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Kurzfassung

Diese Arbeit besditigt sich mite-nets in der Geometrie und verwandten Problemen.
Im ersten Teil der Arbeit werden starkenets und das eng verwandte Minimum Hitting
Set Problem betrachtet. Es wird eine neue Technik vordestilderen Hilfe die Existenz
von kleinene-nets in verschiedenen geometrischen Bere@lmeen nachgewiesen werden
kann. Diese Technik liefert auchfiziente Algorithmen um kleine-nets zu berechnen.
Mit der bekannten Reduktion von Bronimann und Goodrich [10fhrf dies zu Approxi-
mationsalgorithmen mit konstantem Faktdar tlie entsprechenden Hitting Set Probleme.
Der Approximationsfaktor kann sogar verbessert werdeghdeinen relative einfachen,
auf lokaler Suche basierenden Ansatz, der zu dem erstenguulgllen Approximationss-
chema iihrt.

Der zweite Teil der Arbeit ist den schwachemets gewidmet die eine wichtige Ve-
rallgemeinerung der starkennets in konvexen Bereichen darstellen. Zahst wird der
einfachste Fall der schwachemets betrachtet, der Centerpoint. Es wird ein neuer, ein-
facherer Beweisifr das bekannte Centerpoint Theorem (und ebenso Helly’sréhgan
beliebiger Dimension gezeigt. Die gleiche Idéedt sich auch benutzen um eine optimale
Verallgemeinerung der Centerpoints zu zwei Punkten in denElzu zeigen. Mit dieser
Technik konnen verschiedene Resultaie §chwache-nets in der Ebene verbessert wer-
den. Abschlieend wird das allgemeine schwaetmet Problem ind Dimensionen betra-
chtet. Eine langjhrige Vermutung besagt, dass schwachets der GisseO(e *polyloge™)
fur konvexe Mengen in jeder Dimension existieren. Es stallt Beraus, dass wenn sich
die Vermutung als wahr erweist, dann ist egiich ein schwachesnet aus einer kleinen

Menge von Inputpunkten zu erzeugen. In dieser Arbeit wizkegg, dass dies taishlich



moglich ist und ein schwachesnet ausO(e *polyloge) Inputpunkten erzeugt werden
kann. Letztendlichdsst sich ein interessanter Zusammenhang zwischen sobrvackl
starkene-nets zeigen durch den schwachaets durch eine Zufallsauswahl konstruiert

werden kbnnen.



Abstract

This thesis deals with strong and weakets in geometry and related problems. In the
first half of the thesis we look at stroregnets and the closely related problem of finding
minimum hitting sets. We give a new technique for provingekistence of smad-nets for
several geometric range spaces. Our technique also diveiem algorithms to compute
smalle-nets. By a well known reduction due to Bronimann and Goodrdd€h, [our results
imply constant factor approximation algorithms for theresponding minimum hitting set
problems. We show how the approximation factor given by #émdard technique can
be improved by giving the first polynomial time approximatischeme for some of the
minimum hitting set problems. The algorithm is a very simabel is based on local search.

In the second half of the thesis, we turn to weakets, a very important generalization
of the idea of strong-nets for convex ranges. We first consider the simplest elaofp
a weake-net, namely the centerpoint. We give a new and arguablylsmmuoof of the
well known centerpoint theorem (and also Helly’s theoremamy dimension and use the
same idea to prove an optimal generalization of the cenitgrpmtwo points in the plane.
Our technique also gives several improved results for smedlk e-nets in the plane. We
finally look at the general weaknet problem igl-dimensions. A long standing conjecture
states that weak-nets of sizeD(e*polyloge™t) exist for convex sets in any dimension. It
turns out that if the conjecture is true then it should be jpdes$o construct a weak-net
from a small number of input points. We show that this is irtigge and it is possible to
construct a weak-net from O(e *polyloge™t) input points. We also show an interesting
connection between weak and strostgets which shows how random sampling can be

used to construct weaknets.



Acknowledgements

Many people have directly or indirectly contributed to tthissis. | would like to thank
my supervisor Prof. Raimund Seidel for his guidance and supide was always available
to listen to my problems and ideas and showed great confident®. Thanks also to
his great database of counterexamples, a lotffoiriewhich would have gone in fruitless
directions was saved. | would like to thank Nabil Mustafa @t only introducing me
to the exciting area of discrete geometry but also for tesrhie how to think and solve
problems and how to enjoy research. | have not learnt fromo#imgr source as much as
| have learnt from working with Nabil. | wish to thank my cohats and friends Hansraj
Tiwary, Deepak Ajwani, Evangelia Pyrga, Khaled Elbassi@athish Govindarajan and
Rajiv Raman for the countless exciting brainstorming sessfomm which | have learnt
many technical as well as non-technical things. Thanks tt M#Rarbiicken, | had access
to so many researchers. Hansraj was also a gféaeanate. He always showed a lot of
excitement in any non-trivial topic and provided me with manteresting things to think
about. Without him, the time spent in théioe would have been very dry. | am also very
lucky to have friends like Imran Rauf, Ralitsa Angelova, Ibreskan, Abdul Qadir Kara,
Georgiana Ifrim, Sajjad Hussain and Wagar Saleem who méalenliSaarbiicken very
enjoyable. | am grateful to Prof. Kurt Mehlhorn and Prof. daiPach for agreeing to
examine my thesis. Finally, | would like to thank my paremty, sister and my wife who

make my life meaningful.



Contents

Kurzfassung i

Abstract i

Acknowledgements \Y

List of Figures Vil

1 Introduction 1
1.1 Stronge-nets . . . . . e 2
1.2 HittingSets . . . . . . . . . 7
1.3 Weake-Nets . . . . . . . . . 10

2 Stronge-Nets 13
2.1 GeometricRangeSpaces . . . . . . . . . . . 14
2.2 eNetsforhalfspacesiR? . . . ... ... .. ... .. . ... . ..... 14
2.3 HalfspacesilR3 . . . . . . . ... 17
2.4 Abstract Framework . . . . . . . .. ... 20

2.4.1 Algorithmiclssues . . . . . . . . . . . . . . . . 23



2.5 Geometric Applications . . . . . . . .. ... 26

251 Translatesof Orthants®® . . . .. ... .. ... ... ... .. 27
25.2 Pseudo-Halfplanes®® . . . . . .. .. ... ... . ... .. 30
2.5.3 Pseudo-Parabolic HalfplanesRﬁ ................. 33
2.5.4 K-admissible Regions iR? . . . . . . ... 35
3 PTAS for Geometric Hitting Sets and Independent Sets 43
3.1 Introduction . . . . . . . ... 44
3.2 Results. . . . . . . e 46
3.3 PTAS for minimum hittingsets . . . . . . .. ... ... ... ...... 49
3.3.1 PTAS for am-admissible setofregions. . . . . ... .. ... ... 51
3.3.2 PTASforhalfspacesi®® . ... ... ............... 52
3.4 PTAS for maximum independentset . . . . .. ... ... ........ 54
3.5 Proof of the Planar Expansion Theorem . . ... ... ..... ... 54
3.6 Combinatorial Bounds osinets via Local Search . . . . . . ... ... .. 56
3.7 Future Work . . . . . . . . 60
4 Small weake-Nets 62
4.1 MainTheorem . . . . . . . . . e 65
4.1.1 New Proofs of the Centerpoint theorem and Helly’s tteor. . . . 68
4.2 Consequencesof maintheorem . . . . . .. .. .. ... ........ 69.
4.3 CONCIUSIONS . . . . . . o e 73
5 Small basis for weake-Nets 76
5.1 Introduction . . . . . . . . . . 76

Vi



5.2 Preliminaries . . . . . . . . .. e 80

5.3 TwoDimensions . . . . . . . . . . . 81
54 Three DIMENnSIoONS . . . . . . . . . o o o i 84
5.5 HigherDimensions . . . . . . . . .. ... 89
5.6 Conclusion . . . . . . s 91
Bibliography 92

Vil



List of Figures

2.1

2.2

2.3
2.4

2.5

3.1

4.1

4.2

4.3

Construction oé-net for halfspacesi®?. . . . ... ... ... ...... 15

ConeC behaves like an orthant in the oblique coordinate systemavigin

O, e 29
|(h) andr(h) for the pseudo-halfplanein a family of pseudo-halfplanes. . . 30
A chord ofs; liesinsides, and vice-versa. . . . . . . . . . . .. ... ... 36
Chord and obstacle segments of an edge w.r.t. aregion........ . . . . 38
The normal squanecovers thes-net squares and stabs its neighbors (in

the cascad®l,(p)) inthecellCy(p). . . . . . . . . . . . .. .. ... ... 57

lllustration of Theorem?21 . . . . . . . ... ... ... ... ...... 64
(a) One of the seven (bold) triangles contains a poirhi®iteake-net (b)

One of the four regiongzk, gxh dveor abcscontains a point of the weak
e-net (c) jyi contains a point of the weaknet . . . . ... ... ... .. 74
(a)efijr contains a point of the weaknet (b) Eitherabt ande fwcontain

one point each doucandijy contain one point each. (ept, e fwandhxg

contain one point each. Hencdijk cannotbe hit. . . . . ... ... ... 75

viii



5.1 Constructing weak-nets in two dimensions. (a) The dotted lines indicate
the at mosk halfspaces that are used to sepafafeomC. .. ... ... 84
5.2 (a) The intersection of a bisector with a segment willlgdeC, (b) If C

intersects edgesc, ad andae, then it must intersea f. Similarly forbf. . 87



Chapter 1

Introduction

This thesis deals with the strong and wealkets, which are fundamental tools in discrete
and computational geometry. The theory of streAgets has been very successful and
has found many applications in computational geometryissitss and learning theory. In
computational geometry, strorenets (ande-approximations) power many data structures
and algorithms used in point location, range searchingggaounting and several other
tools for geometric divide and conquer. They also find useeiraddomizing divide and
conquer type algorithms. The idea of strangets was extended to wealnets for convex
sets by Haussler and Welzl in their seminal paper [26]. Weadts have found application,
among other things, in the beautiful proof of the HadwigebBunner (p,q) conjecture by
Alon and Kleitman [6]. In this chapter, we give a brief inttadion to the idea of strong
and weake-nets and present some of the most important results in thé &Ve then give

a summary of the work presented in this thesis.



1.1 Stronge-nets

A range space is a set systeftn= (X, R) whereX is a (possibly infinite) set called the
ground sefandR is the set of subsets &f. We will call the elements oX the pointsand
the elements oR therangesof R. In this thesis we will deal only with range spaces with
finite ground sets. Given a parametexQOe < 1, we say that a range € R is e-heavy

if [r] > €|X|. A stronge-net forR is a subsely C X which hits all e-heavy ranges i.e. it
has a non-empty intersection with eacheavy range irR. In the following we will just
write “e-net” for “stronge-net”. We are interested in smalinets since in some sense they
allows us to approximate the given range space economi@&iiige each of the ranges we
want to hit ares-heavy, if we randomly pick a point fromR, we hit any givere-heavy range
with probability at least. Since there are at mo& ranges to be hit, a simple calculation
shows that a random sample Xfof size% log|Rl hits all the ranges simultaneously with

positive probability. Hence we have:
Proposition 1. Any finite range spack = (X, R) admits ane-net of size (()% log|R).

It turns out that in many cases it is possible to get a bettpeupound. For example,
consider the range spafe= (X, R) in which the ground seX is a finite set oh points in
the plane and the rangeskare the subsets of which can be obtained by intersectiXg
with some triangle in the plane. In this case, the number ngea is at mosD(n®) since
we can always change a triangle, without changing the sadinfgit contains, so that each
of its sides passes through two of the points. Propositidmeiefore guarantees amet
of sizelogn. However, it can be shown that there isanet of sizeO(2 log 2) for this
range space. Singeis typically a constant% can be assumed to be smaller tmarThis,

therefore, gives a bound better than Proposition 1.

2



Such smalk-nets obviously do not exist for all range spaces. For exanifthe ground
setX is a set of points in the plane lying in convex position andrdreges are subsets Xf
that can be obtained by intersectigvith a convex set. In this case, the ranges consists of
all subsets oK and hence any-net has to haviX| — (e|X| + 1) points since if we leave out
any set ofe|X| + 1 points then those points together formeaneavy range that is not hit.

What leads to an improved upper bound in the case of triangah@es is the fact that
not only doesk have a polynomial number of ranges, the number of rangesreditarily
polynomial i.e. the number of distinct ranges induced by sutyset oZ C X, |{r N Z|r €
R}| is polynomial in|Z|. One way to capture this property is the notion of Weapnik
Chervonenkiglimension (VC dimension in short) of a range space which wasduced
by Vapnik and Chervonenkis in [49]. Given a range spR&ce (X, R), theprojectionof R
on a subseY C Xis defined aR|y = {Y Nr|r € R}. We say that a sét is shattered by if
all subsets ofA can be obtained by intersectiigwith some range ilRi.e. R = 2”. The
VC dimension ofR, denoteddim(R), is the size of the largest set shatteredfoyit has be
shown that range spaces of finite VC dimension are preciselgies with the hereditarily
polynomial property [49, 47].

Haussler and Welzl [26], who introduced the notiorzafets, showed that range spaces

with a small VC dimension admit a smaHnet. More precisely, they show that

Theorem 1 (e-net theorem) For any finite range spac® = (X, R) with dim(R) < d and

8d 4

parameters) < €, < 1, a random subset & X of sizemax{g—ed log ==, < log %} is ane-net

for R with probability at leastl — 6.

Komlbs et al. [31] have also shown that this is tight up to condtastors. The constant

factor was improved by Blumer et al. [9]. Kodd et al. [32] improved it further and show



the following:

Theorem 2. Let f(d, €) denote the maximum size, over all range spaces of VC dinreaisio

most d, of ar-net of the smallest size for that range space. Théw,e) = (1+o(1))§ log %

Vapnik and Chervonenkis [49] also introduced the notiore-@pproximations The
purpose of are-net is to hit alle-heavy ranges. The purpose of aapproximation is
something stronger. We want the fraction of the points ofetdag@proximation which lie
inside each range to be equal to the relative size of the nartba an additive factor ot.
More precisely, given a range spake= (X,R), A C X is ane-approximation forr if for

every range € R,

AN |XNr|
- <e
|Al IX]

As for e-nets, they show that range space with a finite VC dimengialso has a small

e-approximation [49]:

Theorem 3. Any range space of VC dimension d admits anapproximation of size

O(d/€?log (d/e€)).

Matousek et al. [38] improved the above boundQg?2/(d+1) |gg?2/(@1) ¢-1y gand

showed that this is almost tight up to polylogarithmic fasto

A notion closely related to the notion of VC dimension is thidcgjold dimensiorj24]
which is based on the shatter functiog(m) of a range spacf = (X, R) that denotes the
maximum number of distinct ranges iy for an m-sized subseY of X i.e. ng(Mm) =
max{ [Rly| - Y € X, |Y] = m }. The scé#fold dimension ofR is the smalled integed

such thatrg(m) = O(m"). It has been shown that the $icdd dimension of a range space



is always at most its VC dimension [49, 47, 24]. Also, if thefBald dimension of a range
space igl, then clearly a very large set cannot be shattered. The nuofloéstinct ranges
induced by a shattered set of sinds 2™ and for large enough this isw(m®). Therefore,
a finite sc#fold dimension implies a finite VC dimension. The §o&l dimension is often
easier to work with since for many ranges spaces, espethalbe arising in geometry, itis
easier to prove that a range space has a boundéolsicdimension.

Matousek [39] gavef&cient deterministic algorithms for computiagapproximations
ande-nets for range space® = (X, R) with a finite sc#fold dimension. The algorithms
assume the existence osabspace oraclee. an oracle which given a s¥tenumerates
the ranges iRy in time O(|Y| k) wherek is the number of ranges enumerated. He showed

that

Theorem 4. Given a subspace oracle for a range sp&e- (X, R) of scgfold dimension
d > 1and a paramete0 < € < 1, we can deterministically compute arapproximation of

size Qe ?loget) and ane-net of size @ *loge™?) in time Q|X| - (e ?loge™1)9) time.

Matousek [39] also proved the same result for weighted setswhen the ground set
X is equipped with a probability measure and the weight of geds the total weight of
the elements in it.

In this thesis, we will be mostly concerned with range spaugsced by a set of points
and a set of geometric objects. We have already encountecbdasrange space, namely
the one in which the ground set is a finite &of points in the plane and the ranges are
defined by the set of all triangles in the plane. The range eéfboy each triangle is the
set of points contained in it. It follows from the argumeng&fdre that this range space

has a finite sd#old dimension and hence admits aadet of sizeO(e *loge™?). One



natural question for such geometric range spaces is whetheran get a smaller-net

by exploiting the geometric structure. This is the questlmat we address in Chapter 2.
We consider two main kinds of range spaces induced by & séfpoints and a se$ of
geometric objects. In the first kind, we treat the points agiiound set, and each geometric
objects € S defines the rangen P. We call this thegrimal range space induced by P and
S. In the second kind, we exchange the role®@ndS i.e., S is the ground set and each
p € P defines the ranges € S : p € s}. Several people have proved the existence-of
nets of sizeD(1/¢€) for such geometric range spaces, improving orQte? loge1) bound

for range spaces of finite VC dimension. Pach and Woeginggrdebved that halfspaces
and translates of polytopes k¥ admit stronge-nets of sizeO(%). Matousek et al. [36]
proved that halfspaces & and certain special families of pseudo-disk&f(they require
that there is exactly one pseudo-disk through any threecotimear points in the plane)
admit stronge-nets of sizeO(%). Matousek later found a shorter proof for the existence
of O(%) size stronge-nets for halfspaces i® via shallow cuttings [34]. Clarkson and
Varadarajan [16] gave a fairly general framework which aggpto many such geometric
range spaces. Their technique is particularly useful ferdbal range spaces where they
show that if the geometric objects under consideration baveallunion complexity, then

is possible to get a correspondingly smatiet. Their technique however does not readily
apply to primal range spaces.

