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Abstract  In this work, we compared six global search heuristics amal $aoring functions
in the field of ligand-receptor docking. A new way for the gead based minimization of a
ligand whose position in space is defined by translatioendaition and a set of torsional flexible
angles was implemented and thoroughly tested. The defaalt $earch method of a Lamarckian
genetic algorithm was replaced by our novel gradient bappdoach and the new hybrid was
compared to non-gradient global search heuristics. Finalé present our docking program
BALLDock, in which we incorporated our findings.

Zusammenfassung  In der vorliegenden Arbeit wurden sechs populationsbisi@ptmie-
rungsheuristiken und zwei Scoring-Funktionen im HinblaK ihre Leistungsthigkeit im Be-
reich Ligand-Rezeptor Docking miteinander verglichenalakdazu wurde eine neuer Ansatz
entwickelt, der die lokale, gradientenbasierte Optimmegrpartiell flexibler Molekile, deren Po-
sition und Konformation durch Translation, Orientierungdweine Anzahl flexibler Bindungs-
winkel definiert ist, erlaubt. Danach wurde die gradienteiefMethode zur lokalen Optimierung
eines Lamarck genetischen Algorithmus durch das neuagtig@ientbasierte Verfahren ersetzt
und dessen Einfluss auf die Ergebnisse der globalen Sugsileanalysiert. Abschliel3end wird
das Dockingprogramm BALLDock vorgestellt, in das die newgenenen Erkenntnisse einflos-
sen.
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1. Introduction

Down to this day it happens that unknown tribes emerge frardtep jungle in south America
or some islands in the pacific ocean and even those peopler, having had any contact with
modern civilization and basically still living in the stoage, try to overcome diseases or palliate
pain by some kind of medication. Thus, we can conclude, trediome is one of the most
ancient fields of cultural effort. Still, indicated by theemsge life expectancy (Fig. 1.1), the
capabilities of physicians in the civilized world just 200ays ago do not represent a significant
improvement over naturopathy, applied by a tribal medionaa.

In the second half of the nineteenth century, however, sifimation of medicine and pharmacy
together with advances in other natural sciences led totarbetderstanding of pathological
processes and allowed for a much more effective treatmetiisebses. Nevertheless, the quest
for new drugs has been a process of trial and error, (e.ghanspnine, a therapeutic agent against
syphilis discovered by Paul Ehrlich) or even of chance (eegicillin, discovered by Alexander
Fleming). Emil Fischer explained the activity of an agenttby "key-lock principle™! i.e. the
drug fits like a key to a target structure. This parable wasred¢d by Daniel Koshland to
the induced fit theo®/by postulating, that the conformation of the target protéianges upon
binding of a ligand molecule. Recently, an alternative thex@lled “conformational selection”
was introduced to explain alterations in protein confoioret. Of course, it would be desirable
to be able to blueprint such a key for a target that has beettifigel as the cause of a specific
disease. In fact, this is a central task in computationainisiey, called rational drug design,
which implicates the ligand-receptor docking problem (Ri®):

Given a small ligand molecule and a large target receptonn&ruct the native
binding pose of the ligand and calculate the binding freegne

The binding free energy defines some kind of measure for tlaitgwof the ligand-receptor
complex and can be determined experimentally. Unfortuyatas approach is time consuming
and expensive, so computational chemistry aims at congpthmbinding free energy in silico.
To date, there are more than sixty different docking prograwailable and each one, at least
to our knowledge, uses the same basic approach: the spaossible ligand positions and con-
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Figure 1.1.: Development of human life expectancy (dateapxtiated from multiple sources).

formations is sampled and evaluated by a scoring functitre actual method for the sampling

process as well as the scoring function differ from prograrprogram. Results from compara-

tive studies of docking programs are somewhat inconsistéenertheless, there have been two
general sampling methods that seem to produce good resudtsegular base: fragment-based
approaches and population based meta-heuristics. Themgtmmance of the latter is espe-

cially surprising as they rely strictly on the one-dimemsibresult of the scoring function and

disregard available information of the potential energgédrysurface.

A similar task in molecular modeling is the optimization oblecules, based on the energy
gradient. Given a structure, "local optimizers” travel be potential energy hypersurface (PES)
to find the next local minimum, which, hopefully, corresperid a natural conformation. Here,
methods that do not use the energy gradient cannot compétenis of speed and precision.
One example for such a non-gradient method is the Powellmi@ei® that implicitly gains
gradient information by applying bracketing methods to flmelminimum of well-defined search
directions. This observation raises the question why tlegggngradient is regularly ignored in
ligand-receptor docking. First, the current programs falenular optimization work on the
pure 3-dimensional representation for each atom, i.e. atrh of the molecule possesses a
y- andz-value defining its position in Euclidean space. Contranhad,tmost docking programs
use an internal representation, which consists of rotatasound flexible torsional angles with
a 3-dimensional translation and rotation for the whole mwale. This has the advantage of a
largely reduced search space. The drawback is the noattoemputation of the gradient for
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Figure 1.2.: Docking problem illustrated: For a given ligga) and receptor (b), we have to find
the native binding pose (c).
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parameters defining the molecular orientation. There has be effort to represent not only
a single molecule but multiple molecules and their relapesitions using virtual atoms and
bonds which is called ICM.Additionally, the method to calculate the energy gradiemtthis
representation has been published. However, it must belntitat the approach to handle the
translation and orientation of a rigid body by introducinged of virtual atoms is highly prone
to a gimbal lock like phenomenchrotational axes may align, leading a loss of one or more
degrees of freedom.



2. Objectives

This work aims at answering two main questions: (1) What aetaracteristics of population-
based meta-heuristics when applied to the ligand-recelottking problem and (2) Can we im-
prove those meta-heuristics by employing a gradient basezd $earch algorithm.

To study the performance of different population based rhetaistics, we perform docking
experiments with the well establishedToDOCK energy function and piecewise linear poten-
tial (PLP) of Gehlhaar. In this process we also analyze thgachof a dedicated local search
procedure (Solis & Wets), as proposed by the authorsusbDOCK. The experiments and their
evaluations have to be designed such that they allow forademparison between the various
sampling methods and scoring functions.

To answer the second question, we have to develop a methae tgradient based optimiza-
tion in ligand-receptor docking. This approach requiresdbmputation of the derivatives of the
scoring function with respect to the model parameters, visitrivial for translation and flexible
torsional angles but problematic for orientational partarse

In the next step, we replace the local search method of SolWgefs by our gradient based
approach and compare the results to non-gradient searcistiz=u

Finally, all optimization methods and the Gehlhaar scofimgtion are implemented in BALL
to provide the docking suite BALLDock.






3. Related Work

3.1. Comparison of docking methods

Most related work was performed by many comparative studreshe accuracy of docking
programs and algorithms. In a few cases, only the samplinbadevas changed while the same
scoring function was employéd’! While such studies allow for investigating the influence of
the sampling method on the docking results, the number ofpteras employed was usually
small. In most cases, however, comparisons between diffpregrams using different search
heuristics and scoring functions were perforried.Such studies do not allow to assess the
individual influence of the search heuristics or the scofimctions on the docking accuracy,
because both are intricately woven with each other in thd firgram. Hence, such studies
impede a fair comparison of the sampling strategies or thersgfunctions’ In addition, several
issues (binding site definition, experience with dockinggsams etc.) may bias comparisons,
too 10

3.2. Local optimization in ligand-receptor docking

Local optimization was first applied to ligand-receptor king in a Lamarckian genetic algo-
rithm by AuToDoOCK 3.0, replacing the simulated annealing method of previeusions. Since
it does not require any gradient informatioxyyToDOCK, as well as many docking programs,
that are based oAUTODOCK, e.g.Pso@AuTobock!! and SODOCK!? use the method of
Solis & Wetd? for local optimization. Interestingly, all three studiesamimously reported a
beneficial effect, when local optimization was employed.

In related work with respect to the main focus of this worladient based minimization in
ligand-receptor docking is mainly confined to structureiragation after the actual docking
procedure. To our knowledge, there is only a single progi@ml,* that utilizes gradient based
minimization for ligand receptor dockirfg.Since ICM is a commercial software, the authors
obviously do not want to unveil any details of their appraagtiditionally, they do not give any
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Figure 3.1.: Popularity of different docking programs imte of number of citation*

information on how gradient based minimization influendes performance of their program.
We tried to re-implement the ICM approach of virtual atoms arternal coordinates to handle
multiple molecules, but the interactivity of its paramstaerade it impossible to produce reliable
results, suitable for a comparison to our approach, usamgstational and orientational gradient
information, which is unprecedented, at least to our kndgte in the computational chemistry.

3.3. Ligand-receptor docking

Although a vast number of docking programs was publisheldegnast decades with each one try-
ing to set itself apart from its competitors by employing fieslent approach to the optimization
method of scoring function, there have only been few thatexell a widespread distribution,
based on the number of citations in journals (Fig. 3.1).

According to those numbers, FleXX coLb!® andautobpock!’ make up for more than 50%
of all published docking applications. While the latter twiilize a genetic and Lamarckian
genetic algorithm respectively, similar to the approaahdus this work, FlexX uses geometric
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hashing to position a fragment of the ligand with a subseuenemental construction. While
GoLD andAauToDOCK deliver good results in terms of RMSD to the native bindinggpddexX,
while not much worse in this respect, is highly renowned fershort running time, making it
the method of choice for high throughput experiments.






4. Materials and Methods

Nonlinear programmin is a key challenge in computational chemistry (e.g. stmeotyptimiza-
tion), economy (e.g. minimum cost transportation) or eagiing (e.g. efficient aerodynamics).
In the following we will present two related problems of nioelar programming, i.e. finding the
global and local optimum of a cost function.

4.1. Nonlinear optimization

4.1.1. Global optimization

Finding the minimum of a given functiofis a central task in mathematics.
minf : R"— R

means, that we want to findn R, such thatf (x) < f(y) for everyyin R (Fig. 4.1). Without loss
of generality, we use minimization synonymously for op#ation, since every maximization
problem can be transformed into a minimization problem hyatiag the underlying, so called
objective function.

Unfortunately, there is no method to this day, that guaesite find the global minimum for
any function in acceptable time and every approach tha toieddress this task evolves to some
kind of exhaustive searci. Of course, exhaustive search is not possibl®ibut since in a
computational environment, every real number is represkoy a finite set of bits, we could try
to test every possible state and at the end present the glubahum. The drawback of this
method is the enormous number of possible states. Even ifowsti@in our search to a single
dimension with values ranging from O to 10, a single precidloat employs 24 bits for that
range, which yields more than sixteen millior/{pdifferent numbers. Although this number
may seem to be large but still manageable, it must be keptrial thiat most practical objective
functions require much higher dimensionality. In the cddgand-receptor docking, for a ligand
of medium complexity with only four torsional flexible anglgielding ten degrees of freedom,

11
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B

Figure 4.1.: Minima of a one-dimensional real valued fumttiA and C are local minima while
B is the global minimum.

the number of states would be aboét® ~ 1072. Even if we employ a very fast scoring function
(e.g. 1000 evaluations/s), it would take®1§ears to obtain a solution. This time-frame is about
ten times larger than the presumed remaining life expegtahthe universe.

If there is no exact algorithm available for a particularlgemn, or if its running time is im-
practicable, heuristic search methods are often sucdgsapplied?® A heuristic is a kind of
recipe or guidance how to work on an optimization problenthegiallowing any assumptions
of the quality of its solution nor of the running time. Howevkeuristic search methods often
produce good results in short time. In the diverse family efifstic methods, the subset of
meta-heuristics possess a unique feature. In contrast éuiastic, that is specific for one or
a few applications, meta-heuristics are applicable to @afly infinite number of optimization
problems. They are often called black-box algorithms sthey don’t necessitate a deeper in-
sight in the problem’s nature but require only a one-dimameli score to compare the quality of
different solutions to the problem.

A meta-heuristic can work on a set of integer variables, vaaables, a mix of both or some-
thing completely different like graphs or bit-strings. Qndividual solution can at the same time
be interpreted as a binding pose in ligand receptor dockingpstance of an arbitrary non-linear
function or define the behavior of traffic lights.

12



4.1. Nonlinear optimization
4.1.2. Local optimization

While there is no practical method, that guarantees to appeie theglobal optimumof an
arbitrary function, numerical methods are able to findeal optimum a point in search space
that is optimal in its neighborhood. For example, we coulketdne Alps as the potential hyper-
surface of a real valued 2-dimensional function. Finding lbcal minimum of an arbitrary
coordinate roughly corresponds to following the trace gteese, rolling downhill to the deepest
point of a valley. In Fig. 4.1, a method for local optimizatiought to converge to minimum A,
starting from any point left from X, to minimum B, starting froany point right from X and left
from Y and to minimum C from any point right from Y. The findintdpat the local minimum B
is identical to the global minimum suggests, that local mptation methods can be more than
helpful in global optimization.

