformation, 17, 36, 108, 117, 135,

140, 152, 154
silhouette, 203
simple root, 19
simplex, 17
simplical complex, 17
singular point, 21, 130
specialization property, 28, 32, 35, 109, 117,

203
speicialization property, 206
square-free, 18, 134, 202
square-free factorization, 46, 137, 168, 171,

180
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square-free part, 18, 80, 171, 207
stack

intermediate, 113–116, 148
of a cad, 214
of a curve pair, 104, 134, 160, 171
of one curve, 103, 159, 168, 171

status line, 97, 145
stratification, 199
stratum, 199
strong root isolation, 57–66
strongly critical x-coordinate, 22, 29
structure theorem, 32, 35, 43, 46
Sturm sequence, 34
Sturm’s Theorem, 34
Sturm-Habicht sequence, 33, 109, 168, 171,

206
subresultant, 30, 168, 171

cofactor, 32, 46
computation, 42–44, 161, 180
defective, 33
polynomial, 30
principal coefficient, 30, 109, 137
regular, 33

Sylvester (sub)matrix, 27, 30, 153, 226
symbolic computation, 12, 109, 111, 148,

152, 163, 200

Taylor shift, 53, 58, 79, 83
topology computation, 93, 108, 118, 200, 207
torus, 187
total degree, 19
traits class, 157, 189, 196
transit point, 224
trapezoidal map, 226
trivariate polynomial, 19
two-circle theorem, 50, 77

unique factorization domain (UFD), 18
unit, 18
univariate polynomial, 19

vanishing set, 20
vertical component, 21
Voronoi diagram, 187, 197

x-monotone segment, 24, 96, 171

z-fiber, 206
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A
Realization of Trigonometric Functions

This section describes how approximations of trigonometric functions are computed in
Algorithm 5.2. We emphasize that these solutions should not be considered as optimized
solutions, but they constitute a certified variant of computing trigonometric functions.

A.1. Approximating π

Given some precision p, our goal is to compute a value pi such that |π− pi| < 2p. Despite
more modern approaches, we use the rather classical approach of Machin to approximate
π. With the formula

π

4
= 4 arctan

1

5
− arctan 1239

and the Taylor series for arctan

arctanx =

∞∑

k=0

(−1)k
x2k+1

2k + 1
,

we can approximate π to any precision, using the expression

π =
m−1∑

k=0

(−1)k

2k + 1

(

4

(
1

5

)2k+1

−
(

1

239

)2k+1
)

︸ ︷︷ ︸

=:sm

+
∞∑

k=m

(−1)k

2k + 1

(

4

(
1

5

)2k+1

−
(

1

239

)2k+1
)

︸ ︷︷ ︸

=:rm

.

We proceed in two steps. First, we find m ∈ N such that |rm| < 2p−2. Second, we evaluate
sm with interval arithmetic of increasing precision until the width of the resulting interval
I = [c, d] is smaller than 2p−1. Then, we return [c − 2p−2, d + 2p−2], which is of a width
smaller than 2p and is guaranteed to contain π.
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Finding a suitable m is a technical issue. We have

|rm| =

∣
∣
∣
∣
∣

∞∑

k=m

(−1)k

2k + 1

(

4

(
1

5

)2k+1

−
(

1

239

)2k+1
)∣
∣
∣
∣
∣

≤ 4

2m+ 1

∞∑

k=m

(
1

5

)2k+1

=
4

5(2m+ 1)

∞∑

k=m

(
1

25

)k

=
4

5(2m+ 1)

(
1
25

)m+1

24
25

=
5

6(2m+ 1)

(
1

25

)m+1

≤ 2−4m−4

2m+ 1
,

so if 2−4m−4

2m+1 < 2p−2, or equivalently

log2 2m+ 1 > −p− 4m− 2

is satisfied, we have |rm| < 2p−1.

A.2. Approximating sin

We approximate sin(α) for α ∈ [0, π4 ]. Note that this range for α suffices for our application.
We consider the Taylor series for α. It is well known that

sin(α) =
∞∑

k=0

(−1)k
xk

(2k + 1)!

=
m−1∑

k=0

(−1)k
xk

(2k + 1)!
︸ ︷︷ ︸

=:sm

+
sin(m)(ξ)

m!
xm

︸ ︷︷ ︸

=:rm

for ξ ∈ [0, x]. As for π, we want to find m ∈ N such that |rm| < 2p−2. For simplicity, we
derive a global bound that is independent of x, although incorporating x would further

improve the bound. Clearly, |rm| = sin(m)(ξ)
m! xm ≤ 1

m! , so if m! > 2−p+2, the requirement is
fulfilled.

Next, we evaluate sm using interval arithmetic with increasing precision until the re-
sulting interval is of a width smaller than 2p−1. Then we enlarge the interval on both sides
by 2p−2 to obtain an interval containing sin(α).
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A.3. Approximating arcsin

The technique to approximate arcsin is analogous to that for sin, but the computation of
m is slightly more complicated. Using the Taylor series, we get

arcsin(x) =
∞∑

k=0

(2k)!

4k(k!)2
x2k+1

(2k + 1)

=
m−1∑

k=0

(2k)!

4k(k!)2
x2k+1

(2k + 1)
︸ ︷︷ ︸

=:sm

+
∞∑

k=m

(2k)!

4k(k!)2
x2k+1

(2k + 1)
︸ ︷︷ ︸

=:rm

The bound for m that we derive will depend on x in this case. We have

|rm(x)| =
∞∑

k=m

(2k)!

4k(k!)2
︸ ︷︷ ︸

≤1

x2k+1

(2m+ 1)

≤ 1

2m+ 1

∞∑

k=m

x2k+1

=
x

2m+ 1

x2m

1− x2

So, |rm(x)| < 2p−2 is satisfied if x
2m+1

x2m

1−x2 < 2p−2, or equivalently

x2m+1

2m+ 1
< 2p−2(1− x2)

A global bound can be obtained by exploiting the fact that 0 ≤ x ≤ π
4 <

4
5 . However, the

convergence behavior is much better for x close to zero.
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