In Chapter 2, we develop a new technique for proving the existefo(e *loge?) size
e-nets and use it to obtain@(1/¢) sizee-net for the primal range space induced by a set of
points and a set of pseudo-disks in the plane. This resulhaiggreviously known and it is
not clear whether the technique of Clarkson and Varadaragjrcpn be used for this case.

Our technique also gives a new proof for almost all geomedinge spaces for which such

6



a smalle-net is known to exist. In particular, it gives a very shortlalementary proof,
using only double counting arguments, for the existenc®df/¢) for the range space
induced by a set of points and halfspaceRin The earlier proofs used fairly sophisticated
geometric anfbr probabilistic tools. The proof technique used also iegpfast algorithms
for computinge-nets of small size. In the process of applying our techniquée various
geometric range spaces, we also prove interesting conoialatesults about them. For
example, we prove that given a set of points and a set of pséigéle in the plane, it is
possible to construct a planar graph whose vertices aretlod goints so that the subgraph
induced by the vertices in any of the given pseudo-disksmseoted. Such results lead to
a PTAS for the hitting sets problems related to these rangeesp We describe the hitting

set problem and the specific results obtained in next se(deation 1.2).

1.2 Hitting Sets

The problem of computingninimum hitting setss very closely related to the problem
of computing smalk-nets. In the (strong¢-net problem we are interested in finding a
small subset of the ground set whibits, i.e. has a non-empty intersection with, all the
e-heavy ranges. A natural algorithmic question then is wéretve can compute, exactly or
approximately, ar-net of the smallest size. A more general question is if wegaren a
set of ranges (which may or may not béeavy), can we compute the smallbgting set
i.e., the smallest subset of the ground set which has a nqtyantersection with each of
the given ranges? If the ranges are allowed to be arbitrdrgeds of the ground set, then
this problem is the same as the set cover problem whose appbuity is completely

resolved. It is possible to get@(logn) approximation, whera is the size of the ground



set, using a greedy algorithm and it is not possible to d@battless BPNP. However, when
the range space is “simple”, it is often possible to get betpproximations. Bronimann
and Goodrich [10] reduced the problem of computing hittiatsto computing weighted
e-nets i.e. hittinge-heavy ranges when the elements of the ground set have nfammin
weights. Essentially, they compute weights so that eachiveihganges aré-heavy for
as larges as possible and then comput@é-aet. They show that since one can compute
O(e!loge™) sizee-nets for range spaces of finite VC dimension one gets hittatg of
sizeO(oprt logoprt), whereorr is the size of the smallest hitting set, via this reductiam. |
many cases, as we will see in Chapter 2, it is possible to cargut-net of sizeO(1/¢).

In such cases, the reduction gives a constant factor appatixin to the smallest hitting
set. If we can compute aninet of sizec/e, then we get &-approximation. The weakness
of this approach is that after reducing the minimum hittieg groblem to a problem of
computing are-net, we use a worst case bound for theet. However, the worst case
bound can be much worse than the smaléeset for the problem at hand. Henaegcan
be quite large. Even for simple ranges like halfspaces irplawee,c is at least 2 [43] and
this rules out the possibility of a PTAS using this approachChapter 3, we give a new
general technique for approximating geometric hittings sethich avoids the limitation
of the Bronnimann-Goodrich technique. We give the first potyral-time approximation
schemes for the minimum geometric hitting set problem fordewlass of geometric range
spaces. All these problems are strongly NP-complete ancehemless PNP, there is no

FPTAS for these problem. Specifically, we show that:

e Given a setP of n points, and a se of m halfspaces irR3, one can compute a

(1 + 6)-approximation to the smallest subsetthat hits all the halfspaces {H in



O(mrPe™) time.

e Given a seP of n points inR?, and a set of-admissible region®, one can compute
a (1+ o6)-approximation to the smallest subsetPthat hits all the regions iD in
O(mrP¢ ™) time. This includes pseudo-disks (they are 2-admissilsi@ne-height
rectangles, circular disks, translates of convex objetcts $ee Definition 3.3.1 for

the definition of arr-admissible set of regions.

The above results should be contrasted with the fact thatfeveelatively simple range
spaces like those induced by unit disks in the plane, thaquswest known approximation
algorithm is due to a recent paper of Careti al.[11] which gives a 38-approximation
algorithm improving the earlier best known factor of 72 [42]

Our algorithm for both the problems is the following simpéeal search algorithm:
start with any hitting se$ C P (e.g., take all the points &%), and iterate local-improvement
steps of the following kind: If ank points ofS can be replaced by — 1 points ofP such
that the resulting set is still a hitting set, then perform sivap to get a smaller hitting set.
Halt if no such local improvement is possible. We ket c5—2, wherec is a constant, to
get a (1+ 6)-approximation algorithm.

In order to prove that the above local search algorithm warksise some combinato-
rial results about these geometric ranges that we derive apteh2 in conjunction with a
theorem about planar bipartite graphs (Theorem 18) whichamsider to be interesting in
its own right. It states the following:

Let G = (R B,E) be a bipartite planar graph on red and blue vertex Redsd B,
IR > 2, such that for every subsBt C B of size at mosk, wherek is a large enough

number|Ng(B')| > |B'|. Then|B| < (1 + ¢/ \/R) |R|, wherec is a constant.



As a side &ect of the above theorem, we also get a PTAS for computing themum
independent sets of the intersection graph of a given seadmmissible regions. This new

result extends the results obtained in [4] and [1].

1.3 Weake-Nets

A natural question for the primal range spaces induced byaf goints and set of geomet-
ric objects is whether it is possible to get a smadieret if we do not insist that the-net be

a subset of the point séi.e. if we allow it to be an arbitrary subset of the space inalihi
they are embedded (e.®Y). Such subsets are callegeake-nets in order to distinuish
them from the strong-nets we have considered so far. In some cases one can ineieed g
a very small weak-net. This for example is the case when the ranges are defineal
spaces in the plane. The three corners of any large enowgtylei containing the sé&

is a weake-net. On the other hand, even for simple geometric objekéstiiangles, it is
not known whether one can do any better than finding a steamgt of sizeO(e  loge™).
Perhaps the most interesting case is the range space inoyicedvex sets which does not
have a finite VC dimension and does not admit a small stesnet. It turns out that small
weake-nets do exist for this range space!

The concept of weak-nets with respect to convex ranges was introduced by Haussl|
and Welzl [26] and the notion has found several applicatinriiscrete and combinatorial
geometry (see Matousek’s book for several examples [35]).

Let w(d, €) denote the maximum size of the weakiet required for any set of points
in RY under convex ranges. Alogt al. [5] have shown that it is finite and for aryd,

there exist a weak-net whose size is independent of size of the ground set. if@jadly,
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they proved thatv(d, €) < O(1/€%1%), wheredy tends to zero witld — co. They also
showed that for a set of points & in convex position, there exists a weaket of size
O(1/e polylog(1/€)). More recently, Matousek and Wagner [37] gave an eledgotighm
that computes weaknets inRY of sizeO(1/e%polylog(1/e)).

One special case of weaknets is thecenterpoint Whene is large enough the weak
e-net consists of just one point which is called the centerporl his special case is well
studied and the famous centerpoint theorem [43, 35] sth#dséftwe have points ifR? and
€ > d/(d + 1), all e-heavy convex ranges can bi by just one point.

While the situation with strong-nets is very well understood, our understanding of
weak e-nets is far from satisfactory. The best upper bound knowrtHe size of weak
e-nets inRY is O(1/€Y) although it is not clear why it should be significantly largean
Ipolylog:. Matousek and Wagner [37] have conjectured étpolylog?l) is the right
upper bound. This remains one of the most important operngrabin the area.

In Chapter 4, we study weaknets of a small constant size. We start by looking at
an alternate proof of the centerpoint theorem. The cenitgrizeorem is usually proved
by using Helly’s theorem which in turn is proved by using Raddheorem. We give a
very short proof of the centerpoint theorem using an eleargrdrgument which avoids
using Helly’s theorem and Radon’s theorem. The same idea gigenple proof of Helly’s
theorem too. We then prove that in the plane, gimgpoints, it is possible to pick two
points p and g in the plane (not necessarily among input points) so thatcamyex set
containing more than¥7 input points contains at least one of the two pomtndg. We
also show that this is tight i.e. it is not possible to pick fants whichhit all convex sets
containing at least®y/ 7 points. This gives an optimal extension of the centerpbiebrem

to two points in the plane. We finally look at the cases of 3 oreraoints and improve
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several bounds obtained by Aronewal. [8].

In Chapter 5 we turn to the general weaket problem with respect to convex ranges
in RY. As we have remarked before the bounds for the size of weaadts are not very
satisfactory and there hasn’t been any progress in a lorgy ¥ie consider the conjecture
of Matousek and Wagner [37] which states tmz(%polylog%) is the right upper bound.
We then make the following observation (Observation ): GigesetP of n points inRY,

a weake-net of P of sizek is completely described b§(d?k) points of P. For example

in the plane, one can easily move the weaket points so that they still form weaknet
and furthermore each of the wealnet points lies on the intersection of two lines, each
of which is defined by two points iR. Similarly in RY, it is possible to move the points
to the intersection ofl hyperplanes, each of which is defineddpoints of P. Therefore,
any of the points is @roductof d? points. This observation implies that if there is a small
weake-net, it should be possible to construct it from a small nundiehe input points.
However, all known constructions requifée9) points. We show that it is indeed possible
to construct a weak-net from a random sample of sif&e*loge™t). Our algorithm
first constructs a strong-net with of sizeO(e*loge™?) for a range space of a finite VC
dimension and then takes cert@ioductsover it to produce the weaknet with respect to
convex ranges. Apart from giving strength to the conjectlifdatousek and Wagner [37],
the proof reveals an interesting connection between stodgveake-nets and shows that
random sampling can be used to construct weakts. It also shows a connection between

the Hadwiger-Debrunnep(qg) theorem and weak-nets.
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Chapter 2

Strong e-Nets

In Chapter 1, we mentioned the Stroaget theorem (Theorem 1) which states that any
range space of a finite VC dimensidradmits a strong-net of sizeO(% log %). However,
many range spaces, typically range spaces arising in gegradinit stronge-nets of size
o(% log %). For, example, Pach and Woeginger [44] proved that hatlspand translates
of polytopes inR? admit stronge-nets of sizeO(%). Matousek et al. [36] proved that
halfspaces iiR® and certain special families of pseudo-disk&i(they require that there
is exactly one pseudo-disk through any three non-collipearts in the plane) admit strong
e-nets of sizeO(%). Matousek later found a shorter proof for the existenc@@‘) size
stronge-nets for halfspaces iR® via shallow cuttings [34].

In this chapter, we first give a new construction of strengets of sizeO(%) for half-
spaces irR? which leads to fast algorithm for computirenets for halfspaces iR2. We
then describe a general techniques for provzi@gog %) upper bounds on the size of strong
e-nets admitted by various range spaces. We then show howngiraot the strong-net

efficiently. In the following, we will just write &-net” for "stronge-net”.
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2.1 Geometric Range Spaces

Recall that a range spageis a pair X, R) whereX is aground sefpossibly infinite) and
Ris a set of subsets of. The elements oR are calledranges For anyY < X we call
Ry = {rnY : r € S} theprojectionof RonY. The projection ofR on Y is the range
spaceRly = (Y, Rly). The range spaces that we consider in this chapter areedducfinite
sets of points and geometric objects. [Rebe a finite set of points an8l a finite set of
geometric objects. For an objeste S, let P(s) be the set of points contained gni.e.,
P(s) = {p e P: p e s}. Similarly for a pointp, let S(p) be the set of objects containinyg
i.e.,S(p) ={se S: pe s} The set andS induce two natural kinds of range spaces. If
we treat the set of poin8 as the ground set and the let the objectS idefine the ranges,
we get the range spack, (P(s) : s € S}) which we call theprimal range space induced
by P and Sand denote it byR(P, S). On the other hand, if we think of the set of objects
S as the ground set and let the pointdHmefine the ranges, we get tdeal range space

induced by P and Sdenoted byR* (P, S) = (S,{S(p) : p € P}).

2.2 e-Nets for halfspaces inR?

Let P be a finite set of points inR? andS be the set of all halfspaces in ti¥é. Pach
and Woeginger [44] proved that the range spR@@ S) admits ane-net of sizeO(%). We
give an alternate proof of this fact which allows us to conepane-net of the same size in
O(nlog 1) time.

For simplicity, let us assume th&tis general position i.e. no three points@fare on

the same line. Lep be a vertex of CHP), the convex hull ofP. Letry,ry, -, r¢ be rays
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Each of these cones higsn| points

Figure 2.1: Construction af-net for halfspaces iR

emanating fromp, wherek = ffl so that the cone defined by any two consecutive rays
contains at mos¢én points of P (see Figure 2.1). For each ray let g be the edge of the
convex hull ofP that intersects;. Letu; andv; be the end points a8 andx; the intersection

point ofr; ande. LetY = (J;{ui, vi}.
Claim 1. E = YU {p}is ane-net forR(P, S). |E| = O(3).

Proof. Consider a halfspade that contains more thaen points fromP. Assume thah
contains points from a conedefined by rays; andri,;. Then,h either contains one of
the pointsx, X1, p or it doesn’t contain points from any other cone. In the fatteseh

contains at mostn points fromP sincec contains at mostn points fromP. If h contains
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X then it contains eithew; or v; and hence is hit b¥e. Similarly, it is hit by E if it contains
xi+1. If h containsp, it is again hit byE sincep € E. By constructionE| is at most

1+ Zrﬁ]. For large enough this is arbitrarily close to % 2[%1. O

We now show that such annet can be constructed @(nlog %) time.

Theorem 5. Given a set P of n points in the plane, amet of sizézrg] + 1 with respect to

halfspaces can be constructed ifindog %) time.

Proof. Let p be a vertex of CHP). Such a point is computed @(n) time by picking the
lexicographically smallest point &1. Letry,ry,--- , 1 be rays emanating fromas before.

In order to construct the-net described in Claim 1, we just need to compute these rays
and the edge, of CH(P) intersecting each ray. If k = 1, then we pick the ray, to be

any ray passing througp that intersects the interior of some edge of €H4(Such a ray
can be computed i®(n) time. We can then compute the edge of @Hintersectingr;

in O(n) time by using the algorithm used in [30] for computing thedge intersecting a
given ray. Otherwise, ik > 1, we first recursively compute the odd numbered rays and the
edges of CHR) intersecting them. The even numbered rag chosen such that it roughly
bisects the set of pointg; lying in the conec; defined by the odd numbered rays, and

ri;1. Thisis done irO(n;) time, wheren; = |P;j|, using a median computation algorithm. To
computeg, we use the observation thatis either identical to one of the edges; or e,

or both its end points are ip. We compute the edge of CH(P; U {p}) in O(n;) time using

the bridge computation algorithm of [30]. The edges the edge among_1, €., and€
whose intersection with is the furthest fronP. Since} ..niN = N, the total time take to

compute the rays and the edges for even indices is O(n). Hence, the overall running
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time T (k, n) of the algorithm is given by the equations

T(k,n) = T([k/2],n) + O(n)

T(1,n) = O(n)

Hence,T (k,n) = O(nlogk) = O(nlog ).

O

We now describe a general technique to prove the existenceets of sizeo(2 log 2).
We first give a simple proof for the existence @(%) size e-nets for halfspace ranges
in three dimensions and then extend the technique to raraEespvhich satisfy certain
simple conditions. We also show how the existence proofdearonverted intofécient

algorithms for computing smadtnets.

2.3 Halfspaces irr3

In this section we give a simple proof for the existencé)()f) sizee-nets for halfspaces
in R3. This result was first proved in [36] and later a simpler prappeared in [34]. For
convenience, we consider thenet problem for the dual range space induced by finite sets
of points and halfspaces iR®. The existence oé-nets of sizeO(%) for such dual range
spaces implies the same for the primal range spaces sinoa@ésef points and halfspaces
can be exchanged by using projective duality (see [18]).