In local minimization, we have to distinguish local from gl methods. While the latter
guarantee to approach the local minimum, this is not truddoal methods, that require the
initial position to be sufficiently close to a local optimuifthis is not the case, a local method
might as well converge to a maximum or a saddle point.

Newton’s method

One of the most efficient approaches for local optimizatibreal valued functions is Newton'’s
method?! It requires the gradient

_ [af of 5f
Df(X)— |:5_X1,6_X2,...,6_Xni|
and the Hessian matrix
- 8% 52 f &f T
o5 OX10X%2 OX10Xn
52f 52f 52f
O%20X1 ag O%20%n
H=
5°f 5°f 52f
| OXn0X1  OXnOXo ox2 |

By replacing the current positiof, using the Newton step, by

X1 =X (H(f (%)) 0F (%),

13



4. Materials and Methods

Newton’s method can find the minimum of a quadratic functioome step, if the start position
is sufficiently close to the minimum. Of course, one seldoestto optimize purely quadratic
functions, but even in the general case, Newton’s methodergas rapidly.

Quasi-Newton approach

The quasi-Newton approathavoids two problems of the original Newton’s method: Comput-
ing the inverse of the Hessian matrix in each step is oftecowiputationally feasible. Thus, the
Hessian matrix is approximated by previous steps usinggnalglient information. Additionally,
Newton’s method converges only locally, i.e. to a statigrawint, e.g. a maximum. Therefore,
the quasi-Newton approach uses a globally convergent méthget sufficiently close to a min-
imum to apply Newton steps.

The general approach of a quasi-Newton method for the maaitioin of a real valued function
F is given by:

1. Computedf(xx) and an approximation tily.
2. Remove possible ill-conditionednessHif by appropriate perturbation.
3. SolveH,sk = Of (xy).

4. Take Newton step or determirg_; by global strategy.

This means, thaty. 1 is only directly computed by the Newton stepxifis sufficiently close to
a local minimum. If this is not the case, a global method, & lne search algorithm, is applied.
A line search finds the local minimum of a one-dimensionatfiam g, that is defined by

g(a) =xc+asy.

One of the best quasi-Newton methods is the L-BFGS approathdlculates the approximation
By 1 of the Hessian matrix by
YioYk  Brsk(Biso)"

Brr1 =Bk +
* W S Bis

with By being the previous approximation to the Hessian matrixyarizking

Y= OF (1) — O (%)-

14



4.2. Molecular representation

(2)R (4)R

%N%N

C(I)R C(})

Figure 4.2.: Example for flexible bonds and molecular cedtmith R being arbitrary heavy
atoms. If bond &) - C@ is rotated, only atoms R connected t&)Gire moved. If
bond G2 - C®) is rotated, ¢ and atoms R connected td'Cand G2 are moved.
Due to symmetry, the same holds true for the other two bontis ether indices.
This means &), C® and G% are never moved and hence define the molecular
centroid.

One additional feature of this method is, that the approt@sh&lessian matrix is always positive
definite, i.e. it is guaranteed, thetpoints in a downhill direction.

Solis and Wets optimization method

The local search method of Solis and Wetis a stochastic heuristic for continuous parameter
spaces. Its primal purpose is the optimization of functithreg do not provide gradient infor-
mation, e.g. theeuToDOCK scoring function:’ For our comparison, we closely followed the
version ofAuToDOCK 3.1 with the only alterations being due to adjustments toBA&L 23
environment. The basic algorithm starts with a random $estep and generally follows this
direction with random movements as long as the objectivetion keeps improving. Continued
improvements lead to an expansion of the random search, sibpseas continued failing nar-
rows the search. The algorithm iterates until either a marimumber of function evaluations is
reached or convergence is established by the random stépfailihg below a certain threshold
value.

4.2. Molecular representation

For structural optimization, we require a molecular reprgation that can be employed by a
search algorithm. The conformation and position of a mdeeau space is uniquely defined
by the Cartesian coordinates of its atoms. Often the comphetiecular flexibility is aban-
doned for of a reduced set of parameters that is requiredefmmesenting a molecule. Like
many other applicatiot& 17-?*we use a compact representation of translation, oriemtaiod

a set of flexible bonds that connect rigid compounds. Thusneesl three real values for the
translation(ty, ty,t;), one real value for each flexible borigy,..,¢), and a unit quaternion

15
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composed of four real valugs), g2,03,04) for the molecule’s orientation. A parameter vec-
tor X = (tx, ty,t7, 01, 02, 03, 4, @1, -, ¢h) is converted into a molecular conformation by a series of
transformations.

In the first step, all flexible bonds are processed. Becauserinase a flexible bond is guar-
anteed not to be part of a ring, it divides the molecule in twossructures. The part containing
fewer atoms is rotated while the other one remains statyq(fidg. 4.2). This procedure is applied
to all flexible bonds.

In the next step, the whole molecule is rotated. To this dreotigin is defined by the average
position of all atoms that were not rotated in the first stegstdefining a form of molecular
centroid. In other implementations the rotation originrituitively placed onto the geometric
center of the ligand, but this method complicates the coatpmut of derivatives with respect to
orientational parameters.

In the last step, the molecule is moved according to the tiaeslational parameters.

4.3. BALL

All docking methods examined in this work were implementsithg the BALL library?® BALL
is an application framework written in C++ that provides gé&number of methods for computa-
tional chemistry. It was designed to be an efficient and rofead for rapid software prototyping.
In a computational environment, the effective handlinganfé chemical and biological enti-
ties requires sophisticated data structures and matheahabjects, as provided by BALL (Fig.
4.3). On top of those, so called foundation classes follomédeclasses, which embody atoms,
bonds, molecules, etc. Both classes are used by differenp@oents, that implement basic
operations, e.g. file input/output and molecular mechamitéle the application layer provides
ready-to-operate programs for docking, MD-simulations, €he entire code that was written in
this work for the modeling of molecules, scoring functioets. was generated using the BALL
library. Additionally, BALLDock is scheduled to be an intadjpart of BALL in one of the next
releases.

4.4. Astex diverse set

To assess the quality of different search heuristics andirgetunctions in ligand-receptor dock-
ing, we require a test set. We chose the Astex divers®setjch consists of 85 high resolution
protein-ligand structures. All ligands possess drug-ikeperties with 23 being approved drugs

16



4.4. Astex diverse set

OO Scripting Language (Python)
Application
Embedded
Visualization |mFI;|§ﬂ/ Molecular Solvation Structure NMR e
BallVIEW Export Mechanics Python

Extensions
ar | KERNEL |
‘ Foundation Classes ‘
OpenGL ‘ STL ‘

Figure 4.3.: Structure of the BALL library.

and six being in clinical trials. Fig. 4.4 displays the coexily of the ligands in terms of num-
ber of flexible torsional angles. The Astex diverse set wasl s compare the different search
heuristics and the two scoring functions.

17
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Figure 4.4.: Distribution of rotatable bonds in the Astewedlse set. For some ligands,
AUTODOCK demands more bonds to be flexible because of the existensplafie
polar hydrogen atoms.
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5. Population Based Meta-Heuristics for
Ligand Receptor Docking

All global optimization methods compared in this work bejdo the class of population based
meta-heuristics. A meta-heuristic is an optimization rodihthat is not specific for a single
problem, but is applicable to a virtually infinite number asks. Any arbitrary problem is only
required to possess a set of parameters that enables théeusistic to search the space of prob-
lem instances. Additionally, it must return a score thawjes insight in the quality of a point
in search space. In this context, population based algosittny to gain gradient information
by holding a certain number of trial solutions, so calledvitiials. This gradient information
is used to produce new individuals, that have better scarésteopefully, approach the global
optimum.

Here we compare six population based meta-heuristics: fatiants of the genetic algo-
rithm,2® differential evolutior?” and particle swarm optimizatici. In the following section we
will briefly describe the underlying principles of the inatlual algorithms and their applications
in molecular docking.

5.1. Genetic and Lamarckian genetic algorithm

The genetic algorithm?® (GA) imitates the principles of Darwinian evolutionary tng, partic-
ularly natural selection and reproduction. It uses a seeakgc operations to drive a population
iteratively toward better solutions. Fig. 5.1 describesgbneral schedule of a genetic algorithm.
Optimization starts with the creation of an initial randoopplation. In the next step each indi-
vidual is assigned a fitness score that is used to discarddhst,we. least fittest members of the
pool and to select the best individuals for creating progéngividuals that qualify to produce
offspring are subject to mating to replenish the pool by poddg new individuals, whereas mu-
tation may modify existing individuals. To conserve thereat best solutions, elitism is applied,
which means that a number of top ranked individuals are ptedefrom mutation. These steps

19



5. Population Based Meta-Heuristics for Ligand Receptor [ark
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Figure 5.1.: Flowchart of a genetic algorithm

are repeated until a threshold number of iterations is méar until a convergence criterion
has been met. Originally, GA was used to solve combinatprialblems. To this end, a genetic
individual has one chromosome, and the process of matingptemented by a crossover of
two chromosomes. However, for real valued functions, apglthis approach to a chromosome
of real values is not practical. In this case, crossing ogads$ only to new combinations of
the existing real values without introducing new internag¢elivalues. Therefore, for real valued
problems there are often special operafdrs.

The standard GA presumably converges too fast to a locamopti, which results in the
failing to find the global optimum, especially for higher dinsional search spaces, yet there are
two popular modifications to the GA, the distributed genatgorithm ormulti-deme genetic
algorithm® (MDGA) and thelLamarckian genetic algorithm3! (LGA). In MDGA, two or
more island populations evolve simultaneously and by afigwa limited migration between
these populations, diversity is enforced and convergenceached more slowly. LGA adds a
local search to the GA, to increase the fitness of randomécted individuals. On the one hand,
this increases the diversity of the population and on therdtland raises the chance for finding
the global optimum. By merging both modifications, we obtditteemulti-deme L amar ckian
genetic algorithm (MDLGA). Variations of GAs have been employed repeatedly ligand-
receptor docking—3°and are employed in the well-known programsropock,!’3%coLp,®
and in the recently developeuirTeED.3’
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5.2. Differential evolution

5.2. Differential evolution

The differential evolution algorithm?’ (DE) differs from GA mainly by two factors. First, it
does not discard a certain proportion of the populationrépliaces only existing individuals by
better ones. Second, the process of creating new indiwdwyaéxisting ones, corresponding to
the mating process in GA, is more complex (Fig. 5.2). DE gsl&veo individuals and calculates
the difference between them. This difference, multipligdatweighting factor, is then added to
a third individual, resulting in the so called trial vectéiinally, DE chooses another individual,
the base vector, and performs a crossover operation by magddending elements of the base
and trial vector. This new vector replaces the base vectyribit features a better score. Ap-
plication of DE employing theuToDOCK scoring function to six complexes showed the great
potential of this search heuristic in molecular dock#ign conjunction with a new scoring func-
tion resembling the Gehlhaar scoring function, DE was atssun theGEMDOCK program to
dock 100 protein-ligand complexé® Compared to two other commercial programsMDOCK
performed slightly better. In a more recent study, dockinthwE was performed for a set
of 77 complexes using an extended version of the Gehlhaaingcfunction®® In comparison
with commercial docking software, DE was able to identifg ttorrect binding pose with higher
accuracy.

5.3. Particle swarm optimization

Like GA and DE,particle swarm optimization?® (PSO) iteratively works on a population of
individuals, in this case called particles. In theory, thparticles are not replaced by new ones,
but, inspired by the behavior of flocking birds, are consyamtoving with a velocityv in the
parameter space to search the global optimum. For the catngubf the new positiom,e Of

a particle p, PSO calculates the differertiebetween the current positionof p and the best
position p itself encountered during optimization, as vaslthe difference, betweenx and the
best solution reported by the neighbors of p. In a first stepewa velocityvhew is calculated
using two random numbers andr,, both in the range between 0 and 1, by

Vhew = Vo|d>k\N[—|—Cl>kl’1*d1—|—C2*r2>|<d2.