The dual range space induced by a set of points and a set sphadfs irR3 has the
halfspaces as the ground set and each point defines a range iglthe set of halfspaces
containing that point. This range space clearly has a fic##ad dimension and hence a

finite VC dimension. Therefore, it follows from tlenet theorem (Theorem 1) that such a
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range space admits amnet whose size depends only on the parametén other words,
whene is a constant, there is annet of constant size. We use this fact and the following
claim to prove that the dual range space induced by a givee BeitP of points and a set

H of halfspaces iR?® admits are-net of sizeO(2).

Claim 2. Given any finite set Q of points i®®, there exists a graph &= (Q, Eg) with
at most4/Q| edges such that for any halfspace Hrify the subgraph of G induced by the

points of Q contained in h (i.e. Q h) is connected.

Proof. We construcGq, as follows: LetQ’ € Q be the vertices of the convex hull CEY

of Q. We include the edges of the 1-skeleton of Qi ( i.e. the graph with the vertices
of CH(Q) as the vertex set and the edges (1-faces) as the edge &g}) For each of the
pointsg € Q\Q', we pick a tetrahedron containirggwhose vertices are i’ (there is
always such a tetrahedron by Cakbdory’s theorem [35]) and put edges betwegeand
each of the four corners of this tetrahedron. The constnaifGq is complete. It contains
at most 4Q| edges since the 1-skeleton of GPj(is a planar graph and each pointQyQ’
has degree four. For any halfspate R, the subgraph 064 induced by the points in
Q nhis obviously connected and each point@\Q’)Nhis connected to at least one of the

points of @ N h. Therefore, the subgraph induced by the pointQin his connected. o

For the range spad®‘(P, H) defined by a set of poinf3 and a set oH of n halfspaces
in R3, call pointp € P heavyif it is covered (contained) by more than halfspaces in
H. Call a heavy poinimoderately heavif the number of halfspaces covering it lies in the
range €n, 2en] and call itvery heavyotherwise. We call a subs¥tC P amoderates-net

for R*(P, H) if for each moderately heavy poipte P, a halfspace iryY coversp.

Claim 3. The range spac®*(P, H) admits a moderate-net of size (D%).
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Proof. Let M C P be the set of moderately heavy pointsRn For eachp € M, let H(p)
denote the set of halfspaceshkhwhich containp. We say that two pointp,q € M are
independentf [H(p) N H(Q)| < en/8. Letl € M be an inclusion-maximal set of pairwise
independent points iM. The maximality ofl implies that for anyp € M, there is a point
g € |, not necessarily dlierent fromp, such thatH(p) N H(g)| > en/8. Sinceq is a
moderately heavy poinH(q) < 2en and hencéH(p) N H(q)| > |[H(Q)|/16. This means that
a1—16-net forR*(P,H(q)) hits p. In other wordsZ = |, Y;, WhereY; denotes qls-net for
R*(P,H(r)), is a moderate-net forR*(P,H). The size of such a net {3(t), wheret = |I|,
since each of th%-nets is of constant size. We now show thatO(%).

By Claim 2, there is a grapB, = (I, E|) such thatE,| < 4t and for anyh € H, [hn 1|
induces a connected subgraphGf We say that a halfspadecontains an edge € E; if
both the endpoints of are contained ith. We denote the set of halfspaces containing an
edgee by H(e). For any halfspacé, letn, = |hn I| and letm, be the number of edges
contained inh. Sinceh N | induces a connected subgraphGyf n, — m, < 1 for eachh.
Summing over the halfspaces iH,

Znh—Zmnsn. (2.1)

heH heH
Now, since eaclp € | is a heavy point,
D =" IH(p)I > ten. (2.2)
heH pel

Each edge irE, is contained in at mosin/8 halfspaces since both its endpoints belong to

|. Therefore,

D my= > HE)l < |E||— <4t—. (2.3)

heH ecE
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It follows from (2.1),(2.2) and (2.3) that< 2/e and henc& is a moderate-net of size

o). O

€

Theorem 6. The dual range spac®*(P,H) induced by a set of points P and a set of

halfspaces H irR® admits ane-net of size (D%).

Proof. Let M C H be a 2-net for R*(P, H) andZ a moderate=-net for R*(P, H). Then
Z U M is ane-net forR*(P, H) sinceZ covers all of the moderately heavy points avd
covers all the very heavy points. By Claim 3, there exists a maide-net of sizeO(1/¢).

If we denote the size of the smalleshet admitted byR*(P, H) by f(¢), we have

f(x)=0, ¥x>1,

f(e) < 0(%) + f(2e).
It follows that f (e) = O(%). m

Using projective duality between points and halfspacesalse obtain the next theo-

rem.

Theorem 7. The primal range spac®(P, H) induced by a finite set of points P and a finite

set of halfspaces H iR® admits ane-net of size Q).

2.4 Abstract Framework

The proof for the existence c@(%) size e-nets for range spaces induced by points and
halfspaces ifR® can be adapted to any range sp&ce (X, S) that has the properties that
we have exploited in the proof. In the following, we denote #iet of ranges containing a

particular elemenx € X by S(X).
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Theorem 8. Any range spac® = (X, S) satisfying the following two conditions admits an

e-net of size Q).

1. For any0 < € < 1 and for any YC X, R|y admits ane-net whose size depends only

ONne.

2. There exist constants > 0,84 > Oandr > 0s.t. forany IC S, there is a graph
G, = (I, E) with |E| < gJl| so that for any element & X we have m> any, — 7,
where np = |1(X)| and ny is the number of edges in Evhose both endpoints (which

are ranges) contain x.

Proof. The proof is analogous to the proof for halfspaceRinAs before, we call a range
se S heavyf |[g > en, wheren = |X|. We say that a heavy rangés very heavyf | > 2en
and moderately heavgtherwise. Ane-net forR is a subself € X which hits all heavy
ranges i.e. each heavy range contains at least one elem¥&nt Afmoderatee-net is a
subse” C X which hits all moderately heavy ranges.

We show thatR admits a moderate-net of sizeO(%). From this we can conclude the
existence of ar@(%) sizee-net forR by an argument analogous to the proof of Theorem
6. We say that two rangesands areindependentf [sN S| < é—’gen. Letl € S be an
inclusion-maximal set of pairwise independent moderabtelsivy ranges. Then for each
S € S, thereis ase$ € | such thatsn 5| > %en which implies thatsn s| > %lsl since
|sl < 2en. Therefore, ar%-net forRs hitss'. This means tha = |, Y;, whereY, denotes
a%-net forR|;, is a moderate-net forR. Moreover,|Z| = O(t) wheret = ||, since each

of the %-nets are of constant size due to the first condition in theestant of the theorem.

Now we show that = O(2).
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LetG, = (I, E)) be the graph ensured by the second condition in the stateshéme
theorem. For an edge= (s, 5) € E|, let X(e) = |sn S|. Since the ranges ihare pairwise
independentX(e) < ;€N For eachx € X, we haveen, — my < 7, whereny, = |1 (x)| andmy
is the number of edges i whose both endpoints contaxn Summing over alk € X, we

have:

Z any — Z my, < 7n. (2.4)

Now,

nc= Y |s > ten (2.5)
PIEDY

xeX sel

since eacts € | is heavy. Also, sinc&(e) < szen for eache € E, and|E,| < jt,

Z my = Z X(e) < |E.|%en < Bt%en = C—;ten. (2.6)
xeX ecE

From (2.4), (2.5) and (2.6) we get:

2
aten— Zten <th = t< i (2.7)
2 a €

Sincea andt are constantd, = O(%). Hence,Z is a moderate-net of sizeO(%) for
R and we conclude from a calculation similar to the one in trepof Theorem 6 thaRk

admits are-net of sizeO(2). O

The second condition of Theorem 8 requiligg to beO(]1]). It is natural to expect that
if instead we hadE,| < [l|b(]I]) for somesmallfunctionb(-) then we should still be able to
prove the existence of a correspondingigall e-net. Indeed, this is true and the following

theorem can be proved along the lines of the proof of Theorem 8
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Theorem 9. LetR = (X, S) be a range space satisfying the following two conditions:
1. For anye and for any YC X, R|y admits ane-net whose size depends onlyeon

2. There exist constants> 0,7 > 0 and a positive non-decreasing sublinear function
b(-) s.t. forany IC S, there is a graph G= (I, E|) with |E,| < [I|b(]l|) so that for
any element x X we have m> any — 7, where i = [I(X)| and ny is the number of

edges in Ewhose both endpoints (which are ranges) contain x.

Then,R admits ane-net of size @2 - (4T)f*(§)f(§)) where f(-) and f(-) are defined

as:

if f(k) >k
fr (k) =
1+ f*(f(k)), otherwise
1 if f(k) >k
flg =1 " 9=

f(k) - f(f(k), otherwise
The proof Theorem 8 can be easily adapted for the case in whe&lvertices have

positive weights (instead of all vertices having weightThe same holds for Theorem 9.

2.4.1 Algorithmic Issues

The proof of Theorem 8 suggests the following simple algonifor computing are-net
for a range spacg = (X, S) satisfying the conditions of the theorem: Start with an gmp
set as the-net and look at the ranges $1one by one. Let be the range currently being
considered. Ifsis already hit by the-net we have built so far then we ignore it. dfis
large (8 > en) and is not already hit we compute %@net forR|s and add it to the current

e-net. The pseudocode is shown in Algorithm 1.
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1 Algorithm: Computee-net

Input: A range spac® = (X, S)

Output: An e-netN for R
2 N=0 // The e-net is initially empty
3 forall (s€ S) do

4 if |9 > enand sn N = 0 then

5 Pick an%-netMs for R|s
6 SetN := N U Mg

7 end

g end

9 return N

Algorithm 1: Computee-net
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The setN constructed in Algorithm 1 is agrnet by construction. We still need to argue
that it has a small size. Consider the subset of raBgesS whose sizes are in the interval
(en, 2en] and for which Line 5 is executed. The rangesSinform an independent set i.e.
for any two ranges, s € S’, |sN S| < 5€N and hence by the argument used in the proof
of Theorem 8|S’| < %% Similarly, the number of ranges whose sizes are in thevater
(2%en, 2*1en] and for which Line 5 is executed is at mo&ts for any integerk > 0.
Hence, the total number of ranges for which Line 5 is execist@(?). Since the size of
each%-net computed in Line 5 is a constant, the size ofdtmet computed iQ(%).

The implementation of Line 5 depends on the range space wotaideration. As-
suming that it takes constant time to execute Line 5 and tckcthdhether an element of
the ground set belongs to a given range, the overall runmmgaf the algorithm i€©O(mn).
The size of each range is computed by checking for each eteshtdre ground set whether
it belongs to the range. Checking whether a certain rangé liyihe current-net is again
done by checking whether any of the elements of the cuereet is contained in the range.
This takesO(2) time. We can assume that> 1 since otherwise we can pick the whole
ground set as thenet. Therefore the total time taken@mn).

If R has a finite VC dimensiod, then we can compute thg-net required in Line
5 of Algorithm 1 by random sampling. By thenet theorem (Theorem 1), a random
sample of sizeO(2log9), wheres = 4> is an g-net with high probability. Suppose
that the probability is more tha§1 Then, in expectation in at least half of the cases the
random sample is afy-net. If we letS’ be the subset of rang& C S whose sizes are in
the interval é€n, 2en] and for which Line 5 is executed successfully (i.e. we gebaect
%-net), then as before, it can be argued &4t < %% Therefore, the total number of

ranges whose sizes are in the intena, Ren] and for which Line 5 is executed (either
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successfully or unsuccessfully) is at mo%;tgzin expectation. As before, we can argue that
the total number of times Line 5 is executecﬁsg). Hence the size of thenet computed
is O(%) and the running time of the algorithm@{mn).

The running timeO(mn) can often be prohibitive sinca can be quite large. In such
cases, a standard technique is to first constjtagtproximatiorA for R and then use a sub-
space oracle to enumerate the hyperedgéd, 0fAn 5-net forR|a is ane-net forR. If the
scdfold dimension ofR is d, then a subspace oracle enumerates the distinct rangds of
in O(|A/%+Y) time. Thes-approximationA of sizeO(e2loge™t) can be computed determin-
istically in O(ne 2 log® e~1) time [39]. The distinct ranges iR|, can then be enumerated
in O((e 2loge )41 = O(ne @ log® 1) time ! Now since we have onl@((e 2log e 1)9)
ranges to deal with, we can use the previ@{sin) time algorithm and the overall running

time of our algorithm remain®(ne 2 log® e 1).

2.5 Geometric Applications

In the following, we present several applications of TheoB The geometric range spaces
that we consider here have finite VC dimension and hence atitcatly satisfy the first
condition of Theorem 8 (due to Theorem 1). Hence, we only @it they satisfy the
second condition and conclude the existence o¢-aet of sizeO(%) for them. Most of
the results presented here have been proved before usiogséechniques. Apart from
Theorems 14 and 16, which were not previously known, the m@ngaresults also follow
from the framework of Clarkson and Varadarajan [16]. We idelthem here in order to

demonstrate that they follow from our framework too. Alsosbome cases, our technique

lagain assuming thatis a constant
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leads to a simpler proof. Theorems 14 and 16 show a way to evercthe limitations of
the technique used in [16]. Most of the definitions given is #ection are more thoroughly

explained in [2].

2.5.1 Translates of Orthants inR3

We will show that the dual range space induced by a finite spbofts and translates of
an orthant ifk® (also called an octant) admits amet of sizeO(%). As mentioned earlier,
this result also follows from the framework of Clarkson andadarajan [16].

Let P be a finite set of points iit® and letO be the set of all translates of some orthant
in R3. We will also denote a poinp € R* as K, Yp, Z,), Wherex,, y, andz, are thex,y
andz coordinates of. For p,q € R3, we will write p > qiff X, > Xq,Yp > Yq andz, > z,.

We define the notatiop < qin a similar manner. W.l.0.g. we assume that the orthants in
O are axis-parallel, and evefly € O is of the form{(X,y,2) : X > X1,y > yr,Z > 7z}, for
some &r,Yr,2r) € R3, which we call thecornerof T. For anyT € O and anyQ c P, let
Q(T) = QNT. Note that if an orthant € O contains som@ € Q, then it also contains any
pointg € Q such thatg > p. For any two point$, g € Q, we define thaninimal common
orthant of p and gT,4 € O, as the minimal (w.r.t. inclusion) orthant that containshbp

andg. The corner ofl , 4 is the point (MitiXp, Xg}, Min{y,, Yo}, Min{zp, z3}).

Lemma 1. For any Q¢ P, there is a graph @ = (Q, Eg), such thatEq| < 3|Q| and for

any T € O, there are at Ieas%lQ(T)l — 1 edges among the points i(0Q.

Proof. For a pointp € Q we define thex-neighborof p asNy(p) = argmax{Xq : Yq >
Yoo Zg > Zp,q € Q\ {p}}. They- andz-neighborsN,(p) and N,(p) are defined anal-

ogously. Note that it is not necessary that all threeNofp), Ny(p), N.(p) exist for all
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p € Q. For everyp € Q, we add toEq the edges (g, Ny(p)), (p. Ny(p)) and (o, N.(p)),
whenevem,(p), Ny(p) andN,(p) exist, respectively. The construction®§ is now com-
plete. Clearly|Eq| < 3|Q|, since every point ifQ accounts for at most 3 edges.

Consider any orthant € O. We claim that there is at most one pomie Q(T) that
does not share an edge with another poin®{i1). This will immediately imply that the
number of edges whose both endpoints are contain€dsmat Ieast%lQ(T)l — 1. Assume,
for contradiction, that there arg g € Q(T), p # q, neither of which shares an edge with
another point irQ(T). Sincep, q € T, their minimal common orthartt, 4 is also contained
in T. W.l.o.g., assume that the cornerBf, is the pointo,q = (Xp, Yp, Min{zp, 73}), i.e.
at least two coordinates of the corner (namely xh@ndy coordinates) are equal to the
corresponding coordinates @f (any other case can be treated similarly). Consider the
set of pointsZ, = {0 € Q\ {p} : Xy = Xp, Yy = Yp}. Thez-neighbor ofp is given by
N(p) = argmax{zy : o € Z,}. Sinceq € Z,(T), it must be thatzg < zy,), implying
that N.(p) > 0pq, i.€. Ny(p) € T. But then the edgep{ N,(p)) € Eq contradicting our
assumption thap does not share an edge with another poin@(i). Therefore, there is
at most one point irQ(T) which does not share an edge with another poir@(i), thus

proving the claim. O
Lemma 1 and Theorem 8 imply the following theorem:

Theorem 10. The dual range space defined by a finite set of points and a Beit®f

translates of an orthant iiR® admits ane-net of size (D%).

The above theorem also implies the existence oé-aet of sizeO(%) for the primal
range space. To see this, note that we can substitute ewbanof by its corneror, and

every pointp = (Xp, Yp, Zp) by an orthant of the forni(x,y, 2) : X < Xp, ¥ < Yp, 2< 7,}. This
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Figure 2.2: Con€ behaves like an orthant in the oblique coordinate systeimavigin O.

preserves the incidences between orthants and pointsefoherwe have:

Theorem 11. The primal range space defined by a finite set of points and t& faeit of

translates of an orthants iR® admits ane-net of size C()%).

Translates of Polytopes inR3: We proved that the range spaces induced by a set of
points and translates of an orthanRihiadmit a smalk-net. It is possible to prove the same
result for the range space induced by translates of a payitoR? with a finite number of
vertices. We give a brief sketch here. Suppose that instetdrslates of an orthant, we
had translates of a cone with a triangular cross sectigrai@ne which is the intersection
of three halfspaces passing through a point. This situadioot very diferent since cones
with a triangular cross-section behave like orthants initable oblique coordinate system
(see Fig. 2.2). In other words, it is easy to apply #iina transform to make the translates
of the cone look like orthants while preserving the incidenbetween the points and the
translates of the cone. Therefore, the range space indycadét of points and translates
of suchtriangular cones inR® also admits ar-net of sizeO(1/€). From this, it is easy
to show that the range space induced by translates of a ¢eli@mA admits ane-net of

sizeO(1/¢€). We only need to consider a fine enough (oblique) griddingso that every
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Figure 2.3:1(h) andr(h) for the pseudo-halfplanein a family of pseudo-halfplanes.

translate ofA has at most one corner in any cell and at the same time it ddestamsect
more than a constant numbtesf cells. Then, inside any cell, we can treat the translates o
A intersecting it as cones. There are foutetient types of cones corresponding to the four
corners ofA. If the cell under consideration haspoints in it, then we construct atnet,
wheree’ = e% of sizeO(n;/en) with respect to translates of each of the foutetient kinds

of cones. Itis not hard to argue that the union of théseets for the cells gives annet for

the range space induced by translatea @ind total size is stilD(1/€) since g shi = n.
Since a convex polytope iR® with k vertices can be triangulated wi@(k) tetrahedra, it
follows that translates of a convex polytopeRa with k vertices admit ar-net of size
O(k—j). We just need to construct apk-net with respect to the range spaces induced by the

translates of each of tHe(k) tetrahedra used in the triangulation of the given polytope

2.5.2 Pseudo-Halfplanes iiR?

A family of (x-monotone)pseudo-linesn the plane is a set of graphs of continuous uni-
variate functions, that intersect in at most one point amnd<iat that point. A family of
pseudo-halfplanes a set of closed sets in the plane whose boundaries form iy fam

pseudo-lines. For convenience, we will just wiitalfplanesfor pseudo-halfplanes. For
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any halfplanéh, we will denote the function tracing its boundary fy With a slight abuse
of notation, we will also refer to the boundarytoby f,,. A family of upperhalfplanes is a
set of halfplanes each of which is bounded from below, i.eefxh halfplané in the set,
h={(xy) € R? : y > fy(x)}. Similarly, a family oflower halfplanes is a set of halfplanes
each of which is bounded from above.

Let 7 be a finite family of upper halfplanes anddc 7. For anyp € R?, we will

denote the set of halfplanesXathat containp by X(p), i.e.,X(p) = {he X: pe€ h}.

Lemma 2. For any XC 7, there is a graph G = (X, Ex), such thatEx| < 2|X| and for
any pe R?, the halfplanes in ¥p) induce a connected subgraph (which therefore contains

at least|X(p)| — 1 edges).

Proof. For halfplaned andh’, we say thah liesbelow H at x, if f,(X) < f,(x). Note that

if a point p = (x,y) is contained in somb € X, thenp is also contained in evely lying
belowh at x. Therefore, in order to construGy in such a way that the set of halfplanes
containingp induce a connected subgraph, itfszes to ensure that for ad € R, each
halfplaneh € X shares an edge with some halfplarie= X below it atx (if one suchh’
exists). For simplicity, we assume that the boundafieand f,,, of any pair of halfplanes
h,h € X, cross exactly once. (If there aneh’ such that the boundaridg and f,, never
cross, then for alk € R, one of them, say, lies above the other. Therefore, we can put
an edge between andh’ and ignore pseudo-halfplaie) For a halfplanén € X, let1(h)

be the halfplane itX which lies belowh for the maximal interval (w.r.t. inclusion) of the

form (—oo, x). Similarly letr(h) be the halfplane oK which lies belowh for the maximal
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interval of the form g, +c0). More formally,

I(h) =argmaxex{x: fv(x)=f(x)and Vx<x, fn(X) < fy(X) },

r(h) =argminex{ % @ fv(x) = fa(x) and ¥x> X, fr(X) < fn(X)}.

Let x;, and X, be thex-coordinates of the intersection &f with f,y, and (), respec-
tively.? For an example, see Fig. 2.3. It is easy to see that connaatargh € X with I(h)
andr(h) gives the required graph. For alle (—co, X"), his connected to the halfplahgh)
lying below it and for allx € (X, +c0), it is connected to the halfplam¢h) lying below it.

For anyx e [xL, x ], there is no halfplane lying belob. O

It follows from Theorem 8 and Lemma 2 that the primal rangesiefined by a family
of upper (or lower) pseudo-halfplanes and a set of pointhénplane admits aa-net of

sizeO(2).

Theorem 12. The primal range space induced by a finite family of pseudtplames.’z”

and a finite set P of points in the plane admitseanet of size (()}).

Proof. Let .74 and. 77, be the sets of lower and upper halfplanes (respectivelyfinWe
construct separatenetsN, andN, for H(P, 7)) andH (P, 5#)). Then,N, U N, gives an

e-net of sizeO(2) for H(P, 7). O

Using the duality between a family of pseudo-lines and a spbmts in the plane, as
defined in [3], we can exchange the roles of points and updéléaes in Lemma 2 and

prove the following:

2|f xL > x;,, we can completely ignorefor this stage, since the edges added to it in the first stafjeesu

If xL or x;, does not exist, we can consider it equakt® or +oo, respectively.
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Theorem 13. The dual range space induced by a finite family of pseudglaalés 72 and

a finite set P of points in the plane admits @net of size (D%).

2.5.3 Pseudo-Parabolic Halfplanes iiR?

A family of pseudo-parabolas a set of graphs of continuous univariate functions every
two of which intersect (and cross) in at most two points. (\Weume that every tangency
is equivalent to two intersections.) A family plseudo-parabolic halfplane@arabolic
halfplanes for short) is a set of closed regions in the planese boundaries form a family
of pseudo-parabolas. For a parabolic halfplanlet f, denote the function that defines the
corresponding pseudo-parabola. We defipperandlower parabolic halfplanes just as we

did for pseudo-halfplanes in Section 2.5.2.

Lemma 3. Let # be a family of upper pseudo-parabolic halfplanes and P a Epbmts
in R2. Then, for any B 2 there is a graph G = (B, Eg), such thatEg| < 6|B| edges, and

for any pe P the parabolic halfplanes containing p induce a connectdzhsaph.

Proof. We will assume that anlg;, b, € B cross exactly twice. It is not too hard to prove
that for anyb,, b, € B that intersect only once, additional crossings can be edeait the
right of the rightmost point i, without changing the incidences between the parabolic
halfplanes and the points i3 For eachb € B, we definel(b), r(b), x°, X° just as in the
proof of Lemma 2. Note that the definitions imply thétis the first point of intersection
betweenb andl(b), while x? is the second point of intersection betwegh) andb. We

construct the edge sé& in two stages. In the first stage, we connect e\uery B with

3Again, if b,b’ € B intersect tangentially or never intersect, then one of tHetit beb, lies completely

above the other. Therefore, we can conreict b’ with an edge and ignofefrom then on.
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[(b) andr(b). This was we add at mos{E edges and everly € B is connected to another
parabolic halfplane that lies below it, for adle (-0, X°) U (X°, +c0). In the second stage,
for everyb € B, we restrict our attention to the intervigl = [x{o, x]. Let o, denote the
drawing of f, restricted td,. We claim that thex-monotone curves, (for all b € B) form

a sefl” of curves whose interiors do not cross. Assuming the contsay that the interiors
of op, andor,, intersect at a poind, yo). If this is the first intersection between the curves
fp, and fy,, and forx < Xo, fp,(X) < fu,(X), thenx,b2 > Xo, contradicting the assumption
that the interiors ofr,, ando, intersect atXo, yo). Similarly, (X0, o) cannot be the second
point of intersection between the two curves either.

For eachb € B andx € |,, we will ensure thab is connected to somg € B such
thatx € Iy andoy lies belowoy, at x (if such ab’ exists). To achieve this, we consider
a trapezoidal decomposition of the segmenggas in [18], Chapter 6, noting that having
curved segments instead of line segments doesn’t causerablems). The decomposi-
tion consists of at most/®| + 1 non-overlapping trapezoids, whose upper and lower sides
are parts of curves i and the left and right sides are vertical line segments. Bohe
trapezoid, we put an edge between the parabolic halfplasressponding to the upper and
lower sides. The construction & is now complete.

To see that for anyp € R? the subgraph o6g induced by the parabolic halfplanes in
B(p) is connected, observe first that the lower envelope of thengement of parabolic
halfplanes irB is identical to the lower envelope of the segments.iNow, for eactb € B
andx € R: If x € (—o0, X") U (X, +00), thenb is connected to some parabolic halfplane
lying below it atx (if one such exists) due to the edges added in the first staiper@ise
X € |y, and the only case in whidhis not connected to any parabolic halfplane lying below

it is whenoy, is the lowest segment @f at x. However, in that casdy is also the lowest
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parabolic halfplane oB at x. Therefore for everx € R, each parabolic halfplane € B
shares an edge with sorhee B, such thatfy (x) < fy(X), unlessb is the lowest parabolic
halfplane atx, implying thus that the subgraph is connected. Since trad tatmber of

edges added in the two stages is at m¢Bt-51 < 6|B|, the Lemma follows. O
The next theorem follows from Lemma 3 and Theorem 8.

Theorem 14. The primal range space induced by a finite family of pseudaipaic half-

planes# and a set of points P in the plane admitsenet of size (D%).

Unfortunately, there is no duality (similar to the one useddseudo-lines) known for
a set of pseudo-parabolas and a set of poinf?n Therefore, a dferent technique is
required in order to prove the existence ofanet of sizeO(%) for the dual range space
defined by a family of pseudo-parabolic halfplanes and a spoimts in the plane. We
will, in fact, derive it from a more general result proved lnetnext section (see Remark 1

at the end of the chapter).

2.5.4 k-admissible Regions irR?

Consider now a family of regions iR?, each of which is bounded by a closed Jordan
curve. We will call it a family ofk-admissibleegions (fork even), if for any twaos,, s, of
the regions, the Jordan curves bounding them ¢asé < k points, (for some evel), and
boths; \ s, and s, \ s; are connected regions. A family of 2-admissible regiondgs a
called a family ofpseudo-disks

Let S be a family ofk-admissible regions, an a finite set of points inR?. For any

Q ¢ P, we will show that there is a plane multigra@h(a crossing-free drawing of planar

“two Jordan curves cross when at a certain point a curve piissesne side of another curve to the other
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Figure 2.4: A chord of, lies insides, and vice-versa.

graph which may contain multiple edges between two veitwéh vertex seQ, such that
the subgraph o6 induced by the set of points contained in any of the reg®grsS, is

connected. The graph will be given as the uniorafinecting graph$or eachs € S: For

aregions € S, we call a plane connected gra@h = (Q(s), Es), whereQ(s) = QN s, an
s-connecting graplif the drawing of the edges iR is strictly contained irs. Moreover,
we say that a set of edgé&sproperly connecta regions € S, if there is a subsdf’ C E,

such that the grap8” = (Q(s), E’) is ans-connecting graph.

In the following, whenever we refer to an edge, we will alstereo its drawing. We
say that an edge piercesa regions, if s\ ehas at least two connected components and not
all the points ofQ N slie in the same component. éhordof a regionsis a Jordan arc with
the endpoints lying on the boundaig of sand the interior lying in the strict interior &

If cis a chord ofs, thens)\ c consists of exactly two connected regions.

Lemmad. Lets,s, € S. Let g be a chord of gthat lies in the interior of sand ¢ be a

chord of s that lies in the interior of 8 Then g and ¢ cross at an even number of points.

Proof. Fig. 2.4 shows a simple example which gives the intuitionitethe lemma. We
now prove it formally. Since; is a chord ofsy, it splits s into two partsA andB. The chord
c; lies in the interior ofs, ands; \ s, has at most one connected component. Therefore,
exactly one ofA, B is contained in the interior of,. (If both A, B lie in s, thens, does

not contain any point ads,, and hence it cannot contain a chordspeither.) Assume that
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B is not contained irs,. Sincec; is a chord ofs,, the endpoints o€, are onds,. Also,
A is contained in the strict interior &, and therefore does not contain any point@sf.
Hence, both endpoints @b must lie inB, i.e. they are both on the same sidecpinside

s;. This immediately implies that; andc, may only cross an even number of times.o
The following lemma indicates how to construct the aforetiogred plane multigraph.

Lemma5. Forany S € S and any given set of pairwise non-crossicgmpulsory”’edges
E., such that no edge e E; pierces any of the regions in’ here is a plane multigraph

graph G= (Q, E U D), such that EU D properly connects everysS'.

Proof. LetS’ = {s;, S, -+, &}. We will use induction on the cardinalityof S’.

Ford = 1, letl, be the set of points in the plane contained in the interi® ahd which
do not lie in the interior of any of the edgeskHj. Since no edge ik, piercess,, all points
in Q(s) belong to a connected componéhof I,. Therefore, there is a plane multigraph
G; = (Q, Ec U Dy), such that the edges D, are strictly contained ih; (and therefore in
the strict interior ofs;) andE. U D, properly connects;.

Assume now that fod = | > 1 and any compulsory set of pairwise non-crossing edges
E; which do not pierce any of € S’ there is a plane multigrapB, = (Q, E. U E)), with
Ec U E properly connecting,, s,,..,5. Ford =1 + 1, letE/ be the subset of edges i
that do not pierces,1. Any edgee € E, \ E/ is split by ds.: into a set of segments. The
segments that are containedsand are not chords &f,; will be calledobstaclegsee for
example Fig. 2.5). Note that one endpoint of each obstaetednds,; and the other is
one of the endpoints of the edge containing that obstaclssy#ing general position, no
point in Q, and therefore no edge endpoint, lies on the boundary of egipm.) Letl;,,

be the set of points iRR? which are contained in the interior gf., and which do not lie in
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Figure 2.5: Chord and obstacle segments of an edge w.r.tianreg

the interior of any of the edges . U E/ or the interior of any of the obstacles. Note that
no edge irE. U E| or an obstacle pierces,.;. Moreover, since no two obstacles cross, any
common point two of them may share will be an edge endpoimtrigghg tol;,; N Q(S1).
Thus, all points iQ(s.1) belong to a connected componéf of I,,,. Therefore, there is

a setD’ of edges contained ilf, ; such that the plane multigra., = (Q, Ec U E/ U D’)
properly connects, ;.

We claim that no edge € D’ pierces any of,, - - - , 5. For contradiction, assume that
somee € D’ pierces soma, i < |. Then,e contains a chora@ of s that splitss into two
connected components, each containing points f@@ansinceE; U E, properly connects
s, there must be an edgée E. U E;, whose endpoints belong tofirent components of
s \ c. This implies tha¥’ crosse an odd number of times. Sinegs an edge in the plane
graphG,,,, € cannot be an edge B,,;. Thereforeg € E, \ E/, meaning tha¥’ pierces
s.1. All the intersections betweesgi andc happen at segments efwhich are chords of
S.1, Since we excluded the interiors of the obstacles ftgm Hence, there is one segment
¢’ of € which is a chord of,; and has an odd number of intersections wittMoreover,
¢’ lies in the interior ofs since it is contained i, and similarlyc lies in the interior of

S.1. This contradicts Lemma 4 and therefereannot be piercing;.
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Therefore, none of the edgeskig U E/ U D’ pierce any ofs;, s, - - - , 5, and moreover
Ec U E/ U D’ properly connects,,1. Using the induction hypothesis for regioss--- , 5
with Ec U E/ U D as the new compulsory set of edges, we obtain a plane myhgvhose

edge set properly conne®s s, - - - , Sq1- |

Lemma 6. Given a family S of k-admissible regions and a set of points the plane,
there is a planar graph G = (Q, Eg) for any Q¢ P, such that for any § S, (Is) induces

a connected subgraph.

Proof. The required planar graph is obtained by applying Lemma Shferfamily S and
the setQ, with E. = 0 as the compulsory set of edges and replacing multi-edgéssimigle

edges in the resulting plane multigragh. O
Lemma 6 and Theorem 8 imply:

Theorem 15. The dual range spacg‘(P, S) defined by a family S of k-admissible regions

and a set P of points in the plane admitsanet of size (()%).

The above theorem also follows from [16]. Showing the existsof ao(% log %) Sizee-
net for the primal range spa@¥P, S) is an open question. However, we prove the existence
of ane-net of sizeO(%) whenS is a family of 2-admissible regions (pseudo-disks). This

result was not previously known.

Lemma 7. Let S be a family of pseudo-disks and P a set of poin&?inThen, for any

R C S there is a graph &= (R, Eg), such thatEg| < 24|R|, and such that for any p P, if

SAn interesting observation is that since planar graphs arel@rable [7], this implies that the primal
range space defined by a set of points and a s&taafmissible regions in the plane is 4-colorable. The

colorability of dualrange spaces induced by geometric objects has been stad#g].i
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p is contained in d pseudo-disks from R, then there are at fghs 1 edges among those

pseudo-disks.