In this equation, a cognitive weighi, a social weight, as well as an inertia weightt define
the impact of the respective contribution to the velocity.
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Population

1| 2| 3|4 |®e® nl|n

compute weighted
difference vector

W.D.

add to base
vector

M.V.

cross over with
target vector

T.V.

replace target vector,
if trial vector is better

Figure 5.2.: General scheme of one step in a differentidluéiom algorithm: First, select four
random population members. Adding the weighted differé¢®.) of two vectors
(4 and n-1) to the base vector (3) yields a mutation vectoi(M.Perform cross
over between mutation vector and target vector (1). Thdtregurial vector (T.V.)
replaces the target vector, if it has a better score.
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Figure 5.3.: General scheme of one step in particle swarim@ation: The final position (7) of
the particle is a combination of three independent direstimf motion. The velocity
is defined by the patrticle’s previous (1) and actual posif®)n The other two being
the best position the particle has already visited (5), hedest position the particle
is able to see (6).

Then, the particle’s new positiofewis calculated using the following formula

Xnew = X+ Vnew

Recently, variations of PSO were employed successfullydokohg using thesuTobock 3.0.5
scoring functiont:12 In comparison with the LGA implemented imuToDOCK 3.0.5, they
showed very promising results with regard to finding theweattinding pose.

5.4. Implementational details

Common to all meta-heuristics presented here is the needrtpwte the difference of parameters
to gain gradient information. This is trivial for real vatliparameters used to define translation
and torsional angles. To calculate the difference betweenrotational angles, we consider
values to form a ring. This means, that the distance betwel80* and 180 is (° rather than
360°. This enables an unlimited rotation around flexible toralangles and no torsional angle
is preferred. The same approach is used for the translatiegeees of freedom, thus producing
some kind of periodic boundary condition. Again this is dom@revent optimization methods
from favoring ligand positions in the center of the bindirarket.
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Dealing with orientations is more complex. In the GA, an piffisg’s orientation may be cal-
culated from the two parental orientations by two differapproaches. In a simple approach,
the four values of a unit quaternion are considered to bepiewigent from each other resulting
in a linear interpolation between the two parental quatersi However, the necessary subse-
guent normalization of the resulting offspring’s quaternmay produce unexpected results: The
difference of two unit quaternions, describing dissimaientations can be defined by a four-
dimensional vector. Adding this vector to another unit guaibn may be without effect on the
third quaternion due to the normalization. To deal with §iwisblem, it is possible to use the
SLERP algorithm, allowing us to compute gradient informationhwitit any numerical singu-
larities. Preliminary calculations showed that best ssiolr all meta-heuristics were achieved,
when linear interpolation was used for quaternions thavang similar and SLERP was used for
quaternions that exhibited less similarity. The similaot two unit quaternions}; andg, can
be estimated by the scalar productgifandg, are identical, the scalar product yields 1 while in
the case thaf; andqgp represent maximally different orientations, the scaladpct is O.

5.4.1. Genetic algorithm

When calculating the offspring’s values, we differentiatgviieen real valued parameters and
guaternion parameters. For real valued parameters, walatddhe differencel between two
parameters and b (without loss of generalitya < b) and uniformly randomize the offspring
value in the ranga andb if d is large, or in the ranga— 0.5-d andb+ 0.5-d if it is small
(Fig. 5.4). This discrimination off was introduced to prevent completely random numbeas if
andb are far apart, while allowing a broader searca #ndb have similar values.

Mating of unit-quaternion parameters demands an adapoagh, because the four quater-
nion values are interdependent by the constrgint= 1. Again, like for simple real valued
parameters, we discriminate mating of parameters that are similar or more different. In the
first case, we independently interpolate each of the foutegueon values, followed by a normal-
ization. In the other case, we use SLERP with a uniformly ramded parameter between 0 and
1. Best results were achieved, when the threshold distamsavitching from one procedure to
the other was & for translation, 120 for flexible torsional angles, and 0.7 for unit quaternions.

Table 5.1 lists the parameters that were used in this worthBwarious genetic algorithms.
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name number of initial population survivors elitism mutation
populations population size rate

GA/LGA 1 100 200 100 1 0.05

MDGA/MDLGA 5 20 40 20 1 0.05

Table 5.1.: Parameters for the genetic algorithms.

@) (b)
A B A B

— L=

Figure 5.4.: The curly brackets indicate the range for thigpoing’s value if the parent’s values
are far apart (a) or close together (b)

5.4.2. Differential evolution

Similar to the GA, we use a special treatment for unit quaderparameters. If the selected
guaternions are similar, we use the same procedure aslukx$@iove. Since differential evo-
lution necessitates the use of more than two quaternionsdiaulating an individual’s new
orientation, employing SLERP is more complex. The compoieadif the trial vector can be un-
derstood as a parallelogram. In the case of unit quaternioissparallelogram has to be mapped
on the surface of a 4-dimensional sphere (Fig. 5.5). If we thk weighted difference between
unit quaterniorg; andgy, we can slerp (in the following, we will use the word slerp &sdribe
the application of the SLERP algorithm) froqy to g with SLERP parametew to get unit
qguaterniongy. Then, we can slerp frompase to g With SLERP parameter 0.5 produciigg.
Finally, we slerp fronmg; to g3 to achieve the desired unit quaternqpy, .

When testing DE, we found that it produced best results, whemteight for the difference
calculation was randomized between 0 and 2 for each conipuitata trial vector.

Table 5.2 contains the parameters for DE used in this work.

name initial population  crossover
population size probability
DE 50 50 0.7

Table 5.2.: Parameters for the differential evolution altgo.
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Figure 5.5.: Calculation of the unit quaterniggg in three dimensions in differential evolution.
DE requires to add the difference betwagprandqp to gpase Which is achieved by
calculatinggz. For simplicity, we assume the weighting factor to be 1 is tiample

(02 = qw)-
name initial population wt ¢; ¢
population size
PSO 75 75 07 2 2

Table 5.3.: Parameters for the particle swarm algorithm.

5.4.3. Particle swarm optimization

The connectivity of particles in particle swarm optimipatiis crucial for the convergence be-
havior of the method. If all particles are able to see the bé&sal solution, the population

will converge faster than with limited visibility. In prehinary docking experiments, we found,
that a ring geometry produced best results. In our impleatemt, every individual obtained

information from itself and two neighboring individualsigE5.6).

Both cognitive weight; and social weight,; were set to 2 while the inertia weigivt was set
to 0.7. Again we can use the same strategy to compute uni¢iuan parameters like in DE,
but this time, the parallelogram procedure has to be apphext.

Table 5.3 contains the PSO parameters that we employedsimtrk.
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0

| O

Figure 5.6.: Topology of our particle swarm optimizatioradh particle gains information from
itself and two neighbouring patrticles.
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6. Scoring Functions for Ligand-Receptor
Docking

A scoring function in ligand-receptor docking is expectedrteet multiple requirements. In the
first place, it should allow to differentiate native bindipgses from decoy structures. Secondly,
the score should approximate the binding free energy. Ewurtbre, it ought to be efficiently
computable. However, recent publications suggest theeustgifferent functions for the re-
construction problem and for the final computation of thedbig free energ§?>~*° The scoring
function for the first problem is evaluated many times duandpcking experiment. Therefore,
it must be very fast and its global optimum should corresponttie correct binding pose. The
computation of the correct binding free energy is perforimgd dedicated energy function, that
is applied to the predicted binding pose only once. Hencantincorporate much more complex
terms, that prolongate the computation time.

In this work, we focus on the influence of the scoring functinreconstructing the native
binding pose. The actual value of the binding free energgi®fhinterest, because, as mentioned
before, we feel that this task should be performed by a desticanergy function.

The Gehlhad?f scoring function, a piecewise linear potential functiomswmplemented to
be an easily applicable function and to produce a less &testrenergy landscape compared to
other scoring functions. It does not include electrostemictributions and thus does not require
the computation of point charges for each atom. On the otaed hit must be noted that the
Gehlhaar score cannot be used to estimate the binding fexgyerComparisons of the perfor-
mance of this scoring function with other scoring or enengyctions showed that it performs
quite well for identifying the correct pos€:48 In addition, since the Gehlhaar scoring function
produces a rather smooth energy landscape, the perforrs&search heuristics may increase
when employing this piecewise linear potential functioraasariation thereo$? The Gehlhaar
scoring function has been employed in a number of std@i&3and has been implemented in
several algorithn®® and docking program®”.°1

The recently reviseduTobock scoring functiod® is part of the widely useduTobpock

29



6. Scoring Functions for Ligand-Receptor Docking

atom type Donor Acceptor Both Nonpolar

Donor Steric HB HB Steric
Acceptor HB Steric HB Steric
Both HB HB HB Steric
Nonpolar Steric  Steric Steric  Steric

Table 6.1.: Atom types for non-bonded interactions.

A B C D E F
Steric 3.4A 3.6A 45A 55A -0.4 20.0
HB 23A 26A 3.1A 3.4A -2.0 20.0

Table 6.2.: Parameter set for non-bonded steric and hydrbgading potentials.

docking suitet’ It employs 6-12 potentials for dispersion-repulsion iatgions and a screened
Coulomb potential for electrostatic interactions. Addiadly, it features a pairwise term for
hydrophobic interactions and an explicit term for diremtibhydrogen bonding between ligand
and receptor. However, this directionality is only taketoiaccount in the calculation of the
energy grid. For the computation of the ligand’s internargy, the hydrogen bonding term is
simplified for computational efficiency by neglecting thegeetric contributions.

6.1. Gehlhaar scoring function

In this work we chose the Gehlhaar functt®mainly for the following reasons: ease of im-
plementation, sufficient correlation of the function vaue the RMSD, less frustrated energy
landscape compared to other scoring functions and finally @st case for an inherently not
continuously differentiable function. It must be notedtttiee Gehlhaar score cannot be used to
estimate the binding free energy.

The formula for the scor& is composed of one bonded term for the torsional poteBtigl
and one non-bonded terf,ir for van der Waals interaction

E = Etor + Epair-

For the computation dEpair, the Gehlhaar scoring function distinguishes only founatgpes:
non-polar, hydrogen-bond-donor, hydrogen-bond-aceceptal both-acceptor-and-donor. The
interaction between any of these atom types results in tywestyof non-bonded interaction,
namely steric and hydrogen bond contributions (Table 6.1).
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6.1. Gehlhaar scoring function

(a) (b)

Energy
Energy

A B C D \

A3 “ A+3

0y

Figure 6.1.: (a) shows the original piecewise linear paempotential function used for non-
bonded interactions. (b) illustrates the modificationsigdme) applied to the origi-
nal function (dashed line) in order to produce a continupdsgferentiable function.

Both interaction types are calculated by an interval piesewnear functiorf of the pairwise
atom distancel;; of atomsi and j, with each type having different function parameters (&abl
6.2, Fig. 6.1)

Epair = ; f(dij )
I7)

This function is obviously not continuously differentiabdo we added a quadratic transition
function in an interval of 0.02 length at each junction of the original linear segmentg(bil).
These functions are uniquely defined by their interpolationditions.

The term for the torsional enerdgy,, is similar to that of other scoring functions, but restritte
to sp® —sp® andsp? — sp° bonds:

Etor =A-(1+cogn- ¢ —@))

with A= 3.0, n= 3, @ = 7 for sp’ — sp’ bonds, andA = 1.5, n = 6, @ = 0 for sp? — sp’
bonds. The original Gehlhaar function provides a sepanadegy term for the internal non-
bonded interaction of the ligand by assigning a penalty dfiléwo ligand atoms that do not
share a bond come closer than 285 his kind of energy calculation is entirely unsuited foet
computation of a gradient for it is highly non-continuous dircumvent this problem, we use
the same term for internal ligand-ligand interactions adif@nd-receptor interactions.

31



6. Scoring Functions for Ligand-Receptor Docking

6.2. AUTODOCK scoring function

The scoring function oAUTODOCK is an empirical approximation to the binding free energy
that is calculated by five individual terms: two Lennard-@epotentials for van der Waals and
hydrogen bonding energies with the latter featuring a tft to include the bonding geometry,
a Coulomb potential with a distance dependent dielectrmitystant to account for a damping
due to the solvent, a pairwise term for hydrophobic inteoast and finally a term for entropic
effects.