Proof. For a pointp € P, we denote byR(p) € R the set of pseudo-disks Rthat contain
p and we define thdegree dp) of p asd(p) = |[R(p)I.

We start by constructing a sBt C P as follows: Letpy, p2,-- - , pn be all the points of
P in decreasing order of their degrees. Inggrinto P’, if and only if, for everyp; € P’
with j < i, we haveR(p)) N R(py)l < 2d(p).

Using Lemma 6 fol® andR, we get a planar grap8’ = (P, E’) such that for each
s e R, the points inP’(s) = {p € P’ : p € s} induce a connected subgraph. Therefore, for
any regions € R, it holds thatmg > ns— 1, whereng is the number of points & contained

in sandmg is the number of edges among those points. Summing overkaR, we get:

o< > me+ IR, (2.8)
seR seR
Since for anypy, p, € P/, the setR(p;) andR(p,) share fewer thari min{d(p1), d(p2)}
pseudo-disks, we have:

1 .
2 me< ). g min(d(py). d(p)).
s<R

(P1,p2)€E’

Combining this with the fact thgf g ns = 3 ,cp d(p), Inequality (2.8) gives

Sdp) < 5 Y minid(py), d(pa) + R

peP’ (P1.p2)eE’

< 2 AR+

peP’

where for the last inequality we are using the fact that s@&cis planar, there is a way to

orient the edges i’ so that the out-degree of every nodePnis at most 3 (see [14]). By
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rearranging, we get:

> d(p) < 4R. (2.9)

peP’
Now we will constructGg in such a way that for everg € P’, R(p) induces a connected

subgraph. Consider sonpes P’ and the familyR(p) of pseudo-disks that contain it. Using
Lemma 2.11 of [2], we obtain a combinatorially equivalennily of pseudo-disks that
are all star-shaped with respectpo From this, by performing an angular sweep using
a ray emanating fronp, (and having initial orientation such that it doesn’'t pas®tigh
any of the intersection points among the pseudo-disks) wa gembinatorially equivalent
family of pseudo-parabolas. Applying Lemma 3 gives a gr&@ph= (R(p), Ep), with
|Epl < 6IR(p)l = 6d(p), while for anyq € P, the pseudo-disks iR(p) N R(q) induce a
connected subgraph Gf,.

The union of the graph&,, for all p € P’ gives the graplGr = (R Upp Ep). Due
to the way that? was constructed, for ang € P\ P’ there is somg’ € P’, such that
IR(p)NR(p)| = %d(p). Therefore, since the pseudo-disks0p’ ) "R(p) induce a connected
subgraph irGy, there are at Ieaéatd(p) — 1 edges among the pseudo-disks that corpain
On the other hand, ip € P’, then there are at lead{p) — 1 edges among the pseudo-disks

in R(p). We conclude the proof by observing that the total numbedgks irGg is at most

6(X per d(P)) < 24RI (using (2.9)). O
From Lemma 7 and Theorem 8 we get:

Theorem 16. The primal range spacg(P, S) defined by a family S of pseudo-disks and a

set P of points in the plane admits amet of size (O%).

Remark 1. Since pseudo-parabolic halfplanes are a special case afdus€isks, Theo-

rem 16 implies that the primal range space defined by a fanfijseudo-parabolic half-
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planes and a set of points in the plane, also admitg-aet of size @%).

Remark 2. Note that the definition of pseudo-disks that we used hereffexetht from

the one used in [36] where the family of pseudo-disks is reguio be such that there is
exactly one pseudo-disk passing any three non-collineartpoWe do not make such an
assumption and hence our result is stronger than the one6h [Bloreover, Theorem 16
cannot be proved using the framework developed in [16], dimei technique is applicable
only todual range spacds the sense in which we have used the term in this chapter, see

Section 5.2) induced by geometric objects.
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Chapter 3

PTAS for Geometric Hitting Sets and

Independent Sets

In Chapter 2, we looked at a technique for proving the exiserfe-nets of small size for
certain geometric range spaces. Our construction alscedgwdathms for computing-nets
of small size. A natural question then is whether we can caenfhe smalles¢-net that
a range space admits. In this chapter, we consider a moreajgmeblem of computing
the smallest hitting set and present polynomial time appration schemes (PTAS) for
range spaces for which only constant factor algorithmdah(aitather large constants) were
known. The problems we consider are strongly NP-completiehemce, unless=NP, it
is not possible to find a fully polynomial time approximatischeme (FPTAS) for these
problems. Quite surprisingly, our algorithm is a very siefacal search algorithm which
iterates over local improvements only. The proof technigsed also yields a PTAS for
the maximum independent set in the intersection graph ofasmissible set of regions

in the plane. This extends similar results obtained in [4] Hj. Finally, the algorithmic
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technique we use gives a new way to prove the existence of smals for range spaces
induced by unit squares in the plane. We believe that a gimpiaof may exist for more

general range spaces.

3.1 Introduction

In the minimum hitting set problem, we are given a range space (P, D) consisting
of a setP and a setD of subsets oP called theranges and the task is to compute the
smallest subset C P which has a non-empty intersection with each of the range3.in
This problem is equivalent to the set cover problem and angly NP-hard. If there are
no restrictions on the set syste®nthen it is known that, unlesssP, there does not exist
any polynomial time algorithm that can approximate the mumin hitting within a factor
of clogn of the optimal [46]. The problem is NP-complete even for theecwhere each
point of P lies in at most two sets &R [23].

A natural occurrence of the hitting set problem is when theyeaspaceR is derived
from geometry. For example, given a $bf n points inR?, and a setD of m convex
polygons containing points &, compute the minimum-sized subse®oivhich hits all the
polygons inD. Unfortunately, for most geometric range spaces, comgukia minimum-
sized hitting set remains NP-hard. For example, even thati{rely) simple case wher®
is a set of unit disks in the plane is strongly NP-hard [27]tHis paper, we will only be
concerned with set systems whétés a set of points, and the rangesfinare induced by
various geometric objects.

Since there is little hope of computing the minimum-sizettirig set for general geo-

metric problems in polynomial time flert has turned to approximating the optimal solu-
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tion. In this regard, an interesting connection to ¢heet problem was made by Bronni-
mann and Goodrich [10].

They proved the followiny let R = (P, D) be a range-space for which we want to
compute a minimum hitting set. If we can computeeamet of sizec/e for the weighted
e-net problem forR in polynomial time then we can compute a hitting set of sizemast
c - ort for R, whereorr is the size of the optimal (smallest) hitting set, in polynaimtime.

A shorter, simpler proof was given by Evenal.[22].

This connection betweestnets and computing hitting sets implies that for the ranges
mentioned above witlD(1/¢)-sized nets, there exist polynomial-time, constanteiaap-
proximation algorithms for the corresponding hitting setlgems. The constant in the ap-
proximation then depends on the constant in the size af-tiets, which are typically quite
large. For example, folR H), whereH is the set of halfspaces &?, the best constant we
get using techniques in Chapter 2 is at least 20, yielding sttd@0-approximation algo-
rithm. Furthermore, this is a fundamental limitation of teehnique: ittannotgive better
than constant-factor approximations. The reason is tHewolg: the technique reduces
the problem of computing a minimum size hitting set to thebfgm of computing the min-
imum sizee-net and then uses constant factor approximation for terlptoblem. It uses
the fact that ar-net of sizec/e can always be computed and thédt is a lower bound on
the size of the:-net to get the constant factor approximation. The Bronnm@oodrich
technique therefore cannot give a PTAS even for relativetypke hitting set problems.

As a side €ect of the techniques we use in this chapter, we also get soqmeved
results for the maximum independent set for geometric $etetion graphs. We briefly re-

view the known results in this area. In the maximum indepanhsiet problem for geometric

1They actually proved a more general statement, but thewoilpis more relevant for our purposes.
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intersection graphs we are given a set of geometric objectsre goal is to compute the
maximum independent set in the intersection graph defindldoyg. In other words, we are
required to compute a pairwise non-intersecting subséieodbjects of the largest size. For
general graphs, it is impossible to approximate the maxirmgapendent within a factor
better tham!= for anys > 0, unless NRZPP [25]. Even when the graph is an intersection
graph of simple geometric objects like unit disks in the planorthogonal line segments in
the plane, computing the maximum independent set is NP{B8ld A PTAS for the unit
disks case appeared in [28] following which a PTAS for adbitrdisks appeared in [12]
and [21]. These algorithms, however, useshéted dissectiotechnique which requires
the objects to be fat. Agarwait. al. gave a PTAS for the case of unit height rectangles
in [4] and more recently, Agarwal and Mustafa [1] gave a polymal time constant factor

approximation algorithm for the case of non-piercing ragtas in the plane.

3.2 Results

We prove the following results in this chapter:

(1 + 6)-approximation of the minimum hitting set via local search. We present a new
general technique for approximating geometric hittings sethich avoids the limitation

of the Bronnimann-Goodrich technique: we give the first polyral-time approximation

schemes for the minimum geometric hitting set problem fordewlass of geometric range
spaces. All these problems are strongly NP-complete ancehemless PNP, there is no

FPTAS for these problem. Specifically, we show that:

e Given a setP of n points, and a seH of m halfspaces irR3, one can compute a

(1 + 6)-approximation to the smallest subsetothat hits all the halfspaces iH in
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O(mrPe™) time.

e Given a seP of n points inR?, and a set of-admissible region®, one can compute
a (1+ ¢)-approximation to the smallest subsetPthat hits all the regions iD in
O(mrP¥ ) time. This includes pseudo-disks (they are 2-admissilsiane-height
rectangles, circular disks, translates of convex objetcts 8ee Definition 3.3.1 for

the definition of arr-admissible set of regions.

The above results should be contrasted with the fact thatfeveelatively simple range
spaces like those induced by unit disks in the plane, thaquswbest known approximation
algorithm is due to a recent paper of Careti al.[11] which gives a 38-approximation
algorithm improving the earlier best known factor of 72 [42]

Our algorithm for both the problems is the following simpéedl search algorithm:
start with any hitting se® C P (e.g., take all the points &), and iterate local-improvement
steps of the following kind: If ank points ofS can be replaced by — 1 points ofP such
that the resulting set is still a hitting set, then perforra #wap to get a smaller hitting
set. Halt if no such local improvement is possible. We will tais a k-level local search

algorithm Then our main result is the following:

Theorem 17. Let P be a set of n points iR3 (resp. R?), and letH (resp. D) be the
geometric objects as above. Then, there exists a constanthcthat a(c/s)?-level local
search algorithm returns a hitting set of size at mdst ¢) - opt, whereorr is the size of

the optimal(smallest) hitting set.

Note that, for any fixed, the naive implementation of thelevel local search algorithm
takes polynomial time: start the algorithm with the entie¢ B as (the most likely sub-

optimal) hitting set?. The size of decreases by at least one at each local-improvement
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step. Hence, there can be at mosteps of local improvement, where there are at most
(E) : (kfl) < n?! different local improvements to verify. Checking whether a aeftzal
improvement is possible tak€Xnm) time. Hence the overall running time of the algo-
rithm is O(mr?%*1). By using data-structuring techniques, this bound can lpedued by
polynomial factors; however that is not our goal here.

As a part of proving Theorem 17, we prove a result about plaipartite graphs, which
is of independent interest. For any vertex a graphG, denote byNg(v) the set of neigh-

bors ofv. Similarly, for any subset of the vertic®g of G, let Ng(W) denote the set of all

neighbors of the vertices W, i.e.,Ng(W) = U,ew Ns(Vv). We prove the following:

Theorem 18 (Planar Expansion Theorem)here exists constants ¢ angl $uch that for
any k > kg, if G = (R, B, E) is a bipartite planar graph on red and blue vertex sets R
and B,|R > 2, so that for every subset B B of size at most KNg(B')| > |B’|. then

Bl < (1+¢/ VK IR.

(1 + 6)-approximation of maximum independent set in geometric inérsection graphs.
We give a PTAS for the maximum independent set of the intéisegraph defined by a
set ofr-admissible set of regions in the plane. This extends thdtsegbtained in [4] and
[1]. Our algorithm is again &-level local search similar to the one used for approxingatin
minimum hitting sets. We start with the empty set and remhaty to replacek — 1

or fewer objects by a larger number of objects so that theltregiset of objects is still

pairwise non-intersecting. We again use Theorem 18 to prevéollowing:

Theorem 19. Let D be an r-admissible set of regions in the plane. There is ateohs
such that &c/6?)-level local search returns an independent set of the ietgisn graph of

D of size at leastrr/(1 + §) whereorr is the size of the maximum independent set.

48



Existence of smalle-nets via local search.We show that the local search technique can
also be used to prove the existence of small sinets. Specifically, we show that for the
case where we have points in the plane and the ranges cohsist squares in the plane,
a simple local-search method gives the optimal boun®(@f ¢) for the size of thes-net.

It is quite easy to prove the same result using other teclesitut it is interesting that the
local search technique can be used to prove this. So far,nllyeother place where local
search has been used to prove a bound on the sizaeis is the proof of the existence of
O(1/¢) sizee-nets for halfspaces iR? by Pach and Woeginger [44]. It is not at all clear
that the same holds for halfspaceskii We conjecture that this holds for more general
range spaces defined by a set of points and-asimissible set of regions in the plane — we

leave this as an open problem.

In Section 3.3 we present the proof of the main Theorem 1dpaisg Theorem 18. We
prove Theorem 19 in Section 3.4 again assuming Theorem X&i086.5 then gives the
proof of the Planar Expansion Theorem (Theorem 18).Theralte proof for the existence

O(1/e) sizee-nets for unit squares in the plane is given in Section 3.6.

3.3 PTAS for minimum hitting sets

Let R = (P, D) be a range space whePds theground seand® ¢ 2° is the set of ranges.
A minimum hitting set forR is a subseQ < P of the smallest size such th@n D # 0,
for all D € D. In this section we will show that given any parameter 0, anO(6~2)-level
local search returns a hitting whose size is at most §) times the size of the minimum

hitting set for range spaces that satisfy the followlimgality condition
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Locality Condition. Arange spac® = (P, D) satisfies the locality condition if for any two
disjoint subset&, B C P it is possible to construct a planar bipartite graphk- (R, B, E)
with all edges going betwedRandB such that for any) € D, there is an edge between a
vertex inD N Rand a vertex irD N B whenever both the intersections are non-empty.

For example, ifP is a set of points in the plane addlis defined by intersecting with
a set of circular disks, theR = (P, D) satisfies the locality condition. To see this consider,
for any givenR andB, the delaunay triangulatic® of RU B. Removing the non red-blue
edges from the triangulation gives the required bipartiémg@r graph since for each disk
D in the plane, the vertices irR(U B) N D induce a connected subgraph®@fand hence
there must be an edge between a verteR in Rand a vertex irD N B whenever both the
intersections are non-empty.

Let us now return to the general problem. IRt (P, D) be a range space satisfying
the locality condition wher® is a set of sizen andD is a set oimsubsets oP. LetRC P
be a hitting set of minimum size and Btbe a hitting set returned bykalevel local search.
We will use the fact that no local improvement is possibl@&ito show thatB| cannot be
too much larger thafR|.

We can assume, without loss of generality, tBat R = 0. If not, letl = BN R,
P =P\I,B =B\I,R =R\ I and let?’ be the set of ranges that are not hit by the points
in 1. B andR are disjoint. AlsoR is a hitting set of minimum size for hitting set problem
with pointsP’ and the ranges . If we can show thafB’| is approximately equal t&R'|,
we can conclude thaB| is approximately equal tiiR|.

From now on, we will callR and B the red points and the blue points respectively.
Since no local improvement is possibleBnwe can conclude that foblue points can be

replaced byk — 1 or fewer non-blue points. In particular, kdlue points can be replaced
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by k — 1 or fewer red points.
Let G be the bipartite planar graph betwdeandB, given by the locality condition for
R. Since bothR andB are hitting sets foR, we know that each range i has both red

and blue points.
Claim 4. Forany B € B, (B\ B") U Ng(B') is a hitting set forR.

Proof. If there is rangeD € D which is only hit by the blue points iB’, then one of those
blue points has a red neighbor that Hitsnd therefordNg(B’) hits D. OtherwiseD is hit

by some pointirB\ B'. m|

Claim 4 implies that ifB” C Bis a set of at-modkt blue points, thefNg(B')| > |B'| since
otherwise a local improvement would be possibl&in
Now Theorem 18 implies that given any parameiea k-level local search witlk =

c?572 gives a (1+ 6)-approximation to the minimum hitting set problem #®r

3.3.1 PTAS for anr-admissible set of regions.

It turns out that the locality condition, by a more compleghiconstruction of the planar
graphG [45], also holds for am-admissible set of regions, for amyin the plane. This
yields a PTAS for the minimum hitting set problem with madmissible set of regions in

the plane. Recall the definition of aradmissible set regions:

Definition 3.3.1. A set of regions irR?, each of which is bounded by a closed Jordan
curve, is called radmissible(for r even), if for any two § s, of the regions, the Jordan
curves bounding them cross ixlk points, (for some even |), and both\ss, and $\ s

are connected regions.
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As mentioned earlier, this includes pseudo-disks (whietRaadmissible), same-height

rectangles, circular disks, translates of convex objdcts e

3.3.2 PTAS for halfspaces irR3.

Given a set of halfspaces and a set of point&3ywe first pick one of the points and add
it to our hitting set. We then ignore and all halfspaces containing it. L&t = (P, D) be
the range space defined by the remaining set of points anéiiaming set of halfspaces.
A PTAS for R gives a PTAS for the original problem. We will show tifatsatisfies the
locality condition. LetR andB be disjoint red and blue subsetskf

We construct the required graghon the verticelR U B in two stages and prove its
planarity by giving its embedding on the boundacyof the convex hulC of RU B. In the
first stage, we add all red-blue edges (1-faces) td G. In the second stage we map each
red or blue pointp lying in the interiorC to a triangular face\(p) of C which intersects
the rayop emanating frono and passing through.? Let Q be the set of points mapped
to a triangleA. We will construct a planar bipartite graph @and the corners ok and
embed it so that the edges lie inside If A has two red corners and one blue corner, we
add an edge between each red poinQino the blue corner oA and each blue point of
Q to the two red corners oh. It it quite easy to see that this can be done so that the
graph remains planar. The case wiiehas two blue corners and one red corner is handled
similarly. Consider now the case when all cornerg\are red and lety, r, andrs be the
corners. In this case we will connect at most one blue poir® &b all three corners of

A and we will connect the rest of the blue points to two of theneos ofA. Again, it is

2Here we are assuming that each fac€a a triangle, since one can always triangulate the faces.
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clear that this can be done while keeping the graph planar.e&ch blue poinb € Q,
we try to find one cornec of A such that there is no halfspabes R* with the following
properties: i) the only blue point inis b, ii) h contains exactly one of the cornersAfIf
we can find such a corner then we put an edge betwekmnd the two corners af other
thanc. There can be at most one blue pointQrfor which we cannot find such a corner
and we will connect that blue point to all three cornersAofFor contradiction, assume
that there are two points; andb, in Q such that for each pair of red and blue points in
F = {ry,ry, 13, by, by} there is a halfspace iR® containing exactly those two points Bf
This means that eaafb; is an edge in the convex hull &f and thereford= is in convex
position. The Radon partition [35] &F is then a (32)-partition. Since the blue points lie
on the same side of the plane containighe partition with two points has one red point
and one blue point and there cannot be a halfspace contarexgly these two among
the points off, contradicting our assumption. The case whemas three blue corners is
handled similarly. The construction Gfis complete.

We now show that for any halfspabec R3, that does not contaio and that contains
both red and blue points, there is an edg&itetween a red point and blue point both
of which lie in h. If h contains both red and blue points which lie @0 then there is a
red-blue edge among two of those due to the edges added irrgshstéige. Otherwise
assume, without loss of generality, that only the red pamts lie on dC. Consider the
halfspacd parallel to and contained imthat contains the smallest number of points and
still contains both red and blue points. CleaHycontains exactly one blue poiht Since
h, and hencér, does not contain, ¥ must contain one of the corners of the trianglthat
b is mapped to. Ib is connected to all three cornersdin G, we are trivially done. Also,

if h contains two of the corners &, then we are done sindeis connected to at least one
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of those corners. IR contains exactly one cornerof A, thenb must be connected to
since it cannot be the case that we connebttmlthe other two corners @&f. Hence, in all

casesb is connected to one of the red pointdin

3.4 PTAS for maximum independent set

Let D be anr-admissible set of regions in the plane. We want to approtdrtiee maximum
independent set in the intersection graph of these regi@if be a maximum independent
set and leB be the independent set returned bylavel local search. The regionsktare
pairwise non-intersecting and so are the regiora i8inceRUB also forms am-admissible
set, the intersection grayh of the regions iR U B is a planar bipartite graph. Since no
local improvement is possible B, i.e. no subset oB’ C B of sizek — 1 can be replaced
by a set of siz& so that the resulting set if still pairwise non-intersegtiwe conclude that
for every subselR C R of size at mosk, [Ng(R)| > |R|. Applying Theorem 18 oG with
the roles ofR andB exchanged, we havéB| > |R/(1 + ¢/ Vk) for some constant. This

proves Theorem 19.

3.5 Proof of the Planar Expansion Theorem

We will use the following result for the proof of the theorem:

Theorem 20(Planar graph partition with small boundary size [33biven a planar graph
H with n vertices and a parameter t, the vertices of H can bedddtiinto groups of size
at most t so that the total number of vertices of a group shangll other groups, summed

over all groups, is at mostn/ Vt, wherey is a fixed constant.
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Note that some vertices belong to more than one group — tleeseas are calledound-
ary vertices. Furthermore, each non-boundary vertex has enfggso members of its own

group (which could include some boundary vertices).

Proof of Lemma 18Letr = |R andb = |B|. Consider the groups @& formed according

to Theorem 20 with the parametiee k. Each group has at moktvertices. Consider the
i™ group and let? andb? be the number of red and blue boundary vertices respeciively
the group. Similarly, Ieb}nt andriint be the number of red and blue interior (non-boundary)
vertices in this group. Theorem 20 guarantees fhaf + b’ < y(r + b)/ Vk. Since there
are at mosk interior blue vertices in the group, by the expansion coodibf the theorem,
their neighborhood must be at least as large as their own ey b™ < ri"+rd. Adding

b? to both sides and summing over ale have

b< > OM+b) < > M+ > (7 + b))

<r+y(r +b)/ VK

Let us assume th&t> 4y? and set = 4y. Then,

< r% = 1(L+y/ V(L + v/ VR + () VP +---)
<r(L+y/ VK@ +2y/VK) (sincey/ Vk<1/2)
= r(1+ 3y/ Vk + 2y%/K)
<r(1+4y/Vk) (since 3%/k < y/ Vk)
=r(1+c/Vk).
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3.6 Combinatorial Bounds one-nets via Local Search

Consider the range spaée= (P, D) in which P is a set of points in the plane arfd is
defined by intersectin® with a set of unit squares in the plane. Constructamet forR,
sayY, using the 3-level local search: starting with= P, keep improvingY as long as
there exists a subset of size at most thre¥ tfat can be swapped to get a smaller set. We
now argue thafy| = O(1/e).

For the argument we will consider an equivalent problem. Wereplace each of the
squares by a point at its center and each of the points withitasgnare centered at it.
The task now is to pick the smallest subset of the squaredwdaer all points which are
covered by more than anfraction of the squares. Let the number of squares aed the
number of points ben. We will refer to the set of squares corresponding to poim by
S and the set of squares corresponding to the poinstig M.

First some definitions. Call the squaresNhthe “e-net squares” and the squares in
S\ M as “normal squares”. A poirng € R? is densdf it is covered by more thaan squares
in S. Eachs € M must have gersonal dense point.e., a dense point which no other
square inM covers. Fix any unit griding of the plane, and call a grid pgractiveif at
least one of the four cells touching it contains a dense p@enote the set of active grid

points byA. The following claim is easy to show.

Claim 5. |Al = O(1/¢).

Proof. By a packing argument, each active point laasunit squares intersecting one of

its four adjacent squares. These squares contribute aacwmstmber of active points, and

there can be onl®(1/¢) such sets. m|
Each unit squars € S contains exactly one of the grid points, and for the squares i
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Ci(p)

(7]

Cs(p) Ca(p)

Figure 3.1: The normal squarecovers thes-net squares and stabs its neighbors (in the

cascadeM,(p)) in the cellCy(p).

M, this grid point belongs té. For each active grid poirg € A, label the four cells around

it asCy(p), Ca(p), Cz(p) andC4(p) in counter-clockwise order. For each c€l(p), refer

to its opposite cell a€/(p) (e.g.,Ci(p) is the opposite cell t&€3(p)). Denote the set of
squares iV that contain the grid poinp by M(p), and among these, those that have a
personal dense point i@;(p) asM;(p). Each square oM containingp must belong to at
least one of the fouM;(p)’'s. Each setM;(p) forms acascadeand there is a natural linear
order on them. Call the squares which are not the first or thendhis order thaniddle
squares oM;(p). Each squars € M;(p) has some region i€;(p) which is not covered
by other squares iM;(p) and we denote this region (s) (see Figure 3.1). This square
s also has a region i€/(p) which is not covered by other squaresht(p), denoted by

R/(s). For a normal squareand ane-net squares € M;(p) we say that f stabssin Ci(p)”

57



if r intersects the regioR;(s) and we say thatr‘coverssin Ci(p)” if r contains the region

Ri(s). Note that ifr coverssthenr also stabs.
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Lemma 8. No three middle squares in ) have a common coverer in both(g) and

C/(p). Furthermore, no five squares in;{{) are stabbed by a common square in both

Ci(p) and G(p).

Proof. If three middle squares iN;(p) have a common covererin Ci(p) and a common
covererr’ in C/(p), then a local improvement is possible by replacing thedlsguares by
two squares andr’ in thee-net. Similarly, if five squares are stabbed by a common squar

r (resp.r’) in Ci(p) (resp.C/(p)), then the three middle squares among them are covered

by r (resp.r’), which is not possible by the first statement. m|

For any squares € M, let N(s) be the set of normal squares intersectsgAlso, let
Z(p) = UsmpN(s) be the neighborhood & (p) andZ(p) = Usem(pyN(S) be the neighbor-
hood of M;(p).

Claim 6. For any pe A and any iJZ(p)| = "2 . en. Furthermore|M(p)| < 6042,

Proof. First notice that the second statement in the claim eadilyws from the first since
for somej, M;(p) > M(p)/4 and therefor¢Z(p)| > Z;(p)l = IM;(p)I/15 > IM(p)|/60. We
will now prove the first statement.

Partition the squares iNl;(p) into two types: those that have personal dense points in
Ci(p) only, or in bothC;(p) andC/(p). If the former set has size at least(p)|/3, we are
done: each such square M) > en (due to the personal dense point), and by Lemma 8,
each normal square is double-counted at most five times whnemgg upN(s) for squares
in this set. Therefor&;(p)| = (IMi(p)|/15)en.

Otherwise, assume that there are at ledigk(®)|/3 squares, say s&t’, which have
personal dense points in bo@i(p) andC/(p). Lett = |[M’| and lets;, s, -+ , s be the

squares oM’ along the cascade defined by them. For each sgjadefine itsred (blue)
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successoto be the square, with the smallest indek > j such thats; and s, are not
stabbed by a common square@(p) (C/(p)). Note that a square may not have a red
or blue successor. Let us also say that a red or blue sucoafsa@quares is far if the
successor isj with j—i > 5 andnearotherwise. If some squasshas a red (blue) successor
sj that is far thens the squares oM’ betweens ands;_;, of which there are at least 5,
are stabbed by a common squar€j(p) (C/(p)). Lemma 8 therefore implies that both red
and blue successors of a square cannot be far. At least oheroftias to be near. Assume,
without loss of generality, that at least half of the squamels” have a red successor that
is near. LetM” be the set of such squares. IMt” be the set of squares in which we take
every fifth square oM” starting with the first in the cascade defined by them. Cleasly n
two squares itM’” are stabbed by a common squar€j(p) since otherwise one of them
would have a far red successor. Now, sitidé’| > |M;(p)|/15 and each normal square can

contain the personal dense point of at most one of the sqoanés” in Ci(p), we have

1Zi(p)l = (IMi(p)I/15)en.

A square can belong to the neighborhood of at most nine guoives, i.e. ) pca |Z(P)] <
9n. Summing the second inequality in Claim 6 over@i A and using Claim 5, one gets

the required statementvl| = 3 .o [My| = O(1/e).

3.7 Future Work

We gave a PTAS for some geometric hitting set problems aneegra theorem, of inde-
pendent interest, about bipartite planar graphs in thegzocWe believe that the theorem

about bipartite planar graphs may be true for a more gentss of graphs. This may
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allow us to get PTAS for other geometric hitting set problenitsis also worth explor-
ing whether there is a PTAS with a running tir®émrP« ) instead ofo(mrP« ) for the
problems we considered.

We also believe that the local search technique can be us@tbtalternative proofs
of the existence of sma#-nets for many other geometric range spaces including those
induced by half-spaces i&® and by arr-admissible set of regions in the plane. Currently,
however, it is not even clear how to use it to praV€l/e) size e-nets for range spaces

induced by diferent sized squares in the plane.

61



Chapter 4

Small weak e-Nets

So far we have been discussing strangets where given a range spae= (X, R), we
want to pick a subset &f which hitsall e-heavyranges. However, as we saw in Chapter 1,
if X is a set of points iRY andR is the set of all subsets of obtained by intersecting
X with convex sets irRY, there is no hope of obtaining a stroeget forkR = (X, R) of
size dependent only on For example ifX is in convex position then any strorgnet

N must contain at leash(— en — 1) points since otherwise the points not includedin
form ane-heavy range which is not hit bM. We then introduced the idea of wealkets
which allow us to hite-heavy convex ranges with a small number of points, theirlmem
depending only or. In this chapter we study weaknets of constant size. We start with
the simplest instance of a weaknet, namely the centerpoint, whose existence is given
by the centerpoint theorem. The centerpoint theorem is btleedundamental combina-
torial results in discrete geometry, with applications @ometric algorithms [15, 41, 50],
large-scale computing [40], multivariate data analys® ghd several others. It states the

following:
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Centerpoint Theorem [43, 35].1 Given a setP of n points in the plane, there exists a
point c (not necessarily i?) such that any convex set containing more t@arpoints ofP

containsc. Furthermore, this bound is tight.

We will look at a generalization of the above theorem to mbemtone point. For example,
is it possible to find two points, andc; in the plane such that asyheavy (i.e. containing
at leasin/2 points ofP) convex set must contain eitheror c,? We present a general pro-
cedure that gives the following results: one can hit‘—7‘d|1eavy convex sets with 2 points.
Furthermore, we prove that this bound is tight. Similar lessare derived for larger num-
ber of points. In particular, we show that 5 pointdfse to hit aIIfT‘lJ-heavy convex sets.
This improves a natural way of picking five points [8] which all %-heavy convex sets:
find two lines (using the ham-sandwich theorem [35]) whichtipan the point set into
four regions withn/4 points in each. Add the intersection poxbf the lines along with
the centerpoints of the points in each of the four regionac&any set avoiding the four
centerpoints (one for each region) can contain dnty of the points in any of the regions

and must avoid one of the regions completely if it avoidthese 5 points form é—net.

Related work

Aronovet al.[8] proved that given a sé€ of n points in the plane, all convex sets containing

more thangn points of P can be hit by two points. They also construct inputs where

1This theorem can be equivalently stated as: there existsna @such that any halfspace containiag

contains at least/3 points ofP.
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Figure 4.1: lllustration of Theorem 21

regardless of how one picks the two points, there exists &esoset containing at least
gn points that is not hit. we improve both their results to get dptimal result of‘%n.
We similarly improve their results for other small numbefgoints (see Section 4.2 for
specific improvements).

Another related area of research is the so-caBadlai-type problems [35] which ask
whether certain families of geometric shapes can be “piroe a small number of points.
An example of such a problem is the following: Given a set okel disks in the plane
such that every pair intersects, what is the smallest nuwiq@rints needed to hit all these
disks? In this case, the answer which is both necessary didesnt, is four [17]. In our
problem, we are looking to hit considerably more generakactisfconvex sets), with the
added constraint that one first fixesnput points, and each convex set contains a constant

proportion of these points.
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4.1 Main Theorem

We first present some definitions. Given a Bedf n points inR¢ and a finite se@Q c RY ,

define the following:
€(P,Q) = min{e |V convexset® st. |[C NP|>en,wehavgdC N Q| # 0}

and lete?(P) = ming,q-i €(P, Q). Sete’ = sup, *(P). In other words, given anp, the set
of all convex sets containing'n points of P can be hit byi points. Thesé points are said

to form aweake’-net for P. The centerpoint theorem thdimensions states theft = 2.

We fix a directiond e RY which we call theupwarddirection. For a poinp € RY, let
fu(p) = (u, p) denote theneightof the pointp in the upward direction{(s, p) denotes the
inner product ofi andp). For a convex set, let f,(C) denote the height of the lowest point

inC, i.e. fy(C) = infpec fu(p).

We now present our main result.