Aj B Gj Dj

E = Wawy (13~ 5 ) +Whbonay E(0)( 13~ 10)
L] ij ij 1] 1) ]

2

—r&

giqj 1
W, ——— +W, V; iV )e20?
+ elecg(t‘:(rij)rij + soI%(S i +S; ez

+WorNtor

All weights W are calibrated with experimental binding free energies. &faster calculation
of the interaction between ligand and receptaITODOCK pre-calculates an energy grid, while
during the docking, the scoring function is used to caleuthe ligand’s internal energy. Since
W is a constant value for a ligand, it is not included in the gldton of the score during
a docking experiment. Additionallf (t) is only taken into account for the grid computation,
while it is neglected in the computation of the ligands intdrenergy.
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7. Comparison of Meta-Heuristics and
Scoring Functions

To test the six meta-heuristics, we performed 300 docking far each ligand of the Astex data
set with each optimization method and scoring functionstirigua docking run, the ligand was
allowed to move inside a translation box with an edge lengthA centered on the ligand
in the correct binding pose. To eliminate any possible pegfee for a certain orientation, we
randomized the ligand’s orientation before every singlekdtg run. For each docking run we
recorded the final score, the best score after each scometjda evaluation, the total number of
scoring function evaluations, the RMSD to the native binginge, and the RMSD to the target
binding pose. The latter is the ligand’s position with thetscore, that is the presumed global
optimum for this scoring function, and does not necessauiycide with the native binding
pose. If the RMSD between target and native binding pose weaterthan 2, the scoring
function failed in finding this ligand’s native pose. To segia the evaluation of the optimization
methods from the scoring functions, we compared the searghidtics only in terms of RMSD
to the target binding pose. In the following chapters, werde#i hit to be a ligand position with
an RMSD smaller than 4 to the target binding pose, if not specified otherwise. Hjnao
assess the reliability of the results, we defined a saturatieasure. If is the number of hits,
then we define saturation to be the number of hits inrthe&p ranked results divided by For
example, if a meta-heuristic produced ten hits in one dac&kperiment (300 docking runs) and
out of the ten top-ranked results, three were hits, the naedichieved a saturation of 0.3.

To compare the running time, we applied the same stoppingricm for all methods. The
algorithms stopped if the best score did not improve by aageeamount for a given number of
function evaluations. This number depends linearly on timber of flexible torsional angles
in the range of 3000 and 5000, while the threshold was 1 foiltaain and 0.1 forAUTODOCK,
respectively.

33



7. Comparison of Meta-Heuristics and Scoring Functions

Gehlhaar AUTODOCK
name ohits omean g best @ mean & best & function o saturation
(%) score score score score eval.

" GA 15.88 -72.58 -98.40 -6.33 -9.04 6352 0.74
T MDGA 2150 -77.47 -99.50 -6.63 -9.14 7073 0.76
S LGA 19.99 -77.71 -99.66 -6.68 -9.12 7694 0.76
£ MDLGA 4028 -89.11 -99.83 -7.58 -9.25 12850 0.86
- PSO 4889 -88.98 -9956 -7.81 -9.16 11988 0.85
o DE 35.69 -85.80 -99.81 -7.48 -9.23 13428 0.91
" GA 3.65 -80.97 -112.61 -6.25 -9.60 8926 0.58
T MDGA 572 -85.04 -116.82 -6.43 -10.07 9418 0.56
S LGA 489 -84.83 -11559 -6.56 -9.86 10728 0.59
£ MDLGA 1261 -9812 -121.99 -7.66 -10.67 17646 0.62
,t PSO 16.18 -95.41 -118.57 -7.69 -10.43 17473 0.57
<t DE 9.29 -96.27 -122.76 -7.71 -10.77 20263 0.74
8 GA 0.18 -8556 -122.95 -6.18 -10.33 11663 0.67
S MDGA 0.62 -89.16 -130.83 -5.93 -9.95 11948 0.19
< LGA 0.25 -88.99 -12456 -6.34 -10.66 13987 0.67
§ MDLGA 325 -106.85 -147.72 -7.47 -11.39 22436 0.53
= PSO 2.29 -100.15 -142.3 -7.07 -11.06 22459 0.33
o) DE 1.47 -103.57 -148.67 -7.081 411635 26274 0.70

Table 7.1.: Comparison of the six meta-heuristics in terntstgérobability, running time, aver-
age mean and best energy as well as saturation. The resufiaritioned for small,
medium and large number of flexible torsional angles. Bothlmemof functions eval-
uations and saturation are averaged for both scoring fumgtiFor the calculation of
the saturation, we included only ligands for which all skamethods produced at
least one hit to the global optimum.

7.1. Results meta-heuristics

All'in all, we performed 306,000 single docking runs. Theutessare summarized in Table 7.1,
subdivided for simple (0-4 flexible torsional angles), nuedli(4-7 torsional angles) and complex
(more than 7 torsional angles) ligands. As expected, thebeuwt function evaluations, required
by all meta-heuristics, rises with increasing complexifythee ligand. Nonetheless, the ratio
between two different algorithms remains more or less @mswith GA requiring the lowest
and DE the highest number. It is evident, that GA, MDGA and LGhnot keep up with the
other methods in terms of hit probability and average meamesaegardless of the ligand’s
complexity. While the ratio between the best and the worshogtonsidering the mean score
remains almost constant for all three levels of complexitg, ratio of the hit probability drops
off sharply from 0.32 to 0.05. The average best score for lgitigrands is almost identical for all
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7.2. Results scoring functions

methods while GA, MDGA and LGA have a worse performance aslitg get more complex.

For ligands of simple and medium complexity, PSO has the ttemhce to find the global
optimum, but for ligands of high complexity it is surpassedtibe MDLGA. DE on the other
hand has always the best saturation and for ligands of meaiuhhigh complexity also the best
average best score. This means, that results close to gipbalum are ranked higher with a
greater probability than for any other method.

Fig. 7.1 displays the relative performance of all meta-tstigs as a function of the number
of flexible torsional angles. For each set of ligands with\eginumber of torsional flexible
angles, we summed up the number of hits. Dividing by the nunobelocking experiments
produced the hit probability for each set. To take the rugnime into account, we divided the
hit probability by the number of function evaluations. Eptéor ligands of high complexity,
the results are very similar for all meta-heuristics, whishans, the higher hit probability of
some methods in Table 7.1 is simply due to a higher numberraftion evaluations. At first,
the performance of all search heuristics decreases moes®ekponentially with the number of
rotatable bonds. However, for ligands with more than 7 edtiet bonds, the performance drops
drastically. In accordance with the results in Table 7.1, 42Ems to be less effective than the
other search strategies for small ligands, but its relgigormance improves with increasing
ligand flexibility.

7.2. Results scoring functions

As mentioned above, a scoring function should allow the mstraction of the native binding
pose and the calculation of the binding free energy. Recdiiqation$?~*° proposed the ap-
plication of a fast, simple scoring function for the recouastion of the binding pose, while a
more sophisticated function is used for the calculatiorhefactual binding free energy. In this
work, we focus on the reconstruction problem using the Asliggrse set as a test case. The
comparison of the Gehlhaar amdTODOCK scoring functions is mainly based on the RMSD
between the top scored outputs of the docking experimentshennative binding poses. To test
the selectivity, we calculated the ratidbetween the score of the best ranked hit to the native
binding pose and the sconeof the best ranked miss:

(-m i h>m a1
r = . .
™ it h<m

Aj‘

3‘
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Figure 7.1.: Comparison of the six meta-heuristics in retspiuit probability normalized by the
mean number of scoring function evaluations: Genetic élyor+, multi-deme ge-
netic algorithmx, Lamarckian genetic algorithsm multi-deme Lamarckian genetic
algorithm(J, particle swarnll, and differential evolution.
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Figure 7.2.: Comparison of the Gehlhaar scoring functiotiqdime) and theAuTODOCK scor-
ing function. Values were computed using Eq. 7.1.

If r is positive, the native binding position was scored beitarjs negative, the decoy position
was preferred.

For the Astex set, the Gehlhaar scoring function scored @vVenpositions (79%) better than
any decoy positions, while for theuToboCK scoring function this was only the case for 62
ligands (73%). Fig. 7.2 illustrates the relative scorewalalied using Eq. 7.1. The smaller number
of ligands for theauToDOCK scoring function is caused by only including ligands, forieththe
native binding pose was hit at least once. However, it mustdbed that all results were ordered
for each scoring function individually. This means, tha game ligand is not necessarily found
at the same position in the two curves. Obviously, the Gelnleoring function produced better
results by a considerable margin. For one ligand,Ab@oDOCK score of the native binding
pose was 30% worse than a decoy position.

Furthermore, to analyze the complexity of the search spanergted by both scoring func-
tions, we tested how often the search methods were able tehindlobal minimum, i.e. pro-
ducing results with an RMSD of at mostito the target position. Again, the Gehlhaar scoring
function proved to be superior also in this respect: on ayera produced 20% more hits. For
24 ligands, however, theuToDOCK scoring function had the edge.

Finally, we analyzed the correlation between the GehlhadraToDOCK scoring functions.
For this purpose, we collected the best scored hits to theenainding pose for all ligands for
each scoring function. To account for the different valudb® scoring functions, we normalized
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Figure 7.3.: Correlation of normalized Gehlaar andrODOCK scores.

the scores of each compourdo a range between one and zero for both scoring functions as
follows:>?
(x) = )= Snin (7.2)
Smax— Smax

whereSyax is the maximum an@y,;, the minimum value, respectively, of &{x) computed with
the scoring function for which the values are to be normdlize

The correlation between both functions is displayed in Fi§. In the ideal case, all results
would be situated on the line of identity, which is appangntt the case, but for most ligands,

there seems to be a good correlation with just a few outliers.

7.3. Discussion

Fig. 7.1 indicates that all meta-heuristics perform similatil ligands and hence the search space
get very complex. There is always a trade-off when method®e better in one respect than
others. For example, the most simple GA requires the smalleaber of function evaluations,
but has also the lowest chance of a hit. When a ligand is higakildle with many rotatable
bonds, the chance of a hit approximates 0 while other, sloaeverging methods still succeed.
To increase the diversity, we employed the Lamarckian GA,rthulti-deme GA, and a com-
bination of these two. The number of hits increased when atera convergence of the GA
method was inhibited either by using multiple populatiofDGA) or by employing a local
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7.3. Discussion

search (LGA). Combining both LGA and MDGA in the MDLGA led to aven higher increase
in the number of hits and consequently to a higher probghdifind the global optimum. Thus,
the performance of the GA can be enhanced considerablydiyt sfiodifications to the original
search method. Other methods to increase the diversity is, ®4. the usage of two different
genders® or employing a diploid GA where each individual possessesdfivomosome?? were
not tested in this study.

PSO always performs well when it comes to find near-optinrakctares but fails to explore
deep valleys in the energy hyper-surface. Therefore, PO ot produce reliable scores, mak-
ing it hard to compare the results in terms of their score.eHan additional local optimization
might help to distinguish between true hits and decoy stinest For example, using a time-
decreasing inertia weight in PSO allows for global explorabf the landscape in early stages,
while the algorithm will primarily perform a local searchidaon. Both a time-decreasing inertia
weight and a local search were implemented for docking W AuTODOCK and showed
quite promising results!: 12 However, employing local search to enhance the performarae
require a longer execution tirté which is well in agreement with our results.

The more recently developed differential evolution alwhgd a slightly lower chance to find
the global optimum, compared to MDLGA and PSO. Although Ddliees more function evalu-
ations, the high values for saturation and average besgn@ticate, that in marked difference
to PSO, it dedicates more effort to explore a valley in thergnéyper-surface to the lowest
point.

All'in all, for simple and complex ligands, we would considiee Lamarckian GA with mul-
tiple populations to be the best trade-off out of the sixedstandidates. It is especially striking
that neither the Lamarckian nor the multi-deme modificatiome led to significant changes in
the algorithm’s performance. Nonetheless, the combinaiidboth seems to produce an algo-
rithm, that has a high chance to find the global optimum wilialbée scores without demanding
an extensive number of function evaluations.

Both scoring functions rank the native (or near-native) oomftion better than other positions
in most cases and are in the range of good quality dockinggots of 70—8096° However, our
results strongly indicate that the additional effort, fuerobock scoring function is employing
for calculating the score, is not justified. The Gehlhaarisgofunction does not only provide
a less frustrated energy surface that facilitates the tieteof the global optimun?? % it also
scores more native binding poses correctly. This may be duleet fact, that theauTobOCK
scoring function is trained to calculate the binding freergy, disregarding its central task in the
reconstruction problem: separating native binding possa fiecoy positions.
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7.4. Conclusion

For the reconstruction problem, the simple Gehlhaar sgdtinctions seems to be better suited
than theauToDOCK scoring function. Of course, the Gehlhaar scoring funcitsonot able to
rank a native binding pose better than a decoy position icagkes, neither does it allow to
estimate the binding free energy. Nonetheless, we suggeseta simple scoring function, like
Gehlhaar, for the reconstruction problem with a search atkthat does not only deliver the best
ranked position but a clustered set of possible binding ptisat are afterwards processed by
a dedicated energy functidi.>’ These energy functions should be able to detect and quantify
small differences between complexes that may change thknkjiriree energy between ligand
and receptor dramaticalRf. Such re-scoring functions should also allow for comparing t
results for two different ligands to the same protein in &iohaffinity.

The refinement of existing population-based search methndghe development of new al-
gorithms has increased the chances of success in dockidgstsubstantially. Although all
meta-heuristics employed in this study may be further reforeadopted to the docking problem
itself, it seems unlikely that such remedies will lead to kearchanges in relative performance.
Nevertheless, it is certainly necessary to improve thelatessperformance of search algorithms
for two reasons: firstly, all search heuristics showed a dngmerformance with an increasing
number of rotatable bonds. Thus, highly flexible ligands raveeasily amenable to docking.
Secondly, the docking and sampling performance in norvaalbcking is reduced considerably
in comparison to native-dockirgj.

Out of the tested meta-heuristics, we cannot make a deénmgizommendation. We think, that
instead of testing a bulk of different heuristics, it is maverthwhile to choose one and adapt
the parameters properly. There seems to exist a perforntailoey, caused by the limited infor-
mation provided by the scoring functions: regardless ofdineensionality of the optimization
problem, the analyzed scoring functions return a one-dao@al score.
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8. Orientational Gradient

A number of meta-heuristics used for ligand receptor dagkiike the Lamarckian Genetic
Algorithm %0 try to improve their results by performing local optimizati These methods can
be classified into two distinct categories: approachestbad only function values and methods
utilizing the function’s derivatives. The first class carsdivided into deterministic algorithms
(e.g., Powell algorithnd, Simplex algorithril), and stochastic methods like the algorithm of
Solis and Wet$2 The approaches of the second class benefit from employirxatiees of the
objective functioR? and are expected to find better results faster, e.g. “deejpémai requiring
shorter time. Therefore, these approaches are preferdit@eaver useful derivative information
is available.

Nonetheless, the methods of the first class, especiallygheoach of Solis & Wet$2 are
widely used in docking applications. There are two mainaaagor using these methods:

1. In practice, many scoring functions, especially nonédield based functions, are contin-
uous but not differentiable. For these functions, non-graidbased techniques of the first
class seem favorable.

2. Stochastic methods like the Solis & Wets apprdaeiie easily adapted to specific opti-
mization tasks.

On the other hand, the gradient based methods of the secsslarke restricted to differentiable
objective functions. Furthermore, they are sensitive tgyarities, like a loss of degree of
freedom (DOF), or to non-minimal parametrizations, whistaimajor issue when it comes to
calculating an orientational gradient. In the followingagter, we describe a way to map the
space derivatives of the smoothed Gehlhhar scoring fum¢tiahe parameters of our compact
representation that, while not able to eliminate a loss greke of freedom, is at least able to
avoid it.
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8. Orientational Gradient

8.1. Gradient computation

The application of a gradient based optimizer requires thevatives of the underlying energy
or scoring functiorE with respect to the parameter vectorThe Gehlhaar functidf§ consists
of a pairwise ternEp,r and a torsional terrior. Hence, the gradietis given by

o d_E . 0(Epalr+Etor>
T ox X

The gradient oE;,, can be easily computed and affects only torsional paras\@ier. . , ¢,
0Et0r . A- (1—|—CO§I’I- Q- (R)))

ip 0
= —n-A-sin(n-g— @).

To calculate the derivatives for the pairwise interactid&sair, we first compute the gradiegt
for each aton. This is the sum of all derivatives of pairwise interactitimst an atom participates
in with v; being the position vector of atomandv; being the position vector of the interacting

atomj
fd
8 =3 VaIE T

Mapping the gradieng; of an atomi with positionv; to an arbitrary parameterrequires the
derivative ofv; with respect ta. dv; represents the tangential movement of atavhenr varies
by an infinitesimal amount and can now be used to calculatdeheative ofEp,ir With respect

tor
aEpalr _ Z (5V|> g 8.1)

In the following section, we will use Eq. 8.1 to calculate therivatives ofE with respect to
specific parameters.

8.1.1. Translational gradient

Calculatingdv; with respect to a translational parametes straightforward because any change
in t translatew; linearly. Thus, for any translational parameteEq. 8.1 can be reduced to

0 Epair
Oty

= (17070)'Zgi>
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8.1. Gradient computation

(b)

OV
p;

Figure 8.1.: Mapping of non-bonded gradient to torsionphfal orientational parameter (b).

0 Epair
oty

dEpair . |
dtz - (07 07 1) IZgl

= (07170)'zgi7

8.1.2. Torsional gradient

The rapid computation of the torsional gradient has beesubgct of numerous scientific stud-
ies®? If atomsi andj are connected by a flexible bond and atasimoved by rotating this bond
(Fig. 8.1(a)), the derivative of; with respect to a torsional parametgcan be calculated by

oV
d—q'):(vk—vj)x(vi—vj). (8.2)
Inserting (8.2) in (8.1) yields
dEpair

8.1.3. Orientational gradient

The most challenging part is the computation of the origéortal gradient, because, up to now,
there is no minimal representation that does not inherites&imd of singularity, e.g. loss of
DOFs. Representing the orientation (three DOF) by an unitegn®n does not include such a
singularity, but the independent optimization of its foatues is awkward2 This is caused by
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8. Orientational Gradient

the unit quaternions representing only a subset of theeefttur-dimensional quaternion space.
To alleviate this problem, we use exponential mapgfirig map a poinp = (p, p2, p3) from
parameter spade® to g in the unit quaternion spac:

(0,0,0,1) if p=(0,0,0)
(sin(O.SHpH)ﬁ, cog0.5||p||)) otherwise

This enables us to compute the derivative of the correspgnditation matrixT j = g—g for each

of the three orientation parametgus®® that can now be used to calculate the graddres%]jﬁ.
For each evaluation of the objective function, the orieatet! parametep is mapped to an unit
guaterniong. q is then converted to a rotation matikthat defines the molecular orientation.
Let v be the position of an arbitrary atomandyv; the position of the atom after the rotation by
R (Fig. 8.1(b)). Then,

Again inserting in Eg. 8.1 yields

dEpair
ap;

= Z (TjViI)Tgi, j=123.
i

As mentioned before, no method for a minimal parametrimatid the orientation is free of
singularities. This also holds for exponential mappingevehsingularities arise if the length
of the orientational parameter vectprapproaches 2 All parameter vectorg with ||p|| =
n-2m,n € Z-o are mapped to the quaternign= (0,0,0,—1). For these parameter vectors, all
gradientsg—‘& point into the same direction, reducing the number of DOFsn®. Fortunately,
all possible orientations can be denoted by parametersmvatishell of it around the origin in
RR3. Thus, we only need to take care that the optimization algaristays within this shell.

8.2. Results

To compare our approach to the method of Solis & Wets, we us#u methods to optimize
the randomly chosen positions and conformations of thegsespligands (start conformations).
Table 8.1 shows the average Gehlhaar-score of 500 minimisaibgether with the average num-
ber of evaluations required to reach a function value at rhd@sworse than the final score. The
number of rotatable bonds corresponds roughly to the coatylef the optimization problem
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8.2. Results

our method Solis & Wets

PDBID Ref. flexible bonds/ initial score numberof score number of

heavy atoms  score evaluations evaluations
1FDS 65 0/20 2325 -504 98 -—-124 394
1FMO 66 2/19 2957 -56.6 219 0.5 466
2MCP 67 3/11 1992 -30.8 168 -118 291
1DWD 68 8/37 7141 -689 341 885 484
1HPV 69 9/35 6273 -751 360 1076 699
2R04 70 10/25 7707 -198 625 2307 514
1HTF n 12/41 6933 —-659 389 1174 582

Table 8.1.: Comparison of our method to Solis & Wets in termaveirage initial and final score
and average number of function evaluations.

while the average energy before optimization indicatesghaerally the ligand has multiple van
der Waals clashes at the random initial position. The reslibw that, on average, the score
of our method is well below 0 for all ligands. This means thagdanerally resolves all van der
Waals clashes and moves the molecule in a way that it is alidertomultiple interactions. Even
for more complex ligands, representing more difficult oftizion problems, the average score
does not deteriorate and seems to be roughly corresporalihg humber of heavy atoms. As
expected, more complex ligands require more function ealos to reach the local minimum.
In contrast to that, the method of Solis & Wets is able to nesebn der Waals clashes only for
simple ligands with both average score and average numidanction evaluations being con-
siderably worse compared to our method. As ligands get nmrglex, the approach of Solis &
Wets fails to resolve van der Waals clashes and the scoréealeonsiderably.

There seems to be one outlier, 2R04, for which the results arseanthen expected. This is
caused by the particular morphology of the binding pockétictv forms a longish tube inside
the receptor and is located near the receptor surface. Tieidikewise elongated ligand can
be trapped with one part being situated in the binding poakdtthe other outside the receptor
while the center is penetrating the protein producing mldtvan der Waals clashes (Fig. 8.2).

Fig. 8.3 illustrates the performance difference of bothhads and the non-deterministic char-
acter of the approach of Solis & Wets for 1DWD. In this casepaflimizations started from the
same initial position. Our method always converged to aesobr108.49 (solid line) while the
best result out of 100 Solis & Wets minimizations was -69d#shed line). On average, the ap-
proach of Solis & Wets reached a value of 76.74 (the dottexldhmows a typical minimization).
The method of Solis & Wets required 149 function evaluatinsroduce its best results, a value
that was reached by our method with only 17 function evabueasti
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8. Orientational Gradient

Figure 8.2.: Example for a high energy local minimum. Thedarpart of the docked ligand
2R04 is situated in the binding pocket on the left while the lnaart penetrates
the surface.
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Figure 8.3.: Comparison of one deterministic minimizatidroar method (solid line) to two
different minimizations of Solis & Wets from the same init@osition (PDB ID
1DWD). The dashed line is the best result of the approach o$ SoWets out of
100 minimizations.
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8.3. Conclusion

8.3. Conclusion

Our results suggest that the effort to make a scoring fundifierentiable is worthwhile. When

it comes to minimization of molecules that are represeniettdnslation, orientation and tor-
sional angles, the approach of Solis & Wétkas become a quasi standard procedure. We think
that every global optimization method like e.g. the LamaokGenetic Algorithr? that uti-
lizes the algorithm of Solis & Wets for local optimizationlitbenefit when our method is used
instead.
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9. Gradient Based Minimization in a
Lamarckian Genetic Algorithm

All meta-heuristics analyzed to this point implicitly gaith gradient information of the under-
lying scoring function by evaluating the objective function stochastically chosen points in
the parameter space. The last chapter emphasized the siwprpsrformance of gradient based
minimization in ligand-receptor docking. Encouraged bgsih results, we created a new multi-
deme Lamarckian genetic algorithm by replacing the locatdeprocedure of Solis & Wets by
our gradient based method (MDLGAGR). In this chapter, we vargnalyze, if the improve-
ment in the local search procedure by introducing expliatgent information, is reflected in the
performance of the utilizing global search heuristic. Efiere, we compared the new gradient
based Lamarckian genetic algorithm to the standard oneSalis & Wets local search as well
as to differential evolution and particle swarm optimieati that do not use any kind of local
optimization (Fig. 9.1). For the actual comparison, we ubsedsame approach like in Chapter 7,
which permitted us to make use of the available Gehlhaarfdatathe non-gradient heuristics.
To evaluate the influence of local search and populationmsizbe performance of the MDLGA,
we tested four different versions of the multi-deme Lamemclgenetic algorithms with gradient
based optimization: sPopOne and bPopOne optimize onadidivper iteration and population
while sPopAll and bPopAll optimize all individuals. Furtineore, sPopOne and sPopAll have a
smaller population size (10 individuals), while bPopOnd a&RopAll have a larger population
size (20 individuals). Each of the four algorithms possgése interconnected populations and
for a single local optimization, the gradient based optatian method is confined to at most 30

Metaheuristic Type of Gradient information
abbreviation local search
GA, MDGA, PSO, DE — implicit
LGA, MDLGA stochastic implicit
MDLGAGR gradient based  implicit + explicit

Table 9.1.: Overview of all tested search heuristics.
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evaluations of the objective function.