Theorem 21. We have = 1and forr,s> 0and d> 1, we have

| ed - (1+(d— 1)ed)
Credsel = 7 el (14 (d— 1)ed)’

We haveed = 1 since we don’t need any point to hit 1-heavy convex sets e th
are no such sets. Let a,b € [0, 1] be two reals to be fixed later. L&{ be the set of all
closed halfspaces that contain at leaspoints ofP and whose bounding hyperplane passes

throughd points inP. DefineH¢ = {(h,, h,,--- ,h,) € H| IPn(h,nh;,---nh) > bn,}

oy °

2Recalll that are-heavy range contaimaorethan are fraction of the elements of the ground set.
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to be the set of alli-tuples of halfspaces i whose intersection contains at lebafpoints

of P. Consider theal-tuple, say k,,- - - , h,), such that

1. (h|1,"- ,h|d) e?—{d

2. (h, n---nhy) has the highest lowest-intersection point amongdteples of halfs-

paces inHY, i.e., fu(h, N---Nh) = MaXp, .. nyerd fullliy N --- N hy)

We choose the upward directiahso that thed-tuple (v, - - - , hy,) is well defined. Note
that fy(hi, N ---Nhy,) = —c0iff hj, N--- N hy, is unbounded in thdownwarddirection—4.
Let # be the convex hull oP and leth;,,--- , h;, bed halfspaces defining a vertexof £
and containing®. Choose the upward directidih so that the vertex is the unique lowest
vertex of the polyhedro#®” = h;, n--- N h;, in the upward direction and each of the points
p € P get a unique height. Such a choice wfensures that the bounding hyperplane of
no halfspace ir{ has a normal parallel to the upward directioand there is at least one

d-tuple of halfspaces ift® whose intersection is bounded in the downward directioh

Therefore, K, - - - , hy,) is well defined and the lowest pointip N --- N hy, is unique.

LetR be the polyhedro® = {h, N---Nh,}. Without loss of generality, we can assume
that#® is full dimensional and hencR is full dimensional. LeR, be the intersection of the
halfspaces irh;,,--- , by} exceptl; i.e., R, = Niepr.ake M- Since each of the halfspaces
contain at leasan points fromP, [PN R, | > (d — 1)an— (d — 2)n. Construct and return the

setQ={x}uQ UQ,U---UQ, where
1. xis the unique lowest point in, N--- N hy,.

2. Q is aned-net for the point seP \ (PN h, N --- N hy,) usingr points.
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3. Q, is aned-net for the point seP \ (P N R,) usings points.
Lemma 9. Q is an a-net for P, and has sizerrds+ 1.

Proof. The size ofQ is obvious from the construction. We show that it issanet for the

value required in the statement of the theorem. We first ne=bllowing crucial fact.

Claim 7. LetC’ be a convex set containing at least an points of P that doesorgin x

and contains points from R h, Nn---nh,. Then|PNC N R,| < bn for some i [1,d].

Proof. For contradiction, assume th@t intersects alR; in at leastbn points of P. Let
R’ be the convex hull oP N C’. Then,R’ does not contairx, and therefore there exists a
halfspacer defining a facet ofR’ such thatR’ C h’, andh’ does not contairx. SinceR’
intersectdy, N --- N hy, i) b’ intersectdy, N --- N hy,, and ii) i’ contains at leasin points

of P (sinceR’ c '), andiii))|IPNnHh N R | > bnVi e [1,d].

Now, the lowest poinzin R N h’ is strictly higher tharx (sinceh’ does not contairx)
and is defined by exactlgt halfspaces fronH sinceR is full dimensional and is defined
by exactlyd halfspaces fron#+{. Furthermore, the set of halfspaces definmg {h'} U
{h,,---,h,} \ h, for somei € [1,d] and sincelP N C' n R, > bnVi € [1,d], their
intersection contains at leash points fromP. This is a contradiction to the assumption
that (,,--- , hy,) has the highest lowest-intersection point amongdteples inH9. See

Figure 4.1 for an example iR?. O

We now show that any convex getcontainingan points must contain a point @ by one

of the following cases:

1. C’ containsy, so is hit byQ.
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2. C’ does not contain points from. Since|P N R| > bn, C’ containsan points from
the remaining se \ (PN R), whose size is at most @b)n. If an > €4(1 - b)n, then
C'ishitby Q.

3. C’ does not contaim and yet contains points froR. Then, by Claim 7C'NR, < bn

for somei € [1,d]. Then it must contain at leaah— bn points fromP \ (PN R,). If

an—bn> e4(1- ((d - 1)a- (d - 2)))n, thenC’ is hit by Q, .
Therefore, if
an>el(1-b)n and an-bn> (d-1)(1-a)n (4.1)

thenC’ is hit by Q. Maximizinga while satisfying (4.1) yields

el (1+(d-1)d)
erd+dsdsa: rd — sd’
1+€t-(1+(d-1)l)

completing the proof of Lemma 9 and hence Theorem 21. m]

4.1.1 New Proofs of the Centerpoint theorem and Helly’s theorem.

The above method actually gives elementary proofs of theegeoint theorem and Helly’s
theorem in any dimension.

The proof of the centerpoint theorem in two dimensions iDHdeWs: given a seP of n
points, consider all closed halfplanes containing mora @lrepoints ofP, and take the pair
with the highest lowest-intersection poixt This is the required point, since any convex
set not containing this point cannot intersect the inteiseof the halfspaces (Claim 7),
which contains more than/3 points ofP. Hence, such a convex set can only contain the

remaining points oP, of which there are fewer th%n. This follows from Theorem 21 by
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settingr = s= 0 andd = 2 to gete? = % The proof ford-dimensions is exactly the same:
consider sets ofl halfspaces, each of which contains more tfa%im points and choose
the set with the highest lowest-intersection point (warty upward direction). The lowest
point of their intersection is the centerpoint.

The same idea also gives an elementary proof of Helly’s #radn any dimension.
Helly’s theorem (see [35]) states that if we have a set ofedasonvex sets iiR? and we
know that evenyd + 1 of them have a common intersection then all of them have artam
intersection. To prove this, consider the pgirthat is the highest lowest-intersection point
of anyd of the convex sets. By choosing the upward direction casefilltan be assured
that p is uniquely defined and its height is finite. Then, by the ctodiof the theorem,
each of the other convex sets must intersect the commorsaugon/ of the d convex
sets definingp. Hence, they must also contgrsince if one of the convex setsdoes not
containp then the lowest poing of C N 7 is the lowest point of the intersection dfof
the convex sets and is higher thanThis contradicts our assumption thats the highest
lowest-intersection point of any of the given convex sets. Thereforgjs lies in all the

convex sets and thus they have a common intersection.

4.2 Consequences of main theorem

Improving upon previous work [8], we completely resolve Bapoint case in the plane.

Proposition 2. Given a set P of n points iR?, the set of all convex sets which contain
more thanin points of P can be hit bywo points (i.e..e? < 4). Furthermore, there exist
arbitrarily large point sets such that the set of all conveizsscontaining‘%n points cannot

be hit by two points.
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Proof. The upper bound follows from Theorem 21 by setting 1, s = 0 andd = 2.

Our lower bound construction is similar to the lower boundstouction in [8]. We
construct a set d? of 7 points such that for any two given poirmsndg in the plane there
is a convex set which avoids both the points and containsHegboints inP. By replacing
each of the points oP by a set ofn/7 points (for arbitraryn) contained in a dfticiently
small disk, one gets a s&of sizen such that no two points in the plane hit all the convex
sets containing at Ieaéh points of Q.

Our setP is the set of vertices of regular heptagon. Let us name thiegsa, b, c, d, e, f
andg in clockwise order. If eithep or g is identical to one of the 7 points, saythen the
other point cannot hit the convex séisde de f gand f gbcsimultaneously since they don't
have a common intersection. On the other hand, if neitheor q is identical to any of
the 7 points, then one of the closed halfspaces defined byni@assing througp andq

contains 4 of the points d? whose convex hull is not hit by eithgror g. ]

Proposition 3. Given P, the set of all convex sets which contain more tharpoints of
P can be hit bythreepoints (i.e. .3 < 1%). Furthermore, there exist arbitrarily large point

sets such that the set of all convex sets contai@mgooints cannot be hit by three points.

Proof. The upper bound follows from Theorem 21 by setting 2, s = 0 andd = 2.

The lower bound construction is as follows. We constructtao6&1 points such that for
any three given pointp, g andt in the plane there is a convex set containing 5 points from
P and avoids all the three points. As in the proof of Proposipone can replace each of
these points with a set off 11 points (for arbitrary) contained in a diciently small disk
and obtain a se) of points such that no three points in the plane hits all thever sets

containing at leasfn

70



Our setP is shown in Figure 4.2(a). Assume that there are three puihish hit all
convex sets containinéin points of P. We first show that none of these points can be
identical to any of the 11 sets in the point set. Observe thall the three points are
identical to one of the 11 sets in the point set, then they aiahm the convex hull of the
remaining points, of which there are at least 8. Also, if tWdle pointsp,q andt are
identical to one of the points, then the remaining pointsybich there are at least 9, can
be used to define two convex sets containing 5 points eachtarthg only one of the
11 points. A single point hitting both these sets should entidal to the shared point
implying that all the three points are identical to one ofplo@nts. If only one of the points,
say p, is identical to one of the 11 points, say the pdinthen consider the convex sets
defgh fghij and jabcd Sinceq andt hit all the three sets, one of the points should be
contained in the regiohv fg wherev is intersection point of the segmerftsanddh. Now,
consider the setlsijab andbcdef The third point must hit both these sets and therefore
must be identical td.

Assuming that none of the points is identical to one of the aihts, we show that
if there exists a set of three points which hits all conves sentaining 5 points fronfP
then one of those points is contained in one of the bold tleanghown in Figure 4.2(a).
Consider the four convex sejisabg abcde de fghandghijk (see Figure 4.2(b)) containing
5 points each. In order to hit all the four sets, one of thedlp@nts must be in one the four
regionsjzk, gxh dveor abcs If there is a point in one of the trianglgsk, gxhor dve we
are done. So, assume that there is a point in the regfiais There cannot be two points
in this region since then the remaining one point cannothatdisjoint regionshijk and
cde fgsimultaneously.

If the point inabcsis in one of the triangleatb or buc(see Figure 4.2(c)), we are done
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again. So, we assume that it is in the reggthubut does not lie oot or bu. Then, the
regionsabijk, fghij andbcde fmust be hit by the other two points, and one of those must
be in the trianglgyi (see Figure 4.2(c)) since we have assumed that none of thesp®i
identical tof.

Hence, one of the bold triangles shown in Figure 4.2(a) mustain one of three weak
e-net points.

Assume that the trianglexgcontains one of the points (the other cases are analogous).
Since the regionabcdk e fijk andde fij must be hit by two points, the regiatijr must
contain one of the points (see Figure 4.3(a)). Now, sincedg®nsabc jkandabcdemust
be hit by one point (see Figure 4.2(a)), the regangscontains a point.

Also, since the regionabijk and bcdef must be hit (see Figure 4.3(b)), either the
regionsabt ande fw contain one point each or the regidmgc andijy contain one point
each. Since the cases are symmetric, let us assume thagtbesabt ande fw contain
one point each.

But then, the regiordijk does not contain any point (see Figure 4.3(c)) although it
contains 5 points oP. Hence, it is not possible to hit all the convex regions cioitg 5

points of P using 3 points. O

Aronov et al. [8] proved that < 3. We actually are able to hit sets containémgpoints by
just two points (Proposition 2). Theorem 21 yielgs< é—f again improving upon Aronov

et al.’s result. Improving upon a result of Alon et al. [5],0hov et al. [8] showed that if
each convex set containg2 points, then they can be hit by five points. Theorem 21 yields

an improvement (set= 2,s= 1, andd = 2).
Corollary 1. € < ¢

4 — 31°
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2 20
Corollary 2. € < £7.

4.3 Conclusions

We presented a general technique for constructing smalbeuof points that hit all convex
sets containing certain fractions of pointsRfThis then gives an optimal extension of the
centerpoint to two points and improves the previous bound$afger number of points.
One intriguing open problem is whether the bound can be dlasethe three-point case.

Our work leaves a gapfg <€ < 1%), and it would be nice to get an optimal bound there.
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Chapter 5

Small basis for weake-Nets

5.1 Introduction

Given a set systemX(R), whereX is the base set, arl is a family of subsets oK, the
stronge-net problem asks for a small sub3@if X such that for every s& € R containing
at leaste|X| elements X’ N'S # 0. As we saw in Chapter 1, if the set system has a finite
VC dimensiond, then picking a random sample froof size O(de *log (de™?)) yields
ane-net with some constant positive probability. We also saat fuch small strong-nets
do not exist for set systems of infinite VC dimension. In mautar, it fails for range space
induces by a set of points and a set of convex objects in thmepla

In this chapter we will be concerned only about weakets with respect to convex
ranges. Recall from Chapter 1 that given a finiteReff points inRY, a weake-net with
respect to convex ranges is a $éof points inRY, not necessarily belonging 8 such that
W has a non-empty intersection with every convex rangkdisontaining more than an

fraction of the points oP. We briefly review a few other basic things that we discussed i
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Chapter 1. Letv(d, €) denote the maximum size of the weaket required for any set of
points inRY with respect to convex ranges. This is finite since Aérl.[5] have shown
that for anye, d, there exist a weak-net of size independent of In particular, they proved
thatw(d, €) < O(e~(@1-%9)) wheredy tends to zero witlil — co. This result was improved
by Chazelleet al.[13] to w(d, €) < O(e Ypolylog(e™?)). They also showed that for a set of
points inR? in convex position, there exists a weaket of sizeO(e* polylog(e~!)). More
recently, Matousek and Wagner [37] gave an elegant algorittat computes weaknets

in RY of sizeO(e Ypolylog(e™)).

A long-standing open problem has been to show the existdweeake-nets inR? with
sizeo(e™). Note that this contrasts sharply withnets for finite VC-dimension ranges,
where the size of the-net dependalmost linearlyon 1/e. In fact, the current conjecture
by Matouselet al.[37] is that optimal weak-nets should have siZ&(e~* polylog(e™)) in
RY for every integed. This conjecture and the following observation (whichduals from

Lemma 15) is the motivation for our work:

Observation 1. Given a set P of n points iRY, a weake-net of P of size k is completely

described by @i?k) points of P.

Essentially, each point of the wealnet is locally constructed frof®(d?) points ofP.
Hence if weake-nets do have siz&(e *polylog(e?)) in any dimension, then there must
exist O(e tpolylog(e™?)) (hidden constants depend dppoints of P from which it is con-
structed (we call this setl@asi9. So a possible first step towards confirming the conjecture
is to show this linear dependence on point®otJnfortunately all known constructions of
weake-nets useQ(e~%) input points In fact, a modification of [37] to compute the weak

e-net at one step (instead of several recursive steps) seersd fewer input points. How-
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ever, it does not. Briefly, the construction usesraimplicial partition with sets of size
®(n/r) such that no hyperplane intersects more tgrt-/9) sets of the partition. From
each set in the partition, one point is chosen and then a gmiiofs, containing a center-
point for every subset of the chosepoints, is computed. It is then shown that if a convex
set intersect®((d + 1)r'"¥9) sets in the partition then one of the centerpoints compisted
contained in the set, for otherwise there exists a hypegglaersecting(ri-/9) sets. The
case in which the convex set intersects fewer g+ 1)r-/%) is dealt with recursively.
To avoid recursion, we must choosén such a manner th&((d + 1)r’-/9) sets contain
fewer thaten points. Since the sets are of si@én/r), we require thatd + 1)r'"¥9n/r < en

implying thatr > ((d + 1)/€)%. Hence, in that case td@(e~%) input points are used.

The main features of the results presented in this chapgeasafollows:

e We answer the above question in tifBranative, showing that for every point sef
there exists a set @(e* log (¢ 1)) points inRY from which one can construct a weak
e-net forP. So, while the size of weaknets that we compute 8((e X log (e 1))®),

their description (i.e., points used to construct themyiiact near-linear in [e.

e The proof establishes an interesting relation betweemgtaets and weak-nets.
Random sampling works for stromenets since the number of ranges is polynomially
bounded, and seems doomed when the ranges are exponentiahloer (since then
one requires the probability of not hitting a range to be egmtially small as well).
We show that sampling approaches wirkne takes some ‘products’ over the sam-
pled points. In particular, we show the following. k3, take are-net with respect to

the intersection of every six halfplanes. Therly from theseO(e  log (1)) points,
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one can construct a weaknet of sizeO(e 3log®(e~1)). Similarly, we show that by

random samplingd(e*log (¢1)) points inR3, and taking some function of them,
one gets a weak-net of sizeO(e ®log°(e~1)). ForP in RY, take a random sample of
sizeO(e tlog(e?)) (with only the constant depending dil. Then another product

function of these sampled points yieldsanet with sizeO(e ).

e Our approach directly relates the size of the weailets to the ‘description com-
plexity’ of these ‘product’ functions. We use two ‘produdtinctions over points
of P: Radon points, and centerpoints. Our proof reveals thevimlig connection
(see Corollary 3 for a stronger statement): @ebe a set ofm points inRY, and let
c(Q) be a set of points such that a centerpoint of every non-emibget ofQ is
present inc(Q). Then if ¢(Q) has sizeD(n'), one can construct weaknets of size
O(etlog'(e71)). Therefore, showingy < d will lead to an improvement in the size of

weake-net obtained.

We first present an elementary proof for the two-dimensioasg in Section 5.3. While
this gives the intuition for the problem, the proof uses plég strongly, and so the exten-
sion to higher dimensions uses dfdient approach based on the Hadwiger-Debrunner
theorem. The general approach can be improvedfowith additional ideas, which are
presented in Section 5.4. The general construction fotrargidimensions is then pre-

sented in Section 5.5.
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5.2 Preliminaries

We review a few concepts from discrete geometry for late{8Sk

VC-dimension and e-nets [35] Given a range space(R), a setX’ C X is shatteredif
every subset oK’ can be obtained by intersectixj with a member of the familR. The
VC-dimension of K, R) is the size of the largest set that can be shattered.eTtet theo-
rem (Welzl and Haussler [26]) states that there exists-aet of sizeO(de " log(e™?)) for

any range space with VC-dimensidn

Radon’s theorem [35]Any set ofd + 2 points inRY can be partitioned into two sefs

andB such thatonyA) N conyB) # 0.