9.1. Results

We summarized the results for the gradient based searcistiesitogether with the Gehlhaar
results for the non-gradient heuristics from chapter 7 inld&.2, subdivided for ligands of low
(0-3 flexible torsional angles), medium (4-7 flexible tormbangles) and high (more than 7 tor-
sional angles) complexity. Regardless of the ligand conifylgke gradient based methods have
a higher chance to find the global optimum. This differenaen more pronounced for ligands
of high complexity. Additionally, the gradient based hstids also require fewer function eval-
uations, albeit this difference decreases as ligands get ammplex. The highly similar average
best scores for ligands of low complexity indicate, thatnadithods were able to find the global
optimum at least once during the 300 docking experimentsteMo less, this finding seems to
hold for ligands of medium complexity, with the exceptionR$0O, which, in agreement with
our previous results, falls back in this regard. For ligaofisigh complexity, the gradient based
methods, with the exception of bPopOne (indicated by a mallerage best score), deliver
consistent results while the performance of the non-gradiearch methods deteriorate severely.
The declining performance of non-gradient methods contptréheir gradient based competi-
tors is also supported by the ratio of the average mean skateltops from 91.7% for simple
ligands to 81.8% for complex ligands. Saturation resuttg@) however, do not allow an unam-
biguous judgment as the best non-gradient method, DE, Btay$ouching distance to the best
gradient based approach.

With regard to a comparison within the gradient based methibdse optimizing all individ-
uals have a higher chance to find the global optimum but atpainee more function evaluations.
For the methods, that do optimize just one individual perytajion and iteration, the one fea-
turing a smaller population seems to produce slightly be#sults, but this finding is reversed
for methods that optimize all individuals.

Fig. 9.1 displays the chance to find the global optimum, néimed by the number of function
evaluations for ligands of increasing complexity. Besidesfour gradient based methods, we
included the best and the worst values from our previousyst@iviously, the gradient based
methods are always well above their competitors, and agardifference gets more marked as
the complexity of the ligands increases. Additionally,djemt based heuristics, that optimize all
individuals, fare slightly better than those that optimjast one individual per population and
iteration. In general, however, the impact of differentimjization parameters, at least in this
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9.1. Results

name @ hits @ mean o best o function o saturation

(%) score score eval.
» MDLGA 4662 -89.11 -99.83 14360 0.89
o PSO 52.58 -88.98 -99.56 10955 0.88
S DE 3855 -85.80 -99.81 12692 0.93
£ sPopOne 60.04 -92.64 -99.65 5657 0.93
« DbPopOne 63.89 -92.71 -99.73 6178 0.89
© sPopAll 78.68 -96.59 -99.63 6720 0.94
bPopAll 8477 -97.02 -99.58 7369 0.94
» MDLGA 1544 -9836 -122.33 20275 0.55
= PSO 18.67 -95.68 -118.89 16473 0.54
S DE 10.24 -96.45 -123.05 19355 0.73
£ sPopOne 26.71 -105.17-123.59 9620 0.70
— bPopOne 25.06 -101.88 -123.06 10105 0.63
< sPopAll 39.65 -110.19 -123.51 11698 0.72
bPopAll  47.15 -109.49 -123.29 12497 0.71
2 MDLGA 383 -106.85 -147.72 26048 0.42
5 PSO 275 -100.15 -142.30 21260 0.46
< DE 1.04 -103.57 -148.67 24837 0.49
S sPopOne 8.16 -123.81-15640 13533 0.44
<} bPopOne 5.12 -112.92 -153.58 13498 0.43
© sPopAll 1354 -130.07 -156.05 15728 0.43
bPopAll 21.62 -130.57 -156.40 18354 0.52

Table 9.2.: Comparison four LGAs with gradient based locara® and three population based
meta-heuristics in terms of hit probability, running tina¥erage mean and best en-
ergy as well as saturation. The results are partitionedrfalls medium and large
number of flexible torsional angles.
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respect, is rather subtle.

9.2. Discussion

Our results clearly indicate, that population based selaechistics benefit strongly from incor-
porating a gradient based search method. Regardless ofrti@eaty of the ligand, the gradient
based methods deliver better results with fewer iteratidfe ligands of high complexity, the
performance of non-gradient procedures breaks down alouwspletely while gradient based
methods are still feasible. One simple stochastic calicuiatveals the dramatic improvement:
if we want to archive a 99% chance to find the global optimurmafigand of high complexity,
we have to perform 118 docking experiments with MDLGA butyoh® with bPopAll. If we
take into account, that bPopAll also requires fewer funcewaluations, we gained an almost
tenfold speedup.

We also tried to answer the question how many individualsikhioe locally optimized. Both
heuristics that improved all individuals performed slighietter than those who improved just
one individual per population and iteration. This findingugpported by the fact, that the heuristic
that improved all individuals and featured a larger popaiaperformed better than the one with
a smaller population, especially for ligands of high comjtle We contribute this behavior to
a slowed convergence. In contrast, this result was revdéosdabth methods that just improved
one individual. For these methods, the one with the smabeulation dedicates a larger deal
of its function evaluations to the gradient based localdearocedure. All things considered,
we conclude, that the gradient based local optimizatiorhowkprofits more efficiently from
information provided by function evaluations, comparedao-gradient search heuristics.

9.3. Conclusion

By replacing the local search method of Solis& Wets by a gradiased minimizer evolved a
search method that is superior to its non-gradient relatbwell as to all population based meta-
heuristics we have tested. Furthermore, our results stgpas as many as possible function
evaluations should be performed by the gradient based atiion method, while the actual
heuristic is only responsible to deliver new starting poss for local optimizations. Although
we cannot make a general statement concerning the impacadiegt based minimization in a
heuristic global optimization of a real valued objectivadtion, at least the energy function in
ligand-receptor docking seems to be highly suitable fohsrcalgorithm.
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Figure 9.1.: Comparison four LGAs with gradient based loealsh in respect of hit probability
normalized by the mean number of scoring function evalanatiecPopOne, bPo-
pOnel], sPopAlll, and bPopOne. We also included the best§ and the worst
(x) results of the gradient-free, population based metai$ias.
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10. RMSD Score

Some methods, e.g. a Poisson-Boltzmann solver, allow for i@ mocurate approximation of
the binding free energy. Since those computations are waly ¢consuming, a utilization in a
scoring function for ligand receptor docking is not feasildience, standard docking procedures
are used to obtain binding poses for re-scoring. Espedm@ilygands with few flexible torsional
angles, modern docking programs tend to find the same birubsg in every single docking
run. Evolutionary algorithms allow to produce results gjtier diversity by choosing a smaller
population size and, hence, achieve a faster convergetacgwaich in turn increases the chance
to get stuck in a local minimum. However, it is desirable totge best binding poses of a ligand
in descending order. Thus, we propose a method to enforckttiéng program to produce more
diverse results by incorporating a score derived from RMSEhefligand’s current positions to
all final binding poses already found.

10.1. Methodology

There are multiple possibilities to derive a function foreeg RMSD ofr to a reference binding
pose. Since we use the Gehlhaar scoring function for do¢ckutnich does not produce high
values for clashed of atoms, we chose the following formula:

20—10-r ifr<2
f(r)= :
0 otherwise

Hence, if a ligand superimposes a position already vistteziscore is at most 20 (corresponding
to a single van der Waals clash in the Gehlhaar scoring fomctind decreases linearly with
increasing RMSD. Since we want to include this score in theligra based optimization pro-
cess, we require the space derivatives of the individuahatcontributions. The length of the
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10. RMSD Score

resulting vectow; for an atom with a distance; to its reference atom is given by

10-d;

vi| = —
il r-n

while the direction points from the reference atom to atom

In doing so, we alter the original scoring function in a wagtttve fill up sinks in the energy
hyper-surface. As a result, those regions are less likdbhgtaisited again by the search method,
though not completely impossible.

Depending on the number of individual docking experimethis number of binding poses that
have to be considered for the computation of the RMSD scordeeahto a substantial increase
of the running time. Hence, it is desirable to only includes binding poses that may lead
to a change in the RMSD score. Therefore, we use a hash-gadided by BALL, to store
the respective binding poses. A hash-grid is a three-dimeabkdata structure, that allows to
store and access objects in containers, indexed by theiquos) space. The space, covered
by the hash-grid, is partitioned in cuboids of equal dimensind each one is associated with a
container that stores all of its objects.

We define the edge length of a cuboid to be the break-off distari our RMSD-scoring
function. Then, we store each binding pose in the contadedimed by the geometric center of
the ligand. The distance of the geometric centers of twoib@npdoses defines a lower bound for
the RMSD.

If we have two different positions of the same molecule, aefiby the atom’s positions =
(X1,X2,...,Xn) andY = (y1,¥2,...,Yn), then the RMSD is given by

RMSD= , | %i;(xi —V¥i)?,

while the geometric centersandy are given by

X

I
Sl
=]

and

<l
I
Sl
>
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If we takey = 0 without loss of generality, then the RMSD is given by

RMSD = \/]ﬁ-ii[(xi —X) Y _|_)—(]2

- \/%i_iuxi—x—yi)w]z

Substitutingx; — X by

X =% —X
yields
12 2
RMSD = = (X —Vi)+X
i=
1 n
= \/ﬁ_zl[(xl—Y|)2+X2+2X(Xl_yl)]
1=
1 n ) ) 1 n . n
= ﬁi: (X —V¥i)2+X+2x ﬁi: i | —2% _I;yl
Since L
< ERVRY
n 2 (X —vi)
is surely non-negative,
1 n
n. Yi

1=
is defined to be nil, ang are the transposed atomic positionXesuch that its geometric center

coincides with the origin, and thus
12

- in =0,
nZ

we can give a lower bound for the RMSD by
RMSD > [x|.

(Proof by Dr. A. Hildebrandt)

Thus, the computation of the RMSD score can be limited to altlinig poses that belong to
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the cuboid defined by the ligands geometric center and allGtseighbors, which leads to a
significant reduction in running time. Fig. 10.1 displays tlsults with and without the RMSD
score.

10.2. Application

One ligand that is notorious for being difficult to dd€ks methylparaben. Although being
relatively small with few degrees of freedom, neither GOL@r the standard BALLDocKk is
capable to find the native binding pose. One possible reastivai the binding pocket is very
shallow. However, we observed, that any ligand positios@lahan 2 has a Gehlhaar score of
at best -37, while the best scored result (RMSB A) has a score of -46.

Table 10.1 lists the results of one docking experiment (2vidual docking runs) with and
without RMSD score. BALLDock without RMSD score delivers cistant results that cluster
around -43 and -46 with one single outlier at -37 (Fig. 10QJviously, it is highly unlikely
for BALLDock to find the native bind pose with its score of -3T contrast, the results of
BALLDock with RMSD score slowly decrease and are much morerde (Fig. 10.3).

Then, we performed ten docking experimeat&5 docking runs. Without RMSD score, the
best result had a RMSD of 44 to the native binding pose, while the average best and geera
mean RMSD were 6.4 and 8.0A, respectively. In contrast, with RMSD score, BALLDock was
able to hit the native binding pose in every single dockingegiment with an overall best result
of 1.0A, average best RMSD of 14, and average mean RMSD of 537 Fig. 10.4 displays the
binding poses with the smallest RMSD to the native bindinggegos each docking experiment.

10.3. Conclusion

Our approach to add a score, derived from the RMSD to alreadydfpositions, to the approx-
imated binding free energy leads to a significantly incrdabeersity of results for ligands with
no or few flexible torsional angles. Our results show, that BBock employing RMSD score
is able to reconstruct the native binding pose in cases witaex docking programs fail.
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(b)

Figure 10.1.: (a) Results of ten docking runs of 1U4D without&Mscore. Nine of them have
scores in the range of -73.2 to -73.4 and are almost idelytigasitioned. The only
outlier has a score of -70.3. (b) In contrast, the resultsg/&MSD score are much
more diverse and range from -62.2 to -73.4.
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Gehlhaar score
with RMSD  without RMSD

-43.21 -43.50
-42.72 -43.56
-40.17 -43.89
-46.78 -42.73
-40.82 -43.74
-37.72 -43.49
-37.49 -46.70
-37.33 -37.49
-36.74 -43.69
-37.15 -43.71
-36.13 -43.38
-36.11 -43.59
-39.42 -46.72
-36.12 -46.76
-36.12 -46.72
-36.02 -43.53
-35.54 -46.74
-35.21 -46.75
-36.71 -46.76
-35.02 -43.73
-35.31 -43.43
-34.91 -43.66
-34.92 -43.50
-34.78 -43.74
-35.20 -46.81

Table 10.1.: Gehlhaar scores of 25 docking runs with andowitRMSD score (3MTH).
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10.3. Conclusion

Figure 10.2.: Results of a docking run without RMSD score amadhttive binding pose (yellow).

Figure 10.3.: Results of a docking run with RMSD score and thigenhinding pose (yellow).
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10. RMSD Score

Figure 10.4.: Results with the lowest RMSD to the native bigdise (yellow) using BALL-
Dock with (red) and without (green) RMSD score.
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11. Problem optimizer interface

The increasing number of available optimization metho@négic algorithm, differential evo-
lution, particle swarm, Solis & Wets) and optimization tagkgand-receptor docking, protein-
protein docking, structure optimization, loop predictietc.) demands for a common interface
in BALL. Therefore, we defined an ensemble of classes, thditéte the application of different
optimization methods to an arbitrary optimization problem

11.1. Parameter class

Every kind of optimization problem must possess a set ofpaters, that represent the search
space. To allow for all kinds of parameters, the genericrpatar class features only a minimum
set of member variables and methods, i.e. a string to defm@dhameter's name and a static
random number generator to allow for a parameter randoioizat

Up to now, we implemented a real valued parameter of ariianensionality and a unit
guaternion parameter. Further possibilities are bitiggior more advanced structures like for
example graphs.

RealParameter The clasfReal Par anet er implements a set of independent, real valued pa-
rameter values. Thus, it is derived fronect or <f | oat > andGeneri cPar anet er (Fig.

vector<float> GenericParameter Quaternion
RealParameter UnitquaternionParameter

Figure 11.1.: Hierarchy of parameter classes.
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11.1). Additionally, it possessaect or <f | oat > of the same dimensionality as the num-
ber of parameters, namedtal i ng_. This vector defines for each parameter the granularity,
which is required by some optimization methods, e.g. sitedlannealing. Other methods, e.g.
our genetic algorithm, demand for upper and lower boundsciware defined in the vectors
upper _bound_andl ower _bound_, again separately for each parameter. Finally, the behav-
ior of a parameter, when the respective bound is violated,thae defined. Generally, the
bounding conditions can be restored by setting the valuegdower bound, if the lower bound
has been violated or to the upper bound, in the opposite céBis can be advisable, if the
parameter defines e.g. a translation. However, this sirateglves a severe drawback if the
parameter defines e.g. a flexible torsional angle. In thie,dh artificially introduced barrier
at 360 or +/ — 180 limits the search of molecular conformations. To deal witis problem,
Real Par anet er defines avect or <bool > that contains a flag for each parameter. If set
true, the parameter should be treated like aring, e.g. p#rametersg violates the upper bound,
thex should be replaced by

lower_bound + mod(x — lower_bound,, upperbound — lower_bound.),
while the violation of the lower bound should be handled Iptaeingx by
lower_bound. + upperbound + modx — lower_bound.,upperbound — lower_bound).

If the flag is set to false, the respective parameter is séietodlue of the violated bound.

UnitquaternionParameter ~ Representing the orientation of a body in Cartesian space hijta u
guaternion is a common technique in molecular modeling.rdejithe values of a quaternian
with a standardReal Par anet er is ill fated, since the independent optimization of its fgal-

ues surely violates the constrajgt= 1. Therefore, we implemented a dedicated unit quaternion
parameter, derived froiBener i cPar amet er and the quaternion class of the BALL libr&?y
(Fig. 11.1). The optimization method bears the respornsilid conserve the norm 1 constraint,
thus guaranteeing thahi t quat er ni onPar anet er defines a valid orientation.

SinceUni t quat er ni onPar anet er does not require options, e.g. upper and lower bound,
the class interface is much more compact, comparé&g &l Par anet er .
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11.2. Problem class

The base clasSener i cPr obl emdefines an interface for an optimization proble&eneri c

Pr obl empossesses the methodnnect To, that allows to bind a problem class to an opti-
mizer class, using theegi st er Par anet er method ofOpt i m zer . Any specific optimiza-
tion task derived fron@ener i cPr obl emis expected to meet those requirements: first, it must
provide a set of parameterspar anmet er s_, and secondly, it must overload thal cul at e
method, that is purely virtual i@ener i cPr obl em The return value of this function enables
a search method to compare the quality of different pararvatees.

The canonical way for the application of a local search nettisoto adopt the problem-
optimizer interface. Thus, the algorithm of Solis & Wets waglemented this way, performing
its optimization task upon the parametersBafckPr obl em However, this is not the best
choice in every case. In exponential mapping, the grader@®f decreasing quality the more
the unit quaternion diverges from the quaternion représgrthe neutral orientation (0,0,0,1).
Since the global optimization method rapidly cuts down orapeeter value diversity, most local
optimizations won't lead to a radical change of orientatidimerefore, we change the orienta-
tion of the ligand before each single gradient based loctuhgation to ensure that the initial
orientation corresponds to the quaternion with the bestignés. Since this approach is rather
problem specificGener i cPr obl empossesses a method calledcal | npr ove that allows
to implement a custom-made local search.

Finally, Gener i cPr obl emprovides a methotli nal i ze, that it called by an optimization
method after the actual optimization. It can be used to pl@the final results, in the case of
docking, the best ligand position is stored ikllaN-file.

11.3. Optimizer class

To enable a problem object to connect itself to an optimizgeat, Opt i m zer provides the
methodr egi st er Par anet er . The optimizer has to check, if it is able to optimize the pa-
rameter provided by the problem class. If not, there are tossipilities: first it may just abort
and report an error, or it only works on the other paramet@&rpractical example is the appli-
cation of the local search method of Solis & Wets that is aams¢d to real valued parameters.
A genetic algorithm, on the other hand, can also handle enteglues. If e.g. loop conforma-
tions are parametrized by integer variables in a genetmriiign and Solis and Wets is applied
to improve existing individuals, the local search can beugad on orientation, translation, and
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Optimizer

GeneticAlgorithm DifferentialEvolution ParticleSwarm

Figure 11.2.: Hierarchy of the optimization classes.

torsional flexible angles disregarding changes in loop @anétions.

For the actual optimization, initialized by the methsidar t , the optimizer applies its strategy
to search the parameter space, guided by the score prowdbe bal cul at e method of the
problem class. After the optimization is finished, the oen ought to call thd i nal i ze
method of the problem, to specify the results.

For the comparison of population based meta-heuristicsmpéemented three different evo-
lutionary algorithms, derived from the gene@pt i m zer class (Fig. 11.2).

11.4. Integration of docking

The clasDockPr obl em derived fromGener i cPr obl em(Fig. 11.3), implements a model
for ligand-receptor docking. It demands obei t quat er ni onPar anet er for the orien-
tation of the ligand and onReal Par anet er for translation and flexible torsional angles.
Invoking theassi gnScor e method moves the ligand according to the parameters and re-
turns the Gehlhaar score of the complex, which is providethkyclasse$xhl haar FF and
Ener gyGri d. The latter uses a precomputed map of the interaction enetggh is calcu-
lated by the clas&ner gyGri dBui | der by placing a probe atom on equidistant nodes of a
regular three-dimensional grid. The room occupied by thid ghould contain the space of rea-
sonable ligand positions. Since there is no representédronternal coordinates in BALL, we
implementedRot at eBond, that allows the user to define a rotation around a flexibledoal
angle, andRot at eBonds, that contains alRot at eBond objects of a molecule and thereby
represents its conformational state.

66



11.5. Conclusion

GenericProblem

DockProblem

Figure 11.3.: Hierarchy of the problem classes.

11.5. Conclusion

The existing approaches for optimization in BALL are deaptgrweaved with molecular force
fields, e.gAnber FF. The problem-optimizer interface is a first attempt to sefgoptimization
methods from optimization problems, and thereby perngtain interchangeability of different
optimizers and problems. As a proof of concept, we used tamdwork for the implementation
of three population based optimization algorithms, witmesimulated annealing methods being
under development. At this momempckPr obl em that defines a model for ligand-receptor
docking, is the only representation with another one fotggmprotein docking being also under
development. By adding those newly implemented classe=tBALL library, we allowed for

a rapid prototyping of ligand-receptor docking programs.
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12. BALLDock Docking Suite

By the realization oDock Pr obl emand different optimization classes within BALL, it is possi
ble to build a custom-made docking program in reasonable. tiowever, since many potential
users, e.g. pharmacological researchers, are not famillara complex programming language
like C++, we developed a ready-to-operate docking prograthed BALLDock, together with
three auxiliary programs for ligand pre-processing, deiacof flexible torsional angles, and
energy grid computation. Sin@ALLDock features batch processing, it can be used to dock a
whole library of molecules with just one program call. Théyaask, BALLDock is not able to
perform on its own is the addition of hydrogen atoms with a@crbond geometry. Hence, the
user is required to add hydrogen atoms to the ligand and t@cep

12.1. ProcessLigand

BALLDock requires all atoms of the ligand to have a unique ealRt ocessLi gand reads in
a ligandHI N-file or a text file that contains the name of one or multiplatigHl N-files without
the. hi n suffix. In the next step, the uniqueness of all atom namesdskad, and if the check
fails, all atoms are renamed after their element name tegsetith the rank of the atom in the
ligand file. Finally, the molecule is stored in a file, with thiginal suffix. hi n being replaced
by - p. hi n.

A call to Pr ocessLi gand with a singleHl N-file may look like:

> ./ ProcessLigand |igand. hin

Pr ocessLi gand checks the filename of the first argument and if it is nbit &Hfile, indicated
by the absence of the suffixhi n, it takes the argument as a file, that contains the name of all
ligands:

> ./ ProcessLi gand |igands.txt
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12.2. FTAngles

ProcessLigand is followed ByTANngl es, that tries to find all flexible torsional angles. Again, it
is possible to process a single or multipleN-files. All bonds, that represent a flexible torsional
angle, are stored in a file, named after the original file-nafriee ligand, followed by the suffix

. rbs. Thereby, a bond is defined by the names of its atoms. The udfag€Angl es is
identical to that oPr ocessLi gand.

It must be noted, however, that the method, usedbyAngl es is not entirely trustwor-
thy. While it is generally reliable for easily decidable bsndike those in ring structures or
double bonds, it may fail for special single bonds, that arefiexible, e.g. bonds involved in
mesomerism.

12.3. GridBuilder

The final step before the actual docking experiment is thecprneputation of the energy grid.
Gri dbui | der is started with a configuration file.

> ./ GidBuilder gb.cfg
This configuration file contains all information required@yi dBui | der :

# nanme of the receptor
receptor _file_name protein. pdb

# nanme of the grid
grid _nane GRID

# edge length of the cube that contains the energy grid
gri d_extension 20.

Thereby,r ecept or fi | e_nanme defines the name of tHeDB-file, that contains the receptor
protein. Ifgr i d_nane is defined, the file that stores the grid data is named gfteld_nane,
followed by the suffix. gri d, otherwise the grid name is derived from the receptor file@am
The extension of the grid is defined by a cube whose edge lengiten by “grid extension”. If
the locality of the binding pocket is roughly known and trgald is rather small, an edge length
of 20A is usually sufficient while otherwise an edge length of886r more is advised.
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12.4. BALLDock

After all torsional flexible angles have been determinedthecenergy grid has been computed,
BALLDock is started for the actual docking process, agaitinaiconfiguration file:

> ./ BALLDock dock. cfg
Just like forGr i dBui | der , the configuration file defines the program parameters:

# nunber of docking experinments for each |igand
runs 100

# Avail able: differenial evolution (DE), particle swarm (PSO,
genetic al gorithm (GA)
al gorithm DE

# without suffix (e.g. GRID for GRID.gr)
grid_nanme GRID

# file that contains all |igands
ligand file Iigands.txt

# possible translation in each di nension
transl ati on_box 10.

# do | ocal optimzation, if possible
| ocal search 1

# best values for convergence_ iterations
# if no |ocal search is used:
# between 1000 (few rotatable bonds) and
# 10000 (rmany rotatabl e bonds)
# i1f local search is used:

# between 100 (few rotatable bonds) and
# 1000 (many rotatabl e bonds)
convergence_iterations 10000
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conver gence_val ue 1.
max_iterations 50000

# paraneters for genetic algorithm
ga_popul ation_si ze 40

ga_nutation 0.00

ga_i nmune 1

ga_survivors 20

ga_initial _popul ation 20
ga_popul ati on_nunber 4

# paraneters for differential evolution
de_popul ation_si ze 50

de_mutation 0.7

de_random ze factor 1

de factor 2.