Ramsey’s theorem for hypergraphs [19]There exists a constai(n) such that given
any 2-coloring of the edges of a complé&t@niform hypergraph on at leaB(n) vertices,

there exists a subset of simsuch that all edges induced by this subset are monochramatic

Hadwiger-Debrunner (p,g)-theorem [6] Given a setS of convex sets irR® such that
out of everyp > d + 1 set, there is a point common ¢p> d + 1 of them, therS has a
hitting set of finite size and the minimum size of such a seeisoted byHDy(p, g) (inde-

pendent ofS|).
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5.3 Two Dimensions

Consider the range spagg = (P, R), whereP is a set oh points in the plane, and = {Pn
N, hi, hy is any halfspacgare the subsets induced by the intersection ofleingif-spaces
in the plane. This range space has constant VC-dimensioeiidem onk), and from the
result of Haussler and Welzl [26], it follows that a randormgéde of sizeO(e~* log(e™1))
is ane-net for Ry with some constant probability. L& be such are-net. We have the
following structural claim which establishes a relatiortvibeen stronge-nets and weak

e-nets.

Lemma 10. Let P be a set of n points in the plane, and let Q be-aret for the range space
Rk. Then, forany convex seC in the plane containing at leagh points of P, either a)
CNQ # 0, or b) there existk/2] points of Q in convex position, saygQ,i =1...|k/2],

such thatC intersects the eddgq; forall 1 <i < j < [k/2].

Proof. AssumeC N Q = . We then give a deterministic procedure that always f{kd2]
such points. W.l.o.g. assume that the convex set is polygsiece there is always a
polygonal convex sef’ € C such thatC’ n P = C n P), and denote its vertices in cyclic
order byp;, ..., pm for somem. Note that the next vertex aft@y, is p, again.

Define pipi.1 as the (infinite) half-line with apex gi;, and extending througp., to
infinity (definep.1p, likewise). See Figure 5.1 (a). L&i, j) be the region bounded by
Pi1p, the segmentpipi,1,.. ., Pi_1pj, andp;.1p;. Initially setl = 1,i, = 2, andj = 3, and

repeat the following:

1. If T(ij, j) contains a point of), denote this point (pick an arbitrary one if there are
many) to beg. Setij,; = j. Increment tol + 1, setj = j + 1, and continue as before

to find the next point of.
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2. If T(ij, j) does not contain any point @, extend the region by incrementirjgo

j + 1, and check again if (i;, j) contains a point of).

This process ends whgn= 1. Assume we havepointsq;, .. ., g, together with the in-
dicesiy, ..., i;. Note that, by construction, each potpis contained in the region(i, it,1).

Consider any; and the pointy, that the regiorT (i, iy;1) contains. See Figure 5.1(b).

Claim 8. The region Ti;_1, i{ — 1) contains no points of Q.

Proof. By the greedy method of constructiapis the smallest indexfor which the region

T(it_1, ) Is non-empty. Hence all the regiom$i;_1, ), i1.1 < | < Iy are empty. O

Defineh;, to be the halfspace incident to the edge; p;, and containing. Claim 8 imme-

diately implies the following.

Claim 9. The halfspace hdefined by the line incident to the edge yp;,, separates g

(and all the other points of Q lying in(l;_4, iy)) fromC.

If the number of points found by our method is at mkgi.e., | < k), then take the
intersection of the half-spacés fort = 1...,1. By Claim 9, each halfspad®g separates
all the points inT(ii_1,it) from C. Thus all the points ofQ are now separated by this
intersection (see Figure 5.1 (a) for the separating halgd® and since each halfspace
containgC, the intersection contains at leastpoints of P. This contradicts the fact th&
was are-net to the range spad.

Finally, note that the sequengeof points obtained;, = 1. ..k, has the property that the
intersection point of any (properly intersecting) pair egjments joining non-consecutive

points, lies inside. This follows from the fact that for every point, all the non-adjacent
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points andy, lie in the same two half-spaces incident to edgesp;, andp;,,, pi.,,+1, both of

which are incident t@. Therefore picking every alternate point yields the dekget. O

Setk = 8, and compute the-net for the range spadg. It follows from Lemma 10
that if a convex sef is not hit by the computed-net,then there exists a sequence of four
points, saya, b, c,d, such thaC contains the intersection of the two segmeat@ndbd.
This immediately yields a way to construct weakets using (strong)-nets: the weak-
net consists of aa-net, sayQ, for Rg, and the intersection points of all segments between
pairs of points 0ofQ. By the above argument, each convex set containing atdegsiints
of P either contains a point fror® or one of the intersection points. The number of points
in the weake-net constructed above a@e*log*(e 1)). We now show that by a more

careful argument, this can be reduce®(@ 2 log®(e 1)).

Theorem 22. Given a set P of n points in the plane, constructeanet Q for the range
spaceRy,. Construct the set Qas follows: for every ordered triple of points in Q, say
a, b, c, add the intersection of the bisector aibc with the line segment ac to’.QThen

Q U Q has size ¢ 2log®(e 1)) and forms a weak-net for P.

Proof. Fix a convex seC containing at leasén points of P. We may assume that does
not contain any point oQ. Then, from Lemma 10, there exists a sequence of six points
in convex position, say, b,c,d, e, f, of Q where the intersection point of every pair of
(properly intersecting) segments spanning these poegsniC.

The sum of the interior angles of the polygon defined by theeirts is 4. Form two
triangles by taking alternating points, sagceandabdf. The sum of the interior angles
of the two triangles is2 By the pigeon-hole principle, there exists a point, aawhere

the anglezcaeis at leastone-half of the interior angle of the polygon at vertex /fab.
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Figure 5.1: Constructing weaknets in two dimensions. (a) The dotted lines indicate the

at mostk halfspaces that are used to sepa@feom C.

Therefore, the bisector of the interior anglab lies inside the trianglace and intersects
the segmenid f. This intersection lies between the intersectiob divith the two segments
acandae See Figure 5.2(a). By assumption, these two intersecti@nsamtained inside
C. Therefore, by convexity, the intersection of the bisector fab with the segmentb

lies insideC. SinceQ’ contains all such intersectiorG,is hit by Q'. O

5.4 Three Dimensions

Lemma 11. For every d and t> d + 1, there exists a constang(f) such that given a
polytopeC and a set of points Q iR such thatC N Q = 0, i) either there is set of4(t)
hyperplanes such that eacheqQ is separated fron® by one of the hyperplanes or ii) there
exists Q € Q such thatQ’| = t and the convex hull of every4dl points of Q intersectC.

Proof. Assume, without loss of generality, that the origin liedha interior ofC. Forg € Q
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define

S(g) = faeR%a.g) > 1,(a,x) < 1¥xe C},

where(-, -) denotes the inner product. First note tBét]) # 0 sinceq ¢ C. SecondS(q)

is convex and closed, as it is the intersection of a familylosed convex sets (namely
the closed halfspaces defined by the duaj ehd the duals of the vertices 6). SinceC
contains the originS(q) is also bounded and hence compact.

Since 0¢ S(q), a € S(q) implies that there is a hyperplan@(x) = 1) which separates
the pointg from theC. If there ared + 1 pointsq,,- - -,g4:1 Whose convex hull does not
intersectC, then thesal + 1 points can be separated fraby a single hyperplane (sep-
aration theorem, [35]). This implies that the correspogdionvex set$S(d),: - - ,S(qg+1)
have a common intersection.

LetS = {S(g) | g € Q} be the set of convex sets corresponding to the poin. itf
every subse@) € Q of sizet hasd + 1 points whose convex hull does not inters€gt
thend + 1 of everyt convex sets irS intersect. Therefore applying the,)-Hadwiger
Debrunner theorem witp = t andq = d + 1 on the convex sets I8, we deduce tha® can
be separated froi@ using fq4(t) hyperplanes, wher(t) = HDy(t,d + 1) andHDgy(p, ) is

the Hadwiger-Debrunner hitting set number fpandq in d dimensions. O

Lemma 12. For every t> 5, there exists a constan(ty such that given a convex sét
in R and set Q of g(t) points inR? so that the convex hull of evedyof the points in @
intersectsC, one can find Q C Q of size at least t such that the convex hull of e&of

the points in @ intersect<C.

Proof. Consider a hypergraph with the base &tand every 3-tuple of points iQ’ as

a hyperedge. Color a hyperedge ‘red’ if the convex hull of theresponding 3 points
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intersectC and ‘blue’ otherwise. Then, by Ramsey’s theorem for hypgigsd19], there
exists a constarg(t) such that iffQ’| > g(t), there exists a monochromatic clique, €,

of sizet. A monochromatic ‘blue’ clique implies that there existsed sf t points such
thatC does not intersect the convex hull of any 3-tuple of thesatpoiTake any 5 points

of Q”, and partition their convex hull into two tetrahedra havdigjoint interiors. Since
both these tetrahedra must inters@gca triangular face of each of them must also intersect
C (not necessarily in the interior), a contradiction. Theref the clique returned must be
monochromatic ‘red’, implying the existence of a sub@&tof sizet such that the convex

hull of all three points iY” intersect<C. O
To prepare for the next lemma, we need the following geometaim.

Claim 10. Let T = {a, b, c, d, &} be a set of five points in convex positiorikif Then, if a
convex seg intersects the convex hull of eve8ytuple of T, it intersects at least one edge

(convex hull of &-tuple) spanned by the pointsin T.

Proof. By Radon’s theorem, in every set of five points in convex pasjtibere exists a
line segment which intersects the convex hull of the remagirthree points (the Radon
partition). Assume the line segmeat intersects the convex hull @fd, ande. Then, we
claim thatC must intersecaib. Otherwise, there exists a hyperpladmeeparatingab from
C. Sinceabintersects the convex hull afd ande, h separates at least one poinfad, e}

from C and convex hull of,b and this third point does not interse&gta contradiction. &

Lemma 13. For every t, there exists an(t) such that given a convex setin R3 and a set
Q” of h(t) points so that the convex hull of evédpoints in Q' intersectgC, one can find a

subset § ¢ Q” of size t such that the convex hull of every two points initQersectsC.

86



d azfab <2-/cae

(@) (b)

Figure 5.2: (a) The intersection of a bisector with a segmsélitlie inside C, (b) If C

intersects edgesc, ad andae, then it must interse@ f. Similarly for bf.

Proof. Again consider a hypergraph with the base@étand every 2-tuple of these points
as a hyperedge. Color a hyperedge ‘red’ if the convex hull efabrresponding 2-tuple
intersectC and ‘blue’ otherwise. Then again by Ramsey’s theorem, thastsea positive
integerh(t) such that iffQ”| > h(t), there exists a monochromatic clique of siz&Ve can
assume (again by Ramsey’s theorem) thatifk wherek is a constant, then the points of
the monochromatic clique have 5 points in convex positiannClaim 10, it follows that
the convex hull of two of the points of these 5 points intets€x; thereby implying that
the color of the monochromatic clique cannot be ‘blue’ anddegthe convex hull of every

pair of points in the clique interseats m|
Lemma 14. Given a set of points R in convex positionkif, |R| > 5, and a convex set
that intersects every edge spanned by the points in R, a Ramphof R is contained i@.

Proof. Take the Radon partition of any five pointsi See Figure 5.2 (b). Say the edge
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abintersects the facet spanned{lsyd, €}. It is easy to see that @ intersects the edges,
ad andae, it must intersect the segmeaf. Similarly, if C intersects the edgdx, bd and
be it intersects the segmehtf. By convexity, it must contain the intersection of the edge

abwith Acde O
We come to our main theorem in this section:

Theorem 23. Let P be a set of n points iR3. Then there exists a constantcfz(g(h(5)))
such that the followings holds: take amynet, say Q, with respect to the range space
(P, Rc). Construct a weak-net, say Q as follows: for every ordered 5-tuple, saybac, d, e,
add the intersection (if any) afabc withde. Then QU Q is a weake-net for P of size

O(e °log’(e7Y)).

Proof. Fix any convex se€ containing at leastn points of P. Without loss of generality,
we can assume thatis a polytope (e.g., take the convex hull of the point®afontained
in C). Furthermore, one can assume tBats a full-dimensional polytope (since for a
fixed weake-netQ’, and each lower-dimensional polytogénot hit by Q’, there exists a
full-dimensional polytope containing’ also not hit byQ’).

For a large enough constan{depending orfy(), g(-), h(-)), by Lemma 11, Lemma 12
and Lemma 13, there exists a set of at least five points sutlCthersects every edge
spanned by these points. Lemma 14 then implies@h& a weake-net. It should be noted
that the constant has a very bad dependenceanrince f4(-) has a very bad dependence

ond and bothg(-) andh(-) are exponential functions. m]

Remark: In [37], in order to construct a set that contains a centeitpaii all subsets of

a set ofr points ind dimensions ¢ points are used. The techniques described above
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can be used to reduce thisitbandr® (instead ofr* andr®) for dimensions two and three

respectively. This improves the logarithmic factors initihesult.

5.5 Higher Dimensions

Given a finite seP of points inRY, the optimal wealk-net can consist of any subsetRf.
However, arguing similar to [37], we show that there is a @igefinite set of points iRY

from which an optimal weak-net can be chosen. This subset is constructed as follows:
consider the set of all hyperplanes spanned by the poink (efich such hyperplane is
defined byd points of P). Everyd of these hyperplanes intersect in a poin®ih Con-
sider all such points formed by the intersectiorddfyperplanes (i.e. the vertex set of the
hyperplanes spanned by the point set). This is the requoed pet, which we denote by

=(P).

Lemma 15. Let P be a set of n points iR, Then the seE(P), of size @n®), contains an

optimal weake-net for P, for anye > 0.

Proof. Let S be any wealk-net for P. We show how to locally move each point 8fto a
point of £(P). Wlog assume that each convex set is the convex hull of thepibicontains.
Take a point € S, and consider the (non-empty) intersection of all the carsets which
containr. The lexicographically minimum point of this intersectjdnis the intersection

of d of these convex sets [35]. Note thidies on a facet of each of these convex sets, and
each facet is a hyperplane passing throdgloints of P. Replacing with t still results in a
weak net, since by constructians also contained in all the convex sets containinghe

proof follows. ]
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We now show thaE(Q), whereQ is a random sample d® of size O(e *log(e ™)), is a

weake-net with constant probability.

Theorem 24. Given a set P of n points iRY, there is a kd) such that if Q is a random
sample of size(k)e *log(e~!) from P, then with constant probability, @ QU Z(Q) is a

weake-net for P.

Proof. Clearly Q' has sizeO(e‘dz Iogdz(e‘l)) since each point i)’ is defined by at most
d? points ofQ (intersection ofl hyperplanes, each defined yoints).

Setc = fy((d + 1)), wherefy(-) is as in Lemma 11 and skfd) = Ac for a large enough
constantl so that with constant probabilit@ is ane-net with respect to the range space
(P,R.). LetC be any convex set containing at leastpoints of P and assumé& N Q = 0.
ThenC cannot be separated fro@ by c hyperplanes, otherwise the intersection of the
halfspaces containing defined by these hyperplanes haan points and no point o, a
contradiction to the fact tha is ane-net for (P,R.). Again assume, as in Theorem 23,
thatC is a full-dimensional polytope. By Lemma 11, there exist a%ef at least @ + 1)
points of Q such that the convex hull of evedy+ 1 of them intersect§.

By Lemma 1 of [37],Q’ contains a centerpoint, say of the setS. We claim thai is
contained irC. Otherwise, by the separation theorem, there exists glaaiéh~ containing
gsuchthah~nC = 0. By the centerpoint propertii, contains at leasti¢-1)?/(d+1) = d+1
points ofS. The convex hull of thesé+ 1 points lies inh~ and therefore does not intersect

C, a contradiction. O

In the above proof, we used the fact tiigitcontains the centerpoint of every subsetof
However, the proof goes through everQf has only adeep-pointof everybig subset of

Q. Given a finite se$, adeep-poinis a points € RY such that any halfspace containiag
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contains at least points ofQ. Let ¢(Q) be the set of points iRY such that a deep-point of
every subset o of size at leastd + 1)? is present irc(Q). The proof above implies the

following.

Corollary 3. If ¢(Q) has size @m') for any set Q of size m, one can construct a wealet

for any point set of size @' log'(e'Y)).

5.6 Conclusion

This chapter presented a connection between weak and stroetg which allows the con-
struction of wealke-nets from a small number of randomly sampled input pointswveéler,

the size of the weak-net obtained this way is much larger than the best known uppe
bounds. It would be nice to improve the upper bound on theditee weake-net that can

be constructed from a small number of input points. The aiuje that the correct upper

bound on the size of weaknets isO(e *polylog(et)) remains open.
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