# paraneters for particle swarm
ps_swarm si ze 50

ps_cognitive 2.

ps_social 2.

ps_inertia .7

runs defines the number of docking experiments performed by BAhtlDfor each ligand
while al gor i t hmdetermines the optimization method. To-date there aresttiféerent al-
gorithms available, differential evolution, particle swaoptimization and genetic algorithm
with different versions of simulated annealing being undevelopment. Parameters for an
individual method are denoted by a prefifa( de andps). The receptor is provided by the
pre-computed grid file whose name is givendryi d_namne while the filenames of all ligands
are contained in the text file indicated by gand_fi | e. The flexible torsional angles of a
ligand are defined by the respective file, produced®Angl es. If this file is empty or ab-
sent,BALLDock performs a rigid docking, which is valuable, e.g. for dogckimultiple pre-
computed conformations of one molecule. Finally, the tietien of the ligand is defined by
a cube whose edge length is definedthhyans| at i on_box. All optimization methods fea-
ture the same stopping criterion. If, for a number of functevaluations, the best found score
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doesn’t improve by a given threshold value, the algorithapst Both parameters are defined
by conver gence.i terati ons andconver gence_val ue, respectively. Since the num-

ber of function evaluations performed by the local seardc@dure is not considered for the
stopping criterionconver gence.i t er at i ons ought to be reduced, if local search is acti-
vated. Additionally, it is possible to constrain the rurmpiime by defining a maximum number

of function evaluations byrax i t er at i ons.

BALLDock starts with loading the grid data and informs thewuabout the progress. Subse-
guently, each ligand is loaded and the defined number of dgakins is performed. Again, the
progress is displayed and, after the final ligand was preced3ALLDock builds a table with
the best and average scores.

| ligand | Dbest score | average score

| lopk | -139.5 | -137.9 |
| 1og5 | -94.0 | - 89.5 |
| lowe | -118.2 | -115.5 |
| loyt | -139.8 | -130.8 |
| 1p2y | -63.4 | -62.6 |
| 1p62 | -89.1 | -88.5 |
| 1pm | -126.1 | -123.2 |
| 1qglg | -121.3 | -120.5 |
| 1qg41 | -84.3 | -87.1 |
| 1r1lh | -154.1 | -125.8 |
| 1r55 | -120. 2 | -106. 8 |
| 1r58 | -120.5 | -105.5 |
| 1r9o | -81.9 | -79.7 |
| 1s19 | -133.7 | -126.4 |
| 1s3v | -135.3 | -111.9 |
| 1sg0 | -120.0 | -118.1 |
| 1sj0 | -141.6 | -138.0 |
| 1sg5 | -76.8 | -67.3 |
| 1sgn | -93.2 | -92.8 |
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A small gap between best and average score indicates, thaetich method was able to cope
with the complexity of the search space. Results for ligantsadarger gap should be examined
more carefully, for itis possible, that e.g. a larger popalasize and thus a delayed convergence
might entail higher consistency.

For each ligand, BALLDock stores the best found ligand pasiof a single docking experi-
ment in a numbereHl N-file and writes a log-file with all scores.

| 1t40-1.hin |  -152.3 |
| 1t40-2.hin |  -136.5 |
| 1t40-3.hin | -133.5 |
| 1t40-4.hin |  -125.4 |
| 1t40-5.hin | -113.1 |
| 1t40-6. hin |  -137.9 |
| 1t40-7.hin | -126.4 |
| 1t40-8.hin | -110.4 |
| 1t40-9.hin |  -131.4 |
| 1t40-10.hin | -154.3 |
| 1t40-11.hin | -132.1 |
| 1t40-12.hin | -107.7 |
| 1t40-13.hin | -141.4 |
| 1t40-14.hin | -158.7 |
| 1t40-15.hin | -160.7 |
| 1t40-16.hin | -113.2 |
| 1t40-17.hin | -135.0 |
| 1t40-18.hin | -128.3 |
| 1t40-19.hin | -130.2 |
| 1t40-20.hin | -106.0 |

12.5. Conclusion

Despite the absence of a graphical user interface, BALLO®ak easy-to-use tool to reconstruct
the binding mode of a ligand. By utilizing the Gehlhaar scgifnctions, BALLDock saves the
user from difficult optimization of hydrogen atoms and tinemsuming calculations of appropri-
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ate point charges. The high chance to find the global optimiutimeoscoring functions together
with the low number of function evaluations leads to a sigatiit reduced running time. By
using batch processing, testing of a whole library of chahsompounds can be accomplished
with just a few working steps. On the down side must be notext,BALLDock lacks a rotamer
library to allow for different ligand conformations of e.gng structures as well as a reliable
determination of flexible torsional angles. Finally, a hat reduction of the running time can be
accomplished by an optimization of critical code secti@ng, cache optimization or utilization
of SSE.
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13. Prospected features

Not all projected features are completed at this point. &gslthe most prominent challenge in
ligand-receptor docking today is the inclusion of confotigaal alterations in the receptor. To
deal with this problem, we are involved in the implementatd two different approaches. First,
we try to describe the movement of the receptor with just ar@able by extrapolating residue
positions from two extreme positions, as displayed in F&j11This is possible, if the backbone
performs a limited and isolated movement relative to a rigichain of the receptor, which is the
case, e.g. in human serum albumin. This approach can bedextgoy just moving the backbone
atoms while the side-chain can be treated as flexible likéighed.

Furthermore, we use the method of Go and Schépagaallow for loop movements. Often,
e.g. in 17-beta-HSD1, residues belonging to beta-sheetdpba-helices are relatively rigid,
while loop regions of the backbone are highly movable. Théheraatical difficulty lies in the
fact, that both ends of the flexible loops have to be stationkiwe treat one end to be fixed,
the change of a torsional flexible angle illicitly moves tlee@nd end. However, it is possible to
calculate values for dependent torsional angles to resiterenvariant. Fig.13.2 illustrates four
different backbone conformations that establish a closettlione conformation.
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Figure 13.1.: Movement of tyrosine 150 in the warfarin bivgdpocket of human serum albumin.
The three different conformations represent the two extrand one intermediate
positions.
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Figure 13.2.: Different possibilities to bridge a gap in theckbone. For two given stationary
points, the algorithm of Go and Scheraga calculates valres $et of dependent
torsional angles.
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14. Conclusion

Despite the existence of many programs for ligand-recegoking, the problem is considered
to be unsolved. There is still a long way to go to provide plerahogical researchers with
what they wish for: a tool that accurately predicts the bugdiree energy for an arbitrary lig-
and and receptor. One of the limiting factors to-date is #wnstruction of the native binding
pose. Even if there is no method to calculate the binding éeergy, a deeper understanding
of the interaction between functional groups of the ligand eeceptor is hugely useful for lead
optimization.

In fact, most molecules that fall within Lipinski’'s rule ofv&’# or some other measure for
drug-likeliness can be docked by different kinds of dockpgnrggrams. The predicted binding
mode does not necessarily coincide with the native bindosgepbut in most cases, a deviation
can be attributed to a failing scoring function, rather thdailing optimization method.

Improving the speed at which an optimization methods findggtbbal optimum of a scoring
function is desirable. But does a limited speedup, that i3 athievable by the application of
better hardware, justify the high scientific effort evideddy numerous publications? The an-
swer would most probably be “no” if this was the whole storyt looking closely at the limiting
factors of ligand-receptor docking tells a different tru@n the part of the energy calculation, the
influence of water as a polar solvent to the binding free gneag hardly be estimated without
time consuming molecular-dynamics simulations. Furtfeeanwhen it comes to predicting the
native binding pose, the assumption, that the receptorocomation remains unaffected by the
influence of the ligand is inadmissible in many cases. If theeulying model does not allow for
induced fit alterations of the receptor, we can’t expect ayisg function to have its global op-
timum nearby the native binding pose. This being the casg,nehjust add receptor flexibility
to our model? The answer is, that currently available searethods give up in the face of the
complexity of the resulting search space.

We do not claim, that the method presented in this work salvedigand-receptor docking
problem. Nevertheless, our results suggest, that BALLOnhes the limits set by the inability
of existing search algorithms to cope with search spacesgbeh complexity. In a following
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step, beyond the focus of this work, we want to analyze, if arer@construct the native binding
poses of ligand-receptor complexes, that require moressrdgtensive alterations in the receptor

conformations.

82



15. Summary

15.1. Evolutionary algorithms applied to ligand-receptor

docking

In contrast to other publicatior$; 12 3% 4%we could not find a substantial advantage in perfor-
mance for a specific global search heuristic. For searchespaichigh complexity, all evolu-
tionary algorithms seem to be hampered by a lack of informnatjiven by the one-dimensional
score of the objective function.

15.2. Comparison of a simple to a more complex scoring

function in ligand-receptor docking

We compared the simple Gehlhaar scoring function toatheoDOCK scoring function solely
on the base of their ability to discriminate native bindingges from decoy positions. In this
regard, theauToDOCK approach to include complex contributions to the bindiregfenergy,
like entropic and hydrophobic interactions, does not leabdtter results. Quite the contrary,
the Gehlhaar function scored the native binding posesrbiié® any decoy position for more
ligands

15.3. Gradient based local search in ligand-receptor docki ng

We presented a novel way to apply gradient based local ggaion in ligand-receptor docking.
Thereby, singularities that arise from representing a mue by translation and orientation,
are avoided by using exponential mapping. A comparisoneéatiadient-free method of Solis
& Wets proved the general superiority of our approach foalaptimization. A Lamarckian
genetic algorithm experienced a boost in performance mdesf running time and ability to
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find the global optimum in search spaces of high complexitgnvbsing gradient based local
optimization.

15.4. RMSD score

We developed a method to enforce more diverse results indigaceptor docking by employing
a score derived from RMSD of the ligand’s current positionslteady found binding poses.
Thus, BALLDock has a higher chance to reconstruct nativelibon poses even if they do not
coincide with global minima of the underlying scoring fuioct.

15.5. BALLDock

Our new gradient based approach was incorporated as set o€l@sses in the BALL library.
Finally, we implemented BALLDock as an easy-to-use comrdareltool for ligand-receptor
docking.
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16. Zusammenfassung

16.1. Evolution are Algorithmen im Bereich Ligand-Rezeptor

Docking

Unser Vergleich mehrerer evolutiarer Algorithmen lieferte keine Beweisarfeine entschei-
dend Idhere Leistungsihigkeit einer Methode. Ahrend dieses Ergbnis im Gegensatz zu ande-
ren Vebffentlichungenl 12:39.-40steht, besttigten unsere Untersuchungen, dass alle Algorith-
men ab einer bestimmten Komplexditdes Suchraums nicht mehr in der Lage sind, das globale
Optimum zu finden. Dieses Verhaltdihirten wir auf einen mangelnden Informationsgehalt einer
eindimensionalen Zielfunktion in hochdimensionalen Stalmen zuick.

16.2. Vergleich einer einfachen mit einer komplexeren

Zielfunktion fur Ligand-Rezeptor Docking

Auch beim Vergleich zweier Zielfunktionefif Ligand-Rezeptor Docking waren die Unterschie-
de im Hinblick auf die Rhigkeit, korrekte von falschen Bindepositionen zu untezgten margi-
nal. Uberraschenderweise lieferte die sehr einfach aufget@eitthaar Funktion etwas bessere
Ergebnisse als disuToDOCK-Funktion, obwohl letztere komplexe Termig fentropische und
hydrophobe Wechselwirkungen beinhaltet.

16.3. Gradientbasierte lokale Suche fur Ligand-Rezeptor

Docking

Unter Verwendung von Exponential Mapping entwickelteneuiren neuen Ansatz zur gradient-
basierten lokalen Optimierung im Bereich Ligand-Rezeptockdwy. Dabei legten wir grof3en
Wert darauf, einen Verlust von Freiheitsgraden zu vernreiti®a direkten Vergleich zur weit
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16. Zusammenfassung

verbreiteten Methode von Solis & Wets, die ohne Gradieatmftion auskommt, lieferte un-
ser Ansatz entscheidend bessere Ergebnisse. Die Ersateudethode von Solis & Wets in
einem Lamarck genetischen Algorithmus durch unseren &rghtte ebenfalls zu deutlich ver-
besserten Ergebnissen im Hinblick auf die Laufzeit und dikidkeit, das globale Optimum in
Suchaumen hoher Komplext zu finden.

16.4. RMSD score

Um eine gblRere Vielfalt an Ergebnissen zu erreichen, entwickeltereime Methode um den
Abstand eines Liganden zu bereits in vorherigen Dockiagfen gefundenen Positionen zu be-
werten. Dadurch steigt die Wahrscheinlichkeit, dass BAbtBdie korrekte Bindeposition re-
konstruiert, selbst wenn diese nicht mit dem globalen Optmnaler Zielfunktioniibereinstimmt.

16.5. BALLDock

Alle in dieser Arbeit programmierten Suchmethoden, Zigitionen und sonstigen Klassen
wurden zur BALL Bibliothek hinzugefgt. Dadurch ist es in kurzer Zeitaglich, ein eigenes
Dockingprogramm zusammenzustellen. Au3erdem entwekelir mit BALLDock ein fertiges
Kommandozeilenprogramm, welches mittels Optionsdataueh fir Laien leicht zu handhaben
ist.
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